# OPERABLE UNIT 4 REMEDIAL INVESTIGATION REPORT

Sunnyside Yard Queens, New York

Volume I

Prepared for:

NATIONAL RAILROAD PASSENGER CORPORATION Washington, D.C. 20002

# **ROUX ASSOCIATES, INC.**

Environmental Consulting & Management



209 Shafter Street, Islandia, New York 11749 ♦ 631-232-2600

# TABLE OF CONTENTS

# **VOLUME I**

| ACRONYM AND UNIT DEFINITIONS                                                                                                          | iv          |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------|
| EXECUTIVE SUMMARY                                                                                                                     | vi          |
| 1.0 INTRODUCTION                                                                                                                      | 1           |
| 2.0 OPERABLE UNIT 4 BACKGROUND AND SETTING                                                                                            | 5<br>5      |
| <ul><li>2.4 Surface Features</li><li>2.5 Regional Geology</li><li>2.6 Yard Geology</li></ul>                                          | 6<br>6<br>7 |
| 2.6.1 Fill and Historical Topographic Changes 2.6.2 Bedrock 2.7 Hydrogeology 2.7.1 Regional Hydrogeology 2.7.2 Yard Hydrogeology      | 10<br>10    |
| 3.0 OU-4 Investigations  3.1 Summary of Investigations  3.1.1 Track Maintenance Investigations  3.1.2 New Construction Investigations | 14<br>18    |
| 3.1.3 Bridge Rehabilitation Investigations                                                                                            | 20          |
| 4.0 INTERIM REMEDIAL MEASURES 4.1 Soil IRMs 4.2 UST IRMs                                                                              | 22          |
| 5.0 NATURE AND EXTENT OF COC CONTAMINATION  5.1 History                                                                               | 37          |
| 6.0 PLANNED FEASIBILITY STUDY                                                                                                         | 46<br>46    |
| <ul> <li>6.1.2 <i>In Situ</i> Treatment</li></ul>                                                                                     | 47<br>47    |
| 7.0 EXPOSURE ASSESSMENT                                                                                                               | 48          |

# TABLE OF CONTENTS

#### (Continued)

| 7.1 Selection of COPCs                  | 49 |
|-----------------------------------------|----|
| 7.2 Identification of Exposure Pathways | 49 |
| 7.2.1 Soil                              |    |
| 7.3 Exposure Point Concentrations       | 52 |
| 7.3.1 Potential Receptors               | 52 |
| 7.4 Comparison to Relevant Criteria     | 52 |
| 7.5 Current and Future Site Conditions  | 54 |
| 7.6 Summary                             | 54 |
| 8.0 CONCLUSIONS and Recommendations     | 56 |
| 9.0 REFERENCES                          | 58 |

# **TABLES**

- 1. Summary of Soil Quality Sampling
- 2. Summary of PCB Concentrations Detected in Soil Samples
- 3. Summary of cPAH Concentrations Detected in Soil Samples
- 4. Summary of Lead Concentrations Detected in Soil Samples
- 5. Summary of Metals Concentrations Detected in Soil Samples
- 6. Summary of PAH Concentrations Detected in Soil Samples
- 7. Summary of SVOC Concentrations Detected in Soil Samples
- 8. Summary of VOC Concentrations Detected in Soil Samples
- 9. Summary of Pesticides Concentrations Detected in Soil Samples

# **FIGURES**

- 1. Site Location Map
- 2. Amtrak Sunnyside Yard Layout
- 3. OU-4 Soil Quality Total PCBs in Soil (Area 8)
- 4. Underground Storage Tanks Removed as IRMs in OU–4
- 5. OU-4 Land Surface Cover

# **PLATES**

- 1. OU-4 Soil Boring Location
- 2A. OU-4 Soil Quality Total PCBs in Soil (Zone I)
- 2B. OU-4 Soil Quality Total PCBs in Soil (Zone II)
- 2C. OU-4 Soil Quality Total PCBs in Soil (Zone III)
- 2D. OU-4 Soil Quality Total PCBs in Soil (Zone IV)

# TABLE OF CONTENTS

(Continued)

# PLATES (Continued)

- 3A. OU-4 Soil Quality Total cPAH in Soil (Zone I)
- 3B. OU-4 Soil Quality Total cPAH in Soil (Zone II)
- 3C. OU-4 Soil Quality Total cPAH in Soil (Zone III)
- 3D. OU-4 Soil Quality Total cPAH in Soil (Zone IV)
- 4A. OU-4 Soil Quality Total Lead in Soil (Zone I)
- 4B. OU-4 Soil Quality Total Lead in Soil (Zone II)
- 4C. OU-4 Soil Quality Total Lead in Soil (Zone III)
- 4D. OU-4 Soil Quality Total Lead in Soil (Zone IV)
- 5. Summary of Soil IRM Activities and Remaining Exceedances in OU-4

# **VOLUME II**

# **APPENDICES**

- A. Yard Soil Cleanup Level Documentation
- B. Soil Boring Logs
- C. Reference List of Reports Previously Prepared by Roux Associates, Inc, Related to OU-4

#### ACRONYM AND UNIT DEFINITIONS

Amtrak ...... National Railroad Passenger Corporation

Area ..... Area of Concern

bls ...... Below land surface

COCs ...... Compounds of Concern

Conrail ...... Consolidated Rail Corporation

COPCs ...... Chemicals of Potential Concern

cPAH ...... Seven specific PAHs that the NYSDEC considers carcinogenic

DER ...... Division of Environmental Remediation

EA ..... Exposure Assessment

ESA ..... East Side Access

FS ..... Feasibility Study

GRA ..... General Response Action

HSTF ..... High Speed Trainset Facility

IRM ...... Interim remedial measures

LIRR ..... Long Island Rail Road

mg/kg ...... Milligrams per kilogram, equal to 1,000 μg/kg

μg/kg ...... Micrograms per kilogram, equal to 0.001 mg/kg

msl ...... Mean sea level

MTA ...... Metropolitan Transportation Authority

NJTC ...... New Jersey Transit Corporation

NYCDOT ...... New York City Department of Transportation

NYSDEC ...... New York State Department of Environmental Conservation

NYSDOH ...... New York State Department of Health

OOC ..... Order On Consent

OU ..... Operable Unit

PAHs ...... Polycyclic aromatic hydrocarbons

PB/STV ...... Parsons Brinkerhoff, Quade & Douglas/STV Incorporated

PCBs ...... Polychlorinated biphenyls

RI ...... Remedial Investigation

ROD ...... Record of Decision

S&I ..... Service and Inspection

SCGs ...... Standards, Criteria and Guidance

SPH ...... Separate-phase Petroleum Hydrocarbon

SVOCs ...... Semivolatile Organic Compounds

TAGM ...... Technical and Administrative Guidance Memorandum

TDS ..... Total Dissolved Solids

TPH ...... Total Petroleum Hydrocarbons

UST ...... Underground Storage Tank

VOCs ...... Volatile Organic Compounds

Yard ...... Sunnyside Yard, Queens, New York

#### **EXECUTIVE SUMMARY**

On behalf of the National Railroad Passenger Corporation (Amtrak) and the New Jersey Transit Corporation (NJTC), Roux Associates, Inc. (Roux Associates) has prepared this Remedial Investigation (RI) Report for Operable Unit 4 (OU-4) of Amtrak Sunnyside Yard (Yard) in Queens, New York. The purpose of this report is to present a summary of findings from previous soil sampling investigations and summarize the interim remedial measures (IRMs) conducted in OU-4. This RI report will also provide a comprehensive understanding of the nature and extent of the contamination remaining in OU-4. Based on the findings in this report, Roux Associates will prepare a feasibility study (FS) to evaluate remedial alternatives for addressing remaining contamination. The location of the Yard is shown on Figure 1. The location of OU-4 within the Yard is shown on Figure 2.

In 1997, the Yard was subdivided into six operable units (OUs) in an effort to address sitewide remedial efforts in a timely and orderly manner. In February 1997, the New York State Department of Environmental Conservation (NYSDEC) and the New York State Department of Health (NYSDOH) issued cleanup levels for the compounds of concern at the Yard: total polychlorinated biphenyls (PCBs), total carcinogenic polycyclic aromatic hydrocarbons (cPAHs), and lead. The soil cleanup levels for the Yard are as follows:

- Total PCBs 25 milligrams per kilogram (mg/kg);
- Total cPAHs 25 mg/kg; and
- lead 1,000 mg/kg.

Subsequent to issuing the current Yard soil cleanup levels for COCs, NYSDEC issued 6 NYCRR Part 375 Environmental Remediation Program Subparts 375-1 to 375-4 and 375-6. The effective date of the regulation is December 14, 2006. The NYSDEC Part 375 regulation indicates that restricted industrial cleanups (i.e., railyards) should utilize a soil cleanup objective of 3,900 mg/kg for lead, which is higher than the current Yard soil cleanup level, and 25 mg/kg for total PCBs, which is equal to the current Yard soil cleanup level.

In October 2007, Amtrak and NJTC requested alternate soil cleanups levels for lead and total cPAHs in OU-4. NYSDEC indicated that alternate soil cleanup levels should be presented and

justified in the OU-4 FS, which we will do. However, NYSDEC did acknowledge that the 3,900 mg/kg soil cleanup level for lead would likely be approved as part of that process as it is in the NYSDEC regulations.

The current Yard soil cleanup levels for the three COCs are used for comparison in this document, including analytical data summary tables, plates and figures. Since a soil cleanup level of 3,900 mg/kg for lead is included in Part 375, we have also compared soil to that cleanup level in the appropriate sections of the report text. The alternate total cPAH soil cleanup level will be presented in the Focused FS to be submitted separately.

# **Previous Investigations**

Investigations in OU-4 have been ongoing since 1983. The Phase I RI was a comprehensive, facility-wide investigation to identify and determine the nature and extent of contamination primarily associated with the separate phase petroleum previously identified in Area 1 (OU-3), but also to provide an overall assessment of any other areas of contamination at the Yard. The prime objectives of the Phase II RI in relation to OU-4 were to provide further delineation of contaminated areas and confirm analytical results of samples collected during the Phase I RI. Subsequent to the Phase I and Phase II RIs, numerous soil sampling investigations associated with track maintenance, utility installation, and construction were performed on behalf of Amtrak and NJTC.

#### **Interim Remedial Measures**

Several of the remedial investigations that were performed for track maintenance, construction, and bridge rehabilitation identified soil samples with concentrations exceeding the Yard soil cleanup levels for the COCs. As part of these Yard maintenance activities, the identified COC exceedances were often excavated so the maintenance/construction activities could be completed and consequently serving as an IRM. Similarly, UST IRMs consisting of the removal or abandonment of several USTs were performed.

# **Nature and Extent of COC Contamination**

In summary, 1467 soil samples were collected from 1,067 soil boring locations. Subsequent to the issuance of the COCs and respective Yard soil cleanup levels from the NYSDEC in 1997, the investigations performed in OU-4 focused on sampling for the presence of the COCs.

Total PCBs: Of the 1,467 samples collected, 1,241 samples were submitted for PCB analysis and 73 samples exceeded the Yard soil cleanup level for total PCBs. Approximately 40 percent of the total PCB exceedances (29 of 73 samples) have been removed by soil IRMs. A total of 44 samples exceeding the Yard soil cleanup level for PCBs remain in OU-4. The sample concentrations for remaining total PCB exceedances range from 26,000 μg/kg in sample PC-10 (1-2) to 25,000,000 μg/kg in sample SB-68 (0-1).

Total cPAHs: Of the 1,467 samples collected, 812 samples were submitted for cPAH analysis. The current Yard soil cleanup level for total cPAHs was exceeded in 49 samples. Approximately 57 percent of the total cPAH exceedances (28 of 49 samples) have been removed by soil IRMs. A total of 21 samples exceeding the current Yard soil cleanup level for total cPAHs remain in OU-4. The sample concentrations for remaining total cPAH exceedances range from 25,540 μg/kg in sample TS36-14 (0-1) to 80,200 μg/kg in sample TU-3 (1-2).

<u>Lead</u>: Of the 1467 samples collected, 825 samples were submitted for lead analysis. The current Yard soil cleanup level for lead was exceeded in 69 samples. Approximately 22 percent of the lead exceedances (15 of 69 samples) have been removed by soil IRMs. A total of 54 samples exceeding the current Yard soil cleanup level for lead remain in OU-4. The sample concentrations for remaining lead exceedances range from 1,010 mg/kg in sample HB-11 (0-1) to 7,020 mg/kg in sample LLS-15 (0-1). Only one sample (LLS-15 [0-1]) of the 54 remaining exceedances for the current Yard soil cleanup level for lead would exceed the NYSDEC Part 375 cleanup level of 3,900 mg/kg.

#### **Exposure Assessment**

The Exposure Assessment (EA) addressed soil-quality conditions in OU-4. Exposure to soil in OU-4 is possible by workers engaged in routine activities. Therefore, exposure point concentrations in soil were compared to appropriate health-based criteria (NYSDEC Part 375).

Industrial Soil Cleanup Objectives) to determine the potential for present and future workers to be exposed to chemicals present in soil. All of the exposure point concentrations for the chemicals of potential concern (COPCs) in soil were below these criteria for soil, except for arsenic at six sampling locations and mercury at only one location. Soil at these locations was either previously removed, will be removed, or remains paved or otherwise covered, precluding direct human contact. Arsenic and mercury do not impact groundwater quality at the Yard. Therefore, additional COCs for OU-4 are not necessary and the existing three COCs (total PCB, total cPAHs, and lead) are sufficient for evaluating existing soil-quality conditions in OU-4.

# **Planned Feasibility Study**

An FS will be conducted to determine the most appropriate alternatives to address locations where soil exceeds the Yard soil cleanup levels for COCs. Preliminarily identified remedial alternatives that may be suitable for OU-4 soil include no action, *in situ* treatment, excavation and offsite disposal, excavation/onsite treatment followed by onsite or offsite disposal, and containment. Based on the type and distribution of contamination to be addressed, a focused feasibility study is planned. The focused FS will also propose alternate Yard soil cleanup levels for total cPAHs and lead.

#### 1.0 INTRODUCTION

On behalf of the National Railroad Passenger Corporation (Amtrak) and the New Jersey Transit Corporation (NJTC), Roux Associates, Inc. (Roux Associates) has prepared this Remedial Investigation (RI) Report for Operable Unit 4 (OU-4) of Amtrak Sunnyside Yard (Yard) in Queens, New York. The purpose of this report is to present a summary of findings from previous soil sampling investigations, comply with the March 18, 2005 Scoping Document for the Operable Unit 4 (OU-4) Remedial Investigation, Sunnyside Yard, Queens, New York and summarize the interim remedial measures (IRMs) conducted in OU-4. This RI report will also provide a comprehensive understanding of the nature and extent of the contamination remaining in OU-4. Based on the findings in this report, Roux Associates will prepare a focused feasibility study (FS) to evaluate remedial alternatives for addressing remaining contamination. The location of the Yard is shown on Figure 1. The location of OU-4 within the Yard and the previously identified Areas of Concern (Areas) are shown on Figure 2.

This RI report was prepared in accordance with the provisions of the Order on Consent (OOC), Index #W2-0081-87-06, as modified between the New York State Department of Environmental Conservation (NYSDEC), Amtrak, and the NJTC. In accordance with the OOC, the Phase I RI and Phase II RI were performed at the Yard. Consequently, 17 Areas of Concern (Areas) were identified at the Yard based on the results of inspections, discussions with Amtrak personnel, and previous investigations. As will be discussed later, in 1997, the Yard was divided into Operable Units (OUs). The corresponding OUs are included in the table below. With the exception of Areas 1, 6, and 7, which are located within OU-3, the remaining Areas listed below are located within OU-4 and are often referenced by Area designation within this report. The Areas are described below and are shown on Figure 2.

| OU | Area    |                                              | Description                                                                                                                |
|----|---------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| 3  | Area 1: | Underground Storage<br>Tank and Fueling Area | Nine abandoned underground storage tanks (USTs), former locomotive fueling station, former Engine House, former Metro Shop |
| 4  | Area 2: | Material Control Area (Yard receiving area)  | Central receiving, temporary storage, and distribution point for materials and supplies received at the Yard               |

| OU | Area     |                                  | Description                                                                                                                        |
|----|----------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 4  | Area 3:  | Gas Tank Area                    | Formerly three 750-gallon USTs and pump used for storing and dispensing gasoline                                                   |
| 4  | Area 4:  | Fuel Oil Tank Area               | 20,000-gallon UST used to store fuel oil for the Boiler House                                                                      |
| 4  | Area 5:  | Transformer Area                 | Former polychlorinated biphenyl (PCB) transformer area. Two transformers containing PCBs were located in this area.                |
| 3  | Area 6:  | Drum Storage Area<br>(Oil House) | Drum and equipment storage area; formerly the Yard receiving area                                                                  |
| 3  | Area 7:  | Storage Area                     | Reported to be a former empty drum storage area; currently no drums stored there.                                                  |
| 4  | Area 8:  | Transformer Area                 | Former PCB transformer area. This area is comprised of three distinct areas referred to as Area 8A, 8B, and 8C.                    |
| 4  | Area 9:  | Compressor Area (Substation 1-A) | Two-story brick structure which houses air compressors and transformers.                                                           |
| 4  | Area 10: | Transformer Area (Substation 44) | PCB transformers                                                                                                                   |
| 4  | Area 11: | Empty Drum Area                  | Former empty drum storage area                                                                                                     |
| 4  | Area 12: | Car Washer Area                  | Used to wash railroad cars.                                                                                                        |
| 4  | Area 13: | Former Storage Area              | Former storage area for materials including non-PCB transformers; currently contains a Consolidated Edison transformer substation. |
| 4  | Area 14: | Empty Drum Area                  | Former empty drum storage area; currently no drums stored there.                                                                   |
| 4  | Area 15: | Empty Drum Area                  | Former empty drum storage area; currently no drums stored there.                                                                   |
| 4  | Area 16: | Underground Storage<br>Tank Area | Twelve abandoned USTs are located in this area. These USTs were emptied in 1989.                                                   |
| 4  | Area 17: | 68 Spur                          | Used to store maintenance equipment and to stage materials.                                                                        |

The NYSDEC requested that Area 16 be removed from the RI/FS program following the cleaning and abandonment activities associated with the fourteen USTs. Details and results of the work completed in Area 16 were summarized in a report prepared by OHM Remediation Services Corporation, dated September 21, 1992 (OHM, 1992). Therefore, Area 16 is not discussed further in this OU-4 RI report.

In 1997, to accommodate a rigid construction schedule for Amtrak's High Speed Trainset Facility (HSTF) program and still address sitewide remedial efforts in a timely and orderly manner, the Yard was subdivided into six operable units with the NYSDEC's concurrence, shown on Figure 2. The operable units (OUs) are described as follows:

- <u>OU-1</u>: Soil above the water table within the footprint of the proposed HSTF Service and Inspection (S&I) Building.
- <u>OU-2</u>: Soil above the water table within the footprint of the HSTF S&I Building ancillary structures (i.e., the access road and utilities route, the parking area, the construction easement area which surrounds the building and the construction lay down area).
- <u>OU-3</u>: Originally the soil and separate-phase petroleum hydrocarbon (SPH) accumulation (herein referred to as SPH plume) above the water table in the area previously referred to as Area 1 of the Yard; however, it has expanded to include Areas 6 and 7 of the Yard, and saturated soil within these Areas.
- <u>OU-4</u>: Soil above the water table in the remainder of the Yard; however, it was expanded to include saturated soil for completeness.
- <u>OU-5</u>: Sewer system (water and sediment) beneath the Yard.
- <u>OU-6</u>: Saturated soil and the groundwater beneath the Yard (delineation of soil to be conducted as appropriate). OU-6 was modified to exclude saturated soil (now in OU-4) and include soil vapor.

In February 1997, the NYSDEC and the NYSDOH issued cleanup levels for the compounds of concern (COCs) at the Yard: total PCBs, total carcinogenic polycyclic aromatic hydrocarbons (cPAHs), and lead. The seven cPAHs that are collectively identified as a COC and considered to be carcinogenic by the NYSDEC are benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene. The soil cleanup level for total cPAHs issued by the NYSDEC in February 1997 was originally

10 milligrams per kilogram (mg/kg) and was subsequently revised in March 1998. The current soil cleanup levels for the Yard are as follows:

- Total PCBs (total) 25 mg/kg <sup>a</sup>;
- Total cPAHs 25 mg/kg; and
- lead 1,000 mg/kg.

Documentation from the NYSDEC and NYSDOH regarding the soil cleanup levels for the Yard is provided in Appendix A.

Subsequent to issuing the current Yard soil cleanup levels for COCs, NYSDEC issued 6 NYCRR Part 375 Environmental Remediation Program Subparts 375-1 to 375-4 & 375-6. The effective date of the regulation is December 14, 2006. The NYSDEC Part 375 regulation indicates that restricted industrial cleanups (i.e., railyards) should utilize a soil cleanup objective of 3,900 mg/kg for lead, which is higher than the current Yard soil cleanup level, and 25 mg/kg for total PCBs, which is equal to the current Yard soil cleanup level.

In October 2007, Amtrak and NJTC requested alternate soil cleanups levels for lead and total cPAHs in OU-4. NYSDEC indicated that alternate soil cleanup levels should be presented and justified in the OU-4 FS, which we will do. However, NYSDEC did acknowledge that the 3,900 mg/kg soil cleanup level for lead would likely be approved as part of that process as it is in the NYSDEC regulations.

The current Yard soil cleanup levels for the three COCs are used for comparison in this document, including analytical data summary tables, plates and figures. Since a soil cleanup level of 3,900 mg/kg for lead is included in Part 375, we have also compared soil to that cleanup level in the appropriate sections of the report text. The alternate total cPAH soil cleanup level will be presented in the Focused FS to be submitted separately.

The Yard soil cleanup levels were provided by NYSDEC in mg/kg units. Concentrations discussed in text are in the units they were provided by the laboratory. Likewise, the tables and figures in this report are presented in the units provided by the laboratory for consistency. For reference, 1 mg/kg is equal to 1,000 micrograms per kilogram ( $\mu$ g/kg).

#### 2.0 OPERABLE UNIT 4 BACKGROUND AND SETTING

This section includes a description of Yard operational history, including a more specific description of OU-4. Additionally, surface features (i.e., topography, drainage, and regional and site-specific geology and hydrogeology) are included in this section. The description of the physical setting and history of OU-4 is based upon Roux Associates' review of available data and current conditions at the Site and the previous field investigations conducted by Roux Associates.

# 2.1 Yard Operating History

The Pennsylvania Tunnel and Terminal Company, a subsidiary of the Pennsylvania Railroad (later known as the Penn Central Transportation Company), originally constructed the Yard in the early 1900s. The Yard officially opened on November 27, 1910. On April 1, 1976, the Consolidated Rail Corporation (Conrail) acquired the Yard and the same day conveyed it to Amtrak, which has continued to operate it as a storage and maintenance facility for railroad rolling stock. The Yard current functions primarily as a train maintenance and train layover storage facility for electric and diesel locomotives and railroad cars for Amtrak and NJTC.

# 2.2 General Yard Description

The Yard is located in an urban area in northwestern Queens County (Figure 1). The East River is located approximately one mile to the west and Newtown Creek, which defines the border between Queens and Kings Counties, is located less than 0.5 mile south of the western portion of the Yard. The Yard consists of a railroad maintenance and storage facility that currently encompasses approximately 133 acres. The land use surrounding the Yard is a combination of commercial, light industrial, and residential areas. The Long Island Rail Road (LIRR) owns a portion of the Yard along the northern boundary (including a portion of OU-3) and maintains rights of way through the Yard (within OU-4).

# 2.3 OU-4 Physical Setting

OU-4 is defined as the soil existing above the water table at the Yard, excluding OU-1, OU-2, and OU-3, and includes the Areas identified in Section 1.0 (Figure 2). OU-4 encompasses approximately 118 acres of the Yard. The portion of the sewer that lies within the extent of the

OU-4 boundary will be addressed as part of OU-5. Groundwater and soil vapor beneath OU-4 will be addressed as part of OU-6.

Physical characteristics of OU-4 (the largest surface component of the Yard) including surface features, geology (including man-made structures), and hydrogeology have been investigated during previous work at the Yard. Summaries of these characteristics are discussed in the following sections.

#### 2.4 Surface Features

The Yard lies in a topographically depressed area with ground elevations that range from approximately 10 to 25 feet below the surrounding land surface, thus forming a basin-like area. The Yard topography is generally flat and slopes gently to the west. The Yard topography and drainage patterns are strongly influenced by the large number of railroad tracks and bulkheaded areas. Surface runoff from the Yard does not appear to be a source of contamination to adjacent properties.

A portion of the primary combined sanitary/storm sewer drainage system serving the Yard underlies the Site. The primary subsystem (one of two subsystems that serve the Yard) connects catch basins located throughout approximately 90 percent of the Yard. Storm water from the primary subsystem leaves the Yard to the north, approximately 360 feet west of Honeywell Street.

# 2.5 Regional Geology

The Yard is located within the Atlantic Coastal Plain Physiographic Province. The regional subsurface geology consists of unconsolidated sand, silt, clay, and gravel deposits that overlie crystalline bedrock. The unconsolidated strata in the area dip gently to the southeast, following the topography of the bedrock surface (Soren, 1978). Boreholes drilled within northwestern Queens County indicate that the unconsolidated deposits consist predominantly of Upper Pleistocene glacial deposits that range from approximately 30 to 150 feet in thickness. These borehole logs also indicate that Lower Pleistocene deposits, consisting of the Jameco Gravel overlain by the Gardiner's Clay unit, may be discontinuously present beneath the Yard. These Lower Pleistocene deposits unconformably overlie bedrock.

A thin veneer of recent and Holocene deposits covers the Upper Pleistocene deposits. Unconsolidated Upper Pleistocene glacial (ground moraine) deposits of unstratified, poorly sorted mixtures of sand and silt with some gravel and cobbles (Buxton, et al., 1981) overlie the Lower Pleistocene deposits (where present), which overlie crystalline bedrock. The saturated portion of the Upper Pleistocene deposit forms the Upper Glacial aquifer of Long Island.

# 2.6 Yard Geology

The geologic logs of soil borings drilled throughout the Yard during Roux Associates' investigations indicate that the Yard is underlain by the following units (in order by increasing depth): fill (including ballast, cinders/ash), recent and Holocene deposits (where present), Upper Pleistocene glacial deposits (including both till and channel deposits), and bedrock. Fill activities, which were part of major topographic changes engineered at the Yard, are summarized below.

# 2.6.1 Fill and Historical Topographic Changes

The fill is predominantly comprised of reworked glacial deposits (unstratified sand, silt, clay and gravel) and railroad ballast (including cinders/ash), with minor amounts of construction debris and other materials. The railroad ballast is ubiquitously present throughout the Yard at land surface, with the exception of paved areas and land occupied by buildings. As discussed below, additional information has been obtained that indicates that, between 1906 and 1910, Upper Pleistocene glacial deposits were excavated from topographically high parts of the Yard and redeposited as fill in lower lying parts of the Yard including wetlands. Reworked glacial deposits (made land) are often visually indistinguishable from the underlying unstratified glacial deposits. The factors discussed below indicate that large volumes of fill were used at the Yard (including early reports that the Yard was a reclaimed marshland) for the construction of the elevated LIRR right-of-way and several extensive bulk-headed areas throughout the Yard. Documentation describing the origin of the current topography is summarized below.

During evaluation of the geologic and hydrogeologic data for the Yard, two historical topographic maps were obtained for reference: the first covering western Queens dated 1890 (Julius Bien & Co., 1890) and the second covering the Yard and surrounding area dated December 1906 (Pennsylvania Tunnel and Terminal Railroad Company, 1906). In addition, a

Chief Engineering Report (Pennsylvania Tunnel and Terminal Railroad Company, circa 1910) and associated cross-sections of the Yard (dated August 16, 1907) describe the topographic changes implemented at the Yard between December 1906 and August 1909. Utilizing the engineering report, topographic maps, Yard maps dated 1910 and 1917, and recent area maps, a comparison was made between the historical and current topographic features of the Yard. This comparison indicated that:

- The majority of topographic changes that occurred at the Yard took place between December 1906 and August 1909.
- Current land surface elevation throughout much of the eastern half of the Yard (i.e., east of Honeywell Street) is lower than original pre-development elevation.
- Current land surface elevation throughout much of the western half of the Yard (i.e., west of Honeywell Street) is actually higher than original pre-development elevation.
- Two former surface-water bodies (the wetland in the northeast corner of the Yard and Dutch Kills Creek) at the Yard have been filled.
- Current elevation of the LIRR mainline is higher than the original pre-development (1890) elevation.

The topography shown on the 1890 map for the land now occupied by the Yard is much different than present topographic conditions. A wetland existed along Northern Boulevard (formerly Jackson Avenue) near the northeast corner of the Yard. The 1890 map also indicates that Dutch Kills Creek flowed through the western portion of the Yard, flowing southwest to Newtown Creek. Approximately 750 feet east of Dutch Kills Creek, land surface begins a rapid increase from less than 10 to greater than 60 feet above mean sea level west of Honeywell Street. Although this topographic high is still present south of the Yard, the mound no longer exists across the Yard. West of Honeywell Street, land surface gradually sloped downward to the north from a high elevation of approximately 80 feet above mean sea level along Skillman Avenue to a low of about 30 feet above mean sea level at the wetland along Northern Boulevard (designated Jackson Avenue on the 1890 map). The natural topography of the Yard still plays an integral role in the groundwater flow patterns, hydraulic gradients, and saline conditions occurring at the Yard.

A Chief Engineering Report (Pennsylvania Tunnel and Terminal Railroad Company, 1910) describes the topography of the Yard prior to December 1906, when major Yard construction began. A 40-acre swamp was located west of Honeywell Street, with the remaining 93 acres of the Yard consisting of "rolling ground" with elevations from "10 to 70 feet above the swamp [wetland]." Existing data indicate that major topographic changes took place at the Yard between 1906 and 1910, bringing the Yard close to its present topographic condition. These changes are discussed below.

Cross-sections of the Yard dated August 1907 show both pre-construction and post-construction profiles of the Yard. The construction consisted of moving railroad tracks, grading the Yard, and constructing bridges, roads, and buildings. Natural Upper Pleistocene glacial deposits were excavated from parts of the Yard and deposited as fill in other parts of the Yard to create the current, generally flat topography. A part of the construction involved moving the LIRR passenger tracks to extend across the swamp (filling the swamp) and connect with the old passenger tracks west of Hunter's Point Avenue. During Yard construction, the following areas were excavated:

- the loop track under and south of the LIRR mainline;
- the north portion of the Yard both east and west of 39th Street (formerly Harold Avenue);
- beneath the 39th Street bridge (approximately from the LIRR mainline to Skillman Avenue) to accommodate both the mainline and loop tracks;
- the north part of the Yard (east of Queens Boulevard) to create the Multiple Unit yard; and
- from the retaining wall between the north and south yards south to the LIRR main line, to accommodate the body tracks and buildings and to create the Pullman and Coach Yard.

The following areas were filled with the excavated Upper Pleistocene glacial deposits:

- the LIRR mainline east of the Yard to bridge 43rd Street (formerly Laurel Hill Avenue);
- 39th Street (formerly Harold Avenue) to create the 39th Street bridge between Northern Boulevard (formerly Jackson Avenue) and Skillman Avenue, and the 39th Street ramp into the Yard;
- the north part of the Yard (west of Queens Boulevard) to create Multiple Unit Yard;

- the wetland associated with Dutch Kills Creek to accommodate the Multiple Unit Yard, Pullman and Coach Yard, LIRR mainline; and
- Meadow Street to create the Thompson Street Bridge.

#### 2.6.2 Bedrock

Based on published data, crystalline bedrock beneath the Site is Precambrian folded and faulted gneisses and schists that were eroded to a peneplain prior to deposition of the overlying glacial deposits (Soren, 1978). Based on information obtained from a file and well search at the NYSDEC, the bedrock surface appears to be highly irregular in this area. Boreholes drilled adjacent to the Yard indicate that the depth to bedrock ranges from approximately 30 to 150 feet below land surface (bls) (i.e., 10 to 130 feet below mean sea level [msl]).

As part of the New York City Department of Transportation (NYCDOT) reconstruction of Queens Boulevard Bridge over Sunnyside Yard, eight boreholes were drilled to the bedrock surface. The depth to bedrock ranged from 50 to 86 feet bls (Environmental Planning & Management, Inc., 1997). These depths are estimated to correspond to 40 to 70 feet below msl, with bedrock deepening to the south. As part of Roux Associates' work at the Yard, one borehole (P-3D), located in OU-1 (formerly a portion of Area 1), was drilled to the bedrock surface. Bedrock was encountered at a depth of 74 feet (53 feet below msl).

The circa 1910 Chief Engineering Report (Pennsylvania Tunnel and Terminal Railroad Company, 1910) stated that bedrock was exposed in the stream bed of Dutch Kills Creek, near the south abutment of the Thompson Avenue Bridge and under the LIRR freight tracks on the north side of the Yard. This report also states that bedrock was generally located 30 to 50 feet beneath the wetland (approximately in 1907).

# 2.7 Hydrogeology

Published hydrogeologic data and Yard-specific water level elevation and aquifer test data collected during previous investigations were evaluated to define the current hydrogeologic conditions observed at the Yard. These data were used to prepare water level elevation maps and hydrographs, calculate horizontal and vertical hydraulic gradients, estimate the hydraulic

coefficients, and calculate groundwater flow rates. Discussion of these parameters is given below in the following sections.

# 2.7.1 Regional Hydrogeology

Groundwater in the area occurs under water-table (unconfined) conditions in the Upper Glacial aquifer. Regional groundwater flow in the area is to the northwest, eventually discharging to the East River approximately one mile northwest of the Yard (McClymonds and Franke, 1972). Vertical flow within the aquifer changes from a downward flow in central Queens to an upward flow nearing the East River, where groundwater discharges. The published horizontal hydraulic conductivity of the Upper Glacial aquifer in Queens County ranges from 214 feet per day (McClymonds and Franke, 1972) to 270 feet per day (Franke and Cohen, 1972).

Published water-level data for Long Island from the early 1930s to about 1960 indicated that significant salt-water intrusion was occurring into the Upper Glacial and confined aquifers beneath western Queens County and as far inland as the center of Kings County. Historical data for wells near the Yard indicate that salt-water intrusion also affected the aquifers beneath the Yard (Smolensky, 1983). In documentation obtained from a public records (Freedom of Information Act-FOIA) search, two bedrock wells located northeast of the Yard (one within 500 feet) are noted as having brackish water conditions in the 1920s and 1930s. The effects of the historical salt-water intrusion can still be detected in groundwater quality, which exhibits elevated concentrations of sodium, chloride and total dissolved solids (TDS) (Soren, 1971).

Regional groundwater quality of the Upper Glacial aquifer is characterized as having a wide range of iron and manganese concentrations (Buxton, et al., 1981). Concentrations of iron and manganese increase as conditions become anoxic (i.e., as the dissolved oxygen content is depleted). Anoxic conditions are typically associated with swamp or wetland deposits, such as those buried in the northeastern and western portions of the Yard.

# 2.7.2 Yard Hydrogeology

Groundwater beneath the Yard occurs under water-table (unconfined) conditions. With the exception of the LIRR mainline, the water table exists between 1 and 15 ft bls throughout the Yard and occurs in either fill deposits or the Upper Pleistocene glacial deposits. The saturated

Upper Pleistocene deposits comprise the Upper Glacial aquifer. Beneath the Yard, the saturated fill deposits (excluding ballast, ash/cinders, and construction debris) and the shallow Upper Glacial aquifer were not always distinguishable and are, therefore, collectively referred to as shallow deposits (that contain the water table).

# **Groundwater Flow Patterns**

Groundwater within the shallow deposits flows predominantly west beneath the Yard. However, between Queens Boulevard and Honeywell Street, groundwater flows northerly and northwesterly toward the buried flow path of Dutch Kills Creek and/or the East River. In the deeper deposits, groundwater predominantly flows west across the Yard. More detail on the Yard hydrogeology will be presented in the OU-6 RI/FS report.

#### 3.0 OU-4 INVESTIGATIONS

Investigations in OU-4 have been ongoing since 1983 and include the Phase I RI (Roux Associates, Inc., 1992), Phase II RI (Roux Associates, Inc., 1995), and numerous track maintenance, utility installation, and construction related sampling activities. Investigations conducted for the Metropolitan Transportation Authority (MTA) East Side Access Project (ESA) by AKRF, Inc. and Parsons Brinkerhoff, Quade & Douglas/STV Incorporated (PB/STV) have also been performed in OU-4. Available data collected for the ESA project by AKRF and PB/STV is incorporated herein.

While the data developed from some of these investigations includes analytical results for total petroleum hydrocarbons (TPH), volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), PCBs, pesticides, and metals, the data pertaining to the COCs at the Yard (i.e., total PCBs, total cPAHs, and lead) are emphasized in this RI. As discussed in Section 1.0, the NYSDEC and NYSDOH established the COCs and issued the associated Yard soil cleanup levels in 1997. Therefore, subsequent investigations focused on the analysis of the COCs only and interim remedial activities were performed to meet the Yard soil cleanup levels.

A summary of soil samples collected in OU-4 during previous investigations conducted by Roux Associates and other consultants is provided in Table 1 and includes the following information: sample location/designation; sample depth interval; sample date; list of analytes; sample zone; and the party responsible for sample collection. Tables 2 through 4 provide the analytical data for the COCs. Tables 5 through 8 present the analytical data for the non-COCs (i.e., metals, PAHs, SVOCs, and VOCs).

All soil boring locations where one or more soil samples were collected and submitted for laboratory analysis for one or more of the COCs are shown on Plate 1. Due to the expansive size of OU-4, OU-4 was partitioned into four separate zones for data presentation purposes. The four zones are the following:

- Zone I: The easternmost portion of the Yard; extends from the eastern property boundary (near the Loop Tracks) to below the 39<sup>th</sup> Street Bridge.
- Zone II: Encompasses the area from below the 39<sup>th</sup> Street Bridge to below the Honeywell Street Bridge.

- Zone III: Encompasses the area from below the Honeywell Bridge to below the Queens Boulevard Bridge.
- Zone IV: The westernmost portion of the Yard; extends from below the Queens Boulevard Bridge to below the Thomson Avenue Bridge.

The analytical soil-quality data for total PCBs is presented in Plates 2A through 2D, for Zone I through Zone IV, respectively. Due to the high density of samples collected and submitted for PCB analysis in Area 8, Figure 3 presents the total PCB data specifically located in this Area. Soil-quality data for total cPAHs is presented on Plates 3A through 3D for Zone I through Zone IV, respectively. Soil-quality data for lead is presented on Plates 4A through 4D for Zone I through Zone IV, respectively. Plate 5 provides a summary of soil borings that contain soil samples that exceeded the Yard soil cleanup level for one or more of the COCs. As will be discussed in Section 4.0, numerous IRMs have been conducted at the Yard. The approximate locations of the IRMs are shown on each of the above-mentioned plates and on Plate 5.

# 3.1 Summary of Investigations

The Phase I RI was a comprehensive, facility-wide investigation to identify and determine the nature and extent of contamination primarily associated with the separate phase petroleum previously identified in Area 1 (OU-3), but also to provide an overall assessment of any other areas of contamination at the Yard. As discussed in Section 1.0, 16 other areas of concern had been identified at that time as possible sources of contamination. The prime objectives of the Phase II RI in relation to OU-4 were to provide further delineation of contaminated areas and confirm analytical results of samples collected during the Phase I RI.

Subsequent to the Phase I and Phase II RIs, numerous soil sampling investigations associated with track maintenance, utility installation, and construction were performed on behalf of Amtrak and NJTC. Many of the investigations involved NYSDEC approval of work plans or notification letters detailing the proposed scope of work and submittal of results following the completion of the work. However, at Amtrak's direction, several of these investigations were conducted without prior NYSDEC notification or approval (due to immediate railroad operational needs) and results were provided to Amtrak only. Analytical data for the investigations conducted in OU-4, including those previously reported to Amtrak only, are

presented in Tables 1 through 9. Soil boring logs for select borings completed in OU-4 are provided in Appendix B.

The following provides a listing of the investigations performed in OU-4. Details of the listed remedial investigations were provided in individual summary reports prepared at the time of the respective investigation. Reference information for each individual investigation listed below is provided in Appendix C.

| Investigation                                                                      | Investigation Report Date | COC<br>Exceedance<br>Detected? |
|------------------------------------------------------------------------------------|---------------------------|--------------------------------|
| Operable Unit Wide Investigations                                                  | <u> </u>                  |                                |
| Phase I Remedial Investigation                                                     | January 22, 1992          | Yes                            |
| Additional Delineation of Area 8, Area 9, and Area 17                              | October 6, 1994           | Yes                            |
| Phase II Remedial Investigation                                                    | February 15, 1995         | Yes                            |
| Track Maintenance and Switch Replacement Investigations                            | <u> </u>                  |                                |
| High Mast Light and Catenary Pole Soil Sampling Program                            | October 29, 1997          | No                             |
| Proposed Fumigation Track Soil Sampling Program                                    | August 22, 1997           | Yes                            |
| Soil Samples Collected for Inbound Motor Track Upgrade                             | March 22, 2000            | Yes                            |
| Loop Tracks:                                                                       |                           |                                |
| Loop 1 Track Soil Sampling Program                                                 | October 17, 1996          | No                             |
| Loop 2 Track Soil Sampling Program                                                 | August 22, 1997           | Yes                            |
| Limited Phase II Environmental Site Assessment for the Leveraged Lease Area        | September 20, 2001        | Yes                            |
| Loop Track Replacement Work in the Car Washer Area Sampling Program                | November 27, 2002         | No                             |
| North Runner Upgrade Soil Sampling                                                 | November 17, 1999         | No                             |
| Q Tower:                                                                           |                           |                                |
| Q-Tower Soil Sampling                                                              | September 11, 1996        | Yes                            |
| Delineation of Sample Location QT-2                                                | November 3, 1997          | No                             |
| Q-Interlock Area Soil Sampling                                                     | April 9, 1996             | No                             |
| R Tower Electric Line Sampling Program                                             | November 14, 1996         | No                             |
| Sub2 Track Replacement Soil Sampling                                               | June 13, 2003             | Yes                            |
| Track 1 Replacement Soil Sampling                                                  | August 12, 2002           | Yes                            |
| HSTF-Related Track Replacement – Tracks 1 through 5 and Lead Track 6 Soil Sampling | October 28, 1999          | Yes                            |
| Track 4 Maintenance Pit Wipe Samples                                               | September 4, 1997         | Yes                            |

| Investigation                                                                                                                                      | Investigation Report<br>Date         | COC<br>Exceedance<br>Detected? |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------|
| <u>Lead Track 6</u> :                                                                                                                              |                                      |                                |
| Delineation of Lead Track No. 6                                                                                                                    | May 27, 1997                         | Yes                            |
| Lead Track No. 6 Soil Investigation                                                                                                                | October 1, 1997                      | Yes                            |
| Track 7-8 Switch Replacement Soil Sampling                                                                                                         | March 7, 2005                        | Yes                            |
| Track 8: Track 8 Soil Sampling Track 8 Soil Sampling (delineation of location T8-6 PCB                                                             | August 12, 1996                      | Yes                            |
| exceedance)                                                                                                                                        | December 17, 1996                    | No                             |
| Track 9 Replacement Soil Sampling                                                                                                                  | October 26, 2004                     | No                             |
| Track 10: Track 10 Soil Sampling Program Track 10 Replacement Soil Sampling                                                                        | August 5, 1997<br>September 15, 2005 | Yes<br>Yes                     |
| Track #19 Soil Sampling                                                                                                                            | March 29, 1996                       | No                             |
| New Track #24 Soil Sampling                                                                                                                        | November 25, 2002                    | Yes                            |
| <u>Track 25</u> : Track Maintenance Soil Samples Collected from Track 25 Remedial Activities Completed on Track 25 Including a Portion of AOC A-8C | September 2, 1998  December 21, 1998 | Yes                            |
| Track 32 Replacement Soil Sampling                                                                                                                 | April 22, 2003                       | No                             |
| Track 34 Replacement Soil Sampling                                                                                                                 | August 2, 2004                       | Yes                            |
| Soil Samples Collected for Track 36                                                                                                                | July 15, 2002                        | Yes                            |
| Former Transformer Area Sampling and Follow-up Actions                                                                                             | April 5, 2001                        | No                             |
| Switch Replacement Soil Sampling                                                                                                                   | April 6, 1999                        | No                             |
| Switch 49 and 51 Replacement Soil Sampling                                                                                                         | October 26, 2004                     | Yes                            |
| West End Switch Sampling Program                                                                                                                   | October 31, 1997                     | Yes                            |
| New Construction                                                                                                                                   |                                      |                                |
| <u>Proposed New Construction</u> : Soil Samples Collected in New Construction Area of OU-4                                                         | September 10, 1999                   | Yes                            |
| Five Additional Soil Samples Completed in New Construction Area of OU-4                                                                            | October 8, 1999                      | No                             |
| Soil Samples Collected to Support New Construction                                                                                                 | July 28, 2005                        | Yes                            |
| Soil Samples Collected for Tank Pad Installation                                                                                                   | October 13, 2005                     | No                             |
| Soil Samples Collected for Utility Installation at Temporary Facility Locations                                                                    | August 7, 2007                       | Yes                            |

| Investigation                                                                                                    | Investigation Report<br>Date | COC<br>Exceedance<br>Detected? |
|------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------|
| HSTF-Related Construction:                                                                                       |                              |                                |
| HSTF related Soil Samples Collected from OU-4                                                                    | May 19, 1998                 | Yes                            |
| New Engine House:                                                                                                |                              |                                |
| Phase I Soil Sampling in Support of Construction of the New Engine House and Related Track                       | August 29, 1996              | No                             |
| Phase II Soil Sampling in Support of Construction of the<br>New Engine House and Related Track                   | October 7, 1996              | No                             |
| Additional Soil Sampling Results for the New Engine House Construction Project                                   | October 29, 1997             | No                             |
| Track Construction for New Engine House – Area 9                                                                 | April 5, 2001                | Yes                            |
| Soil Samples Collected for Engine House Tank Pad                                                                 | August 30, 2002              | No                             |
| Soil Samples Collected Below the Honeywell Street Bridge<br>Ramp                                                 | April 13, 2004               | Yes                            |
| Soil Samples Collected for New Water Line                                                                        | July 9, 2004                 | Yes                            |
| Soil Sampling Results for the Proposed Temporary Trailer<br>Sewer Connection Route                               | June 19, 1998                | No                             |
| Static Frequency Converter Station:                                                                              |                              |                                |
| Soil Sampling to Support the Static Frequency Converter Station Construction Project                             | October 6, 1994              | No                             |
| Soil Sampling Along Ductline Trench Route to Support the Static Frequency Converter Station Construction Project | January 12, 1995             | No                             |
| Static Frequency Converter Station Project Fiber Optic<br>Cable Ductline Soil Sampling                           | February 23, 1995            | No                             |
| Static Frequency Converter Station Project Water and<br>Sewer Line Soil Sampling                                 | March 15, 1995               | No                             |
| Bridge Rehabilitation Investigations                                                                             |                              |                                |
| Soil Sampling for Honeywell Street and Queens Boulevard<br>Bridge Rehabilitation                                 | April 17, 2000               | Yes                            |
| Soil Sampling at New Catenary Pole Locations for Honeywell<br>Street and Queens Boulevard Bridge Rehabilitation  | August 11, 2000              | Yes                            |
| Underground Storage Tanks                                                                                        |                              |                                |
| Closure for OU-4 R-Tower UST and Oil-Water Separator<br>Area UST                                                 | March 11, 1998               | No                             |
| UST Closure for Former Retail Gasoline Service Station                                                           | October 16, 1998             | No                             |
| OU-4 Former Vehicle Fueling Area USTs Abandonment                                                                | July 16, 1999                | No                             |

In summary, 1,467 soil samples were collected from 1,067 sampling locations. The following provides a more detailed discussion of the sampling protocol followed for track maintenance

investigations, investigations to facilitate new construction, and bridge rehabilitation related investigations.

# 3.1.1 Track Maintenance Investigations

The majority of the investigations performed were associated with Amtrak's track maintenance operations, where soil samples were collected prior to track/switch replacement. These investigations were performed in accordance with the General Sampling and Analysis Plan to Support High Speed Trainset Facility Activities in Operable Unit 4 (Roux Associates, Inc., 1997a).

At each boring location, soil characterization samples were collected from consecutive 1-foot intervals below ballast and each successive sample was analyzed until the concentrations of the COCs were detected at less than the Yard soil cleanup levels. For example, if the sample from the 1 to 2 foot interval was clean, the 2 to 3 foot interval was not analyzed. For select investigations, the soil from the ballast interval was analyzed as well. Samples from the ballast interval are designated on the data tables with a "B". Generally, soil samples were collected at 200-foot intervals along tracks and trenches.

To delineate sampling locations with exceedances of the Yard soil cleanup levels, soil samples were collected at a minimum of 10 feet on both sides (along track or trench) and following the same vertical sampling protocol as described above. Soil exhibiting COC exceedances was delineated and often removed during the track replacement work and confirmatory samples were collected. Typically, the confirmatory samples were only collected from the sidewalls running the length of the trench excavation (long sidewalls). Samples were not collected from the short sidewalls (width of the trench excavation) and the excavation bottom being that the lateral and vertical extent of the excavation was based on delineation samples. The long sidewall samples were collected to determine if the contamination extended horizontally beyond the track/trench excavation.

Specific investigations where COC exceedances were identified and soil excavation was performed are discussed in detail in Section 4.0 – Interim Remedial Measures.

# 3.1.2 New Construction Investigations

Soil sampling investigations were also performed in preparation of new construction throughout OU-4 including construction associated with the High Speed Trainset Building, the New Engine House, the Materials Storage Building, the proposed welfare building, warehouse building, expansion of the New Engine House, and Honeywell Street Bridge Ramp reconstruction. Construction-related investigations were performed in accordance with the General Sampling and Analysis and Interim Remedial Action Work Plan for New Construction in Operable Unit 4 (Roux Associates, Inc., 1999a).

Soil sample locations for construction-related investigations were limited to the construction envelope and followed an analysis protocol similar to that discussed above for track maintenance investigations. For delineation of COC exceedances, soil samples were collected on all four sides of the contaminated sample at a minimum radial distance of 10 foot feet.

On occasion, soil excavation was performed before delineation sampling could be completed due to space and schedule constraints. Under these circumstances, soil excavation proceeded to an area that appeared clean based on professional judgment and confirmatory samples were collected. The confirmatory samples were collected on each of the excavation sidewalls and bottom to verify the excavation removed all soil exceeding the Yard soil cleanup levels.

Specific investigations where COC exceedances were identified and soil excavation was performed are discussed in detail in Section 4.0 – Interim Remedial Measures.

# 3.1.3 Bridge Rehabilitation Investigations

Some of the investigations performed were associated with the Honeywell Street Bridge and Queens Boulevard Bridge rehabilitation project. Both bridges span the Yard and are maintained by the NYCDOT. In 1999, the NYCDOT designated these bridges for extensive rehabilitation work that would affect Amtrak's overhead catenary system supported by the bridges. The planned rehabilitation work included repair/replacement of the bridge piers and footings. As a result of this work, several catenary pole installations and soil excavation beneath the bridges was anticipated. In conjunction with the NYCDOT bridge work, the General Sampling and Analysis and Remedial Action Work Plan for Bridge Rehabilitation Construction in Operable

Unit 4 (Roux Associates, 1999b) was prepared. The work plan served to provide generic guidelines and procedures for soil characterization during the rehabilitation work and performance of interim remedial measures that would accommodate the NYCDOT work schedule.

Similar to the construction and track maintenance investigations discussed above, the bridge related investigations were limited to the construction envelope. Baseline soil sampling and delineation sampling followed a sampling and analysis protocol similar to that discussed above for track maintenance investigations.

# 3.1.4 Scoping Document for the OU-4 RI

Additional investigations were performed in OU-4 in accordance with the March 18, 2005 OU-4 RI Scoping Document that was approved by the NYSDEC on May 3, 2007. The Scoping Document identified three Categories to facilitate presentation of the proposed scope of work.

Category 1 locations were associated with IRMs and required no further action.

Exceedances of current COC Yard soil cleanup levels were to be delineated (referred to as Category 2 borings), including some in previously identified Areas. Most of the proposed Category 2 additional delineation sampling was not completed at the direction of the NYSDEC, but will be addressed in the OU-4 Focused FS. Additional delineation was not completed in Area 2 (Figure 2) as the adjacent Material Control Building will be demolished in the near future and Area 2 will be addressed at that time. Areas 9 and 14 (Figure 2) were to be addressed either as part of OU-4 or OU-6. Recent groundwater quality results from the OU-6 RI (i.e., no detections of compounds that previously exceeded groundwater quality standards) indicated that Area 9 required no further action and Area 14 (i.e., no groundwater quality exceedances, but low level detections) will be monitored as part of OU-6. The OU-6 RI data will be provided under separate cover in the OU-6 RI/FS.

Category 3 soil borings were to be completed in areas of the Yard not previously investigated. All Category 3 borings were completed.

# 3.2 Track Maintenance Activity Sampling (performed by other subcontractors)

Amtrak subcontractors other than Roux Associates also performed sampling to characterize soil prior to track maintenance activities completed in OU-4. Copies of the analytical results from these sampling events were initially submitted to the NYSDEC in the document titled "Supplement to the Phase II Remedial Investigation Report" (Roux Associates, Inc., 1996). The samples were primarily collected in the ballast layer and the majority of the sample results did not exceed the Yard soil cleanup levels at the time. Most of the sample locations were excavated as a function of track work. Any exceedances that were remediated are discussed in Section 4.1. Two samples, 925-3 and SSY-57 exceed the current Yard soil cleanup levels and are discussed in Section 5.2.

# 3.3 ESA Investigations

As part of the MTA's ESA Project, AKRF has performed soil sampling investigations to characterize soil in construction areas. Sampling data collected by AKRF that has been made available to Amtrak is incorporated with the OU-4 RI sample data, as noted on Table 1. Results of AKRF's soil boring/sampling activities were provided in the report titled, "Detailed Environmental Site Investigation, Sunnyside Yard, Sunnyside, New York," dated December 1999.

In addition to the work completed by AKRF, soil boring and sampling activities were also conducted by PB/STV for the ESA Project. Sampling data collected by PB/STV that has been made available to Amtrak is incorporated with the OU-4 RI sample data, as noted on Table 1. Results of PB/STV's soil boring and sampling were provided in the document titled, "Findings Report for the Environmental Site Investigation of the Sunnyside Yard and Harold Interlocking, Sunnyside, Queens County, New York – ESA Projects Alignments and Replacement Yards Study," dated January 2001.

#### 4.0 INTERIM REMEDIAL MEASURES

Several of the remedial investigations that were performed in OU–4 for track maintenance, construction, and bridge rehabilitation identified soil samples with concentrations exceeding the current Yard soil cleanup levels for the COCs. As part of these Yard maintenance activities, the identified current COC exceedances were often excavated so the maintenance/construction activities could be completed and consequently serving as an OU–4 IRM. In summary, the following COC exceedances were removed during soil IRM activities:

- 29 PCB exceedances were removed by IRM
- 28 cPAH exceedances were removed by IRM
- 15 lead exceedances were removed by IRM

Summaries of the soil IRMs performed in OU-4, including a discussion of the investigation that identified the COC exceedance and extent of soil excavation, are provided in this section. Several USTs in OU-4 have been either removed or abandoned in place. A summary of the UST IRMs performed in OU-4 are also provided in this section.

# 4.1 Soil IRMs

The following provides a summary of the investigations and associated soil IRMs performed in OU-4. All excavated soil was properly disposed offsite by Amtrak and Amtrak maintains an historic disposal manifest file that is available for review upon request. Each of the IRMs is shown on Plates 2A through 4D and Plate 5. Tables 2 through 4 provide the analytical data for the COCs.

Only three IRMs were performed in Areas of Concern in OU–4 and consisted of a portion of Area 8C, Area 9, and Area 3 (UST IRM).

# Track 8

In July 1996, ten soil borings (T8-1 through T8-10) were completed and sampled from the 0 to 2 foot bls interval to characterize soil in the portion of Track 8 scheduled for track maintenance. All samples were analyzed for PCBs. One sample, T8-6 (0-2), exceeded the Yard soil cleanup level for total PCBs with a concentration of 45,000 µg/kg (Plates 2C and 5).

To delineate the vertical and horizontal extent of soil contamination within the trackbed at location T8-6, five soil borings (T8-6, T8-6+15, T8-6+25, T8-6-15, and T8-6-25) were completed and seven soil samples were collected and analyzed for PCBs in October/November 1996 (Plates 2C and 5). The analytical results for the delineation samples indicated total PCB concentrations were all detected below the Yard cleanup level for total PCBs.

According to Amtrak personnel, the soil exceeding the cleanup level was excavated to locations and depths where analytical data indicated COC concentrations were below the soil cleanup level. The approximate extent of excavation is shown on Plate 5.

# **Q**-tower

In August 1996, four soil borings (QT-1 through QT-4) were completed and sampled to characterize the soil for excavation and disposal purposes. All samples were collected from the 0 to 1.5 ft below ballast interval and submitted for PCB analysis. Additionally, one composite was analyzed for disposal parameters. Soil sample, QT-2 (0-1.5) exceeded the Yard soil cleanup level for total PCBs with a concentration of 43,000 µg/kg (Plate 2D).

To delineate the vertical and horizontal extent of soil at location QT-2 that contained total PCBs above the Yard soil cleanup level, five soil borings (QT-2, QT-2A, QT-2B, QT-2C, and QT-2D) were completed and sampled in August 1997 (Plate 2D). Eleven delineation samples were collected from the five soil borings and submitted for PCB analysis. The Yard soil cleanup level for total PCBs was not exceeded in any delineation sample.

According to Amtrak personnel, the soil exceeding the cleanup level at QT-2 was excavated to locations and depths where analytical data indicated COC concentrations were below the Yard soil cleanup level for total PCBs. The approximate extent of excavation is shown on Plate 5.

# Lead Track No. 6

In April 1997, seven surface soil samples (L6-1 through L6-5, L5-1, and TT-1) were collected during an investigation for track modifications to be performed in relation to the HSTF construction. The soil samples were collected from the 0 to 2 feet bls interval, which included

the ballast layer. Three samples (L6-1, L6-3, and L6-4), each located along Lead Track No. 6 (Plate 3B), contained total cPAH concentrations exceeding the Yard soil cleanup level of  $10,000 \,\mu\text{g/kg}$  (Yard cleanup level for total cPAHs at that time). Total cPAH concentrations ranged from  $13,350 \,\mu\text{g/kg}$  at location L6-4 to  $50,820 \,\mu\text{g/kg}$  at location L6-3. The Yard soil cleanup levels for total PCBs and lead were not exceeded.

In June 1997, 11 new soil borings were completed immediately adjacent to the original Lead Track No. 6 boreholes and three consecutive 1-foot depth interval samples beginning at the bottom of the ballast interval were collected and analyzed. The analytical results (all below their respective cleanup levels) indicated that the total cPAH exceedances were limited to the ballast interval.

The ballast layer (approximately 1 foot bls) for the entire Lead Track No. 6 was removed and properly disposed offsite to accommodate construction of the HSTF. The approximate extent of the soil IRM excavation is shown on Plate 5.

# Track 10 Maintenance

In July 1997, four soil borings (T10-1 through T10-4) were completed and eight soil samples were collected and analyzed for PCBs, cPAHs, and lead. The shallow sample from location T10-4 (0-1) (ballast interval) exceeded the Yard soil cleanup level for total cPAHs with a concentration of  $38,470 \,\mu\text{g/kg}$  (Plate 2B). This sampling interval consisted of ballast with traces of ash and cinders with interstitial black to brown fine to coarse sand. The deeper sample, T10-4 (1-2), did not exceed the total cPAH cleanup level.

According to Amtrak personnel, the old track bed in the entire Track 10 work area was excavated to a depth of 1 to 2 feet bls, specifically to remove all the old ballast. The material excavated between locations T10-3 and the turnout switch east of location T10-4 was properly disposed offsite. The approximate extent of the soil IRM excavation is shown on Plate 5.

In May 2004, four confirmatory soil samples (T10-1PX through T10-4PX) were collected following the removal of Track 10 and excavation of ballast along the trackbed. Surface soil samples were collected from the bottom of the Track 10 trackbed excavation at approximately

100-foot intervals and submitted for cPAH and lead analysis. The analytical results identified one location (T10-1PX) where lead exceeded the Yard soil cleanup level with a concentration of 1,500 mg/kg (Plate 4C). Based on the analytical results, Amtrak performed additional excavation along the trackbed between T10-2PX and the western end of the replacement section (Plate 5). Following completion of this additional excavation, post-excavation sample T10-1 (Post-Ex) was collected and analyzed for lead to confirm soil exceeding the cleanup level had been removed prior to replacement of the track. The Yard soil cleanup level for lead was not exceeded in sample T10-1 (Post-Ex).

# Loop 2 Track

In July 1997, eleven soil borings (LP2-1 through LP2-11) were completed, from which 26 soil samples were collected for PCBs, cPAHs, and lead analyses. The soil sampling program was performed prior to the required maintenance to Loop 2 Track. The ballast interval sample collected from location LP2-3 exceeded the Yard soil cleanup level for total PCBs (68,000  $\mu$ g/kg; Plate 2A). The ballast interval samples from all samples, with the exception of LP2-1, exceeded the Yard soil cleanup level for total cPAHs of 10,000  $\mu$ g/kg (the Yard cleanup level for total cPAHs at that time). The Yard soil cleanup level for lead was not exceeded.

According to Amtrak personnel, the ballast and soil in the area of LP2-6 was excavated. To address the total cPAH exceedance at LP2-6 (35,100  $\mu$ g/kg), material was excavated to points located midway to samples LP2-5 and LP2-7 due to the extensive distance between sample locations (approximately 200 feet). The approximate extent of the soil IRM excavation is shown on Plate 5.

As noted in Section 1.0, the Yard cleanup level for total cPAHs was revised in March 1998 from  $10,000 \,\mu\text{g/kg}$  to  $25,000 \,\mu\text{g/kg}$ . Based on the current Yard cleanup level for total cPAHs, the ballast interval samples collected from locations LP2-3 from LP2-9 (42,500  $\mu\text{g/kg}$  and  $40,300 \,\mu\text{g/kg}$ , respectively) are the only total cPAH exceedances remaining and will require remedial action. The two sample locations are shown on Plate 3A. Similarly, the total PCB exceedance at location LP2-3 remains and will be addressed in the OU-4 FS.

# West End Switches

In July/August 1997, sixteen soil borings (SW-1 through SW-3 and SW-5 through SW-17) were completed and sampled to characterize soil to be removed where switches were scheduled for replacement. A total of 29 soil samples were collected from the 0 to 1 foot bls and 1 to 2 feet bls sampling intervals, with the exception of locations SW-15, SW-16, and SW-17 where saturated soil existed beneath the ballast and sampling was discontinued. All 29 samples were analyzed for PCBs, cPAHs, and lead.

Analytical results indicated that eleven samples collected from the 0 to 1 foot bls interval exceeded the Yard soil cleanup level for total cPAHs of  $10,000 \,\mu\text{g/kg}$  (Yard cleanup level at that time; Plate 2C). The analytical results also indicated that total cPAH concentrations in the 1 to 2 feet bls interval samples were below the total cPAH cleanup level, with the exception of SW-11 (15,920  $\,\mu\text{g/kg}$ ). The Yard soil cleanup levels for total PCBs and lead were not exceeded.

According to Amtrak personnel, ballast and soil in this area, including the total cPAH exceedances, were excavated. The approximate extent of the soil IRM excavation in this area is shown on Plate 5.

#### **HSTF** Related Remediation

In addition to significant track and switch replacement work, the HSTF project at the Yard required a substantial amount of new track construction. In conjunction with this new track construction, 38 soil borings (SS-1 through SS-38) were completed in December 1997 to characterize soil for the contaminants of concern. Soil samples from the 0 to 1-foot bls (ballast) and 1 to 2 feet bls intervals at each location were collected and analyzed for PCBs, cPAHs, and lead in accordance with the NYSDEC-approved sampling plan titled, "General Sampling and Analysis Plan to Support High Speed Trainset Facility Activities in Operable Unit 4". Two ballast interval samples, SS-19 and SS-22, exceeded the total PCB soil cleanup level with concentrations of 37,000 µg/kg and 58,000 µg/kg, respectively (Plate 2A). One ballast interval sample, SS-5, exceeded the lead soil cleanup level with a concentration of 3,590 mg/kg (Plate 3B). The Yard soil cleanup level for total cPAHs was not exceeded.

In January 1998, nine additional borings (SS-19E15, SS-19E30, SS-19W15, SS-19W30, SS-22E15, SS-22E30, SS-22W15, SS-22W30, and SS-22W40) were completed and sampled to laterally delineate (within the track bed) the two PCB exceedances. On March 30, 1998, impacted soil was excavated between sample locations SS-19W15 and SS-19E15 and between SS-22W40 and SS-22E30 to address the two PCB exceedances, as shown on Plate 5.

The lead exceedance at SS-5 was vertically and horizontally delineated by completing four additional borings (SS-5A through SS-5D). Samples collected from the delineation borings did not exceed the Yard soil cleanup level for lead. On March 24, 1998, impacted soil was excavated to the delineation sample locations to address the lead exceedance at location SS-5, as shown on Plate 5.

### Track 25 Including a Portion of Area 8C

In July 1998, eight soil borings (T25-1 through T25-8) were completed along the length of Track 25 (excluding the area encompassing Area 8C) in conjunction with general track maintenance activities. A total of 16 soil samples were collected (the ballast interval and 0 to 1-foot interval below ballast interval at each location) and analyzed for PCBs, cPAHs, and lead. Two ballast interval samples (T25-4 and T25-5) exceeded the Yard soil cleanup level for total PCBs with concentrations of 920,000 μg/kg and 28,000 μg/kg, respectively. Sample locations T25-4 and T25-5 are located at the western and eastern boundaries of Area 8C, respectively (Plates 2B and 2C). Three ballast interval samples (T25-4, T25-6, and T25-7) exceeded the Yard soil cleanup level for lead with concentrations of 2,020 mg/kg, 2,560 mg/kg, and 1,060 mg/kg (Plates 4B and 4C). The Yard soil cleanup level for total cPAHs was not exceeded in any sample.

Subsequently, five additional soil borings (T25-4-20, T25-4-40, T25-5+20, T25-6-20, and T25-7+20) were completed and sampled to complete lateral delineation (within the trackbed) of the locations that exceeded their respective cleanup level. The delineation borings identified that total PCB and/or lead cleanup level exceedances were located between T25-3 and T25-7+20 in the ballast layer. Soil samples from the 0 to 1 ft interval below the bottom of ballast in this area did not exceed the Yard soil cleanup levels.

In November 1998, soil between sample locations T25-4-20 and T25-5+20 was excavated to a maximum depth of 7 feet to address the total PCB exceedances discussed above as well as those identified during the Phase I RI in the Track 25 portion of Area 8C. Twelve post-excavation locations (NW-1 through NW-4, SW-1 through SW-4, and B-1 through B-4) were collected and submitted for PCB analysis. Sample locations were approved by NYSDEC. The analytical results (all below the Yard soil cleanup level) verified that the remediation was successful. The extent of the soil IRM excavation is shown on Plate 5.

Soil/ballast between sample locations T25-3 and T25-4-20 and between T25-6-20 and T25-7+20 was also excavated to address the identified lead exceedances of the Yard cleanup level within the ballast layer. Samples collected from the consecutive sampling interval (0 to 1 foot below ballast) were all below the Yard soil cleanup levels, serving as confirmation of the excavation depth and precluding the need for post-excavation sampling. The extent of the soil IRM excavation is shown on Plate 5.

## Tracks 1 through 5 and Lead Track 6

In July 1999, 14 soil borings (T-1 through T-14) were completed and three consecutive 1-foot depth interval samples were collected. From the 14 soil borings, 16 samples were analyzed for PCBs, 14 samples were analyzed for cPAHs, and 15 samples were analyzed for lead. The Yard soil cleanup level for total PCBs was exceeded in samples T-8 (0-1) and T-9 (0-1) with concentrations of 211,000 μg/kg and 56,100 μg/kg, respectively (Plate 2B). The Yard soil cleanup level for lead was exceeded in sample T-7(0-1) with a concentration of 1,310 mg/kg (Plate 4B). Analyzing the 1 to 2-feet bls sampling intervals at these locations completed the vertical delineation of these exceedances. The Yard soil cleanup level for total cPAHs was not exceeded in any sample.

Due to time constraints associated with reconfiguring the grade of Tracks 1 through 5 in this area for the HSTF project, Roux Associates provided oversight as soil between location T-6 and location T-10 was excavated to address the total PCB exceedances and soil between T-5 and T-8 was excavated to address the lead exceedance. The approximate extent of the soil IRM excavation for this area is shown on Plate 5.

### Inbound Motor Track Upgrade

In February 2000, 13 soil borings (IB-1 through IB-13) were completed and three consecutive 1-foot depth interval samples were collected from each borehole. Thirteen samples were analyzed for PCBs, 13 samples were analyzed for cPAHs, and 15 samples were analyzed for lead. The Yard soil cleanup levels for total PCBs and total cPAHs were not exceeded in any sample. The Yard soil cleanup level for lead was exceeded in two samples IB-1 (0-1) and IB-10 (0-1) with lead concentrations of 1,020 mg/kg and 1,110 mg/kg (Plate 4C). The samples from the consecutive sampling interval (1-2 ft bls) at both of these locations did not exceed the Yard cleanup level for lead and completed vertical delineation of the lead exceedances.

According to Amtrak personnel, the lead exceedances at IB-1 and IB-10 were excavated to the delineated locations and depths where lead concentrations were below the Yard cleanup level. The approximate extent of the soil IRM excavation is shown on Plate 5.

#### Area 9

In December 2000 through February 2001, 18 soil samples were collected as part of the track construction associated with the New Engine House. The new track was to pass through Area 9, known to contain total PCBs above the Yard soil cleanup level.

Nine of the 18 samples were post-excavation samples (CEH-1 through CEH-9) that were collected following Amtrak's excavation of the track footprint to a depth of 2 feet bls. Two samples (EHS-1 and EHS-2) were collected from the 0 to 6-inch interval below the excavation bottom to prepare for installation of a concrete slab. These post-excavation samples did not exceed the Yard soil cleanup levels for the COCs.

The remaining seven samples (post-excavation side wall and bottom samples A9-EW, A9-SW, A9-WW, A9-NW, A9-B1, and A9-B2, and vadose zone sample A9-D1) were collected following the excavation of an area measuring 20 feet wide by 25 feet long and 3 feet deep in a portion of Area 9 previously identified as exceeding the Yard soil cleanup level for total PCBs (S-103 – 65,000 μg/kg; Plate 2C). The post-excavation samples were collected at NYSDEC-approved locations and submitted for PCBs, cPAHs, and lead analysis. Sample A9-D1 (7 to 8 feet bls interval) was analyzed for PCBs only. The analytical results were all below

the Yard soil cleanup levels and verified that remediation of the Area 9 PCB exceedance was successful. The approximate extent of the soil IRM excavation is shown on Plate 5.

# **Track 36 Replacement**

In April 2002, soil samples were collected at 16 soil boring locations (TS36-1 through TS36-16) along Track 36 to characterize soil in the track replacement area. A total of 16 soil samples were analyzed for PCBs and lead, and 29 samples were analyzed for cPAHs. The analytical results identified five locations with exceedances of the Yard soil cleanup level for total cPAHs (TS36-9 and TS36-11 through TS36-14) where concentrations ranged from 25,540  $\mu$ g/kg to 119,200  $\mu$ g/kg (Plate 3B). The vertical extent of these exceedances was determined at all locations except TS36-12. The Yard soil cleanup levels for total PCBs and lead were not exceeded in any samples.

Due to time constraints associated with completion of the track replacement project, it was necessary to remediate soil above the total cPAH cleanup level before additional delineation of TS36-12 could be accomplished and, therefore, the excavation at TS36-12 was extended deeper than the surrounding 3 foot trackbed excavation depth. Confirmatory samples T36C-1 through T36C-7 collected following soil excavation confirmed that cPAH concentrations in the remediated area were below the Yard soil cleanup level for total cPAHs. The extent of the soil IRM excavation for this area is shown on Plate 5.

The total cPAH exceedances detected in the 0 to 1 foot bls interval samples at TS36-13 and TS36-14 were not remediated because track replacement was terminated short of reaching these locations. These exceedances will be addressed in the OU-4 FS.

### Track 1 Replacement

In July 2002, soil samples were collected from ten soil boring locations (TS1-1 through TS1-10) to characterize soil in the Track #1 replacement area. Ten soil samples were analyzed for PCBs and 14 samples were analyzed for cPAHs and lead. The analytical results identified two locations where the 0 to 1 foot bls interval samples exceeded a Yard soil cleanup level: location TS1-8 for total cPAHs (39,500  $\mu$ g/kg) and TS1-10 for lead (1,280 mg/kg). The next deeper sample interval (1 to 2-ft bls) at both locations was determined to be below the respective

cleanup levels, completing vertical delineation. The total cPAH exceedances are shown on Plate 3C.

In accordance with Amtrak track replacement procedures, the old track bed (ballast and soil) was removed to a depth of approximately 1 foot bls, including the soil exceedances at TS1-8 and TS1-10. The approximate extent of the soil IRM excavation is shown on Plate 5. Confirmatory samples T1-C1 through T1-C6 were collected following excavation and confirmed that remediation of the areas that exceeded the respective Yard soil cleanup levels was completed.

### Track 24

In November 2002, soil samples were collected from 11 boring locations (T24-1 through T24-11) to characterize soil beneath a concrete/asphalt walkway that was removed for the reconstruction of Track 24. Prior to investigation of this area, the top 2 feet of soil at locations T24-2 through T24-11 was excavated and stockpiled in preparation of the track construction. For this reason, only the 0 to 1 foot interval was collected at these locations. Three consecutive 1-foot sampling intervals were collected at T24-1. All collected soil samples were analyzed for PCBs, cPAHs, and lead.

The analytical results indicated the 0 to 1-ft bls interval samples were below the Yard soil cleanup levels for the Yard, with the exception of sample T24-1 (0-1) where the Yard soil cleanup level was exceeded with a total cPAH concentration of 113,100 µg/kg (Plate 3C). Analyses of the deeper interval samples from this location indicated that soil with concentrations of total cPAHs above the cleanup level was limited to the 0 to 1 foot bls interval. Following excavation of soil to the depth required for the new track installation at this location, confirmatory samples (T24-C1 and T24-C2) were collected and confirmed that remediation of the total cPAH exceedance was complete. The approximate extent of soil IRM excavation for this area is shown on Plate 5.

### Sub2 Track Replacement

In May 2003, fourteen soil borings (S2-1 through S2-14) were performed to characterize soil in the Sub2 track replacement area. A total of 13 soil samples were analyzed for PCBs and cPAHs and 14 soil samples were analyzed for lead. The analytical results identified soil exceedances of

the Yard soil cleanup levels in samples S2-5 (0-1) and S2-6 (0-1) for total cPAHs (70,400  $\mu$ g/kg and 26,320  $\mu$ g/kg, respectively) and at sample S2-7 (0-1) for lead (1,500 mg/kg), as shown on Plates 3D and 4D. Further horizontal delineation of these exceedances was not possible due to track replacement schedule constraints.

According to Amtrak, ballast and soil including the soil exceedances at S2-5, S2-6, and S2-7 were excavated. The approximate extent of the soil IRM excavation is shown on Plate 5.

## New Water Line

In March 2004, seven soil borings (PT-1 through PT-7) were performed to characterize soil for reuse as backfill following the completion of the installation of a new water line. Seven samples were analyzed for PCBs and lead, and nine samples were analyzed for cPAHs. Only one sample interval, PT-2 (0-1), exceeded the Yard soil cleanup level for total cPAHs with a concentration of 34,100 µg/kg (Plate 3A). For vertical delineation purposes, sample PT-2 (1-2) was analyzed for cPAHs and did not exceed the Yard soil cleanup level.

Due to time constraints, Amtrak elected to excavate the entire length of the proposed water line trench to a depth of 3 feet bls, segregating material excavated between PT-1 and PT-3 for proper off-site disposal. Prior to placing the new water line, a confirmatory sample (PT-2/C) was collected from the excavation bottom at location PT-2, analyzed for cPAHs, and confirmed the vertical removal of cPAHs above the Yard soil cleanup level. Clean backfill was used to close the excavation between PT-1 and PT-3. The approximate extent of the soil IRM excavation is shown on Plate 5.

#### Track 34 Replacement

In May 2004, 12 soil samples (T-34C-1 through T-34C-12) were collected from the bottom of the Track 34 trackbed excavation at approximately 100 feet intervals. The soil samples were collected following the removal of the old track and excavation of the ballast along the trackbed. Each of the samples was submitted for PCB, cPAH, and lead analysis. Three samples, T-34C-4, T-34C-7, and T-34C-10, exceeded the Yard soil cleanup level for total cPAHs with concentrations of 25,100 μg/kg, 57,600 μg/kg, and 55,090 μg/kg, respectively (Plates 3B and 3C). Sample T-34C-9 exceeded the Yard soil cleanup level for lead with a concentration of

1,200 mg/kg (Plate 4B). Based on these analytical results, additional soil excavation was performed from location T-34C-3 to location T-34C-5 and T-34C-6 to the eastern end of the replaced track section.

Following the additional soil excavation, five confirmatory soil samples (T-34C-4b, T-34C-7b, T-34C-10b, T-34C-12b analyzed for cPAHs and T-34C-9b analyzed for lead) were collected at the original soil sample locations to confirm that soil exceeding the respective soil cleanup levels had been removed prior to replacement of Track 34. The confirmatory samples did not exceed the Yard soil cleanup levels. The approximate extent of the soil IRM excavation is shown on Plate 5.

### Switches #49 and #51 Replacement

In June 2004, four soil borings (SW-49-E, SW-49-W, SW-51-E, and SW-51-W) were performed to characterize soil prior to the replacement of Connecting Track Switches #49 and #51. Twelve soil samples were collected and analyzed for PCBs, cPAHs, and lead. One sample, SW-49-W (0-1, [incorrectly reported as 2-3]), exceeded the Yard soil cleanup level for total cPAHs with a concentration of 37,860 µg/kg (Plate 3C). One sample, S-49-W (0-1) exceeded the Yard soil cleanup level for lead with a concentration of 1,030 mg/kg (Plate 4C). Samples collected from deeper sampling intervals at both locations did not exceed the Yard soil cleanup levels.

Soil was excavated to a depth of 2 feet bls, to remove soil exceeding the Yard soil cleanup levels was removed from the trackbed before the new switches were installed. The excavation extended from SW-51-E to SW-49-E, locations where concentrations were below the Yard soil cleanup levels for lead and total cPAHs, as shown on Plate 5.

#### Switch 7-8 Replacement

In May 2005, one soil boring (SW7-8) was performed to characterize soil to be removed during the replacement of Switch 7-8. Three samples were collected in one-foot intervals (i.e., 0 to 1 foot bls, 1 to 2 feet bls, and 2 to 3 feet bls) from this boring and submitted for PCB, cPAH, and lead analysis. One sample, SW7-8 (0-1) exceeded the Yard soil cleanup level for lead with a concentration of 2,000 mg/kg (Plate 4B). The sample collected from the consecutive sampling

interval (i.e., 1 to 2 ft bls) did not exceed the Yard soil cleanup level for lead. No samples exceeded the Yard soil cleanup levels for total cPAH and total PCBs.

According to Amtrak, the ballast and soil, including the lead exceedance at location SW7-8, was removed during the replacement of the switch. The excavation extended approximately 5 feet east and west of the switch, as shown on Plate 5.

### PCB related IRMs performed by Amtrak Contractors

In the late 1980s/early 1990s, seven soil IRMs to remove soil that exceeded the Yard soil cleanup level for total PCBs were completed based on analytical results provided to Amtrak from samples that were not collected by Roux Associates. These IRMs were either performed as a function of normal track maintenance or were necessitated by new construction activity within OU-4. The approximate extent of excavation for these IRMs is shown on Plate 5.

### 4.2 UST IRMs

The following provides a summary of the UST IRMs performed in OU-4. The locations of the UST IRMs are shown on Figure 4.

## UST Closure: R-Tower UST and Oil-Water Separator Area UST

In November 1997, a 250-gallon residual fuel oil UST located adjacent to R-Tower and a 2,000-gallon UST in the oil water separator were removed in accordance with the "Underground Storage Tank Compliance Plan for OU-4," dated September 30, 1997 (Roux Associates, Inc., 1997b). The excavations were visually inspected for impact to the soil underlying the USTs. No free product was observed in the excavations. Approximately 40 cubic yards of soil generated during the UST removal were disposed offsite. Ten post-excavation soil samples were collected from the four sidewalls and the bottom of each excavation (R-UST/ BOT, R-UST/E, R-UST/N, R-UST/S, R-UST/W, O/W-UST/B, O/W-UST/E, O/W-UST/N, O/W-UST/S, and O/W-UST/W). The post-excavation samples were submitted for SVOCs, PCBs, and lead analysis. The Yard soil cleanup levels were not exceeded in any of the COC samples nor were there any VOC or SVOC exceedances of NYSDEC Part 375 Industrial Soil Cleanup Objectives. The post-excavation sample analytical results are provided in Tables 2, 4, and 7.

### UST Closures at the Former Retail Gasoline Service Station

In April and May 1998, 12 USTs were located at the Amtrak-owned property at 38-11 Skillman Avenue that formerly operated as a retail gasoline service station. Eleven 550-gallon, single walled, gasoline USTs (UST 001 through UST 011) and one 550-gallon, single walled, waste oil tank were removed, as well as three inactive pump islands and all underground and aboveground piping. USTs 001 through 005 were encased in a competent concrete vault and USTs 009 through 011 were encased in another competent concrete vault. The waste oil tank, UST 012, was located in a 15 ft by 15 ft by 5 ft deep pit in the former service garage. A collection structure containing black sludge and measuring 5 ft by 5ft by 2 ft deep was identified during the UST 012 removal. The sludge was removed and disposed offsite as hazardous waste prior to excavation of the collection structure.

Although no evidence of contamination was observed at USTs 006 through 008, UST 012, and the collection structure, post-excavation samples (UST-12 Bottom, UST-12 NWALL, UST-12 EWALL, UST-12 SWALL, and UST-12 WWALL) were collected from the sidewalls and bottom of the excavation since there was not the added protection of a concrete vault. The post-excavation sample results indicated no detections exceeding the NYSDEC Part 375 Industrial Soil Cleanup Objectives for VOCs and SVOCs and the Yard soil cleanup levels for the COCs. The post-excavation sample analytical results are provided in Tables 7 and 8.

### OU-4 Former Vehicle Fueling Area USTs Abandonment (Area 3)

In December 1998, three 750-gallon former gasoline USTs (designated VFA 001, VFA 002, and VFA 003) located in the vehicle fueling area were abandoned in place. The former fuel dispenser and associated piping were removed. During the abandonment, visual contamination was observed on the north side of the UST vault. The NYSDEC was notified of the observation and Spill Number 9811804 was assigned. Excavation of contaminated soil located north of the tank vault was performed based on visual observation and to a depth of 10 feet bls (depth to water in this area). The soil excavation resulted in the removal of 70 cubic yards of petroleum impacted soil.

Four post-excavation soil samples (BOTTOM, N WALL, E WALL, and W WALL) were collected from the excavation and submitted for VOC, PCB, cPAH, and lead analysis. Due to concerns regarding structural integrity, no excavation or sampling was performed south of the remaining concrete wall of the tank vault. The NYSDEC Part 375 Industrial Soil Cleanup Objectives for VOCs and Yard soil cleanup levels for COCs were not exceeded in any sample. Analytical data for the post-excavation samples are provided on Tables 2, 3, 4, and 8.

## 5.0 NATURE AND EXTENT OF COC CONTAMINATION

This section provides an evaluation of the nature and extent of COC contamination in OU-4, based on the collective findings of previous investigations discussed in Section 3.0. As discussed in Section 4.1, several investigations performed in OU-4 were performed specifically for immediate maintenance or replacement of tracks and switches resulting in removal of identified exceedances of the Yard soil cleanup levels. This section will discuss the total number of samples and total number of COC exceedances identified, but will focus on the nature and extent of areas exhibiting exceedances of the Yard soil cleanup levels for the COCs that remain in OU-4 (i.e., not addressed by a soil IRM).

In summary, 1467 soil samples were collected from 1067 soil boring locations. The following provides a summary of the findings from the numerous investigations performed in OU-4.

| COC        | Number<br>of Samples<br>Collected | Number of Samples<br>Exceeding the<br>Current Yard<br>Soil Cleanup Level | Number of<br>Exceedances<br>Addressed by IRM | Number of<br>Exceedances<br>Currently Remaining |  |
|------------|-----------------------------------|--------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------|--|
| Total PCB  | 1241                              | 73                                                                       | 29                                           | 44                                              |  |
| Total cPAH | 812                               | 49                                                                       | 28                                           | 21                                              |  |
| Lead       | 825                               | 69                                                                       | 15                                           | 54                                              |  |

Of the 54 remaining exceedances for the current Yard soil cleanup level for lead, only one sample (LLS-15) would exceed the NYSDEC Part 375 cleanup level of 3900 mg/kg (Plate 4A).

## 5.1 History

The presence of the COCs in OU-4 soil is largely attributable to predecessor railroads' operations. As discussed in Section 2.1, the Yard has operated as a railyard since 1910. Amtrak has continued to use the Yard for train maintenance and storage since acquiring the Yard in 1976. Currently, there are no significant onsite sources of the COCs.

Past releases of PCBs is likely attributable to losses from and maintenance of train-mounted transformers over time. Specific locations, dates, or quantities of PCB releases are not known. However, PCB-containing equipment usage was significantly more by predecessor railroads than by Amtrak.

The majority of total cPAH and lead exceedances are related to historic fill practices and offsite sources. In the past, coal fired locomotives, coal fired boilers, and onsite incinerators were widely used for railroad operations. These activities generated significant amounts of cinders and coal ash as a waste byproduct. Prior to Amtrak's ownership of the Yard, these cinders and ash were used from time to time as fill material throughout OU-4 and are still present at the Yard today. Cinders and ash are known to contain high levels of lead and SVOCs, primarily cPAHs.

In addition to the fill activities, the presence of lead is attributed to the four NYCDOT owned bridges that span the Yard, as shown on Plate 1. These structures have been in place for many decades and at one time were covered with lead based paint. Peeling and chipping paint on the bridges has fallen onto soil underneath the bridges, as well as paint chips from sandblasting operations during bridge repainting and repair operations conducted by NYCDOT. As shown on Plates 4A through 4D, the majority of lead exceedances are located under the bridges.

## 5.2 Detailed Discussion of COC Exceedances in Soil

The following sections provide a discussion of the areas exhibiting COC exceedances of the current Yard soil cleanup levels that remain in OU-4 and are provided chronologically by the date of the investigation that identified the exceedance. Each of the remaining COC exceedances is shown on the Plates 2A through 4D and Plate 5. Tables 2 through 4 provide the analytical data for the COCs.

#### Phase I and Phase II

As discussed in Section 3.0, the Phase I and Phase II investigations consisted primarily of soil characterization in the Areas of Concern. Detailed discussions of the nature and extent of COC contamination were provided in both the Phase I and Phase II RI report. Based on a review of COC contamination that was not addressed by soil IRMs performed after the completion of the Phase I RI and Phase II RI, a total of 23 exceedances of the total PCB soil cleanup level, one exceedance of the total cPAH soil cleanup level (S-43 [0-2]), and one exceedance of the lead soil cleanup level (S-101 [0-2]) remain in OU-4.

<u>Total PCBs</u>: Sample CS-47 (2-4), collected in Area 4, exceeded the total PCB soil cleanup level with a concentration of 49,000 μg/kg (Plates 2C and 5). Samples S-53 (0-2) and S-114 (0-2),

collected from Area 8A during the Phase I RI, exceeded the total PCB soil cleanup level with concentrations of 71,160 μg/kg and 90,000 μg/kg, respectively (Figure 3 and Plate 5). Sample CS-53 (0-2), collected as a confirmatory sample for S-53, also exceeded the Yard soil cleanup level for total PCBs with a concentration of 88,000 μg/kg. Samples S-104 (0-2), S-105 (0-2), and S-106 (0-2) collected in Area 8C during the Phase I RI, exceeded the total PCB soil cleanup level with concentrations of 860,000 μg/kg, 15,000,000 μg/kg, and 20,000,000 μg/kg, respectively (Figure 3 and Plate 5). In August 1994, delineation samples were collected in Area 8C. Five of the delineation samples, SB-16 (6-7), SB-18 (0-1), SB-67 (0-1), SB-68 (0-1), and SB-71 (0-1), exceeded the Yard soil cleanup level for total PCBs. The total PCB concentrations of the delineation samples ranged from 380,000 μg/kg in sample SB-16 (6-7) to 25,000,000 μg/kg in sample SB-68 (0-1).

Samples SB-45 (0-1) and S-101 (0-1), collected in Area 17, exceeded the total PCB soil cleanup level with concentrations of 790,000  $\mu$ g/kg and 71,000  $\mu$ g/kg, respectively (Plates 2B and 5). In May and September 2007, delineation samples were collected near SB-45 as part of sampling investigations to support new construction. Nine delineation samples exceeded the total PCB soil cleanup level with concentrations ranging from 29,000  $\mu$ g/kg in sample SB-45-D1 (0-1) to 1,200,000  $\mu$ g/kg in sample SB-45EE (0-1).

<u>Total cPAHs</u>: Sample S-43 (0-2), located in Area 2, exceeded the Yard soil cleanup level for total cPAHs at a concentration of 42,590 μg/kg (Plates 3C and 5).

<u>Lead</u>: Sample S-101 (0-2) exceeded the Yard soil cleanup level of lead at a concentration of 1,190 mg/kg (Plates 4B and 5). Vertical delineation of the exceedances at S-101 was completed during the Phase II RI. In June 2005, delineation samples (S-101N, S-101E, S-101S, and S-101W) were collected radially at a distance approximately 10 feet from the original boring location. Each of the delineation samples were below the Yard soil cleanup levels for total PCBs and lead.

### **Proposed Fumigation Track**

In April 1997, six soil borings (FT-1 through FT-6) were completed and sampled to characterize soil in the proposed fumigation track construction area. All samples were collected from the 0 to

2 ft bls interval and analyzed for PCBs, cPAHs, and lead. Sample FT-2 (0-2) exceeded the Yard soil cleanup level for total PCBs with a concentration of 73,000 μg/kg (Plates 2B and 5). Sample FT-3 (0-2) exceeded the Yard soil cleanup level for lead with a concentration of 1,320 mg/kg (Plates 4B and 5). Both of these exceedances were horizontally and vertically delineated in June 2005 by collecting samples from the 2 to 3 feet bls sampling interval at the original boring location and consecutive 1 foot sampling intervals to a depth of 3 feet bls, located 10 feet radially from the original boring location. The delineation samples did not exceed the Yard soil cleanup levels for the COCs, confirming that the exceedances at FT-2 and FT-3 were limited to the 0 to 2 feet bls sampling interval.

## Loop 2 Track

As discussed in Section 4.1, the Loop 2 Track was investigated in July 1997 prior to required maintenance of this track. The ballast interval sample collected from location LP2-3 exceeded the Yard soil cleanup level for total PCBs (68,000 μg/kg). The total cPAH soil cleanup level was exceeded in ballast interval samples collected from locations LP2-3 and LP2-9 (42,500 μg/kg and 40,300 μg/kg, respectively), as shown on Plates 3A and 5. The exceedances at location LP2-3 have been vertically and horizontally delineated. However, the exceedance at location LP2-9 has not been delineated.

# New Construction Area - Proposed Material Storage Building and Welfare Building

In July 1999, 16 soil borings (CB-1 through CB-6 and CB-8 through CB-17) were completed in the area of the proposed Material Storage Building, a Welfare Building, and Material Control Warehouse. Twenty samples were analyzed for PCBs and lead, and 21 samples were analyzed for cPAHs. Soil samples were collected from three consecutive 1-foot depth intervals. Sample CB-2 (0-1) exceeded the Yard soil cleanup level for total cPAHs with a concentration of 27,800 µg/kg (Plates 3B and 5). The 1 to 2-feet bls interval at this location was below the cleanup level, completing vertical delineation of the exceedance. The Yard soil cleanup levels for lead and total PCBs were not exceeded in any sample.

Delineation samples were collected to horizontally delineate the total cPAH exceedance at location CB-2. Delineation samples CB-2W (1-2), CB-2W (2-3), and CB-2E (1-2) had total cPAH concentrations of 34,600 µg/kg, 28,200 µg/kg, and 32,740 µg/kg, respectively, all

exceeding the total cPAH soil cleanup level. Exceedances at CB-2W were further delineated to the north and south by borings CB-2WN and CB-2WS. Delineation samples CB-2WS (1-2) and CB-2WS (2-3) also exceeded the Yard soil cleanup level of total cPAHs with concentrations of 34,000 μg/kg and 30,600 μg/kg, respectively. The Yard soil cleanup level for total cPAHs was not exceeded at CB-2WN. The exceedances at CB-2WS were ultimately delineated by soil boring PC-9, also collected in June 2005 as part of the new construction area investigation. Therefore, horizontal and vertical delineation was achieved at each of the total cPAH exceedance locations.

In June 2005, eight soil borings (PC-1, PC-6, PC-7 through PC-12) were performed to supplement existing soil data collected in the new construction area. Borings PC-1, PC-6, PC-8, PC-10, PC-11, and PC-12 were sampled continuously from land surface to the water table (approximately 9 feet bls) and borings PC-7 and PC-9 were sampled continuously from land surface to 3 feet bls. Soil samples were submitted for analysis for PCBs, cPAHs, and lead. The Yard soil cleanup level for total PCBs was exceeded at samples PC-6 (2-3) and PC-10 (1-2) with concentrations of 37,000  $\mu$ g/kg and 26,000  $\mu$ g/kg, respectively (Plates 2B and 5). One soil sample, PC-8 (1-2), exceeded the total cPAH soil cleanup level with a concentration of 30,920  $\mu$ g/kg (Plates 3B and 5). The Yard soil cleanup level for lead was exceeded in sample PC-10 (0-1) with a lead concentration of 2,500 mg/kg (Plates 4B and 5).

The total PCB and lead exceedances identified at sample locations PC-6 and PC-10 were horizontally and vertically delineated by samples PC-6N, PC-6E, PC-6S, PC-6W, PC-10N, PC-10S, and PC-10W. These delineation samples did not exceed the Yard soil cleanup levels for the COCs. Delineation samples (PC-8N, PC-8E, and PC-8SE) were collected to horizontally delineate the total cPAH exceedance identified in sample PC-8 (1-2). Delineation sample PC-8SE (0-1) exceeded the Yard soil cleanup level for total cPAHs with a concentration of 35,000 µg/kg and was further delineated by samples PC-8SEE and PC-8SES (Plates 3B and 5).

## Honeywell Street and Queens Boulevard Bridge Rehabilitation

In October 1999, 38 soil borings (HB-1 through HB-4, HB-9 through HB-23, HB-25 through HB-36, and QB-1 through QB-7) were completed to characterize soil in the construction area for the Honeywell Street Bridge and Queens Boulevard Bridge rehabilitation program.

Three consecutive 1-foot depth interval samples were collected at each location. In January and February 2000, 29 additional soil borings were completed and sampled to delineate the extent of contamination at locations where one or more of the Yard soil cleanup levels were exceeded during the October 1999 sampling.

With the exception of samples collected from within Area 8A and Area 8C, the Yard soil cleanup level for total PCBs was not exceeded in any sample. Seven samples at locations HB-17, HB-22, and HB-23 in Areas 8A and 8C, contained total PCB concentrations exceeding the Yard soil cleanup levels (Figure 3 and Plate 5). Concentrations of total PCB exceedances ranged from 77,663 µg/kg at HB-22 (0-1) to 4,148,576 µg/kg at HB-17 (0-1). No samples exceeded the Yard soil cleanup levels for total cPAHs. The Yard soil cleanup level for lead was exceeded in 26 of the 38 sample locations. Concentrations of lead exceedances ranged from 1,010 mg/kg at HB-11 (0-1) and HB-13 (1-2) to 2,990 mg/kg at QB-2 (0-1), as shown on Plates 4B and 5.

Additional samples were collected to horizontally delineate the total PCB and lead exceedances. Five delineation samples exceeded the Yard soil cleanup level for total PCBs with concentrations ranging from 29,086  $\mu$ g/kg at HB-17+20 (0-1) to 2,572,294  $\mu$ g/kg at HB-23+20 (0-1), as shown on Figure 3 and Plate 5. Fifteen delineation samples exceeded the Yard soil cleanup level for lead with concentrations ranging from 1,010 mg/kg at HB-13-20 (0-1) to 2,760 mg/kg at HB-23+40 (0-1), as shown on Plates 4B and 5.

New Catenary Pole Locations for Honeywell Street and Queens Boulevard Bridge Rehabilitation In April 2000, 29 soil borings (HC-1 through HC-16, and QC-1 through QC-13) were completed and three consecutive 1-foot depth interval samples were collected for analyses. A total of 29 samples were analyzed for PCBs, 29 samples for cPAHs, and 31 samples for lead. The Yard soil cleanup level for total PCBs and total cPAHs was not exceeded in any sample. However, the cleanup level for lead was exceeded in samples QC-1 (0-1) and QC-2 (0-1) at concentrations of 2,520 mg/kg and 1,760 mg/kg, respectively (Plate 4C). Lead concentrations in the 1 to 2 feet bls interval samples at both these locations were below the cleanup level, completing vertical delineation of the exceedances. These exceedances have not been horizontally delineated.

# <u>Limited Phase II Environmental Site Assessment for the Leveraged Lease Area</u>

In August 2001, 23 soil borings (LLS-1 through LLS-23) were completed, from which 28 soil samples were collected and analyzed for PCBs, cPAHs, and lead as part of the Limited Phase II Environmental Site Assessment for the Leveraged Lease Area. Soil samples were collected from the 0 to 1 foot bls interval below new ballast at all locations and from the 1 to 2 foot bls interval below new ballast at five locations (LLS-7A through LLS-11A). The Yard soil cleanup level for total PCBs was exceeded at LLS-11A (1-2) and LLS-21 (0-1) with concentrations of 92,200 µg/kg and 38,900 µg/kg, respectively (Plate 2A). The Yard soil cleanup level for total cPAHs was exceeded at LLS-22 (0-1) and LLS-23 (0-1) with concentrations of 41,550 µg/kg and 70,800 µg/kg, respectively (Plate 3A). The Yard soil cleanup level for lead was exceeded at LLS-15 (0-1) with a concentration of 7,020 mg/kg (Plate 4A). To date, only the exceedance at LLS-21 has been horizontally and vertically delineated.

### Track 36

As discussed in Section 4.1, a portion of Track 36 was investigated prior to track replacement activities. Excavation of ballast and soil within the replacement section of Track 36 was performed. However, the total cPAH exceedances detected in the 0 to 1 foot bls interval samples at TS36-13 (30,200  $\mu$ g/kg) and TS36-14 (25,540  $\mu$ g/kg) were not remediated because track replacement was terminated short of reaching these locations. Both of these exceedances have been vertically and horizontally delineated and are shown on Plates 3B and 5.

## Below the Honeywell Street Bridge Ramp

In February 2004, eight soil borings (HBR-l through HBR-8) were performed to characterize the soil and/or fill material beneath the Honeywell Street Bridge Ramp in preparation for future Ramp reconstruction activities. Sixteen soil samples were collected and analyzed for PCBs and cPAHs, and 18 soil samples were analyzed for lead. As shown on Plates 4C and 5, five samples exceeded the Yard soil cleanup level for lead: HBR-3 (1-2) at 1,510 mg/kg; HBR-4 (0-1) at 1,890 mg/kg; HBR-4 (1-2) at 1,320 mg/kg; HBR-4 (2-3) at 1,630 mg/kg; and HBR-7 (0-1) at 1,700 mg/kg. Vertical delineation was achieved at boring locations HBR-3 and HBR-7. The vertical extent of the lead exceedance at location HBR-4 was not delineated as the boring was terminated at 3 ft bls.

# <u>Utility Installation at Temporary Facility Locations</u>

In June 2006, fourteen borings (TU-1 through TU-14) were performed to supplement existing soil quality data in the area of the proposed excavations for utility installation to support temporary facilities housing Amtrak employees that will be displaced during the ESA Project construction. Continuous soil samples were collected from each boring location in 1-foot sampling intervals from land surface to 3 feet bls. The Yard soil cleanup level for total PCBs was not exceeded in any samples. As shown on Plates 3B and 5, five samples exceeded the Yard soil cleanup level for total cPAHs: TU-2 (1-2) at 30,400 μg/kg; TU-3 (0-1) at 35,700 μg/kg; TU-3 (1-2) at 80,200 μg/kg; TU-3 (2-3) at 59,600 μg/kg; and TU-13 (0-1) at 43,300 μg/kg. The Yard soil cleanup level for lead was exceeded at sample TU-8 (1-2) with a concentration of 1,100 mg/kg (Plate 4B). These exceedances have not been horizontally delineated and one has not been vertically delineated.

## Samples collected by Other Parties

As discussed in Sections 3.2 and 3.3, sampling of select areas within OU-4 has been performed by other Amtrak subcontractors and by MTA contractors for the ESA Project. One exceedance of the Yard soil cleanup level for total PCBs was identified in sample 925-3 (0-0.67) with a concentration of 264,000 μg/kg (Plate 2B). In June 2005, Roux Associates collected delineation sample 925-3S (0-1) during an investigation to support construction of the Material Storage Building. The delineation sample exceeded the total PCB soil cleanup level with a concentration of 54,000 μg/kg. In May 2007, additional delineation samples were collected at boring locations 925-3SS, 925-3E, 925-3N, and 925-3W. The delineation samples did not exceed the Yard soil cleanup levels, completing delineation of the total PCB exceedances in this area.

Based on the data made available to Amtrak for the ESA Project, one exceedance of the Yard soil cleanup level for total cPAHs has been identified. Sample SSY-57 (1.5-2) exceeds the total cPAH cleanup level with a concentration of  $40,950 \,\mu\text{g/kg}$  (Plate 3A). This exceedance has not been delineated.

## 5.3 Summary of COC Contamination

<u>Total PCBs</u>: Sampling results for samples analyzed for PCBs are provided in Table 2 and are shown on Plates 2A through 2D and Figure 3. Of the 1467 samples collected, 1241 samples

were submitted for PCB analysis. As noted above, 73 samples exceeded the Yard soil cleanup level for total PCBs. Approximately 40 percent of the total PCB exceedances (29 of 73 samples) have been removed by soil IRMs. A total of 44 samples exceeding the Yard soil cleanup level for total PCBs remain in OU-4. The sample concentrations for remaining total PCB exceedances range from 26,000 μg/kg in sample PC-10 (1-2) to 25,000,000 μg/kg in sample SB-68 (0-1).

Total cPAHs: Sampling results for samples analyzed for cPAHs are provided in Table 3 and are shown on Plates 3A through 3D. Of the 1467 samples collected, 812 samples were submitted for cPAH analysis. The Yard soil cleanup level for total cPAHs was exceeded in 49 samples. Approximately 57 percent of the total cPAH exceedances (28 of 49 samples) have been removed by soil IRMs. A total of 21 samples exceeding the Yard soil cleanup level for total cPAHs remain in OU-4. The sample concentrations for remaining total cPAH exceedances range from 25,540 μg/kg in sample TS36-14 (0-1) to 80,200 μg/kg in sample TU-3 (1-2).

<u>Lead</u>: Sampling results for samples analyzed for lead are provided in Table 4 and are shown on Plates 4A through 4D. Of the 1467 samples collected, 825 samples were submitted for lead analysis. The Yard soil cleanup level for lead was exceeded in 69 samples. Approximately 22 percent of the lead exceedances (15 of 69 samples) have been removed by soil IRMs. A total of 54 samples exceeding the Yard soil cleanup level for lead remain in OU-4. The sample concentrations for remaining lead exceedances range from 1,010 mg/kg in sample HB-11 (0-1) to 7,020 mg/kg in sample LLS-15 (0-1). As noted above, only one sample (LLS-15 [0-1]) of the 54 remaining exceedances for the current Yard soil cleanup level for lead would exceed the NYSDEC Part 375 cleanup level of 3900 mg/kg.

#### 6.0 PLANNED FEASIBILITY STUDY

Roux Associates has identified potential remedial action alternatives for OU-4 based upon an evaluation of the data developed during previous investigations. The purpose of identifying potential alternatives in the OU-4 RI is to verify that data needed to support a detailed evaluation of these alternatives in a feasibility study were collected during the RI.

As discussed in Section 1.0, Amtrak and NJTC have requested alternate cleanup levels for lead and total cPAHs in OU-4. NYSDEC indicated that alternate soil cleanup levels should be presented and justified in the OU-4 FS. A justification will be made in the OU-4 FS for alternate cleanup levels for these two COCs. An alternate cleanup level for PCBs will not be proposed.

#### **6.1** Soil

Based upon our current understanding of OU-4 conditions and review of the analytical data, remedial alternatives that may be suitable for OU-4 soil include the following:

- no action:
- *in situ* treatment;
- excavation and offsite disposal;
- excavation/onsite treatment followed by onsite or offsite disposal; and
- containment.

These preliminarily identified alternatives represent a range of response actions that are consistent with USEPA and NYSDEC guidance documents.

### 6.1.1 No Action

The no action alternative will be evaluated to provide a comparative baseline for the evaluation of other remedial alternatives. The no action alternative may include monitoring and institutional controls. The evaluation of this alternative will consider the following:

**-** 46 -

- the nature and extent of contamination;
- the migration potential for the contaminants; and
- the potential exposure scenarios.

#### 6.1.2 In Situ Treatment

In situ treatment is preliminarily identified as a remedial action alternative for cPAHs, PCBs, and lead-impacted soil. Specifically, bioremediation, solidification, and stabilization may be considered as potential *in situ* remedial action alternatives.

## **6.1.3** Excavation and Off-Site Disposal

Excavation and off-site disposal is preliminarily identified as a remedial action alternative for cPAHs, PCBs, and lead-impacted soil. Evaluation of this alternative will consider permanence of remedy, the need for treatment in order to meet land disposal restrictions, and the classification of soils as either hazardous or nonhazardous.

# 6.1.4 Excavation/On-Site Treatment and On-Site or Off-Site Disposal

Excavation and on-site treatment is preliminarily identified as a remedial action alternative for PCBs, cPAHs and lead-impacted soil. Evaluation of this alternative will consider treatment techniques, such as those described above, which may be used to reduce the toxicity and mobility of the excavated waste materials. Depending upon the degree of treatment, the final disposition of the material may be onsite or offsite.

#### **6.1.5** Containment

Containment alternatives that may be considered include caps or other impermeable barriers to isolate the contaminated soil from contact with rainwater, surface runoff, and groundwater.

#### 7.0 EXPOSURE ASSESSMENT

This Exposure Assessment (EA) for OU-4 was conducted following the NYSDEC Spill Guidance Manual (NYSDEC, 1995), the NYSDEC Technical Guidance for Site Investigation and Remediation (NYSDEC, 2002), the NYSDEC Generic Template for Final Engineering Report (NYSDEC, 2007a), the NYSDEC Generic Template for Final Remedial Action Work Plan (NYSDEC, 2007b), and was conducted to evaluate the potential for exposure to chemicals currently present in soil within the area defined as OU-4.

EAs describe the type and magnitude of exposures to chemicals of potential concern (COPCs) present at a site. The NYSDEC describes the following four components of an EA (NYSDEC, 1995, 2002):

- Selection of COPCs
- Identification of exposure pathways
- Measurement of the chemical concentrations at each exposure point (Exposure Point Concentrations)
- Comparison of exposure point concentrations to available health-based or other criteria (Comparison to Relevant Criteria).

This EA is based on a data evaluation from soil samples collected within OU-4 between 1983 and 2007 (Tables 5 through 9). Sewer and groundwater data collected within the boundaries of OU-4 will be addressed as part of the OU-5 and OU-6 RI/FSs, respectively. The organization of this section is based on the four NYSDEC EA elements identified above and follows the same order: Selection of COPCs (Section 12.1); Identification of Exposure Pathways for soil (Section 12.2); Exposure Point Concentrations (Section 12.3), and Comparison to Relevant Criteria (Section 12.4). In addition, Current and Future Site Conditions are discussed in Section 12.5, and the EA Summary is presented in Section 12.6. Subsections are included as appropriate.

As discussed in Section 3.0, while the data developed from some of these investigations includes analytical results for total petroleum hydrocarbons (TPH), volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), PCBs, pesticides and metals, the data pertaining to the COCs at the Yard (i.e., total PCBs, total cPAHs, and lead) are emphasized in this RI. As

discussed in Section 1.0, the NYSDEC and NYSDOH established the COCs and issued the associated Yard soil cleanup levels in 1997. Therefore, subsequent investigations focused on the analysis of the COCs only and interim remedial activities were performed to meet the Yard soil cleanup levels.

#### 7.1 Selection of COPCs

COPCs are chemicals that are present at a site and have data that are of sufficient quality for use in the EA. Characteristics of COPCs include the following:

- Positively detected in at least one sample in a given environmental medium.
- Detected at concentrations significantly elevated above concentrations reported in associated blank samples.
- Detected at concentrations significantly elevated above naturally occurring levels of the same chemicals.
- Are the transformation products of chemicals detected at the site.

All constituents that were identified (i.e., detected via laboratory analysis) in OU-4 were initially considered COPCs, with the exception of the established COCs, since they are already considered compounds of concern by the NYSDEC and are the focus of the OU-4 RI and FS. Data tables summarizing the concentrations of each chemical grouping of COPCs (VOCs, SVOCs, Metals, Pesticides, and PAHs) collected between 1983 and 2007 are presented as follows: Table 8 for VOCs; Table 7 for SVOCs; Table 5 for Metals; Table 9 for Pesticides; and Table 6 for PAHs. Although PAHs are a subset of SVOCs, numerous samples were analyzed for PAHs only to obtain the concentrations of cPAHs. As a result, a separate PAH table was included.

## 7.2 Identification of Exposure Pathways

Exposure pathways describe the ways in which persons (receptors) come into contact with COPCs present in environmental media at a site. Relevant exposure pathways for a site are determined by reviewing site-specific characteristics such as the following:

• Locations of COPCs at the site.

- Environmental fate of the COPCs.
- Potential receptor locations at or near the site.

A complete exposure pathway is defined by the USEPA (1989) as having the following components:

- A source and mechanism of chemical release.
- A retention or transport medium.
- A point of potential human contact with the medium containing the chemical(s) of potential concern.
- An exposure route (e.g., ingestion) at the contact point.

### 7.2.1 Soil

Based on the criteria given above, soil is the only complete exposure pathway in OU-4. Soils may be a retention and transport medium for chemicals. Receptors may come into direct contact with soil within OU-4 while performing routine job-related activities (i.e., track work, excavation, etc.). During the course of contacting the soil on their skin, persons may, under some circumstances, accidentally ingest soil derived from the Site.

Inhalation of fugitive dust is not considered a viable exposure pathway because the 118-acre area of OU-4 is almost completely covered (i.e., over 96% covered; Figure 5) and lies in a basin-like area with ground elevations that range from approximately 10 to 25 feet below the surrounding land surface (Section 2.4). The surface cover consists of the following:

- Track includes tracks, ballast, concrete and paved walkways (54.27%);
- Asphalt/Concrete Pavement and Buildings (24.66%);
- Brush/Vegetation (17.21%); and
- Exposed Ground (3.82%).

The Yard topography and drainage patterns are strongly influenced by a large number of railroad tracks and bulkheaded areas throughout the Yard. Stormwater at the Yard partly infiltrates *in situ* and is partly collected in catch basins of the combined sanitary and stormwater sewer system. Overland surface runoff does not appear to be a source of contamination to adjacent properties.

Therefore, exposure to stormwater from the Yard at offsite properties is an incomplete exposure pathway. The potential exposure to contaminants in the sewer system will be addressed as part of the OU-5 RI/FS.

Inhalation of vapors from volatile organic compounds volatilizing from soils into the ambient air during soil moving activities is not considered a viable exposure pathway because the number of VOCs detected in soil are limited and concentrations are sufficiently low (maximum concentrations below 0.5 mg/kg) that ambient air levels could not rise to a level of concern. While exposure to fugitive dust may occur on a very limited basis, the primary exposure routes for on-site receptors to chemicals present in soil is via dermal absorption and incidental ingestion.

#### 7.2.2 Groundwater

Should groundwater be impacted by soil contaminants, it is not a complete exposure pathway in OU-4, since groundwater is generally not encountered during routine operations, which significantly limits any direct contact. Potential offsite human contact to groundwater is not considered viable, since groundwater in the general area surrounding the Yard is not used as drinking water. The potential exposure to contaminants in groundwater (including associated soil vapor) will be addressed as part of the OU-6 RI/FS.

In addition, as shown during past groundwater sampling activities conducted at the Yard (Roux Associates, 1999c) and confirmed during recent groundwater sampling activities to be described in the OU-6 RI in preparation for submission to the NYSDEC, on-site soil quality conditions have not impacted groundwater. The recent OU-6 RI data generally confirm our previous understanding of groundwater conditions and indicates the following:

- Several exceedances of naturally occurring metals;
- Several exceedances of chlorinated VOCs from offsite sources;
- No exceedances of PCBs;
- No exceedances of cPAHs;
- Two exceedances of lead, however, these were in turbid samples and most likely are representative of suspended sediment; and

 detections of petroleum-related SVOCs and VOCs associated with two historical onsite petroleum releases that are either compounds without groundwater quality standards or detections below standards.

One of the onsite petroleum releases is in OU-3 and is being actively remediated at this time in accordance with the NYSDEC ROD. Performance monitoring is being conducted to evaluate the effectiveness of the OU-3 remedy. The other release adjacent to Area 14 will be addressed in the OU-6 RI/FS. This release has naturally attenuated from a one-time detection of a petroleum sheen to no exceedances of groundwater quality standards. It will be monitored as part of OU-6.

# 7.3 Exposure Point Concentrations

Tables 5 to 9 present data for individual sampling locations for the non-COC parameters in soil as described in Section 7.1. The random nature in which persons typically come into contact with soil at a site supports the use of average (i.e., arithmetic mean) concentrations as relevant exposure point concentrations. A more conservative approach was chosen here in retaining the concentrations of CPOCs at each sampling location, without any further statistical manipulation.

# 7.3.1 Potential Receptors

OU-4 is one area of an active railroad maintenance facility. The principal receptors will be adult site workers conducting routine track and other site maintenance activities. In addition, activities might include occasional construction projects that could result in limited excavation. Residential uses for OU-4 are not possible in the foreseeable future, therefore, residential receptors are not considered in this EA. The occurrence of limited trespassing activities are possible at the Yard, but OU-4 would be considered relatively inaccessible to trespassers because it is fenced, and access points to the Yard are guarded. Therefore, trespassers are also not considered as potential receptors at OU-4.

# 7.4 Comparison to Relevant Criteria

As stated by the NYSDEC (1995), exposure point concentrations should be compared to available health-based and/or environmental standards or criteria to determine the need to conduct a cleanup at a site. The current, intended, and reasonably anticipated future use of OU-4 is for railroad maintenance purposes. OU-4 is also classified as a manufacturing zoning district by the City of New York. As such, the relevant criteria for evaluating soil exposure point

concentrations were determined to be NYSDEC Restricted Industrial Use soil cleanup objectives for the protection of public health as set forth in 6 NYCRR Part 375.

Tables 5 to 9 present the concentrations of COPCs detected in soils of OU-4 and the NYSDEC Part 375 Restricted Industrial Use soil cleanup objectives. As shown in these tables, with minor exceptions, the concentrations of OU-4 related chemicals were below their respective NYSDEC Part 375 soil cleanup objectives, indicating that OU-4 soils are protective of human health and suitable for industrial use. The exceptions to this are arsenic and, in one instance, mercury. Arsenic exceeds the health-based criteria at six out of 33 sampling locations. Soil at one of those six sampling locations (i.e., S-22) was removed during routine track maintenance work. It is noted that soil at that location was not removed as an Interim Remedial Measure, since the COCs did not exceed current Yard soil cleanup levels. Of the remaining five soil exceedances, one is proposed for excavation (i.e., S-101) as described in this document due to PCBs and lead in exceedance of current Yard soil cleanup levels. Soil at the four locations were arsenic will remain is covered by ballast, asphalt/concrete pavement and buildings (Figure 5). Hence there is no potential for direct contact with soil at these locations. It is important to note that, when using the arithmetic mean, the exposure concentration is only about one-half of the NYSDEC Part 375 Industrial Use Cleanup Objective for arsenic.

Soil at sampling location CS-43, where mercury was identified above Part 375 cleanup levels, is also covered by asphalt / concrete pavement. The exceedance of mercury at that location will be addressed in the OU-4 FS as part of the remedial activities planned for OU-4.

The presence of asphalt / concrete pavement and buildings mitigates or prevents rainwater from infiltrating soil at the aforementioned sampling locations. Subsequent leaching and transport of arsenic and mercury into groundwater and the onsite sewer system is therefore not expected. OU-6 groundwater sampling activities conducted in 2008 have confirmed that groundwater has not been impacted by arsenic and mercury. The data and findings for these recent OU-6 groundwater sampling activities will be presented in the OU-6 RI report in preparation for submission to the NYSDEC.

Based on the above discussion, additional COCs for OU-4 are clearly not warranted, and the existing three COCs are sufficient for evaluating soil quality conditions in OU-4.

### 7.5 Current and Future Site Conditions

As previously stated, OU-4 is part of a large and very active rail yard, and is partially covered with ballast supporting multiple railroad tracks as well as asphalt / concrete pavement and buildings. The majority of the remaining area is either covered with riprap, asphalt, or ballast for vehicular traffic. Only two small areas of bare soil exist, covering less than four percent of the area of OU-4 (Figure 5). The bare soil represents a potential exposure pathway for workers in OU-4 during non-intrusive activities. However, this soil is in areas not routinely accessed by Yard personnel.

Although specific plans for the future use of all portions of OU-4 are not finalized, it is anticipated that many of the currently routine activities will continue for the foreseeable future. These activities include removal and replacement of ballast, installation of subsurface utility lines, and other activities involving the excavation and movement of potentially contaminated soil, which could put workers (potential receptors) in contact with contaminated soil.

### 7.6 Summary

This EA addressed soil-quality conditions that currently exist in OU-4. As illustrated in Section 7.5, exposure to soil in OU-4 is possible by workers engaged in routine activities. Residential and trespassing exposure scenarios were not considered viable for the reasons stated above. Therefore, exposure point concentrations in soil were compared to appropriate health-based criteria (NYSDEC Part 375 Industrial soil cleanup objectives) to determine the potential for present and future workers to be exposed to chemicals present in soil.

As discussed in Section 7.4, all of the exposure point concentrations for the COPCs in soil were below these criteria for soil, except for arsenic at six sampling locations and mercury at only one location. Soil at these locations was either removed, will be removed, or remains paved or

otherwise covered, precluding direct human contact. Arsenic and mercury do not impact groundwater quality at the Yard. Therefore, additional COCs for OU-4 are not necessary, and the existing three COCs (total PCBs, total cPAHs, and lead) are sufficient for evaluating existing soil-quality conditions in OU-4.

#### 8.0 CONCLUSIONS AND RECOMMENDATIONS

The findings presented in this OU-4 RI Report indicate the following:

- An extensive soil sampling program was completed (i.e., 1,467 separate soil samples for analyses, most analyzed for multiple parameters);
- An extensive IRM program was completed to address COCs in soil above Yard soil cleanup levels;
- An exposure assessment was completed that indicated additional COCs are not warranted based on a lack of exposure to non-COC compounds in OU-4; and
- Areas currently exhibiting COC concentrations exceeding Yard soil cleanup levels have been identified (as shown on Plate 5).

The COCs currently remaining in OU-4 are primarily found at shallow depths (i.e., 0 to 2 feet bls) and, based on their chemical nature, are relatively immobile in soil. Given the nature and extent of contamination identified in OU-4, it is recommended that a Focused FS be performed that will evaluate remedial alternatives that are amenable for addressing shallow soil contamination in an active railyard. The focused FS will also propose alternate Yard soil cleanup levels for total cPAHs and lead.

Respectfully submitted,

ROUX ASSOCIATES, INC.

Harry Gregory

Senior Hydrogeologist

Joseph D. Duminuco

Vice President/

Principal Hydrogeologist

#### 9.0 REFERENCES

- AKRF, Inc., 1999. Detailed Environmental Site Investigation, Sunnyside Yard, Sunnyside, New York, December 1999.
- Buxton, et al., 1981. Reconnaissance of the Ground-Water Resources of Kings and Queens Counties, New York: U.S. Geological Survey Open-File Report, 81-1186.
- Environmental Planning & Management, Inc., 1997. Final Hazardous Waste Investigation Report, Queens Boulevard Bridge Over Sunnyside Yard. Revised March 1997.
- Franke, O.L., and Philip Cohen, 1972. Regional Rates of Ground-Water Movement on Long Island, New York. U.S. Geological Survey Professional Paper 800-C, p. C-271 C-277.
- Julius Bien & Co., 1890. Topographic map of western Queens, New York, 1890.
- McClymonds, N.E. and O.L. Franke, 1972. Water-Transmitting Properties of Aquifers on Long Island, New York.
- NYSDEC, 1995. Spill Guidance Manual. Technical Field Guidance: Corrective Action Exposure and Risk Assessment. http://www.dec.ny.gov/regulations/2634.html
- NYSDEC, 2002. Draft DER-10. Technical Guidance for Site Investigation and Remediation. December 2002.
- NYSDEC, 2007a. Generic Template for Final Engineering Report. Region 2 DER Managed Projects. May 7, 2007.
- NYSDEC, 2007b. Generic Template for Final Remedial Action Work Plan. Region 2 DER Managed Projects. May 7, 2007.
- OHM, 1992. Underground Storage Tank Closure and Assessment Report Sunnyside Yard, Long Island City, New York, September 21, 1992.
- PB/STV, 2001. Findings Report for the Environmental Site Investigation of the Sunnyside Yard and Harold Interlocking, Sunnyside, Queens County, New York ESA Projects Alignments and Replacement Yards Study, January 2001.
- Pennsylvania Tunnel and Terminal Railroad Company, 1906. Topographic map of Sunnyside Yard, December 1906.
- Pennsylvania Tunnel and Terminal Railroad Company, 1910. Chief Engineering Report and Associated Cross-Sections of Sunnyside Yard.
- Roux Associates, Inc., 1992. Phase I Remedial Investigation, Sunnyside Yard, Queens, New York, January 22, 1992. Volumes I through III.
- Roux Associates, Inc., 1995. Phase II Remedial Investigation, Sunnyside Yard, Queens, New York, February 15, 1995. Volumes I through V.

- Roux Associates, Inc., 1996. Supplement for Phase II Remedial Investigation Report, Sunnyside Yard, Queens, New York, May 30, 1996.
- Roux Associates, Inc., 1997a. General Sampling and Analysis Plan to Support High Speed Trainset Facility Activities in Operable Unit 4, Sunnyside Yard, Queens, New York, August 6, 1997.
- Roux Associates, Inc., 1997b. Underground Storage Tank Compliance Plan for OU-4, Sunnyside Yard, Queens, New York, September 30, 1997.
- Roux Associates, Inc., 1999a. General Sampling and Analysis and Interim Remedial Action Work Plan for New Construction in Operable Unit 4, Sunnyside Yard, Queens, New York, June 8, 1999.
- Roux Associates, Inc., 1999b. General Sampling and Analysis and Remedial Action Work Plan for Bridge Rehabilitation Construction in Operable Unit 4, Sunnyside Yard, Queens, New York, March 5, 1999.
- Roux Associates, Inc., 1999c. Operable Unit 6 Remedial Investigation Report, Sunnyside Yard, Queens, New York. May 14, 1999.
- Smolensky, Douglas A., 1983. Potentiometric Surfaces on Long Island, New York--A Bibliography of Maps. U.S. Geological Survey Open-File Report 84-070.
- Soren, Julian, 1971. Ground-Water and Geohydrologic Conditions in Queens County, Long Island, New York. United States Geologic Survey Water-Supply Paper 2001A.
- Soren, Julian, 1978. Subsurface Geology and Paleogeography of Queens County, Long Island, New York. U.S. Geological Survey Water-Resources Investigations 77-34 Open-File Report. February 1978.
- USEPA, 1989. Risk Assessment Guidance for Superfund (RAGS) Volume I: Human Health Evaluation Manual (Part A) Interim Final. Office of Emergency and Remedial Response. EPA/540/1-89/002.

Table 1. Summary of Soil-Quality Sampling, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Sample Location/<br>Designation | Sample Depth<br>Interval<br>(Ft. Bls) | Sample Date          | Analyte(s)                                         | Zone Sampled B                       |
|---------------------------------|---------------------------------------|----------------------|----------------------------------------------------|--------------------------------------|
| 001-1                           | 0-0.5                                 | 11/01/83             | PCBs                                               | Zone I VARIOUS                       |
| 001-2                           | 0-0.5                                 | 11/01/83             | PCBs                                               | Zone I VARIOUS                       |
| 001-3                           | 0-0.5                                 | 11/01/83             | PCBs                                               | Zone I VARIOUS                       |
| 001-4                           | 0-0.5                                 | 11/01/83             | PCBs                                               | Zone I VARIOUS                       |
| 002-10<br>002-11                | 0-0.5<br>0-1.5                        | 11/01/83<br>11/01/83 | PCBs<br>PCBs                                       | Zone I VARIOUS<br>Zone I VARIOUS     |
| 002-11                          | 0-0.5                                 | 11/01/83             | PCBs                                               | Zone I VARIOUS                       |
| 002-12                          | 0-0.5                                 | 11/01/83             | PCBs                                               | Zone I VARIOUS                       |
| 002-14                          | 0-1.5                                 | 11/01/83             | PCBs                                               | Zone I VARIOUS                       |
| 002-6                           | 0-0.5                                 | 11/01/83             | PCBs                                               | Zone I VARIOUS                       |
| 002-7                           | 0-0.5                                 | 11/01/83             | PCBs                                               | Zone I VARIOUS                       |
| 002-8                           | 0-0.5                                 | 11/01/83             | PCBs                                               | Zone I VARIOUS                       |
| 002-9                           | 0-0.5                                 | 11/01/83             | PCBs                                               | Zone I VARIOUS                       |
| 57SW-1                          | 0-1**                                 | 08/10/98             | PCBs, cPAHs, Lead, PAHs                            | Zone II ROUX                         |
| 57SW-1<br>57SW-2                | B<br>0-1**                            | 08/10/98<br>08/10/98 | PCBs, cPAHs, Lead, PAHs<br>PCBs, cPAHs, Lead, PAHs | Zone II ROUX<br>Zone II ROUX         |
| 57SW-2                          | В                                     | 08/10/98             | PCBs, cPAHs, Lead, PAHs                            | Zone II ROUX                         |
| 59                              | 0-1**                                 | 03/09/99             | PCBs, cPAHs, Lead                                  | Zone IV ROUX                         |
| 59                              | В                                     | 03/09/99             | PCBs, cPAHs, Lead                                  | Zone IV ROUX                         |
| 61W                             | 0-1**                                 | 03/09/99             | PCBs, cPAHs, Lead                                  | Zone IV ROUX                         |
| 61W                             | В                                     | 03/09/99             | PCBs, cPAHs, Lead                                  | Zone IV ROUX                         |
| 79                              | 0-1**                                 | 03/09/99             | PCBs, cPAHs, Lead                                  | Zone III ROUX                        |
| 79                              | B                                     | 03/09/99             | PCBs, cPAHs, Lead                                  | Zone III ROUX                        |
| 092-1<br>092-10                 | 0-0.5<br>0-1                          | 05/18/93<br>05/18/93 | PCBs<br>PCBs                                       | Zone II VARIOUS<br>Zone II VARIOUS   |
| 092-10                          | 0-1.2                                 | 05/18/93             | PCBs                                               | Zone II VARIOUS                      |
| 092-12                          | 0-0.5                                 | 05/18/93             | PCBs                                               | Zone II VARIOUS                      |
| 092-13                          | 0-0.5                                 | 05/18/93             | PCBs                                               | Zone II VARIOUS                      |
| 092-14                          | 0-0.5                                 | 05/18/93             | PCBs                                               | Zone II VARIOUS                      |
| 092-15                          | 0-0.5                                 | 05/18/93             | PCBs                                               | Zone II VARIOUS                      |
| 092-16                          | 0-0.5                                 | 05/18/93             | PCBs                                               | Zone III VARIOUS                     |
| 092-17                          | 0-0.5                                 | 05/18/93             | PCBs                                               | Zone III VARIOUS                     |
| 092-2<br>092-3                  | 0-0.5<br>0-0.5                        | 05/18/93<br>05/18/93 | PCBs<br>PCBs                                       | Zone III VARIOUS<br>Zone III VARIOUS |
| 092-4                           | 0-0.5                                 | 05/18/93             | PCBs                                               | Zone III VARIOUS                     |
| 092-5                           | 0-0.5                                 | 05/18/93             | PCBs                                               | Zone III VARIOUS                     |
| 092-6                           | 0-1.8                                 | 05/18/93             | PCBs                                               | Zone III VARIOUS                     |
| 092-7                           | 0-1.7                                 | 05/18/93             | PCBs                                               | Zone III VARIOUS                     |
| 092-8                           | 0-1.7                                 | 05/18/93             | PCBs                                               | Zone II VARIOUS                      |
| 092-9                           | 0-1.7                                 | 05/18/93             | PCBs                                               | Zone II VARIOUS                      |
| 093-1                           | 0-0.5                                 | 05/18/93             | PCBs                                               | Zone II VARIOUS                      |
| 093-2                           | 0-0.5                                 | 05/18/93<br>05/18/93 | PCBs                                               | Zone II VARIOUS<br>Zone II VARIOUS   |
| 093-3<br>093-4                  | 0-0.4167<br>0-0.5                     | 05/18/93             | PCBs<br>PCBs                                       | Zone II VARIOUS  Zone II VARIOUS     |
| 093-5                           | 0-0.5                                 | 05/18/93             | PCBs                                               | Zone II VARIOUS                      |
| 110-1                           | 0-0.5                                 | 06/02/93             | PCBs                                               | Zone III VARIOUS                     |
| 174-1                           | 0-1.5                                 | 04/26/94             | PCBs                                               | Zone II VARIOUS                      |
| 174-10                          | 0-2.167                               | 04/26/94             | PCBs                                               | Zone III VARIOUS                     |
| 174-11                          | 0-1.5                                 | 04/26/94             | PCBs                                               | Zone III VARIOUS                     |
| 174-12                          | 0-1.83                                | 04/26/94             | PCBs                                               | Zone III VARIOUS                     |
| 174-13                          | 0-1.83                                | 04/26/94             | PCBs                                               | Zone III VARIOUS                     |
| 174-14<br>174-15                | 0-1.5<br>0-1.83                       | 04/26/94<br>04/26/94 | PCBs<br>PCBs                                       | Zone III VARIOUS<br>Zone III VARIOUS |
| 174-15                          | 0-1.83                                | 04/26/94             | PCBs                                               | Zone III VARIOUS                     |
| 174-10                          | 0-2.167                               | 04/26/94             | PCBs                                               | Zone III VARIOUS                     |
| 174-18                          | 0-1.83                                | 04/26/94             | PCBs                                               | Zone III VARIOUS                     |
| 174-19                          | 0-2.75                                | 04/26/94             | PCBs                                               | Zone III VARIOUS                     |
| 174-2                           | 0-1.9167                              | 04/26/94             | PCBs                                               | Zone II VARIOUS                      |
| 174-20                          | 0-2.083                               | 04/26/94             | PCBs                                               | Zone III VARIOUS                     |
| 174-21                          | 0-2.083                               | 04/26/94             | PCBs                                               | Zone III VARIOUS                     |
| 174-3                           | 0-2.67                                | 04/26/94             | PCBs                                               | Zone II VARIOUS                      |
| 174-4                           | 0-2.5                                 | 04/26/94             | PCBs<br>PCBs                                       | Zone II VARIOUS                      |
| 197-1<br>197-2                  | -                                     | 01/18/90<br>01/18/90 | PCBs<br>PCBs                                       | Zone II VARIOUS<br>Zone II VARIOUS   |
| 197-2                           | =                                     | 01/18/90             | PCBs                                               | Zone II VARIOUS  Zone II VARIOUS     |

Table 1. Summary of Soil-Quality Sampling, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Sample Location/<br>Designation | Sample Depth<br>Interval<br>(Ft. Bls) | Sample Date          |              | Analyte(s) | Zone               | Sampled By         |
|---------------------------------|---------------------------------------|----------------------|--------------|------------|--------------------|--------------------|
| 197-4                           |                                       | 01/18/90             | PCBs         |            | Zone II            | VARIOUS            |
| 197-5                           | _                                     | 01/18/90             | PCBs         |            | Zone II            |                    |
| 197-6                           | -                                     | 01/18/90             | PCBs         |            |                    | VARIOUS            |
| 246-1                           | 0.66-1.33                             | 08/19/93             | PCBs         |            |                    | VARIOUS            |
| 246-10                          | 0.66-1.167                            | 08/19/93             | PCBs         |            |                    | VARIOUS            |
| 246-11                          | 0.66-1.167                            | 08/19/93             | PCBs         |            | Zone III           | VARIOUS            |
| 246-12                          | 0.66-1.33                             | 08/19/93             | PCBs         |            | Zone III           | VARIOUS            |
| 246-2                           | 0.66-1.33                             | 08/19/93             | PCBs         |            |                    | VARIOUS            |
| 246-3                           | 0.66-1.5                              | 08/19/93             | PCBs         |            |                    | VARIOUS            |
| 246-4                           | 0.66-1.167                            | 08/19/93             | PCBs         |            |                    | VARIOUS            |
| 246-5<br>246-6                  | 0.66-1.33<br>0.66-1.33                | 08/19/93<br>08/19/93 | PCBs<br>PCBs |            | Zone II<br>Zone II | VARIOUS<br>VARIOUS |
| 246-7                           | 0.66-1.33                             | 08/19/93             | PCBs         |            | Zone II            |                    |
| 246-8                           | 0.66-1.5                              | 08/19/93             | PCBs         |            |                    | VARIOUS            |
| 246-9                           | 0.66-1.33                             | 08/19/93             | PCBs         |            |                    | VARIOUS            |
| 334-10                          | 0-0.5                                 | 08/31/94             | PCBs         |            |                    | VARIOUS            |
| 334-11                          | 0-0.5                                 | 08/31/94             | PCBs         |            | Zone III           | VARIOUS            |
| 334-12                          | 0-0.5                                 | 08/31/94             | PCBs         |            | Zone III           | VARIOUS            |
| 334-13                          | 0-0.5                                 | 08/31/94             | PCBs         |            | Zone III           | VARIOUS            |
| 334-8                           | 0-0.5                                 | 08/31/94             | PCBs         |            |                    | VARIOUS            |
| 334-9                           | 0-0.5                                 | 08/31/94             | PCBs         |            |                    | VARIOUS            |
| 427-1                           | 0-1.5                                 | 12/17/93             | PCBs         |            |                    | VARIOUS            |
| 427-10                          | 0-1.5                                 | 12/17/93             | PCBs<br>PCBs |            |                    | VARIOUS            |
| 427-11<br>427-12                | 0-1.33<br>0-1.5                       | 12/17/93<br>12/17/93 | PCBs<br>PCBs |            | Zone II<br>Zone II |                    |
| 427-13                          | 0-1.167                               | 12/17/93             | PCBs         |            | Zone II            |                    |
| 427-14                          | 0-1.167                               | 12/17/93             | PCBs         |            | Zone II            |                    |
| 427-15                          | 0-1.4167                              | 12/17/93             | PCBs         |            | Zone II            |                    |
| 427-16                          | 0-1.5                                 | 12/17/93             | PCBs         |            | Zone II            |                    |
| 427-17                          | 0-1.4167                              | 12/17/93             | PCBs         |            | Zone II            | VARIOUS            |
| 427-18                          | 0-1                                   | 12/17/93             | PCBs         |            | Zone II            | VARIOUS            |
| 427-19                          | 0-1.33                                | 12/17/93             | PCBs         |            |                    | VARIOUS            |
| 427-2                           | 0-1.5                                 | 12/17/93             | PCBs         |            |                    | VARIOUS            |
| 427-20                          | 0-1.25                                | 12/17/93             | PCBs         |            |                    | VARIOUS            |
| 427-21<br>427-22                | 0-1.25<br>0-1.5                       | 12/17/93<br>12/17/93 | PCBs<br>PCBs |            | Zone II            |                    |
| 427-3                           | 0-1.5<br>0-1.5                        | 12/17/93             | PCBs<br>PCBs |            |                    | VARIOUS<br>VARIOUS |
| 427-4                           | 0-1.5                                 | 12/17/93             | PCBs         |            |                    | VARIOUS            |
| 427-5                           | 0-1.5                                 | 12/17/93             | PCBs         |            |                    | VARIOUS            |
| 427-6                           | 0-1.5                                 | 12/17/93             | PCBs         |            |                    | VARIOUS            |
| 427-7                           | 0-1.5                                 | 12/17/93             | PCBs         |            | Zone III           | VARIOUS            |
| 427-8                           | 0-1.5                                 | 12/17/93             | PCBs         |            |                    | VARIOUS            |
| 427-9                           | 0-1.5                                 | 12/17/93             | PCBs         |            |                    | VARIOUS            |
| 506-1                           | 0-0.5                                 | 08/09/90             | PCBs         |            |                    | VARIOUS            |
| 506-10                          | 0-0.5                                 | 08/09/90             | PCBs         |            | Zone II            |                    |
| 506-11                          | 0-0.5                                 | 08/09/90             | PCBs         |            | Zone II            |                    |
| 506-12<br>506-2                 | 0-0.5<br>0-0.5                        | 08/09/90<br>08/09/90 | PCBs<br>PCBs |            | Zone II<br>Zone II | VARIOUS<br>VARIOUS |
| 506-3                           | 0-0.5                                 | 08/09/90             | PCBs         |            | Zone II            |                    |
| 506-4                           | 0-0.5                                 | 08/09/90             | PCBs         |            | Zone II            |                    |
| 506-5                           | 0-0.5                                 | 08/09/90             | PCBs         |            |                    | VARIOUS            |
| 506-6                           | 0-0.5                                 | 08/09/90             | PCBs         |            | Zone II            |                    |
| 506-7                           | 0-0.5                                 | 08/09/90             | PCBs         |            | Zone II            | VARIOUS            |
| 506-8                           | 0-0.5                                 | 08/09/90             | PCBs         |            |                    | VARIOUS            |
| 506-9                           | 0-0.5                                 | 08/09/90             | PCBs         |            |                    | VARIOUS            |
| 558-1                           | 0-1.5                                 | 07/21/92             | PCBs         |            |                    | VARIOUS            |
| 558-2                           | 0-1.5                                 | 07/21/92             | PCBs         |            |                    | VARIOUS            |
| 558-3                           | 0-1.5                                 | 07/21/92             | PCBs         |            |                    | VARIOUS            |
| 558-5<br>558-6                  | 0-1.5                                 | 07/21/92             | PCBs         |            |                    | VARIOUS            |
| 558-6<br>558-7                  | 0-1.5<br>0-1.5                        | 07/21/92<br>07/21/92 | PCBs<br>PCBs |            |                    | VARIOUS VARIOUS    |
| 558-7<br>558-8                  | 0-1.5<br>0-1.5                        | 07/21/92             | PCBs         |            |                    | VARIOUS            |
| 692-1                           | 0-1.3                                 | 09/25/92             | PCBs<br>PCBs |            |                    | VARIOUS            |
| 692-2                           | 0-0.85                                | 09/25/92             | PCBs         |            |                    | VARIOUS            |
| 692-3                           | 0-1.33                                | 09/25/92             | PCBs         |            |                    | VARIOUS            |

Table 1. Summary of Soil-Quality Sampling, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Sample Location/<br>Designation | Sample Depth<br>Interval<br>(Ft. Bls) | Sample Date          | Analyte(s)                | Zone Sampled B                      |
|---------------------------------|---------------------------------------|----------------------|---------------------------|-------------------------------------|
| 692-4                           | 0-1.5                                 | 09/25/92             | PCBs                      | Zone III VARIOUS                    |
| 692-5                           | 0-1.5                                 | 09/25/92             | PCBs                      | Zone III VARIOUS                    |
| 692-6                           | 0-1.5                                 | 09/25/92             | PCBs                      | Zone III VARIOUS                    |
| 692-7                           | 0-1.5                                 | 09/25/92             | PCBs                      | Zone II VARIOUS                     |
| 692-8                           | 0-1.5                                 | 09/25/92             | PCBs                      | Zone II VARIOUS                     |
| 692-82                          | 0-1.5                                 | 12/19/92             | PCBs                      | Zone III VARIOUS                    |
| 692-83                          | 0-1.5                                 | 12/19/92             | PCBs                      | Zone III VARIOUS                    |
| 692-84                          | 0-1.5                                 | 12/19/92             | PCBs                      | Zone III VARIOUS                    |
| 692-85                          | 0-1.5                                 | 12/19/92             | PCBs                      | Zone III VARIOUS                    |
| 692-86                          | 0-1.5                                 | 12/19/92             | PCBs                      | Zone III VARIOUS                    |
| 692-9<br>796-7                  | 0-1.5<br>0-2.5                        | 09/25/92<br>12/03/92 | PCBs<br>PCBs              | Zone II VARIOUS<br>Zone III VARIOUS |
| 796-8                           | 0-2.583                               | 12/03/92             | PCBs                      | Zone III VARIOUS                    |
| 796-9                           | 0-2.5                                 | 12/03/92             | PCBs                      | Zone III VARIOUS                    |
| 925-1                           | 0-2.5                                 | 02/19/93             | PCBs                      | Zone II VARIOUS                     |
| 925-2                           | 0-0.67                                | 02/19/93             | PCBs                      | Zone II VARIOUS                     |
| 925-3                           | 0-0.67                                | 02/19/93             | PCBs                      | Zone II VARIOUS                     |
| 925-3E                          | 0-1                                   | 05/29/07             | PCBs                      | Zone II ROUX                        |
| 925-3E                          | 1-2                                   | 05/29/07             | PCBs                      | Zone II ROUX                        |
| 925-3E                          | 2-3                                   | 05/29/07             | PCBs                      | Zone II ROUX                        |
| 925-3N                          | 0-1                                   | 06/21/05             | PCBs                      | Zone II ROUX                        |
| 925-3N                          | 1-2                                   | 06/21/05             | PCBs                      | Zone II ROUX                        |
| 925-3N                          | 2-3                                   | 06/21/05             | PCBs                      | Zone II ROUX                        |
| 925-3S                          | 0-1                                   | 06/21/05             | PCBs                      | Zone II ROUX                        |
| 925-3S                          | 1-2                                   | 06/21/05             | PCBs                      | Zone II ROUX                        |
| 925-3S                          | 2-3                                   | 06/21/05             | PCBs                      | Zone II ROUX                        |
| 925-3SS                         | 0-1                                   | 05/29/07             | PCBs                      | Zone II ROUX                        |
| 925-3SS                         | 1-2                                   | 05/29/07             | PCBs                      | Zone II ROUX                        |
| 925-3SS                         | 2-3                                   | 05/29/07             | PCBs                      | Zone II ROUX                        |
| 925-3W                          | 0-1                                   | 05/29/07             | PCBs                      | Zone II ROUX                        |
| 925-3W<br>925-3W                | 1-2<br>2-3                            | 05/29/07<br>05/29/07 | PCBs<br>PCBs              | Zone II ROUX<br>Zone II ROUX        |
| 925-3 W<br>925-4                | 0-0.67                                | 02/19/93             | PCBs                      | Zone II VARIOUS                     |
| 925-5                           | 0-0.07                                | 02/19/93             | PCBs                      | Zone II VARIOUS                     |
| 925-6                           | 0-0.5                                 | 02/19/93             | PCBs                      | Zone II VARIOUS                     |
| 925-7                           | 0-0.83                                | 02/19/93             | PCBs                      | Zone II VARIOUS                     |
| 925-8                           | 0-0.5                                 | 03/08/93             | PCBs                      | Zone II VARIOUS                     |
| 925-9                           | 0-0.5                                 | 03/08/93             | PCBs                      | Zone II VARIOUS                     |
| 967-1                           | 0-0.83                                | 03/08/93             | PCBs                      | Zone II VARIOUS                     |
| 967-2                           | 0-0.67                                | 03/08/93             | PCBs                      | Zone II VARIOUS                     |
| 967-4                           | 0-0.75                                | 03/08/93             | PCBs                      | Zone II VARIOUS                     |
| A9-B1                           |                                       | 12/21/00             | PCBs, cPAHs, Lead, PAHs   | Zone III ROUX                       |
| A9-B2                           |                                       | 12/21/00             | PCBs, cPAHs, Lead, PAHs   | Zone III ROUX                       |
| A9-D1                           | 7-8                                   | 01/16/01             | PCBs                      | Zone III ROUX                       |
| A9-EW                           |                                       | 12/28/00             | PCBs, cPAHs, Lead, PAHs   | Zone III ROUX                       |
| A9-NW                           |                                       | 12/21/00             | PCBs, cPAHs, Lead, PAHs   | Zone III ROUX                       |
| A9-SW                           |                                       | 12/21/00             | PCBs, cPAHs, Lead, PAHs   | Zone III ROUX                       |
| A9-WW                           |                                       | 12/21/00             | PCBs, cPAHs, Lead, PAHs   | Zone III ROUX                       |
| B-1                             |                                       | 11/02/98             | PCBs                      | Zone II ROUX                        |
| B-2                             |                                       | 11/02/98             | PCBs                      | Zone II ROUX                        |
| B-3                             |                                       | 11/02/98             | PCBs                      | Zone II ROUX                        |
| B-4<br>BB-1                     | 0.1                                   | 11/02/98<br>06/04/98 | PCBs<br>PCBs, cPAHs, Lead | Zone II ROUX                        |
| BB-1                            | 0-1<br>1-2                            | 06/04/98             | PCBs, cPAHs, Lead         | Zone II ROUX<br>Zone II ROUX        |
| BB-2                            | 0-1                                   | 06/04/98             | PCBs, cPAHs, Lead         | Zone II ROUX                        |
| BB-2                            | 1-2                                   | 06/04/98             | PCBs, cPAHs, Lead         | Zone II ROUX                        |
| BB-3                            | 0-1                                   | 06/04/98             | PCBs, cPAHs, Lead         | Zone II ROUX                        |
| BB-3                            | 1-2                                   | 06/04/98             | PCBs, cPAHs, Lead         | Zone II ROUX                        |
| BOTTOM                          |                                       | 01/04/99             | PCBs, cPAHs, Lead, VOCs   | Zone III ROUX                       |
| CB-1                            | 0-1                                   | 07/29/99             | PCBs, cPAHs, Lead         | Zone II ROUX                        |
| CB-2                            | 0-1                                   | 07/29/99             | PCBs, cPAHs, Lead         | Zone II ROUX                        |
| CB-2                            | 1-2                                   | 07/29/99             | cPAHs                     | Zone II ROUX                        |
| CB-2E                           | 0-1                                   | 06/21/05             | cPAHs                     | Zone II ROUX                        |
| CB-2E                           | 1-2                                   | 06/21/05             | cPAHs                     | Zone II ROUX                        |
| CB-2E                           | 2-3                                   | 06/21/05             | cPAHs                     | Zone II ROUX                        |

Table 1. Summary of Soil-Quality Sampling, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Sample Location/<br>Designation | Sample Depth<br>Interval<br>(Ft. Bls) | Sample Date          | Analyte(s)                                         | Zone               | Sampled By |
|---------------------------------|---------------------------------------|----------------------|----------------------------------------------------|--------------------|------------|
| CB-2N                           | 0-1                                   | 06/21/05             | сРАНѕ                                              | Zone II            | ROUX       |
| CB-2N                           | 1-2                                   | 06/21/05             | cPAHs                                              | Zone II            |            |
| CB-2N                           | 2-3                                   | 06/21/05             | cPAHs                                              | Zone II            | ROUX       |
| CB-2S                           | 0-1                                   | 06/21/05             | cPAHs                                              | Zone II            |            |
| CB-2S                           | 1-2                                   | 06/21/05             | cPAHs                                              | Zone II            |            |
| CB-2S                           | 2-3                                   | 06/21/05             | cPAHs                                              | Zone II            |            |
| CB-2W                           | 0-1<br>1-2                            | 06/21/05             | cPAHs                                              | Zone II            |            |
| CB-2W<br>CB-2W                  | 2-3                                   | 06/21/05<br>06/21/05 | cPAHs<br>cPAHs                                     | Zone II<br>Zone II |            |
| CB-2W                           | 3-4                                   | 08/24/05             | cPAHs                                              | Zone II            |            |
| CB-2W                           | 4-5                                   | 08/24/05             | cPAHs                                              | Zone II            |            |
| CB-2WN                          | 0-1                                   | 08/24/05             | cPAHs                                              | Zone II            |            |
| CB-2WN                          | 1-2                                   | 08/24/05             | cPAHs                                              | Zone II            | ROUX       |
| CB-2WN                          | 2-3                                   | 08/24/05             | cPAHs                                              | Zone II            | ROUX       |
| CB-2WN                          | 3-4                                   | 08/24/05             | cPAHs                                              | Zone II            |            |
| CB-2WN                          | 4-5                                   | 08/24/05             | cPAHs                                              | Zone II            |            |
| CB-2WS                          | 0-1                                   | 08/24/05             | cPAHs                                              | Zone II            |            |
| CB-2WS                          | 1-2                                   | 08/24/05             | cPAHs                                              | Zone II            |            |
| CB-2WS                          | 2-3                                   | 08/24/05             | cPAHs                                              | Zone II            |            |
| CB-2WS<br>CB-2WS                | 3-4<br>4-5.5                          | 08/24/05<br>08/24/05 | cPAHs<br>cPAHs                                     | Zone II<br>Zone II |            |
| CB-2WS                          | 0-1                                   | 07/29/99             | PCBs, cPAHs, Lead                                  | Zone II            |            |
| CB-4                            | 0-1                                   | 07/29/99             | PCBs, cPAHs, Lead                                  | Zone II            |            |
| CB-5                            | 0-1                                   | 07/29/99             | PCBs, cPAHs, Lead                                  | Zone II            |            |
| CB-6                            | 0-1                                   | 07/29/99             | PCBs, cPAHs, Lead                                  | Zone II            |            |
| CB-8                            | 0-1                                   | 07/29/99             | PCBs, cPAHs, Lead                                  | Zone II            |            |
| CB-9                            | 0-1                                   | 07/29/99             | PCBs, cPAHs, Lead                                  | Zone II            | ROUX       |
| CB-10                           | 0-1                                   | 07/29/99             | PCBs, cPAHs, Lead                                  | Zone II            |            |
| CB-11                           | 0-1                                   | 07/29/99             | PCBs, cPAHs, Lead                                  | Zone II            |            |
| CB-12                           | 0-1                                   | 07/29/99             | PCBs, cPAHs, Lead                                  | Zone II            |            |
| CB-13                           | 0-1                                   | 07/30/99             | PCBs, cPAHs, Lead, PAHs                            | Zone II            |            |
| CB-14                           | 0-1<br>0-1                            | 07/29/99             | PCBs, cPAHs, Lead                                  | Zone II<br>Zone II |            |
| CB-15<br>CB-16                  | 0-1<br>0-1                            | 07/29/99<br>08/12/99 | PCBs, cPAHs, Lead<br>PCBs, cPAHs, Lead             | Zone II<br>Zone II |            |
| CB-16                           | 1-2                                   | 08/12/99             | PCBs, cPAHs, Lead                                  | Zone II            |            |
| CB-16                           | 2-3                                   | 08/12/99             | PCBs, cPAHs, Lead                                  | Zone II            |            |
| CB-17                           | 0-1                                   | 08/12/99             | PCBs, cPAHs, Lead                                  | Zone II            |            |
| CB-17                           | 1-2                                   | 08/12/99             | PCBs, cPAHs, Lead                                  | Zone II            |            |
| CB-17                           | 2-3                                   | 08/12/99             | PCBs, cPAHs, Lead                                  | Zone II            | ROUX       |
| CB-21                           | 8-10                                  | 10/01/99             | PCBs, cPAHs, Lead, PAHs                            | Zone II            | ROUX       |
| CEH-1                           | 0-0.16                                | 12/13/00             | PCBs, cPAHs, Lead, PAHs                            | Zone II            |            |
| CEH-2                           | 0-0.16                                | 12/13/00             | PCBs, cPAHs, Lead, PAHs                            | Zone II            |            |
| CEH-3                           | 0-0.16                                | 12/13/00             | PCBs, cPAHs, Lead, PAHs                            | Zone II            |            |
| CEH-4                           | 0-0.16                                | 12/13/00             | PCBs, cPAHs, Lead, PAHs                            | Zone II            |            |
| CEH-5<br>CEH-6                  | 0-0.16<br>0-0.16                      | 12/21/00<br>12/21/00 | PCBs, cPAHs, Lead, PAHs<br>PCBs, cPAHs, Lead, PAHs | Zone II<br>Zone II |            |
| CEH-7                           | 0-0.16                                | 12/21/00             | PCBs, cPAHs, Lead, PAHs                            | Zone II            |            |
| CEH-8                           | 0-0.16                                | 01/16/01             | PCBs, cPAHs, Lead, PAHs                            | Zone II            |            |
| CEH-9                           | 0-0.16                                | 01/16/01             | PCBs, cPAHs, Lead, PAHs                            | Zone II            |            |
| CMW-30                          | 0-2                                   | 12/15/93             | PCBs                                               | Zone IV            |            |
| CMW-31                          | 0-2                                   | 02/01/93             | PCBs                                               | Zone II            |            |
| CMW-34                          | 0-2                                   | 12/15/93             | PCBs                                               | Zone II            | I ROUX     |
| CS-6                            | 0-2                                   | 01/25/93             | PCBs                                               | Zone II            |            |
| CS-16                           | 0-2                                   | 12/16/93             | PCBs                                               | Zone II            |            |
| CS-22                           | 0-2                                   | 12/15/93             | PCBs                                               | Zone II            |            |
| CS-41A                          | 3.5-5.5                               | 12/15/93             | PCBs<br>PCBs                                       | Zone II            |            |
| CS-43<br>CS-43                  | 0-2                                   | 01/18/93             | PCBs<br>Motols                                     | Zone II            |            |
| CS-43<br>CS-47                  | 0-2<br>2-4                            | 01/19/93<br>12/15/93 | Metals<br>PCBs                                     | Zone II<br>Zone II |            |
| CS-47<br>CS-49                  | 2-4                                   | 02/01/93             | PCBs<br>PCBs                                       | Zone II            |            |
| CS-50                           | 0-2                                   | 01/20/93             | PCBs                                               | Zone II            |            |
| CS-51                           | 0-2                                   | 01/20/93             | PCBs                                               | Zone II            |            |
| CS-53                           | 0-2                                   | 02/01/93             | PCBs                                               | Zone II            |            |
| CS-59                           | 0-2                                   | 11/09/93             | PCBs                                               | Zone II            |            |
| CS-75                           | 0-2                                   | 01/19/93             | PCBs                                               | Zone II            |            |

Table 1. Summary of Soil-Quality Sampling, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Sample Location/<br>Designation | Sample Depth<br>Interval<br>(Ft. Bls) | Sample Date          | Analyte(s)                                                    | Zone                 | Sampled By   |
|---------------------------------|---------------------------------------|----------------------|---------------------------------------------------------------|----------------------|--------------|
| CS-77                           | 0-2                                   | 11/09/93             | PCBs                                                          | Zone II              | ROUX         |
| CS-82                           | 0-2                                   | 11/09/93             | PCBs                                                          | Zone I               | ROUX         |
| CS-83                           | 0-2                                   | 01/25/93             | PCBs                                                          | Zone III             |              |
| DW BOTTOM                       | -                                     | 05/04/98             | cPAHs, PAHs, VOCs                                             | Zone II              | ROUX         |
| DW EWALL                        | -                                     | 05/04/98             | cPAHs, PAHs, VOCs                                             | Zone II              | ROUX         |
| DW NWALL                        | -                                     | 05/04/98             | cPAHs, PAHs, VOCs                                             | Zone II              | ROUX         |
| DW WWALL                        | -                                     | 05/04/98             | cPAHs, PAHs, VOCs                                             | Zone II              | ROUX         |
| EH-1<br>EH-2                    | 0-2<br>0-2                            | 07/24/96<br>07/24/96 | PCBs<br>PCBs                                                  | Zone II<br>Zone II   | ROUX<br>ROUX |
| EH-3                            | 0-2                                   | 07/24/96             | PCBs                                                          | Zone II              | ROUX         |
| EH-4                            | 0-2                                   | 07/24/96             | PCBs                                                          | Zone II              | ROUX         |
| EH-5                            | 0-2                                   | 07/24/96             | PCBs                                                          | Zone II              | ROUX         |
| EH-6                            | 0-2                                   | 07/24/96             | PCBs                                                          | Zone II              | ROUX         |
| EH-7                            | 0-2                                   | 07/24/96             | PCBs                                                          | Zone II              | ROUX         |
| EH-8                            | 0-2                                   | 07/24/96             | PCBs                                                          | Zone II              | ROUX         |
| EH-9                            | 0-2                                   | 07/24/96             | PCBs                                                          | Zone II              | ROUX         |
| EH-10                           | 0-2                                   | 07/24/96             | PCBs                                                          | Zone II              | ROUX         |
| EH-11                           | 0-2                                   | 09/09/96             | PCBs                                                          | Zone II              | ROUX         |
| EH-11                           | 2-4                                   | 09/09/96             | PCBs                                                          | Zone II              | ROUX         |
| EH-12<br>EH-12                  | 0-2<br>0-2                            | 09/09/96<br>07/29/97 | PCBs<br>cPAHs, Lead, PAHs                                     | Zone II<br>Zone II   | ROUX<br>ROUX |
| EH-12<br>EH-12                  | 2-4                                   | 09/09/96             | PCBs                                                          | Zone II              | ROUX         |
| EH-12<br>EH-12                  | 2-4                                   | 07/29/97             | cPAHs, Lead, PAHs                                             | Zone II              | ROUX         |
| EH-13                           | 0-2                                   | 09/09/96             | PCBs                                                          | Zone II              | ROUX         |
| EH-14                           | 0-2                                   | 09/09/96             | PCBs                                                          | Zone II              | ROUX         |
| EH-14                           | 0-2                                   | 07/29/97             | cPAHs, PAHs                                                   | Zone II              | ROUX         |
| EH-14                           | 2-4                                   | 07/29/97             | Lead                                                          | Zone II              | ROUX         |
| EH-15                           | 0-2                                   | 09/09/96             | PCBs                                                          | Zone II              | ROUX         |
| EH-15 DUP                       | 0-2                                   | 09/09/96             | PCBs                                                          | Zone II              | ROUX         |
| EH-16                           | 0-2                                   | 09/09/96             | PCBs                                                          | Zone II              | ROUX         |
| EH-17                           | 0-2                                   | 09/09/96             | PCBs                                                          | Zone II              | ROUX         |
| EH-18                           | 0-2                                   | 09/09/96             | PCBs                                                          | Zone II              | ROUX         |
| EH-19<br>EH-20                  | 0-2<br>0-2                            | 07/24/96<br>07/24/96 | PCBs<br>PCBs                                                  | Zone II<br>Zone II   | ROUX<br>ROUX |
| EH-21                           | 0-2                                   | 07/24/96             | PCBs                                                          | Zone II              | ROUX         |
| EH-22                           | 0-2                                   | 09/09/96             | PCBs                                                          | Zone II              |              |
| EH-23                           | 0-2                                   | 07/24/96             | PCBs                                                          | Zone III             |              |
| EH-24                           | 0-2                                   | 07/24/96             | PCBs                                                          | Zone III             |              |
| EH-25                           | 0-2                                   | 07/24/96             | PCBs                                                          | Zone III             | ROUX         |
| EHS-1                           | 0-0.5                                 | 02/12/01             | PCBs, cPAHs, Lead                                             | Zone II              | ROUX         |
| EHS-2                           | 0-0.5                                 | 02/12/01             | PCBs, cPAHs, Lead                                             | Zone II              | ROUX         |
| EWALL                           | <del></del>                           | 01/04/99             | PCBs, cPAHs, Lead, VOCs                                       | Zone II              |              |
| FC-1                            | 0-2                                   | 09/14/94             | PCBs                                                          | Zone III             |              |
| FC-2                            | 0-2                                   | 09/14/94             | PCBs                                                          | Zone III             |              |
| FC-3<br>FC-4                    | 0-2<br>0-2                            | 09/14/94<br>09/14/94 | PCBs PCBs, cPAHs, Lead, Metals, PAHs, SVOCs, VOCs, Pesticides | Zone III<br>Zone III |              |
| FC-5                            | 0-2                                   | 09/14/94             | PCBs, cPAHs, Lead, Metals, PAHs, SVOCs, VOCs, Pesticides      | Zone II              | ROUX         |
| FC-6                            | 0-2                                   | 09/14/94             | PCBs                                                          | Zone II              | ROUX         |
| FC-7                            | 0-2                                   | 09/14/94             | PCBs                                                          | Zone II              | ROUX         |
| FC-8                            | 0-2                                   | 09/14/94             | PCBs, cPAHs, Lead, Metals, PAHs, SVOCs, VOCs, Pesticides      | Zone II              | ROUX         |
| FC-9                            | 0-2                                   | 09/14/94             | PCBs                                                          | Zone II              | ROUX         |
| FC-10                           | 0-2                                   | 09/14/94             | PCBs                                                          | Zone II              | ROUX         |
| FC-11                           | 0-2                                   | 09/14/94             | PCBs, cPAHs, Lead, Metals, PAHs, SVOCs, VOCs, Pesticides      | Zone II              | ROUX         |
| FC-12                           | 0-2                                   | 09/14/94             | PCBs                                                          | Zone I               | ROUX         |
| FC-13                           | 0-2                                   | 09/14/94             | PCBs                                                          | Zone I               | ROUX         |
| FC-14                           | 0-2                                   | 09/14/94             | PCBs                                                          | Zone I               | ROUX         |
| FC-15<br>FC-16                  | 0-2<br>0-2                            | 09/14/94<br>04/04/94 | PCBs<br>PCBs                                                  | Zone I<br>Zone I     | ROUX         |
| FC-16<br>FC-17                  | 1-3                                   | 04/04/94             | PCBs                                                          | Zone I               | ROUX<br>ROUX |
| FC-17<br>FC-18                  | 1-3                                   | 04/06/94             | PCBs, cPAHs, Lead, Metals, PAHs, SVOCs, VOCs                  | Zone I               | ROUX         |
| FC-19                           | 1-3                                   | 04/06/94             | PCBs                                                          | Zone I               | ROUX         |
| FC-20                           | 1-3                                   | 04/06/94             | PCBs                                                          | Zone I               | ROUX         |
| FC-21                           | 1-3                                   | 04/05/94             | PCBs                                                          | Zone I               | ROUX         |
| FC-22                           | 1-3                                   | 04/05/94             | PCBs                                                          | Zone I               | ROUX         |
| FC-23                           | 1-3                                   | 04/05/94             | PCBs                                                          | Zone I               | ROUX         |

Table 1. Summary of Soil-Quality Sampling, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Sample Location/<br>Designation | Sample Depth<br>Interval<br>(Ft. Bls) | Sample Date          | Analyte(s)                                   | Zone                 | Sampled B    |
|---------------------------------|---------------------------------------|----------------------|----------------------------------------------|----------------------|--------------|
| FC-24                           | 1-3                                   | 04/05/94             | PCBs, cPAHs, Lead, Metals, PAHs, SVOCs, VOCs | Zone I               | ROUX         |
| FC-25                           | 1-3                                   | 04/06/94             | PCBs                                         | Zone I               | ROUX         |
| FC-26                           | 1-3                                   | 04/04/94             | PCBs                                         | Zone I               | ROUX         |
| FC-27                           | 1-3                                   | 04/04/94             | PCBs, cPAHs, Lead, Metals, PAHs, SVOCs, VOCs | Zone I               | ROUX         |
| FC-28                           | 1-3                                   | 04/04/98             | PCBs                                         | Zone I               | ROUX         |
| FC-29<br>FC-30                  | 1-3<br>1-3                            | 04/04/94<br>04/04/94 | PCBs<br>PCBs                                 | Zone I<br>Zone I     | ROUX<br>ROUX |
| FC-30<br>FC-31                  | 1-3                                   | 04/05/94             | PCBs, cPAHs, Lead, Metals, PAHs, SVOCs, VOCs | Zone I               | ROUX         |
| FC-32                           | 1-3                                   | 04/04/94             | PCBs                                         | Zone I               | ROUX         |
| FC-32                           | 5-7                                   | 04/04/94             | PCBs                                         | Zone I               | ROUX         |
| FC-33                           | 1-3                                   | 04/04/94             | PCBs, cPAHs, Lead, Metals, PAHs, SVOCs, VOCs | Zone I               | ROUX         |
| FC-34                           | 1-3                                   | 04/04/94             | PCBs                                         | Zone I               | ROUX         |
| FC-35                           | 1-3                                   | 04/06/94             | PCBs                                         | Zone I               | ROUX         |
| FC-36                           | 1-3                                   | 04/06/94             | PCBs                                         | Zone I               | ROUX         |
| FC-36                           | 7-9                                   | 04/06/94             | PCBs, cPAHs, Lead, Metals, PAHs, SVOCs, VOCs | Zone I               | ROUX         |
| FC-37                           | 1-3                                   | 04/06/94             | PCBs                                         | Zone I               | ROUX         |
| FC-38<br>FC-39                  | 1-3<br>1-3                            | 04/05/94<br>04/06/94 | PCBs<br>PCBs                                 | Zone I<br>Zone I     | ROUX<br>ROUX |
| FC-39<br>FC-40                  | 1-3                                   | 04/05/94             | PCBs, cPAHs, Lead, Metals, PAHs, SVOCs, VOCs | Zone I               | ROUX         |
| FC-50                           | 0-2                                   | 02/02/95             | PCBs                                         | Zone I               | ROUX         |
| FC-51                           | 0-2                                   | 02/02/95             | PCBs                                         | Zone I               | ROUX         |
| FC-52                           | 0-2                                   | 02/02/95             | PCBs                                         | Zone I               | ROUX         |
| FC-53                           | 0-2                                   | 02/02/95             | PCBs                                         | Zone I               | ROUX         |
| FC-60                           | 0-2                                   | 02/27/95             | PCBs                                         | Zone II              | ROUX         |
| FC-61                           | 0-2                                   | 02/27/95             | PCBs                                         | Zone II              | ROUX         |
| FC-62                           | 1-3                                   | 02/27/95             | PCBs                                         | Zone I               | ROUX         |
| FC-63                           | 1-3                                   | 02/27/95             | PCBs                                         | Zone I               | ROUX         |
| FC-64                           | 1-3                                   | 02/27/95             | PCBs                                         | Zone I               | ROUX         |
| FT-1<br>FT-2                    | 0-2<br>0-2                            | 04/07/97<br>04/07/97 | PCBs, cPAHs, Lead, PAHs                      | Zone II<br>Zone II   | ROUX<br>ROUX |
| FT-2A                           | 2-3                                   | 06/21/05             | PCBs, cPAHs, Lead, PAHs<br>PCBs              | Zone II              | ROUX         |
| FT-2E                           | 0-1                                   | 06/21/05             | PCBs                                         | Zone II              | ROUX         |
| FT-2E                           | 1-2                                   | 06/21/05             | PCBs                                         | Zone II              | ROUX         |
| FT-2E                           | 2-3                                   | 06/21/05             | PCBs                                         | Zone II              | ROUX         |
| FT-2N                           | 0-1                                   | 06/21/05             | PCBs                                         | Zone II              | ROUX         |
| FT-2N                           | 1-2                                   | 06/21/05             | PCBs                                         | Zone II              | ROUX         |
| FT-2N                           | 2-3                                   | 06/21/05             | PCBs                                         | Zone II              | ROUX         |
| FT-2S                           | 0-1                                   | 06/21/05             | PCBs                                         | Zone II              | ROUX         |
| FT-2S                           | 1-2                                   | 06/21/05             | PCBs                                         | Zone II              | ROUX         |
| FT-2S                           | 2-3<br>0-1                            | 06/21/05             | PCBs                                         | Zone II              | ROUX<br>ROUX |
| FT-2W<br>FT-2W                  | 1-2                                   | 06/21/05<br>06/21/05 | PCBs<br>PCBs                                 | Zone II<br>Zone II   | ROUX         |
| FT-2W                           | 2-3                                   | 06/21/05             | PCBs                                         | Zone II              | ROUX         |
| FT-3                            | 0-2                                   | 04/07/97             | PCBs, cPAHs, Lead, PAHs                      | Zone II              | ROUX         |
| FT-3A                           | 2-3                                   | 06/21/05             | Lead                                         | Zone II              | ROUX         |
| FT-3E                           | 0-1                                   | 06/21/05             | Lead                                         | Zone II              | ROUX         |
| FT-3E                           | 1-2                                   | 06/21/05             | Lead                                         | Zone II              | ROUX         |
| FT-3E                           | 2-3                                   | 06/21/05             | Lead                                         | Zone II              | ROUX         |
| FT-3N                           | 0-1                                   | 06/21/05             | Lead                                         | Zone II              | ROUX         |
| FT-3N                           | 1-2                                   | 06/21/05             | Lead                                         | Zone II              | ROUX         |
| FT-3N                           | 2-3                                   | 06/21/05             | Lead                                         | Zone II              | ROUX         |
| FT-3S<br>FT-3S                  | 0-1<br>1-2                            | 06/21/05<br>06/21/05 | Lead<br>Lead                                 | Zone II<br>Zone II   | ROUX<br>ROUX |
| FT-3S                           | 2-3                                   | 06/21/05             | Lead                                         | Zone II              | ROUX         |
| FT-3W                           | 0-1                                   | 06/21/05             | Lead                                         | Zone II              | ROUX         |
| FT-3W                           | 1-2                                   | 06/21/05             | Lead                                         | Zone II              | ROUX         |
| FT-3W                           | 2-3                                   | 06/21/05             | Lead                                         | Zone II              | ROUX         |
| FT-4                            | 0-2                                   | 04/07/97             | PCBs, cPAHs, Lead, PAHs                      | Zone II              | ROUX         |
| FT-5                            | 0-2                                   | 04/07/97             | PCBs, Lead                                   | Zone I               | ROUX         |
| FT-5 RE                         | 0-2                                   | 04/07/97             | cPAHs, PAHs                                  | Zone I               | ROUX         |
| FT-6                            | 0-2                                   | 04/07/97             | PCBs, cPAHs, Lead, PAHs                      | Zone I               | ROUX         |
| HB-1                            | 0-1                                   | 01/03/00             | PCBs, Lead                                   | Zone III             |              |
| HB-1 RE                         | 0-1                                   | 01/03/00             | cPAHs, PAHs                                  | Zone III             |              |
| HB-1<br>HB-1                    | 1-2<br>2-3                            | 01/03/00<br>01/03/00 | Lead<br>Lead                                 | Zone III<br>Zone III |              |

Table 1. Summary of Soil-Quality Sampling, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Sample Location/<br>Designation | Sample Depth<br>Interval<br>(Ft. Bls) | Sample Date          | Analyte(s)                            | Zone                 | Sampled B    |
|---------------------------------|---------------------------------------|----------------------|---------------------------------------|----------------------|--------------|
| HB-2                            | 0-1                                   | 10/25/99             | PCBs, cPAHs, Lead, PAHs               | Zone III             | ROUX         |
| HB-3                            | 0-1                                   | 10/25/99             | PCBs, cPAHs, Lead, PAHs               | Zone III             | ROUX         |
| HB-3                            | 1-2                                   | 10/25/99             | Lead                                  | Zone III             | ROUX         |
| HB-3                            | 2-3                                   | 10/25/99             | Lead                                  | Zone III             | ROUX         |
| HB-3+20                         | 0-1                                   | 01/03/00             | Lead                                  | Zone III             | ROUX         |
| HB-3-20                         | 0-1                                   | 01/03/00             | Lead                                  | Zone III             | ROUX         |
| HB-3-20                         | 1-2                                   | 01/03/00             | Lead                                  | Zone III             | ROUX         |
| HB-3-40                         | 0-1<br>1-2                            | 02/23/00             | Lead                                  | Zone III<br>Zone III | ROUX         |
| HB-3-40<br>HB-3-80              | 0-1                                   | 02/23/00<br>02/23/00 | Lead<br>Lead                          | Zone III             | ROUX<br>ROUX |
| HB-4*                           | 1-2                                   | 10/26/99             | PCBs, cPAHs, Lead, PAHs               | Zone III             | ROUX         |
| HB-4+20                         | 0-1                                   | 01/03/00             | PCBs, cPAHs, Lead, PAHs               | Zone III             | ROUX         |
| HB-4-20                         | 0-1                                   | 01/03/00             | PCBs, cPAHs, Lead, PAHs               | Zone III             | ROUX         |
| HB-9                            | 0-1                                   | 10/25/99             | PCBs, cPAHs, Lead, PAHs               | Zone II              | ROUX         |
| HB-10                           | 0-1                                   | 10/25/99             | PCBs, cPAHs, Lead, PAHs               | Zone II              | ROUX         |
| HB-10                           | 1-2                                   | 10/25/99             | Lead                                  | Zone II              | ROUX         |
| HB-11                           | 0-1                                   | 10/25/99             | PCBs, cPAHs, Lead, PAHs               | Zone II              | ROUX         |
| HB-11                           | 1-2                                   | 10/25/99             | Lead                                  | Zone II              | ROUX         |
| HB-12                           | 0-1                                   | 10/25/99             | PCBs, cPAHs, Lead, PAHs               | Zone II              | ROUX         |
| HB-12                           | 1-2<br>0-1                            | 10/25/99<br>01/03/00 | Lead<br>Lead                          | Zone II<br>Zone II   | ROUX<br>ROUX |
| HB-12+20<br>HB-12+40            | 0-1<br>0-1                            | 02/23/00             | Lead                                  | Zone II<br>Zone II   | ROUX         |
| HB-13                           | 0-1                                   | 10/27/99             | PCBs, cPAHs, Lead, PAHs               | Zone II              | ROUX         |
| HB-13                           | 1-2                                   | 10/27/99             | Lead                                  | Zone II              | ROUX         |
| HB-13                           | 2-3                                   | 10/27/99             | Lead                                  | Zone II              | ROUX         |
| HB-13-20                        | 0-1                                   | 01/03/00             | Lead                                  | Zone II              | ROUX         |
| HB-13-40                        | 0-1                                   | 02/23/00             | Lead                                  | Zone II              | ROUX         |
| HB-14                           | 0-1                                   | 10/27/99             | PCBs, cPAHs, Lead, PAHs               | Zone II              | ROUX         |
| HB-15                           | 0-1                                   | 10/27/99             | PCBs, cPAHs, Lead, PAHs               | Zone II              | ROUX         |
| HB-15                           | 1-2                                   | 10/27/99             | Lead                                  | Zone II              | ROUX         |
| HB-16                           | 0-1                                   | 10/27/99             | PCBs, cPAHs, Lead, PAHs               | Zone II              | ROUX         |
| HB-17                           | 0-1<br>1-2                            | 10/27/99             | PCBs, cPAHs, Lead, PAHs               | Zone II              | ROUX         |
| HB-17<br>HB-17                  | 2-3                                   | 10/27/99<br>10/27/99 | PCBs, Lead<br>PCBs, Lead              | Zone II<br>Zone II   | ROUX<br>ROUX |
| HB-17+20                        | 0-1                                   | 01/03/00             | PCBs, Lead                            | Zone II              | ROUX         |
| HB-17+20                        | 1-2                                   | 01/03/00             | Lead                                  | Zone II              | ROUX         |
| HB-17+20                        | 2-3                                   | 01/03/00             | Lead                                  | Zone II              | ROUX         |
| HB-18*                          | 1-2                                   | 10/26/99             | PCBs, cPAHs, Lead, PAHs               | Zone II              | ROUX         |
| HB-18-20                        | 0-1                                   | 01/03/00             | Lead                                  | Zone II              | ROUX         |
| HB-18-20 RE                     | 0-1                                   | 01/03/00             | cPAHs, PAHs                           | Zone II              | ROUX         |
| HB-19                           | 2-3                                   | 10/26/99             | Lead                                  | Zone II              | ROUX         |
| HB-19*                          | 1-2                                   | 10/26/99             | PCBs, cPAHs, Lead, PAHs               | Zone II              | ROUX         |
| HB-20                           | 2-3                                   | 10/26/99             | Lead                                  | Zone II              | ROUX         |
| HB-20*                          | 1-2                                   | 10/26/99<br>10/26/99 | PCBs, cPAHs, Lead, PAHs               | Zone II              | ROUX         |
| HB-21<br>HB-21*                 | 2-3<br>1-2                            | 10/26/99             | Lead<br>PCBs, cPAHs, Lead, PAHs       | Zone II<br>Zone II   | ROUX<br>ROUX |
| HB-21+20                        | 0-1                                   | 01/03/00             | PCBs, Lead                            | Zone II              | ROUX         |
| HB-21+20                        | 1-2                                   | 01/03/00             | Lead                                  | Zone II              | ROUX         |
| HB-21+20 RE                     | 0-1                                   | 01/03/00             | cPAHs, PAHs                           | Zone II              | ROUX         |
| HB-21+40                        | 0-1                                   | 02/23/00             | Lead                                  | Zone II              | ROUX         |
| HB-21+40                        | 1-2                                   | 02/23/00             | Lead                                  | Zone II              | ROUX         |
| HB-22                           | 0-1                                   | 10/25/99             | PCBs, cPAHs, Lead, PAHs               | Zone II              | ROUX         |
| HB-22                           | 1-2                                   | 10/25/99             | PCBs, Lead                            | Zone II              | ROUX         |
| HB-22-20                        | 0-1                                   | 01/03/00             | PCBs, Lead                            | Zone III             | ROUX         |
| HB-22-40                        | 0-1                                   | 02/23/00             | PCBs, Lead                            | Zone III             | ROUX         |
| HB-22-40                        | 1-2                                   | 02/23/00             | PCBs, Lead                            | Zone III             | ROUX         |
| HB-23<br>HB-23                  | 0-1<br>1-2                            | 10/25/99<br>10/25/99 | PCBs, cPAHs, Lead, PAHs<br>PCBs, Lead | Zone II<br>Zone II   | ROUX<br>ROUX |
| HB-23                           | 2-3                                   | 10/25/99             | PCBs, Lead<br>PCBs, Lead              | Zone II              | ROUX         |
| HB-23+20                        | 0-1                                   | 01/03/00             | PCBs, Lead                            | Zone II              | ROUX         |
| HB-23+20                        | 1-2                                   | 01/03/00             | Lead                                  | Zone II              | ROUX         |
| HB-23+40                        | 0-1                                   | 02/23/00             | PCBs, Lead                            | Zone II              | ROUX         |
| HB-23+40                        | 1-2                                   | 02/23/00             | Lead                                  | Zone II              | ROUX         |
| HB-25                           | 0-1                                   | 10/26/99             | PCBs, cPAHs, Lead, PAHs               | Zone II              | ROUX         |
| HB-26                           | 0-1                                   | 10/26/99             | PCBs, cPAHs, Lead, PAHs               | Zone II              | ROUX         |

Table 1. Summary of Soil-Quality Sampling, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Sample Location/<br>Designation | Sample Depth<br>Interval<br>(Ft. Bls) | Sample Date          | Analyte(s)                                         | Zone                 | Sampled By   |
|---------------------------------|---------------------------------------|----------------------|----------------------------------------------------|----------------------|--------------|
| HB-27                           | 0-1                                   | 10/26/99             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| HB-27                           | 1-2                                   | 10/26/99             | Lead                                               | Zone II              | ROUX         |
| HB-27+20                        | 0-1                                   | 01/03/00             | Lead                                               | Zone II              | ROUX         |
| HB-28                           | 0-1                                   | 10/27/99             | PCBs, cPAHs, Lead, PAHs                            | Zone III             | ROUX         |
| HB-29                           | 0-1                                   | 10/25/99             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| HB-30<br>HB-30                  | 0-1<br>1-2                            | 10/25/99<br>10/25/99 | PCBs, cPAHs, Lead, PAHs<br>Lead                    | Zone II<br>Zone II   | ROUX<br>ROUX |
| HB-30                           | 2-3                                   | 10/25/99             | Lead                                               | Zone II              | ROUX         |
| HB-30                           | 3-4                                   | 04/13/00             | Lead                                               | Zone II              | ROUX         |
| HB-31                           | 0-1                                   | 10/25/99             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| HB-31                           | 1-2                                   | 10/25/99             | Lead                                               | Zone II              | ROUX         |
| HB-32                           | 0-1                                   | 10/27/99             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| HB-33                           | 0-1                                   | 10/25/99             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| HB-34                           | 0-1                                   | 10/25/99             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| HB-35                           | 0-1                                   | 10/25/99             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| HB-36                           | 0-1                                   | 10/25/99             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| HBR-1                           | 0-1                                   | 02/26/04             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| HBR-1<br>HBR-2                  | 1-2<br>0-1                            | 02/26/04             | PCBs, cPAHs, Lead, PAHs                            | Zone II<br>Zone III  | ROUX         |
| HBR-2                           | 1-2                                   | 02/26/04<br>02/26/04 | PCBs, cPAHs, Lead, PAHs<br>PCBs, cPAHs, Lead, PAHs | Zone III<br>Zone III | ROUX<br>ROUX |
| HBR-3                           | 0-1                                   | 02/26/04             | PCBs, cPAHs, Lead, PAHs                            | Zone III<br>Zone III | ROUX         |
| HBR-3                           | 1-2                                   | 02/26/04             | PCBs, cPAHs, Lead, PAHs                            | Zone III             | ROUX         |
| HBR-3                           | 2-3                                   | 02/26/04             | Lead                                               | Zone III             | ROUX         |
| HBR-4                           | 0-1                                   | 02/26/04             | PCBs, cPAHs, Lead, PAHs                            | Zone III             | ROUX         |
| HBR-4                           | 1-2                                   | 02/26/04             | PCBs, cPAHs, Lead, PAHs                            | Zone III             | ROUX         |
| HBR-4                           | 2-3                                   | 02/26/04             | Lead                                               | Zone III             | ROUX         |
| HBR-5                           | 0-1                                   | 02/26/04             | PCBs, cPAHs, Lead, PAHs                            | Zone III             | ROUX         |
| HBR-5                           | 1-2                                   | 02/26/04             | PCBs, cPAHs, Lead, PAHs                            | Zone III             | ROUX         |
| HBR-6                           | 0-1                                   | 02/26/04             | PCBs, cPAHs, Lead, PAHs                            | Zone III             | ROUX         |
| HBR-6                           | 1-2                                   | 02/26/04             | PCBs, cPAHs, Lead, PAHs                            | Zone III             | ROUX         |
| HBR-7                           | 0-1                                   | 02/26/04             | PCBs, cPAHs, Lead, PAHs                            | Zone III             | ROUX         |
| HBR-7                           | 1-2                                   | 02/26/04             | PCBs, cPAHs, Lead, PAHs                            | Zone III             | ROUX         |
| HBR-8<br>HBR-8                  | 0-1<br>1-2                            | 02/26/04<br>02/26/04 | PCBs, cPAHs, Lead, PAHs<br>PCBs, cPAHs, Lead, PAHs | Zone III<br>Zone III | ROUX<br>ROUX |
| HC-1                            | 0-1                                   | 04/12/00             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| HC-2                            | 0-1                                   | 04/12/00             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| HC-3                            | 0-1                                   | 04/12/00             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| HC-4                            | 0-1                                   | 04/12/00             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| HC-5                            | 0-1                                   | 04/12/00             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| HC-6                            | 0-1                                   | 04/12/00             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| HC-7                            | 0-1                                   | 04/12/00             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| HC-8                            | 0-1                                   | 04/12/00             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| HC-9                            | 0-1                                   | 04/12/00             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| HC-10                           | 0-1                                   | 04/12/00             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| HC-11                           | 0-1                                   | 04/12/00             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| HC-12<br>HC-13                  | 0-1<br>0-1                            | 04/12/00             | PCBs, cPAHs, Lead, PAHs<br>PCBs, cPAHs, Lead, PAHs | Zone III             | ROUX         |
| HC-13<br>HC-14                  | 0-1<br>0-1                            | 04/12/00<br>04/12/00 | PCBs, cPAHs, Lead, PAHs PCBs, cPAHs, Lead, PAHs    | Zone II<br>Zone II   | ROUX         |
| HC-14<br>HC-15                  | 0-1                                   | 04/12/00             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX<br>ROUX |
| HC-16                           | 0-1                                   | 04/12/00             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| HM-1                            | 0-1                                   | 09/18/97             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| HM-2                            | 0-1                                   | 09/18/97             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| HM-2 RE                         | 1-2                                   | 09/18/97             | cPAHs, PAHs                                        | Zone II              | ROUX         |
| HM-2                            | 1-2                                   | 09/18/97             | PCBs, Lead                                         | Zone II              | ROUX         |
| HM-3                            | 0-1                                   | 09/18/97             | PCBs, Lead                                         | Zone II              | ROUX         |
| HM-3 RE                         | 0-1                                   | 09/18/97             | cPAHs, PAHs                                        | Zone II              | ROUX         |
| HM-3                            | 1-2                                   | 09/18/97             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| HM-5                            | 0-1                                   | 09/18/97             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| HM-5                            | 1-2                                   | 09/18/97             | PCBs, Lead                                         | Zone II              | ROUX         |
| HM-5 RE                         | 1-2                                   | 09/18/97             | cPAHs, PAHs                                        | Zone II              | ROUX         |
| HM-7                            | 0-1                                   | 09/18/97             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| HM-7<br>HM-7 RE                 | 1-2<br>1-2                            | 09/18/97<br>09/18/97 | PCBs, Lead                                         | Zone II<br>Zone II   | ROUX<br>ROUX |
| IB-1                            | 0-1                                   | 02/25/00             | cPAHs, PAHs<br>PCBs, cPAHs, Lead                   | Zone III             | ROUX         |
| IB-1                            | 1-2                                   | 02/25/00             | Lead                                               | Zone III             | ROUX         |

Table 1. Summary of Soil-Quality Sampling, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Sample Location/<br>Designation | Sample Depth<br>Interval<br>(Ft. Bls) | Sample Date          | Analyte(s)                                         | Zone Sa              | ampled By    |
|---------------------------------|---------------------------------------|----------------------|----------------------------------------------------|----------------------|--------------|
| IB-2                            | 0-1                                   | 02/25/00             | PCBs, cPAHs, Lead                                  | Zone III             | ROUX         |
| IB-3                            | 0-1                                   | 02/25/00             | PCBs, cPAHs, Lead                                  | Zone III             | ROUX         |
| IB-4                            | 0-1                                   | 02/25/00             | PCBs, cPAHs, Lead                                  | Zone III             | ROUX         |
| IB-5                            | 0-1                                   | 02/25/00             | PCBs, cPAHs, Lead                                  | Zone III             | ROUX         |
| IB-6                            | 0-1                                   | 02/25/00             | PCBs, cPAHs, Lead                                  | Zone III             | ROUX         |
| IB-7<br>IB-8                    | 0-1<br>0-1                            | 02/25/00<br>02/25/00 | PCBs, cPAHs, Lead<br>PCBs, cPAHs, Lead             | Zone III<br>Zone III | ROUX<br>ROUX |
| IB-9                            | 0-1                                   | 02/25/00             | PCBs, cPAHs, Lead                                  | Zone III             | ROUX         |
| IB-10                           | 0-1                                   | 02/25/00             | PCBs, cPAHs, Lead                                  | Zone III             | ROUX         |
| IB-10                           | 1-2                                   | 02/25/00             | Lead                                               | Zone III             | ROUX         |
| IB-11                           | 0-1                                   | 02/25/00             | PCBs, cPAHs, Lead                                  | Zone III             | ROUX         |
| IB-12                           | 0-1                                   | 02/25/00             | PCBs, cPAHs, Lead                                  | Zone III             | ROUX         |
| IB-13                           | 0-1                                   | 02/25/00             | PCBs, cPAHs, Lead                                  | Zone III             | ROUX         |
| L-1                             | 0-1                                   | 03/09/99             | PCBs                                               | Zone II              | ROUX         |
| L-1                             | 0-1**                                 | 03/09/99             | cPAHs, Lead                                        | Zone II              | ROUX         |
| L-1<br>L-2                      | B<br>0-1**                            | 03/09/99             | PCBs, cPAHs, Lead                                  | Zone II              | ROUX         |
| L-2<br>L-2                      | В                                     | 03/09/99<br>03/09/99 | PCBs, cPAHs, Lead<br>PCBs, cPAHs, Lead             | Zone II<br>Zone II   | ROUX<br>ROUX |
| L-2<br>L-3                      | 0-1**                                 | 03/09/99             | PCBs, cPAHs, Lead                                  | Zone II              | ROUX         |
| L-3<br>L-3                      | В                                     | 03/09/99             | PCBs, cPAHs, Lead                                  | Zone II              | ROUX         |
| L-4                             | 0-1**                                 | 03/09/99             | PCBs, cPAHs, Lead                                  | Zone II              | ROUX         |
| L-4                             | В                                     | 03/09/99             | PCBs, cPAHs, Lead                                  | Zone II              | ROUX         |
| L-5                             | 0-1**                                 | 03/09/99             | PCBs, cPAHs, Lead                                  | Zone II              | ROUX         |
| L-5                             | В                                     | 03/09/99             | PCBs, cPAHs, Lead                                  | Zone II              | ROUX         |
| L5-1                            | 0-2                                   | 04/07/97             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| L-6                             | 0-1**                                 | 03/09/99             | PCBs, cPAHs, Lead                                  | Zone II              | ROUX         |
| L-6                             | В                                     | 03/09/99             | PCBs, cPAHs, Lead                                  | Zone II              | ROUX         |
| L6-1<br>L6-1                    | 0-1<br>0-2                            | 06/30/97<br>04/07/97 | PCBs, cPAHs, Lead, PAHs<br>PCBs, cPAHs, Lead, PAHs | Zone II<br>Zone II   | ROUX<br>ROUX |
| L6-1<br>L6-1                    | 1-2                                   | 06/30/97             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| L6-1                            | 2-3                                   | 06/30/97             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| L6-2                            | 0-1                                   | 06/30/97             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| L6-2                            | 0-2                                   | 04/07/97             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| L6-3                            | 0-1                                   | 06/30/97             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| L6-3                            | 0-2                                   | 04/07/97             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| L6-3                            | 1-2                                   | 06/30/97             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| L6-3                            | 2-3                                   | 06/30/97             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| L6-4                            | 0-1                                   | 06/30/97             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| L6-4<br>L6-4 RE                 | 0-2<br>0-2                            | 04/07/97<br>04/07/97 | PCBs, Lead<br>cPAHs, PAHs                          | Zone II<br>Zone II   | ROUX<br>ROUX |
| L6-4<br>L6-4                    | 1-2                                   | 06/30/97             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| L6-4                            | 2-3                                   | 06/30/97             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| L6-5                            | 0-1                                   | 06/30/97             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| L6-5 DUP                        | 0-1                                   | 06/30/97             | cPAHs, PAHs                                        | Zone II              | ROUX         |
| L6-5                            | 0-2                                   | 04/07/97             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| L6-5                            | 1-2                                   | 06/30/97             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| L6-5                            | 2-3                                   | 06/30/97             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| L6-6                            | 0-1                                   | 06/30/97             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| L6-7                            | 0-1                                   | 06/30/97             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| L6-8<br>L6-9                    | 0-1<br>0-1                            | 06/30/97<br>06/30/97 | PCBs, cPAHs, Lead, PAHs<br>PCBs, cPAHs, Lead, PAHs | Zone II<br>Zone II   | ROUX<br>ROUX |
| L6-10                           | 0-1                                   | 06/30/97             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| L6-11                           | 0-1                                   | 06/30/97             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| LCW-1                           | 0-1                                   | 11/14/02             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| LCW-2                           | 0-1                                   | 11/14/02             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| LCW-3                           | 0-1                                   | 11/14/02             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| LCW-4                           | 0-1                                   | 11/14/02             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX         |
| LLS-6                           | 0-1                                   | 08/09/01             | PCBs, cPAHs, Lead, PAHs                            | Zone I               | ROUX         |
| LLS-7                           | 0-1                                   | 08/10/01             | PCBs, cPAHs, Lead, PAHs                            | Zone I               | ROUX         |
| LLS-7A                          | 1-2                                   | 08/10/01             | PCBs, cPAHs, Lead, PAHs                            | Zone I               | ROUX         |
| LLS-8                           | 0-1                                   | 08/10/01             | PCBs, cPAHs, Lead, PAHs                            | Zone I               | ROUX         |
| LLS-8A                          | 1-2                                   | 08/10/01             | PCBs, cPAHs, Lead, PAHs                            | Zone I               | ROUX         |
| LLS-9<br>LLS-9A                 | 0-1<br>1-2                            | 08/10/01<br>08/10/01 | PCBs, cPAHs, Lead, PAHs<br>PCBs, cPAHs, Lead, PAHs | Zone I<br>Zone I     | ROUX<br>ROUX |
| LLS-9A<br>LLS-10                | 0-1                                   | 08/10/01             | PCBs, cPAHs, Lead, PAHs                            | Zone I               | ROUX         |

Table 1. Summary of Soil-Quality Sampling, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Sample Location/<br>Designation | Sample Depth<br>Interval<br>(Ft. Bls) | Sample Date          | Analyte(s)                                         | Zone             | Sampled By   |
|---------------------------------|---------------------------------------|----------------------|----------------------------------------------------|------------------|--------------|
| LLS-10A                         | 1-2                                   | 08/10/01             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |
| LLS-11                          | 0-1                                   | 08/10/01             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |
| LLS-11A                         | 1-2                                   | 08/10/01             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |
| LLS-11A                         | 2-3                                   | 05/30/07             | PCBs                                               | Zone I           | ROUX         |
| LLS-11N                         | 0-1                                   | 05/30/07             | PCBs                                               | Zone I           | ROUX         |
| LLS-11N<br>LLS-11N              | 1-2<br>2-3                            | 05/30/07<br>05/30/07 | PCBs<br>PCBs                                       | Zone I<br>Zone I | ROUX<br>ROUX |
| LLS-11S                         | 0-1                                   | 05/30/07             | PCBs                                               | Zone I           | ROUX         |
| LLS-11S                         | 1-2                                   | 05/30/07             | PCBs                                               | Zone I           | ROUX         |
| LLS-11S                         | 2-3                                   | 05/30/07             | PCBs                                               | Zone I           | ROUX         |
| LLS-12                          | 0-1                                   | 08/10/01             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |
| LLS-13                          | 0-1                                   | 08/10/01             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |
| LLS-14                          | 0-1                                   | 08/10/01             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |
| LLS-15<br>LLS-16                | 0-1<br>0-1                            | 08/10/01<br>08/10/01 | PCBs, cPAHs, Lead, PAHs<br>PCBs, cPAHs, Lead, PAHs | Zone I<br>Zone I | ROUX<br>ROUX |
| LLS-10<br>LLS-17                | 0-1                                   | 08/10/01             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |
| LLS-18                          | 0-1                                   | 08/10/01             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |
| LLS-19                          | 0-1                                   | 08/10/01             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |
| LLS-20                          | 0-1                                   | 08/10/01             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |
| LLS-21                          | 0-1                                   | 08/10/01             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |
| LLS-21A                         | 1-2                                   | 05/30/07             | PCBs                                               | Zone I           | ROUX         |
| LLS-21E                         | 0-1                                   | 05/30/07             | PCBs                                               | Zone I           | ROUX         |
| LLS-21E<br>LLS-21E              | 1-2<br>2-3                            | 05/30/07<br>05/30/07 | PCBs<br>PCBs                                       | Zone I<br>Zone I | ROUX<br>ROUX |
| LLS-21E<br>LLS-22               | 0-1                                   | 08/10/01             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |
| LLS-23                          | 0-1                                   | 08/10/01             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |
| LP1-1                           | 0-2                                   | 09/17/96             | PCBs                                               | Zone I           | ROUX         |
| LP1-2                           | 0-2                                   | 09/17/96             | PCBs                                               | Zone I           | ROUX         |
| LP1-3                           | 0-2                                   | 09/17/96             | PCBs                                               | Zone I           | ROUX         |
| LP1-4                           | 0-2                                   | 09/17/96             | PCBs                                               | Zone I           | ROUX         |
| LP1-5                           | 0-2                                   | 09/17/96             | PCBs                                               | Zone I           | ROUX         |
| LP1-6<br>LP1-7                  | 0-2<br>0-2                            | 09/17/96<br>09/17/96 | PCBs<br>PCBs                                       | Zone I<br>Zone I | ROUX<br>ROUX |
| LP1-7<br>LP1-8                  | 0-2                                   | 09/17/96             | PCBs                                               | Zone I           | ROUX         |
| LP1-9                           | 0-2                                   | 09/17/96             | PCBs                                               | Zone I           | ROUX         |
| LP1-10                          | 0-2                                   | 09/17/96             | PCBs                                               | Zone I           | ROUX         |
| LP1-11                          | 0-2                                   | 09/17/96             | PCBs                                               | Zone I           | ROUX         |
| LP1-12                          | 0-2                                   | 09/17/96             | PCBs                                               | Zone I           | ROUX         |
| LP1-13                          | 0-2                                   | 09/17/96             | PCBs                                               | Zone I           | ROUX         |
| LP1-14                          | 0-2                                   | 09/17/96             | PCBs                                               | Zone I           | ROUX         |
| LP2-1                           | 0-1                                   | 07/15/97<br>07/15/97 | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX<br>ROUX |
| LP2-1<br>LP2-2                  | 1-2<br>0-1                            | 07/15/97             | PCBs, cPAHs, Lead, PAHs<br>PCBs, cPAHs, Lead, PAHs | Zone I<br>Zone I |              |
| LP2-2<br>LP2-2                  | 1-2                                   | 07/15/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |
| LP2-3                           | 0-1                                   | 07/15/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |
| LP2-3                           | 1-2                                   | 07/15/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |
| LP2-3W                          | 0-1                                   | 05/30/07             | PCBs                                               | Zone I           | ROUX         |
| LP2-3W                          | 1-2                                   | 05/30/07             | PCBs                                               | Zone I           | ROUX         |
| LP2-3W                          | 2-3                                   | 05/30/07             | PCBs                                               | Zone I           | ROUX         |
| LP2-4<br>LP2-4                  | 0-1                                   | 07/15/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |
| LP2-4<br>LP2-5                  | 1-2<br>0-1                            | 07/15/97<br>07/15/97 | PCBs, cPAHs, Lead, PAHs<br>PCBs, cPAHs, Lead, PAHs | Zone I<br>Zone I | ROUX<br>ROUX |
| LP2-5                           | 1-2                                   | 07/15/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |
| LP2-6                           | 0-1                                   | 07/15/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |
| LP2-6                           | 1-2                                   | 07/15/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |
| LP2-7                           | 0-1                                   | 07/15/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |
| LP2-7                           | 1-2                                   | 07/15/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |
| LP2-8                           | 0-1                                   | 07/15/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |
| LP2-8                           | 1-2                                   | 07/15/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |
| LP2-8<br>LP2-9                  | 2-3<br>0-1                            | 07/15/97<br>07/15/97 | PCBs, cPAHs, Lead, PAHs<br>PCBs, cPAHs, Lead, PAHs | Zone I<br>Zone I | ROUX<br>ROUX |
| LP2-9<br>LP2-9                  | 1-2                                   | 07/15/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |
| LP2-9                           | 2-3                                   | 07/15/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |
| LP2-10                          | 0-1                                   | 07/15/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |
| LP2-10                          | 1-2                                   | 07/15/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |

Table 1. Summary of Soil-Quality Sampling, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Sample Location/<br>Designation | Sample Depth<br>Interval<br>(Ft. Bls) | Sample Date          | Analyte(s)                                                                   | Zone               | Sampled By   |
|---------------------------------|---------------------------------------|----------------------|------------------------------------------------------------------------------|--------------------|--------------|
| LP2-10                          | 2-3                                   | 07/15/97             | PCBs, cPAHs, Lead, PAHs                                                      | Zone I             | ROUX         |
| LP2-11                          | 0-1                                   | 07/15/97             | PCBs, Lead                                                                   | Zone I             | ROUX         |
| LP2-11 RE                       | 0-1                                   | 07/15/97             | cPAHs, PAHs                                                                  | Zone I             | ROUX         |
| LP2-11                          | 1-2                                   | 07/15/97             | PCBs, cPAHs, Lead, PAHs                                                      | Zone I             | ROUX         |
| LP2-11                          | 2-3                                   | 07/15/97             | PCBs, Lead                                                                   | Zone I             | ROUX         |
| LP2-11 RE                       | 2-3                                   | 07/15/97             | cPAHs, PAHs                                                                  | Zone I             | ROUX         |
| MW-26                           | 9-11                                  | 12/05/90             | PCBs, Lead, Metals, VOCs, Pesticides                                         | Zone II            |              |
| MW-26 R                         | 9-11                                  | 12/05/90             | cPAHs, PAHs, SVOCs                                                           | Zone II            |              |
| MW-30<br>MW-31                  | 0-2<br>0-2                            | 11/30/90<br>11/08/90 | PCBs<br>PCBs                                                                 | Zone IV<br>Zone II |              |
| MW-31                           | 0-2                                   | 11/09/90             | Lead                                                                         | Zone II            |              |
| MW-34                           | 0-2                                   | 11/29/90             | PCBs, cPAHs, Lead, Metals, PAHs, SVOCs, VOCs, Pesticides                     | Zone II            |              |
| NR-26                           | 0-1                                   | 09/27/99             | PCBs, cPAHs, Lead, PAHs                                                      | Zone IV            |              |
| NR-27                           | 0-1                                   | 09/27/99             | PCBs, cPAHs, Lead, PAHs                                                      | Zone IV            |              |
| NR-28                           | 0-1                                   | 09/27/99             | PCBs, cPAHs, Lead, PAHs                                                      | Zone IV            |              |
| NR-29                           | 0-1                                   | 09/27/99             | PCBs, cPAHs, Lead, PAHs                                                      | Zone IV            |              |
| NR-30                           | 0-1                                   | 09/27/99             | PCBs, cPAHs, Lead, PAHs                                                      | Zone IV            |              |
| NR-31                           | 0-1                                   | 09/27/99             | PCBs, cPAHs, Lead, PAHs                                                      | Zone IV            |              |
| NR-32                           | 0-1                                   | 09/27/99             | PCBs, cPAHs, Lead, PAHs                                                      | Zone IV            | / ROUX       |
| NR-33                           | 0-1                                   | 09/27/99             | PCBs, cPAHs, Lead, PAHs                                                      | Zone IV            | / ROUX       |
| NR-34                           | 0-1                                   | 09/27/99             | PCBs, cPAHs, Lead, PAHs                                                      | Zone IV            | ROUX         |
| NW-1                            | -                                     | 11/02/98             | PCBs                                                                         | Zone II            |              |
| NW-2                            | -                                     | 11/02/98             | PCBs                                                                         | Zone II            |              |
| NW-3                            | -                                     | 11/02/98             | PCBs                                                                         | Zone II            |              |
| NW-4                            | =                                     | 11/02/98             | PCBs                                                                         | Zone II            |              |
| NWALL                           |                                       | 01/04/99             | PCBs, cPAHs, Lead, VOCs                                                      | Zone II            |              |
| O/W-UST/B                       |                                       | 11/19/97             | PCBs, cPAHs, Lead, PAHs, SVOCs, VOCs                                         | Zone II            |              |
| O/W-UST/E                       |                                       | 11/19/97             | PCBs, cPAHs, Lead, PAHs, SVOCs, VOCs                                         | Zone II            |              |
| O/W-UST/N                       |                                       | 11/19/97             | PCBs, cPAHs, Lead, PAHs, SVOCs, VOCs                                         | Zone II            |              |
| O/W-UST/S<br>O/W-UST/W          |                                       | 11/19/97<br>11/19/97 | PCBs, cPAHs, Lead, PAHs, SVOCs, VOCs<br>PCBs, cPAHs, Lead, PAHs, SVOCs, VOCs | Zone II<br>Zone II |              |
| PC-1                            | 0-1                                   | 06/22/05             | PCBs, cPAHs, Lead                                                            | Zone II            |              |
| PC-1                            | 1-2                                   | 06/22/05             | PCBs, cPAHs, Lead                                                            | Zone II            |              |
| PC-1                            | 2-3                                   | 06/22/05             | PCBs, cPAHs, Lead                                                            | Zone II            |              |
| PC-6                            | 0-1                                   | 06/22/05             | PCBs, cPAHs, Lead                                                            | Zone II            |              |
| PC-6                            | 1-2                                   | 06/22/05             | PCBs, cPAHs, Lead                                                            | Zone II            |              |
| PC-6                            | 2-3                                   | 06/22/05             | PCBs, cPAHs, Lead                                                            | Zone II            |              |
| PC-6                            | 3-4                                   | 08/24/05             | PCBs                                                                         | Zone II            |              |
| PC-6                            | 4-5                                   | 08/24/05             | PCBs                                                                         | Zone II            | ROUX         |
| PC-6E                           | 0-1                                   | 08/24/05             | PCBs                                                                         | Zone II            | ROUX         |
| PC-6E                           | 1-2                                   | 08/24/05             | PCBs                                                                         | Zone II            | ROUX         |
| PC-6E                           | 2-3                                   | 08/24/05             | PCBs                                                                         | Zone II            | ROUX         |
| PC-6N                           | 0-1                                   | 08/24/05             | PCBs                                                                         | Zone II            | ROUX         |
| PC-6N                           | 1-2                                   | 08/24/05             | PCBs                                                                         | Zone II            |              |
| PC-6S                           | 0-1                                   | 08/24/05             | PCBs                                                                         | Zone II            |              |
| PC-6S                           | 1-2                                   | 08/24/05             | PCBs                                                                         | Zone II            | ROUX         |
| PC-6S                           | 2-3                                   | 08/24/05             | PCBs                                                                         | Zone II            |              |
| PC-6W                           | 0-1                                   | 08/24/05             | PCBs                                                                         | Zone II            | ROUX         |
| PC-6W                           | 1-2                                   | 08/24/05             | PCBs                                                                         | Zone II            | ROUX         |
| PC-6W                           | 2-3                                   | 08/24/05             | PCBs                                                                         | Zone II            | ROUX         |
| PC-7                            | 0-1                                   | 06/23/05             | PCBs, cPAHs, Lead                                                            | Zone II            | ROUX         |
| PC-7<br>PC-7                    | 1-2<br>2-3                            | 06/23/05<br>06/23/05 | PCBs, cPAHs, Lead<br>PCBs, cPAHs, Lead                                       | Zone II<br>Zone II | ROUX<br>ROUX |
| PC-8                            | 0-1                                   | 06/23/05             | PCBs, cPAHs, Lead                                                            | Zone II            | ROUX         |
| PC-8                            | 1-2                                   | 06/23/05             | PCBs, cPAHs, Lead                                                            | Zone II            | ROUX         |
| PC-8                            | 2-3                                   | 06/23/05             | PCBs, cPAHs, Lead                                                            | Zone II            |              |
| PC-8E                           | 0-1                                   | 08/24/05             | cPAHs                                                                        | Zone II            | ROUX         |
| PC-8E                           | 1-2                                   | 08/24/05             | cPAHs                                                                        | Zone II            | ROUX         |
| PC-8E                           | 2-3                                   | 08/24/05             | cPAHs                                                                        | Zone II            | ROUX         |
| PC-8N                           | 0-1                                   | 05/30/07             | cPAHs                                                                        | Zone II            | ROUX         |
| PC-8N                           | 1-2                                   | 05/30/07             | cPAHs                                                                        | Zone II            | ROUX         |
| PC-8N                           | 2-3                                   | 05/30/07             | cPAHs                                                                        | Zone II            | ROUX         |
| PC-8SE                          | 0-1                                   | 08/24/05             | cPAHs                                                                        | Zone II            | ROUX         |
| PC-8SE                          | 1-2                                   | 08/24/05             | cPAHs                                                                        | Zone II            | ROUX         |
| PC-8SE                          | 2-3                                   | 08/24/05             | cPAHs                                                                        | Zone II            | ROUX         |

Table 1. Summary of Soil-Quality Sampling, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Sample Location/<br>Designation | Sample Depth<br>Interval<br>(Ft. Bls) | Sample Date          | Analyte(s)                                                       | Zone                 | Sampled B    |
|---------------------------------|---------------------------------------|----------------------|------------------------------------------------------------------|----------------------|--------------|
| PC-8SEE                         | 0-1                                   | 05/30/07             | сРАНs                                                            | Zone II              | ROUX         |
| PC-8SEE                         | 1-2                                   | 05/30/07             | cPAHs                                                            | Zone II              | ROUX         |
| PC-8SEE                         | 2-3                                   | 05/30/07             | cPAHs                                                            | Zone II              | ROUX         |
| PC-8SES                         | 0-1                                   | 05/30/07             | cPAHs                                                            | Zone II              |              |
| PC-8SES                         | 1-2                                   | 05/30/07             | cPAHs                                                            | Zone II              | ROUX         |
| PC-8SES                         | 2-3                                   | 05/30/07             | cPAHs                                                            | Zone II              | ROUX         |
| PC-9                            | 0-1                                   | 06/23/05             | PCBs, cPAHs, Lead                                                | Zone II              | ROUX         |
| PC-9                            | 1-2                                   | 06/23/05             | PCBs, cPAHs, Lead                                                | Zone II              | ROUX         |
| PC-9<br>PC-10                   | 2-3<br>0-1                            | 06/23/05<br>06/23/05 | PCBs, cPAHs, Lead<br>PCBs, cPAHs, Lead                           | Zone II<br>Zone II   | ROUX<br>ROUX |
| PC-10                           | 1-2                                   | 06/23/05             | PCBs, cPAHs, Lead                                                | Zone II              | ROUX         |
| PC-10                           | 2-3                                   | 06/23/05             | PCBs, cPAHs, Lead                                                | Zone II              | ROUX         |
| PC-10                           | 2-3                                   | 08/24/05             | PCBs, Lead                                                       | Zone II              | ROUX         |
| PC-10N                          | 0-1                                   | 08/24/05             | PCBs, Lead                                                       | Zone II              | ROUX         |
| PC-10N                          | 1-2                                   | 08/24/05             | PCBs, Lead                                                       | Zone II              | ROUX         |
| PC-10N                          | 2-3                                   | 08/24/05             | PCBs, Lead                                                       | Zone II              | ROUX         |
| PC-10S                          | 0-1                                   | 08/24/05             | PCBs, Lead                                                       | Zone II              | ROUX         |
| PC-10S                          | 1-2                                   | 08/24/05             | PCBs, Lead                                                       | Zone II              | ROUX         |
| PC-10S                          | 2-3<br>0-1                            | 08/24/05             | PCBs, Lead                                                       | Zone II<br>Zone II   | ROUX         |
| PC-10W<br>PC-10W                | 1-2                                   | 08/24/05<br>08/24/05 | PCBs, Lead<br>PCBs, Lead                                         | Zone II<br>Zone II   | ROUX<br>ROUX |
| PC-10W                          | 2-3                                   | 08/24/05             | PCBs, Lead                                                       | Zone II              | ROUX         |
| PC-11                           | 0-1                                   | 06/23/05             | PCBs, cPAHs, Lead                                                | Zone II              | ROUX         |
| PC-11                           | 1-2                                   | 06/23/05             | PCBs, cPAHs, Lead                                                | Zone II              | ROUX         |
| PC-11                           | 2-3                                   | 06/23/05             | PCBs, cPAHs, Lead                                                | Zone II              | ROUX         |
| PC-12                           | 0-1                                   | 06/23/05             | PCBs, cPAHs, Lead                                                | Zone II              | ROUX         |
| PC-12                           | 1-2                                   | 06/23/05             | PCBs, cPAHs, Lead                                                | Zone II              | ROUX         |
| PC-12                           | 2-3                                   | 06/23/05             | PCBs, cPAHs, Lead                                                | Zone II              | ROUX         |
| PC-13                           | 0-1                                   | 07/19/07             | PCBs, cPAHs, Lead, PAHs, SVOCs                                   | Zone II              | ROUX         |
| PC-13<br>PC-13                  | 1-2<br>2-3                            | 07/19/07<br>07/19/07 | PCBs, cPAHs, Lead, PAHs, SVOCs<br>PCBs, cPAHs, Lead, PAHs, SVOCs | Zone II<br>Zone II   | ROUX<br>ROUX |
| PC-13<br>PC-14                  | 0-1                                   | 07/19/07             | PCBs, cPAHs, Lead, PAHs, SVOCs                                   | Zone II              | ROUX         |
| PC-14                           | 1-2                                   | 07/19/07             | PCBs, cPAHs, Lead, PAHs, SVOCs                                   | Zone II              | ROUX         |
| PC-14                           | 2-3                                   | 07/19/07             | PCBs, cPAHs, Lead, PAHs, SVOCs                                   | Zone II              | ROUX         |
| PIT-4                           | -                                     | 06/18/97             | PCBs                                                             | Zone III             | ROUX         |
| PT-1                            | 0-1                                   | 03/18/04             | PCBs, cPAHs, Lead, PAHs                                          | Zone I               | ROUX         |
| PT-2                            | 0-1                                   | 03/18/04             | PCBs, cPAHs, Lead, PAHs                                          | Zone I               | ROUX         |
| PT-2                            | 1-2                                   | 03/18/04             | cPAHs, PAHs                                                      | Zone I               | ROUX         |
| PT-2/C<br>PT-3                  | 3-3<br>0-1                            | 04/13/04             | cPAHs, PAHs<br>PCBs, cPAHs, Lead, PAHs                           | Zone I<br>Zone I     | ROUX         |
| PT-4                            | 0-1                                   | 03/18/04<br>03/18/04 | PCBs, cPAHs, Lead, PAHs                                          | Zone II              | ROUX<br>ROUX |
| PT-5                            | 0-1                                   | 03/18/04             | PCBs, cPAHs, Lead, PAHs                                          | Zone I               | ROUX         |
| PT-6                            | 0-1                                   | 03/18/04             | PCBs, cPAHs, Lead, PAHs                                          | Zone II              |              |
| PT-7                            | 0-1                                   | 03/18/04             | PCBs, cPAHs, Lead, PAHs                                          | Zone II              | ROUX         |
| Q-1                             | 0-2                                   | 03/20/96             | PCBs                                                             | Zone III             | ROUX         |
| Q-2                             | 0-2                                   | 03/20/96             | PCBs                                                             | Zone III             |              |
| Q-3                             | 0-2                                   | 03/20/96             | PCBs                                                             | Zone III             |              |
| Q-4                             | 0-0.5                                 | 03/20/96             | PCBs                                                             | Zone III             |              |
| Q-5                             | 0-0.5<br>0-2                          | 03/20/96<br>03/21/96 | PCBs<br>PCBs                                                     | Zone III<br>Zone III |              |
| Q-6<br>Q-7                      | 0-2                                   | 03/21/96             | PCBs                                                             | Zone III             |              |
| Q-7<br>Q-8                      | 0-2                                   | 03/20/96             | PCBs                                                             | Zone III             |              |
| Q-10                            | 0-2                                   | 03/20/96             | PCBs                                                             | Zone III             |              |
| Q-11                            | 0-2                                   | 03/20/96             | PCBs                                                             | Zone III             |              |
| Q-12                            | 0-2                                   | 03/20/96             | PCBs                                                             | Zone III             |              |
| QB-1                            | 0-1                                   | 10/26/99             | PCBs, cPAHs, Lead, PAHs                                          | Zone IV              |              |
| QB-1                            | 1-2                                   | 10/26/99             | Lead                                                             | Zone IV              |              |
| QB-1A                           | 0-1                                   | 01/04/00             | Lead                                                             | Zone III             |              |
| QB-1B<br>QB-1C                  | 0-1<br>0-1                            | 01/04/00             | Lead                                                             | Zone III             |              |
| QB-1E                           | 0-1<br>0-1                            | 01/04/00<br>01/04/00 | Lead<br>Lead                                                     | Zone III<br>Zone III |              |
| QB-1E<br>QB-2                   | 0-1                                   | 10/26/99             | PCBs, cPAHs, Lead, PAHs                                          | Zone IV              |              |
| QB-2<br>QB-2                    | 1-2                                   | 10/26/99             | Lead                                                             | Zone IV              |              |
| QB-3                            | 0-1                                   | 10/26/99             | PCBs, cPAHs, Lead, PAHs                                          | Zone IV              |              |
| QB-3                            | 1-2                                   | 10/26/99             | Lead                                                             | Zone IV              |              |

Table 1. Summary of Soil-Quality Sampling, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Sample Location/<br>Designation | Sample Depth<br>Interval<br>(Ft. Bls) | Sample Date          | Analyte(s)                                                    | Zone               | Sampled B |
|---------------------------------|---------------------------------------|----------------------|---------------------------------------------------------------|--------------------|-----------|
| OP 4                            | 0.1                                   | 10/26/00             | DCD. DAW, L. J. DAW.                                          | 7 IV               | , DOLLY   |
| QB-4                            | 0-1<br>1-2                            | 10/26/99             | PCBs, cPAHs, Lead, PAHs                                       | Zone IV            |           |
| QB-4<br>QB-4                    | 2-3                                   | 10/26/99<br>10/26/99 | Lead<br>Lead                                                  | Zone IV<br>Zone IV |           |
| -                               |                                       |                      |                                                               |                    |           |
| QB-4+40                         | 0-1<br>0-1                            | 02/23/00             | Lead                                                          | Zone III           |           |
| QB-4A                           | 0-1<br>0-1                            | 01/04/00             | Lead                                                          | Zone III           |           |
| QB-5                            |                                       | 10/26/99             | PCBs, cPAHs, Lead, PAHs                                       | Zone III           |           |
| QB-6                            | 0-1                                   | 10/26/99             | PCBs, cPAHs, Lead, PAHs                                       | Zone IV            |           |
| QB-7                            | 0-1                                   | 10/26/99             | PCBs, cPAHs, Lead, PAHs                                       | Zone IV            |           |
| QB-7                            | 1-2                                   | 10/26/99             | Lead                                                          | Zone IV            |           |
| QB-7A                           | 0-1                                   | 01/04/00             | Lead                                                          | Zone IV            |           |
| QB-7B                           | 0-1                                   | 01/04/00             | Lead                                                          | Zone IV            |           |
| QB-7C                           | 0-1                                   | 01/04/00             | Lead                                                          | Zone IV            |           |
| QB-7D                           | 0-1                                   | 01/04/00             | Lead                                                          | Zone IV            |           |
| QC-1                            | 0-1                                   | 04/12/00             | PCBs, cPAHs, Lead, PAHs                                       | Zone IV            |           |
| QC-1                            | 1-2                                   | 04/12/00             | Lead                                                          | Zone IV            | ROUX      |
| QC-2                            | 0-1                                   | 04/12/00             | PCBs, cPAHs, Lead, PAHs                                       | Zone III           | ROUX      |
| QC-2                            | 1-2                                   | 04/12/00             | Lead                                                          | Zone III           | ROUX      |
| QC-3                            | 0-1                                   | 04/12/00             | PCBs, cPAHs, Lead, PAHs                                       | Zone IV            | ROUX      |
| QC-4                            | 0-1                                   | 04/12/00             | PCBs, cPAHs, Lead, PAHs                                       | Zone III           | ROUX      |
| QC-5                            | 0-1                                   | 04/12/00             | PCBs, cPAHs, Lead, PAHs                                       | Zone IV            | ROUX      |
| QC-6                            | 0-1                                   | 04/12/00             | PCBs, cPAHs, Lead, PAHs                                       | Zone III           | ROUX      |
| QC-7                            | 0-1                                   | 04/12/00             | PCBs, cPAHs, Lead, PAHs                                       | Zone IV            | ROUX      |
| QC-8                            | 0-1                                   | 04/13/00             | PCBs, cPAHs, Lead, PAHs                                       | Zone III           | ROUX      |
| QC-9                            | 0-1                                   | 04/13/00             | PCBs, Lead                                                    | Zone III           | ROUX      |
| QC-9 RE                         | 0-1                                   | 04/13/00             | cPAHs, PAHs                                                   | Zone III           | ROUX      |
| QC-10                           | 0-1                                   | 04/13/00             | PCBs, Lead                                                    | Zone III           | ROUX      |
| QC-10 RE                        | 0-1                                   | 04/13/00             | cPAHs, PAHs                                                   | Zone III           |           |
| QC-11                           | 0-1                                   | 04/13/00             | PCBs, cPAHs, Lead, PAHs                                       | Zone III           |           |
| QC-12                           | 0-1                                   | 04/13/00             | PCBs, Lead                                                    | Zone IV            |           |
| QC-12 RE                        | 0-1                                   | 04/13/00             | cPAHs, PAHs                                                   | Zone IV            |           |
| QC-13                           | 0-1                                   | 04/13/00             | PCBs, cPAHs, Lead, PAHs                                       | Zone III           |           |
| QT-1                            | 0-1.5                                 | 08/22/96             | PCBs                                                          | Zone IV            |           |
| QT-2                            | 0-1                                   | 08/15/97             | PCBs                                                          | Zone IV            |           |
| QT-2                            | 0-1.5                                 | 08/22/96             | PCBs                                                          | Zone IV            |           |
| QT-2                            | 1-2                                   | 08/15/97             | PCBs                                                          | Zone IV            |           |
| QT-2                            | 2-3                                   | 08/15/97             | PCBs                                                          | Zone IV            |           |
| QT-2A                           | 0-1                                   | 08/15/97             | PCBs                                                          | Zone IV            |           |
| QT-2A                           | 1-2                                   | 08/15/97             | PCBs                                                          | Zone IV            |           |
| QT-2B                           | 0-1                                   | 08/20/97             | PCBs                                                          | Zone IV            |           |
| QT-2B                           | 1-2                                   | 08/20/97             | PCBs                                                          | Zone IV            |           |
| QT-2C                           | 0-1                                   | 08/20/97             | PCBs                                                          | Zone IV            |           |
| QT-2C                           | 1-2                                   | 08/20/97             | PCBs                                                          | Zone IV            |           |
| QT-2D                           | 0-1                                   | 08/15/97             | PCBs                                                          | Zone IV            |           |
| QT-2D                           | 1-2                                   | 08/15/97             | PCBs                                                          | Zone IV            |           |
| QT-3                            | 0-1.5                                 | 08/22/96             | PCBs                                                          | Zone IV            |           |
| QT-4                            | 0-1.5                                 | 08/22/96             | PCBs                                                          | Zone IV            |           |
| R-UST/BOT                       |                                       | 11/18/97             | PCBs, cPAHs, Lead, PAHs, SVOCs, VOCs                          | Zone II            | ROUX      |
| R-UST/E                         |                                       | 11/18/97             | PCBs, cPAHs, Lead, PAHs, SVOCs, VOCs                          | Zone II            | ROUX      |
| R-UST/N                         |                                       | 11/18/97             | PCBs, cPAHs, Lead, PAHs, SVOCs, VOCs                          | Zone II            | ROUX      |
| R-UST/S                         |                                       | 11/18/97             | PCBs, cPAHs, Lead, PAHs, SVOCs, VOCs                          | Zone II            | ROUX      |
| R-UST/W                         |                                       | 11/18/97             | PCBs, cPAHs, Lead, PAHs, SVOCs, VOCs                          | Zone II            | ROUX      |
| R-UST/W DUP                     |                                       | 11/18/97             | PCBs, cPAHs, Lead, PAHs, SVOCs                                | Zone II            | ROUX      |
| R-UST/W DUP R                   | 0.2                                   | 11/18/97             | VOCs<br>PCPs                                                  | Zone II            | ROUX      |
| S-6                             | 0-2                                   | 11/11/90             | PCBs                                                          | Zone III           | ROUX      |
| S-16                            | 0-2                                   | 11/11/90             | PCBs  PCRs Load Motals VOCs Postiaides                        | Zone III           |           |
| S-17                            | 0-2                                   | 10/19/90             | PCBs, Lead, Metals, VOCs, Pesticides                          | Zone III           |           |
| S-17 RE                         | 0-2                                   | 10/19/90             | cPAHs, PAHs, SVOCs                                            | Zone III           |           |
| S-22<br>S 22 PE                 | 0-2                                   | 10/17/90             | PCBs, Lead, Metals, VOCs, Pesticides                          | Zone II            | ROUX      |
| S-22 RE                         | 0-2                                   | 10/17/90             | cPAHs, PAHs, SVOCs                                            | Zone II            | ROUX      |
| S-30                            | 0-2                                   | 10/16/90             | PCBs, cPAHs, Lead, Metals, PAHs, SVOCs, VOCs, Pesticides      | Zone IV            | ROUX      |
| S-31                            | 0-2                                   | 10/17/90             | PCBs                                                          | Zone IV            |           |
| S-32                            | 0-2                                   | 12/01/90             | PCBs                                                          | Zone IV            |           |
| S-32                            | 0-2<br>4-6                            | 12/06/90<br>12/13/90 | Lead PCBs, cPAHs, Lead, Metals, PAHs, SVOCs, VOCs, Pesticides | Zone IV<br>Zone IV |           |

Table 1. Summary of Soil-Quality Sampling, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Sample Location/<br>Designation | Sample Depth<br>Interval<br>(Ft. Bls) | Sample Date          | Analyte(s)                                                       | Zone               | Sampled By   |
|---------------------------------|---------------------------------------|----------------------|------------------------------------------------------------------|--------------------|--------------|
| S-35                            | 8-10                                  | 11/30/90             | PCBs, cPAHs, Lead, Metals, PAHs, SVOCs, VOCs, Pesticides         | Zone IV            | ROUX         |
| S-36                            | 0-2                                   | 12/01/90             | PCBs                                                             | Zone III           | ROUX         |
| S-36                            | 0-2                                   | 12/03/90             | Lead                                                             | Zone III           | ROUX         |
| S-37                            | 4-6                                   | 12/01/90             | PCBs, cPAHs, Lead, Metals, PAHs, SVOCs, VOCs, Pesticides         | Zone III           | ROUX         |
| S-38                            | 2-4                                   | 11/29/90             | PCBs, cPAHs, Lead, Metals, PAHs, SVOCs, VOCs, Pesticides         | Zone III           | ROUX         |
| S-39                            | 2-4                                   | 11/29/90             | cPAHs, Lead, Metals, PAHs, SVOCs, VOCs, Pesticides               | Zone III           | ROUX         |
| S-39                            | 2-4                                   | 12/29/90             | PCBs                                                             | Zone III           |              |
| S-41A                           | 3.5-5.5                               | 11/07/90             | PCBs, cPAHs, Lead, Metals, PAHs, SVOCs, VOCs, Pesticides         | Zone III           |              |
| S-43                            | 0-2                                   | 11/05/90             | PCBs, cPAHs, Lead, Metals, PAHs, SVOCs, VOCs, Pesticides         | Zone III           |              |
| S-47                            | 2-4                                   | 10/19/90             | PCBs, Lead, Metals, VOCs, Pesticides                             | Zone III           |              |
| S-47 RE                         | 2-4                                   | 10/19/90             | cPAHs, PAHs, SVOCs                                               | Zone III           |              |
| S-49                            | 2-4                                   | 10/19/90             | PCBs, Lead, Metals, VOCs, Pesticides                             | Zone III           |              |
| S-49 RE                         | 2-4                                   | 10/19/90             | cPAHs, PAHs, SVOCs                                               | Zone III           |              |
| S-50                            | 0-2                                   | 11/10/90             | PCBs                                                             | Zone II            | ROUX         |
| S-51                            | 0-2                                   | 11/10/90             | PCBs                                                             | Zone II            | ROUX         |
| S-52                            | 0-2                                   | 11/10/90             | PCBs                                                             | Zone II            | ROUX         |
| S-53                            | 0-2                                   | 11/18/90             | PCBs                                                             | Zone II            | ROUX         |
| S-53                            | 3.5-5.5                               | 11/18/90             | PCBs                                                             | Zone II            | ROUX         |
| S-53                            | 5-7                                   | 11/18/90             | PCBs, cPAHs, Lead, Metals, PAHs, SVOCs, VOCs, Pesticides         | Zone II            | ROUX         |
| S-59                            | 0-2                                   | 10/17/90             | PCBs                                                             | Zone III           |              |
| S-60                            | 4-6                                   | 12/12/90             | PCBs, cPAHs, Lead, Metals, PAHs, SVOCs, VOCs, Pesticides         | Zone II            | ROUX         |
| S-74                            | 0-2                                   | 10/08/90             | PCBs                                                             | Zone II            | ROUX         |
| S-75                            | 0-2                                   | 10/08/90             | PCBs                                                             | Zone II            | ROUX         |
| S-77                            | 0-2                                   | 10/08/90             | PCBs                                                             | Zone II            | ROUX         |
| S-78                            | 0-2                                   | 11/26/90             | PCBs                                                             | Zone II            | ROUX         |
| S-78                            | 8-9                                   | 12/12/90             | PCBs                                                             | Zone II            | ROUX         |
| S-80                            | 2-4                                   | 10/03/90             | PCBs, cPAHs, Lead, Metals, PAHs, SVOCs, Pesticides               | Zone II            | ROUX         |
| S-80 RE                         | 2-4                                   | 10/03/90             | VOCs                                                             | Zone II            | ROUX         |
| S-82                            | 0-2                                   | 10/16/90             | PCBs, cPAHs, Lead, Metals, PAHs, SVOCs, Pesticides               | Zone I             | ROUX         |
| S-82 RE                         | 0-2                                   | 10/16/90             | VOCs                                                             | Zone I             | ROUX         |
| S-83                            | 0-2                                   | 10/17/90             | PCBs                                                             | Zone III           |              |
| S-84                            | 0-2                                   | 10/17/90             | PCBs                                                             | Zone III           |              |
| S-90                            | 1-3                                   | 10/01/90             | PCBs, cPAHs, Lead, Metals, PAHs, SVOCs, VOCs, Pesticides         | Zone I             | ROUX         |
| S-94                            | 2-4                                   | 10/18/90             | PCBs                                                             | Zone II            | ROUX         |
| S-100                           | 0-2                                   | 01/18/93             | PCBs, cPAHs, Lead, Metals, PAHs, SVOCs, VOCs                     | Zone II            | ROUX         |
| S-101                           | 0-2                                   | 01/18/93             | PCBs, Lead, Metals, VOCs,                                        | Zone II            | ROUX         |
| S-101 RE                        | 0-2                                   | 01/18/93             | cPAHs, PAHs, SVOCs                                               | Zone II            | ROUX         |
| S-101A                          | 2-3                                   | 06/24/05             | PCBs, Lead                                                       | Zone II            | ROUX         |
| S-101E                          | 0-1                                   | 06/24/05             | PCBs, Lead                                                       | Zone II            | ROUX         |
| S-101E                          | 1-2                                   | 06/24/05             | PCBs, Lead                                                       | Zone II            | ROUX         |
| S-101E                          | 2-3                                   | 06/24/05             | PCBs, Lead                                                       | Zone II            | ROUX         |
| S-101N                          | 0-1                                   | 06/24/05             | PCBs, Lead                                                       | Zone II            | ROUX         |
| S-101N                          | 1-2                                   | 06/24/05             | PCBs, Lead                                                       | Zone II            |              |
| S-101S                          | 0-1                                   | 05/29/07             | PCBs, Lead                                                       | Zone II            | ROUX         |
| S-101S                          | 1-2                                   | 05/29/07             | PCBs, Lead                                                       | Zone II            | ROUX         |
| S-101S                          | 2-3                                   | 05/29/07             | PCBs, Lead                                                       | Zone II            | ROUX         |
| S-101W                          | 0-1                                   | 06/24/05             | PCBs, Lead                                                       | Zone II            | ROUX         |
| S-101W                          | 1-2                                   | 06/24/05             | PCBs, Lead                                                       | Zone II            | ROUX         |
| S-101W                          | 2-3                                   | 06/24/05             | PCBs, Lead                                                       | Zone II            | ROUX         |
| S-102                           | 0-2                                   | 01/18/93             | PCBs, Lead, Metals, VOCs,                                        | Zone II            | ROUX         |
| S-102 RE                        | 0-2                                   | 01/18/93             | cPAHs, PAHs, SVOCs                                               | Zone II            | ROUX         |
| S-103                           | 0-2                                   | 01/25/93             | PCBs                                                             | Zone III           |              |
| S-104                           | 0-2                                   | 01/25/93             | PCBs                                                             | Zone II<br>Zone II | ROUX         |
| S-105                           | 0-2                                   | 01/25/93             | PCBs                                                             |                    | ROUX         |
| S-106                           | 0-2                                   | 01/25/93             | PCBs                                                             | Zone II            | ROUX         |
| S-107                           | 0-2                                   | 01/25/93             | PCBs                                                             | Zone II<br>Zone II | ROUX         |
| S-108                           | 0-2                                   | 01/25/93             | PCBs                                                             |                    | ROUX         |
| S-111                           | 0-2                                   | 01/20/93             | PCBs                                                             | Zone II            | ROUX         |
| S-112                           | 0-2                                   | 01/20/93             | PCBs                                                             | Zone II            | ROUX         |
| S-113                           | 0-2                                   | 01/20/93             | PCBs                                                             | Zone II            | ROUX         |
| S-114                           | 0-2                                   | 01/20/93             | PCBs                                                             | Zone II            | ROUX         |
| S-115                           | 0-2                                   | 01/20/93             | PCBs                                                             | Zone II            | ROUX         |
| S-164                           | 0-1                                   | 07/19/07             | PCBs, cPAHs, Lead, PAHs, SVOCs                                   | Zone I             | ROUX         |
| S-164                           | 1-2                                   | 07/19/07<br>07/19/07 | PCBs, cPAHs, Lead, PAHs, SVOCs<br>PCBs, cPAHs, Lead, PAHs, SVOCs | Zone I             | ROUX<br>ROUX |

Table 1. Summary of Soil-Quality Sampling, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Sample Location/<br>Designation | Sample Depth<br>Interval<br>(Ft. Bls) | Sample Date          | Analyte(s)                                                       | Zone               | Sampled By |
|---------------------------------|---------------------------------------|----------------------|------------------------------------------------------------------|--------------------|------------|
| S-165                           | 0-1                                   | 07/19/07             | PCBs, cPAHs, Lead, PAHs, SVOCs                                   | Zone I             | ROUX       |
| S-165                           | 1-2                                   | 07/19/07             | PCBs, cPAHs, Lead, PAHs, SVOCs                                   | Zone I             | ROUX       |
| S-165                           | 2-3                                   | 07/19/07             | PCBs, cPAHs, Lead, PAHs, SVOCs                                   | Zone I             | ROUX       |
| S-166                           | 0-1                                   | 07/20/07             | PCBs, cPAHs, Lead, PAHs, SVOCs                                   | Zone I             | ROUX       |
| S-166                           | 1-2                                   | 07/20/07             | PCBs, cPAHs, Lead, PAHs, SVOCs                                   | Zone I             | ROUX       |
| S-166                           | 2-3                                   | 07/20/07             | PCBs, cPAHs, Lead, PAHs, SVOCs                                   | Zone I             | ROUX       |
| S-167                           | 0-1                                   | 07/20/07             | PCBs, cPAHs, Lead, PAHs, SVOCs                                   | Zone I             | ROUX       |
| S-167                           | 1-2                                   | 07/20/07             | PCBs, cPAHs, Lead, PAHs, SVOCs                                   | Zone I             | ROUX       |
| S-167                           | 2-3                                   | 07/20/07             | PCBs, cPAHs, Lead, PAHs, SVOCs                                   | Zone I             | ROUX       |
| S-168<br>S-168                  | 0-1<br>1-2                            | 07/20/07<br>07/20/07 | PCBs, cPAHs, Lead, PAHs, SVOCs<br>PCBs, cPAHs, Lead, PAHs, SVOCs | Zone IV<br>Zone IV |            |
| S-168                           | 2-3                                   | 07/20/07             | PCBs, cPAHs, Lead, PAHs, SVOCs                                   | Zone IV            |            |
| S-169                           | 0-1                                   | 07/20/07             | PCBs, cPAHs, Lead, PAHs, SVOCs                                   | Zone IV            |            |
| S-169                           | 1-2                                   | 07/20/07             | PCBs, cPAHs, Lead, PAHs, SVOCs                                   | Zone IV            |            |
| S-169                           | 2-3                                   | 07/20/07             | PCBs, cPAHs, Lead, PAHs, SVOCs                                   | Zone IV            |            |
| S-169                           | 7-9                                   | 07/20/07             | PCBs, cPAHs, Lead, PAHs, SVOCs                                   | Zone IV            | / ROUX     |
| S2-1                            | 0-1                                   | 05/01/03             | PCBs, cPAHs, Lead, PAHs                                          | Zone IV            |            |
| S2-2                            | 1-2                                   | 05/01/03             | PCBs, cPAHs, Lead, PAHs                                          | Zone IV            |            |
| S2-3                            | 0-1                                   | 05/01/03             | PCBs, cPAHs, Lead, PAHs                                          | Zone IV            |            |
| S2-5                            | 0-1                                   | 05/01/03             | PCBs, cPAHs, Lead, PAHs                                          | Zone IV            |            |
| S2-6                            | 0-1                                   | 05/01/03             | PCBs, cPAHs, Lead, PAHs                                          | Zone IV            |            |
| S2-7<br>S2-7                    | 0-1<br>1-2                            | 05/01/03<br>05/01/03 | PCBs, cPAHs, Lead, PAHs<br>Lead                                  | Zone IV<br>Zone IV |            |
| S2-8                            | 0-1                                   | 05/01/03             | PCBs, cPAHs, Lead, PAHs                                          | Zone IV            |            |
| SB-4                            | 0-1                                   | 03/23/94             | PCBs                                                             | Zone II            |            |
| SB-5                            | 0-1                                   | 03/23/94             | PCBs                                                             | Zone II            |            |
| SB-12                           | 6-7                                   | 08/09/94             | PCBs                                                             | Zone II            |            |
| SB-15                           | 4-5                                   | 03/24/94             | PCBs                                                             | Zone II            | ROUX       |
| SB-16                           | 6-7                                   | 08/09/94             | PCBs                                                             | Zone II            | ROUX       |
| SB-18                           | 0-1                                   | 03/24/94             | PCBs                                                             | Zone II            |            |
| SB-30                           | 2-3                                   | 03/21/94             | PCBs                                                             | Zone II            |            |
| SB-33                           | 0-1                                   | 03/23/94             | PCBs                                                             | Zone II            |            |
| SB-34                           | 0-1<br>0-1                            | 03/24/94             | PCBs                                                             | Zone II            |            |
| SB-35<br>SB-45                  | 0-1                                   | 03/24/94<br>03/22/94 | PCBs<br>PCBs                                                     | Zone II<br>Zone II |            |
| SB-45A                          | 1-2                                   | 05/29/07             | PCBs                                                             | Zone II            |            |
| SB45-D1                         | 0-1                                   | 09/13/07             | PCBs                                                             | Zone II            |            |
| SB45-D1                         | 1-2                                   | 09/13/07             | PCBs                                                             | Zone II            |            |
| SB45-D1                         | 2-3                                   | 09/13/07             | PCBs                                                             | Zone II            |            |
| SB45-D2                         | 0-1                                   | 09/13/07             | PCBs                                                             | Zone II            | ROUX       |
| SB45-D2                         | 1-2                                   | 09/13/07             | PCBs                                                             | Zone II            |            |
| SB45-D3                         | 0-1                                   | 09/13/07             | PCBs                                                             | Zone II            |            |
| SB45-D3                         | 1-2                                   | 09/13/07             | PCBs                                                             | Zone II            |            |
| SB45-D4                         | 0-1<br>1-2                            | 09/13/07             | PCBs                                                             | Zone II            |            |
| SB45-D4<br>SB45-D4              | 2-3                                   | 09/13/07<br>09/13/07 | PCBs<br>PCBs                                                     | Zone II<br>Zone II |            |
| SB-45E                          | 0-1                                   | 05/29/07             | PCBs                                                             | Zone II            |            |
| SB-45E                          | 1-2                                   | 05/29/07             | PCBs                                                             | Zone II            |            |
| SB-45E                          | 2-3                                   | 05/29/07             | PCBs                                                             | Zone II            |            |
| SB-45EE                         | 0-1                                   | 06/21/07             | PCBs                                                             | Zone II            |            |
| SB-45EE                         | 1-2                                   | 06/21/07             | PCBs                                                             | Zone II            | ROUX       |
| SB-45EE                         | 2-3                                   | 06/21/07             | PCBs                                                             | Zone II            |            |
| SB-45EEE                        | 0-1                                   | 07/19/07             | PCBs                                                             | Zone II            |            |
| SB-45EEE                        | 1-2                                   | 07/19/07             | PCBs                                                             | Zone II            |            |
| SB-45EEE                        | 2-3                                   | 07/19/07             | PCBs                                                             | Zone II            |            |
| SB-45EEN<br>SB-45EEN            | 0-1<br>1-2                            | 07/19/07<br>07/19/07 | PCBs<br>PCBs                                                     | Zone II<br>Zone II |            |
| SB-45EEN<br>SB-45EEN            | 2-3                                   | 07/19/07             | PCBs                                                             | Zone II            |            |
| SB-45EES                        | 0-1                                   | 07/19/07             | PCBs                                                             | Zone II            |            |
| SB-45EES                        | 1-2                                   | 07/19/07             | PCBs                                                             | Zone II            |            |
| SB-45EES                        | 2-3                                   | 07/19/07             | PCBs                                                             | Zone II            |            |
| SB-45EN                         | 0-1                                   | 06/21/07             | PCBs                                                             | Zone II            |            |
| SB-45EN                         | 1-2                                   | 06/21/07             | PCBs                                                             | Zone II            |            |
| SB-45EN                         | 2-3                                   | 06/21/07             | PCBs                                                             | Zone II            |            |
| SB-45ENN                        | 0-1                                   | 07/19/07             | PCBs                                                             | Zone II            | ROUX       |

Table 1. Summary of Soil-Quality Sampling, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Sample Location/<br>Designation | Sample Depth<br>Interval<br>(Ft. Bls) | Sample Date          | Analyte(s)                                                       | Zone               | Sampled By   |  |
|---------------------------------|---------------------------------------|----------------------|------------------------------------------------------------------|--------------------|--------------|--|
| SB-45ENN                        | 1-2                                   | 07/19/07             | PCBs                                                             | Zone II            | ROUX         |  |
| SB-45ENN                        | 2-3                                   | 07/19/07             | PCBs                                                             | Zone II            | ROUX         |  |
| SB-45ES                         | 0-1                                   | 06/21/07             | PCBs                                                             | Zone II            | ROUX         |  |
| SB-45ES                         | 1-2                                   | 06/21/07             | PCBs                                                             | Zone II            | ROUX         |  |
| SB-45ES                         | 2-3                                   | 06/21/07             | PCBs                                                             | Zone II            | ROUX         |  |
| SB-45N<br>SB-45N                | 0-1<br>1-2                            | 05/29/07<br>05/29/07 | PCBs<br>PCBs                                                     | Zone II<br>Zone II | ROUX<br>ROUX |  |
| SB-45N                          | 2-3                                   | 05/29/07             | PCBs                                                             | Zone II            | ROUX         |  |
| SB-45S                          | 0-1                                   | 05/29/07             | PCBs                                                             | Zone II            | ROUX         |  |
| SB-45S                          | 1-2                                   | 05/29/07             | PCBs                                                             | Zone II            | ROUX         |  |
| SB-45S                          | 2-3                                   | 05/29/07             | PCBs                                                             | Zone II            | ROUX         |  |
| SB-45W                          | 0-1                                   | 05/29/07             | PCBs                                                             | Zone II            | ROUX         |  |
| SB-45W                          | 1-2                                   | 05/29/07             | PCBs                                                             | Zone II            | ROUX         |  |
| SB-45W                          | 2-3                                   | 05/29/07             | PCBs                                                             | Zone II            | ROUX         |  |
| SB-48                           | 0-1                                   | 03/22/94             | PCBs                                                             | Zone II            | ROUX         |  |
| SB-48                           | 1-2                                   | 03/22/94             | PCBs                                                             | Zone II            | ROUX         |  |
| SB-48                           | 2-3                                   | 03/22/94             | PCBs                                                             | Zone II            | ROUX         |  |
| SB-57                           | 0-1                                   | 08/09/94             | PCBs                                                             | Zone II            | ROUX         |  |
| SB-61<br>SB-64                  | 0-1<br>0-1                            | 08/09/94<br>08/09/94 | PCBs<br>PCBs                                                     | Zone II<br>Zone II | ROUX<br>ROUX |  |
| SB-67                           | 0-1                                   | 08/09/94             | PCBs                                                             | Zone II            | ROUX         |  |
| SB-68                           | 0-1                                   | 08/09/94             | PCBs                                                             | Zone II            | ROUX         |  |
| SB-71                           | 0-1                                   | 08/09/94             | PCBs                                                             | Zone II            | ROUX         |  |
| SH-1                            | 0-1                                   | 12/10/07             | PCBs, cPAHs, Lead, PAHs, SVOCs                                   | Zone IV            |              |  |
| SH-2                            | 0-1                                   | 12/10/07             | PCBs, cPAHs, Lead, PAHs, SVOCs                                   | Zone IV            |              |  |
| SH-3                            | 0-1                                   | 12/10/07             | PCBs, cPAHs, Lead, PAHs, SVOCs                                   | Zone IV            | ROUX         |  |
| SH-4                            | 0-1                                   | 12/10/07             | PCBs, cPAHs, Lead, PAHs, SVOCs                                   | Zone III           | ROUX         |  |
| SH-5                            | 0-1                                   | 12/10/07             | PCBs, cPAHs, Lead, PAHs, SVOCs                                   | Zone III           |              |  |
| SH-6                            | 0-1                                   | 12/10/07             | PCBs, cPAHs, Lead, PAHs, SVOCs                                   | Zone III           |              |  |
| SH-7                            | 0-1                                   | 12/10/07             | PCBs, cPAHs, Lead, PAHs, SVOCs                                   | Zone III           |              |  |
| SH-8                            | 0-1                                   | 12/10/07             | PCBs, cPAHs, Lead, PAHs, SVOCs                                   | Zone II            | ROUX         |  |
| SH-9                            | 0-1<br>0-1                            | 12/10/07             | PCBs, cPAHs, Lead, PAHs, SVOCs                                   | Zone II            | ROUX         |  |
| SH-10<br>SH-11                  | 0-1                                   | 12/10/07<br>12/10/07 | PCBs, cPAHs, Lead, PAHs, SVOCs<br>PCBs, cPAHs, Lead, PAHs, SVOCs | Zone II<br>Zone II | ROUX<br>ROUX |  |
| SH-12                           | 0-1                                   | 12/10/07             | PCBs, cPAHs, Lead, PAHs, SVOCs                                   | Zone I             | ROUX         |  |
| SS-1                            | 0-1                                   | 12/08/97             | PCBs, cPAHs, Lead, PAHs                                          | Zone III           |              |  |
| SS-1                            | 1-2                                   | 12/08/97             | PCBs, cPAHs, Lead, PAHs                                          | Zone III           |              |  |
| SS-2                            | 0-1                                   | 12/08/97             | PCBs, cPAHs, Lead, PAHs                                          | Zone III           |              |  |
| SS-2                            | 1-2                                   | 12/08/97             | PCBs, cPAHs, Lead, PAHs                                          | Zone III           | ROUX         |  |
| SS-3                            | 0-1                                   | 12/08/97             | PCBs, cPAHs, Lead, PAHs                                          | Zone II            | ROUX         |  |
| SS-3                            | 1-2                                   | 12/08/97             | PCBs, cPAHs, Lead, PAHs                                          | Zone II            | ROUX         |  |
| SS-4                            | 0-1                                   | 12/08/97             | PCBs, cPAHs, Lead, PAHs                                          | Zone II            | ROUX         |  |
| SS-4                            | 1-2                                   | 12/08/97             | PCBs, cPAHs, Lead, PAHs                                          | Zone II            |              |  |
| SS-5                            | 0-1                                   | 12/08/97             | PCBs, cPAHs, Lead, PAHs                                          | Zone II            | ROUX         |  |
| SS-5                            | 1-2                                   | 12/08/97             | PCBs, cPAHs, Lead, PAHs                                          | Zone II            | ROUX         |  |
| SS-5A<br>SS-5B                  | 0-1<br>0-1                            | 12/08/97<br>12/08/97 | Lead<br>Lead                                                     | Zone II<br>Zone II | ROUX<br>ROUX |  |
| SS-5C                           | 0-1                                   | 12/08/97             | Lead                                                             | Zone II            | ROUX         |  |
| SS-5D                           | 0-1                                   | 12/08/97             | Lead                                                             | Zone II            | ROUX         |  |
| SS-6                            | 0-1                                   | 12/08/97             | PCBs, cPAHs, Lead, PAHs                                          | Zone II            | ROUX         |  |
| SS-6                            | 1-2                                   | 12/08/97             | PCBs, cPAHs, Lead, PAHs                                          | Zone II            | ROUX         |  |
| SS-7                            | 0-1                                   | 12/09/97             | PCBs, cPAHs, Lead, PAHs                                          | Zone II            | ROUX         |  |
| SS-7 DUP                        | 0-1                                   | 12/09/97             | PCBs, cPAHs, Lead, PAHs                                          | Zone II            | ROUX         |  |
| SS-7                            | 1-2                                   | 12/09/97             | PCBs, cPAHs, Lead, PAHs                                          | Zone II            | ROUX         |  |
| SS-7 DUP                        | 1-2                                   | 12/09/97             | PCBs, cPAHs, Lead, PAHs                                          | Zone II            | ROUX         |  |
| SS-8                            | 0-1                                   | 12/09/97             | PCBs, cPAHs, Lead, PAHs                                          | Zone II            | ROUX         |  |
| SS-8                            | 1-2                                   | 12/09/97             | PCBs, cPAHs, Lead, PAHs                                          | Zone II            | ROUX         |  |
| SS-9                            | 0-1                                   | 12/09/97             | PCBs, cPAHs, Lead, PAHs                                          | Zone II            | ROUX         |  |
| SS-9<br>SS-10                   | 1-2                                   | 12/09/97             | PCBs, cPAHs, Lead, PAHs                                          | Zone II            | ROUX         |  |
| SS-10<br>SS-10                  | 0-1<br>1-2                            | 12/09/97<br>12/09/97 | PCBs, cPAHs, Lead, PAHs<br>PCBs, cPAHs, Lead, PAHs               | Zone II<br>Zone II | ROUX<br>ROUX |  |
| SS-10<br>SS-11                  | 0-1                                   | 12/09/97             | PCBs, cPAHs, Lead, PAHs                                          | Zone II            | ROUX         |  |
| SS-11                           | 1-2                                   | 12/09/97             | PCBs, cPAHs, Lead, PAHs                                          | Zone II            | ROUX         |  |
| SS-12                           | 0-1                                   | 12/09/97             | PCBs, cPAHs, Lead, PAHs                                          | Zone II            | ROUX         |  |
| SS-12                           | 1-2                                   | 12/09/97             | PCBs, cPAHs, Lead, PAHs                                          | Zone II            | ROUX         |  |

Table 1. Summary of Soil-Quality Sampling, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Sample Location/<br>Designation | Sample Depth Interval Sample Date (Ft. Bls) |                      | Analyte(s)                                         | Zone             | Sampled By   |  |
|---------------------------------|---------------------------------------------|----------------------|----------------------------------------------------|------------------|--------------|--|
| SS-13                           | 0-1                                         | 12/09/97             | PCBs, cPAHs, Lead, PAHs                            | Zone II          | ROUX         |  |
| SS-13                           | 1-2                                         | 12/09/97             | PCBs, cPAHs, Lead, PAHs                            | Zone II          | ROUX         |  |
| SS-14                           | 0-1                                         | 12/09/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-14                           | 1-2                                         | 12/09/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-15                           | 0-1                                         | 12/09/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-15                           | 1-2                                         | 12/09/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-16                           | 0-1                                         | 12/09/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-16<br>SS-17                  | 1-2<br>0-1                                  | 12/09/97<br>12/09/97 | PCBs, cPAHs, Lead, PAHs<br>PCBs, cPAHs, Lead, PAHs | Zone I<br>Zone I | ROUX<br>ROUX |  |
| SS-17<br>SS-17                  | 1-2                                         | 12/09/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-18                           | 0-1                                         | 12/09/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-18                           | 1-2                                         | 12/09/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-19                           | 0-1                                         | 12/09/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-19                           | 1-2                                         | 12/09/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-19E15                        | 0-1                                         | 01/22/98             | PCBs                                               | Zone I           | ROUX         |  |
| SS-19E30                        | 0-1                                         | 01/22/98             | PCBs                                               | Zone I           | ROUX         |  |
| SS-19W15                        | 0-1                                         | 01/22/98             | PCBs                                               | Zone I           | ROUX         |  |
| SS-19W30                        | 0-1                                         | 01/22/98             | PCBs                                               | Zone I           | ROUX         |  |
| SS-20<br>SS-20                  | 0-1<br>1-2                                  | 12/09/97             | PCBs, cPAHs, Lead, PAHs<br>PCBs, cPAHs, Lead, PAHs | Zone I<br>Zone I | ROUX         |  |
| SS-20<br>SS-21                  | 0-1                                         | 12/09/97<br>12/09/97 | PCBs, cPAHs, Lead, PAHs PCBs, cPAHs, Lead, PAHs    | Zone I<br>Zone I | ROUX<br>ROUX |  |
| SS-21                           | 1-2                                         | 12/09/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-21<br>SS-22                  | 0-1                                         | 12/09/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-22                           | 1-2                                         | 12/09/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-22E15                        | 0-1                                         | 01/22/98             | PCBs                                               | Zone I           | ROUX         |  |
| SS-22E30                        | 0-1                                         | 01/22/98             | PCBs                                               | Zone I           | ROUX         |  |
| SS-22W15                        | 0-1                                         | 01/22/98             | PCBs                                               | Zone I           | ROUX         |  |
| SS-22W30                        | 0-1                                         | 01/22/98             | PCBs                                               | Zone I           | ROUX         |  |
| SS-22W40                        | 0-1                                         | 02/20/98             | PCBs                                               | Zone I           | ROUX         |  |
| SS-23                           | 0-1                                         | 12/10/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-23                           | 1-2                                         | 12/10/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-24<br>SS-24                  | 0-1<br>1-2                                  | 12/09/97<br>12/09/97 | PCBs, cPAHs, Lead, PAHs                            | Zone I<br>Zone I | ROUX<br>ROUX |  |
| SS-25                           | 0-1                                         | 12/10/97             | PCBs, cPAHs, Lead, PAHs<br>PCBs, cPAHs, Lead, PAHs | Zone I           | ROUX         |  |
| SS-25                           | 1-2                                         | 12/10/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-26                           | 0-1                                         | 12/10/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-26                           | 1-2                                         | 12/10/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-27                           | 0-1                                         | 12/10/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-27                           | 1-2                                         | 12/10/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-28                           | 0-1                                         | 12/10/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-28                           | 1-2                                         | 12/10/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-29                           | 0-1                                         | 12/10/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-29                           | 1-2                                         | 12/10/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-30<br>SS-30                  | 0-1<br>1-2                                  | 12/10/97<br>12/10/97 | PCBs, cPAHs, Lead, PAHs<br>PCBs, cPAHs, Lead, PAHs | Zone I<br>Zone I | ROUX<br>ROUX |  |
| SS-31                           | 0-1                                         | 12/10/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-31                           | 1-2                                         | 12/10/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-32                           | 0-1                                         | 12/10/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-32                           | 1-2                                         | 12/10/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-33                           | 0-1                                         | 12/10/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-33                           | 1-2                                         | 12/10/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-34                           | 0-1                                         | 12/10/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-34                           | 1-2                                         | 12/10/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-35                           | 0-1                                         | 12/10/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-35                           | 1-2                                         | 12/10/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-36                           | 0-1                                         | 12/10/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-36<br>SS-37                  | 1-2<br>0-1                                  | 12/10/97<br>12/10/97 | PCBs, cPAHs, Lead, PAHs<br>PCBs, cPAHs, Lead, PAHs | Zone I<br>Zone I | ROUX<br>ROUX |  |
| SS-37 DUP                       | 0-1<br>0-1                                  | 12/10/97             | PCBs, cPAHs, Lead, PAHs PCBs, cPAHs, Lead, PAHs    | Zone I<br>Zone I | ROUX         |  |
| SS-37 DOF<br>SS-37              | 1-2                                         | 12/10/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-37 DUP                       | 1-2                                         | 12/10/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-38                           | 0-1                                         | 12/10/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SS-38                           | 1-2                                         | 12/10/97             | PCBs, cPAHs, Lead, PAHs                            | Zone I           | ROUX         |  |
| SSY-7                           | 0-0.5                                       | 06/07/99             | PCBs, cPAHs, Lead                                  | Zone IV          |              |  |
| SSY-9                           | 0.5-1                                       | 07/09/99             | PCBs, cPAHs, Lead                                  | Zone II          | I AKRF       |  |

Table 1. Summary of Soil-Quality Sampling, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Sample Location/<br>Designation | Sample Depth<br>Interval<br>(Ft. Bls) | Sample Date          | Analyte(s)                                         | Zone Sample                  | ed By |
|---------------------------------|---------------------------------------|----------------------|----------------------------------------------------|------------------------------|-------|
| SSY-10                          | 0.5-1                                 | 07/09/99             | PCBs, cPAHs, Lead                                  | Zone III AKI                 | RF    |
| SSY-11                          | 0.5-1                                 | 07/09/99             | PCBs, cPAHs, Lead                                  | Zone II AKI                  | RF    |
| SSY-12                          | 0.5-1                                 | 07/09/99             | PCBs, cPAHs, Lead                                  | Zone II AKI                  |       |
| SSY-16                          | 0-0.5                                 | 06/03/99             | PCBs, cPAHs, Lead                                  | Zone I AKI                   |       |
| SSY-17I                         | 11-11.5                               | 04/23/99             | cPAHs, Lead                                        | Zone I AKI                   |       |
| SSY-17S<br>SSY-20               | 1-1.5<br>0-0.5                        | 04/23/99<br>06/03/99 | cPAHs, Lead<br>PCBs, Lead                          | Zone I AKI<br>Zone IV AKI    |       |
| SSY-20 RE                       | 0-0.5                                 | 06/03/99             | cPAHs                                              | Zone IV AKI                  |       |
| SSY-21                          | 0.5-1                                 | 06/03/99             | PCBs, cPAHs, Lead                                  | Zone IV AKI                  |       |
| SSY-22                          | 0.5-1                                 | 06/03/99             | PCBs, cPAHs, Lead                                  | Zone III AKI                 |       |
| SSY-23                          | 0.5-1                                 | 07/09/99             | PCBs, cPAHs, Lead                                  | Zone III AKI                 | RF    |
| SSY-24                          | 0.5-1                                 | 07/09/99             | PCBs, cPAHs, Lead                                  | Zone III AKI                 |       |
| SSY-25                          | 0.5-1                                 | 07/09/99             | PCBs, cPAHs, Lead                                  | Zone II AKI                  |       |
| SSY-26<br>SSY-27                | 0.5-1<br>0-0.5                        | 07/09/99<br>06/03/99 | PCBs, cPAHs, Lead                                  | Zone II AKI<br>Zone II AKI   |       |
| SSY-28                          | 0-0.5                                 | 06/03/99             | PCBs, cPAHs, Lead<br>PCBs, cPAHs, Lead             | Zone I AKI                   |       |
| SSY-33                          | 0-0.5                                 | 06/03/99             | PCBs, cPAHs, Lead                                  | Zone IV AKI                  |       |
| SSY-33D                         | 5.5-6                                 | 06/03/99             | PCBs, cPAHs, Lead                                  | Zone IV AKI                  |       |
| SSY-34                          | 0.5-1                                 | 06/03/99             | PCBs, cPAHs, Lead                                  | Zone IV AKI                  | RF    |
| SSY-34D                         | 3.5-4                                 | 06/03/99             | PCBs, cPAHs, Lead                                  | Zone IV AKI                  |       |
| SSY-35                          | 0-0.5                                 | 06/03/99             | PCBs, cPAHs, Lead                                  | Zone III AKI                 |       |
| SSY-35D                         | 5.5-6                                 | 06/03/99             | PCBs, cPAHs, Lead                                  | Zone III AKI                 |       |
| SSY-36<br>SSY-37                | 0.5-1<br>0.5-1                        | 06/03/99<br>06/03/99 | PCBs, cPAHs, Lead                                  | Zone IV AKI<br>Zone IV AKI   |       |
| SSY-38                          | 0.5-1                                 | 06/03/99             | PCBs, cPAHs, Lead<br>PCBs, cPAHs, Lead             | Zone III AKI                 |       |
| SSY-38D                         | 5.5-6                                 | 06/03/99             | PCBs, cPAHs, Lead                                  | Zone III AKI                 |       |
| SSY-39                          | 1-1.5                                 | 04/28/99             | PCBs, cPAHs, Lead                                  | Zone IV AKI                  |       |
| SSY-40                          | 1-1.5                                 | 04/28/99             | PCBs, cPAHs, Lead                                  | Zone III AKI                 |       |
| SSY-42                          | 0.5-1                                 | 07/09/99             | PCBs, cPAHs, Lead                                  | Zone II AKI                  |       |
| SSY-45                          | 0-0.5                                 | 06/14/99             | PCBs, cPAHs, Lead                                  | Zone II AKI                  |       |
| SSY-46                          | 0.5-1                                 | 06/14/99             | PCBs, cPAHs, Lead                                  | Zone II AKI                  |       |
| SSY-46D<br>SSY-52               | 20-22<br>2-2.5                        | 06/14/99<br>04/23/99 | PCBs, cPAHs, Lead<br>cPAHs, Lead                   | Zone II AKI<br>Zone I AKI    |       |
| SSY-53                          | 2.5-3                                 | 04/23/99             | cPAHs, Lead                                        | Zone I AKI                   |       |
| SSY-54                          | 2-2.5                                 | 04/23/99             | cPAHs, Lead                                        | Zone I AKI                   |       |
| SSY-56                          | 1.5-2                                 | 04/23/99             | cPAHs, Lead                                        | Zone I AKI                   |       |
| SSY-57                          | 1.5-2                                 | 04/23/99             | cPAHs, Lead                                        | Zone I AKI                   |       |
| SW-1                            |                                       | 11/02/98             | PCBs                                               | Zone III ROU                 |       |
| SW-1                            | 0-1                                   | 07/31/97             | PCBs, cPAHs, Lead, PAHs                            | Zone III ROU                 |       |
| SW-1                            | 1-2                                   | 07/31/97             | PCBs, cPAHs, Lead, PAHs                            | Zone III ROU                 |       |
| SW-2<br>SW-2                    | <br>0-1                               | 11/02/98<br>07/31/97 | PCBs<br>PCBs, cPAHs, Lead, PAHs                    | Zone III ROU<br>Zone III ROU |       |
| SW-2                            | 1-2                                   | 07/31/97             | PCBs, cPAHs, Lead, PAHs                            | Zone III ROU                 |       |
| SW-3                            |                                       | 11/02/98             | PCBs                                               | Zone III ROU                 |       |
| SW-3                            | 0-1                                   | 07/31/97             | PCBs, cPAHs, Lead, PAHs                            | Zone III ROU                 |       |
| SW-3                            | 1-2                                   | 07/31/97             | PCBs, cPAHs, Lead, PAHs                            | Zone III ROU                 |       |
| SW-4                            |                                       | 11/02/98             | PCBs                                               | Zone II ROU                  |       |
| SW-5                            | 0-1                                   | 07/31/97             | PCBs, cPAHs, Lead, PAHs                            | Zone III ROU                 |       |
| SW-5<br>SW-6                    | 1-2<br>0-1                            | 07/31/97<br>07/31/97 | PCBs, cPAHs, Lead, PAHs                            | Zone III ROU<br>Zone III ROU |       |
| SW-6                            | 1-2                                   | 07/31/97             | PCBs, cPAHs, Lead, PAHs<br>PCBs, cPAHs, Lead, PAHs | Zone III ROU                 |       |
| SW-7                            | 0-1                                   | 07/31/97             | PCBs, cPAHs, Lead, PAHs                            | Zone III ROU                 |       |
| SW-7                            | 1-2                                   | 07/31/97             | PCBs, cPAHs, Lead, PAHs                            | Zone III ROU                 |       |
| SW7-8                           | 0-1                                   | 01/18/05             | PCBs, cPAHs, Lead                                  | Zone II ROU                  | JX    |
| SW7-8                           | 1-2                                   | 01/18/05             | PCBs, cPAHs, Lead                                  | Zone II ROU                  |       |
| SW7-8                           | 2-3                                   | 01/18/05             | PCBs, cPAHs, Lead                                  | Zone II ROU                  |       |
| SW-8                            | 0-1                                   | 07/31/97             | PCBs, cPAHs, Lead, PAHs                            | Zone III ROU                 |       |
| SW-8                            | 1-2                                   | 07/31/97             | PCBs, cPAHs, Lead, PAHs                            | Zone III ROU                 |       |
| SW-9<br>SW-9                    | 0-1<br>1-2                            | 07/31/97<br>07/31/97 | PCBs, cPAHs, Lead, PAHs<br>PCBs, cPAHs, Lead, PAHs | Zone III ROU<br>Zone III ROU |       |
| SW-10                           | 0-1                                   | 08/15/97             | PCBs, Lead                                         | Zone III ROU                 |       |
| SW-10 RE                        | 0-1                                   | 08/15/97             | cPAHs, PAHs                                        | Zone III ROU                 |       |
| SW-10                           | 1-2                                   | 08/15/97             | PCBs, Lead                                         | Zone III ROU                 |       |
| SW-10 RE                        | 1-2                                   | 08/15/97             | cPAHs, PAHs                                        | Zone III ROU                 |       |
| SW-11                           | 0-1                                   | 08/15/97             | PCBs, cPAHs, Lead, PAHs                            | Zone III ROU                 | JX    |

Table 1. Summary of Soil-Quality Sampling, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Sample Location/<br>Designation | Sample Depth Interval Sample Date (Ft. Bls) |                      | Analyte(s)                             | Zone                 | Sampled B    |
|---------------------------------|---------------------------------------------|----------------------|----------------------------------------|----------------------|--------------|
| SW-11                           | 1-2                                         | 08/15/97             | PCBs, Lead                             | Zone III             | ROUX         |
| SW-11 RE                        | 1-2                                         | 08/15/97             | cPAHs, PAHs                            | Zone III             |              |
| SW-12                           | 0-1                                         | 08/15/97             | PCBs, cPAHs, Lead, PAHs                | Zone III             | ROUX         |
| SW-12                           | 1-2                                         | 08/15/97             | PCBs, cPAHs, Lead, PAHs                | Zone III             |              |
| SW-13                           | 0-1                                         | 08/15/97             | PCBs, Lead                             | Zone III             |              |
| SW-13 RE                        | 0-1                                         | 08/15/97             | cPAHs, PAHs                            | Zone III             |              |
| SW-13                           | 1-2                                         | 08/15/97             | PCBs, cPAHs, Lead, PAHs                | Zone III             |              |
| SW-14<br>SW-14                  | 0-1<br>1-2                                  | 08/15/97<br>08/15/97 | PCBs, cPAHs, Lead, PAHs<br>PCBs, Lead  | Zone IV<br>Zone IV   | ROUX<br>ROUX |
| SW-14 RE                        | 1-2                                         | 08/15/97             | cPAHs, PAHs                            | Zone IV              |              |
| SW-15                           | 0-1                                         | 08/15/97             | PCBs, cPAHs, Lead, PAHs                | Zone IV              | ROUX         |
| SW-16                           | 0-1                                         | 08/15/97             | PCBs, cPAHs, Lead, PAHs                | Zone IV              | ROUX         |
| SW-17                           | 0-1                                         | 08/15/97             | PCBs, cPAHs, Lead, PAHs                | Zone IV              | ROUX         |
| SW-41                           | 0-1                                         | 05/24/05             | PCBs, cPAHs, Lead, PAHs                | Zone III             | ROUX         |
| SW-41                           | 1-2                                         | 05/24/05             | PCBs, cPAHs, Lead, PAHs                | Zone III             |              |
| SW-41                           | 2-3                                         | 05/24/05             | PCBs, cPAHs, Lead, PAHs                | Zone III             |              |
| SW-49-E                         | 0-1                                         | 06/22/04             | PCBs, cPAHs, Lead                      | Zone III             |              |
| SW-49-E                         | 1-2                                         | 06/22/04             | PCBs, cPAHs, Lead                      | Zone III             |              |
| SW-49-E<br>SW-49-W              | 2-3<br>0-1                                  | 06/22/04<br>06/22/04 | PCBs, cPAHs, Lead                      | Zone III<br>Zone III |              |
| SW-49-W<br>SW-49-W              | 1-2                                         | 06/22/04             | PCBs, cPAHs, Lead<br>PCBs, cPAHs, Lead | Zone III<br>Zone III |              |
| SW-49-W                         | 2-3                                         | 06/22/04             | PCBs, cPAHs, Lead                      | Zone III             |              |
| SW-51-E                         | 0-1                                         | 06/22/04             | PCBs, cPAHs, Lead                      | Zone III             |              |
| SW-51-E                         | 1-2                                         | 06/22/04             | PCBs, cPAHs, Lead                      | Zone III             |              |
| SW-51-E                         | 2-3                                         | 06/22/04             | PCBs, cPAHs, Lead                      | Zone III             | ROUX         |
| SW-51-W                         | 0-1                                         | 06/22/04             | PCBs, cPAHs, Lead                      | Zone III             | ROUX         |
| SW-51-W                         | 1-2                                         | 06/22/04             | PCBs, cPAHs, Lead                      | Zone III             |              |
| SW-51-W                         | 2-3                                         | 06/22/04             | PCBs, cPAHs, Lead                      | Zone III             |              |
| T-1                             | 0-1                                         | 07/30/99             | PCBs, cPAHs, Lead, PAHs                | Zone III             |              |
| T-2                             | 0-1<br>0-1                                  | 07/30/99             | PCBs, cPAHs, Lead, PAHs                | Zone II              | ROUX         |
| T-3<br>T-4                      | 0-1<br>0-1                                  | 07/30/99<br>07/30/99 | PCBs, cPAHs, Lead, PAHs<br>PCBs, Lead  | Zone III<br>Zone III |              |
| T-4 RE                          | 0-1                                         | 07/30/99             | cPAHs, PAHs                            | Zone III             |              |
| T-5                             | 0-1                                         | 07/30/99             | PCBs, Lead                             | Zone II              | ROUX         |
| T-5 RE                          | 0-1                                         | 07/30/99             | cPAHs, PAHs                            | Zone II              | ROUX         |
| T-6                             | 0-1                                         | 07/30/99             | PCBs, Lead                             | Zone II              | ROUX         |
| T-6 RE                          | 0-1                                         | 07/30/99             | cPAHs, PAHs                            | Zone II              | ROUX         |
| T-7                             | 0-1                                         | 07/30/99             | PCBs, cPAHs, Lead, PAHs                | Zone II              | ROUX         |
| T-7                             | 1-2                                         | 08/09/99             | Lead                                   | Zone II              | ROUX         |
| T-8                             | 0-1                                         | 07/30/99             | PCBs, Lead                             | Zone II              | ROUX         |
| T-8                             | 1-2<br>0-1                                  | 08/09/99             | PCBs                                   | Zone II              | ROUX         |
| T-8 RE<br>T-9                   | 0-1<br>0-1                                  | 07/30/99<br>07/30/99 | cPAHs, PAHs<br>PCBs, Lead              | Zone II<br>Zone II   | ROUX<br>ROUX |
| T-9 RE                          | 0-1                                         | 07/30/99             | cPAHs, PAHs                            | Zone II              | ROUX         |
| T-9                             | 1-2                                         | 08/09/99             | PCBs                                   | Zone II              | ROUX         |
| T-10                            | 0-1                                         | 07/30/99             | PCBs, cPAHs, Lead                      | Zone II              | ROUX         |
| T-10 RE                         | 0-1                                         | 07/30/99             | PAHs                                   | Zone II              | ROUX         |
| T-11                            | 0-1                                         | 07/30/99             | PCBs, Lead                             | Zone II              | ROUX         |
| T-11 RE                         | 0-1                                         | 07/30/99             | cPAHs, PAHs                            | Zone II              | ROUX         |
| T-12                            | 0-1                                         | 07/30/99             | PCBs, Lead                             | Zone II              | ROUX         |
| T-12 RE                         | 0-1                                         | 07/30/99             | cPAHs, PAHs                            | Zone II              | ROUX         |
| T-21A<br>T-21B                  | 0-0.5<br>0-0.5                              | 03/02/92<br>03/02/92 | PCBs<br>PCBs                           | Zone II<br>Zone II   | ROUX         |
| T-21C                           | 0-0.5                                       | 03/02/92             | PCBs                                   | Zone II              | ROUX<br>ROUX |
| T-21D                           | 0-0.5                                       | 03/02/92             | PCBs                                   | Zone II              | ROUX         |
| T-21E                           | 0-0.5                                       | 03/02/92             | PCBs                                   | Zone II              | ROUX         |
| T-34C-1                         |                                             | 05/13/04             | PCBs, cPAHs, Lead, PAHs                | Zone III             | ROUX         |
| T-34C-2                         |                                             | 05/13/04             | PCBs, cPAHs, Lead, PAHs                | Zone III             | ROUX         |
| T-34C-3                         |                                             | 05/13/04             | PCBs, cPAHs, Lead, PAHs                | Zone III             | ROUX         |
| T-34C-4                         |                                             | 05/13/04             | PCBs, cPAHs, Lead, PAHs                | Zone III             | ROUX         |
| T-34C-4B                        |                                             | 07/20/04             | cPAHs, PAHs                            | Zone III             | ROUX         |
| T-34C-5                         |                                             | 05/13/04             | PCBs, cPAHs, Lead, PAHs                | Zone II              | ROUX         |
| T-34C-6                         |                                             | 05/13/04             | PCBs, cPAHs, Lead, PAHs                | Zone II              | ROUX         |
| T-34C-7<br>T-34C-7B             |                                             | 05/13/04<br>06/21/04 | PCBs, cPAHs, Lead, PAHs<br>cPAHs, PAHs | Zone II<br>Zone II   | ROUX<br>ROUX |

Table 1. Summary of Soil-Quality Sampling, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Sample Location/<br>Designation | n/ Sample Depth Interval Sample Date (Ft. Bls) |                      | Analyte(s)                                         | Zone               | Sampled By   |  |
|---------------------------------|------------------------------------------------|----------------------|----------------------------------------------------|--------------------|--------------|--|
| T-34C-8                         |                                                | 05/13/04             | PCBs, cPAHs, Lead, PAHs                            | Zone II            | ROUX         |  |
| T-34C-9                         |                                                | 05/13/04             | PCBs, cPAHs, Lead, PAHs                            | Zone II            | ROUX         |  |
| T-34C-9B                        |                                                | 06/21/04             | Lead                                               | Zone II            | ROUX         |  |
| T-34C-10                        |                                                | 05/13/04             | PCBs, cPAHs, Lead, PAHs                            | Zone II            |              |  |
| T-34C-10B                       |                                                | 06/21/04             | cPAHs, PAHs                                        | Zone II            | ROUX         |  |
| T-34C-11<br>T-34C-12            |                                                | 05/13/04<br>05/13/04 | PCBs, cPAHs, Lead, PAHs<br>PCBs, cPAHs, Lead, PAHs | Zone II<br>Zone II | ROUX<br>ROUX |  |
| T-34C-12B                       |                                                | 06/21/04             | cPAHs, PAHs                                        | Zone II            |              |  |
| T1-C1                           |                                                | 07/19/02             | cPAHs, PAHs                                        | Zone II            |              |  |
| T1-C2                           |                                                | 07/19/02             | cPAHs, PAHs                                        | Zone II            |              |  |
| T1-C3                           |                                                | 07/19/02             | cPAHs, PAHs                                        | Zone II            |              |  |
| T1-C4                           |                                                | 07/19/02             | Lead                                               | Zone II            |              |  |
| T1-C5<br>T1-C6                  | <del></del>                                    | 07/19/02<br>07/19/02 | Lead<br>Lead                                       | Zone II<br>Zone II |              |  |
| T8-1                            | 0-2                                            | 07/02/96             | PCBs                                               | Zone II            |              |  |
| T8-10                           | 0-2                                            | 07/02/96             | PCBs                                               | Zone II            |              |  |
| T8-2                            | 0-2                                            | 07/02/96             | PCBs                                               | Zone II            | I ROUX       |  |
| T8-3                            | 0-2                                            | 07/02/96             | PCBs                                               | Zone II            | I ROUX       |  |
| T8-4                            | 0-2                                            | 07/02/96             | PCBs                                               | Zone II            |              |  |
| T8-5                            | 0-2                                            | 07/02/96             | PCBs                                               | Zone II            |              |  |
| T8-6<br>T8-6                    | 0-2<br>2-3                                     | 07/02/96<br>10/29/96 | PCBs<br>PCBs                                       | Zone II<br>Zone II |              |  |
| T8-6                            | 2-3<br>2-3                                     | 11/04/96             | PCBs<br>PCBs                                       | Zone II            |              |  |
| T8-6                            | 3-4                                            | 10/29/96             | PCBs                                               | Zone II            |              |  |
| T8-6+15                         | 2-3                                            | 11/04/96             | PCBs                                               | Zone II            |              |  |
| T8-6+25                         | 0-2                                            | 10/29/96             | PCBs                                               | Zone II            | I ROUX       |  |
| T8-6-15                         | 2-3                                            | 11/04/96             | PCBs                                               | Zone II            |              |  |
| T8-6-25                         | 0-2                                            | 10/29/96             | PCBs                                               | Zone II            |              |  |
| T8-7<br>T8-8                    | 0-2<br>0-2                                     | 07/02/96             | PCBs                                               | Zone II            |              |  |
| T8-9                            | 0-2                                            | 07/02/96<br>07/02/96 | PCBs<br>PCBs                                       | Zone II<br>Zone II |              |  |
| T9-1                            | 2-3                                            | 08/23/04             | PCBs, cPAHs, Lead                                  | Zone II            |              |  |
| T9-2                            | 2-3                                            | 08/23/04             | PCBs, cPAHs, Lead                                  | Zone II            |              |  |
| T9-3                            | 2-3                                            | 08/23/04             | PCBs, cPAHs, Lead                                  | Zone II            | ROUX         |  |
| T10-1                           | 0-1                                            | 07/10/97             | PCBs, Lead                                         | Zone II            |              |  |
| T10-1 RE                        | 0-1                                            | 07/10/97             | cPAHs, PAHs                                        | Zone II            |              |  |
| T10-1                           | 1-2                                            | 07/10/97             | PCBs, cPAHs, Lead, PAHs                            | Zone II            |              |  |
| T10-1 (Post-Ex)<br>T10-1 PX     |                                                | 08/10/05<br>07/28/05 | Lead<br>cPAHs, Lead                                | Zone II<br>Zone II |              |  |
| T10-11 X                        | 0-1                                            | 07/10/97             | PCBs, Lead                                         | Zone II            |              |  |
| T10-2 RE                        | 0-1                                            | 07/10/97             | cPAHs, PAHs                                        | Zone II            |              |  |
| T10-2                           | 1-2                                            | 07/10/97             | PCBs, cPAHs, Lead, PAHs                            | Zone II            | ROUX         |  |
| T10-2 PX                        |                                                | 07/28/05             | cPAHs, Lead                                        | Zone II            | ROUX         |  |
| T10-3                           | 0-1                                            | 07/10/97             | PCBs, Lead                                         | Zone II            |              |  |
| T10-3 RE                        | 0-1                                            | 07/10/97             | cPAHs, PAHs                                        | Zone II            |              |  |
| T10-3<br>T10-3 PX               | 1-2                                            | 07/10/97<br>07/28/05 | PCBs, cPAHs, Lead, PAHs<br>cPAHs, Lead             | Zone II<br>Zone II | ROUX<br>ROUX |  |
| T10-3 FX<br>T10-4               | 0-1                                            | 07/10/97             | PCBs, Lead                                         | Zone II            |              |  |
| T10-4 RE                        | 0-1                                            | 07/10/97             | cPAHs, PAHs                                        | Zone II            | ROUX         |  |
| T10-4                           | 1-2                                            | 07/10/97             | PCBs, cPAHs, Lead, PAHs                            | Zone II            | ROUX         |  |
| T10-4 PX                        |                                                | 07/28/05             | cPAHs, Lead                                        | Zone II            | ROUX         |  |
| T19-1                           | 0-2                                            | 03/20/96             | PCBs                                               | Zone II            |              |  |
| T19-10                          | 0-2                                            | 03/20/96             | PCBs                                               | Zone II            |              |  |
| T19-2                           | 0-2                                            | 03/20/96             | PCBs                                               | Zone II            |              |  |
| T19-3<br>T19-4                  | 0-2<br>0-2                                     | 03/20/96<br>03/20/96 | PCBs<br>PCBs                                       | Zone II<br>Zone II |              |  |
| T19-4<br>T19-5                  | 0-2                                            | 03/20/96             | PCBs                                               | Zone II            |              |  |
| T19-6                           | 0-2                                            | 03/20/96             | PCBs                                               | Zone II            |              |  |
| T19-7                           | 0-2                                            | 03/20/96             | PCBs                                               | Zone II            | I ROUX       |  |
| T19-8                           | 0-2                                            | 03/20/96             | PCBs                                               | Zone II            |              |  |
| T19-9                           | 0-2                                            | 03/20/96             | PCBs                                               | Zone II            |              |  |
| T24-1                           | 0-1                                            | 11/01/02             | PCBs, cPAHs, Lead, PAHs                            | Zone II            |              |  |
| T24-1<br>T24-1                  | 1-2<br>2-3                                     | 11/01/02<br>11/01/02 | cPAHs, PAHs                                        | Zone II            |              |  |
| T24-10                          | 2-3<br>0-1                                     | 11/01/02             | cPAHs, PAHs<br>PCBs, cPAHs, Lead, PAHs             | Zone II<br>Zone II |              |  |

Table 1. Summary of Soil-Quality Sampling, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Sample Location/<br>Designation | Interval Sample Date |                      | Analyte(s)                                         | Zone                 | Sampled By       |  |
|---------------------------------|----------------------|----------------------|----------------------------------------------------|----------------------|------------------|--|
| T24-11                          | 0-1                  | 11/01/02             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX             |  |
| T24-2                           | 0-1                  | 11/01/02             | PCBs, cPAHs, Lead, PAHs                            | Zone III             | ROUX             |  |
| T24-3                           | 0-1                  | 11/01/02             | PCBs, cPAHs, Lead, PAHs                            | Zone III             | ROUX             |  |
| T24-4                           | 0-1                  | 11/01/02             | PCBs, cPAHs, Lead, PAHs                            | Zone III             | ROUX             |  |
| T24-5                           | 0-1                  | 11/01/02             | PCBs, cPAHs, Lead, PAHs                            | Zone III             | ROUX             |  |
| T24-6                           | 0-1<br>0-1           | 11/01/02             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX             |  |
| T24-7<br>T24-8                  | 0-1<br>0-1           | 11/01/02<br>11/01/02 | PCBs, cPAHs, Lead, PAHs                            | Zone II<br>Zone II   | ROUX<br>ROUX     |  |
| T24-9                           | 0-1                  | 11/01/02             | PCBs, cPAHs, Lead, PAHs<br>PCBs, cPAHs, Lead, PAHs | Zone II              | ROUX             |  |
| T24-C1                          | 0-1<br>              | 11/07/02             | cPAHs, PAHs                                        | Zone III             | ROUX             |  |
| T24-C2                          |                      | 11/07/02             | cPAHs, PAHs                                        | Zone III             | ROUX             |  |
| T25-1                           | 0-1**                | 07/09/98             | PCBs, cPAHs, Lead                                  | Zone III             | ROUX             |  |
| T25-1 (B)                       | В                    | 07/09/98             | PCBs, cPAHs, Lead                                  | Zone III             | ROUX             |  |
| T25-2                           | 0-1**                | 07/09/98             | PCBs, cPAHs, Lead                                  | Zone III             | ROUX             |  |
| T25-2 (B)                       | В                    | 07/09/98             | PCBs, cPAHs, Lead                                  | Zone III             | ROUX             |  |
| T25-3                           | 0-1**                | 07/09/98             | PCBs, cPAHs, Lead                                  | Zone III             |                  |  |
| T25-3 (B)                       | B                    | 07/09/98             | PCBs, cPAHs, Lead                                  | Zone III             | ROUX             |  |
| T25-4                           | 0-1**                | 07/09/98             | PCBs, cPAHs, Lead                                  | Zone III             | ROUX             |  |
| T25-4 (B)<br>T25-4-20           | B<br>B               | 07/09/98             | PCBs, cPAHs, Lead<br>PCBs, Lead                    | Zone III<br>Zone III | ROUX             |  |
| T25-4-40                        | В                    | 07/30/98<br>07/30/98 | Lead                                               | Zone III             | ROUX<br>ROUX     |  |
| T25-5                           | 0-1**                | 07/09/98             | PCBs, cPAHs, Lead                                  | Zone II              | ROUX             |  |
| T25-5 (B)                       | В                    | 07/09/98             | PCBs, cPAHs, Lead                                  | Zone II              | ROUX             |  |
| T25-5+20                        | В                    | 07/30/98             | PCBs                                               | Zone II              | ROUX             |  |
| T25-6                           | 0-1**                | 07/09/98             | PCBs, cPAHs, Lead                                  | Zone II              | ROUX             |  |
| T25-6 (B)                       | В                    | 07/09/98             | PCBs, cPAHs, Lead                                  | Zone II              | ROUX             |  |
| T25-6-20                        | В                    | 07/30/98             | Lead                                               | Zone II              | ROUX             |  |
| T25-7                           | 0-1**                | 07/09/98             | PCBs, cPAHs, Lead                                  | Zone II              | ROUX             |  |
| T25-7 (B)                       | В                    | 07/09/98             | PCBs, cPAHs, Lead                                  | Zone II              | ROUX             |  |
| T25-7+20                        | В                    | 07/30/98             | Lead                                               | Zone II              | ROUX             |  |
| T25-8                           | 0-1**                | 07/09/98             | PCBs, cPAHs, Lead                                  | Zone II              | ROUX             |  |
| T25-8 (B)<br>T32-1              | B<br>0-1             | 07/09/98             | PCBs, cPAHs, Lead                                  | Zone II<br>Zone III  | ROUX             |  |
| T32-10                          | 0-1<br>0-1           | 04/07/03<br>04/07/03 | PCBs, cPAHs, Lead, PAHs<br>PCBs, cPAHs, Lead, PAHs | Zone II              | ROUX<br>ROUX     |  |
| T32-10                          | 0-1                  | 04/07/03             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX             |  |
| T32-2                           | 0-1                  | 04/07/03             | PCBs, cPAHs, Lead, PAHs                            | Zone III             | ROUX             |  |
| T32-3                           | 0-1                  | 04/07/03             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX             |  |
| T32-4                           | 0-1                  | 04/07/03             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX             |  |
| T32-5                           | 0-1                  | 04/07/03             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX             |  |
| T32-6                           | 0-1                  | 04/07/03             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX             |  |
| T32-7                           | 0-1                  | 04/07/03             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX             |  |
| T32-8                           | 0-1                  | 04/07/03             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX             |  |
| T32-9                           | 0-1                  | 04/07/03             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX             |  |
| T36C-1                          | -                    | 05/14/02             | cPAHs, PAHs                                        | Zone II              | ROUX             |  |
| T36C-2<br>T36C-3                | -                    | 05/14/02<br>05/14/02 | cPAHs, PAHs                                        | Zone II<br>Zone II   | ROUX<br>ROUX     |  |
| T36C-4                          | -                    | 05/14/02             | cPAHs, PAHs<br>cPAHs, PAHs                         | Zone II              | ROUX             |  |
| T36C-5                          | _                    | 05/14/02             | cPAHs, PAHs                                        | Zone II              | ROUX             |  |
| T36C-6                          | -                    | 05/14/02             | cPAHs, PAHs                                        | Zone II              | ROUX             |  |
| T36C-7                          | _                    | 05/14/02             | cPAHs, PAHs                                        | Zone II              | ROUX             |  |
| TANKPAD-1                       | 0-1                  | 08/12/02             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX             |  |
| TANKPAD-2                       | 0-1                  | 08/12/02             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX             |  |
| TANKPAD-2                       | 0-2                  | 09/12/05             | PCBs, cPAHs, Lead                                  | Zone I               | ROUX             |  |
| TE-A-6                          | 6-8                  | 08/09/00             | PCBs, cPAHs                                        | Zone I               | PB/STV           |  |
| TE-B/C-5                        | 4-6                  | 08/09/00             | PCBs, cPAHs                                        | Zone I               | PB/STV           |  |
| TE-D-5                          | 4-8                  | 08/30/00             | PCBs, cPAHs                                        | Zone II              | PB/STV           |  |
| TE-D-5                          | 16-18                | 08/30/00             | PCBs, cPAHs                                        | Zone II              | PB/STV           |  |
| TE-HR-16                        | 6-8                  | 08/09/00             | PCBs, cPAHs                                        | Zone I               | PB/STV           |  |
| TE-IB/OB-1                      | 6-8<br>15-17         | 09/11/00             | PCBs, cPAHs                                        | Zone I               | PB/STV           |  |
| TE-IB/OB-1<br>TE-IB/OB-1        | 33-35                | 09/11/00<br>09/11/00 | PCBs, cPAHs<br>PCBs, cPAHs                         | Zone I<br>Zone I     | PB/STV<br>PB/STV |  |
| TE-IB-3                         | 23-25                | 09/12/00             | PCBs, cPAHs                                        | Zone II              | PB/STV           |  |
| TE-IB-3                         | 38-40                | 09/12/00             | PCBs, cPAHs                                        | Zone II              | PB/STV           |  |
| TE-IB-3                         | 53-55                | 09/12/00             | PCBs, cPAHs                                        | Zone II              | PB/STV           |  |
| TE-MW-A-1                       | 14-16                | 09/26/00             | PCBs, cPAHs                                        | Zone III             | PB/STV           |  |

Table 1. Summary of Soil-Quality Sampling, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Sample Location/<br>Designation | Sample Depth<br>Interval<br>(Ft. Bls) | Sample Date          | Analyte(s)                                         | Zone                 | Sampled By       |  |
|---------------------------------|---------------------------------------|----------------------|----------------------------------------------------|----------------------|------------------|--|
| TE-MW-A-1                       | 37-37                                 | 09/26/00             | PCBs, cPAHs                                        | Zone III             | PB/STV           |  |
| TE-MW-A-2                       | 14-16                                 | 10/09/00             | PCBs, cPAHs                                        | Zone III             | PB/STV           |  |
| TE-MW-A-2                       | 20-22                                 | 10/09/00             | PCBs, cPAHs                                        | Zone III             | PB/STV           |  |
| TE-MW-B/C-2                     | 8-10                                  | 09/07/00             | PCBs, cPAHs                                        | Zone III             |                  |  |
| TE-MW-B/C-2                     | 48-50                                 | 09/07/00             | PCBs, cPAHs                                        | Zone III             |                  |  |
| TE-MW-B/C-2                     | 85-86<br>10-12                        | 09/08/00<br>09/25/00 | PCBs, cPAHs                                        | Zone III<br>Zone III |                  |  |
| TE-MW-D-1<br>TE-MW-D-1          | 25-25                                 | 09/25/00             | PCBs, cPAHs<br>PCBs, cPAHs                         | Zone III             |                  |  |
| TE-MW-D-1                       | 40-41                                 | 09/25/00             | PCBs, cPAHs                                        | Zone III             |                  |  |
| TE-MW-IB-2                      | 14-16                                 | 10/03/00             | PCBs, cPAHs                                        | Zone II              | PB/STV           |  |
| TE-MW-IB-2                      | 62-64                                 | 10/03/00             | PCBs, cPAHs                                        | Zone II              | PB/STV           |  |
| TE-MW-IB-2                      | 93-95                                 | 10/04/00             | PCBs, cPAHs                                        | Zone II              | PB/STV           |  |
| TE-MW-OB-1                      | 14-16                                 | 10/11/00             | PCBs, cPAHs                                        | Zone III             | PB/STV           |  |
| TE-MW-OB-1                      | 45-45                                 | 10/11/00             | PCBs, cPAHs                                        | Zone III             |                  |  |
| TE-MW-OB-2                      | 29-31                                 | 09/19/00             | PCBs, cPAHs                                        | Zone III             |                  |  |
| TE-MW-OB-2                      | 60-62                                 | 09/19/00             | PCBs, cPAHs                                        | Zone III             |                  |  |
| TE-MW-QA-2                      | 18-20                                 | 10/23/00             | PCBs, cPAHs                                        | Zone III             |                  |  |
| TE-MW-QA-2<br>TE-OB-4           | 40-42<br>24-26                        | 10/23/00<br>07/14/00 | PCBs, cPAHs<br>PCBs, cPAHs                         | Zone III<br>Zone II  | PB/STV<br>PB/STV |  |
| TE-SD-1                         | 6-7                                   | 10/26/00             | cPAHs                                              | Zone III             |                  |  |
| TE-SD-1                         | 6-7                                   | 10/20/00             | PCBs                                               | Zone III             |                  |  |
| TE-SD-2                         | 6-8                                   | 07/17/00             | PCBs, cPAHs                                        | Zone III             |                  |  |
| TE-SD-2                         | 8-10                                  | 07/17/00             | PCBs, cPAHs                                        | Zone III             |                  |  |
| TS-1                            | 0-0.5                                 | 09/19/00             | PCBs                                               | Zone II              | ROUX             |  |
| TS1-1                           | 0-1                                   | 07/12/02             | PCBs, cPAHs, Lead, PAHs                            | Zone III             | ROUX             |  |
| TS1-2                           | 0-1                                   | 07/12/02             | PCBs, cPAHs, Lead, PAHs                            | Zone III             | ROUX             |  |
| TS1-3                           | 0-1                                   | 07/12/02             | PCBs, cPAHs, Lead, PAHs                            | Zone III             | ROUX             |  |
| TS1-4                           | 0-1                                   | 07/12/02             | PCBs, cPAHs, Lead, PAHs                            | Zone III             | ROUX             |  |
| TS1-5                           | 0-1                                   | 07/12/02             | PCBs, cPAHs, Lead, PAHs                            | Zone III             | ROUX             |  |
| TS1-6<br>TS1-7                  | 0-1<br>0-1                            | 07/12/02             | PCBs, cPAHs, Lead, PAHs                            | Zone III             | ROUX             |  |
| TS1-8                           | 0-1<br>0-1                            | 07/12/02<br>07/12/02 | PCBs, cPAHs, Lead, PAHs<br>PCBs, cPAHs, Lead, PAHs | Zone III<br>Zone III | ROUX<br>ROUX     |  |
| TS1-8                           | 1-2                                   | 07/12/02             | cPAHs, PAHs                                        | Zone III             | ROUX             |  |
| TS1-9                           | 0-1                                   | 07/12/02             | PCBs, cPAHs, Lead, PAHs                            | Zone III             | ROUX             |  |
| TS1-10                          | 0-1                                   | 07/12/02             | PCBs, cPAHs, Lead, PAHs                            | Zone III             | ROUX             |  |
| TS1-10                          | 1-2                                   | 07/12/02             | Lead                                               | Zone III             | ROUX             |  |
| TS-1A                           | 0-0.5                                 | 09/19/00             | PCBs                                               | Zone II              | ROUX             |  |
| TS-1B                           | 0-0.5                                 | 09/19/00             | PCBs                                               | Zone II              | ROUX             |  |
| TS-2                            | 0-0.5                                 | 09/19/00             | PCBs                                               | Zone II              | ROUX             |  |
| TS-2A                           | 0-0.5                                 | 09/19/00             | PCBs                                               | Zone II              | ROUX             |  |
| TS-2B                           | 0-0.5                                 | 09/19/00             | PCBs                                               | Zone II              | ROUX             |  |
| TS36-1                          | 0-1                                   | 04/15/02             | PCBs, cPAHs, Lead, PAHs                            | Zone III             | ROUX             |  |
| TS36-2<br>TS36-3                | 0-1<br>0-1                            | 04/15/02<br>04/15/02 | PCBs, cPAHs, Lead, PAHs<br>PCBs, cPAHs, Lead, PAHs | Zone III<br>Zone III | ROUX<br>ROUX     |  |
| TS36-4                          | 0-1                                   | 04/15/02             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX             |  |
| TS36-5                          | 0-1                                   | 04/15/02             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX             |  |
| TS36-6                          | 0-1                                   | 04/15/02             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX             |  |
| TS36-7                          | 0-1                                   | 04/15/02             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX             |  |
| TS36-8                          | 0-1                                   | 04/15/02             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX             |  |
| TS36-9                          | 0-1                                   | 04/15/02             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX             |  |
| TS36-9                          | 1-2                                   | 04/15/02             | cPAHs, PAHs                                        | Zone II              | ROUX             |  |
| TS36-10                         | 0-1                                   | 04/15/02             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX             |  |
| TS36-11                         | 1-2                                   | 04/15/02             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX             |  |
| TS36-11                         | 2-3                                   | 04/15/02             | cPAHs, PAHs                                        | Zone II              | ROUX             |  |
| TS36-12<br>TS36-12              | 1-2<br>2-3                            | 04/15/02<br>04/15/02 | PCBs, cPAHs, Lead, PAHs<br>cPAHs, PAHs             | Zone II<br>Zone II   | ROUX<br>ROUX     |  |
| TS36-13                         | 0-1                                   | 04/15/02             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX             |  |
| TS36-13                         | 1-2                                   | 04/15/02             | cPAHs, PAHs                                        | Zone II              | ROUX             |  |
| TS36-14                         | 0-1                                   | 04/15/02             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX             |  |
| TS36-14                         | 1-2                                   | 04/15/02             | cPAHs, PAHs                                        | Zone II              | ROUX             |  |
| TS36-15                         | 0-1                                   | 04/15/02             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX             |  |
| TS36-16                         | 0-1                                   | 04/15/02             | PCBs, cPAHs, Lead, PAHs                            | Zone II              | ROUX             |  |
| TS36-16                         | 1-2                                   | 04/15/02             | cPAHs, PAHs                                        | Zone II              | ROUX             |  |
| TU-1                            | 0-1                                   | 06/26/07             | PCBs, cPAHs, Lead, PAHs                            | Zone III             | ROUX             |  |
| TU-1                            | 1-2                                   | 06/26/07             | PCBs, cPAHs, Lead, PAHs                            | Zone III             | ROUX             |  |

Table 1. Summary of Soil-Quality Sampling, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Sample Location/<br>Designation | Sample Depth<br>Interval<br>(Ft. Bls) | Sample Date          | Analyte(s)                                         | Zone                | Sampled B    |
|---------------------------------|---------------------------------------|----------------------|----------------------------------------------------|---------------------|--------------|
| TU-1                            | 2-3                                   | 06/26/07             | PCBs, cPAHs, Lead, PAHs                            | Zone III            | ROUX         |
| TU-2                            | 0-1                                   | 06/26/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-2                            | 1-2                                   | 06/26/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-2                            | 2-3                                   | 06/26/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-3                            | 0-1                                   | 06/26/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-3                            | 1-2                                   | 06/26/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-3                            | 2-3                                   | 06/26/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-4                            | 0-1                                   | 06/26/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-4                            | 1-2                                   | 06/26/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-4                            | 2-3                                   | 06/26/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-5                            | 0-1                                   | 06/26/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-5                            | 1-2                                   | 06/26/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-5                            | 2-3                                   | 06/26/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-6                            | 0-1                                   | 06/26/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-6                            | 1-2                                   | 06/26/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-6                            | 2-3                                   | 06/26/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-7                            | 0-1                                   | 06/26/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-7                            | 1-2                                   | 06/26/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-7                            | 2-3                                   | 06/26/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-8                            | 0-1                                   | 06/26/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-8                            | 1-2                                   | 06/26/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-8                            | 2-3                                   | 06/26/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-9                            | 0-1                                   | 06/27/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-9                            | 1-2                                   | 06/27/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-9                            | 2-3                                   | 06/27/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-10                           | 0-1                                   | 06/27/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-10                           | 1-2                                   | 06/27/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-10                           | 2-3                                   | 06/27/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-11                           | 0-1                                   | 06/27/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-11                           | 1-2                                   | 06/27/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-11                           | 2-3                                   | 06/27/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-12                           | 0-1                                   | 06/27/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-12                           | 1-2                                   | 06/27/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-12                           | 2-3                                   | 06/27/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-13                           | 0-1                                   | 06/27/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-13                           | 1-2                                   | 06/27/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-13                           | 2-3                                   | 06/27/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-14                           | 0-1                                   | 06/27/07             | PCBs, cPAHs, Lead, PAHs                            | Zone II             | ROUX         |
| TU-14<br>TU-14                  | 1-2<br>2-3                            | 06/27/07<br>06/27/07 | PCBs, cPAHs, Lead, PAHs<br>PCBs, cPAHs, Lead, PAHs | Zone II             | ROUX<br>ROUX |
| UST-6/7/8 BOTTOM                | 2-3                                   |                      | VOCs                                               | Zone II             | ROUX         |
| UST-6/7/8 E WALL                |                                       | 04/09/98<br>04/09/98 |                                                    | Zone II             | ROUX         |
| UST-6/7/8 N WALL                |                                       | 04/09/98             | VOCs<br>VOCs                                       | Zone II             | ROUX         |
| UST-6/7/8 S WALL                |                                       | 04/09/98             | VOCs                                               | Zone II<br>Zone II  | ROUX         |
| UST-6/7/8 W WALL                |                                       | 04/09/98             | VOCs                                               | Zone II<br>Zone II  | ROUX         |
| UST-12 BOTTOM                   |                                       | 05/04/98             | cPAHs, PAHs, VOCs                                  | Zone II<br>Zone II  | ROUX         |
| UST-12 EWALL                    | -                                     | 05/04/98             | cPAHs, PAHs, VOCs                                  | Zone II<br>Zone II  | ROUX         |
|                                 | -                                     | 05/04/98             | cPAHs, PAHs, VOCs                                  | Zone II<br>Zone II  |              |
| UST-12 NWALL                    | -                                     |                      | cPAHs, PAHs, VOCs<br>cPAHs, PAHs, VOCs             |                     | ROUX         |
| UST-12 SWALL<br>UST-12 WWALL    | -                                     | 05/04/98             |                                                    | Zone II             | ROUX         |
| WWALL                           | -                                     | 05/04/98<br>01/04/99 | cPAHs, PAHs, VOCs<br>PCBs, cPAHs, Lead, VOCs       | Zone II<br>Zone III | ROUX<br>ROUX |

VOCs - Volatile Organic Compounds

SVOCs - Semivolatile Organic Compounds

PAHs - Polycyclic Aromatic Hydrocarbons

cPAHs - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

PCBs - Polychlorinated Biphenyls

ft bls - feet below land surface as measured at the time of sampling

"B" in depth field indicates Ballast sample collected

in the sample depth field indicates a sample with no specific depth (i.e., post excavation sample)
 in the sample depth field indicates a confirmatory sample

PAH and SVOC analysis includes the Seven Specific cPAHs

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | 001-1     | 001-2     | 001-3     | 001-4     | 002-6     | 002-7     | 002-8     |
|---------------------------|--------------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Site Specific      | Sample Date:           | 11/1/1983 | 11/1/1983 | 11/1/1983 | 11/1/1983 | 11/1/1983 | 11/1/1983 | 11/1/1983 |
| (Concentrations in µg/kg) | Soil Cleanup Level | Sample Depth (ft bls): | 0-0.5     | 0-0.5     | 0-0.5     | 0-0.5     | 0-0.5     | 0-0.5     | 0-0.5     |
|                           | $(\mu g/kg)$       | Map Zone:              | Zone I    |
| -                         |                    |                        | (3)       | (3)       | (3)       | (3)       | (3)       | (3)       | (3)       |
|                           |                    |                        |           |           |           |           |           |           |           |
| Aroclor-1016              |                    |                        | ND        |
| Aroclor-1221              |                    |                        | ND        |
| Aroclor-1232              |                    |                        | ND        |
| Aroclor-1242              |                    |                        | ND        |
| Aroclor-1248              |                    |                        | ND        |
| Aroclor-1254              |                    |                        | 57000     | ND        | 15700     | 290000    | ND        | 410000    | 399000    |
| Aroclor-1260              |                    |                        | ND        | 68000     | ND        | ND        | 89000     | ND        | ND        |
| TOTAL PCBs                | 25,000             |                        | 57000     | 68000     | 15700     | 290000    | 89000     | 410000    | 399000    |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | 002-9     | 002-10    | 002-11    | 002-12    | 002-13    | 002-14    | 092-1     |
|---------------------------|--------------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Site Specific      | Sample Date:           | 11/1/1983 | 11/1/1983 | 11/1/1983 | 11/1/1983 | 11/1/1983 | 11/1/1983 | 5/18/1993 |
| (Concentrations in µg/kg) | Soil Cleanup Level | Sample Depth (ft bls): | 0-0.5     | 0-0.5     | 0-1.5     | 0-0.5     | 0-0.5     | 0-1.5     | 0-0.5     |
|                           | $(\mu g/kg)$       | Map Zone:              | Zone I    | Zone II   |
|                           |                    |                        | (3)       | (3)       | (3)       | (3)       | (3)       | (3)       | (3)       |
| Aroclor-1016              |                    |                        | ND        |
| Aroclor-1221              |                    |                        | ND        |
| Aroclor-1232              |                    |                        | ND        |
| Aroclor-1242              |                    |                        | ND        |
| Aroclor-1248              |                    |                        | ND        |
| Aroclor-1254              |                    |                        | 182000    | 9100      | 9000      | ND        | ND        | ND        | ND        |
| Aroclor-1260              |                    |                        | ND        | ND        | ND        | 500 U     | 500 U     | 500 U     | 1400      |
| TOTAL PCBs                | 25,000             |                        | 182000    | 9100      | 9000      | 0         | 0         | 0         | 1400      |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | NYSDEC<br>Site Specific | Sample Designation:<br>Sample Date: |         | 092-11<br>5/18/1993 | 092-12<br>5/18/1993 | 092-13<br>5/18/1993 | 092-14<br>5/18/1993 | 092-15<br>5/18/1993 | 092-16<br>5/18/1993 |
|---------------------------|-------------------------|-------------------------------------|---------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| (Concentrations in µg/kg) | Soil Cleanup Level      | Sample Depth (ft bls):              | 0-1     | 0-1.2               | 0-0.5               | 0-0.5               | 0-0.5               | 0-0.5               | 0-0.5               |
| ( 10 0)                   | (μg/kg)                 | Map Zone:                           | Zone II | Zone II             | Zone II             | Zone II             | Zone II             | Zone II             | Zone III            |
|                           |                         |                                     | (3)     | (3)                 | (3)                 | (3)                 | (3)                 | (3)                 | (3)                 |
| Aroclor-1016              |                         |                                     | ND      | ND                  | ND                  | ND                  | ND                  | ND                  | ND                  |
| Aroclor-1221              |                         |                                     | ND      | ND                  | ND                  | ND                  | ND                  | ND                  | ND                  |
| Aroclor-1232              |                         |                                     | ND      | ND                  | ND                  | ND                  | ND                  | ND                  | ND                  |
| Aroclor-1242              |                         |                                     | ND      | ND                  | ND                  | ND                  | ND                  | ND                  | ND                  |
| Aroclor-1248              |                         |                                     | ND      | ND                  | ND                  | ND                  | ND                  | ND                  | ND                  |
| Aroclor-1254              |                         |                                     | ND      | ND                  | ND                  | ND                  | ND                  | ND                  | ND                  |
| Aroclor-1260              |                         |                                     | 780     | 12400               | 14000               | 630                 | 440                 | 3100                | 2500                |
| TOTAL PCBs                | 25,000                  |                                     | 780     | 12400               | 14000               | 630                 | 440                 | 3100                | 2500                |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                               | NYSDEC<br>Site Specific | Sample Designation:<br>Sample Date: |       | 092-2<br>5/18/1993 | 092-3<br>5/18/1993 | 092-4<br>5/18/1993 | 092-5<br>5/18/1993 | 092-6<br>5/18/1993 | 092-7<br>5/18/1993 | 092-8<br>5/18/1993 |
|-----------------------------------------|-------------------------|-------------------------------------|-------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| (Concentrations in µg/kg)               | Soil Cleanup Level      | Sample Depth (ft bls):              |       | 0-0.5              | 0-0.5              | 0-0.5              | 0-0.5              | 0-1.8              | 0-1.7              | 0-1.7              |
| , , , , , , , , , , , , , , , , , , , , | (μg/kg)                 | Map Zone:                           |       | Zone III           | Zone II            |
|                                         |                         |                                     | (3)   | (3)                | (3)                | (3)                | (3)                | (3)                | (3)                | (3)                |
| Aroclor-1016                            |                         |                                     | ND    | ND                 | ND                 | ND                 | ND                 | ND                 | ND                 | ND                 |
| Aroclor-1221                            |                         |                                     | ND    | ND                 | ND                 | ND                 | ND                 | ND                 | ND                 | ND                 |
| Aroclor-1232                            |                         |                                     | ND    | ND                 | ND                 | ND                 | ND                 | ND                 | ND                 | ND                 |
| Aroclor-1242                            |                         |                                     | ND    | ND                 | ND                 | ND                 | ND                 | ND                 | ND                 | ND                 |
| Aroclor-1248                            |                         |                                     | ND    | ND                 | ND                 | ND                 | ND                 | ND                 | ND                 | ND                 |
| Aroclor-1254                            |                         |                                     | ND    | ND                 | ND                 | ND                 | ND                 | ND                 | ND                 | ND                 |
| Aroclor-1260                            |                         |                                     | 23700 | 1700               | 7600               | 1300               | 3000               | 350                | 220                | 900                |
| TOTAL PCBs                              | 25,000                  |                                     | 23700 | 1700               | 7600               | 1300               | 3000               | 350                | 220                | 900                |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | 092-9     | 093-1     | 093-2     | 093-3     | 093-4     | 093-5     | 110-1    | 174-1     |
|---------------------------|--------------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|----------|-----------|
| Parameter                 | Site Specific      | Sample Date:           | 5/18/1993 | 5/18/1993 | 5/18/1993 | 5/18/1993 | 5/18/1993 | 5/18/1993 | 6/2/1993 | 4/26/1994 |
| (Concentrations in µg/kg) | Soil Cleanup Level | Sample Depth (ft bls): | 0-1.7     | 0-0.5     | 0-0.5     | 0-0.4167  | 0-0.5     | 0-0.5     | 0-0.5    | 0-1.5     |
|                           | $(\mu g/kg)$       | Map Zone:              | Zone II   | Zone III | Zone II   |
|                           |                    |                        | (3)       | (3)       | (3)       | (3)       | (3)       | (3)       | (3)      | (3)       |
| Aroclor-1016              |                    |                        | ND        | ND        | ND        | ND        | ND        | ND        | ND       | 660 U     |
| Aroclor-1221              |                    |                        | ND        | ND        | ND        | ND        | ND        | ND        | ND       | 660 U     |
| Aroclor-1232              |                    |                        | ND        | ND        | ND        | ND        | ND        | ND        | ND       | 660 U     |
| Aroclor-1242              |                    |                        | ND        | ND        | ND        | ND        | ND        | ND        | ND       | 660 U     |
| Aroclor-1248              |                    |                        | ND        | ND        | ND        | ND        | ND        | ND        | ND       | 660 U     |
| Aroclor-1254              |                    |                        | ND        | ND        | ND        | ND        | ND        | ND        | ND       | 660 U     |
| Aroclor-1260              |                    |                        | 800       | 2900      | 2400      | 8600      | 4300      | 3100      | 2500     | 1300      |
| TOTAL PCBs                | 25,000             |                        | 800       | 2900      | 2400      | 8600      | 4300      | 3100      | 2500     | 1300      |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | 174-10    | 174-11    | 174-12    | 174-13    | 174-14    | 174-15    | 174-16    | 174-17    |
|---------------------------|--------------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Site Specific      | Sample Date:           | 4/26/1994 | 4/26/1994 | 4/26/1994 | 4/26/1994 | 4/26/1994 | 4/26/1994 | 4/26/1994 | 4/26/1994 |
| (Concentrations in µg/kg) | Soil Cleanup Level | Sample Depth (ft bls): | 0-2.167   | 0-1.5     | 0-1.83    | 0-1.83    | 0-1.5     | 0-1.83    | 0-2.5     | 0-2.167   |
|                           | (µg/kg)            | Map Zone:              | Zone III  |
|                           |                    |                        | (3)       | (3)       | (3)       | (3)       | (3)       | (3)       | (3)       | (3)       |
| Aroclor-1016              |                    |                        | 700 U     | 610 U     | 640 U     | 680 U     | 680 U     | 670 U     | 690 U     | 130 U     |
| Aroclor-1221              |                    |                        | 700 U     | 610 U     | 640 U     | 680 U     | 680 U     | 670 U     | 690 U     | 130 U     |
| Aroclor-1232              |                    |                        | 700 U     | 610 U     | 640 U     | 680 U     | 680 U     | 670 U     | 690 U     | 130 U     |
| Aroclor-1242              |                    |                        | 700 U     | 610 U     | 640 U     | 680 U     | 680 U     | 670 U     | 690 U     | 130 U     |
| Aroclor-1248              |                    |                        | 700 U     | 610 U     | 640 U     | 680 U     | 680 U     | 670 U     | 690 U     | 130 U     |
| Aroclor-1254              |                    |                        | 700 U     | 610 U     | 640 U     | 680 U     | 680 U     | 670 U     | 690 U     | 130 U     |
| Aroclor-1260              |                    |                        | 700 U     | 3900      | 2800      | 790       | 1400      | 670 U     | 690 U     | 130 U     |
| TOTAL PCBs                | 25,000             |                        | 0         | 3900      | 2800      | 790       | 1400      | 0         | 0         | 0         |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | 174-18    | 174-19    | 174-2     | 174-20    | 174-21    | 174-3     | 174-4     | 197-1     |
|---------------------------|--------------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Site Specific      | Sample Date:           | 4/26/1994 | 4/26/1994 | 4/26/1994 | 4/26/1994 | 4/26/1994 | 4/26/1994 | 4/26/1994 | 1/18/1990 |
| (Concentrations in µg/kg) | Soil Cleanup Level | Sample Depth (ft bls): | 0-1.83    | 0-2.75    | 0-1.9167  | 0-2.083   | 0-2.083   | 0-2.67    | 0-2.5     | -         |
|                           | (µg/kg)            | Map Zone:              | Zone III  | Zone III  | Zone II   | Zone III  | Zone III  | Zone II   | Zone II   | Zone II   |
|                           |                    |                        | (3)       | (3)       | (3)       | (3)       | (3)       | (3)       | (3)       | (3)       |
| Aroclor-1016              |                    |                        | 680 U     | 610 U     | 680 U     | 570 U     | 690 U     | 700 U     | 130 U     | 100 U     |
| Aroclor-1221              |                    |                        | 680 U     | 610 U     | 680 U     | 570 U     | 690 U     | 700 U     | 130 U     | 100 U     |
| Aroclor-1232              |                    |                        | 680 U     | 610 U     | 680 U     | 570 U     | 690 U     | 700 U     | 130 U     | 100 U     |
| Aroclor-1242              |                    |                        | 680 U     | 610 U     | 680 U     | 570 U     | 690 U     | 700 U     | 130 U     | 100 U     |
| Aroclor-1248              |                    |                        | 680 U     | 610 U     | 680 U     | 570 U     | 690 U     | 700 U     | 130 U     | 100 U     |
| Aroclor-1254              |                    |                        | 680 U     | 610 U     | 680 U     | 570 U     | 690 U     | 700 U     | 130 U     | 12100     |
| Aroclor-1260              |                    |                        | 680 U     | 610 U     | 810       | 570 U     | 690 U     | 2400      | 320       | 200 U     |
| TOTAL PCBs                | 25,000             |                        | 0         | 0         | 810       | 0         | 0         | 2400      | 320       | 12100     |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | 197-2     | 197-3     | 197-4     | 197-5     | 197-6     | 246-1     | 246-10     |
|---------------------------|--------------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|
| Parameter                 | Site Specific      | Sample Date:           | 1/18/1990 | 1/18/1990 | 1/18/1990 | 1/18/1990 | 1/18/1990 | 8/19/1993 | 8/19/1993  |
| (Concentrations in µg/kg) | Soil Cleanup Level | Sample Depth (ft bls): | -         | -         | -         | -         | -         | 0.66-1.33 | 0.66-1.167 |
|                           | $(\mu g/kg)$       | Map Zone:              | Zone II   | Zone III  | Zone III   |
|                           |                    |                        | (3)       | (3)       | (3)       | (3)       | (3)       | (3)       | (3)        |
| Aroclor-1016              |                    |                        | 100 U     | ND        | ND         |
| Aroclor-1221              |                    |                        | 100 U     | ND        | ND         |
| Aroclor-1232              |                    |                        | 100 U     | ND        | ND         |
| Aroclor-1242              |                    |                        | 100 U     | ND        | ND         |
| Aroclor-1248              |                    |                        | 100 U     | ND        | ND         |
| Aroclor-1254              |                    |                        | 190 U     | 660       | 210 U     | 200 U     | 1270      | ND        | ND         |
| Aroclor-1260              |                    |                        | 3950      | 200 U     | 210       | 15800     | 200 U     | 14500     | 522300     |
| TOTAL PCBs                | 25,000             |                        | 3950      | 660       | 210       | 15800     | 1270      | 14500     | 522300     |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| _                         | NYSDEC             | Sample Designation:    | 246-11     | 246-12    | 246-2     | 246-3     | 246-4      | 246-5     | 246-6     |
|---------------------------|--------------------|------------------------|------------|-----------|-----------|-----------|------------|-----------|-----------|
| Parameter                 | Site Specific      | Sample Date:           | 8/19/1993  | 8/19/1993 | 8/19/1993 | 8/19/1993 | 8/19/1993  | 8/19/1993 | 8/19/1993 |
| (Concentrations in µg/kg) | Soil Cleanup Level | Sample Depth (ft bls): | 0.66-1.167 | 0.66-1.33 | 0.66-1.33 | 0.66-1.5  | 0.66-1.167 | 0.66-1.33 | 0.66-1.33 |
|                           | $(\mu g/kg)$       | Map Zone:              | Zone III   | Zone III  | Zone III  | Zone III  | Zone III   | Zone II   | Zone II   |
|                           |                    |                        | (3)        | (3)       | (3)       | (3)       | (3)        | (3)       | (3)       |
| Aroclor-1016              |                    |                        | ND         | ND        | ND        | ND        | ND         | ND        | ND        |
| Aroclor-1221              |                    |                        | ND         | ND        | ND        | ND        | ND         | ND        | ND        |
| Aroclor-1232              |                    |                        | ND         | ND        | ND        | ND        | ND         | ND        | ND        |
| Aroclor-1242              |                    |                        | ND         | ND        | ND        | ND        | ND         | ND        | ND        |
| Aroclor-1248              |                    |                        | ND         | ND        | ND        | ND        | ND         | ND        | ND        |
| Aroclor-1254              |                    |                        | ND         | ND        | ND        | ND        | ND         | ND        | ND        |
| Aroclor-1260              |                    |                        | 12800      | 8100      | 15400     | 4900      | 10900      | 2400      | 3900      |
| TOTAL PCBs                | 25,000             |                        | 12800      | 8100      | 15400     | 4900      | 10900      | 2400      | 3900      |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | 246-7     | 246-8     | 246-9     | 334-10    | 334-11    | 334-12    | 334-13    | 334-8     |
|---------------------------|--------------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Site Specific      | Sample Date:           | 8/19/1993 | 8/19/1993 | 8/19/1993 | 8/31/1994 | 8/31/1994 | 8/31/1994 | 8/31/1994 | 8/31/1994 |
| (Concentrations in µg/kg) | Soil Cleanup Level | Sample Depth (ft bls): | 0.66-1.33 | 0.66-1.5  | 0.66-1.33 | 0-0.5     | 0-0.5     | 0-0.5     | 0-0.5     | 0-0.5     |
|                           | $(\mu g/kg)$       | Map Zone:              | Zone II   | Zone II   | Zone III  |
|                           |                    |                        | (3)       | (3)       | (3)       | (3)       | (3)       | (3)       | (3)       | (3)       |
| Aroclor-1016              |                    |                        | ND        | ND        | ND        | 1700 U    | 1100 U    | 1800 U    | 1400 U    | 19000 U   |
| Aroclor-1221              |                    |                        | ND        | ND        | ND        | 1700 U    | 1100 U    | 1800 U    | 1400 U    | 19000 U   |
| Aroclor-1232              |                    |                        | ND        | ND        | ND        | 1700 U    | 1100 U    | 1800 U    | 1400 U    | 19000 U   |
| Aroclor-1242              |                    |                        | ND        | ND        | ND        | 1700 U    | 1100 U    | 1800 U    | 1400 U    | 19000 U   |
| Aroclor-1248              |                    |                        | ND        | ND        | ND        | 1700 U    | 1100 U    | 1800 U    | 1400 U    | 19000 U   |
| Aroclor-1254              |                    |                        | ND        | ND        | ND        | 1700 U    | 1100 U    | 1800 U    | 1400 U    | 19000 U   |
| Aroclor-1260              |                    |                        | 2700      | 2500      | 15200     | 69000     | 2100      | 3300      | 2600      | 24000     |
| TOTAL PCBs                | 25,000             |                        | 2700      | 2500      | 15200     | 69000     | 2100      | 3300      | 2600      | 24000     |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | 334-9     | 427-1      | 427-2      | 427-10     | 427-11     | 427-12     | 427-13     |
|---------------------------|--------------------|------------------------|-----------|------------|------------|------------|------------|------------|------------|
| Parameter                 | Site Specific      | Sample Date:           | 8/31/1994 | 12/17/1993 | 12/17/1993 | 12/17/1993 | 12/17/1993 | 12/17/1993 | 12/17/1993 |
| (Concentrations in µg/kg) | Soil Cleanup Level | Sample Depth (ft bls): | 0-0.5     | 0-1.5      | 0-1.5      | 0-1.5      | 0-1.33     | 0-1.5      | 0-1.167    |
|                           | $(\mu g/kg)$       | Map Zone:              | Zone III  | Zone III   | Zone III   | Zone II    | Zone II    | Zone II    | Zone II    |
|                           |                    |                        | (3)       | (3)        | (3)        | (3)        | (3)        | (3)        | (3)        |
| Aroclor-1016              |                    |                        | 51000 U   | ND         | ND         | ND         | ND         | ND         | ND         |
| Aroclor-1221              |                    |                        | 51000 U   | ND         | ND         | ND         | ND         | ND         | ND         |
| Aroclor-1232              |                    |                        | 51000 U   | ND         | ND         | ND         | ND         | ND         | ND         |
| Aroclor-1242              |                    |                        | 51000 U   | ND         | ND         | ND         | ND         | ND         | ND         |
| Aroclor-1248              |                    |                        | 51000 U   | ND         | ND         | ND         | ND         | ND         | ND         |
| Aroclor-1254              |                    |                        | 51000 U   | ND         | ND         | ND         | ND         | ND         | ND         |
| Aroclor-1260              |                    |                        | 69000     | ND         | ND         | 1700       | ND         | ND         | 300        |
| TOTAL PCBs                | 25,000             |                        | 69000     | 0          | 0          | 1700       | 0          | 0          | 300        |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | 427-14     | 427-15     | 427-16     | 427-17     | 427-18     | 427-19     | 427-20     |
|---------------------------|--------------------|------------------------|------------|------------|------------|------------|------------|------------|------------|
| Parameter                 | Site Specific      | Sample Date:           | 12/17/1993 | 12/17/1993 | 12/17/1993 | 12/17/1993 | 12/17/1993 | 12/17/1993 | 12/17/1993 |
| (Concentrations in µg/kg) | Soil Cleanup Level | Sample Depth (ft bls): | 0-1.167    | 0-1.4167   | 0-1.5      | 0-1.4167   | 0-1        | 0-1.33     | 0-1.25     |
|                           | $(\mu g/kg)$       | Map Zone:              | Zone II    |
|                           |                    |                        | (3)        | (3)        | (3)        | (3)        | (3)        | (3)        | (3)        |
| Aroclor-1016              |                    |                        | ND         |
| Aroclor-1221              |                    |                        | ND         |
| Aroclor-1232              |                    |                        | ND         |
| Aroclor-1242              |                    |                        | ND         |
| Aroclor-1248              |                    |                        | ND         |
| Aroclor-1254              |                    |                        | ND         |
| Aroclor-1260              |                    |                        | 900        | 400        | ND         | ND         | 800        | ND         | ND         |
| TOTAL PCBs                | 25,000             |                        | 900        | 400        | 0          | 0          | 800        | 0          | 0          |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | 427-21     | 427-22     | 427-3      | 427-4      | 427-5      | 427-6      | 427-7      |
|---------------------------|--------------------|------------------------|------------|------------|------------|------------|------------|------------|------------|
| Parameter                 | Site Specific      | Sample Date:           | 12/17/1993 | 12/17/1993 | 12/17/1993 | 12/17/1993 | 12/17/1993 | 12/17/1993 | 12/17/1993 |
| (Concentrations in µg/kg) | Soil Cleanup Level | Sample Depth (ft bls): | 0-1.25     | 0-1.5      | 0-1.5      | 0-1.5      | 0-1.5      | 0-1.5      | 0-1.5      |
|                           | $(\mu g/kg)$       | Map Zone:              | Zone II    | Zone II    | Zone III   |
|                           |                    |                        | (3)        | (3)        | (3)        | (3)        | (3)        | (3)        | (3)        |
| Aroclor-1016              |                    |                        | ND         |
| Aroclor-1221              |                    |                        | ND         |
| Aroclor-1232              |                    |                        | ND         |
| Aroclor-1242              |                    |                        | ND         |
| Aroclor-1248              |                    |                        | ND         |
| Aroclor-1254              |                    |                        | ND         |
| Aroclor-1260              |                    |                        | ND         | 1000       | ND         | ND         | ND         | ND         | ND         |
| TOTAL PCBs                | 25,000             |                        | 0          | 1000       | 0          | 0          | 0          | 0          | 0          |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | 427-8      | 427-9      | 506-1    | 506-10   | 506-11   | 506-12   | 506-2    | 506-3    |
|---------------------------|--------------------|------------------------|------------|------------|----------|----------|----------|----------|----------|----------|
| Parameter                 | Site Specific      | Sample Date:           | 12/17/1993 | 12/17/1993 | 8/9/1990 | 8/9/1990 | 8/9/1990 | 8/9/1990 | 8/9/1990 | 8/9/1990 |
| (Concentrations in µg/kg) | Soil Cleanup Level | Sample Depth (ft bls): | 0-1.5      | 0-1.5      | 0-0.5    | 0-0.5    | 0-0.5    | 0-0.5    | 0-0.5    | 0-0.5    |
|                           | $(\mu g/kg)$       | Map Zone:              | Zone II    | Zone II    | Zone II  | Zone II  | Zone II  | Zone II  | Zone II  | Zone II  |
|                           |                    |                        | (3)        | (3)        | (3)      | (3)      | (3)      | (3)      | (3)      | (3)      |
| Aroclor-1016              |                    |                        | ND         | ND         | 33000 U  | 3300 U   | 3300 U   | 3300 U   | 3300 U   | 33000 U  |
| Aroclor-1221              |                    |                        | ND         | ND         | 33000 U  | 3300 U   | 3300 U   | 3300 U   | 3300 U   | 33000 U  |
| Aroclor-1232              |                    |                        | ND         | ND         | 33000 U  | 3300 U   | 3300 U   | 3300 U   | 3300 U   | 33000 U  |
| Aroclor-1242              |                    |                        | ND         | ND         | 33000 U  | 3300 U   | 3300 U   | 3300 U   | 3300 U   | 33000 U  |
| Aroclor-1248              |                    |                        | ND         | ND         | 33000 U  | 3300 U   | 3300 U   | 3300 U   | 3300 U   | 33000 U  |
| Aroclor-1254              |                    |                        | ND         | ND         | 33000 U  | 3300 U   | 3300 U   | 3300 U   | 3300 U   | 33000 U  |
| Aroclor-1260              |                    |                        | 600 U      | ND         | 340000   | 5400     | 9400     | 1900 J   | 24000    | 110000   |
| TOTAL PCBs                | 25,000             |                        | 0          | 0          | 340000   | 5400     | 9400     | 1900     | 24000    | 110000   |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | 506-4    | 506-5    | 506-6    | 506-7    | 506-8    | 506-9    | 558-1     | 558-2     |
|---------------------------|--------------------|------------------------|----------|----------|----------|----------|----------|----------|-----------|-----------|
| Parameter                 | Site Specific      | Sample Date:           | 8/9/1990 | 8/9/1990 | 8/9/1990 | 8/9/1990 | 8/9/1990 | 8/9/1990 | 7/21/1992 | 7/21/1992 |
| (Concentrations in µg/kg) | Soil Cleanup Level | Sample Depth (ft bls): | 0-0.5    | 0-0.5    | 0-0.5    | 0-0.5    | 0-0.5    | 0-0.5    | 0-1.5     | 0-1.5     |
|                           | $(\mu g/kg)$       | Map Zone:              | Zone II   | Zone II   |
|                           |                    |                        | (3)      | (3)      | (3)      | (3)      | (3)      | (3)      | (3)       | (3)       |
|                           |                    |                        |          |          |          |          |          |          |           |           |
| Aroclor-1016              |                    |                        | 3300 U   | 3300 U   | 33000 U  | 330 U    | 3300 U   | 3300 U   | ND        | ND        |
| Aroclor-1221              |                    |                        | 3300 U   | 3300 U   | 33000 U  | 330 U    | 3300 U   | 3300 U   | ND        | ND        |
| Aroclor-1232              |                    |                        | 3300 U   | 3300 U   | 33000 U  | 330 U    | 3300 U   | 3300 U   | ND        | ND        |
| Aroclor-1242              |                    |                        | 3300 U   | 3300 U   | 33000 U  | 330 U    | 3300 U   | 3300 U   | ND        | ND        |
| Aroclor-1248              |                    |                        | 3300 U   | 3300 U   | 33000 U  | 330 U    | 3300 U   | 3300 U   | ND        | ND        |
| Aroclor-1254              |                    |                        | 3300 U   | 3300 U   | 33000 U  | 330 U    | 3300 U   | 3300 U   | ND        | ND        |
| Aroclor-1260              |                    |                        | 13000    | 5200     | 160000   | 1900     | 5600     | 5600     | 640       | 160       |
| TOTAL PCBs                | 25,000             |                        | 13000    | 5200     | 160000   | 1900     | 5600     | 5600     | 640       | 160       |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    |           | 558-5     | 558-6     | 558-7     | 558-8     | 57SW-1    | 57SW-1    | 57SW-2    |
|---------------------------|--------------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Site Specific      | Sample Date:           | 7/21/1992 | 7/21/1992 | 7/21/1992 | 7/21/1992 | 7/21/1992 | 8/10/1998 | 8/10/1998 | 8/10/1998 |
| (Concentrations in µg/kg) | Soil Cleanup Level | Sample Depth (ft bls): | 0-1.5     | 0-1.5     | 0-1.5     | 0-1.5     | 0-1.5     | В         | 0-1**     | В         |
|                           | $(\mu g/kg)$       | Map Zone:              | Zone II   | Zone III  | Zone III  | Zone III  | Zone III  | Zone II   | Zone II   | Zone II   |
|                           |                    |                        | (3)       | (3)       | (3)       | (3)       | (3)       |           |           |           |
| Aroclor-1016              |                    |                        | ND        | ND        | ND        | ND        | ND        | 39 U      | 36 U      | 38 U      |
| Aroclor-1221              |                    |                        | ND        | ND        | ND        | ND        | ND        | 77 U      | 71 U      | 76 U      |
| Aroclor-1232              |                    |                        | ND        | ND        | ND        | ND        | ND        | 39 U      | 36 U      | 38 U      |
| Aroclor-1242              |                    |                        | ND        | ND        | ND        | ND        | ND        | 39 U      | 36 U      | 38 U      |
| Aroclor-1248              |                    |                        | ND        | ND        | ND        | ND        | ND        | 39 U      | 36 U      | 38 U      |
| Aroclor-1254              |                    |                        | ND        | ND        | ND        | ND        | ND        | 39 U      | 36 U      | 38 U      |
| Aroclor-1260              |                    |                        | 240       | 290       | 1300      | 530       | 420       | 560       | 26 J      | 1100      |
| TOTAL PCBs                | 25,000             |                        | 240       | 290       | 1300      | 530       | 420       | 560       | 26        | 1100      |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| _                         | NYSDEC             | Sample Designation:    |         | 59       | 59       | 61W      | 61W      | 692-1     | 692-2     | 692-3     |
|---------------------------|--------------------|------------------------|---------|----------|----------|----------|----------|-----------|-----------|-----------|
| Parameter                 | Site Specific      | Sample Date:           |         | 3/9/1999 | 3/9/1999 | 3/9/1999 | 3/9/1999 | 9/25/1992 | 9/25/1992 | 9/25/1992 |
| (Concentrations in µg/kg) | Soil Cleanup Level | Sample Depth (ft bls): | 0-1**   | В        | 0-1**    | В        | 0-1**    | 0-0.83    | 0-1.25    | 0-1.33    |
|                           | $(\mu g/kg)$       | Map Zone:              | Zone II | Zone IV  | Zone IV  | Zone IV  | Zone IV  | Zone III  | Zone III  | Zone III  |
|                           |                    |                        |         |          |          |          |          | (3)       | (3)       | (3)       |
| Aroclor-1016              |                    |                        | 36 U    | 39 U     | 39 U     | 39 U     | 37 U     | ND        | ND        | ND        |
| Aroclor-1221              |                    |                        | 73 U    | 39 U     | 39 U     | 39 U     | 37 U     | ND        | ND        | ND        |
| Aroclor-1232              |                    |                        | 36 U    | 39 U     | 39 U     | 39 U     | 37 U     | ND        | ND        | ND        |
| Aroclor-1242              |                    |                        | 36 U    | 39 U     | 39 U     | 39 U     | 37 U     | ND        | ND        | ND        |
| Aroclor-1248              |                    |                        | 36 U    | 39 U     | 39 U     | 39 U     | 37 U     | ND        | ND        | ND        |
| Aroclor-1254              |                    |                        | 36 U    | 39 U     | 39 U     | 39 U     | 37 U     | ND        | ND        | ND        |
| Aroclor-1260              |                    |                        | 45      | 1900 D   | 760      | 1400     | 65       | 3800      | 630       | 900       |
| TOTAL PCBs                | 25,000             |                        | 45      | 1900     | 760      | 1400     | 65       | 3800      | 630       | 900       |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | NYSDEC<br>Site Specific | Sample Designation:<br>Sample Date: |          | 692-5    | 692-6    | 692-7   | 692-8   | 692-82   | 692-83   | 692-84   |
|---------------------------|-------------------------|-------------------------------------|----------|----------|----------|---------|---------|----------|----------|----------|
| (Concentrations in µg/kg) | Soil Cleanup Level      | Sample Depth (ft bls):              |          | 0-1.5    | 0-1.5    | 0-1.5   | 0-1.5   | 0-1.5    | 0-1.5    | 0-1.5    |
|                           | (µg/kg)                 | Map Zone:                           | Zone III | Zone III | Zone III | Zone II | Zone II | Zone III | Zone III | Zone III |
|                           |                         |                                     | (3)      | (3)      | (3)      | (3)     | (3)     | (3)      | (3)      | (3)      |
|                           |                         |                                     |          |          |          |         |         |          |          |          |
| Aroclor-1016              |                         |                                     | ND       | ND       | ND       | ND      | ND      | ND       | ND       | ND       |
| Aroclor-1221              |                         |                                     | ND       | ND       | ND       | ND      | ND      | ND       | ND       | ND       |
| Aroclor-1232              |                         |                                     | ND       | ND       | ND       | ND      | ND      | ND       | ND       | ND       |
| Aroclor-1242              |                         |                                     | ND       | ND       | ND       | ND      | ND      | ND       | ND       | ND       |
| Aroclor-1248              |                         |                                     | ND       | ND       | ND       | ND      | ND      | ND       | ND       | ND       |
| Aroclor-1254              |                         |                                     | ND       | ND       | ND       | ND      | ND      | ND       | ND       | ND       |
| Aroclor-1260              |                         |                                     | 2300     | 860      | 960      | 1600    | 710     | 320      | 300      | 310      |
| TOTAL PCBs                | 25,000                  |                                     | 2300     | 860      | 960      | 1600    | 710     | 320      | 300      | 310      |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | 692-85     | 692-86     | 692-9     | 79       | 79       | 796-7     | 796-8     | 796-9     |
|---------------------------|--------------------|------------------------|------------|------------|-----------|----------|----------|-----------|-----------|-----------|
| Parameter                 | Site Specific      | Sample Date:           | 12/19/1992 | 12/19/1992 | 9/25/1992 | 3/9/1999 | 3/9/1999 | 12/3/1992 | 12/3/1992 | 12/3/1992 |
| (Concentrations in µg/kg) | Soil Cleanup Level | Sample Depth (ft bls): | 0-1.5      | 0-1.5      | 0-1.5     | В        | 0-1**    | 0-2.5     | 0-2.583   | 0-2.5     |
|                           | $(\mu g/kg)$       | Map Zone:              | Zone III   | Zone III   | Zone II   | Zone III | Zone III | Zone III  | Zone III  | Zone III  |
|                           |                    |                        | (3)        | (3)        | (3)       |          |          | (3)       | (3)       | (3)       |
|                           |                    |                        |            |            |           |          |          |           |           |           |
| Aroclor-1016              |                    |                        | ND         | ND         | ND        | 44 U     | 40 U     | ND        | ND        | ND        |
| Aroclor-1221              |                    |                        | ND         | ND         | ND        | 44 U     | 40 U     | ND        | ND        | ND        |
| Aroclor-1232              |                    |                        | ND         | ND         | ND        | 44 U     | 40 U     | ND        | ND        | ND        |
| Aroclor-1242              |                    |                        | ND         | ND         | ND        | 44 U     | 40 U     | ND        | ND        | ND        |
| Aroclor-1248              |                    |                        | ND         | ND         | ND        | 44 U     | 40 U     | ND        | ND        | ND        |
| Aroclor-1254              |                    |                        | ND         | ND         | ND        | 44 U     | 40 U     | ND        | ND        | ND        |
| Aroclor-1260              |                    |                        | 3400       | 930        | 1500      | 350      | 330      | 500       | 1800      | ND        |
| TOTAL PCBs                | 25,000             |                        | 3400       | 930        | 1500      | 350      | 330      | 500       | 1800      | 0         |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | NYSDEC<br>Site Specific | Sample Designation:<br>Sample Date: |         | 925-2<br>2/19/1993 | 925-3<br>2/19/1993 | 925-3N<br>6/21/2005 | 925-3N<br>6/21/2005 | 925-3N<br>6/21/2005 | 925-3S<br>6/21/2005 | 925-3S<br>6/21/2005 |
|---------------------------|-------------------------|-------------------------------------|---------|--------------------|--------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| (Concentrations in µg/kg) | Soil Cleanup Level      | Sample Depth (ft bls):              | 0-1     | 0-0.67             | 0-0.67             | 0-1                 | 1-2                 | 2-3                 | 0-1                 | 1-2                 |
|                           | $(\mu g/kg)$            | Map Zone:                           | Zone II | Zone II            | Zone II            | Zone II             | Zone II             | Zone II             | Zone II             | Zone II             |
|                           |                         |                                     | (3)     | (3)                | (3)                |                     |                     |                     |                     |                     |
| Aroclor-1016              |                         |                                     | ND      | ND                 | ND                 | 27 U                | 26 U                | 27 U                | 28 U                | 30 U                |
| Aroclor-1221              |                         |                                     | ND      | ND                 | ND                 | 27 U                | 26 U                | 27 U                | 28 U                | 30 U                |
| Aroclor-1232              |                         |                                     | ND      | ND                 | ND                 | 27 U                | 26 U                | 27 U                | 28 U                | 30 U                |
| Aroclor-1242              |                         |                                     | ND      | ND                 | ND                 | 27 U                | 26 U                | 27 U                | 28 U                | 30 U                |
| Aroclor-1248              |                         |                                     | ND      | ND                 | ND                 | 27 U                | 26 U                | 27 U                | 28 U                | 30 U                |
| Aroclor-1254              |                         |                                     | ND      | ND                 | ND                 | 27 U                | 26 U                | 27 U                | 54000               | 1100                |
| Aroclor-1260              |                         |                                     | 260     | 12200              | 264000             | 360                 | 26 U                | 27 U                | 28 U                | 30 U                |
| TOTAL PCBs                | 25,000                  |                                     | 260     | 12200              | 264000             | 360                 | 0                   | 0                   | 54000               | 1100                |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 6/21/2005<br>2-3 | 925-3E<br>5/29/2007<br>0-1<br>Zone II | 925-3E<br>5/29/2007<br>1-2<br>Zone II | 925-3E<br>5/29/2007<br>2-3<br>Zone II | 925-3SS<br>5/29/2007<br>0-1<br>Zone II | 925-3SS<br>5/29/2007<br>1-2<br>Zone II | 925-3SS<br>5/29/2007<br>2-3<br>Zone II | 925-3W<br>5/29/2007<br>0-1<br>Zone II |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------------|---------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 27 U             | 27 U                                  | 28 U                                  | 31 U                                  | 28 U                                   | 28 U                                   | 27 U                                   | 28 U                                  |
| Aroclor-1221                           |                                                          |                                                                            | 27 U             | 27 U                                  | 28 U                                  | 31 U                                  | 28 U                                   | 28 U                                   | 27 U                                   | 28 U                                  |
| Aroclor-1232                           |                                                          |                                                                            | 27 U             | 27 U                                  | 28 U                                  | 31 U                                  | 28 U                                   | 28 U                                   | 27 U                                   | 28 U                                  |
| Aroclor-1242                           |                                                          |                                                                            | 27 U             | 27 U                                  | 28 U                                  | 31 U                                  | 28 U                                   | 28 U                                   | 27 U                                   | 28 U                                  |
| Aroclor-1248                           |                                                          |                                                                            | 27 U             | 27 U                                  | 28 U                                  | 31 U                                  | 28 U                                   | 28 U                                   | 27 U                                   | 28 U                                  |
| Aroclor-1254                           |                                                          |                                                                            | 87               | 27 U                                  | 28 U                                  | 31 U                                  | 28 U                                   | 28 U                                   | 27 U                                   | 23000                                 |
| Aroclor-1260                           |                                                          |                                                                            | 27 U             | 3600                                  | 1700                                  | 4400                                  | 10000                                  | 1100                                   | 88                                     | 28 U                                  |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 87               | 3600                                  | 1700                                  | 4400                                  | 10000                                  | 1100                                   | 88                                     | 23000                                 |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | 925-3W    | 925-3W    | 925-4     | 925-5     | 925-6     | 925-7     | 925-8    |
|---------------------------|--------------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|----------|
| Parameter                 | Site Specific      | Sample Date:           | 5/29/2007 | 5/29/2007 | 2/19/1993 | 2/19/1993 | 2/19/1993 | 2/19/1993 | 3/8/1993 |
| (Concentrations in µg/kg) | Soil Cleanup Level | Sample Depth (ft bls): | 1-2       | 2-3       | 0-0.67    | 0-1       | 0-0.5     | 0-0.83    | 0-0.5    |
|                           | $(\mu g/kg)$       | Map Zone:              | Zone II   | Zone II  |
|                           |                    |                        |           |           | (3)       | (3)       | (3)       | (3)       | (3)      |
| Aroclor-1016              |                    |                        | 28 U      | 27 U      | ND        | ND        | ND        | ND        | ND       |
| Aroclor-1221              |                    |                        | 28 U      | 27 U      | ND        | ND        | ND        | ND        | ND       |
| Aroclor-1232              |                    |                        | 28 U      | 27 U      | ND        | ND        | ND        | ND        | ND       |
| Aroclor-1242              |                    |                        | 28 U      | 27 U      | ND        | ND        | ND        | ND        | ND       |
| Aroclor-1248              |                    |                        | 28 U      | 27 U      | ND        | ND        | ND        | ND        | ND       |
| Aroclor-1254              |                    |                        | 12000     | 5600      | ND        | ND        | ND        | ND        | ND       |
| Aroclor-1260              |                    |                        | 28 U      | 27 U      | 5300      | 510       | 13800     | 6200      | 11500    |
| TOTAL PCBs                | 25,000             |                        | 12000     | 5600      | 5300      | 510       | 13800     | 6200      | 11500    |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | 925-9    | 967-1    | 967-2    | 967-4    | A9-B1      | A9-B2      | A9-D1     | A9-EW      |
|---------------------------|--------------------|------------------------|----------|----------|----------|----------|------------|------------|-----------|------------|
| Parameter                 | Site Specific      | Sample Date:           | 3/8/1993 | 3/8/1993 | 3/8/1993 | 3/8/1993 | 12/21/2000 | 12/21/2000 | 1/16/2001 | 12/28/2000 |
| (Concentrations in µg/kg) | Soil Cleanup Level | Sample Depth (ft bls): | 0-0.5    | 0-0.83   | 0-0.67   | 0-0.75   |            |            | 7-8       |            |
|                           | $(\mu g/kg)$       | Map Zone:              | Zone II  | Zone II  | Zone II  | Zone II  | Zone III   | Zone III   | Zone III  | Zone III   |
|                           |                    |                        | (3)      | (3)      | (3)      | (3)      |            |            |           |            |
| Aroclor-1016              |                    |                        | ND       | ND       | ND       | ND       | 18 U       | 19 U       | 19 U      | 170 U      |
| Aroclor-1221              |                    |                        | ND       | ND       | ND       | ND       | 18 U       | 19 U       | 19 U      | 170 U      |
| Aroclor-1232              |                    |                        | ND       | ND       | ND       | ND       | 18 U       | 19 U       | 19 U      | 170 U      |
| Aroclor-1242              |                    |                        | ND       | ND       | ND       | ND       | 18 U       | 19 U       | 19 U      | 170 U      |
| Aroclor-1248              |                    |                        | ND       | ND       | ND       | ND       | 18 U       | 19 U       | 19 U      | 170 U      |
| Aroclor-1254              |                    |                        | ND       | ND       | ND       | ND       | 18 U       | 19 U       | 19 U      | 170 U      |
| Aroclor-1260              |                    |                        | 10230    | 3600     | 2600     | 5500     | 350        | 250        | 31        | 1400       |
| TOTAL PCBs                | 25,000             |                        | 10230    | 3600     | 2600     | 5500     | 350        | 250        | 31        | 1400       |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 12/21/2000 | A9-SW<br>12/21/2000<br><br>Zone III | A9-WW<br>12/21/2000<br><br>Zone III | B-1<br>11/2/1998<br><br>Zone II | B-2<br>11/2/1998<br><br>Zone II | B-3<br>11/2/1998<br><br>Zone II | B-4<br>11/2/1998<br><br>Zone II | BB-1<br>6/4/1998<br>0-1<br>Zone II |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------|-------------------------------------|-------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 180 U      | 19 U                                | 18 U                                | 35 U                            | 35 U                            | 36 U                            | 37 U                            | 390 U                              |
| Aroclor-1221                           |                                                          |                                                                            | 180 U      | 19 U                                | 18 U                                | 70 U                            | 70 U                            | 72 U                            | 74 U                            | 770 U                              |
| Aroclor-1232                           |                                                          |                                                                            | 180 U      | 19 U                                | 18 U                                | 35 U                            | 35 U                            | 36 U                            | 37 U                            | 390 U                              |
| Aroclor-1242                           |                                                          |                                                                            | 180 U      | 19 U                                | 18 U                                | 35 U                            | 35 U                            | 36 U                            | 37 U                            | 390 U                              |
| Aroclor-1248                           |                                                          |                                                                            | 180 U      | 19 U                                | 18 U                                | 35 U                            | 35 U                            | 36 U                            | 37 U                            | 390 U                              |
| Aroclor-1254                           |                                                          |                                                                            | 180 U      | 19 U                                | 18 U                                | 35 U                            | 35 U                            | 36 U                            | 37 U                            | 3300                               |
| Aroclor-1260                           |                                                          |                                                                            | 600        | 170                                 | 260                                 | 35 U                            | 35 U                            | 29 J                            | 37 U                            | 3500                               |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 600        | 170                                 | 260                                 | 0                               | 0                               | 29                              | 0                               | 6800                               |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: |      | BB-2<br>6/4/1998<br>0-1<br>Zone II | BB-2<br>6/4/1998<br>1-2<br>Zone II | BB-3<br>6/4/1998<br>0-1<br>Zone II | BB-3<br>6/4/1998<br>1-2<br>Zone II | BOTTOM<br>1/4/1999<br><br>Zone III | CB-1<br>7/29/1999<br>0-1<br>Zone II | CB-2<br>7/29/1999<br>0-1<br>Zone II |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 37 U | 43 U                               | 42 U                               | 37 U                               | 38 U                               | 38 U                               | 41 U                                | 370 U                               |
| Aroclor-1221                           |                                                          |                                                                            | 74 U | 85 U                               | 83 U                               | 73 U                               | 76 U                               | 76 U                               | 82 U                                | 740 U                               |
| Aroclor-1232                           |                                                          |                                                                            | 37 U | 43 U                               | 42 U                               | 37 U                               | 38 U                               | 38 U                               | 41 U                                | 370 U                               |
| Aroclor-1242                           |                                                          |                                                                            | 37 U | 43 U                               | 42 U                               | 37 U                               | 38 U                               | 38 U                               | 41 U                                | 370 U                               |
| Aroclor-1248                           |                                                          |                                                                            | 37 U | 43 U                               | 42 U                               | 37 U                               | 38 U                               | 38 U                               | 41 U                                | 370 U                               |
| Aroclor-1254                           |                                                          |                                                                            | 960  | 43 U                               | 42 U                               | 37 U                               | 38 U                               | 38 U                               | 41 U                                | 370 U                               |
| Aroclor-1260                           |                                                          | -                                                                          | 1200 | 43 U                               | 42 U                               | 190                                | 38 U                               | 26 J                               | 41 U                                | 3430 D                              |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 2160 | 0                                  | 0                                  | 190                                | 0                                  | 26                                 | 0                                   | 3430                                |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC Site Specific Soil Cleanup Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 7/29/1999<br>0-1 | CB-4<br>7/29/1999<br>0-1<br>Zone II | CB-5<br>7/29/1999<br>0-1<br>Zone II | CB-6<br>7/29/1999<br>0-1<br>Zone II | CB-8<br>7/29/1999<br>0-1<br>Zone II | CB-9<br>7/29/1999<br>0-1<br>Zone II | CB-10<br>7/29/1999<br>0-1<br>Zone II | CB-11<br>7/29/1999<br>0-1<br>Zone II |
|----------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|
| Aroclor-1016                           |                                                 |                                                                            | 35 U             | 360 U                               | 37 U                                | 42 U                                | 180 U                               | 180 U                               | 350 U                                | 42 U                                 |
| Aroclor-1221                           |                                                 |                                                                            | 70 U             | 710 U                               | 75 U                                | 84 U                                | 350 U                               | 350 U                               | 690 U                                | 83 U                                 |
| Aroclor-1232                           |                                                 |                                                                            | 35 U             | 360 U                               | 37 U                                | 42 U                                | 180 U                               | 180 U                               | 350 U                                | 42 U                                 |
| Aroclor-1242                           |                                                 |                                                                            | 35 U             | 360 U                               | 37 U                                | 42 U                                | 180 U                               | 180 U                               | 350 U                                | 42 U                                 |
| Aroclor-1248                           |                                                 |                                                                            | 35 U             | 360 U                               | 37 U                                | 42 U                                | 180 U                               | 180 U                               | 350 U                                | 42 U                                 |
| Aroclor-1254                           |                                                 |                                                                            | 35 U             | 360 U                               | 37 U                                | 42 U                                | 180 U                               | 180 U                               | 350 U                                | 42 U                                 |
| Aroclor-1260                           |                                                 |                                                                            | 31 J             | 1860 D                              | 193                                 | 35 J                                | 1620 D                              | 2025 D                              | 2120 D                               | 92                                   |
| TOTAL PCBs                             | 25,000                                          |                                                                            | 31               | 1860                                | 193                                 | 35                                  | 1620                                | 2025                                | 2120                                 | 92                                   |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 7/29/1999<br>0-1 | CB-13<br>7/30/1999<br>0-1<br>Zone II | CB-14<br>7/29/1999<br>0-1<br>Zone II | CB-15<br>7/29/1999<br>0-1<br>Zone II | CB-16<br>8/12/1999<br>0-1<br>Zone II | CB-16<br>8/12/1999<br>1-2<br>Zone II | CB-16<br>8/12/1999<br>2-3<br>Zone II | CB-17<br>8/12/1999<br>0-1<br>Zone II |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 35 U             | 67 U                                 | 41 U                                 | 170 U                                | 35 U                                 | 36 U                                 | 37 U                                 | 35 U                                 |
| Aroclor-1221                           |                                                          |                                                                            | 69 U             | 130 U                                | 82 U                                 | 340 U                                | 70 U                                 | 73 U                                 | 73 U                                 | 70 U                                 |
| Aroclor-1232                           |                                                          |                                                                            | 35 U             | 67 U                                 | 41 U                                 | 170 U                                | 35 U                                 | 36 U                                 | 37 U                                 | 35 U                                 |
| Aroclor-1242                           |                                                          |                                                                            | 35 U             | 67 U                                 | 41 U                                 | 170 U                                | 35 U                                 | 36 U                                 | 37 U                                 | 35 U                                 |
| Aroclor-1248                           |                                                          |                                                                            | 35 U             | 67 U                                 | 41 U                                 | 170 U                                | 35 U                                 | 36 U                                 | 37 U                                 | 35 U                                 |
| Aroclor-1254                           |                                                          |                                                                            | 35 U             | 67 U                                 | 41 U                                 | 170 U                                | 35 U                                 | 36 U                                 | 37 U                                 | 35 U                                 |
| Aroclor-1260                           |                                                          |                                                                            | 297              | 424 D                                | 442                                  | 1055 D                               | 322                                  | 97                                   | 22 J                                 | 579                                  |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 297              | 424                                  | 442                                  | 1055                                 | 322                                  | 97                                   | 22                                   | 579                                  |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls): | 8/12/1999<br>1-2 | 2-3     | 8-10    | 0-0.16  | 0-0.16  | CEH-3<br>12/13/2000<br>0-0.16 | 0-0.16  | 0-0.16  |
|----------------------------------------|-----------------------------------------------|---------------------------------------------------------------|------------------|---------|---------|---------|---------|-------------------------------|---------|---------|
|                                        | (µg/kg)                                       | Map Zone:                                                     | Zone II          | Zone II | Zone II | Zone II | Zone II | Zone II                       | Zone II | Zone II |
| Aroclor-1016                           |                                               |                                                               | 69 U             | 70 U    | 35 U    | 36 U    | 70 U    | 90 U                          | 93 U    | 200 U   |
| Aroclor-1221                           |                                               |                                                               | 140 U            | 140 U   | 71 U    | 36 U    | 70 U    | 90 U                          | 93 U    | 200 U   |
| Aroclor-1232                           |                                               |                                                               | 69 U             | 70 U    | 35 U    | 36 U    | 70 U    | 90 U                          | 93 U    | 200 U   |
| Aroclor-1242                           |                                               |                                                               | 69 U             | 70 U    | 35 U    | 36 U    | 70 U    | 90 U                          | 93 U    | 200 U   |
| Aroclor-1248                           |                                               |                                                               | 69 U             | 70 U    | 35 U    | 36 U    | 70 U    | 90 U                          | 93 U    | 200 U   |
| Aroclor-1254                           |                                               |                                                               | 69 U             | 70 U    | 15 J    | 36 U    | 70 U    | 90 U                          | 93 U    | 200 U   |
| Aroclor-1260                           |                                               |                                                               | 758 D            | 840     | 35 U    | 400     | 580     | 1200                          | 1300    | 1400    |
| TOTAL PCBs                             | 25,000                                        |                                                               | 758              | 840     | 15      | 400     | 580     | 1200                          | 1300    | 1400    |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    |         | CEH-7    | CEH-8    | CEH-9     | CMW-30     | CMW-31   | CMW-34     | CS-6      |
|---------------------------|--------------------|------------------------|---------|----------|----------|-----------|------------|----------|------------|-----------|
| Parameter                 | Site Specific      | Sample Date:           |         |          |          | 1/16/2001 | 12/15/1993 | 2/1/1993 | 12/15/1993 | 1/25/1993 |
| (Concentrations in µg/kg) | Soil Cleanup Level | Sample Depth (ft bls): | 0-0.16  | 0-0.16   | 0-0.16   | 0-0.16    | 0-2        | 0-2      | 0-2        | 0-2       |
|                           | (µg/kg)            | Map Zone:              | Zone II | Zone III | Zone III | Zone III  | Zone IV    | Zone III | Zone III   | Zone II   |
|                           |                    |                        |         |          |          |           |            |          |            |           |
| Aroclor-1016              |                    |                        | 180 U   | 19 U     | 19 U     | 19 U      | 190 U      | 4000 UD  | 180 U      | 40000 UD  |
| Aroclor-1221              |                    |                        | 180 U   | 19 U     | 19 U     | 19 U      | 190 U      | 8200 UD  | 180 U      | 81000 UD  |
| Aroclor-1232              |                    |                        | 180 U   | 19 U     | 19 U     | 19 U      | 190 U      | 4000 UD  | 180 U      | 40000 UD  |
| Aroclor-1242              |                    |                        | 180 U   | 19 U     | 19 U     | 19 U      | 190 U      | 4000 UD  | 180 U      | 40000 UD  |
| Aroclor-1248              |                    |                        | 180 U   | 19 U     | 19 U     | 19 U      | 190 U      | 4000 UD  | 180 U      | 40000 UD  |
| Aroclor-1254              |                    |                        | 180 U   | 19 U     | 230      | 240       | 300 J      | 4000 UD  | 3.5 J      | 40000 UD  |
| Aroclor-1260              |                    |                        | 620     | 100      | 260      | 310       | 310 J      | 10000 D  | 360 U      | 62000 D   |
| TOTAL PCBs                | 25,000             |                        | 620     | 100      | 490      | 550       | 610        | 10000    | 3.5        | 62000     |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | NYSDEC<br>Site Specific | Sample Designation:<br>Sample Date: | CS-16<br>12/16/1993 | CS-22<br>12/15/1993 | CS-41A<br>12/15/1993 | CS-43<br>1/18/1993 | CS-47<br>12/15/1993 | CS-49<br>2/1/1993 | CS-50<br>1/20/1993 | CS-51<br>1/20/1993 |
|---------------------------|-------------------------|-------------------------------------|---------------------|---------------------|----------------------|--------------------|---------------------|-------------------|--------------------|--------------------|
| (Concentrations in µg/kg) | Soil Cleanup Level      | Sample Depth (ft bls):              | 0-2                 | 0-2                 | 3.5-5.5              | 0-2                | 2-4                 | 2-4               | 0-2                | 0-2                |
|                           | (µg/kg)                 | Map Zone:                           | Zone III            | Zone II             | Zone III             | Zone III           | Zone III            | Zone III          | Zone II            | Zone II            |
|                           |                         |                                     |                     |                     |                      |                    |                     |                   |                    |                    |
| Aroclor-1016              |                         |                                     | 210 U               | 170 U               | 170 U                | 400 U              | 8600 U              | 3800 UD           | 380 UD             | 380 UD             |
| Aroclor-1221              |                         |                                     | 210 U               | 170 U               | 170 U                | 820 U              | 8600 U              | 7600 UD           | 770 UD             | 770 UD             |
| Aroclor-1232              |                         |                                     | 210 U               | 170 U               | 170 U                | 400 U              | 8600 U              | 3800 UD           | 380 UD             | 380 UD             |
| Aroclor-1242              |                         |                                     | 210 U               | 170 U               | 170 U                | 400 U              | 8600 U              | 3800 UD           | 380 UD             | 380 UD             |
| Aroclor-1248              |                         |                                     | 210 U               | 170 U               | 170 U                | 400 U              | 8600 U              | 3800 UD           | 380 UD             | 380 UD             |
| Aroclor-1254              |                         |                                     | 790                 | 7.3 J               | 320 U                | 400 U              | 29000               | 3800 UD           | 380 UD             | 380 UD             |
| Aroclor-1260              |                         |                                     | 1600                | 16 J                | 42 J                 | 1400               | 20000               | 17000 D           | 270 JD             | 1100 UD            |
| TOTAL PCBs                | 25,000                  |                                     | 2390                | 23.3                | 42                   | 1400               | 49000               | 17000             | 270                | 0                  |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC Site Specific Soil Cleanup Level (µg/kg) | Sample Designation: Sample Date: Sample Depth (ft bls): Map Zone: | CS-53<br>2/1/1993<br>0-2<br>Zone II | CS-59<br>11/9/1993<br>0-2<br>Zone III | CS-75<br>1/19/1993<br>0-2<br>Zone II | CS-77<br>11/9/1993<br>0-2<br>Zone II | CS-82<br>11/9/1993<br>0-2<br>Zone I | CS-83<br>1/25/1993<br>0-2<br>Zone III | EWALL<br>1/4/1999<br><br>Zone III | EH-1<br>7/24/1996<br>0-2<br>Zone II |
|-------------------------------------|-------------------------------------------------|-------------------------------------------------------------------|-------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|---------------------------------------|-----------------------------------|-------------------------------------|
|                                     |                                                 |                                                                   |                                     |                                       |                                      |                                      |                                     |                                       |                                   |                                     |
| Aroclor-1016                        |                                                 |                                                                   | 38000 UD                            | 170 U                                 | 3700 UD                              | 180 U                                | 920 U                               | 3600 UD                               | 37 U                              | 36 U                                |
| Aroclor-1221                        |                                                 |                                                                   | 76000 UD                            | 170 U                                 | 7400 UD                              | 180 U                                | 920 U                               | 7300 UD                               | 75 U                              | 36 U                                |
| Aroclor-1232                        |                                                 |                                                                   | 38000 UD                            | 170 U                                 | 3700 UD                              | 180 U                                | 920 U                               | 3600 UD                               | 37 U                              | 36 U                                |
| Aroclor-1242                        |                                                 |                                                                   | 38000 UD                            | 170 U                                 | 3700 UD                              | 180 U                                | 920 U                               | 3600 UD                               | 37 U                              | 36 U                                |
| Aroclor-1248                        |                                                 |                                                                   | 38000 UD                            | 170 U                                 | 3700 UD                              | 180 U                                | 920 U                               | 3600 UD                               | 37 U                              | 36 U                                |
| Aroclor-1254                        |                                                 |                                                                   | 38000 UD                            | 35 J                                  | 3700 UD                              | 370                                  | 4100                                | 3600 UD                               | 37 U                              | 36 U                                |
| Aroclor-1260                        |                                                 |                                                                   | 88000 D                             | 200 J                                 | 6900 D                               | 550                                  | 4600                                | 4400 D                                | 37 U                              | 190                                 |
| TOTAL PCBs                          | 25,000                                          |                                                                   | 88000                               | 235                                   | 6900                                 | 920                                  | 8700                                | 4400                                  | 0                                 | 190                                 |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: |      | EH-3<br>7/24/1996<br>0-2<br>Zone II | EH-4<br>7/24/1996<br>0-2<br>Zone II | EH-5<br>7/24/1996<br>0-2<br>Zone II | EH-6<br>7/24/1996<br>0-2<br>Zone II | EH-7<br>7/24/1996<br>0-2<br>Zone II | EH-8<br>7/24/1996<br>0-2<br>Zone II |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 37 U | 36 U                                | 38 U                                | 37 U                                | 38 U                                | 36 U                                | 36 U                                |
| Aroclor-1221                           |                                                          |                                                                            | 37 U | 36 U                                | 38 U                                | 37 U                                | 38 U                                | 36 U                                | 36 U                                |
| Aroclor-1232                           |                                                          |                                                                            | 37 U | 36 U                                | 38 U                                | 37 U                                | 38 U                                | 36 U                                | 36 U                                |
| Aroclor-1242                           |                                                          |                                                                            | 37 U | 36 U                                | 38 U                                | 37 U                                | 38 U                                | 36 U                                | 36 U                                |
| Aroclor-1248                           |                                                          |                                                                            | 37 U | 36 U                                | 38 U                                | 37 U                                | 38 U                                | 36 U                                | 36 U                                |
| Aroclor-1254                           |                                                          |                                                                            | 37 U | 36 U                                | 38 U                                | 37 U                                | 38 U                                | 36 U                                | 36 U                                |
| Aroclor-1260                           |                                                          |                                                                            | 790  | 3100 D                              | 2800 D                              | 560                                 | 5600 D                              | 1800 D                              | 1900 D                              |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 790  | 3100                                | 2800                                | 560                                 | 5600                                | 1800                                | 1900                                |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | EH-9<br>7/24/1996<br>0-2<br>Zone II | EH-10<br>7/24/1996<br>0-2<br>Zone II | EH-11<br>9/9/1996<br>0-2<br>Zone II | EH-11<br>9/9/1996<br>2-4<br>Zone II | EH-12<br>9/9/1996<br>0-2<br>Zone II | EH-12<br>9/9/1996<br>2-4<br>Zone II | EH-13<br>9/9/1996<br>0-2<br>Zone II | EH-14<br>9/9/1996<br>0-2<br>Zone II |
|-------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
|                                     |                                                          |                                                                            |                                     |                                      |                                     |                                     |                                     |                                     |                                     |                                     |
| Aroclor-1016                        |                                                          |                                                                            | 36 U                                | 36 U                                 | 750 U                               | 35 U                                | 360 U                               | 34 U                                | 3700 U                              | 180 U                               |
| Aroclor-1221                        |                                                          |                                                                            | 36 U                                | 36 U                                 | 1500 U                              | 71 U                                | 740 U                               | 69 U                                | 7400 U                              | 380 U                               |
| Aroclor-1232                        |                                                          |                                                                            | 36 U                                | 36 U                                 | 750 U                               | 35 U                                | 360 U                               | 34 U                                | 3700 U                              | 180 U                               |
| Aroclor-1242                        |                                                          |                                                                            | 36 U                                | 36 U                                 | 750 U                               | 35 U                                | 360 U                               | 34 U                                | 3700 U                              | 180 U                               |
| Aroclor-1248                        |                                                          |                                                                            | 36 U                                | 36 U                                 | 750 U                               | 35 U                                | 360 U                               | 34 U                                | 3700 U                              | 180 U                               |
| Aroclor-1254                        |                                                          |                                                                            | 36 U                                | 36 U                                 | 600 J                               | 13 J                                | 560                                 | 36                                  | 6300                                | 270                                 |
| Aroclor-1260                        |                                                          |                                                                            | 17000 D                             | 5800 D                               | 2100                                | 24 J                                | 1200                                | 62                                  | 7100                                | 540                                 |
| TOTAL PCBs                          | 25,000                                                   |                                                                            | 17000                               | 5800                                 | 2700                                | 37                                  | 1760                                | 98                                  | 13400                               | 810                                 |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | NYSDEC<br>Site Specific | Sample Designation:<br>Sample Date: |         | EH-15 DUP<br>9/9/1996 | EH-16<br>9/9/1996 | EH-17<br>9/9/1996 | EH-18<br>9/9/1996 | EH-19<br>7/24/1996 | EH-20<br>7/24/1996 | EH-21<br>7/24/1996 |
|---------------------------|-------------------------|-------------------------------------|---------|-----------------------|-------------------|-------------------|-------------------|--------------------|--------------------|--------------------|
| (Concentrations in µg/kg) | Soil Cleanup Level      | Sample Depth (ft bls):              | 0-2     | 0-2                   | 0-2               | 0-2               | 0-2               | 0-2                | 0-2                | 0-2                |
|                           | (µg/kg)                 | Map Zone:                           | Zone II | Zone II               | Zone II           | Zone II           | Zone II           | Zone II            | Zone II            | Zone II            |
| A 1 1016                  |                         |                                     | 1000 II | 1000 II               | 720 11            | 720 II            | 250 11            | 27.11              | 27.11              | 27.11              |
| Aroclor-1016              |                         |                                     | 1800 U  | 1800 U                | 730 U             | 720 U             | 350 U             | 37 U               | 37 U               | 37 U               |
| Aroclor-1221              |                         |                                     | 3600 U  | 3600 U                | 1500 U            | 1500 U            | 710 U             | 37 U               | 37 U               | 37 U               |
| Aroclor-1232              |                         |                                     | 1800 U  | 1800 U                | 730 U             | 720 U             | 350 U             | 37 U               | 37 U               | 37 U               |
| Aroclor-1242              |                         |                                     | 1800 U  | 1800 U                | 730 U             | 720 U             | 350 U             | 37 U               | 37 U               | 37 U               |
| Aroclor-1248              |                         |                                     | 1800 U  | 1800 U                | 730 U             | 720 U             | 350 U             | 37 U               | 37 U               | 37 U               |
| Aroclor-1254              |                         |                                     | 2800    | 3000                  | 1000              | 1900              | 870               | 37 U               | 37 U               | 37 U               |
| Aroclor-1260              |                         |                                     | 4800    | 5100                  | 3500              | 5400              | 2000              | 3200 D             | 2100 D             | 1400               |
| TOTAL PCBs                | 25,000                  |                                     | 7600    | 8100                  | 4500              | 7300              | 2870              | 3200               | 2100               | 1400               |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 9/9/1996<br>0-2 | EH-23<br>7/24/1996<br>0-2<br>Zone III | EH-24<br>7/24/1996<br>0-2<br>Zone III | EH-25<br>7/24/1996<br>0-2<br>Zone III | EHS-1<br>2/12/2001<br>0-0.5<br>Zone II | EHS-2<br>2/12/2001<br>0-0.5<br>Zone II | FC-1<br>9/14/1994<br>0-2<br>Zone III | FC-2<br>9/14/1994<br>0-2<br>Zone III |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|-----------------|---------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|
|                                        |                                                          |                                                                            |                 |                                       |                                       |                                       |                                        |                                        |                                      |                                      |
| Aroclor-1016                           |                                                          |                                                                            | 72 U            | 36 U                                  | 37 U                                  | 37 U                                  | 19 U                                   | 19 U                                   | 33 U                                 | 33 U                                 |
| Aroclor-1221                           |                                                          |                                                                            | 150 U           | 36 U                                  | 37 U                                  | 37 U                                  | 19 U                                   | 19 U                                   | 67 U                                 | 67 U                                 |
| Aroclor-1232                           |                                                          |                                                                            | 72 U            | 36 U                                  | 37 U                                  | 37 U                                  | 19 U                                   | 19 U                                   | 33 U                                 | 33 U                                 |
| Aroclor-1242                           |                                                          |                                                                            | 72 U            | 36 U                                  | 37 U                                  | 37 U                                  | 19 U                                   | 19 U                                   | 33 U                                 | 33 U                                 |
| Aroclor-1248                           |                                                          |                                                                            | 72 U            | 36 U                                  | 37 U                                  | 37 U                                  | 19 U                                   | 19 U                                   | 33 U                                 | 33 U                                 |
| Aroclor-1254                           |                                                          |                                                                            | 160             | 36 U                                  | 37 U                                  | 37 U                                  | 19 U                                   | 19 U                                   | 81                                   | 44                                   |
| Aroclor-1260                           |                                                          |                                                                            | 370             | 420                                   | 3300 D                                | 420                                   | 240                                    | 55                                     | 120                                  | 47                                   |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 530             | 420                                   | 3300                                  | 420                                   | 240                                    | 55                                     | 201                                  | 91                                   |

µg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 9/14/1994<br>0-2 | FC-4<br>9/14/1994<br>0-2<br>Zone III | FC-5<br>9/14/1994<br>0-2<br>Zone II | FC-6<br>9/14/1994<br>0-2<br>Zone II | FC-7<br>9/14/1994<br>0-2<br>Zone II | FC-8<br>9/14/1994<br>0-2<br>Zone II | FC-9<br>9/14/1994<br>0-2<br>Zone II | FC-10<br>9/14/1994<br>0-2<br>Zone II |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 33 U             | 33 U                                 | 33 U                                | 33 U                                | 33 U                                | 33 U                                | 33 U                                | 33 U                                 |
| Aroclor-1221                           |                                                          |                                                                            | 67 U             | 67 U                                 | 67 U                                | 67 U                                | 67 U                                | 67 U                                | 67 U                                | 67 U                                 |
| Aroclor-1232                           |                                                          |                                                                            | 33 U             | 33 U                                 | 33 U                                | 33 U                                | 33 U                                | 33 U                                | 33 U                                | 33 U                                 |
| Aroclor-1242                           |                                                          |                                                                            | 33 U             | 33 U                                 | 33 U                                | 33 U                                | 33 U                                | 33 U                                | 33 U                                | 33 U                                 |
| Aroclor-1248                           |                                                          |                                                                            | 33 U             | 33 U                                 | 33 U                                | 33 U                                | 33 U                                | 33 U                                | 33 U                                | 33 U                                 |
| Aroclor-1254                           |                                                          |                                                                            | 11 J             | 52                                   | 110                                 | 29 J                                | 68                                  | 180                                 | 2800                                | 400                                  |
| Aroclor-1260                           |                                                          |                                                                            | 25 J             | 63                                   | 140                                 | 34 J                                | 89                                  | 270                                 | 3600                                | 500                                  |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 36               | 115                                  | 250                                 | 63                                  | 157                                 | 450                                 | 6400                                | 900                                  |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 9/14/1994<br>0-2 | FC-12<br>9/14/1994<br>0-2<br>Zone I | FC-13<br>9/14/1994<br>0-2<br>Zone I | FC-14<br>9/14/1994<br>0-2<br>Zone I | FC-15<br>9/14/1994<br>0-2<br>Zone I | FC-16<br>4/4/1994<br>0-2<br>Zone I | FC-17<br>4/6/1994<br>1-3<br>Zone I | FC-18<br>4/6/1994<br>1-3<br>Zone I |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 33 U             | 33 U                                | 33 U                                | 33 U                                | 33 U                                | 33 U                               | 33 U                               | 33 U                               |
| Aroclor-1221                           |                                                          |                                                                            | 67 U             | 67 U                                | 67 U                                | 67 U                                | 67 U                                | 67 U                               | 67 U                               | 67 U                               |
| Aroclor-1232                           |                                                          |                                                                            | 33 U             | 33 U                                | 33 U                                | 33 U                                | 33 U                                | 33 U                               | 33 U                               | 33 U                               |
| Aroclor-1242                           |                                                          |                                                                            | 33 U             | 33 U                                | 33 U                                | 33 U                                | 33 U                                | 33 U                               | 33 U                               | 33 U                               |
| Aroclor-1248                           |                                                          |                                                                            | 33 U             | 33 U                                | 33 U                                | 33 U                                | 33 U                                | 33 U                               | 33 U                               | 33 U                               |
| Aroclor-1254                           |                                                          |                                                                            | 83               | 10 J                                | 33 U                                | 260                                 | 52                                  | 170                                | 33 U                               | 33 U                               |
| Aroclor-1260                           |                                                          |                                                                            | 110              | 15 J                                | 33 U                                | 120                                 | 51                                  | 260                                | 33 U                               | 33 U                               |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 193              | 25                                  | 0                                   | 380                                 | 103                                 | 430                                | 0                                  | 0                                  |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | FC-19<br>4/6/1994<br>1-3<br>Zone I | FC-20<br>4/6/1994<br>1-3<br>Zone I | FC-21<br>4/5/1994<br>1-3<br>Zone I | FC-22<br>4/5/1994<br>1-3<br>Zone I | FC-23<br>4/5/1994<br>1-3<br>Zone I | FC-24<br>4/5/1994<br>1-3<br>Zone I | FC-25<br>4/6/1994<br>1-3<br>Zone I | FC-26<br>4/4/1994<br>1-3<br>Zone I |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 33 U                               |
| Aroclor-1221                           |                                                          |                                                                            | 67 U                               |
| Aroclor-1232                           |                                                          |                                                                            | 33 U                               |
| Aroclor-1242                           |                                                          |                                                                            | 33 U                               |
| Aroclor-1248                           |                                                          |                                                                            | 33 U                               |
| Aroclor-1254                           |                                                          |                                                                            | 33 U                               |
| Aroclor-1260                           |                                                          |                                                                            | 33 U                               | 24 J                               |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 0                                  | 0                                  | 0                                  | 0                                  | 0                                  | 0                                  | 0                                  | 24                                 |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: |      | FC-28<br>4/4/1998<br>1-3<br>Zone I | FC-29<br>4/4/1994<br>1-3<br>Zone I | FC-30<br>4/4/1994<br>1-3<br>Zone I | FC-31<br>4/5/1994<br>1-3<br>Zone I | FC-32<br>4/4/1994<br>1-3<br>Zone I | FC-32<br>4/4/1994<br>5-7<br>Zone I | FC-33<br>4/4/1994<br>1-3<br>Zone I |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 33 U | 33 U                               | 33 U                               | 33 U                               | 33 U                               | 33 U                               | 33 U                               | 33 U                               |
| Aroclor-1221                           |                                                          |                                                                            | 67 U | 67 U                               | 67 U                               | 67 U                               | 67 U                               | 67 U                               | 67 U                               | 67 U                               |
| Aroclor-1232                           |                                                          |                                                                            | 33 U | 33 U                               | 33 U                               | 33 U                               | 33 U                               | 33 U                               | 33 U                               | 33 U                               |
| Aroclor-1242                           |                                                          |                                                                            | 33 U | 33 U                               | 33 U                               | 33 U                               | 33 U                               | 33 U                               | 33 U                               | 33 U                               |
| Aroclor-1248                           |                                                          |                                                                            | 33 U | 33 U                               | 33 U                               | 33 U                               | 33 U                               | 33 U                               | 33 U                               | 33 U                               |
| Aroclor-1254                           |                                                          |                                                                            | 33 U | 33 U                               | 33 U                               | 33 U                               | 33 U                               | 33 U                               | 33 U                               | 33 U                               |
| Aroclor-1260                           |                                                          |                                                                            | 38   | 42                                 | 33 U                               |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 38   | 42                                 | 0                                  | 0                                  | 0                                  | 0                                  | 0                                  | 0                                  |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: |      | FC-35<br>4/6/1994<br>1-3<br>Zone I | FC-36<br>4/6/1994<br>1-3<br>Zone I | FC-36<br>4/6/1994<br>7-9<br>Zone I | FC-37<br>4/6/1994<br>1-3<br>Zone I | FC-38<br>4/5/1994<br>1-3<br>Zone I | FC-39<br>4/6/1994<br>1-3<br>Zone I | FC-40<br>4/5/1994<br>1-3<br>Zone I |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 33 U | 33 U                               | 33 U                               | 33 U                               | 33 U                               | 33 U                               | 33 U                               | 33 U                               |
| Aroclor-1221                           |                                                          |                                                                            | 67 U | 67 U                               | 67 U                               | 67 U                               | 67 U                               | 67 U                               | 67 U                               | 67 U                               |
| Aroclor-1232                           |                                                          |                                                                            | 33 U | 33 U                               | 33 U                               | 33 U                               | 33 U                               | 33 U                               | 33 U                               | 33 U                               |
| Aroclor-1242                           |                                                          |                                                                            | 33 U | 33 U                               | 33 U                               | 33 U                               | 33 U                               | 33 U                               | 33 U                               | 33 U                               |
| Aroclor-1248                           |                                                          |                                                                            | 33 U | 33 U                               | 33 U                               | 33 U                               | 33 U                               | 33 U                               | 33 U                               | 33 U                               |
| Aroclor-1254                           |                                                          |                                                                            | 33 U | 33 U                               | 33 U                               | 33 U                               | 33 U                               | 33 U                               | 33 U                               | 33 U                               |
| Aroclor-1260                           |                                                          |                                                                            | 33 U | 33 U                               | 33 U                               | 33 U                               | 33 U                               | 33 U                               | 33 U                               | 56                                 |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 0    | 0                                  | 0                                  | 0                                  | 0                                  | 0                                  | 0                                  | 56                                 |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls): | 2/2/1995<br>0-2 | FC-51<br>2/2/1995<br>0-2 | FC-52<br>2/2/1995<br>0-2 | FC-53<br>2/2/1995<br>0-2 | 0-2     | FC-61<br>2/27/1995<br>0-2 | FC-62<br>2/27/1995<br>1-3 | 1-3    |
|----------------------------------------|-----------------------------------------------|---------------------------------------------------------------|-----------------|--------------------------|--------------------------|--------------------------|---------|---------------------------|---------------------------|--------|
|                                        | (µg/kg)                                       | Map Zone:                                                     | Zone I          | Zone I                   | Zone I                   | Zone I                   | Zone II | Zone II                   | Zone I                    | Zone I |
| Aroclor-1016                           |                                               |                                                               | 37 U            | 38 U                     | 36 U                     | 35 U                     | 33 U    | 33 U                      | 33 U                      | 33 U   |
| Aroclor-1221                           |                                               |                                                               | 75 U            | 78 U                     | 73 U                     | 71 U                     | 67 U    | 67 U                      | 67 U                      | 67 U   |
| Aroclor-1232                           |                                               |                                                               | 37 U            | 38 U                     | 36 U                     | 35 U                     | 33 U    | 33 U                      | 33 U                      | 33 U   |
| Aroclor-1242                           |                                               |                                                               | 37 U            | 38 U                     | 36 U                     | 35 U                     | 33 U    | 33 U                      | 33 U                      | 33 U   |
| Aroclor-1248                           |                                               |                                                               | 37 U            | 38 U                     | 36 U                     | 35 U                     | 33 U    | 33 U                      | 33 U                      | 33 U   |
| Aroclor-1254                           |                                               |                                                               | 37 U            | 500                      | 36 U                     | 35 U                     | 33 U    | 33 U                      | 33 U                      | 33 U   |
| Aroclor-1260                           |                                               |                                                               | 11 J            | 430                      | 480                      | 22 J                     | 860     | 4000                      | 33 U                      | 33 U   |
| TOTAL PCBs                             | 25,000                                        |                                                               | 11              | 930                      | 480                      | 22                       | 860     | 4000                      | 0                         | 0      |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 2/27/1995 | FT-1<br>4/7/1997<br>0-2<br>Zone II | FT-2<br>4/7/1997<br>0-2<br>Zone II | FT-2A<br>6/21/2005<br>2-3<br>Zone II | FT-2E<br>6/21/2005<br>0-1<br>Zone II | FT-2E<br>6/21/2005<br>1-2<br>Zone II | FT-2E<br>6/21/2005<br>2-3<br>Zone II | FT-2N<br>6/21/2005<br>0-1<br>Zone II |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|-----------|------------------------------------|------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 33 U      | 720 U                              | 18000 U                            | 28 U                                 | 27 U                                 | 28 U                                 | 30 U                                 | 27 U                                 |
| Aroclor-1221                           |                                                          |                                                                            | 67 U      | 1500 U                             | 37000 U                            | 28 U                                 | 27 U                                 | 28 U                                 | 30 U                                 | 27 U                                 |
| Aroclor-1232                           |                                                          |                                                                            | 33 U      | 720 U                              | 18000 U                            | 28 U                                 | 27 U                                 | 28 U                                 | 30 U                                 | 27 U                                 |
| Aroclor-1242                           |                                                          |                                                                            | 33 U      | 720 U                              | 18000 U                            | 28 U                                 | 27 U                                 | 28 U                                 | 30 U                                 | 27 U                                 |
| Aroclor-1248                           |                                                          |                                                                            | 33 U      | 720 U                              | 18000 U                            | 28 U                                 | 27 U                                 | 28 U                                 | 30 U                                 | 27 U                                 |
| Aroclor-1254                           |                                                          |                                                                            | 33 U      | 570 J                              | 18000 U                            | 28 U                                 | 27 U                                 | 28 U                                 | 30 U                                 | 27 U                                 |
| Aroclor-1260                           |                                                          |                                                                            | 4.8 J     | 1900                               | 73000                              | 19000                                | 6600                                 | 17000                                | 190                                  | 8300                                 |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 4.8       | 2470                               | 73000                              | 19000                                | 6600                                 | 17000                                | 190                                  | 8300                                 |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 6/21/2005<br>1-2 | FT-2N<br>6/21/2005<br>2-3<br>Zone II | FT-2S<br>6/21/2005<br>0-1<br>Zone II | FT-2S<br>6/21/2005<br>1-2<br>Zone II | FT-2S<br>6/21/2005<br>2-3<br>Zone II | FT-2W<br>6/21/2005<br>0-1<br>Zone II | FT-2W<br>6/21/2005<br>1-2<br>Zone II | FT-2W<br>6/21/2005<br>2-3<br>Zone II |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 27 U             | 27 U                                 | 27 U                                 | 27 U                                 | 27 U                                 | 27 U                                 | 28 U                                 | 29 U                                 |
| Aroclor-1221                           |                                                          |                                                                            | 27 U             | 27 U                                 | 27 U                                 | 27 U                                 | 27 U                                 | 27 U                                 | 28 U                                 | 29 U                                 |
| Aroclor-1232                           |                                                          |                                                                            | 27 U             | 27 U                                 | 27 U                                 | 27 U                                 | 27 U                                 | 27 U                                 | 28 U                                 | 29 U                                 |
| Aroclor-1242                           |                                                          |                                                                            | 27 U             | 27 U                                 | 27 U                                 | 27 U                                 | 27 U                                 | 27 U                                 | 28 U                                 | 29 U                                 |
| Aroclor-1248                           |                                                          |                                                                            | 27 U             | 27 U                                 | 27 U                                 | 27 U                                 | 27 U                                 | 27 U                                 | 28 U                                 | 29 U                                 |
| Aroclor-1254                           |                                                          |                                                                            | 27 U             | 27 U                                 | 1900                                 | 27 U                                 | 27 U                                 | 27 U                                 | 28 U                                 | 29 U                                 |
| Aroclor-1260                           |                                                          |                                                                            | 16000            | 6300                                 | 27 U                                 | 5200                                 | 1200                                 | 5800                                 | 15000                                | 140                                  |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 16000            | 6300                                 | 1900                                 | 5200                                 | 1200                                 | 5800                                 | 15000                                | 140                                  |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | NYSDEC<br>Site Specific | Sample Designation:<br>Sample Date: | FT-3<br>4/7/1997 | FT-4<br>4/7/1997 | FT-5<br>4/7/1997 | FT-6<br>4/7/1997 | HB-1<br>1/3/2000 | HB-2<br>10/25/1999 | HB-3<br>10/25/1999 | HB-4*<br>10/26/1999 |
|---------------------------|-------------------------|-------------------------------------|------------------|------------------|------------------|------------------|------------------|--------------------|--------------------|---------------------|
| (Concentrations in µg/kg) | Soil Cleanup Level      | Sample Depth (ft bls):              | 0-2              | 0-2              | 0-2              | 0-2              | 0-1              | 0-1                | 0-1                | 1-2                 |
|                           | (µg/kg)                 | Map Zone:                           | Zone II          | Zone II          | Zone I           | Zone I           | Zone III         | Zone III           | Zone III           | Zone III            |
|                           |                         |                                     |                  |                  |                  |                  |                  |                    |                    |                     |
| Aroclor-1016              |                         |                                     | 730 U            | 710 U            | 380 U            | 350 U            | 450 U            | 39 U               | 40 U               | 35 U                |
| Aroclor-1221              |                         |                                     | 1500 U           | 1400 U           | 770 U            | 700 U            | 900 U            | 78 U               | 80 U               | 70 U                |
| Aroclor-1232              |                         |                                     | 730 U            | 710 U            | 380 U            | 350 U            | 450 U            | 39 U               | 40 U               | 35 U                |
| Aroclor-1242              |                         |                                     | 730 U            | 710 U            | 380 U            | 350 U            | 450 U            | 39 U               | 40 U               | 35 U                |
| Aroclor-1248              |                         |                                     | 730 U            | 710 U            | 380 U            | 350 U            | 450 U            | 39 U               | 40 U               | 35 U                |
| Aroclor-1254              |                         |                                     | 1000             | 580 J            | 380 U            | 230 J            | 450 U            | 39 U               | 40 U               | 35 U                |
| Aroclor-1260              |                         |                                     | 2400             | 3100             | 530              | 1400             | 1306 D           | 353                | 3800 D             | 54                  |
| TOTAL PCBs                | 25,000                  |                                     | 3400             | 3680             | 530              | 1630             | 1306             | 353                | 3800               | 54                  |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 1/3/2000<br>0-1 | HB-4-20<br>1/3/2000<br>0-1<br>Zone III | HB-9<br>10/25/1999<br>0-1<br>Zone II | HB-10<br>10/25/1999<br>0-1<br>Zone II | HB-11<br>10/25/1999<br>0-1<br>Zone II | HB-12<br>10/25/1999<br>0-1<br>Zone II | HB-13<br>10/27/1999<br>0-1<br>Zone II |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|-----------------|----------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
|                                        |                                                          |                                                                            |                 |                                        |                                      |                                       |                                       |                                       |                                       |
| Aroclor-1016                           |                                                          |                                                                            | 45 U            | 37 U                                   | 36 U                                 | 37 U                                  | 400 U                                 | 180 U                                 | 380 U                                 |
| Aroclor-1221                           |                                                          |                                                                            | 90 U            | 73 U                                   | 73 U                                 | 74 U                                  | 800 U                                 | 360 U                                 | 760 U                                 |
| Aroclor-1232                           |                                                          |                                                                            | 45 U            | 37 U                                   | 36 U                                 | 37 U                                  | 400 U                                 | 180 U                                 | 380 U                                 |
| Aroclor-1242                           |                                                          |                                                                            | 45 U            | 37 U                                   | 36 U                                 | 37 U                                  | 400 U                                 | 180 U                                 | 380 U                                 |
| Aroclor-1248                           |                                                          |                                                                            | 45 U            | 37 U                                   | 36 U                                 | 37 U                                  | 400 U                                 | 180 U                                 | 380 U                                 |
| Aroclor-1254                           |                                                          |                                                                            | 45 U            | 37 U                                   | 36 U                                 | 37 U                                  | 400 U                                 | 180 U                                 | 380 U                                 |
| Aroclor-1260                           |                                                          |                                                                            | 45 U            | 37 U                                   | 366                                  | 213                                   | 3053 D                                | 1414 D                                | 1516 D                                |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 0               | 0                                      | 366                                  | 213                                   | 3053                                  | 1414                                  | 1516                                  |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC Site Specific Soil Cleanup Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: |        | HB-15<br>10/27/1999<br>0-1<br>Zone II | HB-16<br>10/27/1999<br>0-1<br>Zone II | HB-17<br>10/27/1999<br>0-1<br>Zone II | HB-17<br>10/27/1999<br>1-2<br>Zone II | HB-17<br>10/27/1999<br>2-3<br>Zone II | HB-17+20<br>1/3/2000<br>0-1<br>Zone II |
|----------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|--------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|
| Aroclor-1016                           |                                                 |                                                                            | 190 U  | 1900 U                                | 39 U                                  | 21000 U                               | 4300 U                                | 3800 U                                | 3800 U                                 |
| Aroclor-1221                           |                                                 |                                                                            | 380 U  | 3900 U                                | 78 U                                  | 42000 U                               | 8600 U                                | 7600 U                                | 7500 U                                 |
| Aroclor-1232                           |                                                 |                                                                            | 190 U  | 1900 U                                | 39 U                                  | 21000 U                               | 4300 U                                | 3800 U                                | 3800 U                                 |
| Aroclor-1242                           |                                                 |                                                                            | 190 U  | 1900 U                                | 39 U                                  | 21000 U                               | 4300 U                                | 3800 U                                | 3800 U                                 |
| Aroclor-1248                           |                                                 |                                                                            | 190 U  | 1900 U                                | 39 U                                  | 21000 U                               | 4300 U                                | 3800 U                                | 3800 U                                 |
| Aroclor-1254                           |                                                 |                                                                            | 190 U  | 1900 U                                | 39 U                                  | 21000 U                               | 4300 U                                | 3800 U                                | 3800 U                                 |
| Aroclor-1260                           |                                                 |                                                                            | 1039 D | 11133 D                               | 6620 D                                | 4148576 D                             | 3532476 D                             | 1034226 D                             | 29086 D                                |
| TOTAL PCBs                             | 25,000                                          |                                                                            | 1039   | 11133                                 | 6620                                  | 4148576                               | 3532476                               | 1034226                               | 29086                                  |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Domination                          | NYSDEC                              | Sample Designation:                 |            | HB-19*     | HB-20*            | HB-21*     | HB-21+20        | HB-22             | HB-22      |
|-------------------------------------|-------------------------------------|-------------------------------------|------------|------------|-------------------|------------|-----------------|-------------------|------------|
| Parameter (Concentrations in µg/kg) | Site Specific<br>Soil Cleanup Level | Sample Date: Sample Depth (ft bls): | 10/26/1999 | 10/26/1999 | 10/26/1999<br>1-2 | 10/26/1999 | 1/3/2000<br>0-1 | 10/25/1999<br>0-1 | 10/25/1999 |
| (Concentrations in µg/kg)           | Son Cleanup Lever (μg/kg)           | Map Zone:                           | Zone II    | Zone II    | Zone II           | Zone II    | Zone II         | Zone II           | Zone II    |
| Aroclor-1016                        |                                     |                                     | 37 U       | 3500 U     | 200 U             | 200 U      | 400 U           | 7500 U            | 740 U      |
| Aroclor-1221                        |                                     |                                     | 73 U       | 7100 U     | 400 U             | 390 U      | 800 U           | 15000 U           | 1500 U     |
| Aroclor-1232                        |                                     |                                     | 37 U       | 3500 U     | 200 U             | 200 U      | 400 U           | 7500 U            | 740 U      |
| Aroclor-1242                        |                                     |                                     | 37 U       | 3500 U     | 200 U             | 200 U      | 400 U           | 7500 U            | 740 U      |
| Aroclor-1248                        |                                     |                                     | 37 U       | 3500 U     | 200 U             | 200 U      | 400 U           | 7500 U            | 740 U      |
| Aroclor-1254                        |                                     |                                     | 37 U       | 3500 U     | 200 U             | 200 U      | 400 U           | 7500 U            | 740 U      |
| Aroclor-1260                        |                                     |                                     | 67         | 24655 D    | 1439 D            | 961 D      | 1353 D          | 77663 D           | 3365 D     |
| TOTAL PCBs                          | 25,000                              |                                     | 67         | 24655      | 1439              | 961        | 1353            | 77663             | 3365       |

µg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls): | HB-22-20<br>1/3/2000<br>0-1 | HB-22-40<br>2/23/2000<br>0-1 | HB-22-40<br>2/23/2000<br>1-2 | HB-23<br>10/25/1999<br>0-1 | HB-23<br>10/25/1999<br>1-2 | HB-23<br>10/25/1999<br>2-3 | HB-23+20<br>1/3/2000<br>0-1 |
|-------------------------------------|-----------------------------------------------|---------------------------------------------------------------|-----------------------------|------------------------------|------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|
|                                     | (µg/kg)                                       | Map Zone:                                                     | Zone III                    | Zone III                     | Zone III                     | Zone II                    | Zone II                    | Zone II                    | Zone II                     |
| Aroclor-1016                        |                                               |                                                               | 20000 U                     | 4219 U                       | 358 U                        | 3800 U                     | 2200 U                     | 3900 U                     | 430000 U                    |
| Aroclor-1221                        |                                               |                                                               | 41000 U                     | 4219 U                       | 358 U                        | 7700 U                     | 4300 U                     | 7800 U                     | 870000 U                    |
| Aroclor-1232                        |                                               |                                                               | 20000 U                     | 4219 U                       | 358 U                        | 3800 U                     | 2200 U                     | 3900 U                     | 430000 U                    |
| Aroclor-1242                        |                                               |                                                               | 20000 U                     | 4219 U                       | 358 U                        | 3800 U                     | 2200 U                     | 3900 U                     | 430000 U                    |
| Aroclor-1248                        |                                               |                                                               | 20000 U                     | 4219 U                       | 358 U                        | 3800 U                     | 2200 U                     | 3900 U                     | 430000 U                    |
| Aroclor-1254                        |                                               |                                                               | 20000 U                     | 4219 U                       | 358 U                        | 3800 U                     | 2200 U                     | 3900 U                     | 430000 U                    |
| Aroclor-1260                        |                                               |                                                               | 103630 D                    | 84000                        | 4000                         | 525600 D                   | 866944 D                   | 806914 D                   | 2572294 D                   |
| TOTAL PCBs                          | 25,000                                        |                                                               | 103630                      | 84000                        | 4000                         | 525600                     | 866944                     | 806914                     | 2572294                     |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls): |         | HB-25<br>10/26/1999<br>0-1 | HB-26<br>10/26/1999<br>0-1 | HB-27<br>10/26/1999<br>0-1 | HB-28<br>10/27/1999<br>0-1 | HB-29<br>10/25/1999<br>0-1 | HB-30<br>10/25/1999<br>0-1 |
|-------------------------------------|-----------------------------------------------|---------------------------------------------------------------|---------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
|                                     | (µg/kg)                                       | Map Zone:                                                     | Zone II | Zone II                    | Zone II                    | Zone II                    | Zone III                   | Zone II                    | Zone II                    |
| Aroclor-1016                        |                                               |                                                               | 4274 U  | 38 U                       | 39 U                       | 40 U                       | 170 U                      | 41 U                       | 42 U                       |
| Aroclor-1221                        |                                               |                                                               | 4274 U  | 76 U                       | 78 U                       | 81 U                       | 340 U                      | 81 U                       | 84 U                       |
| Aroclor-1232                        |                                               |                                                               | 4274 U  | 38 U                       | 39 U                       | 40 U                       | 170 U                      | 41 U                       | 42 U                       |
| Aroclor-1242                        |                                               |                                                               | 4274 U  | 38 U                       | 39 U                       | 40 U                       | 170 U                      | 41 U                       | 42 U                       |
| Aroclor-1248                        |                                               |                                                               | 4274 U  | 38 U                       | 39 U                       | 40 U                       | 170 U                      | 41 U                       | 42 U                       |
| Aroclor-1254                        |                                               |                                                               | 4274 U  | 38 U                       | 39 U                       | 40 U                       | 170 U                      | 41 U                       | 42 U                       |
| Aroclor-1260                        |                                               |                                                               | 40000   | 184                        | 180                        | 310                        | 884 D                      | 160                        | 228                        |
| TOTAL PCBs                          | 25,000                                        |                                                               | 40000   | 184                        | 180                        | 310                        | 884                        | 160                        | 228                        |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 10/25/1999<br>0-1 | HB-32<br>10/27/1999<br>0-1<br>Zone II | HB-33<br>10/25/1999<br>0-1<br>Zone II | HB-34<br>10/25/1999<br>0-1<br>Zone II | HB-35<br>10/25/1999<br>0-1<br>Zone II | HB-36<br>10/25/1999<br>0-1<br>Zone II | HBR-1<br>2/26/2004<br>0-1<br>Zone II | HBR-1<br>2/26/2004<br>1-2<br>Zone II |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|-------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 39 U              | 38 U                                  | 35 U                                  | 37 U                                  | 34 U                                  | 36 U                                  | 910 U                                | 180 U                                |
| Aroclor-1221                           |                                                          |                                                                            | 79 U              | 76 U                                  | 71 U                                  | 74 U                                  | 69 U                                  | 72 U                                  | 1800 U                               | 350 U                                |
| Aroclor-1232                           |                                                          |                                                                            | 39 U              | 38 U                                  | 35 U                                  | 37 U                                  | 34 U                                  | 36 U                                  | 910 U                                | 180 U                                |
| Aroclor-1242                           |                                                          |                                                                            | 39 U              | 38 U                                  | 35 U                                  | 37 U                                  | 34 U                                  | 36 U                                  | 910 U                                | 180 U                                |
| Aroclor-1248                           |                                                          |                                                                            | 39 U              | 38 U                                  | 35 U                                  | 37 U                                  | 34 U                                  | 36 U                                  | 910 U                                | 180 U                                |
| Aroclor-1254                           |                                                          |                                                                            | 39 U              | 38 U                                  | 35 U                                  | 37 U                                  | 34 U                                  | 36 U                                  | 910 U                                | 180 U                                |
| Aroclor-1260                           |                                                          |                                                                            | 195               | 239                                   | 62                                    | 309                                   | 147                                   | 306                                   | 6500                                 | 1400                                 |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 195               | 239                                   | 62                                    | 309                                   | 147                                   | 306                                   | 6500                                 | 1400                                 |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 2/26/2004<br>0-1 | HBR-2<br>2/26/2004<br>1-2<br>Zone III | HBR-3<br>2/26/2004<br>0-1<br>Zone III | HBR-3<br>2/26/2004<br>1-2<br>Zone III | HBR-4<br>2/26/2004<br>0-1<br>Zone III | HBR-4<br>2/26/2004<br>1-2<br>Zone III | HBR-5<br>2/26/2004<br>0-1<br>Zone III | HBR-5<br>2/26/2004<br>1-2<br>Zone III |
|-------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
|                                     |                                                          |                                                                            |                  |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
| Aroclor-1016                        |                                                          |                                                                            | 19 U             | 19 U                                  | 970 U                                 | 1000 U                                | 1100 U                                | 1100 U                                | 18 U                                  | 20 U                                  |
| Aroclor-1221                        |                                                          |                                                                            | 37 U             | 37 U                                  | 1900 U                                | 2000 U                                | 2000 U                                | 2000 U                                | 36 U                                  | 39 U                                  |
| Aroclor-1232                        |                                                          |                                                                            | 19 U             | 19 U                                  | 970 U                                 | 1000 U                                | 1100 U                                | 1100 U                                | 18 U                                  | 20 U                                  |
| Aroclor-1242                        |                                                          |                                                                            | 25               | 19 U                                  | 970 U                                 | 1000 U                                | 1100 U                                | 1100 U                                | 18 U                                  | 20 U                                  |
| Aroclor-1248                        |                                                          |                                                                            | 19 U             | 20                                    | 970 U                                 | 1000 U                                | 1100 U                                | 1100 U                                | 18 U                                  | 20 U                                  |
| Aroclor-1254                        |                                                          |                                                                            | 19 U             | 19 U                                  | 970 U                                 | 1000 U                                | 2800                                  | 2800                                  | 30                                    | 20 U                                  |
| Aroclor-1260                        |                                                          |                                                                            | 86               | 200                                   | 5700                                  | 8300                                  | 7100                                  | 8300                                  | 64                                    | 20 U                                  |
| TOTAL PCBs                          | 25,000                                                   |                                                                            | 111              | 220                                   | 5700                                  | 8300                                  | 9900                                  | 11100                                 | 94                                    | 0                                     |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 2/26/2004<br>0-1 | HBR-6<br>2/26/2004<br>1-2<br>Zone III | HBR-7<br>2/26/2004<br>0-1<br>Zone III | HBR-7<br>2/26/2004<br>1-2<br>Zone III | HBR-8<br>2/26/2004<br>0-1<br>Zone III | HBR-8<br>2/26/2004<br>1-2<br>Zone III | HC-1<br>4/12/2000<br>0-1<br>Zone II | HC-2<br>4/12/2000<br>0-1<br>Zone II |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------|-------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 190 U            | 18 U                                  | 350 U                                 | 18 U                                  | 360 U                                 | 21 U                                  | 20 U                                | 18 U                                |
| Aroclor-1221                           |                                                          |                                                                            | 370 U            | 34 U                                  | 680 U                                 | 35 U                                  | 700 U                                 | 41 U                                  | 20 U                                | 18 U                                |
| Aroclor-1232                           |                                                          |                                                                            | 190 U            | 18 U                                  | 350 U                                 | 18 U                                  | 360 U                                 | 21 U                                  | 20 U                                | 18 U                                |
| Aroclor-1242                           |                                                          |                                                                            | 190 U            | 18 U                                  | 350 U                                 | 18 U                                  | 360 U                                 | 21 U                                  | 20 U                                | 18 U                                |
| Aroclor-1248                           |                                                          |                                                                            | 190 U            | 18 U                                  | 350 U                                 | 18 U                                  | 360 U                                 | 21 U                                  | 20 U                                | 18 U                                |
| Aroclor-1254                           |                                                          |                                                                            | 590              | 18 U                                  | 1800                                  | 18 U                                  | 360 U                                 | 18 J                                  | 20 U                                | 18 U                                |
| Aroclor-1260                           |                                                          |                                                                            | 960              | 58                                    | 3900                                  | 32                                    | 2500                                  | 180                                   | 95                                  | 150                                 |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 1550             | 58                                    | 5700                                  | 32                                    | 2500                                  | 198                                   | 95                                  | 150                                 |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 4/12/2000 | HC-4<br>4/12/2000<br>0-1<br>Zone II | HC-5<br>4/12/2000<br>0-1<br>Zone II | HC-6<br>4/12/2000<br>0-1<br>Zone II | HC-7<br>4/12/2000<br>0-1<br>Zone II | HC-8<br>4/12/2000<br>0-1<br>Zone II | HC-9<br>4/12/2000<br>0-1<br>Zone II | HC-10<br>4/12/2000<br>0-1<br>Zone II |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|-----------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 930 U     | 19 U                                | 18 U                                | 20 U                                | 18 U                                | 18 U                                | 20 U                                | 19 U                                 |
| Aroclor-1221                           |                                                          |                                                                            | 930 U     | 19 U                                | 18 U                                | 20 U                                | 18 U                                | 18 U                                | 20 U                                | 19 U                                 |
| Aroclor-1232                           |                                                          |                                                                            | 930 U     | 19 U                                | 18 U                                | 20 U                                | 18 U                                | 18 U                                | 20 U                                | 19 U                                 |
| Aroclor-1242                           |                                                          |                                                                            | 930 U     | 19 U                                | 18 U                                | 20 U                                | 18 U                                | 18 U                                | 20 U                                | 19 U                                 |
| Aroclor-1248                           |                                                          |                                                                            | 930 U     | 19 U                                | 18 U                                | 20 U                                | 18 U                                | 18 U                                | 20 U                                | 19 U                                 |
| Aroclor-1254                           |                                                          |                                                                            | 930 U     | 19 U                                | 18 U                                | 20 U                                | 18 U                                | 18 U                                | 20 U                                | 19 U                                 |
| Aroclor-1260                           |                                                          |                                                                            | 8000      | 29                                  | 18 U                                | 20 U                                | 18 U                                | 18                                  | 20                                  | 19 U                                 |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 8000      | 29                                  | 0                                   | 0                                   | 0                                   | 18                                  | 20                                  | 0                                    |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 4/12/2000<br>0-1 | HC-12<br>4/12/2000<br>0-1<br>Zone III | HC-13<br>4/12/2000<br>0-1<br>Zone II | HC-14<br>4/12/2000<br>0-1<br>Zone II | HC-15<br>4/12/2000<br>0-1<br>Zone II | HC-16<br>4/12/2000<br>0-1<br>Zone II | HM-1<br>9/18/1997<br>0-1<br>Zone II | HM-2<br>9/18/1997<br>0-1<br>Zone II |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 18 U             | 780 U                                 | 90 U                                 | 2000 U                               | 100 U                                | 190 U                                | 34 U                                | 34 U                                |
| Aroclor-1221                           |                                                          |                                                                            | 18 U             | 780 U                                 | 90 U                                 | 2000 U                               | 100 U                                | 190 U                                | 70 U                                | 69 U                                |
| Aroclor-1232                           |                                                          |                                                                            | 18 U             | 780 U                                 | 90 U                                 | 2000 U                               | 100 U                                | 190 U                                | 34 U                                | 34 U                                |
| Aroclor-1242                           |                                                          |                                                                            | 18 U             | 780 U                                 | 90 U                                 | 2000 U                               | 100 U                                | 190 U                                | 34 U                                | 34 U                                |
| Aroclor-1248                           |                                                          |                                                                            | 18 U             | 780 U                                 | 90 U                                 | 2000 U                               | 100 U                                | 190 U                                | 34 U                                | 34 U                                |
| Aroclor-1254                           |                                                          |                                                                            | 18 U             | 780 U                                 | 90 U                                 | 2000 U                               | 100 U                                | 190 U                                | 34 U                                | 70                                  |
| Aroclor-1260                           |                                                          |                                                                            | 18 U             | 3400                                  | 1100                                 | 24000                                | 1200                                 | 2800                                 | 5 J                                 | 88                                  |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 0                | 3400                                  | 1100                                 | 24000                                | 1200                                 | 2800                                 | 5                                   | 158                                 |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 9/18/1997<br>1-2 | HM-3<br>9/18/1997<br>0-1<br>Zone II | HM-3<br>9/18/1997<br>1-2<br>Zone II | HM-5<br>9/18/1997<br>0-1<br>Zone II | HM-5<br>9/18/1997<br>1-2<br>Zone II | HM-7<br>9/18/1997<br>0-1<br>Zone II | HM-7<br>9/18/1997<br>1-2<br>Zone II | IB-1<br>2/25/2000<br>0-1<br>Zone III |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 700 U            | 36 U                                | 1800 U                              | 35 U                                | 1800 U                              | 35 U                                | 3400 U                              | 41 U                                 |
| Aroclor-1221                           |                                                          |                                                                            | 1400 U           | 73 U                                | 3800 U                              | 70 U                                | 3600 U                              | 71 U                                | 7000 U                              | 41 U                                 |
| Aroclor-1232                           |                                                          |                                                                            | 700 U            | 36 U                                | 1800 U                              | 35 U                                | 1800 U                              | 35 U                                | 3400 U                              | 41 U                                 |
| Aroclor-1242                           |                                                          |                                                                            | 700 U            | 36 U                                | 1800 U                              | 35 U                                | 1800 U                              | 35 U                                | 3400 U                              | 41 U                                 |
| Aroclor-1248                           |                                                          |                                                                            | 700 U            | 36 U                                | 1800 U                              | 35 U                                | 1800 U                              | 35 U                                | 3400 U                              | 41 U                                 |
| Aroclor-1254                           |                                                          |                                                                            | 890              | 110                                 | 1800 U                              | 35 U                                | 1600 J                              | 12 J                                | 5100                                | 41 U                                 |
| Aroclor-1260                           |                                                          |                                                                            | 940              | 190                                 | 2400                                | 110                                 | 3200                                | 27 J                                | 4100                                | 530                                  |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 1830             | 300                                 | 2400                                | 110                                 | 4800                                | 39                                  | 9200                                | 530                                  |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 2/25/2000<br>0-1 | IB-3<br>2/25/2000<br>0-1<br>Zone III | IB-4<br>2/25/2000<br>0-1<br>Zone III | IB-5<br>2/25/2000<br>0-1<br>Zone III | IB-6<br>2/25/2000<br>0-1<br>Zone III | IB-7<br>2/25/2000<br>0-1<br>Zone III | IB-8<br>2/25/2000<br>0-1<br>Zone III | IB-9<br>2/25/2000<br>0-1<br>Zone III |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 195 U            | 41 U                                 | 40 U                                 | 115 U                                | 102 U                                | 43 U                                 | 109 U                                | 43 U                                 |
| Aroclor-1221                           |                                                          |                                                                            | 195 U            | 41 U                                 | 40 U                                 | 115 U                                | 102 U                                | 43 U                                 | 109 U                                | 43 U                                 |
| Aroclor-1232                           |                                                          |                                                                            | 195 U            | 41 U                                 | 40 U                                 | 115 U                                | 102 U                                | 43 U                                 | 109 U                                | 43 U                                 |
| Aroclor-1242                           |                                                          |                                                                            | 195 U            | 41 U                                 | 40 U                                 | 115 U                                | 102 U                                | 43 U                                 | 109 U                                | 43 U                                 |
| Aroclor-1248                           |                                                          |                                                                            | 195 U            | 41 U                                 | 40 U                                 | 115 U                                | 102 U                                | 43 U                                 | 109 U                                | 43 U                                 |
| Aroclor-1254                           |                                                          |                                                                            | 195 U            | 41 U                                 | 40 U                                 | 115 U                                | 102 U                                | 43 U                                 | 109 U                                | 43 U                                 |
| Aroclor-1260                           |                                                          |                                                                            | 1400             | 670                                  | 520                                  | 630                                  | 940                                  | 430                                  | 930                                  | 270                                  |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 1400             | 670                                  | 520                                  | 630                                  | 940                                  | 430                                  | 930                                  | 270                                  |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 2/25/2000<br>0-1 | IB-11<br>2/25/2000<br>0-1<br>Zone III | IB-12<br>2/25/2000<br>0-1<br>Zone III | IB-13<br>2/25/2000<br>0-1<br>Zone III | L-1<br>3/9/1999<br>B<br>Zone II | L-1<br>3/9/1999<br>0-1<br>Zone II | L-2<br>3/9/1999<br>B<br>Zone II | L-2<br>3/9/1999<br>0-1**<br>Zone II |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------|-----------------------------------|---------------------------------|-------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 44 U             | 41 U                                  | 21 U                                  | 23 U                                  | 39 U                            | 36 U                              | 40 U                            | 36 U                                |
| Aroclor-1221                           |                                                          |                                                                            | 44 U             | 41 U                                  | 21 U                                  | 23 U                                  | 39 U                            | 36 U                              | 40 U                            | 36 U                                |
| Aroclor-1232                           |                                                          |                                                                            | 44 U             | 41 U                                  | 21 U                                  | 23 U                                  | 39 U                            | 36 U                              | 40 U                            | 36 U                                |
| Aroclor-1242                           |                                                          |                                                                            | 44 U             | 41 U                                  | 21 U                                  | 23 U                                  | 39 U                            | 36 U                              | 40 U                            | 36 U                                |
| Aroclor-1248                           |                                                          |                                                                            | 44 U             | 41 U                                  | 21 U                                  | 23 U                                  | 39 U                            | 36 U                              | 40 U                            | 36 U                                |
| Aroclor-1254                           |                                                          |                                                                            | 44 U             | 41 U                                  | 21 U                                  | 23 U                                  | 39 U                            | 36 U                              | 40 U                            | 36 U                                |
| Aroclor-1260                           |                                                          |                                                                            | 510              | 310                                   | 250                                   | 210                                   | 420                             | 36 U                              | 1100                            | 36 U                                |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 510              | 310                                   | 250                                   | 210                                   | 420                             | 0                                 | 1100                            | 0                                   |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: |        | L-3<br>3/9/1999<br>0-1**<br>Zone II | L-4<br>3/9/1999<br>B<br>Zone II | L-4<br>3/9/1999<br>0-1**<br>Zone II | L-5<br>3/9/1999<br>B<br>Zone II | L-5<br>3/9/1999<br>0-1**<br>Zone II | L-6<br>3/9/1999<br>B<br>Zone II | L-6<br>3/9/1999<br>0-1**<br>Zone II |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|--------|-------------------------------------|---------------------------------|-------------------------------------|---------------------------------|-------------------------------------|---------------------------------|-------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 41 U   | 38 U                                | 39 U                            | 37 U                                | 40 U                            | 38 U                                | 43 U                            | 36 U                                |
| Aroclor-1221                           |                                                          |                                                                            | 41 U   | 38 U                                | 39 U                            | 37 U                                | 40 U                            | 38 U                                | 43 U                            | 36 U                                |
| Aroclor-1232                           |                                                          |                                                                            | 41 U   | 38 U                                | 39 U                            | 37 U                                | 40 U                            | 38 U                                | 43 U                            | 36 U                                |
| Aroclor-1242                           |                                                          |                                                                            | 41 U   | 38 U                                | 39 U                            | 37 U                                | 40 U                            | 38 U                                | 43 U                            | 36 U                                |
| Aroclor-1248                           |                                                          |                                                                            | 41 U   | 38 U                                | 39 U                            | 37 U                                | 40 U                            | 38 U                                | 43 U                            | 36 U                                |
| Aroclor-1254                           |                                                          |                                                                            | 41 U   | 38 U                                | 39 U                            | 37 U                                | 40 U                            | 38 U                                | 43 U                            | 36 U                                |
| Aroclor-1260                           |                                                          |                                                                            | 2800 D | 650                                 | 3000 D                          | 300                                 | 44                              | 89                                  | 1200                            | 36 U                                |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 2800   | 650                                 | 3000                            | 300                                 | 44                              | 89                                  | 1200                            | 0                                   |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC Site Specific Soil Cleanup Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | L5-1<br>4/7/1997<br>0-2<br>Zone II | L6-1<br>6/30/1997<br>0-1<br>Zone II | L6-1<br>4/7/1997<br>0-2<br>Zone II | L6-1<br>6/30/1997<br>1-2<br>Zone II | L6-1<br>6/30/1997<br>2-3<br>Zone II | L6-2<br>6/30/1997<br>0-1<br>Zone II | L6-2<br>4/7/1997<br>0-2<br>Zone II | L6-3<br>6/30/1997<br>0-1<br>Zone II |
|----------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|------------------------------------|-------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|------------------------------------|-------------------------------------|
| Aroclor-1016                           |                                                 |                                                                            | 750 U                              | 36 U                                | 1900 U                             | 35 U                                | 35 U                                | 34 U                                | 75 U                               | 37 U                                |
| Aroclor-1221                           |                                                 |                                                                            | 1500 U                             | 73 U                                | 3900 U                             | 72 U                                | 72 U                                | 70 U                                | 150 U                              | 74 U                                |
| Aroclor-1232                           |                                                 |                                                                            | 750 U                              | 36 U                                | 1900 U                             | 35 U                                | 35 U                                | 34 U                                | 75 U                               | 37 U                                |
| Aroclor-1242                           |                                                 |                                                                            | 750 U                              | 36 U                                | 1900 U                             | 35 U                                | 35 U                                | 34 U                                | 75 U                               | 37 U                                |
| Aroclor-1248                           |                                                 |                                                                            | 750 U                              | 36 U                                | 1900 U                             | 35 U                                | 35 U                                | 34 U                                | 75 U                               | 37 U                                |
| Aroclor-1254                           |                                                 |                                                                            | 990                                | 36                                  | 2600                               | 140                                 | 130                                 | 34 U                                | 67 J                               | 15 J                                |
| Aroclor-1260                           |                                                 |                                                                            | 2300                               | 150                                 | 2800                               | 110                                 | 180                                 | 34 U                                | 290                                | 19 J                                |
| TOTAL PCBs                             | 25,000                                          |                                                                            | 3290                               | 186                                 | 5400                               | 250                                 | 310                                 | 0                                   | 357                                | 34                                  |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | L6-3<br>4/7/1997<br>0-2<br>Zone II | L6-3<br>6/30/1997<br>1-2<br>Zone II | L6-3<br>6/30/1997<br>2-3<br>Zone II | L6-4<br>6/30/1997<br>0-1<br>Zone II | L6-4<br>4/7/1997<br>0-2<br>Zone II | L6-4<br>6/30/1997<br>1-2<br>Zone II | L6-4<br>6/30/1997<br>2-3<br>Zone II | L6-5<br>6/30/1997<br>0-1<br>Zone II |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 740 U                              | 34 U                                | 34 U                                | 35 U                                | 760 U                              | 36 U                                | 180 U                               | 35 U                                |
| Aroclor-1221                           |                                                          |                                                                            | 1500 U                             | 70 U                                | 69 U                                | 72 U                                | 1500 U                             | 73 U                                | 360 U                               | 70 U                                |
| Aroclor-1232                           |                                                          |                                                                            | 740 U                              | 34 U                                | 34 U                                | 35 U                                | 760 U                              | 36 U                                | 180 U                               | 35 U                                |
| Aroclor-1242                           |                                                          |                                                                            | 740 U                              | 34 U                                | 34 U                                | 35 U                                | 760 U                              | 36 U                                | 180 U                               | 35 U                                |
| Aroclor-1248                           |                                                          |                                                                            | 740 U                              | 34 U                                | 34 U                                | 35 U                                | 760 U                              | 36 U                                | 180 U                               | 35 U                                |
| Aroclor-1254                           |                                                          |                                                                            | 690 J                              | 4.4 J                               | 34 U                                | 31 J                                | 1000                               | 15 J                                | 140 J                               | 7.1 J                               |
| Aroclor-1260                           |                                                          |                                                                            | 1400                               | 4.9 J                               | 34 U                                | 380                                 | 3300                               | 45                                  | 340                                 | 33 J                                |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 2090                               | 9.3                                 | 0                                   | 411                                 | 4300                               | 60                                  | 480                                 | 40.1                                |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: |       | L6-5<br>6/30/1997<br>1-2<br>Zone II | L6-5<br>6/30/1997<br>2-3<br>Zone II | L6-6<br>6/30/1997<br>0-1<br>Zone II | L6-7<br>6/30/1997<br>0-1<br>Zone II | L6-8<br>6/30/1997<br>0-1<br>Zone II | L6-9<br>6/30/1997<br>0-1<br>Zone II | L6-10<br>6/30/1997<br>0-1<br>Zone II |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|-------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 370 U | 34 U                                | 34 U                                | 34 U                                | 35 U                                | 36 U                                | 34 U                                | 34 U                                 |
| Aroclor-1221                           |                                                          |                                                                            | 740 U | 69 U                                | 70 U                                | 70 U                                | 71 U                                | 73 U                                | 70 U                                | 69 U                                 |
| Aroclor-1232                           |                                                          |                                                                            | 370 U | 34 U                                | 34 U                                | 34 U                                | 35 U                                | 36 U                                | 34 U                                | 34 U                                 |
| Aroclor-1242                           |                                                          |                                                                            | 370 U | 34 U                                | 34 U                                | 34 U                                | 35 U                                | 36 U                                | 34 U                                | 34 U                                 |
| Aroclor-1248                           |                                                          |                                                                            | 370 U | 34 U                                | 34 U                                | 34 U                                | 35 U                                | 36 U                                | 34 U                                | 34 U                                 |
| Aroclor-1254                           |                                                          |                                                                            | 580   | 18 J                                | 12 J                                | 24 J                                | 34 J                                | 15 J                                | 34 U                                | 6.3 J                                |
| Aroclor-1260                           |                                                          |                                                                            | 1600  | 47                                  | 22 J                                | 43                                  | 75                                  | 170                                 | 8.2 J                               | 18 J                                 |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 2180  | 65                                  | 34                                  | 67                                  | 109                                 | 185                                 | 8.2                                 | 24.3                                 |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC Site Specific Soil Cleanup Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 6/30/1997<br>0-1 | LCW-1<br>11/14/2002<br>0-1<br>Zone II | LCW-2<br>11/14/2002<br>0-1<br>Zone II | LCW-3<br>11/14/2002<br>0-1<br>Zone II | LCW-4<br>11/14/2002<br>0-1<br>Zone II | LLS-6<br>8/9/2001<br>0-1<br>Zone I | LLS-7<br>8/10/2001<br>0-1<br>Zone I | LLS-7A<br>8/10/2001<br>1-2<br>Zone I |
|----------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|------------------------------------|-------------------------------------|--------------------------------------|
| Aroclor-1016                           |                                                 |                                                                            | 34 U             | 1.6 U                                 | 87 U                                  | 89 U                                  | 41 U                                  | 18 U                               | 19 U                                | 20 U                                 |
| Aroclor-1221                           |                                                 |                                                                            | 70 U             | 1.4 U                                 | 79 U                                  | 81 U                                  | 37 U                                  | 18 U                               | 19 U                                | 20 U                                 |
| Aroclor-1232                           |                                                 |                                                                            | 34 U             | 1.6 U                                 | 90 U                                  | 92 U                                  | 43 U                                  | 18 U                               | 19 U                                | 20 U                                 |
| Aroclor-1242                           |                                                 |                                                                            | 34 U             | 1.7 U                                 | 93 U                                  | 95 U                                  | 44 U                                  | 18 U                               | 19 U                                | 20 U                                 |
| Aroclor-1248                           |                                                 |                                                                            | 34 U             | 1.1 U                                 | 160 U                                 | 170 U                                 | 77 U                                  | 18 U                               | 19 U                                | 20 U                                 |
| Aroclor-1254                           |                                                 |                                                                            | 27 J             | 170                                   | 3500                                  | 4400                                  | 1600                                  | 18 U                               | 19 U                                | 152                                  |
| Aroclor-1260                           |                                                 |                                                                            | 97               | 280                                   | 6400                                  | 5900                                  | 3100                                  | 641                                | 1260                                | 237                                  |
| TOTAL PCBs                             | 25,000                                          |                                                                            | 124              | 450                                   | 9900                                  | 10300                                 | 4700                                  | 641                                | 1260                                | 389                                  |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | LLS-8<br>8/10/2001<br>0-1<br>Zone I | LLS-8A<br>8/10/2001<br>1-2<br>Zone I | LLS-9<br>8/10/2001<br>0-1<br>Zone I | LLS-9A<br>8/10/2001<br>1-2<br>Zone I | LLS-10<br>8/10/2001<br>0-1<br>Zone I | LLS-10A<br>8/10/2001<br>1-2<br>Zone I |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 20 U                                | 22 U                                 | 19 U                                | 19 U                                 | 29 U                                 | 24 U                                  |
| Aroclor-1221                           |                                                          |                                                                            | 20 U                                | 22 U                                 | 19 U                                | 19 U                                 | 29 U                                 | 24 U                                  |
| Aroclor-1232                           |                                                          |                                                                            | 20 U                                | 22 U                                 | 19 U                                | 19 U                                 | 29 U                                 | 24 U                                  |
| Aroclor-1242                           |                                                          |                                                                            | 20 U                                | 22 U                                 | 19 U                                | 19 U                                 | 29 U                                 | 24 U                                  |
| Aroclor-1248                           |                                                          |                                                                            | 20 U                                | 22 U                                 | 19 U                                | 19 U                                 | 29 U                                 | 24 U                                  |
| Aroclor-1254                           |                                                          |                                                                            | 377                                 | 22 U                                 | 19 U                                | 19 U                                 | 29 U                                 | 24 U                                  |
| Aroclor-1260                           |                                                          |                                                                            | 740                                 | 384                                  | 315                                 | 62                                   | 873                                  | 24 U                                  |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 1117                                | 384                                  | 315                                 | 62                                   | 873                                  | 0                                     |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 8/10/2001<br>0-1 |        | LLS-11A<br>5/30/2007<br>2-3<br>Zone I | LLS-11N<br>5/30/2007<br>0-1<br>Zone I | LLS-11N<br>5/30/2007<br>1-2<br>Zone I | LLS-11N<br>5/30/2007<br>2-3<br>Zone I | LLS-11S<br>5/30/2007<br>0-1<br>Zone I |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------------|--------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 22 U             | 25 U   | 27 U                                  | 28 U                                  | 27 U                                  | 28 U                                  | 28 U                                  |
| Aroclor-1221                           |                                                          |                                                                            | 22 U             | 25 U   | 27 U                                  | 28 U                                  | 27 U                                  | 28 U                                  | 28 U                                  |
| Aroclor-1232                           |                                                          |                                                                            | 22 U             | 25 U   | 27 U                                  | 28 U                                  | 27 U                                  | 28 U                                  | 28 U                                  |
| Aroclor-1242                           |                                                          |                                                                            | 22 U             | 25 U   | 27 U                                  | 28 U                                  | 27 U                                  | 28 U                                  | 28 U                                  |
| Aroclor-1248                           |                                                          |                                                                            | 22 U             | 25 U   | 27 U                                  | 28 U                                  | 27 U                                  | 28 U                                  | 28 U                                  |
| Aroclor-1254                           |                                                          |                                                                            | 2650             | 2500 U | 27 U                                  | 28 U                                  | 27 U                                  | 28 U                                  | 28 U                                  |
| Aroclor-1260                           |                                                          |                                                                            | 6080             | 92200  | 330                                   | 1700                                  | 260                                   | 520                                   | 2500 D                                |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 8730             | 92200  | 330                                   | 1700                                  | 260                                   | 520                                   | 2500                                  |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls): |        | LLS-11S<br>5/30/2007<br>2-3 | LLS-12<br>8/10/2001<br>0-1 | LLS-13<br>8/10/2001<br>0-1 | LLS-14<br>8/10/2001<br>0-1 | LLS-15<br>8/10/2001<br>0-1 | LLS-16<br>8/10/2001<br>0-1 | LLS-17<br>8/10/2001<br>0-1 |
|-------------------------------------|-----------------------------------------------|---------------------------------------------------------------|--------|-----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
|                                     | (µg/kg)                                       | Map Zone:                                                     | Zone I | Zone I                      | Zone I                     | Zone I                     | Zone I                     | Zone I                     | Zone I                     | Zone I                     |
| Aroclor-1016                        |                                               |                                                               | 27 U   | 30 U                        | 20 U                       | 20 U                       | 19 U                       | 20 U                       | 18 U                       | 21 U                       |
| Aroclor-1221                        |                                               |                                                               | 27 U   | 30 U                        | 20 U                       | 20 U                       | 19 U                       | 20 U                       | 18 U                       | 21 U                       |
| Aroclor-1232                        |                                               |                                                               | 27 U   | 30 U                        | 20 U                       | 20 U                       | 19 U                       | 20 U                       | 18 U                       | 21 U                       |
| Aroclor-1242                        |                                               |                                                               | 27 U   | 30 U                        | 20 U                       | 20 U                       | 19 U                       | 20 U                       | 18 U                       | 21 U                       |
| Aroclor-1248                        |                                               |                                                               | 27 U   | 30 U                        | 20 U                       | 20 U                       | 19 U                       | 20 U                       | 18 U                       | 21 U                       |
| Aroclor-1254                        |                                               |                                                               | 27 U   | 30 U                        | 190                        | 1080                       | 19 U                       | 20 U                       | 18 U                       | 21 U                       |
| Aroclor-1260                        |                                               |                                                               | 590    | 67                          | 250                        | 1780                       | 186                        | 916                        | 178                        | 887                        |
| TOTAL PCBs                          | 25,000                                        |                                                               | 590    | 67                          | 440                        | 2860                       | 186                        | 916                        | 178                        | 887                        |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: |      | LLS-19<br>8/10/2001<br>0-1<br>Zone I | LLS-20<br>8/10/2001<br>0-1<br>Zone I | LLS-21<br>8/10/2001<br>0-1<br>Zone I | LLS-21A<br>5/30/2007<br>1-2<br>Zone I | LLS-21E<br>5/30/2007<br>0-1<br>Zone I | LLS-21E<br>5/30/2007<br>1-2<br>Zone I |
|-------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Aroclor-1016                        |                                                          |                                                                            | 21 U | 21 U                                 | 19 U                                 | 22 U                                 | 34 U                                  | 29 U                                  | 32 U                                  |
| Aroclor-1221                        |                                                          |                                                                            | 21 U | 21 U                                 | 19 U                                 | 22 U                                 | 34 U                                  | 29 U                                  | 32 U                                  |
| Aroclor-1232                        |                                                          |                                                                            | 21 U | 21 U                                 | 19 U                                 | 22 U                                 | 34 U                                  | 29 U                                  | 32 U                                  |
| Aroclor-1242                        |                                                          |                                                                            | 21 U | 21 U                                 | 19 U                                 | 22 U                                 | 34 U                                  | 29 U                                  | 32 U                                  |
| Aroclor-1248                        |                                                          |                                                                            | 21 U | 21 U                                 | 19 U                                 | 22 U                                 | 34 U                                  | 29 U                                  | 32 U                                  |
| Aroclor-1254                        |                                                          |                                                                            | 1080 | 6060                                 | 19 U                                 | 38900                                | 34 U                                  | 29 U                                  | 32 U                                  |
| Aroclor-1260                        |                                                          |                                                                            | 908  | 8880                                 | 632                                  | 22 U                                 | 490                                   | 810                                   | 4700 D                                |
| TOTAL PCBs                          | 25,000                                                   |                                                                            | 1988 | 14940                                | 632                                  | 38900                                | 490                                   | 810                                   | 4700                                  |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | NYSDEC<br>Site Specific | Sample Designation:<br>Sample Date: |        | LLS-22<br>8/10/2001 | LLS-23<br>8/10/2001 | LP1-1<br>9/17/1996 | LP1-2<br>9/17/1996 | LP1-3<br>9/17/1996 | LP1-4<br>9/17/1996 |
|---------------------------|-------------------------|-------------------------------------|--------|---------------------|---------------------|--------------------|--------------------|--------------------|--------------------|
| (Concentrations in µg/kg) | Soil Cleanup Level      | Sample Depth (ft bls):              | 2-3    | 0-1                 | 0-1                 | 0-2                | 0-2                | 0-2                | 0-2                |
|                           | (µg/kg)                 | Map Zone:                           | Zone I | Zone I              | Zone I              | Zone I             | Zone I             | Zone I             | Zone I             |
| Aroclor-1016              |                         |                                     | 27 U   | 20 U                | 21 U                | 3800 U             | 4100 U             | 2200 U             | 4100 U             |
| Aroclor-1221              |                         |                                     | 27 U   | 20 U                | 21 U                | 7700 U             | 8300 U             | 4500 U             | 8300 U             |
| Aroclor-1232              |                         |                                     | 27 U   | 20 U                | 21 U                | 3800 U             | 4100 U             | 2200 U             | 4100 U             |
| Aroclor-1242              |                         |                                     | 27 U   | 20 U                | 21 U                | 3800 U             | 4100 U             | 2200 U             | 4100 U             |
| Aroclor-1248              |                         |                                     | 27 U   | 20 U                | 21 U                | 3800 U             | 4100 U             | 2200 U             | 4100 U             |
| Aroclor-1254              |                         |                                     | 27 U   | 5630                | 4720                | 3800 U             | 4100 U             | 2200 U             | 4100 U             |
| Aroclor-1260              |                         |                                     | 390    | 8890                | 10400               | 3100 J             | 16000              | 6700               | 12000              |
| TOTAL PCBs                | 25,000                  |                                     | 390    | 14520               | 15120               | 3100               | 16000              | 6700               | 12000              |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC Site Specific Soil Cleanup Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | LP1-5<br>9/17/1996<br>0-2<br>Zone I | LP1-6<br>9/17/1996<br>0-2<br>Zone I | LP1-7<br>9/17/1996<br>0-2<br>Zone I | LP1-8<br>9/17/1996<br>0-2<br>Zone I | LP1-9<br>9/17/1996<br>0-2<br>Zone I | LP1-10<br>9/17/1996<br>0-2<br>Zone I |
|----------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|
| Aroclor-1016                           |                                                 |                                                                            | 800 U                               | 2100 U                              | 2100 U                              | 2000 U                              | 780 U                               | 7800 U                               |
| Aroclor-1221                           |                                                 |                                                                            | 1600 U                              | 4200 U                              | 4200 U                              | 4100 U                              | 1600 U                              | 16000 U                              |
| Aroclor-1232                           |                                                 |                                                                            | 800 U                               | 2100 U                              | 2100 U                              | 2000 U                              | 780 U                               | 7800 U                               |
| Aroclor-1242                           |                                                 |                                                                            | 800 U                               | 2100 U                              | 2100 U                              | 2000 U                              | 780 U                               | 7800 U                               |
| Aroclor-1248                           |                                                 |                                                                            | 800 U                               | 2100 U                              | 2100 U                              | 2000 U                              | 780 U                               | 7800 U                               |
| Aroclor-1254                           |                                                 |                                                                            | 800 U                               | 2100 U                              | 2100 U                              | 2000 U                              | 780 U                               | 7800 U                               |
| Aroclor-1260                           |                                                 |                                                                            | 5800                                | 6700                                | 15000                               | 7200                                | 1600                                | 18000                                |
| TOTAL PCBs                             | 25,000                                          |                                                                            | 5800                                | 6700                                | 15000                               | 7200                                | 1600                                | 18000                                |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | NYSDEC<br>Site Specific | Sample Designation: Sample Date: | LP1-11<br>9/17/1996 | LP1-12<br>9/17/1996 | LP1-13<br>9/17/1996 | LP1-14<br>9/17/1996 |        | LP2-1<br>7/15/1997 |
|---------------------------|-------------------------|----------------------------------|---------------------|---------------------|---------------------|---------------------|--------|--------------------|
| (Concentrations in µg/kg) | Soil Cleanup Level      | Sample Depth (ft bls):           | 0-2                 | 0-2                 | 0-2                 | 0-2                 | 0-1    | 1-2                |
|                           | (µg/kg)                 | Map Zone:                        | Zone I              | Zone I              | Zone I              | Zone I              | Zone I | Zone I             |
|                           |                         |                                  |                     |                     |                     |                     |        |                    |
| Aroclor-1016              |                         |                                  | 20000 U             | 7500 U              | 3900 U              | 2000 U              | 180 U  | 35 U               |
| Aroclor-1221              |                         |                                  | 40000 U             | 15000 U             | 8000 U              | 4000 U              | 370 U  | 70 U               |
| Aroclor-1232              |                         |                                  | 20000 U             | 7500 U              | 3900 U              | 2000 U              | 180 U  | 35 U               |
| Aroclor-1242              |                         |                                  | 20000 U             | 7500 U              | 3900 U              | 2000 U              | 180 U  | 35 U               |
| Aroclor-1248              |                         |                                  | 20000 U             | 7500 U              | 3900 U              | 2000 U              | 180 U  | 35 U               |
| Aroclor-1254              |                         |                                  | 20000 U             | 7500 U              | 3900 U              | 2000 U              | 170 J  | 35                 |
| Aroclor-1260              |                         |                                  | 23000               | 15000               | 6000                | 3500                | 780    | 160                |
| TOTAL PCBs                | 25,000                  |                                  | 23000               | 15000               | 6000                | 3500                | 950    | 195                |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC Site Specific Soil Cleanup Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: |       | LP2-2<br>7/15/1997<br>1-2<br>Zone I | LP2-3<br>7/15/1997<br>0-1<br>Zone I | LP2-3<br>7/15/1997<br>1-2<br>Zone I | LP2-3W<br>5/30/2007<br>0-1<br>Zone I | LP2-3W<br>5/30/2007<br>1-2<br>Zone I | LP2-3W<br>5/30/2007<br>2-3<br>Zone I |
|----------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|-------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Aroclor-1016                           |                                                 |                                                                            | 430 U | 180 U                               | 21000 U                             | 350 U                               | 27 U                                 | 32 U                                 | 35 U                                 |
| Aroclor-1221                           |                                                 |                                                                            | 870 U | 360 U                               | 43000 U                             | 710 U                               | 27 U                                 | 32 U                                 | 35 U                                 |
| Aroclor-1232                           |                                                 |                                                                            | 430 U | 180 U                               | 21000 U                             | 350 U                               | 27 U                                 | 32 U                                 | 35 U                                 |
| Aroclor-1242                           |                                                 |                                                                            | 430 U | 180 U                               | 21000 U                             | 350 U                               | 27 U                                 | 32 U                                 | 35 U                                 |
| Aroclor-1248                           |                                                 |                                                                            | 430 U | 180 U                               | 21000 U                             | 350 U                               | 27 U                                 | 32 U                                 | 35 U                                 |
| Aroclor-1254                           |                                                 |                                                                            | 550   | 200                                 | 13000 J                             | 310 J                               | 27 U                                 | 32 U                                 | 35 U                                 |
| Aroclor-1260                           |                                                 |                                                                            | 2400  | 700                                 | 55000                               | 1300                                | 1500                                 | 4800 D                               | 810                                  |
| TOTAL PCBs                             | 25,000                                          |                                                                            | 2950  | 900                                 | 68000                               | 1610                                | 1500                                 | 4800                                 | 810                                  |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | NYSDEC<br>Site Specific | Sample Designation: Sample Date: |        | LP2-4<br>7/15/1997 |        | LP2-5<br>7/15/1997 | LP2-6<br>7/15/1997 | LP2-6<br>7/15/1997 |         |        |
|---------------------------|-------------------------|----------------------------------|--------|--------------------|--------|--------------------|--------------------|--------------------|---------|--------|
| (Concentrations in µg/kg) | Soil Cleanup Level      | Sample Depth (ft bls):           | 0-1    | 1-2                | 0-1    | 1-2                | 0-1                | 1-2                | 0-1     | 1-2    |
|                           | (µg/kg)                 | Map Zone:                        | Zone I | Zone I             | Zone I | Zone I             | Zone I             | Zone I             | Zone I  | Zone I |
|                           |                         |                                  |        |                    |        |                    |                    |                    |         |        |
| Aroclor-1016              |                         |                                  | 3800 U | 350 U              | 3900 U | 780 U              | 3900 U             | 35 U               | 8800 U  | 820 U  |
| Aroclor-1221              |                         |                                  | 7700 U | 720 U              | 8000 U | 1600 U             | 8000 U             | 70 U               | 18000 U | 1700 U |
| Aroclor-1232              |                         |                                  | 3800 U | 350 U              | 3900 U | 780 U              | 3900 U             | 35 U               | 8800 U  | 820 U  |
| Aroclor-1242              |                         |                                  | 3800 U | 350 U              | 3900 U | 780 U              | 3900 U             | 35 U               | 8800 U  | 820 U  |
| Aroclor-1248              |                         |                                  | 3800 U | 350 U              | 3900 U | 780 U              | 3900 U             | 35 U               | 8800 U  | 820 U  |
| Aroclor-1254              |                         |                                  | 4300   | 600                | 3900 U | 780 U              | 3900 U             | 120                | 8800 U  | 820 U  |
| Aroclor-1260              |                         |                                  | 14000  | 2300               | 9500   | 2000               | 6300               | 190                | 23000   | 2100   |
| TOTAL PCBs                | 25,000                  |                                  | 18300  | 2900               | 9500   | 2000               | 6300               | 310                | 23000   | 2100   |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: |        | LP2-8<br>7/15/1997<br>1-2<br>Zone I | LP2-8<br>7/15/1997<br>2-3<br>Zone I | LP2-9<br>7/15/1997<br>0-1<br>Zone I | LP2-9<br>7/15/1997<br>1-2<br>Zone I | LP2-9<br>7/15/1997<br>2-3<br>Zone I | LP2-10<br>7/15/1997<br>0-1<br>Zone I | LP2-10<br>7/15/1997<br>1-2<br>Zone I |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|--------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 3800 U | 37 U                                | 39 U                                | 2100 U                              | 210 U                               | 35 U                                | 3800 U                               | 38 U                                 |
| Aroclor-1221                           |                                                          |                                                                            | 7800 U | 75 U                                | 80 U                                | 4300 U                              | 420 U                               | 70 U                                | 7800 U                               | 76 U                                 |
| Aroclor-1232                           |                                                          |                                                                            | 3800 U | 37 U                                | 39 U                                | 2100 U                              | 210 U                               | 35 U                                | 3800 U                               | 38 U                                 |
| Aroclor-1242                           |                                                          |                                                                            | 3800 U | 37 U                                | 39 U                                | 2100 U                              | 210 U                               | 35 U                                | 3800 U                               | 38 U                                 |
| Aroclor-1248                           |                                                          |                                                                            | 3800 U | 37 U                                | 39 U                                | 2100 U                              | 210 U                               | 35 U                                | 3800 U                               | 38 U                                 |
| Aroclor-1254                           |                                                          |                                                                            | 3800 U | 37 U                                | 39 U                                | 2100 U                              | 210 U                               | 35 U                                | 3800 U                               | 38 U                                 |
| Aroclor-1260                           |                                                          |                                                                            | 6300   | 220                                 | 11 J                                | 5200                                | 440                                 | 55                                  | 6600                                 | 140                                  |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 6300   | 220                                 | 11                                  | 5200                                | 440                                 | 55                                  | 6600                                 | 140                                  |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | NYSDEC<br>Site Specific | Sample Designation:<br>Sample Date: |        | LP2-11<br>7/15/1997 | LP2-11<br>7/15/1997 | LP2-11<br>7/15/1997 |         | MW-30<br>11/30/1990 |          |
|---------------------------|-------------------------|-------------------------------------|--------|---------------------|---------------------|---------------------|---------|---------------------|----------|
| (Concentrations in µg/kg) | Soil Cleanup Level      | Sample Depth (ft bls):              | 2-3    | 0-1                 | 1-2                 | 2-3                 | 9-11    | 0-2                 | 0-2      |
|                           | (µg/kg)                 | Map Zone:                           | Zone I | Zone I              | Zone I              | Zone I              | Zone II | Zone IV             | Zone III |
|                           |                         |                                     |        |                     |                     |                     |         |                     |          |
| Aroclor-1016              |                         |                                     | 38 U   | 860 U               | 420 U               | 38 U                | 85 U    | 90 U                | 1030 U   |
| Aroclor-1221              |                         |                                     | 76 U   | 1700 U              | 860 U               | 77 U                | 85 U    | 90 U                | 1030 U   |
| Aroclor-1232              |                         |                                     | 38 U   | 860 U               | 420 U               | 38 U                | 85 U    | 90 U                | 1030 U   |
| Aroclor-1242              |                         |                                     | 38 U   | 860 U               | 420 U               | 38 U                | 85 U    | 90 U                | 1030 U   |
| Aroclor-1248              |                         |                                     | 38 U   | 860 U               | 420 U               | 38 U                | 85 U    | 90 U                | 1030 U   |
| Aroclor-1254              |                         |                                     | 38 U   | 860 U               | 420 U               | 38 U                | 85 U    | 90 U                | 1030 U   |
| Aroclor-1260              |                         |                                     | 4.6 J  | 5200                | 850                 | 33 J                | 85 U    | 290 JV              | 7540 JV  |
| TOTAL PCBs                | 25,000                  |                                     | 4.6    | 5200                | 850                 | 33                  | 0       | 290                 | 7540     |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | NYSDEC<br>Site Specific | Sample Designation:<br>Sample Date: |         | NWALL<br>1/4/1999 | NR-26<br>9/27/1999 | NR-27<br>9/27/1999 | NR-28<br>9/27/1999 | NR-29<br>9/27/1999 | NR-30<br>9/27/1999 | NR-31<br>9/27/1999 |
|---------------------------|-------------------------|-------------------------------------|---------|-------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| (Concentrations in µg/kg) | Soil Cleanup Level      | Sample Depth (ft bls):              | 0-2     |                   | 0-1                | 0-1                | 0-1                | 0-1                | 0-1                | 0-1                |
|                           | (µg/kg)                 | Map Zone:                           | Zone II | Zone III          | Zone IV            |
| Aroclor-1016              |                         |                                     | 85 U    | 36 U              | 42 U               | 39 U               | 42 U               | 43 U               | 47 U               | 44 U               |
| Aroclor-1221              |                         |                                     | 85 U    | 73 U              | 42 U<br>85 U       | 78 U               | 84 U               | 86 U               | 93 U               | 87 U               |
| Aroclor-1232              |                         |                                     | 85 U    | 36 U              | 42 U               | 39 U               | 42 U               | 43 U               | 47 U               | 44 U               |
| Aroclor-1242              |                         |                                     | 85 U    | 36 U              | 42 U               | 39 U               | 42 U               | 43 U               | 47 U               | 44 U               |
| Aroclor-1248              |                         |                                     | 85 U    | 36 U              | 42 U               | 39 U               | 42 U               | 43 U               | 47 U               | 44 U               |
| Aroclor-1254              |                         |                                     | 85 U    | 36 U              | 42 U               | 39 U               | 42 U               | 43 U               | 47 U               | 44 U               |
| Aroclor-1260              |                         |                                     | 643 JV  | 36 U              | 460                | 540                | 150                | 130                | 120                | 44 U               |
| TOTAL PCBs                | 25,000                  |                                     | 643     | 0                 | 460                | 540                | 150                | 130                | 120                | 0                  |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 9/27/1999<br>0-1 | NR-33<br>9/27/1999<br>0-1<br>Zone IV | NR-34<br>9/27/1999<br>0-1<br>Zone IV | NW-1<br>11/2/1998<br>-<br>Zone II | NW-2<br>11/2/1998<br>-<br>Zone II | NW-3<br>11/2/1998<br>-<br>Zone II | NW-4<br>11/2/1998<br>-<br>Zone II |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------------|--------------------------------------|--------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
|                                        |                                                          |                                                                            |                  |                                      |                                      |                                   |                                   |                                   |                                   |
| Aroclor-1016                           |                                                          |                                                                            | 46 U             | 39 U                                 | 41 U                                 | 36 U                              | 34 U                              | 35 U                              | 36 U                              |
| Aroclor-1221                           |                                                          |                                                                            | 92 U             | 78 U                                 | 81 U                                 | 72 U                              | 69 U                              | 70 U                              | 71 U                              |
| Aroclor-1232                           |                                                          |                                                                            | 46 U             | 39 U                                 | 41 U                                 | 36 U                              | 34 U                              | 35 U                              | 36 U                              |
| Aroclor-1242                           |                                                          |                                                                            | 46 U             | 39 U                                 | 41 U                                 | 36 U                              | 34 U                              | 35 U                              | 36 U                              |
| Aroclor-1248                           |                                                          |                                                                            | 46 U             | 39 U                                 | 41 U                                 | 36 U                              | 34 U                              | 35 U                              | 36 U                              |
| Aroclor-1254                           |                                                          |                                                                            | 46 U             | 39 U                                 | 41 U                                 | 36 U                              | 34 U                              | 35 U                              | 36 U                              |
| Aroclor-1260                           |                                                          |                                                                            | 240              | 310                                  | 220                                  | 76                                | 34 U                              | 35 U                              | 36 U                              |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 240              | 310                                  | 220                                  | 76                                | 0                                 | 0                                 | 0                                 |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in us /kg) | NYSDEC Site Specific          | Sample Designation: Sample Date:    | 11/19/1997 | O/W-UST/E<br>11/19/1997 | O/W-UST/N<br>11/19/1997 | O/W-UST/S<br>11/19/1997 | O/W-UST/W<br>11/19/1997 | PC-1<br>6/22/2005 |
|--------------------------------------|-------------------------------|-------------------------------------|------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------|
| (Concentrations in µg/kg)            | Soil Cleanup Level<br>(µg/kg) | Sample Depth (ft bls):<br>Map Zone: | Zone II    | Zone II                 | Zone II                 | Zone II                 | Zone II                 | 0-1<br>Zone II    |
| Aroclor-1016                         |                               |                                     | 35 U       | 35 U                    | 35 U                    | 35 U                    | 36 U                    | 26 U              |
| Aroclor-1221                         |                               |                                     | 35 U       | 35 U                    | 35 U                    | 35 U                    | 36 U                    | 26 U              |
| Aroclor-1232                         |                               |                                     | 35 U       | 35 U                    | 35 U                    | 35 U                    | 36 U                    | 26 U              |
| Aroclor-1242                         |                               |                                     | 35 U       | 35 U                    | 35 U                    | 35 U                    | 36 U                    | 26 U              |
| Aroclor-1248                         |                               |                                     | 35 U       | 35 U                    | 35 U                    | 35 U                    | 36 U                    | 26 U              |
| Aroclor-1254                         |                               |                                     | 35 U       | 35 U                    | 35 U                    | 35 U                    | 36 U                    | 26 U              |
| Aroclor-1260                         |                               | -                                   | 330        | 120                     | 35 U                    | 25 J                    | 36 U                    | 26 U              |
| TOTAL PCBs                           | 25,000                        |                                     | 330        | 120                     | 0                       | 25                      | 0                       | 0                 |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC Site Specific Soil Cleanup Level | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls): | 6/22/2005<br>1-2 | 2-3     | 0-1     | 1-2     | 2-3     | 3-4     | 4-5     | 0-1     |
|----------------------------------------|-----------------------------------------|---------------------------------------------------------------|------------------|---------|---------|---------|---------|---------|---------|---------|
|                                        | (µg/kg)                                 | Map Zone:                                                     | Zone II          | Zone II | Zone II | Zone II | Zone II | Zone II | Zone II | Zone II |
| Aroclor-1016                           |                                         |                                                               | 26 U             | 26 U    | 28 U    | 30 U    | 30 U    | 580 U   | 620 U   | 28 U    |
| Aroclor-1221                           |                                         |                                                               | 26 U             | 26 U    | 28 U    | 30 U    | 30 U    | 580 U   | 620 U   | 28 U    |
| Aroclor-1232                           |                                         |                                                               | 26 U             | 26 U    | 28 U    | 30 U    | 30 U    | 580 U   | 620 U   | 28 U    |
| Aroclor-1242                           |                                         |                                                               | 26 U             | 26 U    | 28 U    | 30 U    | 30 U    | 580 U   | 620 U   | 28 U    |
| Aroclor-1248                           |                                         |                                                               | 26 U             | 26 U    | 28 U    | 30 U    | 30 U    | 580 U   | 620 U   | 28 U    |
| Aroclor-1254                           |                                         |                                                               | 26 U             | 26 U    | 28 U    | 30 U    | 30 U    | 580 U   | 620 U   | 28 U    |
| Aroclor-1260                           |                                         |                                                               | 26 U             | 26 U    | 6100    | 5700    | 37000   | 16000   | 12000   | 1100    |
| TOTAL PCBs                             | 25,000                                  |                                                               | 0                | 0       | 6100    | 5700    | 37000   | 16000   | 12000   | 1100    |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC Site Specific Soil Cleanup Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 8/24/2005<br>1-2 | PC-6E<br>8/24/2005<br>2-3<br>Zone II | PC-6N<br>8/24/2005<br>0-1<br>Zone II | PC-6N<br>8/24/2005<br>1-2<br>Zone II | PC-6S<br>8/24/2005<br>0-1<br>Zone II | PC-6S<br>8/24/2005<br>1-2<br>Zone II | PC-6S<br>8/24/2005<br>2-3<br>Zone II | PC-6W<br>8/24/2005<br>0-1<br>Zone II |
|----------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
|                                        |                                                 |                                                                            |                  |                                      |                                      |                                      |                                      |                                      |                                      |                                      |
| Aroclor-1016                           |                                                 |                                                                            | 27 U             | 280 U                                | 270 U                                | 620 U                                | 1400 U                               | 28 U                                 | 27 U                                 | 550 U                                |
| Aroclor-1221                           |                                                 |                                                                            | 27 U             | 280 U                                | 270 U                                | 620 U                                | 1400 U                               | 28 U                                 | 27 U                                 | 550 U                                |
| Aroclor-1232                           |                                                 |                                                                            | 27 U             | 280 U                                | 270 U                                | 620 U                                | 1400 U                               | 28 U                                 | 27 U                                 | 550 U                                |
| Aroclor-1242                           |                                                 |                                                                            | 27 U             | 280 U                                | 270 U                                | 620 U                                | 1400 U                               | 28 U                                 | 27 U                                 | 550 U                                |
| Aroclor-1248                           |                                                 |                                                                            | 27 U             | 280 U                                | 270 U                                | 620 U                                | 1400 U                               | 28 U                                 | 27 U                                 | 550 U                                |
| Aroclor-1254                           |                                                 |                                                                            | 27 U             | 280 U                                | 270 U                                | 620 U                                | 1400 U                               | 28 U                                 | 27 U                                 | 550 U                                |
| Aroclor-1260                           |                                                 |                                                                            | 750              | 4900                                 | 2800                                 | 13000                                | 25000                                | 970                                  | 490                                  | 13000                                |
| TOTAL PCBs                             | 25,000                                          |                                                                            | 750              | 4900                                 | 2800                                 | 13000                                | 25000                                | 970                                  | 490                                  | 13000                                |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC Site Specific Soil Cleanup Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 8/24/2005<br>1-2 | PC-6W<br>8/24/2005<br>2-3<br>Zone II | PC-7<br>6/23/2005<br>0-1<br>Zone II | PC-7<br>6/23/2005<br>1-2<br>Zone II | PC-7<br>6/23/2005<br>2-3<br>Zone II | PC-8<br>6/23/2005<br>0-1<br>Zone II | PC-8<br>6/23/2005<br>1-2<br>Zone II | PC-8<br>6/23/2005<br>2-3<br>Zone II |
|----------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Aroclor-1016                           |                                                 |                                                                            | 300 U            | 280 U                                | 27 U                                | 27 U                                | 27 U                                | 29 U                                | 29 U                                | 27 U                                |
| Aroclor-1221                           |                                                 |                                                                            | 300 U            | 280 U                                | 27 U                                | 27 U                                | 27 U                                | 29 U                                | 29 U                                | 27 U                                |
| Aroclor-1232                           |                                                 |                                                                            | 300 U            | 280 U                                | 27 U                                | 27 U                                | 27 U                                | 29 U                                | 29 U                                | 27 U                                |
| Aroclor-1242                           |                                                 |                                                                            | 300 U            | 280 U                                | 27 U                                | 27 U                                | 27 U                                | 29 U                                | 29 U                                | 27 U                                |
| Aroclor-1248                           |                                                 |                                                                            | 300 U            | 280 U                                | 27 U                                | 27 U                                | 27 U                                | 29 U                                | 29 U                                | 27 U                                |
| Aroclor-1254                           |                                                 |                                                                            | 300 U            | 280 U                                | 27 U                                | 27 U                                | 27 U                                | 29 U                                | 29 U                                | 27 U                                |
| Aroclor-1260                           |                                                 |                                                                            | 6400             | 5200                                 | 4200                                | 3900                                | 800                                 | 5000                                | 7300                                | 4900                                |
| TOTAL PCBs                             | 25,000                                          |                                                                            | 6400             | 5200                                 | 4200                                | 3900                                | 800                                 | 5000                                | 7300                                | 4900                                |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 6/23/2005<br>0-1 | PC-9<br>6/23/2005<br>1-2<br>Zone II | PC-9<br>6/23/2005<br>2-3<br>Zone II | PC-10<br>6/23/2005<br>0-1<br>Zone II | PC-10<br>6/23/2005<br>1-2<br>Zone II | PC-10<br>6/23/2005<br>2-3<br>Zone II | PC-10<br>8/24/2005<br>2-3<br>Zone II | PC-10N<br>8/24/2005<br>0-1<br>Zone II |
|-------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|
| Aroclor-1016                        |                                                          |                                                                            | 27 U             | 26 U                                | 26 U                                | 28 U                                 | 29 U                                 | 29 U                                 | 550 U                                | 27 U                                  |
| Aroclor-1221                        |                                                          |                                                                            | 27 U             | 26 U                                | 26 U                                | 28 U                                 | 29 U                                 | 29 U                                 | 550 U                                | 27 U                                  |
| Aroclor-1232                        |                                                          |                                                                            | 27 U             | 26 U                                | 26 U                                | 28 U                                 | 29 U                                 | 29 U                                 | 550 U                                | 27 U                                  |
| Aroclor-1242                        |                                                          |                                                                            | 27 U             | 26 U                                | 26 U                                | 28 U                                 | 29 U                                 | 29 U                                 | 550 U                                | 27 U                                  |
| Aroclor-1248                        |                                                          |                                                                            | 27 U             | 26 U                                | 26 U                                | 28 U                                 | 29 U                                 | 29 U                                 | 550 U                                | 27 U                                  |
| Aroclor-1254                        |                                                          |                                                                            | 27 U             | 26 U                                | 26 U                                | 28 U                                 | 29 U                                 | 29 U                                 | 550 U                                | 27 U                                  |
| Aroclor-1260                        |                                                          |                                                                            | 210              | 26 U                                | 87                                  | 25000                                | 26000                                | 7400                                 | 12000                                | 230                                   |
| TOTAL PCBs                          | 25,000                                                   |                                                                            | 210              | 0                                   | 87                                  | 25000                                | 26000                                | 7400                                 | 12000                                | 230                                   |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC Site Specific Soil Cleanup Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 8/24/2005<br>1-2 | PC-10N<br>8/24/2005<br>2-3<br>Zone II | PC-10S<br>8/24/2005<br>0-1<br>Zone II | PC-10S<br>8/24/2005<br>1-2<br>Zone II | PC-10S<br>8/24/2005<br>2-3<br>Zone II | PC-10W<br>8/24/2005<br>0-1<br>Zone II | PC-10W<br>8/24/2005<br>1-2<br>Zone II | PC-10W<br>8/24/2005<br>2-3<br>Zone II |
|----------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
|                                        |                                                 |                                                                            |                  |                                       |                                       |                                       |                                       |                                       |                                       |                                       |
| Aroclor-1016                           |                                                 |                                                                            | 27 U             | 140 U                                 | 27 U                                  | 270 U                                 | 550 U                                 | 27 U                                  | 280 U                                 | 550 U                                 |
| Aroclor-1221                           |                                                 |                                                                            | 27 U             | 140 U                                 | 27 U                                  | 270 U                                 | 550 U                                 | 27 U                                  | 280 U                                 | 550 U                                 |
| Aroclor-1232                           |                                                 |                                                                            | 27 U             | 140 U                                 | 27 U                                  | 270 U                                 | 550 U                                 | 27 U                                  | 280 U                                 | 550 U                                 |
| Aroclor-1242                           |                                                 |                                                                            | 27 U             | 140 U                                 | 27 U                                  | 270 U                                 | 550 U                                 | 27 U                                  | 280 U                                 | 550 U                                 |
| Aroclor-1248                           |                                                 |                                                                            | 27 U             | 140 U                                 | 27 U                                  | 270 U                                 | 550 U                                 | 27 U                                  | 280 U                                 | 550 U                                 |
| Aroclor-1254                           |                                                 |                                                                            | 27 U             | 140 U                                 | 27 U                                  | 270 U                                 | 550 U                                 | 27 U                                  | 280 U                                 | 550 U                                 |
| Aroclor-1260                           |                                                 |                                                                            | 27 U             | 2400                                  | 1100                                  | 3900                                  | 12000                                 | 1600                                  | 3400                                  | 14000                                 |
| TOTAL PCBs                             | 25,000                                          |                                                                            | 0                | 2400                                  | 1100                                  | 3900                                  | 12000                                 | 1600                                  | 3400                                  | 14000                                 |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | PC-11<br>6/23/2005<br>0-1<br>Zone II | PC-11<br>6/23/2005<br>1-2<br>Zone II | PC-11<br>6/23/2005<br>2-3<br>Zone II | PC-12<br>6/23/2005<br>0-1<br>Zone II | PC-12<br>6/23/2005<br>1-2<br>Zone II | PC-12<br>6/23/2005<br>2-3<br>Zone II | PC-13<br>7/19/2007<br>0-1<br>Zone II |
|-------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Aroclor-1016                        |                                                          |                                                                            | 27 U                                 | 26 U                                 | 27 U                                 | 26 U                                 | 26 U                                 | 26 U                                 | 28 U                                 |
| Aroclor-1221                        |                                                          |                                                                            | 27 U                                 | 26 U                                 | 27 U                                 | 26 U                                 | 26 U                                 | 26 U                                 | 28 U                                 |
| Aroclor-1232                        |                                                          |                                                                            | 27 U                                 | 26 U                                 | 27 U                                 | 26 U                                 | 26 U                                 | 26 U                                 | 28 U                                 |
| Aroclor-1242                        |                                                          |                                                                            | 27 U                                 | 26 U                                 | 27 U                                 | 26 U                                 | 26 U                                 | 26 U                                 | 28 U                                 |
| Aroclor-1248                        |                                                          |                                                                            | 27 U                                 | 26 U                                 | 27 U                                 | 26 U                                 | 26 U                                 | 26 U                                 | 28 U                                 |
| Aroclor-1254                        |                                                          |                                                                            | 27 U                                 | 26 U                                 | 27 U                                 | 26 U                                 | 26 U                                 | 26 U                                 | 28 U                                 |
| Aroclor-1260                        |                                                          |                                                                            | 27 U                                 | 26 U                                 | 27 U                                 | 610                                  | 26 U                                 | 230                                  | 13000                                |
| TOTAL PCBs                          | 25,000                                                   |                                                                            | 0                                    | 0                                    | 0                                    | 610                                  | 0                                    | 230                                  | 13000                                |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC Site Specific Soil Cleanup Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | PC-13<br>7/19/2007<br>1-2<br>Zone II | PC-13<br>7/19/2007<br>2-3<br>Zone II | PC-14<br>7/19/2007<br>0-1<br>Zone II | PC-14<br>7/19/2007<br>1-2<br>Zone II | PC-14<br>7/19/2007<br>2-3<br>Zone II | PIT-4<br>6/18/1997<br>-<br>Zone III | PT-1<br>3/18/2004<br>0-1<br>Zone I |
|----------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|------------------------------------|
| Aroclor-1016                           |                                                 |                                                                            | 27 U                                 | 28 U                                 | 28 U                                 | 27 U                                 | 26 U                                 | 58000 U                             | 19 U                               |
| Aroclor-1221                           |                                                 |                                                                            | 27 U                                 | 28 U                                 | 28 U                                 | 27 U                                 | 26 U                                 | 120000 U                            | 36 U                               |
| Aroclor-1232                           |                                                 |                                                                            | 27 U                                 | 28 U                                 | 28 U                                 | 27 U                                 | 26 U                                 | 58000 U                             | 19 U                               |
| Aroclor-1242                           |                                                 |                                                                            | 27 U                                 | 28 U                                 | 28 U                                 | 27 U                                 | 26 U                                 | 210000                              | 19 U                               |
| Aroclor-1248                           |                                                 |                                                                            | 27 U                                 | 28 U                                 | 28 U                                 | 27 U                                 | 26 U                                 | 58000 U                             | 19 U                               |
| Aroclor-1254                           |                                                 |                                                                            | 27 U                                 | 28 U                                 | 28 U                                 | 27 U                                 | 26 U                                 | 58000 U                             | 130                                |
| Aroclor-1260                           |                                                 |                                                                            | 7200                                 | 20000                                | 240                                  | 210                                  | 26 U                                 | 260000                              | 130                                |
| TOTAL PCBs                             | 25,000                                          |                                                                            | 7200                                 | 20000                                | 240                                  | 210                                  | 0                                    | 470000                              | 260                                |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 3/18/2004<br>0-1 | PT-3<br>3/18/2004<br>0-1<br>Zone I | PT-4<br>3/18/2004<br>0-1<br>Zone II | PT-5<br>3/18/2004<br>0-1<br>Zone I | PT-6<br>3/18/2004<br>0-1<br>Zone II | PT-7<br>3/18/2004<br>0-1<br>Zone II | Q-1<br>3/20/1996<br>0-2<br>Zone III | Q-2<br>3/20/1996<br>0-2<br>Zone III |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------------|------------------------------------|-------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 190 U            | 380 U                              | 91 U                                | 180 U                              | 18 U                                | 380 U                               | 33 U                                | 33 U                                |
| Aroclor-1221                           |                                                          |                                                                            | 380 U            | 750 U                              | 180 U                               | 360 U                              | 34 U                                | 740 U                               | 67 U                                | 67 U                                |
| Aroclor-1232                           |                                                          |                                                                            | 190 U            | 380 U                              | 91 U                                | 180 U                              | 18 U                                | 380 U                               | 33 U                                | 33 U                                |
| Aroclor-1242                           |                                                          |                                                                            | 190 U            | 380 U                              | 91 U                                | 180 U                              | 18 U                                | 380 U                               | 33 U                                | 33 U                                |
| Aroclor-1248                           |                                                          |                                                                            | 190 U            | 380 U                              | 91 U                                | 180 U                              | 18 U                                | 380 U                               | 33 U                                | 33 U                                |
| Aroclor-1254                           |                                                          |                                                                            | 150 J            | 370 J                              | 83 J                                | 52 J                               | 62                                  | 820                                 | 33 U                                | 33 U                                |
| Aroclor-1260                           |                                                          |                                                                            | 610 D            | 2100                               | 360                                 | 330                                | 140                                 | 1800                                | 2400                                | 6100                                |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 760              | 2470                               | 443                                 | 382                                | 202                                 | 2620                                | 2400                                | 6100                                |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 3/20/1996<br>0-2 | Q-4<br>3/20/1996<br>0-0.5<br>Zone III | Q-5<br>3/20/1996<br>0-0.5<br>Zone III | Q-6<br>3/21/1996<br>0-2<br>Zone III | Q-7<br>3/21/1996<br>0-2<br>Zone III | Q-8<br>3/20/1996<br>0-2<br>Zone III | Q-10<br>3/20/1996<br>0-2<br>Zone III | Q-11<br>3/20/1996<br>0-2<br>Zone III |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------------|---------------------------------------|---------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 33 U             | 33 U                                  | 33 U                                  | 33 U                                | 33 U                                | 33 U                                | 33 U                                 | 33 U                                 |
| Aroclor-1221                           |                                                          |                                                                            | 67 U             | 67 U                                  | 67 U                                  | 67 U                                | 67 U                                | 67 U                                | 67 U                                 | 67 U                                 |
| Aroclor-1232                           |                                                          |                                                                            | 33 U             | 33 U                                  | 33 U                                  | 33 U                                | 33 U                                | 33 U                                | 33 U                                 | 33 U                                 |
| Aroclor-1242                           |                                                          |                                                                            | 33 U             | 33 U                                  | 33 U                                  | 33 U                                | 33 U                                | 33 U                                | 33 U                                 | 33 U                                 |
| Aroclor-1248                           |                                                          |                                                                            | 33 U             | 33 U                                  | 33 U                                  | 33 U                                | 33 U                                | 33 U                                | 33 U                                 | 33 U                                 |
| Aroclor-1254                           |                                                          |                                                                            | 33 U             | 33 U                                  | 33 U                                  | 33 U                                | 33 U                                | 33 U                                | 33 U                                 | 33 U                                 |
| Aroclor-1260                           |                                                          |                                                                            | 1500             | 6500                                  | 4500                                  | 2000                                | 1800                                | 7800                                | 2400                                 | 11000                                |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 1500             | 6500                                  | 4500                                  | 2000                                | 1800                                | 7800                                | 2400                                 | 11000                                |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC Site Specific Soil Cleanup Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 3/20/1996<br>0-2 | QB-1<br>10/26/1999<br>0-1<br>Zone IV | QB-2<br>10/26/1999<br>0-1<br>Zone IV | QB-3<br>10/26/1999<br>0-1<br>Zone IV | QB-4<br>10/26/1999<br>0-1<br>Zone IV | QB-5<br>10/26/1999<br>0-1<br>Zone III | QB-6<br>10/26/1999<br>0-1<br>Zone IV |
|----------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|
| Aroclor-1016                           |                                                 |                                                                            | 33 U             | 37 U                                 | 35 U                                 | 40 U                                 | 36 U                                 | 35 U                                  | 36 U                                 |
| Aroclor-1221                           |                                                 |                                                                            | 67 U             | 73 U                                 | 69 U                                 | 79 U                                 | 71 U                                 | 71 U                                  | 72 U                                 |
| Aroclor-1232                           |                                                 |                                                                            | 33 U             | 37 U                                 | 35 U                                 | 40 U                                 | 36 U                                 | 35 U                                  | 36 U                                 |
| Aroclor-1242                           |                                                 |                                                                            | 33 U             | 37 U                                 | 35 U                                 | 40 U                                 | 36 U                                 | 35 U                                  | 36 U                                 |
| Aroclor-1248                           |                                                 |                                                                            | 33 U             | 37 U                                 | 35 U                                 | 40 U                                 | 36 U                                 | 35 U                                  | 36 U                                 |
| Aroclor-1254                           |                                                 |                                                                            | 33 U             | 37 U                                 | 35 U                                 | 40 U                                 | 36 U                                 | 35 U                                  | 36 U                                 |
| Aroclor-1260                           |                                                 |                                                                            | 5800             | 39                                   | 63                                   | 19                                   | 164                                  | 141                                   | 47                                   |
| TOTAL PCBs                             | 25,000                                          |                                                                            | 5800             | 39                                   | 63                                   | 19                                   | 164                                  | 141                                   | 47                                   |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 10/26/1999 0-1 | QC-1<br>4/12/2000<br>0-1<br>Zone IV | QC-2<br>4/12/2000<br>0-1<br>Zone III | QC-3<br>4/12/2000<br>0-1<br>Zone IV | QC-4<br>4/12/2000<br>0-1<br>Zone III | QC-5<br>4/12/2000<br>0-1<br>Zone IV | QC-6<br>4/12/2000<br>0-1<br>Zone III | QC-7<br>4/12/2000<br>0-1<br>Zone IV |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|----------------|-------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 40 U           | 19 U                                | 19 U                                 | 19 U                                | 19 U                                 | 18 U                                | 19 U                                 | 18 U                                |
| Aroclor-1221                           |                                                          |                                                                            | 79 U           | 19 U                                | 19 U                                 | 19 U                                | 19 U                                 | 18 U                                | 19 U                                 | 18 U                                |
| Aroclor-1232                           |                                                          |                                                                            | 40 U           | 19 U                                | 19 U                                 | 19 U                                | 19 U                                 | 18 U                                | 19 U                                 | 18 U                                |
| Aroclor-1242                           |                                                          |                                                                            | 40 U           | 19 U                                | 19 U                                 | 19 U                                | 19 U                                 | 18 U                                | 19 U                                 | 18 U                                |
| Aroclor-1248                           |                                                          |                                                                            | 40 U           | 19 U                                | 19 U                                 | 19 U                                | 19 U                                 | 18 U                                | 19 U                                 | 18 U                                |
| Aroclor-1254                           |                                                          |                                                                            | 40 U           | 19 U                                | 19 U                                 | 19 U                                | 19 U                                 | 18 U                                | 19 U                                 | 18 U                                |
| Aroclor-1260                           |                                                          |                                                                            | 39             | 230                                 | 58                                   | 260                                 | 19 U                                 | 18 U                                | 80                                   | 18 U                                |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 39             | 230                                 | 58                                   | 260                                 | 0                                    | 0                                   | 80                                   | 0                                   |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC Site Specific Soil Cleanup Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 4/13/2000<br>0-1 | QC-9<br>4/13/2000<br>0-1<br>Zone III | QC-10<br>4/13/2000<br>0-1<br>Zone III | QC-11<br>4/13/2000<br>0-1<br>Zone III | QC-12<br>4/13/2000<br>0-1<br>Zone IV | QC-13<br>4/13/2000<br>0-1<br>Zone III | QT-1<br>8/22/1996<br>0-1.5<br>Zone IV | QT-2<br>8/22/1996<br>0-1.5<br>Zone IV |
|----------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|------------------|--------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
|                                        |                                                 |                                                                            |                  |                                      |                                       |                                       |                                      |                                       |                                       |                                       |
| Aroclor-1016                           |                                                 |                                                                            | 18 U             | 18 U                                 | 18 U                                  | 18 U                                  | 18 U                                 | 18 U                                  | 33 U                                  | 33 U                                  |
| Aroclor-1221                           |                                                 |                                                                            | 18 U             | 18 U                                 | 18 U                                  | 18 U                                  | 18 U                                 | 18 U                                  | 67 U                                  | 67 U                                  |
| Aroclor-1232                           |                                                 |                                                                            | 18 U             | 18 U                                 | 18 U                                  | 18 U                                  | 18 U                                 | 18 U                                  | 33 U                                  | 33 U                                  |
| Aroclor-1242                           |                                                 |                                                                            | 18 U             | 18 U                                 | 18 U                                  | 18 U                                  | 18 U                                 | 18 U                                  | 33 U                                  | 33 U                                  |
| Aroclor-1248                           |                                                 |                                                                            | 18 U             | 18 U                                 | 18 U                                  | 18 U                                  | 18 U                                 | 18 U                                  | 33 U                                  | 33 U                                  |
| Aroclor-1254                           |                                                 |                                                                            | 18 U             | 18 U                                 | 18 U                                  | 18 U                                  | 18 U                                 | 18 U                                  | 33 U                                  | 33 U                                  |
| Aroclor-1260                           |                                                 |                                                                            | 18 U             | 18 U                                 | 35                                    | 18 U                                  | 18 U                                 | 18 U                                  | 1700                                  | 43000                                 |
| TOTAL PCBs                             | 25,000                                          |                                                                            | 0                | 0                                    | 35                                    | 0                                     | 0                                    | 0                                     | 1700                                  | 43000                                 |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 8/15/1997<br>0-1 | QT-2<br>8/15/1997<br>1-2<br>Zone IV | QT-2<br>8/15/1997<br>2-3<br>Zone IV | QT-2A<br>8/15/1997<br>0-1<br>Zone IV | QT-2A<br>8/15/1997<br>1-2<br>Zone IV | QT-2B<br>8/20/1997<br>0-1<br>Zone IV | QT-2B<br>8/20/1997<br>1-2<br>Zone IV | QT-2C<br>8/20/1997<br>0-1<br>Zone IV |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
|                                        |                                                          |                                                                            |                  |                                     |                                     |                                      |                                      |                                      |                                      |                                      |
| Aroclor-1016                           |                                                          |                                                                            | 3600 U           | 36 U                                | 36 U                                | 3500 U                               | 700 U                                | 7300 U                               | 350 U                                | 380 U                                |
| Aroclor-1221                           |                                                          |                                                                            | 7400 U           | 73 U                                | 73 U                                | 7100 U                               | 1400 U                               | 15000 U                              | 710 U                                | 760 U                                |
| Aroclor-1232                           |                                                          |                                                                            | 3600 U           | 36 U                                | 36 U                                | 3500 U                               | 700 U                                | 7300 U                               | 350 U                                | 380 U                                |
| Aroclor-1242                           |                                                          |                                                                            | 3600 U           | 36 U                                | 36 U                                | 3500 U                               | 700 U                                | 7300 U                               | 350 U                                | 380 U                                |
| Aroclor-1248                           |                                                          |                                                                            | 3600 U           | 36 U                                | 36 U                                | 3500 U                               | 700 U                                | 7300 U                               | 350 U                                | 380 U                                |
| Aroclor-1254                           |                                                          |                                                                            | 2200 J           | 25 J                                | 42                                  | 5000                                 | 1100                                 | 7600                                 | 320 J                                | 380 U                                |
| Aroclor-1260                           |                                                          |                                                                            | 5500             | 64                                  | 110                                 | 8500                                 | 1800                                 | 14000                                | 780                                  | 1500                                 |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 7700             | 89                                  | 152                                 | 13500                                | 2900                                 | 21600                                | 1100                                 | 1500                                 |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 8/20/1997<br>1-2 | QT-2D<br>8/15/1997<br>0-1<br>Zone IV | QT-2D<br>8/15/1997<br>1-2<br>Zone IV | QT-3<br>8/22/1996<br>0-1.5<br>Zone IV | QT-4<br>8/22/1996<br>0-1.5<br>Zone IV | R-UST/BOT<br>11/18/1997<br><br>Zone II | R-UST/E<br>11/18/1997<br><br>Zone II |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|--------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 180 U            | 7500 U                               | 35 U                                 | 33 U                                  | 33 U                                  | 35 U                                   | 37 U                                 |
| Aroclor-1221                           |                                                          |                                                                            | 360 U            | 15000 U                              | 71 U                                 | 67 U                                  | 67 U                                  | 35 U                                   | 37 U                                 |
| Aroclor-1232                           |                                                          |                                                                            | 180 U            | 7500 U                               | 35 U                                 | 33 U                                  | 33 U                                  | 35 U                                   | 37 U                                 |
| Aroclor-1242                           |                                                          |                                                                            | 180 U            | 7500 U                               | 35 U                                 | 33 U                                  | 33 U                                  | 35 U                                   | 37 U                                 |
| Aroclor-1248                           |                                                          |                                                                            | 180 U            | 7500 U                               | 35 U                                 | 33 U                                  | 33 U                                  | 35 U                                   | 37 U                                 |
| Aroclor-1254                           |                                                          |                                                                            | 180 U            | 3000 J                               | 22 J                                 | 33 U                                  | 33 U                                  | 35 U                                   | 37 U                                 |
| Aroclor-1260                           |                                                          |                                                                            | 160 J            | 10000                                | 65                                   | 14000                                 | 500                                   | 35 U                                   | 37 U                                 |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 160              | 13000                                | 87                                   | 14000                                 | 500                                   | 0                                      | 0                                    |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 11/18/1997 |        | R-UST/W<br>11/18/1997<br><br>Zone II | R-UST/W DUP<br>11/18/1997<br><br>Zone II |         | S-16<br>11/11/1990<br>0-2<br>Zone III | S-17<br>10/19/1990<br>0-2<br>Zone III |
|-------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------|--------|--------------------------------------|------------------------------------------|---------|---------------------------------------|---------------------------------------|
| Aroclor-1016                        |                                                          |                                                                            | 37 U       | 36 U   | 35 U                                 | 36 U                                     | 930 U   | 90 U                                  | 115 U                                 |
| Aroclor-1221                        |                                                          |                                                                            | 37 U       | 36 U   | 35 U                                 | 36 U                                     | 930 U   | 90 U                                  | 115 U                                 |
| Aroclor-1232                        |                                                          |                                                                            | 37 U       | 36 U   | 35 U                                 | 36 U                                     | 930 U   | 90 U                                  | 115 U                                 |
| Aroclor-1242                        |                                                          |                                                                            | 37 U       | 36 U   | 35 U                                 | 36 U                                     | 930 U   | 90 U                                  | 115 U                                 |
| Aroclor-1248                        |                                                          |                                                                            | 37 U       | 36 U   | 35 U                                 | 36 U                                     | 930 U   | 90 U                                  | 115 U                                 |
| Aroclor-1254                        |                                                          |                                                                            | 37 U       | 36 U   | 35 U                                 | 36 U                                     | 930 U   | 90 U                                  | 115 U                                 |
| Aroclor-1260                        |                                                          |                                                                            | 2500 D     | 2200 D | 35 U                                 | 910 D                                    | 1810 JV | 150 JV                                | 604 JV                                |
| TOTAL PCBs                          | 25,000                                                   |                                                                            | 2500       | 2200   | 0                                    | 910                                      | 1810    | 150                                   | 604                                   |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: |        | S-30<br>10/16/1990<br>0-2<br>Zone I | S-31<br>10/17/1990<br>0-2<br>Zone IV | S-32<br>12/1/1990<br>0-2<br>Zone IV | S-33<br>12/13/1990<br>4-6<br>Zone IV | S-35<br>11/30/1990<br>8-10<br>Zone IV | S-36<br>12/1/1990<br>0-2<br>Zone III |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|--------|-------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 100 U  | 90 U                                | 85 U                                 | 100 U                               | 85 U                                 | 90 U                                  | 90 U                                 |
| Aroclor-1221                           |                                                          |                                                                            | 100 U  | 90 U                                | 85 U                                 | 100 U                               | 85 U                                 | 90 U                                  | 90 U                                 |
| Aroclor-1232                           |                                                          |                                                                            | 100 U  | 90 U                                | 85 U                                 | 100 U                               | 85 U                                 | 90 U                                  | 90 U                                 |
| Aroclor-1242                           |                                                          |                                                                            | 100 U  | 90 U                                | 85 U                                 | 100 U                               | 85 U                                 | 90 U                                  | 90 U                                 |
| Aroclor-1248                           |                                                          |                                                                            | 100 U  | 90 U                                | 85 U                                 | 100 U                               | 85 U                                 | 90 U                                  | 90 U                                 |
| Aroclor-1254                           |                                                          |                                                                            | 100 U  | 90 U                                | 85 U                                 | 100 U                               | 85 U                                 | 90 U                                  | 90 U                                 |
| Aroclor-1260                           |                                                          |                                                                            | 435 JV | 90 U                                | 570 JV                               | 592 JV                              | 85 U                                 | 90 U                                  | 120 JV                               |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 435    | 0                                   | 570                                  | 592                                 | 0                                    | 0                                     | 120                                  |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | S-37<br>12/1/1990<br>4-6<br>Zone III | S-38<br>11/29/1990<br>2-4<br>Zone III | S-39<br>12/29/1990<br>2-4<br>Zone III | S-41A<br>11/7/1990<br>3.5-5.5<br>Zone III | S-43<br>11/5/1990<br>0-2<br>Zone III | S-47<br>10/19/1990<br>2-4<br>Zone III | S-49<br>10/19/1990<br>2-4<br>Zone III |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|
|                                        |                                                          |                                                                            |                                      |                                       |                                       |                                           |                                      |                                       |                                       |
| Aroclor-1016                           |                                                          |                                                                            | 85 U                                 | 95 U                                  | 85 U                                  | 930 U                                     | 900 U                                | 860 U                                 | 85 U                                  |
| Aroclor-1221                           |                                                          |                                                                            | 85 U                                 | 95 U                                  | 85 U                                  | 930 U                                     | 900 U                                | 860 U                                 | 85 U                                  |
| Aroclor-1232                           |                                                          |                                                                            | 85 U                                 | 95 U                                  | 85 U                                  | 930 U                                     | 900 U                                | 860 U                                 | 85 U                                  |
| Aroclor-1242                           |                                                          |                                                                            | 85 U                                 | 95 U                                  | 85 U                                  | 930 U                                     | 900 U                                | 860 U                                 | 85 U                                  |
| Aroclor-1248                           |                                                          |                                                                            | 85 U                                 | 95 U                                  | 85 U                                  | 930 U                                     | 900 U                                | 860 U                                 | 85 U                                  |
| Aroclor-1254                           |                                                          |                                                                            | 85 U                                 | 95 U                                  | 85 U                                  | 930 U                                     | 900 U                                | 860 U                                 | 85 U                                  |
| Aroclor-1260                           |                                                          | -                                                                          | 85 U                                 | 108 JV                                | 85 U                                  | 930 U                                     | 900 U                                | 934 JV                                | 710 JV                                |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 0                                    | 108                                   | 0                                     | 0                                         | 0                                    | 934                                   | 710                                   |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | S-50<br>11/10/1990<br>0-2<br>Zone II | S-51<br>11/10/1990<br>0-2<br>Zone II | S-52<br>11/10/1990<br>0-2<br>Zone II | S-53<br>11/18/1990<br>0-2<br>Zone II | S-53<br>11/18/1990<br>3.5-5.5<br>Zone II | S-53<br>11/18/1990<br>5-7<br>Zone II | S-59<br>10/17/1990<br>0-2<br>Zone III |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------------------|--------------------------------------|---------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 90 U                                 | 90 U                                 | 800 U                                | 4350 U                               | 80 U                                     | 85 U                                 | 85 U                                  |
| Aroclor-1221                           |                                                          |                                                                            | 90 U                                 | 90 U                                 | 800 U                                | 4350 U                               | 80 U                                     | 85 U                                 | 85 U                                  |
| Aroclor-1232                           |                                                          |                                                                            | 90 U                                 | 90 U                                 | 800 U                                | 4350 U                               | 80 U                                     | 85 U                                 | 85 U                                  |
| Aroclor-1242                           |                                                          |                                                                            | 90 U                                 | 90 U                                 | 800 U                                | 4350 U                               | 80 U                                     | 85 U                                 | 85 U                                  |
| Aroclor-1248                           |                                                          |                                                                            | 90 U                                 | 90 U                                 | 800 U                                | 4350 U                               | 80 U                                     | 85 U                                 | 85 U                                  |
| Aroclor-1254                           |                                                          |                                                                            | 90 U                                 | 90 U                                 | 800 U                                | 4350 U                               | 80 U                                     | 85 U                                 | 85 U                                  |
| Aroclor-1260                           |                                                          |                                                                            | 470 JV                               | 191 JV                               | 1040 JV                              | 71160 JV                             | 410 JV                                   | 161 JV                               | 85 U                                  |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 470                                  | 191 JV                               | 1040                                 | 71160                                | 410 JV                                   | 161                                  | 0                                     |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC Site Specific Soil Cleanup Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | S-60<br>12/12/1990<br>4-6<br>Zone II | S-74<br>10/8/1990<br>0-2<br>Zone II | S-75<br>10/8/1990<br>0-2<br>Zone II | S-77<br>10/8/1990<br>0-2<br>Zone II | S-78<br>11/26/1990<br>0-2<br>Zone II | S-78<br>12/12/1990<br>8-9<br>Zone II | S-80<br>10/3/1990<br>2-4<br>Zone II |
|----------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|
| Aroclor-1016                           |                                                 |                                                                            | 80 U                                 | 910 U                               | 900 U                               | 80 U                                | 95 U                                 | 85 U                                 | 85 U                                |
| Aroclor-1221                           |                                                 |                                                                            | 80 U                                 | 910 U                               | 900 U                               | 80 U                                | 95 U                                 | 85 U                                 | 85 U                                |
| Aroclor-1232                           |                                                 |                                                                            | 80 U                                 | 910 U                               | 900 U                               | 80 U                                | 95 U                                 | 85 U                                 | 85 U                                |
| Aroclor-1242                           |                                                 |                                                                            | 80 U                                 | 910 U                               | 900 U                               | 80 U                                | 95 U                                 | 85 U                                 | 85 U                                |
| Aroclor-1248                           |                                                 |                                                                            | 80 U                                 | 910 U                               | 900 U                               | 80 U                                | 95 U                                 | 85 U                                 | 85 U                                |
| Aroclor-1254                           |                                                 |                                                                            | 80 U                                 | 910 U                               | 900 U                               | 80 U                                | 95 U                                 | 85 U                                 | 85 U                                |
| Aroclor-1260                           |                                                 |                                                                            | 80 U                                 | 4442 JV                             | 2785 U                              | 85 JV                               | 1910 JV                              | 85 U                                 | 85 U                                |
| TOTAL PCBs                             | 25,000                                          |                                                                            | 0                                    | 4442                                | 2785                                | 85                                  | 1910 JV                              | 0                                    | 0                                   |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | S-82       | S-83       | S-84       | S-90      | S-94       |
|---------------------------|--------------------|------------------------|------------|------------|------------|-----------|------------|
| Parameter                 | Site Specific      | Sample Date:           | 10/16/1990 | 10/17/1990 | 10/17/1990 | 10/1/1990 | 10/18/1990 |
| (Concentrations in µg/kg) | Soil Cleanup Level | Sample Depth (ft bls): | 0-2        | 0-2        | 0-2        | 1-3       | 2-4        |
|                           | (µg/kg)            | Map Zone:              | Zone I     | Zone III   | Zone III   | Zone I    | Zone II    |
| Aroclor-1016              |                    |                        | 90 U       | 100 U      | 90 U       | 85 U      | 90 U       |
| Aroclor-1221              |                    |                        | 90 U       | 100 U      | 90 U       | 85 U      | 90 U       |
| Aroclor-1232              |                    |                        | 90 U       | 100 U      | 90 U       | 85 U      | 90 U       |
| Aroclor-1242              |                    |                        | 90 U       | 100 U      | 90 U       | 85 U      | 90 U       |
| Aroclor-1248              |                    |                        | 90 U       | 100 U      | 90 U       | 85 U      | 90 U       |
| Aroclor-1254              |                    |                        | 90 U       | 100 U      | 90 U       | 85 U      | 90 U       |
| Aroclor-1260              |                    |                        | 851 JV     | 87 JV      | 85 U       | 151 JV    | 230 JV     |
| TOTAL PCBs                | 25,000             |                        | 851        | 87         | 0          | 151       | 230        |

µg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC Site Specific Soil Cleanup Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: |         | S-101<br>1/18/1993<br>0-2<br>Zone II | S-101A<br>6/24/2005<br>2-3<br>Zone II | S-101E<br>6/24/2005<br>0-1<br>Zone II | S-101E<br>6/24/2005<br>1-2<br>Zone II | S-101E<br>6/24/2005<br>2-3<br>Zone II | S-101N<br>6/24/2005<br>0-1<br>Zone II |
|-------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|---------|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Aroclor-1016                        |                                                 |                                                                            | 3800 UD | 38000 UD                             | 26 U                                  | 29 U                                  | 26 U                                  | 26 U                                  | 30 U                                  |
| Aroclor-1221                        |                                                 |                                                                            | 7600 UD | 78000 UD                             | 26 U                                  | 29 U                                  | 26 U                                  | 26 U                                  | 30 U                                  |
| Aroclor-1232                        |                                                 |                                                                            | 3800 UD | 38000 UD                             | 26 U                                  | 29 U                                  | 26 U                                  | 26 U                                  | 30 U                                  |
| Aroclor-1242                        |                                                 |                                                                            | 3800 UD | 38000 UD                             | 26 U                                  | 29 U                                  | 26 U                                  | 26 U                                  | 30 U                                  |
| Aroclor-1248                        |                                                 |                                                                            | 3800 UD | 38000 UD                             | 26 U                                  | 29 U                                  | 26 U                                  | 26 U                                  | 30 U                                  |
| Aroclor-1254                        |                                                 |                                                                            | 3800 UD | 38000 UD                             | 26 U                                  | 29 U                                  | 26 U                                  | 26 U                                  | 30 U                                  |
| Aroclor-1260                        |                                                 |                                                                            | 4100 D  | 71000 D                              | 26 U                                  | 200                                   | 26 U                                  | 26 U                                  | 210                                   |
| TOTAL PCBs                          | 25,000                                          |                                                                            | 4100    | 71000                                | 0                                     | 200                                   | 0                                     | 0                                     | 210                                   |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | S-101N<br>6/24/2005<br>1-2<br>Zone II | S-101S<br>5/29/2007<br>0-1<br>Zone II | S-101S<br>5/29/2007<br>1-2<br>Zone II | S-101S<br>5/29/2007<br>2-3<br>Zone II | S-101W<br>6/24/2005<br>0-1<br>Zone II | S-101W<br>6/24/2005<br>1-2<br>Zone II | S-101W<br>6/24/2005<br>2-3<br>Zone II |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 26 U                                  | 29 U                                  | 27 U                                  | 26 U                                  | 30 U                                  | 28 U                                  | 26 U                                  |
| Aroclor-1221                           |                                                          |                                                                            | 26 U                                  | 29 U                                  | 27 U                                  | 26 U                                  | 30 U                                  | 28 U                                  | 26 U                                  |
| Aroclor-1232                           |                                                          |                                                                            | 26 U                                  | 29 U                                  | 27 U                                  | 26 U                                  | 30 U                                  | 28 U                                  | 26 U                                  |
| Aroclor-1242                           |                                                          |                                                                            | 26 U                                  | 29 U                                  | 27 U                                  | 26 U                                  | 30 U                                  | 28 U                                  | 26 U                                  |
| Aroclor-1248                           |                                                          |                                                                            | 26 U                                  | 29 U                                  | 27 U                                  | 26 U                                  | 30 U                                  | 28 U                                  | 26 U                                  |
| Aroclor-1254                           |                                                          |                                                                            | 26 U                                  | 29 U                                  | 27 U                                  | 26 U                                  | 30 U                                  | 28 U                                  | 26 U                                  |
| Aroclor-1260                           |                                                          |                                                                            | 26 U                                  | 1800                                  | 420                                   | 470                                   | 640                                   | 28 U                                  | 26 U                                  |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 0                                     | 1800                                  | 420                                   | 470                                   | 640                                   | 0                                     | 0                                     |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | S-102<br>1/18/1993<br>0-2<br>Zone II | S-103<br>1/25/1993<br>0-2<br>Zone III | S-104<br>1/25/1993<br>0-2<br>Zone II | S-105<br>1/25/1993<br>0-2<br>Zone II | S-106<br>1/25/1993<br>0-2<br>Zone II | S-107<br>1/25/1993<br>0-2<br>Zone II |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 380 U                                | 36000 U                               | 370000 UD                            | 3900000 UD                           | 3800000 UD                           | 39000 UD                             |
| Aroclor-1221                           |                                                          |                                                                            | 760 U                                | 74000 U                               | 740000 UD                            | 7900000 UD                           | 7600000 UD                           | 80000 UD                             |
| Aroclor-1232                           |                                                          |                                                                            | 380 U                                | 36000 U                               | 370000 UD                            | 3900000 UD                           | 3800000 UD                           | 39000 UD                             |
| Aroclor-1242                           |                                                          |                                                                            | 380 U                                | 36000 U                               | 370000 UD                            | 3900000 UD                           | 3800000 UD                           | 39000 UD                             |
| Aroclor-1248                           |                                                          |                                                                            | 380 U                                | 36000 U                               | 370000 UD                            | 3900000 UD                           | 3800000 UD                           | 39000 UD                             |
| Aroclor-1254                           |                                                          |                                                                            | 380 U                                | 36000 U                               | 370000 UD                            | 3900000 UD                           | 3800000 UD                           | 39000 UD                             |
| Aroclor-1260                           |                                                          |                                                                            | 1400 V                               | 65000                                 | 860000 D                             | 15000000 D                           | 20000000 D                           | 63000 D                              |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 1400                                 | 65000                                 | 860000                               | 15000000                             | 20000000                             | 63000                                |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | NYSDEC<br>Site Specific       | Sample Designation: Sample Date:    |                | S-111<br>1/20/1993 | S-112<br>1/20/1993 | S-113<br>1/20/1993 | S-114<br>1/20/1993 | S-115<br>1/20/1993 | S-164<br>7/19/2007 |
|---------------------------|-------------------------------|-------------------------------------|----------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| (Concentrations in µg/kg) | Soil Cleanup Level<br>(µg/kg) | Sample Depth (ft bls):<br>Map Zone: | 0-2<br>Zone II | 0-2<br>Zone II     | 0-2<br>Zone II     | 0-2<br>Zone II     | 0-2<br>Zone II     | 0-2<br>Zone II     | 0-1<br>Zone I      |
| Aroclor-1016              |                               |                                     | 3800 UD        | 390 UD             | 380 UD             | 380 U              | 35000 UD           | 380 UD             | 27 U               |
| Aroclor-1221              |                               |                                     | 7800 UD        | 790 UD             | 780 UD             | 760 U              | 72000 UD           | 760 UD             | 27 U               |
| Aroclor-1232              |                               |                                     | 3800 UD        | 390 UD             | 380 UD             | 380 U              | 35000 UD           | 380 UD             | 27 U               |
| Aroclor-1242              |                               |                                     | 3800 UD        | 390 UD             | 380 UD             | 380 U              | 35000 UD           | 380 UD             | 27 U               |
| Aroclor-1248              |                               |                                     | 3800 UD        | 390 UD             | 380 UD             | 380 U              | 35000 UD           | 380 UD             | 27 U               |
| Aroclor-1254              |                               |                                     | 3800 UD        | 390 UD             | 380 UD             | 380 U              | 35000 UD           | 380 UD             | 27 U               |
| Aroclor-1260              |                               |                                     | 5600 D         | 1500               | 1700               | 3100 JV            | 90000              | 590                | 27 U               |
| TOTAL PCBs                | 25,000                        |                                     | 5600           | 1500               | 1700               | 3100               | 90000              | 590                | 0                  |

µg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | S-164<br>7/19/2007<br>1-2<br>Zone I | S-164<br>7/19/2007<br>2-3<br>Zone I | S-165<br>7/19/2007<br>0-1<br>Zone I | S-165<br>7/19/2007<br>1-2<br>Zone I | S-165<br>7/19/2007<br>2-3<br>Zone I | S-166<br>7/20/2007<br>0-1<br>Zone I | S-166<br>7/20/2007<br>1-2<br>Zone I |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 27 U                                | 27 U                                | 29 U                                | 27 U                                | 27 U                                | 26 U                                | 26 U                                |
| Aroclor-1221                           |                                                          |                                                                            | 27 U                                | 27 U                                | 29 U                                | 27 U                                | 27 U                                | 26 U                                | 26 U                                |
| Aroclor-1232                           |                                                          |                                                                            | 27 U                                | 27 U                                | 29 U                                | 27 U                                | 27 U                                | 26 U                                | 26 U                                |
| Aroclor-1242                           |                                                          |                                                                            | 27 U                                | 27 U                                | 29 U                                | 27 U                                | 27 U                                | 26 U                                | 26 U                                |
| Aroclor-1248                           |                                                          |                                                                            | 27 U                                | 27 U                                | 29 U                                | 27 U                                | 27 U                                | 26 U                                | 26 U                                |
| Aroclor-1254                           |                                                          |                                                                            | 27 U                                | 27 U                                | 29 U                                | 27 U                                | 27 U                                | 26 U                                | 26 U                                |
| Aroclor-1260                           |                                                          |                                                                            | 27 U                                | 27 U                                | 130                                 | 27 U                                | 27 U                                | 240                                 | 51                                  |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 0                                   | 0                                   | 130                                 | 0                                   | 0                                   | 240                                 | 51                                  |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | S-166<br>7/20/2007<br>2-3<br>Zone I | S-167<br>7/20/2007<br>0-1<br>Zone I | S-167<br>7/20/2007<br>1-2<br>Zone I | S-167<br>7/20/2007<br>2-3<br>Zone I | S-168<br>7/20/2007<br>0-1<br>Zone IV | S-168<br>7/20/2007<br>1-2<br>Zone IV | S-168<br>7/20/2007<br>2-3<br>Zone IV |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 29 U                                | 28 U                                | 26 U                                | 26 U                                | 34 U                                 | 26 U                                 | 26 U                                 |
| Aroclor-1221                           |                                                          |                                                                            | 29 U                                | 28 U                                | 26 U                                | 26 U                                | 34 U                                 | 26 U                                 | 26 U                                 |
| Aroclor-1232                           |                                                          |                                                                            | 29 U                                | 28 U                                | 26 U                                | 26 U                                | 34 U                                 | 26 U                                 | 26 U                                 |
| Aroclor-1242                           |                                                          |                                                                            | 29 U                                | 28 U                                | 26 U                                | 26 U                                | 34 U                                 | 26 U                                 | 26 U                                 |
| Aroclor-1248                           |                                                          |                                                                            | 29 U                                | 28 U                                | 26 U                                | 26 U                                | 34 U                                 | 26 U                                 | 26 U                                 |
| Aroclor-1254                           |                                                          |                                                                            | 29 U                                | 28 U                                | 26 U                                | 26 U                                | 34 U                                 | 26 U                                 | 26 U                                 |
| Aroclor-1260                           |                                                          |                                                                            | 29 U                                | 180                                 | 26 U                                | 26 U                                | 310                                  | 26 U                                 | 26 U                                 |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 0                                   | 180                                 | 0                                   | 0                                   | 310                                  | 0                                    | 0                                    |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 0-1  | S-169<br>7/20/2007<br>1-2<br>Zone IV | S-169<br>7/20/2007<br>2-3<br>Zone IV | S-169<br>7/20/2007<br>7-9<br>Zone IV | S2-1<br>5/1/2003<br>0-1<br>Zone IV | S2-2<br>5/1/2003<br>1-2<br>Zone IV | S2-3<br>5/1/2003<br>0-1<br>Zone IV |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 30 U | 29 U                                 | 28 U                                 | 30 U                                 | 310 U                              | 3.6 U                              | 15 U                               |
| Aroclor-1221                           |                                                          |                                                                            | 30 U | 29 U                                 | 28 U                                 | 30 U                                 | 170 U                              | 1.9 U                              | 8.1 U                              |
| Aroclor-1232                           |                                                          |                                                                            | 30 U | 29 U                                 | 28 U                                 | 30 U                                 | 200 U                              | 2.4 U                              | 9.9 U                              |
| Aroclor-1242                           |                                                          |                                                                            | 30 U | 29 U                                 | 28 U                                 | 30 U                                 | 330 U                              | 3.8 U                              | 16 U                               |
| Aroclor-1248                           |                                                          |                                                                            | 30 U | 29 U                                 | 28 U                                 | 30 U                                 | 300 U                              | 3.4 U                              | 14 U                               |
| Aroclor-1254                           |                                                          |                                                                            | 30 U | 29 U                                 | 28 U                                 | 30 U                                 | 6800                               | 240                                | 160                                |
| Aroclor-1260                           |                                                          |                                                                            | 30 U | 50                                   | 28 U                                 | 30 U                                 | 2200                               | 250                                | 570                                |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 0    | 50                                   | 0                                    | 0                                    | 9000                               | 490                                | 730                                |

µg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC Site Specific Soil Cleanup Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 0-1   | S2-6<br>5/1/2003<br>0-1<br>Zone IV | S2-7<br>5/1/2003<br>0-1<br>Zone IV | S2-8<br>5/1/2003<br>0-1<br>Zone IV | SB-4<br>3/23/1994<br>0-1<br>Zone II | SB-5<br>3/23/1994<br>0-1<br>Zone II | SB-12<br>8/9/1994<br>6-7<br>Zone II | SB-15<br>3/24/1994<br>4-5<br>Zone II |
|----------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|-------|------------------------------------|------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|
|                                        |                                                 |                                                                            |       |                                    |                                    |                                    |                                     |                                     |                                     |                                      |
| Aroclor-1016                           |                                                 |                                                                            | 5.3 U | 8.9 U                              | 15 U                               | 70 U                               | NA                                  | NA                                  | NA                                  | NA                                   |
| Aroclor-1221                           |                                                 |                                                                            | 2.9 U | 4.9 U                              | 8.4 U                              | 38 U                               | NA                                  | NA                                  | NA                                  | NA                                   |
| Aroclor-1232                           |                                                 |                                                                            | 3.5 U | 5.9 U                              | 10 U                               | 46 U                               | NA                                  | NA                                  | NA                                  | NA                                   |
| Aroclor-1242                           |                                                 |                                                                            | 5.6 U | 9.5 U                              | 16 U                               | 75 U                               | NA                                  | NA                                  | NA                                  | NA                                   |
| Aroclor-1248                           |                                                 |                                                                            | 5.1 U | 8.6 U                              | 15 U                               | 67 U                               | NA                                  | NA                                  | NA                                  | NA                                   |
| Aroclor-1254                           |                                                 |                                                                            | 71    | 180                                | 370                                | 900                                | NA                                  | NA                                  | NA                                  | NA                                   |
| Aroclor-1260                           |                                                 |                                                                            | 260   | 550                                | 500                                | 1600                               | NA                                  | NA                                  | NA                                  | NA                                   |
| TOTAL PCBs                             | 25,000                                          |                                                                            | 331   | 730                                | 870                                | 2500                               | 22000                               | 2300                                | 29000                               | 100 J                                |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | NYSDEC<br>Site Specific | Sample Designation:<br>Sample Date: | SB-16<br>8/9/1994 | SB-18<br>3/24/1994 | SB-30<br>3/21/1994 | SB-33<br>3/23/1994 | SB-34<br>3/24/1994 | SB-35<br>3/24/1994 | SB-45<br>3/22/1994 | SB-45A<br>5/29/2007 |
|---------------------------|-------------------------|-------------------------------------|-------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------------|
| (Concentrations in µg/kg) | Soil Cleanup Level      | Sample Depth (ft bls):              | 6-7               | 0-1                | 2-3                | 0-1                | 0-1                | 0-1                | 0-1                | 1-2                 |
|                           | (µg/kg)                 | Map Zone:                           | Zone II           | Zone II            | Zone II            | Zone II            | Zone II            | Zone II            | Zone II            | Zone II             |
| Aroclor-1016              |                         |                                     | NA                | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | 30 U                |
| Aroclor-1221              |                         |                                     | NA                | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | 30 U                |
| Aroclor-1232              |                         |                                     | NA                | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | 30 U                |
| Aroclor-1242              |                         |                                     | NA                | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | 30 U                |
| Aroclor-1248              |                         |                                     | NA                | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | 30 U                |
| Aroclor-1254              |                         |                                     | NA                | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | 30 U                |
| Aroclor-1260              |                         |                                     | NA                | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | 3000                |
| TOTAL PCBs                | 25,000                  |                                     | 380000            | 2400000            | 520                | 2400               | 4400               | 3100               | 790000             | 3000                |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC Site Specific Soil Cleanup Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 5/29/2007<br>0-1 | SB-45E<br>5/29/2007<br>1-2<br>Zone II | SB-45E<br>5/29/2007<br>2-3<br>Zone II |         |       |       | SB-45EEE<br>7/19/2007<br>0-1<br>Zone II | SB-45EEE<br>7/19/2007<br>1-2<br>Zone II |
|----------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|------------------|---------------------------------------|---------------------------------------|---------|-------|-------|-----------------------------------------|-----------------------------------------|
|                                        |                                                 |                                                                            |                  |                                       |                                       |         |       |       |                                         |                                         |
| Aroclor-1016                           |                                                 |                                                                            | 28 U             | 29 U                                  | 27 U                                  | 56000 U | 570 U | 270 U | 29 U                                    | 28 U                                    |
| Aroclor-1221                           |                                                 |                                                                            | 28 U             | 29 U                                  | 27 U                                  | 56000 U | 570 U | 270 U | 29 U                                    | 28 U                                    |
| Aroclor-1232                           |                                                 |                                                                            | 28 U             | 29 U                                  | 27 U                                  | 56000 U | 570 U | 270 U | 29 U                                    | 28 U                                    |
| Aroclor-1242                           |                                                 |                                                                            | 28 U             | 29 U                                  | 27 U                                  | 56000 U | 570 U | 270 U | 29 U                                    | 28 U                                    |
| Aroclor-1248                           |                                                 |                                                                            | 28 U             | 29 U                                  | 27 U                                  | 56000 U | 570 U | 270 U | 29 U                                    | 28 U                                    |
| Aroclor-1254                           |                                                 |                                                                            | 28 U             | 29 U                                  | 27 U                                  | 56000 U | 570 U | 270 U | 29 U                                    | 28 U                                    |
| Aroclor-1260                           |                                                 |                                                                            | 110000           | 2200                                  | 480                                   | 1200000 | 33000 | 11000 | 43000                                   | 1800                                    |
| TOTAL PCBs                             | 25,000                                          |                                                                            | 110000           | 2200                                  | 480                                   | 1200000 | 33000 | 11000 | 43000                                   | 1800                                    |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | SB-45EEE  | SB-45EEN  | SB-45EEN  | SB-45EEN  | SB-45EES  | SB-45EES  | SB-45EES  |
|---------------------------|--------------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Site Specific      | Sample Date:           | 7/19/2007 | 7/19/2007 | 7/19/2007 | 7/19/2007 | 7/19/2007 | 7/19/2007 | 7/19/2007 |
| (Concentrations in µg/kg) | Soil Cleanup Level | Sample Depth (ft bls): | 2-3       | 0-1       | 1-2       | 2-3       | 0-1       | 1-2       | 2-3       |
|                           | (µg/kg)            | Map Zone:              | Zone II   |
| Aroclor-1016              |                    |                        | 26 U      | 30 U      | 27 U      | 26 U      | 27 U      | 28 U      | 27 U      |
| Aroclor-1221              |                    |                        | 26 U      | 30 U      | 27 U      | 26 U      | 27 U      | 28 U      | 27 U      |
| Aroclor-1232              |                    |                        | 26 U      | 30 U      | 27 U      | 26 U      | 27 U      | 28 U      | 27 U      |
| Aroclor-1242              |                    |                        | 26 U      | 30 U      | 27 U      | 26 U      | 27 U      | 28 U      | 27 U      |
| Aroclor-1248              |                    |                        | 26 U      | 30 U      | 27 U      | 26 U      | 27 U      | 28 U      | 27 U      |
| Aroclor-1254              |                    |                        | 26 U      | 30 U      | 27 U      | 26 U      | 27 U      | 28 U      | 27 U      |
| Aroclor-1260              |                    |                        | 120       | 11000     | 55        | 26 U      | 140000    | 5600      | 5300      |
| TOTAL PCBs                | 25,000             |                        | 120       | 11000     | 55        | 0         | 140000    | 5600      | 5300      |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 6/21/2007 | SB-45EN<br>6/21/2007<br>1-2<br>Zone II | SB-45EN<br>6/21/2007<br>2-3<br>Zone II | SB-45ENN<br>7/19/2007<br>0-1<br>Zone II | SB-45ENN<br>7/19/2007<br>1-2<br>Zone II | SB-45ENN<br>7/19/2007<br>2-3<br>Zone II | SB-45ES<br>6/21/2007<br>0-1<br>Zone II |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|-----------|----------------------------------------|----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 1400 U    | 550 U                                  | 130 U                                  | 29 U                                    | 28 U                                    | 27 U                                    | 530 U                                  |
| Aroclor-1221                           |                                                          |                                                                            | 1400 U    | 550 U                                  | 130 U                                  | 29 U                                    | 28 U                                    | 27 U                                    | 530 U                                  |
| Aroclor-1232                           |                                                          |                                                                            | 1400 U    | 550 U                                  | 130 U                                  | 29 U                                    | 28 U                                    | 27 U                                    | 530 U                                  |
| Aroclor-1242                           |                                                          |                                                                            | 1400 U    | 550 U                                  | 130 U                                  | 29 U                                    | 28 U                                    | 27 U                                    | 530 U                                  |
| Aroclor-1248                           |                                                          |                                                                            | 1400 U    | 550 U                                  | 130 U                                  | 29 U                                    | 28 U                                    | 27 U                                    | 530 U                                  |
| Aroclor-1254                           |                                                          |                                                                            | 1400 U    | 550 U                                  | 130 U                                  | 29 U                                    | 28 U                                    | 27 U                                    | 530 U                                  |
| Aroclor-1260                           |                                                          |                                                                            | 60000     | 17000                                  | 3900                                   | 6900                                    | 150                                     | 250                                     | 17000                                  |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 60000     | 17000                                  | 3900                                   | 6900                                    | 150                                     | 250                                     | 17000                                  |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: |       | SB-45ES<br>6/21/2007<br>2-3<br>Zone II | SB-45N<br>5/29/2007<br>0-1<br>Zone II | SB-45N<br>5/29/2007<br>1-2<br>Zone II | SB-45N<br>5/29/2007<br>2-3<br>Zone II | SB-45S<br>5/29/2007<br>0-1<br>Zone II | SB-45S<br>5/29/2007<br>1-2<br>Zone II | SB-45S<br>5/29/2007<br>2-3<br>Zone II |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|-------|----------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
|                                        |                                                          |                                                                            |       |                                        |                                       |                                       |                                       |                                       |                                       |                                       |
| Aroclor-1016                           |                                                          |                                                                            | 130 U | 280 U                                  | 30 U                                  | 28 U                                  | 27 U                                  | 28 U                                  | 32 U                                  | 29 U                                  |
| Aroclor-1221                           |                                                          |                                                                            | 130 U | 280 U                                  | 30 U                                  | 28 U                                  | 27 U                                  | 28 U                                  | 32 U                                  | 29 U                                  |
| Aroclor-1232                           |                                                          |                                                                            | 130 U | 280 U                                  | 30 U                                  | 28 U                                  | 27 U                                  | 28 U                                  | 32 U                                  | 29 U                                  |
| Aroclor-1242                           |                                                          |                                                                            | 130 U | 280 U                                  | 30 U                                  | 28 U                                  | 27 U                                  | 28 U                                  | 32 U                                  | 29 U                                  |
| Aroclor-1248                           |                                                          |                                                                            | 130 U | 280 U                                  | 30 U                                  | 28 U                                  | 27 U                                  | 28 U                                  | 32 U                                  | 29 U                                  |
| Aroclor-1254                           |                                                          |                                                                            | 130 U | 280 U                                  | 30 U                                  | 28 U                                  | 27 U                                  | 28 U                                  | 32 U                                  | 29 U                                  |
| Aroclor-1260                           |                                                          |                                                                            | 3200  | 6900                                   | 14000                                 | 14000                                 | 300                                   | 8900                                  | 1200                                  | 280                                   |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 3200  | 6900                                   | 14000                                 | 14000                                 | 300                                   | 8900                                  | 1200                                  | 280                                   |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 5/29/2007<br>0-1 | SB-45W<br>5/29/2007<br>1-2<br>Zone II | SB-45W<br>5/29/2007<br>2-3<br>Zone II | SB45-D1<br>9/13/2007<br>0-1<br>Zone II | SB45-D1<br>9/13/2007<br>1-2<br>Zone II | SB45-D1<br>9/13/2007<br>2-3<br>Zone II | SB45-D2<br>9/13/2007<br>0-1<br>Zone II | SB45-D2<br>9/13/2007<br>1-2<br>Zone II |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------------|---------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 27 U             | 28 U                                  | 28 U                                  | 28 U                                   | 29 U                                   | 26 U                                   | 27 U                                   | 28 U                                   |
| Aroclor-1221                           |                                                          |                                                                            | 27 U             | 28 U                                  | 28 U                                  | 28 U                                   | 29 U                                   | 26 U                                   | 27 U                                   | 28 U                                   |
| Aroclor-1232                           |                                                          |                                                                            | 27 U             | 28 U                                  | 28 U                                  | 28 U                                   | 29 U                                   | 26 U                                   | 27 U                                   | 28 U                                   |
| Aroclor-1242                           |                                                          |                                                                            | 27 U             | 28 U                                  | 28 U                                  | 28 U                                   | 29 U                                   | 26 U                                   | 27 U                                   | 28 U                                   |
| Aroclor-1248                           |                                                          |                                                                            | 27 U             | 28 U                                  | 28 U                                  | 28 U                                   | 29 U                                   | 26 U                                   | 27 U                                   | 28 U                                   |
| Aroclor-1254                           |                                                          |                                                                            | 27 U             | 28 U                                  | 28 U                                  | 28 U                                   | 29 U                                   | 26 U                                   | 27 U                                   | 28 U                                   |
| Aroclor-1260                           |                                                          |                                                                            | 9100             | 320                                   | 210                                   | 29000 D                                | 19000 D                                | 79                                     | 13000 D                                | 13000 D                                |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 9100             | 320                                   | 210                                   | 29000                                  | 19000                                  | 79                                     | 13000                                  | 13000                                  |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | NYSDEC<br>Site Specific | Sample Designation:<br>Sample Date: | 9/13/2007 |          |         |         |         |         | SB-48<br>3/22/1994 |         |
|---------------------------|-------------------------|-------------------------------------|-----------|----------|---------|---------|---------|---------|--------------------|---------|
| (Concentrations in µg/kg) | Soil Cleanup Level      | Sample Depth (ft bls):              |           | 1-2      | 0-1     | 1-2     | 2-3     | 0-1     | 1-2                | 2-3     |
|                           | (µg/kg)                 | Map Zone:                           | Zone II   | Zone II  | Zone II | Zone II | Zone II | Zone II | Zone II            | Zone II |
| Aroclor-1016              |                         |                                     | 28 U      | 29 U     | 29 U    | 33 U    | 27 U    | NA      | NA                 | NA      |
| Aroclor-1221              |                         |                                     | 28 U      | 29 U     | 29 U    | 33 U    | 27 U    | NA      | NA                 | NA      |
| Aroclor-1232              |                         |                                     | 28 U      | 29 U     | 29 U    | 33 U    | 27 U    | NA      | NA                 | NA      |
| Aroclor-1242              |                         |                                     | 28 U      | 29 U     | 29 U    | 33 U    | 27 U    | NA      | NA                 | NA      |
| Aroclor-1248              |                         |                                     | 28 U      | 29 U     | 29 U    | 33 U    | 27 U    | NA      | NA                 | NA      |
| Aroclor-1254              |                         |                                     | 28 U      | 29 U     | 29 U    | 33 U    | 27 U    | NA      | NA                 | NA      |
| Aroclor-1260              |                         |                                     | 38000 D   | 940000 D | 24000 D | 1700    | 8400 D  | NA      | NA                 | NA      |
| TOTAL PCBs                | 25,000                  |                                     | 38000     | 940000   | 24000   | 1700    | 8400    | 21000   | 8700               | 3100    |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC Site Specific Soil Cleanup Level | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 8/9/1994<br>0-1 | 0-1    | SB-64<br>8/9/1994<br>0-1<br>Zone II | SB-67<br>8/9/1994<br>0-1<br>Zone II | SB-68<br>8/9/1994<br>0-1<br>Zone II | SB-71<br>8/9/1994<br>0-1<br>Zone II | SH-1<br>12/10/2007<br>0-1<br>Zone IV | SH-2<br>12/10/2007<br>0-1<br>Zone IV |
|----------------------------------------|-----------------------------------------|----------------------------------------------------------------------------|-----------------|--------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|
|                                        | (µg/kg)                                 | Map Zone:                                                                  | Zone II         | Zone n | Zone n                              | Zone n                              | Zone II                             | Zone II                             | Zone i v                             | Zone iv                              |
| Aroclor-1016                           |                                         |                                                                            | NA              | NA     | NA                                  | NA                                  | NA                                  | NA                                  | 29 U                                 | 27 U                                 |
| Aroclor-1221                           |                                         |                                                                            | NA              | NA     | NA                                  | NA                                  | NA                                  | NA                                  | 29 U                                 | 27 U                                 |
| Aroclor-1232                           |                                         |                                                                            | NA              | NA     | NA                                  | NA                                  | NA                                  | NA                                  | 29 U                                 | 27 U                                 |
| Aroclor-1242                           |                                         |                                                                            | NA              | NA     | NA                                  | NA                                  | NA                                  | NA                                  | 29 U                                 | 27 U                                 |
| Aroclor-1248                           |                                         |                                                                            | NA              | NA     | NA                                  | NA                                  | NA                                  | NA                                  | 29 U                                 | 27 U                                 |
| Aroclor-1254                           |                                         |                                                                            | NA              | NA     | NA                                  | NA                                  | NA                                  | NA                                  | 29 U                                 | 27 U                                 |
| Aroclor-1260                           |                                         |                                                                            | NA              | NA     | NA                                  | NA                                  | NA                                  | NA                                  | 29 U                                 | 27 U                                 |
| TOTAL PCBs                             | 25,000                                  |                                                                            | 6400            | 200000 | 130000                              | 9700000                             | 25000000                            | 680000                              | 0                                    | 0                                    |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 0-1  | SH-4<br>12/10/2007<br>0-1<br>Zone III | SH-5<br>12/10/2007<br>0-1<br>Zone III | SH-6<br>12/10/2007<br>0-1<br>Zone III | SH-7<br>12/10/2007<br>0-1<br>Zone III | SH-8<br>12/10/2007<br>0-1<br>Zone II | SH-9<br>12/10/2007<br>0-1<br>Zone II |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 27 U | 28 U                                  | 27 U                                  | 29 U                                  | 27 U                                  | 28 U                                 | 28 U                                 |
| Aroclor-1221                           |                                                          |                                                                            | 27 U | 28 U                                  | 27 U                                  | 29 U                                  | 27 U                                  | 28 U                                 | 28 U                                 |
| Aroclor-1232                           |                                                          |                                                                            | 27 U | 28 U                                  | 27 U                                  | 29 U                                  | 27 U                                  | 28 U                                 | 28 U                                 |
| Aroclor-1242                           |                                                          |                                                                            | 27 U | 28 U                                  | 27 U                                  | 29 U                                  | 27 U                                  | 28 U                                 | 28 U                                 |
| Aroclor-1248                           |                                                          |                                                                            | 27 U | 28 U                                  | 27 U                                  | 29 U                                  | 27 U                                  | 28 U                                 | 28 U                                 |
| Aroclor-1254                           |                                                          |                                                                            | 27 U | 28 U                                  | 27 U                                  | 29 U                                  | 27 U                                  | 310                                  | 28 U                                 |
| Aroclor-1260                           |                                                          |                                                                            | 27 U | 130                                   | 27 U                                  | 140                                   | 27 U                                  | 28 U                                 | 28 U                                 |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 0    | 130                                   | 0                                     | 140                                   | 0                                     | 310                                  | 0                                    |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 12/10/2007<br>0-1 | SH-11<br>12/10/2007<br>0-1<br>Zone II | SH-12<br>12/10/2007<br>0-1<br>Zone I | SS-1<br>12/8/1997<br>0-1<br>Zone III | SS-1<br>12/8/1997<br>1-2<br>Zone III | SS-2<br>12/8/1997<br>0-1<br>Zone III | SS-2<br>12/8/1997<br>1-2<br>Zone III | SS-3<br>12/8/1997<br>0-1<br>Zone II |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|-------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 28 U              | 28 U                                  | 28 U                                 | 40 U                                 | 35 U                                 | 38 U                                 | 36 U                                 | 37 U                                |
| Aroclor-1221                           |                                                          |                                                                            | 28 U              | 28 U                                  | 28 U                                 | 40 U                                 | 35 U                                 | 38 U                                 | 36 U                                 | 37 U                                |
| Aroclor-1232                           |                                                          |                                                                            | 28 U              | 28 U                                  | 28 U                                 | 40 U                                 | 35 U                                 | 38 U                                 | 36 U                                 | 37 U                                |
| Aroclor-1242                           |                                                          |                                                                            | 28 U              | 28 U                                  | 28 U                                 | 40 U                                 | 35 U                                 | 38 U                                 | 36 U                                 | 37 U                                |
| Aroclor-1248                           |                                                          |                                                                            | 28 U              | 28 U                                  | 28 U                                 | 40 U                                 | 35 U                                 | 38 U                                 | 36 U                                 | 37 U                                |
| Aroclor-1254                           |                                                          |                                                                            | 28 U              | 28 U                                  | 28 U                                 | 40 U                                 | 35 U                                 | 38 U                                 | 36 U                                 | 2400 D                              |
| Aroclor-1260                           |                                                          |                                                                            | 28 U              | 270                                   | 240                                  | 400                                  | 180                                  | 2300 D                               | 36 U                                 | 3300 D                              |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 0                 | 270                                   | 240                                  | 400                                  | 180                                  | 2300                                 | 0                                    | 5700                                |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | SS-3<br>12/8/1997<br>1-2<br>Zone II | SS-4<br>12/8/1997<br>0-1<br>Zone II | SS-4<br>12/8/1997<br>1-2<br>Zone II | SS-5<br>12/8/1997<br>0-1<br>Zone II | SS-5<br>12/8/1997<br>1-2<br>Zone II | SS-6<br>12/8/1997<br>0-1<br>Zone II | SS-6<br>12/8/1997<br>1-2<br>Zone II | SS-7<br>12/9/1997<br>0-1<br>Zone II |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 35 U                                | 37 U                                | 38 U                                | 39 U                                | 37 U                                | 39 U                                | 40 U                                | 37 U                                |
| Aroclor-1221                           |                                                          |                                                                            | 35 U                                | 37 U                                | 38 U                                | 39 U                                | 37 U                                | 39 U                                | 40 U                                | 37 U                                |
| Aroclor-1232                           |                                                          |                                                                            | 35 U                                | 37 U                                | 38 U                                | 39 U                                | 37 U                                | 39 U                                | 40 U                                | 37 U                                |
| Aroclor-1242                           |                                                          |                                                                            | 35 U                                | 37 U                                | 38 U                                | 39 U                                | 37 U                                | 39 U                                | 40 U                                | 37 U                                |
| Aroclor-1248                           |                                                          |                                                                            | 35 U                                | 37 U                                | 38 U                                | 39 U                                | 37 U                                | 39 U                                | 40 U                                | 37 U                                |
| Aroclor-1254                           |                                                          |                                                                            | 35 U                                | 37 U                                | 38 U                                | 39 U                                | 37 U                                | 220                                 | 40 U                                | 37 U                                |
| Aroclor-1260                           |                                                          |                                                                            | 290                                 | 360                                 | 38 U                                | 640                                 | 37 U                                | 200                                 | 42                                  | 3200 D                              |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 290                                 | 360                                 | 0                                   | 640                                 | 0                                   | 420                                 | 42                                  | 3200                                |

AM0055.0071Y007.143/T2

# Notes:

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: |        | SS-7<br>12/9/1997<br>1-2<br>Zone II | SS-7 DUP<br>12/9/1997<br>1-2<br>Zone II | SS-8<br>12/9/1997<br>0-1<br>Zone II | SS-8<br>12/9/1997<br>1-2<br>Zone II | SS-9<br>12/9/1997<br>0-1<br>Zone II | SS-9<br>12/9/1997<br>1-2<br>Zone II | SS-10<br>12/9/1997<br>0-1<br>Zone II |
|-------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|--------|-------------------------------------|-----------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|
| Aroclor-1016                        |                                                          |                                                                            | 38 U   | 35 U                                | 33 U                                    | 37 U                                | 35 U                                | 37 U                                | 36 U                                | 39 U                                 |
| Aroclor-1221                        |                                                          |                                                                            | 38 U   | 35 U                                | 33 U                                    | 37 U                                | 35 U                                | 37 U                                | 36 U                                | 39 U                                 |
| Aroclor-1232                        |                                                          |                                                                            | 38 U   | 35 U                                | 33 U                                    | 37 U                                | 35 U                                | 37 U                                | 36 U                                | 39 U                                 |
| Aroclor-1242                        |                                                          |                                                                            | 38 U   | 35 U                                | 33 U                                    | 37 U                                | 35 U                                | 37 U                                | 36 U                                | 39 U                                 |
| Aroclor-1248                        |                                                          |                                                                            | 38 U   | 35 U                                | 33 U                                    | 37 U                                | 35 U                                | 37 U                                | 36 U                                | 39 U                                 |
| Aroclor-1254                        |                                                          |                                                                            | 38 U   | 35 U                                | 33 U                                    | 37 U                                | 35 U                                | 37 U                                | 36 U                                | 39 U                                 |
| Aroclor-1260                        |                                                          |                                                                            | 2500 D | 35 U                                | 33 U                                    | 3800 D                              | 230                                 | 97                                  | 160                                 | 3900                                 |
| TOTAL PCBs                          | 25,000                                                   |                                                                            | 2500   | 0                                   | 0                                       | 3800                                | 230                                 | 97                                  | 160                                 | 3900                                 |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 12/9/1997<br>1-2 | SS-11<br>12/9/1997<br>0-1<br>Zone II | SS-11<br>12/9/1997<br>1-2<br>Zone II | SS-12<br>12/9/1997<br>0-1<br>Zone II | SS-12<br>12/9/1997<br>1-2<br>Zone II | SS-13<br>12/9/1997<br>0-1<br>Zone II | SS-13<br>12/9/1997<br>1-2<br>Zone II | SS-14<br>12/9/1997<br>0-1<br>Zone I |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 38 U             | 41 U                                 | 36 U                                 | 46 U                                 | 35 U                                 | 41 U                                 | 35 U                                 | 35 U                                |
| Aroclor-1221                           |                                                          |                                                                            | 38 U             | 41 U                                 | 36 U                                 | 46 U                                 | 35 U                                 | 41 U                                 | 35 U                                 | 35 U                                |
| Aroclor-1232                           |                                                          |                                                                            | 38 U             | 41 U                                 | 36 U                                 | 46 U                                 | 35 U                                 | 41 U                                 | 35 U                                 | 35 U                                |
| Aroclor-1242                           |                                                          |                                                                            | 38 U             | 41 U                                 | 36 U                                 | 46 U                                 | 35 U                                 | 41 U                                 | 35 U                                 | 35 U                                |
| Aroclor-1248                           |                                                          |                                                                            | 38 U             | 41 U                                 | 36 U                                 | 46 U                                 | 35 U                                 | 41 U                                 | 35 U                                 | 35 U                                |
| Aroclor-1254                           |                                                          |                                                                            | 38 U             | 41 U                                 | 36 U                                 | 46 U                                 | 35 U                                 | 6300 D                               | 110                                  | 75                                  |
| Aroclor-1260                           |                                                          |                                                                            | 120              | 3600                                 | 100                                  | 5300 D                               | 110                                  | 7400 D                               | 140                                  | 200                                 |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 120              | 3600                                 | 100                                  | 5300                                 | 110                                  | 13700                                | 250                                  | 275                                 |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | SS-14<br>12/9/1997<br>1-2<br>Zone I | SS-15<br>12/9/1997<br>0-1<br>Zone I | SS-15<br>12/9/1997<br>1-2<br>Zone I | SS-16<br>12/9/1997<br>0-1<br>Zone I | SS-16<br>12/9/1997<br>1-2<br>Zone I | SS-17<br>12/9/1997<br>0-1<br>Zone I | SS-17<br>12/9/1997<br>1-2<br>Zone I | SS-18<br>12/9/1997<br>0-1<br>Zone I |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 35 U                                | 39 U                                | 37 U                                | 36 U                                | 34 U                                | 39 U                                | 35 U                                | 36 U                                |
| Aroclor-1221                           |                                                          |                                                                            | 35 U                                | 39 U                                | 37 U                                | 36 U                                | 34 U                                | 39 U                                | 35 U                                | 36 U                                |
| Aroclor-1232                           |                                                          |                                                                            | 35 U                                | 39 U                                | 37 U                                | 36 U                                | 34 U                                | 39 U                                | 35 U                                | 36 U                                |
| Aroclor-1242                           |                                                          |                                                                            | 35 U                                | 39 U                                | 37 U                                | 36 U                                | 34 U                                | 39 U                                | 35 U                                | 36 U                                |
| Aroclor-1248                           |                                                          |                                                                            | 35 U                                | 39 U                                | 37 U                                | 36 U                                | 34 U                                | 39 U                                | 35 U                                | 36 U                                |
| Aroclor-1254                           |                                                          |                                                                            | 35 U                                | 2200                                | 68                                  | 36 U                                | 34 U                                | 39 U                                | 35 U                                | 36 U                                |
| Aroclor-1260                           |                                                          |                                                                            | 35 U                                | 2500                                | 75                                  | 1300                                | 34 U                                | 5400 D                              | 53                                  | 180                                 |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 0                                   | 4700                                | 143                                 | 1300                                | 0                                   | 5400                                | 53                                  | 180                                 |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 12/9/1997<br>1-2 | SS-19<br>12/9/1997<br>0-1<br>Zone I | SS-19<br>12/9/1997<br>1-2<br>Zone I | SS-19E15<br>1/22/1998<br>0-1<br>Zone I |        | SS-19W15<br>1/22/1998<br>0-1<br>Zone I | SS-19W30<br>1/22/1998<br>0-1<br>Zone I | SS-20<br>12/9/1997<br>0-1<br>Zone I |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------------|-------------------------------------|-------------------------------------|----------------------------------------|--------|----------------------------------------|----------------------------------------|-------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 35 U             | 39 U                                | 36 U                                | 38 U                                   | 37 U   | 39 U                                   | 39 U                                   | 40 U                                |
| Aroclor-1221                           |                                                          |                                                                            | 35 U             | 39 U                                | 36 U                                | 38 U                                   | 37 U   | 39 U                                   | 39 U                                   | 40 U                                |
| Aroclor-1232                           |                                                          |                                                                            | 35 U             | 39 U                                | 36 U                                | 38 U                                   | 37 U   | 39 U                                   | 39 U                                   | 40 U                                |
| Aroclor-1242                           |                                                          |                                                                            | 35 U             | 39 U                                | 36 U                                | 38 U                                   | 37 U   | 39 U                                   | 39 U                                   | 40 U                                |
| Aroclor-1248                           |                                                          |                                                                            | 35 U             | 39 U                                | 36 U                                | 38 U                                   | 37 U   | 39 U                                   | 39 U                                   | 40 U                                |
| Aroclor-1254                           |                                                          |                                                                            | 35 U             | 14000 D                             | 36 U                                | 1600 D                                 | 3900 D | 9200 D                                 | 4600 D                                 | 40 U                                |
| Aroclor-1260                           |                                                          |                                                                            | 97               | 23000 D                             | 57                                  | 2700 D                                 | 5600 D | 7000 D                                 | 7400 D                                 | 540                                 |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 97               | 37000                               | 57                                  | 4300                                   | 9500   | 16200                                  | 12000                                  | 540                                 |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 12/9/1997 | SS-21<br>12/9/1997<br>0-1<br>Zone I | SS-21<br>12/9/1997<br>1-2<br>Zone I | SS-22<br>12/9/1997<br>0-1<br>Zone I | SS-22<br>12/9/1997<br>1-2<br>Zone I | -       |         | SS-22W15<br>1/22/1998<br>0-1<br>Zone I |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|-----------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|---------|---------|----------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 36 U      | 39 U                                | 33 U                                | 40 U                                | 36 U                                | 38 U    | 36 U    | 39 U                                   |
| Aroclor-1221                           |                                                          |                                                                            | 36 U      | 39 U                                | 33 U                                | 40 U                                | 36 U                                | 38 U    | 36 U    | 39 U                                   |
| Aroclor-1232                           |                                                          |                                                                            | 36 U      | 39 U                                | 33 U                                | 40 U                                | 36 U                                | 38 U    | 36 U    | 39 U                                   |
| Aroclor-1242                           |                                                          |                                                                            | 36 U      | 39 U                                | 33 U                                | 40 U                                | 36 U                                | 38 U    | 36 U    | 39 U                                   |
| Aroclor-1248                           |                                                          |                                                                            | 36 U      | 39 U                                | 33 U                                | 40 U                                | 36 U                                | 38 U    | 36 U    | 39 U                                   |
| Aroclor-1254                           |                                                          |                                                                            | 36 U      | 39 U                                | 33 U                                | 25000 D                             | 36 U                                | 11000 D | 6700 D  | 3500 D                                 |
| Aroclor-1260                           |                                                          |                                                                            | 36 U      | 750                                 | 33 U                                | 33000 D                             | 610                                 | 18000 D | 11000 D | 6200 D                                 |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 0         | 750                                 | 0                                   | 58000                               | 610                                 | 29000   | 17700   | 9700                                   |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    |           |           | SS-23      | SS-23      | SS-24     | SS-24     | SS-25      | SS-25      |
|---------------------------|--------------------|------------------------|-----------|-----------|------------|------------|-----------|-----------|------------|------------|
| Parameter                 | Site Specific      | Sample Date:           | 1/22/1998 | 2/20/1998 | 12/10/1997 | 12/10/1997 | 12/9/1997 | 12/9/1997 | 12/10/1997 | 12/10/1997 |
| (Concentrations in µg/kg) | Soil Cleanup Level | Sample Depth (ft bls): | 0-1       | 0-1       | 0-1        | 1-2        | 0-1       | 1-2       | 0-1        | 1-2        |
|                           | (µg/kg)            | Map Zone:              | Zone I    | Zone I    | Zone I     | Zone I     | Zone I    | Zone I    | Zone I     | Zone I     |
| Aroclor-1016              |                    |                        | 37 U      | 40 U      | 37 U       | 36 U       | 40 U      | 33 U      | 40 U       | 37 U       |
| Aroclor-1221              |                    |                        | 37 U      | 40 U      | 37 U       | 36 U       | 40 U      | 33 U      | 40 U       | 37 U       |
| Aroclor-1232              |                    |                        | 37 U      | 40 U      | 37 U       | 36 U       | 40 U      | 33 U      | 40 U       | 37 U       |
| Aroclor-1242              |                    |                        | 37 U      | 40 U      | 37 U       | 36 U       | 40 U      | 33 U      | 40 U       | 37 U       |
| Aroclor-1248              |                    |                        | 37 U      | 40 U      | 37 U       | 36 U       | 40 U      | 33 U      | 40 U       | 37 U       |
| Aroclor-1254              |                    |                        | 9600 D    | 1100      | 790        | 36 U       | 9000 D    | 33 U      | 1900 D     | 37 U       |
| Aroclor-1260              |                    |                        | 17000 D   | 2100      | 1600 D     | 41         | 13000 D   | 33 U      | 2800 D     | 37 U       |
| TOTAL PCBs                | 25,000             |                        | 26600     | 3200      | 2390       | 41         | 22000     | 0         | 4700       | 0          |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: |        | SS-26<br>12/10/1997<br>1-2<br>Zone I | SS-27<br>12/10/1997<br>0-1<br>Zone I | SS-27<br>12/10/1997<br>1-2<br>Zone I | SS-28<br>12/10/1997<br>0-1<br>Zone I | SS-28<br>12/10/1997<br>1-2<br>Zone I | SS-29<br>12/10/1997<br>0-1<br>Zone I |
|-------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|--------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Aroclor-1016                        |                                                          |                                                                            | 38 U   | 38 U                                 | 37 U                                 | 38 U                                 | 36 U                                 | 38 U                                 | 41 U                                 |
| Aroclor-1221                        |                                                          |                                                                            | 38 U   | 38 U                                 | 37 U                                 | 38 U                                 | 36 U                                 | 38 U                                 | 41 U                                 |
| Aroclor-1232                        |                                                          |                                                                            | 38 U   | 38 U                                 | 37 U                                 | 38 U                                 | 36 U                                 | 38 U                                 | 41 U                                 |
| Aroclor-1242                        |                                                          |                                                                            | 38 U   | 38 U                                 | 37 U                                 | 38 U                                 | 36 U                                 | 38 U                                 | 41 U                                 |
| Aroclor-1248                        |                                                          |                                                                            | 38 U   | 38 U                                 | 37 U                                 | 38 U                                 | 36 U                                 | 38 U                                 | 41 U                                 |
| Aroclor-1254                        |                                                          |                                                                            | 5000 D | 330                                  | 37 U                                 | 38 U                                 | 290                                  | 38 U                                 | 41 U                                 |
| Aroclor-1260                        |                                                          |                                                                            | 5500 D | 440                                  | 290                                  | 38 U                                 | 410                                  | 38 U                                 | 310                                  |
| TOTAL PCBs                          | 25,000                                                   |                                                                            | 10500  | 770                                  | 290                                  | 0                                    | 700                                  | 0                                    | 310                                  |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls): | 12/10/1997<br>1-2 | 0-1     | 1-2    | SS-31<br>12/10/1997<br>0-1 | 1-2    | SS-32<br>12/10/1997<br>0-1 | 1-2    |
|-------------------------------------|-----------------------------------------------|---------------------------------------------------------------|-------------------|---------|--------|----------------------------|--------|----------------------------|--------|
|                                     | (μg/kg)                                       | Map Zone:                                                     | Zone I            | Zone I  | Zone I | Zone I                     | Zone I | Zone I                     | Zone I |
| Aroclor-1016                        |                                               |                                                               | 38 U              | 40 U    | 36 U   | 41 U                       | 36 U   | 40 U                       | 36 U   |
| Aroclor-1221                        |                                               |                                                               | 38 U              | 40 U    | 36 U   | 41 U                       | 36 U   | 40 U                       | 36 U   |
| Aroclor-1232                        |                                               |                                                               | 38 U              | 40 U    | 36 U   | 41 U                       | 36 U   | 40 U                       | 36 U   |
| Aroclor-1242                        |                                               |                                                               | 38 U              | 40 U    | 36 U   | 41 U                       | 36 U   | 40 U                       | 36 U   |
| Aroclor-1248                        |                                               |                                                               | 38 U              | 40 U    | 36 U   | 41 U                       | 36 U   | 40 U                       | 36 U   |
| Aroclor-1254                        |                                               |                                                               | 38 U              | 40 U    | 36 U   | 720 D                      | 36 U   | 490                        | 36 U   |
| Aroclor-1260                        |                                               |                                                               | 73                | 10000 D | 32 J   | 3600 D                     | 100    | 3000 D                     | 36 U   |
| TOTAL PCBs                          | 25,000                                        |                                                               | 73                | 10000   | 32     | 4320                       | 100    | 3490                       | 0      |

µg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls): | 12/10/1997 | SS-33<br>12/10/1997<br>1-2 | SS-34<br>12/10/1997<br>0-1 | SS-34<br>12/10/1997<br>1-2 | SS-35<br>12/10/1997<br>0-1 | SS-35<br>12/10/1997<br>1-2 | SS-36<br>12/10/1997<br>0-1 |
|-------------------------------------|-----------------------------------------------|---------------------------------------------------------------|------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
|                                     | (µg/kg)                                       | Map Zone:                                                     | Zone I     | Zone I                     | Zone I                     | Zone I                     | Zone I                     | Zone I                     | Zone I                     |
| Aroclor-1016                        |                                               |                                                               | 41 U       | 36 U                       | 400 U                      | 35 U                       | 39 U                       | 37 U                       | 38 U                       |
| Aroclor-1221                        |                                               |                                                               | 41 U       | 36 U                       | 400 U                      | 35 U                       | 39 U                       | 37 U                       | 38 U                       |
| Aroclor-1232                        |                                               |                                                               | 41 U       | 36 U                       | 400 U                      | 35 U                       | 39 U                       | 37 U                       | 38 U                       |
| Aroclor-1242                        |                                               |                                                               | 41 U       | 36 U                       | 400 U                      | 35 U                       | 39 U                       | 37 U                       | 38 U                       |
| Aroclor-1248                        |                                               |                                                               | 41 U       | 36 U                       | 400 U                      | 35 U                       | 39 U                       | 37 U                       | 38 U                       |
| Aroclor-1254                        |                                               |                                                               | 700        | 36 U                       | 400 U                      | 35 U                       | 39 U                       | 37 U                       | 850                        |
| Aroclor-1260                        |                                               |                                                               | 2600 D     | 71                         | 11000 D                    | 70                         | 330                        | 24 J                       | 520                        |
| TOTAL PCBs                          | 25,000                                        |                                                               | 3300       | 71                         | 11000                      | 70                         | 330                        | 24                         | 1370                       |

µg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | NYSDEC<br>Site Specific | Sample Designation:<br>Sample Date: |        | SS-37<br>12/10/1997 |        | SS-37<br>12/10/1997 |        |        |        |         |
|---------------------------|-------------------------|-------------------------------------|--------|---------------------|--------|---------------------|--------|--------|--------|---------|
| (Concentrations in µg/kg) | Soil Cleanup Level      | Sample Depth (ft bls):              | 1-2    | 0-1                 | 0-1    | 1-2                 | 1-2    | 0-1    | 1-2    | 0-0.5   |
|                           | $(\mu g/kg)$            | Map Zone:                           | Zone I | Zone I              | Zone I | Zone I              | Zone I | Zone I | Zone I | Zone IV |
|                           |                         |                                     |        |                     |        |                     |        |        |        | (1)     |
| Aroclor-1016              |                         |                                     | 35 U   | 41 U                | 39 U   | 37 U                | 37 U   | 37 U   | 36 U   | 18 U    |
| Aroclor-1221              |                         |                                     | 35 U   | 41 U                | 39 U   | 37 U                | 37 U   | 37 U   | 36 U   | 18 U    |
| Aroclor-1232              |                         |                                     | 35 U   | 41 U                | 39 U   | 37 U                | 37 U   | 37 U   | 36 U   | 18 U    |
| Aroclor-1242              |                         |                                     | 35 U   | 41 U                | 39 U   | 37 U                | 37 U   | 37 U   | 36 U   | 18 U    |
| Aroclor-1248              |                         |                                     | 35 U   | 41 U                | 39 U   | 37 U                | 37 U   | 37 U   | 36 U   | 18 U    |
| Aroclor-1254              |                         |                                     | 35 U   | 390                 | 130    | 140                 | 160    | 390    | 110    | 37 U    |
| Aroclor-1260              |                         |                                     | 35 U   | 680                 | 270    | 330                 | 340    | 1200 D | 280    | 76      |
| TOTAL PCBs                | 25,000                  |                                     | 0      | 1070                | 400    | 470                 | 500    | 1590   | 390    | 76      |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    |          |          |          |          | SSY-16   |          |          |          | SSY-23   |
|---------------------------|--------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Parameter                 | Site Specific      | Sample Date:           | 7/9/1999 | 7/9/1999 | 7/9/1999 | 7/9/1999 | 6/3/1999 | 6/3/1999 | 6/3/1999 | 6/3/1999 | 7/9/1999 |
| (Concentrations in µg/kg) | Soil Cleanup Level | Sample Depth (ft bls): | 0.5-1    | 0.5-1    | 0.5-1    | 0.5-1    | 0-0.5    | 0-0.5    | 0.5 - 1  | 0.5 - 1  | 0.5 - 1  |
|                           | $(\mu g/kg)$       | Map Zone:              | Zone III | Zone III | Zone II  | Zone II  | Zone I   | Zone IV  | Zone IV  | Zone III | Zone III |
|                           |                    |                        | (1)      | (1)      | (1)      | (1)      | (1)      | (1)      | (1)      | (1)      | (1)      |
| Aroclor-1016              |                    |                        | 17 U     | 18 U     | 18 U     | 18 U     | 17 U     | 18 U     | 19 U     | 19 U     | 17 U     |
| Aroclor-1221              |                    |                        | 17 U     | 18 U     | 18 U     | 18 U     | 17 U     | 18 U     | 19 U     | 19 U     | 17 U     |
| Aroclor-1232              |                    |                        | 17 U     | 18 U     | 18 U     | 18 U     | 17 U     | 18 U     | 19 U     | 19 U     | 17 U     |
| Aroclor-1242              |                    |                        | 17 U     | 18 U     | 18 U     | 18 U     | 17 U     | 18 U     | 19 U     | 19 U     | 17 U     |
| Aroclor-1248              |                    |                        | 17 U     | 18 U     | 18 U     | 18 U     | 17 U     | 18 U     | 19 U     | 19 U     | 17 U     |
| Aroclor-1254              |                    |                        | 34 U     | 37 U     | 35 U     | 35 U     | 35 U     | 36 U     | 38 U     | 36 U     | 34 U     |
| Aroclor-1260              |                    |                        | 34 U     | 37 U     | 35 U     | 35 U     | 35 U     | 120 D    | 160      | 36 U     | 34 U     |
| TOTAL PCBs                | 25,000             |                        | 0        | 0        | 0        | 0        | 0        | 120      | 160      | 0        | 0        |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | SSY-24   | SSY-25   | SSY-26   | SSY-27   | SSY-28   | SSY-33   | SSY-33D  | SSY-34   |
|---------------------------|--------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|
| Parameter                 | Site Specific      | Sample Date:           | 7/9/1999 | 7/9/1999 | 7/9/1999 | 6/3/1999 | 6/3/1999 | 6/3/1999 | 6/3/1999 | 6/3/1999 |
| (Concentrations in µg/kg) | Soil Cleanup Level | Sample Depth (ft bls): | 0.5-1    | 0.5-1    | 0.5-1    | 0-0.5    | 0-0.5    | 0-0.5    | 5.5-6    | 0.5-1    |
|                           | $(\mu g/kg)$       | Map Zone:              | Zone III | Zone II  | Zone II  | Zone II  | Zone I   | Zone IV  | Zone IV  | Zone IV  |
|                           |                    |                        | (1)      | (1)      | (1)      | (1)      | (1)      | (1)      | (1)      | (1)      |
| Aroclor-1016              |                    |                        | 17 U     | 18 U     | 17 U     | 19 U     | 18 U     | 18 U     | 18 U     | 18 U     |
| Aroclor-1221              |                    |                        | 17 U     | 18 U     | 17 U     | 19 U     | 18 U     | 18 U     | 18 U     | 18 U     |
| Aroclor-1232              |                    |                        | 17 U     | 18 U     | 17 U     | 19 U     | 18 U     | 18 U     | 18 U     | 18 U     |
| Aroclor-1242              |                    |                        | 17 U     | 18 U     | 17 U     | 19 U     | 18 U     | 18 U     | 18 U     | 18 U     |
| Aroclor-1248              |                    |                        | 17 U     | 18 U     | 17 U     | 19 U     | 18 U     | 18 U     | 18 U     | 18 U     |
| Aroclor-1254              |                    |                        | 34 U     | 35 U     | 35 U     | 37 U     | 36 U     | 36 U     | 36 U     | 36 U     |
| Aroclor-1260              |                    |                        | 34 U     | 35 U     | 55       | 37 U     | 36 U     | 36 U     | 36 U     | 36 U     |
| TOTAL PCBs                | 25,000             |                        | 0        | 0        | 55       | 0        | 0        | 0        | 0        | 0        |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation: SSY-34D  | SSY-35   | SSY-35D  | SSY-36   | SSY-37   | SSY-38   | SSY-38D  | SSY-39    |
|---------------------------|--------------------|------------------------------|----------|----------|----------|----------|----------|----------|-----------|
| Parameter                 | Site Specific      | <b>Sample Date:</b> 6/3/1999 | 6/3/1999 | 6/3/1999 | 6/3/1999 | 6/3/1999 | 6/3/1999 | 6/3/1999 | 4/28/1999 |
| (Concentrations in µg/kg) | Soil Cleanup Level | Sample Depth (ft bls): 3.5-4 | 0-0.5    | 5.5-6    | 0.5-1    | 0.5-1    | 0-0.5    | 5.5-6    | 1-1.5     |
|                           | $(\mu g/kg)$       | Map Zone: Zone IV            | Zone III | Zone III | Zone IV  | Zone IV  | Zone III | Zone III | Zone IV   |
|                           |                    | (1)                          | (1)      | (1)      | (1)      | (1)      | (1)      | (1)      | (1)       |
| Aroclor-1016              |                    | 18 U                         | 18 U     | 17 U     | 18 U     | 18 U     | 17 U     | 18 U     | 19 U      |
| Aroclor-1221              |                    | 18 U                         | 18 U     | 17 U     | 18 U     | 18 U     | 17 U     | 18 U     | 19 U      |
| Aroclor-1232              |                    | 18 U                         | 18 U     | 17 U     | 18 U     | 18 U     | 17 U     | 18 U     | 19 U      |
| Aroclor-1242              |                    | 18 U                         | 18 U     | 17 U     | 18 U     | 18 U     | 17 U     | 18 U     | 19 U      |
| Aroclor-1248              |                    | 18 U                         | 18 U     | 17 U     | 18 U     | 18 U     | 17 U     | 18 U     | 19 U      |
| Aroclor-1254              |                    | 36 U                         | 36 U     | 35 U     | 35 U     | 35 U     | 35 U     | 36 U     | 38 U      |
| Aroclor-1260              |                    | 36 U                         | 36 U     | 35 U     | 35 U     | 35 U     | 35 U     | 36 U     | 38 U      |
| TOTAL PCBs                | 25,000             | 0                            | 0        | 0        | 0        | 0        | 0        | 0        | 0         |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                               | NYSDEC<br>Site Specific             | Sample Designation:                    |      | SSY-42<br>7/9/1999 | SSY-45<br>6/14/1999 | SSY-46<br>6/14/1999 | SSY-46D<br>6/14/1999 |
|-----------------------------------------|-------------------------------------|----------------------------------------|------|--------------------|---------------------|---------------------|----------------------|
| (Concentrations in µg/kg)               | Site Specific<br>Soil Cleanup Level | Sample Date:<br>Sample Depth (ft bls): |      | 0.5-1              | 0-0.5               | 0.5-1               | 20-22                |
| (11111111111111111111111111111111111111 | (µg/kg)                             | Map Zone:                              |      | Zone II            | Zone II             | Zone II             | Zone II              |
|                                         |                                     |                                        | (1)  | (1)                | (1)                 | (1)                 | (1)                  |
| Aroclor-1016                            |                                     |                                        | 18 U | 19 U               | 18 U                | 18 U                | 17 U                 |
| Aroclor-1221                            |                                     |                                        | 18 U | 19 U               | 18 U                | 18 U                | 17 U                 |
| Aroclor-1232                            |                                     |                                        | 18 U | 19 U               | 18 U                | 18 U                | 17 U                 |
| Aroclor-1242                            |                                     |                                        | 18 U | 19 U               | 18 U                | 18 U                | 17 U                 |
| Aroclor-1248                            |                                     |                                        | 18 U | 19 U               | 18 U                | 18 U                | 17 U                 |
| Aroclor-1254                            |                                     |                                        | 36 U | 38 U               | 35 U                | 35 U                | 34 U                 |
| Aroclor-1260                            |                                     |                                        | 36 U | 74                 | 1300 D              | 1300 D              | 29 J                 |
| TOTAL PCBs                              | 25,000                              |                                        | 0    | 74                 | 1300                | 1300                | 29                   |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 7/31/1997<br>0-1 | SW-1<br>7/31/1997<br>1-2<br>Zone III | SW-1<br>11/2/1998<br><br>Zone III | SW-2<br>7/31/1997<br>0-1<br>Zone III | SW-2<br>7/31/1997<br>1-2<br>Zone III | SW-2<br>11/2/1998<br><br>Zone III | SW-3<br>7/31/1997<br>0-1<br>Zone III | SW-3<br>7/31/1997<br>1-2<br>Zone III |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------------|--------------------------------------|-----------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|--------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 200 U            | 36 U                                 | 37 U                              | 770 U                                | 36 U                                 | 35 U                              | 370 U                                | 36 U                                 |
| Aroclor-1221                           |                                                          |                                                                            | 400 U            | 73 U                                 | 73 U                              | 1600 U                               | 74 U                                 | 70 U                              | 740 U                                | 73 U                                 |
| Aroclor-1232                           |                                                          |                                                                            | 200 U            | 36 U                                 | 37 U                              | 770 U                                | 36 U                                 | 35 U                              | 370 U                                | 36 U                                 |
| Aroclor-1242                           |                                                          |                                                                            | 200 U            | 36 U                                 | 37 U                              | 770 U                                | 36 U                                 | 35 U                              | 370 U                                | 36 U                                 |
| Aroclor-1248                           |                                                          |                                                                            | 200 U            | 36 U                                 | 37 U                              | 770 U                                | 36 U                                 | 35 U                              | 370 U                                | 36 U                                 |
| Aroclor-1254                           |                                                          |                                                                            | 200 U            | 36 U                                 | 37 U                              | 770 U                                | 36 U                                 | 35 U                              | 370 U                                | 36 U                                 |
| Aroclor-1260                           |                                                          |                                                                            | 670              | 36                                   | 99                                | 2600                                 | 180                                  | 130                               | 980                                  | 5.3 J                                |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 670              | 36                                   | 99                                | 2600                                 | 180                                  | 130                               | 980                                  | 5.3                                  |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 11/2/1998 | SW-4<br>11/2/1998<br><br>Zone II | SW-5<br>7/31/1997<br>0-1<br>Zone III | SW-5<br>7/31/1997<br>1-2<br>Zone III | SW-6<br>7/31/1997<br>0-1<br>Zone III | SW-6<br>7/31/1997<br>1-2<br>Zone III | SW-7<br>7/31/1997<br>0-1<br>Zone III | SW-7<br>7/31/1997<br>1-2<br>Zone III |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|-----------|----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
|                                        |                                                          |                                                                            |           |                                  |                                      |                                      |                                      |                                      |                                      |                                      |
| Aroclor-1016                           |                                                          |                                                                            | 36 U      | 36 U                             | 800 U                                | 37 U                                 | 740 U                                | 35 U                                 | 800 U                                | 37 U                                 |
| Aroclor-1221                           |                                                          |                                                                            | 72 U      | 72 U                             | 1600 U                               | 74 U                                 | 1500 U                               | 72 U                                 | 1600 U                               | 74 U                                 |
| Aroclor-1232                           |                                                          |                                                                            | 36 U      | 36 U                             | 800 U                                | 37 U                                 | 740 U                                | 35 U                                 | 800 U                                | 37 U                                 |
| Aroclor-1242                           |                                                          |                                                                            | 36 U      | 36 U                             | 800 U                                | 37 U                                 | 740 U                                | 35 U                                 | 800 U                                | 37 U                                 |
| Aroclor-1248                           |                                                          |                                                                            | 36 U      | 36 U                             | 800 U                                | 37 U                                 | 740 U                                | 35 U                                 | 800 U                                | 37 U                                 |
| Aroclor-1254                           |                                                          |                                                                            | 36 U      | 36 U                             | 800 U                                | 37 U                                 | 740 U                                | 35 U                                 | 800 U                                | 37 U                                 |
| Aroclor-1260                           |                                                          |                                                                            | 160       | 16 J                             | 1800                                 | 190                                  | 1100                                 | 15 J                                 | 2300                                 | 53                                   |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 160       | 16                               | 1800                                 | 190                                  | 1100                                 | 15                                   | 2300                                 | 53                                   |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC Site Specific Soil Cleanup Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 1/18/2005<br>0-1 | SW7-8<br>1/18/2005<br>1-2<br>Zone II | SW7-8<br>1/18/2005<br>2-3<br>Zone II | SW-8<br>7/31/1997<br>0-1<br>Zone III | SW-8<br>7/31/1997<br>1-2<br>Zone III | SW-9<br>7/31/1997<br>0-1<br>Zone III | SW-9<br>7/31/1997<br>1-2<br>Zone III | SW-10<br>8/15/1997<br>0-1<br>Zone III |
|-------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|
|                                     |                                                 |                                                                            |                  |                                      |                                      |                                      |                                      |                                      |                                      |                                       |
| Aroclor-1016                        |                                                 |                                                                            | 600 U            | 28 U                                 | 27 U                                 | 2000 U                               | 36 U                                 | 760 U                                | 180 U                                | 180 U                                 |
| Aroclor-1221                        |                                                 |                                                                            | 600 U            | 28 U                                 | 27 U                                 | 4000 U                               | 73 U                                 | 1500 U                               | 370 U                                | 360 U                                 |
| Aroclor-1232                        |                                                 |                                                                            | 600 U            | 28 U                                 | 27 U                                 | 2000 U                               | 36 U                                 | 760 U                                | 180 U                                | 180 U                                 |
| Aroclor-1242                        |                                                 |                                                                            | 600 U            | 28 U                                 | 27 U                                 | 2000 U                               | 36 U                                 | 760 U                                | 180 U                                | 180 U                                 |
| Aroclor-1248                        |                                                 |                                                                            | 600 U            | 28 U                                 | 27 U                                 | 2000 U                               | 36 U                                 | 760 U                                | 180 U                                | 180 U                                 |
| Aroclor-1254                        |                                                 |                                                                            | 600 U            | 28 U                                 | 27 U                                 | 2000 U                               | 36 U                                 | 760 U                                | 180 U                                | 280                                   |
| Aroclor-1260                        |                                                 |                                                                            | 22000            | 1700                                 | 220                                  | 8500                                 | 67                                   | 2300                                 | 510                                  | 400                                   |
| TOTAL PCBs                          | 25,000                                          |                                                                            | 22000            | 1700                                 | 220                                  | 8500                                 | 67                                   | 2300                                 | 510                                  | 680                                   |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls): | 8/15/1997 | SW-11<br>8/15/1997<br>0-1 | SW-11<br>8/15/1997<br>1-2 | SW-12<br>8/15/1997<br>0-1 | SW-12<br>8/15/1997<br>1-2 | SW-13<br>8/15/1997<br>0-1 | SW-13<br>8/15/1997<br>1-2 | SW-14<br>8/15/1997<br>0-1 |
|-------------------------------------|-----------------------------------------------|---------------------------------------------------------------|-----------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| 10 0                                | (µg/kg)                                       | Map Zone:                                                     |           | Zone III                  | Zone IV                   |
| Aroclor-1016                        |                                               |                                                               | 73 U      | 760 U                     | 1900 U                    | 7700 U                    | 39 U                      | 1800 U                    | 180 U                     | 1900 U                    |
| Aroclor-1221                        |                                               |                                                               | 150 U     | 1500 U                    | 3800 U                    | 16000 U                   | 80 U                      | 3800 U                    | 360 U                     | 3900 U                    |
| Aroclor-1232                        |                                               |                                                               | 73 U      | 760 U                     | 1900 U                    | 7700 U                    | 39 U                      | 1800 U                    | 180 U                     | 1900 U                    |
| Aroclor-1242                        |                                               |                                                               | 73 U      | 760 U                     | 1900 U                    | 7700 U                    | 39 U                      | 1800 U                    | 180 U                     | 1900 U                    |
| Aroclor-1248                        |                                               |                                                               | 73 U      | 760 U                     | 1900 U                    | 7700 U                    | 39 U                      | 1800 U                    | 180 U                     | 1900 U                    |
| Aroclor-1254                        |                                               |                                                               | 120       | 800                       | 1100 J                    | 8200                      | 58                        | 6600                      | 260                       | 2600                      |
| Aroclor-1260                        |                                               |                                                               | 290       | 2000                      | 3600                      | 16000                     | 160                       | 9500                      | 270                       | 5100                      |
| TOTAL PCBs                          | 25,000                                        |                                                               | 410       | 2800                      | 4700                      | 24200                     | 218                       | 16100                     | 530                       | 7700                      |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC Site Specific Soil Cleanup Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 8/15/1997<br>1-2 | SW-15<br>8/15/1997<br>0-1<br>Zone IV | SW-16<br>8/15/1997<br>0-1<br>Zone IV | SW-17<br>8/15/1997<br>0-1<br>Zone IV | SW-41<br>5/24/2005<br>0-1<br>Zone III | SW-41<br>5/24/2005<br>1-2<br>Zone III | SW-41<br>5/24/2005<br>2-3<br>Zone III | SW-49-E<br>6/22/2004<br>0-1<br>Zone III |
|----------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-----------------------------------------|
|                                        |                                                 |                                                                            |                  |                                      |                                      |                                      |                                       |                                       |                                       |                                         |
| Aroclor-1016                           |                                                 |                                                                            | 210 U            | 2000 U                               | 380 U                                | 200 U                                | 29 U                                  | 27 U                                  | 27 U                                  | 17 U                                    |
| Aroclor-1221                           |                                                 |                                                                            | 430 U            | 4100 U                               | 760 U                                | 410 U                                | 29 U                                  | 27 U                                  | 27 U                                  | 17 U                                    |
| Aroclor-1232                           |                                                 |                                                                            | 210 U            | 2000 U                               | 380 U                                | 200 U                                | 29 U                                  | 27 U                                  | 27 U                                  | 17 U                                    |
| Aroclor-1242                           |                                                 |                                                                            | 210 U            | 2000 U                               | 380 U                                | 200 U                                | 29 U                                  | 27 U                                  | 27 U                                  | 17 U                                    |
| Aroclor-1248                           |                                                 |                                                                            | 210 U            | 2000 U                               | 380 U                                | 200 U                                | 29 U                                  | 27 U                                  | 27 U                                  | 17 U                                    |
| Aroclor-1254                           |                                                 |                                                                            | 170 J            | 3900                                 | 430                                  | 360                                  | 29 U                                  | 27 U                                  | 27 U                                  | 17 U                                    |
| Aroclor-1260                           |                                                 |                                                                            | 360              | 9700                                 | 1500                                 | 900                                  | 770                                   | 27 U                                  | 27 U                                  | 110                                     |
| TOTAL PCBs                             | 25,000                                          |                                                                            | 530              | 13600                                | 1930                                 | 1260                                 | 770                                   | 0                                     | 0                                     | 110                                     |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 6/22/2004<br>1-2 |      |       | SW-49-W<br>6/22/2004<br>1-2<br>Zone III | SW-49-W<br>6/22/2004<br>2-3<br>Zone III |      | SW-51-E<br>6/22/2004<br>1-2<br>Zone III | SW-51-E<br>6/22/2004<br>2-3<br>Zone III |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------------|------|-------|-----------------------------------------|-----------------------------------------|------|-----------------------------------------|-----------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 17 U             | 18 U | 370 U | 35 U                                    | 36 U                                    | 35 U | 17 U                                    | 17 U                                    |
| Aroclor-1221                           |                                                          |                                                                            | 17 U             | 18 U | 370 U | 35 U                                    | 36 U                                    | 35 U | 17 U                                    | 17 U                                    |
| Aroclor-1232                           |                                                          |                                                                            | 17 U             | 18 U | 370 U | 35 U                                    | 36 U                                    | 35 U | 17 U                                    | 17 U                                    |
| Aroclor-1242                           |                                                          |                                                                            | 17 U             | 18 U | 370 U | 35 U                                    | 36 U                                    | 35 U | 17 U                                    | 17 U                                    |
| Aroclor-1248                           |                                                          |                                                                            | 17 U             | 18 U | 370 U | 35 U                                    | 36 U                                    | 35 U | 17 U                                    | 17 U                                    |
| Aroclor-1254                           |                                                          |                                                                            | 17 U             | 18 U | 370 U | 35 U                                    | 36 U                                    | 35 U | 17 U                                    | 17 U                                    |
| Aroclor-1260                           |                                                          |                                                                            | 28               | 120  | 2300  | 400                                     | 350                                     | 320  | 17 U                                    | 22                                      |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 28               | 120  | 2300  | 400                                     | 350                                     | 320  | 0                                       | 22                                      |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation: Sample Date: Sample Depth (ft bls): Map Zone: | 6/22/2004 | SW-51-W<br>6/22/2004<br>1-2<br>Zone III | SW-51-W<br>6/22/2004<br>2-3<br>Zone III | T-1<br>7/30/1999<br>0-1<br>Zone III | T-2<br>7/30/1999<br>0-1<br>Zone II | T-3<br>7/30/1999<br>0-1<br>Zone III | T-4<br>7/30/1999<br>0-1<br>Zone III | T-5<br>7/30/1999<br>0-1<br>Zone II |
|----------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------|-----------|-----------------------------------------|-----------------------------------------|-------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|------------------------------------|
|                                        | (4.98)                                                   |                                                                   |           |                                         |                                         |                                     |                                    |                                     |                                     |                                    |
| Aroclor-1016                           |                                                          |                                                                   | 35 U      | 18 U                                    | 18 U                                    | 34 U                                | 34 U                               | 33 U                                | 38 U                                | 35 U                               |
| Aroclor-1221                           |                                                          |                                                                   | 35 U      | 18 U                                    | 18 U                                    | 68 U                                | 68 U                               | 67 U                                | 75 U                                | 70 U                               |
| Aroclor-1232                           |                                                          |                                                                   | 35 U      | 18 U                                    | 18 U                                    | 34 U                                | 34 U                               | 33 U                                | 38 U                                | 35 U                               |
| Aroclor-1242                           |                                                          |                                                                   | 35 U      | 18 U                                    | 18 U                                    | 34 U                                | 34 U                               | 33 U                                | 38 U                                | 35 U                               |
| Aroclor-1248                           |                                                          |                                                                   | 35 U      | 18 U                                    | 18 U                                    | 34 U                                | 34 U                               | 33 U                                | 38 U                                | 35 U                               |
| Aroclor-1254                           |                                                          |                                                                   | 35 U      | 18 U                                    | 18 U                                    | 34 U                                | 34 U                               | 33 U                                | 38 U                                | 35 U                               |
| Aroclor-1260                           |                                                          |                                                                   | 350       | 59                                      | 28                                      | 840 D                               | 8060 D                             | 798 D                               | 10900 D                             | 2540 D                             |
| TOTAL PCBs                             | 25,000                                                   |                                                                   | 350       | 59                                      | 28                                      | 840                                 | 8060                               | 798                                 | 10900                               | 2540                               |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 7/30/1999<br>0-1 | T-7<br>7/30/1999<br>0-1<br>Zone II | T-8<br>7/30/1999<br>0-1<br>Zone II | T-8<br>8/9/1999<br>1-2<br>Zone II | T-9<br>7/30/1999<br>0-1<br>Zone II | T-9<br>8/9/1999<br>1-2<br>Zone II | T-10<br>7/30/1999<br>0-1<br>Zone II | T-11<br>7/30/1999<br>0-1<br>Zone II |
|-------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------------|------------------------------------|------------------------------------|-----------------------------------|------------------------------------|-----------------------------------|-------------------------------------|-------------------------------------|
|                                     |                                                          |                                                                            |                  |                                    |                                    |                                   |                                    |                                   |                                     |                                     |
| Aroclor-1016                        |                                                          |                                                                            | 38 U             | 36 U                               | 36 U                               | 36 U                              | 37 U                               | 930 U                             | 38 U                                | 36 U                                |
| Aroclor-1221                        |                                                          |                                                                            | 76 U             | 73 U                               | 71 U                               | 71 U                              | 75 U                               | 1900 U                            | 76 U                                | 73 U                                |
| Aroclor-1232                        |                                                          |                                                                            | 38 U             | 36 U                               | 36 U                               | 36 U                              | 37 U                               | 930 U                             | 38 U                                | 36 U                                |
| Aroclor-1242                        |                                                          |                                                                            | 38 U             | 36 U                               | 36 U                               | 36 U                              | 37 U                               | 930 U                             | 38 U                                | 36 U                                |
| Aroclor-1248                        |                                                          |                                                                            | 38 U             | 36 U                               | 36 U                               | 36 U                              | 37 U                               | 930 U                             | 38 U                                | 36 U                                |
| Aroclor-1254                        |                                                          |                                                                            | 38 U             | 36 U                               | 36 U                               | 470                               | 37 U                               | 8100 D                            | 38 U                                | 36 U                                |
| Aroclor-1260                        |                                                          |                                                                            | 4880 D           | 12260 D                            | 211000 D                           | 36 U                              | 56100 D                            | 930 U                             | 9420 D                              | 5270 D                              |
| TOTAL PCBs                          | 25,000                                                   |                                                                            | 4880             | 12260                              | 211000                             | 470                               | 56100                              | 8100                              | 9420                                | 5270                                |

µg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls): | 7/30/1999 | T-21A<br>3/2/1992<br>0-0.5 | T-21B<br>3/2/1992<br>0-0.5 | T-21C<br>3/2/1992<br>0-0.5 | T-21D<br>3/2/1992<br>0-0.5 | T-21E<br>3/2/1992<br>0-0.5 | T-34C-1<br>5/13/2004<br> | T-34C-2<br>5/13/2004<br> | T-34C-3<br>5/13/2004<br> |
|----------------------------------------|-----------------------------------------------|---------------------------------------------------------------|-----------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--------------------------|--------------------------|--------------------------|
|                                        | (µg/kg)                                       | Map Zone:                                                     | Zone II   | Zone II                    | Zone II                    | Zone II                    | Zone II                    | Zone II                    | Zone III                 | Zone III                 | Zone III                 |
| Aroclor-1016                           |                                               |                                                               | 37 U      | 86 U                       | 170 U                      | 85 U                       | 460 U                      | 450 U                      | 19 U                     | 18 U                     | 19 U                     |
| Aroclor-1221                           |                                               |                                                               | 74 U      | 86 U                       | 170 U                      | 85 U                       | 460 U                      | 450 U                      | 37 U                     | 35 U                     | 37 U                     |
| Aroclor-1232                           |                                               |                                                               | 37 U      | 86 U                       | 170 U                      | 85 U                       | 460 U                      | 450 U                      | 19 U                     | 18 U                     | 19 U                     |
| Aroclor-1242                           |                                               |                                                               | 37 U      | 86 U                       | 170 U                      | 85 U                       | 460 U                      | 450 U                      | 19 U                     | 18 U                     | 19 U                     |
| Aroclor-1248                           |                                               |                                                               | 37 U      | 88                         | 170 U                      | 85 U                       | 460 U                      | 450 U                      | 19 U                     | 18 U                     | 19 U                     |
| Aroclor-1254                           |                                               |                                                               | 37 U      | 170 U                      | 340 U                      | 170 U                      | 920 U                      | 450 U                      | 62                       | 85                       | 93                       |
| Aroclor-1260                           |                                               |                                                               | 215 D     | 130 J                      | 640                        | 480                        | 2300                       | 2400                       | 200                      | 630 D                    | 630 D                    |
| TOTAL PCBs                             | 25,000                                        |                                                               | 215       | 218                        | 640                        | 480                        | 2300                       | 2400                       | 262                      | 715                      | 723                      |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls): |      |         |         |         |         |         |         |         |
|-------------------------------------|-----------------------------------------------|---------------------------------------------------------------|------|---------|---------|---------|---------|---------|---------|---------|
| (Concentrations in µg/kg)           | (μg/kg)                                       | Map Zone:                                                     |      | Zone II |
| Aroclor-1016                        |                                               |                                                               | 19 U | 19 U    | 19 U    | 19 U    | 21 U    | 22 U    | 20 U    | 18 U    |
| Aroclor-1221                        |                                               |                                                               | 36 U | 36 U    | 37 U    | 37 U    | 40 U    | 44 U    | 38 U    | 36 U    |
| Aroclor-1232                        |                                               |                                                               | 19 U | 19 U    | 19 U    | 19 U    | 21 U    | 22 U    | 20 U    | 18 U    |
| Aroclor-1242                        |                                               |                                                               | 19 U | 19 U    | 19 U    | 19 U    | 21 U    | 22 U    | 20 U    | 18 U    |
| Aroclor-1248                        |                                               |                                                               | 19 U | 19 U    | 19 U    | 19 U    | 21 U    | 22 U    | 20 U    | 18 U    |
| Aroclor-1254                        |                                               |                                                               | 52   | 50      | 55      | 150     | 45      | 22 J    | 41      | 50      |
| Aroclor-1260                        |                                               |                                                               | 170  | 140     | 85      | 970 D   | 160     | 66      | 110     | 140     |
| TOTAL PCBs                          | 25,000                                        |                                                               | 222  | 190     | 140     | 1120    | 205     | 88      | 151     | 190     |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC Site Specific Soil Cleanup Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 5/13/2004 | 0-2  | 0-2  | 0-2   | 0-2  | 0-2  | T8-6<br>7/2/1996<br>0-2<br>Zone III | 2-3  | T8-6<br>10/29/1996<br>2-3<br>Zone III |
|----------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|-----------|------|------|-------|------|------|-------------------------------------|------|---------------------------------------|
| Aroclor-1016                           |                                                 |                                                                            | 18 U      | 33 U | 33 U | 33 U  | 33 U | 33 U | 33 U                                | 36 U | 35 U                                  |
| Aroclor-1221                           |                                                 |                                                                            | 36 U      | 67 U | 67 U | 67 U  | 67 U | 67 U | 67 U                                | 73 U | 72 U                                  |
| Aroclor-1232                           |                                                 |                                                                            | 18 U      | 33 U | 33 U | 33 U  | 33 U | 33 U | 33 U                                | 36 U | 35 U                                  |
| Aroclor-1242                           |                                                 |                                                                            | 18 U      | 33 U | 33 U | 33 U  | 33 U | 33 U | 33 U                                | 36 U | 35 U                                  |
| Aroclor-1248                           |                                                 |                                                                            | 18 U      | 33 U | 33 U | 33 U  | 33 U | 33 U | 33 U                                | 36 U | 35 U                                  |
| Aroclor-1254                           |                                                 |                                                                            | 18 U      | 33 U | 33 U | 33 U  | 33 U | 33 U | 33 U                                | 36 U | 35 U                                  |
| Aroclor-1260                           |                                                 |                                                                            | 190       | 660  | 1600 | 20000 | 9000 | 5000 | 45000                               | 87   | 25 J                                  |
| TOTAL PCBs                             | 25,000                                          |                                                                            | 190       | 660  | 1600 | 20000 | 9000 | 5000 | 45000                               | 87   | 25                                    |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 3-4  | T8-6+15<br>11/4/1996<br>2-3<br>Zone III | T8-6+25<br>10/29/1996<br>0-2<br>Zone III | T8-6-15<br>11/4/1996<br>2-3<br>Zone III | T8-6-25<br>10/29/1996<br>0-2<br>Zone III | 0-2  | T8-8<br>7/2/1996<br>0-2<br>Zone III | T8-9<br>7/2/1996<br>0-2<br>Zone III |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------|-----------------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------|------|-------------------------------------|-------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 35 U | 35 U                                    | 33 U                                     | 35 U                                    | 33 U                                     | 33 U | 33 U                                | 33 U                                |
| Aroclor-1221                           |                                                          |                                                                            | 71 U | 71 U                                    | 67 U                                     | 70 U                                    | 67 U                                     | 67 U | 67 U                                | 67 U                                |
| Aroclor-1232                           |                                                          |                                                                            | 35 U | 35 U                                    | 33 U                                     | 35 U                                    | 33 U                                     | 33 U | 33 U                                | 33 U                                |
| Aroclor-1242                           |                                                          |                                                                            | 35 U | 35 U                                    | 33 U                                     | 35 U                                    | 33 U                                     | 33 U | 33 U                                | 33 U                                |
| Aroclor-1248                           |                                                          |                                                                            | 35 U | 35 U                                    | 33 U                                     | 35 U                                    | 33 U                                     | 33 U | 33 U                                | 33 U                                |
| Aroclor-1254                           |                                                          |                                                                            | 35 U | 35 U                                    | 33 U                                     | 35 U                                    | 33 U                                     | 1000 | 7100                                | 33 U                                |
| Aroclor-1260                           |                                                          |                                                                            | 110  | 35 U                                    | 6000                                     | 12 J                                    | 1800                                     | 2400 | 4800                                | 11000                               |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 110  | 0                                       | 6000                                     | 12                                      | 1800                                     | 3400 | 11900                               | 11000                               |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | NYSDEC<br>Site Specific | Sample Designation:<br>Sample Date: | T8-10<br>7/2/1996 | T9-1<br>8/23/2004 | T9-2<br>8/23/2004 | T9-3<br>8/23/2004 | T10-1<br>7/10/1997 | T10-1<br>7/10/1997 | T10-2<br>7/10/1997 | T10-2<br>7/10/1997 |
|---------------------------|-------------------------|-------------------------------------|-------------------|-------------------|-------------------|-------------------|--------------------|--------------------|--------------------|--------------------|
| (Concentrations in µg/kg) | Soil Cleanup Level      | Sample Depth (ft bls):              | 0-2               | 2-3               | 2-3               | 2-3               | 0-1                | 1-2                | 0-1                | 1-2                |
|                           | $(\mu g/kg)$            | Map Zone:                           | Zone III          | Zone III          | Zone II           | Zone II           | Zone III           | Zone III           | Zone II            | Zone II            |
|                           |                         |                                     |                   |                   |                   |                   |                    |                    |                    |                    |
| Aroclor-1016              |                         |                                     | 33 U              | 18 U              | 18 U              | 19 U              | 667 UD             | 33.3 U             | 33.3 U             | 33.3 U             |
| Aroclor-1221              |                         |                                     | 67 U              | 35 U              | 34 U              | 37 U              | 1333 UD            | 66.7 U             | 66.7 U             | 66.7 U             |
| Aroclor-1232              |                         |                                     | 33 U              | 18 U              | 18 U              | 19 U              | 667 UD             | 33.3 U             | 33.3 U             | 33.3 U             |
| Aroclor-1242              |                         |                                     | 33 U              | 18 U              | 18 U              | 19 U              | 667 UD             | 33.3 U             | 33.3 U             | 33.3 U             |
| Aroclor-1248              |                         |                                     | 33 U              | 18 U              | 18 U              | 19 U              | 667 UD             | 33.3 U             | 33.3 U             | 33.3 U             |
| Aroclor-1254              |                         |                                     | 33 U              | 18 U              | 18 U              | 19 U              | 667 UD             | 33.3 U             | 33.3 U             | 33.3 U             |
| Aroclor-1260              |                         |                                     | 320               | 84                | 44                | 10 J              | 2750 D             | 33.3 U             | 228                | 128                |
| TOTAL PCBs                | 25,000                  |                                     | 320               | 84                | 44                | 10 J              | 2750               | 0                  | 228                | 128                |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 7/10/1997<br>0-1 | T10-3<br>7/10/1997<br>1-2<br>Zone II | T10-4<br>7/10/1997<br>0-1<br>Zone II | T10-4<br>7/10/1997<br>1-2<br>Zone II | T19-1<br>3/20/1996<br>0-2<br>Zone II | T19-2<br>3/20/1996<br>0-2<br>Zone II | T19-3<br>3/20/1996<br>0-2<br>Zone II | T19-4<br>3/20/1996<br>0-2<br>Zone II |
|-------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Aroclor-1016                        |                                                          |                                                                            | 667 UD           | 33.3 U                               | 167 UD                               | 33.3 U                               | 33 U                                 | 33 U                                 | 33 U                                 | 33 U                                 |
| Aroclor-1221                        |                                                          |                                                                            | 1333 UD          | 66.7 U                               | 333 UD                               | 66.7 U                               | 67 U                                 | 67 U                                 | 67 U                                 | 67 U                                 |
| Aroclor-1232                        |                                                          |                                                                            | 667 UD           | 33.3 U                               | 167 UD                               | 33.3 U                               | 33 U                                 | 33 U                                 | 33 U                                 | 33 U                                 |
| Aroclor-1242                        |                                                          |                                                                            | 667 UD           | 33.3 U                               | 167 UD                               | 33.3 U                               | 33 U                                 | 33 U                                 | 33 U                                 | 33 U                                 |
| Aroclor-1248                        |                                                          |                                                                            | 667 UD           | 33.3 U                               | 167 UD                               | 33.3 U                               | 33 U                                 | 33 U                                 | 33 U                                 | 33 U                                 |
| Aroclor-1254                        |                                                          |                                                                            | 667 UD           | 33.3 U                               | 167 UD                               | 33.3 U                               | 33 U                                 | 33 U                                 | 33 U                                 | 33 U                                 |
| Aroclor-1260                        |                                                          |                                                                            | 4900 D           | 33.3 U                               | 1380 D                               | 33.3 U                               | 220                                  | 850                                  | 1300                                 | 1000                                 |
| TOTAL PCBs                          | 25,000                                                   |                                                                            | 4900             | 0                                    | 1380                                 | 0                                    | 220                                  | 850                                  | 1300                                 | 1000                                 |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 3/20/1996<br>0-2 | T19-6<br>3/20/1996<br>0-2<br>Zone III | T19-7<br>3/20/1996<br>0-2<br>Zone III | T19-8<br>3/20/1996<br>0-2<br>Zone III | T19-9<br>3/20/1996<br>0-2<br>Zone III | T19-10<br>3/20/1996<br>0-2<br>Zone III | T24-1<br>11/1/2002<br>0-1<br>Zone III | T24-2<br>11/1/2002<br>0-1<br>Zone III |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|---------------------------------------|---------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 33 U             | 33 U                                  | 33 U                                  | 33 U                                  | 33 U                                  | 33 U                                   | 8.1 U                                 | 1.5 U                                 |
| Aroclor-1221                           |                                                          |                                                                            | 67 U             | 67 U                                  | 67 U                                  | 67 U                                  | 67 U                                  | 67 U                                   | 7.4 U                                 | 1.4 U                                 |
| Aroclor-1232                           |                                                          |                                                                            | 33 U             | 33 U                                  | 33 U                                  | 33 U                                  | 33 U                                  | 33 U                                   | 8.4 U                                 | 1.6 U                                 |
| Aroclor-1242                           |                                                          |                                                                            | 33 U             | 33 U                                  | 33 U                                  | 33 U                                  | 33 U                                  | 33 U                                   | 8.7 U                                 | 1.6 U                                 |
| Aroclor-1248                           |                                                          |                                                                            | 33 U             | 33 U                                  | 33 U                                  | 33 U                                  | 33 U                                  | 33 U                                   | 15 U                                  | 2.9 U                                 |
| Aroclor-1254                           |                                                          |                                                                            | 33 U             | 33 U                                  | 33 U                                  | 33 U                                  | 33 U                                  | 33 U                                   | 11 U                                  | 2 U                                   |
| Aroclor-1260                           |                                                          |                                                                            | 120              | 190                                   | 890                                   | 280                                   | 620                                   | 300                                    | 690                                   | 8 J                                   |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 120              | 190                                   | 890                                   | 280                                   | 620                                   | 300                                    | 690                                   | 8                                     |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC Site Specific Soil Cleanup Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 0-1   | T24-4<br>11/1/2002<br>0-1<br>Zone III | T24-5<br>11/1/2002<br>0-1<br>Zone III | T24-6<br>11/1/2002<br>0-1<br>Zone II | T24-7<br>11/1/2002<br>0-1<br>Zone II | T24-8<br>11/1/2002<br>0-1<br>Zone II | T24-9<br>11/1/2002<br>0-1<br>Zone II | T24-10<br>11/1/2002<br>0-1<br>Zone II |
|----------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|-------|---------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|
| Aroclor-1016                           |                                                 |                                                                            | 1.5 U | 1.5 U                                 | 1.5 U                                 | 1.5 U                                | 1.5 U                                | 1.5 U                                | 1.5 U                                | 1.5 U                                 |
| Aroclor-1221                           |                                                 |                                                                            | 1.4 U | 1.3 U                                 | 1.4 U                                 | 1.4 U                                | 1.4 U                                | 1.4 U                                | 1.4 U                                | 1.3 U                                 |
| Aroclor-1232                           |                                                 |                                                                            | 1.5 U | 1.5 U                                 | 1.6 U                                 | 1.6 U                                | 1.6 U                                | 1.5 U                                | 1.6 U                                | 1.5 U                                 |
| Aroclor-1242                           |                                                 |                                                                            | 1.6 U | 1.6 U                                 | 1.6 U                                 | 1.6 U                                | 1.6 U                                | 1.6 U                                | 1.6 U                                | 1.6 U                                 |
| Aroclor-1248                           |                                                 |                                                                            | 2.8 U | 1.1 U                                 | 2.9 U                                 | 2.8 U                                | 1.1 U                                | 2.8 U                                | 2.9 U                                | 1.1 U                                 |
| Aroclor-1254                           |                                                 |                                                                            | 1.9 U | 1.7 U                                 | 2 U                                   | 2 U                                  | 1.8 U                                | 1.9 U                                | 2 U                                  | 1.7 U                                 |
| Aroclor-1260                           |                                                 |                                                                            | 43    | 1.5 U                                 | 37                                    | 37                                   | 1.6 U                                | 27                                   | 7 J                                  | 1.5 U                                 |
| TOTAL PCBs                             | 25,000                                          |                                                                            | 43    | 0                                     | 37                                    | 37                                   | 0                                    | 27                                   | 7                                    | 0                                     |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC Site Specific Soil Cleanup Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 11/1/2002<br>0-1 | T25-1 (B)<br>7/9/1998<br>B<br>Zone III | T25-1<br>7/9/1998<br>0-1**<br>Zone III | T25-2 (B)<br>7/9/1998<br>B<br>Zone III | T25-2<br>7/9/1998<br>0-1**<br>Zone III | T25-3 (B)<br>7/9/1998<br>B<br>Zone III | T25-3<br>7/9/1998<br>0-1**<br>Zone III | T25-4 (B)<br>7/9/1998<br>B<br>Zone III |
|----------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
|                                        |                                                 |                                                                            |                  |                                        |                                        |                                        |                                        |                                        |                                        |                                        |
| Aroclor-1016                           |                                                 |                                                                            | 1.5 U            | 190 U                                  | 35 U                                   | 40 U                                   | 36 U                                   | 370 U                                  | 36 U                                   | 44000 U                                |
| Aroclor-1221                           |                                                 |                                                                            | 1.4 U            | 390 U                                  | 71 U                                   | 80 U                                   | 73 U                                   | 740 U                                  | 73 U                                   | 88000 U                                |
| Aroclor-1232                           |                                                 |                                                                            | 1.6 U            | 190 U                                  | 35 U                                   | 40 U                                   | 36 U                                   | 370 U                                  | 36 U                                   | 44000 U                                |
| Aroclor-1242                           |                                                 |                                                                            | 1.6 U            | 190 U                                  | 35 U                                   | 40 U                                   | 36 U                                   | 370 U                                  | 36 U                                   | 44000 U                                |
| Aroclor-1248                           |                                                 |                                                                            | 1.1 U            | 190 U                                  | 35 U                                   | 40 U                                   | 36 U                                   | 370 U                                  | 36 U                                   | 44000 U                                |
| Aroclor-1254                           |                                                 |                                                                            | 1.8 U            | 190 U                                  | 35 U                                   | 160                                    | 36 U                                   | 600                                    | 36 U                                   | 160000                                 |
| Aroclor-1260                           |                                                 |                                                                            | 1.6 U            | 810                                    | 35 U                                   | 570                                    | 36 U                                   | 2600                                   | 36 U                                   | 760000                                 |
| TOTAL PCBs                             | 25,000                                          |                                                                            | 0                | 810                                    | 0                                      | 730                                    | 0                                      | 3200                                   | 0                                      | 920000                                 |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC Site Specific Soil Cleanup Level (µg/kg) | Sample Designation: Sample Date: Sample Depth (ft bls): Map Zone: | T25-4<br>7/9/1998<br>0-1**<br>Zone III | T25-4-20<br>7/30/1998<br>B<br>Zone III | T25-5 (B)<br>7/9/1998<br>B<br>Zone II | T25-5<br>7/9/1998<br>0-1**<br>Zone II | T25-5+20<br>7/30/1998<br>B<br>Zone II | T25-6 (B)<br>7/9/1998<br>B<br>Zone II | T25-6<br>7/9/1998<br>0-1**<br>Zone II | T25-7 (B)<br>7/9/1998<br>B<br>Zone II |
|-------------------------------------|-------------------------------------------------|-------------------------------------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Aroclor-1016                        |                                                 |                                                                   | 36 U                                   | 870 U                                  | 2100 U                                | 36 U                                  | 380 U                                 | 440 U                                 | 37 U                                  | 850 U                                 |
| Aroclor-1221                        |                                                 |                                                                   | 71 U                                   | 1700 U                                 | 4300 U                                | 73 U                                  | 760 U                                 | 880 U                                 | 73 U                                  | 1700 U                                |
| Aroclor-1232                        |                                                 |                                                                   | 36 U                                   | 870 U                                  | 2100 U                                | 36 U                                  | 380 U                                 | 440 U                                 | 37 U                                  | 850 U                                 |
| Aroclor-1242                        |                                                 |                                                                   | 36 U                                   | 870 U                                  | 2100 U                                | 36 U                                  | 380 U                                 | 440 U                                 | 37 U                                  | 850 U                                 |
| Aroclor-1248                        |                                                 |                                                                   | 36 U                                   | 870 U                                  | 2100 U                                | 36 U                                  | 380 U                                 | 440 U                                 | 37 U                                  | 850 U                                 |
| Aroclor-1254                        |                                                 |                                                                   | 36 U                                   | 870 U                                  | 5000                                  | 36 U                                  | 380 U                                 | 970                                   | 37 U                                  | 1700                                  |
| Aroclor-1260                        |                                                 |                                                                   | 240                                    | 13000                                  | 23000                                 | 690                                   | 1200                                  | 3400                                  | 120                                   | 4200                                  |
| TOTAL PCBs                          | 25,000                                          |                                                                   | 240                                    | 13000                                  | 28000                                 | 690                                   | 1200                                  | 4370                                  | 120                                   | 5900                                  |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC Site Specific Soil Cleanup Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | T25-7<br>7/9/1998<br>0-1**<br>Zone II | T25-8 (B)<br>7/9/1998<br>B<br>Zone II | T25-8<br>7/9/1998<br>0-1**<br>Zone II | T32-1<br>4/7/2003<br>0-1<br>Zone III | T32-2<br>4/7/2003<br>0-1<br>Zone III | T32-3<br>4/7/2003<br>0-1<br>Zone II | T32-4<br>4/7/2003<br>0-1<br>Zone II | T32-5<br>4/7/2003<br>0-1<br>Zone II |
|-------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
|                                     |                                                 |                                                                            |                                       |                                       |                                       |                                      |                                      |                                     |                                     |                                     |
| Aroclor-1016                        |                                                 |                                                                            | 36 U                                  | 39 U                                  | 38 U                                  | 3.1 U                                | 2.9 U                                | 3.1 U                               | 3.1 U                               | 3 U                                 |
| Aroclor-1221                        |                                                 |                                                                            | 73 U                                  | 78 U                                  | 75 U                                  | 1.7 U                                | 1.6 U                                | 1.7 U                               | 1.7 U                               | 1.6 U                               |
| Aroclor-1232                        |                                                 |                                                                            | 36 U                                  | 39 U                                  | 38 U                                  | 2 U                                  | 1.9 U                                | 2.1 U                               | 2 U                                 | 2 U                                 |
| Aroclor-1242                        |                                                 |                                                                            | 36 U                                  | 39 U                                  | 38 U                                  | 3.2 U                                | 3.1 U                                | 3.3 U                               | 3.3 U                               | 3.2 U                               |
| Aroclor-1248                        |                                                 |                                                                            | 36 U                                  | 39 U                                  | 38 U                                  | 2.9 U                                | 2.8 U                                | 3 U                                 | 2.9 U                               | 2.9 U                               |
| Aroclor-1254                        |                                                 |                                                                            | 61                                    | 39 U                                  | 38 U                                  | 110                                  | 69                                   | 110                                 | 49                                  | 11 J                                |
| Aroclor-1260                        |                                                 |                                                                            | 140                                   | 39 U                                  | 38 U                                  | 230                                  | 95                                   | 160                                 | 33                                  | 21                                  |
| TOTAL PCBs                          | 25,000                                          |                                                                            | 201                                   | 0                                     | 0                                     | 340                                  | 164                                  | 270                                 | 82                                  | 32                                  |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC Site Specific Soil Cleanup Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | T32-6<br>4/7/2003<br>0-1<br>Zone II | T32-7<br>4/7/2003<br>0-1<br>Zone II | T32-8<br>4/7/2003<br>0-1<br>Zone II | T32-9<br>4/7/2003<br>0-1<br>Zone II | T32-10<br>4/7/2003<br>0-1<br>Zone II | T32-11<br>4/7/2003<br>0-1<br>Zone II |
|----------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|
| Aroclor-1016                           |                                                 |                                                                            | 3.1 U                               | 3.1 U                               | 3 U                                 | 3 U                                 | 2.9 U                                | 3 U                                  |
| Aroclor-1221                           |                                                 |                                                                            | 1.7 U                               | 1.7 U                               | 1.6 U                               | 1.6 U                               | 1.6 U                                | 1.6 U                                |
| Aroclor-1232                           |                                                 |                                                                            | 2 U                                 | 2 U                                 | 2 U                                 | 2 U                                 | 1.9 U                                | 2 U                                  |
| Aroclor-1242                           |                                                 |                                                                            | 3.3 U                               | 3.2 U                               | 3.2 U                               | 3.2 U                               | 3.1 U                                | 3.2 U                                |
| Aroclor-1248                           |                                                 |                                                                            | 2.9 U                               | 2.9 U                               | 2.9 U                               | 2.9 U                               | 2.8 U                                | 2.8 U                                |
| Aroclor-1254                           |                                                 |                                                                            | 1.3 U                               | 1.3 U                               | 11 J                                | 1.3 U                               | 1.3 U                                | 1.3 U                                |
| Aroclor-1260                           |                                                 | -                                                                          | 15 J                                | 4.3 U                               | 22                                  | 4.3 J                               | 5 J                                  | 4.2 U                                |
| TOTAL PCBs                             | 25,000                                          |                                                                            | 15                                  | 0                                   | 33                                  | 4.3                                 | 5                                    | 0                                    |

µg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | TANKPAD-1 | TANKPAD-2 | TANKPAD-2 | TE-A-6   | TE-B/C-5 | TE-D-5    | TE-D-5    |
|---------------------------|--------------------|------------------------|-----------|-----------|-----------|----------|----------|-----------|-----------|
| Parameter                 | Site Specific      | Sample Date:           | 8/12/2002 | 8/12/2002 | 9/12/2005 | 8/9/2000 | 8/9/2000 | 8/30/2000 | 8/30/2000 |
| (Concentrations in µg/kg) | Soil Cleanup Level | Sample Depth (ft bls): | 0-1       | 0-1       | 0-2       | 6-8      | 4-6      | 4-8       | 16-18     |
|                           | $(\mu g/kg)$       | Map Zone:              | Zone II   | Zone II   | Zone I    | Zone I   | Zone I   | Zone II   | Zone II   |
|                           |                    |                        |           |           |           | (2)      | (2)      | (2)       | (2)       |
| Aroclor-1016              |                    |                        | 30 U      | 74 U      | 26 U      | ND       | ND       | ND        | ND        |
| Aroclor-1221              |                    |                        | 27 U      | 67 U      | 26 U      | ND       | ND       | ND        | ND        |
| Aroclor-1232              |                    |                        | 31 U      | 77 U      | 26 U      | ND       | ND       | ND        | ND        |
| Aroclor-1242              |                    |                        | 32 U      | 79 U      | 26 U      | ND       | ND       | ND        | ND        |
| Aroclor-1248              |                    |                        | 56 U      | 140 U     | 26 U      | ND       | ND       | ND        | ND        |
| Aroclor-1254              |                    |                        | 39 U      | 96 U      | 26 U      | ND       | ND       | ND        | ND        |
| Aroclor-1260              |                    |                        | 1900      | 2900      | 330       | 9.9 J    | 6.6 J    | 3.4 J     | ND        |
| TOTAL PCBs                | 25,000             |                        | 1900      | 2900      | 330       | 9.9      | 6.6      | 3.4       | 0         |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | TE-HR-16 | TE-IB-3   | TE-IB-3   | TE-IB-3   | TE-IB/OB-1 | TE-IB/OB-1 | TE-IB/OB-1 |
|---------------------------|--------------------|------------------------|----------|-----------|-----------|-----------|------------|------------|------------|
| Parameter                 | Site Specific      | Sample Date:           | 8/9/2000 | 9/12/2000 | 9/12/2000 | 9/12/2000 | 9/11/2000  | 9/11/2000  | 9/11/2000  |
| (Concentrations in µg/kg) | Soil Cleanup Level | Sample Depth (ft bls): | 6-8      | 23-25     | 38-40     | 53-55     | 6-8        | 15-17      | 33-35      |
|                           | $(\mu g/kg)$       | Map Zone:              | Zone I   | Zone II   | Zone II   | Zone II   | Zone I     | Zone I     | Zone I     |
|                           |                    |                        | (2)      | (2)       | (2)       | (2)       | (2)        | (2)        | (2)        |
| Aroclor-1016              |                    |                        | ND       | ND        | ND        | ND        | ND         | ND         | ND         |
| Aroclor-1221              |                    |                        | ND       | ND        | ND        | ND        | ND         | ND         | ND         |
| Aroclor-1232              |                    |                        | ND       | ND        | ND        | ND        | ND         | ND         | ND         |
| Aroclor-1242              |                    |                        | ND       | ND        | ND        | ND        | ND         | ND         | ND         |
| Aroclor-1248              |                    |                        | ND       | ND        | ND        | ND        | ND         | ND         | ND         |
| Aroclor-1254              |                    |                        | ND       | ND        | ND        | ND        | ND         | ND         | ND         |
| Aroclor-1260              |                    |                        | ND       | ND        | ND        | 2.1 J     | 83         | ND         | ND         |
| TOTAL PCBs                | 25,000             |                        | 0        | 0         | 0         | 2.1       | 83         | 0          | 0          |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | TE-MW-A-1 | TE-MW-A-1 | TE-MW-A-2 | TE-MW-A-2 | TE-MW-B/C-2 | TE-MW-B/C-2 |
|---------------------------|--------------------|------------------------|-----------|-----------|-----------|-----------|-------------|-------------|
| Parameter                 | Site Specific      | Sample Date:           | 9/26/2000 | 9/26/2000 | 10/9/2000 | 10/9/2000 | 9/7/2000    | 9/7/2000    |
| (Concentrations in µg/kg) | Soil Cleanup Level | Sample Depth (ft bls): | 14-16     | 37-37     | 14-16     | 20-22     | 8-10        | 48-50       |
|                           | $(\mu g/kg)$       | Map Zone:              | Zone III    | Zone III    |
|                           |                    |                        | (2)       | (2)       | (2)       | (2)       | (2)         | (2)         |
| Aroclor-1016              |                    |                        | ND        | ND        | ND        | ND        | ND          | ND          |
| Aroclor-1221              |                    |                        | ND        | ND        | ND        | ND        | ND          | ND          |
| Aroclor-1232              |                    |                        | ND        | ND        | ND        | ND        | ND          | ND          |
| Aroclor-1242              |                    |                        | ND        | ND        | ND        | ND        | ND          | ND          |
| Aroclor-1248              |                    |                        | ND        | ND        | ND        | ND        | ND          | ND          |
| Aroclor-1254              |                    |                        | ND        | ND        | ND        | ND        | ND          | ND          |
| Aroclor-1260              |                    |                        | 2.4 J     | ND        | 170       | 6.2 J     | ND          | ND          |
| TOTAL PCBs                | 25,000             |                        | 2.4       | 0         | 170       | 6.2       | 0           | 0           |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    |          | TE-MW-D-1 | TE-MW-D-1 | TE-MW-D-1 | TE-MW-IB-2 |           |
|---------------------------|--------------------|------------------------|----------|-----------|-----------|-----------|------------|-----------|
| Parameter                 | Site Specific      | Sample Date:           | 9/8/2000 | 9/25/2000 | 9/25/2000 | 9/25/2000 | 10/3/2000  | 10/3/2000 |
| (Concentrations in µg/kg) | Soil Cleanup Level | Sample Depth (ft bls): | 85-86    | 10-12     | 25-25     | 40-41     | 14-16      | 62-64     |
|                           | $(\mu g/kg)$       | Map Zone:              | Zone III | Zone III  | Zone III  | Zone III  | Zone II    | Zone II   |
|                           |                    |                        | (2)      | (2)       | (2)       | (2)       | (2)        | (2)       |
| Aroclor-1016              |                    |                        | ND       | ND        | ND        | ND        | ND         | ND        |
| Aroclor-1221              |                    |                        | ND       | ND        | ND        | ND        | ND         | ND        |
| Aroclor-1232              |                    |                        | ND       | ND        | ND        | ND        | ND         | ND        |
| Aroclor-1242              |                    |                        | ND       | ND        | ND        | ND        | ND         | ND        |
| Aroclor-1248              |                    |                        | ND       | ND        | ND        | ND        | ND         | ND        |
| Aroclor-1254              |                    |                        | ND       | ND        | ND        | ND        | 680 J      | 310       |
| Aroclor-1260              |                    |                        | ND       | 4 J       | 18 J      | ND        | 1300       | 400       |
| TOTAL PCBs                | 25,000             |                        | 0        | 4         | 18        | 0         | 1980       | 710       |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | NYSDEC<br>Site Specific | Sample Designation:<br>Sample Date: | TE-MW-IB-2<br>10/4/2000 | TE-MW-OB-1<br>10/11/2000 | TE-MW-OB-1<br>10/11/2000 | TE-MW-OB-2<br>9/19/2000 | TE-MW-OB-2<br>9/19/2000 |
|---------------------------|-------------------------|-------------------------------------|-------------------------|--------------------------|--------------------------|-------------------------|-------------------------|
| (Concentrations in µg/kg) | Soil Cleanup Level      | Sample Depth (ft bls):              | 93-95                   | 14-16                    | 45-45                    | 29-31                   | 60-62                   |
| ( 12 3/                   | (μg/kg)                 | Map Zone:                           | Zone II                 | Zone III                 | Zone III                 | Zone III                | Zone III                |
|                           |                         |                                     | (2)                     | (2)                      | (2)                      | (2)                     | (2)                     |
| Aroclor-1016              |                         |                                     | ND                      | ND                       | ND                       | ND                      | ND                      |
| Aroclor-1221              |                         |                                     | ND                      | ND                       | ND                       | ND                      | ND                      |
| Aroclor-1232              |                         |                                     | ND                      | ND                       | ND                       | ND                      | ND                      |
| Aroclor-1242              |                         |                                     | ND                      | ND                       | ND                       | 6.7 J                   | ND                      |
| Aroclor-1248              |                         |                                     | ND                      | ND                       | ND                       | ND                      | ND                      |
| Aroclor-1254              |                         |                                     | 5.1 J                   | ND                       | ND                       | ND                      | ND                      |
| Aroclor-1260              |                         |                                     | 9.9 J                   | 14 J                     | ND                       | 9.8 J                   | 2.4 J                   |
| TOTAL PCBs                | 25,000                  |                                     | 15                      | 14                       | 0                        | 16.5                    | 2.4                     |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | TE-MW-QA-2 | TE-MW-QA-2 | TE-OB-4   | TE-SD-1    | TE-SD-2   | TE-SD-2   | TS-1      |
|---------------------------|--------------------|------------------------|------------|------------|-----------|------------|-----------|-----------|-----------|
| Parameter                 | Site Specific      | Sample Date:           | 10/23/2000 | 10/23/2000 | 7/14/2000 | 10/30/2000 | 7/17/2000 | 7/17/2000 | 9/19/2000 |
| (Concentrations in µg/kg) | Soil Cleanup Level | Sample Depth (ft bls): | 18-20      | 40-42      | 24-26     | 6-7        | 6-8       | 8-10      | 0-0.5     |
|                           | $(\mu g/kg)$       | Map Zone:              | Zone III   | Zone III   | Zone II   | Zone III   | Zone III  | Zone III  | Zone II   |
|                           |                    |                        | (2)        | (2)        | (2)       | (2)        | (2)       | (2)       |           |
| Aroclor-1016              |                    |                        | ND         | ND         | ND        | ND         | ND        | ND        | ND        |
| Aroclor-1221              |                    |                        | ND         | ND         | ND        | ND         | ND        | ND        | ND        |
| Aroclor-1232              |                    |                        | ND         | ND         | ND        | ND         | ND        | ND        | ND        |
| Aroclor-1242              |                    |                        | ND         | ND         | ND        | ND         | ND        | ND        | ND        |
| Aroclor-1248              |                    |                        | ND         | ND         | ND        | ND         | ND        | ND        | ND        |
| Aroclor-1254              |                    |                        | ND         | ND         | ND        | ND         | 99        | ND        | ND        |
| Aroclor-1260              |                    |                        | ND         | ND         | ND        | 22 J       | 120       | 73        | 5700      |
| TOTAL PCBs                | 25,000             |                        | 0          | 0          | 0         | 22         | 219       | 73        | 5700      |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | NYSDEC<br>Site Specific | Sample Designation:<br>Sample Date: |         | TS-1B<br>9/19/2000 | TS-2<br>9/19/2000 | TS-2A<br>9/19/2000 | TS-2B<br>9/19/2000 | TS1-1<br>7/12/2002 | TS1-2<br>7/12/2002 | TS1-3<br>7/12/2002 |
|---------------------------|-------------------------|-------------------------------------|---------|--------------------|-------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| (Concentrations in µg/kg) | Soil Cleanup Level      | Sample Depth (ft bls):              | 0-0.5   | 0-0.5              | 0-0.5             | 0-0.5              | 0-0.5              | 0-1                | 0-1                | 0-1                |
|                           | (µg/kg)                 | Map Zone:                           | Zone II | Zone II            | Zone II           | Zone II            | Zone II            | Zone III           | Zone III           | Zone III           |
|                           |                         |                                     |         |                    |                   |                    |                    |                    |                    |                    |
| Aroclor-1016              |                         |                                     | ND      | ND                 | ND                | ND                 | ND                 | 15 U               | 1.5 U              | 30 U               |
| Aroclor-1221              |                         |                                     | ND      | ND                 | ND                | ND                 | ND                 | 14 U               | 1.3 U              | 27 U               |
| Aroclor-1232              |                         |                                     | ND      | ND                 | ND                | ND                 | ND                 | 16 U               | 1.5 U              | 31 U               |
| Aroclor-1242              |                         |                                     | ND      | ND                 | ND                | ND                 | ND                 | 17 U               | 1.6 U              | 32 U               |
| Aroclor-1248              |                         |                                     | ND      | ND                 | ND                | ND                 | ND                 | 11 U               | 1.1 U              | 22 U               |
| Aroclor-1254              |                         |                                     | ND      | ND                 | ND                | ND                 | ND                 | 2200               | 24                 | 1100               |
| Aroclor-1260              |                         |                                     | 13000   | 21000              | 26                | ND                 | 31                 | 1600               | 21                 | 1600               |
| TOTAL PCBs                | 25,000                  |                                     | 13000   | 21000              | 26                | 0                  | 31                 | 3800               | 45                 | 2700               |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 7/12/2002<br>0-1 | TS1-5<br>7/12/2002<br>0-1<br>Zone III | TS1-6<br>7/12/2002<br>0-1<br>Zone III | TS1-7<br>7/12/2002<br>0-1<br>Zone III | TS1-8<br>7/12/2002<br>0-1<br>Zone III | TS1-9<br>7/12/2002<br>0-1<br>Zone III | TS1-10<br>7/12/2002<br>0-1<br>Zone III | TS36-1<br>4/15/2002<br>0-1<br>Zone III |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 1.5 U            | 1.6 U                                 | 77 U                                  | 31 U                                  | 78 U                                  | 15 U                                  | 160 U                                  | 15 U                                   |
| Aroclor-1221                           |                                                          |                                                                            | 1.3 U            | 1.5 U                                 | 71 U                                  | 28 U                                  | 71 U                                  | 14 U                                  | 140 U                                  | 14 U                                   |
| Aroclor-1232                           |                                                          |                                                                            | 1.5 U            | 1.6 U                                 | 80 U                                  | 32 U                                  | 80 U                                  | 16 U                                  | 160 U                                  | 16 U                                   |
| Aroclor-1242                           |                                                          |                                                                            | 1.6 U            | 1.7 U                                 | 83 U                                  | 33 U                                  | 83 U                                  | 16 U                                  | 170 U                                  | 16 U                                   |
| Aroclor-1248                           |                                                          |                                                                            | 1.1 U            | 1.2 U                                 | 56 U                                  | 22 U                                  | 150 U                                 | 11 U                                  | 110 U                                  | 11 U                                   |
| Aroclor-1254                           |                                                          |                                                                            | 21               | 6.2 J                                 | 3000                                  | 2300                                  | 4300                                  | 520                                   | 4800                                   | 17 U                                   |
| Aroclor-1260                           |                                                          |                                                                            | 22               | 8.4 J                                 | 6500                                  | 2900                                  | 10000                                 | 980                                   | 10000                                  | 920                                    |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 43               | 14.6                                  | 9500                                  | 5200                                  | 14300                                 | 1500                                  | 14800                                  | 920                                    |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | NYSDEC<br>Site Specific | Sample Designation:<br>Sample Date: |          | TS36-3<br>4/15/2002 | TS36-4<br>4/15/2002 | TS36-5<br>4/15/2002 | TS36-6<br>4/15/2002 | TS36-7<br>4/15/2002 | TS36-8<br>4/15/2002 | TS36-9<br>4/15/2002 |
|---------------------------|-------------------------|-------------------------------------|----------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| (Concentrations in µg/kg) | Soil Cleanup Level      | Sample Depth (ft bls):              | 0-1      | 0-1                 | 0-1                 | 0-1                 | 0-1                 | 0-1                 | 0-1                 | 0-1                 |
|                           | (µg/kg)                 | Map Zone:                           | Zone III | Zone III            | Zone II             |
| Aroclor-1016              |                         |                                     | 7.6 U    | 15 U                | 31 U                | 18 U                | 15 U                | 37 U                | 77 U                | 32 U                |
| Aroclor-1221              |                         |                                     | 6.9 U    | 13 U                | 28 U                | 16 U                | 14 U                | 33 U                | 70 U                | 29 U                |
| Aroclor-1232              |                         |                                     | 7.9 U    | 15 U                | 32 U                | 18 U                | 16 U                | 38 U                | 80 U                | 33 U                |
| Aroclor-1242              |                         |                                     | 8.1 U    | 16 U                | 33 U                | 19 U                | 16 U                | 39 U                | 82 U                | 35 U                |
| Aroclor-1248              |                         |                                     | 5.5 U    | 11 U                | 22 U                | 13 U                | 11 U                | 27 U                | 56 U                | 23 U                |
| Aroclor-1254              |                         |                                     | 8.7 U    | 17 U                | 36 U                | 20 U                | 18 U                | 42 U                | 88 U                | 37 U                |
| Aroclor-1260              |                         |                                     | 590      | 650                 | 1200                | 980                 | 640                 | 1600                | 2200                | 1400                |
| TOTAL PCBs                | 25,000                  |                                     | 590      | 650                 | 1200                | 980                 | 640                 | 1600                | 2200                | 1400                |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | NYSDEC<br>Site Specific | Sample Designation:<br>Sample Date: |         |         | TS36-12<br>4/15/2002 | TS36-13<br>4/15/2002 |         | TS36-15<br>4/15/2002 |         | TU-1<br>6/26/2007 |
|---------------------------|-------------------------|-------------------------------------|---------|---------|----------------------|----------------------|---------|----------------------|---------|-------------------|
| (Concentrations in µg/kg) | Soil Cleanup Level      | Sample Depth (ft bls):              | 0-1     | 1-2     | 1-2                  | 0-1                  | 0-1     | 0-1                  | 0-1     | 0-1               |
|                           | (µg/kg)                 | Map Zone:                           | Zone II | Zone II | Zone II              | Zone II              | Zone II | Zone II              | Zone II | Zone III          |
| Aroclor-1016              |                         |                                     | 15 U    | 16 U    | 36 U                 | 160 U                | 30 U    | 15 U                 | 79 U    | 27 U              |
| Aroclor-1221              |                         |                                     | 14 U    | 14 U    | 32 U                 | 150 U                | 27 U    | 14 U                 | 72 U    | 27 U              |
| Aroclor-1232              |                         |                                     | 16 U    | 16 U    | 37 U                 | 170 U                | 31 U    | 16 U                 | 82 U    | 27 U              |
| Aroclor-1242              |                         |                                     | 16 U    | 17 U    | 38 U                 | 170 U                | 32 U    | 17 U                 | 85 U    | 27 U              |
| Aroclor-1248              |                         |                                     | 11 U    | 11 U    | 26 U                 | 120 U                | 22 U    | 11 U                 | 57 U    | 27 U              |
| Aroclor-1254              |                         |                                     | 18 U    | 18 U    | 41 U                 | 180 U                | 34 U    | 18 U                 | 91 U    | 27 U              |
| Aroclor-1260              |                         |                                     | 860     | 790     | 1800                 | 7000                 | 1400    | 970                  | 3200    | 1800              |
| TOTAL PCBs                | 25,000                  |                                     | 860     | 790     | 1800                 | 7000                 | 1400    | 970                  | 3200    | 1800              |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 6/26/2007<br>1-2 | TU-1<br>6/26/2007<br>2-3<br>Zone III | TU-2<br>6/26/2007<br>0-1<br>Zone II | TU-2<br>6/26/2007<br>1-2<br>Zone II | TU-2<br>6/26/2007<br>2-3<br>Zone II | TU-3<br>6/26/2007<br>0-1<br>Zone II | TU-3<br>6/26/2007<br>1-2<br>Zone II | TU-3<br>6/26/2007<br>2-3<br>Zone II |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 28 U             | 27 U                                 | 30 U                                | 28 U                                | 27 U                                | 27 U                                | 29 U                                | 29 U                                |
| Aroclor-1221                           |                                                          |                                                                            | 28 U             | 27 U                                 | 30 U                                | 28 U                                | 27 U                                | 27 U                                | 29 U                                | 29 U                                |
| Aroclor-1232                           |                                                          |                                                                            | 28 U             | 27 U                                 | 30 U                                | 28 U                                | 27 U                                | 27 U                                | 29 U                                | 29 U                                |
| Aroclor-1242                           |                                                          |                                                                            | 28 U             | 27 U                                 | 30 U                                | 28 U                                | 27 U                                | 27 U                                | 29 U                                | 29 U                                |
| Aroclor-1248                           |                                                          |                                                                            | 28 U             | 27 U                                 | 30 U                                | 28 U                                | 27 U                                | 27 U                                | 29 U                                | 29 U                                |
| Aroclor-1254                           |                                                          |                                                                            | 28 U             | 27 U                                 | 30 U                                | 28 U                                | 27 U                                | 27 U                                | 29 U                                | 29 U                                |
| Aroclor-1260                           |                                                          |                                                                            | 3100             | 2000                                 | 1300                                | 2100                                | 360                                 | 1700                                | 3200                                | 2000                                |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 3100             | 2000                                 | 1300                                | 2100                                | 360                                 | 1700                                | 3200                                | 2000                                |

µg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC Site Specific Soil Cleanup Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 6/26/2007 | TU-4<br>6/26/2007<br>1-2<br>Zone II | TU-4<br>6/26/2007<br>2-3<br>Zone II | TU-5<br>6/26/2007<br>0-1<br>Zone II | TU-5<br>6/26/2007<br>1-2<br>Zone II | TU-5<br>6/26/2007<br>2-3<br>Zone II | TU-6<br>6/26/2007<br>0-1<br>Zone II | TU-6<br>6/26/2007<br>1-2<br>Zone II |
|----------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|-----------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Aroclor-1016                           |                                                 |                                                                            | 27 U      | 28 U                                | 29 U                                | 27 U                                | 27 U                                | 26 U                                | 29 U                                | 27 U                                |
| Aroclor-1221                           |                                                 |                                                                            | 27 U      | 28 U                                | 29 U                                | 27 U                                | 27 U                                | 26 U                                | 29 U                                | 27 U                                |
| Aroclor-1232                           |                                                 |                                                                            | 27 U      | 28 U                                | 29 U                                | 27 U                                | 27 U                                | 26 U                                | 29 U                                | 27 U                                |
| Aroclor-1242                           |                                                 |                                                                            | 27 U      | 28 U                                | 29 U                                | 27 U                                | 27 U                                | 26 U                                | 29 U                                | 27 U                                |
| Aroclor-1248                           |                                                 |                                                                            | 27 U      | 28 U                                | 29 U                                | 27 U                                | 27 U                                | 26 U                                | 29 U                                | 27 U                                |
| Aroclor-1254                           |                                                 |                                                                            | 27 U      | 28 U                                | 29 U                                | 27 U                                | 27 U                                | 26 U                                | 29 U                                | 27 U                                |
| Aroclor-1260                           |                                                 |                                                                            | 770       | 1400                                | 890                                 | 1400                                | 1400                                | 1300                                | 670                                 | 700                                 |
| TOTAL PCBs                             | 25,000                                          |                                                                            | 770       | 1400                                | 890                                 | 1400                                | 1400                                | 1300                                | 670                                 | 700                                 |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: |      | TU-7<br>6/26/2007<br>0-1<br>Zone II | TU-7<br>6/26/2007<br>1-2<br>Zone II | TU-7<br>6/26/2007<br>2-3<br>Zone II | TU-8<br>6/26/2007<br>0-1<br>Zone II | TU-8<br>6/26/2007<br>1-2<br>Zone II | TU-8<br>6/26/2007<br>2-3<br>Zone II |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 27 U | 27 U                                | 29 U                                | 27 U                                | 27 U                                | 28 U                                | 29 U                                |
| Aroclor-1221                           |                                                          |                                                                            | 27 U | 27 U                                | 29 U                                | 27 U                                | 27 U                                | 28 U                                | 29 U                                |
| Aroclor-1232                           |                                                          |                                                                            | 27 U | 27 U                                | 29 U                                | 27 U                                | 27 U                                | 28 U                                | 29 U                                |
| Aroclor-1242                           |                                                          |                                                                            | 27 U | 27 U                                | 29 U                                | 27 U                                | 27 U                                | 28 U                                | 29 U                                |
| Aroclor-1248                           |                                                          |                                                                            | 27 U | 27 U                                | 29 U                                | 27 U                                | 27 U                                | 28 U                                | 29 U                                |
| Aroclor-1254                           |                                                          |                                                                            | 27 U | 27 U                                | 29 U                                | 27 U                                | 27 U                                | 28 U                                | 29 U                                |
| Aroclor-1260                           |                                                          |                                                                            | 510  | 850                                 | 1200                                | 1400                                | 1100                                | 3600                                | 1600                                |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 510  | 850                                 | 1200                                | 1400                                | 1100                                | 3600                                | 1600                                |

µg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | TU-9<br>6/27/2007<br>0-1<br>Zone II | TU-9<br>6/27/2007<br>1-2<br>Zone II | TU-9<br>6/27/2007<br>2-3<br>Zone II | TU-10<br>6/27/2007<br>0-1<br>Zone II | TU-10<br>6/27/2007<br>1-2<br>Zone II | TU-10<br>6/27/2007<br>2-3<br>Zone II |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 27 U                                | 27 U                                | 27 U                                | 27 U                                 | 28 U                                 | 27 U                                 |
| Aroclor-1221                           |                                                          |                                                                            | 27 U                                | 27 U                                | 27 U                                | 27 U                                 | 28 U                                 | 27 U                                 |
| Aroclor-1232                           |                                                          |                                                                            | 27 U                                | 27 U                                | 27 U                                | 27 U                                 | 28 U                                 | 27 U                                 |
| Aroclor-1242                           |                                                          |                                                                            | 27 U                                | 27 U                                | 27 U                                | 27 U                                 | 28 U                                 | 27 U                                 |
| Aroclor-1248                           |                                                          |                                                                            | 27 U                                | 27 U                                | 27 U                                | 27 U                                 | 28 U                                 | 27 U                                 |
| Aroclor-1254                           |                                                          |                                                                            | 27 U                                | 27 U                                | 27 U                                | 27 U                                 | 28 U                                 | 27 U                                 |
| Aroclor-1260                           |                                                          |                                                                            | 3100                                | 790                                 | 310                                 | 1700                                 | 2000                                 | 6600                                 |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 3100                                | 790                                 | 310                                 | 1700                                 | 2000                                 | 6600                                 |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | TU-11<br>6/27/2007<br>0-1<br>Zone II | TU-11<br>6/27/2007<br>1-2<br>Zone II | TU-11<br>6/27/2007<br>2-3<br>Zone II | TU-12<br>6/27/2007<br>0-1<br>Zone II | TU-12<br>6/27/2007<br>1-2<br>Zone II | TU-12<br>6/27/2007<br>2-3<br>Zone II |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 27 U                                 | 28 U                                 | 28 U                                 | 27 U                                 | 28 U                                 | 28 U                                 |
| Aroclor-1221                           |                                                          |                                                                            | 27 U                                 | 28 U                                 | 28 U                                 | 27 U                                 | 28 U                                 | 28 U                                 |
| Aroclor-1232                           |                                                          |                                                                            | 27 U                                 | 28 U                                 | 28 U                                 | 27 U                                 | 28 U                                 | 28 U                                 |
| Aroclor-1242                           |                                                          |                                                                            | 27 U                                 | 28 U                                 | 28 U                                 | 27 U                                 | 28 U                                 | 28 U                                 |
| Aroclor-1248                           |                                                          |                                                                            | 27 U                                 | 28 U                                 | 28 U                                 | 27 U                                 | 28 U                                 | 28 U                                 |
| Aroclor-1254                           |                                                          |                                                                            | 27 U                                 | 28 U                                 | 28 U                                 | 27 U                                 | 28 U                                 | 28 U                                 |
| Aroclor-1260                           |                                                          |                                                                            | 3800                                 | 4300                                 | 3800                                 | 1900                                 | 11000                                | 10000                                |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 3800                                 | 4300                                 | 3800                                 | 1900                                 | 11000                                | 10000                                |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 2. Summary of Polychlorinated Biphenyl Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC<br>Site Specific<br>Soil Cleanup Level<br>(µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | TU-13<br>6/27/2007<br>0-1<br>Zone II | TU-13<br>6/27/2007<br>1-2<br>Zone II | TU-13<br>6/27/2007<br>2-3<br>Zone II | TU-14<br>6/27/2007<br>0-1<br>Zone II | TU-14<br>6/27/2007<br>1-2<br>Zone II | TU-14<br>6/27/2007<br>2-3<br>Zone II | WWALL<br>1/4/1999<br><br>Zone III |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|
| Aroclor-1016                           |                                                          |                                                                            | 28 U                                 | 34 U                                 | 32 U                                 | 28 U                                 | 28 U                                 | 28 U                                 | 36 U                              |
| Aroclor-1221                           |                                                          |                                                                            | 28 U                                 | 34 U                                 | 32 U                                 | 28 U                                 | 28 U                                 | 28 U                                 | 73 U                              |
| Aroclor-1232                           |                                                          |                                                                            | 28 U                                 | 34 U                                 | 32 U                                 | 28 U                                 | 28 U                                 | 28 U                                 | 36 U                              |
| Aroclor-1242                           |                                                          |                                                                            | 28 U                                 | 34 U                                 | 32 U                                 | 28 U                                 | 28 U                                 | 28 U                                 | 36 U                              |
| Aroclor-1248                           |                                                          |                                                                            | 28 U                                 | 34 U                                 | 32 U                                 | 28 U                                 | 28 U                                 | 28 U                                 | 36 U                              |
| Aroclor-1254                           |                                                          |                                                                            | 28 U                                 | 34 U                                 | 32 U                                 | 28 U                                 | 28 U                                 | 28 U                                 | 36 U                              |
| Aroclor-1260                           |                                                          |                                                                            | 1800                                 | 4900                                 | 2300                                 | 1700                                 | 500                                  | 65                                   | 36 U                              |
| TOTAL PCBs                             | 25,000                                                   |                                                                            | 1800                                 | 4900                                 | 2300                                 | 1700                                 | 500                                  | 65                                   | 0                                 |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NYSDEC - New York State Department of Environmental Conservation

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

NA - Specific Aroclor data is not available.

PCB - Polychlorinated Biphenyl

Bold text indicates the exceedance of Yard Soil Cleanup Level for PCBs

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- (3) Sample Collected by Various Amtrak Subcontractors as Part of Routine Yard Maintenance Activities
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | 57SW-1    | 57SW-1    | 57SW-2    | 57SW-2    | 59       | 59       | 61W      | 61W      |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|----------|----------|----------|----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 8/10/1998 | 8/10/1998 | 8/10/1998 | 8/10/1998 | 3/9/1999 | 3/9/1999 | 3/9/1999 | 3/9/1999 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | В         | 0-1**     | В         | 0-1**     | В        | 0-1**    | В        | 0-1**    |
|                           |               | Map Zone:              | Zone II   | Zone II   | Zone II   | Zone II   | Zone IV  | Zone IV  | Zone IV  | Zone IV  |
| Benzo(a)anthracene        |               |                        | 47 J      | 680       | 440       | 91 U      | 1000     | 360 J    | 1500     | 260 J    |
| Benzo(a)pyrene            |               |                        | 140       | 2000      | 1300      | 25 J      | 230 J    | 320 J    | 1000     | 93 J     |
| Benzo(b)fluoranthene      |               |                        | 110       | 2300      | 1400      | 23 J      | 1000     | 700      | 2600     | 180 J    |
| Benzo(k)fluoranthene      |               |                        | 86 J      | 1200      | 640       | 91 U      | 390 U    | 380 U    | 390 U    | 130 J    |
| Chrysene                  |               |                        | 70 J      | 920       | 650       | 91 U      | 1100     | 510      | 1800     | 300 J    |
| Dibenzo(a,h)anthracene    |               |                        | 97 U      | 330       | 250       | 91 U      | 390 U    | 380 U    | 370 J    | 370 U    |
| Indeno(1,2,3-cd)pyrene    |               |                        | 23 J      | 1100      | 510       | 91 U      | 250 J    | 290 J    | 890      | 58 J     |
| Total cPAHs:              | 25,000        |                        | 476       | 8530      | 5190      | 48        | 3580     | 2180     | 8160     | 1021     |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

R - Rejected by validator

RE - Reanalysis

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

1 - Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.

- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | 79       | 79       | A9-B1      | A9-B2      | A9-EW      | A9-NW      | A9-SW      | A9-WW      |
|---------------------------|---------------|------------------------|----------|----------|------------|------------|------------|------------|------------|------------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 3/9/1999 | 3/9/1999 | 12/21/2000 | 12/21/2000 | 12/28/2000 | 12/21/2000 | 12/21/2000 | 12/21/2000 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | В        | 0-1**    |            |            |            |            |            |            |
|                           |               | Map Zone:              | Zone III | Zone III | Zone III   | Zone III   | Zone III   | Zone III   | Zone III   | Zone III   |
| Benzo(a)anthracene        |               |                        | 940      | 390 J    | 290 J      | 310 J      | 380        | 170 J      | 490        | 470        |
| Benzo(a)pyrene            |               |                        | 980      | 390 J    | 290 J      | 370 U      | 440        | 210 J      | 360 J      | 380        |
| Benzo(b)fluoranthene      |               |                        | 2200     | 630      | 600        | 370 U      | 890        | 390        | 780        | 790        |
| Benzo(k)fluoranthene      |               |                        | 440 U    | 360 J    | 290 J      | 370 U      | 370        | 200 J      | 410        | 460        |
| Chrysene                  |               |                        | 1200     | 550      | 370        | 360 J      | 480        | 200 J      | 610        | 520        |
| Dibenzo(a,h)anthracene    |               |                        | 470      | 130 J    | 370 U      | 370 U      | 36 J       | 360 U      | 370 U      | 370 U      |
| Indeno(1,2,3-cd)pyrene    |               |                        | 1000     | 430      | 140 J      | 220 J      | 280 J      | 74 J       | 210 J      | 170 J      |
| Total cPAHs:              | 25,000        |                        | 6790     | 2880     | 1980       | 890        | 2876       | 1244       | 2860       | 2790       |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | BB-1     | BB-1     | BB-2     | BB-2     | BB-3     | BB-3     | BOTTOM   | CB-1      | CB-2      |
|---------------------------|---------------|------------------------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 6/4/1998 | 6/4/1998 | 6/4/1998 | 6/4/1998 | 6/4/1998 | 6/4/1998 | 1/4/1999 | 7/29/1999 | 7/29/1999 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1      | 1-2      | 0-1      | 1-2      | 0-1      | 1-2      |          | 0-1       | 0-1       |
|                           |               | Map Zone:              | Zone II  | Zone III | Zone II   | Zone II   |
| Benzo(a)anthracene        |               |                        | 630      | 58 J     | 24 J     | 150 J    | 540      | 150 J    | 170      | 50 J      | 4500 D    |
| Benzo(a)pyrene            |               |                        | 490      | 64 J     | 22 J     | 140 J    | 570      | 140 J    | 200      | 410 U     | 4300 D    |
| Benzo(b)fluoranthene      |               |                        | 1000     | 120 J    | 47 J     | 260      | 1100     | 280      | 160      | 42 J      | 6200 D    |
| Benzo(k)fluoranthene      |               |                        | 190 U    | 190 U    | 210 U    | 210 U    | 180 U    | 190 U    | 100      | 58 J      | 5600 D    |
| Chrysene                  |               |                        | 660      | 71 J     | 43 J     | 270      | 590      | 190      | 110      | 68 J      | 5600 D    |
| Dibenzo(a,h)anthracene    |               |                        | 110 J    | 190 U    | 210 U    | 21 J     | 57 J     | 190 U    | 93 J     | 410 U     | 400 JD    |
| Indeno(1,2,3-cd)pyrene    |               |                        | 250      | 36 J     | 210 U    | 68 J     | 390      | 75 J     | 95 U     | 410 U     | 1200 JD   |
| Total cPAHs:              | 25,000        |                        | 3140     | 349      | 136      | 909      | 3247     | 835      | 833      | 218       | 27800     |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

R - Rejected by validator

RE - Reanalysis

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

1 - Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.

- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | Site Specific<br>Soil Cleanup<br>Level (µg/kg) | Sample Designation: Sample Date: Sample Depth (ft bls): Map Zone: | CB-2<br>7/29/1999<br>1-2<br>Zone II | CB-2E<br>6/21/2005<br>0-1<br>Zone II | CB-2E<br>6/21/2005<br>1-2<br>Zone II | CB-2E<br>6/21/2005<br>2-3<br>Zone II | CB-2N<br>6/21/2005<br>0-1<br>Zone II | CB-2N<br>6/21/2005<br>1-2<br>Zone II | CB-2N<br>6/21/2005<br>2-3<br>Zone II |
|----------------------------------------|------------------------------------------------|-------------------------------------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Benzo(a)anthracene                     |                                                |                                                                   | 1200                                | 530 J                                | 5200                                 | 1700                                 | 140 J                                | 1800                                 | 190 J                                |
| Benzo(a)pyrene                         |                                                |                                                                   | 1300                                | 740 J                                | 4500                                 | 1300                                 | 180 J                                | 1600                                 | 170 J                                |
| Benzo(b)fluoranthene                   |                                                |                                                                   | 2200                                | 1400                                 | 11000                                | 2900                                 | 340 J                                | 3500                                 | 300 J                                |
| Benzo(k)fluoranthene                   |                                                |                                                                   | 1600                                | 430 J                                | 3000                                 | 1000 J                               | 180 J                                | 830 J                                | 98 J                                 |
| Chrysene                               |                                                |                                                                   | 1600                                | 620 J                                | 6700                                 | 1700                                 | 190 J                                | 1900                                 | 220 J                                |
| Dibenzo(a,h)anthracene                 |                                                |                                                                   | 430 U                               | 1100 U                               | 640 J                                | 240 J                                | 360 U                                | 250 J                                | 43 J                                 |
| Indeno(1,2,3-cd)pyrene                 |                                                |                                                                   | 660                                 | 360 J                                | 1700                                 | 740 J                                | 360 U                                | 780 J                                | 150 J                                |
| Total cPAHs:                           | 25,000                                         |                                                                   | 8560                                | 4080                                 | 32740                                | 9580                                 | 1030                                 | 10660                                | 1171                                 |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | CB-2S     | CB-2S     | CB-2S     | CB-2W     | CB-2W     | CB-2W     | CB-2W     |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 6/21/2005 | 6/21/2005 | 6/21/2005 | 6/21/2005 | 6/21/2005 | 6/21/2005 | 8/24/2005 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1       | 1-2       | 2-3       | 0-1       | 1-2       | 2-3       | 3-4       |
|                           |               | Map Zone:              | Zone II   |
| Benzo(a)anthracene        |               |                        | 1600      | 310 J     | 190 J     | 760 J     | 4700      | 6800      | 91 J      |
| Benzo(a)pyrene            |               |                        | 1500      | 350 J     | 190 J     | 920 J     | 5400      | 3700      | 350 U     |
| Benzo(b)fluoranthene      |               |                        | 3100      | 500       | 260 J     | 1600      | 8100      | 5600      | 130 J     |
| Benzo(k)fluoranthene      |               |                        | 1000 J    | 120 J     | 100 J     | 530 J     | 2900 J    | 2400      | 78 J      |
| Chrysene                  |               |                        | 1600      | 320 J     | 230 J     | 870 J     | 6900      | 6200      | 140 J     |
| Dibenzo(a,h)anthracene    |               |                        | 220 J     | 90 J      | 360 U     | 130 J     | 1800 J    | 1000 J    | 95 J      |
| Indeno(1,2,3-cd)pyrene    |               |                        | 640 J     | 270 J     | 110 J     | 380 J     | 4800      | 2500      | 180 J     |
| Total cPAHs:              | 25,000        |                        | 9660      | 1960      | 1080      | 5190      | 34600     | 28200     | 714       |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | CB-2W     | CB-2WN    | CB-2WN    | CB-2WN    | CB-2WN    | CB-2WN    | CB-2WS    |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 8/24/2005 | 8/24/2005 | 8/24/2005 | 8/24/2005 | 8/24/2005 | 8/24/2005 | 8/24/2005 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 4-5       | 0-1       | 1-2       | 2-3       | 3-4       | 4-5       | 0-1       |
|                           |               | Map Zone:              | Zone II   |
| Benzo(a)anthracene        |               |                        | 43 J      | 360 U     | 110 J     | 1500      | 580       | 350 U     | 1000      |
| Benzo(a)pyrene            |               |                        | 81 J      | 360 U     | 130 J     | 1400      | 570       | 350 U     | 1100      |
| Benzo(b)fluoranthene      |               |                        | 99 J      | 360 U     | 290 J     | 2800      | 1100      | 350 U     | 1700      |
| Benzo(k)fluoranthene      |               |                        | 360 U     | 360 U     | 61 J      | 650       | 250 J     | 350 U     | 750       |
| Chrysene                  |               |                        | 73 J      | 360 U     | 150 J     | 1800      | 770       | 350 U     | 1200      |
| Dibenzo(a,h)anthracene    |               |                        | 360 U     | 360 U     | 38 J      | 550       | 230 J     | 350 U     | 350 J     |
| Indeno(1,2,3-cd)pyrene    |               |                        | 360 U     | 360 U     | 120 J     | 1400      | 520       | 350 U     | 890       |
| Total cPAHs:              | 25,000        |                        | 296       | 0         | 899       | 10100     | 4020      | 0         | 6990      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | CB-2WS    | CB-2WS    | CB-2WS    | CB-2WS    | CB-3      | CB-4      | CB-5      | CB-6      |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 8/24/2005 | 8/24/2005 | 8/24/2005 | 8/24/2005 | 7/29/1999 | 7/29/1999 | 7/29/1999 | 7/29/1999 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 1-2       | 2-3       | 3-4       | 4-5.5     | 0-1       | 0-1       | 0-1       | 0-1       |
|                           |               | Map Zone:              | Zone II   |
| Benzo(a)anthracene        |               |                        | 5700      | 6700      | 350 U     | 340 U     | 130 J     | 1800      | 38 J      | 420 U     |
| Benzo(a)pyrene            |               |                        | 5400      | 5000      | 350 U     | 340 U     | 170 J     | 1200      | 50 J      | 420 U     |
| Benzo(b)fluoranthene      |               |                        | 8300      | 6900      | 350 U     | 340 U     | 230 J     | 1700      | 75 J      | 53 J      |
| Benzo(k)fluoranthene      |               |                        | 3100      | 2200      | 350 U     | 340 U     | 180 J     | 1300      | 62 J      | 66 J      |
| Chrysene                  |               |                        | 6100      | 5100      | 350 U     | 340 U     | 170 J     | 1900      | 55 J      | 44 J      |
| Dibenzo(a,h)anthracene    |               |                        | 1600 J    | 1500 J    | 350 U     | 340 U     | 350 U     | 350 U     | 370 U     | 420 U     |
| Indeno(1,2,3-cd)pyrene    |               |                        | 3800      | 3200      | 350 U     | 340 U     | 86 J      | 520       | 370 U     | 420 U     |
| Total cPAHs:              | 25,000        |                        | 34000     | 30600     | 0         | 0         | 966       | 8420      | 280       | 163       |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | CB-8      | CB-9      | CB-10     | CB-11     | CB-12     | CB-13     | CB-14     | CB-15     | CB-16     |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 7/29/1999 | 7/29/1999 | 7/29/1999 | 7/29/1999 | 7/29/1999 | 7/30/1999 | 7/29/1999 | 7/29/1999 | 8/12/1999 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       |
|                           |               | Map Zone:              | Zone II   |
| Benzo(a)anthracene        |               |                        | 540       | 160 J     | 490       | 50 J      | 140 J     | 65 J      | 260 J     | 460       | 54 J      |
| Benzo(a)pyrene            |               |                        | 570       | 410       | 430       | 55 J      | 170 J     | 71 J      | 270 J     | 560       | 56 J      |
| Benzo(b)fluoranthene      |               |                        | 820       | 430       | 860       | 57 J      | 450       | 180 J     | 450       | 1200      | 140 J     |
| Benzo(k)fluoranthene      |               |                        | 630       | 260 J     | 710       | 86 J      | 350       | 86 J      | 460       | 750       | 110 J     |
| Chrysene                  |               |                        | 630       | 400       | 840       | 61 J      | 280 J     | 140 J     | 380       | 720       | 100 J     |
| Dibenzo(a,h)anthracene    |               |                        | 350 U     | 350 U     | 350 U     | 420 U     | 350 U     | 340 U     | 360 U     | 91 J      | 350 U     |
| Indeno(1,2,3-cd)pyrene    |               |                        | 370       | 200 J     | 300 J     | 420 U     | 87 J      | 54 J      | 97 J      | 220 J     | 350 U     |
| Total cPAHs:              | 25,000        |                        | 3560      | 1860      | 3630      | 309       | 1477      | 596       | 1917      | 4001      | 460       |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | CB-16     | CB-16     | CB-17     | CB-17     | CB-17     | CB-21     | CEH-1      | CEH-2      |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 8/12/1999 | 8/12/1999 | 8/12/1999 | 8/12/1999 | 8/12/1999 | 10/1/1999 | 12/13/2000 | 12/13/2000 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 1-2       | 2-3       | 0-1       | 1-2       | 2-3       | 8-10      | 0-0.16     | 0-0.16     |
|                           |               | Map Zone:              | Zone II    | Zone II    |
| Benzo(a)anthracene        |               |                        | 130 J     | 370 U     | 240 J     | 170 J     | 290 J     | 350 U     | 600        | 760        |
| Benzo(a)pyrene            |               |                        | 110 J     | 370 U     | 260 J     | 160 J     | 240 J     | 350 U     | 490        | 490        |
| Benzo(b)fluoranthene      |               |                        | 160 J     | 46 J      | 550       | 280 J     | 450       | 350 U     | 660        | 770        |
| Benzo(k)fluoranthene      |               |                        | 150 J     | 39 J      | 440       | 290 J     | 430       | 350 U     | 560        | 430        |
| Chrysene                  |               |                        | 160 J     | 39 J      | 340 J     | 240 J     | 360       | 350 U     | 820        | 1000       |
| Dibenzo(a,h)anthracene    |               |                        | 360 U     | 370 U     | 350 U     | 340 U     | 350 U     | 350 U     | 45 J       | 350 U      |
| Indeno(1,2,3-cd)pyrene    |               |                        | 43 J      | 370 U     | 96 J      | 52 J      | 68 J      | 350 U     | 360        | 280 J      |
| Total cPAHs:              | 25,000        |                        | 753       | 124       | 1926      | 1192      | 1838      | 0         | 3535       | 3730       |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | CEH-3      | CEH-4      | CEH-5      | CEH-6      | CEH-7      | CEH-8     | CEH-9     | DW NWALL |
|---------------------------|---------------|------------------------|------------|------------|------------|------------|------------|-----------|-----------|----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 12/13/2000 | 12/13/2000 | 12/21/2000 | 12/21/2000 | 12/21/2000 | 1/16/2001 | 1/16/2001 | 5/4/1998 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-0.16     | 0-0.16     | 0-0.16     | 0-0.16     | 0-0.16     | 0-0.16    | 0-0.16    | -        |
|                           |               | Map Zone:              | Zone II    | Zone II    | Zone II    | Zone II    | Zone III   | Zone III  | Zone III  | Zone II  |
| Benzo(a)anthracene        |               |                        | 500        | 500        | 3300       | 640        | 110 J      | 160 J     | 120 J     | 350 U    |
| Benzo(a)pyrene            |               |                        | 520        | 530        | 2700       | 840        | 120 J      | 120 J     | 110 J     | 350 U    |
| Benzo(b)fluoranthene      |               |                        | 560        | 710        | 4600 D     | 1600       | 260 J      | 220 J     | 180 J     | 350 U    |
| Benzo(k)fluoranthene      |               |                        | 530        | 420        | 2500       | 620        | 120 J      | 130 J     | 130 J     | 350 U    |
| Chrysene                  |               |                        | 650        | 620        | 4700 D     | 910        | 140 J      | 240 J     | 180 J     | 350 U    |
| Dibenzo(a,h)anthracene    |               |                        | 36 J       | 370 U      | 130 J      | 76 J       | 370 U      | 380 U     | 390 U     | 350 U    |
| Indeno(1,2,3-cd)pyrene    |               |                        | 340 J      | 370 J      | 780        | 500        | 66 J       | 38 J      | 44 J      | 350 U    |
| Total cPAHs:              | 25,000        |                        | 3136       | 3150       | 18710      | 5186       | 816        | 908       | 764       | 0        |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | DW EWALL | DW WWALL | DW BOTTOM | EH-12     | EH-12     | EH-14     | EHS-1     |
|---------------------------|---------------|------------------------|----------|----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 5/4/1998 | 5/4/1998 | 5/4/1998  | 7/29/1997 | 7/29/1997 | 7/29/1997 | 2/12/2001 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | -        | -        | -         | 0-2       | 2-4       | 0-2       | 0-0.5     |
|                           |               | Map Zone:              | Zone II  | Zone II  | Zone II   | Zone II   | Zone II   | Zone II   | Zone II   |
| Benzo(a)anthracene        |               |                        | 350 U    | 340 U    | 340 U     | 850       | 380       | 690       | 19 U      |
| Benzo(a)pyrene            |               |                        | 350 U    | 340 U    | 340 U     | 790       | 300 J     | 740       | 19 U      |
| Benzo(b)fluoranthene      |               |                        | 350 U    | 340 U    | 340 U     | 940       | 400       | 1200      | 19 U      |
| Benzo(k)fluoranthene      |               |                        | 350 U    | 340 U    | 340 U     | 690       | 300 J     | 910       | 19 U      |
| Chrysene                  |               |                        | 350 U    | 340 U    | 340 U     | 1000      | 220 J     | 840       | 19 U      |
| Dibenzo(a,h)anthracene    |               |                        | 350 U    | 340 U    | 340 U     | 370 U     | 160 J     | 360 U     | 240       |
| Indeno(1,2,3-cd)pyrene    |               |                        | 350 U    | 340 U    | 340 U     | 360 J     | 260 J     | 270 J     | 19 U      |
| Total cPAHs:              | 25,000        |                        | 0        | 0        | 0         | 4630      | 2020      | 4650      | 240       |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | EHS-2     | EWALL    | FC-4      | FC-5      | FC-8      | FC-11     | FC-18    | FC-24    | FC-27    |
|---------------------------|---------------|------------------------|-----------|----------|-----------|-----------|-----------|-----------|----------|----------|----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 2/12/2001 | 1/4/1999 | 9/14/1994 | 9/14/1994 | 9/14/1994 | 9/14/1994 | 4/6/1994 | 4/5/1994 | 4/4/1994 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-0.5     |          | 0-2       | 0-2       | 0-2       | 0-2       | 1-3      | 1-3      | 1-3      |
|                           |               | Map Zone:              | Zone II   | Zone III | Zone III  | Zone II   | Zone II   | Zone II   | Zone I   | Zone I   | Zone I   |
| Benzo(a)anthracene        |               |                        | 170 J     | 370 U    | 310 J     | 520       | 130 J     | 380       | 9 J      | 100 J    | 62 J     |
| Benzo(a)pyrene            |               |                        | 200 J     | 370 U    | 330 J     | 560       | 100 J     | 490       | 8 J      | 93 J     | 72 J     |
| Benzo(b)fluoranthene      |               |                        | 330 J     | 370 U    | 510       | 1500      | 540       | 1600      | 10 J     | 94 J     | 130 J    |
| Benzo(k)fluoranthene      |               |                        | 160 J     | 370 U    | 480       | 980       | 200 J     | 720       | 330 U    | 19 J     | 75 J     |
| Chrysene                  |               |                        | 220 J     | 370 U    | 440       | 690       | 330 J     | 550       | 11 J     | 120 J    | 79 J     |
| Dibenzo(a,h)anthracene    |               |                        | 390 U     | 370 U    | 25 J      | 33 J      | 330 U     | 66 J      | 330 U    | 17 J     | 330 U    |
| Indeno(1,2,3-cd)pyrene    |               |                        | 69 J      | 370 U    | 81 J      | 180 J     | 330 U     | 200 J     | 330 U    | 87 J     | 330 U    |
| Total cPAHs:              | 25,000        |                        | 1149      | 0        | 2176      | 4463      | 1300      | 4006      | 38       | 530      | 418      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | FC-31    | FC-33    | FC-36    | FC-40    | FT-1     | FT-2     | FT-3     | FT-4     | FT-5 RE  |
|---------------------------|---------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 4/5/1994 | 4/4/1994 | 4/6/1994 | 4/5/1994 | 4/7/1997 | 4/7/1997 | 4/7/1997 | 4/7/1997 | 4/7/1997 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 1-3      | 1-3      | 7-9      | 1-3      | 0-2      | 0-2      | 0-2      | 0-2      | 0-2      |
|                           |               | Map Zone:              | Zone I   | Zone I   | Zone I   | Zone I   | Zone II  | Zone II  | Zone II  | Zone II  | Zone I   |
| Benzo(a)anthracene        |               |                        | 64 J     | 280 J    | 330 U    | 56 J     | 750      | 1700     | 740      | 200 J    | 1200     |
| Benzo(a)pyrene            |               |                        | 56 J     | 230 J    | 330 UJ   | 58 J     | 690      | 1200 J   | 670      | 180 J    | 1300     |
| Benzo(b)fluoranthene      |               |                        | 70 J     | 240 J    | 330 UJ   | 69 J     | 870      | 1800     | 1300     | 490      | 2300     |
| Benzo(k)fluoranthene      |               |                        | 12 J     | 200 J    | 330 UJ   | 13 J     | 630      | 43 J     | 850      | 350 U    | 2300     |
| Chrysene                  |               |                        | 110 J    | 340 J    | 330 U    | 64 J     | 900      | 1600     | 1200     | 140 J    | 1800     |
| Dibenzo(a,h)anthracene    |               |                        | 11 J     | 19 J     | 330 UJ   | 330 U    | 34 J     | 1400 U   | 38 J     | 41 J     | 69 J     |
| Indeno(1,2,3-cd)pyrene    |               |                        | 30 J     | 78 J     | 330 UJ   | 27 J     | 87 J     | 130 J    | 110 J    | 85 J     | 200 J    |
| Total cPAHs:              | 25,000        |                        | 353      | 1387     | 0        | 287      | 3961     | 6473     | 4908     | 1136     | 9169     |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | FT-6     | HB-1 RE  | HB-2       | HB-3       | HB-4*      | HB-4+20  | HB-4-20  | HB-9       |
|---------------------------|---------------|------------------------|----------|----------|------------|------------|------------|----------|----------|------------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 4/7/1997 | 1/3/2000 | 10/25/1999 | 10/25/1999 | 10/26/1999 | 1/3/2000 | 1/3/2000 | 10/25/1999 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-2      | 0-1      | 0-1        | 0-1        | 1-2        | 0-1      | 0-1      | 0-1        |
|                           |               | Map Zone:              | Zone I   | Zone III | Zone III   | Zone III   | Zone III   | Zone III | Zone III | Zone II    |
| Benzo(a)anthracene        |               |                        | 370      | 360 J    | 210 J      | 170 J      | 350 U      | 450 U    | 370 U    | 450        |
| Benzo(a)pyrene            |               |                        | 260 J    | 390 J    | 210 J      | 150 J      | 350 U      | 450 U    | 370 U    | 360 J      |
| Benzo(b)fluoranthene      |               |                        | 1200     | 720      | 250 J      | 190 J      | 350 U      | 450 U    | 42 J     | 600        |
| Benzo(k)fluoranthene      |               |                        | 360      | 540      | 310 J      | 190 J      | 350 U      | 450 U    | 370 U    | 470        |
| Chrysene                  |               |                        | 660      | 600      | 280 J      | 210 J      | 350 U      | 450 U    | 43 J     | 510        |
| Dibenzo(a,h)anthracene    |               |                        | 46 J     | 90 J     | 390 U      | 400 U      | 350 U      | 450 U    | 370 U    | 360 U      |
| Indeno(1,2,3-cd)pyrene    |               |                        | 150 J    | 240 J    | 130 J      | 91 J       | 350 U      | 450 U    | 370 U    | 230 J      |
| Total cPAHs:              | 25,000        |                        | 3046     | 2940     | 1390       | 1001       | 0          | 0        | 85       | 2620       |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | HB-10      | HB-11      | HB-12      | HB-13      | HB-14      | HB-15      | HB-16      | HB-17      |
|---------------------------|---------------|------------------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 10/25/1999 | 10/25/1999 | 10/25/1999 | 10/27/1999 | 10/27/1999 | 10/27/1999 | 10/27/1999 | 10/27/1999 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1        | 0-1        | 0-1        | 0-1        | 0-1        | 0-1        | 0-1        | 0-1        |
|                           |               | Map Zone:              | Zone II    |
| Benzo(a)anthracene        |               |                        | 90 J       | 450        | 440        | 1000       | 430        | 190 J      | 78 J       | 420 U      |
| Benzo(a)pyrene            |               |                        | 130 J      | 470        | 470        | 650        | 440        | 210 J      | 65 J       | 580        |
| Benzo(b)fluoranthene      |               |                        | 170 J      | 720        | 890        | 1000       | 690        | 390        | 78 J       | 270 J      |
| Benzo(k)fluoranthene      |               |                        | 130 J      | 590        | 580        | 850        | 640        | 270 J      | 110 J      | 170 J      |
| Chrysene                  |               |                        | 130 J      | 560        | 680        | 1500       | 640        | 250 J      | 120 J      | 420 U      |
| Dibenzo(a,h)anthracene    |               |                        | 370 U      | 400 U      | 360 U      | 380 U      | 380 U      | 390 U      | 380 U      | 420 U      |
| Indeno(1,2,3-cd)pyrene    |               |                        | 370 U      | 340 J      | 330 J      | 280 J      | 190 J      | 150 J      | 380 U      | 420 U      |
| Total cPAHs:              | 25,000        |                        | 650        | 3130       | 3390       | 5280       | 3030       | 1460       | 451        | 1020       |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | Site Specific<br>Soil Cleanup<br>Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: |       | HB-18-20 RE<br>1/3/2000<br>0-1<br>Zone II | HB-19*<br>10/26/1999<br>1-2<br>Zone II | HB-20*<br>10/26/1999<br>1-2<br>Zone II | HB-21*<br>10/26/1999<br>1-2<br>Zone II | HB-21+20 RE<br>1/3/2000<br>0-1<br>Zone II | HB-22<br>10/25/1999<br>0-1<br>Zone II |
|-------------------------------------|------------------------------------------------|----------------------------------------------------------------------------|-------|-------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------------|---------------------------------------|
| Benzo(a)anthracene                  |                                                |                                                                            | 360 U | 160 J                                     | 790                                    | 170 J                                  | 230 J                                  | 430                                       | 61 J                                  |
| Benzo(a)pyrene                      |                                                |                                                                            | 360 U | 290 J                                     | 820                                    | 190 J                                  | 260 J                                  | 610                                       | 55 J                                  |
| Benzo(b)fluoranthene                |                                                |                                                                            | 360 U | 520                                       | 1300                                   | 310 J                                  | 310 J                                  | 930                                       | 76 J                                  |
| Benzo(k)fluoranthene                |                                                |                                                                            | 360 U | 410 J                                     | 1200                                   | 260 J                                  | 370 J                                  | 690                                       | 70 J                                  |
| Chrysene                            |                                                |                                                                            | 360 U | 310 J                                     | 1100                                   | 220 J                                  | 290 J                                  | 650                                       | 90 J                                  |
| Dibenzo(a,h)anthracene              |                                                |                                                                            | 360 U | 92 J                                      | 350 U                                  | 400 U                                  | 390 U                                  | 140 J                                     | 370 U                                 |
| Indeno(1,2,3-cd)pyrene              |                                                |                                                                            | 360 U | 240 J                                     | 660                                    | 150 J                                  | 160 J                                  | 320 J                                     | 45 J                                  |
| Total cPAHs:                        | 25,000                                         |                                                                            | 0     | 2022                                      | 5870                                   | 1300                                   | 1620                                   | 3770                                      | 397                                   |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

R - Rejected by validator

RE - Reanalysis

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

1 - Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.

- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | HB-23      | HB-25      | HB-26      | HB-27      | HB-28      | HB-29      | HB-30      | HB-31      |
|---------------------------|---------------|------------------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 10/25/1999 | 10/26/1999 | 10/26/1999 | 10/26/1999 | 10/27/1999 | 10/25/1999 | 10/25/1999 | 10/25/1999 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1        | 0-1        | 0-1        | 0-1        | 0-1        | 0-1        | 0-1        | 0-1        |
|                           |               | Map Zone:              | Zone II    | Zone II    | Zone II    | Zone II    | Zone III   | Zone II    | Zone II    | Zone II    |
| Benzo(a)anthracene        |               |                        | 380 U      | 110 J      | 47 J       | 160 J      | 420        | 780        | 500        | 320 J      |
| Benzo(a)pyrene            |               |                        | 220 J      | 51 J       | 390 U      | 100 J      | 470        | 990        | 520        | 420        |
| Benzo(b)fluoranthene      |               |                        | 190 J      | 120 J      | 56 J       | 300 J      | 410        | 2100       | 820        | 690        |
| Benzo(k)fluoranthene      |               |                        | 140 J      | 110 J      | 40 J       | 190 J      | 490        | 1300       | 660        | 730        |
| Chrysene                  |               |                        | 380 U      | 180 J      | 71 J       | 310 J      | 560        | 1400       | 700        | 520        |
| Dibenzo(a,h)anthracene    |               |                        | 380 U      | 380 U      | 390 U      | 400 U      | 330 U      | 410 U      | 420 U      | 390 U      |
| Indeno(1,2,3-cd)pyrene    |               |                        | 120 J      | 380 U      | 390 U      | 55 J       | 180 J      | 350 J      | 170 J      | 170 J      |
| Total cPAHs:              | 25,000        |                        | 670        | 571        | 214        | 1115       | 2530       | 6920       | 3370       | 2850       |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Doromotor                           | Site Specific                 | Sample Designation:                                 |                | HB-33          | HB-34          | HB-35          | HB-36          | HBR-1          | HBR-1          | HBR-2           |
|-------------------------------------|-------------------------------|-----------------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|
| Parameter (Concentrations in μg/kg) | Soil Cleanup<br>Level (µg/kg) | Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 0-1<br>Zone II | 1-2<br>Zone II | 0-1<br>Zone III |
| Benzo(a)anthracene                  |                               |                                                     | 110 J          | 350 U          | 810            | 270 J          | 150 J          | 480            | 200 J          | 860 J           |
| Benzo(a)pyrene                      |                               |                                                     | 150 J          | 350 U          | 640            | 350            | 250 J          | 430            | 170 J          | 710 J           |
| Benzo(b)fluoranthene                |                               |                                                     | 210 J          | 350 U          | 590            | 390            | 190 J          | 440            | 160 J          | 600 J           |
| Benzo(k)fluoranthene                |                               |                                                     | 190 J          | 350 U          | 640            | 350            | 260 J          | 430            | 160 J          | 550 J           |
| Chrysene                            |                               |                                                     | 190 J          | 350 U          | 900            | 320 J          | 190 J          | 600            | 230 J          | 850 J           |
| Dibenzo(a,h)anthracene              |                               |                                                     | 380 U          | 350 U          | 370 U          | 340 U          | 360 U          | 170 J          | 340 U          | 190 J           |
| Indeno(1,2,3-cd)pyrene              |                               |                                                     | 380 U          | 350 U          | 160 J          | 170 J          | 140 J          | 490            | 200 J          | 560 J           |
| Total cPAHs:                        | 25,000                        |                                                     | 850            | 0              | 3740           | 1850           | 1180           | 3040           | 1120           | 4320            |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | Site Specific<br>Soil Cleanup<br>Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls): | 2/26/2004 | HBR-3<br>2/26/2004<br>0-1 | HBR-3<br>2/26/2004<br>1-2 | HBR-4<br>2/26/2004<br>0-1 | HBR-4<br>2/26/2004<br>1-2 | HBR-5<br>2/26/2004<br>0-1 | HBR-5<br>2/26/2004<br>1-2 | HBR-6<br>2/26/2004<br>0-1 | HBR-6<br>2/26/2004<br>1-2 |
|-------------------------------------|------------------------------------------------|---------------------------------------------------------------|-----------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
|                                     |                                                | Map Zone:                                                     | Zone III  | Zone III                  | Zone III                  | Zone III                  | Zone III                  | Zone III                  | Zone III                  | Zone III                  | Zone III                  |
| Benzo(a)anthracene                  |                                                |                                                               | 2200      | 630                       | 480                       | 1200 J                    | 850 J                     | 1800                      | 910                       | 1600                      | 250 J                     |
| Benzo(a)pyrene                      |                                                |                                                               | 1500      | 670                       | 500                       | 1100 J                    | 850 J                     | 1800                      | 590                       | 1200                      | 210 J                     |
| Benzo(b)fluoranthene                |                                                |                                                               | 1300 J    | 710                       | 620                       | 1900                      | 1400 J                    | 1500                      | 740                       | 1600                      | 290 J                     |
| Benzo(k)fluoranthene                |                                                |                                                               | 1500      | 750                       | 450                       | 1300 J                    | 860 J                     | 2600                      | 640 J                     | 1900                      | 270 J                     |
| Chrysene                            |                                                |                                                               | 2000      | 850                       | 650                       | 1500 J                    | 1000 J                    | 2500                      | 1100                      | 1800                      | 320 J                     |
| Dibenzo(a,h)anthracene              |                                                |                                                               | 390 J     | 140 J                     | 120 J                     | 200 J                     | 130 J                     | 700 U                     | 130 J                     | 180 J                     | 41 J                      |
| Indeno(1,2,3-cd)pyrene              |                                                |                                                               | 1200      | 440                       | 330 J                     | 640 J                     | 450 J                     | 930                       | 240 J                     | 550 J                     | 120 J                     |
| Total cPAHs:                        | 25,000                                         |                                                               | 10090     | 4190                      | 3150                      | 7840                      | 5540                      | 11130                     | 4350                      | 8830                      | 1501                      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | HBR-7     | HBR-7     | HBR-8     | HBR-8     | HC-1      | HC-2      | HC-3      | HC-4      | HC-5      |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 2/26/2004 | 2/26/2004 | 2/26/2004 | 2/26/2004 | 4/12/2000 | 4/12/2000 | 4/12/2000 | 4/12/2000 | 4/12/2000 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       |
|                           |               | Map Zone:              | Zone III  | Zone III  | Zone III  | Zone III  | Zone II   |
| Danga (a) anthrosana      |               |                        | 1000      | 1.40 T    | 270.1     | 090       | 42 I      | 270.1     | 170 I     | 200.1     | 120 I     |
| Benzo(a)anthracene        |               |                        | 1800      | 140 J     | 270 J     | 980       | 43 J      | 270 J     | 170 J     | 290 J     | 120 J     |
| Benzo(a)pyrene            |               |                        | 1500      | 110 J     | 200 J     | 760       | 400 U     | 260 J     | 180 J     | 260 J     | 110 J     |
| Benzo(b)fluoranthene      |               |                        | 1800      | 310 J     | 520       | 1200      | 43 J      | 350 J     | 260 J     | 720       | 230 J     |
| Benzo(k)fluoranthene      |               |                        | 1700      | 190 J     | 420       | 1100      | 68 J      | 230 J     | 280 J     | 350 J     | 240 J     |
| Chrysene                  |               |                        | 2000      | 270 J     | 450       | 1400      | 61 J      | 280 J     | 220 J     | 470       | 180 J     |
| Dibenzo(a,h)anthracene    |               |                        | 210 J     | 26 J      | 33 J      | 73 J      | 400 U     | 39 J      | 38 J      | 43 J      | 380 U     |
| Indeno(1,2,3-cd)pyrene    |               |                        | 710 J     | 64 J      | 87 J      | 210 J     | 400 U     | 110 J     | 120 J     | 140 J     | 58 J      |
| Total cPAHs:              | 25,000        |                        | 9720      | 1110      | 1980      | 5723      | 215       | 1539      | 1268      | 2273      | 938       |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | HC-6      | HC-7      | HC-8      | HC-9      | HC-10     | HC-11     | HC-12     | HC-13     | HC-14     |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 4/12/2000 | 4/12/2000 | 4/12/2000 | 4/12/2000 | 4/12/2000 | 4/12/2000 | 4/12/2000 | 4/12/2000 | 4/12/2000 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       |
|                           |               | Map Zone:              | Zone II   | Zone III  | Zone II   | Zone II   |
| Benzo(a)anthracene        |               |                        | 350 U     | 140 J     | 100 J     | 210 J     | 210 J     | 200 J     | 370 J     | 360       | 760       |
| Benzo(a)pyrene            |               |                        | 350 U     | 110 J     | 94 J      | 210 J     | 200 J     | 210 J     | 430       | 430       | 940       |
| Benzo(b)fluoranthene      |               |                        | 350 U     | 150 J     | 130 J     | 280 J     | 250 J     | 210 J     | 790       | 720       | 1400      |
| Benzo(k)fluoranthene      |               |                        | 48 J      | 120 J     | 190 J     | 310 J     | 360 J     | 270 J     | 450       | 380       | 1300      |
| Chrysene                  |               |                        | 38 J      | 200 J     | 160 J     | 290 J     | 290 J     | 230 J     | 540       | 450       | 910       |
| Dibenzo(a,h)anthracene    |               |                        | 350 U     | 360 U     | 360 U     | 400 U     | 380 U     | 370 U     | 100 J     | 360 U     | 160 J     |
| Indeno(1,2,3-cd)pyrene    |               |                        | 350 U     | 44 J      | 47 J      | 90 J      | 78 J      | 87 J      | 300 J     | 210 J     | 420       |
| Total cPAHs:              | 25,000        |                        | 86        | 764       | 721       | 1390      | 1388      | 1207      | 2980      | 2550      | 5890      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

R - Rejected by validator

RE - Reanalysis

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

1 - Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

"B" in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | HC-15     | HC-16     | HM-1      | HM-2      | HM-2 RE   | HM-3 RE   | HM-3      | HM-5      | HM-5 RE   |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 4/12/2000 | 4/12/2000 | 9/18/1997 | 9/18/1997 | 9/18/1997 | 9/18/1997 | 9/18/1997 | 9/18/1997 | 9/18/1997 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1       | 0-1       | 0-1       | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       |
|                           |               | Map Zone:              | Zone II   |
| <b>D</b> () d             |               |                        | 260 I     | 250 I     | 250 11    | 22.1      | 1500      | 7.40      | 4100      | 100 T     | 010       |
| Benzo(a)anthracene        |               |                        | 260 J     | 250 J     | 350 U     | 22 J      | 1500      | 540       | 4100      | 190 J     | 810       |
| Benzo(a)pyrene            |               |                        | 250 J     | 190 J     | 350 U     | 20 J      | 1500      | 560       | 3400      | 170 J     | 920       |
| Benzo(b)fluoranthene      |               |                        | 300 J     | 390       | 350 U     | 310 J     | 1900      | 910       | 4900      | 440       | 1400      |
| Benzo(k)fluoranthene      |               |                        | 550       | 310 J     | 350 U     | 29 J      | 2100      | 800       | 3300      | 180 J     | 1100      |
| Chrysene                  |               |                        | 370 J     | 330 J     | 350 U     | 50 J      | 1500      | 610       | 4000      | 200 J     | 900       |
| Dibenzo(a,h)anthracene    |               |                        | 46 J      | 370 U     | 350 U     | 340 U     | 350 U     | 360 U     | 1800 U    | 350 U     | 350 U     |
| Indeno(1,2,3-cd)pyrene    |               |                        | 140 J     | 120 J     | 350 U     | 340 U     | 270 J     | 47 J      | 880 J     | 350 U     | 53 J      |
| Total cPAHs:              | 25,000        |                        | 1916      | 1590      | 0         | 431       | 8770      | 3467      | 20580     | 1180      | 5183      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | HM-7      | HM-7 RE   | IB-1      | IB-2      | IB-3      | IB-4      | IB-5      | IB-6      |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 9/18/1997 | 9/18/1997 | 2/25/2000 | 2/25/2000 | 2/25/2000 | 2/25/2000 | 2/25/2000 | 2/25/2000 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1       | 1-2       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       |
|                           |               | Map Zone:              | Zone II   | Zone II   | Zone III  |
| Benzo(a)anthracene        |               |                        | 250 J     | 210 J     | 210 J     | 470       | 490       | 760       | 380 J     | 590       |
| Benzo(a)pyrene            |               |                        | 190 J     | 200 J     | 300 J     | 680       | 490       | 760       | 460       | 510       |
| Benzo(b)fluoranthene      |               |                        | 410       | 640       | 600       | 1400      | 1500      | 1500      | 1000      | 1000      |
| Benzo(k)fluoranthene      |               |                        | 180 J     | 360       | 350 J     | 600       | 590       | 780       | 330 J     | 460       |
| Chrysene                  |               |                        | 250 J     | 310 J     | 360 J     | 660       | 740       | 990       | 530       | 650       |
| Dibenzo(a,h)anthracene    |               |                        | 350 U     | 340 U     | 410 U     | 180 J     | 140 J     | 160 J     | 75 J      | 110 J     |
| Indeno(1,2,3-cd)pyrene    |               |                        | 350 U     | 340 U     | 200 J     | 600       | 440       | 440       | 260 J     | 310 J     |
| Total cPAHs:              | 25,000        |                        | 1280      | 1720      | 2020      | 4590      | 4390      | 5390      | 3035      | 3630      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | IB-7      | IB-8      | IB-9      | IB-10     | IB-11     | IB-12     | IB-13     |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 2/25/2000 | 2/25/2000 | 2/25/2000 | 2/25/2000 | 2/25/2000 | 2/25/2000 | 2/25/2000 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       |
|                           |               | Map Zone:              | Zone III  |
| Benzo(a)anthracene        |               |                        | 400 J     | 840       | 330 J     | 250 J     | 460       | 870       | 770       |
| Benzo(a)pyrene            |               |                        | 380 J     | 750       | 340 J     | 300 J     | 430       | 750       | 610       |
| Benzo(b)fluoranthene      |               |                        | 840       | 1400      | 650       | 670       | 1100      | 1600      | 1400      |
| Benzo(k)fluoranthene      |               |                        | 280 J     | 650       | 360 J     | 330 J     | 450       | 610       | 530       |
| Chrysene                  |               |                        | 470       | 890       | 450 J     | 410 J     | 600       | 990       | 940       |
| Dibenzo(a,h)anthracene    |               |                        | 79 J      | 130 J     | 76 J      | 60 J      | 67 J      | 93 J      | 80 J      |
| Indeno(1,2,3-cd)pyrene    |               |                        | 210 J     | 430 J     | 210 J     | 200 J     | 240 J     | 340 J     | 260 J     |
| Total cPAHs:              | 25,000        |                        | 2659      | 5090      | 2416      | 2220      | 3347      | 5253      | 4590      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

R - Rejected by validator

RE - Reanalysis

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

1 - Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.

- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | Site Specific<br>Soil Cleanup | Sample Designation:<br>Sample Date: | L-1<br>3/9/1999 | L-1<br>3/9/1999 | L-2<br>3/9/1999 | L-2<br>3/9/1999 | L-3<br>3/9/1999 | L-3<br>3/9/1999 | L-4<br>3/9/1999 |
|---------------------------|-------------------------------|-------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| (Concentrations in µg/kg) | Level (µg/kg)                 | Sample Depth (ft bls):              | В               | 0-1**           | В               | 0-1**           | В               | 0-1**           | В               |
|                           |                               | Map Zone:                           | Zone II         |
| Benzo(a)anthracene        |                               |                                     | 210 J           | 360 U           | 740             | 360 U           | 290 J           | 100 J           | 1000            |
| Benzo(a)pyrene            |                               |                                     | 330 J           | 360 U           | 480             | 360 U           | 460             | 78 J            | 880             |
| Benzo(b)fluoranthene      |                               |                                     | 110 J           | 360 U           | 1000            | 360 U           | 820             | 180 J           | 2600            |
| Benzo(k)fluoranthene      |                               |                                     | 390 U           | 360 U           | 550             | 360 U           | 410 U           | 110 J           | 390 U           |
| Chrysene                  |                               |                                     | 320 J           | 360 U           | 1100            | 18 J            | 460             | 160 J           | 1300            |
| Dibenzo(a,h)anthracene    |                               |                                     | 390 U           | 360 U           | 110 J           | 360 U           | 86 J            | 380 U           | 400             |
| Indeno(1,2,3-cd)pyrene    |                               |                                     | 280 J           | 360 U           | 340 J           | 360 U           | 290 J           | 94 J            | 760             |
| Total cPAHs:              | 25,000                        |                                     | 1250            | 0               | 4320            | 18              | 2406            | 722             | 6940            |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | Site Specific<br>Soil Cleanup | Sample Designation: Sample Date:    | L-4<br>3/9/1999  | L-5<br>3/9/1999 | L-5<br>3/9/1999  | L-6<br>3/9/1999 | L-6<br>3/9/1999  | L5-1<br>4/7/1997 | L6-1<br>6/30/1997 |
|---------------------------|-------------------------------|-------------------------------------|------------------|-----------------|------------------|-----------------|------------------|------------------|-------------------|
| (Concentrations in µg/kg) | Level (µg/kg)                 | Sample Depth (ft bls):<br>Map Zone: | 0-1**<br>Zone II | B<br>Zone II    | 0-1**<br>Zone II | B<br>Zone II    | 0-1**<br>Zone II | 0-2<br>Zone II   | 0-1<br>Zone II    |
|                           |                               | •                                   |                  |                 |                  |                 |                  |                  |                   |
| Benzo(a)anthracene        |                               |                                     | 300 J            | 52 J            | 35 J             | 4200 JD         | 260 J            | 750              | 160 J             |
| Benzo(a)pyrene            |                               |                                     | 290 J            | 28 J            | 46 J             | 1500 JD         | 510              | 680              | 160 J             |
| Benzo(b)fluoranthene      |                               |                                     | 780              | 130 J           | 67 J             | 1400 JD         | 990              | 1800             | 330 J             |
| Benzo(k)fluoranthene      |                               |                                     | 370 U            | 400 U           | 50 J             | 1900 JD         | 360 U            | 1100             | 280 J             |
| Chrysene                  |                               |                                     | 420              | 75 J            | 60 J             | 4600 D          | 450              | 1500             | 260 J             |
| Dibenzo(a,h)anthracene    |                               |                                     | 93 J             | 400 U           | 380 U            | 540 JD          | 140 J            | 68 J             | 360 U             |
| Indeno(1,2,3-cd)pyrene    |                               |                                     | 230 J            | 46 J            | 41 J             | 660 JD          | 290 J            | 210 J            | 240 J             |
| Total cPAHs:              | 25,000                        |                                     | 2113             | 331             | 299              | 14800           | 2640             | 6108             | 1430              |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | L6-1     | L6-1      | L6-1      | L6-2      | L6-2     | L6-3      | L6-3     | L6-3      |
|---------------------------|---------------|------------------------|----------|-----------|-----------|-----------|----------|-----------|----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 4/7/1997 | 6/30/1997 | 6/30/1997 | 6/30/1997 | 4/7/1997 | 6/30/1997 | 4/7/1997 | 6/30/1997 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-2      | 1-2       | 2-3       | 0-1       | 0-2      | 0-1       | 0-2      | 1-2       |
|                           |               | Map Zone:              | Zone II  | Zone II   | Zone II   | Zone II   | Zone II  | Zone II   | Zone II  | Zone II   |
| Benzo(a)anthracene        |               |                        | 2000     | 31 J      | 100 J     | 55 J      | 450      | 190 J     | 14000    | 340 U     |
| Benzo(a)pyrene            |               |                        | 1900     | 23 J      | 87 J      | 54 J      | 460      | 170 J     | 8500     | 340 U     |
| Benzo(b)fluoranthene      |               |                        | 4000     | 73 J      | 220 J     | 50 J      | 850      | 140 J     | 6000 J   | 340 U     |
| Benzo(k)fluoranthene      |               |                        | 2900     | 39 J      | 120 J     | 65 J      | 450      | 180 J     | 7600 U   | 340 U     |
| Chrysene                  |               |                        | 3900     | 350 U     | 350 U     | 66 J      | 840      | 190 J     | 21000    | 340 U     |
| Dibenzo(a,h)anthracene    |               |                        | 230 J    | 350 U     | 350 U     | 340 U     | 38 J     | 370 U     | 410 J    | 340 U     |
| Indeno(1,2,3-cd)pyrene    |               |                        | 700 J    | 220 J     | 300 J     | 45 J      | 100 J    | 140 J     | 910 J    | 340 U     |
| Total cPAHs:              | 25,000        |                        | 15630    | 386       | 827       | 335       | 3188     | 1010      | 50820    | 0         |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

R - Rejected by validator

RE - Reanalysis

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

1 - Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.

ND - Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.

(1) Sample Collected by AKRF as part of the East Side Access Project

(2) Sample Collected by PB/STV as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

"B" in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | Site Specific<br>Soil Cleanup<br>Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 6/30/1997<br>2-3 | L6-4<br>6/30/1997<br>0-1<br>Zone II | L6-4 RE<br>4/7/1997<br>0-2<br>Zone II | L6-4<br>6/30/1997<br>1-2<br>Zone II | L6-4<br>6/30/1997<br>2-3<br>Zone II | L6-5<br>6/30/1997<br>0-1<br>Zone II | L6-5 DUP<br>6/30/1997<br>0-1<br>Zone II | L6-5<br>4/7/1997<br>0-2<br>Zone II |
|-------------------------------------|------------------------------------------------|----------------------------------------------------------------------------|------------------|-------------------------------------|---------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-----------------------------------------|------------------------------------|
| Benzo(a)anthracene                  |                                                |                                                                            | 340 U            | 220 J                               | 1400                                  | 31 J                                | 120 J                               | 80 J                                | 26 J                                    | 1200                               |
| Benzo(a)pyrene                      |                                                |                                                                            | 340 U            | 230 J                               | 1400                                  | 31 J                                | 180 J                               | 56 J                                | 36 J                                    | 1100                               |
| Benzo(b)fluoranthene                |                                                |                                                                            | 340 U            | 320 J                               | 3800                                  | 64 J                                | 330 J                               | 87 J                                | 72 J                                    | 2700                               |
| Benzo(k)fluoranthene                |                                                |                                                                            | 340 U            | 290 J                               | 3200                                  | 37 J                                | 220 J                               | 68 J                                | 56 J                                    | 1600                               |
| Chrysene                            |                                                |                                                                            | 340 U            | 320 J                               | 3200                                  | 360 U                               | 350 U                               | 110 J                               | 58 J                                    | 2400                               |
| Dibenzo(a,h)anthracene              |                                                |                                                                            | 340 U            | 350 U                               | 770 U                                 | 360 U                               | 350 U                               | 350 U                               | 350 U                                   | 180 J                              |
| Indeno(1,2,3-cd)pyrene              |                                                |                                                                            | 340 U            | 45 J                                | 350 J                                 | 240 J                               | 280 J                               | 50 J                                | 47 J                                    | 550                                |
| Total cPAHs:                        | 25,000                                         |                                                                            | 0                | 1425                                | 13350                                 | 403                                 | 1130                                | 451                                 | 295                                     | 9730                               |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | L6-5      | L6-5      | L6-6      | L6-7      | L6-8      | L6-9      | L6-10     | L6-11     | LCW-1      |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 6/30/1997 | 6/30/1997 | 6/30/1997 | 6/30/1997 | 6/30/1997 | 6/30/1997 | 6/30/1997 | 6/30/1997 | 11/14/2002 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 1-2       | 2-3       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1        |
|                           |               | Map Zone:              | Zone II    |
| Benzo(a)anthracene        |               |                        | 35 J      | 13 J      | 340 U     | 58 J      | 70 J      | 340 U     | 23 J      | 26 J      | 780        |
| Benzo(a)pyrene            |               |                        | 35 J      | 26 J      | 340 U     | 45 J      | 69 J      | 340 U     | 340 U     | 61 J      | 670        |
| Benzo(b)fluoranthene      |               |                        | 79 J      | 34 J      | 340 U     | 120 J     | 110 J     | 340 U     | 36 J      | 66 J      | 740        |
| Benzo(k)fluoranthene      |               |                        | 70 J      | 23 J      | 340 U     | 63 J      | 97 J      | 340 U     | 43 J      | 59 J      | 670        |
| Chrysene                  |               |                        | 340 U     | 340 U     | 340 U     | 92 J      | 100 J     | 340 U     | 36 J      | 52 J      | 830        |
| Dibenzo(a,h)anthracene    |               |                        | 340 U     | 340 U     | 340 U     | 350 U     | 360 U     | 340 U     | 340 U     | 340 U     | 250 J      |
| Indeno(1,2,3-cd)pyrene    |               |                        | 210 J     | 190 J     | 340 U     | 79 J      | 100 J     | 340 U     | 340 U     | 41 J      | 630        |
| Total cPAHs:              | 25,000        |                        | 429       | 286       | 0         | 457       | 546       | 0         | 138       | 305       | 4570       |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | LCW-2      | LCW-3      | LCW-4      | LLS-6    | LLS-7     | LLS-7A    | LLS-8     | LLS-8A    | LLS-9     |
|---------------------------|---------------|------------------------|------------|------------|------------|----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 11/14/2002 | 11/14/2002 | 11/14/2002 | 8/9/2001 | 8/10/2001 | 8/10/2001 | 8/10/2001 | 8/10/2001 | 8/10/2001 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1        | 0-1        | 0-1        | 0-1      | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       |
|                           |               | Map Zone:              | Zone II    | Zone II    | Zone II    | Zone I   | Zone I    | Zone I    | Zone I    | Zone I    | Zone I    |
| Benzo(a)anthracene        |               |                        | 1400       | 1700       | 720        | 831      | 588       | 1260      | 207 J     | 84 U      | 35.9 J    |
| Benzo(a)pyrene            |               |                        | 1600       | 2000       | 680        | 843      | 539       | 941       | 227 J     | 84 U      | 23.3 J    |
| Benzo(b)fluoranthene      |               |                        | 2300       | 3200       | 1100       | 1070     | 1420      | 2470      | 907       | 84 U      | 49.8 J    |
| Benzo(k)fluoranthene      |               |                        | 1300       | 1700       | 810        | 399      | 473       | 899       | 278       | 84 U      | 19.7 J    |
| Chrysene                  |               |                        | 1900       | 2100       | 1000       | 1080     | 878       | 2200      | 444       | 84 U      | 59.1 J    |
| Dibenzo(a,h)anthracene    |               |                        | 500        | 680        | 310 J      | 435      | 209       | 237       | 410 U     | 84 U      | 68 U      |
| Indeno(1,2,3-cd)pyrene    |               |                        | 1300       | 1700       | 840        | 1880     | 969       | 797       | 431       | 84 U      | 23.5 J    |
| Total cPAHs:              | 25,000        |                        | 10300      | 13080      | 5460       | 6538     | 5076      | 8804      | 2494      | 0         | 211       |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

R - Rejected by validator

RE - Reanalysis

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

1 - Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.

- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| _                         | Site Specific | Sample Designation:    |           | LLS-10    | LLS-10A   | LLS-11    | LLS-11A   | LLS-12    |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 8/10/2001 | 8/10/2001 | 8/10/2001 | 8/10/2001 | 8/10/2001 | 8/10/2001 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       |
|                           |               | Map Zone:              | Zone I    |
| Benzo(a)anthracene        |               |                        | 71 U      | 105       | 118       | 1900      | 1510      | 91.4      |
| Benzo(a)pyrene            |               |                        | 71 U      | 105       | 111       | 1620      | 1380      | 86        |
| Benzo(b)fluoranthene      |               |                        | 71 U      | 355       | 308       | 4770      | 4940      | 289       |
| Benzo(k)fluoranthene      |               |                        | 71 U      | 112       | 101       | 1710      | 1440      | 86.6      |
| Chrysene                  |               |                        | 71 U      | 190       | 194       | 2620      | 2370      | 163       |
| Dibenzo(a,h)anthracene    |               |                        | 71 U      | 100 U     | 87 U      | 236 J     | 157 J     | 76 U      |
| Indeno(1,2,3-cd)pyrene    |               |                        | 71 U      | 161       | 134       | 944       | 708       | 246       |
| Total cPAHs:              | 25,000        |                        | 0         | 1028      | 966       | 13800     | 12505     | 962       |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | LLS-13    | LLS-14    | LLS-15    | LLS-16    | LLS-17    | LLS-18    | LLS-19    | LLS-20    |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 8/10/2001 | 8/10/2001 | 8/10/2001 | 8/10/2001 | 8/10/2001 | 8/10/2001 | 8/10/2001 | 8/10/2001 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       |
|                           |               | Map Zone:              | Zone I    |
| Benzo(a)anthracene        |               |                        | 181       | 49.7 J    | 741       | 71 U      | 1310      | 2560      | 1590      | 351       |
| Benzo(a)pyrene            |               |                        | 155       | 41.2 J    | 573       | 71 U      | 1040      | 2400      | 1840      | 405       |
| Benzo(b)fluoranthene      |               |                        | 339       | 66.8 J    | 1220      | 71 U      | 2950      | 4480      | 3270      | 698       |
| Benzo(k)fluoranthene      |               |                        | 130       | 31.4 J    | 487       | 71 U      | 1170      | 1980      | 1590      | 222       |
| Chrysene                  |               |                        | 259       | 61.2 J    | 1010      | 71 U      | 2180      | 4270      | 2230      | 420       |
| Dibenzo(a,h)anthracene    |               |                        | 31.7 J    | 69 U      | 139 J     | 71 U      | 220 U     | 217       | 93.6      | 55.7 J    |
| Indeno(1,2,3-cd)pyrene    |               |                        | 149       | 48.6 J    | 616       | 71 U      | 386       | 630       | 529       | 234       |
| Total cPAHs:              | 25,000        |                        | 1244      | 298.9     | 4786      | 0         | 9036      | 16537     | 11142     | 2385      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | Site Specific<br>Soil Cleanup<br>Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | LLS-21<br>8/10/2001<br>0-1<br>Zone I | LLS-22<br>8/10/2001<br>0-1<br>Zone I | LLS-23<br>8/10/2001<br>0-1<br>Zone I | LP2-1<br>7/15/1997<br>0-1<br>Zone I | LP2-1<br>7/15/1997<br>1-2<br>Zone I | LP2-2<br>7/15/1997<br>0-1<br>Zone I | LP2-2<br>7/15/1997<br>1-2<br>Zone I | LP2-3<br>7/15/1997<br>0-1<br>Zone I |
|----------------------------------------|------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Benzo(a)anthracene                     |                                                |                                                                            | 2560                                 | 4900                                 | 7860                                 | 690                                 | 50 J                                | 2000                                | 510                                 | 6800                                |
| Benzo(a)pyrene                         |                                                |                                                                            | 2740                                 | 4520                                 | 9740                                 | 580                                 | 46 J                                | 2000                                | 490                                 | 5900                                |
| Benzo(b)fluoranthene                   |                                                |                                                                            | 8200                                 | 9580                                 | 16600                                | 820                                 | 72 J                                | 3700                                | 770                                 | 11000                               |
| Benzo(k)fluoranthene                   |                                                |                                                                            | 2750                                 | 2450                                 | 3900                                 | 700                                 | 65 J                                | 1600                                | 630                                 | 4200                                |
| Chrysene                               |                                                |                                                                            | 3480                                 | 6210                                 | 10000                                | 980                                 | 350 U                               | 4500                                | 870                                 | 12000                               |
| Dibenzo(a,h)anthracene                 |                                                |                                                                            | 138                                  | 3490                                 | 3900                                 | 360 U                               | 140 J                               | 860 U                               | 360 U                               | 2100 U                              |
| Indeno(1,2,3-cd)pyrene                 |                                                |                                                                            | 633                                  | 10400                                | 18800                                | 370                                 | 220 J                               | 1000                                | 390                                 | 2600                                |
| Total cPAHs:                           | 25,000                                         |                                                                            | 20501                                | 41550                                | 70800                                | 4140                                | 593                                 | 14800                               | 3660                                | 42500                               |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | LP2-3     | LP2-4     | LP2-4     | LP2-5     | LP2-5     | LP2-6     | LP2-6     | LP2-7     | LP2-7     |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 7/15/1997 | 7/15/1997 | 7/15/1997 | 7/15/1997 | 7/15/1997 | 7/15/1997 | 7/15/1997 | 7/15/1997 | 7/15/1997 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       |
|                           |               | Map Zone:              | Zone I    |
| Benzo(a)anthracene        |               |                        | 930       | 3500      | 560       | 2100      | 1800      | 5600      | 80 J      | 1700 J    | 440       |
| Benzo(a)pyrene            |               |                        | 990       | 3900      | 620       | 2900      | 1900      | 5600      | 89 J      | 1400 J    | 460       |
| Benzo(b)fluoranthene      |               |                        | 2000      | 5500      | 1000      | 5200      | 2700      | 9400      | 140 J     | 3000      | 970       |
| Benzo(k)fluoranthene      |               |                        | 1200      | 3100      | 680       | 2200      | 790 J     | 3600 J    | 350 U     | 1400 J    | 580       |
| Chrysene                  |               |                        | 1200      | 4200      | 720       | 2200      | 1800      | 5200      | 89 J      | 2200      | 640       |
| Dibenzo(a,h)anthracene    |               |                        | 710 U     | 1900 U    | 350 U     | 1600 U    | 1600 U    | 3900 U    | 350 U     | 1800 U    | 410 U     |
| Indeno(1,2,3-cd)pyrene    |               |                        | 650 J     | 2300      | 340 J     | 2300      | 1000 J    | 5700      | 100 J     | 1100 J    | 220 J     |
| Total cPAHs:              | 25,000        |                        | 6970      | 22500     | 3920      | 16900     | 9990      | 35100     | 498       | 10800     | 3310      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | LP2-8     | LP2-8     | LP2-8     | LP2-9     | LP2-9     | LP2-9     | LP2-10    | LP2-10    |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 7/15/1997 | 7/15/1997 | 7/15/1997 | 7/15/1997 | 7/15/1997 | 7/15/1997 | 7/15/1997 | 7/15/1997 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1       | 1-2       | 2-3       | 0-1       | 1-2       | 2-3       | 0-1       | 1-2       |
|                           |               | Map Zone:              | Zone I    |
| Benzo(a)anthracene        |               |                        | 2400      | 100 J     | 5 J       | 3900 J    | 140 J     | 350 U     | 1500      | 120 J     |
| Benzo(a)pyrene            |               |                        | 2200      | 66 J      | 18 J      | 3500 J    | 120 J     | 350 U     | 1200 J    | 77 J      |
| Benzo(b)fluoranthene      |               |                        | 8400      | 180 J     | 9 J       | 13000     | 260 J     | 350 U     | 3300      | 210 J     |
| Benzo(k)fluoranthene      |               |                        | 4400      | 370 U     | 390 U     | 8800      | 410 U     | 350 U     | 1700      | 380 U     |
| Chrysene                  |               |                        | 4100      | 160 J     | 10 J      | 6100      | 310 J     | 350 U     | 1400 J    | 320 J     |
| Dibenzo(a,h)anthracene    |               |                        | 1900 U    | 370 U     | 390 U     | 1900 J    | 21 J      | 350 U     | 1500 U    | 380 U     |
| Indeno(1,2,3-cd)pyrene    |               |                        | 1600 J    | 26 J      | 390 U     | 3100 J    | 44 J      | 350 U     | 1400 J    | 18 J      |
| Total cPAHs:              | 25,000        |                        | 23100     | 532       | 42        | 40300     | 895       | 0         | 10500     | 745       |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | LP2-10    | LP2-11 RE | LP2-11    | LP2-11 RE | MW-26 R   | MW-34      | NR-26     | NR-27     |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|------------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 7/15/1997 | 7/15/1997 | 7/15/1997 | 7/15/1997 | 12/5/1990 | 11/29/1990 | 9/27/1999 | 9/27/1999 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 2-3       | 0-1       | 1-2       | 2-3       | 9-11      | 0-2        | 0-1       | 0-1       |
|                           |               | Map Zone:              | Zone I    | Zone I    | Zone I    | Zone I    | Zone II   | Zone II    | Zone IV   | Zone IV   |
| Benzo(a)anthracene        |               |                        | 380 U     | 2100      | 1100      | 380 U     | 340 UR    | 441        | 650       | 470       |
| Benzo(a)pyrene            |               |                        | 380 U     | 1400 J    | 840       | 380 U     | 340 UR    | 292 J      | 620       | 380 J     |
| Benzo(b)fluoranthene      |               |                        | 380 U     | 4000      | 2600      | 380 U     | NA        | NA         | 1500      | 1200      |
| Benzo(k)fluoranthene      |               |                        | 380 U     | 2600      | 1800      | 380 U     | 340 UR    | 1000       | 920       | 730       |
| Chrysene                  |               |                        | 380 U     | 3500      | 2400      | 380 U     | 340 UR    | 538        | 920       | 700       |
| Dibenzo(a,h)anthracene    |               |                        | 380 U     | 1700 U    | 420 U     | 380 U     | 340 UR    | 355 U      | 420 U     | 390 U     |
| Indeno(1,2,3-cd)pyrene    |               |                        | 380 U     | 1600 J    | 400 J     | 380 U     | 340 UR    | 227 J      | 310 J     | 220 J     |
| Total cPAHs:              | 25,000        |                        | 0         | 15200     | 9140      | 0         | 0         | 2498       | 4920      | 3700      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

R - Rejected by validator

RE - Reanalysis

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

1 - Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.

- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | Site Specific<br>Soil Cleanup<br>Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 9/27/1999<br>0-1 | NR-29<br>9/27/1999<br>0-1<br>Zone IV | NR-30<br>9/27/1999<br>0-1<br>Zone IV | NR-31<br>9/27/1999<br>0-1<br>Zone IV | NR-32<br>9/27/1999<br>0-1<br>Zone IV | NR-33<br>9/27/1999<br>0-1<br>Zone IV | NR-34<br>9/27/1999<br>0-1<br>Zone IV | NWALL<br>1/4/1999<br><br>Zone III |
|----------------------------------------|------------------------------------------------|----------------------------------------------------------------------------|------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|
| Benzo(a)anthracene                     |                                                |                                                                            | 210 J            | 1700                                 | 1600                                 | 2000                                 | 1200                                 | 2400                                 | 1000                                 | 360 U                             |
| Benzo(a)pyrene                         |                                                |                                                                            | 270 J            | 1500                                 | 1600                                 | 2100                                 | 1100                                 | 1900                                 | 1100                                 | 360 U                             |
| Benzo(b)fluoranthene                   |                                                |                                                                            | 450              | 3200                                 | 2000                                 | 2500 D                               | 2500                                 | 2800                                 | 2600                                 | 360 U                             |
| Benzo(k)fluoranthene                   |                                                |                                                                            | 320 J            | 1500                                 | 1400                                 | 2300                                 | 1600                                 | 1900                                 | 1700                                 | 360 U                             |
| Chrysene                               |                                                |                                                                            | 270 J            | 2100                                 | 1800                                 | 3200                                 | 1800                                 | 2700                                 | 1700                                 | 360 U                             |
| Dibenzo(a,h)anthracene                 |                                                |                                                                            | 370 U            | 230 J                                | 460 U                                | 430 U                                | 460 U                                | 300 J                                | 410 U                                | 360 U                             |
| Indeno(1,2,3-cd)pyrene                 |                                                |                                                                            | 140 J            | 570                                  | 700                                  | 960                                  | 690                                  | 760                                  | 590                                  | 360 U                             |
| Total cPAHs:                           | 25,000                                         |                                                                            | 1660             | 10800                                | 9100                                 | 13060                                | 8890                                 | 12760                                | 8690                                 | 0                                 |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | Site Specific<br>Soil Cleanup<br>Level (µg/kg) | Sample Designation: Sample Date: Sample Depth (ft bls): Map Zone: | O/W-UST/B<br>11/19/1997<br><br>Zone II | O/W-UST/E<br>11/19/1997<br><br>Zone II | O/W-UST/N<br>11/19/1997<br><br>Zone II | O/W-UST/S<br>11/19/1997<br><br>Zone II | O/W-UST/W<br>11/19/1997<br><br>Zone II | PC-1<br>6/22/2005<br>0-1<br>Zone II |
|----------------------------------------|------------------------------------------------|-------------------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------|
| Benzo(a)anthracene                     |                                                |                                                                   | 26 U                                   | 27 J                                   | 26 U                                   | 26 U                                   | 27 U                                   | 340 U                               |
| Benzo(a)pyrene                         |                                                |                                                                   | 26 U                                   | 26 U                                   | 26 U                                   | 26 U                                   | 27 U                                   | 340 U                               |
| Benzo(b)fluoranthene                   |                                                |                                                                   | 37 U                                   | 50 J                                   | 37 U                                   | 27 J                                   | 37 U                                   | 340 U                               |
| Benzo(k)fluoranthene                   |                                                |                                                                   | 37 U                                   | 36 U                                   | 37 U                                   | 37 U                                   | 37 U                                   | 340 U                               |
| Chrysene                               |                                                |                                                                   | 26 U                                   | 36 J                                   | 26 U                                   | 26 U                                   | 27 U                                   | 340 U                               |
| Dibenzo(a,h)anthracene                 |                                                |                                                                   | 26 U                                   | 26 U                                   | 26 U                                   | 26 U                                   | 27 U                                   | 340 U                               |
| Indeno(1,2,3-cd)pyrene                 |                                                |                                                                   | 58 U                                   | 57 U                                   | 58 U                                   | 58 U                                   | 59 U                                   | 340 U                               |
| Total cPAHs:                           | 25,000                                         |                                                                   | 0                                      | 113                                    | 0                                      | 27                                     | 0                                      | 0                                   |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

R - Rejected by validator

RE - Reanalysis

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

1 - Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.

- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| _                         | Site Specific | Sample Designation:    | PC-1      | PC-1      | PC-6      | PC-6      | PC-6      | PC-7      | PC-7      | PC-7      |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 6/22/2005 | 6/22/2005 | 6/22/2005 | 6/22/2005 | 6/22/2005 | 6/23/2005 | 6/23/2005 | 6/23/2005 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 1-2       | 2-3       | 0-1       | 1-2       | 2-3       | 0-1       | 1-2       | 2-3       |
|                           |               | Map Zone:              | Zone II   |
| Benzo(a)anthracene        |               |                        | 340 U     | 350 U     | 980 J     | 1200      | 2100      | 800       | 1700 J    | 290 J     |
| Benzo(a)pyrene            |               |                        | 340 U     | 350 U     | 980 J     | 1600      | 2100      | 870       | 1800      | 290 J     |
| Benzo(b)fluoranthene      |               |                        | 340 U     | 350 U     | 2500      | 3800      | 5000      | 1400      | 2800      | 510       |
| Benzo(k)fluoranthene      |               |                        | 340 U     | 350 U     | 690 J     | 980       | 1300      | 540       | 760 J     | 160 J     |
| Chrysene                  |               |                        | 340 U     | 350 U     | 1300      | 1800      | 2700      | 980       | 1600 J    | 470       |
| Dibenzo(a,h)anthracene    |               |                        | 340 U     | 350 U     | 1100 U    | 400       | 450       | 330 J     | 640 J     | 140 J     |
| Indeno(1,2,3-cd)pyrene    |               |                        | 340 U     | 350 U     | 590 J     | 1000      | 1100      | 820       | 1600 J    | 360 J     |
| Total cPAHs:              | 25,000        |                        | 0         | 0         | 7040      | 10780     | 14750     | 5740      | 10900     | 2220      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | PC-8      | PC-8      | PC-8      | PC-8E     | PC-8E     | PC-8E     | PC-8N     | PC-8N     |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 6/23/2005 | 6/23/2005 | 6/23/2005 | 8/24/2005 | 8/24/2005 | 8/24/2005 | 5/30/2007 | 5/30/2007 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1       | 1-2       | 2-3       | 0-1       | 1-2       | 2-3       | 0-1       | 1-2       |
|                           |               | Map Zone:              | Zone II   |
| Benzo(a)anthracene        |               |                        | 2900      | 4200      | 940 J     | 590       | 4200      | 480       | 850       | 1100      |
| Benzo(a)pyrene            |               |                        | 2900      | 5100      | 1200 J    | 540       | 3600      | 460       | 850       | 1100      |
| Benzo(b)fluoranthene      |               |                        | 5600      | 9900      | 2000      | 880       | 5800      | 810       | 850       | 1100      |
| Benzo(k)fluoranthene      |               |                        | 2200      | 3900      | 690 J     | 340 J     | 1800 J    | 290 J     | 780       | 1200      |
| Chrysene                  |               |                        | 3200      | 5000      | 1200 J    | 620       | 3600      | 490       | 860       | 1100      |
| Dibenzo(a,h)anthracene    |               |                        | 390 J     | 820 J     | 1800 U    | 140 J     | 1000 J    | 90 J      | 210 J     | 420       |
| Indeno(1,2,3-cd)pyrene    |               |                        | 1200 J    | 2000      | 370 J     | 420       | 3100      | 260 J     | 760       | 850       |
| Total cPAHs:              | 25,000        |                        | 18390     | 30920     | 6400      | 3530      | 23100     | 2880      | 5160      | 6870      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

R - Rejected by validator

RE - Reanalysis

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

1 - Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.

- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

"B" in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | PC-8N     | PC-8SE    | PC-8SE    | PC-8SE    | PC-8SEE   | PC-8SEE   | PC-8SEE   |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 5/30/2007 | 8/24/2005 | 8/24/2005 | 8/24/2005 | 5/30/2007 | 5/30/2007 | 5/30/2007 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 2-3       | 0-1       | 1-2       | 2-3       | 0-1       | 1-2       | 2-3       |
|                           |               | Map Zone:              | Zone II   |
| Benzo(a)anthracene        |               |                        | 2000      | 6200      | 2200      | 78 J      | 1600      | 1700 J    | 890 J     |
| Benzo(a)pyrene            |               |                        | 2000      | 5700      | 2000      | 120 J     | 1300      | 1400 J    | 1600 J    |
| Benzo(b)fluoranthene      |               |                        | 3800      | 8600      | 3400      | 310 J     | 2300      | 2900      | 3000      |
| Benzo(k)fluoranthene      |               |                        | 1200 J    | 3000      | 1000      | 82 J      | 670 J     | 820 J     | 840 J     |
| Chrysene                  |               |                        | 2400      | 6400      | 2600      | 180 J     | 1600      | 1900      | 1900 J    |
| Dibenzo(a,h)anthracene    |               |                        | 620 J     | 1400 J    | 790       | 67 J      | 370 J     | 420 J     | 780 J     |
| Indeno(1,2,3-cd)pyrene    |               |                        | 2200      | 3700      | 1800      | 150 J     | 1300      | 1400 J    | 2700      |
| Total cPAHs:              | 25,000        |                        | 14220     | 35000     | 13790     | 987       | 9140      | 10540     | 11710     |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | PC-8SES   | PC-8SES   | PC-8SES   | PC-9      | PC-9      | PC-9      | PC-10     |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 5/30/2007 | 5/30/2007 | 5/30/2007 | 6/23/2005 | 6/23/2005 | 6/23/2005 | 6/23/2005 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1       | 1-2       | 2-3       | 0-1       | 1-2       | 2-3       | 0-1       |
|                           |               | Map Zone:              | Zone II   |
| Benzo(a)anthracene        |               |                        | 1000 J    | 530 J     | 530 J     | 51 J      | 350 U     | 350 U     | 1200      |
| Benzo(a)pyrene            |               |                        | 900 J     | 520 J     | 530 J     | 46 J      | 350 U     | 350 U     | 1100      |
| Benzo(b)fluoranthene      |               |                        | 1700 J    | 1200 J    | 1400 J    | 140 J     | 67 J      | 350 U     | 2000      |
| Benzo(k)fluoranthene      |               |                        | 600 J     | 300 J     | 4200 U    | 360 U     | 350 U     | 350 U     | 480       |
| Chrysene                  |               |                        | 1100 J    | 710 J     | 1000 J    | 89 J      | 72 J      | 350 U     | 1600      |
| Dibenzo(a,h)anthracene    |               |                        | 260 J     | 2000 U    | 4200 U    | 360 U     | 350 U     | 350 U     | 390       |
| Indeno(1,2,3-cd)pyrene    |               |                        | 930 J     | 550 J     | 800 J     | 360 U     | 350 U     | 350 U     | 1000      |
| Total cPAHs:              | 25,000        |                        | 6490      | 3810      | 4260      | 326       | 139       | 0         | 7770      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

R - Rejected by validator

RE - Reanalysis

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

1 - Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.

- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

"B" in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | Site Specific<br>Soil Cleanup | Sample Designation:<br>Sample Date: | PC-10<br>6/23/2005 | PC-10<br>6/23/2005 | PC-11<br>6/23/2005 | PC-11<br>6/23/2005 | PC-11<br>6/23/2005 | PC-12<br>6/23/2005 | PC-12<br>6/23/2005 |
|---------------------------|-------------------------------|-------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| (Concentrations in µg/kg) | Level (µg/kg)                 | Sample Depth (ft bls): Map Zone:    | 1-2<br>Zone II     | 2-3<br>Zone II     | 0-1<br>Zone II     | 1-2<br>Zone II     | 2-3<br>Zone II     | 0-1<br>Zone II     | 1-2<br>Zone II     |
| ,                         |                               |                                     |                    |                    |                    |                    |                    |                    |                    |
| Benzo(a)anthracene        |                               |                                     | 650                | 520                | 270 J              | 340 U              | 350 U              | 210 J              | 350 U              |
| Benzo(a)pyrene            |                               |                                     | 700                | 500                | 230 J              | 340 U              | 350 U              | 210 J              | 350 U              |
| Benzo(b)fluoranthene      |                               |                                     | 1200               | 990                | 270 J              | 340 U              | 350 U              | 470                | 350 U              |
| Benzo(k)fluoranthene      |                               |                                     | 490                | 320 J              | 97 J               | 340 U              | 350 U              | 170 J              | 350 U              |
| Chrysene                  |                               |                                     | 800                | 550                | 300 J              | 340 U              | 350 U              | 340 J              | 350 U              |
| Dibenzo(a,h)anthracene    |                               |                                     | 330 J              | 240 J              | 360 U              | 340 U              | 350 U              | 42 J               | 350 U              |
| Indeno(1,2,3-cd)pyrene    |                               |                                     | 770                | 560                | 110 J              | 340 U              | 350 U              | 130 J              | 350 U              |
| Total cPAHs:              | 25,000                        |                                     | 4940               | 3680               | 1277               | 0                  | 0                  | 1572               | 0                  |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | PC-12     | PC-13     | PC-13     | PC-13     | PC-14     | PC-14     | PC-14     |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 6/23/2005 | 7/19/2007 | 7/19/2007 | 7/19/2007 | 7/19/2007 | 7/19/2007 | 7/19/2007 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 2-3       | 0-1       | 1-2       | 2-3       | 0-1       | 1-2       | 2-3       |
|                           |               | Map Zone:              | Zone II   |
| Benzo(a)anthracene        |               |                        | 57 J      | 1100      | 1500      | 1000      | 140 J     | 96 J      | 350 U     |
| Benzo(a)pyrene            |               |                        | 51 J      | 880       | 1300      | 1100      | 150 J     | 110 J     | 350 U     |
| Benzo(b)fluoranthene      |               |                        | 120 J     | 2200      | 2600      | 2300      | 350 J     | 180 J     | 350 U     |
| Benzo(k)fluoranthene      |               |                        | 39 J      | 660       | 760       | 580       | 130 J     | 63 J      | 350 U     |
| Chrysene                  |               |                        | 89 J      | 1400      | 1800      | 1500      | 190 J     | 110 J     | 350 U     |
| Dibenzo(a,h)anthracene    |               |                        | 350 U     | 390       | 520       | 490       | 70 J      | 360 U     | 350 U     |
| Indeno(1,2,3-cd)pyrene    |               |                        | 350 U     | 1200      | 1400      | 1300      | 170 J     | 98 J      | 350 U     |
| Total cPAHs:              | 25,000        |                        | 356       | 7830      | 9880      | 8270      | 1200      | 657       | 0         |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    |        | PT-2   | PT-2   | PT-2/C    | PT-3   | PT-4      | PT-5   | PT-6    |
|---------------------------|---------------|------------------------|--------|--------|--------|-----------|--------|-----------|--------|---------|
| Parameter                 | Soil Cleanup  | Sample Date:           |        |        |        | 4/13/2004 |        | 3/18/2004 |        |         |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1    | 0-1    | 1-2    | 3-3       | 0-1    | 0-1       | 0-1    | 0-1     |
|                           |               | Map Zone:              | Zone I | Zone I | Zone I | Zone I    | Zone I | Zone II   | Zone I | Zone II |
| Benzo(a)anthracene        |               |                        | 250 J  | 5600   | 3200   | 420       | 1000   | 250 J     | 310 J  | 250 J   |
| Benzo(a)pyrene            |               |                        | 280 J  | 5900   | 3500   | 360       | 1100   | 290 J     | 310 J  | 290 J   |
| Benzo(b)fluoranthene      |               |                        | 370    | 5300   | 5400   | 520       | 2200   | 520 J     | 490 J  | 420 J   |
| Benzo(k)fluoranthene      |               |                        | 290 J  | 5700   | 1500 U | 460       | 720 U  | 350 J     | 400 J  | 330 J   |
| Chrysene                  |               |                        | 300 J  | 5700   | 3600   | 520       | 1300   | 390 J     | 440 J  | 360 J   |
| Dibenzo(a,h)anthracene    |               |                        | 55 J   | 1700 J | 1000 J | 160 J     | 260 J  | 100 J     | 96 J   | 56 J    |
| Indeno(1,2,3-cd)pyrene    |               |                        | 150 J  | 4200   | 2200   | 340 J     | 730    | 250 J     | 240 J  | 180 J   |
| Total cPAHs:              | 25,000        |                        | 1695   | 34100  | 18900  | 2780      | 6590   | 2150      | 2286   | 1886    |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

R - Rejected by validator

RE - Reanalysis

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

1 - Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.

- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    |           | QB-1       | QB-2       | QB-3       | QB-4       | QB-5       | QB-6       | QB-7       |
|---------------------------|---------------|------------------------|-----------|------------|------------|------------|------------|------------|------------|------------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 3/18/2004 | 10/26/1999 | 10/26/1999 | 10/26/1999 | 10/26/1999 | 10/26/1999 | 10/26/1999 | 10/26/1999 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1       | 0-1        | 0-1        | 0-1        | 0-1        | 0-1        | 0-1        | 0-1        |
|                           |               | Map Zone:              | Zone II   | Zone IV    | Zone IV    | Zone IV    | Zone IV    | Zone III   | Zone IV    | Zone IV    |
|                           |               |                        | 1100      | 100.7      |            |            | 4=0        |            | •00.7      |            |
| Benzo(a)anthracene        |               |                        | 1100      | 100 J      | 610        | 390 U      | 470        | 60 J       | 280 J      | 140 J      |
| Benzo(a)pyrene            |               |                        | 910       | 110 J      | 410        | 390 U      | 320 J      | 40 J       | 200 J      | 84 J       |
| Benzo(b)fluoranthene      |               |                        | 2400      | 120 J      | 530        | 390 U      | 390        | 39 J       | 250 J      | 120 J      |
| Benzo(k)fluoranthene      |               |                        | 720 U     | 98 J       | 470        | 390 U      | 390        | 57 J       | 200 J      | 140 J      |
| Chrysene                  |               |                        | 1300      | 130 J      | 660        | 46 J       | 500        | 64 J       | 350 J      | 180 J      |
| Dibenzo(a,h)anthracene    |               |                        | 210 J     | 360 U      | 340 U      | 390 U      | 350 U      | 350 U      | 360 U      | 390 U      |
| Indeno(1,2,3-cd)pyrene    |               |                        | 530 J     | 37 J       | 110 J      | 390 U      | 100 J      | 350 U      | 78 J       | 45 J       |
| Total cPAHs:              | 25,000        |                        | 6450      | 595        | 2790       | 46         | 2170       | 260        | 1358       | 709        |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | QC-1      | QC-2      | QC-3      | QC-4      | QC-5      | QC-6      | QC-7      | QC-8      | QC-9 RE   |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 4/12/2000 | 4/12/2000 | 4/12/2000 | 4/12/2000 | 4/12/2000 | 4/12/2000 | 4/12/2000 | 4/13/2000 | 4/13/2000 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       |
|                           |               | Map Zone:              | Zone IV   | Zone III  | Zone III  |
| Benzo(a)anthracene        |               |                        | 370 J     | 320 J     | 1200      | 180 J     | 140 J     | 380       | 360 U     | 360 U     | 370 U     |
| Benzo(a)pyrene            |               |                        | 400       | 300 J     | 760       | 180 J     | 130 J     | 350 J     | 360 U     | 360 U     | 370 U     |
| Benzo(b)fluoranthene      |               |                        | 680       | 300 J     | 710       | 190 J     | 220 J     | 630       | 360 U     | 360 U     | 370 U     |
| Benzo(k)fluoranthene      |               |                        | 380 J     | 520       | 760       | 220 J     | 140 J     | 350 J     | 360 U     | 360 U     | 370 U     |
| Chrysene                  |               |                        | 440       | 400       | 1600      | 220 J     | 160 J     | 520       | 360 U     | 360 U     | 370 U     |
| Dibenzo(a,h)anthracene    |               |                        | 60 J      | 370 U     | 77 J      | 370 U     | 370 U     | 56 J      | 360 U     | 360 U     | 370 U     |
| Indeno(1,2,3-cd)pyrene    |               |                        | 160 J     | 120 J     | 190 J     | 59 J      | 44 J      | 140 J     | 360 U     | 360 U     | 370 U     |
| Total cPAHs:              | 25,000        |                        | 2490      | 1960      | 5297      | 1049      | 834       | 2426      | 0         | 0         | 0         |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation: Q  | C-10 RE   | QC-11     | QC-12 RE  | QC-13     | R-UST/BOT  | R-UST/E    | R-UST/N    | R-UST/S    |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|------------|------------|------------|------------|
| Parameter                 | Soil Cleanup  | Sample Date: 4         | 4/13/2000 | 4/13/2000 | 4/13/2000 | 4/13/2000 | 11/18/1997 | 11/18/1997 | 11/18/1997 | 11/18/1997 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1       | 0-1       | 0-1       | 0-1       |            |            |            |            |
|                           |               | Map Zone:              | Zone III  | Zone III  | Zone IV   | Zone III  | Zone II    | Zone II    | Zone II    | Zone II    |
| Benzo(a)anthracene        |               |                        | 170 J     | 360 U     | 350 U     | 350 U     | 26 U       | 28 U       | 660        | 560        |
| Benzo(a)pyrene            |               |                        | 130 J     | 360 U     | 350 U     | 350 U     | 26 U       | 28 U       | 700        | 590        |
| Benzo(b)fluoranthene      |               |                        | 170 J     | 360 U     | 350 U     | 350 U     | 37 U       | 39 U       | 1500       | 1200       |
| Benzo(k)fluoranthene      |               |                        | 120 J     | 360 U     | 350 U     | 350 U     | 37 U       | 39 U       | 38 U       | 980        |
| Chrysene                  |               |                        | 210 J     | 41 J      | 350 U     | 350 U     | 26 U       | 28 U       | 1000       | 910        |
| Dibenzo(a,h)anthracene    |               |                        | 360 U     | 360 U     | 350 U     | 350 U     | 26 U       | 28 U       | 280        | 27 U       |
| Indeno(1,2,3-cd)pyrene    |               |                        | 55 J      | 360 U     | 350 U     | 350 U     | 58 U       | 61 U       | 570        | 550        |
| Total cPAHs:              | 25,000        |                        | 855       | 41        | 0         | 0         | 0          | 0          | 4710       | 4790       |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | Site Specific<br>Soil Cleanup | Sample Designation:<br>Sample Date: |         | R-UST/W DUP<br>11/18/1997 | S-17 RE<br>10/19/1990 |                      |                    |                    | S-35<br>11/30/1990 |
|---------------------------|-------------------------------|-------------------------------------|---------|---------------------------|-----------------------|----------------------|--------------------|--------------------|--------------------|
| (Concentrations in µg/kg) | Level (µg/kg)                 | Sample Depth (ft bls):<br>Map Zone: | Zone II | Zone II                   | 0-2<br>Zone III       | 0-2<br>Zone II       | 0-2<br>Zone I      | 4-6<br>Zone IV     | 8-10<br>Zone IV    |
| Benzo(a)anthracene        |                               |                                     | 26 U    | 130 J                     | 2390 U                | 2010 U               | 370 U              | 355 U              | 380 U              |
| Benzo(a)pyrene            |                               |                                     | 26 U    | 190 J                     | 2390 U                | 2010 U               | 370 U              | 355 U              | 380 U              |
| Benzo(b)fluoranthene      |                               |                                     | 37 U    | 420                       | $2390 U^{1}$          | 5617 JV <sup>1</sup> | 370 U <sup>1</sup> | 355 U <sup>1</sup> | $380 U^1$          |
| Benzo(k)fluoranthene      |                               |                                     | 37 U    | 37 U                      | $2390 U^{1}$          | $5617 \text{ JV}^1$  | $370 \text{ U}^1$  | 355 U <sup>1</sup> | $380 U^1$          |
| Chrysene                  |                               |                                     | 26 U    | 270                       | 2390 U                | 2010 U               | 370 U              | 355 U              | 380 U              |
| Dibenzo(a,h)anthracene    |                               |                                     | 26 U    | 27 U                      | 2390 U                | 2010 U               | 370 U              | 355 U              | 380 U              |
| Indeno(1,2,3-cd)pyrene    |                               |                                     | 58 U    | 170 J                     | 2390 U                | 2010 U               | 370 U              | 355 U              | 380 U              |
| Total cPAHs:              | 25,000                        |                                     | 0       | 1180                      | 0                     | 5617                 | 0                  | 0                  | 0                  |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | S-37      | S-38               | S-39               | S-41A              | S-43       | S-47 RE             | S-49 RE            | S-53              |
|---------------------------|---------------|------------------------|-----------|--------------------|--------------------|--------------------|------------|---------------------|--------------------|-------------------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 12/1/1990 | 11/29/1990         | 11/29/1990         | 11/7/1990          | 11/5/1990  | 10/19/1990          | 10/19/1990         | 11/18/1990        |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 4-6       | 2-4                | 2-4                | 3.5-5.5            | 0-2        | 2-4                 | 2-4                | 5-7               |
|                           |               | Map Zone:              | Zone III  | Zone III           | Zone III           | Zone III           | Zone III   | Zone III            | Zone III           | Zone II           |
| Benzo(a)anthracene        |               |                        | 350 U     | 390 U              | 350 U              | 3840 U             | 12600      | 3550 U              | 3510 U             | 340 U             |
| Benzo(a)pyrene            |               |                        | 350 U     | 390 U              | 350 U              | 3840 U             | 5760       | 3550 U              | 3510 U             | 340 U             |
| Benzo(b)fluoranthene      |               |                        | $350 U^1$ | 390 U <sup>1</sup> | 350 U <sup>1</sup> | $3840 \text{ U}^1$ | $7400^{1}$ | 3550 U <sup>1</sup> | $3510 \text{ U}^1$ | $340 \text{ U}^1$ |
| Benzo(k)fluoranthene      |               |                        | $350 U^1$ | $390 U^{1}$        | $350 U^1$          | $3840 \text{ U}^1$ | $7400^{1}$ | $3550~\mathrm{U}^1$ | $3510 \text{ U}^1$ | $340 \text{ U}^1$ |
| Chrysene                  |               |                        | 350 U     | 390 U              | 350 U              | 3840 U             | 10100      | 3550 U              | 3510 U             | 340 U             |
| Dibenzo(a,h)anthracene    |               |                        | 350 U     | 390 U              | 350 U              | 3840 U             | 2090 J     | 3550 U              | 3510 U             | 340 U             |
| Indeno(1,2,3-cd)pyrene    |               |                        | 350 U     | 390 U              | 350 U              | 3840 U             | 4640       | 3550 U              | 3510 U             | 340 U             |
| Total cPAHs:              | 25,000        |                        | 0         | 0                  | 0                  | 0                  | 42590      | 0                   | 0                  | 0                 |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | S-60              | S-80             | S-82                | S-90                  | S-100     |                     | S-102 RE  | S-164     |
|---------------------------|---------------|------------------------|-------------------|------------------|---------------------|-----------------------|-----------|---------------------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 12/12/1990        | 10/3/1990        | 10/16/1990          | 10/1/1990             | 1/18/1993 | 1/18/1993           | 1/18/1993 | 7/19/2007 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 4-6               | 2-4              | 0-2                 | 1-3                   | 0-2       | 0-2                 | 0-2       | 0-1       |
|                           |               | Map Zone:              | Zone II           | Zone II          | Zone I              | Zone I                | Zone II   | Zone II             | Zone II   | Zone I    |
| Benzo(a)anthracene        |               |                        | 340 U             | 1720 U           | 1830 U              | 1770 UJV              | 1100 JV   | 4600 JV             | 730 JV    | 360 U     |
| Benzo(a)pyrene            |               |                        | 340 U             | 1720 U           | 1830 U              | 1770 UJV              | 1200 JV   | $4000  \mathrm{JV}$ | 2100 JV   | 360 U     |
| Benzo(b)fluoranthene      |               |                        | $340 \text{ U}^1$ | $1720 U^1$       | 1233 J <sup>1</sup> | 1770 UJV <sup>1</sup> | 1000 JV   | 3500 JV             | 760 JV    | 360 U     |
| Benzo(k)fluoranthene      |               |                        | $340 \text{ U}^1$ | $1720~{\rm U}^1$ | 1233 J <sup>1</sup> | 1770 UJV <sup>1</sup> | 940 JV    | 3800 JV             | 670 JV    | 360 U     |
| Chrysene                  |               |                        | 340 U             | 1720 U           | 1830 U              | 1770 UJV              | 380 UJV   | 6500 JV             | 1100 JV   | 360 U     |
| Dibenzo(a,h)anthracene    |               |                        | 340 U             | 1720 U           | 1830 U              | 1770 UJV              | 51 JV     | 3100 UJV            | 180 JV    | 360 U     |
| Indeno(1,2,3-cd)pyrene    |               |                        | 340 U             | 1720 U           | 1830 U              | 1770 UJV              | 280 JV    | 1200 JV             | 670 JV    | 360 U     |
| Total cPAHs:              | 25,000        |                        | 0                 | 0                | 1233                | 0                     | 4571      | 23600               | 6210      | 0         |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | Site Specific<br>Soil Cleanup<br>Level (µg/kg) | Sample Designation: Sample Date: Sample Depth (ft bls): Map Zone: | S-164<br>7/19/2007<br>1-2<br>Zone I | S-164<br>7/19/2007<br>2-3<br>Zone I | S-165<br>7/19/2007<br>0-1<br>Zone I | S-165<br>7/19/2007<br>1-2<br>Zone I | S-165<br>7/19/2007<br>2-3<br>Zone I | S-166<br>7/20/2007<br>0-1<br>Zone I | S-166<br>7/20/2007<br>1-2<br>Zone I |
|----------------------------------------|------------------------------------------------|-------------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Benzo(a)anthracene                     |                                                |                                                                   | 350 U                               | 350 U                               | 480                                 | 57 J                                | 76 J                                | 66                                  | 7.3 U                               |
| Benzo(a)pyrene                         |                                                |                                                                   | 350 U                               | 350 U                               | 380 J                               | 44 J                                | 72 J                                | 57                                  | 13 U                                |
| Benzo(b)fluoranthene                   |                                                |                                                                   | 350 U                               | 350 U                               | 850                                 | 110 J                               | 130 J                               | 110                                 | 9.8 U                               |
| Benzo(k)fluoranthene                   |                                                |                                                                   | 350 U                               | 350 U                               | 290 J                               | 46 J                                | 78 J                                | 13 U                                | 16 U                                |
| Chrysene                               |                                                |                                                                   | 350 U                               | 350 U                               | 630                                 | 67 J                                | 110 J                               | 69                                  | 9.3 U                               |
| Dibenzo(a,h)anthracene                 |                                                |                                                                   | 350 U                               | 350 U                               | 130 J                               | 360 U                               | 360 U                               | 4.2 U                               | 10 U                                |
| Indeno(1,2,3-cd)pyrene                 |                                                |                                                                   | 350 U                               | 350 U                               | 340 J                               | 53 J                                | 70 J                                | 59                                  | 8.5 U                               |
| Total cPAHs:                           | 25,000                                         |                                                                   | 0                                   | 0                                   | 3100                                | 377                                 | 536                                 | 361                                 | 0                                   |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

R - Rejected by validator

RE - Reanalysis

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

1 - Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.

- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | Site Specific<br>Soil Cleanup | Sample Designation:<br>Sample Date: | S-166<br>7/20/2007 | S-167<br>7/20/2007 | S-167<br>7/20/2007 | S-167<br>7/20/2007 | S-168<br>7/20/2007 | S-168<br>7/20/2007 | S-168<br>7/20/2007 |
|---------------------------|-------------------------------|-------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| (Concentrations in µg/kg) | Level (µg/kg)                 | Sample Depth (ft bls):              | 2-3                | 0-1                | 1-2                | 2-3                | 0-1                | 1-2                | 2-3                |
|                           |                               | Map Zone:                           | Zone I             | Zone I             | Zone I             | Zone I             | Zone IV            | Zone IV            | Zone IV            |
| Benzo(a)anthracene        |                               |                                     | 8.3 U              | 450                | 61                 | 4.5 U              | 890                | 46                 | 7.4 U              |
| Benzo(a)pyrene            |                               |                                     | 15 U               | 400                | 53                 | 9 U                | 730                | 40                 | 13 U               |
| Benzo(b)fluoranthene      |                               |                                     | 11 U               | 630                | 80                 | 5.6 U              | 1500               | 48                 | 9.9 U              |
| Benzo(k)fluoranthene      |                               |                                     | 18 U               | 190                | 13 U               | 13 U               | 430                | 16 U               | 16 U               |
| Chrysene                  |                               |                                     | 10 U               | 490                | 65                 | 3.4 U              | 1300               | 41                 | 9.4 U              |
| Dibenzo(a,h)anthracene    |                               |                                     | 11 U               | 110                | 4.2 U              | 4.1 U              | 190                | 10 U               | 10 U               |
| Indeno(1,2,3-cd)pyrene    |                               |                                     | 9.6 U              | 320                | 43                 | 4.2 U              | 580                | 8.7 U              | 8.6 U              |
| Total cPAHs:              | 25,000                        |                                     | 0                  | 2590               | 302                | 0                  | 5620               | 175                | 0                  |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | S-169     | S-169     | S-169     | S-169     | S2-1     | S2-2     | S2-3     | S2-5     |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|----------|----------|----------|----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 7/20/2007 | 7/20/2007 | 7/20/2007 | 7/20/2007 | 5/1/2003 | 5/1/2003 | 5/1/2003 | 5/1/2003 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1       | 1-2       | 2-3       | 7-9       | 0-1      | 1-2      | 0-1      | 0-1      |
|                           |               | Map Zone:              | Zone IV   | Zone IV   | Zone IV   | Zone IV   | Zone IV  | Zone IV  | Zone IV  | Zone IV  |
| Benzo(a)anthracene        |               |                        | 74        | 5.1 U     | 4.8 U     | 460       | 3300     | 3800     | 810      | 12000    |
| Benzo(a)pyrene            |               |                        | 54        | 10 U      | 9.7 U     | 350       | 2900     | 2600     | 950      | 9700     |
| Benzo(b)fluoranthene      |               |                        | 130       | 44        | 6.1 U     | 470       | 4500     | 2900     | 1600     | 14000    |
| Benzo(k)fluoranthene      |               |                        | 15 U      | 14 U      | 14 U      | 140       | 3900     | 4100     | 950      | 11000    |
| Chrysene                  |               |                        | 160       | 53        | 3.7 U     | 510       | 4400     | 5200     | 1200     | 18000    |
| Dibenzo(a,h)anthracene    |               |                        | 4.8 U     | 4.7 U     | 4.5 U     | 80        | 1100 J   | 680 J    | 120 J    | 2100 J   |
| Indeno(1,2,3-cd)pyrene    |               |                        | 45        | 4.8 U     | 4.6 U     | 200       | 2700     | 1500 J   | 330 J    | 3600     |
| Total cPAHs:              | 25,000        |                        | 463       | 97        | 0         | 2210      | 22800    | 20780    | 5960     | 70400    |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | S2-6     | S2-7     | S2-8     | SH-1       | SH-2       | SH-3       | SH-4       | SH-5       |
|---------------------------|---------------|------------------------|----------|----------|----------|------------|------------|------------|------------|------------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 5/1/2003 | 5/1/2003 | 5/1/2003 | 12/10/2007 | 12/10/2007 | 12/10/2007 | 12/10/2007 | 12/10/2007 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1      | 0-1      | 0-1      | 0-1        | 0-1        | 0-1        | 0-1        | 0-1        |
|                           |               | Map Zone:              | Zone IV  | Zone IV  | Zone IV  | Zone IV    | Zone IV    | Zone IV    | Zone III   | Zone III   |
| Benzo(a)anthracene        |               |                        | 3800     | 1700     | 2400     | 310 J      | 370 U      | 370 U      | 120 J      | 350 U      |
| Benzo(a)pyrene            |               |                        | 3800     | 1500     | 2200     | 310 J      | 370 U      | 370 U      | 98 J       | 350 U      |
| Benzo(b)fluoranthene      |               |                        | 6300     | 1900     | 3500 M   | 420        | 370 U      | 370 U      | 170 J      | 350 U      |
| Benzo(k)fluoranthene      |               |                        | 6000     | 2600     | 3100 M   | 150 J      | 370 U      | 370 U      | 55 J       | 350 U      |
| Chrysene                  |               |                        | 4900     | 1800     | 2800     | 370 J      | 370 U      | 370 U      | 150 J      | 350 U      |
| Dibenzo(a,h)anthracene    |               |                        | 520 J    | 140 J    | 220 J    | 71 J       | 370 U      | 370 U      | 380 U      | 350 U      |
| Indeno(1,2,3-cd)pyrene    |               |                        | 1000     | 320 J    | 450 J    | 190 J      | 370 U      | 370 U      | 80 J       | 350 U      |
| Total cPAHs:              | 25,000        |                        | 26320    | 9960     | 14670    | 1821       | 0          | 0          | 673        | 0          |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | SH-6       | SH-7       | SH-8       | SH-9       | SH-10      | SH-11      | SH-12      | SS-1      |
|---------------------------|---------------|------------------------|------------|------------|------------|------------|------------|------------|------------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 12/10/2007 | 12/10/2007 | 12/10/2007 | 12/10/2007 | 12/10/2007 | 12/10/2007 | 12/10/2007 | 12/8/1997 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1        | 0-1        | 0-1        | 0-1        | 0-1        | 0-1        | 0-1        | 0-1       |
|                           |               | Map Zone:              | Zone III   | Zone III   | Zone II    | Zone II    | Zone II    | Zone II    | Zone I     | Zone III  |
| Benzo(a)anthracene        |               |                        | 150 J      | 370 U      | 63 J       | 1000       | 75 J       | 500        | 220 J      | 620       |
| Benzo(a)pyrene            |               |                        | 140 J      | 370 U      | 58 J       | 850        | 62 J       | 500        | 200 J      | 780       |
| Benzo(b)fluoranthene      |               |                        | 230 J      | 370 U      | 110 J      | 1200       | 81 J       | 760        | 360 J      | 1800      |
| Benzo(k)fluoranthene      |               |                        | 77 J       | 370 U      | 370 U      | 310 J      | 370 U      | 200 J      | 130 J      | 400 U     |
| Chrysene                  |               |                        | 190 J      | 370 U      | 72 J       | 1000       | 79 J       | 580        | 250 J      | 710       |
| Dibenzo(a,h)anthracene    |               |                        | 390 U      | 370 U      | 370 U      | 170 J      | 370 U      | 130 J      | 56 J       | 150 J     |
| Indeno(1,2,3-cd)pyrene    |               |                        | 99 J       | 370 U      | 40 J       | 480        | 370 U      | 340 J      | 160 J      | 870       |
| Total cPAHs:              | 25,000        |                        | 886        | 0          | 343        | 5010       | 297        | 3010       | 1376       | 4930      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | SS-1      | SS-2      | SS-2      | SS-3      | SS-3      | SS-4      | SS-4      | SS-5      | SS-5      |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 12/8/1997 | 12/8/1997 | 12/8/1997 | 12/8/1997 | 12/8/1997 | 12/8/1997 | 12/8/1997 | 12/8/1997 | 12/8/1997 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       |
|                           |               | Map Zone:              | Zone III  | Zone III  | Zone III  | Zone II   |
|                           |               |                        |           |           |           |           |           |           |           |           |           |
| Benzo(a)anthracene        |               |                        | 63 J      | 700       | 360 U     | 640       | 29 J      | 110 J     | 380 U     | 490       | 23 J      |
| Benzo(a)pyrene            |               |                        | 73 J      | 740       | 360 U     | 690       | 350 U     | 110 J     | 380 U     | 590       | 370 U     |
| Benzo(b)fluoranthene      |               |                        | 170 J     | 1600      | 44 J      | 1900      | 100 J     | 370       | 23 J      | 1900      | 52 J      |
| Benzo(k)fluoranthene      |               |                        | 350 U     | 380 U     | 360 U     | 370 U     | 350 U     | 370 U     | 380 U     | 390 U     | 370 U     |
| Chrysene                  |               |                        | 70 J      | 800       | 18 J      | 830       | 40 J      | 160 J     | 380 U     | 780       | 23 J      |
| Dibenzo(a,h)anthracene    |               |                        | 350 U     | 120 J     | 360 U     | 220 J     | 350 U     | 370 U     | 380 U     | 91 J      | 370 U     |
| Indeno(1,2,3-cd)pyrene    |               |                        | 40 J      | 510       | 360 U     | 1000      | 22 J      | 86 J      | 380 U     | 470       | 370 U     |
| Total cPAHs:              | 25,000        |                        | 416       | 4470      | 62        | 5280      | 191       | 836       | 23        | 4321      | 98        |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | SS-6      | SS-6      | SS-7      | SS-7 DUP  | SS-7      | SS-7 DUP  | SS-8      | SS-8      |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 12/8/1997 | 12/8/1997 | 12/9/1997 | 12/9/1997 | 12/9/1997 | 12/9/1997 | 12/9/1997 | 12/9/1997 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1       | 1-2       | 0-1       | 0-1       | 1-2       | 1-2       | 0-1       | 1-2       |
|                           |               | Map Zone:              | Zone II   |
| Benzo(a)anthracene        |               |                        | 48 J      | 36 J      | 690       | 1500      | 360 U     | 370 U     | 480       | 38 J      |
| Benzo(a)pyrene            |               |                        | 390 U     | 400 U     | 1200      | 1500      | 360 U     | 370 U     | 470       | 90 J      |
| Benzo(b)fluoranthene      |               |                        | 180 J     | 80 J      | 2000      | 2400      | 360 U     | 370 U     | 1600      | 160 J     |
| Benzo(k)fluoranthene      |               |                        | 390 U     | 400 U     | 370 U     | 380 U     | 360 U     | 20 J      | 370 U     | 160 J     |
| Chrysene                  |               |                        | 81 J      | 27 J      | 960       | 1600      | 360 U     | 370 U     | 610       | 59 J      |
| Dibenzo(a,h)anthracene    |               |                        | 390 U     | 400 U     | 150 J     | 210 J     | 360 U     | 370 U     | 140 J     | 18 J      |
| Indeno(1,2,3-cd)pyrene    |               |                        | 60 J      | 400 U     | 320 J     | 450       | 360 U     | 370 U     | 300 J     | 39 J      |
| Total cPAHs:              | 25,000        |                        | 369       | 143       | 5320      | 7660      | 0         | 20        | 3600      | 564       |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | SS-9      | SS-9      | SS-10     | SS-10     | SS-11     | SS-11     | SS-12     | SS-12     | SS-13     |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 12/9/1997 | 12/9/1997 | 12/9/1997 | 12/9/1997 | 12/9/1997 | 12/9/1997 | 12/9/1997 | 12/9/1997 | 12/9/1997 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       |
|                           |               | Map Zone:              | Zone II   |
| Benzo(a)anthracene        |               |                        | 270 J     | 110 J     | 960       | 64 J      | 2000      | 67 J      | 600       | 81 J      | 1600      |
| Benzo(a)pyrene            |               |                        | 260 J     | 110 J     | 860       | 120 J     | 3200      | 130 J     | 550       | 23 J      | 2400      |
| Benzo(b)fluoranthene      |               |                        | 1200      | 500       | 2000      | 230 J     | 3200      | 230 J     | 2700      | 300 J     | 2400      |
| Benzo(k)fluoranthene      |               |                        | 370 U     | 360 U     | 1800      | 380 U     | 2500      | 360 U     | 460 U     | 350 U     | 2800      |
| Chrysene                  |               |                        | 380       | 150 J     | 1400      | 110 J     | 2400      | 97 J      | 930       | 120 J     | 2200      |
| Dibenzo(a,h)anthracene    |               |                        | 78 J      | 46 J      | 260 J     | 27 J      | 680       | 37 J      | 200 J     | 19 J      | 370 J     |
| Indeno(1,2,3-cd)pyrene    |               |                        | 170 J     | 110 J     | 560       | 60 J      | 1400      | 72 J      | 440 J     | 41 J      | 920       |
| Total cPAHs:              | 25,000        |                        | 2358      | 1026      | 7840      | 611       | 15380     | 633       | 5420      | 584       | 12690     |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | SS-13         | SS-14        | SS-14     | SS-15     | SS-15        | SS-16          | SS-16     | SS-17     | SS-17        |
|---------------------------|---------------|------------------------|---------------|--------------|-----------|-----------|--------------|----------------|-----------|-----------|--------------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 12/9/1997     | 12/9/1997    | 12/9/1997 | 12/9/1997 | 12/9/1997    | 12/9/1997      | 12/9/1997 | 12/9/1997 | 12/9/1997    |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 1-2           | 0-1          | 1-2       | 0-1       | 1-2          | 0-1            | 1-2       | 0-1       | 1-2          |
|                           |               | Map Zone:              | Zone II       | Zone I       | Zone I    | Zone I    | Zone I       | Zone I         | Zone I    | Zone I    | Zone I       |
| Benzo(a)anthracene        |               |                        | 97 J          | 90 J         | 350 U     | 740       | 52 J         | 260 J          | 340 U     | 1200      | 29 J         |
| Benzo(a)pyrene            |               |                        | 97 J<br>180 J | 90 J<br>74 J | 350 U     | 1500      | 52 J<br>64 J | 200 J<br>210 J | 340 U     | 2900      | 29 J<br>27 J |
| · /13                     |               |                        |               |              |           |           |              |                |           |           |              |
| Benzo(b)fluoranthene      |               |                        | 330 J         | 260 J        | 350 U     | 1600      | 220 J        | 68 J           | 340 U     | 3000      | 190 J        |
| Benzo(k)fluoranthene      |               |                        | 330 J         | 350 U        | 350 U     | 390 U     | 370 U        | 360 U          | 340 U     | 2200      | 350 U        |
| Chrysene                  |               |                        | 130 J         | 120 J        | 350 U     | 1000      | 80 J         | 530            | 340 U     | 1900      | 57 J         |
| Dibenzo(a,h)anthracene    |               |                        | 42 J          | 30 J         | 350 U     | 190 J     | 24 J         | 72 J           | 340 U     | 370 J     | 18 J         |
| Indeno(1,2,3-cd)pyrene    |               |                        | 110 J         | 59 J         | 350 U     | 400       | 48 J         | 160 J          | 340 U     | 810       | 39 J         |
| Total cPAHs:              | 25,000        |                        | 1219          | 633          | 0         | 5430      | 488          | 1300           | 0         | 12380     | 360          |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | SS-18     | SS-18     | SS-19     | SS-19     | SS-20     | SS-20     | SS-21     | SS-21     | SS-22     |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 12/9/1997 | 12/9/1997 | 12/9/1997 | 12/9/1997 | 12/9/1997 | 12/9/1997 | 12/9/1997 | 12/9/1997 | 12/9/1997 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       |
|                           |               | Map Zone:              | Zone I    |
| Benzo(a)anthracene        |               |                        | 210 J     | 92 J      | 1200      | 51 J      | 780       | 64 J      | 440       | 30 J      | 1100      |
| Benzo(a)pyrene            |               |                        | 190 J     | 220 J     | 720       | 360 U     | 770       | 360 U     | 1200      | 360 U     | 950       |
| Benzo(b)fluoranthene      |               |                        | 870       | 490       | 2900      | 110 J     | 2200      | 140 J     | 1700      | 64 J      | 2800      |
| Benzo(k)fluoranthene      |               |                        | 360 U     | 350 U     | 2400      | 59 J      | 1300      | 91 J      | 660       | 35 J      | 2100      |
| Chrysene                  |               |                        | 280 J     | 140 J     | 1600      | 54 J      | 1300      | 92 J      | 870       | 46 J      | 2000      |
| Dibenzo(a,h)anthracene    |               |                        | 79 J      | 44 J      | 420       | 360 U     | 540       | 360 U     | 320 J     | 360 U     | 780       |
| Indeno(1,2,3-cd)pyrene    |               |                        | 150 J     | 83 J      | 930       | 130 J     | 1400      | 62 J      | 860       | 360 U     | 2200      |
| Total cPAHs:              | 25,000        |                        | 1779      | 1069      | 10170     | 404       | 8290      | 449       | 6050      | 175       | 11930     |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | SS-22     | SS-23      | SS-23      | SS-24     | SS-24     | SS-25      | SS-25      | SS-26      |
|---------------------------|---------------|------------------------|-----------|------------|------------|-----------|-----------|------------|------------|------------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 12/9/1997 | 12/10/1997 | 12/10/1997 | 12/9/1997 | 12/9/1997 | 12/10/1997 | 12/10/1997 | 12/10/1997 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 1-2       | 0-1        | 1-2        | 0-1       | 1-2       | 0-1        | 1-2        | 0-1        |
|                           |               | Map Zone:              | Zone I    | Zone I     | Zone I     | Zone I    | Zone I    | Zone I     | Zone I     | Zone I     |
| Benzo(a)anthracene        |               |                        | 100 J     | 250 J      | 160 J      | 1600      | 380 U     | 1300       | 370 U      | 450        |
| Benzo(a)pyrene            |               |                        | 360 U     | 480        | 140        | 1500      | 380 U     | 1400       | 370 U      | 480        |
| Benzo(b)fluoranthene      |               |                        | 550       | 1100       | 360 J      | 3000      | 380 U     | 2900       | 370 U      | 1800       |
| Benzo(k)fluoranthene      |               |                        | 260 J     | 370 U      | 55         | 2600      | 380 U     | 3100       | 370 U      | 380 U      |
| Chrysene                  |               |                        | 210 J     | 480        | 190 J      | 2900      | 380 U     | 1700       | 370 U      | 670        |
| Dibenzo(a,h)anthracene    |               |                        | 360 U     | 68 J       | 31 J       | 1100      | 380 U     | 370 J      | 370 U      | 130 J      |
| Indeno(1,2,3-cd)pyrene    |               |                        | 250 J     | 140 J      | 60         | 3000      | 380 U     | 750        | 370 U      | 270 J      |
| Total cPAHs:              | 25,000        |                        | 1370      | 2518       | 996        | 15700     | 0         | 11520      | 0          | 3800       |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | Site Specific<br>Soil Cleanup | Sample Designation:<br>Sample Date: | SS-26<br>12/10/1997 | SS-27<br>12/10/1997 | SS-27<br>12/10/1997 | SS-28<br>12/10/1997 | SS-28<br>12/10/1997 | SS-29<br>12/10/1997 |
|---------------------------|-------------------------------|-------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| (Concentrations in µg/kg) | Level (µg/kg)                 | Sample Depth (ft bls):              | 1-2                 | 0-1                 | 1-2                 | 0-1                 | 1-2                 | 0-1                 |
|                           |                               | Map Zone:                           | Zone I              |
| Benzo(a)anthracene        |                               |                                     | 380 U               | 78 J                | 380 U               | 400                 | 380 U               | 430                 |
| Benzo(a)pyrene            |                               |                                     | 54 J                | 120 J               | 380 U               | 730                 | 380 U               | 410 J               |
| Benzo(b)fluoranthene      |                               |                                     | 66 J                | 250 J               | 380 U               | 1600                | 380 U               | 1800                |
| Benzo(k)fluoranthene      |                               |                                     | 380 U               | 33 J                | 380 U               | 360 U               | 380 U               | 410 U               |
| Chrysene                  |                               |                                     | 29 J                | 130 J               | 380 U               | 570                 | 380 U               | 650                 |
| Dibenzo(a,h)anthracene    |                               |                                     | 380 U               | 21 J                | 380 U               | 160 J               | 380 U               | 110 J               |
| Indeno(1,2,3-cd)pyrene    |                               |                                     | 24 J                | 42 J                | 380 U               | 310 J               | 380 U               | 230 J               |
| Total cPAHs:              | 25,000                        |                                     | 173                 | 674                 | 0                   | 3770                | 0                   | 3630                |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | SS-29      | SS-30      | SS-30      | SS-31      | SS-31      | SS-32      | SS-32      | SS-33      |
|---------------------------|---------------|------------------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 12/10/1997 | 12/10/1997 | 12/10/1997 | 12/10/1997 | 12/10/1997 | 12/10/1997 | 12/10/1997 | 12/10/1997 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 1-2        | 0-1        | 1-2        | 0-1        | 1-2        | 0-1        | 1-2        | 0-1        |
|                           |               | Map Zone:              | Zone I     |
| Benzo(a)anthracene        |               |                        | 45 J       | 1700       | 22 J       | 1400       | 71 J       | 1100       | 350 U      | 3900 JD    |
| Benzo(a)pyrene            |               |                        | 42 J       | 530        | 42 J       | 1200       | 88 J       | 330 J      | 350 U      | 2200       |
| Benzo(b)fluoranthene      |               |                        | 180 J      | 2700       | 78 J       | 2900       | 170 J      | 2200       | 350 U      | 8600 D     |
| Benzo(k)fluoranthene      |               |                        | 380 U      | 3200       | 350 U      | 2700       | 350 U      | 2900       | 350 U      | 1000 JD    |
| Chrysene                  |               |                        | 84 J       | 1900       | 31 J       | 1900       | 120 J      | 1300       | 350 U      | 5000 D     |
| Dibenzo(a,h)anthracene    |               |                        | 19 J       | 380 J      | 350 U      | 370 J      | 20 J       | 340 J      | 350 U      | 520        |
| Indeno(1,2,3-cd)pyrene    |               |                        | 39 J       | 890        | 25 J       | 800        | 38 J       | 670        | 350 U      | 1100       |
| Total cPAHs:              | 25,000        |                        | 409        | 11300      | 198        | 11270      | 507        | 8840       | 0          | 22320      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | SS-33      | SS-34      | SS-34      | SS-35      | SS-35      | SS-36      | SS-36      | SS-37      |
|---------------------------|---------------|------------------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 12/10/1997 | 12/10/1997 | 12/10/1997 | 12/10/1997 | 12/10/1997 | 12/10/1997 | 12/10/1997 | 12/10/1997 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 1-2        | 0-1        | 1-2        | 0-1        | 1-2        | 0-1        | 1-2        | 0-1        |
|                           |               | Map Zone:              | Zone I     |
| Benzo(a)anthracene        |               |                        | 140 J      | 2300       | 75 J       | 250 J      | 370 U      | 490        | 350 U      | 280 J      |
| Benzo(a)pyrene            |               |                        | 170 J      | 2000       | 98 J       | 250 J      | 370 U      | 120 J      | 350 U      | 260 J      |
| Benzo(b)fluoranthene      |               |                        | 350 J      | 6600 D     | 190 J      | 750        | 370 U      | 1000       | 350 U      | 630        |
| Benzo(k)fluoranthene      |               |                        | 350 U      | 400 U      | 350 U      | 390 U      | 24 J       | 380 U      | 20 J       | 85 J       |
| Chrysene                  |               |                        | 200 J      | 2600       | 100 J      | 310 J      | 370 U      | 490        | 350 U      | 340 J      |
| Dibenzo(a,h)anthracene    |               |                        | 39 J       | 450        | 25 J       | 76 J       | 370 U      | 77 J       | 350 U      | 66 J       |
| Indeno(1,2,3-cd)pyrene    |               |                        | 74 J       | 880        | 48 J       | 150 J      | 370 U      | 150 J      | 350 U      | 130 J      |
| Total cPAHs:              | 25,000        |                        | 973        | 14830      | 536        | 1786       | 24         | 2327       | 20         | 1791       |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Doromotor                           | Site Specific<br>Soil Cleanup | Sample Designation:<br>Sample Date: |                  |        | SS-37 DUP<br>12/10/1997 | SS-38<br>12/10/1997 | SS-38<br>12/10/1997 | SSY-7<br>6/7/1999 | SSY-9<br>7/9/1999 |
|-------------------------------------|-------------------------------|-------------------------------------|------------------|--------|-------------------------|---------------------|---------------------|-------------------|-------------------|
| Parameter (Concentrations in μg/kg) | Level (µg/kg)                 | Sample Depth (ft bls):              | 0-1              | 1-2    | 1-2                     | 0-1                 | 1-2                 | 0-0.5             | 0.5-1             |
|                                     |                               | Map Zone:                           | Zone I           | Zone I | Zone I                  | Zone I              | Zone I              | Zone IV<br>(1)    | Zone III<br>(1)   |
| Benzo(a)anthracene                  |                               |                                     | 260 J            | 120 J  | 190 J                   | 500                 | 210 J               | 460               | 350 U             |
| Benzo(a)pyrene                      |                               |                                     | 240 J            | 110 J  | 200 J                   | 500                 | 70 J                | 540               | 350 U             |
| Benzo(b)fluoranthene                |                               |                                     | 600              | 340 J  | 490                     | 1300                | 550                 | 1200              | 350 U             |
| Benzo(k)fluoranthene                |                               |                                     | 390 U            | 370 U  | 360 U                   | 370 U               | 360 U               | 500               | 350 U             |
| Chrysene                            |                               |                                     | $300 \mathrm{J}$ | 160 J  | 240 J                   | 530                 | 240 J               | 670               | 38 J              |
| Dibenzo(a,h)anthracene              |                               |                                     | 60 J             | 28 J   | 39 J                    | 120 J               | 55 J                | 370 U             | 350 U             |
| Indeno(1,2,3-cd)pyrene              |                               |                                     | 120 J            | 58 J   | 80 J                    | 250 J               | 120 J               | 370 U             | 350 U             |
| Total cPAHs:                        | 25,000                        |                                     | 1580             | 816    | 1239                    | 3200                | 1245                | 3370              | 38                |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| -                         | Site Specific | Sample Designation:    | SSY-10   | SSY-11   | SSY-12   | SSY-16   | SSY-17I   | SSY-17S   | SSY-20 RE |
|---------------------------|---------------|------------------------|----------|----------|----------|----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 7/9/1999 | 7/9/1999 | 7/9/1999 | 6/3/1999 | 4/23/1999 | 4/23/1999 | 6/3/1999  |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0.5-1    | 0.5-1    | 0.5-1    | 0-0.5    | 11-11.5   | 1-1.5     | 0-0.5     |
|                           |               | Map Zone:              | Zone III | Zone II  | Zone II  | Zone I   | Zone I    | Zone I    | Zone IV   |
|                           |               |                        | (1)      | (1)      | (1)      | (1)      | (1)       | (1)       | (1)       |
| Benzo(a)anthracene        |               |                        | 210 J    | 4000 D   | 680      | 85 J     | 360 U     | 210 J     | 580       |
| Benzo(a)pyrene            |               |                        | 220 J    | 2500     | 890      | 110 J    | 360 U     | 180 J     | 730       |
| Benzo(b)fluoranthene      |               |                        | 490      | 4300 D   | 2600     | 210 J    | 360 U     | 390       | 2100      |
| Benzo(k)fluoranthene      |               |                        | 110 J    | 900      | 570      | 68 J     | 360 U     | 150 J     | 630       |
| Chrysene                  |               |                        | 370      | 3700 D   | 1200     | 110 J    | 360 U     | 340 J     | 990       |
| Dibenzo(a,h)anthracene    |               |                        | 370 U    | 330 J    | 190 J    | 350 U    | 360 U     | 370 U     | 130 J     |
| Indeno(1,2,3-cd)pyrene    |               |                        | 140 J    | 1200     | 640      | 350 U    | 360 U     | 100 J     | 520       |
| Total cPAHs:              | 25,000        |                        | 1540     | 14330    | 6770     | 583      | 0         | 1370      | 5680      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

R - Rejected by validator

RE - Reanalysis

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

1 - Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.

- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                            | Site Specific<br>Soil Cleanup | Sample Designation:<br>Sample Date: | SSY-21<br>6/3/1999 | SSY-22<br>6/3/1999 | SSY-23<br>7/9/1999 | SSY-24<br>7/9/1999 | SSY-25<br>7/9/1999 | SSY-26<br>7/9/1999 | SSY-27<br>6/3/1999 |
|--------------------------------------|-------------------------------|-------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| (Concentrations in µg/kg)            | Level (µg/kg)                 | Sample Depth (ft bls):              | 0.5-1              | 0.5-1              | 0.5-1              | 0.5-1              | 0.5-1              | 0.5-1              | 0-0.5              |
|                                      |                               | Map Zone:                           | Zone IV            | Zone III (1)       | Zone III           | Zone III           | Zone II            | Zone II            | Zone II<br>(1)     |
| Danaga (a) and an ana                |                               |                                     | (1)                | ` '                | (1)                | (1)                | (1)                | (1)                |                    |
| Benzo(a)anthracene<br>Benzo(a)pyrene |                               |                                     | 670<br>780         | 96 J<br>350 U      | 94 J<br>74 J       | 55 J<br>46 J       | 250 J<br>270 J     | 370<br>320 J       | 630<br>740         |
| Benzo(b)fluoranthene                 |                               |                                     | 1800               | 140 J              | 300 J              | 160 J              | 520                | 1100               | 2100               |
| Benzo(k)fluoranthene                 |                               |                                     | 480                | 350 U              | 68 J               | 38 J               | 140 J              | 230 J              | 570                |
| Chrysene                             |                               |                                     | 930                | 150 J              | 220 J              | 110 J              | 370                | 660                | 930                |
| Dibenzo(a,h)anthracene               |                               |                                     | 380 U              | 350 U              | 340 U              | 340 U              | 52 J               | 85 J               | 370 U              |
| Indeno(1,2,3-cd)pyrene               |                               |                                     | 340 J              | 350 U              | 57 J               | 340 U              | 200 J              | 320 J              | 300 J              |
| Total cPAHs:                         | 25,000                        |                                     | 5000               | 386                | 813                | 409                | 1802               | 3085               | 5270               |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | Site Specific<br>Soil Cleanup | Sample Designation:<br>Sample Date: | SSY-28<br>6/3/1999 | SSY-33<br>6/3/1999 | SSY-33D<br>6/3/1999 | SSY-34<br>6/3/1999 | SSY-34D<br>6/3/1999 | SSY-35<br>6/3/1999 | SSY-35D<br>6/3/1999 | SSY-36<br>6/3/1999 |
|---------------------------|-------------------------------|-------------------------------------|--------------------|--------------------|---------------------|--------------------|---------------------|--------------------|---------------------|--------------------|
| (Concentrations in µg/kg) | Level (µg/kg)                 | Sample Depth (ft bls):              | 0-0.5              | 0-0.5              | 5.5-6               | 0.5-1              | 3.5-4               | 0-0.5              | 5.5-6               | 0.5-1              |
|                           |                               | Map Zone:                           | Zone I             | Zone IV            | Zone IV             | Zone IV            | Zone IV             | Zone III           | Zone III            | Zone IV            |
|                           |                               |                                     | (1)                | (1)                | (1)                 | (1)                | (1)                 | (1)                | (1)                 | (1)                |
| Benzo(a)anthracene        |                               |                                     | 760                | 240 J              | 360 U               | 1100               | 71 J                | 77 J               | 85 J                | 1900               |
| Benzo(a)pyrene            |                               |                                     | 590                | 220 J              | 360 U               | 1200               | 59 J                | 67 J               | 350 U               | 2100               |
| Benzo(b)fluoranthene      |                               |                                     | 840                | 680                | 360 U               | 1900               | 93 J                | 120 J              | 170 J               | 5700 D             |
| Benzo(k)fluoranthene      |                               |                                     | 280 J              | 170 J              | 360 U               | 780                | 360 U               | 360 U              | 56 J                | 1600               |
| Chrysene                  |                               |                                     | 980                | 410                | 360 U               | 1100               | 89 J                | 170 J              | 160 J               | 3100 D             |
| Dibenzo(a,h)anthracene    |                               |                                     | 370 U              | 360 U              | 360 U               | 360 U              | 360 U               | 360 U              | 350 U               | 220 J              |
| Indeno(1,2,3-cd)pyrene    |                               |                                     | 260 J              | 360 U              | 360 U               | 530                | 360 U               | 360 U              | 350 U               | 1000               |
| Total cPAHs:              | 25,000                        |                                     | 3710               | 1720               | 0                   | 6610               | 312                 | 434                | 471                 | 15520              |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | SSY-37   | SSY-38   | SSY-38D  | SSY-39    | SSY-40    | SSY-42   | SSY-45    | SSY-46    |
|---------------------------|---------------|------------------------|----------|----------|----------|-----------|-----------|----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 6/3/1999 | 6/3/1999 | 6/3/1999 | 4/28/1999 | 4/28/1999 | 7/9/1999 | 6/14/1999 | 6/14/1999 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0.5-1    | 0-0.5    | 5.5-6    | 1-1.5     | 1-1.5     | 0.5-1    | 0-0.5     | 0.5-1     |
|                           |               | Map Zone:              | Zone IV  | Zone III | Zone III | Zone IV   | Zone III  | Zone II  | Zone II   | Zone II   |
|                           |               |                        | (1)      | (1)      | (1)      | (1)       | (1)       | (1)      | (1)       | (1)       |
| Benzo(a)anthracene        |               |                        | 790      | 350 U    | 52 J     | 390 U     | 360 U     | 55 J     | 510       | 790       |
| Benzo(a)pyrene            |               |                        | 700      | 350 U    | 68 J     | 390 U     | 360 U     | 40 J     | 510       | 870       |
| Benzo(b)fluoranthene      |               |                        | 1400     | 64 J     | 140 J    | 390 U     | 360 U     | 120 J    | 910       | 1600      |
| Benzo(k)fluoranthene      |               |                        | 490      | 350 U    | 40 J     | 390 U     | 360 U     | 380 U    | 330 J     | 470       |
| Chrysene                  |               |                        | 970      | 57 J     | 120 J    | 390 U     | 360 U     | 110 J    | 560       | 880       |
| Dibenzo(a,h)anthracene    |               |                        | 350 U    | 350 U    | 360 U    | 390 U     | 360 U     | 380 U    | 71 J      | 130 J     |
| Indeno(1,2,3-cd)pyrene    |               |                        | 290 J    | 350 U    | 360 U    | 390 U     | 360 U     | 380 U    | 260 J     | 460       |
| Total cPAHs:              | 25,000        |                        | 4640     | 121      | 420      | 0         | 0         | 325      | 3151      | 5200      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

R - Rejected by validator

RE - Reanalysis

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

1 - Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.

- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | SSY-46D   | SSY-52    | SSY-53    | SSY-54    | SSY-56    | SSY-57    | SW-1      | SW-1      |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 6/14/1999 | 4/23/1999 | 4/23/1999 | 4/23/1999 | 4/23/1999 | 4/23/1999 | 7/31/1997 | 7/31/1997 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 20-22     | 2-2.5     | 2.5-3     | 2-2.5     | 1.5-2     | 1.5-2     | 0-1       | 1-2       |
|                           |               | Map Zone:              | Zone II   | Zone I    | Zone III  | Zone III  |
|                           |               |                        | (1)       | (1)       | (1)       | (1)       | (1)       | (1)       |           |           |
| Benzo(a)anthracene        |               |                        | 340 U     | 54 J      | 340 U     | 370 U     | 380 U     | 7500 D    | 4600      | 480       |
| Benzo(a)pyrene            |               |                        | 340 U     | 69 J      | 340 U     | 370 U     | 380 U     | 6400 D    | 4500      | 420       |
| Benzo(b)fluoranthene      |               |                        | 340 U     | 100 J     | 36 J      | 370 U     | 380 U     | 14000 D   | 8800      | 850       |
| Benzo(k)fluoranthene      |               |                        | 340 U     | 71 J      | 340 U     | 370 U     | 380 U     | 2600 D    | 4900      | 530       |
| Chrysene                  |               |                        | 340 U     | 78 J      | 340 U     | 370 U     | 380 U     | 6400 D    | 6600      | 720       |
| Dibenzo(a,h)anthracene    |               |                        | 340 U     | 350 U     | 340 U     | 370 U     | 380 U     | 850 D     | 2000 U    | 360 U     |
| Indeno(1,2,3-cd)pyrene    |               |                        | 340 U     | 38 J      | 340 U     | 370 U     | 380 U     | 3200 D    | 2700      | 450       |
| Total cPAHs:              | 25,000        |                        | 0         | 410       | 36        | 0         | 0         | 40950     | 32100     | 3450      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | SW-2      | SW-2      | SW-3      | SW-3      | SW-5      | SW-5      | SW-6      | SW-6      |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 7/31/1997 | 7/31/1997 | 7/31/1997 | 7/31/1997 | 7/31/1997 | 7/31/1997 | 7/31/1997 | 7/31/1997 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       |
|                           |               | Map Zone:              | Zone III  |
| Benzo(a)anthracene        |               |                        | 3400      | 84 J      | 3700      | 70 J      | 3600      | 260 J     | 1000 J    | 42 J      |
| Benzo(a)pyrene            |               |                        | 3400      | 85 J      | 3400      | 68 J      | 3000      | 230 J     | 930 J     | 35 J      |
| Benzo(b)fluoranthene      |               |                        | 5000      | 140 J     | 5200      | 120 J     | 4800      | 420       | 1900      | 56 J      |
| Benzo(k)fluoranthene      |               |                        | 3000      | 120 J     | 3700      | 64 J      | 2700      | 260 J     | 1400 J    | 42 J      |
| Chrysene                  |               |                        | 4300      | 120 J     | 5000      | 100 J     | 4600      | 380       | 1400 J    | 49 J      |
| Dibenzo(a,h)anthracene    |               |                        | 980 J     | 360 U     | 1800 U    | 360 U     | 1600 U    | 370 U     | 1500 U    | 350 U     |
| Indeno(1,2,3-cd)pyrene    |               |                        | 1700      | 220 J     | 2100      | 190 J     | 1600      | 220 J     | 1700      | 160 J     |
| Total cPAHs:              | 25,000        |                        | 21780     | 769       | 23100     | 612       | 20300     | 1770      | 8330      | 384       |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | SW-7      | SW-7      | SW7-8     | SW7-8     | SW7-8     | SW-8      | SW-8      | SW-9      |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 7/31/1997 | 7/31/1997 | 1/18/2005 | 1/18/2005 | 1/18/2005 | 7/31/1997 | 7/31/1997 | 7/31/1997 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1       | 1-2       | 0-1       | 1-2       | 2-3       | 0-1       | 1-2       | 0-1       |
|                           |               | Map Zone:              | Zone III  | Zone III  | Zone II   | Zone II   | Zone II   | Zone III  | Zone III  | Zone III  |
|                           |               |                        |           |           |           |           |           |           |           |           |
| Benzo(a)anthracene        |               |                        | 3600      | 100 J     | 2400      | 650       | 69 J      | 7600      | 110 J     | 2300      |
| Benzo(a)pyrene            |               |                        | 3100      | 92 J      | 3000      | 870       | 56 J      | 8500      | 110 J     | 2100      |
| Benzo(b)fluoranthene      |               |                        | 5200      | 110 J     | 7200      | 2100      | 95 J      | 14000     | 160 J     | 4000      |
| Benzo(k)fluoranthene      |               |                        | 3400      | 78 J      | 2400      | 550       | 370 U     | 4900      | 120 J     | 1300 J    |
| Chrysene                  |               |                        | 4700      | 120 J     | 2800      | 890       | 72 J      | 11000     | 160 J     | 3000      |
| Dibenzo(a,h)anthracene    |               |                        | 1600 U    | 370 U     | 370 J     | 170 J     | 370 U     | 3200 U    | 360 U     | 1500 U    |
| Indeno(1,2,3-cd)pyrene    |               |                        | 2000      | 200 J     | 1200      | 460       | 370 U     | 4100      | 250 J     | 1600      |
| Total cPAHs:              | 25,000        |                        | 22000     | 700       | 19370 J   | 5690 J    | 292 J     | 50100     | 910       | 14300     |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

R - Rejected by validator

RE - Reanalysis

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

1 - Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.

- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | SW-9      | SW-10 RE  | SW-10 RE  | SW-11     | SW-11 RE  | SW-12     | SW-12     | SW-13 RE  |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 7/31/1997 | 8/15/1997 | 8/15/1997 | 8/15/1997 | 8/15/1997 | 8/15/1997 | 8/15/1997 | 8/15/1997 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       |
|                           |               | Map Zone:              | Zone III  |
| Benzo(a)anthracene        |               |                        | 39 J      | 530       | 830       | 2400      | 2900      | 580 J     | 250 J     | 670 J     |
| Benzo(a)pyrene            |               |                        | 40 J      | 1300      | 810       | 1800      | 2100      | 720 J     | 300 J     | 670 J     |
| Benzo(b)fluoranthene      |               |                        | 88 J      | 1300      | 1600      | 4700      | 4400      | 1400      | 320 J     | 1300      |
| Benzo(k)fluoranthene      |               |                        | 45 J      | 1100      | 1100      | 2700      | 2900      | 750 U     | 78 J      | 410 J     |
| Chrysene                  |               |                        | 64 J      | 630       | 830       | 3200      | 2900      | 740 J     | 120 J     | 920       |
| Dibenzo(a,h)anthracene    |               |                        | 370 U     | 360 U     | 740 U     | 610       | 1500 U    | 750 U     | 390 U     | 750 U     |
| Indeno(1,2,3-cd)pyrene    |               |                        | 170 J     | 130 J     | 190 J     | 1900      | 720 J     | 690 J     | 130 J     | 360 J     |
| Total cPAHs:              | 25,000        |                        | 446       | 4990      | 5360      | 17310     | 15920     | 4130      | 1198      | 4330      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | SW-13     | SW-14     | SW-14 RE  | SW-15     | SW-16     | SW-17     | SW-41     | SW-41     |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 8/15/1997 | 8/15/1997 | 8/15/1997 | 8/15/1997 | 8/15/1997 | 8/15/1997 | 5/24/2005 | 5/24/2005 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 1-2       | 0-1       | 1-2       | 0-1       | 0-1       | 0-1       | 0-1       | 1-2       |
|                           |               | Map Zone:              | Zone III  | Zone IV   | Zone III  | Zone III  |
| Benzo(a)anthracene        |               |                        | 82 J      | 1300      | 81 J      | 5200      | 930       | 1900      | 1500      | 74 J      |
| Benzo(a)pyrene            |               |                        | 150 J     | 1600      | 110 J     | 3100 D    | 1300      | 1900      | 1200      | 68 J      |
| Benzo(b)fluoranthene      |               |                        | 120 J     | 3200      | 160 J     | 5200 D    | 1300      | 3800      | 3500      | 99 J      |
| Benzo(k)fluoranthene      |               |                        | 39 J      | 2700      | 77 J      | 6000      | 570       | 1400 J    | 980       | 38 J      |
| Chrysene                  |               |                        | 48 J      | 1900      | 140 J     | 3900      | 870       | 3000      | 2400      | 89 J      |
| Dibenzo(a,h)anthracene    |               |                        | 360 U     | 770 U     | 410 U     | 780 U     | 380 U     | 1600 U    | 240 J     | 360 U     |
| Indeno(1,2,3-cd)pyrene    |               |                        | 71 J      | 870       | 410 U     | 2000      | 310 J     | 1400 J    | 780       | 360 U     |
| Total cPAHs:              | 25,000        |                        | 510       | 11570     | 568       | 25400     | 5280      | 13400     | 10600     | 368       |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | SW-41     | SW-49-E   | SW-49-E   | SW-49-E   | SW-49-W   | SW-49-W   |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 5/24/2005 | 6/22/2004 | 6/22/2004 | 6/22/2004 | 6/22/2004 | 6/22/2004 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 2-3       | 0-1       | 1-2       | 2-3       | 0-1       | 1-2       |
|                           |               | Map Zone:              | Zone III  |
| Benzo(a)anthracene        |               |                        | 40 J      | 210 J     | 190 J     | 160 J     | 2400      | 310 J     |
| Benzo(a)pyrene            |               |                        | 360 U     | 170 J     | 150 J     | 130 J     | 1900      | 240 J     |
| Benzo(b)fluoranthene      |               |                        | 43 J      | 510 J     | 420       | 400       | 7000      | 1100      |
| Benzo(k)fluoranthene      |               |                        | 360 U     | 360 J     | 240 J     | 260 J     | 4200      | 680 J     |
| Chrysene                  |               |                        | 43 J      | 490 J     | 490       | 430       | 6200      | 940       |
| Dibenzo(a,h)anthracene    |               |                        | 360 U     | 63 J      | 56 J      | 48 J      | 250 J     | 76 J      |
| Indeno(1,2,3-cd)pyrene    |               |                        | 360 U     | 160 J     | 120 J     | 130 J     | 640 J     | 230 J     |
| Total cPAHs:              | 25,000        |                        | 126       | 1963 J    | 1666 J    | 1558 J    | 22590 J   | 3576 J    |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

R - Rejected by validator

RE - Reanalysis

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

1 - Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.

- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | Site Specific<br>Soil Cleanup<br>Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | SW-49-W<br>6/22/2004<br>2-3<br>Zone III | SW-51-E<br>6/22/2004<br>0-1<br>Zone III | SW-51-E<br>6/22/2004<br>1-2<br>Zone III | SW-51-E<br>6/22/2004<br>2-3<br>Zone III | SW-51-W<br>6/22/2004<br>0-1<br>Zone III | SW-51-W<br>6/22/2004<br>1-2<br>Zone III |
|----------------------------------------|------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| Benzo(a)anthracene                     |                                                |                                                                            | 6300 D                                  | 430 J                                   | 330 U                                   | 43 J                                    | 960 J                                   | 350                                     |
| Benzo(a)pyrene                         |                                                |                                                                            | 3900 D                                  | 310 J                                   | 330 U                                   | 38 J                                    | 890 J                                   | 270 J                                   |
| Benzo(b)fluoranthene                   |                                                |                                                                            | 9900 D                                  | 1200                                    | 330 U                                   | 91 J                                    | 2500                                    | 410                                     |
| Benzo(k)fluoranthene                   |                                                |                                                                            | 8400 D                                  | 760                                     | 330 U                                   | 60 J                                    | 1500                                    | 350                                     |
| Chrysene                               |                                                |                                                                            | 8300 D                                  | 1100                                    | 330 U                                   | 75 J                                    | 1900                                    | 480                                     |
| Dibenzo(a,h)anthracene                 |                                                |                                                                            | 280 J                                   | 140 J                                   | 330 U                                   | 340 U                                   | 280 J                                   | 76 J                                    |
| Indeno(1,2,3-cd)pyrene                 |                                                |                                                                            | 780 J                                   | 360 J                                   | 330 U                                   | 33 J                                    | 750 J                                   | 190 J                                   |
| Total cPAHs:                           | 25,000                                         |                                                                            | 37860 DJ                                | 4300 J                                  | 0                                       | 340 J                                   | 8780 J                                  | 2126 J                                  |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

R - Rejected by validator

RE - Reanalysis

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

1 - Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.

- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | Site Specific<br>Soil Cleanup<br>Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | SW-51-W<br>6/22/2004<br>2-3<br>Zone III | T-1<br>7/30/1999<br>0-1<br>Zone III | T-2<br>7/30/1999<br>0-1<br>Zone II | T-3<br>7/30/1999<br>0-1<br>Zone III | T-4 RE<br>7/30/1999<br>0-1<br>Zone III | T-5 RE<br>7/30/1999<br>0-1<br>Zone II | T-6 RE<br>7/30/1999<br>0-1<br>Zone II | T-7<br>7/30/1999<br>0-1<br>Zone II |
|----------------------------------------|------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------|-------------------------------------|------------------------------------|-------------------------------------|----------------------------------------|---------------------------------------|---------------------------------------|------------------------------------|
| Benzo(a)anthracene                     |                                                |                                                                            | 170 J                                   | 1800                                | 1000                               | 55 J                                | 2000                                   | 1600                                  | 860                                   | 1300                               |
| Benzo(a)pyrene                         |                                                |                                                                            | 120 J                                   | 850                                 | 950                                | 52 J                                | 2500                                   | 2300                                  | 930                                   | 1500                               |
| Benzo(b)fluoranthene                   |                                                |                                                                            | 170 J                                   | 2000                                | 1800                               | 140 J                               | 4400 D                                 | 3000 D                                | 2000                                  | 3300 JD                            |
| Benzo(k)fluoranthene                   |                                                |                                                                            | 120 J                                   | 1900                                | 1200                               | 62 J                                | 2100                                   | 1900                                  | 1400                                  | 2300                               |
| Chrysene                               |                                                |                                                                            | 280 J                                   | 3200 JD                             | 1500                               | 130 J                               | 2600                                   | 1700                                  | 1100                                  | 1700                               |
| Dibenzo(a,h)anthracene                 |                                                |                                                                            | 39 J                                    | 140 J                               | 130 J                              | 330 U                               | 340 J                                  | 310 J                                 | 160 J                                 | 280 J                              |
| Indeno(1,2,3-cd)pyrene                 |                                                |                                                                            | 88 J                                    | 330 J                               | 410                                | 330 U                               | 1000                                   | 1000                                  | 510                                   | 710                                |
| Total cPAHs:                           | 25,000                                         |                                                                            | 987 J                                   | 10220                               | 6990                               | 439                                 | 14940                                  | 11810                                 | 6960                                  | 11090                              |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | T-8 RE    | T-9 RE    | T-10      | T-11 RE   | T-12 RE   | T-34C-1   | T-34C-2   | T-34C-3   | T-34C-4   |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 7/30/1999 | 7/30/1999 | 7/30/1999 | 7/30/1999 | 7/30/1999 | 5/13/2004 | 5/13/2004 | 5/13/2004 | 5/13/2004 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       |           |           |           |           |
|                           |               | Map Zone:              | Zone II   | Zone III  | Zone III  | Zone III  | Zone III  |
|                           |               |                        |           |           |           |           |           |           |           |           |           |
| Benzo(a)anthracene        |               |                        | 940       | 1100      | 620       | 610       | 1100      | 890       | 1100 J    | 2000      | 3200      |
| Benzo(a)pyrene            |               |                        | 1300      | 1800      | 730       | 630       | 1200      | 820       | 1800      | 2300      | 3200      |
| Benzo(b)fluoranthene      |               |                        | 3300      | 3400      | 1900      | 2300      | 3100      | 1300      | 2200      | 3700      | 5100      |
| Benzo(k)fluoranthene      |               |                        | 1100      | 1800      | 1200      | 1300      | 1600      | 970       | 2400      | 2500      | 5100      |
| Chrysene                  |               |                        | 1100      | 1500      | 1000      | 990       | 1300      | 1100      | 1900      | 3200      | 4900      |
| Dibenzo(a,h)anthracene    |               |                        | 220 J     | 230 J     | 200 J     | 120 J     | 290 J     | 270 J     | 620 J     | 770 J     | 900 J     |
| Indeno(1,2,3-cd)pyrene    |               |                        | 660       | 720       | 410       | 330 J     | 720       | 740 J     | 1500      | 1900      | 2700      |
| Total cPAHs:              | 25,000        |                        | 8620      | 10550     | 6060      | 6280      | 9310      | 6090      | 11520     | 16370     | 25100     |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | T-34C-4B  | T-34C-5   | T-34C-6   | T-34C-7   | T-34C-7B  | T-34C-8   | T-34C-9   | T-34C-10  |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 7/20/2004 | 5/13/2004 | 5/13/2004 | 5/13/2004 | 6/21/2004 | 5/13/2004 | 5/13/2004 | 5/13/2004 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): |           |           |           |           |           |           |           |           |
|                           |               | Map Zone:              | Zone III  | Zone II   |
| Benzo(a)anthracene        |               |                        | 1200 J    | 610 J     | 730       | 6500      | 130 J     | 340 J     | 880       | 8000 D    |
| Benzo(a)pyrene            |               |                        | 1100 J    | 490 J     | 590 J     | 9500      | 130 J     | 340 J     | 1200      | 5200      |
| Benzo(b)fluoranthene      |               |                        | 1000 J    | 1000      | 1200      | 13000 D   | 200 J     | 630       | 1700      | 9200 D    |
| Benzo(k)fluoranthene      |               |                        | 1400 J    | 730       | 900       | 11000     | 180 J     | 630       | 1400      | 11000 D   |
| Chrysene                  |               |                        | 1400 J    | 1100      | 1500      | 11000     | 230 J     | 590       | 1600      | 18000 D   |
| Dibenzo(a,h)anthracene    |               |                        | 1500 U    | 140 J     | 280 J     | 2000      | 35 J      | 140 J     | 440 J     | 990       |
| Indeno(1,2,3-cd)pyrene    |               |                        | 930 J     | 440 J     | 760       | 4600      | 100 J     | 310 J     | 880       | 2700      |
| Total cPAHs:              | 25,000        |                        | 7030      | 4510      | 5960      | 57600     | 1005      | 2980      | 8100      | 55090     |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg)                     | Site Specific<br>Soil Cleanup<br>Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | T-34C-10B<br>6/21/2004<br><br>Zone II |                       | T-34C-12<br>5/13/2004<br><br>Zone II | T-34C-12B<br>6/21/2004<br><br>Zone II | T1-C1<br>7/19/2002<br><br>Zone III | T1-C2<br>7/19/2002<br><br>Zone III | T1-C3<br>7/19/2002<br><br>Zone III |
|------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------|-----------------------|--------------------------------------|---------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| Benzo(a)anthracene<br>Benzo(a)pyrene                       |                                                |                                                                            | 200 J<br>150 J                        | 1300<br>1200          | 3900<br>2900                         | 170 J<br>150 J                        | 16 U<br>17 U                       | 16 U<br>17 U                       | 16 U<br>17 U                       |
| Benzo(b)fluoranthene                                       |                                                |                                                                            | 150 J                                 | 2200                  | 5100 D                               | 270 J                                 | 41 U                               | 40 U                               | 41 U                               |
| Benzo(k)fluoranthene<br>Chrysene<br>Dibenzo(a,h)anthracene |                                                |                                                                            | 150 J<br>220 J<br>28 J                | 2100<br>2600<br>400 J | 4000<br>5200<br>870                  | 240 J<br>300 J<br>34 J                | 42 U<br>18 U<br>19 U               | 41 U<br>18 U<br>19 U               | 42 U<br>18 U<br>20 U               |
| Indeno(1,2,3-cd)pyrene                                     |                                                |                                                                            | 84 J                                  | 950                   | 2000                                 | 120 J                                 | 19 U                               | 19 U                               | 20 U                               |
| Total cPAHs:                                               | 25,000                                         |                                                                            | 982                                   | 10750                 | 23970                                | 1284                                  | 0                                  | 0                                  | 0                                  |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg)    | Site Specific<br>Soil Cleanup<br>Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | T9-1<br>8/23/2004<br>2-3<br>Zone III | T9-2<br>8/23/2004<br>2-3<br>Zone II | T9-3<br>8/23/2004<br>2-3<br>Zone II | T10-1 RE<br>7/10/1997<br>0-1<br>Zone III | T10-1<br>7/10/1997<br>1-2<br>Zone III | T10-1 PX<br>7/28/2005<br><br>Zone III |               | T10-2 PX<br>7/28/2005<br><br>Zone II |
|----------------------------------------|------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|------------------------------------------|---------------------------------------|---------------------------------------|---------------|--------------------------------------|
| Benzo(a)anthracene                     |                                                |                                                                            | 430<br>140 J                         | 340 U                               | 360 U                               | 500                                      | 6 J<br>360 U                          | 1200                                  | 750           | 1100                                 |
| Benzo(a)pyrene<br>Benzo(b)fluoranthene |                                                |                                                                            | 140 J<br>340 J                       | 340 U<br>340 U                      | 360 U<br>360 U                      | 310 J<br>1600                            | 360 U                                 | 1300<br>2500                          | 220 J<br>1800 | 1300<br>2700                         |
| Benzo(k)fluoranthene                   |                                                |                                                                            | 270 J                                | 340 U                               | 360 U                               | 1400                                     | 8 J                                   | 830                                   | 1800          | 1000                                 |
| Chrysene Dibenzo(a,h)anthracene        |                                                |                                                                            | 640<br>350 U                         | 340 U<br>340 U                      | 360 U<br>360 U                      | 960<br>370 U                             | 10 J<br>360 U                         | 1500<br>470                           | 1000<br>360 U | 1700<br>380                          |
| Indeno(1,2,3-cd)pyrene                 |                                                |                                                                            | 95 J                                 | 340 U                               | 360 U                               | 430                                      | 360 U                                 | 1100                                  | 380           | 1200                                 |
| Total cPAHs:                           | 25,000                                         |                                                                            | 1915                                 | 0                                   | 0                                   | 5200                                     | 32                                    | 8900                                  | 5950          | 9380                                 |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | T10-2     | T10-3 RE  | T10-3     | T10-3 PX  | T10-4 RE  | T10-4     | T10-4 PX  | T24-1     |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 7/10/1997 | 7/10/1997 | 7/10/1997 | 7/28/2005 | 7/10/1997 | 7/10/1997 | 7/28/2005 | 11/1/2002 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 1-2       | 0-1       | 1-2       |           | 0-1       | 1-2       |           | 0-1       |
|                           |               | Map Zone:              | Zone II   | Zone III  |
| Benzo(a)anthracene        |               |                        | 21 J      | 550       | 6 J       | 460       | 3500      | 40 J      | 1100      | 20000     |
| Benzo(a)pyrene            |               |                        | 12 J      | 280 J     | 15 J      | 430       | 4100      | 24 J      | 1100      | 20000     |
| Benzo(b)fluoranthene      |               |                        | 22 J      | 2400      | 14 J      | 1000      | 12000 D   | 56 J      | 2200      | 24000     |
| Benzo(k)fluoranthene      |               |                        | 26 J      | 2100      | 10 J      | 240 J     | 11000     | 52 J      | 770       | 17000     |
| Chrysene                  |               |                        | 22 J      | 1200      | 14 J      | 610       | 5500      | 50 J      | 1500      | 22000     |
| Dibenzo(a,h)anthracene    |               |                        | 350 U     | 380 U     | 360 U     | 190 J     | 570 J     | 420 U     | 240 J     | 3700 J    |
| Indeno(1,2,3-cd)pyrene    |               |                        | 16 J      | 510       | 10 J      | 450       | 1800      | 34 J      | 810       | 6400      |
| Total cPAHs:              | 25,000        |                        | 119       | 7040      | 69        | 3380      | 38470     | 256       | 7720      | 113100    |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | T24-1     | T24-1     | T24-10    | T24-11    | T24-2     | T24-3     | T24-4     | T24-5     | T24-6     |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 11/1/2002 | 11/1/2002 | 11/1/2002 | 11/1/2002 | 11/1/2002 | 11/1/2002 | 11/1/2002 | 11/1/2002 | 11/1/2002 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 1-2       | 2-3       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       |
|                           |               | Map Zone:              | Zone III  | Zone III  | Zone II   | Zone II   | Zone III  | Zone III  | Zone III  | Zone III  | Zone II   |
|                           |               |                        |           |           |           |           |           |           |           |           |           |
| Benzo(a)anthracene        |               |                        | 1600      | 800       | 17 J      | 180 J     | 29 J      | 200 J     | 25 J      | 88 J      | 160 J     |
| Benzo(a)pyrene            |               |                        | 1500      | 780       | 20 J      | 190 J     | 26 J      | 280 J     | 24 J      | 98 J      | 200 J     |
| Benzo(b)fluoranthene      |               |                        | 1600      | 630       | 41 U      | 430       | 42 U      | 330 J     | 43 J      | 250 J     | 510       |
| Benzo(k)fluoranthene      |               |                        | 1100      | 850       | 42 U      | 270 J     | 43 U      | 340 J     | 42 U      | 170 J     | 43 U      |
| Chrysene                  |               |                        | 1400      | 740       | 22 J      | 380       | 53 J      | 290 J     | 50 J      | 170 J     | 260 J     |
| Dibenzo(a,h)anthracene    |               |                        | 500       | 270 J     | 19 U      | 49 J      | 20 U      | 24 J      | 19 U      | 20 U      | 27 J      |
| Indeno(1,2,3-cd)pyrene    |               |                        | 930       | 520       | 19 U      | 97 J      | 21 J      | 51 J      | 22 J      | 41 J      | 56 J      |
| Total cPAHs:              | 25,000        |                        | 8630      | 4590      | 59        | 1596      | 129       | 1515      | 164       | 817       | 1213      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | T24-7     | T24-8     | T24-9     | T24-C1    | T24-C2    | T25-1 (B) | T25-1    | T25-2 (B) | T25-2    |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|----------|-----------|----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 11/1/2002 | 11/1/2002 | 11/1/2002 | 11/7/2002 | 11/7/2002 | 7/9/1998  | 7/9/1998 | 7/9/1998  | 7/9/1998 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1       | 0-1       | 0-1       |           |           | В         | 0-1**    | В         | 0-1**    |
|                           |               | Map Zone:              | Zone II   | Zone II   | Zone II   | Zone III  | Zone III  | Zone III  | Zone III | Zone III  | Zone III |
|                           |               |                        |           |           |           |           |           |           |          |           |          |
| Benzo(a)anthracene        |               |                        | 110 J     | 76 J      | 76 J      | 16 U      | 16 U      | 2400      | 71 J     | 370 J     | 140 J    |
| Benzo(a)pyrene            |               |                        | 100 J     | 92 J      | 72 J      | 17 U      | 17 U      | 2500      | 110 J    | 530       | 140 J    |
| Benzo(b)fluoranthene      |               |                        | 160 J     | 65 J      | 76 J      | 41 U      | 40 U      | 3900      | 110 J    | 680       | 180 J    |
| Benzo(k)fluoranthene      |               |                        | 120 J     | 97 J      | 61 J      | 42 U      | 41 U      | 2500      | 100 J    | 420       | 130 J    |
| Chrysene                  |               |                        | 160 J     | 150 J     | 100 J     | 18 U      | 18 U      | 2700      | 89 J     | 710       | 160 J    |
| Dibenzo(a,h)anthracene    |               |                        | 20 U      | 24 J      | 20 U      | 19 U      | 19 U      | 1500      | 23 J     | 410       | 26 J     |
| Indeno(1,2,3-cd)pyrene    |               |                        | 27 J      | 42 J      | 38 J      | 19 U      | 19 U      | 790       | 47 J     | 170 J     | 55 J     |
| Total cPAHs:              | 25,000        |                        | 677       | 546       | 423       | 0         | 0         | 16290     | 550      | 3290      | 831      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | T25-3 (B) | T25-3    | T25-4 (B) | T25-4    | T25-5 (B) | T25-5    | T25-6 (B) | T25-6    | T25-7 (B) |
|---------------------------|---------------|------------------------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 7/9/1998  | 7/9/1998 | 7/9/1998  | 7/9/1998 | 7/9/1998  | 7/9/1998 | 7/9/1998  | 7/9/1998 | 7/9/1998  |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | В         | 0-1**    | В         | 0-1**    | В         | 0-1**    | В         | 0-1**    | В         |
|                           |               | Map Zone:              | Zone III  | Zone III | Zone III  | Zone III | Zone II   | Zone II  | Zone II   | Zone II  | Zone II   |
| Benzo(a)anthracene        |               |                        | 1200      | 360 U    | 410 J     | 360 U    | 370 J     | 54 J     | 420 J     | 700      | 670       |
| Benzo(a)pyrene            |               |                        | 1600      | 360 U    | 710       | 20 J     | 540       | 58 J     | 770       | 480      | 1000      |
| Benzo(b)fluoranthene      |               |                        | 1700      | 360 U    | 1200      | 19 J     | 710       | 72 J     | 1100      | 360 J    | 1700      |
| Benzo(k)fluoranthene      |               |                        | 1300      | 360 U    | 830       | 21 J     | 670       | 62 J     | 580       | 330 J    | 1200      |
| Chrysene                  |               |                        | 1500      | 360 U    | 1000      | 22 J     | 690 J     | 65 J     | 1200      | 670      | 1800      |
| Dibenzo(a,h)anthracene    |               |                        | 750       | 360 U    | 590       | 360 U    | 380 J     | 360 U    | 590       | 78 J     | 1000      |
| Indeno(1,2,3-cd)pyrene    |               |                        | 380       | 360 U    | 260 J     | 360 U    | 190 J     | 30 J     | 350 J     | 130 J    | 480       |
| Total cPAHs:              | 25,000        |                        | 8430      | 0        | 5000      | 82       | 3550      | 341      | 5010      | 2748     | 7850      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | T25-7    | T25-8 (B) | T25-8    | T32-1    | T32-10   | T32-11   | T32-2    | T32-3    | T32-4    |
|---------------------------|---------------|------------------------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 7/9/1998 | 7/9/1998  | 7/9/1998 | 4/7/2003 | 4/7/2003 | 4/7/2003 | 4/7/2003 | 4/7/2003 | 4/7/2003 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1**    | В         | 0-1**    | 0-1      | 0-1      | 0-1      | 0-1      | 0-1      | 0-1      |
|                           |               | Map Zone:              | Zone II  | Zone II   | Zone II  | Zone III | Zone II  | Zone II  | Zone III | Zone II  | Zone II  |
|                           |               |                        | 1007     | 1000      |          | 1.00     |          |          | 1.100    |          |          |
| Benzo(a)anthracene        |               |                        | 120 J    | 4000      | 160 J    | 1200     | 16 U     | 16 U     | 1400     | 660      | 980      |
| Benzo(a)pyrene            |               |                        | 220 J    | 3100      | 130 J    | 850      | 17 U     | 17 U     | 1100     | 730      | 930      |
| Benzo(b)fluoranthene      |               |                        | 240 J    | 3300      | 130 J    | 1500     | 40 U     | 40 U     | 1600     | 1300     | 1300     |
| Benzo(k)fluoranthene      |               |                        | 180 J    | 3400      | 130 J    | 1500     | 42 U     | 41 U     | 1600     | 1000     | 860      |
| Chrysene                  |               |                        | 150 J    | 3700      | 140 J    | 2500     | 18 U     | 18 U     | 2000     | 1300     | 1500     |
| Dibenzo(a,h)anthracene    |               |                        | 51 J     | 1800      | 28 J     | 150 J    | 19 U     | 19 U     | 330 J    | 77 J     | 130 J    |
| Indeno(1,2,3-cd)pyrene    |               |                        | 88 J     | 1000      | 46 J     | 360      | 19 U     | 19 U     | 690 J    | 150 J    | 290 J    |
| Total cPAHs:              | 25,000        |                        | 1049     | 20300     | 764      | 8060     | 0        | 0        | 8720     | 5217     | 5990     |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | T32-5    | T32-6    | T32-7    | T32-8    | T32-9    | T36C-1    | T36C-2    | T36C-3    | T36C-4    |
|---------------------------|---------------|------------------------|----------|----------|----------|----------|----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 4/7/2003 | 4/7/2003 | 4/7/2003 | 4/7/2003 | 4/7/2003 | 5/14/2002 | 5/14/2002 | 5/14/2002 | 5/14/2002 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1      | 0-1      | 0-1      | 0-1      | 0-1      | -         | -         | -         | -         |
|                           |               | Map Zone:              | Zone II   | Zone II   | Zone II   | Zone II   |
|                           |               |                        | 100.7    | •••      |          |          |          |           |           |           |           |
| Benzo(a)anthracene        |               |                        | 180 J    | 380      | 20 J     | 16 U     | 16 U     | 16 U      | 16 U      | 16 U      | 15 U      |
| Benzo(a)pyrene            |               |                        | 130 J    | 400      | 17 U     | 17 U     | 17 U     | 17 U      | 17 U      | 17 U      | 16 U      |
| Benzo(b)fluoranthene      |               |                        | 210 J    | 370      | 41 U     | 40 U     | 40 U     | 40 U      | 40 U      | 40 U      | 39 U      |
| Benzo(k)fluoranthene      |               |                        | 280 J    | 410      | 42 U     | 41 U     | 41 U     | 41 U      | 41 U      | 41 U      | 40 U      |
| Chrysene                  |               |                        | 390      | 530      | 29 J     | 18 U     | 18 U     | 18 U      | 18 U      | 18 U      | 18 U      |
| Dibenzo(a,h)anthracene    |               |                        | 46 J     | 100 J    | 20 U     | 19 U     | 19 U     | 19 U      | 19 U      | 19 U      | 19 U      |
| Indeno(1,2,3-cd)pyrene    |               |                        | 94 J     | 220 J    | 20 U     | 19 U     | 19 U     | 19 U      | 19 U      | 19 U      | 19 U      |
| Total cPAHs:              | 25,000        |                        | 1330     | 2410     | 49       | 0        | 0        | 0         | 0         | 0         | 0         |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | T36C-5    | T36C-6    | T36C-7    | TANKPAD-1 | TANKPAD-2 | TANKPAD-2 | TE-A-6   |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 5/14/2002 | 5/14/2002 | 5/14/2002 | 8/12/2002 | 8/12/2002 | 9/12/2005 | 8/9/2000 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | -         | -         | -         | 0-1       | 0-1       | 0-2       | 6-8      |
|                           |               | Map Zone:              | Zone II   | Zone I    | Zone I   |
|                           |               |                        |           |           |           |           |           |           | (2)      |
| Benzo(a)anthracene        |               |                        | 16 U      | 16 U      | 82 J      | 990       | 480       | 160 J     | 21 J     |
| Benzo(a)pyrene            |               |                        | 21 J      | 17 U      | 150 J     | 970       | 510       | 200 J     | 20 J     |
| Benzo(b)fluoranthene      |               |                        | 40 U      | 40 U      | 250 J     | 1200      | 510       | 500       | 27 J     |
| Benzo(k)fluoranthene      |               |                        | 41 U      | 41 U      | 200 J     | 1200      | 620       | 170 J     | 34 J     |
| Chrysene                  |               |                        | 30 J      | 18 U      | 120 J     | 1400      | 590       | 280 J     | 30 J     |
| Dibenzo(a,h)anthracene    |               |                        | 19 U      | 19 U      | 49 J      | 120 J     | 74 J      | 61 J      | 9 J      |
| Indeno(1,2,3-cd)pyrene    |               |                        | 19 U      | 19 U      | 140 J     | 280 J     | 180 J     | 190 J     | 23 J     |
| Total cPAHs:              | 25,000        |                        | 51        | 0         | 991       | 6160      | 2964      | 1561      | 164      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | TE-B/C-5 | TE-D-5    | TE-D-5    | TE-HR-16 | TE-IB-3   | TE-IB-3   | TE-IB-3   |
|---------------------------|---------------|------------------------|----------|-----------|-----------|----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 8/9/2000 | 8/30/2000 | 8/30/2000 | 8/9/2000 | 9/12/2000 | 9/12/2000 | 9/12/2000 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 4-6      | 16-18     | 4-8       | 6-8      | 23-25     | 38-40     | 53-55     |
|                           |               | Map Zone:              | Zone I   | Zone II   | Zone II   | Zone I   | Zone II   | Zone II   | Zone II   |
|                           |               |                        | (2)      | (2)       | (2)       | (2)      | (2)       | (2)       | (2)       |
| Benzo(a)anthracene        |               |                        | 130 J    | ND        | ND        | ND       | ND        | ND        | ND        |
| Benzo(a)pyrene            |               |                        | 100 J    | ND        | 390       | ND       | ND        | ND        | ND        |
| Benzo(b)fluoranthene      |               |                        | 140 J    | ND        | ND        | ND       | ND        | ND        | ND        |
| Benzo(k)fluoranthene      |               |                        | 120 J    | ND        | ND        | ND       | ND        | ND        | ND        |
| Chrysene                  |               |                        | 170 J    | ND        | ND        | ND       | ND        | ND        | ND        |
| Dibenzo(a,h)anthracene    |               |                        | 36 J     | ND        | ND        | ND       | ND        | ND        | ND        |
| Indeno(1,2,3-cd)pyrene    |               |                        | 82 J     | ND        | ND        | ND       | ND        | ND        | ND        |
| Total cPAHs:              | 25,000        |                        | 778      | 0         | 390       | 0        | 0         | 0         | 0         |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | TE-IB/OB-1 | TE-IB/OB-1 | TE-IB/OB-1 | TE-MW-A-1 | TE-MW-A-1 | TE-MW-A-2 |
|---------------------------|---------------|------------------------|------------|------------|------------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 9/11/2000  | 9/11/2000  | 9/11/2000  | 9/26/2000 | 9/26/2000 | 10/9/2000 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 6-8        | 15-17      | 33-35      | 14-16     | 37-37     | 14-16     |
|                           |               | Map Zone:              | Zone I     | Zone I     | Zone I     | Zone III  | Zone III  | Zone III  |
|                           |               |                        | (2)        | (2)        | (2)        | (2)       | (2)       | (2)       |
| Benzo(a)anthracene        |               |                        | 210 J      | ND         | ND         | ND        | ND        | 160 J     |
| Benzo(a)pyrene            |               |                        | 150 J      | ND         | ND         | ND        | ND        | 180 J     |
| Benzo(b)fluoranthene      |               |                        | 230 J      | ND         | ND         | ND        | ND        | 290 J     |
| Benzo(k)fluoranthene      |               |                        | 200 J      | ND         | ND         | ND        | ND        | 130 J     |
| Chrysene                  |               |                        | 330 J      | ND         | ND         | ND        | ND        | 220 J     |
| Dibenzo(a,h)anthracene    |               |                        | 41 J       | ND         | ND         | ND        | ND        | 43 J      |
| Indeno(1,2,3-cd)pyrene    |               |                        | 110 J      | ND         | ND         | ND        | ND        | 100 J     |
| Total cPAHs:              | 25,000        |                        | 1271       | 0          | 0          | 0         | 0         | 1123      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

R - Rejected by validator

RE - Reanalysis

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

1 - Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.

- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | TE-MW-A-2 | TE-MW-B/C-2 | TE-MW-B/C-2 | TE-MW-B/C-2 | TE-MW-D-1 | TE-MW-D-1 |
|---------------------------|---------------|------------------------|-----------|-------------|-------------|-------------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 10/9/2000 | 9/7/2000    | 9/7/2000    | 9/8/2000    | 9/25/2000 | 9/25/2000 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 20-22     | 8-10        | 48-50       | 85-86       | 10-12     | 25-25     |
|                           |               | Map Zone:              | Zone III  | Zone III    | Zone III    | Zone III    | Zone III  | Zone III  |
|                           |               |                        | (2)       | (2)         | (2)         | (2)         | (2)       | (2)       |
| Benzo(a)anthracene        |               |                        | 6 J       | 12 J        | ND          | ND          | 36 J      | 22 J      |
| Benzo(a)pyrene            |               |                        | 6 J       | ND          | ND          | ND          | 29 J      | 18 J      |
| Benzo(b)fluoranthene      |               |                        | 9 J       | ND          | ND          | ND          | 29 J      | 16 J      |
| Benzo(k)fluoranthene      |               |                        | 9 J       | ND          | ND          | ND          | 26 J      | 21 J      |
| Chrysene                  |               |                        | 9 J       | 17 J        | ND          | ND          | 44 J      | 25 J      |
| Dibenzo(a,h)anthracene    |               |                        | ND        | ND          | ND          | ND          | ND        | ND        |
| Indeno(1,2,3-cd)pyrene    |               |                        | ND        | ND          | ND          | ND          | ND        | ND        |
| Total cPAHs:              | 25,000        |                        | 39        | 29          | 0           | 0           | 164       | 102       |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

J - Estimated value

R - Rejected by validator

RE - Reanalysis

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

1 - Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.

- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | TE-MW-D-1 | TE-MW-IB-2 | TE-MW-IB-2 | TE-MW-IB-2 | TE-MW-OB-1 | TE-MW-OB-1 |
|---------------------------|---------------|------------------------|-----------|------------|------------|------------|------------|------------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 9/25/2000 | 10/3/2000  | 10/3/2000  | 10/4/2000  | 10/11/2000 | 10/11/2000 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 40-41     | 14-16      | 62-64      | 93-95      | 14-16      | 45-45      |
|                           |               | Map Zone:              | Zone III  | Zone II    | Zone II    | Zone II    | Zone III   | Zone III   |
|                           |               |                        | (2)       | (2)        | (2)        | (2)        | (2)        | (2)        |
| Benzo(a)anthracene        |               |                        | ND        | 870        | 240 J      | ND         | 1300       | ND         |
| Benzo(a)pyrene            |               |                        | ND        | 720        | 200 J      | ND         | 580 J      | ND         |
| Benzo(b)fluoranthene      |               |                        | ND        | 770        | 240 J      | ND         | 650 J      | ND         |
| Benzo(k)fluoranthene      |               |                        | ND        | 640        | 160 J      | ND         | 690 J      | ND         |
| Chrysene                  |               |                        | ND        | 940        | 290 J      | ND         | 1500       | ND         |
| Dibenzo(a,h)anthracene    |               |                        | ND        | 240 J      | 80 J       | ND         | 130 J      | ND         |
| Indeno(1,2,3-cd)pyrene    |               |                        | ND        | 550        | 220 J      | ND         | 270 J      | ND         |
| Total cPAHs:              | 25,000        |                        | 0         | 4730       | 1430       | 0          | 5120       | 0          |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | Site Specific<br>Soil Cleanup | Sample Designation:<br>Sample Date: | TE-MW-OB-2<br>9/19/2000 | TE-MW-OB-2<br>9/19/2000 | TE-MW-QA-2<br>10/23/2000 | TE-MW-QA-2<br>10/23/2000 | TE-OB-4<br>7/14/2000 | TE-SD-1<br>10/26/2000 |
|---------------------------|-------------------------------|-------------------------------------|-------------------------|-------------------------|--------------------------|--------------------------|----------------------|-----------------------|
| (Concentrations in µg/kg) | Level (µg/kg)                 | Sample Depth (ft bls):              | 29-31                   | 60-62                   | 18-20                    | 40-42                    | 24-26                | 6-7                   |
|                           |                               | Map Zone:                           | Zone III                | Zone III                | Zone III                 | Zone III                 | Zone II              | Zone III              |
|                           |                               |                                     | (2)                     | (2)                     | (2)                      | (2)                      | (2)                  | (2)                   |
| Benzo(a)anthracene        |                               |                                     | 1300                    | 24 J                    | ND                       | ND                       | ND                   | 16 J                  |
| Benzo(a)pyrene            |                               |                                     | 970                     | 17 J                    | ND                       | ND                       | ND                   | 17 J                  |
| Benzo(b)fluoranthene      |                               |                                     | 840                     | 17 J                    | ND                       | ND                       | ND                   | 23 J                  |
| Benzo(k)fluoranthene      |                               |                                     | 750                     | 17 J                    | ND                       | ND                       | ND                   | 20 J                  |
| Chrysene                  |                               |                                     | 1300                    | 28 J                    | ND                       | ND                       | ND                   | 25 J                  |
| Dibenzo(a,h)anthracene    |                               |                                     | ND                      | ND                      | ND                       | ND                       | ND                   | ND                    |
| Indeno(1,2,3-cd)pyrene    |                               |                                     | 530                     | ND                      | ND                       | ND                       | ND                   | 16 J                  |
| Total cPAHs:              | 25,000                        |                                     | 5690                    | 103                     | 0                        | 0                        | 0                    | 117                   |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | TE-SD-2   | TE-SD-2   | TS1-1     | TS1-2     | TS1-3     | TS1-4     | TS1-5     | TS1-6     |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 7/17/2000 | 7/17/2000 | 7/12/2002 | 7/12/2002 | 7/12/2002 | 7/12/2002 | 7/12/2002 | 7/12/2002 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 6-8       | 8-10      | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       |
|                           |               | Map Zone:              | Zone III  |
|                           |               |                        | (2)       | (2)       |           |           |           |           |           |           |
| Benzo(a)anthracene        |               |                        | 580       | 74 J      | 1200      | 130 J     | 220 J     | 31 J      | 58 J      | 840       |
| Benzo(a)pyrene            |               |                        | 600       | 70 J      | 1300      | 130 J     | 250 J     | 29 J      | 48 J      | 960       |
| Benzo(b)fluoranthene      |               |                        | 650       | 130 J     | 1800      | 99 J      | 360       | 40 U      | 48 J      | 1100      |
| Benzo(k)fluoranthene      |               |                        | 510       | 92 J      | 1100      | 130 J     | 340 J     | 41 U      | 48 J      | 920       |
| Chrysene                  |               |                        | 640       | 100 J     | 1700      | 120 J     | 340 J     | 37 J      | 67 J      | 1200      |
| Dibenzo(a,h)anthracene    |               |                        | 180 J     | 20 J      | 480       | 19 U      | 76 J      | 19 U      | 21 U      | 360 J     |
| Indeno(1,2,3-cd)pyrene    |               |                        | 530       | 51 J      | 1200      | 68 J      | 220 J     | 19 U      | 26 J      | 820       |
| Total cPAHs:              | 25,000        |                        | 3690      | 537       | 8780      | 677       | 1806      | 97        | 295       | 6200      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | TS1-7     | TS1-8     | TS1-8     | TS1-9     | TS1-10    | TS36-1    | TS36-2    | TS36-3    |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 7/12/2002 | 7/12/2002 | 7/12/2002 | 7/12/2002 | 7/12/2002 | 4/15/2002 | 4/15/2002 | 4/15/2002 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1       | 0-1       | 1-2       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       |
|                           |               | Map Zone:              | Zone III  |
| Benzo(a)anthracene        |               |                        | 1800      | 4300      | 4700      | 43 J      | 2400      | 3100      | 1100      | 590 J     |
| Benzo(a)pyrene            |               |                        | 1700      | 5900      | 2800 J    | 52 J      | 2200      | 4300      | 1300      | 790       |
| Benzo(b)fluoranthene      |               |                        | 1400      | 7000      | 3500 J    | 56 J      | 5400      | 5400      | 1900      | 1000      |
| Benzo(k)fluoranthene      |               |                        | 1800      | 5400      | 3000 J    | 63 J      | 1000      | 4000      | 1600      | 870       |
| Chrysene                  |               |                        | 2100      | 7200      | 5400      | 57 J      | 1900      | 4200      | 1700      | 980       |
| Dibenzo(a,h)anthracene    |               |                        | 360 J     | 2600      | 690 J     | 19 U      | 690 J     | 440 J     | 100 J     | 180 J     |
| Indeno(1,2,3-cd)pyrene    |               |                        | 680 J     | 7100      | 1600 J    | 41 J      | 2200      | 1100 J    | 230 J     | 480 J     |
| Total cPAHs:              | 25,000        |                        | 9840      | 39500     | 21690     | 312       | 15790     | 22540     | 7930      | 4890      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | TS36-4    | TS36-5    | TS36-6    | TS36-7    | TS36-8    | TS36-9    | TS36-9    | TS36-10   |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 4/15/2002 | 4/15/2002 | 4/15/2002 | 4/15/2002 | 4/15/2002 | 4/15/2002 | 4/15/2002 | 4/15/2002 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 1-2       | 0-1       |
|                           |               | Map Zone:              | Zone II   |
| Benzo(a)anthracene        |               |                        | 860       | 2000      | 340 J     | 1500 J    | 980       | 3100      | 1900      | 460 J     |
| Benzo(a)pyrene            |               |                        | 1000      | 2200      | 350 J     | 2400      | 870       | 6400      | 2400      | 520 J     |
| Benzo(b)fluoranthene      |               |                        | 1900      | 4700      | 560       | 6600      | 1600      | 12000     | 3100      | 830 U     |
| Benzo(k)fluoranthene      |               |                        | 1500      | 6400      | 580       | 4200      | 1300      | 6700      | 2400      | 880 J     |
| Chrysene                  |               |                        | 1500      | 2800      | 710       | 2900      | 1700      | 5500      | 2800      | 850 J     |
| Dibenzo(a,h)anthracene    |               |                        | 49 J      | 91 U      | 45 J      | 94 J      | 45 J      | 300 J     | 610 J     | 390 U     |
| Indeno(1,2,3-cd)pyrene    |               |                        | 120 J     | 390 J     | 150 J     | 260 J     | 120 J     | 870 J     | 1900      | 390 U     |
| Total cPAHs:              | 25,000        |                        | 6929      | 18490     | 2735      | 17954     | 6615      | 34870     | 15110     | 2710      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | TS36-11   | TS36-11   | TS36-12   | TS36-12   | TS36-13   | TS36-13   | TS36-14   | TS36-14   |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 4/15/2002 | 4/15/2002 | 4/15/2002 | 4/15/2002 | 4/15/2002 | 4/15/2002 | 4/15/2002 | 4/15/2002 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 1-2       | 2-3       | 1-2       | 2-3       | 0-1       | 1-2       | 0-1       | 1-2       |
|                           |               | Map Zone:              | Zone II   |
| Benzo(a)anthracene        |               |                        | 27000     | 2200      | 4600      | 9700      | 3400      | 3500      | 3800      | 3200      |
| Benzo(a)pyrene            |               |                        | 19000     | 2200      | 4200      | 5600      | 4000      | 3100      | 2800      | 2300      |
| Benzo(b)fluoranthene      |               |                        | 15000     | 2700      | 13000     | 3400 J    | 10000     | 4000      | 5400      | 4100      |
| Benzo(k)fluoranthene      |               |                        | 16000     | 2500      | 13000     | 4200      | 7100      | 3500      | 4200      | 3200      |
| Chrysene                  |               |                        | 38000     | 4100      | 8400      | 11000     | 5100      | 4700      | 6100      | 5000      |
| Dibenzo(a,h)anthracene    |               |                        | 1600 J    | 750 J     | 180 U     | 1600 J    | 180 J     | 780 J     | 740 J     | 800 J     |
| Indeno(1,2,3-cd)pyrene    |               |                        | 2600 J    | 2400      | 990 J     | 3500 J    | 420 J     | 2300      | 2500      | 2500      |
| Total cPAHs:              | 25,000        |                        | 119200    | 16850     | 44190     | 39000     | 30200     | 21880     | 25540     | 21100     |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | Site Specific<br>Soil Cleanup | Sample Designation:<br>Sample Date: |         | TS36-16<br>4/15/2002 | TS36-16<br>4/15/2002 | TU-1<br>6/26/2007 | TU-1<br>6/26/2007 | TU-1<br>6/26/2007 | TU-2<br>6/26/2007 |
|---------------------------|-------------------------------|-------------------------------------|---------|----------------------|----------------------|-------------------|-------------------|-------------------|-------------------|
| (Concentrations in µg/kg) | Level (µg/kg)                 | Sample Depth (ft bls):              | 0-1     | 0-1                  | 1-2                  | 0-1               | 1-2               | 2-3               | 0-1               |
|                           |                               | Map Zone:                           | Zone II | Zone II              | Zone II              | Zone III          | Zone III          | Zone III          | Zone II           |
| Benzo(a)anthracene        |                               |                                     | 820     | 2300                 | 1500                 | 600               | 2500              | 1100              | 2300              |
| Benzo(a)pyrene            |                               |                                     | 750     | 1800                 | 1200                 | 560               | 2500              | 1300              | 2100              |
| Benzo(b)fluoranthene      |                               |                                     | 2600    | 9000                 | 1700                 | 1000              | 4400              | 2500              | 3900              |
| Benzo(k)fluoranthene      |                               |                                     | 1600    | 6300                 | 1500                 | 390               | 1600              | 580               | 980               |
| Chrysene                  |                               |                                     | 1800    | 4800                 | 2300                 | 720               | 2500              | 1200              | 2200              |
| Dibenzo(a,h)anthracene    |                               |                                     | 76 J    | 190 J                | 350 J                | 140               | 660               | 370               | 610               |
| Indeno(1,2,3-cd)pyrene    |                               |                                     | 200 J   | 580 J                | 970                  | 520               | 1800              | 1100              | 1800              |
| Total cPAHs:              | 25,000                        |                                     | 7846    | 24970                | 9520                 | 3930              | 15960             | 8150              | 13890             |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | TU-2      | TU-2      | TU-3      | TU-3      | TU-3      | TU-4      | TU-4      |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 6/26/2007 | 6/26/2007 | 6/26/2007 | 6/26/2007 | 6/26/2007 | 6/26/2007 | 6/26/2007 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 1-2       | 2-3       | 0-1       | 1-2       | 2-3       | 0-1       | 1-2       |
|                           |               | Map Zone:              | Zone II   |
| Benzo(a)anthracene        |               |                        | 6000      | 1500      | 6400      | 16000     | 13000     | 370       | 980       |
| Benzo(a)pyrene            |               |                        | 4900      | 1100      | 5900      | 13000     | 9000      | 410       | 1100      |
| Benzo(b)fluoranthene      |               |                        | 7900      | 1900      | 9300      | 19000     | 14000     | 630       | 1600      |
| Benzo(k)fluoranthene      |               |                        | 2100      | 580       | 3300      | 7000      | 4700      | 260       | 550       |
| Chrysene                  |               |                        | 5400      | 1300      | 5700      | 15000     | 11000     | 410       | 1000      |
| Dibenzo(a,h)anthracene    |               |                        | 1100      | 270       | 1300      | 2500      | 2200      | 110       | 260       |
| Indeno(1,2,3-cd)pyrene    |               |                        | 3000      | 780       | 3800      | 7700      | 5700      | 310       | 760       |
| Total cPAHs:              | 25,000        |                        | 30400     | 7430      | 35700     | 80200     | 59600     | 2500      | 6250      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | TU-4      | TU-5      | TU-5      | TU-5      | TU-6      | TU-6      | TU-6      |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 6/26/2007 | 6/26/2007 | 6/26/2007 | 6/26/2007 | 6/26/2007 | 6/26/2007 | 6/26/2007 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 2-3       | 0-1       | 1-2       | 2-3       | 0-1       | 1-2       | 2-3       |
|                           |               | Map Zone:              | Zone II   |
| Benzo(a)anthracene        |               |                        | 410       | 330       | 360       | 270       | 370       | 210       | 140       |
| Benzo(a)pyrene            |               |                        | 440       | 340       | 380       | 270       | 290       | 260       | 120       |
| Benzo(b)fluoranthene      |               |                        | 630       | 630       | 760       | 520       | 770       | 410       | 210       |
| Benzo(k)fluoranthene      |               |                        | 160       | 230       | 190       | 200       | 220       | 140       | 78        |
| Chrysene                  |               |                        | 440       | 380       | 420       | 330       | 460       | 250       | 150       |
| Dibenzo(a,h)anthracene    |               |                        | 89        | 100       | 100       | 90        | 110       | 63        | 36        |
| Indeno(1,2,3-cd)pyrene    |               |                        | 260       | 310       | 340       | 240       | 310       | 210       | 120       |
| Total cPAHs:              | 25,000        |                        | 2429      | 2320      | 2550      | 1920      | 2530      | 1543      | 854       |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | TU-7      | TU-7      | TU-7      | TU-8      | TU-8      | TU-8      | TU-9      |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 6/26/2007 | 6/26/2007 | 6/26/2007 | 6/26/2007 | 6/26/2007 | 6/26/2007 | 6/27/2007 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 0-1       | 1-2       | 2-3       | 0-1       | 1-2       | 2-3       | 0-1       |
|                           |               | Map Zone:              | Zone II   |
| Benzo(a)anthracene        |               |                        | 1200      | 850       | 1100      | 970       | 1800      | 2500      | 1100      |
| Benzo(a)pyrene            |               |                        | 1200      | 850       | 1100      | 410       | 1400      | 2000      | 1000      |
| Benzo(b)fluoranthene      |               |                        | 2200      | 1600      | 2000      | 880       | 2100      | 3700      | 1800      |
| Benzo(k)fluoranthene      |               |                        | 650       | 470       | 590       | 250       | 690       | 1100      | 440       |
| Chrysene                  |               |                        | 1400      | 950       | 1500      | 1800      | 1900      | 3100      | 1100      |
| Dibenzo(a,h)anthracene    |               |                        | 260       | 220       | 210       | 98        | 320       | 520       | 270       |
| Indeno(1,2,3-cd)pyrene    |               |                        | 910       | 680       | 810       | 310       | 930       | 1500      | 690       |
| Total cPAHs:              | 25,000        |                        | 7820      | 5620      | 7310      | 4718      | 9140      | 14420     | 6400      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | TU-9      | TU-9      | TU-10     | TU-10     | TU-10     | TU-11     | TU-11     |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 6/27/2007 | 6/27/2007 | 6/27/2007 | 6/27/2007 | 6/27/2007 | 6/27/2007 | 6/27/2007 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 1-2       | 2-3       | 0-1       | 1-2       | 2-3       | 0-1       | 1-2       |
|                           |               | Map Zone:              | Zone II   |
| Benzo(a)anthracene        |               |                        | 160       | 81        | 4900      | 1100      | 1700      | 1200      | 1200      |
| Benzo(a)pyrene            |               |                        | 150       | 80        | 2900      | 980       | 1300      | 1200      | 1100      |
| Benzo(b)fluoranthene      |               |                        | 240       | 130       | 3800      | 2000      | 2800      | 2100      | 1800      |
| Benzo(k)fluoranthene      |               |                        | 62        | 44        | 1200      | 650       | 610       | 500       | 510       |
| Chrysene                  |               |                        | 180       | 94        | 5400      | 1300      | 1900      | 1400      | 1200      |
| Dibenzo(a,h)anthracene    |               |                        | 46        | 4.4 U     | 670       | 350       | 370       | 280       | 280       |
| Indeno(1,2,3-cd)pyrene    |               |                        | 120       | 57        | 1600      | 1200      | 1200      | 830       | 840       |
| Total cPAHs:              | 25,000        |                        | 958       | 486       | 20470     | 7580      | 9880      | 7510      | 6930      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | TU-11     | TU-12     | TU-12     | TU-12     | TU-13     | TU-13     | TU-13     |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Sample Date:           | 6/27/2007 | 6/27/2007 | 6/27/2007 | 6/27/2007 | 6/27/2007 | 6/27/2007 | 6/27/2007 |
| (Concentrations in µg/kg) | Level (µg/kg) | Sample Depth (ft bls): | 2-3       | 0-1       | 1-2       | 2-3       | 0-1       | 1-2       | 2-3       |
|                           |               | Map Zone:              | Zone II   |
| Benzo(a)anthracene        |               |                        | 1100      | 1900      | 2500      | 2500      | 6200      | 3000      | 1700      |
| Benzo(a)pyrene            |               |                        | 980       | 1700      | 2200      | 2100      | 6100      | 3200      | 1800      |
| Benzo(b)fluoranthene      |               |                        | 1900      | 2800      | 3300      | 3700      | 12000     | 6700      | 3700      |
| Benzo(k)fluoranthene      |               |                        | 480       | 610       | 1300      | 990       | 3500      | 1500      | 970       |
| Chrysene                  |               |                        | 1100      | 1900      | 2700      | 2800      | 9500      | 4600      | 2400      |
| Dibenzo(a,h)anthracene    |               |                        | 300       | 390       | 510       | 520       | 1600      | 910       | 550       |
| Indeno(1,2,3-cd)pyrene    |               |                        | 990       | 1200      | 1900      | 1500      | 4400      | 2500      | 1600      |
| Total cPAHs:              | 25,000        |                        | 6850      | 10500     | 14410     | 14110     | 43300     | 22410     | 12720     |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate sample

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | Site Specific<br>Soil Cleanup<br>Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | TU-14<br>6/27/2007<br>0-1<br>Zone II | TU-14<br>6/27/2007<br>1-2<br>Zone II | TU-14<br>6/27/2007<br>2-3<br>Zone II | UST-12 NWALL<br>5/4/1998<br>-<br>Zone II | UST-12 EWALL<br>5/4/1998<br>-<br>Zone II |
|-------------------------------------|------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------------------|------------------------------------------|
| Benzo(a)anthracene                  |                                                |                                                                            | 600                                  | 240                                  | 54                                   | 340 U                                    | 340 U                                    |
| Benzo(a)pyrene                      |                                                |                                                                            | 490                                  | 180                                  | 54                                   | 340 U                                    | 340 U                                    |
| Benzo(b)fluoranthene                |                                                |                                                                            | 2100                                 | 850                                  | 89                                   | 340 U                                    | 340 U                                    |
| Benzo(k)fluoranthene                |                                                |                                                                            | 580                                  | 190                                  | 14 U                                 | 340 U                                    | 340 U                                    |
| Chrysene                            |                                                |                                                                            | 1100                                 | 430                                  | 65                                   | 340 U                                    | 340 U                                    |
| Dibenzo(a,h)anthracene              |                                                |                                                                            | 260                                  | 99                                   | 4.5 U                                | 340 U                                    | 340 U                                    |
| Indeno(1,2,3-cd)pyrene              |                                                |                                                                            | 890                                  | 300                                  | 47                                   | 340 U                                    | 340 U                                    |
| Total cPAHs:                        | 25,000                                         |                                                                            | 6020                                 | 2289                                 | 309                                  | 0                                        | 0                                        |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate sample

Table 3. Summary of Total cPAH Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | Site Specific<br>Soil Cleanup<br>Level (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | UST-12 SWALL<br>5/4/1998<br>-<br>Zone II | UST-12 WWALL<br>5/4/1998<br>-<br>Zone II | UST-12 BOTTOM<br>5/4/1998<br>-<br>Zone II | WWALL<br>1/4/1999<br><br>Zone III |
|-------------------------------------|------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|-----------------------------------|
| Benzo(a)anthracene                  |                                                |                                                                            | 340 U                                    | 350 U                                    | 340 U                                     | 360 U                             |
| Benzo(a)pyrene                      |                                                |                                                                            | 340 U                                    | 350 U                                    | 340 U                                     | 360 U                             |
| Benzo(b)fluoranthene                |                                                |                                                                            | 340 U                                    | 350 U                                    | 340 U                                     | 360 U                             |
| Benzo(k)fluoranthene                |                                                |                                                                            | 340 U                                    | 350 U                                    | 340 U                                     | 360 U                             |
| Chrysene                            |                                                |                                                                            | 340 U                                    | 350 U                                    | 340 U                                     | 360 U                             |
| Dibenzo(a,h)anthracene              |                                                |                                                                            | 340 U                                    | 350 U                                    | 340 U                                     | 360 U                             |
| Indeno(1,2,3-cd)pyrene              |                                                |                                                                            | 340 U                                    | 350 U                                    | 340 U                                     | 360 U                             |
| Total cPAHs:                        | 25,000                                         |                                                                            | 0                                        | 0                                        | 0                                         | 0                                 |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level for Total cPAHs of 25,000  $\mu$ g/kg. Amtrak has requested an alternative Cleanup Level. That request is pending.

cPAH - Seven Specific Polycyclic Aromatic Hydrocarbons Considered by the NYSDEC to be Carcinogenic

NYSDEC - New York State Department of Environmental Conservation

µg/kg - Micrograms per kilogram

ft bls- Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- RE Reanalysis
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- 1 Result is for Benzo[b+k]fluoranthene analysis. This result is only counted once when calculating total cPAHs because it included results for both Benzo(b)fluoranthene and Benzo(k)fluoranthene compounds.
- ND Compound was analyzed for, but not detected. Detection limits were not available to Roux Associates, Inc.
- (1) Sample Collected by AKRF as part of the East Side Access Project
- (2) Sample Collected by PB/STV as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate sample

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Ромомотом                           | Site Specific                 | Sample Designation:                |         | 59<br>2/0/1000 | 79            | 79<br>2/0/1000 | 57SW-1         | 57SW-1  |                |         | 61W     |
|-------------------------------------|-------------------------------|------------------------------------|---------|----------------|---------------|----------------|----------------|---------|----------------|---------|---------|
| Parameter (Concentrations in mg/kg) | Soil Cleanup<br>Level (mg/kg) | SampleDate: Sample Depth (ft bls): |         | 0-1**          | 3/9/1999<br>B | 0-1**          | 8/10/1998<br>B | 0-1**   | 8/10/1998<br>B | 0-1**   | B       |
|                                     |                               | Map Zone:                          | Zone IV | Zone IV        | Zone III      | Zone III       | Zone II        | Zone II | Zone II        | Zone II | Zone IV |
|                                     |                               |                                    |         |                |               |                |                |         |                |         |         |
| Lead                                | 1,000                         |                                    | 227     | 320            | 387           | 110            | 385            | 60.7    | 404            | 24      | 81.2    |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | 61W      | A9-B1      | A9-B2      | A9-EW      | A9-NW      | A9-SW      | A9-WW      | BB-1     | BB-1     |
|---------------------------|---------------|------------------------|----------|------------|------------|------------|------------|------------|------------|----------|----------|
| Parameter                 | Soil Cleanup  | SampleDate:            | 3/9/1999 | 12/21/2000 | 12/21/2000 | 12/28/2000 | 12/21/2000 | 12/21/2000 | 12/21/2000 | 6/4/1998 | 6/4/1998 |
| (Concentrations in mg/kg) | Level (mg/kg) | Sample Depth (ft bls): | 0-1**    |            |            |            |            |            |            | 0-1      | 1-2      |
|                           |               | Map Zone:              | Zone IV  | Zone III   | Zone II  | Zone II  |
|                           |               |                        |          |            |            |            |            |            |            |          |          |
| Lead                      | 1,000         |                        | 60.9     | 182        | 441        | 332        | 370        | 328        | 298        | 435      | 64.9     |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    |          | BB-2     | BB-3     |          |          |           | CB-2      | CB-3      | CB-4      |
|---------------------------|---------------|------------------------|----------|----------|----------|----------|----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | SampleDate:            | 6/4/1998 | 6/4/1998 | 6/4/1998 | 6/4/1998 | 1/4/1999 | 7/29/1999 | 7/29/1999 | 7/29/1999 | 7/29/1999 |
| (Concentrations in mg/kg) | Level (mg/kg) | Sample Depth (ft bls): | 0-1      | 1-2      | 0-1      | 1-2      |          | 0-1       | 0-1       | 0-1       | 0-1       |
|                           |               | Map Zone:              | Zone II  | Zone II  | Zone II  | Zone II  | Zone III | Zone II   | Zone II   | Zone II   | Zone II   |
|                           |               |                        |          |          |          |          |          |           |           |           |           |
| Lead                      | 1,000         |                        | 86.6     | 124      | 368      | 291      | 36.1     | 36.8      | 458       | 78.8      | 221       |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | CB-5      | CB-6      | CB-8      | CB-9      | CB-10     | CB-11     | CB-12     | CB-13     | CB-14     |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | SampleDate:            | 7/29/1999 | 7/29/1999 | 7/29/1999 | 7/29/1999 | 7/29/1999 | 7/29/1999 | 7/29/1999 | 7/30/1999 | 7/29/1999 |
| (Concentrations in mg/kg) | Level (mg/kg) | Sample Depth (ft bls): | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       |
|                           |               | Map Zone:              | Zone II   |
|                           |               |                        |           |           |           |           |           |           |           |           |           |
| Lead                      | 1,000         |                        | 176       | 759       | 505       | 379       | 518       | 103       | 232       | 90.7      | 400       |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 7/29/1999<br>0-1 | CB-16<br>8/12/1999<br>0-1<br>Zone II | CB-16<br>8/12/1999<br>1-2<br>Zone II | CB-16<br>8/12/1999<br>2-3<br>Zone II | CB-17<br>8/12/1999<br>0-1<br>Zone II | CB-17<br>8/12/1999<br>1-2<br>Zone II | CB-17<br>8/12/1999<br>2-3<br>Zone II | CB-21<br>10/1/1999<br>8-10<br>Zone II | CEH-1<br>12/13/2000<br>0-0.16<br>Zone II |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|------------------------------------------|
| Lead                                   | 1,000                                          |                                                                           | 132              | 190                                  | 93.1                                 | 52.9                                 | 216                                  | 98.8                                 | 111                                  | 6.4                                   | 109                                      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | CEH-2      | СЕН-3      | CEH-4      | CEH-5      | CEH-6      | CEH-7      | CEH-8     | СЕН-9     |
|---------------------------|---------------|------------------------|------------|------------|------------|------------|------------|------------|-----------|-----------|
| Parameter                 | Soil Cleanup  | SampleDate:            | 12/13/2000 | 12/13/2000 | 12/13/2000 | 12/21/2000 | 12/21/2000 | 12/21/2000 | 1/16/2001 | 1/16/2001 |
| (Concentrations in mg/kg) | Level (mg/kg) | Sample Depth (ft bls): | 0-0.16     | 0-0.16     | 0-0.16     | 0-0.16     | 0-0.16     | 0-0.16     | 0-0.16    | 0-0.16    |
|                           |               | Map Zone:              | Zone II    | Zone III   | Zone III  | Zone III  |
|                           |               |                        |            |            |            |            |            |            |           |           |
| Lead                      | 1,000         |                        | 161        | 296        | 280        | 316        | 376        | 197        | 264       | 692       |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

AM0055.0071Y007.143/T4

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 7/29/1997<br>0-2 |      | EH-14<br>7/29/1997<br>2-4<br>Zone II |     |      | EWALL<br>1/4/1999<br><br>Zone III |     | FC-5<br>9/14/1994<br>0-2<br>Zone II | FC-8<br>9/14/1994<br>0-2<br>Zone II |
|-------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|------------------|------|--------------------------------------|-----|------|-----------------------------------|-----|-------------------------------------|-------------------------------------|
| Lead                                | 1,000                                          |                                                                           | 156              | 32.1 | 178                                  | 125 | 71.1 | 7.4                               | 107 | 345                                 | 90.6                                |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 9/14/1994<br>0-2 |     |     |     | FC-31<br>4/5/1994<br>1-3<br>Zone I |      |    |     | FT-1<br>4/7/1997<br>0-2<br>Zone II | FT-2<br>4/7/1997<br>0-2<br>Zone II |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|------------------|-----|-----|-----|------------------------------------|------|----|-----|------------------------------------|------------------------------------|
| Lead                                   | 1,000                                          |                                                                           | 344              | 4.9 | 2.9 | 9.2 | 11                                 | 18.2 | 11 | 2.9 | 139                                | 472                                |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | Site Specific<br>Soil Cleanup | Sample Designation:<br>SampleDate: |        |         |                | FT-3E<br>6/21/2005 |                |                |                | FT-3N<br>6/21/2005 | FT-3S<br>6/21/2005 |
|---------------------------|-------------------------------|------------------------------------|--------|---------|----------------|--------------------|----------------|----------------|----------------|--------------------|--------------------|
| (Concentrations in mg/kg) | Level (mg/kg)                 | Sample Depth (ft bls):  Map Zone:  | 0-2    | 2-3     | 0-1<br>Zone II | 1-2<br>Zone II     | 2-3<br>Zone II | 0-1<br>Zone II | 1-2<br>Zone II | 2-3<br>Zone II     | 0-1<br>Zone II     |
|                           |                               | Wap Zone.                          | Zone n | Zone II | Zone II        | Zone II            | Zone II        | Zone II        | Zone ii        | Zone n             | Zone n             |
| Lead                      | 1,000                         |                                    | 1320   | 220     | 84             | 390                | 63             | 160            | 190            | 510                | 47                 |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Domomoton                           | Site Specific                 | Sample Designation:                |     |         |         | FT-3W   |         |     | FT-5 | FT-6 | HB-1 | HB-1     |
|-------------------------------------|-------------------------------|------------------------------------|-----|---------|---------|---------|---------|-----|------|------|------|----------|
| Parameter (Concentrations in mg/kg) | Soil Cleanup<br>Level (mg/kg) | SampleDate: Sample Depth (ft bls): |     | 2-3     | 0-1     | 1-2     | 2-3     | 0-2 | 0-2  | 0-2  | 0-1  | 1/3/2000 |
| (Concentiations in ing i.g)         | zever (mg/ng)                 | Map Zone:                          |     | Zone II | Zone II | Zone II | Zone II |     |      |      |      |          |
|                                     |                               |                                    |     |         |         |         |         |     |      |      |      |          |
| Lead                                | 1,000                         |                                    | 810 | 290     | 290     | 720     | 87      | 143 | 270  | 60.8 | 761  | 292      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 1/3/2000<br>2-3 | 0-1 | HB-3<br>10/25/1999<br>0-1<br>Zone III | HB-3<br>10/25/1999<br>1-2<br>Zone III |     | 0-1 |      | 1/3/2000<br>1-2 | 2/23/2000<br>0-1 |
|-------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|-----------------|-----|---------------------------------------|---------------------------------------|-----|-----|------|-----------------|------------------|
| Lead                                | 1,000                                          |                                                                           | 41.1            | 675 | 2110                                  | 1260                                  | 650 | 607 | 2150 | 2600            | 2350             |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    |           |           |            | HB-4+20  |          |            | HB-10      | HB-10      | HB-11      |
|---------------------------|---------------|------------------------|-----------|-----------|------------|----------|----------|------------|------------|------------|------------|
| Parameter                 | Soil Cleanup  | SampleDate:            | 2/23/2000 | 2/23/2000 | 10/26/1999 | 1/3/2000 | 1/3/2000 | 10/25/1999 | 10/25/1999 | 10/25/1999 | 10/25/1999 |
| (Concentrations in mg/kg) | Level (mg/kg) | Sample Depth (ft bls): | 1-2       | 0-1       | 1-2        | 0-1      | 0-1      | 0-1        | 0-1        | 1-2        | 0-1        |
|                           |               | Map Zone:              | Zone III  | Zone III  | Zone III   | Zone III | Zone III | Zone II    | Zone II    | Zone II    | Zone II    |
|                           |               |                        |           |           |            |          |          |            |            |            |            |
| Lead                      | 1,000         |                        | 478       | 872       | 193        | 294      | 114      | 525        | 1030       | 660        | 1010       |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 10/25/1999<br>1-2 | HB-12<br>10/25/1999<br>0-1<br>Zone II |     |      | HB-12+40<br>2/23/2000<br>0-1<br>Zone II |      | HB-13<br>10/27/1999<br>1-2<br>Zone II | HB-13<br>10/27/1999<br>2-3<br>Zone II |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|-------------------|---------------------------------------|-----|------|-----------------------------------------|------|---------------------------------------|---------------------------------------|
| Lead                                   | 1,000                                          |                                                                           | 61.3              | 1110                                  | 613 | 1180 | 792                                     | 1060 | 1010                                  | 181                                   |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 1/3/2000<br>0-1 |      |     | HB-15<br>10/27/1999<br>0-1<br>Zone II | HB-15<br>10/27/1999<br>1-2<br>Zone II | HB-16<br>10/27/1999<br>0-1<br>Zone II | HB-17<br>10/27/1999<br>0-1<br>Zone II | HB-17<br>10/27/1999<br>1-2<br>Zone II |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|-----------------|------|-----|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Lead                                   | 1,000                                          |                                                                           | 1010            | 1160 | 454 | 1000                                  | 930                                   | 899                                   | 1110                                  | 1090                                  |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 10/27/1999<br>2-3 |     |      | HB-17+20<br>1/3/2000<br>2-3<br>Zone II |    |     |      | HB-19<br>10/26/1999<br>2-3<br>Zone II |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|-------------------|-----|------|----------------------------------------|----|-----|------|---------------------------------------|
| Lead                                   | 1,000                                          |                                                                           | 362               | 207 | 38.5 | 17.2                                   | 69 | 919 | 1120 | 919                                   |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 10/26/1999<br>1-2 | HB-20<br>10/26/1999<br>2-3<br>Zone II | HB-21*<br>10/26/1999<br>1-2<br>Zone II |     |      | HB-21+20<br>1/3/2000<br>1-2<br>Zone II | HB-21+40<br>2/23/2000<br>0-1<br>Zone II |      |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|-------------------|---------------------------------------|----------------------------------------|-----|------|----------------------------------------|-----------------------------------------|------|
| Lead                                   | 1,000                                          |                                                                           | 1460              | 373                                   | 1150                                   | 402 | 1150 | 312                                    | 1120                                    | 56.3 |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | HB-22      | HB-22      | HB-22-20 | HB-22-40  | HB-22-40  | HB-23      | HB-23      | HB-23      |
|---------------------------|---------------|------------------------|------------|------------|----------|-----------|-----------|------------|------------|------------|
| Parameter                 | Soil Cleanup  | SampleDate:            | 10/25/1999 | 10/25/1999 | 1/3/2000 | 2/23/2000 | 2/23/2000 | 10/25/1999 | 10/25/1999 | 10/25/1999 |
| (Concentrations in mg/kg) | Level (mg/kg) | Sample Depth (ft bls): | 0-1        | 1-2        | 0-1      | 0-1       | 1-2       | 0-1        | 1-2        | 2-3        |
|                           |               | Map Zone:              | Zone II    | Zone II    | Zone III | Zone III  | Zone III  | Zone II    | Zone II    | Zone II    |
|                           |               |                        |            |            |          |           |           |            |            |            |
| Ind                       | 1 000         |                        | 1000       | 257        | 1240     | 1970      | 166       | 2120       | 2000       | 770        |
| Lead                      | 1,000         |                        | 1900       | 257        | 1340     | 1870      | 166       | 2130       | 2080       | 779        |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 1/3/2000<br>0-1 |     |      |      |     | HB-26<br>10/26/1999<br>0-1<br>Zone II | HB-27<br>10/26/1999<br>0-1<br>Zone II | HB-27<br>10/26/1999<br>1-2<br>Zone II |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|-----------------|-----|------|------|-----|---------------------------------------|---------------------------------------|---------------------------------------|
| Lead                                   | 1,000                                          |                                                                           | 2100            | 720 | 2760 | 58.7 | 614 | 579                                   | 1260                                  | 284                                   |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 1/3/2000 | HB-28<br>10/27/1999<br>0-1<br>Zone III | HB-29<br>10/25/1999<br>0-1<br>Zone II | HB-30<br>10/25/1999<br>0-1<br>Zone II | HB-30<br>10/25/1999<br>1-2<br>Zone II | HB-30<br>10/25/1999<br>2-3<br>Zone II | HB-30<br>4/13/2000<br>3-4<br>Zone II | HB-31<br>10/25/1999<br>0-1<br>Zone II |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|----------|----------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|---------------------------------------|
| Lead                                   | 1,000                                          |                                                                           | 32.1     | 166                                    | 773                                   | 1350                                  | 1380                                  | 1320                                  | 34.6                                 | 1860                                  |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 10/25/1999 | HB-32<br>10/27/1999<br>0-1<br>Zone II | HB-33<br>10/25/1999<br>0-1<br>Zone II | HB-34<br>10/25/1999<br>0-1<br>Zone II | HB-35<br>10/25/1999<br>0-1<br>Zone II | HB-36<br>10/25/1999<br>0-1<br>Zone II | HBR-1<br>2/26/2004<br>0-1<br>Zone II | HBR-1<br>2/26/2004<br>1-2<br>Zone II |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|
| Lead                                   | 1,000                                          |                                                                           | 332        | 454                                   | 527                                   | 519                                   | 493                                   | 271                                   | 309                                  | 60.5                                 |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 2/26/2004<br>0-1 | 2/26/2004<br>1-2 | HBR-3<br>2/26/2004<br>0-1<br>Zone III | 1-2  |     | 0-1  | 1-2  | HBR-4<br>2/26/2004<br>2-3<br>Zone III | HBR-5<br>2/26/2004<br>0-1<br>Zone III |
|-------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|------------------|------------------|---------------------------------------|------|-----|------|------|---------------------------------------|---------------------------------------|
| Lead                                | 1,000                                          |                                                                           | 333              | 324              | 645                                   | 1510 | 469 | 1890 | 1320 | 1630                                  | 659                                   |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | HBR-5     | HBR-6     | HBR-6     | HBR-7     | HBR-7     | HBR-8     | HBR-8     | HC-1      | HC-2      |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | SampleDate:            | 2/26/2004 | 2/26/2004 | 2/26/2004 | 2/26/2004 | 2/26/2004 | 2/26/2004 | 2/26/2004 | 4/12/2000 | 4/12/2000 |
| (Concentrations in mg/kg) | Level (mg/kg) | Sample Depth (ft bls): | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       | 0-1       |
|                           |               | Map Zone:              | Zone III  | Zone II   | Zone II   |
|                           |               |                        |           |           |           |           |           |           |           |           |           |
| Lead                      | 1,000         |                        | 969       | 877       | 212       | 1700      | 314       | 344       | 652       | 245       | 150       |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 4/12/2000<br>0-1 | HC-4<br>4/12/2000<br>0-1<br>Zone II | HC-5<br>4/12/2000<br>0-1<br>Zone II | HC-6<br>4/12/2000<br>0-1<br>Zone II | HC-7<br>4/12/2000<br>0-1<br>Zone II | HC-8<br>4/12/2000<br>0-1<br>Zone II | HC-9<br>4/12/2000<br>0-1<br>Zone II | HC-10<br>4/12/2000<br>0-1<br>Zone II | HC-11<br>4/12/2000<br>0-1<br>Zone II |
|-------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|
| Lead                                | 1,000                                          |                                                                           | 754              | 410                                 | 185                                 | 41.1                                | 67.2                                | 85.3                                | 220                                 | 322                                  | 269                                  |

AM0055.0071Y007.143/T4

## Notes:

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 4/12/2000<br>0-1 | HC-13<br>4/12/2000<br>0-1<br>Zone II | HC-14<br>4/12/2000<br>0-1<br>Zone II | HC-15<br>4/12/2000<br>0-1<br>Zone II | HC-16<br>4/12/2000<br>0-1<br>Zone II | HM-1<br>9/18/1997<br>0-1<br>Zone II | HM-2<br>9/18/1997<br>0-1<br>Zone II |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|
| Lead                                   | 1,000                                          |                                                                           | 345              | 508                                  | 857                                  | 687                                  | 280                                  | 12.9                                | 11                                  |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | HM-2      | HM-3      | HM-3      | HM-5      | HM-5      | HM-7      | HM-7      | IB-1      | IB-1      |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | SampleDate:            | 9/18/1997 | 9/18/1997 | 9/18/1997 | 9/18/1997 | 9/18/1997 | 9/18/1997 | 9/18/1997 | 2/25/2000 | 2/25/2000 |
| (Concentrations in mg/kg) | Level (mg/kg) | Sample Depth (ft bls): | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       |
|                           |               | Map Zone:              | Zone II   | Zone III  | Zone III  |
|                           |               |                        |           |           |           |           |           |           |           |           |           |
| Lead                      | 1,000         |                        | 161       | 58.1      | 490       | 65.8      | 306       | 17        | 149       | 1020      | 290       |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | IB-2      | IB-3      | IB-4      | IB-5      | IB-6      | IB-7      | IB-8      | IB-9      | IB-10     |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | SampleDate:            | 2/25/2000 | 2/25/2000 | 2/25/2000 | 2/25/2000 | 2/25/2000 | 2/25/2000 | 2/25/2000 | 2/25/2000 | 2/25/2000 |
| (Concentrations in mg/kg) | Level (mg/kg) | Sample Depth (ft bls): | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       |
|                           |               | Map Zone:              | Zone III  |
|                           |               |                        |           |           |           |           |           |           |           |           |           |
| Lead                      | 1,000         |                        | 239       | 321       | 328       | 873       | 841       | 679       | 697       | 685       | 1110      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| _                         | Site Specific | Sample Designation:    |           | IB-11     | IB-12     |           | L-1      | L-1      | L-2      | L-2      | L-3      | L-3      |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|----------|----------|----------|----------|----------|----------|
| Parameter                 | Soil Cleanup  | SampleDate:            | 2/25/2000 | 2/25/2000 | 2/25/2000 | 2/25/2000 | 3/9/1999 | 3/9/1999 | 3/9/1999 | 3/9/1999 | 3/9/1999 | 3/9/1999 |
| (Concentrations in mg/kg) | Level (mg/kg) | Sample Depth (ft bls): | 1-2       | 0-1       | 0-1       | 0-1       | В        | 0-1**    | В        | 0-1**    | В        | 0-1**    |
|                           |               | Map Zone:              | Zone III  | Zone III  | Zone III  | Zone III  | Zone II  |
|                           |               |                        |           |           |           |           |          |          |          |          |          |          |
| Lead                      | 1,000         |                        | 576       | 381       | 408       | 480       | 191      | 31.2     | 354      | 32.6     | 403      | 59.4     |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | L-4      | L-4      | L-5      | L-5      | L5-1     | L-6      | L-6      | L6-1     | L6-1      | L6-1      |
|---------------------------|---------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | SampleDate:            | 3/9/1999 | 3/9/1999 | 3/9/1999 | 3/9/1999 | 4/7/1997 | 3/9/1999 | 3/9/1999 | 4/7/1997 | 6/30/1997 | 6/30/1997 |
| (Concentrations in mg/kg) | Level (mg/kg) | Sample Depth (ft bls): | В        | 0-1**    | В        | 0-1**    | 0-2      | В        | 0-1**    | 0-2      | 0-1       | 1-2       |
|                           |               | Map Zone:              | Zone II   | Zone II   |
|                           |               |                        |          |          |          |          |          |          |          |          |           |           |
| Lead                      | 1,000         |                        | 308      | 50.9     | 179      | 164      | 189      | 511      | 297      | 745      | 45.6      | 19.2      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 6/30/1997<br>2-3 | 0-2 | 0-1  | L6-3<br>4/7/1997<br>0-2<br>Zone II | 0-1  | L6-3<br>6/30/1997<br>1-2<br>Zone II | L6-3<br>6/30/1997<br>2-3<br>Zone II | L6-4<br>4/7/1997<br>0-2<br>Zone II | 0-1  |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|------------------|-----|------|------------------------------------|------|-------------------------------------|-------------------------------------|------------------------------------|------|
| Lead                                   | 1,000                                          |                                                                           | 38.1             | 198 | 17.6 | 159                                | 25.3 | 4.8                                 | 2                                   | 273                                | 66.5 |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation: SampleDate: Sample Depth (ft bls): Map Zone: | 6/30/1997<br>1-2 | L6-4<br>6/30/1997<br>2-3<br>Zone II | L6-5<br>4/7/1997<br>0-2<br>Zone II | L6-5<br>6/30/1997<br>0-1<br>Zone II | L6-5<br>6/30/1997<br>1-2<br>Zone II | L6-5<br>6/30/1997<br>2-3<br>Zone II | L6-6<br>6/30/1997<br>0-1<br>Zone II | L6-7<br>6/30/1997<br>0-1<br>Zone II | L6-8<br>6/30/1997<br>0-1<br>Zone II |
|----------------------------------------|------------------------------------------------|------------------------------------------------------------------|------------------|-------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Lead                                   | 1,000                                          |                                                                  | 90.1             | 78.6                                | 151                                | 9.8                                 | 10.1                                | 6.6                                 | 4.5                                 | 22.4                                | 25.3                                |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

AM0055.0071Y007.143/T4

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation: SampleDate: Sample Depth (ft bls): Map Zone: | 6/30/1997<br>0-1 | L6-10<br>6/30/1997<br>0-1<br>Zone II | L6-11<br>6/30/1997<br>0-1<br>Zone II | LCW-1<br>11/14/2002<br>0-1<br>Zone II | LCW-2<br>11/14/2002<br>0-1<br>Zone II | LCW-3<br>11/14/2002<br>0-1<br>Zone II |     | LLS-6<br>8/9/2001<br>0-1<br>Zone I | LLS-7<br>8/10/2001<br>0-1<br>Zone I |
|----------------------------------------|------------------------------------------------|------------------------------------------------------------------|------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-----|------------------------------------|-------------------------------------|
| Lead                                   | 1,000                                          |                                                                  | 3.3              | 6.6                                  | 10.8                                 | 71.8                                  | 186                                   | 152                                   | 339 | 146                                | 128                                 |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 8/10/2001<br>1-2 |     |      |      |    |     | LLS-10A<br>8/10/2001<br>1-2<br>Zone I |     |     |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|------------------|-----|------|------|----|-----|---------------------------------------|-----|-----|
| Lead                                   | 1,000                                          |                                                                           | 91.3             | 119 | 11.4 | 26.7 | 26 | 192 | 99                                    | 605 | 583 |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

AM0055.0071Y007.143/T4

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 8/10/2001 |      |     |      |     |     |     |     | LLS-20<br>8/10/2001<br>0-1<br>Zone I |
|-------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|-----------|------|-----|------|-----|-----|-----|-----|--------------------------------------|
| Lead                                | 1,000                                          |                                                                           | 79.8      | 64.8 | 9.9 | 7020 | 2.5 | 425 | 631 | 167 | 47.8                                 |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 8/10/2001<br>0-1 |     |     |      |      | LP2-2<br>7/15/1997<br>0-1<br>Zone I | LP2-2<br>7/15/1997<br>1-2<br>Zone I | LP2-3<br>7/15/1997<br>0-1<br>Zone I | LP2-3<br>7/15/1997<br>1-2<br>Zone I |
|-------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|------------------|-----|-----|------|------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Lead                                | 1,000                                          |                                                                           | 266              | 340 | 268 | 43.2 | 12.9 | 441                                 | 75.1                                | 518                                 | 108                                 |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 7/15/1997 | LP2-4<br>7/15/1997<br>1-2<br>Zone I | LP2-5<br>7/15/1997<br>0-1<br>Zone I | LP2-5<br>7/15/1997<br>1-2<br>Zone I | LP2-6<br>7/15/1997<br>0-1<br>Zone I | LP2-6<br>7/15/1997<br>1-2<br>Zone I | LP2-7<br>7/15/1997<br>0-1<br>Zone I | LP2-7<br>7/15/1997<br>1-2<br>Zone I | LP2-8<br>7/15/1997<br>0-1<br>Zone I |
|-------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|-----------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Lead                                | 1,000                                          |                                                                           | 186       | 30.4                                | 133                                 | 60.2                                | 294                                 | 21.1                                | 287                                 | 86.4                                | 312                                 |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 7/15/1997<br>1-2 | LP2-8<br>7/15/1997<br>2-3<br>Zone I | LP2-9<br>7/15/1997<br>0-1<br>Zone I | LP2-9<br>7/15/1997<br>1-2<br>Zone I | LP2-9<br>7/15/1997<br>2-3<br>Zone I |     | LP2-10<br>7/15/1997<br>1-2<br>Zone I | LP2-10<br>7/15/1997<br>2-3<br>Zone I | LP2-11<br>7/15/1997<br>0-1<br>Zone I |
|-------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-----|--------------------------------------|--------------------------------------|--------------------------------------|
| Lead                                | 1,000                                          |                                                                           | 175              | 10.8                                | 421                                 | 56.2                                | 4.4                                 | 712 | 117                                  | 3.9                                  | 321                                  |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | Site Specific<br>Soil Cleanup | Sample Designation:<br>SampleDate: |        | LP2-11 | MW-26   |          | MW-34   | NR-26   | NR-27   | NR-28   | NR-29   |
|---------------------------|-------------------------------|------------------------------------|--------|--------|---------|----------|---------|---------|---------|---------|---------|
| (Concentrations in mg/kg) | Level (mg/kg)                 | Sample Depth (ft bls):             |        | 2-3    | 9-11    | 0-2      | 0-2     | 0-1     | 0-1     | 0-1     | 0-1     |
|                           |                               | Map Zone:                          | Zone I | Zone I | Zone II | Zone III | Zone II | Zone IV | Zone IV | Zone IV | Zone IV |
| Lead                      | 1,000                         |                                    | 182    | 5.9    | 2.3     | 1290     | 137     | 723     | 299     | 290     | 278     |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Demonstra                 | Site Specific | Sample Designation:    |         | NR-31   | NR-32   | NR-33   |         |          | O/W-UST/B  | O/W-UST/E  |
|---------------------------|---------------|------------------------|---------|---------|---------|---------|---------|----------|------------|------------|
| Parameter                 | Soil Cleanup  | SampleDate:            |         |         |         |         |         | 1/4/1999 | 11/19/1997 | 11/19/1997 |
| (Concentrations in mg/kg) | Level (mg/kg) | Sample Depth (ft bls): |         | 0-1     | 0-1     | 0-1     | 0-1     |          |            |            |
|                           |               | Map Zone:              | Zone IV | Zone III | Zone II    | Zone II    |
|                           |               |                        |         |         |         |         |         |          |            |            |
| Lead                      | 1,000         |                        | 403     | 206     | 544     | 294     | 287     | 17.2     | 3.79       | 3.75       |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 11/19/1997<br> | O/W-UST/S<br>11/19/1997<br><br>Zone II | O/W-UST/W<br>11/19/1997<br><br>Zone II | PC-1<br>6/22/2005<br>0-1<br>Zone II | PC-1<br>6/22/2005<br>1-2<br>Zone II | PC-1<br>6/22/2005<br>2-3<br>Zone II | PC-6<br>6/22/2005<br>0-1<br>Zone II | PC-6<br>6/22/2005<br>1-2<br>Zone II |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|----------------|----------------------------------------|----------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Lead                                   | 1,000                                          |                                                                           | 4              | 6.1                                    | 5.34                                   | 6.8                                 | 5.2 U                               | 5.2 U                               | 160                                 | 370                                 |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | PC-6      | PC-7      | PC-7      | PC-7      | PC-8      | PC-8      | PC-8      | PC-9      | PC-9      |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | SampleDate:            | 6/22/2005 | 6/23/2005 | 6/23/2005 | 6/23/2005 | 6/23/2005 | 6/23/2005 | 6/23/2005 | 6/23/2005 | 6/23/2005 |
| (Concentrations in mg/kg) | Level (mg/kg) | Sample Depth (ft bls): | 2-3       | 0-1       | 1-2       | 2-3       | 0-1       | 1-2       | 2-3       | 0-1       | 1-2       |
|                           |               | Map Zone:              | Zone II   |
|                           |               |                        |           |           |           |           |           |           |           |           |           |
| Lead                      | 1,000         |                        | 400       | 110       | 150       | 53        | 300       | 300       | 170       | 37        | 5.3 U     |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 6/23/2005<br>2-3 | PC-10<br>6/23/2005<br>0-1<br>Zone II | PC-10<br>6/23/2005<br>1-2<br>Zone II |     |     |    | 8/24/2005<br>1-2 | PC-10N<br>8/24/2005<br>2-3<br>Zone II |    |
|-------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|------------------|--------------------------------------|--------------------------------------|-----|-----|----|------------------|---------------------------------------|----|
| Lead                                | 1,000                                          |                                                                           | 5.2 U            | 2500                                 | 350                                  | 360 | 250 | 12 | 14               | 150                                   | 32 |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 8/24/2005<br>1-2 |     |    |     |     |    | PC-11<br>6/23/2005<br>1-2<br>Zone II | PC-11<br>6/23/2005<br>2-3<br>Zone II | PC-12<br>6/23/2005<br>0-1<br>Zone II |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|------------------|-----|----|-----|-----|----|--------------------------------------|--------------------------------------|--------------------------------------|
| Lead                                   | 1,000                                          |                                                                           | 180              | 250 | 63 | 200 | 220 | 31 | 5.1 U                                | 5.3 U                                | 26                                   |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 6/23/2005<br>1-2 |     | PC-13<br>7/19/2007<br>0-1<br>Zone II | PC-13<br>7/19/2007<br>1-2<br>Zone II |     |    | PC-14<br>7/19/2007<br>1-2<br>Zone II | PC-14<br>7/19/2007<br>2-3<br>Zone II | PT-1<br>3/18/2004<br>0-1<br>Zone I |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|------------------|-----|--------------------------------------|--------------------------------------|-----|----|--------------------------------------|--------------------------------------|------------------------------------|
| Lead                                   | 1,000                                          |                                                                           | 5.2 U            | 6.6 | 270                                  | 170                                  | 330 | 42 | 34                                   | 5.2 U                                | 397                                |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | PT-2      | PT-3      | PT-4      | PT-5      | PT-6      | PT-7      | QB-1       | QB-1       | QB-1A    |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|----------|
| Parameter                 | Soil Cleanup  | SampleDate:            | 3/18/2004 | 3/18/2004 | 3/18/2004 | 3/18/2004 | 3/18/2004 | 3/18/2004 | 10/26/1999 | 10/26/1999 | 1/4/2000 |
| (Concentrations in mg/kg) | Level (mg/kg) | Sample Depth (ft bls): | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1        | 1-2        | 0-1      |
|                           |               | Map Zone:              | Zone I    | Zone I    | Zone II   | Zone I    | Zone II   | Zone II   | Zone IV    | Zone IV    | Zone III |
|                           |               |                        |           |           |           |           |           |           |            |            |          |
| Lead                      | 1,000         |                        | 347       | 332       | 86.1      | 184       | 93.5      | 265       | 1140       | 340        | 1020     |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 1/4/2000<br>0-1 | 1/4/2000<br>0-1 | 1/4/2000<br>0-1 | 0-1  | QB-2<br>10/26/1999<br>1-2<br>Zone IV | QB-3<br>10/26/1999<br>0-1<br>Zone IV | QB-3<br>10/26/1999<br>1-2<br>Zone IV | QB-4<br>10/26/1999<br>0-1<br>Zone IV | QB-4<br>10/26/1999<br>1-2<br>Zone IV |
|-------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|-----------------|-----------------|-----------------|------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Lead                                | 1,000                                          |                                                                           | 471             | 431             | 1120            | 2990 | 201                                  | 1050                                 | 741                                  | 1040                                 | 1690                                 |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | _          | QB-4+40   | -        | QB-5       | QB-6       | QB-7       | QB-7       | QB-7A    |          |
|---------------------------|---------------|------------------------|------------|-----------|----------|------------|------------|------------|------------|----------|----------|
| Parameter                 | Soil Cleanup  | SampleDate:            | 10/26/1999 | 2/23/2000 | 1/4/2000 | 10/26/1999 | 10/26/1999 | 10/26/1999 | 10/26/1999 | 1/4/2000 | 1/4/2000 |
| (Concentrations in mg/kg) | Level (mg/kg) | Sample Depth (ft bls): | 2-3        | 0-1       | 0-1      | 0-1        | 0-1        | 0-1        | 1-2        | 0-1      | 0-1      |
|                           |               | Map Zone:              | Zone IV    | Zone III  | Zone III | Zone III   | Zone IV    | Zone IV    | Zone IV    | Zone IV  | Zone IV  |
|                           |               |                        |            |           |          |            |            |            |            |          |          |
| Lead                      | 1,000         |                        | 176        | 361       | 1180     | 552        | 667        | 1940       | 388        | 117      | 17.9     |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 1/4/2000<br>0-1 | 1/4/2000<br>0-1 | 0-1  | 4/12/2000<br>1-2 | 0-1  | 1-2  | 0-1 | QC-4<br>4/12/2000<br>0-1<br>Zone III | QC-5<br>4/12/2000<br>0-1<br>Zone IV |
|-------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|-----------------|-----------------|------|------------------|------|------|-----|--------------------------------------|-------------------------------------|
| Lead                                | 1,000                                          |                                                                           | 245             | 8               | 2520 | 567              | 1760 | 93.4 | 892 | 173                                  | 107                                 |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 4/12/2000<br>0-1 | 0-1  | 0-1  | QC-9<br>4/13/2000<br>0-1<br>Zone III | 0-1 | 0-1  | 0-1  | _   | R-UST/BOT<br>11/18/1997<br><br>Zone II |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|------------------|------|------|--------------------------------------|-----|------|------|-----|----------------------------------------|
| Lead                                   | 1,000                                          |                                                                           | 446              | 18.5 | 52.3 | 54.7                                 | 293 | 91.3 | 16.5 | 6.1 | 2.53                                   |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | Site Specific<br>Soil Cleanup | Sample Designation:<br>SampleDate: |         |         |         |         |         | S2-1<br>5/1/2003 | S2-2    |
|---------------------------|-------------------------------|------------------------------------|---------|---------|---------|---------|---------|------------------|---------|
| (Concentrations in mg/kg) | Level (mg/kg)                 | Sample Depth (ft bls):             |         |         |         |         |         | 0-1              | 1-2     |
|                           |                               | Map Zone:                          | Zone II | Zone IV          | Zone IV |
| Lood                      | 1 000                         |                                    | 20      | 150     | 140     | 2.6     | 27.0    | 220              | 161     |
| Lead                      | 1,000                         |                                    | 20      | 150     | 148     | 3.6     | 27.9    | 230              | 161     |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- (1) Sample Collected by AKRF as part of the East Side Access Project
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 5/1/2003<br>0-1 | 0-1 | 0-1 | 0-1  | 1-2 | 0-1 | 0-2 | S-22<br>10/17/1990<br>0-2<br>Zone II | S-30<br>10/16/1990<br>0-2<br>Zone I |
|-------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|-----------------|-----|-----|------|-----|-----|-----|--------------------------------------|-------------------------------------|
| Lead                                | 1,000                                          |                                                                           | 49.9            | 795 | 622 | 1500 | 277 | 796 | 120 | 162                                  | 8.8                                 |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 12/6/1990<br>0-2 | S-33<br>12/13/1990<br>4-6<br>Zone IV | S-35<br>11/30/1990<br>8-10<br>Zone IV | S-36<br>12/3/1990<br>0-2<br>Zone III | S-37<br>12/1/1990<br>4-6<br>Zone III | S-38<br>11/29/1990<br>2-4<br>Zone III | S-39<br>11/29/1990<br>2-4<br>Zone III | S-41A<br>11/7/1990<br>3.5-5.5<br>Zone III | S-43<br>11/5/1990<br>0-2<br>Zone III |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|------------------|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------|--------------------------------------|
| Lead                                   | 1,000                                          |                                                                           | 339              | 4 J                                  | 3.5                                   | 80                                   | 3.3                                  | 20                                    | 9.9                                   | 52                                        | 605                                  |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation: SampleDate: Sample Depth (ft bls): Map Zone: | 2-4 | S-49<br>10/19/1990<br>2-4<br>Zone III | S-53<br>11/18/1990<br>5-7<br>Zone II | S-60<br>12/12/1990<br>4-6<br>Zone II | S-80<br>10/3/1990<br>2-4<br>Zone II | S-82<br>10/16/1990<br>0-2<br>Zone I | S-90<br>10/1/1990<br>1-3<br>Zone I | S-100<br>1/18/1993<br>0-2<br>Zone II | S-101<br>1/18/1993<br>0-2<br>Zone II |
|-------------------------------------|------------------------------------------------|------------------------------------------------------------------|-----|---------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|------------------------------------|--------------------------------------|--------------------------------------|
| Lead                                | 1,000                                          |                                                                  | 129 | 52                                    | 1.4                                  | 4.6 J                                | 45                                  | 73                                  | 372                                | 251                                  | 1190                                 |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 6/24/2005<br>2-3 |     |       |       |     |       | 5/29/2007<br>0-1 |    |    |
|-------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|------------------|-----|-------|-------|-----|-------|------------------|----|----|
| Lead                                | 1,000                                          |                                                                           | 5.3 U            | 160 | 5.2 U | 5.2 U | 250 | 5.3 U | 350              | 60 | 23 |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 6/24/2005<br>0-1 |    |    | S-102<br>1/18/1993<br>0-2<br>Zone II |       | S-164<br>7/19/2007<br>1-2<br>Zone I | S-164<br>7/19/2007<br>2-3<br>Zone I | S-165<br>7/19/2007<br>0-1<br>Zone I | S-165<br>7/19/2007<br>1-2<br>Zone I |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|------------------|----|----|--------------------------------------|-------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Lead                                   | 1,000                                          |                                                                           | 330              | 48 | 11 | 393                                  | 5.4 U | 5.3 U                               | 9.6                                 | 86                                  | 17                                  |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 7/19/2007<br>2-3 | S-166<br>7/20/2007<br>0-1<br>Zone I | S-166<br>7/20/2007<br>1-2<br>Zone I | S-166<br>7/20/2007<br>2-3<br>Zone I | S-167<br>7/20/2007<br>0-1<br>Zone I | S-167<br>7/20/2007<br>1-2<br>Zone I | S-167<br>7/20/2007<br>2-3<br>Zone I | S-168<br>7/20/2007<br>0-1<br>Zone IV | S-168<br>7/20/2007<br>1-2<br>Zone IV |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|
| Lead                                   | 1,000                                          |                                                                           | 12               | 43                                  | 5.2 U                               | 5.8 U                               | 68                                  | 7.6                                 | 5.2 U                               | 620                                  | 25                                   |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | Site Specific<br>Soil Cleanup | Sample Designation:<br>SampleDate: |     | S-169<br>7/20/2007 | S-169<br>7/20/2007 | S-169<br>7/20/2007 | S-169<br>7/20/2007 | SH-1<br>12/10/2007 | SH-2<br>12/10/2007 | SH-3<br>12/10/2007 | SH-4<br>12/10/2007 |
|---------------------------|-------------------------------|------------------------------------|-----|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| (Concentrations in mg/kg) | Level (mg/kg)                 | Sample Depth (ft bls): Map Zone:   |     | 0-1<br>Zone IV     | 1-2<br>Zone IV     | 2-3<br>Zone IV     | 7-9<br>Zone IV     | 0-1<br>Zone IV     | 0-1<br>Zone IV     | 0-1<br>Zone IV     | 0-1<br>Zone III    |
| Lead                      | 1,000                         |                                    | 9.3 | 130                | 230                | 23                 | 6 U                | 160                | 11                 | 6.9                | 160                |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation: SampleDate: Sample Depth (ft bls): Map Zone: | 12/10/2007<br>0-1 | SH-6<br>12/10/2007<br>0-1<br>Zone III | SH-7<br>12/10/2007<br>0-1<br>Zone III | SH-8<br>12/10/2007<br>0-1<br>Zone II | SH-9<br>12/10/2007<br>0-1<br>Zone II | SH-10<br>12/10/2007<br>0-1<br>Zone II | SH-11<br>12/10/2007<br>0-1<br>Zone II | SH-12<br>12/10/2007<br>0-1<br>Zone I |
|----------------------------------------|------------------------------------------------|------------------------------------------------------------------|-------------------|---------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|
| Lead                                   | 1,000                                          |                                                                  | 5.3 U             | 91                                    | 16                                    | 380                                  | 240                                  | 35                                    | 170                                   | 81                                   |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | SS-1      | SS-1      | SS-2      | SS-2      | SS-3      | SS-3      | SS-4      | SS-4      | SS-5      |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | SampleDate:            | 12/8/1997 | 12/8/1997 | 12/8/1997 | 12/8/1997 | 12/8/1997 | 12/8/1997 | 12/8/1997 | 12/8/1997 | 12/8/1997 |
| (Concentrations in mg/kg) | Level (mg/kg) | Sample Depth (ft bls): | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       |
|                           |               | Map Zone:              | Zone III  | Zone III  | Zone III  | Zone III  | Zone II   |
|                           |               |                        |           |           |           |           |           |           |           |           |           |
| Lead                      | 1,000         |                        | 865       | 55        | 387       | 8         | 36        | 72.5      | 257       | 13        | 3590      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 12/8/1997<br>1-2 | SS-5A<br>12/8/1997<br>0-1<br>Zone II | SS-5B<br>12/8/1997<br>0-1<br>Zone II | SS-5C<br>12/8/1997<br>0-1<br>Zone II | SS-5D<br>12/8/1997<br>0-1<br>Zone II | SS-6<br>12/8/1997<br>0-1<br>Zone II | SS-6<br>12/8/1997<br>1-2<br>Zone II | SS-7<br>12/9/1997<br>0-1<br>Zone II | SS-7 DUP<br>12/9/1997<br>0-1<br>Zone II |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-----------------------------------------|
| Lead                                   | 1,000                                          |                                                                           | 55               | 93                                   | 401                                  | 460                                  | 106                                  | 254                                 | 11.6                                | 246                                 | 169                                     |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 12/9/1997<br>1-2 | SS-7 DUP<br>12/9/1997<br>1-2<br>Zone II |     | SS-8<br>12/9/1997<br>1-2<br>Zone II | SS-9<br>12/9/1997<br>0-1<br>Zone II | SS-9<br>12/9/1997<br>1-2<br>Zone II | SS-10<br>12/9/1997<br>0-1<br>Zone II | SS-10<br>12/9/1997<br>1-2<br>Zone II | SS-11<br>12/9/1997<br>0-1<br>Zone II |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|------------------|-----------------------------------------|-----|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Lead                                   | 1,000                                          |                                                                           | 5.4              | 5.3                                     | 299 | 58                                  | 78                                  | 30                                  | 202                                  | 31.7                                 | 430                                  |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 12/9/1997<br>1-2 | SS-12<br>12/9/1997<br>0-1<br>Zone II | SS-12<br>12/9/1997<br>1-2<br>Zone II | SS-13<br>12/9/1997<br>0-1<br>Zone II | SS-13<br>12/9/1997<br>1-2<br>Zone II | SS-14<br>12/9/1997<br>0-1<br>Zone I | SS-14<br>12/9/1997<br>1-2<br>Zone I | SS-15<br>12/9/1997<br>0-1<br>Zone I | SS-15<br>12/9/1997<br>1-2<br>Zone I |
|-------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Lead                                | 1,000                                          |                                                                           | 94.6             | 870                                  | 36                                   | 502                                  | 55                                   | 14                                  | 79                                  | 166                                 | 22.9                                |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 12/9/1997 | SS-16<br>12/9/1997<br>1-2<br>Zone I | SS-17<br>12/9/1997<br>0-1<br>Zone I | SS-17<br>12/9/1997<br>1-2<br>Zone I | SS-18<br>12/9/1997<br>0-1<br>Zone I | SS-18<br>12/9/1997<br>1-2<br>Zone I | SS-19<br>12/9/1997<br>0-1<br>Zone I | SS-19<br>12/9/1997<br>1-2<br>Zone I | SS-20<br>12/9/1997<br>0-1<br>Zone I |
|-------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|-----------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Lead                                | 1,000                                          |                                                                           | 158       | 3                                   | 341                                 | 28                                  | 65                                  | 21                                  | 155                                 | 4.8                                 | 548                                 |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 12/9/1997 | SS-21<br>12/9/1997<br>0-1<br>Zone I | SS-21<br>12/9/1997<br>1-2<br>Zone I | SS-22<br>12/9/1997<br>0-1<br>Zone I | SS-22<br>12/9/1997<br>1-2<br>Zone I | SS-23<br>12/10/1997<br>0-1<br>Zone I | SS-23<br>12/10/1997<br>1-2<br>Zone I | SS-24<br>12/9/1997<br>0-1<br>Zone I | SS-24<br>12/9/1997<br>1-2<br>Zone I |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|-----------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|
| Lead                                   | 1,000                                          |                                                                           | 10        | 410                                 | 17.3                                | 318                                 | 39                                  | 165                                  | 61                                   | 145                                 | 6                                   |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: |     | SS-25<br>12/10/1997<br>1-2<br>Zone I | SS-26<br>12/10/1997<br>0-1<br>Zone I | SS-26<br>12/10/1997<br>1-2<br>Zone I | SS-27<br>12/10/1997<br>0-1<br>Zone I | SS-27<br>12/10/1997<br>1-2<br>Zone I | SS-28<br>12/10/1997<br>0-1<br>Zone I | SS-28<br>12/10/1997<br>1-2<br>Zone I |
|-------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|-----|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Lead                                | 1,000                                          |                                                                           | 266 | 6                                    | 145                                  | 101                                  | 454                                  | 11                                   | 98.8                                 | 17                                   |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation: SampleDate: Sample Depth (ft bls): Map Zone: | 12/10/1997<br>0-1 | SS-29<br>12/10/1997<br>1-2<br>Zone I | SS-30<br>12/10/1997<br>0-1<br>Zone I | SS-30<br>12/10/1997<br>1-2<br>Zone I | SS-31<br>12/10/1997<br>0-1<br>Zone I | SS-31<br>12/10/1997<br>1-2<br>Zone I | SS-32<br>12/10/1997<br>0-1<br>Zone I | SS-32<br>12/10/1997<br>1-2<br>Zone I |
|----------------------------------------|------------------------------------------------|------------------------------------------------------------------|-------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Lead                                   | 1,000                                          |                                                                  | 205               | 27                                   | 197                                  | 4                                    | 362                                  | 15.3                                 | 259                                  | 2                                    |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 12/10/1997<br>0-1 | SS-33<br>12/10/1997<br>1-2<br>Zone I | SS-34<br>12/10/1997<br>0-1<br>Zone I | SS-34<br>12/10/1997<br>1-2<br>Zone I | SS-35<br>12/10/1997<br>0-1<br>Zone I | SS-35<br>12/10/1997<br>1-2<br>Zone I | SS-36<br>12/10/1997<br>0-1<br>Zone I | SS-36<br>12/10/1997<br>1-2<br>Zone I |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|-------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Lead                                   | 1,000                                          |                                                                           | 303               | 12                                   | 306                                  | 21.8                                 | 99.1                                 | 6                                    | 28                                   | 5                                    |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | SS-37      | SS-37 DUP  | SS-37      | SS-37 DUP  | SS-38      | SS-38      | SSY-7    | SSY-9    | SSY-10   |
|---------------------------|---------------|------------------------|------------|------------|------------|------------|------------|------------|----------|----------|----------|
| Parameter                 | Soil Cleanup  | SampleDate:            | 12/10/1997 | 12/10/1997 | 12/10/1997 | 12/10/1997 | 12/10/1997 | 12/10/1997 | 6/7/1999 | 7/9/1999 | 7/9/1999 |
| (Concentrations in mg/kg) | Level (mg/kg) | Sample Depth (ft bls): | 0-1        | 0-1        | 1-2        | 1-2        | 0-1        | 1-2        | 0-0.5    | 0.5-1    | 0.5-1    |
|                           |               | Map Zone:              | Zone I     | Zone IV  | Zone III | Zone III |
|                           |               |                        |            |            |            |            |            |            | (1)      | (1)      | (1)      |
| Lead                      | 1,000         |                        | 243        | 216        | 24         | 36         | 136        | 22         | 367      | 13.3     | 177      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | SSY-11   | SSY-12   | SSY-16   | SSY-17S   | SSY-17I   | SSY-20   | SSY-21   | SSY-22   | SSY-23   | SSY-24   |
|---------------------------|---------------|------------------------|----------|----------|----------|-----------|-----------|----------|----------|----------|----------|----------|
| Parameter                 | Soil Cleanup  | SampleDate:            | 7/9/1999 | 7/9/1999 | 6/3/1999 | 4/23/1999 | 4/23/1999 | 6/3/1999 | 6/3/1999 | 6/3/1999 | 7/9/1999 | 7/9/1999 |
| (Concentrations in mg/kg) | Level (mg/kg) | Sample Depth (ft bls): | 0.5-1    | 0.5 - 1  | 0-0.5    | 1-1.5     | 11-11.5   | 0-0.5    | 0.5-1    | 0.5-1    | 0.5-1    | 0.5-1    |
|                           |               | Map Zone:              | Zone II  | Zone II  | Zone I   | Zone I    | Zone I    | Zone IV  | Zone IV  | Zone III | Zone III | Zone III |
|                           |               |                        | (1)      | (1)      | (1)      | (1)       | (1)       | (1)      | (1)      | (1)      | (1)      | (1)      |
| Lead                      | 1,000         |                        | 76.2     | 346      | 29.4     | 100       | 6         | 228      | 329      | 113      | 55.8     | 21.7     |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | SSY-25   | SSY-26   | SSY-27   | SSY-28   | SSY-33   | SSY-33D  | SSY-34   | SSY-34D  | SSY-35   | SSY-35D  |
|---------------------------|---------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Parameter                 | Soil Cleanup  | SampleDate:            | 7/9/1999 | 7/9/1999 | 6/3/1999 | 6/3/1999 | 6/3/1999 | 6/3/1999 | 6/3/1999 | 6/3/1999 | 6/3/1999 | 6/3/1999 |
| (Concentrations in mg/kg) | Level (mg/kg) | Sample Depth (ft bls): | 0.5-1    | 0.5-1    | 0-0.5    | 0-0.5    | 0-0.5    | 5.5-6    | 0.5-1    | 3.5-4    | 0-0.5    | 5.5-6    |
|                           |               | Map Zone:              | Zone II  | Zone II  | Zone II  | Zone I   | Zone IV  | Zone IV  | Zone IV  | Zone IV  | Zone III | Zone III |
|                           |               |                        | (1)      | (1)      | (1)      | (1)      | (1)      | (1)      | (1)      | (1)      | (1)      | (1)      |
| Lead                      | 1,000         |                        | 174      | 110      | 254      | 70.4     | 153      | 10.4     | 287      | 49.9     | 58.3     | 31.1     |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | SSY-36   | SSY-37   | SSY-38   | SSY-38D  | SSY-39    | SSY-40    | SSY-42   | SSY-45    | SSY-46    |
|---------------------------|---------------|------------------------|----------|----------|----------|----------|-----------|-----------|----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | SampleDate:            | 6/3/1999 | 6/3/1999 | 6/3/1999 | 6/3/1999 | 4/28/1999 | 4/28/1999 | 7/9/1999 | 6/14/1999 | 6/14/1999 |
| (Concentrations in mg/kg) | Level (mg/kg) | Sample Depth (ft bls): | 0.5-1    | 0.5-1    | 0-0.5    | 5.5-6    | 1-1.5     | 1-1.5     | 0.5-1    | 0-0.5     | 0.5-1     |
|                           |               | Map Zone:              | Zone IV  | Zone IV  | Zone III | Zone III | Zone IV   | Zone III  | Zone II  | Zone II   | Zone II   |
|                           |               |                        | (1)      | (1)      | (1)      | (1)      | (1)       | (1)       | (1)      | (1)       | (1)       |
| Lead                      | 1,000         |                        | 269      | 448      | 32.2     | 130      | 15.9      | 5.9       | 47.6     | 218       | 194       |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | SSY-46D   | SSY-52    | SSY-53    | SSY-54    | SSY-56    | SSY-57    | SW-1      | SW-1      | SW-2      |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | SampleDate:            | 6/14/1999 | 4/23/1999 | 4/23/1999 | 4/23/1999 | 4/23/1999 | 4/23/1999 | 7/31/1997 | 7/31/1997 | 7/31/1997 |
| (Concentrations in mg/kg) | Level (mg/kg) | Sample Depth (ft bls): | 20-22     | 2-2.5     | 2.5-3     | 2-2.5     | 1.5-2     | 1.5-2     | 0-1       | 1-2       | 0-1       |
|                           |               | Map Zone:              | Zone II   | Zone I    | Zone III  | Zone III  | Zone III  |
|                           |               |                        | (1)       | (1)       | (1)       | (1)       | (1)       | (1)       |           |           |           |
| Lead                      | 1,000         |                        | 9.9       | 13.2      | 8.5       | 7.9       | 46.3      | 616       | 272       | 30.7      | 498       |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation: SampleDate: Sample Depth (ft bls): Map Zone: | 7/31/1997 | SW-3<br>7/31/1997<br>0-1<br>Zone III | SW-3<br>7/31/1997<br>1-2<br>Zone III | SW-5<br>7/31/1997<br>0-1<br>Zone III | SW-5<br>7/31/1997<br>1-2<br>Zone III | SW-6<br>7/31/1997<br>0-1<br>Zone III | SW-6<br>7/31/1997<br>1-2<br>Zone III | SW-7<br>7/31/1997<br>0-1<br>Zone III |
|----------------------------------------|------------------------------------------------|------------------------------------------------------------------|-----------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Lead                                   | 1,000                                          |                                                                  | 54.5      | 423                                  | 74.2                                 | 390                                  | 340                                  | 200                                  | 24.4                                 | 381                                  |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation: SampleDate: Sample Depth (ft bls): Map Zone: | 7/31/1997 | SW7-8<br>1/18/2005<br>0-1<br>Zone II | SW7-8<br>1/18/2005<br>1-2<br>Zone II | SW7-8<br>1/18/2005<br>2-3<br>Zone II | SW-8<br>7/31/1997<br>0-1<br>Zone III | SW-8<br>7/31/1997<br>1-2<br>Zone III | SW-9<br>7/31/1997<br>0-1<br>Zone III | SW-9<br>7/31/1997<br>1-2<br>Zone III |
|----------------------------------------|------------------------------------------------|------------------------------------------------------------------|-----------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Lead                                   | 1,000                                          |                                                                  | 61.3      | 2000                                 | 630                                  | 24                                   | 321                                  | 20.2                                 | 336                                  | 91.5                                 |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: |      | SW-10<br>8/15/1997<br>1-2<br>Zone III | SW-11<br>8/15/1997<br>0-1<br>Zone III | SW-11<br>8/15/1997<br>1-2<br>Zone III | SW-12<br>8/15/1997<br>0-1<br>Zone III | SW-12<br>8/15/1997<br>1-2<br>Zone III | SW-13<br>8/15/1997<br>0-1<br>Zone III | SW-13<br>8/15/1997<br>1-2<br>Zone III |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Lead                                   | 1,000                                          |                                                                           | 90.2 | 269                                   | 328                                   | 538                                   | 230                                   | 55.9                                  | 628                                   | 59.1                                  |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | SW-14<br>8/15/1997<br>0-1<br>Zone IV | SW-14<br>8/15/1997<br>1-2<br>Zone IV | SW-15<br>8/15/1997<br>0-1<br>Zone IV | SW-16<br>8/15/1997<br>0-1<br>Zone IV | SW-17<br>8/15/1997<br>0-1<br>Zone IV | SW-41<br>5/24/2005<br>0-1<br>Zone III | SW-41<br>5/24/2005<br>1-2<br>Zone III | SW-41<br>5/24/2005<br>2-3<br>Zone III |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Lead                                   | 1,000                                          |                                                                           | 175                                  | 76.9                                 | 184                                  | 193                                  | 113                                  | 340                                   | 23                                    | 27                                    |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

 $NYSDEC \hbox{ - New York State Department of Environmental Conservation} \\$ 

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    | SW-49-E   | SW-49-E   | SW-49-E   | SW-49-W   | SW-49-W   | SW-49-W   | SW-51-E   | SW-51-E   |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | SampleDate:            | 6/22/2004 | 6/22/2004 | 6/22/2004 | 6/22/2004 | 6/22/2004 | 6/22/2004 | 6/22/2004 | 6/22/2004 |
| (Concentrations in mg/kg) | Level (mg/kg) | Sample Depth (ft bls): | 0-1       | 1-2       | 2-3       | 0-1       | 1-2       | 2-3       | 0-1       | 1-2       |
|                           |               | Map Zone:              | Zone III  |
|                           |               |                        |           |           |           |           |           |           |           |           |
|                           |               |                        |           |           |           |           |           |           |           | _         |
| Lead                      | 1,000         |                        | 153       | 153       | 98.8      | 1030      | 244       | 323       | 301       | 20.5      |
|                           |               |                        |           |           |           |           |           |           |           |           |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation: SampleDate: Sample Depth (ft bls): Map Zone: | SW-51-E<br>6/22/2004<br>2-3<br>Zone III | SW-51-W<br>6/22/2004<br>0-1<br>Zone III | SW-51-W<br>6/22/2004<br>1-2<br>Zone III | SW-51-W<br>6/22/2004<br>2-3<br>Zone III |
|-------------------------------------|------------------------------------------------|------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| Lead                                | 1,000                                          |                                                                  | 8.9                                     | 325                                     | 81.8                                    | 95.1                                    |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 7/30/1999<br>0-1 | T-2<br>7/30/1999<br>0-1<br>Zone II | T-3<br>7/30/1999<br>0-1<br>Zone III | T-4<br>7/30/1999<br>0-1<br>Zone III | T-5<br>7/30/1999<br>0-1<br>Zone II | T-6<br>7/30/1999<br>0-1<br>Zone II | T-7<br>7/30/1999<br>0-1<br>Zone II | T-7<br>8/9/1999<br>1-2<br>Zone II | T-8<br>7/30/1999<br>0-1<br>Zone II |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|------------------|------------------------------------|-------------------------------------|-------------------------------------|------------------------------------|------------------------------------|------------------------------------|-----------------------------------|------------------------------------|
| Lead                                   | 1,000                                          |                                                                           | 64.7             | 206                                | 6.6                                 | 598                                 | 653                                | 899                                | 1310                               | 50                                | 372                                |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls): | 7/30/1999 | T-10<br>7/30/1999<br>0-1 | T-11<br>7/30/1999<br>0-1 | T-12<br>7/30/1999<br>0-1 |          |          |          | T-34C-4<br>5/13/2004 |         |
|-------------------------------------|------------------------------------------------|--------------------------------------------------------------|-----------|--------------------------|--------------------------|--------------------------|----------|----------|----------|----------------------|---------|
| (Concentiations in ing ig)          | 20,01 (1119,119)                               | Map Zone:                                                    |           | Zone II                  | Zone II                  | Zone II                  | Zone III | Zone III | Zone III | Zone III             | Zone II |
| Lead                                | 1,000                                          |                                                              | 334       | 285                      | 291                      | 240                      | 156      | 61.8     | 438      | 334                  | 171     |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls): | 5/13/2004 |         |         |         |         |         |         |         |          |
|-------------------------------------|------------------------------------------------|--------------------------------------------------------------|-----------|---------|---------|---------|---------|---------|---------|---------|----------|
| (Concentrations in ing/kg)          | Level (mg/kg)                                  | Map Zone:                                                    |           | Zone II | Zone III |
| Lead                                | 1,000                                          |                                                              | 140       | 174     | 524     | 1200    | 3.8     | 250     | 200     | 258     | 2.6      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 7/19/2002 |      | 2-3  | T9-2<br>8/23/2004<br>2-3<br>Zone II |      | T10-1<br>7/10/1997<br>0-1<br>Zone III | 7/10/1997<br>1-2 | T10-1 (Post-Ex)<br>8/10/2005<br><br>Zone III |
|-------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|-----------|------|------|-------------------------------------|------|---------------------------------------|------------------|----------------------------------------------|
| Lead                                | 1,000                                          |                                                                           | 8.4       | 22.7 | 25.9 | 5.5                                 | 24.4 | 794                                   | 9.8              | 6.8                                          |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    |           |           |           | T10-2 PX  |           |           | T10-3 PX  |           | T10-4     |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | SampleDate:            | 7/28/2005 | 7/10/1997 | 7/10/1997 | 7/28/2005 | 7/10/1997 | 7/10/1997 | 7/28/2005 | 7/10/1997 | 7/10/1997 |
| (Concentrations in mg/kg) | Level (mg/kg) | Sample Depth (ft bls): |           | 0-1       | 1-2       |           | 0-1       | 1-2       |           | 0-1       | 1-2       |
|                           |               | Map Zone:              | Zone III  | Zone II   |
|                           |               |                        |           |           |           |           |           |           |           |           |           |
| Lead                      | 1,000         |                        | 1500      | 490       | 12.3      | 920       | 316       | 13        | 890       | 517       | 16.5      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | Sample Designation:    |           |           | T24-2     | T24-3     | T24-4     | T24-5     | T24-6     | T24-7     | T24-8     |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Soil Cleanup  | SampleDate:            | 7/28/2005 | 11/1/2002 | 11/1/2002 | 11/1/2002 | 11/1/2002 | 11/1/2002 | 11/1/2002 | 11/1/2002 | 11/1/2002 |
| (Concentrations in mg/kg) | Level (mg/kg) | Sample Depth (ft bls): |           | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       |
|                           |               | Map Zone:              | Zone II   | Zone III  | Zone II   | Zone II   | Zone II   |
|                           |               |                        |           |           |           |           |           |           |           |           |           |
| Lead                      | 1,000         |                        | 170       | 214       | 61.2      | 201       | 767       | 303       | 195       | 78.9      | 248       |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation: SampleDate: Sample Depth (ft bls): Map Zone: | 11/1/2002<br>0-1 |      |      | В   | 7/9/1998<br>0-1** |     | 7/9/1998<br>0-1** | 7/9/1998<br>B |      |
|----------------------------------------|------------------------------------------------|------------------------------------------------------------------|------------------|------|------|-----|-------------------|-----|-------------------|---------------|------|
| Lead                                   | 1,000                                          |                                                                  | 33.3             | 38.7 | 99.7 | 478 | 43.2              | 932 | 15.6              | 326           | 2.73 |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 7/9/1998<br>B | 7/9/1998<br>0-1** | 7/30/1998<br>B | 7/30/1998<br>B | 7/9/1998<br>B | 7/9/1998<br>0-1** | 7/9/1998<br>B | 7/9/1998<br>0-1** |     |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|---------------|-------------------|----------------|----------------|---------------|-------------------|---------------|-------------------|-----|
| Lead                                   | 1,000                                          |                                                                           | 2020          | 36.4              | 2350           | 1060           | 747           | 69.7              | 2560          | 68                | 980 |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 7/9/1998<br>B | 7/9/1998<br>0-1** | 7/30/1998<br>B | 7/9/1998<br>B | 7/9/1998<br>0-1** | 4/7/2003<br>0-1 |      | 4/7/2003<br>0-1 | 4/7/2003<br>0-1 | 4/7/2003<br>0-1 |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|---------------|-------------------|----------------|---------------|-------------------|-----------------|------|-----------------|-----------------|-----------------|
| Lead                                   | 1,000                                          |                                                                           | 1060          | 147               | 995            | 437           | 63.9              | 36.9            | 42.1 | 186             | 35.1            | 6.8             |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 4/7/2003<br>0-1 | 4/7/2003<br>0-1 | 4/7/2003<br>0-1 | 4/7/2003<br>0-1 | 4/7/2003<br>0-1 | 4/7/2003<br>0-1 | 8/12/2002<br>0-1 | TANKPAD-2<br>8/12/2002<br>0-1<br>Zone II |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------------------------------|
| Lead                                   | 1,000                                          |                                                                           | 51.8            | 8.3             | 10.3            | 21.7            | 7.7             | 12.7            | 90               | 69.8                                     |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 9/12/2005 |     | TS1-2<br>7/12/2002<br>0-1<br>Zone III | TS1-3<br>7/12/2002<br>0-1<br>Zone III | TS1-4<br>7/12/2002<br>0-1<br>Zone III | TS1-5<br>7/12/2002<br>0-1<br>Zone III | TS1-6<br>7/12/2002<br>0-1<br>Zone III | TS1-7<br>7/12/2002<br>0-1<br>Zone III | TS1-8<br>7/12/2002<br>0-1<br>Zone III |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|-----------|-----|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Lead                                   | 1,000                                          |                                                                           | 49        | 748 | 11.1                                  | 42                                    | 42                                    | 84                                    | 403                                   | 124                                   | 358                                   |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 7/12/2002<br>0-1 | 7/12/2002<br>0-1 | TS1-10<br>7/12/2002<br>1-2<br>Zone III |     | TS36-2<br>4/15/2002<br>0-1<br>Zone III | 4/15/2002<br>0-1 | TS36-4<br>4/15/2002<br>0-1<br>Zone II | TS36-5<br>4/15/2002<br>0-1<br>Zone II | TS36-6<br>4/15/2002<br>0-1<br>Zone II |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|------------------|------------------|----------------------------------------|-----|----------------------------------------|------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Lead                                   | 1,000                                          |                                                                           | 14.5             | 1280             | 373                                    | 177 | 179                                    | 83.9             | 446                                   | 687                                   | 100                                   |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 4/15/2002<br>0-1 |     |     |     |     |     |     | TS36-14<br>4/15/2002<br>0-1<br>Zone II |     |
|-------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|------------------|-----|-----|-----|-----|-----|-----|----------------------------------------|-----|
| Lead                                | 1,000                                          |                                                                           | 401              | 183 | 230 | 108 | 430 | 637 | 583 | 434                                    | 347 |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 4/15/2002<br>0-1 | 6/26/2007<br>0-1 | 1-2 | 2-3 | TU-2<br>6/26/2007<br>0-1<br>Zone II | 1-2 | 2-3 | TU-3<br>6/26/2007<br>0-1<br>Zone II | TU-3<br>6/26/2007<br>1-2<br>Zone II |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|------------------|------------------|-----|-----|-------------------------------------|-----|-----|-------------------------------------|-------------------------------------|
| Lead                                   | 1,000                                          |                                                                           | 504              | 120              | 240 | 200 | 150                                 | 340 | 82  | 370                                 | 600                                 |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | Site Specific<br>Soil Cleanup | Sample Designation:<br>SampleDate: |         | TU-4<br>6/26/2007 | TU-4<br>6/26/2007 | TU-4<br>6/26/2007 | TU-5    | TU-5    | TU-5    | TU-6    | TU-6    |
|---------------------------|-------------------------------|------------------------------------|---------|-------------------|-------------------|-------------------|---------|---------|---------|---------|---------|
| (Concentrations in mg/kg) | Level (mg/kg)                 | Sample Depth (ft bls):             | 2-3     | 0-1               | 1-2               | 2-3               | 0-1     | 1-2     | 2-3     | 0-1     | 1-2     |
|                           |                               | Map Zone:                          | Zone II | Zone II           | Zone II           | Zone II           | Zone II | Zone II | Zone II | Zone II | Zone II |
| Lead                      | 1,000                         |                                    | 680     | 63                | 140               | 77                | 98      | 97      | 85      | 150     | 42      |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 6/26/2007<br>2-3 | TU-7<br>6/26/2007<br>0-1<br>Zone II | TU-7<br>6/26/2007<br>1-2<br>Zone II | TU-7<br>6/26/2007<br>2-3<br>Zone II | TU-8<br>6/26/2007<br>0-1<br>Zone II | TU-8<br>6/26/2007<br>1-2<br>Zone II | TU-8<br>6/26/2007<br>2-3<br>Zone II | TU-9<br>6/27/2007<br>0-1<br>Zone II | TU-9<br>6/27/2007<br>1-2<br>Zone II |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Lead                                   | 1,000                                          |                                                                           | 33               | 100                                 | 79                                  | 97                                  | 120                                 | 1100                                | 370                                 | 210                                 | 65                                  |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in mg/kg) | Site Specific<br>Soil Cleanup<br>Level (mg/kg) | Sample Designation:<br>SampleDate:<br>Sample Depth (ft bls):<br>Map Zone: | 6/27/2007<br>2-3 | TU-10<br>6/27/2007<br>0-1<br>Zone II | TU-10<br>6/27/2007<br>1-2<br>Zone II | TU-10<br>6/27/2007<br>2-3<br>Zone II | TU-11<br>6/27/2007<br>0-1<br>Zone II | TU-11<br>6/27/2007<br>1-2<br>Zone II | TU-11<br>6/27/2007<br>2-3<br>Zone II | TU-12<br>6/27/2007<br>0-1<br>Zone II | TU-12<br>6/27/2007<br>1-2<br>Zone II |
|----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Lead                                   | 1,000                                          |                                                                           | 120              | 800                                  | 600                                  | 360                                  | 460                                  | 420                                  | 450                                  | 370                                  | 480                                  |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 4. Summary of Lead Concentrations Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| _                         | Site Specific | Sample Designation:    |           |           |           |           | TU-14     |           | TU-14     | WWALL    |
|---------------------------|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|
| Parameter                 | Soil Cleanup  | SampleDate:            | 6/27/2007 | 6/27/2007 | 6/27/2007 | 6/27/2007 | 6/27/2007 | 6/27/2007 | 6/27/2007 | 1/4/1999 |
| (Concentrations in mg/kg) | Level (mg/kg) | Sample Depth (ft bls): | 2-3       | 0-1       | 1-2       | 2-3       | 0-1       | 1-2       | 2-3       |          |
|                           |               | Map Zone:              | Zone II   | Zone III |
|                           |               |                        |           |           |           |           |           |           |           |          |
| Lead                      | 1,000         |                        | 500       | 150       | 470       | 670       | 330       | 110       | 36        | 14.7     |

Bold text indicates the exceedance of the current Yard Soil Cleanup Level of 1,000 mg/kg. Amtrak has requested an alternative Cleanup Level of 3,900 mg/kg in accordance with 6 NYCRR Part 375. That request is pending.

mg/kg - milligrams per kilogram

ft bls - feet below land surface

NYSDEC - New York State Department of Environmental Conservation

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

V - Data added and/or value altered by data validator

(1) Sample Collected by AKRF as part of the East Side Access Project

- in depth - Not sampled by Roux; depth not known

-- - Confirmatory Sample

B in depth field indicates Ballast sample collected (0-1 ft bls)

\* - In designation indicates 0-1 foot bls interval not sampled

\*\* - 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

Table 5. Summary of Metals Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | NYSDEC             | Sample Designation:    | CS-43     | FC-4      | FC-5      | FC-8      | FC-11     | FC-18    | FC-24    | FC-27    |
|---------------------------|---------------|--------------------|------------------------|-----------|-----------|-----------|-----------|-----------|----------|----------|----------|
| Parameter                 | Soil Cleanup  | Part 375           | Sample Date:           | 1/19/1993 | 9/14/1994 | 9/14/1994 | 9/14/1994 | 9/14/1994 | 4/6/1994 | 4/5/1994 | 4/4/1994 |
| (Concentrations in mg/kg) | Level (mg/kg) | Industrial (mg/kg) | Sample Depth (ft bls): | 0-2       | 0-2       | 0-2       | 0-2       | 0-2       | 1-3      | 1-3      | 1-3      |
|                           |               |                    | Map Zone:              | Zone III  | Zone III  | Zone II   | Zone II   | Zone II   | Zone I   | Zone I   | Zone I   |
| Aluminum                  |               |                    |                        | NA        | 5150      | 3710      | 1690      | 5280      | 3430 U   | 3720     | 2800     |
| Antimony                  |               |                    |                        | NA        | 12.3 U    | 12.6 U    | 13.7 U    | 13.3 U    | 24.8 UJV | 9.5 UJV  | 27.5 UJV |
| Arsenic                   |               | 16                 |                        | NA        | 3.7       | 13.4      | 45.6      | 20.7      | 2.1 U    | 0.24 U   | 2.3 J    |
| Barium                    |               | 10000              |                        | NA        | 54.1      | 85.5      | 77.9      | 58.4      | 82.8 U   | 20.6 B   | 94.2     |
| Beryllium                 |               | 2700               |                        | NA        | 1 U       | 1 U       | 1.9       | 1.6       | 2.1 U    | 0.44 B   | 2.3 U    |
| Cadmium                   |               | 60                 |                        | NA        | 1 U       | 1 U       | 1.1 U     | 1.1 U     | 2.1 U    | 0.48 U   | 2.3 U    |
| Calcium                   |               |                    |                        | NA        | 1770      | 706       | 626       | 855       | 2430     | 1010     | 9220     |
| Chromium                  |               |                    |                        | NA        | 12.5      | 16.7      | 11.9      | 19.8      | 8.8      | 15.7     | 9.7      |
| Cobalt                    |               |                    |                        | NA        | 10.2 U    | 10.5 U    | 11.4 U    | 11.1 U    | 20.7 U   | 3 B      | 22.9 U   |
| Copper                    |               | 10000              |                        | NA        | 123       | 424       | 138       | 393       | 11.2     | 7.4      | 27.8     |
| Iron                      |               |                    |                        | NA        | 11600     | 19900     | 33700     | 29400     | 6660     | 5390     | 10900    |
| Lead                      | 1,000         | 3,900              |                        | NA        | 107       | 345       | 90.6      | 344       | 4.9      | 2.9      | 9.2      |
| Magnesium                 |               |                    |                        | NA        | 2060      | 1040      | 228 U     | 1320      | 1780     | 1440     | 4020     |
| Manganese                 |               | 10000              |                        | NA        | 265       | 287       | 36.5      | 285       | 221 NJ   | 47.6 NJ  | 198 NJ   |
| Mercury                   |               | 5.7                |                        | 22.5      | 0.093 U   | 0.25      | 0.11 U    | 0.27      | 0.1 U    | 0.1      | 0.24     |
| Nickel                    |               | 10000              |                        | NA        | 12        | 17        | 13.7      | 23.6      | 16.6 U   | 6.6 B    | 18.3 U   |
| Potassium                 |               |                    |                        | NA        | 624       | 370       | 400       | 382       | 892      | 576      | 524      |
| Selenium                  |               | 6800               |                        | NA        | 1 U       | 1 U       | 1.9       | 1.2       | 1 U      | 0.24 U   | 1.1 U    |
| Silver                    |               | 6800               |                        | NA        | 2 U       | 2.1 U     | 2.3 U     | 2.2 U     | 4.1 U    | 0.71 U   | 4.6 U    |
| Sodium                    |               |                    |                        | NA        | 205 U     | 209 U     | 228 U     | 222 U     | 78       | 67       | 69.4     |
| Thallium                  |               |                    |                        | NA        | 2 U       | 2.1 U     | 2.3 U     | 2.2 U     | 2.1 U    | 0.24 U   | 2.3 U    |
| Vanadium                  |               |                    |                        | NA        | 17.5      | 48.2      | 37.6      | 33.6      | 20.7 U   | 22.8 B   | 22.9 U   |
| Zinc                      |               | 10000              |                        | NA        | 137       | 142       | 26.7      | 107       | 20.8     | 21.8     | 156      |

mg/kg - milligrams per kilogram

ft bls - feet below land surface

- B Indicates analyte result between instrument detection limit and the contract required detection limit
- J Estimated value
- N Spike recovery exceeds the upper and lower control limits
- S Value determined by method of standard addition
- U Indicates that the compound was analyzed for but not detected
- $\boldsymbol{V}$  Data added and/or value altered by data validator
- W Post-digestion spike was outside 85-115% control limits

Bold text (Lead only) indicates the exceedance of the NYSDEC Site Specific

Cleanup Level for Lead

Bold text (except Lead) indicates the exceedance of the NYSDEC Part 375 Industrial

NYSDEC - New York State Department of Environmental Conservation

Table 5. Summary of Metals Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | NYSDEC             | Sample Designation:    | FC-31    | FC-33    | FC-36    | FC-40    | MW-26     | MW-34      | S-17       | S-22       |
|---------------------------|---------------|--------------------|------------------------|----------|----------|----------|----------|-----------|------------|------------|------------|
| Parameter                 | Soil Cleanup  | Part 375           | Sample Date:           | 4/5/1994 | 4/4/1994 | 4/6/1994 | 4/5/1994 | 12/5/1990 | 11/29/1990 | 10/19/1990 | 10/17/1990 |
| (Concentrations in mg/kg) | Level (mg/kg) | Industrial (mg/kg) | Sample Depth (ft bls): | 1-3      | 1-3      | 7-9      | 1-3      | 9-11      | 0-2        | 0-2        | 0-2        |
|                           |               |                    | Map Zone:              | Zone I   | Zone I   | Zone I   | Zone I   | Zone II   | Zone II    | Zone III   | Zone II    |
| Aluminum                  |               |                    |                        | 5340     | 4320     | 2030     | 2870     | 3010      | 2990       | 4430 N     | 2220 N     |
| Antimony                  |               |                    |                        | 7.9 UJV  | 9.5 UJV  | 9.5 U    | 8.8 U    | 1.6 UN    | 1.9 BN     | 2.2 UN     | 3.5 BN     |
| Arsenic                   |               | 16                 |                        | 3.7 J    | 2.4 J    | 0.84 J   | 1.3 J    | 0.6 U     | 7.7 S      | 20         | 26         |
| Barium                    |               | 10000              |                        | 28.5 B   | 36.5 B   | 18.7 B   | 47.1 B   | 16 B      | 43         | 85 *       | 81 *       |
| Beryllium                 |               | 2700               |                        | 0.31 B   | 0.24 U   | 0.36 B   | 0.26 B   | 0.34 U    | 0.34 U     | 0.57 B     | 0.37 U     |
| Cadmium                   |               | 60                 |                        | 0.39 U   | 0.48 U   | 0.48 U   | 0.64 B   | 1.1 U     | 1.3        | 0.94 U*    | 0.77 U*    |
| Calcium                   |               |                    |                        | 983      | 5360     | 1510     | 942      | 772 B     | 702 B      | 1030 B     | 468 B      |
| Chromium                  |               |                    |                        | 16.8     | 10.3     | 10.2     | 8.6      | 6.5 SN    | 14 N       | 36 N*      | 17 N*      |
| Cobalt                    |               |                    |                        | 4.5 B    | 3.6 B    | 1.3 B    | 3.1 B    | 1.9 B     | 5.8 B      | 2 U        | 2.3 B      |
| Copper                    |               | 10000              |                        | 19.2     | 13.7     | 9.1      | 22.7     | 8.2       | 140        | 244        | 349        |
| Iron                      |               |                    |                        | 9730     | 7030     | 3080     | 5850     | 5990      | 14100      | 28600      | 27000      |
| Lead                      | 1,000         | 3,900              |                        | 11       | 18.2     | 11       | 2.9 NJ   | 2.3       | 137        | 120 N*     | 162 N*     |
| Magnesium                 |               |                    |                        | 1520     | 1280     | 874      | 1200     | 1360      | 1280       | 1330 B     | 610 B      |
| Manganese                 |               | 10000              |                        | 272 NJ   | 94.3 NJ  | 30.6 J   | 207 NJ   | 148       | 130        | 175 *      | 142 *      |
| Mercury                   |               | 5.7                |                        | 0.086    | 0.1      | 0.1 U    | 0.13     | 0.1 U     | 0.1 U      | 0.9 N      | 0.38 N     |
| Nickel                    |               | 10000              |                        | 8 B      | 6.4 B    | 4.4 B    | 6.8 B    | 6.7 B     | 8.1 B      | 17         | 17         |
| Potassium                 |               |                    |                        | 484      | 565      | 220      | 378      | 416 B     | 448 B      | 391 B      | 350 B      |
| Selenium                  |               | 6800               |                        | 0.22 B   | 0.24 U   | 0.24 U   | 0.22 U   | 0.55 UNW  | 0.55 UNW   | 0.74 UN    | 0.61 UNW   |
| Silver                    |               | 6800               |                        | 0.59 U   | 0.71 U   | 0.72 U   | 0.66 U   | 0.53 U    | 0.53 UW    | 0.66 UW    | 0.56 B     |
| Sodium                    |               |                    |                        | 133      | 122      | 233      | 98.9     | 113 B     | 258 B      | 394 B      | 301 B      |
| Thallium                  |               |                    |                        | 0.2 U    | 0.24 U   | 0.24 U   | 0.22 U   | 0.74 U    | 0.75 U     | 0.8 U      | 0.65 U     |
| Vanadium                  |               |                    |                        | 15.3 B   | 13.1 B   | 7.8 B    | 7.1 B    | 7.6 B     | 47         | 97         | 75         |
| Zinc                      |               | 10000              |                        | 27.5     | 21.1     | 22.8     | 100      | 16        | 149        | 95         | 61         |

mg/kg - milligrams per kilogram

ft bls - feet below land surface

- $\boldsymbol{B}$  Indicates analyte result between instrument detection limit and the contract required detection limit
- J Estimated value
- N Spike recovery exceeds the upper and lower control limits
- S Value determined by method of standard addition
- U Indicates that the compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- W Post-digestion spike was outside 85-115% control limits

Bold text (Lead only) indicates the exceedance of the NYSDEC Site Specific

Cleanup Level for Lead

Bold text (except Lead) indicates the exceedance of the NYSDEC Part 375 Industrial

NYSDEC - New York State Department of Environmental Conservation

Table 5. Summary of Metals Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Site Specific | NYSDEC                        | Sample Designation:        | S-30                                                       | S-33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S-35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S-37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S-38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S-39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S-41A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S-43                                   |
|---------------|-------------------------------|----------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Soil Cleanup  | Part 375                      | Sample Date:               | 10/16/1990                                                 | 12/13/1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11/30/1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/1/1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11/29/1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11/29/1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11/7/1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11/5/1990                              |
| Level (mg/kg) | Industrial (mg/kg)            | Sample Depth (ft bls):     | 0-2                                                        | 4-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.5-5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0-2                                    |
|               |                               | Map Zone:                  | Zone I                                                     | Zone IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Zone IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Zone III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Zone III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Zone III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Zone III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Zone III                               |
|               |                               |                            | 3950 N                                                     | 4580 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4740 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6170 N                                 |
|               |                               |                            | 2.4 BN                                                     | 1.6 UJN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.7 UN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.7 UN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.8 UN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.6 UN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.7 UN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.5 BN                                 |
|               | 16                            |                            | 1.2 U                                                      | 0.73 BJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.68 UW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.66 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.1 BW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.6 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.1                                    |
|               | 10000                         |                            | 23 B*                                                      | 14 BJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 44 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 37 B*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 444 *                                  |
|               | 2700                          |                            | 0.36 U                                                     | 0.34 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.36 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.35 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.34 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.37 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.44 B                                 |
|               | 60                            |                            | 0.73 U*                                                    | 1.1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.2 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.1 U*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.1 U*                                 |
|               |                               |                            | 6850                                                       | 4920 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 442 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1040 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6260                                   |
|               |                               |                            | 13 N*                                                      | 7.5 JN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.2 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.6 R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.4 SN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18 N*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 42 N*                                  |
|               |                               |                            | 3.1 B                                                      | 3.2 BJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.4 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.4 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13                                     |
|               | 10000                         |                            | 7.8                                                        | 10 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 377                                    |
|               |                               |                            | 5610                                                       | 8190 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7400 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 58500 N                                |
| 1,000         | 3,900                         |                            | 8.8 N*                                                     | 4 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 605 *                                  |
|               |                               |                            | 1510                                                       | 4260 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3810                                   |
|               | 10000                         |                            | 165 *                                                      | 199 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 93 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 471 *                                  |
|               | 5.7                           |                            | 0.11 UN                                                    | 0.1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.11 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.11 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.11 UN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.11 UN                                |
|               | 10000                         |                            | 5.6 B                                                      | 4.7 BJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.3 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.3 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 54                                     |
|               |                               |                            | 567 B                                                      | 636 BJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 861 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1060 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 760 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 566 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 711 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 843 B                                  |
|               | 6800                          |                            | 0.58 UNW                                                   | 0.56 UN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.59 UNW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.57 UNW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.61 UNW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.56 UNW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.6 UWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.57 UWN                               |
|               | 6800                          |                            | 0.51 U                                                     | 0.54 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.57 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.55 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.59 UW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.53 UW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.57 UW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.6 UBW                                |
|               |                               |                            | 231 B                                                      | 88 BJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 456 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 188 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 324 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 184 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 229 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1770                                   |
|               |                               |                            | 0.62 U                                                     | 0.75 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.76 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.82 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.75 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.77 U                                 |
|               |                               |                            | 11 B                                                       | 13 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28                                     |
|               | 10000                         |                            | 22                                                         | 18 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 565                                    |
|               | Soil Cleanup<br>Level (mg/kg) | Soil Cleanup Level (mg/kg) | Soil Cleanup Level (mg/kg) Industrial (mg/kg) Sample Date: | Soil Cleanup Level (mg/kg)         Part 375         Sample Depth (ft bls): 0-2 Zone I           Level (mg/kg)         Industrial (mg/kg)         Sample Depth (ft bls): 0-2 Zone I            3950 N            2.4 BN           16         1.2 U           10000         23 B*           2700         0.36 U           60         0.73 U*            6850           13 N*         3.1 B           10000         7.8            5610           1,000         3,900         8.8 N*            1510           10000         165 *           5.7         0.11 UN           10000         5.6 B            567 B           6800         0.58 UNW           6800         0.51 U            231 B            231 B            231 B            231 B            231 B            231 B            231 B | Soil Cleanup Level (mg/kg)         Part 375         Sample Date:         10/16/1990         12/13/1990           Level (mg/kg)         Industrial (mg/kg)         Sample Depth (ft bls):         0-2         4-6           Map Zone:         Zone IV         Zone IV            3950 N         4580 J            2.4 BN         1.6 UJN           16         1.2 U         0.73 BJ           10000         23 B*         14 BJ           2700         0.36 U         0.34 U           60         0.73 U*         1.1 U            6850         4920 J            13 N*         7.5 JN            5610         8190 J           1,000         7.8         10 J            5610         8190 J           1,000         3,900         8.8 N*         4 J            1510         4260 J           10000         165 *         199 J           5.7         0.11 UN         0.1 U           10000         5.6 B         4.7 BJ            567 B         636 BJ           6800         0.58 UNW         0.56 UN <tr< td=""><td>Soil Cleanup Level (mg/kg)         Part 375 Industrial (mg/kg)         Sample Depth (ft bls): bepth (</td><td>Soil Cleanup Level (mg/kg)         Part 375 Industrial (mg/kg)         Sample Depth (ft bls): 0-2 and 0-2 and</td><td>Soil Cleanup Level (mg/kg)         Part 375 Industrial (mg/kg)         Sample Depth (ft bls): bepth (</td><td>  Soil Cleanup   Part 375   Sample Date:  0/16/1990   1/2/13/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990</td><td>  Soil Cleanup   Part 375   Sample Date:                                      </td></tr<> | Soil Cleanup Level (mg/kg)         Part 375 Industrial (mg/kg)         Sample Depth (ft bls): bepth ( | Soil Cleanup Level (mg/kg)         Part 375 Industrial (mg/kg)         Sample Depth (ft bls): 0-2 and | Soil Cleanup Level (mg/kg)         Part 375 Industrial (mg/kg)         Sample Depth (ft bls): bepth ( | Soil Cleanup   Part 375   Sample Date:  0/16/1990   1/2/13/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990   1/2/1990 | Soil Cleanup   Part 375   Sample Date: |

mg/kg - milligrams per kilogram

ft bls - feet below land surface

- $\boldsymbol{B}$  Indicates analyte result between instrument detection limit and the contract required detection limit
- J Estimated value
- N Spike recovery exceeds the upper and lower control limits
- S Value determined by method of standard addition
- U Indicates that the compound was analyzed for but not detected
- $\boldsymbol{V}$  Data added and/or value altered by data validator
- W Post-digestion spike was outside 85-115% control limits

Bold text (Lead only) indicates the exceedance of the NYSDEC Site Specific

Cleanup Level for Lead

Bold text (except Lead) indicates the exceedance of the NYSDEC Part 375 Industrial

NYSDEC - New York State Department of Environmental Conservation

Table 5. Summary of Metals Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| -                         | Site Specific | NYSDEC             | Sample Designation:    | S-47       | S-49       | S-53       | S-60       | S-80      | S-82       | S-90      | S-100     |
|---------------------------|---------------|--------------------|------------------------|------------|------------|------------|------------|-----------|------------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Part 375           | Sample Date:           | 10/19/1990 | 10/19/1990 | 11/18/1990 | 12/12/1990 | 10/3/1990 | 10/16/1990 | 10/1/1990 | 1/18/1993 |
| (Concentrations in mg/kg) | Level (mg/kg) | Industrial (mg/kg) | Sample Depth (ft bls): | 2-4        | 2-4        | 5-7        | 4-6        | 2-4       | 0-2        | 1-3       | 0-2       |
| 1                         |               |                    | Map Zone:              | Zone III   | Zone III   | Zone II    | Zone II    | Zone II   | Zone I     | Zone I    | Zone II   |
| Aluminum                  |               |                    |                        | 4470 N     | 4620 N     | 6490       | 4580 J     | 5300 N    | 3410 N     | 4530 N    | 8330      |
| Antimony                  |               |                    |                        | 1.6 UN     | 1.6 UN     | 1.5 UN     | 1.6 UJN    | 1.6 UN    | 1.7 UN     | 1.7 UN    | 4.3 U     |
| Arsenic                   |               | 16                 |                        | 11         | 2.7        | 0.6 U      | 0.62 UJ    | 2.7       | 6.9        | 3.3       | 7.7       |
| Barium                    |               | 10000              |                        | 70 *       | 31 B*      | 16 B       | 28 BJ      | 41 B*     | 47 *       | 296 *     | 84.8      |
| Beryllium                 |               | 2700               |                        | 0.43 B     | 0.34 U     | 0.32 U     | 0.33 U     | 0.33 U    | 0.35 U     | 0.35 U    | 0.2 U     |
| Cadmium                   |               | 60                 |                        | 0.71 U*    | 0.71 U*    | 1 U        | 1.2 BJ     | 0.68 U*   | 0.73 U*    | 1.3 *M    | 1.6       |
| Calcium                   |               |                    |                        | 18100      | 2170       | 2660       | 1590 J     | 1200      | 954 B      | 1890      | 5900      |
| Chromium                  |               |                    |                        | 9.4 N*     | 9.6 N*     | 5.6 N      | 53 JN      | 15 N*     | 16 N*      | 12 N*     | 23.2      |
| Cobalt                    |               |                    |                        | 4.7 B      | 5.4 B      | 2.6 B      | 5.4 BJ     | 5.8 B     | 4 B        | 4.8 B     | 6.7 B     |
| Copper                    |               | 10000              |                        | 41         | 27         | 4.8 B      | 53 J       | 40        | 73         | 57        | 132 JV    |
| Iron                      |               |                    |                        | 11200      | 9570       | 5680       | 7820 J     | 11300     | 17800      | 10600     | 21800     |
| Lead                      | 1,000         | 3,900              |                        | 129 S*N    | 52 S*N     | 1.4        | 4.6 J      | 45 NS*    | 73 N*      | 372 NS*   | 251       |
| Magnesium                 |               |                    |                        | 4280       | 2170       | 2430       | 2260 J     | 3040      | 1500       | 1670      | 2510      |
| Manganese                 |               | 10000              |                        | 241 *      | 274 *      | 151        | 333 J      | 251 *     | 198 *      | 276 *     | 318       |
| Mercury                   |               | 5.7                |                        | 0.49 N     | 0.22 N     | 0.1 UR     | 0.31       | 0.1 UN    | 0.23 N     | 0.98 N    | 0.49      |
| Nickel                    |               | 10000              |                        | 10         | 12         | 6 B        | 4.6 U      | 9.8       | 12         | 11        | 20.6      |
| Potassium                 |               |                    |                        | 802 B      | 762 B      | 318 B      | 674 BJ     | 710 B     | 476 B      | 604 B     | 804 B     |
| Selenium                  |               | 6800               |                        | 0.56 UN    | 0.56 UN    | 0.52 UNW   | 0.54 UN    | 0.54 UNW  | 0.58 UNW   | 0.57 UWN  | 0.52 BJV  |
| Silver                    |               | 6800               |                        | 0.5 UW     | 0.49 UW    | 0.5 U      | 0.52 UJ    | 0.48 U    | 0.51 U     | 0.59      | 0.61 U    |
| Sodium                    |               |                    |                        | 448 B      | 319 B      | 88 B       | 210 BJ     | 336 B     | 270 B      | 306 B     | 120 B     |
| Thallium                  |               |                    |                        | 0.6 U      | 0.6 U      | 0.7 U      | 0.73 UJ    | 0.58 U    | 0.62 U     | 0.61 U    | 0.36 U    |
| Vanadium                  |               |                    |                        | 20         | 13         | 5.2 B      | 13 J       | 20        | 15         | 14        | 38        |
| Zinc                      |               | 10000              |                        | 65         | 94         | 27         | 22 J       | 34        | 37         | 270       | 275       |
| Notes:                    |               |                    |                        |            |            |            |            |           |            |           |           |

mg/kg - milligrams per kilogram

ft bls - feet below land surface

- $\boldsymbol{B}$  Indicates analyte result between instrument detection limit and the contract required detection limit
- J Estimated value
- N Spike recovery exceeds the upper and lower control limits
- S Value determined by method of standard addition
- U Indicates that the compound was analyzed for but not detected
- $\boldsymbol{V}$  Data added and/or value altered by data validator
- W Post-digestion spike was outside 85-115% control limits

Bold text (Lead only) indicates the exceedance of the NYSDEC Site Specific

Cleanup Level for Lead

Bold text (except Lead) indicates the exceedance of the NYSDEC Part 375 Industrial

NYSDEC - New York State Department of Environmental Conservation

Table 5. Summary of Metals Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | Site Specific | NYSDEC             | Sample Designation:    | S-101     | S-102     |
|---------------------------|---------------|--------------------|------------------------|-----------|-----------|
| Parameter                 | Soil Cleanup  | Part 375           | Sample Date:           | 1/18/1993 | 1/18/1993 |
| (Concentrations in mg/kg) | Level (mg/kg) | Industrial (mg/kg) | Sample Depth (ft bls): | 0-2       | 0-2       |
|                           |               |                    | Map Zone:              | Zone II   | Zone II   |
| Aluminum                  |               |                    |                        | 4050      | 3020      |
| Antimony                  |               |                    |                        | 4.3 U     | 10.7 B    |
| Arsenic                   |               | 16                 |                        | 25        | 21.2      |
| Barium                    |               | 10000              |                        | 154       | 74.5      |
| Beryllium                 |               | 2700               |                        | 0.21 U    | 0.2 U     |
| Cadmium                   |               | 60                 |                        | 9.2       | 1.4       |
| Calcium                   |               |                    |                        | 8680      | 1630      |
| Chromium                  |               |                    |                        | 124       | 29.4      |
| Cobalt                    |               |                    |                        | 12.7      | 6.5 B     |
| Copper                    |               | 10000              |                        | 629 JV    | 344 JV    |
| Iron                      |               |                    |                        | 91800     | 41800     |
| Lead                      | 1,000         | 3,900              |                        | 1190      | 393       |
| Magnesium                 |               |                    |                        | 2370      | 1180      |
| Manganese                 |               | 10000              |                        | 667       | 233       |
| Mercury                   |               | 5.7                |                        | 1.3       | 0.94      |
| Nickel                    |               | 10000              |                        | 168       | 26.1      |
| Potassium                 |               |                    |                        | 928 B     | 616 B     |
| Selenium                  |               | 6800               |                        | 0.78 BJV  | 1.4 JV    |
| Silver                    |               | 6800               |                        | 0.62 U    | 0.59 U    |
| Sodium                    |               |                    |                        | 260 B     | 144 B     |
| Thallium                  |               |                    |                        | 0.45 U    | 0.4 U     |
| Vanadium                  |               |                    |                        | 41.8      | 41.7      |
| Zinc                      |               | 10000              |                        | 1310      | 134       |

mg/kg - milligrams per kilogram

ft bls - feet below land surface

- B Indicates analyte result between instrument detection limit and the contract required detection limit
- J Estimated value
- N Spike recovery exceeds the upper and lower control limits
- S Value determined by method of standard addition
- U Indicates that the compound was analyzed for but not detected
- $\boldsymbol{V}$  Data added and/or value altered by data validator
- W Post-digestion spike was outside 85-115% control limits

Bold text (Lead only) indicates the exceedance of the NYSDEC Site Specific

Cleanup Level for Lead

Bold text (except Lead) indicates the exceedance of the NYSDEC Part 375 Industrial

NYSDEC - New York State Department of Environmental Conservation

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| -                         | NYSDEC             | Sample Designation:    | 57SW-1    | 57SW-1    | 57SW-2    | 57SW-2    | A9-B1      | A9-B2      | A9-EW      |
|---------------------------|--------------------|------------------------|-----------|-----------|-----------|-----------|------------|------------|------------|
| Parameter                 | Part 375           | Sample Date:           | 8/10/1998 | 8/10/1998 | 8/10/1998 | 8/10/1998 | 12/21/2000 | 12/21/2000 | 12/28/2000 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | В         | 0-1**     | В         | 0-1**     |            |            |            |
|                           |                    | Map Zone:              | Zone II   | Zone II   | Zone II   | Zone II   | Zone III   | Zone III   | Zone III   |
|                           |                    |                        |           |           |           |           |            |            |            |
| Acenaphthene              | 1000000            |                        | 97 U      | 29 J      | 95 U      | 91 U      | 94 J       | 370 U      | 350 U      |
| Acenaphthylene            | 1000000            |                        | 26 J      | 470       | 290       | 91 U      | 71 J       | 81 J       | 260 J      |
| Anthracene                | 1000000            |                        | 27 J      | 480       | 270       | 91 U      | 130 J      | 130 J      | 410        |
| Benzo(a)anthracene        | *                  |                        | 47 J      | 680       | 440       | 91 U      | 290 J      | 310 J      | 380        |
| Benzo(a)pyrene            | *                  |                        | 140       | 2000      | 1300      | 25 J      | 290 J      | 370 U      | 440        |
| Benzo(b)fluoranthene      | *                  |                        | 110       | 2300      | 1400      | 23 J      | 600        | 370 U      | 890        |
| Benzo(b+k)fluoranthenes   |                    |                        | NA        | NA        | NA        | NA        | NA         | NA         | NA         |
| Benzo(g,h,i)perylene      | 1000000            |                        | 97 U      | 930       | 410       | 91 U      | 160 J      | 270 J      | 380        |
| Benzo(k)fluoranthene      | *                  |                        | 86 J      | 1200      | 640       | 91 U      | 290 J      | 370 U      | 370        |
| Chrysene                  | *                  |                        | 70 J      | 920       | 650       | 91 U      | 370        | 360 J      | 480        |
| Dibenzo(a,h)anthracene    | *                  |                        | 97 U      | 330       | 250       | 91 U      | 370 U      | 370 U      | 36 J       |
| Fluoranthene              | 1000000            |                        | 97 U      | 850       | 640       | 19 J      | 310 J      | 220 J      | 480        |
| Fluorene                  | 1000000            |                        | 97 U      | 89 U      | 95 U      | 91 U      | 74 J       | 53 J       | 54 J       |
| Indeno(1,2,3-cd)pyrene    | *                  |                        | 23 J      | 1100      | 510       | 91 U      | 140 J      | 220 J      | 280 J      |
| Naphthalene               | 1000000            |                        | 97 U      | 39 J      | 95 U      | 91 U      | 44 J       | 48 J       | 110 J      |
| Phenanthrene              | 1000000            |                        | 25 J      | 350       | 170       | 91 U      | 270 J      | 270 J      | 490        |
| Pyrene                    | 1000000            |                        | 62 J      | 850       | 650       | 91 U      | 1100       | 1100       | 750        |
|                           |                    |                        |           |           |           |           |            |            |            |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC<br>Part 375<br>Industrial (μg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | A9-NW<br>12/21/2000<br><br>Zone III | A9-SW<br>12/21/2000<br><br>Zone III | A9-WW<br>12/21/2000<br><br>Zone III | CB-13<br>7/30/1999<br>0-1<br>Zone II | CB-21<br>10/1/1999<br>8-10<br>Zone II | CEH-1<br>12/13/2000<br>0-0.16<br>Zone II | CEH-2<br>12/13/2000<br>0-0.16<br>Zone II |
|-------------------------------------|------------------------------------------|----------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|---------------------------------------|------------------------------------------|------------------------------------------|
| Acenaphthene                        | 1000000                                  |                                                                            | 360 U                               | 370 U                               | 370 U                               | 340 U                                | 350 U                                 | 360 U                                    | 120 J                                    |
| Acenaphthylene                      | 1000000                                  |                                                                            | 63 J                                | 99 J                                | 120 J                               | 340 U                                | 350 U                                 | 360 U                                    | 46 J                                     |
| Anthracene                          | 1000000                                  |                                                                            | 87 J                                | 290 J                               | 380                                 | 340 U                                | 350 U                                 | 160 J                                    | 1200                                     |
| Benzo(a)anthracene                  | *                                        |                                                                            | 170 J                               | 490                                 | 470                                 | 65 J                                 | 350 U                                 | 600                                      | 760                                      |
| Benzo(a)pyrene                      | *                                        |                                                                            | 210 J                               | 360 J                               | 380                                 | 71 J                                 | 350 U                                 | 490                                      | 490                                      |
| Benzo(b)fluoranthene                | *                                        |                                                                            | 390                                 | 780                                 | 790                                 | 180 J                                | 350 U                                 | 660                                      | 770                                      |
| Benzo(b+k)fluoranthenes             |                                          |                                                                            | NA                                  | NA                                  | NA                                  | NA                                   | NA                                    | NA                                       | NA                                       |
| Benzo(g,h,i)perylene                | 1000000                                  |                                                                            | 100 J                               | 160 J                               | 160 J                               | 65 J                                 | 350 U                                 | 400                                      | 290 J                                    |
| Benzo(k)fluoranthene                | *                                        |                                                                            | 200 J                               | 410                                 | 460                                 | 86 J                                 | 350 U                                 | 560                                      | 430                                      |
| Chrysene                            | *                                        |                                                                            | 200 J                               | 610                                 | 520                                 | 140 J                                | 350 U                                 | 820                                      | 1000                                     |
| Dibenzo(a,h)anthracene              | *                                        |                                                                            | 360 U                               | 370 U                               | 370 U                               | 340 U                                | 350 U                                 | 45 J                                     | 350 U                                    |
| Fluoranthene                        | 1000000                                  |                                                                            | 260 J                               | 510                                 | 740                                 | 120 J                                | 350 U                                 | 1100                                     | 2400                                     |
| Fluorene                            | 1000000                                  |                                                                            | 360 U                               | 430                                 | 440                                 | 340 U                                | 350 U                                 | 41 J                                     | 320 J                                    |
| Indeno(1,2,3-cd)pyrene              | *                                        |                                                                            | 74 J                                | 210 J                               | 170 J                               | 54 J                                 | 350 U                                 | 360                                      | 280 J                                    |
| Naphthalene                         | 1000000                                  |                                                                            | 360 U                               | 370                                 | 230 J                               | 340 U                                | 350 U                                 | 360 U                                    | 49 J                                     |
| Phenanthrene                        | 1000000                                  |                                                                            | 110 J                               | 900                                 | 1200                                | 68 J                                 | 350 U                                 | 480                                      | 1600                                     |
| Pyrene                              | 1000000                                  |                                                                            | 320 J                               | 2600                                | 1800                                | 110 J                                | 350 U                                 | 1500                                     | 1600                                     |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | CEH-3      | CEH-4      | CEH-5      | CEH-6      | CEH-7      | CEH-8     | CEH-9     |
|---------------------------|--------------------|------------------------|------------|------------|------------|------------|------------|-----------|-----------|
| Parameter                 | Part 375           | Sample Date:           | 12/13/2000 | 12/13/2000 | 12/21/2000 | 12/21/2000 | 12/21/2000 | 1/16/2001 | 1/16/2001 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 0-0.16     | 0-0.16     | 0-0.16     | 0-0.16     | 0-0.16     | 0-0.16    | 0-0.16    |
|                           |                    | Map Zone:              | Zone II    | Zone II    | Zone II    | Zone II    | Zone III   | Zone III  | Zone III  |
| Acenaphthene              | 1000000            |                        | 360 U      | 170 J      | 250 J      | 36 J       | 370 U      | 380 U     | 390 U     |
| Acenaphthylene            | 1000000            |                        | 69 J       | 84 J       | 200 J      | 180 J      | 79 J       | 380 U     | 390 U     |
| Anthracene                | 1000000            |                        | 170 J      | 300 J      | 2500       | 260 J      | 120 J      | 54 J      | 53 J      |
| Benzo(a)anthracene        | *                  |                        | 500        | 500        | 3300       | 640        | 110 J      | 160 J     | 120 J     |
| Benzo(a)pyrene            | *                  |                        | 520        | 530        | 2700       | 840        | 120 J      | 120 J     | 110 J     |
| Benzo(b)fluoranthene      | *                  |                        | 560        | 710        | 4600 D     | 1600       | 260 J      | 220 J     | 180 J     |
| Benzo(b+k)fluoranthenes   |                    |                        | NA         | NA         | NA         | NA         | NA         | NA        | NA        |
| Benzo(g,h,i)perylene      | 1000000            |                        | 350 J      | 330 J      | 690        | 480        | 88 J       | 46 J      | 49 J      |
| Benzo(k)fluoranthene      | *                  |                        | 530        | 420        | 2500       | 620        | 120 J      | 130 J     | 130 J     |
| Chrysene                  | *                  |                        | 650        | 620        | 4700 D     | 910        | 140 J      | 240 J     | 180 J     |
| Dibenzo(a,h)anthracene    | *                  |                        | 36 J       | 370 U      | 130 J      | 76 J       | 370 U      | 380 U     | 390 U     |
| Fluoranthene              | 1000000            |                        | 790        | 1100       | 10000 D    | 670        | 180 J      | 350 J     | 300 J     |
| Fluorene                  | 1000000            |                        | 37 J       | 130 J      | 670        | 53 J       | 370 U      | 380 U     | 390 U     |
| Indeno(1,2,3-cd)pyrene    | *                  |                        | 340 J      | 370 J      | 780        | 500        | 66 J       | 38 J      | 44 J      |
| Naphthalene               | 1000000            |                        | 63 J       | 240 J      | 97 J       | 45 J       | 370 U      | 380 U     | 79 J      |
| Phenanthrene              | 1000000            |                        | 470        | 1100       | 6800 D     | 470        | 110 J      | 200 J     | 190 J     |
| Pyrene                    | 1000000            |                        | 660        | 830        | 6300 D     | 1500       | 180 J      | 340 J     | 300 J     |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | DW NWALL<br>5/4/1998<br>-<br>Zone II | DW EWALL<br>5/4/1998<br>-<br>Zone II | DW WWALL<br>5/4/1998<br>-<br>Zone II | DW BOTTOM<br>5/4/1998<br>-<br>Zone II | EH-12<br>7/29/1997<br>0-2<br>Zone II | EH-12<br>7/29/1997<br>2-4<br>Zone II | EH-14<br>7/29/1997<br>0-2<br>Zone II |
|----------------------------------------|------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Acenaphthene                           | 1000000                                  |                                                                            | 350 U                                | 350 U                                | 340 U                                | 340 U                                 | 28 J                                 | 14 J                                 | 34 J                                 |
| Acenaphthylene                         | 1000000                                  |                                                                            | 350 U                                | 350 U                                | 340 U                                | 340 U                                 | 130 J                                | 14 J                                 | 59 J                                 |
| Anthracene                             | 1000000                                  |                                                                            | 350 U                                | 350 U                                | 340 U                                | 340 U                                 | 240 J                                | 73 J                                 | 170 J                                |
| Benzo(a)anthracene                     | *                                        |                                                                            | 350 U                                | 350 U                                | 340 U                                | 340 U                                 | 850                                  | 380                                  | 690                                  |
| Benzo(a)pyrene                         | *                                        |                                                                            | 350 U                                | 350 U                                | 340 U                                | 340 U                                 | 790                                  | 300 J                                | 740                                  |
| Benzo(b)fluoranthene                   | *                                        |                                                                            | 350 U                                | 350 U                                | 340 U                                | 340 U                                 | 940                                  | 400                                  | 1200                                 |
| Benzo(b+k)fluoranthenes                |                                          |                                                                            | 350 U                                | 350 U                                | 340 U                                | 340 U                                 | NA                                   | NA                                   | NA                                   |
| Benzo(g,h,i)perylene                   | 1000000                                  |                                                                            | 350 U                                | 350 U                                | 340 U                                | 340 U                                 | 300 J                                | 300 J                                | 250 J                                |
| Benzo(k)fluoranthene                   | *                                        |                                                                            | 350 U                                | 350 U                                | 340 U                                | 340 U                                 | 690                                  | 300 J                                | 910                                  |
| Chrysene                               | *                                        |                                                                            | 350 U                                | 350 U                                | 340 U                                | 340 U                                 | 1000                                 | 220 J                                | 840                                  |
| Dibenzo(a,h)anthracene                 | *                                        |                                                                            | 350 U                                | 350 U                                | 340 U                                | 340 U                                 | 370 U                                | 160 J                                | 360 U                                |
| Fluoranthene                           | 1000000                                  |                                                                            | 350 U                                | 350 U                                | 340 U                                | 340 U                                 | 1000                                 | 470                                  | 1400                                 |
| Fluorene                               | 1000000                                  |                                                                            | 350 U                                | 350 U                                | 340 U                                | 340 U                                 | 20 J                                 | 360 U                                | 28 J                                 |
| Indeno(1,2,3-cd)pyrene                 | *                                        |                                                                            | 350 U                                | 350 U                                | 340 U                                | 340 U                                 | 360 J                                | 260 J                                | 270 J                                |
| Naphthalene                            | 1000000                                  |                                                                            | 350 U                                | 350 U                                | 340 U                                | 340 U                                 | 110 J                                | 56 J                                 | 160 J                                |
| Phenanthrene                           | 1000000                                  |                                                                            | 350 U                                | 350 U                                | 340 U                                | 340 U                                 | 500                                  | 310 J                                | 560                                  |
| Pyrene                                 | 1000000                                  |                                                                            | 350 U                                | 350 U                                | 340 U                                | 340 U                                 | 1100                                 | 430                                  | 980                                  |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | FC-4      | FC-5      | FC-8      | FC-11     | FC-18    | FC-24    | FC-27    | FC-31    |
|---------------------------|--------------------|------------------------|-----------|-----------|-----------|-----------|----------|----------|----------|----------|
| Parameter                 | Part 375           | Sample Date:           | 9/14/1994 | 9/14/1994 | 9/14/1994 | 9/14/1994 | 4/6/1994 | 4/5/1994 | 4/4/1994 | 4/5/1994 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 0-2       | 0-2       | 0-2       | 0-2       | 1-3      | 1-3      | 1-3      | 1-3      |
|                           |                    | Map Zone:              | Zone III  | Zone II   | Zone II   | Zone II   | Zone I   | Zone I   | Zone I   | Zone I   |
| Acenaphthene              | 1000000            |                        | 14 J      | 79 J      | 330 U     | 14 J      | 330 U    | 330 U    | 330 U    | 330 U    |
| Acenaphthylene            | 1000000            |                        | 85 J      | 130 J     | 55 J      | 170 J     | 330 U    | 330 U    | 330 U    | 330 U    |
| Anthracene                | 1000000            |                        | 84 J      | 210 J     | 86 J      | 150 J     | 330 U    | 46 J     | 330 U    | 15 J     |
| Benzo(a)anthracene        | *                  |                        | 310 J     | 520       | 130 J     | 380       | 9 J      | 100 J    | 62 J     | 64 J     |
| Benzo(a)pyrene            | *                  |                        | 330 J     | 560       | 100 J     | 490       | 8 J      | 93 J     | 72 J     | 56 J     |
| Benzo(b)fluoranthene      | *                  |                        | 510       | 1500      | 540       | 1600      | 10 J     | 94 J     | 130 J    | 70 J     |
| Benzo(b+k)fluoranthenes   |                    |                        | NA        | NA        | NA        | NA        | NA       | NA       | NA       | NA       |
| Benzo(g,h,i)perylene      | 1000000            |                        | 81 J      | 200 J     | 330 U     | 230 J     | 330 U    | 92 J     | 330 U    | 28 J     |
| Benzo(k)fluoranthene      | *                  |                        | 480       | 980       | 200 J     | 720       | 330 U    | 19 J     | 75 J     | 12 J     |
| Chrysene                  | *                  |                        | 440       | 690       | 330 J     | 550       | 11 J     | 120 J    | 79 J     | 110 J    |
| Dibenzo(a,h)anthracene    | *                  |                        | 25 J      | 33 J      | 330 U     | 66 J      | 330 U    | 17 J     | 330 U    | 11 J     |
| Fluoranthene              | 1000000            |                        | 530       | 1000      | 250 J     | 460       | 14 J     | 280 J    | 92 J     | 150 J    |
| Fluorene                  | 1000000            |                        | 18 J      | 76 J      | 11 J      | 20 J      | 330 U    | 22 J     | 330 U    | 9 J      |
| Indeno(1,2,3-cd)pyrene    | *                  |                        | 81 J      | 180 J     | 330 U     | 200 J     | 330 U    | 87 J     | 330 U    | 30 J     |
| Naphthalene               | 1000000            |                        | 10 J      | 26 J      | 49 J      | 26 J      | 330 U    | 19 J     | 330 U    | 14 J     |
| Phenanthrene              | 1000000            |                        | 300 J     | 620       | 200 J     | 180 J     | 10 J     | 240 J    | 44 J     | 110 J    |
| Pyrene                    | 1000000            |                        | 560       | 980       | 240 J     | 500       | 17 J     | 220 J    | 90 J     | 140 J    |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- NA Data not available
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)
- DUP Duplicate
- RE Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | FC-33    | FC-36    | FC-40    | FT-1     | FT-2     | FT-3     | FT-4     | FT-5 RE  |
|---------------------------|--------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|
| Parameter                 | Part 375           | Sample Date:           | 4/4/1994 | 4/6/1994 | 4/5/1994 | 4/7/1997 | 4/7/1997 | 4/7/1997 | 4/7/1997 | 4/7/1997 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 1-3      | 7-9      | 1-3      | 0-2      | 0-2      | 0-2      | 0-2      | 0-2      |
|                           |                    | Map Zone:              | Zone I   | Zone I   | Zone I   | Zone II  | Zone II  | Zone II  | Zone II  | Zone I   |
| A                         | 100000             |                        | (2. I    | 220.11   | 220 11   | 250 H    | 470 I    | 270 H    | 250 H    | 200 II   |
| Acenaphthene              | 1000000            |                        | 62 J     | 330 U    | 330 U    | 350 U    | 470 J    | 370 U    | 350 U    | 380 U    |
| Acenaphthylene            | 1000000            |                        | 330 U    | 330 U    | 330 U    | 350 U    | 1400 U   | 370 U    | 350 U    | 320 J    |
| Anthracene                | 1000000            |                        | 130 J    | 330 U    | 8 J      | 350 U    | 770 J    | 370 U    | 350 U    | 240 J    |
| Benzo(a)anthracene        | *                  |                        | 280 J    | 330 U    | 56 J     | 750      | 1700     | 740      | 200 J    | 1200     |
| Benzo(a)pyrene            | *                  |                        | 230 J    | 330 UJ   | 58 J     | 690      | 1200 J   | 670      | 180 J    | 1300     |
| Benzo(b)fluoranthene      | *                  |                        | 240 J    | 330 UJ   | 69 J     | 870      | 1800     | 1300     | 490      | 2300     |
| Benzo(b+k)fluoranthenes   |                    |                        | NA       |
| Benzo(g,h,i)perylene      | 1000000            |                        | 76 J     | 330 UJ   | 23 J     | 180 J    | 1400 U   | 190 J    | 180 J    | 240 J    |
| Benzo(k)fluoranthene      | *                  |                        | 200 J    | 330 UJ   | 13 J     | 630      | 43 J     | 850      | 350 U    | 2300     |
| Chrysene                  | *                  |                        | 340 J    | 330 U    | 64 J     | 900      | 1600     | 1200     | 140 J    | 1800     |
| Dibenzo(a,h)anthracene    | *                  |                        | 19 J     | 330 UJ   | 330 U    | 34 J     | 1400 U   | 38 J     | 41 J     | 69 J     |
| Fluoranthene              | 1000000            |                        | 820      | 6 J      | 96 J     | 1300     | 3200     | 980      | 100 J    | 1600     |
| Fluorene                  | 1000000            |                        | 70 J     | 330 U    | 330 U    | 350 U    | 1400 U   | 370 U    | 350 U    | 380 U    |
| Indeno(1,2,3-cd)pyrene    | *                  |                        | 78 J     | 330 UJ   | 27 J     | 87 J     | 130 J    | 110 J    | 85 J     | 200 J    |
| Naphthalene               | 1000000            |                        | 65 J     | 330 U    | 330 U    | 350 U    | 1400 U   | 370 U    | 350 U    | 380 U    |
| Phenanthrene              | 1000000            |                        | 690      | 11 J     | 36 J     | 420      | 5900     | 160 J    | 350 U    | 550      |
| Pyrene                    | 1000000            |                        | 590      | 6 J      | 92 J     | 930      | 3100     | 860      | 240 J    | 1200     |
| ž                         |                    |                        |          |          |          |          |          |          |          |          |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | FT-6<br>4/7/1997<br>0-2<br>Zone I | HB-1 RE<br>1/3/2000<br>0-1<br>Zone III | HB-2<br>10/25/1999<br>0-1<br>Zone III | HB-3<br>10/25/1999<br>0-1<br>Zone III | HB-4*<br>10/26/1999<br>1-2<br>Zone III | HB-4+20<br>1/3/2000<br>0-1<br>Zone III | HB-4-20<br>1/3/2000<br>0-1<br>Zone III |
|-------------------------------------|------------------------------------------|----------------------------------------------------------------------------|-----------------------------------|----------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| Acenaphthene                        | 1000000                                  |                                                                            | 350 U                             | 450 U                                  | 390 U                                 | 400 U                                 | 350 U                                  | 450 U                                  | 370 U                                  |
| Acenaphthylene                      | 1000000                                  |                                                                            | 350 U                             | 120 J                                  | 54 J                                  | 48 J                                  | 350 U                                  | 450 U                                  | 370 U                                  |
| Anthracene                          | 1000000                                  |                                                                            | 350 U                             | 190 J                                  | 78 J                                  | 76 J                                  | 350 U                                  | 450 U                                  | 370 U                                  |
| Benzo(a)anthracene                  | *                                        |                                                                            | 370                               | 360 J                                  | 210 J                                 | 170 J                                 | 350 U                                  | 450 U                                  | 370 U                                  |
| Benzo(a)pyrene                      | *                                        |                                                                            | 260 J                             | 390 J                                  | 210 J                                 | 150 J                                 | 350 U                                  | 450 U                                  | 370 U                                  |
| Benzo(b)fluoranthene                | *                                        |                                                                            | 1200                              | 720                                    | 250 J                                 | 190 J                                 | 350 U                                  | 450 U                                  | 42 J                                   |
| Benzo(b+k)fluoranthenes             |                                          |                                                                            | NA                                | NA                                     | NA                                    | NA                                    | NA                                     | NA                                     | NA                                     |
| Benzo(g,h,i)perylene                | 1000000                                  |                                                                            | 210 J                             | 240 J                                  | 130 J                                 | 100 J                                 | 350 U                                  | 450 U                                  | 370 U                                  |
| Benzo(k)fluoranthene                | *                                        |                                                                            | 360                               | 540                                    | 310 J                                 | 190 J                                 | 350 U                                  | 450 U                                  | 370 U                                  |
| Chrysene                            | *                                        |                                                                            | 660                               | 600                                    | 280 J                                 | 210 J                                 | 350 U                                  | 450 U                                  | 43 J                                   |
| Dibenzo(a,h)anthracene              | *                                        |                                                                            | 46 J                              | 90 J                                   | 390 U                                 | 400 U                                 | 350 U                                  | 450 U                                  | 370 U                                  |
| Fluoranthene                        | 1000000                                  |                                                                            | 500                               | 710                                    | 280 J                                 | 150 J                                 | 350 U                                  | 450 U                                  | 60 J                                   |
| Fluorene                            | 1000000                                  |                                                                            | 350 U                             | 450 U                                  | 390 U                                 | 400 U                                 | 350 U                                  | 450 U                                  | 370 U                                  |
| Indeno(1,2,3-cd)pyrene              | *                                        |                                                                            | 150 J                             | 240 J                                  | 130 J                                 | 91 J                                  | 350 U                                  | 450 U                                  | 370 U                                  |
| Naphthalene                         | 1000000                                  |                                                                            | 350 U                             | 99 J                                   | 42 J                                  | 48 J                                  | 350 U                                  | 450 U                                  | 370 U                                  |
| Phenanthrene                        | 1000000                                  |                                                                            | 350 U                             | 410 J                                  | 230 J                                 | 150 J                                 | 350 U                                  | 450 U                                  | 42 J                                   |
| Pyrene                              | 1000000                                  |                                                                            | 420                               | 1000                                   | 660                                   | 480                                   | 350 U                                  | 450 U                                  | 59 J                                   |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | HB-9<br>10/25/1999<br>0-1<br>Zone II | HB-10<br>10/25/1999<br>0-1<br>Zone II | HB-11<br>10/25/1999<br>0-1<br>Zone II | HB-12<br>10/25/1999<br>0-1<br>Zone II | HB-13<br>10/27/1999<br>0-1<br>Zone II | HB-14<br>10/27/1999<br>0-1<br>Zone II | HB-15<br>10/27/1999<br>0-1<br>Zone II |
|----------------------------------------|------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Acenaphthene                           | 1000000                                  |                                                                            | 360 U                                | 370 U                                 | 400 U                                 | 360 U                                 | 190 J                                 | 380 U                                 | 390 U                                 |
| Acenaphthylene                         | 1000000                                  |                                                                            | 130 J                                | 44 J                                  | 130 J                                 | 100 J                                 | 380 U                                 | 380 U                                 | 390 U                                 |
| Anthracene                             | 1000000                                  |                                                                            | 120 J                                | 58 J                                  | 190 J                                 | 120 J                                 | 350 J                                 | 78 J                                  | 70 J                                  |
| Benzo(a)anthracene                     | *                                        |                                                                            | 450                                  | 90 J                                  | 450                                   | 440                                   | 1000                                  | 430                                   | 190 J                                 |
| Benzo(a)pyrene                         | *                                        |                                                                            | 360 J                                | 130 J                                 | 470                                   | 470                                   | 650                                   | 440                                   | 210 J                                 |
| Benzo(b)fluoranthene                   | *                                        |                                                                            | 600                                  | 170 J                                 | 720                                   | 890                                   | 1000                                  | 690                                   | 390                                   |
| Benzo(b+k)fluoranthenes                |                                          |                                                                            | NA                                   | NA                                    | NA                                    | NA                                    | NA                                    | NA                                    | NA                                    |
| Benzo(g,h,i)perylene                   | 1000000                                  |                                                                            | 230 J                                | 120 J                                 | 320 J                                 | 330 J                                 | 290 J                                 | 230 J                                 | 140 J                                 |
| Benzo(k)fluoranthene                   | *                                        |                                                                            | 470                                  | 130 J                                 | 590                                   | 580                                   | 850                                   | 640                                   | 270 J                                 |
| Chrysene                               | *                                        |                                                                            | 510                                  | 130 J                                 | 560                                   | 680                                   | 1500                                  | 640                                   | 250 J                                 |
| Dibenzo(a,h)anthracene                 | *                                        |                                                                            | 360 U                                | 370 U                                 | 400 U                                 | 360 U                                 | 380 U                                 | 380 U                                 | 390 U                                 |
| Fluoranthene                           | 1000000                                  |                                                                            | 460                                  | 120 J                                 | 510                                   | 750                                   | 1300                                  | 710                                   | 220 J                                 |
| Fluorene                               | 1000000                                  |                                                                            | 360 U                                | 370 U                                 | 400 U                                 | 360 U                                 | 190 J                                 | 380 U                                 | 390 U                                 |
| Indeno(1,2,3-cd)pyrene                 | *                                        |                                                                            | 230 J                                | 370 U                                 | 340 J                                 | 330 J                                 | 280 J                                 | 190 J                                 | 150 J                                 |
| Naphthalene                            | 1000000                                  |                                                                            | 360 U                                | 370 U                                 | 160 J                                 | 360 U                                 | 580                                   | 380 U                                 | 140 J                                 |
| Phenanthrene                           | 1000000                                  |                                                                            | 130 J                                | 72 J                                  | 300 J                                 | 300 J                                 | 1300                                  | 260 J                                 | 240 J                                 |
| Pyrene                                 | 1000000                                  |                                                                            | 1000                                 | 220 J                                 | 1100                                  | 1400                                  | 2700 D                                | 1900                                  | 640                                   |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in µg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | HB-16<br>10/27/1999<br>0-1<br>Zone II | HB-17<br>10/27/1999<br>0-1<br>Zone II | HB-18*<br>10/26/1999<br>1-2<br>Zone II | HB-18-20 RE<br>1/3/2000<br>0-1<br>Zone II | HB-19*<br>10/26/1999<br>1-2<br>Zone II | HB-20*<br>10/26/1999<br>1-2<br>Zone II | HB-21*<br>10/26/1999<br>1-2<br>Zone II |
|-------------------------------------|------------------------------------------|----------------------------------------------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|-------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| Acenaphthene                        | 1000000                                  |                                                                            | 380 U                                 | 420 U                                 | 360 U                                  | 420 U                                     | 84 J                                   | 400 U                                  | 390 U                                  |
| Acenaphthylene                      | 1000000                                  |                                                                            | 380 U                                 | 420 U                                 | 360 U                                  | 160 J                                     | 230 J                                  | 62 J                                   | 52 J                                   |
| Anthracene                          | 1000000                                  |                                                                            | 380 U                                 | 72 J                                  | 360 U                                  | 150 J                                     | 360                                    | 66 J                                   | 72 J                                   |
| Benzo(a)anthracene                  | *                                        |                                                                            | 78 J                                  | 420 U                                 | 360 U                                  | 160 J                                     | 790                                    | 170 J                                  | 230 J                                  |
| Benzo(a)pyrene                      | *                                        |                                                                            | 65 J                                  | 580                                   | 360 U                                  | 290 J                                     | 820                                    | 190 J                                  | 260 J                                  |
| Benzo(b)fluoranthene                | *                                        |                                                                            | 78 J                                  | 270 J                                 | 360 U                                  | 520                                       | 1300                                   | 310 J                                  | 310 J                                  |
| Benzo(b+k)fluoranthenes             |                                          |                                                                            | NA                                    | NA                                    | NA                                     | NA                                        | NA                                     | NA                                     | NA                                     |
| Benzo(g,h,i)perylene                | 1000000                                  |                                                                            | 380 U                                 | 420 U                                 | 360 U                                  | 240 J                                     | 700                                    | 160 J                                  | 160 J                                  |
| Benzo(k)fluoranthene                | *                                        |                                                                            | 110 J                                 | 170 J                                 | 360 U                                  | 410 J                                     | 1200                                   | 260 J                                  | 370 J                                  |
| Chrysene                            | *                                        |                                                                            | 120 J                                 | 420 U                                 | 360 U                                  | 310 J                                     | 1100                                   | 220 J                                  | 290 J                                  |
| Dibenzo(a,h)anthracene              | *                                        |                                                                            | 380 U                                 | 420 U                                 | 360 U                                  | 92 J                                      | 350 U                                  | 400 U                                  | 390 U                                  |
| Fluoranthene                        | 1000000                                  |                                                                            | 120 J                                 | 420 U                                 | 360 U                                  | 200 J                                     | 1500                                   | 210 J                                  | 290 J                                  |
| Fluorene                            | 1000000                                  |                                                                            | 380 U                                 | 420 U                                 | 360 U                                  | 420 U                                     | 92 J                                   | 400 U                                  | 390 U                                  |
| Indeno(1,2,3-cd)pyrene              | *                                        |                                                                            | 380 U                                 | 420 U                                 | 360 U                                  | 240 J                                     | 660                                    | 150 J                                  | 160 J                                  |
| Naphthalene                         | 1000000                                  |                                                                            | 40 J                                  | 100 J                                 | 360 U                                  | 50 J                                      | 91 J                                   | 400 U                                  | 390 U                                  |
| Phenanthrene                        | 1000000                                  |                                                                            | 84 J                                  | 170 J                                 | 360 U                                  | 110 J                                     | 900                                    | 110 J                                  | 90 J                                   |
| Pyrene                              | 1000000                                  |                                                                            | 330 J                                 | 690                                   | 360 U                                  | 350 J                                     | 2400                                   | 380 J                                  | 470                                    |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation: H  | IB-21+20 RE | HB-22      | HB-23      | HB-25      | HB-26      | HB-27      | HB-28      |
|---------------------------|--------------------|------------------------|-------------|------------|------------|------------|------------|------------|------------|
| Parameter                 | Part 375           | Sample Date:           | 1/3/2000    | 10/25/1999 | 10/25/1999 | 10/26/1999 | 10/26/1999 | 10/26/1999 | 10/27/1999 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 0-1         | 0-1        | 0-1        | 0-1        | 0-1        | 0-1        | 0-1        |
|                           |                    | Map Zone:              | Zone II     | Zone II    | Zone II    | Zone II    | Zone II    | Zone II    | Zone III   |
| Acenaphthene              | 1000000            |                        | 400 U       | 370 U      | 380 U      | 380 U      | 390 U      | 400 U      | 330 U      |
| Acenaphthylene            | 1000000            |                        | 140 J       | 370 U      | 46 J       | 380 U      | 390 U      | 400 U      | 330 U      |
| Anthracene                | 1000000            |                        | 190 J       | 370 U      | 57 J       | 380 U      | 390 U      | 62 J       | 74 J       |
| Benzo(a)anthracene        | *                  |                        | 430         | 61 J       | 380 U      | 110 J      | 47 J       | 160 J      | 420        |
| Benzo(a)pyrene            | *                  |                        | 610         | 55 J       | 220 J      | 51 J       | 390 U      | 100 J      | 470        |
| Benzo(b)fluoranthene      | *                  |                        | 930         | 76 J       | 190 J      | 120 J      | 56 J       | 300 J      | 410        |
| Benzo(b+k)fluoranthenes   |                    |                        | NA          | NA         | NA         | NA         | NA         | NA         | NA         |
| Benzo(g,h,i)perylene      | 1000000            |                        | 350 J       | 47 J       | 130 J      | 380 U      | 390 U      | 53 J       | 250 J      |
| Benzo(k)fluoranthene      | *                  |                        | 690         | 70 J       | 140 J      | 110 J      | 40 J       | 190 J      | 490        |
| Chrysene                  | *                  |                        | 650         | 90 J       | 380 U      | 180 J      | 71 J       | 310 J      | 560        |
| Dibenzo(a,h)anthracene    | *                  |                        | 140 J       | 370 U      | 380 U      | 380 U      | 390 U      | 400 U      | 330 U      |
| Fluoranthene              | 1000000            |                        | 530         | 58 J       | 40 J       | 210 J      | 79 J       | 330 J      | 290 J      |
| Fluorene                  | 1000000            |                        | 400 U       | 370 U      | 380 U      | 380 U      | 390 U      | 400 U      | 330 U      |
| Indeno(1,2,3-cd)pyrene    | *                  |                        | 320 J       | 45 J       | 120 J      | 380 U      | 390 U      | 55 J       | 180 J      |
| Naphthalene               | 1000000            |                        | 52 J        | 370 U      | 380 U      | 380 U      | 390 U      | 400 U      | 330 U      |
| Phenanthrene              | 1000000            |                        | 210 J       | 42 J       | 88 J       | 48 J       | 390 U      | 78 J       | 280 J      |
| Pyrene                    | 1000000            |                        | 930         | 110 J      | 240 J      | 250 J      | 97 J       | 350 J      | 1600       |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | HB-29      | HB-30      | HB-31      | HB-32      | HB-33      | HB-34      | HB-35      |
|---------------------------|--------------------|------------------------|------------|------------|------------|------------|------------|------------|------------|
| Parameter                 | Part 375           | Sample Date:           | 10/25/1999 | 10/25/1999 | 10/25/1999 | 10/27/1999 | 10/25/1999 | 10/25/1999 | 10/25/1999 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 0-1        | 0-1        | 0-1        | 0-1        | 0-1        | 0-1        | 0-1        |
|                           |                    | Map Zone:              | Zone II    |
| Acenaphthene              | 1000000            |                        | 410 U      | 420 U      | 390 U      | 380 U      | 350 U      | 170 J      | 340 U      |
| Acenaphthylene            | 1000000            |                        | 150 J      | 67 J       | 75 J       | 380 U      | 350 U      | 56 J       | 340 U      |
| Anthracene                | 1000000            |                        | 200 J      | 150 J      | 110 J      | 380 U      | 350 U      | 340 J      | 88 J       |
| Benzo(a)anthracene        | *                  |                        | 780        | 500        | 320 J      | 110 J      | 350 U      | 810        | 270 J      |
| Benzo(a)pyrene            | *                  |                        | 990        | 520        | 420        | 150 J      | 350 U      | 640        | 350        |
| Benzo(b)fluoranthene      | *                  |                        | 2100       | 820        | 690        | 210 J      | 350 U      | 590        | 390        |
| Benzo(b+k)fluoranthenes   |                    |                        | NA         |
| Benzo(g,h,i)perylene      | 1000000            |                        | 340 J      | 160 J      | 170 J      | 380 U      | 350 U      | 150 J      | 250 J      |
| Benzo(k)fluoranthene      | *                  |                        | 1300       | 660        | 730        | 190 J      | 350 U      | 640        | 350        |
| Chrysene                  | *                  |                        | 1400       | 700        | 520        | 190 J      | 350 U      | 900        | 320 J      |
| Dibenzo(a,h)anthracene    | *                  |                        | 410 U      | 420 U      | 390 U      | 380 U      | 350 U      | 370 U      | 340 U      |
| Fluoranthene              | 1000000            |                        | 1100       | 710        | 520        | 130 J      | 350 U      | 1300       | 360        |
| Fluorene                  | 1000000            |                        | 410 U      | 420 U      | 390 U      | 380 U      | 350 U      | 130 J      | 340 U      |
| Indeno(1,2,3-cd)pyrene    | *                  |                        | 350 J      | 170 J      | 170 J      | 380 U      | 350 U      | 160 J      | 170 J      |
| Naphthalene               | 1000000            |                        | 410 U      | 420 U      | 390 U      | 380 U      | 350 U      | 46 J       | 340 U      |
| Phenanthrene              | 1000000            |                        | 280 J      | 320 J      | 160 J      | 69 J       | 350 U      | 2000       | 180 J      |
| Pyrene                    | 1000000            |                        | 1900       | 920        | 820        | 520        | 350 U      | 2600       | 930        |
|                           |                    |                        |            |            |            |            |            |            |            |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| -                         | NYSDEC             | Sample Designation:    | HB-36      | HBR-1     | HBR-1     | HBR-2     | HBR-2     | HBR-3     | HBR-3     |
|---------------------------|--------------------|------------------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Part 375           | Sample Date:           | 10/25/1999 | 2/26/2004 | 2/26/2004 | 2/26/2004 | 2/26/2004 | 2/26/2004 | 2/26/2004 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 0-1        | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       |
|                           |                    | Map Zone:              | Zone II    | Zone II   | Zone II   | Zone III  | Zone III  | Zone III  | Zone III  |
| Acenaphthene              | 1000000            |                        | 360 U      | 25 J      | 340 U     | 310 J     | 440 J     | 120 J     | 28 J      |
| Acenaphthylene            | 1000000            |                        | 45 J       | 180 J     | 74 J      | 87 J      | 160 J     | 350 J     | 250 J     |
| Anthracene                | 1000000            |                        | 59 J       | 310 J     | 110 J     | 550 J     | 1400      | 520       | 310 J     |
| Benzo(a)anthracene        | *                  |                        | 150 J      | 480       | 200 J     | 860 J     | 2200      | 630       | 480       |
| Benzo(a)pyrene            | *                  |                        | 250 J      | 430       | 170 J     | 710 J     | 1700      | 670       | 500       |
| Benzo(b)fluoranthene      | *                  |                        | 190 J      | 440       | 160 J     | 600 J     | 1200      | 710       | 620       |
| Benzo(b+k)fluoranthenes   |                    |                        | NA         | NA        | NA        | NA        | NA        | NA        | NA        |
| Benzo(g,h,i)perylene      | 1000000            |                        | 190 J      | 640       | 250 J     | 540 J     | 1100      | 380       | 280 J     |
| Benzo(k)fluoranthene      | *                  |                        | 260 J      | 430       | 160 J     | 550 J     | 1600      | 750       | 450       |
| Chrysene                  | *                  |                        | 190 J      | 600       | 230 J     | 850 J     | 2000      | 850       | 650       |
| Dibenzo(a,h)anthracene    | *                  |                        | 360 U      | 170 J     | 340 U     | 190 J     | 390 J     | 140 J     | 120 J     |
| Fluoranthene              | 1000000            |                        | 160 J      | 720       | 310 J     | 2000      | 4400 D    | 1600      | 900       |
| Fluorene                  | 1000000            |                        | 360 U      | 29 J      | 340 U     | 280 J     | 570 J     | 140 J     | 39 J      |
| Indeno(1,2,3-cd)pyrene    | *                  |                        | 140 J      | 490       | 200 J     | 560 J     | 1200      | 440       | 330 J     |
| Naphthalene               | 1000000            |                        | 360 U      | 51 J      | 72 J      | 1500 U    | 290 J     | 180 J     | 71 J      |
| Phenanthrene              | 1000000            |                        | 110 J      | 330 J     | 150 J     | 2100      | 5500 D    | 1000      | 440       |
| Pyrene                    | 1000000            |                        | 560        | 550       | 220 J     | 1900      | 4600      | 1000      | 590       |
|                           |                    |                        |            |           |           |           |           |           |           |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | HBR-4     | HBR-4     | HBR-5     | HBR-5     | HBR-6     | HBR-6     | HBR-7     |
|---------------------------|--------------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Part 375           | Sample Date:           | 2/26/2004 | 2/26/2004 | 2/26/2004 | 2/26/2004 | 2/26/2004 | 2/26/2004 | 2/26/2004 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       |
|                           |                    | Map Zone:              | Zone III  |
| Acenaphthene              | 1000000            |                        | 93 J      | 110 J     | 31 J      | 330 J     | 240 J     | 330 U     | 300 J     |
| Acenaphthylene            | 1000000            |                        | 640 J     | 450 J     | 150 J     | 51 J      | 400 J     | 74 J      | 370 J     |
| Anthracene                | 1000000            |                        | 1200 J    | 430 J     | 310 J     | 400       | 1100      | 110 J     | 1100 J    |
| Benzo(a)anthracene        | *                  |                        | 1200 J    | 850 J     | 2400      | 980       | 1600      | 250 J     | 1800      |
| Benzo(a)pyrene            | *                  |                        | 1100 J    | 850 J     | 2700      | 590       | 1200      | 210 J     | 1500      |
| Benzo(b)fluoranthene      | *                  |                        | 1900      | 1400 J    | 2700      | 740       | 1600      | 290 J     | 1800      |
| Benzo(b+k)fluoranthenes   |                    |                        | NA        |
| Benzo(g,h,i)perylene      | 1000000            |                        | 660 J     | 440 J     | 680       | 200 J     | 440 J     | 110 J     | 570 J     |
| Benzo(k)fluoranthene      | *                  |                        | 1300 J    | 860 J     | 2600      | 630       | 1900      | 270 J     | 1700      |
| Chrysene                  | *                  |                        | 1500 J    | 1000 J    | 2500      | 1200      | 1800      | 320 J     | 2000      |
| Dibenzo(a,h)anthracene    | *                  |                        | 200 J     | 130 J     | 310 J     | 140 J     | 180 J     | 41 J      | 210 J     |
| Fluoranthene              | 1000000            |                        | 4000      | 2600      | 2800 D    | 3000 D    | 5200      | 560       | 5200      |
| Fluorene                  | 1000000            |                        | 130 J     | 120 J     | 35 J      | 350 J     | 390 J     | 330 U     | 340 J     |
| Indeno(1,2,3-cd)pyrene    | *                  |                        | 640 J     | 450 J     | 930       | 240 J     | 550 J     | 120 J     | 710 J     |
| Naphthalene               | 1000000            |                        | 1200 J    | 820 J     | 130 J     | 270 J     | 470 J     | 59 J      | 660 J     |
| Phenanthrene              | 1000000            |                        | 1900      | 1500 J    | 510       | 4000 D    | 3800      | 340       | 4000      |
| Pyrene                    | 1000000            |                        | 1500 J    | 1000 J    | 3100 D    | 2300      | 2600      | 390       | 3100      |
| Pyrene                    | 1000000            |                        | 1500 J    | 1000 J    | 3100 D    | 2300      | 2600      | 390       | 310       |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                              | NYSDEC             | Sample Designation:    | HBR-7         | HBR-8          | HBR-8         | HC-1           | HC-2          | HC-3      | HC-4          |
|------------------------------|--------------------|------------------------|---------------|----------------|---------------|----------------|---------------|-----------|---------------|
| Parameter                    | Part 375           | Sample Date:           | 2/26/2004     | 2/26/2004      | 2/26/2004     | 4/12/2000      | 4/12/2000     | 4/12/2000 | 4/12/2000     |
| (Concentrations in µg/kg)    | Industrial (µg/kg) | Sample Depth (ft bls): | 1-2           | 0-1            | 1-2           | 0-1            | 0-1           | 0-1       | 0-1           |
|                              |                    | Map Zone:              | Zone III      | Zone III       | Zone III      | Zone II        | Zone II       | Zone II   | Zone II       |
| Acanaphthana                 | 1000000            |                        | 340 U         | 360 U          | 140 J         | 400 U          | 360 U         | 370 U     | 360 U         |
| Acenaphthene                 | 1000000            |                        | 60 J          | 130 J          | 98 J          | 400 U<br>400 U | 360 U         | 42 J      | 49 J          |
| Acenaphthylene<br>Anthracene |                    |                        | 91 J          |                | 98 J<br>370 J |                |               |           | 49 J<br>83 J  |
|                              | 1000000            |                        | 91 J<br>140 J | 220 J<br>270 J | 980           | 400 U          | 85 J<br>270 J | 65 J      | 83 J<br>290 J |
| Benzo(a)anthracene           | *                  |                        |               |                |               | 43 J           |               | 170 J     |               |
| Benzo(a)pyrene               |                    |                        | 110 J         | 200 J          | 760           | 400 U          | 260 J         | 180 J     | 260 J         |
| Benzo(b)fluoranthene         | *                  |                        | 310 J         | 520            | 1200          | 43 J           | 350 J         | 260 J     | 720           |
| Benzo(b+k)fluoranthenes      |                    |                        | NA            | NA             | NA            | NA             | NA            | NA        | NA            |
| Benzo(g,h,i)perylene         | 1000000            |                        | 53 J          | 66 J           | 160 J         | 400 U          | 130 J         | 120 J     | 150 J         |
| Benzo(k)fluoranthene         | *                  |                        | 190 J         | 420            | 1100          | 68 J           | 230 J         | 280 J     | 350 J         |
| Chrysene                     | *                  |                        | 270 J         | 450            | 1400          | 61 J           | 280 J         | 220 J     | 470           |
| Dibenzo(a,h)anthracene       | *                  |                        | 26 J          | 33 J           | 73 J          | 400 U          | 39 J          | 38 J      | 43 J          |
| Fluoranthene                 | 1000000            |                        | 500           | 1000           | 3200 D        | 93 J           | 440           | 310 J     | 460           |
| Fluorene                     | 1000000            |                        | 340 U         | 31 J           | 110 J         | 400 U          | 40 J          | 370 U     | 360 U         |
| Indeno(1,2,3-cd)pyrene       | *                  |                        | 64 J          | 87 J           | 210 J         | 400 U          | 110 J         | 120 J     | 140 J         |
| Naphthalene                  | 1000000            |                        | 160 J         | 210 J          | 270 J         | 400 U          | 360 U         | 370 U     | 360 U         |
| Phenanthrene                 | 1000000            |                        | 420           | 540            | 2500 D        | 400 U          | 300 J         | 140 J     | 220 J         |
| Pyrene                       | 1000000            |                        | 220 J         | 280 J          | 2200          | 80 J           | 470           | 310 J     | 450           |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | HC-5<br>4/12/2000<br>0-1<br>Zone II | HC-6<br>4/12/2000<br>0-1<br>Zone II | HC-7<br>4/12/2000<br>0-1<br>Zone II | HC-8<br>4/12/2000<br>0-1<br>Zone II | HC-9<br>4/12/2000<br>0-1<br>Zone II | HC-10<br>4/12/2000<br>0-1<br>Zone II | HC-11<br>4/12/2000<br>0-1<br>Zone II |
|----------------------------------------|------------------------------------------|----------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|
| Acenaphthene                           | 1000000                                  | ·                                                                          | 380 U                               | 350 U                               | 360 U                               | 360 U                               | 400 U                               | 380 U                                | 370 U                                |
| Acenaphthylene                         | 1000000                                  |                                                                            | 380 U                               | 350 U                               | 360 U                               | 360 U                               | 43 J                                | 380 U                                | 370 U                                |
| Anthracene                             | 1000000                                  |                                                                            | 380 U                               | 350 U                               | 360 U                               | 360 U                               | 44 J                                | 380 U                                | 46 J                                 |
| Benzo(a)anthracene                     | *                                        |                                                                            | 120 J                               | 350 U                               | 140 J                               | 100 J                               | 210 J                               | 210 J                                | 200 J                                |
| Benzo(a)pyrene                         | *                                        |                                                                            | 110 J                               | 350 U                               | 110 J                               | 94 J                                | 210 J                               | 200 J                                | 210 J                                |
| Benzo(b)fluoranthene                   | *                                        |                                                                            | 230 J                               | 350 U                               | 150 J                               | 130 J                               | 280 J                               | 250 J                                | 210 J                                |
| Benzo(b+k)fluoranthenes                |                                          |                                                                            | NA                                  | NA                                  | NA                                  | NA                                  | NA                                  | NA                                   | NA                                   |
| Benzo(g,h,i)perylene                   | 1000000                                  |                                                                            | 66 J                                | 350 U                               | 39 J                                | 41 J                                | 91 J                                | 85 J                                 | 100 J                                |
| Benzo(k)fluoranthene                   | *                                        |                                                                            | 240 J                               | 48 J                                | 120 J                               | 190 J                               | 310 J                               | 360 J                                | 270 J                                |
| Chrysene                               | *                                        |                                                                            | 180 J                               | 38 J                                | 200 J                               | 160 J                               | 290 J                               | 290 J                                | 230 J                                |
| Dibenzo(a,h)anthracene                 | *                                        |                                                                            | 380 U                               | 350 U                               | 360 U                               | 360 U                               | 400 U                               | 380 U                                | 370 U                                |
| Fluoranthene                           | 1000000                                  |                                                                            | 220 J                               | 49 J                                | 200 J                               | 210 J                               | 390 J                               | 390                                  | 410                                  |
| Fluorene                               | 1000000                                  |                                                                            | 380 U                               | 350 U                               | 360 U                               | 360 U                               | 400 U                               | 380 U                                | 370 U                                |
| Indeno(1,2,3-cd)pyrene                 | *                                        |                                                                            | 58 J                                | 350 U                               | 44 J                                | 47 J                                | 90 J                                | 78 J                                 | 87 J                                 |
| Naphthalene                            | 1000000                                  |                                                                            | 380 U                               | 350 U                               | 360 U                               | 360 U                               | 400 U                               | 380 U                                | 370 U                                |
| Phenanthrene                           | 1000000                                  |                                                                            | 68 J                                | 350 U                               | 110 J                               | 65 J                                | 160 J                               | 100 J                                | 160 J                                |
| Pyrene                                 | 1000000                                  |                                                                            | 200 J                               | 55 J                                | 320 J                               | 220 J                               | 440                                 | 430                                  | 420                                  |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in µg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | HC-12<br>4/12/2000<br>0-1<br>Zone III | HC-13<br>4/12/2000<br>0-1<br>Zone II | HC-14<br>4/12/2000<br>0-1<br>Zone II | HC-15<br>4/12/2000<br>0-1<br>Zone II | HC-16<br>4/12/2000<br>0-1<br>Zone II | HM-1<br>9/18/1997<br>0-1<br>Zone II | HM-2<br>9/18/1997<br>0-1<br>Zone II |
|-------------------------------------|------------------------------------------|----------------------------------------------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|
| Acenaphthene                        | 1000000                                  |                                                                            | 390 U                                 | 360 U                                | 390 U                                | 410 U                                | 370 U                                | 350 U                               | 340 U                               |
| Acenaphthylene                      | 1000000                                  |                                                                            | 65 J                                  | 64 J                                 | 180 J                                | 57 J                                 | 46 J                                 | 350 U                               | 340 U                               |
| Anthracene                          | 1000000                                  |                                                                            | 81 J                                  | 93 J                                 | 150 J                                | 91 J                                 | 150 J                                | 350 U                               | 11 J                                |
| Benzo(a)anthracene                  | *                                        |                                                                            | 370 J                                 | 360                                  | 760                                  | 260 J                                | 250 J                                | 350 U                               | 22 J                                |
| Benzo(a)pyrene                      | *                                        |                                                                            | 430                                   | 430                                  | 940                                  | 250 J                                | 190 J                                | 350 U                               | 20 J                                |
| Benzo(b)fluoranthene                | *                                        |                                                                            | 790                                   | 720                                  | 1400                                 | 300 J                                | 390                                  | 350 U                               | 310 J                               |
| Benzo(b+k)fluoranthenes             |                                          |                                                                            | NA                                    | NA                                   | NA                                   | NA                                   | NA                                   | NA                                  | NA                                  |
| Benzo(g,h,i)perylene                | 1000000                                  |                                                                            | 300 J                                 | 210 J                                | 430                                  | 160 J                                | 140 J                                | 350 U                               | 340 U                               |
| Benzo(k)fluoranthene                | *                                        |                                                                            | 450                                   | 380                                  | 1300                                 | 550                                  | 310 J                                | 350 U                               | 29 J                                |
| Chrysene                            | *                                        |                                                                            | 540                                   | 450                                  | 910                                  | 370 J                                | 330 J                                | 350 U                               | 50 J                                |
| Dibenzo(a,h)anthracene              | *                                        |                                                                            | 100 J                                 | 360 U                                | 160 J                                | 46 J                                 | 370 U                                | 350 U                               | 340 U                               |
| Fluoranthene                        | 1000000                                  |                                                                            | 590                                   | 480                                  | 870                                  | 450                                  | 580                                  | 350 U                               | 33 J                                |
| Fluorene                            | 1000000                                  |                                                                            | 390 U                                 | 360 U                                | 390 U                                | 410 U                                | 370 U                                | 350 U                               | 340 U                               |
| Indeno(1,2,3-cd)pyrene              | *                                        |                                                                            | 300 J                                 | 210 J                                | 420                                  | 140 J                                | 120 J                                | 350 U                               | 340 U                               |
| Naphthalene                         | 1000000                                  |                                                                            | 390 U                                 | 50 J                                 | 47 J                                 | 43 J                                 | 370 U                                | 350 U                               | 19 J                                |
| Phenanthrene                        | 1000000                                  |                                                                            | 140 J                                 | 200 J                                | 200 J                                | 200 J                                | 220 J                                | 350 U                               | 23 J                                |
| Pyrene                              | 1000000                                  |                                                                            | 580                                   | 570                                  | 1000                                 | 510                                  | 690                                  | 350 U                               | 28 J                                |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | HM-2 RE<br>9/18/1997<br>1-2<br>Zone II | HM-3 RE<br>9/18/1997<br>0-1<br>Zone II | HM-3<br>9/18/1997<br>1-2<br>Zone II | HM-5<br>9/18/1997<br>0-1<br>Zone II | HM-5 RE<br>9/18/1997<br>1-2<br>Zone II | HM-7<br>9/18/1997<br>0-1<br>Zone II | HM-7 RE<br>9/18/1997<br>1-2<br>Zone II |
|-------------------------------------|------------------------------------------|----------------------------------------------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------|-------------------------------------|----------------------------------------|-------------------------------------|----------------------------------------|
| Acenaphthene                        | 1000000                                  |                                                                            | 350 U                                  | 360 U                                  | 1800 U                              | 350 U                               | 350 U                                  | 40 J                                | 340 U                                  |
| Acenaphthylene                      | 1000000                                  |                                                                            | 440                                    | 220 J                                  | 820 J                               | 38 J                                | 280 J                                  | 12 J                                | 95 J                                   |
| Anthracene                          | 1000000                                  |                                                                            | 510                                    | 250 J                                  | 1200 J                              | 45 J                                | 300 J                                  | 90 J                                | 110 J                                  |
| Benzo(a)anthracene                  | *                                        |                                                                            | 1500                                   | 540                                    | 4100                                | 190 J                               | 810                                    | 250 J                               | 210 J                                  |
| Benzo(a)pyrene                      | *                                        |                                                                            | 1500                                   | 560                                    | 3400                                | 170 J                               | 920                                    | 190 J                               | 200 J                                  |
| Benzo(b)fluoranthene                | *                                        |                                                                            | 1900                                   | 910                                    | 4900                                | 440                                 | 1400                                   | 410                                 | 640                                    |
| Benzo(b+k)fluoranthenes             |                                          |                                                                            | NA                                     | NA                                     | NA                                  | NA                                  | NA                                     | NA                                  | NA                                     |
| Benzo(g,h,i)perylene                | 1000000                                  |                                                                            | 350 U                                  | 360 U                                  | 1800 U                              | 350 U                               | 350 U                                  | 350 U                               | 340 U                                  |
| Benzo(k)fluoranthene                | *                                        |                                                                            | 2100                                   | 800                                    | 3300                                | 180 J                               | 1100                                   | 180 J                               | 360                                    |
| Chrysene                            | *                                        |                                                                            | 1500                                   | 610                                    | 4000                                | 200 J                               | 900                                    | 250 J                               | 310 J                                  |
| Dibenzo(a,h)anthracene              | *                                        |                                                                            | 350 U                                  | 360 U                                  | 1800 U                              | 350 U                               | 350 U                                  | 350 U                               | 340 U                                  |
| Fluoranthene                        | 1000000                                  |                                                                            | 1600                                   | 660                                    | 5700                                | 290 J                               | 910                                    | 490                                 | 320 J                                  |
| Fluorene                            | 1000000                                  |                                                                            | 350 U                                  | 360 U                                  | 1800 U                              | 350 U                               | 350 U                                  | 35 J                                | 17 J                                   |
| Indeno(1,2,3-cd)pyrene              | *                                        |                                                                            | 270 J                                  | 47 J                                   | 880 J                               | 350 U                               | 53 J                                   | 350 U                               | 340 U                                  |
| Naphthalene                         | 1000000                                  |                                                                            | 88 J                                   | 47 J                                   | 1800 U                              | 350 U                               | 140 J                                  | 22 J                                | 68 J                                   |
| Phenanthrene                        | 1000000                                  |                                                                            | 690                                    | 260 J                                  | 2000                                | 83 J                                | 490                                    | 400                                 | 180 J                                  |
| Pyrene                              | 1000000                                  |                                                                            | 2200                                   | 770                                    | 6100                                | 300 J                               | 1500                                   | 450                                 | 320 J                                  |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation: Sample Date: Sample Depth (ft bls): Map Zone: | L5-1<br>4/7/1997<br>0-2<br>Zone II | L6-1<br>6/30/1997<br>0-1<br>Zone II | L6-1<br>4/7/1997<br>0-2<br>Zone II | L6-1<br>6/30/1997<br>1-2<br>Zone II | L6-1<br>6/30/1997<br>2-3<br>Zone II | L6-2<br>6/30/1997<br>0-1<br>Zone II | L6-2<br>4/7/1997<br>0-2<br>Zone II |
|----------------------------------------|------------------------------------------|-------------------------------------------------------------------|------------------------------------|-------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|------------------------------------|
|                                        |                                          | wap zone.                                                         | Zone n                             | Zone n                              | Zone II                            | Zone n                              | Zone n                              | Zone n                              | Zone n                             |
| Acenaphthene                           | 1000000                                  |                                                                   | 380 U                              | 360 U                               | 750 U                              | 350 U                               | 350 U                               | 340 U                               | 380 U                              |
| Acenaphthylene                         | 1000000                                  |                                                                   | 380 U                              | 28 J                                | 750 U                              | 350 U                               | 13 J                                | 340 U                               | 380 U                              |
| Anthracene                             | 1000000                                  |                                                                   | 180 J                              | 36 J                                | 690 J                              | 10 J                                | 51 J                                | 340 U                               | 380 U                              |
| Benzo(a)anthracene                     | *                                        |                                                                   | 750                                | 160 J                               | 2000                               | 31 J                                | 100 J                               | 55 J                                | 450                                |
| Benzo(a)pyrene                         | *                                        |                                                                   | 680                                | 160 J                               | 1900                               | 23 J                                | 87 J                                | 54 J                                | 460                                |
| Benzo(b)fluoranthene                   | *                                        |                                                                   | 1800                               | 330 J                               | 4000                               | 73 J                                | 220 J                               | 50 J                                | 850                                |
| Benzo(b+k)fluoranthenes                |                                          |                                                                   | NA                                 | NA                                  | NA                                 | NA                                  | NA                                  | NA                                  | NA                                 |
| Benzo(g,h,i)perylene                   | 1000000                                  |                                                                   | 230 J                              | 140 J                               | 620 J                              | 280 J                               | 320 J                               | 41 J                                | 200 J                              |
| Benzo(k)fluoranthene                   | *                                        |                                                                   | 1100                               | 280 J                               | 2900                               | 39 J                                | 120 J                               | 65 J                                | 450                                |
| Chrysene                               | *                                        |                                                                   | 1500                               | 260 J                               | 3900                               | 350 U                               | 350 U                               | 66 J                                | 840                                |
| Dibenzo(a,h)anthracene                 | *                                        |                                                                   | 68 J                               | 360 U                               | 230 J                              | 350 U                               | 350 U                               | 340 U                               | 38 J                               |
| Fluoranthene                           | 1000000                                  |                                                                   | 1000                               | 300 J                               | 3600                               | 63 J                                | 200 J                               | 97 J                                | 430                                |
| Fluorene                               | 1000000                                  |                                                                   | 380 U                              | 360 U                               | 750 U                              | 350 U                               | 350 U                               | 340 U                               | 380 U                              |
| Indeno(1,2,3-cd)pyrene                 | *                                        |                                                                   | 210 J                              | 240 J                               | 700 J                              | 220 J                               | 300 J                               | 45 J                                | 100 J                              |
| Naphthalene                            | 1000000                                  |                                                                   | 380 U                              | 360 U                               | 750 U                              | 7 J                                 | 17 J                                | 340 U                               | 380 U                              |
| Phenanthrene                           | 1000000                                  |                                                                   | 290 J                              | 140 J                               | 1800                               | 33 J                                | 110 J                               | 25 J                                | 270 J                              |
| Pyrene                                 | 1000000                                  |                                                                   | 890                                | 280 J                               | 2300                               | 57 J                                | 170 J                               | 97 J                                | 600                                |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

"B" in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | L6-3      | L6-3     | L6-3      | L6-3      | L6-4      | L6-4 RE  | L6-4      |
|---------------------------|--------------------|------------------------|-----------|----------|-----------|-----------|-----------|----------|-----------|
| Parameter                 | Part 375           | Sample Date:           | 6/30/1997 | 4/7/1997 | 6/30/1997 | 6/30/1997 | 6/30/1997 | 4/7/1997 | 6/30/1997 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 0-1       | 0-2      | 1-2       | 2-3       | 0-1       | 0-2      | 1-2       |
|                           |                    | Map Zone:              | Zone II   | Zone II  | Zone II   | Zone II   | Zone II   | Zone II  | Zone II   |
| Acenaphthene              | 1000000            |                        | 54 J      | 7600 U   | 340 U     | 340 U     | 350 U     | 770 U    | 360 U     |
| Acenaphthylene            | 1000000            |                        | 370 U     | 7600 U   | 340 U     | 340 U     | 27 J      | 120 J    | 360 U     |
| Anthracene                | 1000000            |                        | 71 J      | 7600 U   | 340 U     | 340 U     | 83 J      | 770      | 11 J      |
| Benzo(a)anthracene        | *                  |                        | 190 J     | 14000    | 340 U     | 340 U     | 220 J     | 1400     | 31 J      |
| Benzo(a)pyrene            | *                  |                        | 170 J     | 8500     | 340 U     | 340 U     | 230 J     | 1400     | 31 J      |
| Benzo(b)fluoranthene      | *                  |                        | 140 J     | 6000 J   | 340 U     | 340 U     | 320 J     | 3800     | 64 J      |
| Benzo(b+k)fluoranthenes   |                    |                        | NA        | NA       | NA        | NA        | NA        | NA       | NA        |
| Benzo(g,h,i)perylene      | 1000000            |                        | 130 J     | 3400 J   | 340 U     | 340 U     | 190 J     | 510 J    | 290 J     |
| Benzo(k)fluoranthene      | *                  |                        | 180 J     | 7600 U   | 340 U     | 340 U     | 290 J     | 3200     | 37 J      |
| Chrysene                  | *                  |                        | 190 J     | 21000    | 340 U     | 340 U     | 320 J     | 3200     | 360 U     |
| Dibenzo(a,h)anthracene    | *                  |                        | 370 U     | 410 J    | 340 U     | 340 U     | 350 U     | 770 U    | 360 U     |
| Fluoranthene              | 1000000            |                        | 490       | 13000    | 11 J      | 340 U     | 340 J     | 3000     | 59 J      |
| Fluorene                  | 1000000            |                        | 35 J      | 7600 U   | 340 U     | 340 U     | 350 U     | 770 U    | 360 U     |
| Indeno(1,2,3-cd)pyrene    | *                  |                        | 140 J     | 910 J    | 340 U     | 340 U     | 45 J      | 350 J    | 240 J     |
| Naphthalene               | 1000000            |                        | 18 J      | 7600 U   | 340 U     | 340 U     | 26 J      | 770 U    | 360 U     |
| Phenanthrene              | 1000000            |                        | 520       | 22000    | 340 U     | 340 U     | 270 J     | 800      | 24 J      |
| Pyrene                    | 1000000            |                        | 500       | 18000    | 11 J      | 340 U     | 320 J     | 2500     | 58 J      |
|                           |                    |                        |           |          |           |           |           |          |           |

19 of 87

## Notes:

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | L6-4      | L6-5      | L6-5     | L6-5 DUP  | L6-5      | L6-5      | L6-6      |
|---------------------------|--------------------|------------------------|-----------|-----------|----------|-----------|-----------|-----------|-----------|
| Parameter                 | Part 375           | Sample Date:           | 6/30/1997 | 6/30/1997 | 4/7/1997 | 6/30/1997 | 6/30/1997 | 6/30/1997 | 6/30/1997 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 2-3       | 0-1       | 0-2      | 0-1       | 1-2       | 2-3       | 0-1       |
|                           |                    | Map Zone:              | Zone II   | Zone II   | Zone II  | Zone II   | Zone II   | Zone II   | Zone II   |
| Acenaphthene              | 1000000            |                        | 350 U     | 350 U     | 370 U    | 350 U     | 340 U     | 340 U     | 340 U     |
| Acenaphthylene            | 1000000            |                        | 28 J      | 350 U     | 410      | 350 U     | 340 U     | 340 U     | 340 U     |
| Anthracene                | 1000000            |                        | 61 J      | 15 J      | 590      | 350 U     | 6 J       | 340 U     | 340 U     |
| Benzo(a)anthracene        | *                  |                        | 120 J     | 80 J      | 1200     | 26 J      | 35 J      | 13 J      | 340 U     |
| Benzo(a)pyrene            | *                  |                        | 180 J     | 56 J      | 1100     | 36 J      | 35 J      | 26 J      | 340 U     |
| Benzo(b)fluoranthene      | *                  |                        | 330 J     | 87 J      | 2700     | 72 J      | 79 J      | 34 J      | 340 U     |
| Benzo(b+k)fluoranthenes   |                    |                        | NA        | NA        | NA       | NA        | NA        | NA        | NA        |
| Benzo(g,h,i)perylene      | 1000000            |                        | 310 J     | 44 J      | 430      | 44 J      | 270 J     | 340 U     | 340 U     |
| Benzo(k)fluoranthene      | *                  |                        | 220 J     | 68 J      | 1600     | 56 J      | 70 J      | 23 J      | 340 U     |
| Chrysene                  | *                  |                        | 350 U     | 110 J     | 2400     | 58 J      | 340 U     | 340 U     | 340 U     |
| Dibenzo(a,h)anthracene    | *                  |                        | 350 U     | 350 U     | 180 J    | 350 U     | 340 U     | 340 U     | 340 U     |
| Fluoranthene              | 1000000            |                        | 290 J     | 120 J     | 2100     | 48 J      | 58 J      | 26 J      | 340 U     |
| Fluorene                  | 1000000            |                        | 350 U     | 350 U     | 370 U    | 350 U     | 340 U     | 340 U     | 340 U     |
| Indeno(1,2,3-cd)pyrene    | *                  |                        | 280 J     | 50 J      | 550      | 47 J      | 210 J     | 190 J     | 340 U     |
| Naphthalene               | 1000000            |                        | 31 J      | 350 U     | 370 U    | 350 U     | 340 U     | 340 U     | 340 U     |
| Phenanthrene              | 1000000            |                        | 110 J     | 120 J     | 560      | 350 U     | 18 J      | 340 U     | 340 U     |
| Pyrene                    | 1000000            |                        | 190 J     | 180 J     | 1400     | 44 J      | 60 J      | 22 J      | 340 U     |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | L6-7<br>6/30/1997<br>0-1<br>Zone II | L6-8<br>6/30/1997<br>0-1<br>Zone II | L6-9<br>6/30/1997<br>0-1<br>Zone II | L6-10<br>6/30/1997<br>0-1<br>Zone II | L6-11<br>6/30/1997<br>0-1<br>Zone II | LCW-1<br>11/14/2002<br>0-1<br>Zone II | LCW-2<br>11/14/2002<br>0-1<br>Zone II |
|-------------------------------------|------------------------------------------|----------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|
| Acapaphthana                        | 1000000                                  |                                                                            | 350 U                               | 360 U                               | 340 U                               | 340 U                                | 340 U                                | 76 J                                  | 67 J                                  |
| Acenaphthene Acenaphthylene         | 1000000                                  |                                                                            | 350 U                               | 360 U                               | 340 U                               | 340 U                                | 340 U                                | 70 J<br>140 J                         | 790                                   |
| Anthracene                          | 1000000                                  |                                                                            | 330 U<br>17 J                       | 14 J                                | 340 U                               | 340 U                                | 340 U                                | 290 J                                 | 1200                                  |
| Benzo(a)anthracene                  | *                                        |                                                                            | 58 J                                | 70 J                                | 340 U                               | 23 J                                 | 26 J                                 | 780                                   | 1400                                  |
| Benzo(a)pyrene                      | *                                        |                                                                            | 45 J                                | 69 J                                | 340 U                               | 340 U                                | 61 J                                 | 670                                   | 1600                                  |
| Benzo(b)fluoranthene                | *                                        |                                                                            | 120 J                               | 110 J                               | 340 U                               | 36 J                                 | 66 J                                 | 740                                   | 2300                                  |
| Benzo(b+k)fluoranthenes             |                                          |                                                                            | NA                                  | NA                                  | NA                                  | NA                                   | NA                                   | NA                                    | NA                                    |
| Benzo(g,h,i)perylene                | 1000000                                  |                                                                            | 62 J                                | 71 J                                | 340 U                               | 340 U                                | 340 U                                | 620                                   | 1200                                  |
| Benzo(k)fluoranthene                | *                                        |                                                                            | 63 J                                | 97 J                                | 340 U                               | 43 J                                 | 59 J                                 | 670                                   | 1300                                  |
| Chrysene                            | *                                        |                                                                            | 92 J                                | 100 J                               | 340 U                               | 36 J                                 | 52 J                                 | 830                                   | 1900                                  |
| Dibenzo(a,h)anthracene              | *                                        |                                                                            | 350 U                               | 360 U                               | 340 U                               | 340 U                                | 340 U                                | 250 J                                 | 500                                   |
| Fluoranthene                        | 1000000                                  |                                                                            | 100 J                               | 98 J                                | 340 U                               | 37 J                                 | 61 J                                 | 1100                                  | 1600                                  |
| Fluorene                            | 1000000                                  |                                                                            | 350 U                               | 360 U                               | 340 U                               | 340 U                                | 340 U                                | 68 J                                  | 110 J                                 |
| Indeno(1,2,3-cd)pyrene              | *                                        |                                                                            | 79 J                                | 100 J                               | 340 U                               | 340 U                                | 41 J                                 | 630                                   | 1300                                  |
| Naphthalene                         | 1000000                                  |                                                                            | 350 U                               | 360 U                               | 340 U                               | 340 U                                | 340 U                                | 35 U                                  | 110 J                                 |
| Phenanthrene                        | 1000000                                  |                                                                            | 64 J                                | 56 J                                | 340 U                               | 340 U                                | 340 U                                | 790                                   | 830                                   |
| Pyrene                              | 1000000                                  |                                                                            | 100 J                               | 110 J                               | 340 U                               | 37 J                                 | 48 J                                 | 1500                                  | 2600                                  |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in µg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | LCW-3<br>11/14/2002<br>0-1<br>Zone II | LCW-4<br>11/14/2002<br>0-1<br>Zone II | LLS-6<br>8/9/2001<br>0-1<br>Zone I | LLS-7<br>8/10/2001<br>0-1<br>Zone I | LLS-7A<br>8/10/2001<br>1-2<br>Zone I | LLS-8<br>8/10/2001<br>0-1<br>Zone I | LLS-8A<br>8/10/2001<br>1-2<br>Zone I | LLS-9<br>8/10/2001<br>0-1<br>Zone I |
|-------------------------------------|------------------------------------------|----------------------------------------------------------------------------|---------------------------------------|---------------------------------------|------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|
| Acenaphthene                        | 1000000                                  |                                                                            | 130 J                                 | 32 J                                  | 129                                | 19.5 J                              | 76.4                                 | 410 U                               | 84 U                                 | 68 U                                |
| Acenaphthylene                      | 1000000                                  |                                                                            | 820                                   | 350 J                                 | 94.4                               | 102                                 | 51.2 J                               | 77.6 J                              | 84 U                                 | 68 U                                |
| Anthracene                          | 1000000                                  |                                                                            | 1400                                  | 480 J                                 | 292                                | 183                                 | 450                                  | 91.1 J                              | 84 U                                 | 68 U                                |
| Benzo(a)anthracene                  | *                                        |                                                                            | 1700                                  | 720                                   | 831                                | 588                                 | 1260                                 | 207 J                               | 84 U                                 | 35.9 J                              |
| Benzo(a)pyrene                      | *                                        |                                                                            | 2000                                  | 680                                   | 843                                | 539                                 | 941                                  | 227 J                               | 84 U                                 | 23.3 J                              |
| Benzo(b)fluoranthene                | *                                        |                                                                            | 3200                                  | 1100                                  | 1070                               | 1420                                | 2470                                 | 907                                 | 84 U                                 | 49.8 J                              |
| Benzo(b+k)fluoranthenes             |                                          |                                                                            | NA                                    | NA                                    | NA                                 | NA                                  | NA                                   | NA                                  | NA                                   | NA                                  |
| Benzo(g,h,i)perylene                | 1000000                                  |                                                                            | 1600                                  | 790                                   | 1960                               | 839                                 | 704                                  | 410 U                               | 84 U                                 | 26 J                                |
| Benzo(k)fluoranthene                | *                                        |                                                                            | 1700                                  | 810                                   | 399                                | 473                                 | 899                                  | 278                                 | 84 U                                 | 19.7 J                              |
| Chrysene                            | *                                        |                                                                            | 2100                                  | 1000                                  | 1080                               | 878                                 | 2200                                 | 444                                 | 84 U                                 | 59.1 J                              |
| Dibenzo(a,h)anthracene              | *                                        |                                                                            | 680                                   | 310 J                                 | 435                                | 209                                 | 237                                  | 410 U                               | 84 U                                 | 68 U                                |
| Fluoranthene                        | 1000000                                  |                                                                            | 1600                                  | 1000                                  | 979                                | 968                                 | 1620                                 | 514                                 | 84 U                                 | 52.7 J                              |
| Fluorene                            | 1000000                                  |                                                                            | 160 J                                 | 45 J                                  | 157                                | 22.9 J                              | 93.2                                 | 410 U                               | 84 U                                 | 68 U                                |
| Indeno(1,2,3-cd)pyrene              | *                                        |                                                                            | 1700                                  | 840                                   | 1880                               | 969                                 | 797                                  | 431                                 | 84 U                                 | 23.5 J                              |
| Naphthalene                         | 1000000                                  |                                                                            | 130 J                                 | 70 J                                  | 89.6                               | 37.7 J                              | 59.7 J                               | 410 U                               | 84 U                                 | 68 U                                |
| Phenanthrene                        | 1000000                                  |                                                                            | 600                                   | 430 J                                 | 1240                               | 340                                 | 461                                  | 244 J                               | 84 U                                 | 22.6 J                              |
| Pyrene                              | 1000000                                  |                                                                            | 2700                                  | 1300                                  | 3520                               | 1240                                | 1930                                 | 346 J                               | 84 U                                 | 54.2 J                              |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC<br>Part 375<br>Industrial (μg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: |              | LLS-10<br>8/10/2001<br>0-1<br>Zone I | LLS-10A<br>8/10/2001<br>1-2<br>Zone I | LLS-11<br>8/10/2001<br>0-1<br>Zone I | LLS-11A<br>8/10/2001<br>1-2<br>Zone I | LLS-12<br>8/10/2001<br>0-1<br>Zone I | LLS-13<br>8/10/2001<br>0-1<br>Zone I | LLS-14<br>8/10/2001<br>0-1<br>Zone I |
|-------------------------------------|------------------------------------------|----------------------------------------------------------------------------|--------------|--------------------------------------|---------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Acenaphthene                        | 1000000                                  |                                                                            | 71 U         | 100 U                                | 87 U                                  | 132 J                                | 142 J                                 | 76 U                                 | 73 U                                 | 69 U                                 |
| Acenaphthylene<br>Anthracene        | 1000000<br>1000000                       |                                                                            | 71 U<br>71 U | 37 J<br>32.7 J                       | 31.9 J<br>33 J                        | 591<br>843                           | 640<br>844                            | 18.2 J<br>23.5 J                     | 75.7<br>80.5                         | 69 U<br>69 U                         |
| Benzo(a)anthracene                  | *                                        |                                                                            | 71 U         | 32.7 <b>J</b>                        | 118                                   | 1900                                 | 1510                                  | 91.4                                 | 181                                  | 49.7 J                               |
| Benzo(a)pyrene                      | *                                        |                                                                            | 71 U         | 105                                  | 111                                   | 1620                                 | 1380                                  | 86                                   | 155                                  | 41.2 J                               |
| Benzo(b)fluoranthene                | *                                        |                                                                            | 71 U         | 355                                  | 308                                   | 4770                                 | 4940                                  | 289                                  | 339                                  | 66.8 J                               |
| Benzo(b+k)fluoranthenes             |                                          |                                                                            | NA           | NA                                   | NA                                    | NA                                   | NA                                    | NA                                   | NA                                   | NA                                   |
| Benzo(g,h,i)perylene                | 1000000                                  |                                                                            | 71 U         | 131                                  | 105                                   | 595                                  | 432                                   | 179                                  | 108                                  | 41.1 J                               |
| Benzo(k)fluoranthene                | *                                        |                                                                            | 71 U         | 112                                  | 101                                   | 1710                                 | 1440                                  | 86.6                                 | 130                                  | 31.4 J                               |
| Chrysene                            | *                                        |                                                                            | 71 U         | 190                                  | 194                                   | 2620                                 | 2370                                  | 163                                  | 259                                  | 61.2 J                               |
| Dibenzo(a,h)anthracene              | *                                        |                                                                            | 71 U         | 100 U                                | 87 U                                  | 236 J                                | 157 J                                 | 76 U                                 | 31.7 J                               | 69 U                                 |
| Fluoranthene                        | 1000000                                  |                                                                            | 36.8 J       | 193                                  | 222                                   | 3350                                 | 2970                                  | 159                                  | 258                                  | 67.7 J                               |
| Fluorene                            | 1000000                                  |                                                                            | 71 U         | 100 U                                | 87 U                                  | 420 U                                | 270 U                                 | 76 U                                 | 73 U                                 | 69 U                                 |
| Indeno(1,2,3-cd)pyrene              | *                                        |                                                                            | 71 U         | 161                                  | 134                                   | 944                                  | 708                                   | 246                                  | 149                                  | 48.6 J                               |
| Naphthalene                         | 1000000                                  |                                                                            | 71 U         | 100 U                                | 43.7 J                                | 88.9 J                               | 108 J                                 | 32.4 J                               | 73 U                                 | 69 U                                 |
| Phenanthrene                        | 1000000                                  |                                                                            | 71 U         | 104                                  | 160                                   | 1110                                 | 894                                   | 104                                  | 103                                  | 69 U                                 |
| Pyrene                              | 1000000                                  |                                                                            | 35.4 J       | 152                                  | 174                                   | 2460                                 | 1930                                  | 281                                  | 225                                  | 79.5                                 |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | LLS-15<br>8/10/2001<br>0-1<br>Zone I | LLS-16<br>8/10/2001<br>0-1<br>Zone I | LLS-17<br>8/10/2001<br>0-1<br>Zone I | LLS-18<br>8/10/2001<br>0-1<br>Zone I | LLS-19<br>8/10/2001<br>0-1<br>Zone I | LLS-20<br>8/10/2001<br>0-1<br>Zone I | LLS-21<br>8/10/2001<br>0-1<br>Zone I | LLS-22<br>8/10/2001<br>0-1<br>Zone I |
|----------------------------------------|------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Acenaphthene                           | 1000000                                  |                                                                            | 390 U                                | 71 U                                 | 94.5 J                               | 76 U                                 | 87 U                                 | 74 U                                 | 41.6 J                               | 46.7 J                               |
| Acenaphthylene                         | 1000000                                  |                                                                            | 225 J                                | 71 U                                 | 407                                  | 717                                  | 866                                  | 170                                  | 1640                                 | 853                                  |
| Anthracene                             | 1000000                                  |                                                                            | 198 J                                | 71 U                                 | 484                                  | 1110                                 | 1010                                 | 168                                  | 1790                                 | 940                                  |
| Benzo(a)anthracene                     | *                                        |                                                                            | 741                                  | 71 U                                 | 1310                                 | 2560                                 | 1590                                 | 351                                  | 2560                                 | 4900                                 |
| Benzo(a)pyrene                         |                                          |                                                                            | 573                                  | 71 U                                 | 1040                                 | 2400                                 | 1840                                 | 405                                  | 2740                                 | 4520                                 |
| Benzo(b)fluoranthene                   | *                                        |                                                                            | 1220                                 | 71 U                                 | 2950                                 | 4480                                 | 3270                                 | 698                                  | 8200                                 | 9580                                 |
| Benzo(b+k)fluoranthenes                |                                          |                                                                            | NA                                   |
| Benzo(g,h,i)perylene                   | 1000000                                  |                                                                            | 511                                  | 71 U                                 | 258                                  | 416                                  | 308                                  | 178                                  | 395                                  | 8840                                 |
| Benzo(k)fluoranthene                   | *                                        |                                                                            | 487                                  | 71 U                                 | 1170                                 | 1980                                 | 1590                                 | 222                                  | 2750                                 | 2450                                 |
| Chrysene                               | *                                        |                                                                            | 1010                                 | 71 U                                 | 2180                                 | 4270                                 | 2230                                 | 420                                  | 3480                                 | 6210                                 |
| Dibenzo(a,h)anthracene                 | *                                        |                                                                            | 139 J                                | 71 U                                 | 220 U                                | 217                                  | 93.6                                 | 55.7 J                               | 138                                  | 3490                                 |
| Fluoranthene                           | 1000000                                  |                                                                            | 915                                  | 71 U                                 | 2800                                 | 2890                                 | 2610                                 | 486                                  | 4220                                 | 3170                                 |
| Fluorene                               | 1000000                                  |                                                                            | 390 U                                | 71 U                                 | 38.8 J                               | 54.3 J                               | 46.2 J                               | 74 U                                 | 98.1                                 | 60.2 J                               |
| Indeno(1,2,3-cd)pyrene                 | *                                        |                                                                            | 616                                  | 71 U                                 | 386                                  | 630                                  | 529                                  | 234                                  | 633                                  | 10400                                |
| Naphthalene                            | 1000000                                  |                                                                            | 390 U                                | 71 U                                 | 87.4 J                               | 44.7 J                               | 37.2 J                               | 74 U                                 | 82.9                                 | 77 J                                 |
| Phenanthrene                           | 1000000                                  |                                                                            | 286 J                                | 71 U                                 | 811                                  | 503                                  | 364                                  | 104                                  | 713                                  | 811                                  |
| Pyrene                                 | 1000000                                  |                                                                            | 962                                  | 71 U                                 | 1870                                 | 2030                                 | 1840                                 | 377                                  | 3480                                 | 15100                                |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | LLS-23 | LP2-1     | LP2-1     | LP2-2     | LP2-2     | LP2-3     | LP2-3     |
|---------------------------|--------------------|------------------------|--------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Part 375           | Sample Date:           |        | 7/15/1997 | 7/15/1997 | 7/15/1997 | 7/15/1997 | 7/15/1997 | 7/15/1997 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 0-1    | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       |
|                           |                    | Map Zone:              | Zone I | Zone I    | Zone I    | Zone I    | Zone I    | Zone I    | Zone I    |
| Acenaphthene              | 1000000            |                        | 54.9 J | 360 U     | 350 U     | 52 J      | 360 U     | 250 J     | 710 U     |
| Acenaphthylene            | 1000000            |                        | 1620   | 140 J     | 23 J      | 880       | 180 J     | 3800      | 590 J     |
| Anthracene                | 1000000            |                        | 1630   | 270 J     | 32 J      | 1400      | 430       | 4800      | 720       |
| Benzo(a)anthracene        | *                  |                        | 7860   | 690       | 50 J      | 2000      | 510       | 6800      | 930       |
| Benzo(a)pyrene            | *                  |                        | 9740   | 580       | 46 J      | 2000      | 490       | 5900      | 990       |
| Benzo(b)fluoranthene      | *                  |                        | 16600  | 820       | 72 J      | 3700      | 770       | 11000     | 2000      |
| Benzo(b+k)fluoranthenes   |                    |                        | NA     | NA        | NA        | NA        | NA        | NA        | NA        |
| Benzo(g,h,i)perylene      | 1000000            |                        | 16700  | 370       | 270 J     | 910       | 380       | 2200      | 640 J     |
| Benzo(k)fluoranthene      | *                  |                        | 3900   | 700       | 65 J      | 1600      | 630       | 4200      | 1200      |
| Chrysene                  | *                  |                        | 10000  | 980       | 350 U     | 4500      | 870       | 12000     | 1200      |
| Dibenzo(a,h)anthracene    | *                  |                        | 3900   | 360 U     | 140 J     | 860 U     | 360 U     | 2100 U    | 710 U     |
| Fluoranthene              | 1000000            |                        | 3040   | 880       | 70 J      | 3600      | 740       | 9400      | 1300      |
| Fluorene                  | 1000000            |                        | 76.8 J | 360 U     | 350 U     | 860 U     | 360 U     | 2100 U    | 710 U     |
| Indeno(1,2,3-cd)pyrene    | *                  |                        | 18800  | 370       | 220 J     | 1000      | 390       | 2600      | 650 J     |
| Naphthalene               | 1000000            |                        | 91.2   | 360 U     | 350 U     | 51 J      | 14 J      | 320 J     | 39 J      |
| Phenanthrene              | 1000000            |                        | 1000   | 110 J     | 16 J      | 670 J     | 170 J     | 2500      | 330 J     |
| Pyrene                    | 1000000            |                        | 16500  | 760       | 60 J      | 2300      | 600       | 6000      | 860       |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | LP2-4     | LP2-4     | LP2-5     | LP2-5     | LP2-6     | LP2-6     | LP2-7     |
|---------------------------|--------------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Part 375           | Sample Date:           | 7/15/1997 | 7/15/1997 | 7/15/1997 | 7/15/1997 | 7/15/1997 | 7/15/1997 | 7/15/1997 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       |
|                           |                    | Map Zone:              | Zone I    |
| Acenaphthene              | 1000000            |                        | 1900 U    | 350 U     | 1600 U    | 1600 U    | 3900 U    | 350 U     | 1800 U    |
| Acenaphthylene            | 1000000            |                        | 1800 J    | 340 J     | 1500 J    | 1100 J    | 2100 J    | 42 J      | 830 J     |
| Anthracene                | 1000000            |                        | 2000      | 460       | 2100      | 740 J     | 1500 J    | 29 J      | 810 J     |
| Benzo(a)anthracene        | *                  |                        | 3500      | 560       | 2100      | 1800      | 5600      | 80 J      | 1700 J    |
| Benzo(a)pyrene            | *                  |                        | 3900      | 620       | 2900      | 1900      | 5600      | 89 J      | 1400 J    |
| Benzo(b)fluoranthene      | *                  |                        | 5500      | 1000      | 5200      | 2700      | 9400      | 140 J     | 3000      |
| Benzo(b+k)fluoranthenes   |                    |                        | NA        |
| Benzo(g,h,i)perylene      | 1000000            |                        | 2200      | 330 J     | 2000      | 1600 U    | 340 J     | 350 U     | 1800 U    |
| Benzo(k)fluoranthene      | *                  |                        | 3100      | 680       | 2200      | 790 J     | 3600 J    | 350 U     | 1400 J    |
| Chrysene                  | *                  |                        | 4200      | 720       | 2200      | 1800      | 5200      | 89 J      | 2200      |
| Dibenzo(a,h)anthracene    | *                  |                        | 1900 U    | 350 U     | 1600 U    | 1600 U    | 3900 U    | 350 U     | 1800 U    |
| Fluoranthene              | 1000000            |                        | 2800      | 760       | 2600      | 3200      | 6200      | 97 J      | 3000      |
| Fluorene                  | 1000000            |                        | 1900 U    | 350 U     | 1600 U    | 98 J      | 67 J      | 350 U     | 83 J      |
| Indeno(1,2,3-cd)pyrene    | *                  |                        | 2300      | 340 J     | 2300      | 1000 J    | 5700      | 100 J     | 1100 J    |
| Naphthalene               | 1000000            |                        | 81 J      | 30 J      | 190 J     | 66 J      | 130 J     | 350 U     | 170 J     |
| Phenanthrene              | 1000000            |                        | 440 J     | 160 J     | 680 J     | 330 J     | 770 J     | 16 J      | 710 J     |
| Pyrene                    | 1000000            |                        | 2200      | 460       | 1800      | 2900      | 5600      | 83 J      | 2400      |
|                           |                    |                        |           |           |           |           |           |           |           |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- NA Data not available
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

NYSDEC - New York State Department of Environmental Conservation

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

AM0055.0071Y007.143/T6

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in µg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation: Sample Date: Sample Depth (ft bls): Map Zone: | LP2-7<br>7/15/1997<br>1-2<br>Zone I | LP2-8<br>7/15/1997<br>0-1<br>Zone I | LP2-8<br>7/15/1997<br>1-2<br>Zone I | LP2-8<br>7/15/1997<br>2-3<br>Zone I | LP2-9<br>7/15/1997<br>0-1<br>Zone I | LP2-9<br>7/15/1997<br>1-2<br>Zone I | LP2-9<br>7/15/1997<br>2-3<br>Zone I |
|-------------------------------------|------------------------------------------|-------------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| -                                   |                                          |                                                                   |                                     |                                     |                                     |                                     |                                     |                                     |                                     |
| Acenaphthene                        | 1000000                                  |                                                                   | 410 U                               | 1900 U                              | 11 J                                | 390 U                               | 4300 U                              | 410 U                               | 350 U                               |
| Acenaphthylene                      | 1000000                                  |                                                                   | 220 J                               | 910 J                               | 34 J                                | 390 U                               | 1000 J                              | 46 J                                | 350 U                               |
| Anthracene                          | 1000000                                  |                                                                   | 260 J                               | 870 J                               | 47 J                                | 390 U                               | 1400 J                              | 68 J                                | 350 U                               |
| Benzo(a)anthracene                  | *                                        |                                                                   | 440                                 | 2400                                | 100 J                               | 5 J                                 | 3900 J                              | 140 J                               | 350 U                               |
| Benzo(a)pyrene                      | *                                        |                                                                   | 460                                 | 2200                                | 66 J                                | 18 J                                | 3500 J                              | 120 J                               | 350 U                               |
| Benzo(b)fluoranthene                | *                                        |                                                                   | 970                                 | 8400                                | 180 J                               | 9 J                                 | 13000                               | 260 J                               | 350 U                               |
| Benzo(b+k)fluoranthenes             |                                          |                                                                   | NA                                  |
| Benzo(g,h,i)perylene                | 1000000                                  |                                                                   | 410 U                               | 1700 J                              | 370 U                               | 390 U                               | 3500 J                              | 410 U                               | 350 U                               |
| Benzo(k)fluoranthene                | *                                        |                                                                   | 580                                 | 4400                                | 370 U                               | 390 U                               | 8800                                | 410 U                               | 350 U                               |
| Chrysene                            | *                                        |                                                                   | 640                                 | 4100                                | 160 J                               | 10 J                                | 6100                                | 310 J                               | 350 U                               |
| Dibenzo(a,h)anthracene              | *                                        |                                                                   | 410 U                               | 1900 U                              | 370 U                               | 390 U                               | 1900 J                              | 21 J                                | 350 U                               |
| Fluoranthene                        | 1000000                                  |                                                                   | 730                                 | 5200                                | 210 J                               | 390 U                               | 9500                                | 230 J                               | 350 U                               |
| Fluorene                            | 1000000                                  |                                                                   | 29 J                                | 1900 U                              | 370 U                               | 390 U                               | 4300 U                              | 410 U                               | 350 U                               |
| Indeno(1,2,3-cd)pyrene              | *                                        |                                                                   | 220 J                               | 1600 J                              | 26 J                                | 390 U                               | 3100 J                              | 44 J                                | 350 U                               |
| Naphthalene                         | 1000000                                  |                                                                   | 70 J                                | 270 J                               | 30 J                                | 390 U                               | 440 J                               | 16 J                                | 350 U                               |
| Phenanthrene                        | 1000000                                  |                                                                   | 180 J                               | 1400 J                              | 130 J                               | 390 U                               | 2700 J                              | 150 J                               | 350 U                               |
| Pyrene                              | 1000000                                  |                                                                   | 630                                 | 2100                                | 140 J                               | 390 U                               | 3700 J                              | 180 J                               | 350 U                               |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Domomoston                           | NYSDEC             | Sample Designation:    | LP2-10           | LP2-10           | LP2-10           | LP2-11 RE 7/15/1997 | LP2-11           | LP2-11 RE        | MW-26 R           |
|--------------------------------------|--------------------|------------------------|------------------|------------------|------------------|---------------------|------------------|------------------|-------------------|
| Parameter (Concentrations in 112/12) | Part 375           | Sample Date:           | 7/15/1997<br>0-1 | 7/15/1997<br>1-2 | 7/15/1997<br>2-3 | 0-1                 | 7/15/1997<br>1-2 | 7/15/1997<br>2-3 | 12/5/1990<br>9-11 |
| (Concentrations in µg/kg)            | Industrial (µg/kg) | Sample Depth (ft bls): |                  |                  | _                |                     |                  | _                |                   |
|                                      |                    | Map Zone:              | Zone I           | Zone I           | Zone I           | Zone I              | Zone I           | Zone I           | Zone II           |
| Acenaphthene                         | 1000000            |                        | 1500 U           | 380 U            | 380 U            | 110 J               | 49 J             | 380 U            | 340 UR            |
| Acenaphthylene                       | 1000000            |                        | 890 J            | 34 J             | 380 U            | 1000 J              | 220 J            | 380 U            | 340 UR            |
| Anthracene                           | 1000000            |                        | 2000             | 96 J             | 380 U            | 1900                | 320 J            | 380 U            | 340 UR            |
| Benzo(a)anthracene                   | *                  |                        | 1500             | 120 J            | 380 U            | 2100                | 1100             | 380 U            | 340 UR            |
| Benzo(a)pyrene                       | *                  |                        | 1200 J           | 77 J             | 380 U            | 1400 J              | 840              | 380 U            | 340 UR            |
| Benzo(b)fluoranthene                 | *                  |                        | 3300             | 210 J            | 380 U            | 4000                | 2600             | 380 U            | NA                |
| Benzo(b+k)fluoranthenes              |                    |                        | NA               | NA               | NA               | NA                  | NA               | NA               | 340 UR            |
| Benzo(g,h,i)perylene                 | 1000000            |                        | 1400 J           | 380 U            | 380 U            | 1500 J              | 400 J            | 380 U            | 340 UR            |
| Benzo(k)fluoranthene                 | *                  |                        | 1700             | 380 U            | 380 U            | 2600                | 1800             | 380 U            | NA                |
| Chrysene                             | *                  |                        | 1400 J           | 320 J            | 380 U            | 3500                | 2400             | 380 U            | 340 UR            |
| Dibenzo(a,h)anthracene               | *                  |                        | 1500 U           | 380 U            | 380 U            | 1700 U              | 420 U            | 380 U            | 340 UR            |
| Fluoranthene                         | 1000000            |                        | 3000             | 190 J            | 380 U            | 5300                | 2400             | 380 U            | 340 UR            |
| Fluorene                             | 1000000            |                        | 1500 U           | 9 J              | 380 U            | 1700 U              | 420 U            | 380 U            | 340 UR            |
| Indeno(1,2,3-cd)pyrene               | *                  |                        | 1400 J           | 18 J             | 380 U            | 1600 J              | 400 J            | 380 U            | 340 UR            |
| Naphthalene                          | 1000000            |                        | 330 J            | 47 J             | 380 U            | 380 J               | 190 J            | 380 U            | 340 UR            |
| Phenanthrene                         | 1000000            |                        | 1200 J           | 190 J            | 380 U            | 2300                | 910              | 380 U            | 340 UR            |
| Pyrene                               | 1000000            |                        | 1400 J           | 150 J            | 380 U            | 2500                | 1000             | 380 U            | 340 UR            |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | MW-34   | NR-26     | NR-27     | NR-28     | NR-29     | NR-30     | NR-31     |
|---------------------------|--------------------|------------------------|---------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Part 375           | Sample Date:           |         | 9/27/1999 | 9/27/1999 | 9/27/1999 | 9/27/1999 | 9/27/1999 | 9/27/1999 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 0-2     | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       |
|                           |                    | Map Zone:              | Zone II | Zone IV   |
| Acenaphthene              | 1000000            |                        | 355 U   | 420 U     | 390 U     | 370 U     | 430 U     | 460 U     | 130 J     |
| Acenaphthylene            | 1000000            |                        | 355 U   | 420 U     | 120 J     | 370 U     | 200 J     | 240 J     | 290 J     |
| Anthracene                | 1000000            |                        | 355 U   | 170 J     | 170 J     | 59 J      | 290 J     | 240 J     | 390 J     |
| Benzo(a)anthracene        | *                  |                        | 441     | 650       | 470       | 210 J     | 1700      | 1600      | 2000      |
| Benzo(a)pyrene            | *                  |                        | 292 J   | 620       | 380 J     | 270 J     | 1500      | 1600      | 2100      |
| Benzo(b)fluoranthene      | *                  |                        | NA      | 1500      | 1200      | 450       | 3200      | 2000      | 2500 D    |
| Benzo(b+k)fluoranthenes   |                    |                        | 1000    | NA        | NA        | NA        | NA        | NA        | NA        |
| Benzo(g,h,i)perylene      | 1000000            |                        | 272 J   | 310 J     | 210 J     | 140 J     | 500       | 760       | 850       |
| Benzo(k)fluoranthene      | *                  |                        | NA      | 920       | 730       | 320 J     | 1500      | 1400      | 2300      |
| Chrysene                  | *                  |                        | 538     | 920       | 700       | 270 J     | 2100      | 1800      | 3200      |
| Dibenzo(a,h)anthracene    | *                  |                        | 355 U   | 420 U     | 390 U     | 370 U     | 230 J     | 460 U     | 430 U     |
| Fluoranthene              | 1000000            |                        | 716     | 1900      | 770       | 380       | 3000      | 2600      | 3200      |
| Fluorene                  | 1000000            |                        | 355 U   | 420 U     | 390 U     | 370 U     | 430 U     | 460 U     | 130 J     |
| Indeno(1,2,3-cd)pyrene    | *                  |                        | 227 J   | 310 J     | 220 J     | 140 J     | 570       | 700       | 960       |
| Naphthalene               | 1000000            |                        | 355 U   | 420 U     | 390 U     | 370 U     | 46 J      | 67 J      | 320 J     |
| Phenanthrene              | 1000000            |                        | 234 J   | 300 J     | 170 J     | 96 J      | 390 J     | 630       | 730       |
| Pyrene                    | 1000000            |                        | 523     | 1800      | 960       | 420       | 2500      | 2600 D    | 3300 D    |
|                           |                    |                        |         |           |           |           |           |           |           |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | NR-32<br>9/27/1999<br>0-1<br>Zone IV | NR-33<br>9/27/1999<br>0-1<br>Zone IV | NR-34<br>9/27/1999<br>0-1<br>Zone IV | O/W-UST/B<br>11/19/1997<br><br>Zone II | O/W-UST/E<br>11/19/1997<br><br>Zone II | O/W-UST/N<br>11/19/1997<br><br>Zone II |
|-------------------------------------|------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| Acenaphthene                        | 1000000                                  |                                                                            | 72 J                                 | 360 J                                | 410 U                                | 100 U                                  | 99 U                                   | 100 U                                  |
| Acenaphthylene                      | 1000000                                  |                                                                            | 300 J                                | 180 J                                | 190 J                                | 79 U                                   | 78 U                                   | 79 U                                   |
| Anthracene                          | 1000000                                  |                                                                            | 380 J                                | 870                                  | 540                                  | 42 U                                   | 42 U                                   | 42 U                                   |
| Benzo(a)anthracene                  | *                                        |                                                                            | 1200                                 | 2400                                 | 1000                                 | 26 U                                   | 27 J                                   | 26 U                                   |
| Benzo(a)pyrene                      | *                                        |                                                                            | 1100                                 | 1900                                 | 1100                                 | 26 U                                   | 26 U                                   | 26 U                                   |
| Benzo(b)fluoranthene                | *                                        |                                                                            | 2500                                 | 2800                                 | 2600                                 | 37 U                                   | 50 J                                   | 37 U                                   |
| Benzo(b+k)fluoranthenes             |                                          |                                                                            | NA                                   | NA                                   | NA                                   | NA                                     | NA                                     | NA                                     |
| Benzo(g,h,i)perylene                | 1000000                                  |                                                                            | 670                                  | 750                                  | 510                                  | 26 U                                   | 26 U                                   | 26 U                                   |
| Benzo(k)fluoranthene                | *                                        |                                                                            | 1600                                 | 1900                                 | 1700                                 | 37 U                                   | 36 U                                   | 37 U                                   |
| Chrysene                            | *                                        |                                                                            | 1800                                 | 2700                                 | 1700                                 | 26 U                                   | 36 J                                   | 26 U                                   |
| Dibenzo(a,h)anthracene              | *                                        |                                                                            | 460 U                                | 300 J                                | 410 U                                | 26 U                                   | 26 U                                   | 26 U                                   |
| Fluoranthene                        | 1000000                                  |                                                                            | 2500                                 | 2500                                 | 1400                                 | 32 U                                   | 37 J                                   | 32 U                                   |
| Fluorene                            | 1000000                                  |                                                                            | 69 J                                 | 280 J                                | 410 U                                | 89 U                                   | 89 U                                   | 89 U                                   |
| Indeno(1,2,3-cd)pyrene              | *                                        |                                                                            | 690                                  | 760                                  | 590                                  | 58 U                                   | 57 U                                   | 58 U                                   |
| Naphthalene                         | 1000000                                  |                                                                            | 140 J                                | 140 J                                | 100 J                                | 110 U                                  | 100 U                                  | 110 U                                  |
| Phenanthrene                        | 1000000                                  |                                                                            | 540                                  | 2800                                 | 350 J                                | 47 U                                   | 47 U                                   | 47 U                                   |
| Pyrene                              | 1000000                                  |                                                                            | 3200                                 | 4400 D                               | 1600                                 | 26 U                                   | 34 J                                   | 26 U                                   |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | O/W-UST/S<br>11/19/1997<br><br>Zone II | O/W-UST/W<br>11/19/1997<br><br>Zone II | PC-13<br>7/19/2007<br>0-1<br>Zone II | PC-13<br>7/19/2007<br>1-2<br>Zone II | PC-13<br>7/19/2007<br>2-3<br>Zone II | PC-14<br>7/19/2007<br>0-1<br>Zone II |
|-------------------------------------|------------------------------------------|----------------------------------------------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Acenaphthene                        | 1000000                                  |                                                                            | 100 U                                  | 100 U                                  | 73 J                                 | 82 J                                 | 59 J                                 | 370 U                                |
| Acenaphthylene                      | 1000000                                  |                                                                            | 79 U                                   | 80 U                                   | 370 J                                | 430                                  | 410                                  | 45 J                                 |
| Anthracene                          | 1000000                                  |                                                                            | 42 U                                   | 43 U                                   | 450                                  | 560                                  | 510                                  | 44 J                                 |
| Benzo(a)anthracene                  | *                                        |                                                                            | 26 U                                   | 27 U                                   | 1100                                 | 1500                                 | 1000                                 | 140 J                                |
| Benzo(a)pyrene                      | *                                        |                                                                            | 26 U                                   | 27 U                                   | 880                                  | 1300                                 | 1100                                 | 150 J                                |
| Benzo(b)fluoranthene                | *                                        |                                                                            | 27 J                                   | 37 U                                   | 2200                                 | 2600                                 | 2300                                 | 350 J                                |
| Benzo(b+k)fluoranthenes             |                                          |                                                                            | NA                                     | NA                                     | NA                                   | NA                                   | NA                                   | NA                                   |
| Benzo(g,h,i)perylene                | 1000000                                  |                                                                            | 26 U                                   | 27 U                                   | 1300                                 | 1500                                 | 1600                                 | 210 J                                |
| Benzo(k)fluoranthene                | *                                        |                                                                            | 37 U                                   | 37 U                                   | 660                                  | 760                                  | 580                                  | 130 J                                |
| Chrysene                            | *                                        |                                                                            | 26 U                                   | 27 U                                   | 1400                                 | 1800                                 | 1500                                 | 190 J                                |
| Dibenzo(a,h)anthracene              | *                                        |                                                                            | 26 U                                   | 27 U                                   | 390                                  | 520                                  | 490                                  | 70 J                                 |
| Fluoranthene                        | 1000000                                  |                                                                            | 32 U                                   | 32 U                                   | 1800                                 | 2000                                 | 1500                                 | 130 J                                |
| Fluorene                            | 1000000                                  |                                                                            | 89 U                                   | 91 U                                   | 60 J                                 | 110 J                                | 75 J                                 | 370 U                                |
| Indeno(1,2,3-cd)pyrene              | *                                        |                                                                            | 58 U                                   | 59 U                                   | 1200                                 | 1400                                 | 1300                                 | 170 J                                |
| Naphthalene                         | 1000000                                  |                                                                            | 110 U                                  | 110 U                                  | 380                                  | 200 J                                | 390                                  | 370 U                                |
| Phenanthrene                        | 1000000                                  |                                                                            | 47 U                                   | 48 U                                   | 1100                                 | 950                                  | 1100                                 | 70 J                                 |
| Pyrene                              | 1000000                                  |                                                                            | 26 U                                   | 27 U                                   | 1700                                 | 2000                                 | 1400                                 | 180 J                                |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| D                         | NYSDEC             | Sample Designation:    | PC-14     | PC-14     | PT-1      | PT-2      | PT-2      | PT-2/C    |
|---------------------------|--------------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Part 375           | Sample Date:           | 7/19/2007 | 7/19/2007 | 3/18/2004 | 3/18/2004 | 3/18/2004 | 4/13/2004 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 1-2       | 2-3       | 0-1       | 0-1       | 1-2       | 3-3       |
|                           |                    | Map Zone:              | Zone II   | Zone II   | Zone I    | Zone I    | Zone I    | Zone I    |
| Acenaphthene              | 1000000            |                        | 360 U     | 350 U     | 350 U     | 500 J     | 580 J     | 31 J      |
| Acenaphthylene            | 1000000            |                        | 360 U     | 350 U     | 100 J     | 850       | 180 J     | 130 J     |
| Anthracene                | 1000000            |                        | 360 U     | 350 U     | 130 J     | 2300      | 1300 J    | 250 J     |
| Benzo(a)anthracene        | *                  |                        | 96 J      | 350 U     | 250 J     | 6000      | 3200      | 420       |
| Benzo(a)pyrene            | *                  |                        | 110 J     | 350 U     | 280 J     | 5900 D    | 3500      | 360       |
| Benzo(b)fluoranthene      | *                  |                        | 180 J     | 350 U     | 370       | 5300 D    | 5400      | 520       |
| Benzo(b+k)fluoranthenes   |                    |                        | NA        | NA        | NA        | NA        | NA        | NA        |
| Benzo(g,h,i)perylene      | 1000000            |                        | 120 J     | 350 U     | 150 J     | 3800      | 2200      | 380       |
| Benzo(k)fluoranthene      | *                  |                        | 63 J      | 350 U     | 290 J     | 3200      | 1500 U    | 460       |
| Chrysene                  | *                  |                        | 110 J     | 350 U     | 300 J     | 5700 D    | 3600      | 520       |
| Dibenzo(a,h)anthracene    | *                  |                        | 360 U     | 350 U     | 55 J      | 1800      | 1000 J    | 160 J     |
| Fluoranthene              | 1000000            |                        | 97 J      | 350 U     | 530       | 13000 D   | 7500      | 710       |
| Fluorene                  | 1000000            |                        | 360 U     | 350 U     | 350 U     | 520 J     | 600 J     | 36 J      |
| Indeno(1,2,3-cd)pyrene    | *                  |                        | 98 J      | 350 U     | 150 J     | 4000      | 2200      | 340 J     |
| Naphthalene               | 1000000            |                        | 360 U     | 350 U     | 350 U     | 280 J     | 490 J     | 160 J     |
| Phenanthrene              | 1000000            |                        | 360 U     | 350 U     | 210 J     | 5800 D    | 6700      | 410       |
| Pyrene                    | 1000000            |                        | 160 J     | 350 U     | 320 J     | 7400 D    | 5900      | 580       |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- NA Data not available
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)
- DUP Duplicate
- RE Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | PT-3<br>3/18/2004<br>0-1<br>Zone I | PT-4<br>3/18/2004<br>0-1<br>Zone II | PT-5<br>3/18/2004<br>0-1<br>Zone I | PT-6<br>3/18/2004<br>0-1<br>Zone II | PT-7<br>3/18/2004<br>0-1<br>Zone II | QB-1<br>10/26/1999<br>0-1<br>Zone IV | QB-2<br>10/26/1999<br>0-1<br>Zone IV |
|-------------------------------------|------------------------------------------|----------------------------------------------------------------------------|------------------------------------|-------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|
| Acenaphthene                        | 1000000                                  |                                                                            | 83 J                               | 690 U                               | 690 U                              | 670 U                               | 76 J                                | 360 U                                | 340 U                                |
| Acenaphthylene<br>Anthracene        | 1000000                                  |                                                                            | 520 J                              | 300 J                               | 290 J                              | 300 J                               | 850                                 | 360 U                                | 340 U                                |
| Benzo(a)anthracene                  | 1000000                                  |                                                                            | 910<br>1000                        | 380 J<br>250 J                      | 340 J<br>310 J                     | 390 J<br>250 J                      | 1200<br>1100                        | 360 U<br>100 J                       | 100 J<br>610                         |
| Benzo(a)pyrene                      | *                                        |                                                                            | 1100                               | 290 J                               | 310 J                              | 290 J                               | 910                                 | 100 J<br>110 J                       | 410                                  |
| Benzo(b)fluoranthene                | *                                        |                                                                            | 2200                               | 520 J                               | 490 J                              | 420 J                               | 2400                                | 120 J                                | 530                                  |
| Benzo(b+k)fluoranthenes             |                                          |                                                                            | NA                                 | NA                                  | NA                                 | NA                                  | NA                                  | NA                                   | NA                                   |
| Benzo(g,h,i)perylene                | 1000000                                  |                                                                            | 740                                | 260 J                               | 230 J                              | 190 J                               | 450 J                               | 360 U                                | 120 J                                |
| Benzo(k)fluoranthene                | *                                        |                                                                            | 720 U                              | 350 J                               | 400 J                              | 330 J                               | 720 U                               | 98 J                                 | 470                                  |
| Chrysene                            | *                                        |                                                                            | 1300                               | 390 J                               | 440 J                              | 360 J                               | 1300                                | 130 J                                | 660                                  |
| Dibenzo(a,h)anthracene              | *                                        |                                                                            | 260 J                              | 100 J                               | 96 J                               | 56 J                                | 210 J                               | 360 U                                | 340 U                                |
| Fluoranthene                        | 1000000                                  |                                                                            | 2200                               | 470 J                               | 540 J                              | 370 J                               | 2300                                | 190 J                                | 1100                                 |
| Fluorene                            | 1000000                                  |                                                                            | 120 J                              | 690 U                               | 690 U                              | 670 U                               | 93 J                                | 360 U                                | 44 J                                 |
| Indeno(1,2,3-cd)pyrene              | *                                        |                                                                            | 730                                | 250 J                               | 240 J                              | 180 J                               | 530 J                               | 37 J                                 | 110 J                                |
| Naphthalene                         | 1000000                                  |                                                                            | 330 J                              | 120 J                               | 170 J                              | 670 U                               | 910                                 | 360 U                                | 340 U                                |
| Phenanthrene                        | 1000000                                  |                                                                            | 1200                               | 230 J                               | 300 J                              | 170 J                               | 1900                                | 110 J                                | 770                                  |
| Pyrene                              | 1000000                                  |                                                                            | 1400                               | 290 J                               | 360 J                              | 230 J                               | 1200                                | 210 J                                | 1200                                 |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC<br>Part 375<br>Industrial (μg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | QB-3<br>10/26/1999<br>0-1<br>Zone IV | QB-4<br>10/26/1999<br>0-1<br>Zone IV | QB-5<br>10/26/1999<br>0-1<br>Zone III | QB-6<br>10/26/1999<br>0-1<br>Zone IV |
|-------------------------------------|------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|
| Acenaphthene                        | 1000000                                  |                                                                            | 390 U                                | 350 U                                | 350 U                                 | 46 J                                 |
| Acenaphthylene                      | 1000000                                  |                                                                            | 390 U                                | 350 U                                | 350 U                                 | 360 U                                |
| Anthracene                          | 1000000                                  |                                                                            | 390 U                                | 120 J                                | 350 U                                 | 110 J                                |
| Benzo(a)anthracene                  | *                                        |                                                                            | 390 U                                | 470                                  | 60 J                                  | 280 J                                |
| Benzo(a)pyrene                      | *                                        |                                                                            | 390 U                                | 320 J                                | 40 J                                  | 200 J                                |
| Benzo(b)fluoranthene                | *                                        |                                                                            | 390 U                                | 390                                  | 39 J                                  | 250 J                                |
| Benzo(b+k)fluoranthenes             |                                          |                                                                            | NA                                   | NA                                   | NA                                    | NA                                   |
| Benzo(g,h,i)perylene                | 1000000                                  |                                                                            | 390 U                                | 92 J                                 | 350 U                                 | 85 J                                 |
| Benzo(k)fluoranthene                | *                                        |                                                                            | 390 U                                | 390                                  | 57 J                                  | 200 J                                |
| Chrysene                            | *                                        |                                                                            | 46 J                                 | 500                                  | 64 J                                  | 350 J                                |
| Dibenzo(a,h)anthracene              | *                                        |                                                                            | 390 U                                | 350 U                                | 350 U                                 | 360 U                                |
| Fluoranthene                        | 1000000                                  |                                                                            | 76 J                                 | 950                                  | 120 J                                 | 690                                  |
| Fluorene                            | 1000000                                  |                                                                            | 390 U                                | 350 U                                | 350 U                                 | 38 J                                 |
| Indeno(1,2,3-cd)pyrene              | *                                        |                                                                            | 390 U                                | 100 J                                | 350 U                                 | 78 J                                 |
| Naphthalene                         | 1000000                                  |                                                                            | 390 U                                | 350 U                                | 350 U                                 | 360 U                                |
| Phenanthrene                        | 1000000                                  |                                                                            | 40 J                                 | 610                                  | 66 J                                  | 490                                  |
| Pyrene                              | 1000000                                  |                                                                            | 80 J                                 | 890                                  | 110 J                                 | 660                                  |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | QB-7<br>10/26/1999<br>0-1<br>Zone IV | QC-1<br>4/12/2000<br>0-1<br>Zone IV | QC-2<br>4/12/2000<br>0-1<br>Zone III | QC-3<br>4/12/2000<br>0-1<br>Zone IV | QC-4<br>4/12/2000<br>0-1<br>Zone III | QC-5<br>4/12/2000<br>0-1<br>Zone IV |
|-------------------------------------|------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|
| Acenaphthene                        | 1000000                                  |                                                                            | 390 U                                | 380 U                               | 370 U                                | 180 J                               | 370 U                                | 370 U                               |
| Acenaphthylene                      | 1000000                                  |                                                                            | 390 U                                | 60 J                                | 370 U                                | 370 U                               | 370 U                                | 370 U                               |
| Anthracene                          | 1000000                                  |                                                                            | 390 U                                | 94 J                                | 61 J                                 | 260 J                               | 370 U                                | 370 U                               |
| Benzo(a)anthracene                  | *                                        |                                                                            | 140 J                                | 370 J                               | 320 J                                | 1200                                | 180 J                                | 140 J                               |
| Benzo(a)pyrene                      | *                                        |                                                                            | 84 J                                 | 400                                 | 300 J                                | 760                                 | 180 J                                | 130 J                               |
| Benzo(b)fluoranthene                | *                                        |                                                                            | 120 J                                | 680                                 | 300 J                                | 710                                 | 190 J                                | 220 J                               |
| Benzo(b+k)fluoranthenes             |                                          |                                                                            | NA                                   | NA                                  | NA                                   | NA                                  | NA                                   | NA                                  |
| Benzo(g,h,i)perylene                | 1000000                                  |                                                                            | 44 J                                 | 160 J                               | 120 J                                | 230 J                               | 73 J                                 | 47 J                                |
| Benzo(k)fluoranthene                | *                                        |                                                                            | 140 J                                | 380 J                               | 520                                  | 760                                 | 220 J                                | 140 J                               |
| Chrysene                            | *                                        |                                                                            | 180 J                                | 440                                 | 400                                  | 1600                                | 220 J                                | 160 J                               |
| Dibenzo(a,h)anthracene              | *                                        |                                                                            | 390 U                                | 60 J                                | 370 U                                | 77 J                                | 370 U                                | 370 U                               |
| Fluoranthene                        | 1000000                                  |                                                                            | 310 J                                | 520                                 | 440                                  | 1100                                | 240 J                                | 170 J                               |
| Fluorene                            | 1000000                                  |                                                                            | 390 U                                | 380 U                               | 370 U                                | 130 J                               | 370 U                                | 370 U                               |
| Indeno(1,2,3-cd)pyrene              | *                                        |                                                                            | 45 J                                 | 160 J                               | 120 J                                | 190 J                               | 59 J                                 | 44 J                                |
| Naphthalene                         | 1000000                                  |                                                                            | 390 U                                | 380 U                               | 370 U                                | 140 J                               | 370 U                                | 370 U                               |
| Phenanthrene                        | 1000000                                  |                                                                            | 180 J                                | 220 J                               | 170 J                                | 1600                                | 160 J                                | 47 J                                |
| Pyrene                              | 1000000                                  |                                                                            | 290 J                                | 640                                 | 560                                  | 2400                                | 400                                  | 190 J                               |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | QC-6<br>4/12/2000<br>0-1<br>Zone III | QC-7<br>4/12/2000<br>0-1<br>Zone IV | QC-8<br>4/13/2000<br>0-1<br>Zone III | QC-9 RE<br>4/13/2000<br>0-1<br>Zone III | QC-10 RE<br>4/13/2000<br>0-1<br>Zone III | QC-11<br>4/13/2000<br>0-1<br>Zone III | QC-12 RE<br>4/13/2000<br>0-1<br>Zone IV |
|-------------------------------------|------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|-----------------------------------------|------------------------------------------|---------------------------------------|-----------------------------------------|
| Acenaphthene                        | 1000000                                  |                                                                            | 40 J                                 | 360 U                               | 360 U                                | 370 U                                   | 360 U                                    | 360 U                                 | 350 U                                   |
| Acenaphthylene                      | 1000000                                  |                                                                            | 38 J                                 | 360 U                               | 360 U                                | 370 U                                   | 360 U                                    | 360 U                                 | 350 U                                   |
| Anthracene                          | 1000000                                  |                                                                            | 110 J                                | 360 U                               | 360 U                                | 370 U                                   | 360 U                                    | 360 U                                 | 350 U                                   |
| Benzo(a)anthracene                  | *                                        |                                                                            | 380                                  | 360 U                               | 360 U                                | 370 U                                   | 170 J                                    | 360 U                                 | 350 U                                   |
| Benzo(a)pyrene                      | *                                        |                                                                            | 350 J                                | 360 U                               | 360 U                                | 370 U                                   | 130 J                                    | 360 U                                 | 350 U                                   |
| Benzo(b)fluoranthene                | *                                        |                                                                            | 630                                  | 360 U                               | 360 U                                | 370 U                                   | 170 J                                    | 360 U                                 | 350 U                                   |
| Benzo(b+k)fluoranthenes             |                                          |                                                                            | NA                                   | NA                                  | NA                                   | NA                                      | NA                                       | NA                                    | NA                                      |
| Benzo(g,h,i)perylene                | 1000000                                  |                                                                            | 140 J                                | 360 U                               | 360 U                                | 370 U                                   | 61 J                                     | 360 U                                 | 350 U                                   |
| Benzo(k)fluoranthene                | *                                        |                                                                            | 350 J                                | 360 U                               | 360 U                                | 370 U                                   | 120 J                                    | 360 U                                 | 350 U                                   |
| Chrysene                            | *                                        |                                                                            | 520                                  | 360 U                               | 360 U                                | 370 U                                   | 210 J                                    | 41 J                                  | 350 U                                   |
| Dibenzo(a,h)anthracene              | *                                        |                                                                            | 56 J                                 | 360 U                               | 360 U                                | 370 U                                   | 360 U                                    | 360 U                                 | 350 U                                   |
| Fluoranthene                        | 1000000                                  |                                                                            | 700                                  | 360 U                               | 360 U                                | 42 J                                    | 280 J                                    | 51 J                                  | 350 U                                   |
| Fluorene                            | 1000000                                  |                                                                            | 370 U                                | 360 U                               | 360 U                                | 370 U                                   | 360 U                                    | 360 U                                 | 350 U                                   |
| Indeno(1,2,3-cd)pyrene              | *                                        |                                                                            | 140 J                                | 360 U                               | 360 U                                | 370 U                                   | 55 J                                     | 360 U                                 | 350 U                                   |
| Naphthalene                         | 1000000                                  |                                                                            | 370 U                                | 360 U                               | 360 U                                | 370 U                                   | 360 U                                    | 360 U                                 | 350 U                                   |
| Phenanthrene                        | 1000000                                  |                                                                            | 540                                  | 360 U                               | 360 U                                | 370 U                                   | 110 J                                    | 39 J                                  | 350 U                                   |
| Pyrene                              | 1000000                                  |                                                                            | 980                                  | 360 U                               | 360 U                                | 45 J                                    | 300 J                                    | 60 J                                  | 350 U                                   |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | QC-13<br>4/13/2000<br>0-1<br>Zone III | R-UST/BOT<br>11/18/1997<br><br>Zone II | R-UST/E<br>11/18/1997<br><br>Zone II | R-UST/N<br>11/18/1997<br><br>Zone II | R-UST/S<br>11/18/1997<br><br>Zone II | R-UST/W<br>11/18/1997<br><br>Zone II |
|----------------------------------------|------------------------------------------|----------------------------------------------------------------------------|---------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Acenaphthene                           | 1000000                                  |                                                                            | 350 U                                 | 100 U                                  | 110 U                                | 57 J                                 | 51 J                                 | 100 U                                |
| Acenaphthylene                         | 1000000                                  |                                                                            | 350 U                                 | 79 U                                   | 83 U                                 | 160 J                                | 110 J                                | 79 U                                 |
| Anthracene                             | 1000000                                  |                                                                            | 350 U                                 | 42 U                                   | 44 U                                 | 230 J                                | 200 J                                | 42 U                                 |
| Benzo(a)anthracene                     | *                                        |                                                                            | 350 U                                 | 26 U                                   | 28 U                                 | 660                                  | 560                                  | 26 U                                 |
| Benzo(a)pyrene                         | *                                        |                                                                            | 350 U                                 | 26 U                                   | 28 U                                 | 700                                  | 590                                  | 26 U                                 |
| Benzo(b)fluoranthene                   | *                                        |                                                                            | 350 U                                 | 37 U                                   | 39 U                                 | 1500                                 | 1200                                 | 37 U                                 |
| Benzo(b+k)fluoranthenes                |                                          |                                                                            | NA                                    | NA                                     | NA                                   | NA                                   | NA                                   | NA                                   |
| Benzo(g,h,i)perylene                   | 1000000                                  |                                                                            | 350 U                                 | 26 U                                   | 28 U                                 | 630                                  | 650                                  | 26 U                                 |
| Benzo(k)fluoranthene                   | *                                        |                                                                            | 350 U                                 | 37 U                                   | 39 U                                 | 38 U                                 | 980                                  | 37 U                                 |
| Chrysene                               | *                                        |                                                                            | 350 U                                 | 26 U                                   | 28 U                                 | 1000                                 | 910                                  | 26 U                                 |
| Dibenzo(a,h)anthracene                 | *                                        |                                                                            | 350 U                                 | 26 U                                   | 28 U                                 | 280                                  | 27 U                                 | 26 U                                 |
| Fluoranthene                           | 1000000                                  |                                                                            | 350 U                                 | 32 U                                   | 33 U                                 | 1100                                 | 780                                  | 32 U                                 |
| Fluorene                               | 1000000                                  |                                                                            | 350 U                                 | 89 U                                   | 95 U                                 | 52 J                                 | 46 J                                 | 90 U                                 |
| Indeno(1,2,3-cd)pyrene                 | *                                        |                                                                            | 350 U                                 | 58 U                                   | 61 U                                 | 570                                  | 550                                  | 58 U                                 |
| Naphthalene                            | 1000000                                  |                                                                            | 350 U                                 | 110 U                                  | 110 U                                | 210 J                                | 220 J                                | 110 U                                |
| Phenanthrene                           | 1000000                                  |                                                                            | 350 U                                 | 47 U                                   | 50 U                                 | 670                                  | 640                                  | 48 U                                 |
| Pyrene                                 | 1000000                                  |                                                                            | 350 U                                 | 26 U                                   | 28 U                                 | 1600                                 | 1600                                 | 26 U                                 |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation: Sample Date: Sample Depth (ft bls): Map Zone: | R-UST/W DUP<br>11/18/1997<br><br>Zone II | S-17 RE<br>10/19/1990<br>0-2<br>Zone III | S-22 RE<br>10/17/1990<br>0-2<br>Zone II | S-30<br>10/16/1990<br>0-2<br>Zone I | S-33<br>12/13/1990<br>4-6<br>Zone IV | S-35<br>11/30/1990<br>8-10<br>Zone IV |
|-------------------------------------|------------------------------------------|-------------------------------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|-------------------------------------|--------------------------------------|---------------------------------------|
| Acenaphthene                        | 1000000                                  |                                                                   | 100 U                                    | 2390 U                                   | 2010 U                                  | 370 U                               | 355 U                                | 380 U                                 |
| Acenaphthylene                      | 1000000                                  |                                                                   | 47 J                                     | 2390 U                                   | 2010 U                                  | 370 U                               | 355 U                                | 380 U                                 |
| Anthracene                          | 1000000                                  |                                                                   | 61 J                                     | 2390 U                                   | 2010 U                                  | 370 U                               | 355 U                                | 380 U                                 |
| Benzo(a)anthracene                  | *                                        |                                                                   | 130 J                                    | 2390 U                                   | 2010 U                                  | 370 U                               | 355 U                                | 380 U                                 |
| Benzo(a)pyrene                      | *                                        |                                                                   | 190 J                                    | 2390 U                                   | 2010 U                                  | 370 U                               | 355 U                                | 380 U                                 |
| Benzo(b)fluoranthene                | *                                        |                                                                   | 420                                      | NA                                       | NA                                      | NA                                  | NA                                   | NA                                    |
| Benzo(b+k)fluoranthenes             |                                          |                                                                   | NA                                       | 2390 U                                   | 5617 JV                                 | 370 U                               | 355 U                                | 380 U                                 |
| Benzo(g,h,i)perylene                | 1000000                                  |                                                                   | 180 J                                    | 2390 U                                   | 2010 U                                  | 370 U                               | 355 U                                | 380 U                                 |
| Benzo(k)fluoranthene                | *                                        |                                                                   | 37 U                                     | NA                                       | NA                                      | NA                                  | NA                                   | NA                                    |
| Chrysene                            | *                                        |                                                                   | 270                                      | 2390 U                                   | 2010 U                                  | 370 U                               | 355 U                                | 380 U                                 |
| Dibenzo(a,h)anthracene              | *                                        |                                                                   | 27 U                                     | 2390 U                                   | 2010 U                                  | 370 U                               | 355 U                                | 380 U                                 |
| Fluoranthene                        | 1000000                                  |                                                                   | 220 J                                    | 2390 U                                   | 2585 JV                                 | 370 U                               | 355 U                                | 380 U                                 |
| Fluorene                            | 1000000                                  |                                                                   | 91 U                                     | 2390 U                                   | 2010 U                                  | 370 U                               | 355 U                                | 380 U                                 |
| Indeno(1,2,3-cd)pyrene              | *                                        |                                                                   | 170 J                                    | 2390 U                                   | 2010 U                                  | 370 U                               | 355 U                                | 380 U                                 |
| Naphthalene                         | 1000000                                  |                                                                   | 82 J                                     | 2390 U                                   | 2010 U                                  | 370 U                               | 355 U                                | 380 U                                 |
| Phenanthrene                        | 1000000                                  |                                                                   | 200 J                                    | 2390 U                                   | 2010 U                                  | 370 U                               | 355 U                                | 380 U                                 |
| Pyrene                              | 1000000                                  |                                                                   | 270                                      | 2390 U                                   | 1270 J                                  | 370 U                               | 355 U                                | 380 U                                 |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | NYSDEC<br>Part 375 | Sample Designation:<br>Sample Date: | S-37<br>12/1/1990 | S-38<br>11/29/1990 | S-39<br>11/29/1990 | S-41A<br>11/7/1990 | S-43<br>11/5/1990 | S-47 RE<br>10/19/1990 |
|---------------------------|--------------------|-------------------------------------|-------------------|--------------------|--------------------|--------------------|-------------------|-----------------------|
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls):              | 4-6               | 2-4                | 2-4                | 3.5-5.5            | 0-2               | 2-4                   |
|                           |                    | Map Zone:                           | Zone III          | Zone III           | Zone III           | Zone III           | Zone III          | Zone III              |
| Acenaphthene              | 1000000            |                                     | 350 U             | 390 U              | 350 U              | 3840 U             | 3710 U            | 3550 U                |
| Acenaphthylene            | 1000000            |                                     | 350 U             | 390 U              | 350 U              | 3840 U             | 3710 U            | 3550 U                |
| Anthracene                | 1000000            |                                     | 350 U             | 390 U              | 350 U              | 3840 U             | 1966 J            | 3550 U                |
| Benzo(a)anthracene        | *                  |                                     | 350 U             | 390 U              | 350 U              | 3840 U             | 12600             | 3550 U                |
| Benzo(a)pyrene            | *                  |                                     | 350 U             | 390 U              | 350 U              | 3840 U             | 5760              | 3550 U                |
| Benzo(b)fluoranthene      | *                  |                                     | NA                | NA                 | NA                 | NA                 | NA                | NA                    |
| Benzo(b+k)fluoranthenes   |                    |                                     | 350 U             | 390 U              | 350 U              | 3840 U             | 7400              | 3550 U                |
| Benzo(g,h,i)perylene      | 1000000            |                                     | 350 U             | 390 U              | 350 U              | 3840 U             | 5800              | 3550 U                |
| Benzo(k)fluoranthene      | *                  |                                     | NA                | NA                 | NA                 | NA                 | NA                | NA                    |
| Chrysene                  | *                  |                                     | 350 U             | 390 U              | 350 U              | 3840 U             | 10100             | 3550 U                |
| Dibenzo(a,h)anthracene    | *                  |                                     | 350 U             | 390 U              | 350 U              | 3840 U             | 2090 J            | 3550 U                |
| Fluoranthene              | 1000000            |                                     | 350 U             | 390 U              | 350 U              | 3840 U             | 19700             | 3550 U                |
| Fluorene                  | 1000000            |                                     | 350 U             | 390 U              | 350 U              | 3840 U             | 3710 U            | 3550 U                |
| Indeno(1,2,3-cd)pyrene    | *                  |                                     | 350 U             | 390 U              | 350 U              | 3840 U             | 4640              | 3550 U                |
| Naphthalene               | 1000000            |                                     | 350 U             | 390 U              | 350 U              | 3840 U             | 3710 U            | 3550 U                |
| Phenanthrene              | 1000000            |                                     | 350 U             | 390 U              | 350 U              | 3840 U             | 11900             | 3550 U                |
| Pyrene                    | 1000000            |                                     | 350 U             | 390 U              | 350 U              | 3840 U             | 16500             | 3550 U                |
|                           |                    |                                     |                   |                    |                    |                    |                   |                       |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Part 375<br>Industrial (μg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | S-49 RE<br>10/19/1990<br>2-4<br>Zone III | S-53<br>11/18/1990<br>5-7<br>Zone II | S-60<br>12/12/1990<br>4-6<br>Zone II | S-80<br>10/3/1990<br>2-4<br>Zone II | S-82<br>10/16/1990<br>0-2<br>Zone I | S-90<br>10/1/1990<br>1-3<br>Zone I |
|----------------------------------------|------------------------------------------|----------------------------------------------------------------------------|------------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|------------------------------------|
| Acenaphthene                           | 1000000                                  |                                                                            | 3510 U                                   | 340 U                                | 340 U                                | 1720 U                              | 1830 U                              | 1770 UJV                           |
| Acenaphthylene                         | 1000000                                  |                                                                            | 3510 U                                   | 340 U                                | 340 U                                | 1720 U                              | 1830 U                              | 1770 UJV                           |
| Anthracene                             | 1000000                                  |                                                                            | 3510 U                                   | 340 U                                | 340 U                                | 1720 U                              | 1830 U                              | 1770 UJV                           |
| Benzo(a)anthracene                     | *                                        |                                                                            | 3510 U                                   | 340 U                                | 340 U                                | 1720 U                              | 1830 U                              | 1770 UJV                           |
| Benzo(a)pyrene                         | *                                        |                                                                            | 3510 U                                   | 340 U                                | 340 U                                | 1720 U                              | 1830 U                              | 1770 UJV                           |
| Benzo(b)fluoranthene                   | *                                        |                                                                            | NA                                       | NA                                   | NA                                   | NA                                  | NA                                  | NA                                 |
| Benzo(b+k)fluoranthenes                |                                          |                                                                            | 3510 U                                   | 340 U                                | 340 U                                | 1720 U                              | 1233 J                              | 1770 UJV                           |
| Benzo(g,h,i)perylene                   | 1000000                                  |                                                                            | 3510 U                                   | 340 U                                | 340 U                                | 1720 U                              | 1830 U                              | 1770 UJV                           |
| Benzo(k)fluoranthene                   | *                                        |                                                                            | NA                                       | NA                                   | NA                                   | NA                                  | NA                                  | NA                                 |
| Chrysene                               | *                                        |                                                                            | 3510 U                                   | 340 U                                | 340 U                                | 1720 U                              | 1830 U                              | 1770 UJV                           |
| Dibenzo(a,h)anthracene                 | *                                        |                                                                            | 3510 U                                   | 340 U                                | 340 U                                | 1720 U                              | 1830 U                              | 1770 UJV                           |
| Fluoranthene                           | 1000000                                  |                                                                            | 3510 U                                   | 340 U                                | 340 U                                | 1720 U                              | 1830 U                              | 1770 UJV                           |
| Fluorene                               | 1000000                                  |                                                                            | 3510 U                                   | 340 U                                | 340 U                                | 1720 U                              | 1830 U                              | 1770 UJV                           |
| Indeno(1,2,3-cd)pyrene                 | *                                        |                                                                            | 3510 U                                   | 340 U                                | 340 U                                | 1720 U                              | 1830 U                              | 1770 UJV                           |
| Naphthalene                            | 1000000                                  |                                                                            | 3510 U                                   | 340 U                                | 340 U                                | 1720 U                              | 1830 U                              | 1770 UJV                           |
| Phenanthrene                           | 1000000                                  |                                                                            | 3510 U                                   | 340 U                                | 340 U                                | 1720 U                              | 1830 U                              | 1770 UJV                           |
| Pyrene                                 | 1000000                                  |                                                                            | 3510 U                                   | 340 U                                | 340 U                                | 1720 U                              | 1830 U                              | 1770 UJV                           |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | S-100<br>1/18/1993<br>0-2<br>Zone II | S-101 RE<br>1/18/1993<br>0-2<br>Zone II | S-102 RE<br>1/18/1993<br>0-2<br>Zone II | S-164<br>7/19/2007<br>0-1<br>Zone I | S-164<br>7/19/2007<br>1-2<br>Zone I | S-164<br>7/19/2007<br>2-3<br>Zone I | S-165<br>7/19/2007<br>0-1<br>Zone I |
|-------------------------------------|------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Acenaphthene                        | 1000000                                  |                                                                            | 74 JV                                | 290 JV                                  | 380 UJV                                 | 360 U                               | 350 U                               | 350 U                               | 380 U                               |
| Acenaphthylene                      | 1000000                                  |                                                                            | 380 JV                               | 3500 JV                                 | 710 JV                                  | 360 U                               | 350 U                               | 350 U                               | 110 J                               |
| Anthracene                          | 1000000                                  |                                                                            | 460 JV                               | 3200 JV                                 | 340 JV                                  | 360 U                               | 350 U                               | 350 U                               | 120 J                               |
| Benzo(a)anthracene                  | *                                        |                                                                            | 1100 JV                              | 4600 JV                                 | 730 JV                                  | 360 U                               | 350 U                               | 350 U                               | 480                                 |
| Benzo(a)pyrene                      | *                                        |                                                                            | 1200 JV                              | $4000  \mathrm{JV}$                     | 2100 JV                                 | 360 U                               | 350 U                               | 350 U                               | 380 J                               |
| Benzo(b)fluoranthene                | *                                        |                                                                            | 1000 JV                              | 3500 JV                                 | 760 JV                                  | 360 U                               | 350 U                               | 350 U                               | 850                                 |
| Benzo(b+k)fluoranthenes             |                                          |                                                                            | NA                                   | NA                                      | NA                                      | NA                                  | NA                                  | NA                                  | NA                                  |
| Benzo(g,h,i)perylene                | 1000000                                  |                                                                            | 150 JV                               | 550 JV                                  | $280\mathrm{JV}$                        | 360 U                               | 350 U                               | 350 U                               | 370 J                               |
| Benzo(k)fluoranthene                | *                                        |                                                                            | 940 JV                               | 3800 JV                                 | 670 JV                                  | 360 U                               | 350 U                               | 350 U                               | 290 J                               |
| Chrysene                            | *                                        |                                                                            | 380 UJV                              | 6500 JV                                 | 1100 JV                                 | 360 U                               | 350 U                               | 350 U                               | 630                                 |
| Dibenzo(a,h)anthracene              | *                                        |                                                                            | 51 JV                                | 3100 UJV                                | 180 JV                                  | 360 U                               | 350 U                               | 350 U                               | 130 J                               |
| Fluoranthene                        | 1000000                                  |                                                                            | 1700 JV                              | 6800 JV                                 | 220 JV                                  | 360 U                               | 350 U                               | 35 J                                | 640                                 |
| Fluorene                            | 1000000                                  |                                                                            | 110 JV                               | 600 JV                                  | 380 UJV                                 | 360 U                               | 350 U                               | 350 U                               | 380 U                               |
| Indeno(1,2,3-cd)pyrene              | *                                        |                                                                            | 280 JV                               | 1200 JV                                 | 670 JV                                  | 360 U                               | 350 U                               | 350 U                               | 340 J                               |
| Naphthalene                         | 1000000                                  |                                                                            | 85 JV                                | 660 JV                                  | 280 JV                                  | 360 U                               | 350 U                               | 350 U                               | 380 U                               |
| Phenanthrene                        | 1000000                                  |                                                                            | 1000 JV                              | 3600 JV                                 | 630 JV                                  | 360 U                               | 350 U                               | 350 U                               | 170 J                               |
| Pyrene                              | 1000000                                  |                                                                            | 380 UJV                              | 7800 JV                                 | 710 JV                                  | 360 U                               | 350 U                               | 350 U                               | 880                                 |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample

"B" in depth field indicates Ballast sample collected (0-1 ft bls)

- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | S-165     | S-165     | S-166     | S-166     | S-166     | S-167     | S-167     |
|---------------------------|--------------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Part 375           | Sample Date:           | 7/19/2007 | 7/19/2007 | 7/20/2007 | 7/20/2007 | 7/20/2007 | 7/20/2007 | 7/20/2007 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 1-2       | 2-3       | 0-1       | 1-2       | 2-3       | 0-1       | 1-2       |
|                           |                    | Map Zone:              | Zone I    |
| Acenaphthene              | 1000000            |                        | 360 U     | 360 U     | 17 U      | 13 U      | 15 U      | 18 U      | 17 U      |
| Acenaphthylene            | 1000000            |                        | 360 U     | 360 U     | 13 U      | 12 U      | 14 U      | 51        | 13 U      |
| Anthracene                | 1000000            |                        | 360 U     | 360 U     | 12 U      | 7.5 U     | 8.5 U     | 110       | 12 U      |
| Benzo(a)anthracene        | *                  |                        | 57 J      | 76 J      | 66        | 7.3 U     | 8.3 U     | 450       | 61        |
| Benzo(a)pyrene            | *                  |                        | 44 J      | 72 J      | 57        | 13 U      | 15 U      | 400       | 53        |
| Benzo(b)fluoranthene      | *                  |                        | 110 J     | 130 J     | 110       | 9.8 U     | 11 U      | 630       | 80        |
| Benzo(b+k)fluoranthenes   |                    |                        | NA        |
| Benzo(g,h,i)perylene      | 1000000            |                        | 52 J      | 77 J      | 71        | 6.2 U     | 7 U       | 390       | 50        |
| Benzo(k)fluoranthene      | *                  |                        | 46 J      | 78 J      | 13 U      | 16 U      | 18 U      | 190       | 13 U      |
| Chrysene                  | *                  |                        | 67 J      | 110 J     | 69        | 9.3 U     | 10 U      | 490       | 65        |
| Dibenzo(a,h)anthracene    | *                  |                        | 360 U     | 360 U     | 4.2 U     | 10 U      | 11 U      | 110       | 4.2 U     |
| Fluoranthene              | 1000000            |                        | 82 J      | 96 J      | 71        | 4.9 U     | 5.5 U     | 770       | 76        |
| Fluorene                  | 1000000            |                        | 360 U     | 360 U     | 13 U      | 12 U      | 14 U      | 14 U      | 13 U      |
| Indeno(1,2,3-cd)pyrene    | *                  |                        | 53 J      | 70 J      | 59        | 8.5 U     | 9.6 U     | 320       | 43        |
| Naphthalene               | 1000000            |                        | 360 U     | 360 U     | 23 U      | 21 U      | 24 U      | 25 U      | 23 U      |
| Phenanthrene              | 1000000            |                        | 360 U     | 360 U     | 5.3 U     | 6.1 U     | 6.9 U     | 370       | 36        |
| Pyrene                    | 1000000            |                        | 100 J     | 140 J     | 93        | 5.1 U     | 5.7 U     | 810       | 100       |
|                           |                    |                        |           |           |           |           |           |           |           |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | S-167<br>7/20/2007<br>2-3<br>Zone I | S-168<br>7/20/2007<br>0-1<br>Zone IV | S-168<br>7/20/2007<br>1-2<br>Zone IV | S-168<br>7/20/2007<br>2-3<br>Zone IV | S-169<br>7/20/2007<br>0-1<br>Zone IV | S-169<br>7/20/2007<br>1-2<br>Zone IV | S-169<br>7/20/2007<br>2-3<br>Zone IV |
|----------------------------------------|------------------------------------------|----------------------------------------------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Acenaphthene                           | 1000000                                  |                                                                            | 17 U                                | 60                                   | 14 U                                 | 13 U                                 | 20 U                                 | 19 U                                 | 18 U                                 |
| Acenaphthylene                         | 1000000                                  |                                                                            | 13 U                                | 100                                  | 13 U                                 | 12 U                                 | 15 U                                 | 14 U                                 | 14 U                                 |
| Anthracene                             | 1000000                                  |                                                                            | 12 U                                | 180                                  | 7.7 U                                | 7.6 U                                | 13 U                                 | 13 U                                 | 12 U                                 |
| Benzo(a)anthracene                     | *                                        |                                                                            | 4.5 U                               | 890                                  | 46                                   | 7.4 U                                | 74                                   | 5.1 U                                | 4.8 U                                |
| Benzo(a)pyrene                         | *                                        |                                                                            | 9 U                                 | 730                                  | 40                                   | 13 U                                 | 54                                   | 10 U                                 | 9.7 U                                |
| Benzo(b)fluoranthene                   | *                                        |                                                                            | 5.6 U                               | 1500                                 | 48                                   | 9.9 U                                | 130                                  | 44                                   | 6.1 U                                |
| Benzo(b+k)fluoranthenes                |                                          |                                                                            | NA                                  | NA                                   | NA                                   | NA                                   | NA                                   | NA                                   | NA                                   |
| Benzo(g,h,i)perylene                   | 1000000                                  |                                                                            | 3.2 U                               | 660                                  | 6.3 U                                | 6.3 U                                | 63                                   | 3.6 U                                | 3.4 U                                |
| Benzo(k)fluoranthene                   | *                                        |                                                                            | 13 U                                | 430                                  | 16 U                                 | 16 U                                 | 15 U                                 | 14 U                                 | 14 U                                 |
| Chrysene                               | *                                        |                                                                            | 3.4 U                               | 1300                                 | 41                                   | 9.4 U                                | 160                                  | 53                                   | 3.7 U                                |
| Dibenzo(a,h)anthracene                 | *                                        |                                                                            | 4.1 U                               | 190                                  | 10 U                                 | 10 U                                 | 4.8 U                                | 4.7 U                                | 4.5 U                                |
| Fluoranthene                           | 1000000                                  |                                                                            | 5.6 U                               | 1600                                 | 72                                   | 36                                   | 75                                   | 40                                   | 6.1 U                                |
| Fluorene                               | 1000000                                  |                                                                            | 13 U                                | 51                                   | 12 U                                 | 12 U                                 | 15 U                                 | 14 U                                 | 14 U                                 |
| Indeno(1,2,3-cd)pyrene                 | *                                        |                                                                            | 4.2 U                               | 580                                  | 8.7 U                                | 8.6 U                                | 45                                   | 4.8 U                                | 4.6 U                                |
| Naphthalene                            | 1000000                                  |                                                                            | 22 U                                | 79                                   | 22 U                                 | 22 U                                 | 26 U                                 | 26 U                                 | 24 U                                 |
| Phenanthrene                           | 1000000                                  |                                                                            | 5.3 U                               | 790                                  | 6.2 U                                | 6.2 U                                | 110                                  | 6 U                                  | 5.7 U                                |
| Pyrene                                 | 1000000                                  |                                                                            | 6.5 U                               | 1800                                 | 87                                   | 46                                   | 97                                   | 54                                   | 7 U                                  |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | S-169     | S2-1            | S2-2     | S2-3     | S2-5     | S2-6     | S2-7     |
|---------------------------|--------------------|------------------------|-----------|-----------------|----------|----------|----------|----------|----------|
| Parameter                 | Part 375           | Sample Date:           | 7/20/2007 | 5/1/2003        | 5/1/2003 | 5/1/2003 | 5/1/2003 | 5/1/2003 | 5/1/2003 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 7-9       | 0-1             | 1-2      | 0-1      | 0-1      | 0-1      | 0-1      |
|                           |                    | Map Zone:              | Zone IV   | Zone IV         | Zone IV  | Zone IV  | Zone IV  | Zone IV  | Zone IV  |
| Acenaphthene              | 1000000            |                        | 19 U      | 220 J           | 740 J    | 31 J     | 330 J    | 250 J    | 85 J     |
| •                         | 1000000            |                        | 51        | 220 J<br>1100 J |          |          | 2900 J   | 1400     |          |
| Acenaphthylene            |                    |                        | _         |                 | 760 J    | 280 J    |          |          | 440      |
| Anthracene                | 1000000            |                        | 63        | 2200            | 2100     | 980      | 6200     | 2400     | 670      |
| Benzo(a)anthracene        |                    |                        | 460       | 3300            | 3800     | 810      | 12000    | 3800     | 1700     |
| Benzo(a)pyrene            | *                  |                        | 350       | 2900            | 2600     | 950      | 9700     | 3800     | 1500     |
| Benzo(b)fluoranthene      | *                  |                        | 470       | 4500            | 2900     | 1600     | 14000    | 6300     | 1900     |
| Benzo(b+k)fluoranthenes   |                    |                        | NA        | NA              | NA       | NA       | NA       | NA       | NA       |
| Benzo(g,h,i)perylene      | 1000000            |                        | 220       | 2200            | 1200 J   | 230 J    | 2700 J   | 780 J    | 310 J    |
| Benzo(k)fluoranthene      | *                  |                        | 140       | 3900            | 4100     | 950      | 11000    | 6000     | 2600     |
| Chrysene                  | *                  |                        | 510       | 4400            | 5200     | 1200     | 18000    | 4900     | 1800     |
| Dibenzo(a,h)anthracene    | *                  |                        | 80        | 1100 J          | 680 J    | 120 J    | 2100 J   | 520 J    | 140 J    |
| Fluoranthene              | 1000000            |                        | 620       | 7000            | 9200     | 960      | 15000    | 6100     | 2600     |
| Fluorene                  | 1000000            |                        | 14 U      | 290 J           | 850 J    | 74 J     | 340 J    | 230 J    | 78 J     |
| Indeno(1,2,3-cd)pyrene    | *                  |                        | 200       | 2700            | 1500 J   | 330 J    | 3600     | 1000     | 320 J    |
| Naphthalene               | 1000000            |                        | 26 U      | 170 U           | 210 J    | 36 J     | 760 J    | 100 U    | 46 J     |
| Phenanthrene              | 1000000            |                        | 87        | 3700            | 2600     | 350      | 3200     | 2900     | 1400     |
| Pyrene                    | 1000000            |                        | 830       | 6700            | 8200     | 1100     | 23000    | 5700     | 2700     |
| 1 Jione                   | 100000             |                        | 030       | 0,00            | 0200     | 1100     | 23300    | 3,00     | 2.30     |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in µg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | S2-8<br>5/1/2003<br>0-1<br>Zone IV | SH-1<br>12/10/2007<br>0-1<br>Zone IV | SH-2<br>12/10/2007<br>0-1<br>Zone IV | SH-3<br>12/10/2007<br>0-1<br>Zone IV | SH-4<br>12/10/2007<br>0-1<br>Zone III | SH-5<br>12/10/2007<br>0-1<br>Zone III | SH-6<br>12/10/2007<br>0-1<br>Zone III |
|-------------------------------------|------------------------------------------|----------------------------------------------------------------------------|------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Acenaphthene                        | 1000000                                  |                                                                            | 100 J                              | 390 U                                | 370 U                                | 370 U                                | 380 U                                 | 350 U                                 | 390 U                                 |
| Acenaphthylene Anthracene           | 1000000<br>1000000                       |                                                                            | 770 J<br>1100                      | 390 U<br>65 J                        | 370 U<br>370 U                       | 370 U<br>370 U                       | 380 U<br>380 U                        | 350 U<br>350 U                        | 390 U<br>390 U                        |
| Benzo(a)anthracene                  | *                                        |                                                                            | 2400                               | 310 J                                | 370 U                                | 370 U                                | 120 J                                 | 350 U                                 | 150 J                                 |
| Benzo(a)pyrene                      | *                                        |                                                                            | 2200                               | 310 J                                | 370 U                                | 370 U                                | 98 J                                  | 350 U                                 | 140 J                                 |
| Benzo(b)fluoranthene                | *                                        |                                                                            | 3500 M                             | 420                                  | 370 U                                | 370 U                                | 170 J                                 | 350 U                                 | 230 Ј                                 |
| Benzo(b+k)fluoranthenes             |                                          |                                                                            | NA                                 | NA                                   | NA                                   | NA                                   | NA                                    | NA                                    | NA                                    |
| Benzo(g,h,i)perylene                | 1000000                                  |                                                                            | 340 J                              | 240 J                                | 370 U                                | 370 U                                | 90 J                                  | 350 U                                 | 120 J                                 |
| Benzo(k)fluoranthene                | *                                        |                                                                            | 3100 M                             | 150 J                                | 370 U                                | 370 U                                | 55 J                                  | 350 U                                 | 77 J                                  |
| Chrysene                            | *                                        |                                                                            | 2800                               | 370 J                                | 370 U                                | 370 U                                | 150 J                                 | 350 U                                 | 190 J                                 |
| Dibenzo(a,h)anthracene              | *                                        |                                                                            | 220 J                              | 71 J                                 | 370 U                                | 370 U                                | 380 U                                 | 350 U                                 | 390 U                                 |
| Fluoranthene                        | 1000000                                  |                                                                            | 4200                               | 510                                  | 370 U                                | 370 U                                | 160 J                                 | 350 U                                 | 260 J                                 |
| Fluorene                            | 1000000                                  |                                                                            | 110 J                              | 390 U                                | 370 U                                | 370 U                                | 380 U                                 | 350 U                                 | 390 U                                 |
| Indeno(1,2,3-cd)pyrene              | *                                        |                                                                            | 450 J                              | 190 J                                | 370 U                                | 370 U                                | 80 J                                  | 350 U                                 | 99 J                                  |
| Naphthalene                         | 1000000                                  |                                                                            | 80 U                               | 390 U                                | 370 U                                | 370 U                                | 380 U                                 | 350 U                                 | 390 U                                 |
| Phenanthrene                        | 1000000                                  |                                                                            | 1800                               | 280 J                                | 370 U                                | 370 U                                | 87 J                                  | 350 U                                 | 160 J                                 |
| Pyrene                              | 1000000                                  |                                                                            | 3900                               | 610                                  | 370 U                                | 370 U                                | 210 J                                 | 350 U                                 | 310 J                                 |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) Inc | Part 375<br>lustrial (µg/kg) | Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | 12/10/2007<br>0-1<br>Zone III | SH-8<br>12/10/2007<br>0-1<br>Zone II | SH-9<br>12/10/2007<br>0-1<br>Zone II | SH-10<br>12/10/2007<br>0-1<br>Zone II | SH-11<br>12/10/2007<br>0-1<br>Zone II | SH-12<br>12/10/2007<br>0-1<br>Zone I | SS-1<br>12/8/1997<br>0-1<br>Zone III |
|-----------------------------------------|------------------------------|-----------------------------------------------------|-------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|
| Acenaphthene                            | 1000000                      |                                                     | 370 U                         | 370 U                                | 140 J                                | 370 U                                 | 370 U                                 | 370 U                                | 31 J                                 |
| Acenaphthylene<br>Anthracene            | 1000000<br>1000000           |                                                     | 370 U<br>370 U                | 370 U<br>370 U                       | 50 J<br>370 J                        | 370 U<br>370 U                        | 83 J<br>120 J                         | 57 J<br>60 J                         | 180 J<br>190 J                       |
| Benzo(a)anthracene                      | *                            |                                                     | 370 U                         | 63 J                                 | 1000                                 | 75 J                                  | 500                                   | 220 J                                | 620                                  |
| Benzo(a)pyrene                          | *                            |                                                     | 370 U                         | 58 J                                 | 850                                  | 62 J                                  | 500                                   | 200 J                                | 780                                  |
| Benzo(b)fluoranthene                    | *                            |                                                     | 370 U                         | 110 J                                | 1200                                 | 81 J                                  | 760                                   | 360 J                                | 1800                                 |
| Benzo(b+k)fluoranthenes                 |                              |                                                     | NA                            | NA                                   | NA                                   | NA                                    | NA                                    | NA                                   | NA                                   |
| Benzo(g,h,i)perylene                    | 1000000                      |                                                     | 370 U                         | 45 J                                 | 540                                  | 43 J                                  | 380                                   | 150 J                                | 1000                                 |
| Benzo(k)fluoranthene                    | *                            |                                                     | 370 U                         | 370 U                                | 310 J                                | 370 U                                 | 200 J                                 | 130 J                                | 400 U                                |
| Chrysene                                | *                            |                                                     | 370 U                         | 72 J                                 | 1000                                 | 79 J                                  | 580                                   | 250 J                                | 710                                  |
| Dibenzo(a,h)anthracene                  | *                            |                                                     | 370 U                         | 370 U                                | 170 J                                | 370 U                                 | 130 J                                 | 56 J                                 | 150 J                                |
| Fluoranthene                            | 1000000                      |                                                     | 370 U                         | 87 J                                 | 1900                                 | 120 J                                 | 770                                   | 270 J                                | 750                                  |
| Fluorene                                | 1000000                      |                                                     | 370 U                         | 370 U                                | 140 J                                | 370 U                                 | 370 U                                 | 370 U                                | 34 J                                 |
| Indeno(1,2,3-cd)pyrene                  | *                            |                                                     | 370 U                         | 40 J                                 | 480                                  | 370 U                                 | 340 J                                 | 160 J                                | 870                                  |
| Naphthalene                             | 1000000                      |                                                     | 370 U                         | 370 U                                | 120 J                                | 370 U                                 | 370 U                                 | 370 U                                | 400 U                                |
| Phenanthrene                            | 1000000                      |                                                     | 370 U                         | 39 J                                 | 1900                                 | 100 J                                 | 400                                   | 78 J                                 | 410                                  |
| Pyrene                                  | 1000000                      |                                                     | 370 U                         | 100 J                                | 2100                                 | 150 J                                 | 990                                   | 320 J                                | 1400                                 |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | SS-1      | SS-2      | SS-2      | SS-3      | SS-3      | SS-4      | SS-4      |
|---------------------------|--------------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Part 375           | Sample Date:           | 12/8/1997 | 12/8/1997 | 12/8/1997 | 12/8/1997 | 12/8/1997 | 12/8/1997 | 12/8/1997 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       |
|                           |                    | Map Zone:              | Zone III  | Zone III  | Zone III  | Zone II   | Zone II   | Zone II   | Zone II   |
| A 1.1                     | 100000             |                        | 250 H     | 40.1      | 260 H     | 25.1      | 250 H     | 270 H     | 200 H     |
| Acenaphthene              | 1000000            |                        | 350 U     | 48 J      | 360 U     | 25 J      | 350 U     | 370 U     | 380 U     |
| Acenaphthylene            | 1000000            |                        | 350 U     | 120 J     | 360 U     | 200 J     | 350 U     | 20 J      | 380 U     |
| Anthracene                | 1000000            |                        | 12 J      | 190 J     | 360 U     | 210 J     | 350 U     | 23 J      | 380 U     |
| Benzo(a)anthracene        | *                  |                        | 63 J      | 700       | 360 U     | 640       | 29 J      | 110 J     | 380 U     |
| Benzo(a)pyrene            | *                  |                        | 73 J      | 740       | 360 U     | 690       | 350 U     | 110 J     | 380 U     |
| Benzo(b)fluoranthene      | *                  |                        | 170 J     | 1600      | 44 J      | 1900      | 100 J     | 370       | 23 J      |
| Benzo(b+k)fluoranthenes   |                    |                        | NA        |
| Benzo(g,h,i)perylene      | 1000000            |                        | 42 J      | 610       | 360 U     | 980       | 22 J      | 91 J      | 380 U     |
| Benzo(k)fluoranthene      | *                  |                        | 350 U     | 380 U     | 360 U     | 370 U     | 350 U     | 370 U     | 380 U     |
| Chrysene                  | *                  |                        | 70 J      | 800       | 18 J      | 830       | 40 J      | 160 J     | 380 U     |
| Dibenzo(a,h)anthracene    | *                  |                        | 350 U     | 120 J     | 360 U     | 220 J     | 350 U     | 370 U     | 380 U     |
| Fluoranthene              | 1000000            |                        | 100 J     | 910       | 360 U     | 660       | 50 J      | 200 J     | 380 U     |
| Fluorene                  | 1000000            |                        | 350 U     | 36 J      | 360 U     | 25 J      | 350 U     | 370 U     | 380 U     |
| Indeno(1,2,3-cd)pyrene    | *                  |                        | 40 J      | 510       | 360 U     | 1000      | 22 J      | 86 J      | 380 U     |
| Naphthalene               | 1000000            |                        | 350 U     | 380 U     | 360 U     | 32 J      | 350 U     | 370 U     | 380 U     |
| Phenanthrene              | 1000000            |                        | 32 J      | 580       | 360 U     | 380       | 350 U     | 79 J      | 380 U     |
| Pyrene                    | 1000000            |                        | 120 J     | 1600      | 22 J      | 1200      | 51 J      | 250 J     | 380 U     |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | SS-5      | SS-5      | SS-6      | SS-6      | SS-7      | SS-7 DUP  | SS-7      |
|---------------------------|--------------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Part 375           | Sample Date:           | 12/8/1997 | 12/8/1997 | 12/8/1997 | 12/8/1997 | 12/9/1997 | 12/9/1997 | 12/9/1997 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       | 0-1       | 1-2       |
|                           |                    | Map Zone:              | Zone II   |
| Acenaphthene              | 1000000            |                        | 390 U     | 370 U     | 390 U     | 190 J     | 70 J      | 130 J     | 360 U     |
| Acenaphthylene            | 1000000            |                        | 81 J      | 370 U     | 390 U     | 400 U     | 210 J     | 210 J     | 360 U     |
| Anthracene                | 1000000            |                        | 88 J      | 370 U     | 39 J      | 400 J     | 250 J     | 350 J     | 360 U     |
| Benzo(a)anthracene        | *                  |                        | 490       | 23 J      | 48 J      | 36 J      | 690       | 1500      | 360 U     |
| Benzo(a)pyrene            | *                  |                        | 590       | 370 U     | 390 U     | 400 U     | 1200      | 1500      | 360 U     |
| Benzo(b)fluoranthene      | *                  |                        | 1900      | 52 J      | 180 J     | 80 J      | 2000      | 2400      | 360 U     |
| Benzo(b+k)fluoranthenes   |                    |                        | NA        |
| Benzo(g,h,i)perylene      | 1000000            |                        | 450       | 370 U     | 64 J      | 400 U     | 280 J     | 370 J     | 360 U     |
| Benzo(k)fluoranthene      | *                  |                        | 390 U     | 370 U     | 390 U     | 400 U     | 370 U     | 380 U     | 360 U     |
| Chrysene                  | *                  |                        | 780       | 23 J      | 81 J      | 27 J      | 960       | 1600      | 360 U     |
| Dibenzo(a,h)anthracene    | *                  |                        | 91 J      | 370 U     | 390 U     | 400 U     | 150 J     | 210 J     | 360 U     |
| Fluoranthene              | 1000000            |                        | 600       | 29 J      | 110 J     | 250 J     | 850       | 1400      | 360 U     |
| Fluorene                  | 1000000            |                        | 390 U     | 370 U     | 42 J      | 130 J     | 58 J      | 100 J     | 360 U     |
| Indeno(1,2,3-cd)pyrene    | *                  |                        | 470       | 370 U     | 60 J      | 400 U     | 320 J     | 450       | 360 U     |
| Naphthalene               | 1000000            |                        | 390 U     | 370 U     | 60 J      | 200 J     | 370 U     | 380 U     | 360 U     |
| Phenanthrene              | 1000000            |                        | 150 J     | 370 U     | 86 J      | 410       | 730       | 1500      | 360 U     |
| Pyrene                    | 1000000            |                        | 1000      | 32 J      | 180 J     | 270 J     | 1700      | 2900      | 360 U     |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | SS-7 DUP<br>12/9/1997<br>1-2<br>Zone II | SS-8<br>12/9/1997<br>0-1<br>Zone II | SS-8<br>12/9/1997<br>1-2<br>Zone II | SS-9<br>12/9/1997<br>0-1<br>Zone II | SS-9<br>12/9/1997<br>1-2<br>Zone II | SS-10<br>12/9/1997<br>0-1<br>Zone II | SS-10<br>12/9/1997<br>1-2<br>Zone II |
|----------------------------------------|------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|
| Acenaphthene                           | 1000000                                  |                                                                            | 370 U                                   | 370 U                               | 350 U                               | 370 U                               | 360 U                               | 44 J                                 | 380 U                                |
| Acenaphthylene                         | 1000000                                  |                                                                            | 370 U                                   | 250 J                               | 25 J                                | 120 J                               | 51 J                                | 460                                  | 30 J                                 |
| Anthracene                             | 1000000                                  |                                                                            | 370 U                                   | 230 J                               | 20 J                                | 100 J                               | 43 J                                | 400                                  | 23 J                                 |
| Benzo(a)anthracene                     | *                                        |                                                                            | 370 U                                   | 480                                 | 38 J                                | 270 J                               | 110 J                               | 960                                  | 64 J                                 |
| Benzo(a)pyrene                         | *                                        |                                                                            | 370 U                                   | 470                                 | 90 J                                | 260 J                               | 110 J                               | 860                                  | 120 J                                |
| Benzo(b)fluoranthene                   | *                                        |                                                                            | 370 U                                   | 1600                                | 160 J                               | 1200                                | 500                                 | 2000                                 | 230 J                                |
| Benzo(b+k)fluoranthenes                |                                          |                                                                            | NA                                      | NA                                  | NA                                  | NA                                  | NA                                  | NA                                   | NA                                   |
| Benzo(g,h,i)perylene                   | 1000000                                  |                                                                            | 370 U                                   | 270 J                               | 35 J                                | 130 J                               | 80 J                                | 460                                  | 54 J                                 |
| Benzo(k)fluoranthene                   | *                                        |                                                                            | 20 J                                    | 370 U                               | 160 J                               | 370 U                               | 360 U                               | 1800                                 | 380 U                                |
| Chrysene                               | *                                        |                                                                            | 370 U                                   | 610                                 | 59 J                                | 380                                 | 150 J                               | 1400                                 | 110 J                                |
| Dibenzo(a,h)anthracene                 | *                                        |                                                                            | 370 U                                   | 140 J                               | 18 J                                | 78 J                                | 46 J                                | 260 J                                | 27 J                                 |
| Fluoranthene                           | 1000000                                  |                                                                            | 19 J                                    | 650                                 | 72 J                                | 360 J                               | 160 J                               | 1400                                 | 120 J                                |
| Fluorene                               | 1000000                                  |                                                                            | 370 U                                   | 370 U                               | 350 U                               | 370 U                               | 360 U                               | 52 J                                 | 380 U                                |
| Indeno(1,2,3-cd)pyrene                 | *                                        |                                                                            | 370 U                                   | 300 J                               | 39 J                                | 170 J                               | 110 J                               | 560                                  | 60 J                                 |
| Naphthalene                            | 1000000                                  |                                                                            | 370 U                                   | 370 U                               | 350 U                               | 370 U                               | 360 U                               | 390 U                                | 380 U                                |
| Phenanthrene                           | 1000000                                  |                                                                            | 370 U                                   | 230 J                               | 21 J                                | 67 J                                | 28 J                                | 500                                  | 26 J                                 |
| Pyrene                                 | 1000000                                  |                                                                            | 21 J                                    | 980                                 | 63 J                                | 420                                 | 140 J                               | 1800                                 | 120 J                                |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| -                         | NYSDEC             | Sample Designation:    | SS-11     | SS-11     | SS-12     | SS-12     | SS-13     | SS-13     | SS-14     |
|---------------------------|--------------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Part 375           | Sample Date:           | 12/9/1997 | 12/9/1997 | 12/9/1997 | 12/9/1997 | 12/9/1997 | 12/9/1997 | 12/9/1997 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       |
|                           |                    | Map Zone:              | Zone II   | Zone I    |
|                           |                    |                        |           |           |           |           |           |           |           |
| Acenaphthene              | 1000000            |                        | 51 J      | 360 U     | 30 J      | 350 U     | 44 J      | 350 U     | 350 U     |
| Acenaphthylene            | 1000000            |                        | 950       | 35 J      | 410 J     | 37 J      | 750       | 46 J      | 29 J      |
| Anthracene                | 1000000            |                        | 810       | 28 J      | 360 J     | 35 J      | 690       | 42 J      | 28 J      |
| Benzo(a)anthracene        | *                  |                        | 2000      | 67 J      | 600       | 81 J      | 1600      | 97 J      | 90 J      |
| Benzo(a)pyrene            | *                  |                        | 3200      | 130 J     | 550       | 23 J      | 2400      | 180 J     | 74 J      |
| Benzo(b)fluoranthene      | *                  |                        | 3200      | 230 J     | 2700      | 300 J     | 2400      | 330 J     | 260 J     |
| Benzo(b+k)fluoranthenes   |                    |                        | NA        |
| Benzo(g,h,i)perylene      | 1000000            |                        | 1200      | 66 J      | 370 J     | 32 J      | 710       | 97 J      | 56 J      |
| Benzo(k)fluoranthene      | *                  |                        | 2500      | 360 U     | 460 U     | 350 U     | 2800      | 330 J     | 350 U     |
| Chrysene                  | *                  |                        | 2400      | 97 J      | 930       | 120 J     | 2200      | 130 J     | 120 J     |
| Dibenzo(a,h)anthracene    | *                  |                        | 680       | 37 J      | 200 J     | 19 J      | 370 J     | 42 J      | 30 J      |
| Fluoranthene              | 1000000            |                        | 1900      | 100 J     | 990       | 7 J       | 1600      | 140 J     | 160 J     |
| Fluorene                  | 1000000            |                        | 39 J      | 360 U     | 38 J      | 350 U     | 50 J      | 350 U     | 350 U     |
| Indeno(1,2,3-cd)pyrene    | *                  |                        | 1400      | 72 J      | 440 J     | 41 J      | 920       | 110 J     | 59 J      |
| Naphthalene               | 1000000            |                        | 410 U     | 360 U     | 460 U     | 350 U     | 26 J      | 350 U     | 350 U     |
| Phenanthrene              | 1000000            |                        | 470       | 22 J      | 370 J     | 48 J      | 730       | 59 J      | 73 J      |
| Pyrene                    | 1000000            |                        | 3000      | 110 J     | 1400      | 170 J     | 3200      | 150 J     | 140 J     |
| -                         |                    |                        |           |           |           |           |           |           |           |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | SS-14<br>12/9/1997<br>1-2<br>Zone I | SS-15<br>12/9/1997<br>0-1<br>Zone I | SS-15<br>12/9/1997<br>1-2<br>Zone I | SS-16<br>12/9/1997<br>0-1<br>Zone I | SS-16<br>12/9/1997<br>1-2<br>Zone I | SS-17<br>12/9/1997<br>0-1<br>Zone I | SS-17<br>12/9/1997<br>1-2<br>Zone I |
|----------------------------------------|------------------------------------------|----------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Acenaphthene                           | 1000000                                  |                                                                            | 350 U                               | 11 J                                | 370 U                               | 360 U                               | 340 U                               | 45 J                                | 350 U                               |
| Acenaphthylene                         | 1000000                                  |                                                                            | 350 U                               | 400                                 | 28 J                                | 170 J                               | 340 U                               | 570                                 | 350 U                               |
| Anthracene                             | 1000000                                  |                                                                            | 350 U                               | 290 J                               | 21 J                                | 150 J                               | 340 U                               | 540                                 | 19 J                                |
| Benzo(a)anthracene                     | *                                        |                                                                            | 350 U                               | 740                                 | 52 J                                | 260 J                               | 340 U<br>340 U                      | 1200                                | 29 J<br>27 J                        |
| Benzo(a)pyrene<br>Benzo(b)fluoranthene | *                                        |                                                                            | 350 U<br>350 U                      | 1500<br>1600                        | 64 J<br>220 J                       | 210 J<br>68 J                       | 340 U<br>340 U                      | 2900<br>3000                        | 27 J<br>190 J                       |
| Benzo(b+k)fluoranthenes                |                                          |                                                                            | 330 U<br>NA                         | NA                                  | NA                                  | NA                                  | 340 U<br>NA                         | 3000<br>NA                          | 190 J<br>NA                         |
| Benzo(g,h,i)perylene                   | 1000000                                  |                                                                            | 350 U                               | 290 J                               | 42 J                                | 130 J                               | 340 U                               | 630                                 | 32 J                                |
| Benzo(k)fluoranthene                   | *                                        |                                                                            | 350 U                               | 390 U                               | 370 U                               | 360 U                               | 340 U                               | 2200                                | 350 U                               |
| Chrysene                               | *                                        |                                                                            | 350 U                               | 1000                                | 80 J                                | 530                                 | 340 U                               | 1900                                | 57 J                                |
| Dibenzo(a,h)anthracene                 | *                                        |                                                                            | 350 U                               | 190 J                               | 24 J                                | 72 J                                | 340 U                               | 370 J                               | 18 J                                |
| Fluoranthene                           | 1000000                                  |                                                                            | 350 U                               | 840                                 | 58 J                                | 430                                 | 340 U                               | 1600                                | 57 J                                |
| Fluorene                               | 1000000                                  |                                                                            | 350 U                               | 390 U                               | 370 U                               | 14 J                                | 340 U                               | 54 J                                | 350 U                               |
| Indeno(1,2,3-cd)pyrene                 | *                                        |                                                                            | 350 U                               | 400                                 | 48 J                                | 160 J                               | 340 U                               | 810                                 | 39 J                                |
| Naphthalene                            | 1000000                                  |                                                                            | 350 U                               | 22 J                                | 370 U                               | 36 J                                | 340 U                               | 32 J                                | 350 U                               |
| Phenanthrene                           | 1000000                                  |                                                                            | 350 U                               | 230 Ј                               | 370 U                               | 220 J                               | 340 U                               | 590                                 | 20 J                                |
| Pyrene                                 | 1000000                                  |                                                                            | 350 U                               | 1400                                | 47 J                                | 710                                 | 340 U                               | 2400                                | 48 J                                |
|                                        |                                          |                                                                            |                                     |                                     |                                     |                                     |                                     |                                     |                                     |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | SS-18     | SS-18     | SS-19     | SS-19     | SS-20     | SS-20     | SS-21     |
|---------------------------|--------------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Part 375           | Sample Date:           | 12/9/1997 | 12/9/1997 | 12/9/1997 | 12/9/1997 | 12/9/1997 | 12/9/1997 | 12/9/1997 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       |
|                           |                    | Map Zone:              | Zone I    |
| Acenaphthene              | 1000000            |                        | 360 U     | 350 U     | 32 J      | 360 U     | 400 U     | 360 U     | 25 J      |
| Acenaphthylene            | 1000000            |                        | 110 J     | 67 J      | 680       | 360 U     | 260 J     | 360 U     | 160 J     |
| Anthracene                | 1000000            |                        | 82 J      | 47 J      | 700 ?     | 360 U     | 250 J     | 360 U     | 220 J     |
| Benzo(a)anthracene        | *                  |                        | 210 J     | 92 J      | 1200      | 51 J      | 780       | 64 J      | 440       |
| Benzo(a)pyrene            | *                  |                        | 190 J     | 220 J     | 720       | 360 U     | 770       | 360 U     | 1200      |
| Benzo(b)fluoranthene      | *                  |                        | 870       | 490       | 2900      | 110 J     | 2200      | 140 J     | 1700      |
| Benzo(b+k)fluoranthenes   |                    |                        | NA        |
| Benzo(g,h,i)perylene      | 1000000            |                        | 120 J     | 66 J      | 750       | 120 J     | 1100      | 61 J      | 680       |
| Benzo(k)fluoranthene      | *                  |                        | 360 U     | 350 U     | 2400      | 59 J      | 1300      | 91 J      | 660       |
| Chrysene                  | *                  |                        | 280 J     | 140 J     | 1600      | 54 J      | 1300      | 92 J      | 870       |
| Dibenzo(a,h)anthracene    | *                  |                        | 79 J      | 44 J      | 420       | 360 U     | 540       | 360 U     | 320 J     |
| Fluoranthene              | 1000000            |                        | 26 J      | 150 J     | 1200      | 31 J      | 1100      | 120 J     | 740       |
| Fluorene                  | 1000000            |                        | 360 U     | 350 U     | 21 J      | 360 U     | 400 U     | 360 U     | 400 U     |
| Indeno(1,2,3-cd)pyrene    | *                  |                        | 150 J     | 83 J      | 930       | 130 J     | 1400      | 62 J      | 860       |
| Naphthalene               | 1000000            |                        | 24 J      | 350 U     | 25 J      | 360 U     | 400 U     | 360 U     | 400 U     |
| Phenanthrene              | 1000000            |                        | 130 J     | 42 J      | 400       | 360 U     | 220 J     | 60 J      | 290 J     |
| Pyrene                    | 1000000            |                        | 310 J     | 130 J     | 2200      | 53 J      | 1200      | 160 J     | 710       |
|                           |                    |                        |           |           |           |           |           |           |           |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| ъ.                        | NYSDEC             | Sample Designation:    | SS-21     | SS-22     | SS-22     | SS-23      | SS-23      | SS-24     |
|---------------------------|--------------------|------------------------|-----------|-----------|-----------|------------|------------|-----------|
| Parameter                 | Part 375           | Sample Date:           | 12/9/1997 | 12/9/1997 | 12/9/1997 | 12/10/1997 | 12/10/1997 | 12/9/1997 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 1-2       | 0-1       | 1-2       | 0-1        | 1-2        | 0-1       |
|                           |                    | Map Zone:              | Zone I    | Zone I    | Zone I    | Zone I     | Zone I     | Zone I    |
| Acenaphthene              | 1000000            |                        | 360 U     | 35 J      | 360 U     | 370 U      | 360 U      | 30 J      |
| Acenaphthylene            | 1000000            |                        | 360 U     | 370 J     | 25 J      | 130 J      | 45 J       | 480       |
| Anthracene                | 1000000            |                        | 360 U     | 480       | 51 J      | 98 J       | 35         | 550       |
| Benzo(a)anthracene        | *                  |                        | 30 J      | 1100      | 100 J     | 250 J      | 160 J      | 1600      |
| Benzo(a)pyrene            | *                  |                        | 360 U     | 950       | 360 U     | 480        | 140        | 1500      |
| Benzo(b)fluoranthene      | *                  |                        | 64 J      | 2800      | 550       | 1100       | 360 J      | 3000      |
| Benzo(b+k)fluoranthenes   |                    |                        | NA        | NA        | NA        | NA         | NA         | NA        |
| Benzo(g,h,i)perylene      | 1000000            |                        | 360 U     | 1600      | 240 J     | 110 J      | 53 J       | 2800      |
| Benzo(k)fluoranthene      | *                  |                        | 35 J      | 2100      | 260 J     | 370 U      | 55         | 2600      |
| Chrysene                  | *                  |                        | 46 J      | 2000      | 210 J     | 480        | 190 J      | 2900      |
| Dibenzo(a,h)anthracene    | *                  |                        | 360 U     | 780       | 360 U     | 68 J       | 31 J       | 1100      |
| Fluoranthene              | 1000000            |                        | 42 J      | 1700      | 160 J     | 490        | 300 J      | 1800      |
| Fluorene                  | 1000000            |                        | 360 U     | 26 J      | 360 U     | 370 U      | 360 U      | 82 J      |
| Indeno(1,2,3-cd)pyrene    | *                  |                        | 360 U     | 2200      | 250 J     | 140 J      | 60         | 3000      |
| Naphthalene               | 1000000            |                        | 360 U     | 59 J      | 360 U     | 36 J       | 360 U      | 38 J      |
| Phenanthrene              | 1000000            |                        | 360 U     | 600       | 50 J      | 170 J      | 44 J       | 660       |
| Pyrene                    | 1000000            |                        | 58 J      | 1600      | 170 J     | 500        | 260 J      | 2100      |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

NYSDEC - New York State Department of Environmental Conservation

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

AM0055.0071Y007.143/T6

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | SS-24     | SS-25      | SS-25      | SS-26      | SS-26      | SS-27      |
|---------------------------|--------------------|------------------------|-----------|------------|------------|------------|------------|------------|
| Parameter                 | Part 375           | Sample Date:           | 12/9/1997 | 12/10/1997 | 12/10/1997 | 12/10/1997 | 12/10/1997 | 12/10/1997 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 1-2       | 0-1        | 1-2        | 0-1        | 1-2        | 0-1        |
|                           |                    | Map Zone:              | Zone I    | Zone I     | Zone I     | Zone I     | Zone I     | Zone I     |
| Acenaphthene              | 1000000            |                        | 380 U     | 41 J       | 370 U      | 29 J       | 380 U      | 370 U      |
| Acenaphthylene            | 1000000            |                        | 380 U     | 670        | 370 U      | 180 J      | 380 U      | 34 J       |
| Anthracene                | 1000000            |                        | 380 U     | 510        | 370 U      | 200 J      | 380 U      | 29 J       |
| Benzo(a)anthracene        | *                  |                        | 380 U     | 1300       | 370 U      | 450        | 380 U      | 78 J       |
| Benzo(a)pyrene            | *                  |                        | 380 U     | 1400       | 370 U      | 480        | 54 J       | 120 J      |
| Benzo(b)fluoranthene      | *                  |                        | 380 U     | 2900       | 370 U      | 1800       | 66 J       | 250 J      |
| Benzo(b+k)fluoranthenes   |                    |                        | NA        | NA         | NA         | NA         | NA         | NA         |
| Benzo(g,h,i)perylene      | 1000000            |                        | 380 U     | 610        | 370 U      | 200 J      | 20 J       | 36 J       |
| Benzo(k)fluoranthene      | *                  |                        | 380 U     | 3100       | 370 U      | 380 U      | 380 U      | 33 J       |
| Chrysene                  | *                  |                        | 380 U     | 1700       | 370 U      | 670        | 29 J       | 130 J      |
| Dibenzo(a,h)anthracene    | *                  |                        | 380 U     | 370 J      | 370 U      | 130 J      | 380 U      | 21 J       |
| Fluoranthene              | 1000000            |                        | 25 J      | 1500       | 370 U      | 38 J       | 35 J       | 190 J      |
| Fluorene                  | 1000000            |                        | 380 U     | 40 J       | 370 U      | 28 J       | 380 U      | 370 U      |
| Indeno(1,2,3-cd)pyrene    | *                  |                        | 380 U     | 750        | 370 U      | 270 J      | 24 J       | 42 J       |
| Naphthalene               | 1000000            |                        | 380 U     | 250 J      | 370 U      | 74 J       | 380 U      | 370 U      |
| Phenanthrene              | 1000000            |                        | 380 U     | 600        | 370 U      | 300 J      | 380 U      | 76 J       |
| Pyrene                    | 1000000            |                        | 21 J      | 2500       | 370 U      | 1100       | 29 J       | 160 J      |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | SS-27      | SS-28      | SS-28      | SS-29      | SS-29      | SS-30      |
|---------------------------|--------------------|------------------------|------------|------------|------------|------------|------------|------------|
| Parameter                 | Part 375           | Sample Date:           | 12/10/1997 | 12/10/1997 | 12/10/1997 | 12/10/1997 | 12/10/1997 | 12/10/1997 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 1-2        | 0-1        | 1-2        | 0-1        | 1-2        | 0-1        |
|                           |                    | Map Zone:              | Zone I     |
| Acenaphthene              | 1000000            |                        | 380 U      | 17 J       | 380 U      | 19 J       | 380 U      | 60 J       |
| Acenaphthylene            | 1000000            |                        | 380 U      | 230 J      | 380 U      | 240 J      | 20 J       | 910        |
| Anthracene                | 1000000            |                        | 380 U      | 150 J      | 380 U      | 230 J      | 380 U      | 660        |
| Benzo(a)anthracene        | *                  |                        | 380 U      | 400        | 380 U      | 430        | 45 J       | 1700       |
| Benzo(a)pyrene            | *                  |                        | 380 U      | 730        | 380 U      | 410 J      | 42 J       | 530        |
| Benzo(b)fluoranthene      | *                  |                        | 380 U      | 1600       | 380 U      | 1800       | 180 J      | 2700       |
| Benzo(b+k)fluoranthenes   |                    |                        | NA         | NA         | NA         | NA         | NA         | NA         |
| Benzo(g,h,i)perylene      | 1000000            |                        | 380 U      | 240 J      | 380 U      | 180 J      | 34 J       | 760        |
| Benzo(k)fluoranthene      | *                  |                        | 380 U      | 360 U      | 380 U      | 410 U      | 380 U      | 3200       |
| Chrysene                  | *                  |                        | 380 U      | 570        | 380 U      | 650        | 84 J       | 1900       |
| Dibenzo(a,h)anthracene    | *                  |                        | 380 U      | 160 J      | 380 U      | 110 J      | 19 J       | 380 J      |
| Fluoranthene              | 1000000            |                        | 380 U      | 610        | 380 U      | 650        | 82 J       | 1500       |
| Fluorene                  | 1000000            |                        | 380 U      | 13 J       | 380 U      | 26 J       | 380 U      | 67 J       |
| Indeno(1,2,3-cd)pyrene    | *                  |                        | 380 U      | 310 J      | 380 U      | 230 J      | 39 J       | 890        |
| Naphthalene               | 1000000            |                        | 380 U      | 45 J       | 380 U      | 44 J       | 380 U      | 130 J      |
| Phenanthrene              | 1000000            |                        | 380 U      | 180 J      | 380 U      | 250 J      | 33 J       | 620        |
| Pyrene                    | 1000000            |                        | 380 U      | 620        | 380 U      | 1100       | 76 J       | 3200       |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- NA Data not available
- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)
- DUP Duplicate
- RE Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | NYSDEC<br>Part 375 | Sample Designation:<br>Sample Date: | SS-30<br>12/10/1997 | SS-31<br>12/10/1997 | SS-31<br>12/10/1997 | SS-32<br>12/10/1997 | SS-32<br>12/10/1997 | SS-33<br>12/10/1997 |
|---------------------------|--------------------|-------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls):              | 1-2                 | 0-1                 | 1-2                 | 0-1                 | 1-2                 | 0-1                 |
| (Concentrations in µg/kg) | muusutai (µg/kg)   | Map Zone:                           | Zone I              |
|                           |                    |                                     |                     |                     |                     |                     |                     |                     |
| Acenaphthene              | 1000000            |                                     | 350 U               | 410 U               | 350 U               | 21 J                | 350 U               | 32 J                |
| Acenaphthylene            | 1000000            |                                     | 350 U               | 780                 | 22 J                | 780                 | 350 U               | 910                 |
| Anthracene                | 1000000            |                                     | 350 U               | 540                 | 20 J                | 540                 | 350 U               | 710                 |
| Benzo(a)anthracene        | *                  |                                     | 22 J                | 1400                | 71 J                | 1100                | 350 U               | 3900 JD             |
| Benzo(a)pyrene            | *                  |                                     | 42 J                | 1200                | 88 J                | 330 J               | 350 U               | 2200                |
| Benzo(b)fluoranthene      | *                  |                                     | 78 J                | 2900                | 170 J               | 2200                | 350 U               | 8600 D              |
| Benzo(b+k)fluoranthenes   |                    |                                     | NA                  | NA                  | NA                  | NA                  | NA                  | NA                  |
| Benzo(g,h,i)perylene      | 1000000            |                                     | 22 J                | 620                 | 33 J                | 510                 | 350 U               | 880                 |
| Benzo(k)fluoranthene      | *                  |                                     | 350 U               | 2700                | 350 U               | 2900                | 350 U               | 1000 JD             |
| Chrysene                  | *                  |                                     | 31 J                | 1900                | 120 J               | 1300                | 350 U               | 5000 D              |
| Dibenzo(a,h)anthracene    | *                  |                                     | 350 U               | 370 J               | 20 J                | 340 J               | 350 U               | 520                 |
| Fluoranthene              | 1000000            |                                     | 39 J                | 1400                | 150                 | 980                 | 350 U               | 7200 D              |
| Fluorene                  | 1000000            |                                     | 350 U               | 20 J                | 350 U               | 17 J                | 350 U               | 28 J                |
| Indeno(1,2,3-cd)pyrene    | *                  |                                     | 25 J                | 800                 | 38 J                | 670                 | 350 U               | 1100                |
| Naphthalene               | 1000000            |                                     | 350 U               | 79 J                | 350 U               | 100 J               | 350 U               | 78 J                |
| Phenanthrene              | 1000000            |                                     | 350 U               | 420                 | 41 J                | 340 J               | 350 U               | 600                 |
| Pyrene                    | 1000000            |                                     | 36 J                | 2400                | 120 J               | 1900                | 350 U               | 6400 D              |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

NYSDEC - New York State Department of Environmental Conservation

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

AM0055.0071Y007.143/T6

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | NYSDEC<br>Part 375 | Sample Designation:<br>Sample Date: | SS-33<br>12/10/1997 | SS-34<br>12/10/1997 | SS-34<br>12/10/1997 | SS-35<br>12/10/1997 | SS-35<br>12/10/1997 | SS-36<br>12/10/1997 |
|---------------------------|--------------------|-------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls):              | 1-2                 | 0-1                 | 1-2                 | 0-1                 | 1-2                 | 0-1                 |
|                           |                    | Map Zone:                           | Zone I              |
| Acenaphthene              | 1000000            |                                     | 350 U               | 87 J                | 350 U               | 390 U               | 370 U               | 32 J                |
| Acenaphthylene            | 1000000            |                                     | 27 J                | 940                 | 29 J                | 54 J                | 370 U               | 140 J               |
| Anthracene                | 1000000            |                                     | 26 J                | 680                 | 23 J                | 69 J                | 370 U               | 130 J               |
| Benzo(a)anthracene        | *                  |                                     | 140 J               | 2300                | 75 J                | 250 J               | 370 U               | 490                 |
| Benzo(a)pyrene            | *                  |                                     | 170 J               | 2000                | 98 J                | 250 J               | 370 U               | 120 J               |
| Benzo(b)fluoranthene      | *                  |                                     | 350 J               | 6600 D              | 190 J               | 750                 | 370 U               | 1000                |
| Benzo(b+k)fluoranthenes   |                    |                                     | NA                  | NA                  | NA                  | NA                  | NA                  | NA                  |
| Benzo(g,h,i)perylene      | 1000000            |                                     | 63 J                | 710                 | 39 J                | 140 J               | 370 U               | 130 J               |
| Benzo(k)fluoranthene      | *                  |                                     | 350 U               | 400 U               | 350 U               | 390 U               | 24 J                | 380 U               |
| Chrysene                  | *                  |                                     | 200 J               | 2600                | 100 J               | 310 J               | 370 U               | 490                 |
| Dibenzo(a,h)anthracene    | *                  |                                     | 39 J                | 450                 | 25 J                | 76 J                | 370 U               | 77 J                |
| Fluoranthene              | 1000000            |                                     | 350 U               | 2500                | 120 J               | 310 J               | 370 U               | 780                 |
| Fluorene                  | 1000000            |                                     | 350 U               | 100 J               | 350 U               | 390 U               | 370 U               | 35 J                |
| Indeno(1,2,3-cd)pyrene    | *                  |                                     | 74 J                | 880                 | 48 J                | 150 J               | 370 U               | 150 J               |
| Naphthalene               | 1000000            |                                     | 24 J                | 99 J                | 350 U               | 390 U               | 370 U               | 380 U               |
| Phenanthrene              | 1000000            |                                     | 49 J                | 940                 | 34 J                | 110 J               | 370 U               | 300 J               |
| Pyrene                    | 1000000            |                                     | 200 J               | 4600 D              | 110 J               | 560                 | 370 U               | 860                 |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | SS-36      | SS-37      | SS-37 DUP  | SS-37      | SS-37 DUP  | SS-38      |
|---------------------------|--------------------|------------------------|------------|------------|------------|------------|------------|------------|
| Parameter                 | Part 375           | Sample Date:           | 12/10/1997 | 12/10/1997 | 12/10/1997 | 12/10/1997 | 12/10/1997 | 12/10/1997 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 1-2        | 0-1        | 0-1        | 1-2        | 1-2        | 0-1        |
|                           |                    | Map Zone:              | Zone I     |
| Acenaphthene              | 1000000            |                        | 350 U      | 410 U      | 390 U      | 370 U      | 360 U      | 24 J       |
| Acenaphthylene            | 1000000            |                        | 350 U      | 71 J       | 77 J       | 45 J       | 65 J       | 170 J      |
| Anthracene                | 1000000            |                        | 350 U      | 76 J       | 64 J       | 40 J       | 62 J       | 180 J      |
| Benzo(a)anthracene        | *                  |                        | 350 U      | 280 J      | 260 J      | 120 J      | 190 J      | 500        |
| Benzo(a)pyrene            | *                  |                        | 350 U      | 260 J      | 240 J      | 110 J      | 200 J      | 500        |
| Benzo(b)fluoranthene      | *                  |                        | 350 U      | 630        | 600        | 340 J      | 490        | 1300       |
| Benzo(b+k)fluoranthenes   |                    |                        | NA         | NA         | NA         | NA         | NA         | NA         |
| Benzo(g,h,i)perylene      | 1000000            |                        | 350 U      | 120 J      | 99 J       | 52 J       | 69 J       | 220 J      |
| Benzo(k)fluoranthene      | *                  |                        | 20 J       | 85 J       | 390 U      | 370 U      | 360 U      | 370 U      |
| Chrysene                  | *                  |                        | 350 U      | 340 J      | 300 J      | 160 J      | 240 J      | 530        |
| Dibenzo(a,h)anthracene    | *                  |                        | 350 U      | 66 J       | 60 J       | 28 J       | 39 J       | 120 J      |
| Fluoranthene              | 1000000            |                        | 350 U      | 410        | 310 J      | 210 J      | 370        | 610        |
| Fluorene                  | 1000000            |                        | 350 U      | 410 U      | 390 U      | 370 U      | 360 U      | 23 J       |
| Indeno(1,2,3-cd)pyrene    | *                  |                        | 350 U      | 130 J      | 120 J      | 58 J       | 80 J       | 250 J      |
| Naphthalene               | 1000000            |                        | 350 U      | 410 U      | 390 U      | 370 U      | 360 U      | 370 U      |
| Phenanthrene              | 1000000            |                        | 350 U      | 160 J      | 100 J      | 61 J       | 120 J      | 210 J      |
| Pyrene                    | 1000000            |                        | 350 U      | 440        | 320 J      | 220 J      | 360        | 800        |
|                           |                    |                        |            |            |            |            |            |            |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

NYSDEC - New York State Department of Environmental Conservation

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

AM0055.0071Y007.143/T6

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | SS-38<br>12/10/1997<br>1-2<br>Zone I | SW-1<br>7/31/1997<br>0-1<br>Zone III | SW-1<br>7/31/1997<br>1-2<br>Zone III | SW-2<br>7/31/1997<br>0-1<br>Zone III | SW-2<br>7/31/1997<br>1-2<br>Zone III | SW-3<br>7/31/1997<br>0-1<br>Zone III |
|----------------------------------------|------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Acenaphthene                           | 1000000                                  |                                                                            | 360 U                                | 160 J                                | 14 J                                 | 82 J                                 | 360 U                                | 78 J                                 |
| Acenaphthylene                         | 1000000                                  |                                                                            | 72 J                                 | 1100 J                               | 92 J                                 | 1400 J                               | 26 J                                 | 920 J                                |
| Anthracene                             | 1000000                                  |                                                                            | 79 J                                 | 3500                                 | 250 J                                | 2100                                 | 29 J                                 | 1500 J                               |
| Benzo(a)anthracene                     | *                                        |                                                                            | 210 J                                | 4600                                 | 480                                  | 3400                                 | 84 J                                 | 3700                                 |
| Benzo(a)pyrene                         | *                                        |                                                                            | 70 J                                 | 4500                                 | 420                                  | 3400                                 | 85 J                                 | 3400                                 |
| Benzo(b)fluoranthene                   | *                                        |                                                                            | 550                                  | 8800                                 | 850                                  | 5000                                 | 140 J                                | 5200                                 |
| Benzo(b+k)fluoranthenes                |                                          |                                                                            | NA                                   | NA                                   | NA                                   | NA                                   | NA                                   | NA                                   |
| Benzo(g,h,i)perylene                   | 1000000                                  |                                                                            | 110 J                                | 2000                                 | 380                                  | 1400 J                               | 220 J                                | 1700 J                               |
| Benzo(k)fluoranthene                   | *                                        |                                                                            | 360 U                                | 4900                                 | 530                                  | 3000                                 | 120 J                                | 3700                                 |
| Chrysene                               | *                                        |                                                                            | 240 J                                | 6600                                 | 720                                  | 4300                                 | 120 J                                | 5000                                 |
| Dibenzo(a,h)anthracene                 | *                                        |                                                                            | 55 J                                 | 2000 U                               | 360 U                                | 980 J                                | 360 U                                | 1800 U                               |
| Fluoranthene                           | 1000000                                  |                                                                            | 290 J                                | 7300                                 | 900                                  | 4600                                 | 120 J                                | 4800                                 |
| Fluorene                               | 1000000                                  |                                                                            | 360 U                                | 220 J                                | 17 J                                 | 1500 U                               | 360 U                                | 70 J                                 |
| Indeno(1,2,3-cd)pyrene                 | *                                        |                                                                            | 120 J                                | 2700                                 | 450                                  | 1700                                 | 220 J                                | 2100                                 |
| Naphthalene                            | 1000000                                  |                                                                            | 360 U                                | 220 J                                | 19 J                                 | 190 J                                | 12 J                                 | 180 J                                |
| Phenanthrene                           | 1000000                                  |                                                                            | 83 J                                 | 2100                                 | 270 J                                | 1100 J                               | 44 J                                 | 870 J                                |
| Pyrene                                 | 1000000                                  |                                                                            | 330 J                                | 5200                                 | 750                                  | 3400                                 | 130 J                                | 3900                                 |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | SW-3<br>7/31/1997<br>1-2<br>Zone III | SW-5<br>7/31/1997<br>0-1<br>Zone III | SW-5<br>7/31/1997<br>1-2<br>Zone III | SW-6<br>7/31/1997<br>0-1<br>Zone III | SW-6<br>7/31/1997<br>1-2<br>Zone III | SW-7<br>7/31/1997<br>0-1<br>Zone III | SW-7<br>7/31/1997<br>1-2<br>Zone III |
|----------------------------------------|------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Acenaphthene                           | 1000000                                  |                                                                            | 360 U                                | 120 J                                | 12 J                                 | 1500 U                               | 350 U                                | 120 J                                | 13 J                                 |
| Acenaphthylene                         | 1000000                                  |                                                                            | 8 J                                  | 2000                                 | 99 J                                 | 240 J                                | 350 U                                | 1600                                 | 370 U                                |
| Anthracene                             | 1000000                                  |                                                                            | 17 J                                 | 3200                                 | 170 J                                | 330 J                                | 32 J                                 | 2700                                 | 23 J                                 |
| Benzo(a)anthracene                     | *                                        |                                                                            | 70 J                                 | 3600                                 | 260 J                                | 1000 J                               | 42 J                                 | 3600                                 | 100 J                                |
| Benzo(a)pyrene                         | *                                        |                                                                            | 68 J                                 | 3000                                 | 230 J                                | 930 J                                | 35 J                                 | 3100                                 | 92 J                                 |
| Benzo(b)fluoranthene                   | *                                        |                                                                            | 120 J                                | 4800                                 | 420                                  | 1900                                 | 56 J                                 | 5200                                 | 110 J                                |
| Benzo(b+k)fluoranthenes                |                                          |                                                                            | NA                                   |
| Benzo(g,h,i)perylene                   | 1000000                                  |                                                                            | 200 J                                | 1300 J                               | 200 J                                | 1500                                 | 170 J                                | 1500 J                               | 210 J                                |
| Benzo(k)fluoranthene                   | *                                        |                                                                            | 64 J                                 | 2700                                 | 260 J                                | 1400 J                               | 42 J                                 | 3400                                 | 78 J                                 |
| Chrysene                               | *                                        |                                                                            | 100 J                                | 4600                                 | 380                                  | 1400 J                               | 49 J                                 | 4700                                 | 120 J                                |
| Dibenzo(a,h)anthracene                 | *                                        |                                                                            | 360 U                                | 1600 U                               | 370 U                                | 1500 U                               | 350 U                                | 1600 U                               | 370 U                                |
| Fluoranthene                           | 1000000                                  |                                                                            | 96 J                                 | 5200                                 | 460                                  | 1400 J                               | 84 J                                 | 5300                                 | 170 J                                |
| Fluorene                               | 1000000                                  |                                                                            | 360 U                                | 100 J                                | 370 U                                | 1500 U                               | 350 U                                | 86 J                                 | 370 U                                |
| Indeno(1,2,3-cd)pyrene                 | *                                        |                                                                            | 190 J                                | 1600                                 | 220 J                                | 1700                                 | 160 J                                | 2000                                 | 200 J                                |
| Naphthalene                            | 1000000                                  |                                                                            | 12 J                                 | 360 J                                | 44 J                                 | 110 J                                | 350 U                                | 420 J                                | 12 J                                 |
| Phenanthrene                           | 1000000                                  |                                                                            | 68 J                                 | 1600                                 | 210 J                                | 470 J                                | 32 J                                 | 2000                                 | 130 J                                |
| Pyrene                                 | 1000000                                  |                                                                            | 120 J                                | 4400                                 | 330 J                                | 1500                                 | 84 J                                 | 4100                                 | 200 J                                |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | SW-8      | SW-8      | SW-9      | SW-9      | SW-10 RE  | SW-10 RE  | SW-11     |
|---------------------------|--------------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Part 375           | Sample Date:           | 7/31/1997 | 7/31/1997 | 7/31/1997 | 7/31/1997 | 8/15/1997 | 8/15/1997 | 8/15/1997 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       |
|                           |                    | Map Zone:              | Zone III  |
|                           |                    |                        |           |           |           |           |           |           |           |
| Acenaphthene              | 1000000            |                        | 580 J     | 360 U     | 100 J     | 370 U     | 360 U     | 740 U     | 160 J     |
| Acenaphthylene            | 1000000            |                        | 3400      | 23 J      | 1700      | 20 J      | 130 J     | 390 J     | 860       |
| Anthracene                | 1000000            |                        | 6600      | 49 J      | 2500      | 29 J      | 240 J     | 450 J     | 1400      |
| Benzo(a)anthracene        | *                  |                        | 7600      | 110 J     | 2300      | 39 J      | 530       | 830       | 2400      |
| Benzo(a)pyrene            | *                  |                        | 8500      | 110 J     | 2100      | 40 J      | 1300      | 810       | 1800      |
| Benzo(b)fluoranthene      | *                  |                        | 14000     | 160 J     | 4000      | 88 J      | 1300      | 1600      | 4700      |
| Benzo(b+k)fluoranthenes   |                    |                        | NA        |
| Benzo(g,h,i)perylene      | 1000000            |                        | 3100 J    | 250 J     | 1300 J    | 170 J     | 110 J     | 140 J     | 1800      |
| Benzo(k)fluoranthene      | *                  |                        | 4900      | 120 J     | 1300 J    | 45 J      | 1100      | 1100      | 2700      |
| Chrysene                  | *                  |                        | 11000     | 160 J     | 3000      | 64 J      | 630       | 830       | 3200      |
| Dibenzo(a,h)anthracene    | *                  |                        | 3200 U    | 360 U     | 1500 U    | 370 U     | 360 U     | 740 U     | 610       |
| Fluoranthene              | 1000000            |                        | 13000     | 200 J     | 3400      | 60 J      | 920       | 1200      | 2900      |
| Fluorene                  | 1000000            |                        | 570 J     | 360 U     | 98 J      | 370 U     | 50 J      | 740 U     | 250 J     |
| Indeno(1,2,3-cd)pyrene    | *                  |                        | 4100      | 250 J     | 1600      | 170 J     | 130 J     | 190 J     | 1900      |
| Naphthalene               | 1000000            |                        | 390 J     | 11 J      | 250 J     | 13 J      | 32 J      | 110 J     | 180 J     |
| Phenanthrene              | 1000000            |                        | 4500      | 80 J      | 1200 J    | 41 J      | 370       | 420 J     | 1900      |
| Pyrene                    | 1000000            |                        | 10000     | 240 J     | 2800      | 41 J      | 880       | 1300      | 3600 D    |
| -                         |                    |                        |           |           |           |           |           |           |           |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| _                         | NYSDEC             | Sample Designation:    | SW-11 RE  | SW-12     | SW-12     | SW-13 RE  | SW-13     | SW-14     | SW-14 RE  |
|---------------------------|--------------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Part 375           | Sample Date:           | 8/15/1997 | 8/15/1997 | 8/15/1997 | 8/15/1997 | 8/15/1997 | 8/15/1997 | 8/15/1997 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       | 0-1       | 1-2       |
|                           |                    | Map Zone:              | Zone III  | Zone IV   | Zone IV   |
|                           |                    |                        |           |           |           |           |           |           |           |
| Acenaphthene              | 1000000            |                        | 1500 U    | 30 J      | 390 U     | 42 J      | 360 U     | 97 J      | 410 U     |
| Acenaphthylene            | 1000000            |                        | 1000 J    | 740 J     | 36 J      | 520 J     | 360 U     | 920       | 410 U     |
| Anthracene                | 1000000            |                        | 1700      | 890       | 50 J      | 730 J     | 31 J      | 1600      | 410 U     |
| Benzo(a)anthracene        | *                  |                        | 2900      | 580 J     | 250 J     | 670 J     | 82 J      | 1300      | 81 J      |
| Benzo(a)pyrene            | *                  |                        | 2100      | 720 J     | 300 J     | 670 J     | 150 J     | 1600      | 110 J     |
| Benzo(b)fluoranthene      | *                  |                        | 4400      | 1400      | 320 J     | 1300      | 120 J     | 3200      | 160 J     |
| Benzo(b+k)fluoranthenes   |                    |                        | NA        |
| Benzo(g,h,i)perylene      | 1000000            |                        | 1500 U    | 590 J     | 110 J     | 310 J     | 79 J      | 610 J     | 410 U     |
| Benzo(k)fluoranthene      | *                  |                        | 2900      | 750 U     | 78 J      | 410 J     | 39 J      | 2700      | 77 J      |
| Chrysene                  | *                  |                        | 2900      | 740 J     | 120 J     | 920       | 48 J      | 1900      | 140 J     |
| Dibenzo(a,h)anthracene    | *                  |                        | 1500 U    | 750 U     | 390 U     | 750 U     | 360 U     | 770 U     | 410 U     |
| Fluoranthene              | 1000000            |                        | 4200      | 690 J     | 140 J     | 960       | 66 J      | 2000      | 170 J     |
| Fluorene                  | 1000000            |                        | 1500 U    | 19 J      | 390 U     | 30 J      | 360 U     | 91 J      | 410 U     |
| Indeno(1,2,3-cd)pyrene    | *                  |                        | 720 J     | 690 J     | 130 J     | 360 J     | 71 J      | 870       | 410 U     |
| Naphthalene               | 1000000            |                        | 1500 U    | 99 J      | 390 U     | 99 J      | 360 U     | 200 J     | 410 U     |
| Phenanthrene              | 1000000            |                        | 2900      | 320 J     | 100 J     | 540 J     | 32 J      | 820       | 410 U     |
| Pyrene                    | 1000000            |                        | 4600      | 700 J     | 280 J     | 1000      | 76 J      | 2100      | 99 J      |
| -                         |                    |                        |           |           |           |           |           |           |           |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | SW-15<br>8/15/1997<br>0-1<br>Zone IV | SW-16<br>8/15/1997<br>0-1<br>Zone IV | SW-17<br>8/15/1997<br>0-1<br>Zone IV | SW-41<br>5/24/2005<br>0-1<br>Zone III | SW-41<br>5/24/2005<br>1-2<br>Zone III | SW-41<br>5/24/2005<br>2-3<br>Zone III |
|-------------------------------------|------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Acenaphthene                        | 1000000                                  |                                                                            | 200 J                                | 380 U                                | 73 J                                 | 77 J                                  | 360 U                                 | 360 U                                 |
| Acenaphthylene                      | 1000000                                  |                                                                            | 1600                                 | 280 J                                | 840 J                                | 430                                   | 360 U                                 | 360 U                                 |
| Anthracene                          | 1000000                                  |                                                                            | 5200                                 | 680                                  | 1800                                 | 490                                   | 360 U                                 | 360 U                                 |
| Benzo(a)anthracene                  | *                                        |                                                                            | 5200                                 | 930                                  | 1900                                 | 1500                                  | 74 J                                  | 40 J                                  |
| Benzo(a)pyrene                      | *                                        |                                                                            | 3100 D                               | 1300                                 | 1900                                 | 1200                                  | 68 J                                  | 360 U                                 |
| Benzo(b)fluoranthene                | *                                        |                                                                            | 5200 D                               | 1300                                 | 3800                                 | 3500                                  | 99 J                                  | 43 J                                  |
| Benzo(b+k)fluoranthenes             |                                          |                                                                            | NA                                   | NA                                   | NA                                   | NA                                    | NA                                    | NA                                    |
| Benzo(g,h,i)perylene                | 1000000                                  |                                                                            | 1700                                 | 230 J                                | 1100 J                               | 650                                   | 360 U                                 | 360 U                                 |
| Benzo(k)fluoranthene                | *                                        |                                                                            | 6000                                 | 570                                  | 1400 J                               | 980                                   | 38 J                                  | 360 U                                 |
| Chrysene                            | *                                        |                                                                            | 3900                                 | 870                                  | 3000                                 | 2400                                  | 89 J                                  | 43 J                                  |
| Dibenzo(a,h)anthracene              | *                                        |                                                                            | 780 U                                | 380 U                                | 1600 U                               | 240 J                                 | 360 U                                 | 360 U                                 |
| Fluoranthene                        | 1000000                                  |                                                                            | 4100 D                               | 1100                                 | 2600                                 | 2900                                  | 130 J                                 | 64 J                                  |
| Fluorene                            | 1000000                                  |                                                                            | 330 J                                | 380 U                                | 150 J                                | 95 J                                  | 360 U                                 | 360 U                                 |
| Indeno(1,2,3-cd)pyrene              | *                                        |                                                                            | 2000                                 | 310 J                                | 1400 J                               | 780                                   | 360 U                                 | 360 U                                 |
| Naphthalene                         | 1000000                                  |                                                                            | 200 J                                | 100 J                                | 98 J                                 | 200 J                                 | 360 U                                 | 360 U                                 |
| Phenanthrene                        | 1000000                                  |                                                                            | 2700                                 | 480                                  | 750 J                                | 1000                                  | 64 J                                  | 38 J                                  |
| Pyrene                              | 1000000                                  |                                                                            | 5900 D                               | 1300                                 | 2600                                 | 2900                                  | 110 J                                 | 61 J                                  |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in µg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls): | T-1<br>7/30/1999<br>0-1 | T-2<br>7/30/1999<br>0-1 | T-3<br>7/30/1999<br>0-1 | T-4 RE<br>7/30/1999<br>0-1 | T-5 RE<br>7/30/1999<br>0-1 | T-6 RE<br>7/30/1999<br>0-1 | T-7<br>7/30/1999<br>0-1 |
|-------------------------------------|------------------------------------------|---------------------------------------------------------------|-------------------------|-------------------------|-------------------------|----------------------------|----------------------------|----------------------------|-------------------------|
| (Concentrations in µg/kg)           | πασστια (με/κε/)                         | Map Zone:                                                     | Zone III                | Zone II                 | Zone III                | Zone III                   | Zone II                    | Zone II                    | Zone II                 |
| Acenaphthene                        | 1000000                                  |                                                               | 98 J                    | 40 J                    | 330 U                   | 54 J                       | 40 J                       | 56 J                       | 44 J                    |
| Acenaphthylene                      | 1000000                                  |                                                               | 210 J                   | 240 J                   | 330 U                   | 780                        | 710                        | 470                        | 510                     |
| Anthracene                          | 1000000                                  |                                                               | 10700 D                 | 380                     | 330 U                   | 720                        | 680                        | 600                        | 550                     |
| Benzo(a)anthracene                  | *                                        |                                                               | 1800                    | 1000                    | 55 J                    | 2000                       | 1600                       | 860                        | 1300                    |
| Benzo(a)pyrene                      | *                                        |                                                               | 850                     | 950                     | 52 J                    | 2500                       | 2300                       | 930                        | 1500                    |
| Benzo(b)fluoranthene                | *                                        |                                                               | 2000                    | 1800                    | 140 J                   | 4400 D                     | 3000 D                     | 2000                       | 3300 JD                 |
| Benzo(b+k)fluoranthenes             |                                          |                                                               | NA                      | NA                      | NA                      | NA                         | NA                         | NA                         | NA                      |
| Benzo(g,h,i)perylene                | 1000000                                  |                                                               | 310 J                   | 430                     | 42 J                    | 1000                       | 1100                       | 510                        | 700                     |
| Benzo(k)fluoranthene                | *                                        |                                                               | 1900                    | 1200                    | 62 J                    | 2100                       | 1900                       | 1400                       | 2300                    |
| Chrysene                            | *                                        |                                                               | 3200 JD                 | 1500                    | 130 J                   | 2600                       | 1700                       | 1100                       | 1700                    |
| Dibenzo(a,h)anthracene              | *                                        |                                                               | 140 J                   | 130 J                   | 330 U                   | 340 J                      | 310 J                      | 160 J                      | 280 J                   |
| Fluoranthene                        | 1000000                                  |                                                               | 5500 D                  | 1500                    | 95 J                    | 2800                       | 1700                       | 1300                       | 1500                    |
| Fluorene                            | 1000000                                  |                                                               | 280 J                   | 340 U                   | 330 U                   | 60 J                       | 49 J                       | 57 J                       | 40 J                    |
| Indeno(1,2,3-cd)pyrene              | *                                        |                                                               | 330 J                   | 410                     | 330 U                   | 1000                       | 1000                       | 510                        | 710                     |
| Naphthalene                         | 1000000                                  |                                                               | 340 U                   | 79 J                    | 330 U                   | 150 J                      | 110 J                      | 270 J                      | 140 J                   |
| Phenanthrene                        | 1000000                                  |                                                               | 1500                    | 270 J                   | 37 J                    | 630                        | 530                        | 610                        | 440                     |
| Pyrene                              | 1000000                                  |                                                               | 5300 D                  | 1700                    | 140 J                   | 2900 D                     | 2500                       | 1700                       | 2700                    |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | T-8 RE    | T-9 RE    | T-10 RE   | T-11 RE   | T-12 RE   | T-34C-1   | T-34C-2   |
|---------------------------|--------------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                 | Part 375           | Sample Date:           | 7/30/1999 | 7/30/1999 | 7/30/1999 | 7/30/1999 | 7/30/1999 | 5/13/2004 | 5/13/2004 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 0-1       | 0-1       | 0-1       | 0-1       | 0-1       |           |           |
|                           |                    | Map Zone:              | Zone II   | Zone III  | Zone III  |
|                           |                    |                        |           |           |           |           |           |           |           |
| Acenaphthene              | 1000000            |                        | 95 J      | 140 J     | 54 J      | 64 J      | 130 J     | 48 J      | 70 J      |
| Acenaphthylene            | 1000000            |                        | 430       | 340 J     | 190 J     | 220 J     | 350 J     | 310 J     | 520 J     |
| Anthracene                | 1000000            |                        | 700       | 950       | 450       | 430       | 600       | 550 J     | 770 J     |
| Benzo(a)anthracene        | *                  |                        | 940       | 1100      | 630       | 610       | 1100      | 890       | 1100 J    |
| Benzo(a)pyrene            | *                  |                        | 1300      | 1800      | 760       | 630       | 1200      | 820       | 1800      |
| Benzo(b)fluoranthene      | *                  |                        | 3300      | 3400      | 2000      | 2300      | 3100      | 1300      | 2200      |
| Benzo(b+k)fluoranthenes   |                    |                        | NA        |
| Benzo(g,h,i)perylene      | 1000000            |                        | 670       | 600       | 380       | 350 J     | 850       | 790       | 1500      |
| Benzo(k)fluoranthene      | *                  |                        | 1100      | 1800      | 1200      | 1300      | 1600      | 970       | 2400      |
| Chrysene                  | *                  |                        | 1100      | 1500      | 910       | 990       | 1300      | 1100      | 1900      |
| Dibenzo(a,h)anthracene    | *                  |                        | 220 J     | 230 J     | 130 J     | 120 J     | 290 J     | 270 J     | 620 J     |
| Fluoranthene              | 1000000            |                        | 1200      | 1700      | 990       | 960       | 1400      | 1200      | 1900      |
| Fluorene                  | 1000000            |                        | 73 J      | 99 J      | 43 J      | 44 J      | 110 J     | 73 J      | 83 J      |
| Indeno(1,2,3-cd)pyrene    | *                  |                        | 660       | 720       | 400       | 330 J     | 720       | 740 J     | 1500      |
| Naphthalene               | 1000000            |                        | 190 J     | 510       | 120 J     | 290 J     | 330 J     | 750 U     | 1400 U    |
| Phenanthrene              | 1000000            |                        | 650       | 1500      | 500       | 690       | 1100      | 440 J     | 480 J     |
| Pyrene                    | 1000000            |                        | 1800      | 2000      | 1200      | 1300      | 2600      | 1500      | 2100      |
| •                         |                    |                        |           |           |           |           |           |           |           |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | NYSDEC<br>Part 375 | Sample Designation:<br>Sample Date: | T-34C-3<br>5/13/2004 | T-34C-4<br>5/13/2004 | T-34C-4B<br>7/20/2004 | T-34C-5<br>5/13/2004 | T-34C-6<br>5/13/2004 | T-34C-7<br>5/13/2004 | T-34C-7B<br>6/21/2004 |
|---------------------------|--------------------|-------------------------------------|----------------------|----------------------|-----------------------|----------------------|----------------------|----------------------|-----------------------|
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Date. Sample Depth (ft bls): | J/13/2004<br>        | J/13/2004<br>        |                       | J/13/2004<br>        | J/13/2004<br>        | J/13/2004<br>        | 0/21/2004             |
| (Concentrations in µg/kg) | maustrar (µg/kg)   | Map Zone:                           | Zone III             | Zone III             | Zone III              | Zone II              | Zone II              | Zone II              | Zone II               |
|                           |                    | •                                   |                      |                      |                       |                      |                      |                      |                       |
| Acenaphthene              | 1000000            |                                     | 130 J                | 1400 U               | 1500 U                | 87 J                 | 720 U                | 410 J                | 340 U                 |
| Acenaphthylene            | 1000000            |                                     | 1400 J               | 1400 J               | 290 J                 | 310 J                | 420 J                | 2900                 | 43 J                  |
| Anthracene                | 1000000            |                                     | 2300                 | 2400                 | 520 J                 | 520 J                | 620 J                | 8700                 | 50 J                  |
| Benzo(a)anthracene        | *                  |                                     | 2000                 | 3200                 | 1200 J                | 610 J                | 730                  | 6500                 | 130 J                 |
| Benzo(a)pyrene            | *                  |                                     | 2300                 | 3200                 | 1100 J                | 490 J                | 590 J                | 9500                 | 130 J                 |
| Benzo(b)fluoranthene      | *                  |                                     | 3700                 | 5100                 | 1000 J                | 1000                 | 1200                 | 13000 D              | 200 J                 |
| Benzo(b+k)fluoranthenes   |                    |                                     | NA                   | NA                   | NA                    | NA                   | NA                   | NA                   | NA                    |
| Benzo(g,h,i)perylene      | 1000000            |                                     | 1800                 | 2400                 | 1100 J                | 440 J                | 790                  | 3900                 | 100 J                 |
| Benzo(k)fluoranthene      | *                  |                                     | 2500                 | 5100                 | 1400 J                | 730                  | 900                  | 11000                | 180 J                 |
| Chrysene                  | *                  |                                     | 3200                 | 4900                 | 1400 J                | 1100                 | 1500                 | 11000                | 230 J                 |
| Dibenzo(a,h)anthracene    | *                  |                                     | 770 J                | 900 J                | 1500 U                | 140 J                | 280 J                | 2000                 | 35 J                  |
| Fluoranthene              | 1000000            |                                     | 2600                 | 3200                 | 2400                  | 1100                 | 1200                 | 15000 D              | 210 J                 |
| Fluorene                  | 1000000            |                                     | 200 J                | 160 J                | 1500 U                | 100 J                | 96 J                 | 690 J                | 340 U                 |
| Indeno(1,2,3-cd)pyrene    | *                  |                                     | 1900                 | 2700                 | 930 J                 | 440 J                | 760                  | 4600                 | 100 J                 |
| Naphthalene               | 1000000            |                                     | 470 J                | 200 J                | 1500 U                | 300 J                | 100 J                | 510 J                | 340 U                 |
| Phenanthrene              | 1000000            |                                     | 1200 J               | 800 J                | 1800                  | 460 J                | 480 J                | 4200                 | 65 J                  |
| Pyrene                    | 1000000            |                                     | 3200                 | 4300                 | 2400                  | 1300                 | 1100                 | 7600                 | 210 J                 |
|                           |                    |                                     |                      |                      |                       |                      |                      |                      |                       |

66 of 87

AM0055.0071Y007.143/T6

## Notes:

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Doromotor                           | NYSDEC<br>Part 375 | Sample Designation:                    | T-34C-8<br>5/13/2004 | T-34C-9<br>5/13/2004 | T-34C-10<br>5/13/2004 | T-34C-10B<br>6/21/2004 | T-34C-11<br>5/13/2004 | T-34C-12<br>5/13/2004 | T-34C-12B<br>6/21/2004 |
|-------------------------------------|--------------------|----------------------------------------|----------------------|----------------------|-----------------------|------------------------|-----------------------|-----------------------|------------------------|
| Parameter (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Date:<br>Sample Depth (ft bls): |                      |                      |                       |                        |                       |                       |                        |
| (Concentrations in µg/kg)           | maustrai (µg/kg)   | Map Zone:                              | Zone II              | Zone II              | Zone II               | Zone II                | Zone II               | Zone II               | Zone II                |
|                                     |                    | wap zone.                              | Zone n               | Zone n               | Zone n                | Zone n                 | Zone n                | Zone n                | Zone n                 |
| Acenaphthene                        | 1000000            |                                        | 390 U                | 850 U                | 120 J                 | 50 J                   | 87 J                  | 93 J                  | 340 U                  |
| Acenaphthylene                      | 1000000            |                                        | 190 J                | 440 J                | 630 J                 | 11 U                   | 340 J                 | 620 J                 | 39 J                   |
| Anthracene                          | 1000000            |                                        | 320 J                | 700 J                | 2000                  | 100 J                  | 720                   | 1700                  | 77 J                   |
| Benzo(a)anthracene                  | *                  |                                        | 340 J                | 880                  | 8000 D                | 200 J                  | 1300                  | 3900                  | 170 J                  |
| Benzo(a)pyrene                      | *                  |                                        | 340 J                | 1200                 | 5200                  | 150 J                  | 1200                  | 2900                  | 150 J                  |
| Benzo(b)fluoranthene                | *                  |                                        | 630                  | 1700                 | 9200 D                | 150 J                  | 2200                  | 5100 D                | 270 J                  |
| Benzo(b+k)fluoranthenes             |                    |                                        | NA                   | NA                   | NA                    | NA                     | NA                    | NA                    | NA                     |
| Benzo(g,h,i)perylene                | 1000000            |                                        | 270 J                | 840 J                | 2200                  | 85 J                   | 910                   | 1600                  | 120 J                  |
| Benzo(k)fluoranthene                | *                  |                                        | 630                  | 1400                 | 11000 D               | 150 J                  | 2100                  | 4000                  | 240 J                  |
| Chrysene                            | *                  |                                        | 590                  | 1600                 | 18000 D               | 220 J                  | 2600                  | 5200                  | 300 J                  |
| Dibenzo(a,h)anthracene              | *                  |                                        | 140 J                | 440 J                | 990                   | 28 J                   | 400 J                 | 870                   | 34 J                   |
| Fluoranthene                        | 1000000            |                                        | 600                  | 1500                 | 44000 D               | 450                    | 7000 D                | 4200                  | 320 J                  |
| Fluorene                            | 1000000            |                                        | 390 U                | 850 U                | 220 J                 | 37 J                   | 110 J                 | 240 J                 | 340 U                  |
| Indeno(1,2,3-cd)pyrene              | *                  |                                        | 310 J                | 880                  | 2700                  | 84 J                   | 950                   | 2000                  | 120 J                  |
| Naphthalene                         | 1000000            |                                        | 54 J                 | 230 J                | 180 J                 | 340 U                  | 96 J                  | 79 J                  | 33 U                   |
| Phenanthrene                        | 1000000            |                                        | 170 J                | 720 J                | 6000                  | 380                    | 2400                  | 600 J                 | 84 J                   |
| Pyrene                              | 1000000            |                                        | 570                  | 1500                 | 40000 D               | 400                    | 5100                  | 6700 D                | 320 J                  |
|                                     |                    |                                        |                      |                      |                       |                        |                       |                       |                        |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in µg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | T1-C1<br>7/19/2002<br><br>Zone III | T1-C2<br>7/19/2002<br><br>Zone III | T1-C3<br>7/19/2002<br><br>Zone III | T10-1 RE<br>7/10/1997<br>0-1<br>Zone III | T10-1<br>7/10/1997<br>1-2<br>Zone III | T10-2 RE<br>7/10/1997<br>0-1<br>Zone II |
|-------------------------------------|------------------------------------------|----------------------------------------------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------------|---------------------------------------|-----------------------------------------|
| Acenaphthene                        | 1000000                                  |                                                                            | 16 U                               | 16 U                               | 16 U                               | 37 J                                     | 360 U                                 | 140 J                                   |
| Acenaphthylene                      | 1000000                                  |                                                                            | 12 U                               | 11 U                               | 12 U                               | 290 J                                    | 360 U                                 | 140 J                                   |
| Anthracene                          | 1000000                                  |                                                                            | 13 U                               | 13 U                               | 13 U                               | 320 J                                    | 360 U                                 | 330 J                                   |
| Benzo(a)anthracene                  | *                                        |                                                                            | 16 U                               | 16 U                               | 16 U                               | 500                                      | 6 J                                   | 750                                     |
| Benzo(a)pyrene                      | *                                        |                                                                            | 17 U                               | 17 U                               | 17 U                               | 310 J                                    | 360 U                                 | 220 J                                   |
| Benzo(b)fluoranthene                | *                                        |                                                                            | 41 U                               | 40 U                               | 41 U                               | 1600                                     | 8 J                                   | 1800                                    |
| Benzo(b+k)fluoranthenes             |                                          |                                                                            | NA                                 | NA                                 | NA                                 | NA                                       | NA                                    | NA                                      |
| Benzo(g,h,i)perylene                | 1000000                                  |                                                                            | 18 U                               | 18 U                               | 18 U                               | 370                                      | 360 U                                 | 310 J                                   |
| Benzo(k)fluoranthene                | *                                        |                                                                            | 42 U                               | 41 U                               | 42 U                               | 1400                                     | 8 J                                   | 1800                                    |
| Chrysene                            | *                                        |                                                                            | 18 U                               | 18 U                               | 18 U                               | 960                                      | 10 J                                  | 1000                                    |
| Dibenzo(a,h)anthracene              | *                                        |                                                                            | 19 U                               | 19 U                               | 20 U                               | 370 U                                    | 360 U                                 | 360 U                                   |
| Fluoranthene                        | 1000000                                  |                                                                            | 24 U                               | 23 U                               | 24 U                               | 910                                      | 10 J                                  | 1600                                    |
| Fluorene                            | 1000000                                  |                                                                            | 22 U                               | 21 U                               | 22 U                               | 26 J                                     | 360 U                                 | 180 J                                   |
| Indeno(1,2,3-cd)pyrene              | *                                        |                                                                            | 19 U                               | 19 U                               | 20 U                               | 430                                      | 360 U                                 | 380                                     |
| Naphthalene                         | 1000000                                  |                                                                            | 35 U                               | 33 U                               | 35 U                               | 96 J                                     | 360 U                                 | 160 J                                   |
| Phenanthrene                        | 1000000                                  |                                                                            | 26 U                               | 25 U                               | 26 U                               | 490                                      | 360 U                                 | 1800                                    |
| Pyrene                              | 1000000                                  |                                                                            | 20 U                               | 20 U                               | 21 U                               | 1400                                     | 9 J                                   | 2000                                    |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | T10-2<br>7/10/1997<br>1-2<br>Zone II | T10-3 RE<br>7/10/1997<br>0-1<br>Zone II | T10-3<br>7/10/1997<br>1-2<br>Zone II | T10-4 RE<br>7/10/1997<br>0-1<br>Zone II | T10-4<br>7/10/1997<br>1-2<br>Zone II | T24-1<br>11/1/2002<br>0-1<br>Zone III | T24-1<br>11/1/2002<br>1-2<br>Zone III |
|----------------------------------------|------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|-----------------------------------------|--------------------------------------|-----------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|
| Acenaphthene                           | 1000000                                  |                                                                            | 350 U                                | 34 J                                    | 360 U                                | 94 J                                    | 420 U                                | 360 J                                 | 17 U                                  |
| Acenaphthylene                         | 1000000                                  |                                                                            | 350 U                                | 280 J                                   | 360 U                                | 1700                                    | 7 J                                  | 4600 J                                | 210 J                                 |
| Anthracene                             | 1000000                                  |                                                                            | 3 J                                  | 350 J                                   | 360 U                                | 1900                                    | 8 J                                  | 6100 J                                | 310 J                                 |
| Benzo(a)anthracene                     | *                                        |                                                                            | 21 J                                 | 550                                     | 6 J                                  | 3500                                    | 40 J                                 | 20000                                 | 1600                                  |
| Benzo(a)pyrene                         | *                                        |                                                                            | 12 J                                 | 280 J                                   | 15 J                                 | 4100                                    | 24 J                                 | 20000                                 | 1500                                  |
| Benzo(b)fluoranthene                   | *                                        |                                                                            | 22 J                                 | 2400                                    | 14 J                                 | 12000 D                                 | 56 J                                 | 24000                                 | 1600                                  |
| Benzo(b+k)fluoranthenes                |                                          |                                                                            | NA                                   | NA                                      | NA                                   | NA                                      | NA                                   | NA                                    | NA                                    |
| Benzo(g,h,i)perylene                   | 1000000                                  |                                                                            | 13 J                                 | 320 J                                   | 360 U                                | 930 J                                   | 19 J                                 | 4700 J                                | 980                                   |
| Benzo(k)fluoranthene                   | *                                        |                                                                            | 26 J                                 | 2100                                    | 10 J                                 | 11000                                   | 52 J                                 | 17000                                 | 1100                                  |
| Chrysene                               | *                                        |                                                                            | 22 J                                 | 1200                                    | 14 J                                 | 5500                                    | 50 J                                 | 22000                                 | 1400                                  |
| Dibenzo(a,h)anthracene                 | *                                        |                                                                            | 350 U                                | 380 U                                   | 360 U                                | 570 J                                   | 420 U                                | 3700 J                                | 500                                   |
| Fluoranthene                           | 1000000                                  |                                                                            | 32 J                                 | 900                                     | 10 J                                 | 4800                                    | 65 J                                 | 23000                                 | 2300                                  |
| Fluorene                               | 1000000                                  |                                                                            | 350 U                                | 31 J                                    | 360 U                                | 94 J                                    | 420 U                                | 450 J                                 | 22 U                                  |
| Indeno(1,2,3-cd)pyrene                 | *                                        |                                                                            | 16 J                                 | 510                                     | 10 J                                 | 1800                                    | 34 J                                 | 6400                                  | 930                                   |
| Naphthalene                            | 1000000                                  |                                                                            | 350 U                                | 140 J                                   | 6 J                                  | 240 J                                   | 420 U                                | 600 U                                 | 36 U                                  |
| Phenanthrene                           | 1000000                                  |                                                                            | 11 J                                 | 510                                     | 360 U                                | 1400 J                                  | 37 J                                 | 4700 J                                | 360 J                                 |
| Pyrene                                 | 1000000                                  |                                                                            | 25 J                                 | 1300                                    | 10 J                                 | 5900                                    | 65 J                                 | 26000                                 | 2100                                  |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Donometer                            | NYSDEC             | Sample Designation:    | T24-1            | T24-2            | T24-3            | T24-4            | T24-5            | T24-6            | T24-7            |
|--------------------------------------|--------------------|------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Parameter (Concentrations in 112/12) | Part 375           | Sample Date:           | 11/1/2002<br>2-3 | 11/1/2002<br>0-1 | 11/1/2002<br>0-1 | 11/1/2002<br>0-1 | 11/1/2002<br>0-1 | 11/1/2002<br>0-1 | 11/1/2002<br>0-1 |
| (Concentrations in µg/kg)            | Industrial (µg/kg) | Sample Depth (ft bls): | Zone III         | Zone II          | Zone II          |
|                                      |                    | Map Zone:              | Zone m           | Zolle II         | Zone n           |
| Acenaphthene                         | 1000000            |                        | 16 U             | 17 U             | 53 J             | 16 U             | 17 J             | 17 U             | 24 J             |
| Acenaphthylene                       | 1000000            |                        | 130 J            | 13 J             | 100 J            | 13 J             | 88 J             | 130 J            | 41 J             |
| Anthracene                           | 1000000            |                        | 180 J            | 16 J             | 160 J            | 21 J             | 130 J            | 130 J            | 130 J            |
| Benzo(a)anthracene                   | *                  |                        | 800              | 29 J             | 200 J            | 25 J             | 88 J             | 160 J            | 110 J            |
| Benzo(a)pyrene                       | *                  |                        | 780              | 26 J             | 280 J            | 24 J             | 98 J             | 200 J            | 100 J            |
| Benzo(b)fluoranthene                 | *                  |                        | 630              | 42 U             | 330 J            | 43 J             | 250 J            | 510              | 160 J            |
| Benzo(b+k)fluoranthenes              |                    |                        | NA               |
| Benzo(g,h,i)perylene                 | 1000000            |                        | 560              | 25 J             | 49 J             | 22 J             | 40 J             | 51 J             | 25 J             |
| Benzo(k)fluoranthene                 | *                  |                        | 850              | 43 U             | 340 J            | 42 U             | 170 J            | 43 U             | 120 J            |
| Chrysene                             | *                  |                        | 740              | 53 J             | 290 J            | 50 J             | 170 J            | 260 J            | 160 J            |
| Dibenzo(a,h)anthracene               | *                  |                        | 270 J            | 20 U             | 24 J             | 19 U             | 20 U             | 27 J             | 20 U             |
| Fluoranthene                         | 1000000            |                        | 1100             | 47 J             | 380              | 44 J             | 140 J            | 180 J            | 200 J            |
| Fluorene                             | 1000000            |                        | 21 U             | 22 U             | 56 J             | 21 U             | 22 U             | 22 U             | 22 U             |
| Indeno(1,2,3-cd)pyrene               | *                  |                        | 520              | 21 J             | 51 J             | 22 J             | 41 J             | 56 J             | 27 J             |
| Naphthalene                          | 1000000            |                        | 34 U             | 35 U             | 270 J            | 34 U             | 58 J             | 52 J             | 71 J             |
| Phenanthrene                         | 1000000            |                        | 200 J            | 45 J             | 290 J            | 39 J             | 130 J            | 150 J            | 210 J            |
| Pyrene                               | 1000000            |                        | 1100             | 50 J             | 330 J            | 52 J             | 110 J            | 200 J            | 200 J            |
|                                      |                    |                        |                  |                  |                  |                  |                  |                  |                  |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | T24-8        | T24-9     | T24-10    | T24-11        | T24-C1    | T24-C2    | T32-1    |
|---------------------------|--------------------|------------------------|--------------|-----------|-----------|---------------|-----------|-----------|----------|
| Parameter                 | Part 375           | Sample Date:           | 11/1/2002    | 11/1/2002 | 11/1/2002 | 11/1/2002     | 11/7/2002 | 11/7/2002 | 4/7/2003 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 0-1          | 0-1       | 0-1       | 0-1           |           |           | 0-1      |
|                           |                    | Map Zone:              | Zone II      | Zone II   | Zone II   | Zone II       | Zone III  | Zone III  | Zone III |
| Acenaphthene              | 1000000            |                        | 19 J         | 17 U      | 16 U      | 16 U          | 16 U      | 16 U      | 58 J     |
| -                         |                    |                        | 19 J<br>18 J |           |           | 10 U<br>110 J | 10 U      |           |          |
| Acenaphthylene            | 1000000            |                        |              | 15 J      | 12 U      |               |           | 12 U      | 150 J    |
| Anthracene                | 1000000            |                        | 24 J         | 33 J      | 13 U      | 160 J         | 13 U      | 13 U      | 390      |
| Benzo(a)anthracene        |                    |                        | 76 J         | 76 J      | 17 J      | 180 J         | 16 U      | 16 U      | 1200     |
| Benzo(a)pyrene            | *                  |                        | 92 J         | 72 J      | 20 J      | 190 J         | 17 U      | 17 U      | 850      |
| Benzo(b)fluoranthene      | *                  |                        | 65 J         | 76 J      | 41 U      | 430           | 41 U      | 40 U      | 1500     |
| Benzo(b+k)fluoranthenes   |                    |                        | NA           | NA        | NA        | NA            | NA        | NA        | NA       |
| Benzo(g,h,i)perylene      | 1000000            |                        | 46 J         | 38 J      | 18 U      | 82 J          | 18 U      | 18 U      | 310 J    |
| Benzo(k)fluoranthene      | *                  |                        | 97 J         | 61 J      | 42 U      | 270 J         | 42 U      | 41 U      | 1500     |
| Chrysene                  | *                  |                        | 150 J        | 100 J     | 22 J      | 380           | 18 U      | 18 U      | 2500     |
| Dibenzo(a,h)anthracene    | *                  |                        | 24 J         | 20 U      | 19 U      | 49 J          | 19 U      | 19 U      | 150 J    |
| Fluoranthene              | 1000000            |                        | 170 J        | 120 J     | 37 J      | 360           | 24 U      | 23 U      | 2100     |
| Fluorene                  | 1000000            |                        | 22 U         | 22 U      | 21 U      | 22 U          | 21 U      | 21 U      | 58 J     |
| Indeno(1,2,3-cd)pyrene    | *                  |                        | 42 J         | 38 J      | 19 U      | 97 J          | 19 U      | 19 U      | 360      |
| Naphthalene               | 1000000            |                        | 45 J         | 35 U      | 34 U      | 120 J         | 34 U      | 34 U      | 35 U     |
| Phenanthrene              | 1000000            |                        | 190 J        | 92 J      | 26 U      | 280 J         | 26 U      | 25 U      | 710      |
| Pyrene                    | 1000000            |                        | 250 J        | 150 J     | 45 J      | 340 J         | 20 U      | 20 U      | 2700     |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | T32-2<br>4/7/2003<br>0-1<br>Zone III | T32-3<br>4/7/2003<br>0-1<br>Zone II | T32-4<br>4/7/2003<br>0-1<br>Zone II | T32-5<br>4/7/2003<br>0-1<br>Zone II | T32-6<br>4/7/2003<br>0-1<br>Zone II | T32-7<br>4/7/2003<br>0-1<br>Zone II | T32-8<br>4/7/2003<br>0-1<br>Zone II |
|-------------------------------------|------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Acenaphthene                        | 1000000                                  |                                                                            | 170 J                                | 26 J                                | 21 J                                | 16 U                                | 55 J                                | 16 U                                | 16 U                                |
| Acenaphthylene<br>Anthracene        | 1000000<br>1000000                       |                                                                            | 250 J<br>610 J                       | 160 J<br>310 J                      | 130 J<br>210 J                      | 12 U<br>69 J                        | 58 J<br>120 J                       | 12 U<br>13 U                        | 12 U<br>13 U                        |
| Benzo(a)anthracene                  | *                                        |                                                                            | 1400                                 | 660                                 | 980                                 | 180 J                               | 380                                 | 20 J                                | 16 U                                |
| Benzo(a)pyrene                      | *                                        |                                                                            | 1100                                 | 730                                 | 930                                 | 130 J                               | 400                                 | 17 U                                | 17 U                                |
| Benzo(b)fluoranthene                | *                                        |                                                                            | 1600                                 | 1300                                | 1300                                | 210 J                               | 370                                 | 41 U                                | 40 U                                |
| Benzo(b+k)fluoranthenes             |                                          |                                                                            | NA                                   | NA                                  | NA                                  | NA                                  | NA                                  | NA                                  | NA                                  |
| Benzo(g,h,i)perylene                | 1000000                                  |                                                                            | 650 J                                | 130 J                               | 250 J                               | 88 J                                | 280 J                               | 18 U                                | 18 U                                |
| Benzo(k)fluoranthene                | *                                        |                                                                            | 1600                                 | 1000                                | 860                                 | 280 J                               | 410                                 | 42 U                                | 41 U                                |
| Chrysene                            | *                                        |                                                                            | 2000                                 | 1300                                | 1500                                | 390                                 | 530                                 | 29 J                                | 18 U                                |
| Dibenzo(a,h)anthracene              | *                                        |                                                                            | 330 J                                | 77 J                                | 130 J                               | 46 J                                | 100 J                               | 20 U                                | 19 U                                |
| Fluoranthene                        | 1000000                                  |                                                                            | 3900                                 | 910                                 | 1400                                | 390                                 | 820                                 | 24 U                                | 23 U                                |
| Fluorene                            | 1000000                                  |                                                                            | 250 J                                | 37 J                                | 33 J                                | 21 U                                | 58 J                                | 22 U                                | 21 U                                |
| Indeno(1,2,3-cd)pyrene              | *                                        |                                                                            | 690 J                                | 150 J                               | 290 J                               | 94 J                                | 220 J                               | 20 U                                | 19 U                                |
| Naphthalene                         | 1000000                                  |                                                                            | 69 U                                 | 43 J                                | 35 U                                | 34 U                                | 35 U                                | 35 U                                | 34 U                                |
| Phenanthrene                        | 1000000                                  |                                                                            | 2100                                 | 280 J                               | 250 J                               | 150 J                               | 750                                 | 26 U                                | 25 U                                |
| Pyrene                              | 1000000                                  |                                                                            | 2900                                 | 1000                                | 1700                                | 420                                 | 950                                 | 21 U                                | 20 U                                |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Part 375<br>Industrial (μg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | T32-9<br>4/7/2003<br>0-1<br>Zone II | T32-10<br>4/7/2003<br>0-1<br>Zone II | T32-11<br>4/7/2003<br>0-1<br>Zone II | T36C-1<br>5/14/2002<br>-<br>Zone II | T36C-2<br>5/14/2002<br>-<br>Zone II | T36C-3<br>5/14/2002<br>-<br>Zone II |
|----------------------------------------|------------------------------------------|----------------------------------------------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Acenaphthene                           | 1000000                                  |                                                                            | 16 U                                | 16 U                                 | 16 U                                 | 16 U                                | 16 U                                | 16 U                                |
| Acenaphthylene                         | 1000000                                  |                                                                            | 12 U                                | 12 U                                 | 12 U                                 | 12 U                                | 12 U                                | 12 U                                |
| Anthracene                             | 1000000                                  |                                                                            | 13 U                                | 13 U                                 | 13 U                                 | 13 U                                | 13 U                                | 13 U                                |
| Benzo(a)anthracene                     | *                                        |                                                                            | 16 U                                | 16 U                                 | 16 U                                 | 16 U                                | 16 U                                | 16 U                                |
| Benzo(a)pyrene                         | *                                        |                                                                            | 17 U                                | 17 U                                 | 17 U                                 | 17 U                                | 17 U                                | 17 U                                |
| Benzo(b)fluoranthene                   | *                                        |                                                                            | 40 U                                | 40 U                                 | 40 U                                 | 40 U                                | 40 U                                | 40 U                                |
| Benzo(b+k)fluoranthenes                |                                          |                                                                            | NA                                  | NA                                   | NA                                   | NA                                  | NA                                  | NA                                  |
| Benzo(g,h,i)perylene                   | 1000000                                  |                                                                            | 18 U                                | 18 U                                 | 18 U                                 | 18 U                                | 18 U                                | 18 U                                |
| Benzo(k)fluoranthene                   | *                                        |                                                                            | 41 U                                | 42 U                                 | 41 U                                 | 41 U                                | 41 U                                | 41 U                                |
| Chrysene                               | *                                        |                                                                            | 18 U                                | 18 U                                 | 18 U                                 | 18 U                                | 18 U                                | 18 U                                |
| Dibenzo(a,h)anthracene                 | *                                        |                                                                            | 19 U                                | 19 U                                 | 19 U                                 | 19 U                                | 19 U                                | 19 U                                |
| Fluoranthene                           | 1000000                                  |                                                                            | 23 U                                | 23 U                                 | 23 U                                 | 23 U                                | 23 U                                | 23 U                                |
| Fluorene                               | 1000000                                  |                                                                            | 21 U                                | 21 U                                 | 21 U                                 | 21 U                                | 21 U                                | 21 U                                |
| Indeno(1,2,3-cd)pyrene                 | *                                        |                                                                            | 19 U                                | 19 U                                 | 19 U                                 | 19 U                                | 19 U                                | 19 U                                |
| Naphthalene                            | 1000000                                  |                                                                            | 34 U                                | 34 U                                 | 34 U                                 | 34 U                                | 34 U                                | 34 U                                |
| Phenanthrene                           | 1000000                                  |                                                                            | 25 U                                | 26 U                                 | 25 U                                 | 25 U                                | 25 U                                | 25 U                                |
| Pyrene                                 | 1000000                                  |                                                                            | 20 U                                | 20 U                                 | 20 U                                 | 20 U                                | 20 U                                | 20 U                                |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | T36C-4<br>5/14/2002<br>-<br>Zone II | T36C-5<br>5/14/2002<br>-<br>Zone II | T36C-6<br>5/14/2002<br>-<br>Zone II | T36C-7<br>5/14/2002<br>-<br>Zone II | TANKPAD-1<br>8/12/2002<br>0-1<br>Zone II | TANKPAD-2<br>8/12/2002<br>0-1<br>Zone II |
|-------------------------------------|------------------------------------------|----------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|------------------------------------------|------------------------------------------|
| Acenaphthene                        | 1000000                                  |                                                                            | 15 U                                | 16 U                                | 16 U                                | 16 U                                | 32 J                                     | 18 J                                     |
| Acenaphthylene                      | 1000000                                  |                                                                            | 11 U                                | 12 U                                | 11 U                                | 48 J                                | 170 J                                    | 110 J                                    |
| Anthracene                          | 1000000                                  |                                                                            | 12 U                                | 13 U                                | 13 U                                | 47 J                                | 490                                      | 170 J                                    |
| Benzo(a)anthracene                  | *                                        |                                                                            | 15 U                                | 16 U                                | 16 U                                | 82 J                                | 990                                      | 480                                      |
| Benzo(a)pyrene                      | *                                        |                                                                            | 16 U                                | 21 J                                | 17 U                                | 150 J                               | 970                                      | 510                                      |
| Benzo(b)fluoranthene                | *                                        |                                                                            | 39 U                                | 40 U                                | 40 U                                | 250 J                               | 1200                                     | 510                                      |
| Benzo(b+k)fluoranthenes             |                                          |                                                                            | NA                                  | NA                                  | NA                                  | NA                                  | NA                                       | NA                                       |
| Benzo(g,h,i)perylene                | 1000000                                  |                                                                            | 18 U                                | 18 U                                | 18 U                                | 200 J                               | 200 J                                    | 130 J                                    |
| Benzo(k)fluoranthene                | *                                        |                                                                            | 40 U                                | 41 U                                | 41 U                                | 200 J                               | 1200                                     | 620                                      |
| Chrysene                            | *                                        |                                                                            | 18 U                                | 30 J                                | 18 U                                | 120 J                               | 1400                                     | 590                                      |
| Dibenzo(a,h)anthracene              | *                                        |                                                                            | 19 U                                | 19 U                                | 19 U                                | 49 J                                | 120 J                                    | 74 J                                     |
| Fluoranthene                        | 1000000                                  |                                                                            | 23 U                                | 23 U                                | 23 U                                | 92 J                                | 1600                                     | 620                                      |
| Fluorene                            | 1000000                                  |                                                                            | 21 U                                | 21 U                                | 21 U                                | 21 U                                | 44 J                                     | 21 U                                     |
| Indeno(1,2,3-cd)pyrene              | *                                        |                                                                            | 19 U                                | 19 U                                | 19 U                                | 140 J                               | 280 J                                    | 180 J                                    |
| Naphthalene                         | 1000000                                  |                                                                            | 33 U                                | 34 U                                | 33 U                                | 34 U                                | 48 J                                     | 46 J                                     |
| Phenanthrene                        | 1000000                                  |                                                                            | 25 U                                | 25 U                                | 25 U                                | 25 U                                | 590                                      | 260 J                                    |
| Pyrene                              | 1000000                                  |                                                                            | 20 U                                | 20 U                                | 20 U                                | 120 J                               | 1500                                     | 600                                      |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | TS1-1<br>7/12/2002<br>0-1<br>Zone III | TS1-2<br>7/12/2002<br>0-1<br>Zone III | TS1-3<br>7/12/2002<br>0-1<br>Zone III | TS1-4<br>7/12/2002<br>0-1<br>Zone III | TS1-5<br>7/12/2002<br>0-1<br>Zone III | TS1-6<br>7/12/2002<br>0-1<br>Zone III |
|-------------------------------------|------------------------------------------|----------------------------------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Acenaphthene                        | 1000000                                  |                                                                            | 310 J                                 | 16 U                                  | 16 U                                  | 16 U                                  | 23 J                                  | 390                                   |
| Acenaphthylene                      | 1000000                                  |                                                                            | 370                                   | 12 U                                  | 34 J                                  | 12 U                                  | 13 U                                  | 210 J                                 |
| Anthracene                          | 1000000                                  |                                                                            | 1000                                  | 21 J                                  | 65 J                                  | 13 U                                  | 30 J                                  | 550                                   |
| Benzo(a)anthracene                  | *                                        |                                                                            | 1200                                  | 130 J                                 | 220 J                                 | 31 J                                  | 58 J                                  | 840                                   |
| Benzo(a)pyrene                      | *                                        |                                                                            | 1300                                  | 130 J                                 | 250 J                                 | 29 J                                  | 48 J                                  | 960                                   |
| Benzo(b)fluoranthene                | *                                        |                                                                            | 1800                                  | 99 J                                  | 360                                   | 40 U                                  | 48 J                                  | 1100                                  |
| Benzo(b+k)fluoranthenes             |                                          |                                                                            | NA                                    | NA                                    | NA                                    | NA                                    | NA                                    | NA                                    |
| Benzo(g,h,i)perylene                | 1000000                                  |                                                                            | 1200                                  | 68 J                                  | 240 J                                 | 18 U                                  | 28 J                                  | 950                                   |
| Benzo(k)fluoranthene                | *                                        |                                                                            | 1100                                  | 130 J                                 | 340 J                                 | 41 U                                  | 48 J                                  | 920                                   |
| Chrysene                            | *                                        |                                                                            | 1700                                  | 120 J                                 | 340 J                                 | 37 J                                  | 67 J                                  | 1200                                  |
| Dibenzo(a,h)anthracene              | *                                        |                                                                            | 480                                   | 19 U                                  | 76 J                                  | 19 U                                  | 21 U                                  | 360 J                                 |
| Fluoranthene                        | 1000000                                  |                                                                            | 1900                                  | 260 J                                 | 280 J                                 | 59 J                                  | 120 J                                 | 1300                                  |
| Fluorene                            | 1000000                                  |                                                                            | 340 J                                 | 21 U                                  | 22 U                                  | 21 U                                  | 23 U                                  | 430                                   |
| Indeno(1,2,3-cd)pyrene              | *                                        |                                                                            | 1200                                  | 68 J                                  | 220 J                                 | 19 U                                  | 26 J                                  | 820                                   |
| Naphthalene                         | 1000000                                  |                                                                            | 430                                   | 34 U                                  | 35 U                                  | 34 U                                  | 37 U                                  | 360 J                                 |
| Phenanthrene                        | 1000000                                  |                                                                            | 1400                                  | 60 J                                  | 110 J                                 | 44 J                                  | 110 J                                 | 1500                                  |
| Pyrene                              | 1000000                                  |                                                                            | 2200                                  | 230 J                                 | 330 J                                 | 56 J                                  | 110 J                                 | 1400                                  |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | NYSDEC<br>Part 375 | Sample Designation:<br>Sample Date: | TS1-7<br>7/12/2002 | TS1-8<br>7/12/2002 | TS1-8<br>7/12/2002 | TS1-9<br>7/12/2002 | TS1-10<br>7/12/2002 | TS36-1<br>4/15/2002 |
|---------------------------|--------------------|-------------------------------------|--------------------|--------------------|--------------------|--------------------|---------------------|---------------------|
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls):              | 0-1                | 0-1                | 1-2                | 0-1                | 0-1                 | 0-1                 |
|                           |                    | Map Zone:                           | Zone III            | Zone III            |
| Acenaphthene              | 1000000            |                                     | 310 J              | 210 J              | 1900 J             | 16 U               | 140 J               | 64 U                |
| Acenaphthylene            | 1000000            |                                     | 180 J              | 1300 J             | 630 J              | 12 U               | 1900                | 1000 J              |
| Anthracene                | 1000000            |                                     | 1200               | 3400               | 2000 J             | 16 J               | 3500                | 1300 J              |
| Benzo(a)anthracene        | *                  |                                     | 1800               | 4300               | 4700               | 43 J               | 2400                | 3100                |
| Benzo(a)pyrene            | *                  |                                     | 1700               | 5900               | 2800 J             | 52 J               | 2200                | 4300                |
| Benzo(b)fluoranthene      | *                  |                                     | 1400               | 7000               | 3500 J             | 56 J               | 5400                | 5400                |
| Benzo(b+k)fluoranthenes   |                    |                                     | NA                 | NA                 | NA                 | NA                 | NA                  | NA                  |
| Benzo(g,h,i)perylene      | 1000000            |                                     | 650 J              | 7400               | 1700 J             | 44 J               | 2600                | 690 J               |
| Benzo(k)fluoranthene      | *                  |                                     | 1800               | 5400               | 3000 J             | 63 J               | 1000                | 4000                |
| Chrysene                  | *                  |                                     | 2100               | 7200               | 5400               | 57 J               | 1900                | 4200                |
| Dibenzo(a,h)anthracene    | *                  |                                     | 360 J              | 2600               | 690 J              | 19 U               | 690 J               | 440 J               |
| Fluoranthene              | 1000000            |                                     | 3100               | 5500               | 18000              | 74 J               | 2300                | 2800                |
| Fluorene                  | 1000000            |                                     | 390 J              | 360 J              | 2000 J             | 22 U               | 140 J               | 86 U                |
| Indeno(1,2,3-cd)pyrene    | *                  |                                     | 680 J              | 7100               | 1600 J             | 41 J               | 2200                | 1100 J              |
| Naphthalene               | 1000000            |                                     | 70 U               | 450 J              | 1300 J             | 35 U               | 220 J               | 320 J               |
| Phenanthrene              | 1000000            |                                     | 3700               | 1700               | 2400 J             | 33 J               | 540 J               | 950 J               |
| Pyrene                    | 1000000            |                                     | 2900               | 5500               | 17000              | 69 J               | 2600                | 6100                |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | TS36-2<br>4/15/2002<br>0-1<br>Zone III | TS36-3<br>4/15/2002<br>0-1<br>Zone III | TS36-4<br>4/15/2002<br>0-1<br>Zone II | TS36-5<br>4/15/2002<br>0-1<br>Zone II | TS36-6<br>4/15/2002<br>0-1<br>Zone II | TS36-7<br>4/15/2002<br>0-1<br>Zone II |
|----------------------------------------|------------------------------------------|----------------------------------------------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Acenaphthene                           | 1000000                                  |                                                                            | 32 U                                   | 32 U                                   | 34 U                                  | 290 J                                 | 17 U                                  | 76 U                                  |
| Acenaphthylene                         | 1000000                                  |                                                                            | 720                                    | 160 J                                  | 410 J                                 | 1400 J                                | 130 J                                 | 780 J                                 |
| Anthracene                             | 1000000                                  |                                                                            | 960                                    | 270 J                                  | 650 J                                 | 2300                                  | 210 J                                 | 1300 J                                |
| Benzo(a)anthracene                     | *                                        |                                                                            | 1100                                   | 590 J                                  | 860                                   | 2000                                  | 340 J                                 | 1500 J                                |
| Benzo(a)pyrene                         | *                                        |                                                                            | 1300                                   | 790                                    | 1000                                  | 2200                                  | 350 J                                 | 2400                                  |
| Benzo(b)fluoranthene                   | *                                        |                                                                            | 1900                                   | 1000                                   | 1900                                  | 4700                                  | 560                                   | 6600                                  |
| Benzo(b+k)fluoranthenes                |                                          |                                                                            | NA                                     | NA                                     | NA                                    | NA                                    | NA                                    | NA                                    |
| Benzo(g,h,i)perylene                   | 1000000                                  |                                                                            | 140 J                                  | 380 J                                  | 92 J                                  | 390 J                                 | 100 J                                 | 190 J                                 |
| Benzo(k)fluoranthene                   | *                                        |                                                                            | 1600                                   | 870                                    | 1500                                  | 6400                                  | 580                                   | 4200                                  |
| Chrysene                               | *                                        |                                                                            | 1700                                   | 980                                    | 1500                                  | 2800                                  | 710                                   | 2900                                  |
| Dibenzo(a,h)anthracene                 | *                                        |                                                                            | 100 J                                  | 180 J                                  | 49 J                                  | 91 U                                  | 45 J                                  | 94 J                                  |
| Fluoranthene                           | 1000000                                  |                                                                            | 1200                                   | 700                                    | 1000                                  | 2500                                  | 550                                   | 1400 J                                |
| Fluorene                               | 1000000                                  |                                                                            | 43 U                                   | 42 U                                   | 45 U                                  | 270 J                                 | 22 U                                  | 100 U                                 |
| Indeno(1,2,3-cd)pyrene                 | *                                        |                                                                            | 230 J                                  | 480 J                                  | 120 J                                 | 390 J                                 | 150 J                                 | 260 J                                 |
| Naphthalene                            | 1000000                                  |                                                                            | 160 J                                  | 67 U                                   | 150 J                                 | 3300                                  | 43 J                                  | 490 J                                 |
| Phenanthrene                           | 1000000                                  |                                                                            | 610 J                                  | 400 J                                  | 470 J                                 | 2900                                  | 180 J                                 | 820 J                                 |
| Pyrene                                 | 1000000                                  |                                                                            | 1900                                   | 1200                                   | 1500                                  | 2100                                  | 790                                   | 2200                                  |
|                                        |                                          |                                                                            |                                        |                                        |                                       |                                       |                                       |                                       |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation: Sample Date: Sample Depth (ft bls): Map Zone: | TS36-8<br>4/15/2002<br>0-1<br>Zone II | TS36-9<br>4/15/2002<br>0-1<br>Zone II | TS36-9<br>4/15/2002<br>1-2<br>Zone II | TS36-10<br>4/15/2002<br>0-1<br>Zone II | TS36-11<br>4/15/2002<br>1-2<br>Zone II | TS36-11<br>4/15/2002<br>2-3<br>Zone II |
|----------------------------------------|------------------------------------------|-------------------------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| Acenaphthene                           | 1000000                                  |                                                                   | 49 J                                  | 80 J                                  | 67 U                                  | 330 U                                  | 4000 J                                 | 110 J                                  |
| Acenaphthylene                         | 1000000                                  |                                                                   | 300 J                                 | 1500                                  | 780 J                                 | 240 U                                  | 1300 J                                 | 570 J                                  |
| Anthracene                             | 1000000                                  |                                                                   | 560 J                                 | 2300                                  | 1000 J                                | 260 U                                  | 15000                                  | 2600                                   |
| Benzo(a)anthracene                     | *                                        |                                                                   | 980                                   | 3100                                  | 1900                                  | 460 J                                  | 27000                                  | 2200                                   |
| Benzo(a)pyrene                         | *                                        |                                                                   | 870                                   | 6400                                  | 2400                                  | 520 J                                  | 19000                                  | 2200                                   |
| Benzo(b)fluoranthene                   | *                                        |                                                                   | 1600                                  | 12000                                 | 3100                                  | 830 U                                  | 15000                                  | 2700                                   |
| Benzo(b+k)fluoranthenes                |                                          |                                                                   | NA                                    | NA                                    | NA                                    | NA                                     | NA                                     | NA                                     |
| Benzo(g,h,i)perylene                   | 1000000                                  |                                                                   | 96 J                                  | 570 J                                 | 1400 J                                | 370 U                                  | 2100 J                                 | 2400                                   |
| Benzo(k)fluoranthene                   | *                                        |                                                                   | 1300                                  | 6700                                  | 2400                                  | 880 J                                  | 16000                                  | 2500                                   |
| Chrysene                               | *                                        |                                                                   | 1700                                  | 5500                                  | 2800                                  | 850 J                                  | 38000                                  | 4100                                   |
| Dibenzo(a,h)anthracene                 | *                                        |                                                                   | 45 J                                  | 300 J                                 | 610 J                                 | 390 U                                  | 1600 J                                 | 750 J                                  |
| Fluoranthene                           | 1000000                                  |                                                                   | 1400                                  | 2500                                  | 1400 J                                | 590 J                                  | 28000                                  | 4600                                   |
| Fluorene                               | 1000000                                  |                                                                   | 52 J                                  | 90 U                                  | 89 U                                  | 440 U                                  | 3400 J                                 | 370 J                                  |
| Indeno(1,2,3-cd)pyrene                 | *                                        |                                                                   | 120 J                                 | 870 J                                 | 1900                                  | 390 U                                  | 2600 J                                 | 2400                                   |
| Naphthalene                            | 1000000                                  |                                                                   | 320 J                                 | 230 J                                 | 290 J                                 | 700 U                                  | 1100 J                                 | 260 J                                  |
| Phenanthrene                           | 1000000                                  |                                                                   | 810                                   | 790 J                                 | 630 J                                 | 530 U                                  | 51000                                  | 2600                                   |
| Pyrene                                 | 1000000                                  |                                                                   | 1700                                  | 3900                                  | 2700                                  | 790 J                                  | 54000                                  | 6100                                   |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in µg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | TS36-12<br>4/15/2002<br>1-2<br>Zone II | TS36-12<br>4/15/2002<br>2-3<br>Zone II | TS36-13<br>4/15/2002<br>0-1<br>Zone II | TS36-13<br>4/15/2002<br>1-2<br>Zone II | TS36-14<br>4/15/2002<br>0-1<br>Zone II | TS36-14<br>4/15/2002<br>1-2<br>Zone II |
|-------------------------------------|------------------------------------------|----------------------------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| Acenaphthene                        | 1000000                                  |                                                                            | 610 J                                  | 2400 J                                 | 160 J                                  | 150 J                                  | 100 J                                  | 81 J                                   |
| Acenaphthylene                      | 1000000                                  |                                                                            | 2800 J                                 | 520 J                                  | 2200                                   | 2100                                   | 1400 J                                 | 1000 J                                 |
| Anthracene                          | 1000000                                  |                                                                            | 6200                                   | 4100                                   | 4300                                   | 3200                                   | 2100                                   | 1800                                   |
| Benzo(a)anthracene                  | *                                        |                                                                            | 4600                                   | 9700                                   | 3400                                   | 3500                                   | 3800                                   | 3200                                   |
| Benzo(a)pyrene                      | *                                        |                                                                            | 4200                                   | 5600                                   | 4000                                   | 3100                                   | 2800                                   | 2300                                   |
| Benzo(b)fluoranthene                | *                                        |                                                                            | 13000                                  | 3400 J                                 | 10000                                  | 4000                                   | 5400                                   | 4100                                   |
| Benzo(b+k)fluoranthenes             |                                          |                                                                            | NA                                     | NA                                     | NA                                     | NA                                     | NA                                     | NA                                     |
| Benzo(g,h,i)perylene                | 1000000                                  |                                                                            | 960 J                                  | 4400                                   | 370 J                                  | 1600 J                                 | 1600                                   | 1900                                   |
| Benzo(k)fluoranthene                | *                                        |                                                                            | 13000                                  | 4200                                   | 7100                                   | 3500                                   | 4200                                   | 3200                                   |
| Chrysene                            | *                                        |                                                                            | 8400                                   | 11000                                  | 5100                                   | 4700                                   | 6100                                   | 5000                                   |
| Dibenzo(a,h)anthracene              | *                                        |                                                                            | 180 U                                  | 1600 J                                 | 180 J                                  | 780 J                                  | 740 J                                  | 800 J                                  |
| Fluoranthene                        | 1000000                                  |                                                                            | 6600                                   | 11000                                  | 4300                                   | 4100                                   | 3700                                   | 3100                                   |
| Fluorene                            | 1000000                                  |                                                                            | 770 J                                  | 1800 J                                 | 180 J                                  | 180 J                                  | 120 J                                  | 110 J                                  |
| Indeno(1,2,3-cd)pyrene              | *                                        |                                                                            | 990 J                                  | 3500 J                                 | 420 J                                  | 2300                                   | 2500                                   | 2500                                   |
| Naphthalene                         | 1000000                                  |                                                                            | 4600                                   | 360 U                                  | 1400 J                                 | 550 J                                  | 650 J                                  | 240 J                                  |
| Phenanthrene                        | 1000000                                  |                                                                            | 5200                                   | 23000                                  | 3000                                   | 2200                                   | 1500                                   | 950 J                                  |
| Pyrene                              | 1000000                                  |                                                                            | 4900                                   | 26000                                  | 4000                                   | 5500                                   | 5300                                   | 4500                                   |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | TS36-15<br>4/15/2002<br>0-1<br>Zone II | TS36-16<br>4/15/2002<br>0-1<br>Zone II | TS36-16<br>4/15/2002<br>1-2<br>Zone II | TU-1<br>6/26/2007<br>0-1<br>Zone III | TU-1<br>6/26/2007<br>1-2<br>Zone III | TU-1<br>6/26/2007<br>2-3<br>Zone III |
|-------------------------------------|------------------------------------------|----------------------------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Acenaphthene                        | 1000000                                  |                                                                            | 45 J                                   | 110 J                                  | 130 J                                  | 52 U                                 | 54 U                                 | 40                                   |
| Acenaphthylene                      | 1000000                                  |                                                                            | 660 J                                  | 2100                                   | 580 J                                  | 190                                  | 920                                  | 390                                  |
| Anthracene                          | 1000000                                  |                                                                            | 1200                                   | 4500                                   | 1200                                   | 250                                  | 940                                  | 390                                  |
| Benzo(a)anthracene                  | *                                        |                                                                            | 820                                    | 2300                                   | 1500                                   | 600                                  | 2500                                 | 1100                                 |
| Benzo(a)pyrene                      | *                                        |                                                                            | 750                                    | 1800                                   | 1200                                   | 560                                  | 2500                                 | 1300                                 |
| Benzo(b)fluoranthene                | *                                        |                                                                            | 2600                                   | 9000                                   | 1700                                   | 1000                                 | 4400                                 | 2500                                 |
| Benzo(b+k)fluoranthenes             |                                          |                                                                            | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   | NA                                   |
| Benzo(g,h,i)perylene                | 1000000                                  |                                                                            | 120 J                                  | 320 J                                  | 580 J                                  | 540                                  | 1900                                 | 1300                                 |
| Benzo(k)fluoranthene                | *                                        |                                                                            | 1600                                   | 6300                                   | 1500                                   | 390                                  | 1600                                 | 580                                  |
| Chrysene                            | *                                        |                                                                            | 1800                                   | 4800                                   | 2300                                   | 720                                  | 2500                                 | 1200                                 |
| Dibenzo(a,h)anthracene              | *                                        |                                                                            | 76 J                                   | 190 J                                  | 350 J                                  | 140                                  | 660                                  | 370                                  |
| Fluoranthene                        | 1000000                                  |                                                                            | 1300                                   | 3800                                   | 1900                                   | 630                                  | 2300                                 | 1200                                 |
| Fluorene                            | 1000000                                  |                                                                            | 56 J                                   | 160 J                                  | 110 J                                  | 39 U                                 | 41 U                                 | 13 U                                 |
| Indeno(1,2,3-cd)pyrene              | *                                        |                                                                            | 200 J                                  | 580 J                                  | 970                                    | 520                                  | 1800                                 | 1100                                 |
| Naphthalene                         | 1000000                                  |                                                                            | 270 J                                  | 670 J                                  | 120 J                                  | 70 U                                 | 120                                  | 100                                  |
| Phenanthrene                        | 1000000                                  |                                                                            | 990                                    | 1900                                   | 2000                                   | 260                                  | 680                                  | 400                                  |
| Pyrene                              | 1000000                                  |                                                                            | 1200                                   | 3200                                   | 3100                                   | 980                                  | 3500                                 | 1600                                 |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | TU-2<br>6/26/2007<br>0-1<br>Zone II | TU-2<br>6/26/2007<br>1-2<br>Zone II | TU-2<br>6/26/2007<br>2-3<br>Zone II | TU-3<br>6/26/2007<br>0-1<br>Zone II | TU-3<br>6/26/2007<br>1-2<br>Zone II | TU-3<br>6/26/2007<br>2-3<br>Zone II |
|----------------------------------------|------------------------------------------|----------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Acenaphthene                           | 1000000                                  |                                                                            | 65                                  | 540                                 | 130                                 | 170                                 | 950                                 | 760                                 |
| Acenaphthylene                         | 1000000                                  |                                                                            | 360                                 | 620                                 | 120                                 | 810                                 | 280 U                               | 990                                 |
| Anthracene                             | 1000000                                  |                                                                            | 620                                 | 2400                                | 630                                 | 1700                                | 4800                                | 3900                                |
| Benzo(a)anthracene                     | *                                        |                                                                            | 2300                                | 6000                                | 1500                                | 6400                                | 16000                               | 13000                               |
| Benzo(a)pyrene                         | *                                        |                                                                            | 2100                                | 4900                                | 1100                                | 5900                                | 13000                               | 9000                                |
| Benzo(b)fluoranthene                   | *                                        |                                                                            | 3900                                | 7900                                | 1900                                | 9300                                | 19000                               | 14000                               |
| Benzo(b+k)fluoranthenes                |                                          |                                                                            | NA                                  | NA                                  | NA                                  | NA                                  | NA                                  | NA                                  |
| Benzo(g,h,i)perylene                   | 1000000                                  |                                                                            | 1900                                | 2900                                | 870                                 | 3900                                | 8200                                | 5900                                |
| Benzo(k)fluoranthene                   | *                                        |                                                                            | 980                                 | 2100                                | 580                                 | 3300                                | 7000                                | 4700                                |
| Chrysene                               | *                                        |                                                                            | 2200                                | 5400                                | 1300                                | 5700                                | 15000                               | 11000                               |
| Dibenzo(a,h)anthracene                 | *                                        |                                                                            | 610                                 | 1100                                | 270                                 | 1300                                | 2500                                | 2200                                |
| Fluoranthene                           | 1000000                                  |                                                                            | 3000                                | 11000                               | 3000                                | 8600                                | 31000                               | 20000                               |
| Fluorene                               | 1000000                                  |                                                                            | 82                                  | 830                                 | 180                                 | 270                                 | 1500                                | 1100                                |
| Indeno(1,2,3-cd)pyrene                 | *                                        |                                                                            | 1800                                | 3000                                | 780                                 | 3800                                | 7700                                | 5700                                |
| Naphthalene                            | 1000000                                  |                                                                            | 140                                 | 960                                 | 160                                 | 250                                 | 500 U                               | 260 U                               |
| Phenanthrene                           | 1000000                                  |                                                                            | 1300                                | 11000                               | 3100                                | 3600                                | 25000                               | 15000                               |
| Pyrene                                 | 1000000                                  |                                                                            | 3500                                | 12000                               | 3600                                | 10000                               | 34000                               | 23000                               |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | TU-4<br>6/26/2007<br>0-1<br>Zone II | TU-4<br>6/26/2007<br>1-2<br>Zone II | TU-4<br>6/26/2007<br>2-3<br>Zone II | TU-5<br>6/26/2007<br>0-1<br>Zone II | TU-5<br>6/26/2007<br>1-2<br>Zone II | TU-5<br>6/26/2007<br>2-3<br>Zone II |
|-------------------------------------|------------------------------------------|----------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Acenaphthene                        | 1000000                                  |                                                                            | 16 U                                | 17 U                                | 18 U                                | 16 U                                | 16 U                                | 16 U                                |
| Acenaphthylene                      | 1000000                                  |                                                                            | 70                                  | 130                                 | 55                                  | 110                                 | 120                                 | 91                                  |
| Anthracene                          | 1000000                                  |                                                                            | 91                                  | 190                                 | 92                                  | 110                                 | 120                                 | 100                                 |
| Benzo(a)anthracene                  | *                                        |                                                                            | 370                                 | 980                                 | 410                                 | 330                                 | 360                                 | 270                                 |
| Benzo(a)pyrene                      | *                                        |                                                                            | 410                                 | 1100                                | 440                                 | 340                                 | 380                                 | 270                                 |
| Benzo(b)fluoranthene                | *                                        |                                                                            | 630                                 | 1600                                | 630                                 | 630                                 | 760                                 | 520                                 |
| Benzo(b+k)fluoranthenes             |                                          |                                                                            | NA                                  | NA                                  | NA                                  | NA                                  | NA                                  | NA                                  |
| Benzo(g,h,i)perylene                | 1000000                                  |                                                                            | 350                                 | 800                                 | 310                                 | 320                                 | 370                                 | 290                                 |
| Benzo(k)fluoranthene                | *                                        |                                                                            | 260                                 | 550                                 | 160                                 | 230                                 | 190                                 | 200                                 |
| Chrysene                            | *                                        |                                                                            | 410                                 | 1000                                | 440                                 | 380                                 | 420                                 | 330                                 |
| Dibenzo(a,h)anthracene              | *                                        |                                                                            | 110                                 | 260                                 | 89                                  | 100                                 | 100                                 | 90                                  |
| Fluoranthene                        | 1000000                                  |                                                                            | 460                                 | 1100                                | 450                                 | 430                                 | 540                                 | 380                                 |
| Fluorene                            | 1000000                                  |                                                                            | 11 U                                | 11 U                                | 12 U                                | 11 U                                | 11 U                                | 10 U                                |
| Indeno(1,2,3-cd)pyrene              | *                                        |                                                                            | 310                                 | 760                                 | 260                                 | 310                                 | 340                                 | 240                                 |
| Naphthalene                         | 1000000                                  |                                                                            | 22 U                                | 56                                  | 24 U                                | 62                                  | 56                                  | 53                                  |
| Phenanthrene                        | 1000000                                  |                                                                            | 150                                 | 310                                 | 180                                 | 180                                 | 240                                 | 200                                 |
| Pyrene                              | 1000000                                  |                                                                            | 580                                 | 1600                                | 690                                 | 550                                 | 630                                 | 450                                 |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | TU-6<br>6/26/2007<br>0-1<br>Zone II | TU-6<br>6/26/2007<br>1-2<br>Zone II | TU-6<br>6/26/2007<br>2-3<br>Zone II | TU-7<br>6/26/2007<br>0-1<br>Zone II | TU-7<br>6/26/2007<br>1-2<br>Zone II | TU-7<br>6/26/2007<br>2-3<br>Zone II |
|----------------------------------------|------------------------------------------|----------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Acenaphthene                           | 1000000                                  |                                                                            | 18 U                                | 17 U                                | 17 U                                | 54 U                                | 50                                  | 54 U                                |
| Acenaphthylene                         | 1000000                                  |                                                                            | 85                                  | 48                                  | 13 U                                | 360                                 | 290                                 | 340                                 |
| Anthracene                             | 1000000                                  |                                                                            | 110                                 | 70                                  | 48                                  | 510                                 | 410                                 | 440                                 |
| Benzo(a)anthracene                     | *                                        |                                                                            | 370                                 | 210                                 | 140                                 | 1200                                | 850                                 | 1100                                |
| Benzo(a)pyrene                         | *                                        |                                                                            | 290                                 | 260                                 | 120                                 | 1200                                | 850                                 | 1100                                |
| Benzo(b)fluoranthene                   | *                                        |                                                                            | 770                                 | 410                                 | 210                                 | 2200                                | 1600                                | 2000                                |
| Benzo(b+k)fluoranthenes                |                                          |                                                                            | NA                                  | NA                                  | NA                                  | NA                                  | NA                                  | NA                                  |
| Benzo(g,h,i)perylene                   | 1000000                                  |                                                                            | 330                                 | 230                                 | 120                                 | 1000                                | 720                                 | 890                                 |
| Benzo(k)fluoranthene                   | *                                        |                                                                            | 220                                 | 140                                 | 78                                  | 650                                 | 470                                 | 590                                 |
| Chrysene                               | *                                        |                                                                            | 460                                 | 250                                 | 150                                 | 1400                                | 950                                 | 1500                                |
| Dibenzo(a,h)anthracene                 | *                                        |                                                                            | 110                                 | 63                                  | 36                                  | 260                                 | 220                                 | 210                                 |
| Fluoranthene                           | 1000000                                  |                                                                            | 450                                 | 280                                 | 140                                 | 1500                                | 990                                 | 1100                                |
| Fluorene                               | 1000000                                  |                                                                            | 12 U                                | 11 U                                | 13 U                                | 40 U                                | 54                                  | 40 U                                |
| Indeno(1,2,3-cd)pyrene                 | *                                        |                                                                            | 310                                 | 210                                 | 120                                 | 910                                 | 680                                 | 810                                 |
| Naphthalene                            | 1000000                                  |                                                                            | 24 U                                | 45                                  | 23 U                                | 72 U                                | 76                                  | 72 U                                |
| Phenanthrene                           | 1000000                                  |                                                                            | 150                                 | 140                                 | 78                                  | 760                                 | 370                                 | 490                                 |
| Pyrene                                 | 1000000                                  |                                                                            | 570                                 | 360                                 | 210                                 | 2100                                | 1300                                | 1700                                |

AM0055.0071Y007.143/T6

### Notes:

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in µg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | TU-8<br>6/26/2007<br>0-1<br>Zone II | TU-8<br>6/26/2007<br>1-2<br>Zone II | TU-8<br>6/26/2007<br>2-3<br>Zone II | TU-9<br>6/27/2007<br>0-1<br>Zone II | TU-9<br>6/27/2007<br>1-2<br>Zone II | TU-9<br>6/27/2007<br>2-3<br>Zone II |
|----------------------------------------|------------------------------------------|----------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Acenaphthene                           | 1000000                                  |                                                                            | 17 U                                | 290                                 | 57 U                                | 58                                  | 17 U                                | 18 U                                |
| Acenaphthylene                         | 1000000                                  |                                                                            | 100                                 | 180                                 | 570                                 | 220                                 | 13 U                                | 13 U                                |
| Anthracene                             | 1000000                                  |                                                                            | 190                                 | 740                                 | 790                                 | 390                                 | 12 U                                | 12 U                                |
| Benzo(a)anthracene                     | *                                        |                                                                            | 970                                 | 1800                                | 2500                                | 1100                                | 160                                 | 81                                  |
| Benzo(a)pyrene                         | *                                        |                                                                            | 410                                 | 1400                                | 2000                                | 1000                                | 150                                 | 80                                  |
| Benzo(b)fluoranthene                   | *                                        |                                                                            | 880                                 | 2100                                | 3700                                | 1800                                | 240                                 | 130                                 |
| Benzo(b+k)fluoranthenes                |                                          |                                                                            | NA                                  | NA                                  | NA                                  | NA                                  | NA                                  | NA                                  |
| Benzo(g,h,i)perylene                   | 1000000                                  |                                                                            | 340                                 | 1000                                | 1600                                | 680                                 | 130                                 | 71                                  |
| Benzo(k)fluoranthene                   | *                                        |                                                                            | 250                                 | 690                                 | 1100                                | 440                                 | 62                                  | 44                                  |
| Chrysene                               | *                                        |                                                                            | 1800                                | 1900                                | 3100                                | 1100                                | 180                                 | 94                                  |
| Dibenzo(a,h)anthracene                 | *                                        |                                                                            | 98                                  | 320                                 | 520                                 | 270                                 | 46                                  | 4.4 U                               |
| Fluoranthene                           | 1000000                                  |                                                                            | 2200                                | 3200                                | 2800                                | 1300                                | 170                                 | 94                                  |
| Fluorene                               | 1000000                                  |                                                                            | 13 U                                | 210                                 | 43 U                                | 47                                  | 13 U                                | 13 U                                |
| Indeno(1,2,3-cd)pyrene                 | *                                        |                                                                            | 310                                 | 930                                 | 1500                                | 690                                 | 120                                 | 57                                  |
| Naphthalene                            | 1000000                                  |                                                                            | 44                                  | 160                                 | 170                                 | 130                                 | 23 U                                | 24 U                                |
| Phenanthrene                           | 1000000                                  |                                                                            | 390                                 | 3300                                | 1600                                | 620                                 | 110                                 | 51                                  |
| Pyrene                                 | 1000000                                  |                                                                            | 2400                                | 4100                                | 4300                                | 1700                                | 310                                 | 150                                 |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | NYSDEC<br>Part 375 | Sample Designation:<br>Sample Date: | TU-10<br>6/27/2007 | TU-10<br>6/27/2007 | TU-10<br>6/27/2007 | TU-11<br>6/27/2007 | TU-11<br>6/27/2007 | TU-11<br>6/27/2007 |                |                |
|---------------------------|--------------------|-------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|----------------|----------------|
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls):<br>Map Zone: | 0-1<br>Zone II     | 1-2<br>Zone II     | 2-3<br>Zone II     | 0-1<br>Zone II     | 1-2<br>Zone II     | 2-3<br>Zone II     | 0-1<br>Zone II | 1-2<br>Zone II |
|                           |                    |                                     |                    |                    |                    |                    |                    |                    |                |                |
| Acenaphthene              | 1000000            |                                     | 440                | 90 U               | 1000               | 67                 | 74                 | 57                 | 81             | 180 U          |
| Acenaphthylene            | 1000000            |                                     | 290                | 320                | 300                | 260                | 290                | 290                | 260            | 500            |
| Anthracene                | 1000000            |                                     | 1400               | 470                | 1500               | 480                | 510                | 420                | 520            | 810            |
| Benzo(a)anthracene        | *                  |                                     | 4900               | 1100               | 1700               | 1200               | 1200               | 1100               | 1900           | 2500           |
| Benzo(a)pyrene            | *                  |                                     | 2900               | 980                | 1300               | 1200               | 1100               | 980                | 1700           | 2200           |
| Benzo(b)fluoranthene      | *                  |                                     | 3800               | 2000               | 2800               | 2100               | 1800               | 1900               | 2800           | 3300           |
| Benzo(b+k)fluoranthenes   |                    |                                     | NA                 | NA                 | NA                 | NA                 | NA                 | NA                 | NA             | NA             |
| Benzo(g,h,i)perylene      | 1000000            |                                     | 2200               | 1400               | 1300               | 860                | 860                | 1100               | 1300           | 2200           |
| Benzo(k)fluoranthene      | *                  |                                     | 1200               | 650                | 610                | 500                | 510                | 480                | 610            | 1300           |
| Chrysene                  | *                  |                                     | 5400               | 1300               | 1900               | 1400               | 1200               | 1100               | 1900           | 2700           |
| Dibenzo(a,h)anthracene    | *                  |                                     | 670                | 350                | 370                | 280                | 280                | 300                | 390            | 510            |
| Fluoranthene              | 1000000            |                                     | 4300               | 1400               | 4300               | 1500               | 1700               | 1500               | 2800           | 2700           |
| Fluorene                  | 1000000            |                                     | 270                | 68 U               | 900                | 56                 | 69                 | 58                 | 85             | 140 U          |
| Indeno(1,2,3-cd)pyrene    | *                  |                                     | 1600               | 1200               | 1200               | 830                | 840                | 990                | 1200           | 1900           |
| Naphthalene               | 1000000            |                                     | 360                | 390                | 720                | 250                | 260                | 270                | 230            | 660            |
| Phenanthrene              | 1000000            |                                     | 6000               | 1100               | 6300               | 780                | 960                | 810                | 1400           | 2300           |
| Pyrene                    | 1000000            |                                     | 10000              | 1900               | 4100               | 1900               | 1600               | 1500               | 3200           | 4600           |
|                           |                    |                                     |                    |                    |                    |                    |                    |                    |                |                |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | TU-12     | TU-13     | TU-13     | TU-13     | TU-14     | TU-14     | TU-14     | UST-12 NWALL |
|---------------------------|--------------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|
| Parameter                 | Part 375           | Sample Date:           | 6/27/2007 | 6/27/2007 | 6/27/2007 | 6/27/2007 | 6/27/2007 | 6/27/2007 | 6/27/2007 | 5/4/1998     |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 2-3       | 0-1       | 1-2       | 2-3       | 0-1       | 1-2       | 2-3       | -            |
|                           |                    | Map Zone:              | Zone II      |
| Acenaphthene              | 1000000            |                        | 130       | 970       | 880       | 270       | 55 U      | 18 U      | 18 U      | 340 U        |
| Acenaphthylene            | 1000000            |                        | 550       | 540       | 640       | 540       | 500       | 170       | 14 U      | 340 U        |
| Anthracene                | 1000000            |                        | 1100      | 2900      | 1900      | 1100      | 630       | 250       | 12 U      | 340 U        |
| Benzo(a)anthracene        | *                  |                        | 2500      | 6200      | 3000      | 1700      | 600       | 240       | 54        | 340 U        |
| Benzo(a)pyrene            | *                  |                        | 2100      | 6100      | 3200      | 1800      | 490       | 180       | 54        | 340 U        |
| Benzo(b)fluoranthene      | *                  |                        | 3700      | 12000     | 6700      | 3700      | 2100      | 850       | 89        | 340 U        |
| Benzo(b+k)fluoranthenes   |                    |                        | NA        | 340 U        |
| Benzo(g,h,i)perylene      | 1000000            |                        | 1600      | 5100      | 2700      | 1800      | 810       | 290       | 43        | 340 U        |
| Benzo(k)fluoranthene      | *                  |                        | 990       | 3500      | 1500      | 970       | 580       | 190       | 14 U      | 340 U        |
| Chrysene                  | *                  |                        | 2800      | 9500      | 4600      | 2400      | 1100      | 430       | 65        | 340 U        |
| Dibenzo(a,h)anthracene    | *                  |                        | 520       | 1600      | 910       | 550       | 260       | 99        | 4.5 U     | 340 U        |
| Fluoranthene              | 1000000            |                        | 3600      | 11000     | 4600      | 2600      | 880       | 300       | 75        | 340 U        |
| Fluorene                  | 1000000            |                        | 130       | 970       | 770       | 230       | 41 U      | 14 U      | 14 U      | 340 U        |
| Indeno(1,2,3-cd)pyrene    | *                  |                        | 1500      | 4400      | 2500      | 1600      | 890       | 300       | 47        | 340 U        |
| Naphthalene               | 1000000            |                        | 570       | 340       | 1400      | 460       | 190       | 81        | 24 U      | 340 U        |
| Phenanthrene              | 1000000            |                        | 2500      | 5500      | 3900      | 1700      | 730       | 520       | 72        | 340 U        |
| Pyrene                    | 1000000            |                        | 4400      | 16000     | 5300      | 3000      | 1400      | 620       | 100       | 340 U        |
|                           |                    |                        |           |           |           |           |           |           |           |              |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 6. Summary of Polyaromatic Hydrocarbons Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | UST-12 EWALL<br>5/4/1998<br>-<br>Zone II | UST-12 SWALL<br>5/4/1998<br>-<br>Zone II | UST-12 WWALL<br>5/4/1998<br>-<br>Zone II | UST-12 BOTTOM<br>5/4/1998<br>-<br>Zone II |
|-------------------------------------|------------------------------------------|----------------------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|
| Acenaphthene                        | 1000000                                  |                                                                            | 340 U                                    | 340 U                                    | 350 U                                    | 340 U                                     |
| Acenaphthylene                      | 1000000                                  |                                                                            | 340 U                                    | 340 U                                    | 350 U                                    | 340 U                                     |
| Anthracene                          | 1000000                                  |                                                                            | 340 U                                    | 340 U                                    | 350 U                                    | 340 U                                     |
| Benzo(a)anthracene                  | *                                        |                                                                            | 340 U                                    | 340 U                                    | 350 U                                    | 340 U                                     |
| Benzo(a)pyrene                      | *                                        |                                                                            | 340 U                                    | 340 U                                    | 350 U                                    | 340 U                                     |
| Benzo(b)fluoranthene                | *                                        |                                                                            | 340 U                                    | 340 U                                    | 350 U                                    | 340 U                                     |
| Benzo(b+k)fluoranthenes             |                                          |                                                                            | 340 U                                    | 340 U                                    | 350 U                                    | 340 U                                     |
| Benzo(g,h,i)perylene                | 1000000                                  |                                                                            | 340 U                                    | 340 U                                    | 350 U                                    | 340 U                                     |
| Benzo(k)fluoranthene                | *                                        |                                                                            | 340 U                                    | 340 U                                    | 350 U                                    | 340 U                                     |
| Chrysene                            | *                                        |                                                                            | 340 U                                    | 340 U                                    | 350 U                                    | 340 U                                     |
| Dibenzo(a,h)anthracene              | *                                        |                                                                            | 340 U                                    | 340 U                                    | 350 U                                    | 340 U                                     |
| Fluoranthene                        | 1000000                                  |                                                                            | 340 U                                    | 340 U                                    | 350 U                                    | 340 U                                     |
| Fluorene                            | 1000000                                  |                                                                            | 340 U                                    | 340 U                                    | 350 U                                    | 340 U                                     |
| Indeno(1,2,3-cd)pyrene              | *                                        |                                                                            | 340 U                                    | 340 U                                    | 350 U                                    | 340 U                                     |
| Naphthalene                         | 1000000                                  |                                                                            | 340 U                                    | 340 U                                    | 350 U                                    | 340 U                                     |
| Phenanthrene                        | 1000000                                  |                                                                            | 340 U                                    | 340 U                                    | 350 U                                    | 340 U                                     |
| Pyrene                              | 1000000                                  |                                                                            | 340 U                                    | 340 U                                    | 350 U                                    | 340 U                                     |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

D - Sample was analyzed at a secondary dilution

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth Not sampled by Roux; depth not known
- -- Confirmatory Sample
- "B" in depth field indicates Ballast sample collected (0-1 ft bls)
- \* In designation indicates 0-1 foot bls interval not sampled
- \*\* 0-1 Depth interval indicates sample collected from below ballast interval (1-2 ft bls)

DUP - Duplicate

RE - Reanalysis

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 7. Summary of Semivolatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                              | NYSDEC             | Sample Designation:    | FC-4     | FC-5    | FC-8      | FC-11     | FC-18    | FC-24    | FC-27    | FC-31    | FC-33    |
|------------------------------|--------------------|------------------------|----------|---------|-----------|-----------|----------|----------|----------|----------|----------|
| Parameter                    | Part 375           | Sample Date:           |          |         | 9/14/1994 | 9/14/1994 | 4/6/1994 | 4/5/1994 | 4/4/1994 | 4/5/1994 | 4/4/1994 |
| (Concentrations in µg/kg)    | Industrial (µg/kg) | Sample Depth (ft bls): | 0-2      | 0-2     | 0-2       | 0-2       | 1-3      | 1-3      | 1-3      | 1-3      | 1-3      |
|                              |                    | Map Zone:              | Zone III | Zone II | Zone II   | Zone II   | Zone I   |
| 1,2,4-Trichlorobenzene       |                    |                        | 330 U    | 330 U   | 330 U     | 330 U     | 330 U    | 330 U    | 330 U    | 330 U    | 330 U    |
| 1,2-Dichlorobenzene          | 1000000            |                        | 330 U    | 330 U   | 330 U     | 330 U     | 330 U    | 330 U    | 330 U    | 330 U    | 330 U    |
| 1,3-Dichlorobenzene          | 560000             |                        | 330 U    | 330 U   | 330 U     | 330 U     | 330 U    | 330 U    | 330 U    | 330 U    | 330 U    |
| 1,4-Dichlorobenzene          | 250000             |                        | 330 U    | 330 U   | 330 U     | 330 U     | 330 U    | 330 U    | 330 U    | 330 U    | 330 U    |
| 2,2'-oxybis(1-Chloropropane) |                    |                        | NA       | NA      | NA        | NA        | NA       | NA       | NA       | NA       | NA       |
| 2,4,5-Trichlorophenol        |                    |                        | 1600 U   | 1600 U  | 1600 U    | 1600 U    | 1600 U   | 1600 U   | 1600 U   | 1600 U   | 1600 U   |
| 2,4,6-Trichlorophenol        |                    |                        | 330 U    | 330 U   | 330 U     | 330 U     | 330 U    | 330 U    | 330 U    | 330 U    | 330 U    |
| 2,4-Dichlorophenol           |                    |                        | 330 U    | 330 U   | 330 U     | 330 U     | 330 U    | 330 U    | 330 U    | 330 U    | 330 U    |
| 2,4-Dimethylphenol           |                    |                        | 330 U    | 330 U   | 330 U     | 330 U     | 330 U    | 330 U    | 330 U    | 330 U    | 330 U    |
| 2,4-Dinitrophenol            |                    |                        | 1600 U   | 1600 U  | 1600 U    | 1600 U    | 1600 U   | 1600 U   | 1600 U   | 1600 U   | 1600 U   |
| 2,4-Dinitrotoluene           |                    |                        | 330 U    | 330 U   | 330 U     | 330 U     | 330 U    | 330 U    | 330 U    | 330 U    | 330 U    |
| 2,6-Dinitrotoluene           |                    |                        | 330 U    | 330 U   | 330 U     | 330 U     | 330 U    | 330 U    | 330 U    | 330 U    | 330 U    |
| 2-Chloronaphthalene          |                    |                        | 330 U    | 330 U   | 330 U     | 330 U     | 330 U    | 330 U    | 330 U    | 330 U    | 330 U    |
| 2-Chlorophenol               |                    |                        | 330 U    | 330 U   | 330 U     | 330 U     | 330 U    | 330 U    | 330 U    | 330 U    | 330 U    |
| 2-Methylnaphthalene          |                    |                        | 10 J     | 27 J    | 71 J      | 26 J      | 330 U    | 330 U    | 330 U    | 8 J      | 22 J     |
| 2-Methylphenol               | 1000000            |                        | 330 U    | 330 U   | 330 U     | 330 U     | 330 U    | 330 U    | 330 U    | 330 U    | 330 U    |
| 2-Nitroaniline               |                    |                        | 1600 U   | 1600 U  | 1600 U    | 1600 U    | 1600 U   | 1600 U   | 1600 U   | 1600 U   | 1600 U   |
| 2-Nitrophenol                |                    |                        | 330 U    | 330 U   | 330 U     | 330 U     | 330 U    | 330 U    | 330 U    | 330 U    | 330 U    |
| 3,3'-Dichlorobenzidine       |                    |                        | 660 U    | 660 U   | 660 U     | 660 U     | 660 U    | 660 U    | 660 U    | 660 U    | 660 U    |
| 3-Nitroaniline               |                    |                        | 1600 U   | 1600 U  | 1600 U    | 1600 U    | 1600 U   | 1600 U   | 1600 U   | 1600 U   | 1600 U   |
| 4,6-Dinitro-2-Methylphenol   |                    |                        | 1600 U   | 1600 U  | 1600 U    | 1600 U    | 1600 U   | 1600 U   | 1600 U   | 1600 U   | 1600 U   |
| 4-Bromophenyl phenyl ether   |                    |                        | 330 U    | 330 U   | 330 U     | 330 U     | 330 U    | 330 U    | 330 U    | 330 U    | 330 U    |
| 4-Chloro-3-Methylphenol      |                    |                        | 330 U    | 330 U   | 330 U     | 330 U     | 330 U    | 330 U    | 44 J     | 330 U    | 330 U    |
| 4-Chloroaniline              |                    |                        | 330 U    | 330 U   | 330 U     | 330 U     | 330 U    | 330 U    | 330 U    | 330 U    | 330 U    |
| 4-Chlorophenyl phenyl ether  |                    |                        | 330 U    | 330 U   | 330 U     | 330 U     | 330 U    | 330 U    | 330 U    | 330 U    | 330 U    |
| 4-Methylphenol               | 1000000            |                        | 330 U    | 330 U   | 330 U     | 330 U     | 330 U    | 330 U    | 330 U    | 330 U    | 330 U    |
| 4-Nitroaniline               |                    |                        | 1600 U   | 1600 U  | 1600 U    | 1600 U    | 1600 U   | 1600 U   | 1600 U   | 1600 U   | 1600 U   |
| 4-Nitrophenol                |                    |                        | 1600 U   | 1600 U  | 1600 U    | 1600 U    | 1600 U   | 1600 U   | 1600 U   | 1600 U   | 1600 U   |
| Acenaphthene                 | 1000000            |                        | 14 J     | 79 J    | 330 U     | 14 J      | 330 U    | 330 U    | 330 U    | 330 U    | 62 J     |
| Acenaphthylene               | 1000000            |                        | 85 J     | 130 J   | 55 J      | 170 J     | 330 U    |
| Anthracene                   | 1000000            |                        | 84 J     | 210 J   | 86 J      | 150 J     | 330 U    | 46 J     | 330 U    | 15 J     | 130 J    |
| Benzidine                    |                    |                        | NA       | NA      | NA        | NA        | NA       | NA       | NA       | NA       | NA       |
| Benzo(a)anthracene           | *                  |                        | 310 J    | 520     | 130 J     | 380       | 9 J      | 100 J    | 62 J     | 64 J     | 280 J    |
| Benzo(a)pyrene               | *                  |                        | 330 J    | 560     | 100 J     | 490       | 8 J      | 93 J     | 72 J     | 56 J     | 230 J    |
| Benzo(b)fluoranthene         | *                  |                        | 510      | 1500    | 540       | 1600      | 10 J     | 94 J     | 130 J    | 70 J     | 240 J    |
| Benzo(b+k)fluoranthenes      |                    |                        | NA       | NA      | NA        | NA        | NA       | NA       | NA       | NA       | NA       |
| Benzo(g,h,i)perylene         | 1000000            |                        | 81 J     | 200 J   | 330 U     | 230 J     | 330 U    | 92 J     | 330 U    | 28 J     | 76 J     |
| Benzo(k)fluoranthene         | *                  |                        | 480      | 980     | 200 J     | 720       | 330 U    | 19 J     | 75 J     | 12 J     | 200 J    |
| Benzoic Acid                 |                    |                        | 1600 U   | 110 J   | 290 J     | 84 J      | 1600 U   |
| Benzyl Alcohol               |                    |                        | 330 U    | 330 U   | 330 U     | 330 U     | 330 U    | 330 U    | 330 U    | 330 U    | 330 U    |
| Bis(2-Chloroethoxy)Methane   |                    |                        | 330 U    | 330 U   | 330 U     | 330 U     | 330 U    | 330 U    | 330 U    | 330 U    | 330 U    |
| Bis(2-Chloroethyl)Ether      |                    |                        | 330 U    | 330 U   | 330 U     | 330 U     | 330 U    | 330 U    | 330 U    | 330 U    | 330 U    |
| Bis(2-Chloroisopropyl)Ether  |                    |                        | 330 U    | 330 U   | 330 U     | 330 U     | 330 U    | 330 U    | 330 U    | 330 U    | 330 U    |

Table 7. Summary of Semivolatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                            | NYSDEC             | Sample Designation:    | FC-4      | FC-5      | FC-8      | FC-11     | FC-18    | FC-24    | FC-27    | FC-31    | FC-33    |
|----------------------------|--------------------|------------------------|-----------|-----------|-----------|-----------|----------|----------|----------|----------|----------|
| Parameter                  | Part 375           | Sample Date:           | 9/14/1994 | 9/14/1994 | 9/14/1994 | 9/14/1994 | 4/6/1994 | 4/5/1994 | 4/4/1994 | 4/5/1994 | 4/4/1994 |
| (Concentrations in µg/kg)  | Industrial (µg/kg) | Sample Depth (ft bls): | 0-2       | 0-2       | 0-2       | 0-2       | 1-3      | 1-3      | 1-3      | 1-3      | 1-3      |
|                            |                    | Map Zone:              | Zone III  | Zone II   | Zone II   | Zone II   | Zone I   |
|                            |                    |                        |           |           |           |           |          |          |          |          |          |
| Bis(2-Ethylhexyl)Phthalate |                    |                        | 180 J     | 170 J     | 200 J     | 170 J     | 330 UV   |
| Butylbenzylphthalate       |                    |                        | 31 J      | 21 J      | 21 J      | 18 J      | 330 U    |
| Carbozole                  |                    |                        | NA        | NA        | NA        | NA        | NA       | NA       | NA       | NA       | NA       |
| Chrysene                   | *                  |                        | 440       | 690       | 330 J     | 550       | 11 J     | 120 J    | 79 J     | 110 J    | 340 J    |
| Di-n-Butylphthalate        |                    |                        | 37 J      | 51 J      | 36 J      | 120 J     | 26 J     | 8 J      | 330 U    | 8 J      | 7 J      |
| Di-n-octylphthalate        |                    |                        | 13 J      | 28 J      | 26 J      | 48 J      | 330 U    | 24 J     | 330 U    | 16 J     | 42 J     |
| Dibenzo(a,h)anthracene     | *                  |                        | 25 J      | 33 J      | 330 U     | 66 J      | 330 U    | 17 J     | 330 U    | 11 J     | 19 J     |
| Dibenzofuran               | 1000000            |                        | 11 J      | 37 J      | 32 J      | 16 J      | 330 U    | 17 J     | 330 U    | 7 J      | 53 J     |
| Diethylphthalate           |                    |                        | 9 J       | 330 U     | 10 J      | 330 U     | 330 U    | 330 U    | 330 U    | 330 U    | 330 U    |
| Dimethylphthalate          |                    |                        | 330 U     | 330 U     | 330 U     | 330 U     | 330 U    | 330 U    | 330 U    | 330 U    | 330 U    |
| Fluoranthene               | 1000000            |                        | 530       | 1000      | 250 J     | 460       | 14 J     | 280 J    | 92 J     | 150 J    | 820      |
| Fluorene                   | 1000000            |                        | 18 J      | 76 J      | 11 J      | 20 J      | 330 U    | 22 J     | 330 U    | 9 J      | 70 J     |
| Hexachlorobenzene          | 12000              |                        | 330 U     | 330 U     | 330 U     | 330 U     | 330 U    | 330 U    | 330 U    | 330 U    | 330 U    |
| Hexachlorobutadiene        |                    |                        | 330 U     | 330 U     | 330 U     | 330 U     | 330 U    | 330 U    | 330 U    | 330 U    | 330 U    |
| Hexachlorocyclopentadiene  |                    |                        | 330 U     | 330 U     | 330 U     | 330 U     | 330 U    | 330 U    | 330 U    | 330 U    | 330 U    |
| Hexachloroethane           |                    |                        | 330 U     | 330 U     | 330 U     | 330 U     | 330 U    | 330 U    | 330 U    | 330 U    | 330 U    |
| Indeno(1,2,3-cd)pyrene     | *                  |                        | 81 J      | 180 J     | 330 U     | 200 J     | 330 U    | 87 J     | 330 U    | 30 J     | 78 J     |
| Isophorone                 |                    |                        | 330 U     | 330 U     | 330 U     | 330 U     | 330 U    | 330 U    | 330 U    | 330 U    | 330 U    |
| N-Nitroso-Di-n-Propylamine |                    |                        | 330 U     | 330 U     | 330 U     | 330 U     | 330 U    | 330 U    | 330 U    | 330 U    | 330 U    |
| N-Nitrosodimethylamine     |                    |                        | NA        | NA        | NA        | NA        | NA       | NA       | NA       | NA       | NA       |
| N-Nitrosodiphenylamine (1) |                    |                        | 330 U     | 330 U     | 330 U     | 330 U     | 330 U    | 330 U    | 330 U    | 330 U    | 330 U    |
| Naphthalene                | 1000000            |                        | 10 J      | 26 J      | 49 J      | 26 J      | 330 U    | 19 J     | 330 U    | 14 J     | 65 J     |
| Nitrobenzene               |                    |                        | 330 U     | 330 U     | 330 U     | 330 U     | 330 U    | 330 U    | 330 U    | 330 U    | 330 U    |
| Pentachlorophenol          | 55000              |                        | 1600 U    | 1600 U    | 1600 U    | 1600 U    | 1600 U   | 1600 U   | 1600 U   | 1600 U   | 1600 U   |
| Phenanthrene               | 1000000            |                        | 300 J     | 620       | 200 J     | 180 J     | 10 J     | 240 J    | 44 J     | 110 J    | 690      |
| Phenol                     | 1000000            |                        | 330 U     | 330 U     | 330 U     | 330 U     | 330 U    | 330 U    | 330 U    | 330 U    | 330 U    |
| Pyrene                     | 1000000            |                        | 560       | 980       | 240 J     | 500       | 17 J     | 220 J    | 90 J     | 140 J    | 590      |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

J - Estimated value

R - Rejected by validator

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NA - Data not available

RE - Reanalysis

DUP - Duplicate

- in depth - Not sampled by Roux; depth not known

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

<sup>-- -</sup> No Part 375 Standard available

<sup>\* -</sup> Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 7. Summary of Semivolatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                              | NYSDEC             | Sample Designation:    | FC-36    | FC-40    | MW-26 R   | MW-34      | O/W-UST/B  | O/W-UST/E  | O/W-UST/N  |
|------------------------------|--------------------|------------------------|----------|----------|-----------|------------|------------|------------|------------|
| Parameter                    | Part 375           | Sample Date:           | 4/6/1994 | 4/5/1994 | 12/5/1990 | 11/29/1990 | 11/19/1997 | 11/19/1997 | 11/19/1997 |
| (Concentrations in µg/kg)    | Industrial (µg/kg) | Sample Depth (ft bls): | 7-9      | 1-3      | 9-11      | 0-2        |            |            |            |
|                              |                    | Map Zone:              | Zone I   | Zone I   | Zone II   | Zone II    | Zone II    | Zone II    | Zone II    |
| 1,2,4-Trichlorobenzene       |                    |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 120 U      | 120 U      | 120 U      |
| 1,2-Dichlorobenzene          | 1000000            |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 130 U      | 130 U      | 130 U      |
| 1,3-Dichlorobenzene          | 560000             |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 130 U      | 130 U      | 130 U      |
| 1,4-Dichlorobenzene          | 250000             |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 120 U      | 120 U      | 120 U      |
| 2,2'-oxybis(1-Chloropropane) |                    |                        | NA       | NA       | NA        | NA         | NA         | NA         | NA         |
| 2,4,5-Trichlorophenol        |                    |                        | 1600 U   | 1600 U   | 1670 UR   | 1720 U     | NA         | NA         | NA         |
| 2,4,6-Trichlorophenol        |                    |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 53 U       | 52 U       | 53 U       |
| 2,4-Dichlorophenol           |                    |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 53 U       | 52 U       | 53 U       |
| 2,4-Dimethylphenol           |                    |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 53 U       | 52 U       | 53 U       |
| 2,4-Dinitrophenol            |                    |                        | 1600 U   | 1600 U   | 1670 UR   | 1720 U     | 190 U      | 190 U      | 190 U      |
| 2,4-Dinitrotoluene           |                    |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 53 U       | 52 U       | 53 U       |
| 2,6-Dinitrotoluene           |                    |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 53 U       | 52 U       | 53 U       |
| 2-Chloronaphthalene          |                    |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 110 U      | 100 U      | 110 U      |
| 2-Chlorophenol               |                    |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 53 U       | 52 U       | 53 U       |
| 2-Methylnaphthalene          |                    |                        | 330 U    | 330 U    | 340 UR    | 355 U      | NA         | NA         | NA         |
| 2-Methylphenol               | 1000000            |                        | 330 U    | 330 U    | 340 UR    | 355 U      | NA         | NA         | NA         |
| 2-Nitroaniline               |                    |                        | 1600 U   | 1600 U   | 1670 UR   | 1720 U     | NA         | NA         | NA         |
| 2-Nitrophenol                |                    |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 53 U       | 52 U       | 53 U       |
| 3,3'-Dichlorobenzidine       |                    |                        | 660 U    | 660 U    | 690 UR    | 710 U      | 53 U       | 52 U       | 53 U       |
| 3-Nitroaniline               |                    |                        | 1600 U   | 1600 U   | 1670 UR   | 1720 U     | NA         | NA         | NA         |
| 4,6-Dinitro-2-Methylphenol   |                    |                        | 1600 U   | 1600 U   | 1670 UR   | 1720 U     | 53 U       | 52 U       | 53 U       |
| 4-Bromophenyl phenyl ether   |                    |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 100 U      | 99 U       | 100 U      |
| 4-Chloro-3-Methylphenol      |                    |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 53 U       | 52 U       | 53 U       |
| 4-Chloroaniline              |                    |                        | 330 U    | 330 U    | 340 UR    | 355 U      | NA         | NA         | NA         |
| 4-Chlorophenyl phenyl ether  |                    |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 110 U      | 100 U      | 110 U      |
| 4-Methylphenol               | 1000000            |                        | 330 U    | 330 U    | 340 UR    | 355 U      | NA         | NA         | NA         |
| 4-Nitroaniline               |                    |                        | 1600 U   | 1600 U   | 1670 UR   | 1720 U     | NA         | NA         | NA         |
| 4-Nitrophenol                |                    |                        | 1600 U   | 1600 U   | 1670 UR   | 1720 U     | 53 U       | 52 U       | 53 U       |
| Acenaphthene                 | 1000000            |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 100 U      | 99 U       | 100 U      |
| Acenaphthylene               | 1000000            |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 79 U       | 78 U       | 79 U       |
| Anthracene                   | 1000000            |                        | 330 U    | 8 J      | 340 UR    | 355 U      | 42 U       | 42 U       | 42 U       |
| Benzidine                    |                    |                        | NA       | NA       | 625 UR    | 645 U      | 53 U       | 52 U       | 53 U       |
| Benzo(a)anthracene           | *                  |                        | 330 U    | 56 J     | 340 UR    | 441        | 26 U       | 27 J       | 26 U       |
| Benzo(a)pyrene               | *                  |                        | 330 UJ   | 58 J     | 340 UR    | 292 J      | 26 U       | 26 U       | 26 U       |
| Benzo(b)fluoranthene         | *                  |                        | 330 UJ   | 69 J     | NA        | NA         | 37 U       | 50 J       | 37 U       |
| Benzo(b+k)fluoranthenes      |                    |                        | NA       | NA       | 340 UR    | 1000       | NA         | NA         | NA         |
| Benzo(g,h,i)perylene         | 1000000            |                        | 330 UJ   | 23 J     | 340 UR    | 272 J      | 26 U       | 26 U       | 26 U       |
| Benzo(k)fluoranthene         | *                  |                        | 330 UJ   | 13 J     | NA        | NA         | 37 U       | 36 U       | 37 U       |
| Benzoic Acid                 |                    |                        | 1600 U   | 1600 U   | 1670 UR   | 1720 U     | NA         | NA         | NA         |
| Benzyl Alcohol               |                    |                        | 330 U    | 330 U    | 340 UR    | 355 U      | NA         | NA         | NA         |
| Bis(2-Chloroethoxy)Methane   |                    |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 53 U       | 52 U       | 53 U       |
| Bis(2-Chloroethyl)Ether      |                    |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 53 U       | 52 U       | 53 U       |
| Bis(2-Chloroisopropyl)Ether  |                    |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 63 U       | 63 U       | 63 U       |

Table 7. Summary of Semivolatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                            | NYSDEC             | Sample Designation:    | FC-36    | FC-40    | MW-26 R   | MW-34      | O/W-UST/B  | O/W-UST/E  | O/W-UST/N  |
|----------------------------|--------------------|------------------------|----------|----------|-----------|------------|------------|------------|------------|
| Parameter                  | Part 375           | Sample Date:           | 4/6/1994 | 4/5/1994 | 12/5/1990 | 11/29/1990 | 11/19/1997 | 11/19/1997 | 11/19/1997 |
| (Concentrations in µg/kg)  | Industrial (µg/kg) | Sample Depth (ft bls): | 7-9      | 1-3      | 9-11      | 0-2        |            |            |            |
|                            |                    | Map Zone:              | Zone I   | Zone I   | Zone II   | Zone II    | Zone II    | Zone II    | Zone II    |
| Bis(2-Ethylhexyl)Phthalate |                    |                        | 130 UV   | 22 UV    | 829 R     | 404        | 160 U      | 160 U      | 160 U      |
| Butylbenzylphthalate       |                    |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 63 U       | 63 U       | 63 U       |
| Carbozole                  |                    |                        | NA       | NA       | NA        | NA         | NA         | NA         | NA         |
| Chrysene                   | *                  |                        | 330 U    | 64 J     | 340 UR    | 538        | 26 U       | 36 J       | 26 U       |
| Di-n-Butylphthalate        |                    |                        | 25 J     | 28 J     | 340 UR    | 198 J      | 130 U      | 130 U      | 130 U      |
| Di-n-octylphthalate        |                    |                        | 330 UJ   | 100 J    | 340 UR    | 355 U      | 53 U       | 52 U       | 53 U       |
| Dibenzo(a,h)anthracene     | *                  |                        | 330 UJ   | 330 U    | 340 UR    | 355 U      | 26 U       | 26 U       | 26 U       |
| Dibenzofuran               | 1000000            |                        | 330 U    | 330 U    | 340 UR    | 355 U      | NA         | NA         | NA         |
| Diethylphthalate           |                    |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 120 U      | 120 U      | 120 U      |
| Dimethylphthalate          |                    |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 240 U      | 240 U      | 240 U      |
| Fluoranthene               | 1000000            |                        | 6 J      | 96 J     | 340 UR    | 716        | 32 U       | 37 J       | 32 U       |
| Fluorene                   | 1000000            |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 89 U       | 89 U       | 89 U       |
| Hexachlorobenzene          | 12000              |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 100 U      | 99 U       | 100 U      |
| Hexachlorobutadiene        |                    |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 53 U       | 52 U       | 53 U       |
| Hexachlorocyclopentadiene  |                    |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 79 U       | 78 U       | 79 U       |
| Hexachloroethane           |                    |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 150 U      | 150 U      | 150 U      |
| Indeno(1,2,3-cd)pyrene     | *                  |                        | 330 UJ   | 27 J     | 340 UR    | 227 J      | 58 U       | 57 U       | 58 U       |
| Isophorone                 |                    |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 53 U       | 52 U       | 53 U       |
| N-Nitroso-Di-n-Propylamine |                    |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 53 U       | 52 U       | 53 U       |
| N-Nitrosodimethylamine     |                    |                        | NA       | NA       | 340 UR    | 355 U      | 53 U       | 52 U       | 53 U       |
| N-Nitrosodiphenylamine (1) |                    |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 53 U       | 52 U       | 53 U       |
| Naphthalene                | 1000000            |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 110 U      | 100 U      | 110 U      |
| Nitrobenzene               |                    |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 53 U       | 52 U       | 53 U       |
| Pentachlorophenol          | 55000              |                        | 1600 U   | 1600 U   | 1670 UR   | 1720 U     | 53 U       | 52 U       | 53 U       |
| Phenanthrene               | 1000000            |                        | 11 J     | 36 J     | 340 UR    | 234 J      | 47 U       | 47 U       | 47 U       |
| Phenol                     | 1000000            |                        | 330 U    | 330 U    | 340 UR    | 355 U      | 95 U       | 94 U       | 95 U       |
| Pyrene                     | 1000000            |                        | 6 J      | 92 J     | 340 UR    | 523        | 26 U       | 34 J       | 26 U       |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

J - Estimated value

R - Rejected by validator

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NA - Data not available

RE - Reanalysis

DUP - Duplicate

- in depth - Not sampled by Roux; depth not known

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

<sup>-- -</sup> No Part 375 Standard available

<sup>\* -</sup> Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 7. Summary of Semivolatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                              | NYSDEC             | Sample Designation:    | O/W-UST/S  | O/W-UST/W  | PC-13     | PC-13     | PC-13     | PC-14     | PC-14     |
|------------------------------|--------------------|------------------------|------------|------------|-----------|-----------|-----------|-----------|-----------|
| Parameter                    | Part 375           | Sample Date:           | 11/19/1997 | 11/19/1997 | 7/19/2007 | 7/19/2007 | 7/19/2007 | 7/19/2007 | 7/19/2007 |
| (Concentrations in µg/kg)    | Industrial (µg/kg) | Sample Depth (ft bls): |            |            | 0-1       | 1-2       | 2-3       | 0-1       | 1-2       |
|                              |                    | Map Zone:              | Zone II    | Zone II    | Zone II   | Zone II   | Zone II   | Zone II   | Zone II   |
| 1,2,4-Trichlorobenzene       |                    |                        | 120 U      | 120 U      | 370 U     | 360 U     | 370 U     | 370 U     | 360 U     |
| 1,2-Dichlorobenzene          | 1000000            |                        | 130 U      | 130 U      | NA        | NA        | NA        | NA        | NA        |
| 1,3-Dichlorobenzene          | 560000             |                        | 130 U      | 130 U      | NA        | NA        | NA        | NA        | NA        |
| 1,4-Dichlorobenzene          | 250000             |                        | 120 U      | 120 U      | NA        | NA        | NA        | NA        | NA        |
| 2,2'-oxybis(1-Chloropropane) |                    |                        | NA         | NA         | NA        | NA        | NA        | NA        | NA        |
| 2,4,5-Trichlorophenol        |                    |                        | NA         | NA         | 370 U     | 360 U     | 370 U     | 370 U     | 360 U     |
| 2,4,6-Trichlorophenol        |                    |                        | 53 U       | 53 U       | 370 U     | 360 U     | 370 U     | 370 U     | 360 U     |
| 2,4-Dichlorophenol           |                    |                        | 53 U       | 53 U       | 370 U     | 360 U     | 370 U     | 370 U     | 360 U     |
| 2,4-Dimethylphenol           |                    |                        | 53 U       | 53 U       | 370 U     | 360 U     | 370 U     | 370 U     | 360 U     |
| 2,4-Dinitrophenol            |                    |                        | 190 U      | 190 U      | 940 U     | 910 U     | 940 U     | 930 U     | 900 U     |
| 2,4-Dinitrotoluene           |                    |                        | 53 U       | 53 U       | 370 U     | 360 U     | 370 U     | 370 U     | 360 U     |
| 2,6-Dinitrotoluene           |                    |                        | 53 U       | 53 U       | 370 U     | 360 U     | 370 U     | 370 U     | 360 U     |
| 2-Chloronaphthalene          |                    |                        | 110 U      | 110 U      | 370 U     | 360 U     | 370 U     | 370 U     | 360 U     |
| 2-Chlorophenol               |                    |                        | 53 U       | 53 U       | 370 U     | 360 U     | 370 U     | 370 U     | 360 U     |
| 2-Methylnaphthalene          |                    |                        | NA         | NA         | 370 U     | 360 U     | 370 U     | 370 U     | 360 U     |
| 2-Methylphenol               | 1000000            |                        | NA         | NA         | 370 U     | 360 U     | 370 U     | 370 U     | 360 U     |
| 2-Nitroaniline               | <del></del>        |                        | NA         | NA         | 370 U     | 360 U     | 370 U     | 370 U     | 360 U     |
| 2-Nitrophenol                |                    |                        | 53 U       | 53 U       | 370 U     | 360 U     | 370 U     | 370 U     | 360 U     |
| 3,3'-Dichlorobenzidine       |                    |                        | 53 U       | 53 U       | 370 U     | 360 U     | 370 U     | 370 U     | 360 U     |
| 3-Nitroaniline               |                    |                        | NA         | NA         | 370 U     | 360 U     | 370 U     | 370 U     | 360 U     |
| 4,6-Dinitro-2-Methylphenol   |                    |                        | 53 U       | 53 U       | 940 U     | 910 U     | 940 U     | 930 U     | 900 U     |
| 4-Bromophenyl phenyl ether   |                    |                        | 100 U      | 100 U      | 370 U     | 360 U     | 370 U     | 370 U     | 360 U     |
| 4-Chloro-3-Methylphenol      |                    |                        | 53 U       | 53 U       | 370 U     | 360 U     | 370 U     | 370 U     | 360 U     |
| 4-Chloroaniline              |                    |                        | NA         | NA         | 370 U     | 360 U     | 370 U     | 370 U     | 360 U     |
| 4-Chlorophenyl phenyl ether  |                    |                        | 110 U      | 110 U      | 370 U     | 360 U     | 370 U     | 370 U     | 360 U     |
| 4-Methylphenol               | 1000000            |                        | NA         | NA         | 370 U     | 360 U     | 370 U     | 370 U     | 360 U     |
| 4-Nitroaniline               |                    |                        | NA         | NA         | 370 U     | 360 U     | 370 U     | 370 U     | 360 U     |
| 4-Nitrophenol                |                    |                        | 53 U       | 53 U       | 370 U     | 360 U     | 370 U     | 370 U     | 360 U     |
| Acenaphthene                 | 1000000            |                        | 100 U      | 100 U      | 73 J      | 82 J      | 59 J      | 370 U     | 360 U     |
| Acenaphthylene               | 1000000            |                        | 79 U       | 80 U       | 370 J     | 430       | 410       | 45 J      | 360 U     |
| Anthracene                   | 1000000            |                        | 42 U       | 43 U       | 450       | 560       | 510       | 44 J      | 360 U     |
| Benzidine                    |                    |                        | 53 U       | 53 U       | NA        | NA        | NA        | NA        | NA        |
| Benzo(a)anthracene           | *                  |                        | 26 U       | 27 U       | 1100      | 1500      | 1000      | 140 J     | 96 J      |
| Benzo(a)pyrene               | *                  |                        | 26 U       | 27 U       | 880       | 1300      | 1100      | 150 J     | 110 J     |
| Benzo(b)fluoranthene         | *                  |                        | 27 J       | 37 U       | 2200      | 2600      | 2300      | 350 J     | 180 J     |
| Benzo(b+k)fluoranthenes      |                    |                        | NA         | NA         | NA        | NA        | NA        | NA        | NA        |
| Benzo(g,h,i)perylene         | 1000000            |                        | 26 U       | 27 U       | 1300      | 1500      | 1600      | 210 J     | 120 J     |
| Benzo(k)fluoranthene         | *                  |                        | 37 U       | 37 U       | 660       | 760       | 580       | 130 J     | 63 J      |
| Benzoic Acid                 |                    |                        | NA         | NA         | 940 U     | 910 U     | 940 U     | 930 U     | 900 U     |
| Benzyl Alcohol               |                    |                        | NA         | NA         | 370 U     | 360 U     | 370 U     | 370 U     | 360 U     |
| Bis(2-Chloroethoxy)Methane   |                    |                        | 53 U       | 53 U       | 370 U     | 360 U     | 370 U     | 370 U     | 360 U     |
| Bis(2-Chloroethyl)Ether      |                    |                        | 53 U       | 53 U       | 370 U     | 360 U     | 370 U     | 370 U     | 360 U     |
| Bis(2-Chloroisopropyl)Ether  |                    |                        | 63 U       | 64 U       | 370 U     | 360 U     | 370 U     | 370 U     | 360 U     |

Table 7. Summary of Semivolatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                                        | NYSDEC             | Sample Designation:    | O/W-UST/S  | O/W-UST/W  | PC-13         | PC-13        | PC-13          | PC-14          | PC-14          |
|----------------------------------------|--------------------|------------------------|------------|------------|---------------|--------------|----------------|----------------|----------------|
| Parameter                              | Part 375           | Sample Date:           | 11/19/1997 | 11/19/1997 | 7/19/2007     | 7/19/2007    | 7/19/2007      | 7/19/2007      | 7/19/2007      |
| (Concentrations in µg/kg)              | Industrial (µg/kg) | Sample Depth (ft bls): |            |            | 0-1           | 1-2          | 2-3            | 0-1            | 1-2            |
|                                        |                    | Map Zone:              | Zone II    | Zone II    | Zone II       | Zone II      | Zone II        | Zone II        | Zone II        |
| Bis(2-Ethylhexyl)Phthalate             |                    |                        | 160 U      | 130 J      | 600           | 490          | 240 J          | 370 U          | 360 U          |
| Butylbenzylphthalate                   |                    |                        | 63 U       | 64 U       | 370 U         | 360 U        | 240 J<br>370 U | 370 U          | 360 U          |
| Carbozole                              |                    |                        | NA         | NA         | 210 J         | 150 J        | 200 J          | 370 U          | 360 U          |
|                                        | *                  |                        | 26 U       | 27 U       | 1400          | 1800         | 1500           | 190 J          | 110 J          |
| Chrysene Din Butylphthelete            | ·                  |                        | 130 U      | 130 U      | 1400<br>110 J | 91 J         | 76 J           | 370 U          | 360 U          |
| Di-n-Butylphthalate                    |                    |                        | 53 U       |            |               |              |                |                |                |
| Di-n-octylphthalate                    | *                  |                        |            | 53 U       | 370 U         | 360 U        | 370 U          | 370 U          | 360 U<br>360 U |
| Dibenzo(a,h)anthracene<br>Dibenzofuran | 1000000            |                        | 26 U<br>NA | 27 U<br>NA | 390<br>320 J  | 520<br>220 J | 490<br>250 J   | 70 J<br>370 U  | 360 U          |
|                                        | 1000000            |                        |            |            |               |              | 230 J<br>370 U | 370 U<br>370 U | 360 U          |
| Diethylphthalate                       |                    |                        | 120 U      | 120 U      | 370 U         | 360 U        |                | 370 U<br>370 U |                |
| Dimethylphthalate                      | 100000             |                        | 240 U      | 250 U      | 370 U         | 360 U        | 370 U          |                | 360 U          |
| Fluoranthene                           | 1000000            |                        | 32 U       | 32 U       | 1800          | 2000         | 1500           | 130 J          | 97 J           |
| Fluorene                               | 1000000            |                        | 89 U       | 91 U       | 60 J          | 110 J        | 75 J           | 370 U          | 360 U          |
| Hexachlorobenzene                      | 12000              |                        | 100 U      | 100 U      | 370 U         | 360 U        | 370 U          | 370 U          | 360 U          |
| Hexachlorobutadiene                    |                    |                        | 53 U       | 53 U       | 370 U         | 360 U        | 370 U          | 370 U          | 360 U          |
| Hexachlorocyclopentadiene              |                    |                        | 79 U       | 80 U       | 940 U         | 910 U        | 940 U          | 930 U          | 900 U          |
| Hexachloroethane                       | <br>*              |                        | 150 U      | 150 U      | 370 U         | 360 U        | 370 U          | 370 U          | 360 U          |
| Indeno(1,2,3-cd)pyrene                 | *                  |                        | 58 U       | 59 U       | 1200          | 1400         | 1300           | 170 J          | 98 J           |
| Isophorone                             |                    |                        | 53 U       | 53 U       | 370 U         | 360 U        | 370 U          | 370 U          | 360 U          |
| N-Nitroso-Di-n-Propylamine             |                    |                        | 53 U       | 53 U       | 370 U         | 360 U        | 370 U          | 370 U          | 360 U          |
| N-Nitrosodimethylamine                 |                    |                        | 53 U       | 53 U       | NA            | NA           | NA             | NA             | NA             |
| N-Nitrosodiphenylamine (1)             |                    |                        | 53 U       | 53 U       | 370 U         | 360 U        | 370 U          | 370 U          | 360 U          |
| Naphthalene                            | 1000000            |                        | 110 U      | 110 U      | 380           | 200 J        | 390            | 370 U          | 360 U          |
| Nitrobenzene                           |                    |                        | 53 U       | 53 U       | 370 U         | 360 U        | 370 U          | 370 U          | 360 U          |
| Pentachlorophenol                      | 55000              |                        | 53 U       | 53 U       | 1900 U        | 1800 U       | 1900 U         | 1900 U         | 1800 U         |
| Phenanthrene                           | 1000000            |                        | 47 U       | 48 U       | 1100          | 950          | 1100           | 70 J           | 360 U          |
| Phenol                                 | 1000000            |                        | 95 U       | 96 U       | 370 U         | 360 U        | 370 U          | 370 U          | 360 U          |
| Pyrene                                 | 1000000            |                        | 26 U       | 27 U       | 1700          | 2000         | 1400           | 180 J          | 160 J          |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

J - Estimated value

R - Rejected by validator

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NA - Data not available

RE - Reanalysis

DUP - Duplicate

- in depth - Not sampled by Roux; depth not known

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

<sup>-- -</sup> No Part 375 Standard available

<sup>\* -</sup> Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 7. Summary of Semivolatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                              | NYSDEC             | Sample Designation:    | PC-14     | R-UST/BOT  | R-UST/E    | R-UST/N    | R-UST/S    | R-UST/W    | R-UST/W DUP |
|------------------------------|--------------------|------------------------|-----------|------------|------------|------------|------------|------------|-------------|
| Parameter                    | Part 375           | Sample Date:           | 7/19/2007 | 11/18/1997 | 11/18/1997 | 11/18/1997 | 11/18/1997 | 11/18/1997 | 11/18/1997  |
| (Concentrations in µg/kg)    | Industrial (µg/kg) | Sample Depth (ft bls): | 2-3       | <br>7 II   | <br>77 II   |
|                              |                    | Map Zone:              | Zone II   | Zone II    | Zone II    | Zone II    | Zone II    | Zone II    | Zone II     |
| 1,2,4-Trichlorobenzene       |                    |                        | 350 U     | 120 U      | 130 U      | 130 U      | 130 U      | 120 U      | 120 U       |
| 1,2-Dichlorobenzene          | 1000000            |                        | NA        | 130 U       |
| 1,3-Dichlorobenzene          | 560000             |                        | NA        | 130 U       |
| 1,4-Dichlorobenzene          | 250000             |                        | NA        | 120 U      | 130 U      | 130 U      | 130 U      | 120 U      | 120 U       |
| 2,2'-oxybis(1-Chloropropane) |                    |                        | NA        | NA         | NA         | NA         | NA         | NA         | NA          |
| 2,4,5-Trichlorophenol        |                    |                        | 350 U     | NA         | NA         | NA         | NA         | NA         | NA          |
| 2,4,6-Trichlorophenol        |                    |                        | 350 U     | 53 U       | 56 U       | 55 U       | 55 U       | 53 U       | 53 U        |
| 2,4-Dichlorophenol           |                    |                        | 350 U     | 53 U       | 56 U       | 55 U       | 55 U       | 53 U       | 53 U        |
| 2,4-Dimethylphenol           |                    |                        | 350 U     | 53 U       | 56 U       | 55 U       | 55 U       | 53 U       | 53 U        |
| 2,4-Dinitrophenol            |                    |                        | 870 U     | 190 U      | 200 U      | 200 U      | 200 U      | 190 U      | 190 U       |
| 2,4-Dinitrotoluene           |                    |                        | 350 U     | 53 U       | 56 U       | 55 U       | 55 U       | 53 U       | 53 U        |
| 2,6-Dinitrotoluene           |                    |                        | 350 U     | 53 U       | 56 U       | 55 U       | 55 U       | 53 U       | 53 U        |
| 2-Chloronaphthalene          |                    |                        | 350 U     | 110 U      | 110 U      | 110 U      | 110 U      | 110 U      | 110 U       |
| 2-Chlorophenol               |                    |                        | 350 U     | 53 U       | 56 U       | 55 U       | 55 U       | 53 U       | 53 U        |
| 2-Methylnaphthalene          |                    |                        | 350 U     | NA         | NA         | NA         | NA         | NA         | NA          |
| 2-Methylphenol               | 1000000            |                        | 350 U     | NA         | NA         | NA         | NA         | NA         | NA          |
| 2-Nitroaniline               |                    |                        | 350 U     | NA         | NA         | NA         | NA         | NA         | NA          |
| 2-Nitrophenol                |                    |                        | 350 U     | 53 U       | 56 U       | 55 U       | 55 U       | 53 U       | 53 U        |
| 3,3'-Dichlorobenzidine       |                    |                        | 350 U     | 53 U       | 56 U       | 55 U       | 55 U       | 53 U       | 53 U        |
| 3-Nitroaniline               |                    |                        | 350 U     | NA         | NA         | NA         | NA         | NA         | NA          |
| 4,6-Dinitro-2-Methylphenol   |                    |                        | 870 U     | 53 U       | 56 U       | 55 U       | 55 U       | 53 U       | 53 U        |
| 4-Bromophenyl phenyl ether   |                    |                        | 350 U     | 100 U      | 110 U      | 100 U      | 100 U      | 100 U      | 100 U       |
| 4-Chloro-3-Methylphenol      |                    |                        | 350 U     | 53 U       | 56 U       | 55 U       | 55 U       | 53 U       | 53 U        |
| 4-Chloroaniline              |                    |                        | 350 U     | NA         | NA         | NA         | NA         | NA         | NA          |
| 4-Chlorophenyl phenyl ether  |                    |                        | 350 U     | 110 U      | 110 U      | 110 U      | 110 U      | 110 U      | 110 U       |
| 4-Methylphenol               | 1000000            |                        | 350 U     | NA         | NA         | NA         | NA         | NA         | NA          |
| 4-Nitroaniline               |                    |                        | 350 U     | NA         | NA         | NA         | NA         | NA         | NA          |
| 4-Nitrophenol                |                    |                        | 870 U     | 53 U       | 56 U       | 55 U       | 55 U       | 53 U       | 53 U        |
| Acenaphthene                 | 1000000            |                        | 350 U     | 100 U      | 110 U      | 57 J       | 51 J       | 100 U      | 100 U       |
| Acenaphthylene               | 1000000            |                        | 350 U     | 79 U       | 83 U       | 160 J      | 110 J      | 79 U       | 47 J        |
| Anthracene                   | 1000000            |                        | 350 U     | 42 U       | 44 U       | 230 J      | 200 J      | 42 U       | 61 J        |
| Benzidine                    |                    |                        | NA        | 53 U       | 56 U       | 55 U       | 55 U       | 53 U       | 53 U        |
| Benzo(a)anthracene           | *                  |                        | 350 U     | 26 U       | 28 U       | 660        | 560        | 26 U       | 130 J       |
| Benzo(a)pyrene               | *                  |                        | 350 U     | 26 U       | 28 U       | 700        | 590        | 26 U       | 190 J       |
| Benzo(b)fluoranthene         | *                  |                        | 350 U     | 37 U       | 39 U       | 1500       | 1200       | 37 U       | 420         |
| Benzo(b+k)fluoranthenes      |                    |                        | NA        | NA         | NA         | NA         | NA         | NA         | NA          |
| Benzo(g,h,i)perylene         | 1000000            |                        | 350 U     | 26 U       | 28 U       | 630        | 650        | 26 U       | 180 J       |
| Benzo(k)fluoranthene         | *                  |                        | 350 U     | 37 U       | 39 U       | 38 U       | 980        | 37 U       | 37 U        |
| Benzoic Acid                 |                    |                        | 350 U     | NA         | NA         | NA         | NA         | NA         | NA          |
| Benzyl Alcohol               |                    |                        | 350 U     | NA         | NA         | NA         | NA         | NA         | NA          |
| Bis(2-Chloroethoxy)Methane   |                    |                        | 350 U     | 53 U       | 56 U       | 55 U       | 55 U       | 53 U       | 53 U        |
| Bis(2-Chloroethyl)Ether      |                    |                        | 350 U     | 53 U       | 56 U       | 55 U       | 55 U       | 53 U       | 53 U        |
| Bis(2-Chloroisopropyl)Ether  |                    |                        | 350 U     | 63 U       | 67 U       | 66 U       | 65 U       | 63 U       | 64 U        |

Table 7. Summary of Semivolatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                            | NYSDEC             | Sample Designation:    | PC-14     | R-UST/BOT  | R-UST/E    | R-UST/N    | R-UST/S    | R-UST/W    | R-UST/W DUP |
|----------------------------|--------------------|------------------------|-----------|------------|------------|------------|------------|------------|-------------|
| Parameter                  | Part 375           | Sample Date:           | 7/19/2007 | 11/18/1997 | 11/18/1997 | 11/18/1997 | 11/18/1997 | 11/18/1997 | 11/18/1997  |
| (Concentrations in µg/kg)  | Industrial (µg/kg) | Sample Depth (ft bls): | 2-3       |            |            |            |            |            |             |
|                            |                    | Map Zone:              | Zone II   | Zone II    | Zone II    | Zone II    | Zone II    | Zone II    | Zone II     |
| Bis(2-Ethylhexyl)Phthalate |                    |                        | 350 U     | 71 J       | 170 U      | 160 U      | 140 J      | 160 U      | 140 J       |
| Butylbenzylphthalate       |                    |                        | 350 U     | 63 U       | 67 U       | 66 U       | 65 U       | 63 U       | 64 U        |
| Carbozole                  |                    |                        | 350 U     | NA         | NA         | NA         | NA         | NA         | NA          |
| Chrysene                   | *                  |                        | 350 U     | 26 U       | 28 U       | 1000       | 910        | 26 U       | 270         |
| Di-n-Butylphthalate        |                    |                        | 350 U     | 130 U      | 140 U      | 140 U      | 140 U      | 130 U      | 130 U       |
| Di-n-octylphthalate        |                    |                        | 350 U     | 53 U       | 56 U       | 55 U       | 55 U       | 53 U       | 53 U        |
| Dibenzo(a,h)anthracene     | *                  |                        | 350 U     | 26 U       | 28 U       | 280        | 27 U       | 26 U       | 27 U        |
| Dibenzofuran               | 1000000            |                        | 350 U     | NA         | NA         | NA         | NA         | NA         | NA          |
| Diethylphthalate           |                    |                        | 350 U     | 120 U      | 130 U      | 130 U      | 130 U      | 120 U      | 120 U       |
| Dimethylphthalate          |                    |                        | 350 U     | 240 U      | 260 U      | 250 U      | 250 U      | 240 U      | 250 U       |
| Fluoranthene               | 1000000            |                        | 350 U     | 32 U       | 33 U       | 1100       | 780        | 32 U       | 220 J       |
| Fluorene                   | 1000000            |                        | 350 U     | 89 U       | 95 U       | 52 J       | 46 J       | 90 U       | 91 U        |
| Hexachlorobenzene          | 12000              |                        | 350 U     | 100 U      | 110 U      | 100 U      | 100 U      | 100 U      | 100 U       |
| Hexachlorobutadiene        |                    |                        | 350 U     | 53 U       | 56 U       | 55 U       | 55 U       | 53 U       | 53 U        |
| Hexachlorocyclopentadiene  |                    |                        | 350 U     | 79 U       | 83 U       | 82 U       | 82 U       | 79 U       | 80 U        |
| Hexachloroethane           |                    |                        | 350 U     | 150 U      | 160 U      | 160 U      | 160 U      | 150 U      | 150 U       |
| Indeno(1,2,3-cd)pyrene     | *                  |                        | 350 U     | 58 U       | 61 U       | 570        | 550        | 58 U       | 170 J       |
| Isophorone                 |                    |                        | 350 U     | 53 U       | 56 U       | 55 U       | 55 U       | 53 U       | 53 U        |
| N-Nitroso-Di-n-Propylamine |                    |                        | 350 U     | 53 U       | 56 U       | 55 U       | 55 U       | 53 U       | 53 U        |
| N-Nitrosodimethylamine     |                    |                        | NA        | 53 U       | 56 U       | 55 U       | 55 U       | 53 U       | 53 U        |
| N-Nitrosodiphenylamine (1) |                    |                        | 350 U     | 53 U       | 56 U       | 55 U       | 55 U       | 53 U       | 53 U        |
| Naphthalene                | 1000000            |                        | 350 U     | 110 U      | 110 U      | 210 J      | 220 J      | 110 U      | 82 J        |
| Nitrobenzene               |                    |                        | 350 U     | 53 U       | 56 U       | 55 U       | 55 U       | 53 U       | 53 U        |
| Pentachlorophenol          | 55000              |                        | 870 U     | 53 U       | 56 U       | 55 U       | 55 U       | 53 U       | 53 U        |
| Phenanthrene               | 1000000            |                        | 350 U     | 47 U       | 50 U       | 670        | 640        | 48 U       | 200 J       |
| Phenol                     | 1000000            |                        | 350 U     | 95 U       | 100 U      | 99 U       | 98 U       | 95 U       | 96 U        |
| Pyrene                     | 1000000            |                        | 350 U     | 26 U       | 28 U       | 1600       | 1600       | 26 U       | 270         |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

J - Estimated value

R - Rejected by validator

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NA - Data not available

RE - Reanalysis

DUP - Duplicate

- in depth - Not sampled by Roux; depth not known

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

<sup>-- -</sup> No Part 375 Standard available

<sup>\* -</sup> Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 7. Summary of Semivolatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                              | NYSDEC             | Sample Designation:    | S-17 RE  | S-22 RE    | S-30       | S-33       | S-35       | S-37     | S-38     | S-39     | S-41A     |
|------------------------------|--------------------|------------------------|----------|------------|------------|------------|------------|----------|----------|----------|-----------|
| Parameter                    | Part 375           | Sample Date:           |          | 10/17/1990 | 10/16/1990 | 12/13/1990 | 11/30/1990 |          |          |          | 11/7/1990 |
| (Concentrations in µg/kg)    | Industrial (µg/kg) | Sample Depth (ft bls): | 0-2      | 0-2        | 0-2        | 4-6        | 8-10       | 4-6      | 2-4      | 2-4      | 3.5-5.5   |
| ( 12 2)                      | (10 0)             | Map Zone:              | Zone III | Zone II    | Zone I     | Zone IV    | Zone IV    | Zone III | Zone III | Zone III | Zone III  |
|                              |                    |                        |          |            |            |            |            |          |          |          |           |
| 1,2,4-Trichlorobenzene       |                    |                        | 2390 U   | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U    | 390 U    | 350 U    | 3840 U    |
| 1,2-Dichlorobenzene          | 1000000            |                        | 2390 U   | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U    | 390 U    | 350 U    | 3840 U    |
| 1,3-Dichlorobenzene          | 560000             |                        | 2390 U   | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U    | 390 U    | 350 U    | 3840 U    |
| 1,4-Dichlorobenzene          | 250000             |                        | 2390 U   | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U    | 390 U    | 350 U    | 3840 U    |
| 2,2'-oxybis(1-Chloropropane) |                    |                        | NA       | NA         | NA         | NA         | NA         | NA       | NA       | NA       | NA        |
| 2,4,5-Trichlorophenol        |                    |                        | 11600 U  | 9760 U     | 1780 U     | 1720 U     | 1840 U     | 1700 U   | 1880 U   | 1680 U   | 18600 U   |
| 2,4,6-Trichlorophenol        |                    |                        | 2390 U   | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U    | 390 U    | 350 U    | 3840 U    |
| 2,4-Dichlorophenol           |                    |                        | 2390 U   | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U    | 390 U    | 350 U    | 3840 U    |
| 2,4-Dimethylphenol           |                    |                        | 2390 U   | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U    | 390 U    | 350 U    | 3840 U    |
| 2,4-Dinitrophenol            |                    |                        | 11600 U  | 9760 U     | 1780 U     | 1720 U     | 1840 U     | 1700 U   | 1880 U   | 1680 U   | 18600 U   |
| 2,4-Dinitrotoluene           |                    |                        | 2390 U   | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U    | 390 U    | 350 U    | 3840 U    |
| 2,6-Dinitrotoluene           |                    |                        | 2390 U   | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U    | 390 U    | 350 U    | 3840 U    |
| 2-Chloronaphthalene          |                    |                        | 2390 U   | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U    | 390 U    | 350 U    | 3840 U    |
| 2-Chlorophenol               |                    |                        | 2390 U   | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U    | 390 U    | 350 U    | 3840 U    |
| 2-Methylnaphthalene          |                    |                        | 2390 U   | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U    | 390 U    | 350 U    | 3840 U    |
| 2-Methylphenol               | 1000000            |                        | 2390 U   | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U    | 390 U    | 350 U    | 3840 U    |
| 2-Nitroaniline               |                    |                        | 11600 U  | 9760 U     | 1780 U     | 1720 U     | 1840 U     | 1700 U   | 1880 U   | 1680 U   | 18600 U   |
| 2-Nitrophenol                |                    |                        | 2390 U   | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U    | 390 U    | 350 U    | 3840 U    |
| 3,3'-Dichlorobenzidine       |                    |                        | 4780 U   | 4020 U     | 730 U      | 710 U      | 760 U      | 700 U    | 780 U    | 695 U    | 7670 U    |
| 3-Nitroaniline               |                    |                        | 11600 U  | 9760 U     | 1780 U     | 1720 U     | 1840 U     | 1700 U   | 1880 U   | 1680 U   | 18600 U   |
| 4,6-Dinitro-2-Methylphenol   |                    |                        | 11600 U  | 9760 U     | 1780 U     | 1720 U     | 1840 U     | 1700 U   | 1880 U   | 1680 U   | 18600 U   |
| 4-Bromophenyl phenyl ether   |                    |                        | 2390 U   | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U    | 390 U    | 350 U    | 3840 U    |
| 4-Chloro-3-Methylphenol      |                    |                        | 2390 U   | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U    | 390 U    | 350 U    | 3840 U    |
| 4-Chloroaniline              |                    |                        | 2390 U   | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U    | 390 U    | 350 U    | 3840 U    |
| 4-Chlorophenyl phenyl ether  |                    |                        | 2390 U   | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U    | 390 U    | 350 U    | 3840 U    |
| 4-Methylphenol               | 1000000            |                        | 2390 U   | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U    | 390 U    | 350 U    | 3840 U    |
| 4-Nitroaniline               |                    |                        | 11600 U  | 9760 U     | 1780 U     | 1720 U     | 1840 U     | 1700 U   | 1880 U   | 1680 U   | 18600 U   |
| 4-Nitrophenol                |                    |                        | 11600 U  | 9760 U     | 1780 U     | 1720 U     | 1840 U     | 1700 U   | 1880 U   | 1680 U   | 18600 U   |
| Acenaphthene                 | 1000000            |                        | 2390 U   | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U    | 390 U    | 350 U    | 3840 U    |
| Acenaphthylene               | 1000000            |                        | 2390 U   | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U    | 390 U    | 350 U    | 3840 U    |
| Anthracene                   | 1000000            |                        | 2390 U   | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U    | 390 U    | 350 U    | 3840 U    |
| Benzidine                    |                    |                        | 4350 U   | 3660 U     | 670 U      | 645 U      | 690 U      | 640 U    | 705 U    | 630 U    | 6980 U    |
| Benzo(a)anthracene           | *                  |                        | 2390 U   | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U    | 390 U    | 350 U    | 3840 U    |
| Benzo(a)pyrene               | *                  |                        | 2390 U   | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U    | 390 U    | 350 U    | 3840 U    |
| Benzo(b)fluoranthene         | *                  |                        | NA       | NA         | NA         | NA         | NA         | NA       | NA       | NA       | NA        |
| Benzo(b+k)fluoranthenes      |                    |                        | 2390 U   | 5617 JV    | 370 U      | 355 U      | 380 U      | 350 U    | 390 U    | 350 U    | 3840 U    |
| Benzo(g,h,i)perylene         | 1000000            |                        | 2390 U   | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U    | 390 U    | 350 U    | 3840 U    |
| Benzo(k)fluoranthene         | *                  |                        | NA       | NA         | NA         | NA         | NA         | NA       | NA       | NA       | NA        |
| Benzoic Acid                 |                    |                        | 11600 U  | 9760 U     | 1780 U     | 1720 U     | 1840 U     | 1700 U   | 1880 U   | 1680 U   | 18600 U   |
| Benzyl Alcohol               |                    |                        | 2390 U   | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U    | 390 U    | 350 U    | 3840 U    |
| Bis(2-Chloroethoxy)Methane   |                    |                        | 2390 U   | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U    | 390 U    | 350 U    | 3840 U    |
| Bis(2-Chloroethyl)Ether      |                    |                        | 2390 U   | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U    | 390 U    | 350 U    | 3840 U    |
| Bis(2-Chloroisopropyl)Ether  |                    |                        | 2390 U   | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U    | 390 U    | 350 U    | 3840 U    |

Table 7. Summary of Semivolatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                            | NYSDEC             | Sample Designation:    | S-17 RE    | S-22 RE    | S-30       | S-33       | S-35       | S-37      | S-38       | S-39       | S-41A     |
|----------------------------|--------------------|------------------------|------------|------------|------------|------------|------------|-----------|------------|------------|-----------|
| Parameter                  | Part 375           | Sample Date:           | 10/19/1990 | 10/17/1990 | 10/16/1990 | 12/13/1990 | 11/30/1990 | 12/1/1990 | 11/29/1990 | 11/29/1990 | 11/7/1990 |
| (Concentrations in µg/kg)  | Industrial (µg/kg) | Sample Depth (ft bls): | 0-2        | 0-2        | 0-2        | 4-6        | 8-10       | 4-6       | 2-4        | 2-4        | 3.5-5.5   |
|                            |                    | Map Zone:              | Zone III   | Zone II    | Zone I     | Zone IV    | Zone IV    | Zone III  | Zone III   | Zone III   | Zone III  |
|                            |                    |                        |            |            |            |            |            |           |            |            |           |
| Bis(2-Ethylhexyl)Phthalate |                    |                        | 1340 J     | 1500 J     | 407        | 355 U      | 203 J      | 217 J     | 390 U      | 197 J      | 3840 U    |
| Butylbenzylphthalate       |                    |                        | 2390 U     | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U     | 390 U      | 350 U      | 3840 U    |
| Carbozole                  |                    |                        | NA         | NA         | NA         | NA         | NA         | NA        | NA         | NA         | NA        |
| Chrysene                   | *                  |                        | 2390 U     | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U     | 390 U      | 350 U      | 3840 U    |
| Di-n-Butylphthalate        |                    |                        | 2390 U     | 2010 U     | 555        | 355 U      | 380 U      | 350 U     | 390 U      | 350 U      | 3840 U    |
| Di-n-octylphthalate        |                    |                        | 2390 U     | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U     | 390 U      | 350 U      | 3840 U    |
| Dibenzo(a,h)anthracene     | *                  |                        | 2390 U     | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U     | 390 U      | 350 U      | 3840 U    |
| Dibenzofuran               | 1000000            |                        | 2390 U     | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U     | 390 U      | 350 U      | 3840 U    |
| Diethylphthalate           |                    |                        | 2390 U     | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U     | 390 U      | 350 U      | 3840 U    |
| Dimethylphthalate          |                    |                        | 2390 U     | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U     | 390 U      | 350 U      | 3840 U    |
| Fluoranthene               | 1000000            |                        | 2390 U     | 2585 JV    | 370 U      | 355 U      | 380 U      | 350 U     | 390 U      | 350 U      | 3840 U    |
| Fluorene                   | 1000000            |                        | 2390 U     | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U     | 390 U      | 350 U      | 3840 U    |
| Hexachlorobenzene          | 12000              |                        | 2390 U     | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U     | 390 U      | 350 U      | 3840 U    |
| Hexachlorobutadiene        |                    |                        | 2390 U     | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U     | 390 U      | 350 U      | 3840 U    |
| Hexachlorocyclopentadiene  |                    |                        | 2390 U     | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U     | 390 U      | 350 U      | 3840 U    |
| Hexachloroethane           |                    |                        | 2390 U     | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U     | 390 U      | 350 U      | 3840 U    |
| Indeno(1,2,3-cd)pyrene     | *                  |                        | 2390 U     | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U     | 390 U      | 350 U      | 3840 U    |
| Isophorone                 |                    |                        | 2390 U     | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U     | 390 U      | 350 U      | 3840 U    |
| N-Nitroso-Di-n-Propylamine |                    |                        | 2390 U     | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U     | 390 U      | 350 U      | 3840 U    |
| N-Nitrosodimethylamine     |                    |                        | 2390 U     | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U     | 390 U      | 350 U      | 3840 U    |
| N-Nitrosodiphenylamine (1) |                    |                        | 2390 U     | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U     | 390 U      | 350 U      | 3840 U    |
| Naphthalene                | 1000000            |                        | 2390 U     | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U     | 390 U      | 350 U      | 3840 U    |
| Nitrobenzene               |                    |                        | 2390 U     | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U     | 390 U      | 350 U      | 3840 U    |
| Pentachlorophenol          | 55000              |                        | 11600 U    | 9760 U     | 1780 U     | 1720 U     | 1840 U     | 1700 U    | 1880 U     | 1680 U     | 18600 U   |
| Phenanthrene               | 1000000            |                        | 2390 U     | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U     | 390 U      | 350 U      | 3840 U    |
| Phenol                     | 1000000            |                        | 2390 U     | 2010 U     | 370 U      | 355 U      | 380 U      | 350 U     | 390 U      | 350 U      | 3840 U    |
| Pyrene                     | 1000000            |                        | 2390 U     | 1270 J     | 370 U      | 355 U      | 380 U      | 350 U     | 390 U      | 350 U      | 3840 U    |
| Notes:                     |                    |                        |            |            | •          | •          |            |           |            | •          |           |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

J - Estimated value

R - Rejected by validator

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NA - Data not available

RE - Reanalysis

DUP - Duplicate

- in depth - Not sampled by Roux; depth not known

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

<sup>-- -</sup> No Part 375 Standard available

<sup>\* -</sup> Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 7. Summary of Semivolatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                              | NYSDEC                                  | Sample Designation:    | S-43       | S-47 RE        | S-49 RE        | S-53         | S-60          | S-80      | S-82       | S-90      |
|------------------------------|-----------------------------------------|------------------------|------------|----------------|----------------|--------------|---------------|-----------|------------|-----------|
| Parameter                    | Part 375                                | Sample Date:           |            | 10/19/1990     | 10/19/1990     | 11/18/1990   | 12/12/1990    | 10/3/1990 | 10/16/1990 | 10/1/1990 |
| (Concentrations in µg/kg)    | Industrial (µg/kg)                      | Sample Depth (ft bls): | 0-2        | 2-4            | 2-4            | 5-7          | 4-6           | 2-4       | 0-2        | 1-3       |
|                              | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Map Zone:              | Zone III   | Zone III       | Zone III       | Zone II      | Zone II       | Zone II   | Zone I     | Zone I    |
|                              |                                         |                        |            |                |                |              |               |           |            |           |
| 1,2,4-Trichlorobenzene       |                                         |                        | 3710 U     | 3550 U         | 3510 U         | 340 U        | 340 U         | 1720 U    | 1830 U     | 1770 UJV  |
| 1,2-Dichlorobenzene          | 1000000                                 |                        | 3710 U     | 3550 U         | 3510 U         | 340 U        | 340 U         | 1720 U    | 1830 U     | 1770 UJV  |
| 1,3-Dichlorobenzene          | 560000                                  |                        | 3710 U     | 3550 U         | 3510 U         | 340 U        | 340 U         | 1720 U    | 1830 U     | 1770 UJV  |
| 1,4-Dichlorobenzene          | 250000                                  |                        | 3710 U     | 3550 U         | 3510 U         | 340 U        | 340 U         | 1720 U    | 1830 U     | 1770 UJV  |
| 2,2'-oxybis(1-Chloropropane) |                                         |                        | NA         | NA             | NA             | NA           | NA            | NA        | NA         | NA        |
| 2,4,5-Trichlorophenol        |                                         |                        | 18000 U    | 17200 U        | 17000 U        | 1670 U       | 1650 U        | 8330 U    | 8890 U     | 8600 UJV  |
| 2,4,6-Trichlorophenol        |                                         |                        | 3710 U     | 3550 U         | 3510 U         | 340 U        | 340 U         | 1720 U    | 1830 U     | 1770 UJV  |
| 2,4-Dichlorophenol           |                                         |                        | 3710 U     | 3550 U         | 3510 U         | 340 U        | 340 U         | 1720 U    | 1830 U     | 1770 UJV  |
| 2,4-Dimethylphenol           |                                         |                        | 3710 U     | 3550 U         | 3510 U         | 340 U        | 340 U         | 1720 U    | 1830 U     | 1770 UJV  |
| 2,4-Dinitrophenol            |                                         |                        | 18000 U    | 17200 U        | 17000 U        | 1670 U       | 1650 U        | 8330 U    | 8890 U     | 8600 UJV  |
| 2,4-Dinitrotoluene           |                                         |                        | 3710 U     | 3550 U         | 3510 U         | 340 U        | 340 U         | 1720 U    | 1830 U     | 1770 UJV  |
| 2,6-Dinitrotoluene           |                                         |                        | 3710 U     | 3550 U         | 3510 U         | 340 U        | 340 U         | 1720 U    | 1830 U     | 1770 UJV  |
| 2-Chloronaphthalene          |                                         |                        | 3710 U     | 3550 U         | 3510 U         | 340 U        | 340 U         | 1720 U    | 1830 U     | 1770 UJV  |
| 2-Chlorophenol               |                                         |                        | 3710 U     | 3550 U         | 3510 U         | 340 U        | 340 U         | 1720 U    | 1830 U     | 1770 UJV  |
| 2-Methylnaphthalene          |                                         |                        | 3710 U     | 3550 U         | 3510 U         | 340 U        | 340 U         | 1720 U    | 1830 U     | 1770 UJV  |
| 2-Methylphenol               | 1000000                                 |                        | 3710 U     | 3550 U         | 3510 U         | 340 U        | 340 U         | 1720 U    | 1830 U     | 1770 UJV  |
| 2-Nitroaniline               |                                         |                        | 18000 U    | 17200 U        | 17000 U        | 1670 U       | 1650 U        | 8330 U    | 8890 U     | 8600 UJV  |
| 2-Nitrophenol                |                                         |                        | 3710 U     | 3550 U         | 3510 U         | 340 U        | 340 U         | 1720 U    | 1830 U     | 1770 UJV  |
| 3,3'-Dichlorobenzidine       |                                         |                        | 7420 U     | 7100 U         | 7020 U         | 690 U        | 680 U         | 3440 U    | 3670 U     | 3550 UJV  |
| 3-Nitroaniline               |                                         |                        | 18000 U    | 17200 U        | 17000 U        | 1670 U       | 1650 U        | 8330 U    | 8890 U     | 8600 UJV  |
| 4,6-Dinitro-2-Methylphenol   |                                         |                        | 18000 U    | 17200 U        | 17000 U        | 1670 U       | 1650 U        | 8330 U    | 8890 U     | 8600 UJV  |
| 4-Bromophenyl phenyl ether   |                                         |                        | 3710 U     | 3550 U         | 3510 U         | 340 U        | 340 U         | 1720 U    | 1830 U     | 1770 UJV  |
| 4-Chloro-3-Methylphenol      |                                         |                        | 3710 U     | 3550 U         | 3510 U         | 340 U        | 340 U         | 1720 U    | 1830 U     | 1770 UJV  |
| 4-Chloroaniline              |                                         |                        | 3710 U     | 3550 U         | 3510 U         | 340 U        | 340 U         | 1720 U    | 1830 U     | 1770 UJV  |
| 4-Chlorophenyl phenyl ether  |                                         |                        | 3710 U     | 3550 U         | 3510 U         | 340 U        | 340 U         | 1720 U    | 1830 U     | 1770 UJV  |
| 4-Methylphenol               | 1000000                                 |                        | 3710 U     | 3550 U         | 3510 U         | 340 U        | 340 U         | 1720 U    | 1830 U     | 1770 UJV  |
| 4-Nitroaniline               |                                         |                        | 18000 U    | 17200 U        | 17000 U        | 1670 U       | 1650 U        | 8330 U    | 8890 U     | 8600 UJV  |
| 4-Nitrophenol                |                                         |                        | 18000 U    | 17200 U        | 17000 U        | 1670 U       | 1650 U        | 8330 U    | 8890 U     | 8600 UJV  |
| Acenaphthene                 | 1000000                                 |                        | 3710 U     | 3550 U         | 3510 U         | 340 U        | 340 U         | 1720 U    | 1830 U     | 1770 UJV  |
| Acenaphthylene               | 1000000                                 |                        | 3710 U     | 3550 U         | 3510 U         | 340 U        | 340 U         | 1720 U    | 1830 U     | 1770 UJV  |
| Anthracene                   | 1000000                                 |                        | 1966 J     | 3550 U         | 3510 U         | 340 U        | 340 U         | 1720 U    | 1830 U     | 1770 UJV  |
| Benzidine                    | 1000000                                 |                        | 6749 U     | 6450 U         | 640 U          | 625 U        | 620 U         | 3130 U    | 3330 U     | 3230 UJV  |
| Benzo(a)anthracene           | *                                       |                        | 12600      | 3550 U         | 3510 U         | 340 U        | 340 U         | 1720 U    | 1830 U     | 1770 UJV  |
| Benzo(a)pyrene               | *                                       |                        | 5760       | 3550 U         | 3510 U         | 340 U        | 340 U         | 1720 U    | 1830 U     | 1770 UJV  |
| Benzo(b)fluoranthene         | *                                       |                        | NA         | NA             | NA             | NA           | NA            | NA        | NA         | NA        |
| Benzo(b+k)fluoranthenes      |                                         |                        | 7400       | 3550 U         | 3510 U         | 340 U        | 340 U         | 1720 U    | 1233 J     | 1770 UJV  |
| Benzo(g,h,i)perylene         | 1000000                                 |                        |            |                |                |              |               |           |            |           |
|                              | 1000000                                 |                        | 5800<br>NA | 3550 U         | 3510 U         | 340 U        | 340 U         | 1720 U    | 1830 U     | 1770 UJV  |
| Benzo(k)fluoranthene         |                                         |                        | NA         | NA<br>17200 II | NA<br>17000 II | NA<br>1670 U | NA<br>1650 II | NA        | NA         | NA        |
| Benzoic Acid                 |                                         |                        | 18000 U    | 17200 U        | 17000 U        | 1670 U       | 1650 U        | 8330 U    | 8890 U     | 8600 UJV  |
| Benzyl Alcohol               |                                         |                        | 3710 U     | 3550 U         | 3510 U         | 340 U        | 340 U         | 1720 U    | 1830 U     | 1770 UJV  |
| Bis(2-Chloroethoxy)Methane   |                                         |                        | 3710 U     | 3550 U         | 3510 U         | 340 U        | 340 U         | 1720 U    | 1830 U     | 1770 UJV  |
| Bis(2-Chloroethyl)Ether      |                                         |                        | 3710 U     | 3550 U         | 3510 U         | 340 U        | 340 U         | 1720 U    | 1830 U     | 1770 UJV  |
| Bis(2-Chloroisopropyl)Ether  |                                         |                        | 3710 U     | 3550 U         | 3510 U         | 340 U        | 340 U         | 1720 U    | 1830 U     | 1770 UJV  |

Table 7. Summary of Semivolatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| -                          | NYSDEC             | Sample Designation:    | S-43      | S-47 RE    | S-49 RE    | S-53       | S-60       | S-80      | S-82       | S-90      |
|----------------------------|--------------------|------------------------|-----------|------------|------------|------------|------------|-----------|------------|-----------|
| Parameter                  | Part 375           | Sample Date:           | 11/5/1990 | 10/19/1990 | 10/19/1990 | 11/18/1990 | 12/12/1990 | 10/3/1990 | 10/16/1990 | 10/1/1990 |
| (Concentrations in µg/kg)  | Industrial (µg/kg) | Sample Depth (ft bls): | 0-2       | 2-4        | 2-4        | 5-7        | 4-6        | 2-4       | 0-2        | 1-3       |
|                            |                    | Map Zone:              | Zone III  | Zone III   | Zone III   | Zone II    | Zone II    | Zone II   | Zone I     | Zone I    |
|                            |                    |                        |           |            |            |            |            |           |            | _         |
| Bis(2-Ethylhexyl)Phthalate |                    |                        | 3710 U    | 3550 U     | 3510 U     | 461        | 340 U      | 1720 U    | 1830 U     | 1770 UJV  |
| Butylbenzylphthalate       |                    |                        | 3710 U    | 3550 U     | 3510 U     | 340 U      | 340 U      | 1720 U    | 1830 U     | 1770 UJV  |
| Carbozole                  |                    |                        | NA        | NA         | NA         | NA         | NA         | NA        | NA         | NA        |
| Chrysene                   | *                  |                        | 10100     | 3550 U     | 3510 U     | 340 U      | 340 U      | 1720 U    | 1830 U     | 1770 UJV  |
| Di-n-Butylphthalate        |                    |                        | 3710 U    | 3550 U     | 3510 U     | 340 U      | 340 U      | 875 J     | 1830 U     | 1770 UJV  |
| Di-n-octylphthalate        |                    |                        | 3710 U    | 3550 U     | 3510 U     | 340 U      | 340 U      | 1720 U    | 1830 U     | 1770 UJV  |
| Dibenzo(a,h)anthracene     | *                  |                        | 2090 J    | 3550 U     | 3510 U     | 340 U      | 340 U      | 1720 U    | 1830 U     | 1770 UJV  |
| Dibenzofuran               | 1000000            |                        | 3710 U    | 3550 U     | 3510 U     | 340 U      | 340 U      | 1720 U    | 1830 U     | 1770 UJV  |
| Diethylphthalate           |                    |                        | 3710 U    | 3550 U     | 3510 U     | 340 U      | 340 U      | 1720 U    | 1830 U     | 1770 UJV  |
| Dimethylphthalate          |                    |                        | 3710 U    | 3550 U     | 3510 U     | 340 U      | 340 U      | 1720 U    | 1830 U     | 1770 UJV  |
| Fluoranthene               | 1000000            |                        | 19700     | 3550 U     | 3510 U     | 340 U      | 340 U      | 1720 U    | 1830 U     | 1770 UJV  |
| Fluorene                   | 1000000            |                        | 3710 U    | 3550 U     | 3510 U     | 340 U      | 340 U      | 1720 U    | 1830 U     | 1770 UJV  |
| Hexachlorobenzene          | 12000              |                        | 3710 U    | 3550 U     | 3510 U     | 340 U      | 340 U      | 1720 U    | 1830 U     | 1770 UJV  |
| Hexachlorobutadiene        |                    |                        | 3710 U    | 3550 U     | 3510 U     | 340 U      | 340 U      | 1720 U    | 1830 U     | 1770 UJV  |
| Hexachlorocyclopentadiene  |                    |                        | 3710 U    | 3550 U     | 3510 U     | 340 U      | 340 U      | 1720 U    | 1830 U     | 1770 UJV  |
| Hexachloroethane           |                    |                        | 3710 U    | 3550 U     | 3510 U     | 340 U      | 340 U      | 1720 U    | 1830 U     | 1770 UJV  |
| Indeno(1,2,3-cd)pyrene     | *                  |                        | 4640      | 3550 U     | 3510 U     | 340 U      | 340 U      | 1720 U    | 1830 U     | 1770 UJV  |
| Isophorone                 |                    |                        | 3710 U    | 3550 U     | 3510 U     | 340 U      | 340 U      | 1720 U    | 1830 U     | 1770 UJV  |
| N-Nitroso-Di-n-Propylamine |                    |                        | 3710 U    | 3550 U     | 3510 U     | 340 U      | 340 U      | 1720 U    | 1830 U     | 1770 UJV  |
| N-Nitrosodimethylamine     |                    |                        | 3710 U    | 3550 U     | 3510 U     | 340 U      | 340 U      | 1720 U    | 1830 U     | 1770 UJV  |
| N-Nitrosodiphenylamine (1) |                    |                        | 3710 UV   | 3550 U     | 3510 U     | 340 U      | 340 U      | 1720 U    | 1830 U     | 1770 UJV  |
| Naphthalene                | 1000000            |                        | 3710 U    | 3550 U     | 3510 U     | 340 U      | 340 U      | 1720 U    | 1830 U     | 1770 UJV  |
| Nitrobenzene               |                    |                        | 3710 U    | 3550 U     | 3510 U     | 340 U      | 340 U      | 1720 U    | 1830 U     | 1770 UJV  |
| Pentachlorophenol          | 55000              |                        | 18000 U   | 17200 U    | 17000 U    | 1670 U     | 1650 U     | 8330 U    | 8890 U     | 8600 UJV  |
| Phenanthrene               | 1000000            |                        | 11900     | 3550 U     | 3510 U     | 340 U      | 340 U      | 1720 U    | 1830 U     | 1770 UJV  |
| Phenol                     | 1000000            |                        | 3710 U    | 3550 U     | 3510 U     | 340 U      | 340 U      | 1720 U    | 1830 U     | 1770 UJV  |
| Pyrene                     | 1000000            |                        | 16500     | 3550 U     | 3510 U     | 340 U      | 340 U      | 1720 U    | 1830 U     | 1770 UJV  |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

J - Estimated value

R - Rejected by validator

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NA - Data not available

RE - Reanalysis

DUP - Duplicate

- in depth - Not sampled by Roux; depth not known

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

<sup>-- -</sup> No Part 375 Standard available

<sup>\* -</sup> Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 7. Summary of Semivolatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                              | NYSDEC             | Sample Designation:    | S-100     | S-101 RE  | S-102 RE  | S-164     | S-164     | S-164     | S-165     | S-165     |
|------------------------------|--------------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                    | Part 375           | Sample Date:           | 1/18/1993 | 1/18/1993 | 1/18/1993 | 7/19/2007 | 7/19/2007 | 7/19/2007 | 7/19/2007 | 7/19/2007 |
| (Concentrations in µg/kg)    | Industrial (µg/kg) | Sample Depth (ft bls): | 0-2       | 0-2       | 0-2       | 0-1       | 1-2       | 2-3       | 0-1       | 1-2       |
|                              |                    | Map Zone:              | Zone II   | Zone II   | Zone II   | Zone I    |
| 1,2,4-Trichlorobenzene       |                    |                        | 380 UJV   | 3100 UJV  | 380 UJV   | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| 1,2-Dichlorobenzene          | 1000000            |                        | 380 UJV   | 3100 UJV  | 380 UJV   | NA        | NA        | NA        | NA        | NA        |
| 1,3-Dichlorobenzene          | 560000             |                        | 380 UJV   | 3100 UJV  | 380 UJV   | NA        | NA        | NA        | NA        | NA        |
| 1,4-Dichlorobenzene          | 250000             |                        | 380 UJV   | 3100 UJV  | 380 UJV   | NA        | NA        | NA        | NA        | NA        |
| 2,2'-oxybis(1-Chloropropane) |                    |                        | 380 UJV   | 3100 UJV  | 380 UJV   | NA        | NA        | NA        | NA        | NA        |
| 2,4,5-Trichlorophenol        |                    |                        | 910 UJV   | 7400 UJV  | 910 UJV   | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| 2,4,6-Trichlorophenol        |                    |                        | 380 UJV   | 3100 UJV  | 380 UJV   | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| 2,4-Dichlorophenol           |                    |                        | 380 UJV   | 3100 UJV  | 380 UJV   | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| 2,4-Dimethylphenol           |                    |                        | 380 UJV   | 3100 UJV  | 15 JV     | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| 2,4-Dinitrophenol            |                    |                        | 910 UJV   | 7400 UJV  | 910 UJV   | 910 U     | 890 U     | 890 U     | 960 U     | 900 U     |
| 2,4-Dinitrotoluene           |                    |                        | 380 UJV   | 3100 UJV  | 380 UJV   | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| 2,6-Dinitrotoluene           |                    |                        | 380 UJV   | 3100 UJV  | 380 UJV   | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| 2-Chloronaphthalene          |                    |                        | 380 UJV   | 3100 UJV  | 380 UJV   | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| 2-Chlorophenol               |                    |                        | 380 UJV   | 3100 UJV  | 380 UJV   | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| 2-Methylnaphthalene          |                    |                        | 81 JV     | 440 JV    | 230 JV    | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| 2-Methylphenol               | 1000000            |                        | 380 UJV   | 3100 UJV  | 380 UJV   | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| 2-Nitroaniline               |                    |                        | 910 UJV   | 7400 UJV  | 910 UJV   | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| 2-Nitrophenol                |                    |                        | 380 UJV   | 3100 UJV  | 380 UJV   | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| 3,3'-Dichlorobenzidine       |                    |                        | 380 UJV   | 3100 UJV  | 380 UJV   | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| 3-Nitroaniline               |                    |                        | 910 UJV   | 7400 UJV  | 910 UJV   | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| 4,6-Dinitro-2-Methylphenol   |                    |                        | 910 UJV   | 7400 UJV  | 910 UJV   | 910 U     | 890 U     | 890 U     | 960 U     | 900 U     |
| 4-Bromophenyl phenyl ether   |                    |                        | 380 UJV   | 3100 UJV  | 380 UJV   | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| 4-Chloro-3-Methylphenol      |                    |                        | 380 UJV   | 3100 UJV  | 380 UJV   | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| 4-Chloroaniline              |                    |                        | 380 UJV   | 3100 UJV  | 380 UJV   | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| 4-Chlorophenyl phenyl ether  |                    |                        | 380 UJV   | 3100 UJV  | 380 UJV   | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| 4-Methylphenol               | 1000000            |                        | 380 UJV   | 3100 UJV  | 28 JV     | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| 4-Nitroaniline               |                    |                        | 910 UJV   | 7400 UJV  | 910 UJV   | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| 4-Nitrophenol                |                    |                        | 910 UJV   | 7400 UJV  | 910 UJV   | 910 U     | 890 U     | 890 U     | 380 U     | 360 U     |
| Acenaphthene                 | 1000000            |                        | 74 JV     | 290 JV    | 380 UJV   | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| Acenaphthylene               | 1000000            |                        | 380 JV    | 3500 JV   | 710 JV    | 360 U     | 350 U     | 350 U     | 110 J     | 360 U     |
| Anthracene                   | 1000000            |                        | 460 JV    | 3200 JV   | 340 JV    | 360 U     | 350 U     | 350 U     | 120 J     | 360 U     |
| Benzidine                    |                    |                        | NA        |
| Benzo(a)anthracene           | *                  |                        | 1100 JV   | 4600 JV   | 730 JV    | 360 U     | 350 U     | 350 U     | 480       | 57 J      |
| Benzo(a)pyrene               | *                  |                        | 1200 JV   | 4000 JV   | 2100 JV   | 360 U     | 350 U     | 350 U     | 380 J     | 44 J      |
| Benzo(b)fluoranthene         | *                  |                        | 1000 JV   | 3500 JV   | 760 JV    | 360 U     | 350 U     | 350 U     | 850       | 110 J     |
| Benzo(b+k)fluoranthenes      |                    |                        | NA        |
| Benzo(g,h,i)perylene         | 1000000            |                        | 150 JV    | 550 JV    | 280 JV    | 360 U     | 350 U     | 350 U     | 370 J     | 52 J      |
| Benzo(k)fluoranthene         | *                  |                        | 940 JV    | 3800 JV   | 670 JV    | 360 U     | 350 U     | 350 U     | 290 J     | 46 J      |
| Benzoic Acid                 |                    |                        | NA        | NA        | NA        | 360 U     | 350 U     | 350 U     | 960 U     | 900 U     |
| Benzyl Alcohol               |                    |                        | NA        | NA        | NA        | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| Bis(2-Chloroethoxy)Methane   |                    |                        | 380 UJV   | 3100 UJV  | 380 UJV   | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| Bis(2-Chloroethyl)Ether      |                    |                        | 380 UJV   | 3100 UJV  | 380 UJV   | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| Bis(2-Chloroisopropyl)Ether  |                    |                        | NA        | NA        | NA        | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |

Table 7. Summary of Semivolatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| -                          | NYSDEC             | Sample Designation:    | S-100              | S-101 RE           | S-102 RE  | S-164     | S-164     | S-164     | S-165     | S-165     |
|----------------------------|--------------------|------------------------|--------------------|--------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                  | Part 375           | Sample Date:           | 1/18/1993          | 1/18/1993          | 1/18/1993 | 7/19/2007 | 7/19/2007 | 7/19/2007 | 7/19/2007 | 7/19/2007 |
| (Concentrations in µg/kg)  | Industrial (µg/kg) | Sample Depth (ft bls): | 0-2                | 0-2                | 0-2       | 0-1       | 1-2       | 2-3       | 0-1       | 1-2       |
|                            |                    | Map Zone:              | Zone II            | Zone II            | Zone II   | Zone I    |
|                            |                    |                        |                    |                    |           |           |           |           |           |           |
| Bis(2-Ethylhexyl)Phthalate |                    |                        | 1600 UJV           | 2400 UJV           | 380 UJV   | 360 U     | 350 U     | 350 U     | 82 J      | 360 U     |
| Butylbenzylphthalate       |                    |                        | 380 UJV            | 3100 UJV           | 380 UJV   | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| Carbozole                  |                    |                        | NA                 | NA                 | NA        | 360 U     | 350 U     | 350 U     | 56 J      | 360 U     |
| Chrysene                   | *                  |                        | 380 UJV            | 6500 JV            | 1100 JV   | 360 U     | 350 U     | 350 U     | 630       | 67 J      |
| Di-n-Butylphthalate        |                    |                        | 380 UJV            | 3100 UJV           | 380 UJV   | 360 U     | 350 U     | 350 U     | 110 J     | 360 U     |
| Di-n-octylphthalate        |                    |                        | 380 UJV            | 3100 UJV           | 380 UJV   | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| Dibenzo(a,h)anthracene     | *                  |                        | 51 JV              | 3100 UJV           | 180 JV    | 360 U     | 350 U     | 350 U     | 130 J     | 360 U     |
| Dibenzofuran               | 1000000            |                        | 70 JV              | $600  \mathrm{JV}$ | 180 JV    | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| Diethylphthalate           |                    |                        | 380 UJV            | 3100 UJV           | 380 UV    | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| Dimethylphthalate          |                    |                        | 380 UJV            | 3100 UJV           | 380 UJV   | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| Fluoranthene               | 1000000            |                        | 1700 JV            | 6800 JV            | 220 JV    | 360 U     | 350 U     | 35 J      | 640       | 82 J      |
| Fluorene                   | 1000000            |                        | $110  \mathrm{JV}$ | $600  \mathrm{JV}$ | 380 UJV   | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| Hexachlorobenzene          | 12000              |                        | 380 UJV            | 3100 UJV           | 380 UJV   | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| Hexachlorobutadiene        |                    |                        | 380 UJV            | 3100 UJV           | 380 UJV   | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| Hexachlorocyclopentadiene  |                    |                        | 380 UJV            | 3100 UJV           | 380 UJV   | 360 U     | 350 U     | 350 U     | 960 U     | 900 U     |
| Hexachloroethane           |                    |                        | 380 UJV            | 3100 UJV           | 380 UJV   | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| Indeno(1,2,3-cd)pyrene     | *                  |                        | 280 JV             | 1200 JV            | 670 JV    | 360 U     | 350 U     | 350 U     | 340 J     | 53 J      |
| Isophorone                 |                    |                        | 380 UJV            | 3100 UJV           | 380 UJV   | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| N-Nitroso-Di-n-Propylamine |                    |                        | 380 UJV            | 3100 UJV           | 380 UJV   | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| N-Nitrosodimethylamine     |                    |                        | NA                 | NA                 | NA        | NA        | NA        | NA        | NA        | NA        |
| N-Nitrosodiphenylamine (1) |                    |                        | 380 UJV            | 3100 UJV           | 380 UJV   | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| Naphthalene                | 1000000            |                        | 85 JV              | 660 JV             | 280 JV    | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| Nitrobenzene               |                    |                        | 380 UJV            | 3100 UJV           | 380 UJV   | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| Pentachlorophenol          | 55000              |                        | 910 UJV            | 7400 UJV           | 910 UJV   | 910 U     | 890 U     | 890 U     | 1900 U    | 1800 U    |
| Phenanthrene               | 1000000            |                        | 1000 JV            | 3600 JV            | 630 JV    | 360 U     | 350 U     | 350 U     | 170 J     | 360 U     |
| Phenol                     | 1000000            |                        | 380 UJV            | 3100 UJV           | 380 UJV   | 360 U     | 350 U     | 350 U     | 380 U     | 360 U     |
| Pyrene                     | 1000000            |                        | 380 UJV            | 7800 JV            | 710 JV    | 360 U     | 350 U     | 350 U     | 880       | 100 J     |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

J - Estimated value

R - Rejected by validator

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NA - Data not available

RE - Reanalysis

DUP - Duplicate

- in depth - Not sampled by Roux; depth not known

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

<sup>-- -</sup> No Part 375 Standard available

<sup>\* -</sup> Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 7. Summary of Semivolatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                              | NYSDEC             | Sample Designation:    | S-165     | S-166     | S-166     | S-166     | S-167     | S-167     | S-167     | S-168     |
|------------------------------|--------------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                    | Part 375           | Sample Date:           | 7/19/2007 | 7/20/2007 | 7/20/2007 | 7/20/2007 | 7/20/2007 | 7/20/2007 | 7/20/2007 | 7/20/2007 |
| (Concentrations in µg/kg)    | Industrial (µg/kg) | Sample Depth (ft bls): | 2-3       | 0-1       | 1-2       | 2-3       | 0-1       | 1-2       | 2-3       | 0-1       |
|                              |                    | Map Zone:              | Zone I    | Zone IV   |
| 1,2,4-Trichlorobenzene       |                    |                        | 360 U     | 31 U      | 30 U      | 34 U      | 34 U      | 32 U      | 31 U      | 41 U      |
| 1,2-Dichlorobenzene          | 1000000            |                        | NA        |
| 1,3-Dichlorobenzene          | 560000             |                        | NA        |
| 1,4-Dichlorobenzene          | 250000             |                        | NA        |
| 2,2'-oxybis(1-Chloropropane) |                    |                        | NA        |
| 2,4,5-Trichlorophenol        |                    |                        | 360 U     | 88 U      | 69 U      | 78 U      | 96 U      | 89 U      | 87 U      | 120 U     |
| 2,4,6-Trichlorophenol        |                    |                        | 360 U     | 27 U      | 40 U      | 45 U      | 30 U      | 28 U      | 27 U      | 36 U      |
| 2,4-Dichlorophenol           |                    |                        | 360 U     | 57 U      | 36 U      | 41 U      | 62 U      | 57 U      | 56 U      | 74 U      |
| 2,4-Dimethylphenol           |                    |                        | 360 U     | 67 U      | 58 U      | 66 U      | 73 U      | 68 U      | 66 U      | 88 U      |
| 2,4-Dinitrophenol            |                    |                        | 910 U     | 110 U     | 37 U      | 42 U      | 120 U     | 110 U     | 110 U     | 140 U     |
| 2,4-Dinitrotoluene           |                    |                        | 360 U     | 7.3 U     | 11 U      | 13 U      | 8 U       | 7.4 U     | 7.3 U     | 9.6 U     |
| 2,6-Dinitrotoluene           |                    |                        | 360 U     | 9.5 U     | 20 U      | 23 U      | 10 U      | 9.6 U     | 9.4 U     | 12 U      |
| 2-Chloronaphthalene          |                    |                        | 360 U     | 24 U      | 20 U      | 23 U      | 26 U      | 24 U      | 24 U      | 32 U      |
| 2-Chlorophenol               |                    |                        | 360 U     | 68 U      | 66 U      | 74 U      | 74 U      | 69 U      | 67 U      | 89 U      |
| 2-Methylnaphthalene          |                    |                        | 360 U     | 270 U     | 280 U     | 320 U     | 300 U     | 280 U     | 270 U     | 360 U     |
| 2-Methylphenol               | 1000000            |                        | 360 U     | 220 U     | 240 U     | 270 U     | 240 U     | 220 U     | 210 U     | 290 U     |
| 2-Nitroaniline               |                    |                        | 360 U     | 100 U     | 39 U      | 44 U      | 110 U     | 100 U     | 100 U     | 140 U     |
| 2-Nitrophenol                |                    |                        | 360 U     | 36 U      | 43 U      | 48 U      | 39 U      | 36 U      | 35 U      | 47 U      |
| 3,3'-Dichlorobenzidine       |                    |                        | 360 U     | 19 U      | 43 U      | 48 U      | 21 U      | 19 U      | 19 U      | 25 U      |
| 3-Nitroaniline               |                    |                        | 360 U     | 69 U      | 83 U      | 93 U      | 75 U      | 70 U      | 68 U      | 91 U      |
| 4,6-Dinitro-2-Methylphenol   |                    |                        | 910 U     | 68 U      | 53 U      | 60 U      | 74 U      | 69 U      | 67 U      | 89 U      |
| 4-Bromophenyl phenyl ether   |                    |                        | 360 U     | 10 U      | 15 U      | 17 U      | 11 U      | 10 U      | 10 U      | 13 U      |
| 4-Chloro-3-Methylphenol      |                    |                        | 360 U     | 64 U      | 61 U      | 69 U      | 70 U      | 65 U      | 64 U      | 85 U      |
| 4-Chloroaniline              |                    |                        | 360 U     | 88 U      | 93 U      | 100 U     | 96 U      | 89 U      | 87 U      | 120 U     |
| 4-Chlorophenyl phenyl ether  |                    |                        | 360 U     | 16 U      | 8.4 U     | 9.5 U     | 17 U      | 16 U      | 16 U      | 21 U      |
| 4-Methylphenol               | 1000000            |                        | 360 U     | 280 U     | 200 U     | 220 U     | 300 U     | 280 U     | 270 U     | 360 U     |
| 4-Nitroaniline               |                    |                        | 360 U     | 75 U      | 74 U      | 84 U      | 81 U      | 75 U      | 74 U      | 98 U      |
| 4-Nitrophenol                |                    |                        | 360 U     | 32 U      | 32 U      | 36 U      | 35 U      | 32 U      | 31 U      | 42 U      |
| Acenaphthene                 | 1000000            |                        | 360 U     | 17 U      | 13 U      | 15 U      | 18 U      | 17 U      | 17 U      | 60        |
| Acenaphthylene               | 1000000            |                        | 360 U     | 13 U      | 12 U      | 14 U      | 51        | 13 U      | 13 U      | 100       |
| Anthracene                   | 1000000            |                        | 360 U     | 12 U      | 7.5 U     | 8.5 U     | 110       | 12 U      | 12 U      | 180       |
| Benzidine                    |                    |                        | NA        |
| Benzo(a)anthracene           | *                  |                        | 76 J      | 66        | 7.3 U     | 8.3 U     | 450       | 61        | 4.5 U     | 890       |
| Benzo(a)pyrene               | *                  |                        | 72 J      | 57        | 13 U      | 15 U      | 400       | 53        | 9 U       | 730       |
| Benzo(b)fluoranthene         | *                  |                        | 130 J     | 110       | 9.8 U     | 11 U      | 630       | 80        | 5.6 U     | 1500      |
| Benzo(b+k)fluoranthenes      |                    |                        | NA        |
| Benzo(g,h,i)perylene         | 1000000            |                        | 77 J      | 71        | 6.2 U     | 7 U       | 390       | 50        | 3.2 U     | 660       |
| Benzo(k)fluoranthene         | *                  |                        | 78 J      | 13 U      | 16 U      | 18 U      | 190       | 13 U      | 13 U      | 430       |
| Benzoic Acid                 |                    |                        | 910 U     | 510 U     | 150 U     | 170 U     | 560 U     | 520 U     | 510 U     | 670 U     |
| Benzyl Alcohol               |                    |                        | 360 U     | 110 U     | 130 U     | 150 U     | 110 U     | 110 U     | 100 U     | 140 U     |
| Bis(2-Chloroethoxy)Methane   |                    |                        | 360 U     | 7.6 U     | 9 U       | 10 U      | 8.3 U     | 7.7 U     | 7.6 U     | 10 U      |
| Bis(2-Chloroethyl)Ether      |                    |                        | 360 U     | 5.8 U     | 11 U      | 13 U      | 6.3 U     | 5.8 U     | 5.7 U     | 7.6 U     |
| Bis(2-Chloroisopropyl)Ether  |                    |                        | 360 U     | 7.2 U     | 8.7 U     | 9.8 U     | 7.8 U     | 7.3 U     | 7.1 U     | 9.4 U     |

Table 7. Summary of Semivolatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                            | NYSDEC             | Sample Designation:    | S-165     | S-166     | S-166     | S-166     | S-167     | S-167     | S-167     | S-168     |
|----------------------------|--------------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter                  | Part 375           | Sample Date:           | 7/19/2007 | 7/20/2007 | 7/20/2007 | 7/20/2007 | 7/20/2007 | 7/20/2007 | 7/20/2007 | 7/20/2007 |
| (Concentrations in µg/kg)  | Industrial (µg/kg) | Sample Depth (ft bls): | 2-3       | 0-1       | 1-2       | 2-3       | 0-1       | 1-2       | 2-3       | 0-1       |
|                            |                    | Map Zone:              | Zone I    | Zone IV   |
| Bis(2-Ethylhexyl)Phthalate |                    |                        | 360 U     | 6.4 U     | 9.3 U     | 10 U      | 370       | 6.5 U     | 6.3 U     | 1400      |
| Butylbenzylphthalate       |                    |                        | 360 U     | 5.8 U     | 11 U      | 12 U      | 6.4 U     | 5.9 U     | 5.8 U     | 220       |
| Carbozole                  |                    |                        | 360 U     | 3.5 U     | 5.5 U     | 6.2 U     | 69        | 3.5 U     | 3.4 U     | 140       |
| Chrysene                   | *                  |                        | 110 J     | 69        | 9.3 U     | 10 U      | 490       | 65        | 3.4 U     | 1300      |
| Di-n-Butylphthalate        |                    |                        | 360 U     | 4.9 U     | 5.9 U     | 44        | 5.3 U     | 4.9 U     | 4.8 U     | 330       |
| Di-n-octylphthalate        |                    |                        | 360 U     | 11 U      | 10 U      | 11 U      | 12 U      | 11 U      | 10 U      | 14 U      |
| Dibenzo(a,h)anthracene     | *                  |                        | 360 U     | 4.2 U     | 10 U      | 11 U      | 110       | 4.2 U     | 4.1 U     | 190       |
| Dibenzofuran               | 1000000            |                        | 360 U     | 140 U     | 130 U     | 150 U     | 150 U     | 140 U     | 140 U     | 180 U     |
| Diethylphthalate           |                    |                        | 360 U     | 5.4 U     | 7.8 U     | 8.7 U     | 5.9 U     | 5.5 U     | 5.4 U     | 7.1 U     |
| Dimethylphthalate          |                    |                        | 360 U     | 6.7 U     | 7.3 U     | 8.3 U     | 7.4 U     | 6.8 U     | 6.7 U     | 8.9 U     |
| Fluoranthene               | 1000000            |                        | 96 J      | 71        | 4.9 U     | 5.5 U     | 770       | 76        | 5.6 U     | 1600      |
| Fluorene                   | 1000000            |                        | 360 U     | 13 U      | 12 U      | 14 U      | 14 U      | 13 U      | 13 U      | 51        |
| Hexachlorobenzene          | 12000              |                        | 360 U     | 8.5 U     | 17 U      | 20 U      | 9.3 U     | 8.6 U     | 8.4 U     | 11 U      |
| Hexachlorobutadiene        |                    |                        | 360 U     | 13 U      | 16 U      | 18 U      | 14 U      | 13 U      | 13 U      | 17 U      |
| Hexachlorocyclopentadiene  |                    |                        | 910 U     | 380 U     | 230 U     | 260 U     | 410 U     | 380 U     | 370 U     | 500 U     |
| Hexachloroethane           |                    |                        | 360 U     | 37 U      | 43 U      | 49 U      | 40 U      | 37 U      | 36 U      | 48 U      |
| Indeno(1,2,3-cd)pyrene     | *                  |                        | 70 J      | 59        | 8.5 U     | 9.6 U     | 320       | 43        | 4.2 U     | 580       |
| Isophorone                 |                    |                        | 360 U     | 4 U       | 10 U      | 11 U      | 4.4 U     | 4.1 U     | 4 U       | 5.3 U     |
| N-Nitroso-Di-n-Propylamine |                    |                        | 360 U     | 5.4 U     | 11 U      | 13 U      | 5.9 U     | 5.5 U     | 5.4 U     | 7.1 U     |
| N-Nitrosodimethylamine     |                    |                        | NA        |
| N-Nitrosodiphenylamine (1) |                    |                        | 360 U     | 15 U      | 12 U      | 13 U      | 17 U      | 15 U      | 15 U      | 20 U      |
| Naphthalene                | 1000000            |                        | 360 U     | 23 U      | 21 U      | 24 U      | 25 U      | 23 U      | 22 U      | 79        |
| Nitrobenzene               |                    |                        | 360 U     | 7.4 U     | 9.6 U     | 11 U      | 8 U       | 7.4 U     | 7.3 U     | 9.7 U     |
| Pentachlorophenol          | 55000              |                        | 1800 U    | 36 U      | 33 U      | 37 U      | 39 U      | 36 U      | 36 U      | 47 U      |
| Phenanthrene               | 1000000            |                        | 360 U     | 5.3 U     | 6.1 U     | 6.9 U     | 370       | 36        | 5.3 U     | 790       |
| Phenol                     | 1000000            |                        | 360 U     | 55 U      | 53 U      | 60 U      | 60 U      | 55 U      | 54 U      | 72 U      |
| Pyrene                     | 1000000            |                        | 140 J     | 93        | 5.1 U     | 5.7 U     | 810       | 100       | 6.5 U     | 1800      |

 $\mu g/kg$  - Micrograms per kilogram

ft bls - Feet below land surface

J - Estimated value

R - Rejected by validator

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NA - Data not available

RE - Reanalysis

DUP - Duplicate

- in depth - Not sampled by Roux; depth not known

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

<sup>-- -</sup> No Part 375 Standard available

<sup>\* -</sup> Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 7. Summary of Semivolatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| -                            | NYSDEC             | Sample Designation:    | S-168         | S-168     | S-169     | S-169     | S-169     | S-169     | SH-1       | SH-2           |
|------------------------------|--------------------|------------------------|---------------|-----------|-----------|-----------|-----------|-----------|------------|----------------|
| Parameter                    | Part 375           | Sample Date:           | 7/20/2007     | 7/20/2007 | 7/20/2007 | 7/20/2007 | 7/20/2007 | 7/20/2007 | 12/10/2007 | 12/10/2007     |
| (Concentrations in µg/kg)    | Industrial (µg/kg) | Sample Depth (ft bls): | 1-2           | 2-3       | 0-1       | 1-2       | 2-3       | 7-9       | 0-1        | 0-1            |
|                              | (18 6)             | Map Zone:              | Zone IV       | Zone IV   | Zone IV   | Zone IV   | Zone IV   | Zone IV   | Zone IV    | Zone IV        |
| 1 2 4 Tri-bland and          |                    |                        | 21.11         | 21.11     | 26 11     | 2611      | 24 11     | 2611      | 200 11     | 270 11         |
| 1,2,4-Trichlorobenzene       | 100000             |                        | 31 U          | 31 U      | 36 U      | 36 U      | 34 U      | 36 U      | 390 U      | 370 U          |
| 1,2-Dichlorobenzene          | 1000000            |                        | NA            | NA        | NA        | NA        | NA        | NA        | NA         | NA             |
| 1,3-Dichlorobenzene          | 560000             |                        | NA            | NA        | NA        | NA        | NA        | NA        | NA         | NA             |
| 1,4-Dichlorobenzene          | 250000             |                        | NA            | NA        | NA        | NA        | NA        | NA        | NA         | NA             |
| 2,2'-oxybis(1-Chloropropane) |                    |                        | NA            | NA        | NA        | NA        | NA        | NA        | 390 U      | 370 U          |
| 2,4,5-Trichlorophenol        |                    |                        | 71 U          | 70 U      | 100 U     | 99 U      | 94 U      | 100 U     | 390 U      | 370 U          |
| 2,4,6-Trichlorophenol        |                    |                        | 40 U          | 40 U      | 32 U      | 31 U      | 29 U      | 31 U      | 390 U      | 370 U          |
| 2,4-Dichlorophenol           |                    |                        | 37 U          | 37 U      | 65 U      | 64 U      | 60 U      | 65 U      | 390 U      | 370 U          |
| 2,4-Dimethylphenol           |                    |                        | 60 U          | 59 U      | 77 U      | 76 U      | 71 U      | 77 U      | 390 U      | 370 U          |
| 2,4-Dinitrophenol            |                    |                        | 38 U          | 37 U      | 130 U     | 120 U     | 120 U     | 120 U     | 980 U      | 920 U          |
| 2,4-Dinitrotoluene           |                    |                        | 11 U          | 11 U      | 8.5 U     | 8.3 U     | 7.8 U     | 8.4 U     | 390 U      | 370 U          |
| 2,6-Dinitrotoluene           |                    |                        | 21 U          | 21 U      | 11 U      | 11 U      | 10 U      | 11 U      | 390 U      | 370 U          |
| 2-Chloronaphthalene          |                    |                        | 21 U          | 21 U      | 28 U      | 27 U      | 26 U      | 28 U      | 390 U      | 370 U          |
| 2-Chlorophenol               |                    |                        | 67 U          | 67 U      | 78 U      | 77 U      | 72 U      | 78 U      | 390 U      | 370 U          |
| 2-Methylnaphthalene          |                    |                        | 290 U         | 280 U     | 320 U     | 310 U     | 290 U     | 310 U     | 390 U      | 370 U          |
| 2-Methylphenol               | 1000000            |                        | 250 U         | 240 U     | 250 U     | 250 U     | 230 U     | 250 U     | 390 U      | 370 U          |
| 2-Nitroaniline               |                    |                        | 39 U          | 39 U      | 120 U     | 120 U     | 110 U     | 120 U     | 390 U      | 370 U          |
| 2-Nitrophenol                |                    |                        | 44 U          | 43 U      | 41 U      | 40 U      | 38 U      | 41 U      | 390 U      | 370 U          |
| 3,3'-Dichlorobenzidine       |                    |                        | 43 U          | 43 U      | 22 U      | 22 U      | 20 U      | 22 U      | 390 U      | 370 U          |
| 3-Nitroaniline               |                    |                        | 85 U          | 84 U      | 80 U      | 78 U      | 74 U      | 79 U      | 390 U      | 370 U          |
| 4,6-Dinitro-2-Methylphenol   |                    |                        | 54 U          | 54 U      | 79 U      | 77 U      | 73 U      | 78 U      | 980 U      | 920 U          |
| 4-Bromophenyl phenyl ether   |                    |                        | 15 U          | 15 U      | 12 U      | 11 U      | 11 U      | 12 U      | 390 U      | 370 U          |
| 4-Chloro-3-Methylphenol      |                    |                        | 62 U          | 62 U      | 74 U      | 73 U      | 69 U      | 74 U      | 390 U      | 370 U          |
| 4-Chloroaniline              |                    |                        | 95 U          | 94 U      | 100 U     | 99 U      | 94 U      | 100 U     | 390 U      | 370 U          |
| 4-Chlorophenyl phenyl ether  | <br>               |                        | 8.6 U         | 8.5 U     | 18 U      | 18 U      | 17 U      | 18 U      | 390 U      | 370 U          |
| 4-Methylphenol               | 1000000            |                        | 200 U         | 200 U     | 320 U     | 310 U     | 300 U     | 320 U     | 390 U      | 370 U          |
| 4-Nitroaniline               |                    |                        | 200 U<br>76 U | 75 U      | 86 U      | 84 U      | 80 U      | 85 U      | 390 U      | 370 U          |
|                              |                    |                        |               |           |           |           |           |           |            |                |
| 4-Nitrophenol                | 1000000            |                        | 33 U          | 32 U      | 37 U      | 36 U      | 34 U      | 36 U      | 390 U      | 370 U<br>370 U |
| Acenaphthene                 | 1000000            |                        | 14 U          | 13 U      | 20 U      | 19 U      | 18 U      | 19 U      | 390 U      |                |
| Acenaphthylene               | 1000000            |                        | 13 U          | 12 U      | 15 U      | 14 U      | 14 U      | 51        | 390 U      | 370 U          |
| Anthracene                   | 1000000            |                        | 7.7 U         | 7.6 U     | 13 U      | 13 U      | 12 U      | 63        | 65 J       | 370 U          |
| Benzidine                    |                    |                        | NA            | NA        | NA        | NA        | NA        | NA        | NA         | NA             |
| Benzo(a)anthracene           | *                  |                        | 46            | 7.4 U     | 74        | 5.1 U     | 4.8 U     | 460       | 310 J      | 370 U          |
| Benzo(a)pyrene               | *                  |                        | 40            | 13 U      | 54        | 10 U      | 9.7 U     | 350       | 310 J      | 370 U          |
| Benzo(b)fluoranthene         | *                  |                        | 48            | 9.9 U     | 130       | 44        | 6.1 U     | 470       | 420        | 370 U          |
| Benzo(b+k)fluoranthenes      |                    |                        | NA            | NA        | NA        | NA        | NA        | NA        | NA         | NA             |
| Benzo(g,h,i)perylene         | 1000000            |                        | 6.3 U         | 6.3 U     | 63        | 3.6 U     | 3.4 U     | 220       | 240 J      | 370 U          |
| Benzo(k)fluoranthene         | *                  |                        | 16 U          | 16 U      | 15 U      | 14 U      | 14 U      | 140       | 150 J      | 370 U          |
| Benzoic Acid                 |                    |                        | 150 U         | 150 U     | 590 U     | 580 U     | 540 U     | 580 U     | 390 U      | 920 U          |
| Benzyl Alcohol               |                    |                        | 140 U         | 140 U     | 120 U     | 120 U     | 110 U     | 120 U     | 390 U      | 370 U          |
| Bis(2-Chloroethoxy)Methane   |                    |                        | 9.2 U         | 9.1 U     | 8.8 U     | 8.6 U     | 8.2 U     | 8.7 U     | 390 U      | 370 U          |
| Bis(2-Chloroethyl)Ether      |                    |                        | 12 U          | 12 U      | 6.7 U     | 6.5 U     | 6.1 U     | 6.6 U     | 390 U      | 370 U          |
| Bis(2-Chloroisopropyl)Ether  |                    |                        | 8.9 U         | 8.8 U     | 8.3 U     | 8.1 U     | 7.7 U     | 8.2 U     | NA         | NA             |

Table 7. Summary of Semivolatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                            | NYSDEC             | Sample Designation:    | S-168     | S-168     | S-169     | S-169     | S-169     | S-169     | SH-1       | SH-2       |
|----------------------------|--------------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|
| Parameter                  | Part 375           | Sample Date:           | 7/20/2007 | 7/20/2007 | 7/20/2007 | 7/20/2007 | 7/20/2007 | 7/20/2007 | 12/10/2007 | 12/10/2007 |
| (Concentrations in µg/kg)  | Industrial (µg/kg) | Sample Depth (ft bls): | 1-2       | 2-3       | 0-1       | 1-2       | 2-3       | 7-9       | 0-1        | 0-1        |
|                            |                    | Map Zone:              | Zone IV    | Zone IV    |
|                            |                    |                        |           |           |           |           |           |           |            |            |
| Bis(2-Ethylhexyl)Phthalate |                    |                        | 9.5 U     | 9.4 U     | 7.4 U     | 7.2 U     | 6.8 U     | 7.3 U     | 410        | 370 U      |
| Butylbenzylphthalate       |                    |                        | 11 U      | 11 U      | 6.7 U     | 6.6 U     | 6.2 U     | 6.7 U     | 47 J       | 370 U      |
| Carbozole                  |                    |                        | 5.6 U     | 5.5 U     | 4 U       | 3.9 U     | 3.7 U     | 3.9 U     | NA         | NA         |
| Chrysene                   | *                  |                        | 41        | 9.4 U     | 160       | 53        | 3.7 U     | 510       | 370 J      | 370 U      |
| Di-n-Butylphthalate        |                    |                        | 6 U       | 6 U       | 5.6 U     | 5.5 U     | 5.2 U     | 5.6 U     | 72 J       | 370 U      |
| Di-n-octylphthalate        |                    |                        | 10 U      | 10 U      | 12 U      | 12 U      | 11 U      | 12 U      | 390 U      | 370 U      |
| Dibenzo(a,h)anthracene     | *                  |                        | 10 U      | 10 U      | 4.8 U     | 4.7 U     | 4.5 U     | 80        | 71 J       | 370 U      |
| Dibenzofuran               | 1000000            |                        | 140 U     | 130 U     | 160 U     | 160 U     | 150 U     | 160 U     | 390 U      | 370 U      |
| Diethylphthalate           |                    |                        | 7.9 U     | 7.8 U     | 6.3 U     | 6.1 U     | 5.8 U     | 6.2 U     | 390 U      | 370 U      |
| Dimethylphthalate          |                    |                        | 7.5 U     | 7.4 U     | 7.8 U     | 7.6 U     | 7.2 U     | 7.7 U     | 390 U      | 370 U      |
| Fluoranthene               | 1000000            |                        | 72        | 36        | 75        | 40        | 6.1 U     | 620       | 510        | 370 U      |
| Fluorene                   | 1000000            |                        | 12 U      | 12 U      | 15 U      | 14 U      | 14 U      | 14 U      | 390 U      | 370 U      |
| Hexachlorobenzene          | 12000              |                        | 18 U      | 17 U      | 9.8 U     | 9.6 U     | 9.1 U     | 9.7 U     | 390 U      | 370 U      |
| Hexachlorobutadiene        |                    |                        | 16 U      | 16 U      | 15 U      | 14 U      | 14 U      | 15 U      | 390 U      | 370 U      |
| Hexachlorocyclopentadiene  |                    |                        | 230 U     | 230 U     | 440 U     | 430 U     | 400 U     | 430 U     | 980 U      | 920 U      |
| Hexachloroethane           |                    |                        | 44 U      | 43 U      | 42 U      | 41 U      | 39 U      | 42 U      | 390 U      | 370 U      |
| Indeno(1,2,3-cd)pyrene     | *                  |                        | 8.7 U     | 8.6 U     | 45        | 4.8 U     | 4.6 U     | 200       | 190 J      | 370 U      |
| Isophorone                 |                    |                        | 10 U      | 10 U      | 4.7 U     | 4.5 U     | 4.3 U     | 4.6 U     | 390 U      | 370 U      |
| N-Nitroso-Di-n-Propylamine |                    |                        | 12 U      | 12 U      | 6.3 U     | 6.1 U     | 5.8 U     | 6.2 U     | 390 U      | 370 U      |
| N-Nitrosodimethylamine     |                    |                        | NA         | NA         |
| N-Nitrosodiphenylamine (1) |                    |                        | 12 U      | 12 U      | 18 U      | 17 U      | 16 U      | 17 U      | 390 U      | 370 U      |
| Naphthalene                | 1000000            |                        | 22 U      | 22 U      | 26 U      | 26 U      | 24 U      | 26 U      | 390 U      | 370 U      |
| Nitrobenzene               |                    |                        | 9.8 U     | 9.7 U     | 8.5 U     | 8.3 U     | 7.9 U     | 8.4 U     | 390 U      | 370 U      |
| Pentachlorophenol          | 55000              |                        | 33 U      | 33 U      | 42 U      | 41 U      | 38 U      | 41 U      | 980 U      | 920 U      |
| Phenanthrene               | 1000000            |                        | 6.2 U     | 6.2 U     | 110       | 6 U       | 5.7 U     | 87        | 280 J      | 370 U      |
| Phenol                     | 1000000            |                        | 55 U      | 54 U      | 63 U      | 62 U      | 59 U      | 63 U      | 390 U      | 370 U      |
| Pyrene                     | 1000000            |                        | 87        | 46        | 97        | 54        | 7 U       | 830       | 610        | 370 U      |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

J - Estimated value

R - Rejected by validator

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NA - Data not available

RE - Reanalysis

DUP - Duplicate

- in depth - Not sampled by Roux; depth not known

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

<sup>-- -</sup> No Part 375 Standard available

<sup>\* -</sup> Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 7. Summary of Semivolatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                              | NYSDEC             | Sample Designation:    | SH-3           | SH-4         | SH-5        | SH-6          | SH-7        | SH-8       | SH-9       |
|------------------------------|--------------------|------------------------|----------------|--------------|-------------|---------------|-------------|------------|------------|
| Parameter                    | Part 375           | Sample Date:           | 12/10/2007     | 12/10/2007   | 12/10/2007  | 12/10/2007    | 12/10/2007  | 12/10/2007 | 12/10/2007 |
| (Concentrations in µg/kg)    | Industrial (µg/kg) | Sample Depth (ft bls): | 0-1            | 0-1          | 0-1         | 0-1           | 0-1         | 0-1        | 0-1        |
|                              |                    | Map Zone:              | Zone IV        | Zone III     | Zone III    | Zone III      | Zone III    | Zone II    | Zone II    |
| 104511                       |                    |                        | 270 11         | 200 11       | 250 11      | 200 11        | 270 11      | 270 11     | 200 11     |
| 1,2,4-Trichlorobenzene       | 100000             |                        | 370 U          | 380 U        | 350 U       | 390 U         | 370 U       | 370 U      | 380 U      |
| 1,2-Dichlorobenzene          | 1000000            |                        | NA             | NA           | NA          | NA            | NA          | NA         | NA         |
| 1,3-Dichlorobenzene          | 560000             |                        | NA             | NA           | NA          | NA            | NA          | NA         | NA         |
| 1,4-Dichlorobenzene          | 250000             |                        | NA             | NA           | NA          | NA            | NA          | NA         | NA         |
| 2,2'-oxybis(1-Chloropropane) |                    |                        | 370 U          | 380 U        | 350 U       | 390 U         | 370 U       | 370 U      | 380 U      |
| 2,4,5-Trichlorophenol        |                    |                        | 370 U          | 380 U        | 350 U       | 390 U         | 370 U       | 370 U      | 380 U      |
| 2,4,6-Trichlorophenol        |                    |                        | 370 U          | 380 U        | 350 U       | 390 U         | 370 U       | 370 U      | 380 U      |
| 2,4-Dichlorophenol           |                    |                        | 370 U          | 380 U        | 350 U       | 390 U         | 370 U       | 370 U      | 380 U      |
| 2,4-Dimethylphenol           |                    |                        | 370 U          | 380 U        | 350 U       | 390 U         | 370 U       | 370 U      | 380 U      |
| 2,4-Dinitrophenol            |                    |                        | 920 U          | 950 U        | 890 U       | 980 U         | 920 U       | 940 U      | 950 U      |
| 2,4-Dinitrotoluene           |                    |                        | 370 U          | 380 U        | 350 U       | 390 U         | 370 U       | 370 U      | 380 U      |
| 2,6-Dinitrotoluene           |                    |                        | 370 U          | 380 U        | 350 U       | 390 U         | 370 U       | 370 U      | 380 U      |
| 2-Chloronaphthalene          |                    |                        | 370 U          | 380 U        | 350 U       | 390 U         | 370 U       | 370 U      | 380 U      |
| 2-Chlorophenol               |                    |                        | 370 U          | 380 U        | 350 U       | 390 U         | 370 U       | 370 U      | 380 U      |
| 2-Methylnaphthalene          |                    |                        | 370 U          | 380 U        | 350 U       | 390 U         | 370 U       | 370 U      | 70 J       |
| 2-Methylphenol               | 1000000            |                        | 370 U          | 380 U        | 350 U       | 390 U         | 370 U       | 370 U      | 380 U      |
| 2-Nitroaniline               |                    |                        | 370 U          | 380 U        | 350 U       | 390 U         | 370 U       | 370 U      | 380 U      |
| 2-Nitrophenol                |                    |                        | 370 U          | 380 U        | 350 U       | 390 U         | 370 U       | 370 U      | 380 U      |
| 3,3'-Dichlorobenzidine       |                    |                        | 370 U          | 380 U        | 350 U       | 390 U         | 370 U       | 370 U      | 380 U      |
| 3-Nitroaniline               |                    |                        | 370 U          | 380 U        | 350 U       | 390 U         | 370 U       | 370 U      | 380 U      |
| 4,6-Dinitro-2-Methylphenol   |                    |                        | 920 U          | 950 U        | 890 U       | 980 U         | 920 U       | 940 U      | 950 U      |
| 4-Bromophenyl phenyl ether   |                    |                        | 370 U          | 380 U        | 350 U       | 390 U         | 370 U       | 370 U      | 380 U      |
| 4-Chloro-3-Methylphenol      |                    |                        | 370 U          | 380 U        | 350 U       | 390 U         | 370 U       | 370 U      | 380 U      |
| 4-Chloroaniline              |                    |                        | 370 U          | 380 U        | 350 U       | 390 U         | 370 U       | 370 U      | 380 U      |
| 4-Chlorophenyl phenyl ether  |                    |                        | 370 U          | 380 U        | 350 U       | 390 U         | 370 U       | 370 U      | 380 U      |
| 4-Methylphenol               | 1000000            |                        | 370 U          | 380 U        | 350 U       | 390 U         | 370 U       | 370 U      | 380 U      |
| 4-Nitroaniline               |                    |                        | 370 U          | 380 U        | 350 U       | 390 U         | 370 U       | 370 U      | 380 U      |
| 4-Nitrophenol                |                    |                        | 370 U          | 380 U        | 350 U       | 390 U         | 370 U       | 370 U      | 380 U      |
| Acenaphthene                 | 1000000            |                        | 370 U          | 380 U        | 350 U       | 390 U         | 370 U       | 370 U      | 140 J      |
| Acenaphthylene               | 1000000            |                        | 370 U          | 380 U        | 350 U       | 390 U         | 370 U       | 370 U      | 50 J       |
| Anthracene                   | 1000000            |                        | 370 U          | 380 U        | 350 U       | 390 U         | 370 U       | 370 U      | 370 J      |
| Benzidine                    |                    |                        | NA             | NA           | NA          | NA            | NA          | NA         | NA         |
| Benzo(a)anthracene           | *                  |                        | 370 U          | 120 J        | 350 U       | 150 J         | 370 U       | 63 J       | 1000       |
| Benzo(a)pyrene               | *                  |                        | 370 U          | 98 J         | 350 U       | 140 J         | 370 U       | 58 J       | 850        |
| Benzo(b)fluoranthene         | *                  |                        | 370 U          | 170 J        | 350 U       | 230 J         | 370 U       | 110 J      | 1200       |
| ` '                          |                    |                        |                |              |             |               |             |            |            |
| Benzo(b+k)fluoranthenes      | 100000             |                        | NA<br>270 H    | NA           | NA<br>250 U | NA<br>120 J   | NA<br>270 H | NA<br>45 I | NA<br>540  |
| Benzo(g,h,i)perylene         | 1000000            |                        | 370 U<br>370 U | 90 J<br>55 J | 350 U       | 120 J<br>77 J | 370 U       | 45 J       | 540        |
| Benzo(k)fluoranthene         | Tr.                |                        |                |              | 350 U       |               | 370 U       | 370 U      | 310 J      |
| Benzoic Acid                 |                    |                        | 370 U          | 380 U        | 890 U       | 45 J          | 920 U       | 370 U      | 380 U      |
| Benzyl Alcohol               |                    |                        | 370 U          | 380 U        | 350 U       | 390 U         | 370 U       | 370 U      | 380 U      |
| Bis(2-Chloroethoxy)Methane   |                    |                        | 370 U          | 380 U        | 350 U       | 390 U         | 370 U       | 370 U      | 380 U      |
| Bis(2-Chloroethyl)Ether      |                    |                        | 370 U          | 380 U        | 350 U       | 390 U         | 370 U       | 370 U      | 380 U      |
| Bis(2-Chloroisopropyl)Ether  |                    |                        | NA             | NA           | NA          | NA            | NA          | NA         | NA         |

Table 7. Summary of Semivolatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                            | NYSDEC             | Sample Designation:    | SH-3       | SH-4       | SH-5        | SH-6       | SH-7       | SH-8       | SH-9       |
|----------------------------|--------------------|------------------------|------------|------------|-------------|------------|------------|------------|------------|
| Parameter                  | Part 375           | Sample Date:           | 12/10/2007 | 12/10/2007 | 12/10/2007  | 12/10/2007 | 12/10/2007 | 12/10/2007 | 12/10/2007 |
| (Concentrations in µg/kg)  | Industrial (µg/kg) | Sample Depth (ft bls): | 0-1        | 0-1        | 0-1         | 0-1        | 0-1        | 0-1        | 0-1        |
|                            |                    | Map Zone:              | Zone IV    | Zone III   | Zone III    | Zone III   | Zone III   | Zone II    | Zone II    |
| Dia(2 Ethydhayyd)Dhthalata |                    |                        | 370 U      | 250 J      | 350 U       | 650        | 49 J       | 140 J      | 210 J      |
| Bis(2-Ethylhexyl)Phthalate |                    |                        |            |            |             |            |            |            |            |
| Butylbenzylphthalate       |                    |                        | 370 U      | 380 U      | 350 U       | 100 J      | 370 U      | 370 U      | 380 U      |
| Carbozole                  | *                  |                        | NA         | NA         | NA<br>250 H | NA         | NA         | NA         | NA         |
| Chrysene                   | *                  |                        | 370 U      | 150 J      | 350 U       | 190 J      | 370 U      | 72 J       | 1000       |
| Di-n-Butylphthalate        |                    |                        | 370 U      | 39 J       | 43 J        | 90 J       | 370 U      | 61 J       | 51 J       |
| Di-n-octylphthalate        |                    |                        | 370 U      | 380 U      | 350 U       | 390 U      | 370 U      | 370 U      | 380 U      |
| Dibenzo(a,h)anthracene     | *                  |                        | 370 U      | 380 U      | 350 U       | 390 U      | 370 U      | 370 U      | 170 J      |
| Dibenzofuran               | 1000000            |                        | 370 U      | 380 U      | 350 U       | 390 U      | 370 U      | 370 U      | 89 J       |
| Diethylphthalate           |                    |                        | 370 U      | 380 U      | 350 U       | 390 U      | 370 U      | 370 U      | 380 U      |
| Dimethylphthalate          |                    |                        | 370 U      | 380 U      | 350 U       | 390 U      | 370 U      | 370 U      | 380 U      |
| Fluoranthene               | 1000000            |                        | 370 U      | 160 J      | 350 U       | 260 J      | 370 U      | 87 J       | 1900       |
| Fluorene                   | 1000000            |                        | 370 U      | 380 U      | 350 U       | 390 U      | 370 U      | 370 U      | 140 J      |
| Hexachlorobenzene          | 12000              |                        | 370 U      | 380 U      | 350 U       | 390 U      | 370 U      | 370 U      | 380 U      |
| Hexachlorobutadiene        |                    |                        | 370 U      | 380 U      | 350 U       | 390 U      | 370 U      | 370 U      | 380 U      |
| Hexachlorocyclopentadiene  |                    |                        | 920 U      | 950 U      | 890 U       | 980 U      | 920 U      | 940 U      | 950 U      |
| Hexachloroethane           |                    |                        | 370 U      | 380 U      | 350 U       | 390 U      | 370 U      | 370 U      | 380 U      |
| Indeno(1,2,3-cd)pyrene     | *                  |                        | 370 U      | 80 J       | 350 U       | 99 J       | 370 U      | 40 J       | 480        |
| Isophorone                 |                    |                        | 370 U      | 380 U      | 350 U       | 390 U      | 370 U      | 370 U      | 380 U      |
| N-Nitroso-Di-n-Propylamine |                    |                        | 370 U      | 380 U      | 350 U       | 390 U      | 370 U      | 370 U      | 380 U      |
| N-Nitrosodimethylamine     |                    |                        | NA         | NA         | NA          | NA         | NA         | NA         | NA         |
| N-Nitrosodiphenylamine (1) |                    |                        | 370 U      | 380 U      | 350 U       | 390 U      | 370 U      | 370 U      | 380 U      |
| Naphthalene                | 1000000            |                        | 370 U      | 380 U      | 350 U       | 390 U      | 370 U      | 370 U      | 120 J      |
| Nitrobenzene               |                    |                        | 370 U      | 380 U      | 350 U       | 390 U      | 370 U      | 370 U      | 380 U      |
| Pentachlorophenol          | 55000              |                        | 920 U      | 950 U      | 890 U       | 980 U      | 920 U      | 940 U      | 950 U      |
| Phenanthrene               | 1000000            |                        | 370 U      | 87 J       | 350 U       | 160 J      | 370 U      | 39 J       | 1900       |
| Phenol                     | 1000000            |                        | 370 U      | 380 U      | 350 U       | 390 U      | 370 U      | 370 U      | 380 U      |
| Pyrene                     | 1000000            |                        | 370 U      | 210 J      | 350 U       | 310 J      | 370 U      | 100 J      | 2100       |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

J - Estimated value

R - Rejected by validator

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NA - Data not available

RE - Reanalysis

DUP - Duplicate

- in depth - Not sampled by Roux; depth not known

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

<sup>-- -</sup> No Part 375 Standard available

<sup>\* -</sup> Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 7. Summary of Semivolatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| NYSDEC             | Sample Designation:                                                                                        | SH-10                                              | SH-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SH-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Part 375           | Sample Date:                                                                                               | 12/10/2007                                         | 12/10/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/10/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Industrial (µg/kg) |                                                                                                            | 0-1                                                | 0-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 400                | Map Zone:                                                                                                  | Zone II                                            | Zone II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Zone I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    |                                                                                                            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                    |                                                                                                            | 370 U                                              | 370 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 370 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    |                                                                                                            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                    |                                                                                                            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 250000             |                                                                                                            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                    |                                                                                                            | 370 U                                              | 370 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 370 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    |                                                                                                            | 370 U                                              | 370 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 370 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    |                                                                                                            | 370 U                                              | 370 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 370 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    |                                                                                                            | 370 U                                              | 370 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 370 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    |                                                                                                            | 370 U                                              | 370 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 370 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    |                                                                                                            | 930 U                                              | 940 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 930 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    |                                                                                                            | 370 U                                              | 370 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 370 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    |                                                                                                            | 370 U                                              | 370 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 370 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    |                                                                                                            | 370 U                                              | 370 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 370 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    |                                                                                                            | 370 U                                              | 370 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 370 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    |                                                                                                            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 370 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1000000            |                                                                                                            | 370 U                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 370 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    |                                                                                                            | 370 U                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 370 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    |                                                                                                            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 930 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    |                                                                                                            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 370 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1000000            |                                                                                                            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 370 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    |                                                                                                            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 57 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                    |                                                                                                            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                    |                                                                                                            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| *                  |                                                                                                            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 220 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| *                  |                                                                                                            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| *                  |                                                                                                            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 360 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    |                                                                                                            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                    |                                                                                                            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 150 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| *                  |                                                                                                            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 130 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    |                                                                                                            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 370 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    |                                                                                                            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 370 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <br>               |                                                                                                            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 370 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <b></b>            |                                                                                                            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 370 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    |                                                                                                            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                    | Part 375 Industrial (µg/kg)  1000000 560000 250000 1000000 1000000 1000000 1000000 1000000 * * * * 1000000 | Part 375 Industrial (μg/kg)  1000000 560000 250000 | Part 375         Sample Depth (ft bls): Map Zone:         0-1 Zone II            370 U           10000000         NA           560000         NA           250000         NA            370 U            370 U            370 U            370 U            930 U            970 U            370 U           1000000         370 U            NA           * <td>Part 375         Sample Depth (ft bls): 0-1 Zone II         12/10/2007           Industrial (μg/kg)         Sample Depth (ft bls): 0-1 Zone II         0-1 Zone II            370 U         370 U           10000000         NA         NA           560000         NA         NA            370 U         370 U            370 U         3</td> | Part 375         Sample Depth (ft bls): 0-1 Zone II         12/10/2007           Industrial (μg/kg)         Sample Depth (ft bls): 0-1 Zone II         0-1 Zone II            370 U         370 U           10000000         NA         NA           560000         NA         NA            370 U         370 U            370 U         3 |

Table 7. Summary of Semivolatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                            | NYSDEC             | Sample Designation:    | SH-10      | SH-11      | SH-12      |
|----------------------------|--------------------|------------------------|------------|------------|------------|
| Parameter                  | Part 375           | Sample Date:           | 12/10/2007 | 12/10/2007 | 12/10/2007 |
| (Concentrations in µg/kg)  | Industrial (µg/kg) | Sample Depth (ft bls): | 0-1        | 0-1        | 0-1        |
|                            |                    | Map Zone:              | Zone II    | Zone II    | Zone I     |
| D' (2 Ed. II DDI d. I.)    |                    |                        | 61 T       | 150 1      | 110.7      |
| Bis(2-Ethylhexyl)Phthalate |                    |                        | 61 J       | 150 J      | 110 J      |
| Butylbenzylphthalate       |                    |                        | 370 U      | 94 J       | 370 U      |
| Carbozole                  |                    |                        | NA         | NA         | NA         |
| Chrysene                   | *                  |                        | 79 J       | 580        | 250 J      |
| Di-n-Butylphthalate        |                    |                        | 41 J       | 42 J       | 57 J       |
| Di-n-octylphthalate        |                    |                        | 370 U      | 370 U      | 370 U      |
| Dibenzo(a,h)anthracene     | *                  |                        | 370 U      | 130 J      | 56 J       |
| Dibenzofuran               | 1000000            |                        | 370 U      | 370 U      | 370 U      |
| Diethylphthalate           |                    |                        | 370 U      | 370 U      | 370 U      |
| Dimethylphthalate          |                    |                        | 370 U      | 370 U      | 370 U      |
| Fluoranthene               | 1000000            |                        | 120 J      | 770        | 270 J      |
| Fluorene                   | 1000000            |                        | 370 U      | 370 U      | 370 U      |
| Hexachlorobenzene          | 12000              |                        | 370 U      | 370 U      | 370 U      |
| Hexachlorobutadiene        |                    |                        | 370 U      | 370 U      | 370 U      |
| Hexachlorocyclopentadiene  |                    |                        | 930 U      | 940 U      | 930 U      |
| Hexachloroethane           |                    |                        | 370 U      | 370 U      | 370 U      |
| Indeno(1,2,3-cd)pyrene     | *                  |                        | 370 U      | 340 J      | 160 J      |
| Isophorone                 |                    |                        | 370 U      | 370 U      | 370 U      |
| N-Nitroso-Di-n-Propylamine |                    |                        | 370 U      | 370 U      | 370 U      |
| N-Nitrosodimethylamine     |                    |                        | NA         | NA         | NA         |
| N-Nitrosodiphenylamine (1) |                    |                        | 370 U      | 370 U      | 370 U      |
| Naphthalene                | 1000000            |                        | 370 U      | 370 U      | 370 U      |
| Nitrobenzene               |                    |                        | 370 U      | 370 U      | 370 U      |
| Pentachlorophenol          | 55000              |                        | 930 U      | 940 U      | 930 U      |
| Phenanthrene               | 1000000            |                        | 100 J      | 400        | 78 J       |
| Phenol                     | 1000000            |                        | 370 U      | 370 U      | 370 U      |
| Pyrene                     | 1000000            |                        | 150 J      | 990        | 320 J      |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

- J Estimated value
- R Rejected by validator
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator
- NA Data not available
- RE Reanalysis
- DUP Duplicate
- in depth Not sampled by Roux; depth not known

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

- -- No Part 375 Standard available
- \* Site specific criteria for total cPAHs used in place of NYSDEC Part 375

Table 8. Summary of Volatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg)  | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | BOTTOM<br>1/4/1999<br><br>Zone III | DW BOTTOM<br>5/4/1998<br>-<br>Zone II | DW EWALL<br>5/4/1998<br>-<br>Zone II | DW NWALL<br>5/4/1998<br>-<br>Zone II | DW WWALL<br>5/4/1998<br>-<br>Zone II |
|--------------------------------------|------------------------------------------|----------------------------------------------------------------------------|------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| 1,1,1-Trichloroethane                | 1000000                                  |                                                                            | NA                                 | NA                                    | NA                                   | NA                                   | NA                                   |
| 1,1,2,2-Tetrachloroethane            |                                          |                                                                            | NA                                 | NA                                    | NA                                   | NA                                   | NA                                   |
| 1,1,2-Trichloroethane                |                                          |                                                                            | NA                                 | NA                                    | NA                                   | NA                                   | NA                                   |
| 1,1-Dichloroethane                   | 480000                                   |                                                                            | NA                                 | NA                                    | NA                                   | NA                                   | NA                                   |
| 1,1-Dichloroethene                   | 1000000                                  |                                                                            | NA                                 | NA                                    | NA                                   | NA                                   | NA                                   |
| 1,2,4-Trimethylbenzene               | 380000                                   |                                                                            | 700                                | 1.1 U                                 | 1 U                                  | 1.2 U                                | 1 U                                  |
| 1,2-Dichlorobenzene                  | 1000000                                  |                                                                            | NA                                 | NA                                    | NA                                   | NA                                   | NA                                   |
| 1,2-Dichloroethane                   | 60000                                    |                                                                            | NA                                 | NA                                    | NA                                   | NA                                   | NA                                   |
| 1,2-Dichloroethene (total)           |                                          |                                                                            | NA                                 | NA                                    | NA                                   | NA                                   | NA                                   |
| 1,2-Dichloropropane                  |                                          |                                                                            | NA                                 | NA                                    | NA                                   | NA                                   | NA                                   |
| 1,3-Dichlorobenzene                  | 560000                                   |                                                                            | NA                                 | NA                                    | NA                                   | NA                                   | NA                                   |
| 1,4-Dichlorobenzene                  | 250000                                   |                                                                            | NA                                 | NA                                    | NA                                   | NA                                   | NA                                   |
| 2-Butanone                           | 1000000                                  |                                                                            | NA                                 | NA                                    | NA                                   | NA                                   | NA                                   |
| 2-Chloroethylvinylether              |                                          |                                                                            | NA                                 | NA                                    | NA                                   | NA                                   | NA                                   |
| 2-Hexanone                           |                                          |                                                                            | NA                                 | NA                                    | NA                                   | NA                                   | NA                                   |
| 4-Chlorotoluene+1,3,5-Trimethylbenze | 380000                                   |                                                                            | 1000                               | 2.1 U                                 | 2.1 U                                | 2.4 U                                | 2.1 U                                |
| 4-Methyl-2-Pentanone                 |                                          |                                                                            | NA                                 | NA                                    | NA                                   | NA                                   | NA                                   |
| Acetone                              | 1000000                                  |                                                                            | NA                                 | NA                                    | NA                                   | NA                                   | NA                                   |
| Benzene                              | 89000                                    |                                                                            | 57 U                               | 1.1 U                                 | 1 U                                  | 1.2 U                                | 1 U                                  |
| Bromodichloromethane                 |                                          |                                                                            | NA                                 | NA                                    | NA                                   | NA                                   | NA                                   |
| Bromoform                            |                                          |                                                                            | NA                                 | NA                                    | NA                                   | NA                                   | NA                                   |
| Bromomethane                         |                                          |                                                                            | NA                                 | NA                                    | NA                                   | NA                                   | NA                                   |
| Carbon Disulfide                     |                                          |                                                                            | NA                                 | NA                                    | NA                                   | NA                                   | NA                                   |
| Carbon Tetrachloride                 | 44000                                    |                                                                            | NA                                 | NA                                    | NA                                   | NA                                   | NA                                   |
| Chlorobenzene                        | 1000000                                  |                                                                            | NA                                 | NA                                    | NA                                   | NA                                   | NA                                   |
| Chloroethane                         |                                          |                                                                            | NA                                 | NA                                    | NA                                   | NA                                   | NA                                   |
| Chloroform                           | 700000                                   |                                                                            | NA                                 | NA                                    | NA                                   | NA                                   | NA                                   |
| Chloromethane                        |                                          |                                                                            | NA                                 | NA                                    | NA                                   | NA                                   | NA                                   |
| cis-1,3-Dichloropropene              |                                          |                                                                            | NA                                 | NA                                    | NA                                   | NA                                   | NA                                   |
| Dibromochloromethane                 |                                          |                                                                            | NA                                 | NA                                    | NA                                   | NA                                   | NA                                   |
| Ethylbenzene                         | 780000                                   |                                                                            | 220                                | 1.1 U                                 | 1 U                                  | 1.2 U                                | 1 U                                  |
| Isopropylbenzene                     |                                          |                                                                            | 300                                | 1.1 U                                 | 1 U                                  | 1.2 U                                | 1 U                                  |
| m+p-Xylene                           |                                          |                                                                            | 200                                | 2.1 U                                 | 2.1 U                                | 2.4 U                                | 2.1 U                                |
| Methylene Chloride                   | 1000000                                  |                                                                            | NA                                 | NA                                    | NA                                   | NA                                   | NA                                   |
| MTBE                                 | 1000000                                  |                                                                            | 71 U                               | 1.1 U                                 | 1 U                                  | 1.2 U                                | 1 U                                  |
| Naphthalene                          | 1000000                                  |                                                                            | 550                                | 1.1 U                                 | 1 U                                  | 1.2 U                                | 1 U                                  |
| n-Butylbenzene                       | 1000000                                  |                                                                            | 1800                               | 1.1 U                                 | 1 U                                  | 1.2 U                                | 1 U                                  |
| n-Propylbenzene                      | 1000000                                  |                                                                            | 570                                | 1.1 U                                 | 1 U                                  | 1.2 U                                | 1 U                                  |
| o-Xylene                             |                                          |                                                                            | 590                                | 1.1 U                                 | 1 U                                  | 1.2 U                                | 1 U                                  |

Table 8. Summary of Volatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | BOTTOM   | DW BOTTOM | DW EWALL | DW NWALL | DW WWALL |
|---------------------------|--------------------|------------------------|----------|-----------|----------|----------|----------|
| Parameter                 | Part 375           | Sample Date:           | 1/4/1999 | 5/4/1998  | 5/4/1998 | 5/4/1998 | 5/4/1998 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): |          | -         | -        | -        | -        |
|                           |                    | Map Zone:              | Zone III | Zone II   | Zone II  | Zone II  | Zone II  |
| p-Isopropyltoluene        |                    |                        | 280      | 1.1 U     | 1 U      | 1.2 U    | 1 U      |
| sec-Butylbenzene          | 1000000            |                        | 71 U     | 1.1 U     | 1 U      | 1.2 U    | 1 U      |
| Styrene                   |                    |                        | NA       | NA        | NA       | NA       | NA       |
| t-Butyl-benzene           | 1000000            |                        | 71 U     | 1.1 U     | 1 U      | 1.2 U    | 1 U      |
| Tetrachloroethene         | 300000             |                        | NA       | NA        | NA       | NA       | NA       |
| Toluene                   | 1000000            |                        | 57 U     | 1.1 U     | 1 U      | 1.2 U    | 1 U      |
| trans-1,3-Dichloropropene |                    |                        | NA       | NA        | NA       | NA       | NA       |
| Trichloroethene           | 400000             |                        | NA       | NA        | NA       | NA       | NA       |
| Trichlorofluoromethane    |                    |                        | NA       | NA        | NA       | NA       | NA       |
| Vinyl Acetate             |                    |                        | NA       | NA        | NA       | NA       | NA       |
| Vinyl Chloride            | 27000              |                        | NA       | NA        | NA       | NA       | NA       |
| Xylenes (total)           | 1000000            |                        | NA       | NA        | NA       | NA       | NA       |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NA - Data not available

- in depth - Not sampled by Roux; depth not known

DUP - Duplicate

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

NYSDEC - New York State Department of Environmental Conservation

-- - No Part 375 Standard available

Table 8. Summary of Volatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg)  | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation: Sample Date: Sample Depth (ft bls): Map Zone: | EWALL<br>1/4/1999<br><br>Zone III | FC-4<br>9/14/1994<br>0-2<br>Zone III | FC-5<br>9/14/1994<br>0-2<br>Zone II | FC-8<br>9/14/1994<br>0-2<br>Zone II | FC-11<br>9/14/1994<br>0-2<br>Zone II | FC-18<br>4/6/1994<br>1-3<br>Zone I |
|--------------------------------------|------------------------------------------|-------------------------------------------------------------------|-----------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|------------------------------------|
| 1,1,1-Trichloroethane                | 1000000                                  | Map Bollet                                                        | NA                                | 5 U                                  | 5 U                                 | 5 U                                 | 5 U                                  | 5 U                                |
| 1,1,2,2-Tetrachloroethane            |                                          |                                                                   | NA                                | 5 U                                  | 5 U                                 | 5 U                                 | 5 U                                  | 5 U                                |
| 1,1,2-Trichloroethane                |                                          |                                                                   | NA                                | 5 U                                  | 5 U                                 | 5 U                                 | 5 U                                  | 5 U                                |
| 1,1-Dichloroethane                   | 480000                                   |                                                                   | NA                                | 5 U                                  | 5 U                                 | 5 U                                 | 5 U                                  | 5 U                                |
| 1,1-Dichloroethene                   | 1000000                                  |                                                                   | NA                                | 5 U                                  | 5 U                                 | 5 U                                 | 5 U                                  | 5 U                                |
| 1,2,4-Trimethylbenzene               | 380000                                   |                                                                   | 0.44 U                            | NA                                   | NA                                  | NA                                  | NA                                   | NA                                 |
| 1,2-Dichlorobenzene                  | 1000000                                  |                                                                   | NA                                | NA                                   | NA                                  | NA                                  | NA                                   | NA                                 |
| 1,2-Dichloroethane                   | 60000                                    |                                                                   | NA                                | 5 U                                  | 5 U                                 | 5 U                                 | 5 U                                  | 5 U                                |
| 1,2-Dichloroethene (total)           |                                          |                                                                   | NA                                | 5 U                                  | 5 U                                 | 5 U                                 | 5 U                                  | 5 U                                |
| 1,2-Dichloropropane                  |                                          |                                                                   | NA                                | 5 U                                  | 5 U                                 | 5 U                                 | 5 U                                  | 5 U                                |
| 1,3-Dichlorobenzene                  | 560000                                   |                                                                   | NA                                | NA                                   | NA                                  | NA                                  | NA                                   | NA                                 |
| 1,4-Dichlorobenzene                  | 250000                                   |                                                                   | NA                                | NA                                   | NA                                  | NA                                  | NA                                   | NA                                 |
| 2-Butanone                           | 1000000                                  |                                                                   | NA                                | 10 U                                 | 10 U                                | 10 U                                | 10 U                                 | 10 U                               |
| 2-Chloroethylvinylether              |                                          |                                                                   | NA                                | NA                                   | NA                                  | NA                                  | NA                                   | NA                                 |
| 2-Hexanone                           |                                          |                                                                   | NA                                | 10 U                                 | 10 U                                | 10 U                                | 10 U                                 | 10 U                               |
| 4-Chlorotoluene+1,3,5-Trimethylbenze | 380000                                   |                                                                   | 0.77 U                            | NA                                   | NA                                  | NA                                  | NA                                   | NA                                 |
| 4-Methyl-2-Pentanone                 |                                          |                                                                   | NA                                | 10 U                                 | 10 U                                | 10 U                                | 10 U                                 | 10 U                               |
| Acetone                              | 1000000                                  |                                                                   | NA                                | 32 UV                                | 14 UV                               | 15 UV                               | 10 U                                 | 39 UV                              |
| Benzene                              | 89000                                    |                                                                   | 0.44 U                            | 5 U                                  | 5 U                                 | 5 U                                 | 5 U                                  | 5 U                                |
| Bromodichloromethane                 |                                          |                                                                   | NA                                | 5 U                                  | 5 U                                 | 5 U                                 | 5 U                                  | 5 U                                |
| Bromoform                            |                                          |                                                                   | NA                                | 5 U                                  | 5 U                                 | 5 U                                 | 5 U                                  | 5 U                                |
| Bromomethane                         |                                          |                                                                   | NA                                | 10 U                                 | 10 U                                | 10 U                                | 10 U                                 | 10 U                               |
| Carbon Disulfide                     |                                          |                                                                   | NA                                | 5 U                                  | 5 U                                 | 5 U                                 | 5 U                                  | 5 U                                |
| Carbon Tetrachloride                 | 44000                                    |                                                                   | NA                                | 5 U                                  | 5 U                                 | 5 U                                 | 5 U                                  | 5 U                                |
| Chlorobenzene                        | 1000000                                  |                                                                   | NA                                | 5 U                                  | 5 U                                 | 5 U                                 | 5 U                                  | 5 U                                |
| Chloroethane                         |                                          |                                                                   | NA                                | 10 U                                 | 10 U                                | 10 U                                | 10 U                                 | 10 U                               |
| Chloroform                           | 700000                                   |                                                                   | NA                                | 5 U                                  | 5 U                                 | 5 U                                 | 5 U                                  | 5 U                                |
| Chloromethane                        |                                          |                                                                   | NA                                | 10 U                                 | 10 U                                | 10 U                                | 10 U                                 | 10 U                               |
| cis-1,3-Dichloropropene              |                                          |                                                                   | NA                                | 5 U                                  | 5 U                                 | 5 U                                 | 5 U                                  | 5 U                                |
| Dibromochloromethane                 |                                          |                                                                   | NA                                | 5 U                                  | 5 U                                 | 5 U                                 | 5 U                                  | 5 U                                |
| Ethylbenzene                         | 780000                                   |                                                                   | 0.55 U                            | 5 U                                  | 5 U                                 | 5 U                                 | 5 U                                  | 5 U                                |
| Isopropylbenzene                     |                                          |                                                                   | 0.55 U                            | NA                                   | NA                                  | NA                                  | NA                                   | NA                                 |
| m+p-Xylene                           |                                          |                                                                   | 0.99 U                            | NA                                   | NA                                  | NA                                  | NA                                   | NA                                 |
| Methylene Chloride                   | 1000000                                  |                                                                   | NA                                | 5 U                                  | 5 U                                 | 5 U                                 | 3 J                                  | 3 UV                               |
| MTBE                                 | 1000000                                  |                                                                   | 0.55 U                            | NA                                   | NA                                  | NA                                  | NA                                   | NA                                 |
| Naphthalene                          | 1000000                                  |                                                                   | 0.55 U                            | NA                                   | NA                                  | NA                                  | NA                                   | NA                                 |
| n-Butylbenzene                       | 1000000                                  |                                                                   | 0.55 U                            | NA                                   | NA                                  | NA                                  | NA                                   | NA                                 |
| n-Propylbenzene                      | 1000000                                  |                                                                   | 0.99 U                            | NA                                   | NA                                  | NA                                  | NA                                   | NA                                 |
| o-Xylene                             |                                          |                                                                   | 0.88 U                            | NA                                   | NA                                  | NA                                  | NA                                   | NA                                 |

Table 8. Summary of Volatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | EWALL    | FC-4      | FC-5      | FC-8      | FC-11     | FC-18    |
|---------------------------|--------------------|------------------------|----------|-----------|-----------|-----------|-----------|----------|
| Parameter                 | Part 375           | Sample Date:           | 1/4/1999 | 9/14/1994 | 9/14/1994 | 9/14/1994 | 9/14/1994 | 4/6/1994 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): |          | 0-2       | 0-2       | 0-2       | 0-2       | 1-3      |
|                           |                    | Map Zone:              | Zone III | Zone III  | Zone II   | Zone II   | Zone II   | Zone I   |
| p-Isopropyltoluene        |                    |                        | 0.55 U   | NA        | NA        | NA        | NA        | NA       |
| sec-Butylbenzene          | 1000000            |                        | 0.55 U   | NA        | NA        | NA        | NA        | NA       |
| Styrene                   |                    |                        | NA       | 5 U       | 5 U       | 5 U       | 5 U       | 5 U      |
| t-Butyl-benzene           | 1000000            |                        | 0.55 U   | NA        | NA        | NA        | NA        | NA       |
| Tetrachloroethene         | 300000             |                        | NA       | 5 U       | 5 U       | 5 J       | 5 U       | 5 U      |
| Toluene                   | 1000000            |                        | 0.44 U   | 3 J       | 2 J       | 3 J       | 5 U       | 5 U      |
| trans-1,3-Dichloropropene |                    |                        | NA       | 5 U       | 5 U       | 5 U       | 5 U       | 5 U      |
| Trichloroethene           | 400000             |                        | NA       | 5 U       | 5 U       | 3 J       | 5 U       | 5 U      |
| Trichlorofluoromethane    |                    |                        | NA       | NA        | NA        | NA        | NA        | NA       |
| Vinyl Acetate             |                    |                        | NA       | 10 U      | 10 U      | 10 U      | 10 U      | 10 U     |
| Vinyl Chloride            | 27000              |                        | NA       | 10 U      | 10 U      | 10 U      | 10 U      | 10 U     |
| Xylenes (total)           | 1000000            |                        | NA       | 5 U       | 5 U       | 5 U       | 5 U       | 5 U      |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NA - Data not available

- in depth - Not sampled by Roux; depth not known

DUP - Duplicate

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

NYSDEC - New York State Department of Environmental Conservation

-- - No Part 375 Standard available

Table 8. Summary of Volatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                                      | NYSDEC             | Sample Designation:    | FC-24    | FC-27    | FC-31    | FC-33    | FC-36    | FC-40    | MW-26     |
|--------------------------------------|--------------------|------------------------|----------|----------|----------|----------|----------|----------|-----------|
| Parameter                            | Part 375           | Sample Date:           | 4/5/1994 | 4/4/1994 | 4/5/1994 | 4/4/1994 | 4/6/1994 | 4/5/1994 | 12/5/1990 |
| (Concentrations in µg/kg)            | Industrial (µg/kg) | Sample Depth (ft bls): | 1-3      | 1-3      | 1-3      | 1-3      | 7-9      | 1-3      | 9-11      |
|                                      |                    | Map Zone:              | Zone I   | Zone II   |
| 1,1,1-Trichloroethane                | 1000000            |                        | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U       |
| 1,1,2,2-Tetrachloroethane            |                    |                        | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U       |
| 1,1,2-Trichloroethane                |                    |                        | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U       |
| 1,1-Dichloroethane                   | 480000             |                        | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U       |
| 1,1-Dichloroethene                   | 1000000            |                        | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U       |
| 1,2,4-Trimethylbenzene               | 380000             |                        | NA        |
| 1,2-Dichlorobenzene                  | 1000000            |                        | NA       | NA       | NA       | NA       | NA       | NA       | 5 U       |
| 1,2-Dichloroethane                   | 60000              |                        | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U       |
| 1,2-Dichloroethene (total)           |                    |                        | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U       |
| 1,2-Dichloropropane                  |                    |                        | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U       |
| 1,3-Dichlorobenzene                  | 560000             |                        | NA       | NA       | NA       | NA       | NA       | NA       | 5 U       |
| 1,4-Dichlorobenzene                  | 250000             |                        | NA       | NA       | NA       | NA       | NA       | NA       | 5 U       |
| 2-Butanone                           | 1000000            |                        | 10 U      |
| 2-Chloroethylvinylether              |                    |                        | NA       | NA       | NA       | NA       | NA       | NA       | 10 U      |
| 2-Hexanone                           |                    |                        | 10 U      |
| 4-Chlorotoluene+1,3,5-Trimethylbenze | 380000             |                        | NA        |
| 4-Methyl-2-Pentanone                 |                    |                        | 10 U      |
| Acetone                              | 1000000            |                        | 57 UV    | 18 UV    | 32 UV    | 31 UV    | 81 UV    | 13 UV    | 11        |
| Benzene                              | 89000              |                        | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U       |
| Bromodichloromethane                 |                    |                        | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U       |
| Bromoform                            |                    |                        | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U       |
| Bromomethane                         |                    |                        | 10 U      |
| Carbon Disulfide                     |                    |                        | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U       |
| Carbon Tetrachloride                 | 44000              |                        | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U       |
| Chlorobenzene                        | 1000000            |                        | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U       |
| Chloroethane                         |                    |                        | 10 U      |
| Chloroform                           | 700000             |                        | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U       |
| Chloromethane                        |                    |                        | 10 U      |
| cis-1,3-Dichloropropene              |                    |                        | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U       |
| Dibromochloromethane                 |                    |                        | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U       |
| Ethylbenzene                         | 780000             |                        | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U       |
| Isopropylbenzene                     |                    |                        | NA        |
| m+p-Xylene                           |                    |                        | NA        |
| Methylene Chloride                   | 1000000            |                        | 5 UV     | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U       |
| MTBE                                 | 1000000            |                        | NA        |
| Naphthalene                          | 1000000            |                        | NA        |
| n-Butylbenzene                       | 1000000            |                        | NA        |
| n-Propylbenzene                      | 1000000            |                        | NA        |
| o-Xylene                             |                    |                        | NA        |

Table 8. Summary of Volatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| -                         | NYSDEC             | Sample Designation:    | FC-24    | FC-27    | FC-31    | FC-33    | FC-36    | FC-40    | MW-26     |
|---------------------------|--------------------|------------------------|----------|----------|----------|----------|----------|----------|-----------|
| Parameter                 | Part 375           | Sample Date:           | 4/5/1994 | 4/4/1994 | 4/5/1994 | 4/4/1994 | 4/6/1994 | 4/5/1994 | 12/5/1990 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 1-3      | 1-3      | 1-3      | 1-3      | 7-9      | 1-3      | 9-11      |
|                           |                    | Map Zone:              | Zone I   | Zone II   |
| p-Isopropyltoluene        |                    |                        | NA        |
| sec-Butylbenzene          | 1000000            |                        | NA        |
| Styrene                   |                    |                        | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U       |
| t-Butyl-benzene           | 1000000            |                        | NA        |
| Tetrachloroethene         | 300000             |                        | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U       |
| Toluene                   | 1000000            |                        | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U       |
| trans-1,3-Dichloropropene |                    |                        | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U       |
| Trichloroethene           | 400000             |                        | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U       |
| Trichlorofluoromethane    |                    |                        | NA       | NA       | NA       | NA       | NA       | NA       | 5 U       |
| Vinyl Acetate             |                    |                        | 10 U      |
| Vinyl Chloride            | 27000              |                        | 10 U      |
| Xylenes (total)           | 1000000            |                        | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U      | 5 U       |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NA - Data not available

- in depth - Not sampled by Roux; depth not known

DUP - Duplicate

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

NYSDEC - New York State Department of Environmental Conservation

Table 8. Summary of Volatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| •                                    | _                  |                        |            |          | _          |            |            |
|--------------------------------------|--------------------|------------------------|------------|----------|------------|------------|------------|
|                                      | NYSDEC             | Sample Designation:    | MW-34      | NWALL    | O/W-UST/B  | O/W-UST/E  | O/W-UST/N  |
| Parameter                            | Part 375           | Sample Date:           | 11/29/1990 | 1/4/1999 | 11/19/1997 | 11/19/1997 | 11/19/1997 |
| (Concentrations in µg/kg)            | Industrial (µg/kg) | Sample Depth (ft bls): | 0-2        |          |            |            |            |
|                                      |                    | Map Zone:              | Zone II    | Zone III | Zone II    | Zone II    | Zone II    |
| 1,1,1-Trichloroethane                | 1000000            |                        | 5 U        | NA       | NA         | NA         | NA         |
| 1,1,2,2-Tetrachloroethane            |                    |                        | 5 U        | NA       | NA         | NA         | NA         |
| 1,1,2-Trichloroethane                |                    |                        | 5 U        | NA       | NA         | NA         | NA         |
| 1,1-Dichloroethane                   | 480000             |                        | 5 U        | NA       | NA         | NA         | NA         |
| 1,1-Dichloroethene                   | 1000000            |                        | 5 U        | NA       | NA         | NA         | NA         |
| 1,2,4-Trimethylbenzene               | 380000             |                        | NA         | 0.44 U   | NA         | NA         | NA         |
| 1,2-Dichlorobenzene                  | 1000000            |                        | 5 U        | NA       | NA         | NA         | NA         |
| 1,2-Dichloroethane                   | 60000              |                        | 5 U        | NA       | NA         | NA         | NA         |
| 1,2-Dichloroethene (total)           |                    |                        | 5 U        | NA       | NA         | NA         | NA         |
| 1,2-Dichloropropane                  |                    |                        | 5 U        | NA       | NA         | NA         | NA         |
| 1,3-Dichlorobenzene                  | 560000             |                        | 5 U        | NA       | NA         | NA         | NA         |
| 1,4-Dichlorobenzene                  | 250000             |                        | 5 U        | NA       | NA         | NA         | NA         |
| 2-Butanone                           | 1000000            |                        | 11 U       | NA       | NA         | NA         | NA         |
| 2-Chloroethylvinylether              |                    |                        | 11 U       | NA       | NA         | NA         | NA         |
| 2-Hexanone                           |                    |                        | 11 U       | NA       | NA         | NA         | NA         |
| 4-Chlorotoluene+1,3,5-Trimethylbenze | 380000             |                        | NA         | 0.77 U   | NA         | NA         | NA         |
| 4-Methyl-2-Pentanone                 |                    |                        | 11 U       | NA       | NA         | NA         | NA         |
| Acetone                              | 1000000            |                        | 11 U       | NA       | NA         | NA         | NA         |
| Benzene                              | 89000              |                        | 5 U        | 0.44 U   | 0.42 U     | 0.42 U     | 0.42 U     |
| Bromodichloromethane                 |                    |                        | 5 U        | NA       | NA         | NA         | NA         |
| Bromoform                            |                    |                        | 5 U        | NA       | NA         | NA         | NA         |
| Bromomethane                         |                    |                        | 11 U       | NA       | NA         | NA         | NA         |
| Carbon Disulfide                     |                    |                        | 5 U        | NA       | NA         | NA         | NA         |
| Carbon Tetrachloride                 | 44000              |                        | 5 U        | NA       | NA         | NA         | NA         |
| Chlorobenzene                        | 1000000            |                        | 5 U        | NA       | NA         | NA         | NA         |
| Chloroethane                         |                    |                        | 11 U       | NA       | NA         | NA         | NA         |
| Chloroform                           | 700000             |                        | 5 U        | NA       | NA         | NA         | NA         |
| Chloromethane                        |                    |                        | 11 U       | NA       | NA         | NA         | NA         |
| cis-1,3-Dichloropropene              |                    |                        | 5 U        | NA       | NA         | NA         | NA         |
| Dibromochloromethane                 |                    |                        | 5 U        | NA       | NA         | NA         | NA         |
| Ethylbenzene                         | 780000             |                        | 5 U        | 0.55 U   | 0.53 U     | 0.52 U     | 0.53 U     |
| Isopropylbenzene                     |                    |                        | NA         | 0.55 U   | NA         | NA         | NA         |
| m+p-Xylene                           |                    |                        | NA         | 0.99 U   | NA         | NA         | NA         |
| Methylene Chloride                   | 1000000            |                        | 5 U        | NA       | NA         | NA         | NA         |
| MTBE                                 | 1000000            |                        | NA         | 0.55 U   | NA         | NA         | NA         |
| Naphthalene                          | 1000000            |                        | NA         | 0.55 U   | NA         | NA         | NA         |
| n-Butylbenzene                       | 1000000            |                        | NA         | 0.55 U   | NA         | NA         | NA         |
| n-Propylbenzene                      | 1000000            |                        | NA         | 0.99 U   | NA         | NA         | NA         |
| o-Xylene                             |                    |                        | NA         | 0.88 U   | NA         | NA         | NA         |

Table 8. Summary of Volatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | MW-34      | NWALL    | O/W-UST/B  | O/W-UST/E  | O/W-UST/N  |
|---------------------------|--------------------|------------------------|------------|----------|------------|------------|------------|
| Parameter                 | Part 375           | Sample Date:           | 11/29/1990 | 1/4/1999 | 11/19/1997 | 11/19/1997 | 11/19/1997 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 0-2        |          |            |            |            |
|                           |                    | Map Zone:              | Zone II    | Zone III | Zone II    | Zone II    | Zone II    |
| p-Isopropyltoluene        |                    |                        | NA         | 0.55 U   | NA         | NA         | NA         |
| sec-Butylbenzene          | 1000000            |                        | NA         | 0.55 U   | NA         | NA         | NA         |
| Styrene                   |                    |                        | 5 U        | NA       | NA         | NA         | NA         |
| t-Butyl-benzene           | 1000000            |                        | NA         | 0.55 U   | NA         | NA         | NA         |
| Tetrachloroethene         | 300000             |                        | 5 U        | NA       | NA         | NA         | NA         |
| Toluene                   | 1000000            |                        | 5 U        | 0.44 U   | 0.62 J     | 0.42 U     | 0.55 J     |
| trans-1,3-Dichloropropene |                    |                        | 5 U        | NA       | NA         | NA         | NA         |
| Trichloroethene           | 400000             |                        | 5 U        | NA       | NA         | NA         | NA         |
| Trichlorofluoromethane    |                    |                        | 5 U        | NA       | NA         | NA         | NA         |
| Vinyl Acetate             |                    |                        | 11 U       | NA       | NA         | NA         | NA         |
| Vinyl Chloride            | 27000              |                        | 11 U       | NA       | NA         | NA         | NA         |
| Xylenes (total)           | 1000000            |                        | 5 U        | NA       | 0.95 U     | 0.94 U     | 0.95 U     |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NA - Data not available

- in depth - Not sampled by Roux; depth not known

DUP - Duplicate

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

NYSDEC - New York State Department of Environmental Conservation

Table 8. Summary of Volatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg)  | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation: Sample Date: Sample Depth (ft bls): Map Zone: | O/W-UST/S<br>11/19/1997<br><br>Zone II | O/W-UST/W<br>11/19/1997<br><br>Zone II | R-UST/BOT<br>11/18/1997<br><br>Zone II | R-UST/E<br>11/18/1997<br><br>Zone II | R-UST/N<br>11/18/1997<br><br>Zone II |
|--------------------------------------|------------------------------------------|-------------------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|
| 111 00:11                            | 100000                                   | Wiap Zone:                                                        |                                        |                                        |                                        |                                      |                                      |
| 1,1,1-Trichloroethane                | 1000000                                  |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| 1,1,2,2-Tetrachloroethane            |                                          |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| 1,1,2-Trichloroethane                |                                          |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| 1,1-Dichloroethane                   | 480000                                   |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| 1,1-Dichloroethene                   | 1000000                                  |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| 1,2,4-Trimethylbenzene               | 380000                                   |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| 1,2-Dichlorobenzene                  | 1000000                                  |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| 1,2-Dichloroethane                   | 60000                                    |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| 1,2-Dichloroethene (total)           |                                          |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| 1,2-Dichloropropane                  |                                          |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| 1,3-Dichlorobenzene                  | 560000                                   |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| 1,4-Dichlorobenzene                  | 250000                                   |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| 2-Butanone                           | 1000000                                  |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| 2-Chloroethylvinylether              |                                          |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| 2-Hexanone                           |                                          |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| 4-Chlorotoluene+1,3,5-Trimethylbenze | 380000                                   |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| 4-Methyl-2-Pentanone                 |                                          |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| Acetone                              | 1000000                                  |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| Benzene                              | 89000                                    |                                                                   | 0.42 U                                 | 0.43 U                                 | 0.42 U                                 | 0.44 U                               | 0.44 U                               |
| Bromodichloromethane                 |                                          |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| Bromoform                            |                                          |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| Bromomethane                         |                                          |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| Carbon Disulfide                     |                                          |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| Carbon Tetrachloride                 | 44000                                    |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| Chlorobenzene                        | 1000000                                  |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| Chloroethane                         |                                          |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| Chloroform                           | 700000                                   |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| Chloromethane                        |                                          |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| cis-1,3-Dichloropropene              |                                          |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| Dibromochloromethane                 |                                          |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| Ethylbenzene                         | 780000                                   |                                                                   | 0.53 U                                 | 0.53 U                                 | 0.53 U                                 | 0.56 U                               | 0.55 U                               |
| Isopropylbenzene                     |                                          |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| m+p-Xylene                           |                                          |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| Methylene Chloride                   | 1000000                                  |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| MTBE                                 | 1000000                                  |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| Naphthalene                          | 1000000                                  |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| n-Butylbenzene                       | 1000000                                  |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| n-Propylbenzene                      | 1000000                                  |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |
| o-Xylene                             |                                          |                                                                   | NA                                     | NA                                     | NA                                     | NA                                   | NA                                   |

Table 8. Summary of Volatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | O/W-UST/S  | O/W-UST/W  | R-UST/BOT  | R-UST/E    | R-UST/N    |
|---------------------------|--------------------|------------------------|------------|------------|------------|------------|------------|
| Parameter                 | Part 375           | Sample Date:           | 11/19/1997 | 11/19/1997 | 11/18/1997 | 11/18/1997 | 11/18/1997 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): |            |            |            |            |            |
|                           |                    | Map Zone:              | Zone II    |
| p-Isopropyltoluene        |                    |                        | NA         | NA         | NA         | NA         | NA         |
| sec-Butylbenzene          | 1000000            |                        | NA         | NA         | NA         | NA         | NA         |
| Styrene                   |                    |                        | NA         | NA         | NA         | NA         | NA         |
| t-Butyl-benzene           | 1000000            |                        | NA         | NA         | NA         | NA         | NA         |
| Tetrachloroethene         | 300000             |                        | NA         | NA         | NA         | NA         | NA         |
| Toluene                   | 1000000            |                        | 0.46 J     | 1.7        | 0.42 U     | 0.44 U     | 0.44 U     |
| trans-1,3-Dichloropropene |                    |                        | NA         | NA         | NA         | NA         | NA         |
| Trichloroethene           | 400000             |                        | NA         | NA         | NA         | NA         | NA         |
| Trichlorofluoromethane    |                    |                        | NA         | NA         | NA         | NA         | NA         |
| Vinyl Acetate             |                    |                        | NA         | NA         | NA         | NA         | NA         |
| Vinyl Chloride            | 27000              |                        | NA         | NA         | NA         | NA         | NA         |
| Xylenes (total)           | 1000000            |                        | 0.95 U     | 0.96 U     | 0.95 U     | 0 U        | 0.99 U     |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NA - Data not available

- in depth - Not sampled by Roux; depth not known

DUP - Duplicate

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

NYSDEC - New York State Department of Environmental Conservation

Table 8. Summary of Volatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                            | NYSDEC<br>Part 375 | Sample Designation:<br>Sample Date: | R-UST/S<br>11/18/1997 | R-UST/W<br>11/18/1997 | R-UST/W DUP R<br>11/18/1997 | S-17<br>10/19/1990 | S-22<br>10/17/1990 |
|--------------------------------------|--------------------|-------------------------------------|-----------------------|-----------------------|-----------------------------|--------------------|--------------------|
| (Concentrations in µg/kg)            | Industrial (µg/kg) | Sample Date. Sample Depth (ft bls): |                       | 11/10/1997            | 11/10/1997                  | 0-2                | 0-2                |
| (Concentrations in µg/kg)            | πισαστιαι (με/κε)  | Map Zone:                           | Zone II               | Zone II               | Zone II                     | Zone III           | Zone II            |
| 1,1,1-Trichloroethane                | 1000000            | -                                   | NA                    | NA                    | NA                          | 7 U                | 6 U                |
| 1,1,2,2-Tetrachloroethane            |                    |                                     | NA                    | NA                    | NA                          | 7 U                | 6 U                |
| 1,1,2-Trichloroethane                |                    |                                     | NA                    | NA                    | NA                          | 7 U                | 6 U                |
| 1,1-Dichloroethane                   | 480000             |                                     | NA                    | NA                    | NA                          | 7 U                | 6 U                |
| 1,1-Dichloroethene                   | 1000000            |                                     | NA                    | NA                    | NA                          | 7 U                | 6 U                |
| 1,2,4-Trimethylbenzene               | 380000             |                                     | NA                    | NA                    | NA                          | NA                 | NA                 |
| 1,2-Dichlorobenzene                  | 1000000            |                                     | NA                    | NA                    | NA                          | 7 U                | 6 U                |
| 1,2-Dichloroethane                   | 60000              |                                     | NA                    | NA                    | NA                          | 7 U                | 6 U                |
| 1,2-Dichloroethene (total)           |                    |                                     | NA                    | NA                    | NA                          | 7 U                | 6 U                |
| 1,2-Dichloropropane                  |                    |                                     | NA                    | NA                    | NA                          | 7 U                | 6 U                |
| 1,3-Dichlorobenzene                  | 560000             |                                     | NA                    | NA                    | NA                          | 7 U                | 6 U                |
| 1,4-Dichlorobenzene                  | 250000             |                                     | NA                    | NA                    | NA                          | 7 U                | 6 U                |
| 2-Butanone                           | 1000000            |                                     | NA                    | NA                    | NA                          | 14 U               | 12 U               |
| 2-Chloroethylvinylether              |                    |                                     | NA                    | NA                    | NA                          | 14 U               | 12 U               |
| 2-Hexanone                           |                    |                                     | NA                    | NA                    | NA                          | 14 U               | 12 U               |
| 4-Chlorotoluene+1,3,5-Trimethylbenze |                    |                                     | NA                    | NA                    | NA                          | NA                 | NA                 |
| 4-Methyl-2-Pentanone                 |                    |                                     | NA                    | NA                    | NA                          | 14 U               | 12 U               |
| Acetone                              | 1000000            |                                     | NA                    | NA                    | NA                          | 35                 | 12 U               |
| Benzene                              | 89000              |                                     | 0.44 U                | 0.42 U                | 0.43 U                      | 7 U                | 6 U                |
| Bromodichloromethane                 |                    |                                     | NA                    | NA                    | NA                          | 7 U                | 6 U                |
| Bromoform                            |                    |                                     | NA                    | NA                    | NA                          | 7 U                | 6 U                |
| Bromomethane                         |                    |                                     | NA                    | NA                    | NA                          | 14 U               | 12 U               |
| Carbon Disulfide                     |                    |                                     | NA                    | NA                    | NA                          | 7 U                | 7.7                |
| Carbon Tetrachloride                 | 44000              |                                     | NA                    | NA                    | NA                          | 7 U                | 6 U                |
| Chlorobenzene                        | 1000000            |                                     | NA                    | NA                    | NA                          | 7 U                | 6 U                |
| Chloroethane                         |                    |                                     | NA                    | NA                    | NA                          | 14 U               | 12 U               |
| Chloroform                           | 700000             |                                     | NA                    | NA                    | NA                          | 7 U                | 6 U                |
| Chloromethane                        |                    |                                     | NA                    | NA                    | NA                          | 14 U               | 12 U               |
| cis-1,3-Dichloropropene              |                    |                                     | NA                    | NA                    | NA                          | 7 U                | 6 U                |
| Dibromochloromethane                 |                    |                                     | NA                    | NA                    | NA                          | 7 U                | 6 U                |
| Ethylbenzene                         | 780000             |                                     | 0.55 U                | 0.53 U                | 0.53 U                      | 7 U                | 6 U                |
| Isopropylbenzene                     |                    |                                     | NA                    | NA                    | NA                          | NA                 | NA                 |
| m+p-Xylene                           |                    |                                     | NA                    | NA                    | NA                          | NA                 | NA                 |
| Methylene Chloride                   | 1000000            |                                     | NA                    | NA                    | NA                          | 7 U                | 32                 |
| MTBE                                 | 1000000            |                                     | NA                    | NA<br>NA              | NA<br>NA                    | NA                 | NA                 |
| Naphthalene                          | 1000000            |                                     | NA                    | NA<br>NA              | NA<br>NA                    | NA<br>NA           | NA                 |
| n-Butylbenzene                       | 1000000            |                                     | NA                    | NA<br>NA              | NA<br>NA                    | NA<br>NA           | NA                 |
| n-Propylbenzene                      | 1000000            |                                     | NA                    | NA<br>NA              | NA<br>NA                    | NA<br>NA           | NA                 |
| o-Xylene                             |                    |                                     | NA                    | NA                    | NA<br>NA                    | NA                 | NA                 |

Table 8. Summary of Volatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | R-UST/S    | R-UST/W    | R-UST/W DUP R | S-17       | S-22       |
|---------------------------|--------------------|------------------------|------------|------------|---------------|------------|------------|
| Parameter                 | Part 375           | Sample Date:           | 11/18/1997 | 11/18/1997 | 11/18/1997    | 10/19/1990 | 10/17/1990 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): |            |            |               | 0-2        | 0-2        |
|                           |                    | Map Zone:              | Zone II    | Zone II    | Zone II       | Zone III   | Zone II    |
| p-Isopropyltoluene        |                    |                        | NA         | NA         | NA            | NA         | NA         |
| sec-Butylbenzene          | 1000000            |                        | NA         | NA         | NA            | NA         | NA         |
| Styrene                   |                    |                        | NA         | NA         | NA            | 7 U        | 6 U        |
| t-Butyl-benzene           | 1000000            |                        | NA         | NA         | NA            | NA         | NA         |
| Tetrachloroethene         | 300000             |                        | NA         | NA         | NA            | 7 U        | 6 U        |
| Toluene                   | 1000000            |                        | 0.44 U     | 0.42 U     | 0.43 J        | 7 U        | 4.8 J      |
| trans-1,3-Dichloropropene |                    |                        | NA         | NA         | NA            | 7 U        | 6 U        |
| Trichloroethene           | 400000             |                        | NA         | NA         | NA            | 7 U        | 6 U        |
| Trichlorofluoromethane    |                    |                        | NA         | NA         | NA            | 7 U        | 6 U        |
| Vinyl Acetate             |                    |                        | NA         | NA         | NA            | 14 U       | 12 U       |
| Vinyl Chloride            | 27000              |                        | NA         | NA         | NA            | 14 U       | 12 U       |
| Xylenes (total)           | 1000000            |                        | 0.98 U     | 0.95 U     | 0.96 U        | 7 U        | 6 U        |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NA - Data not available

- in depth - Not sampled by Roux; depth not known

DUP - Duplicate

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

NYSDEC - New York State Department of Environmental Conservation

Table 8. Summary of Volatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg)  | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | S-30<br>10/16/1990<br>0-2<br>Zone I | S-33<br>12/13/1990<br>4-6<br>Zone IV | S-35<br>11/30/1990<br>8-10<br>Zone IV | S-37<br>12/1/1990<br>4-6<br>Zone III | S-38<br>11/29/1990<br>2-4<br>Zone III | S-39<br>11/29/1990<br>2-4<br>Zone III |
|--------------------------------------|------------------------------------------|----------------------------------------------------------------------------|-------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|
| 1,1,1-Trichloroethane                | 1000000                                  |                                                                            | 6 U                                 | 5 U                                  | 6 U                                   | 5 U                                  | 6 U                                   | 5 U                                   |
| 1,1,2,2-Tetrachloroethane            |                                          |                                                                            | 6 U                                 | 5 U                                  | 6 U                                   | 5 U                                  | 6 U                                   | 5 U                                   |
| 1,1,2-Trichloroethane                |                                          |                                                                            | 6 U                                 | 5 U                                  | 6 U                                   | 5 U                                  | 6 U                                   | 5 U                                   |
| 1,1-Dichloroethane                   | 480000                                   |                                                                            | 6 U                                 | 5 U                                  | 6 U                                   | 5 U                                  | 6 U                                   | 5 U                                   |
| 1,1-Dichloroethene                   | 1000000                                  |                                                                            | 6 U                                 | 5 U                                  | 6 U                                   | 5 U                                  | 6 U                                   | 5 U                                   |
| 1,2,4-Trimethylbenzene               | 380000                                   |                                                                            | NA                                  | NA                                   | NA                                    | NA                                   | NA                                    | NA                                    |
| 1,2-Dichlorobenzene                  | 1000000                                  |                                                                            | 6 U                                 | 5 U                                  | 6 U                                   | 5 U                                  | 6 U                                   | 5 U                                   |
| 1,2-Dichloroethane                   | 60000                                    |                                                                            | 6 U                                 | 5 U                                  | 6 U                                   | 5 U                                  | 6 U                                   | 5 U                                   |
| 1,2-Dichloroethene (total)           |                                          |                                                                            | 6 U                                 | 5 U                                  | 6 U                                   | 5 U                                  | 6 U                                   | 5 U                                   |
| 1,2-Dichloropropane                  |                                          |                                                                            | 6 U                                 | 5 U                                  | 6 U                                   | 5 U                                  | 6 U                                   | 5 U                                   |
| 1,3-Dichlorobenzene                  | 560000                                   |                                                                            | 6 U                                 | 5 U                                  | 6 U                                   | 5 U                                  | 6 U                                   | 5 U                                   |
| 1,4-Dichlorobenzene                  | 250000                                   |                                                                            | 6 U                                 | 5 U                                  | 6 U                                   | 5 U                                  | 6 U                                   | 5 U                                   |
| 2-Butanone                           | 1000000                                  |                                                                            | 11 U                                | 11 U                                 | 11 U                                  | 11 U                                 | 12 U                                  | 11 U                                  |
| 2-Chloroethylvinylether              |                                          |                                                                            | 11 U                                | 11 U                                 | 11 U                                  | 11 U                                 | 12 U                                  | 11 U                                  |
| 2-Hexanone                           |                                          |                                                                            | 11 U                                | 11 U                                 | 11 U                                  | 11 U                                 | 12 U                                  | 11 U                                  |
| 4-Chlorotoluene+1,3,5-Trimethylbenze | 380000                                   |                                                                            | NA                                  | NA                                   | NA                                    | NA                                   | NA                                    | NA                                    |
| 4-Methyl-2-Pentanone                 |                                          |                                                                            | 11 U                                | 11 U                                 | 11 U                                  | 11 U                                 | 12 U                                  | 11 U                                  |
| Acetone                              | 1000000                                  |                                                                            | 33                                  | 49                                   | 15                                    | 16                                   | 12 U                                  | 11 U                                  |
| Benzene                              | 89000                                    |                                                                            | 6 U                                 | 5 U                                  | 6 U                                   | 5 U                                  | 6 U                                   | 5 U                                   |
| Bromodichloromethane                 |                                          |                                                                            | 6 U                                 | 5 U                                  | 6 U                                   | 5 U                                  | 6 U                                   | 5 U                                   |
| Bromoform                            |                                          |                                                                            | 6 U                                 | 5 U                                  | 6 U                                   | 5 U                                  | 6 U                                   | 5 U                                   |
| Bromomethane                         |                                          |                                                                            | 11 U                                | 11 U                                 | 11 U                                  | 11 U                                 | 12 U                                  | 11 U                                  |
| Carbon Disulfide                     |                                          |                                                                            | 6 U                                 | 5 U                                  | 6 U                                   | 5 U                                  | 6 U                                   | 5 U                                   |
| Carbon Tetrachloride                 | 44000                                    |                                                                            | 6 U                                 | 5 U                                  | 6 U                                   | 5 U                                  | 6 U                                   | 5 U                                   |
| Chlorobenzene                        | 1000000                                  |                                                                            | 6 U                                 | 5 U                                  | 6 U                                   | 5 U                                  | 6 U                                   | 5 U                                   |
| Chloroethane                         |                                          |                                                                            | 11 U                                | 11 U                                 | 11 U                                  | 11 U                                 | 12 U                                  | 11 U                                  |
| Chloroform                           | 700000                                   |                                                                            | 6 U                                 | 5 U                                  | 6 U                                   | 5 U                                  | 6 U                                   | 5 U                                   |
| Chloromethane                        |                                          |                                                                            | 11 U                                | 11 U                                 | 11 U                                  | 11 U                                 | 12 U                                  | 11 U                                  |
| cis-1,3-Dichloropropene              |                                          |                                                                            | 6 U                                 | 5 U                                  | 6 U                                   | 5 U                                  | 6 U                                   | 5 U                                   |
| Dibromochloromethane                 |                                          |                                                                            | 6 U                                 | 5 U                                  | 6 U                                   | 5 U                                  | 6 U                                   | 5 U                                   |
| Ethylbenzene                         | 780000                                   |                                                                            | 6 U                                 | 5 U                                  | 6 U                                   | 5 U                                  | 6 U                                   | 5 U                                   |
| Isopropylbenzene                     |                                          |                                                                            | NA                                  | NA                                   | NA                                    | NA                                   | NA                                    | NA                                    |
| m+p-Xylene                           |                                          |                                                                            | NA                                  | NA                                   | NA                                    | NA                                   | NA                                    | NA                                    |
| Methylene Chloride                   | 1000000                                  |                                                                            | 6 U                                 | 77                                   | 6 U                                   | 5 U                                  | 6 U                                   | 5 U                                   |
| MTBE                                 | 1000000                                  |                                                                            | NA                                  | NA                                   | NA                                    | NA                                   | NA                                    | NA                                    |
| Naphthalene                          | 1000000                                  |                                                                            | NA                                  | NA                                   | NA                                    | NA                                   | NA                                    | NA                                    |
| n-Butylbenzene                       | 1000000                                  |                                                                            | NA                                  | NA                                   | NA                                    | NA                                   | NA                                    | NA                                    |
| n-Propylbenzene                      | 1000000                                  |                                                                            | NA                                  | NA                                   | NA                                    | NA                                   | NA                                    | NA                                    |
| o-Xylene                             |                                          |                                                                            | NA                                  | NA                                   | NA                                    | NA                                   | NA                                    | NA                                    |

Table 8. Summary of Volatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | S-30       | S-33       | S-35       | S-37      | S-38       | S-39       |
|---------------------------|--------------------|------------------------|------------|------------|------------|-----------|------------|------------|
| Parameter                 | Part 375           | Sample Date:           | 10/16/1990 | 12/13/1990 | 11/30/1990 | 12/1/1990 | 11/29/1990 | 11/29/1990 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 0-2        | 4-6        | 8-10       | 4-6       | 2-4        | 2-4        |
|                           |                    | Map Zone:              | Zone I     | Zone IV    | Zone IV    | Zone III  | Zone III   | Zone III   |
| p-Isopropyltoluene        |                    |                        | NA         | NA         | NA         | NA        | NA         | NA         |
| sec-Butylbenzene          | 1000000            |                        | NA         | NA         | NA         | NA        | NA         | NA         |
| Styrene                   |                    |                        | 6 U        | 5 U        | 6 U        | 5 U       | 6 U        | 5 U        |
| t-Butyl-benzene           | 1000000            |                        | NA         | NA         | NA         | NA        | NA         | NA         |
| Tetrachloroethene         | 300000             |                        | 6 U        | 5 U        | 6 U        | 5 U       | 6 U        | 5 U        |
| Toluene                   | 1000000            |                        | 6 U        | 5 U        | 6 U        | 5 U       | 6 U        | 5 U        |
| trans-1,3-Dichloropropene |                    |                        | 6 U        | 5 U        | 6 U        | 5 U       | 6 U        | 5 U        |
| Trichloroethene           | 400000             |                        | 6 U        | 5 U        | 6 U        | 5 U       | 6 U        | 5 U        |
| Trichlorofluoromethane    |                    |                        | 6 U        | 5 U        | 6 U        | 5 U       | 6 U        | 5 U        |
| Vinyl Acetate             |                    |                        | 11 U       | 11 U       | 11 U       | 11 U      | 12 U       | 11 U       |
| Vinyl Chloride            | 27000              |                        | 11 U       | 11 U       | 11 U       | 11 U      | 12 U       | 11 U       |
| Xylenes (total)           | 1000000            |                        | 6 U        | 5 U        | 6 U        | 5 U       | 6 U        | 5 U        |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NA - Data not available

- in depth - Not sampled by Roux; depth not known

DUP - Duplicate

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

NYSDEC - New York State Department of Environmental Conservation

Table 8. Summary of Volatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                                      | NYSDEC             | Sample Designation:    | S-41A     | S-43      | S-47       | S-49       | S-53       | S-60       |
|--------------------------------------|--------------------|------------------------|-----------|-----------|------------|------------|------------|------------|
| Parameter                            | Part 375           | Sample Date:           | 11/7/1990 | 11/5/1990 | 10/19/1990 | 10/19/1990 | 11/18/1990 | 12/12/1990 |
| (Concentrations in µg/kg)            | Industrial (µg/kg) | Sample Depth (ft bls): | 3.5-5.5   | 0-2       | 2-4        | 2-4        | 5-7        | 4-6        |
|                                      |                    | Map Zone:              | Zone III  | Zone III  | Zone III   | Zone III   | Zone II    | Zone II    |
| 1,1,1-Trichloroethane                | 1000000            |                        | 29 U      | 6 U       | 5 U        | 5 U        | 5 U        | 5 U        |
| 1,1,2,2-Tetrachloroethane            |                    |                        | 29 U      | 6 U       | 5 U        | 5 U        | 5 U        | 5 U        |
| 1,1,2-Trichloroethane                |                    |                        | 29 U      | 6 U       | 5 U        | 5 U        | 5 U        | 5 U        |
| 1,1-Dichloroethane                   | 480000             |                        | 29 U      | 6 U       | 5 U        | 5 U        | 5 U        | 5 U        |
| 1,1-Dichloroethene                   | 1000000            |                        | 29 U      | 6 U       | 5 U        | 5 U        | 5 U        | 5 U        |
| 1,2,4-Trimethylbenzene               | 380000             |                        | NA        | NA        | NA         | NA         | NA         | NA         |
| 1,2-Dichlorobenzene                  | 1000000            |                        | 29 U      | 6 U       | 5 U        | 5 U        | 5 U        | 5 U        |
| 1,2-Dichloroethane                   | 60000              |                        | 29 U      | 6 U       | 5 U        | 5 U        | 5 U        | 5 U        |
| 1,2-Dichloroethene (total)           |                    |                        | 29 U      | 6 U       | 5 U        | 5 U        | 5 U        | 5 U        |
| 1,2-Dichloropropane                  |                    |                        | 29 U      | 6 U       | 5 U        | 5 U        | 5 U        | 5 U        |
| 1,3-Dichlorobenzene                  | 560000             |                        | 29 U      | 6 U       | 5 U        | 5 U        | 5 U        | 5 U        |
| 1,4-Dichlorobenzene                  | 250000             |                        | 29 U      | 6 U       | 5 U        | 5 U        | 5 U        | 5 U        |
| 2-Butanone                           | 1000000            |                        | 58 U      | 11 U      | 11 U       | 11 U       | 10 U       | 10 U       |
| 2-Chloroethylvinylether              |                    |                        | 58 U      | 11 U      | 11 U       | 11 U       | 10 U       | 10 U       |
| 2-Hexanone                           |                    |                        | 58 U      | 11 U      | 11 U       | 11 U       | 10 U       | 10 U       |
| 4-Chlorotoluene+1,3,5-Trimethylbenze | 380000             |                        | NA        | NA        | NA         | NA         | NA         | NA         |
| 4-Methyl-2-Pentanone                 |                    |                        | 58 U      | 11 U      | 11 U       | 11 U       | 10 U       | 10 U       |
| Acetone                              | 1000000            |                        | 293       | 11 U      | 11 U       | 20         | 38         | 20         |
| Benzene                              | 89000              |                        | 29 U      | 6 U       | 5 U        | 5 U        | 5 U        | 5 U        |
| Bromodichloromethane                 |                    |                        | 29 U      | 6 U       | 5 U        | 5 U        | 5 U        | 5 U        |
| Bromoform                            |                    |                        | 29 U      | 6 U       | 5 U        | 5 U        | 5 U        | 5 U        |
| Bromomethane                         |                    |                        | 58 U      | 11 U      | 11 U       | 11 U       | 10 U       | 10 U       |
| Carbon Disulfide                     |                    |                        | 29 U      | 6 U       | 5 U        | 5 U        | 5 U        | 5 U        |
| Carbon Tetrachloride                 | 44000              |                        | 29 U      | 6 U       | 5 U        | 5 U        | 5 U        | 5 U        |
| Chlorobenzene                        | 1000000            |                        | 29 U      | 6 U       | 5 U        | 5 U        | 5 U        | 5 U        |
| Chloroethane                         |                    |                        | 58 U      | 11 U      | 11 U       | 11 U       | 10 U       | 10 U       |
| Chloroform                           | 700000             |                        | 29 U      | 3.8 J     | 5 U        | 5 U        | 5 U        | 5 U        |
| Chloromethane                        |                    |                        | 58 U      | 11 U      | 11 U       | 11 U       | 10 U       | 10 U       |
| cis-1,3-Dichloropropene              |                    |                        | 29 U      | 6 U       | 5 U        | 5 U        | 5 U        | 5 U        |
| Dibromochloromethane                 |                    |                        | 29 U      | 6 U       | 5 U        | 5 U        | 5 U        | 5 U        |
| Ethylbenzene                         | 780000             |                        | 67        | 6 U       | 5 U        | 5 U        | 5 U        | 5 U        |
| Isopropylbenzene                     |                    |                        | NA        | NA        | NA         | NA         | NA         | NA         |
| m+p-Xylene                           |                    |                        | NA        | NA        | NA         | NA         | NA         | NA         |
| Methylene Chloride                   | 1000000            |                        | 29 U      | 6 U       | 5 U        | 3.6 J      | 4.3 J      | 29         |
| MTBE                                 | 1000000            |                        | NA        | NA        | NA         | NA         | NA         | NA         |
| Naphthalene                          | 1000000            |                        | NA        | NA        | NA         | NA         | NA         | NA         |
| n-Butylbenzene                       | 1000000            |                        | NA        | NA        | NA         | NA         | NA         | NA         |
| n-Propylbenzene                      | 1000000            |                        | NA        | NA        | NA         | NA         | NA         | NA         |
| o-Xylene                             |                    |                        | NA        | NA        | NA         | NA         | NA         | NA         |

Table 8. Summary of Volatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | S-41A     | S-43      | S-47       | S-49       | S-53       | S-60       |
|---------------------------|--------------------|------------------------|-----------|-----------|------------|------------|------------|------------|
| Parameter                 | Part 375           | Sample Date:           | 11/7/1990 | 11/5/1990 | 10/19/1990 | 10/19/1990 | 11/18/1990 | 12/12/1990 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 3.5-5.5   | 0-2       | 2-4        | 2-4        | 5-7        | 4-6        |
|                           |                    | Map Zone:              | Zone III  | Zone III  | Zone III   | Zone III   | Zone II    | Zone II    |
| p-Isopropyltoluene        |                    |                        | NA        | NA        | NA         | NA         | NA         | NA         |
| sec-Butylbenzene          | 1000000            |                        | NA        | NA        | NA         | NA         | NA         | NA         |
| Styrene                   |                    |                        | 29 U      | 6 U       | 5 U        | 5 U        | 5 U        | 5 U        |
| t-Butyl-benzene           | 1000000            |                        | NA        | NA        | NA         | NA         | NA         | NA         |
| Tetrachloroethene         | 300000             |                        | 29 U      | 6 U       | 5 U        | 5 U        | 5 U        | 5 U        |
| Toluene                   | 1000000            |                        | 29 U      | 6 U       | 5 U        | 5 U        | 5 U        | 5 U        |
| trans-1,3-Dichloropropene |                    |                        | 29 U      | 6 U       | 5 U        | 5 U        | 5 U        | 5 U        |
| Trichloroethene           | 400000             |                        | 29 U      | 6 U       | 5 U        | 5 U        | 5 U        | 5 U        |
| Trichlorofluoromethane    |                    |                        | 29 U      | 6 U       | 5 U        | 5 U        | 5 U        | 5 U        |
| Vinyl Acetate             |                    |                        | 58 U      | 11 U      | 11 U       | 11 U       | 10 U       | 10 U       |
| Vinyl Chloride            | 27000              |                        | 58 U      | 11 U      | 11 U       | 11 U       | 10 U       | 10 U       |
| Xylenes (total)           | 1000000            |                        | 137       | 4.4 J     | 5 U        | 5 U        | 5 U        | 5 U        |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NA - Data not available

- in depth - Not sampled by Roux; depth not known

DUP - Duplicate

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

NYSDEC - New York State Department of Environmental Conservation

Table 8. Summary of Volatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter<br>(Concentrations in μg/kg) | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation: Sample Date: Sample Depth (ft bls): | S-80 RE<br>10/3/1990<br>2-4<br>Zone II | S-82 RE<br>10/16/1990<br>0-2<br>Zone I | S-90<br>10/1/1990<br>1-3<br>Zone I | S-100<br>1/18/1993<br>0-2<br>Zone II | S-101<br>1/18/1993<br>0-2<br>Zone II | S-102<br>1/18/1993<br>0-2 |
|----------------------------------------|------------------------------------------|---------------------------------------------------------|----------------------------------------|----------------------------------------|------------------------------------|--------------------------------------|--------------------------------------|---------------------------|
| 1.1.1.T.:                              | 1000000                                  | Map Zone:                                               |                                        |                                        |                                    |                                      |                                      | Zone II                   |
| 1,1,1-Trichloroethane                  | 1000000                                  |                                                         | 10 U                                   | 6 U                                    | 5 U                                | 11 U                                 | 12 U                                 | 11 U                      |
| 1,1,2,2-Tetrachloroethane              |                                          |                                                         | 10 U                                   | 6 U                                    | 5 U                                | 11 U                                 | 12 U                                 | 11 U                      |
| 1,1,2-Trichloroethane                  | 40000                                    |                                                         | 10 U                                   | 6 U                                    | 5 U                                | 11 U                                 | 12 U                                 | 11 U                      |
| 1,1-Dichloroethane                     | 480000                                   |                                                         | 10 U                                   | 6 U                                    | 5 U                                | 11 U                                 | 12 U                                 | 11 U                      |
| 1,1-Dichloroethene                     | 1000000                                  |                                                         | 10 U                                   | 6 U                                    | 5 U                                | 11 U                                 | 12 U                                 | 11 U                      |
| 1,2,4-Trimethylbenzene                 | 380000                                   |                                                         | NA                                     | NA                                     | NA                                 | NA                                   | NA                                   | NA                        |
| 1,2-Dichlorobenzene                    | 1000000                                  |                                                         | 10 U                                   | 6 U                                    | 5 U                                | NA                                   | NA                                   | NA                        |
| 1,2-Dichloroethane                     | 60000                                    |                                                         | 10 U                                   | 6 U                                    | 5 U                                | 11 U                                 | 12 U                                 | 11 U                      |
| 1,2-Dichloroethene (total)             |                                          |                                                         | 10 U                                   | 6 U                                    | 5 U                                | 11 U                                 | 12 U                                 | 11 U                      |
| 1,2-Dichloropropane                    |                                          |                                                         | 10 U                                   | 6 U                                    | 5 U                                | 11 U                                 | 12 U                                 | 11 U                      |
| 1,3-Dichlorobenzene                    | 560000                                   |                                                         | 10 U                                   | 6 U                                    | 5 U                                | NA                                   | NA                                   | NA                        |
| 1,4-Dichlorobenzene                    | 250000                                   |                                                         | 10 U                                   | 6 U                                    | 5 U                                | NA                                   | NA                                   | NA                        |
| 2-Butanone                             | 1000000                                  |                                                         | 21 U                                   | 11 U                                   | 11 U                               | 11 U                                 | 12 U                                 | 11 U                      |
| 2-Chloroethylvinylether                |                                          |                                                         | 21 U                                   | 11 U                                   | 11 U                               | NA                                   | NA                                   | NA                        |
| 2-Hexanone                             |                                          |                                                         | 21 U                                   | 11 U                                   | 11 U                               | 11 U                                 | 12 U                                 | 11 U                      |
| 4-Chlorotoluene+1,3,5-Trimethylbenze   | 380000                                   |                                                         | NA                                     | NA                                     | NA                                 | NA                                   | NA                                   | NA                        |
| 4-Methyl-2-Pentanone                   |                                          |                                                         | 21 U                                   | 11 U                                   | 11 U                               | 11 U                                 | 12 U                                 | 11 U                      |
| Acetone                                | 1000000                                  |                                                         | 308                                    | 20                                     | 80                                 | 27 UV                                | 19 UV                                | 16 UV                     |
| Benzene                                | 89000                                    |                                                         | 10 U                                   | 6 U                                    | 5 U                                | 11 U                                 | 12 U                                 | 11 U                      |
| Bromodichloromethane                   |                                          |                                                         | 10 U                                   | 6 U                                    | 5 U                                | 11 U                                 | 12 U                                 | 11 U                      |
| Bromoform                              |                                          |                                                         | 10 U                                   | 6 U                                    | 5 U                                | 11 U                                 | 12 U                                 | 11 U                      |
| Bromomethane                           |                                          |                                                         | 21 U                                   | 11 U                                   | 11 U                               | 11 U                                 | 12 U                                 | 11 U                      |
| Carbon Disulfide                       |                                          |                                                         | 17                                     | 4.4 J                                  | 5.1 J                              | 11 U                                 | 12 U                                 | 11 U                      |
| Carbon Tetrachloride                   | 44000                                    |                                                         | 10 U                                   | 6 U                                    | 5 U                                | 11 U                                 | 12 U                                 | 11 U                      |
| Chlorobenzene                          | 1000000                                  |                                                         | 10 U                                   | 6 U                                    | 5 U                                | 11 U                                 | 12 U                                 | 11 U                      |
| Chloroethane                           |                                          |                                                         | 21 U                                   | 11 U                                   | 11 U                               | 11 U                                 | 12 U                                 | 11 U                      |
| Chloroform                             | 700000                                   |                                                         | 10 U                                   | 6 U                                    | 5 U                                | 11 U                                 | 12 U                                 | 11 U                      |
| Chloromethane                          |                                          |                                                         | 21 U                                   | 11 U                                   | 11 U                               | 11 U                                 | 12 U                                 | 11 U                      |
| cis-1,3-Dichloropropene                |                                          |                                                         | 10 U                                   | 6 U                                    | 5 U                                | 11 U                                 | 12 U                                 | 11 U                      |
| Dibromochloromethane                   |                                          |                                                         | 10 U                                   | 6 U                                    | 5 U                                | 11 U                                 | 12 U                                 | 11 U                      |
| Ethylbenzene                           | 780000                                   |                                                         | 10 U                                   | 6 U                                    | 5 U                                | 11 U                                 | 12 U                                 | 11 U                      |
| Isopropylbenzene                       |                                          |                                                         | NA                                     | NA                                     | NA                                 | NA                                   | NA                                   | NA                        |
| m+p-Xylene                             |                                          |                                                         | NA                                     | NA                                     | NA                                 | NA                                   | NA                                   | NA                        |
| Methylene Chloride                     | 1000000                                  |                                                         | 258                                    | 21                                     | 26                                 | 11 UV                                | 12 UV                                | 11 UV                     |
| MTBE                                   | 1000000                                  |                                                         | NA                                     | NA                                     | NA                                 | NA                                   | NA                                   | NA                        |
| Naphthalene                            | 1000000                                  |                                                         | NA                                     | NA                                     | NA                                 | NA                                   | NA                                   | NA                        |
| n-Butylbenzene                         | 1000000                                  |                                                         | NA                                     | NA                                     | NA                                 | NA                                   | NA                                   | NA                        |
| n-Propylbenzene                        | 1000000                                  |                                                         | NA                                     | NA                                     | NA                                 | NA                                   | NA                                   | NA                        |
| o-Xylene                               |                                          |                                                         | NA                                     | NA                                     | NA                                 | NA                                   | NA                                   | NA                        |

Table 8. Summary of Volatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | S-80 RE   | S-82 RE    | S-90      | S-100     | S-101     | S-102     |
|---------------------------|--------------------|------------------------|-----------|------------|-----------|-----------|-----------|-----------|
| Parameter                 | Part 375           | Sample Date:           | 10/3/1990 | 10/16/1990 | 10/1/1990 | 1/18/1993 | 1/18/1993 | 1/18/1993 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 2-4       | 0-2        | 1-3       | 0-2       | 0-2       | 0-2       |
|                           |                    | Map Zone:              | Zone II   | Zone I     | Zone I    | Zone II   | Zone II   | Zone II   |
| p-Isopropyltoluene        |                    |                        | NA        | NA         | NA        | NA        | NA        | NA        |
| sec-Butylbenzene          | 1000000            |                        | NA        | NA         | NA        | NA        | NA        | NA        |
| Styrene                   |                    |                        | 10 U      | 6 U        | 5 U       | 11 U      | 12 U      | 11 U      |
| t-Butyl-benzene           | 1000000            |                        | NA        | NA         | NA        | NA        | NA        | NA        |
| Tetrachloroethene         | 300000             |                        | 10 U      | 6 U        | 5 U       | 11 U      | 12 U      | 11 U      |
| Toluene                   | 1000000            |                        | 31        | 6 U        | 13 J      | 11 UV     | 12 UV     | 11 U      |
| trans-1,3-Dichloropropene |                    |                        | 10 U      | 6 U        | 5 U       | 11 U      | 12 U      | 11 U      |
| Trichloroethene           | 400000             |                        | 10 U      | 6 U        | 5 U       | 11 U      | 12 U      | 11 U      |
| Trichlorofluoromethane    |                    |                        | 10 U      | 6 U        | 5 U       | NA        | NA        | NA        |
| Vinyl Acetate             |                    |                        | 21 U      | 11 U       | 11 U      | NA        | NA        | NA        |
| Vinyl Chloride            | 27000              |                        | 21 U      | 11 U       | 11 U      | 11 U      | 12 U      | 11 U      |
| Xylenes (total)           | 1000000            |                        | 10 U      | 6 U        | 5 U       | 11 U      | 12 U      | 11 U      |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NA - Data not available

- in depth - Not sampled by Roux; depth not known

DUP - Duplicate

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

NYSDEC - New York State Department of Environmental Conservation

Table 8. Summary of Volatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter (Concentrations in μg/kg)  | NYSDEC<br>Part 375<br>Industrial (µg/kg) | Sample Designation:<br>Sample Date:<br>Sample Depth (ft bls):<br>Map Zone: | UST-6/7/8 BOTTOM<br>4/9/1998<br><br>Zone II | UST-6/7/8 E WALL<br>4/9/1998<br><br>Zone II | UST-6/7/8 N WALL<br>4/9/1998<br><br>Zone II | UST-6/7/8 S WALL<br>4/9/1998<br><br>Zone II |
|--------------------------------------|------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|
| 1,1,1-Trichloroethane                | 1000000                                  |                                                                            | NA                                          | NA                                          | NA                                          | NA                                          |
| 1,1,2,2-Tetrachloroethane            |                                          |                                                                            | NA                                          | NA                                          | NA                                          | NA                                          |
| 1,1,2-Trichloroethane                |                                          |                                                                            | NA                                          | NA                                          | NA                                          | NA                                          |
| 1,1-Dichloroethane                   | 480000                                   |                                                                            | NA                                          | NA                                          | NA                                          | NA                                          |
| 1,1-Dichloroethene                   | 1000000                                  |                                                                            | NA                                          | NA                                          | NA                                          | NA                                          |
| 1,2,4-Trimethylbenzene               | 380000                                   |                                                                            | 2                                           | 1.1 U                                       | 1.1 U                                       | 14                                          |
| 1,2-Dichlorobenzene                  | 1000000                                  |                                                                            | NA                                          | NA                                          | NA                                          | NA                                          |
| 1,2-Dichloroethane                   | 60000                                    |                                                                            | NA                                          | NA                                          | NA                                          | NA                                          |
| 1,2-Dichloroethene (total)           |                                          |                                                                            | NA                                          | NA                                          | NA                                          | NA                                          |
| 1,2-Dichloropropane                  |                                          |                                                                            | NA                                          | NA                                          | NA                                          | NA                                          |
| 1,3-Dichlorobenzene                  | 560000                                   |                                                                            | NA                                          | NA                                          | NA                                          | NA                                          |
| 1,4-Dichlorobenzene                  | 250000                                   |                                                                            | NA                                          | NA                                          | NA                                          | NA                                          |
| 2-Butanone                           | 1000000                                  |                                                                            | NA                                          | NA                                          | NA                                          | NA                                          |
| 2-Chloroethylvinylether              |                                          |                                                                            | NA                                          | NA                                          | NA                                          | NA                                          |
| 2-Hexanone                           |                                          |                                                                            | NA                                          | NA                                          | NA                                          | NA                                          |
| 4-Chlorotoluene+1,3,5-Trimethylbenze | 380000                                   |                                                                            | 1.1 U                                       | 2.6                                         | 2.1 U                                       | 6                                           |
| 4-Methyl-2-Pentanone                 |                                          |                                                                            | NA                                          | NA                                          | NA                                          | NA                                          |
| Acetone                              | 1000000                                  |                                                                            | NA                                          | NA                                          | NA                                          | NA                                          |
| Benzene                              | 89000                                    |                                                                            | 1.1 U                                       | 1.1 U                                       | 1.1 U                                       | 1.1 U                                       |
| Bromodichloromethane                 |                                          |                                                                            | NA                                          | NA                                          | NA                                          | NA                                          |
| Bromoform                            |                                          |                                                                            | NA                                          | NA                                          | NA                                          | NA                                          |
| Bromomethane                         |                                          |                                                                            | NA                                          | NA                                          | NA                                          | NA                                          |
| Carbon Disulfide                     |                                          |                                                                            | NA                                          | NA                                          | NA                                          | NA                                          |
| Carbon Tetrachloride                 | 44000                                    |                                                                            | NA                                          | NA                                          | NA                                          | NA                                          |
| Chlorobenzene                        | 1000000                                  |                                                                            | NA                                          | NA                                          | NA                                          | NA                                          |
| Chloroethane                         |                                          |                                                                            | NA                                          | NA                                          | NA                                          | NA                                          |
| Chloroform                           | 700000                                   |                                                                            | NA                                          | NA                                          | NA                                          | NA                                          |
| Chloromethane                        |                                          |                                                                            | NA                                          | NA                                          | NA                                          | NA                                          |
| cis-1,3-Dichloropropene              |                                          |                                                                            | NA                                          | NA                                          | NA                                          | NA                                          |
| Dibromochloromethane                 |                                          |                                                                            | NA                                          | NA                                          | NA                                          | NA                                          |
| Ethylbenzene                         | 780000                                   |                                                                            | 1.1 U                                       | 1.1 U                                       | 1.1 U                                       | 1.3                                         |
| Isopropylbenzene                     |                                          |                                                                            | 1.1 U                                       | 1.1 U                                       | 3.5                                         | 1.1 U                                       |
| m+p-Xylene                           |                                          |                                                                            | 2.1 U                                       | 2.1 U                                       | 2.1 U                                       | 5.4                                         |
| Methylene Chloride                   | 1000000                                  |                                                                            | NA                                          | NA                                          | NA                                          | NA                                          |
| MTBE                                 | 1000000                                  |                                                                            | 1.1 U                                       | 1.1 U                                       | 1.1 U                                       | 1.1 U                                       |
| Naphthalene                          | 1000000                                  |                                                                            | 1.1 U                                       | 2.4                                         | 1.1 U                                       | 5.6                                         |
| n-Butylbenzene                       | 1000000                                  |                                                                            | 1.4                                         | 4.9                                         | 1.1 U                                       | 13                                          |
| n-Propylbenzene                      | 1000000                                  |                                                                            | 1.1 U                                       | 1.1 U                                       | 18                                          | 2.2                                         |
| o-Xylene                             |                                          |                                                                            | 1.1 U                                       | 2.5                                         | 1.1 U                                       | 2.8                                         |

Table 8. Summary of Volatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | UST-6/7/8 BOTTOM | UST-6/7/8 E WALL | UST-6/7/8 N WALL | UST-6/7/8 S WALL |
|---------------------------|--------------------|------------------------|------------------|------------------|------------------|------------------|
| Parameter                 | Part 375           | Sample Date:           | 4/9/1998         | 4/9/1998         | 4/9/1998         | 4/9/1998         |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): |                  |                  |                  |                  |
|                           |                    | Map Zone:              | Zone II          | Zone II          | Zone II          | Zone II          |
| p-Isopropyltoluene        |                    |                        | 1.1 U            | 1.1 U            | 13               | 1.1 U            |
| sec-Butylbenzene          | 1000000            |                        | 1.1 U            | 1.1 U            | 5.2              | 1.1 U            |
| Styrene                   |                    |                        | NA               | NA               | NA               | NA               |
| t-Butyl-benzene           | 1000000            |                        | 1.1 U            | 1.1 U            | 1.1 U            | 1.1 U            |
| Tetrachloroethene         | 300000             |                        | NA               | NA               | NA               | NA               |
| Toluene                   | 1000000            |                        | 1.1 U            | 1.1 U            | 1.1 U            | 1.1 U            |
| trans-1,3-Dichloropropene |                    |                        | NA               | NA               | NA               | NA               |
| Trichloroethene           | 400000             |                        | NA               | NA               | NA               | NA               |
| Trichlorofluoromethane    |                    |                        | NA               | NA               | NA               | NA               |
| Vinyl Acetate             |                    |                        | NA               | NA               | NA               | NA               |
| Vinyl Chloride            | 27000              |                        | NA               | NA               | NA               | NA               |
| Xylenes (total)           | 1000000            |                        | NA               | NA               | NA               | NA               |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NA - Data not available

- in depth - Not sampled by Roux; depth not known

DUP - Duplicate

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

NYSDEC - New York State Department of Environmental Conservation

Table 8. Summary of Volatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                                      | NYSDEC             | Sample Designation:    | UST-6/7/8 W WALL | UST-12 BOTTOM | UST-12 EWALL | UST-12 NWALL |
|--------------------------------------|--------------------|------------------------|------------------|---------------|--------------|--------------|
| Parameter                            | Part 375           | Sample Date:           |                  | 5/4/1998      | 5/4/1998     | 5/4/1998     |
| (Concentrations in µg/kg)            | Industrial (µg/kg) | Sample Depth (ft bls): |                  | -             | -            | -            |
|                                      |                    | Map Zone:              | Zone II          | Zone II       | Zone II      | Zone II      |
| 1,1,1-Trichloroethane                | 1000000            |                        | NA               | NA            | NA           | NA           |
| 1,1,2,2-Tetrachloroethane            |                    |                        | NA               | NA            | NA           | NA           |
| 1,1,2-Trichloroethane                |                    |                        | NA               | NA            | NA           | NA           |
| 1,1-Dichloroethane                   | 480000             |                        | NA               | NA            | NA           | NA           |
| 1,1-Dichloroethene                   | 1000000            |                        | NA               | NA            | NA           | NA           |
| 1,2,4-Trimethylbenzene               | 380000             |                        | 1.1 U            | 1 U           | 1 U          | 1 U          |
| 1,2-Dichlorobenzene                  | 1000000            |                        | NA               | NA            | NA           | NA           |
| 1,2-Dichloroethane                   | 60000              |                        | NA               | NA            | NA           | NA           |
| 1,2-Dichloroethene (total)           |                    |                        | NA               | NA            | NA           | NA           |
| 1,2-Dichloropropane                  |                    |                        | NA               | NA            | NA           | NA           |
| 1,3-Dichlorobenzene                  | 560000             |                        | NA               | NA            | NA           | NA           |
| 1,4-Dichlorobenzene                  | 250000             |                        | NA               | NA            | NA           | NA           |
| 2-Butanone                           | 1000000            |                        | NA               | NA            | NA           | NA           |
| 2-Chloroethylvinylether              |                    |                        | NA               | NA            | NA           | NA           |
| 2-Hexanone                           |                    |                        | NA               | NA            | NA           | NA           |
| 4-Chlorotoluene+1,3,5-Trimethylbenze | 380000             |                        | 2.3 U            | 2.1 U         | 2.1 U        | 2.1 U        |
| 4-Methyl-2-Pentanone                 |                    |                        | NA               | NA            | NA           | NA           |
| Acetone                              | 1000000            |                        | NA               | NA            | NA           | NA           |
| Benzene                              | 89000              |                        | 1.1 U            | 1 U           | 1 U          | 1 U          |
| Bromodichloromethane                 |                    |                        | NA               | NA            | NA           | NA           |
| Bromoform                            |                    |                        | NA               | NA            | NA           | NA           |
| Bromomethane                         |                    |                        | NA               | NA            | NA           | NA           |
| Carbon Disulfide                     |                    |                        | NA               | NA            | NA           | NA           |
| Carbon Tetrachloride                 | 44000              |                        | NA               | NA            | NA           | NA           |
| Chlorobenzene                        | 1000000            |                        | NA               | NA            | NA           | NA           |
| Chloroethane                         |                    |                        | NA               | NA            | NA           | NA           |
| Chloroform                           | 700000             |                        | NA               | NA            | NA           | NA           |
| Chloromethane                        |                    |                        | NA               | NA            | NA           | NA           |
| cis-1,3-Dichloropropene              |                    |                        | NA               | NA            | NA           | NA           |
| Dibromochloromethane                 |                    |                        | NA               | NA            | NA           | NA           |
| Ethylbenzene                         | 780000             |                        | 1.1 U            | 1 U           | 1 U          | 1 U          |
| Isopropylbenzene                     |                    |                        | 1.1 U            | 1 U           | 1 U          | 1 U          |
| m+p-Xylene                           |                    |                        | 2.3 U            | 2.1 U         | 2.2          | 2.1 U        |
| Methylene Chloride                   | 1000000            |                        | NA               | NA            | NA           | NA           |
| MTBE                                 | 1000000            |                        | 1.1 U            | 1 U           | 1 U          | 1 U          |
| Naphthalene                          | 1000000            |                        | 1.1 U            | 1 U           | 1 U          | 1 U          |
| n-Butylbenzene                       | 1000000            |                        | 1.1 U            | 1 U           | 5            | 1 U          |
| n-Propylbenzene                      | 1000000            |                        | 1.1 U            | 1 U           | 1 U          | 1 U          |
| o-Xylene                             |                    |                        | 1.1 U            | 1 U           | 1.3          | 1 U          |

Table 8. Summary of Volatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | UST-6/7/8 W WALL | UST-12 BOTTOM | UST-12 EWALL | UST-12 NWALL |
|---------------------------|--------------------|------------------------|------------------|---------------|--------------|--------------|
| Parameter                 | Part 375           | Sample Date:           | 4/9/1998         | 5/4/1998      | 5/4/1998     | 5/4/1998     |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): |                  | -             | -            | -            |
|                           |                    | Map Zone:              | Zone II          | Zone II       | Zone II      | Zone II      |
| p-Isopropyltoluene        |                    |                        | 1.1 U            | 1 U           | 1 U          | 1 U          |
| sec-Butylbenzene          | 1000000            |                        | 1.1 U            | 1 U           | 1 U          | 1 U          |
| Styrene                   |                    |                        | NA               | NA            | NA           | NA           |
| t-Butyl-benzene           | 1000000            |                        | 1.1 U            | 1 U           | 1 U          | 1 U          |
| Tetrachloroethene         | 300000             |                        | NA               | NA            | NA           | NA           |
| Toluene                   | 1000000            |                        | 1.1 U            | 1 U           | 1 U          | 1 U          |
| trans-1,3-Dichloropropene |                    |                        | NA               | NA            | NA           | NA           |
| Trichloroethene           | 400000             |                        | NA               | NA            | NA           | NA           |
| Trichlorofluoromethane    |                    |                        | NA               | NA            | NA           | NA           |
| Vinyl Acetate             |                    |                        | NA               | NA            | NA           | NA           |
| Vinyl Chloride            | 27000              |                        | NA               | NA            | NA           | NA           |
| Xylenes (total)           | 1000000            |                        | NA               | NA            | NA           | NA           |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NA - Data not available

- in depth - Not sampled by Roux; depth not known

DUP - Duplicate

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

NYSDEC - New York State Department of Environmental Conservation

Table 8. Summary of Volatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                                      | NYSDEC             | Sample Designation:    |          |          |          |
|--------------------------------------|--------------------|------------------------|----------|----------|----------|
| Parameter                            | Part 375           | Sample Date:           | 5/4/1998 | 5/4/1998 | 1/4/1999 |
| (Concentrations in µg/kg)            | Industrial (µg/kg) | Sample Depth (ft bls): | -        | -        |          |
|                                      |                    | Map Zone:              | Zone II  | Zone II  | Zone III |
| 1,1,1-Trichloroethane                | 1000000            |                        | NA       | NA       | NA       |
| 1,1,2,2-Tetrachloroethane            |                    |                        | NA       | NA       | NA       |
| 1,1,2-Trichloroethane                |                    |                        | NA       | NA       | NA       |
| 1,1-Dichloroethane                   | 480000             |                        | NA       | NA       | NA       |
| 1,1-Dichloroethene                   | 1000000            |                        | NA       | NA       | NA       |
| 1,2,4-Trimethylbenzene               | 380000             |                        | 1 U      | 1 U      | 0.44 U   |
| 1,2-Dichlorobenzene                  | 1000000            |                        | NA       | NA       | NA       |
| 1,2-Dichloroethane                   | 60000              |                        | NA       | NA       | NA       |
| 1,2-Dichloroethene (total)           |                    |                        | NA       | NA       | NA       |
| 1,2-Dichloropropane                  |                    |                        | NA       | NA       | NA       |
| 1,3-Dichlorobenzene                  | 560000             |                        | NA       | NA       | NA       |
| 1,4-Dichlorobenzene                  | 250000             |                        | NA       | NA       | NA       |
| 2-Butanone                           | 1000000            |                        | NA       | NA       | NA       |
| 2-Chloroethylvinylether              |                    |                        | NA       | NA       | NA       |
| 2-Hexanone                           |                    |                        | NA       | NA       | NA       |
| 4-Chlorotoluene+1,3,5-Trimethylbenze | 380000             |                        | 2.1 U    | 2.1 U    | 0.77 U   |
| 4-Methyl-2-Pentanone                 |                    |                        | NA       | NA       | NA       |
| Acetone                              | 1000000            |                        | NA       | NA       | NA       |
| Benzene                              | 89000              |                        | 1 U      | 1 U      | 0.44 U   |
| Bromodichloromethane                 |                    |                        | NA       | NA       | NA       |
| Bromoform                            |                    |                        | NA       | NA       | NA       |
| Bromomethane                         |                    |                        | NA       | NA       | NA       |
| Carbon Disulfide                     |                    |                        | NA       | NA       | NA       |
| Carbon Tetrachloride                 | 44000              |                        | NA       | NA       | NA       |
| Chlorobenzene                        | 1000000            |                        | NA       | NA       | NA       |
| Chloroethane                         |                    |                        | NA       | NA       | NA       |
| Chloroform                           | 700000             |                        | NA       | NA       | NA       |
| Chloromethane                        |                    |                        | NA       | NA       | NA       |
| cis-1,3-Dichloropropene              |                    |                        | NA       | NA       | NA       |
| Dibromochloromethane                 |                    |                        | NA       | NA       | NA       |
| Ethylbenzene                         | 780000             |                        | 1 U      | 1 U      | 0.55 U   |
| Isopropylbenzene                     |                    |                        | 1 U      | 1 U      | 0.55 U   |
| m+p-Xylene                           |                    |                        | 2.1 U    | 2.1 U    | 0.99 U   |
| Methylene Chloride                   | 1000000            |                        | NA       | NA       | NA       |
| MTBE                                 | 1000000            |                        | 1 U      | 1 U      | 0.55 U   |
| Naphthalene                          | 1000000            |                        | 1 U      | 1 U      | 0.55 U   |
| n-Butylbenzene                       | 1000000            |                        | 1 U      | 1.5      | 0.55 U   |
| n-Propylbenzene                      | 1000000            |                        | 1 U      | 1 U      | 0.99 U   |
| o-Xylene                             |                    |                        | 1 U      | 1 U      | 0.88 U   |

Table 8. Summary of Volatile Organic Compounds Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                           | NYSDEC             | Sample Designation:    | UST-12 SWALL | UST-12 WWALL | WWALL    |
|---------------------------|--------------------|------------------------|--------------|--------------|----------|
| Parameter                 | Part 375           | Sample Date:           | 5/4/1998     | 5/4/1998     | 1/4/1999 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | -            | -            |          |
|                           |                    | Map Zone:              | Zone II      | Zone II      | Zone III |
| p-Isopropyltoluene        |                    |                        | 1 U          | 1 U          | 0.55 U   |
| sec-Butylbenzene          | 1000000            |                        | 1 U          | 1 U          | 0.55 U   |
| Styrene                   |                    |                        | NA           | NA           | NA       |
| t-Butyl-benzene           | 1000000            |                        | 1 U          | 1 U          | 0.55 U   |
| Tetrachloroethene         | 300000             |                        | NA           | NA           | NA       |
| Toluene                   | 1000000            |                        | 1 U          | 1 U          | 0.44 U   |
| trans-1,3-Dichloropropene |                    |                        | NA           | NA           | NA       |
| Trichloroethene           | 400000             |                        | NA           | NA           | NA       |
| Trichlorofluoromethane    |                    |                        | NA           | NA           | NA       |
| Vinyl Acetate             |                    |                        | NA           | NA           | NA       |
| Vinyl Chloride            | 27000              |                        | NA           | NA           | NA       |
| Xylenes (total)           | 1000000            |                        | NA           | NA           | NA       |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

J - Estimated value

U - Compound was analyzed for but not detected

V - Data added and/or value altered by data validator

NA - Data not available

- in depth - Not sampled by Roux; depth not known

DUP - Duplicate

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

NYSDEC - New York State Department of Environmental Conservation

Table 9. Summary of Pesticides Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

|                                  | NYSDEC             | Sample Designation:    | FC-4      | FC-5      | FC-8      | FC-11     | MW-26     | MW-34      | S-17       | S-22       | S-30       |
|----------------------------------|--------------------|------------------------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------|------------|
| Parameter                        | Part 375           | Sample Date:           | 9/14/1994 | 9/14/1994 | 9/14/1994 | 9/14/1994 | 12/5/1990 | 11/29/1990 | 10/19/1990 | 10/17/1990 | 10/16/1990 |
| (Concentrations in µg/kg)        | Industrial (µg/kg) | Sample Depth (ft bls): | 0-2       | 0-2       | 0-2       | 0-2       | 9-11      | 0-2        | 0-2        | 0-2        | 0-2        |
|                                  |                    | Map Zone:              | Zone III  | Zone II    | Zone III   | Zone II    | Zone I     |
| 2,4,5-T                          |                    |                        | 5 U       | 5 U       | 5 U       | 5 U       | NA        | NA         | NA         | NA         | NA         |
| 2,4,5-1<br>2,4-D                 |                    |                        | 20 U      | 20 U      | 20 U      | 20 U      | NA        | NA         | NA         | NA         | NA         |
| 2,4-DB                           |                    |                        | 20 U      | 20 U      | 20 U      | 20 U      | NA<br>NA  | NA<br>NA   | NA<br>NA   | NA<br>NA   | NA<br>NA   |
| 2,4-DDD<br>4,4'-DDD              | 180000             |                        | NA        | NA        | NA        | NA        | 17 U      | 17 U       | 23 U       | 20 U       | 18 U       |
| 4,4'-DDE                         | 120000             |                        | NA        | NA        | NA        | NA        | 17 U      | 17 UIV     | 23 UIV     | 20 UIV     | 18 U       |
| 4,4'-DDT                         | 94000              |                        | NA        | NA        | NA<br>NA  | NA<br>NA  | 17 U      | 17 UIV     | 23 UIV     | 20 UIV     | 18 U       |
| Aldrin                           | 1400               |                        | NA        | NA        | NA        | NA        | 8 U       | 9 U        | 12 U       | 10 U       | 9 U        |
| alpha-BHC                        | 6800               |                        | NA        | NA        | NA        | NA        | 8 U       | 9 U        | 12 U       | 10 U       | 9 U        |
| alpha-chlordane                  | 47000              |                        | NA        | NA        | NA        | NA        | 8 U       | 9 U        | 12 U       | 10 U       | 9 U        |
| beta-BHC                         | 14000              |                        | NA        | NA        | NA        | NA        | 8 U       | 9 U        | 12 U       | 10 U       | 9 U        |
| Dalapon                          |                    |                        | 40 U      | 40 U      | 40 U      | 40 U      | NA        | NA         | NA         | NA         | NA         |
| delta-BHC                        | 1000000            |                        | NA        | NA        | NA        | NA        | 8 U       | 9 U        | 12 U       | 10 U       | 9 U        |
| Dicamba                          |                    |                        | 5 U       | 5 U       | 5 U       | 5 U       | NA        | NA         | NA         | NA         | NA         |
| Dichloroprop                     |                    |                        | 5 U       | 5 U       | 5 U       | 5 U       | NA        | NA         | NA         | NA         | NA         |
| Dieldrin                         | 2800               |                        | NA        | NA        | NA        | NA        | 17 U      | 17 U       | 23 U       | 20 U       | 18 U       |
| Dinoseb                          |                    |                        | 5 U       | 5 U       | 5 U       | 5 U       | NA        | NA         | NA         | NA         | NA         |
| Endosulfan I                     | 920000             |                        | NA        | NA        | NA        | NA        | 8 U       | 9 U        | 12 U       | 10 U       | 9 U        |
| Endosulfan II                    | 920000             |                        | NA        | NA        | NA        | NA        | 17 U      | 17 U       | 23 U       | 20 U       | 18 U       |
| Endosulfate  Endosulfate         | 920000             |                        | NA        | NA        | NA        | NA        | 17 U      | 17 U       | 23 U       | 20 U       | 18 U       |
| Endrin                           | 410000             |                        | NA        | NA        | NA        | NA        | 17 U      | 17 U       | 23 U       | 20 U       | 18 U       |
| Endrin Aldehyde                  |                    |                        | NA        | NA        | NA        | NA        | NA        | NA         | NA         | NA         | NA         |
| Endrin Addenyde<br>Endrin ketone |                    |                        | NA        | NA        | NA        | NA        | 17 U      | 17 U       | 23 U       | 20 U       | 18 U       |
| gamma-BHC (Lindane)              | 23000              |                        | NA        | NA        | NA        | NA        | 8 U       | 9 U        | 12 U       | 10 U       | 9 U        |
| gamma-chlordane                  |                    |                        | NA        | NA        | NA        | NA        | 8 U       | 9 U        | 12 U       | 10 U       | 9 U        |
| Heptachlor                       | 29000              |                        | NA        | NA        | NA        | NA        | 8 U       | 9 U        | 12 U       | 10 U       | 9 U        |
| Heptachlor epoxide               |                    |                        | NA        | NA        | NA        | NA        | 8 U       | 9 U        | 12 U       | 10 U       | 9 U        |
| Methoxychlor                     |                    |                        | NA        | NA        | NA        | NA        | 85 U      | 85 U       | 115 U      | 100 U      | 90 U       |
| Silvex                           |                    |                        | 20 U      | 20 U      | 20 U      | 20 U      | NA        | NA         | NA         | NA         | NA         |
| Toxaphene                        |                    |                        | NA        | NA        | NA        | NA        | 170 U     | 170 U      | 230 U      | 200 U      | 180 U      |
| Notes:                           |                    |                        | 1111      | 1111      | 1111      | 1111      | 1,00      | 1,00       | 230 0      | 200 0      | 100 0      |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

- I Result declared inconclusive during validation
- J Estimated value
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth - Not sampled by Roux; depth not known

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

NYSDEC - New York State Department of Environmental Conservation

Table 9. Summary of Pesticides Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

| Parameter                 | NYSDEC<br>Part 375 | Sample Designation:<br>Sample Date: |                |                 |                 |                 |                 |                     |                 |                 |                 |
|---------------------------|--------------------|-------------------------------------|----------------|-----------------|-----------------|-----------------|-----------------|---------------------|-----------------|-----------------|-----------------|
| (Concentrations in μg/kg) | Industrial (μg/kg) | Sample Depth (ft bls):<br>Map Zone: | 4-6<br>Zone IV | 8-10<br>Zone IV | 4-6<br>Zone III | 2-4<br>Zone III | 2-4<br>Zone III | 3.5-5.5<br>Zone III | 0-2<br>Zone III | 2-4<br>Zone III | 2-4<br>Zone III |
| 2,4,5-T                   |                    |                                     | NA             | NA              | NA              | NA              | NA              | NA                  | NA              | NA              | NA              |
| 2,4-D                     |                    |                                     | NA             | NA              | NA              | NA              | NA              | NA                  | NA              | NA              | NA              |
| 2,4-DB                    |                    |                                     | NA             | NA              | NA              | NA              | NA              | NA                  | NA              | NA              | NA              |
| 4,4'-DDD                  | 180000             |                                     | 17 U           | 18 U            | 17 U            | 19 U            | 17 U            | 190 U               | 180 U           | 170 U           | 17 U            |
| 4,4'-DDE                  | 120000             |                                     | 17 U           | 18 U            | 17 U            | 19 U            | 17 U            | 190 U               | 180 U           | 170 UIV         | 17 UIV          |
| 4,4'-DDT                  | 94000              |                                     | 17 U           | 18 U            | 17 U            | 19 U            | 17 U            | 190 U               | 180 U           | 170 U           | 17 U            |
| Aldrin                    | 1400               |                                     | 9 U            | 9 U             | 9 U             | 9 U             | 8 U             | 95 U                | 90 U            | 85 U            | 9 U             |
| alpha-BHC                 | 6800               |                                     | 9 U            | 9 U             | 9 U             | 9 U             | 8 U             | 95 U                | 90 U            | 85 U            | 9 U             |
| alpha-chlordane           | 47000              |                                     | 9 U            | 9 U             | 9 U             | 9 U             | 8 U             | 95 U                | 90 U            | 85 U            | 9 U             |
| beta-BHC                  | 14000              |                                     | 9 U            | 9 U             | 9 U             | 9 U             | 8 U             | 95 U                | 90 U            | 85 U            | 9 U             |
| Dalapon                   |                    |                                     | NA             | NA              | NA              | NA              | NA              | NA                  | NA              | NA              | NA              |
| delta-BHC                 | 1000000            |                                     | 9 U            | 9 U             | 9 U             | 9 U             | 8 U             | 95 U                | 90 U            | 85 U            | 9 U             |
| Dicamba                   |                    |                                     | NA             | NA              | NA              | NA              | NA              | NA                  | NA              | NA              | NA              |
| Dichloroprop              |                    |                                     | NA             | NA              | NA              | NA              | NA              | NA                  | NA              | NA              | NA              |
| Dieldrin                  | 2800               |                                     | 17 U           | 18 U            | 17 U            | 19 UIV          | 17 U            | 190 U               | 180 U           | 170 U           | 17 U            |
| Dinoseb                   |                    |                                     | NA             | NA              | NA              | NA              | NA              | NA                  | NA              | NA              | NA              |
| Endosulfan I              | 920000             |                                     | 9 U            | 9 U             | 9 U             | 9 U             | 8 U             | 95 U                | 90 U            | 85 U            | 9 U             |
| Endosulfan II             | 920000             |                                     | 17 U           | 18 U            | 17 U            | 19 U            | 17 U            | 190 U               | 180 U           | 170 U           | 17 U            |
| Endosulfate               | 920000             |                                     | 17 U           | 18 U            | 17 U            | 19 UIV          | 17 U            | 190 U               | 180 U           | 170 UIV         | 17 UIV          |
| Endrin                    | 410000             |                                     | 17 U           | 18 U            | 17 U            | 19 U            | 17 U            | 190 U               | 180 U           | 170 U           | 17 U            |
| Endrin Aldehyde           |                    |                                     | NA             | NA              | NA              | NA              | NA              | NA                  | NA              | NA              | NA              |
| Endrin ketone             |                    |                                     | 17 U           | 18 U            | 17 U            | 19 U            | 17 U            | 190 U               | 180 U           | 170 U           | 17 U            |
| gamma-BHC (Lindane)       | 23000              |                                     | 9 U            | 9 U             | 9 U             | 9 U             | 8 U             | 95 U                | 90 U            | 85 U            | 9 U             |
| gamma-chlordane           |                    |                                     | 9 U            | 9 U             | 9 U             | 9 U             | 8 U             | 95 U                | 90 U            | 85 U            | 9 U             |
| Heptachlor                | 29000              |                                     | 9 U            | 9 U             | 9 U             | 9 U             | 8 U             | 95 U                | 90 U            | 85 U            | 9 U             |
| Heptachlor epoxide        |                    |                                     | 9 U            | 9 U             | 9 U             | 9 U             | 8 U             | 95 U                | 90 U            | 85 U            | 9 U             |
| Methoxychlor              |                    |                                     | 85 U           | 90 U            | 85 U            | 95 U            | 85 U            | 930 U               | 900 U           | 860 U           | 85 U            |
| Silvex                    |                    |                                     | NA             | NA              | NA              | NA              | NA              | NA                  | NA              | NA              | NA              |
| Toxaphene                 |                    |                                     | 170 U          | 185 U           | 170 U           | 190 U           | 170 U           | 1860 U              | 1800 U          | 1720 U          | 170 U           |

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

- I Result declared inconclusive during validation
- J Estimated value
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator

NA - Data not available

- in depth - Not sampled by Roux; depth not known

Bold text indicates the exceedance of the NYSDEC Part 375 Industrial

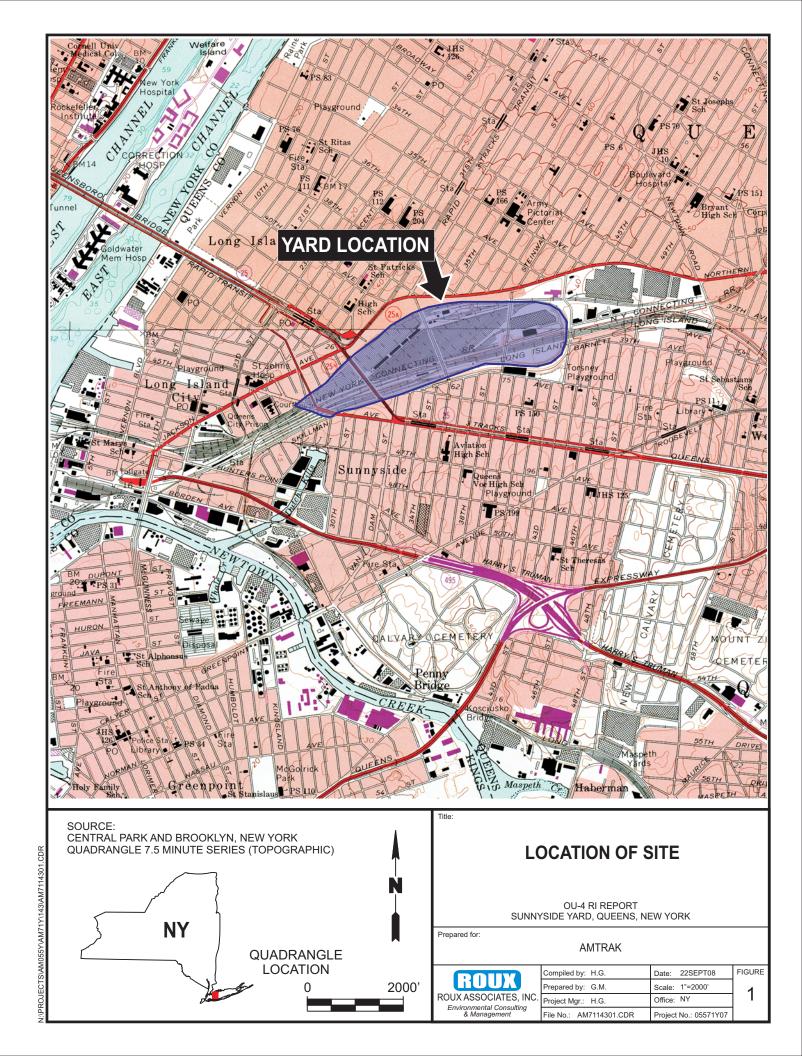
NYSDEC - New York State Department of Environmental Conservation

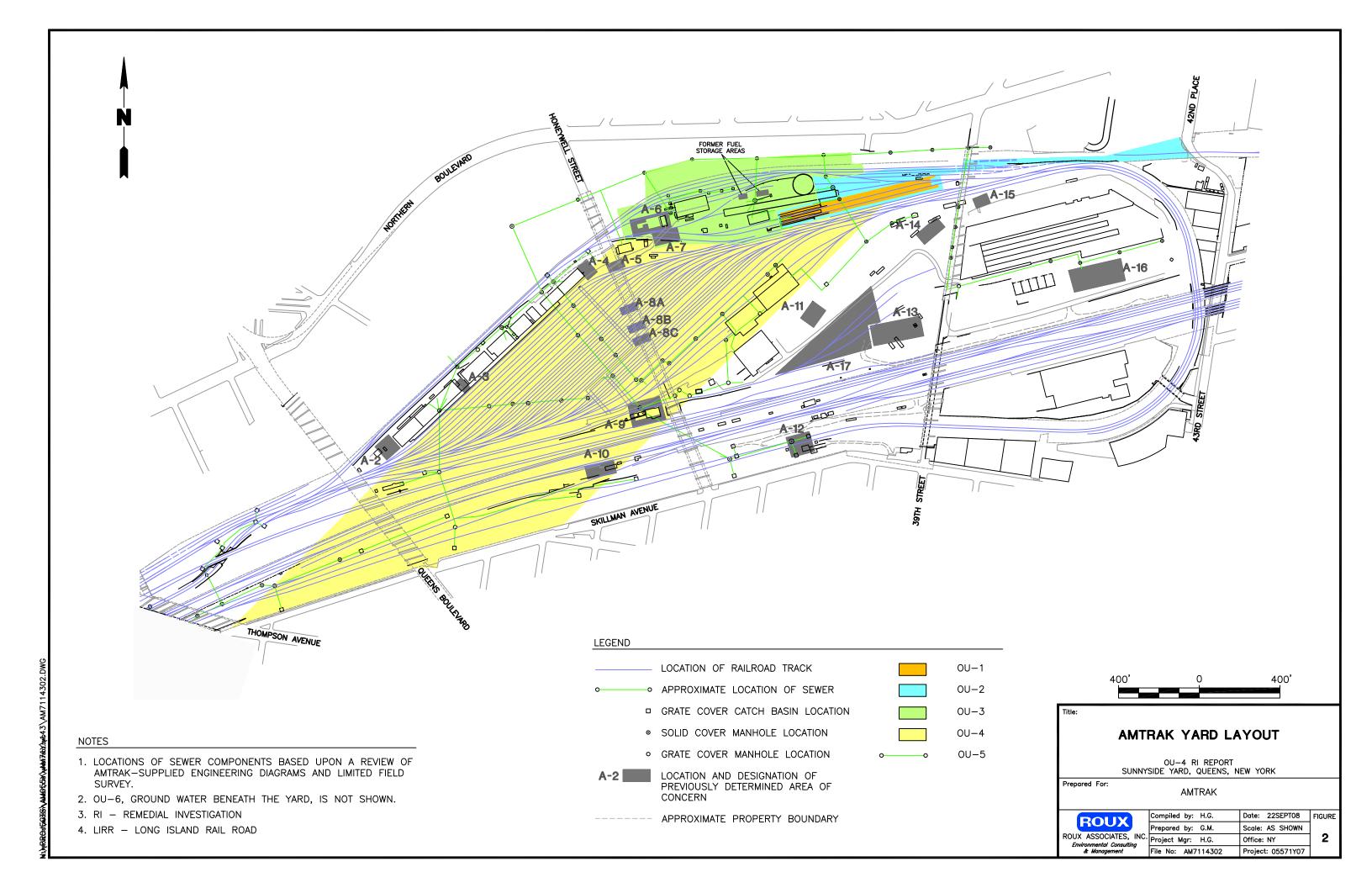
Table 9. Summary of Pesticides Detected in Soil, OU-4 Remedial Investigation Report, Sunnyside Yard, Queens, New York

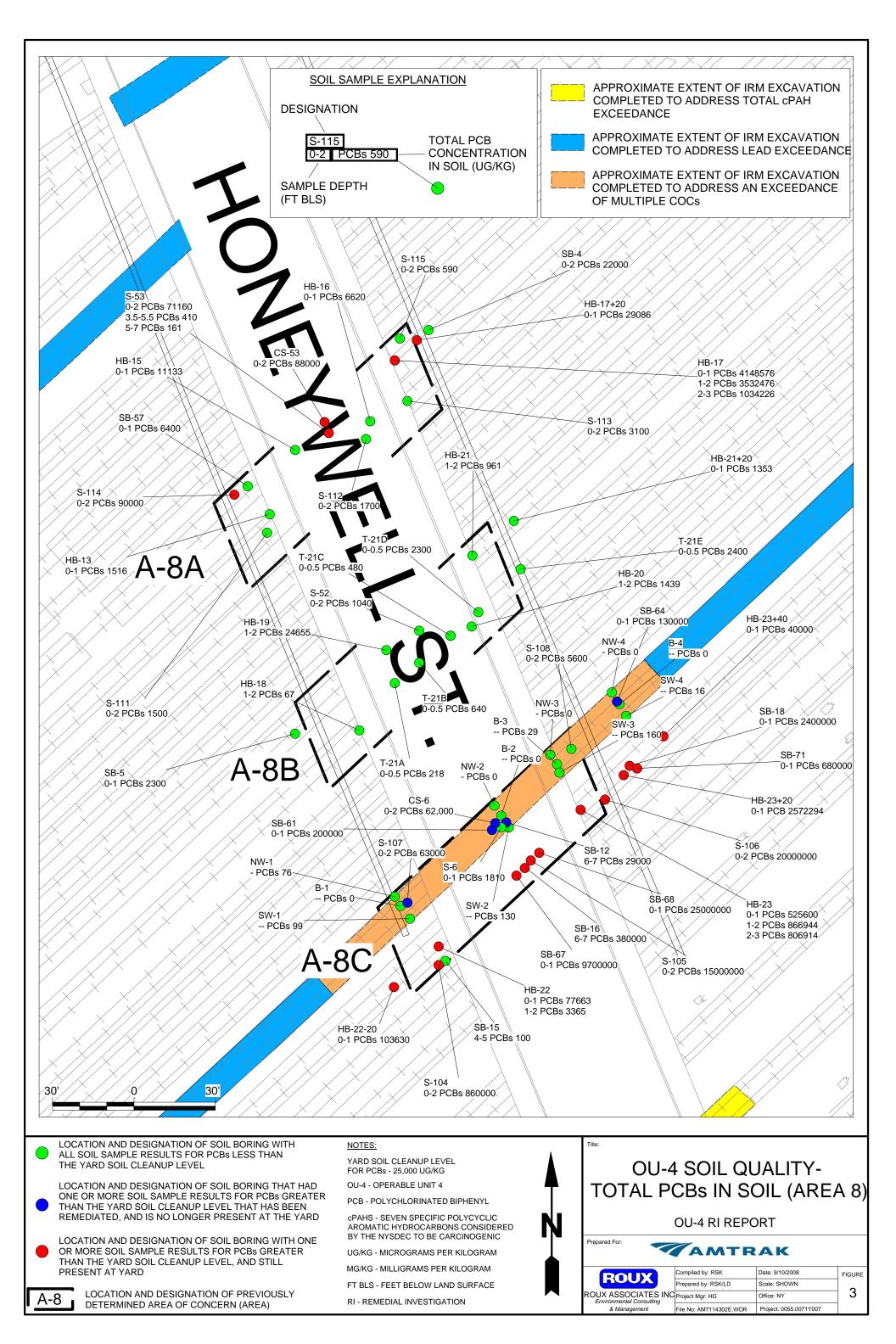
|                           | NYSDEC             | Sample Designation:    | S-53       | S-60       | S-80      | S-82       | S-90      |
|---------------------------|--------------------|------------------------|------------|------------|-----------|------------|-----------|
| Parameter                 | Part 375           | Sample Date:           | 11/18/1990 | 12/12/1990 | 10/3/1990 | 10/16/1990 | 10/1/1990 |
| (Concentrations in µg/kg) | Industrial (µg/kg) | Sample Depth (ft bls): | 5-7        | 4-6        | 2-4       | 0-2        | 1-3       |
|                           |                    | Map Zone:              | Zone II    | Zone II    | Zone II   | Zone I     | Zone I    |
| 2,4,5-T                   | <del></del>        |                        | NA         | NA         | NA        | NA         | NA        |
| 2,4-D                     |                    |                        | NA         | NA         | NA        | NA         | NA        |
| 2,4-DB                    |                    |                        | NA         | NA         | NA        | NA         | NA        |
| 4,4'-DDD                  | 180000             |                        | 17 U       | 16 U       | 17 U      | 18 U       | 17 U      |
| 4,4'-DDE                  | 120000             |                        | 17 UIV     | 16 U       | 17 U      | 18 U       | 17 UIV    |
| 4,4'-DDT                  | 94000              |                        | 17 UIV     | 16 U       | 17 U      | 18 U       | 17 UIV    |
| Aldrin                    | 1400               |                        | 8 U        | 8 U        | 8 U       | 9 U        | 9 U       |
| alpha-BHC                 | 6800               |                        | 8 U        | 8 U        | 8 U       | 9 U        | 9 U       |
| alpha-chlordane           | 47000              |                        | 8 U        | 8 U        | 8 U       | 9 U        | 9 U       |
| beta-BHC                  | 14000              |                        | 8 U        | 8 U        | 8 U       | 9 U        | 9 U       |
| Dalapon                   |                    |                        | NA         | NA         | NA        | NA         | NA        |
| delta-BHC                 | 1000000            |                        | 8 U        | 8 U        | 8 U       | 9 U        | 9 U       |
| Dicamba                   |                    |                        | NA         | NA         | NA        | NA         | NA        |
| Dichloroprop              |                    |                        | NA         | NA         | NA        | NA         | NA        |
| Dieldrin                  | 2800               |                        | 17 U       | 16 U       | 17 U      | 18 U       | 1521      |
| Dinoseb                   |                    |                        | NA         | NA         | NA        | NA         | NA        |
| Endosulfan I              | 920000             |                        | 8 U        | 8 U        | 8 U       | 9 U        | 9 U       |
| Endosulfan II             | 920000             |                        | 17 U       | 16 U       | 17 U      | 18 U       | 17 U      |
| Endosulfate               | 920000             |                        | 17 U       | 16 U       | 17 U      | 18 U       | 17 U      |
| Endrin                    | 410000             |                        | 17 U       | 16 U       | 17 U      | 18 UIV     | 1422      |
| Endrin Aldehyde           |                    |                        | NA         | NA         | NA        | NA         | NA        |
| Endrin ketone             |                    |                        | 17 U       | 16 U       | 17 U      | 18 UIV     | 17 U      |
| gamma-BHC (Lindane)       | 23000              |                        | 8 U        | 8 U        | 8 U       | 9 U        | 9 U       |
| gamma-chlordane           |                    |                        | 8 U        | 8 U        | 8 U       | 9 U        | 9 U       |
| Heptachlor                | 29000              |                        | 8 U        | 8 U        | 8 U       | 9 U        | 485       |
| Heptachlor epoxide        |                    |                        | 8 U        | 8 U        | 8 U       | 9 U        | 9 U       |
| Methoxychlor              |                    |                        | 85 U       | 80 U       | 85 U      | 90 U       | 85 U      |
| Silvex                    |                    |                        | NA         | NA         | NA        | NA         | NA        |
| Toxaphene                 |                    |                        | 165 U      | 165 U      | 170 U     | 180 U      | 170 U     |

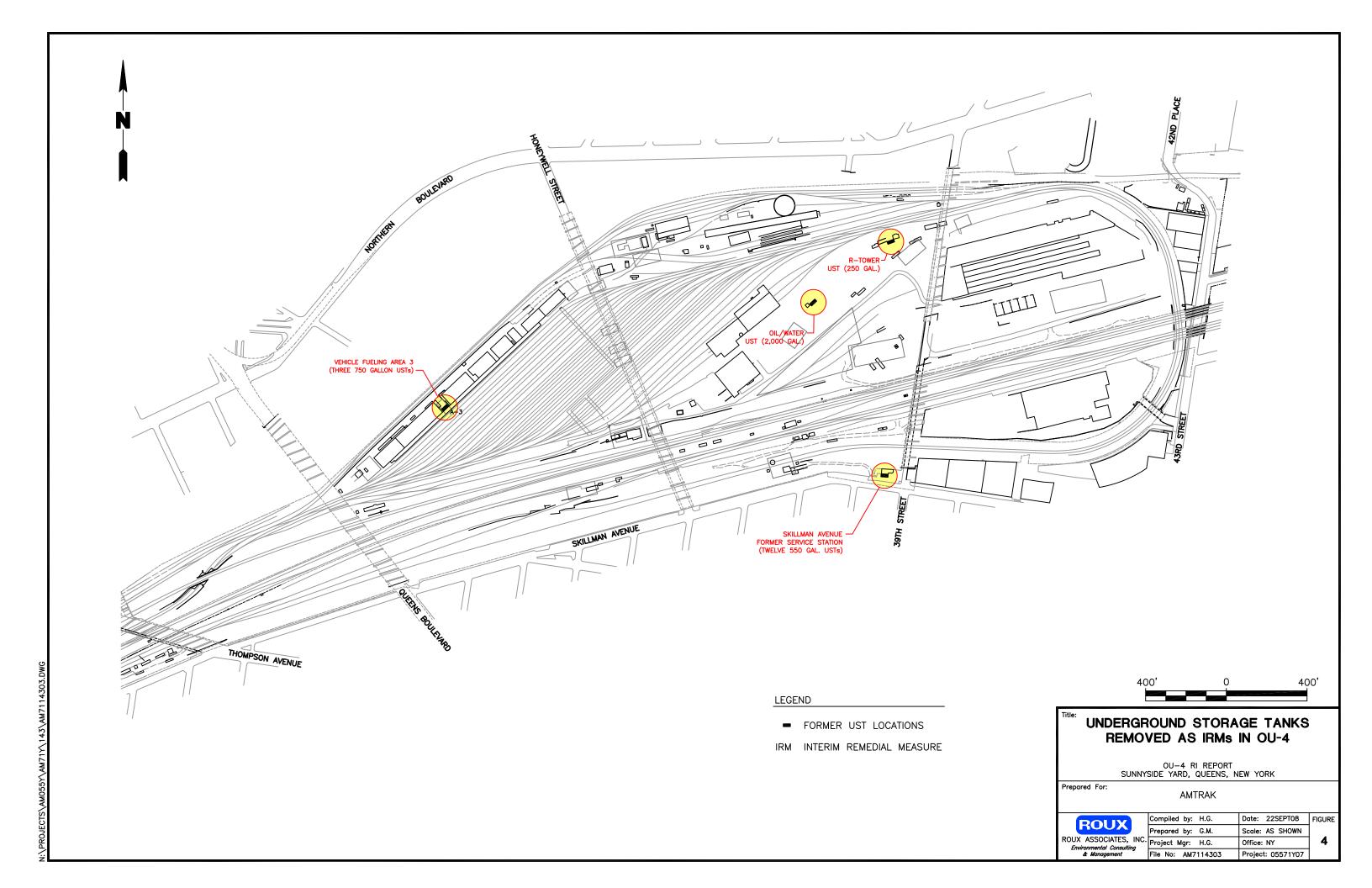
μg/kg - Micrograms per kilogram

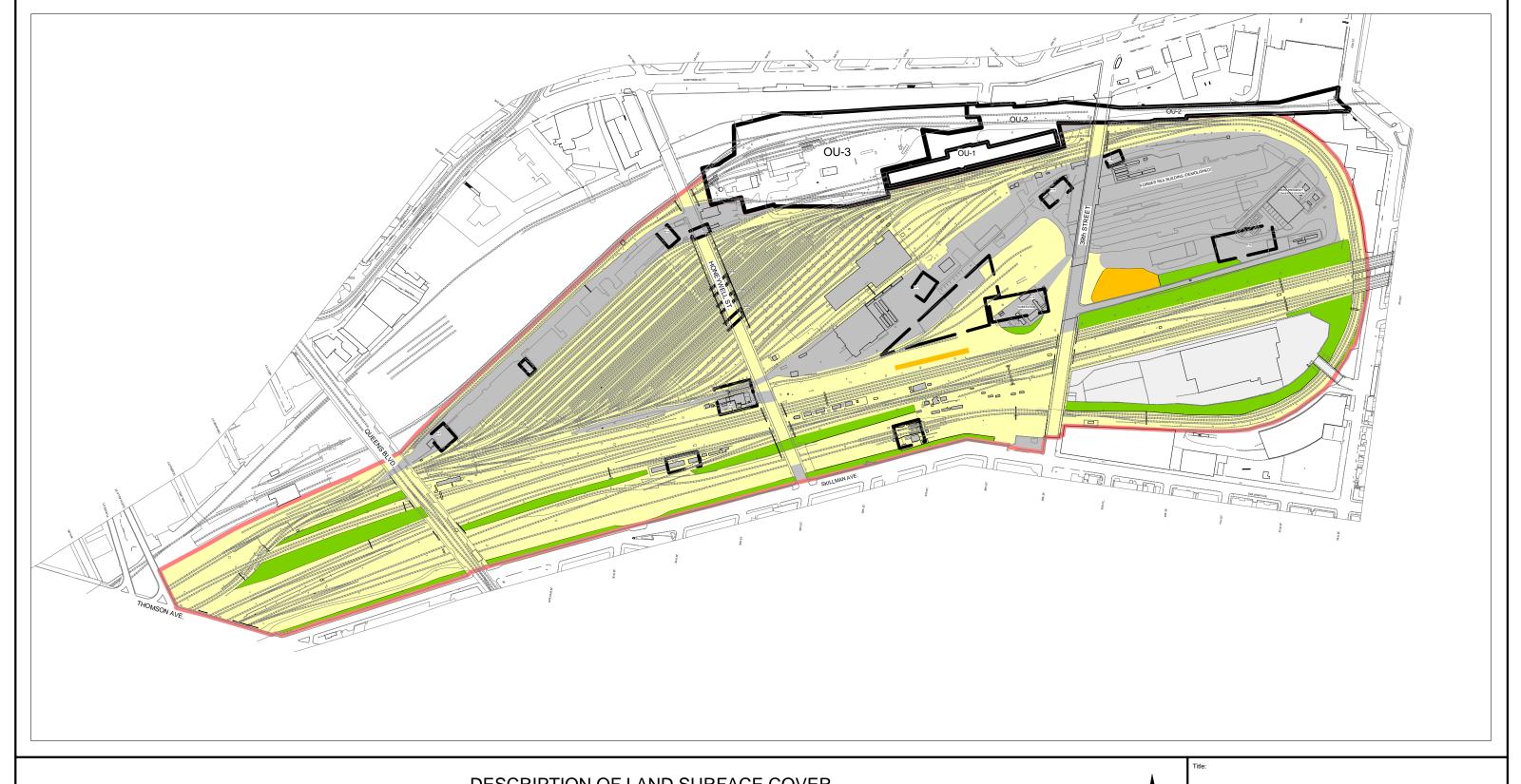
ft bls - Feet below land surface


- I Result declared inconclusive during validation
- J Estimated value
- U Compound was analyzed for but not detected
- V Data added and/or value altered by data validator


NA - Data not available


- in depth - Not sampled by Roux; depth not known


Bold text indicates the exceedance of the NYSDEC Part 375 Industrial


NYSDEC - New York State Department of Environmental Conservation











# **DESCRIPTION OF LAND SURFACE COVER**

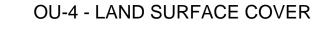
TRACK (INCLUDES TRACKS, BALLAST, CONCRETE AND PAVED WALKWAYS) (65.13 ACRES - 54.27%)

ASPHALT / CONCRETE PAVEMENT AND BUILDINGS (29.6 ACRES - 24.66%)



BRUSH/VEGETATION (20.66 ACRES - 17.21%)

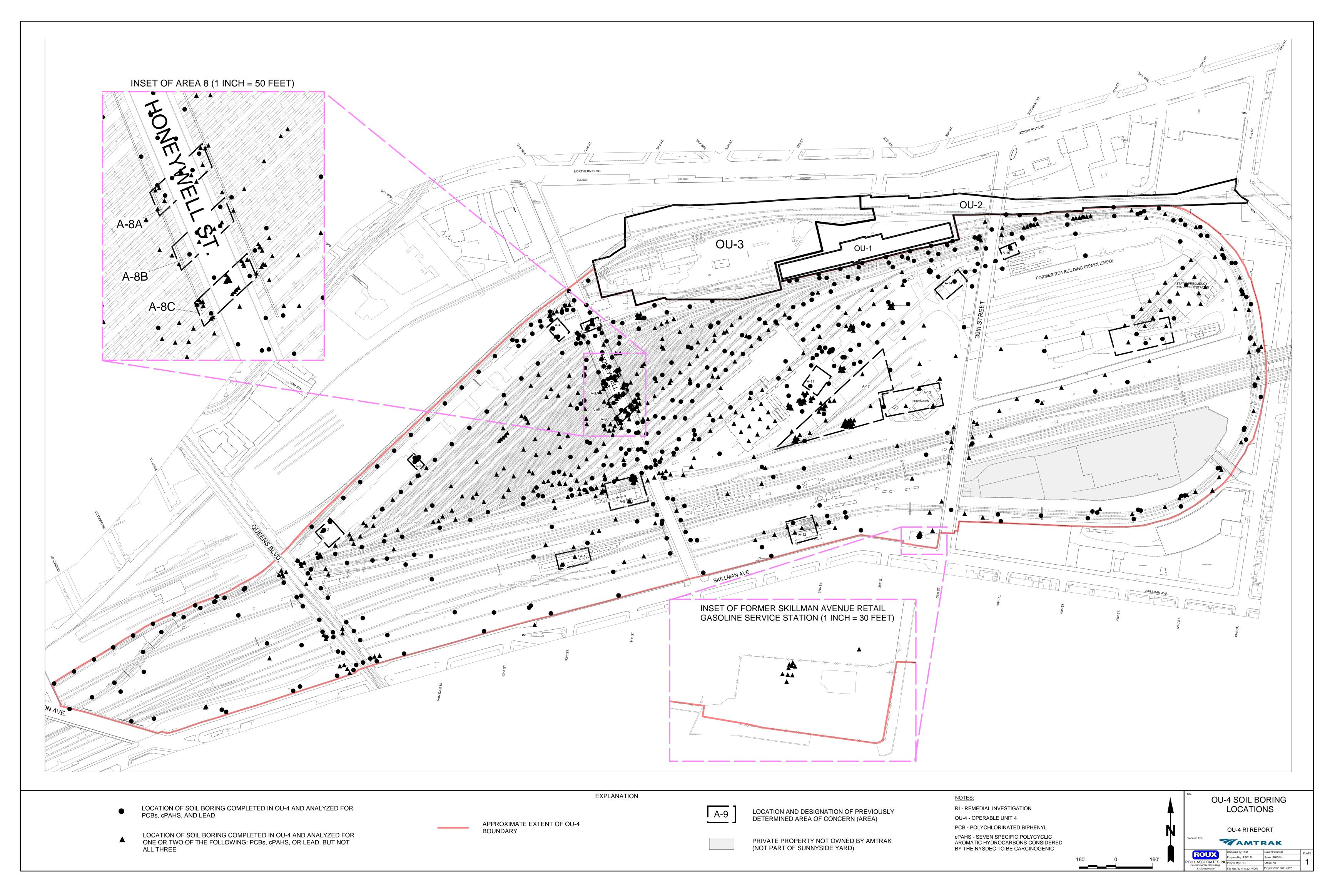
**EXPOSED GROUND** 

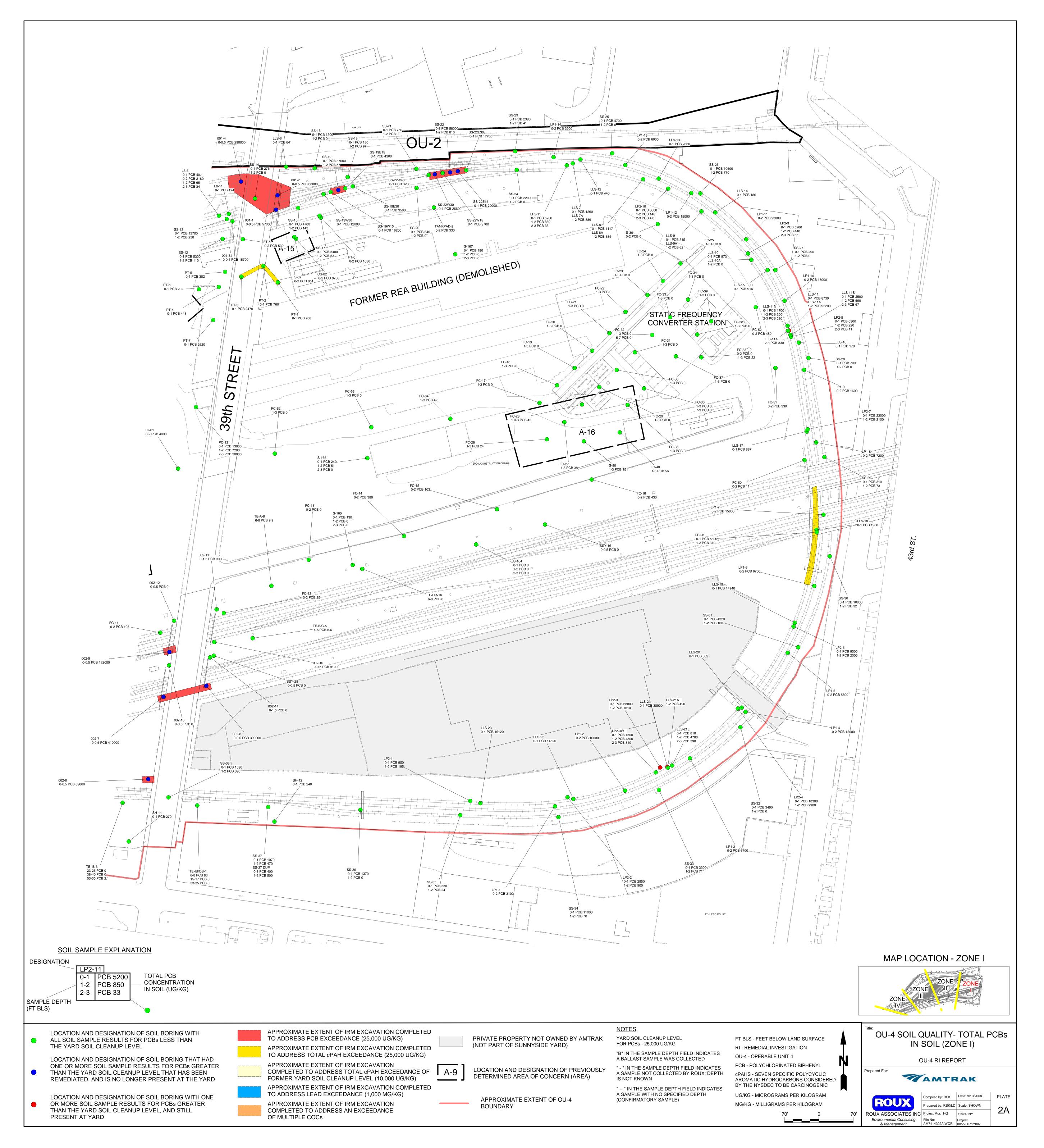

(4.59 ACRES - 3.82%)

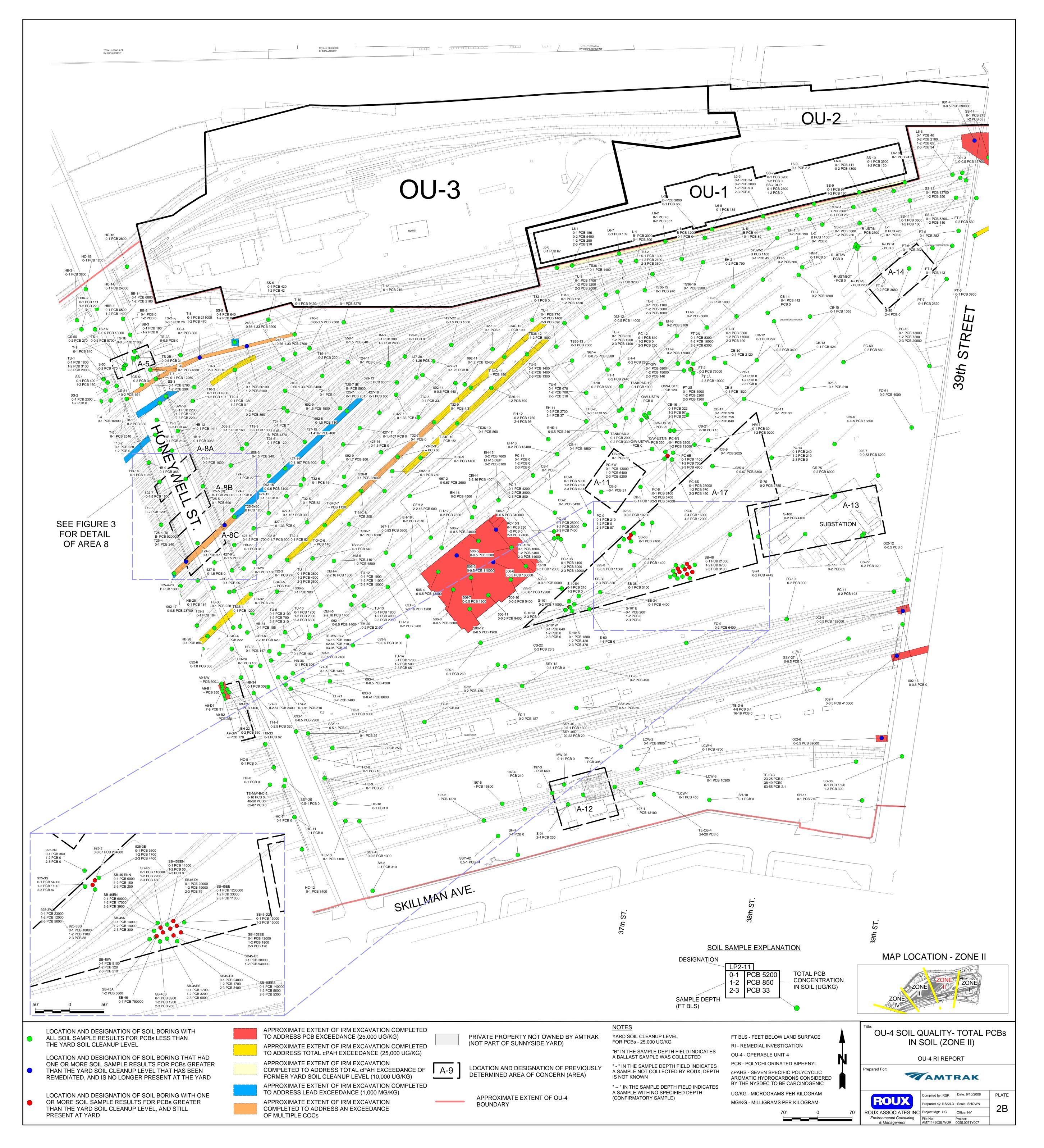


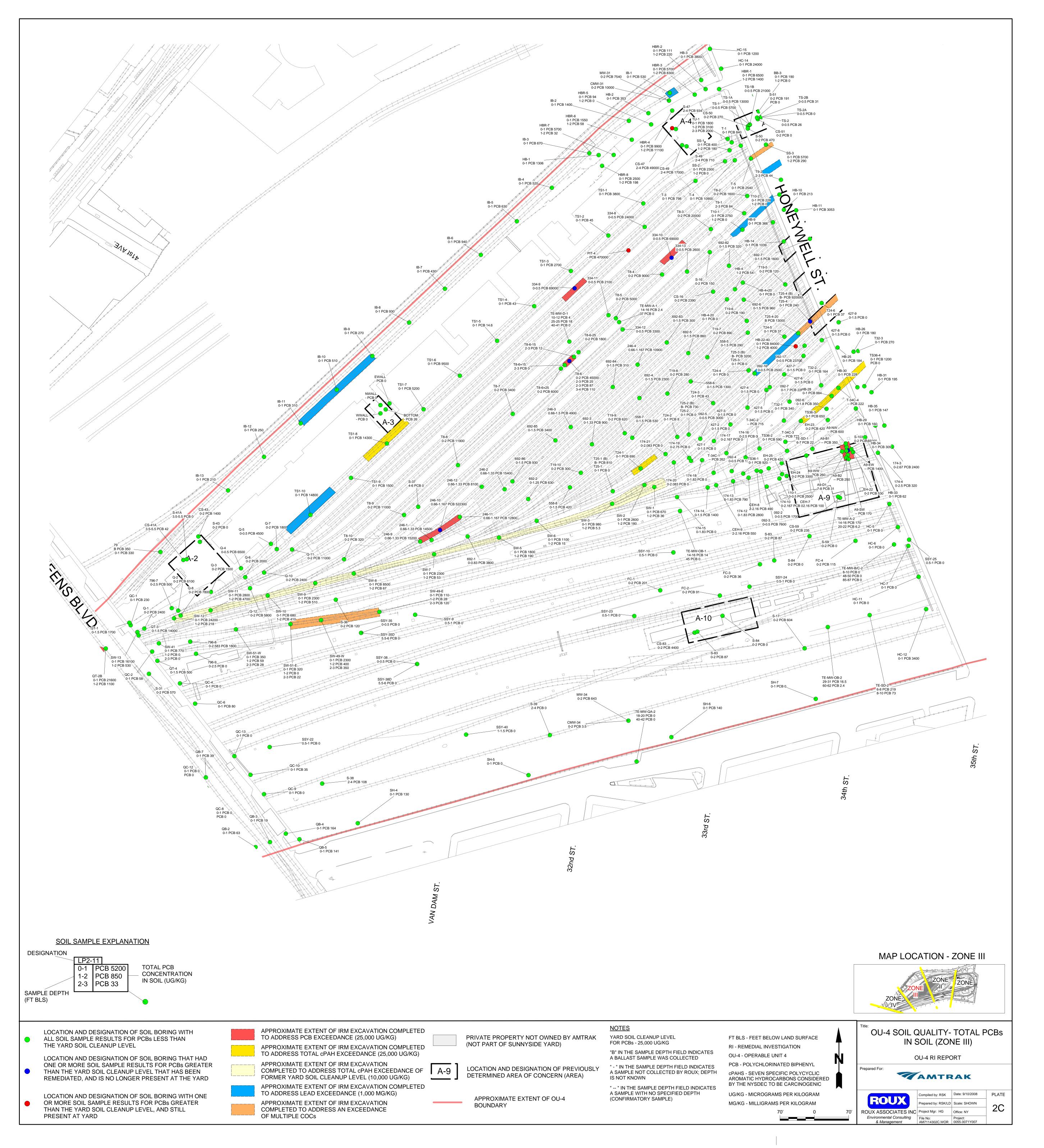
APPROXIMATE EXTENT OF OU-4

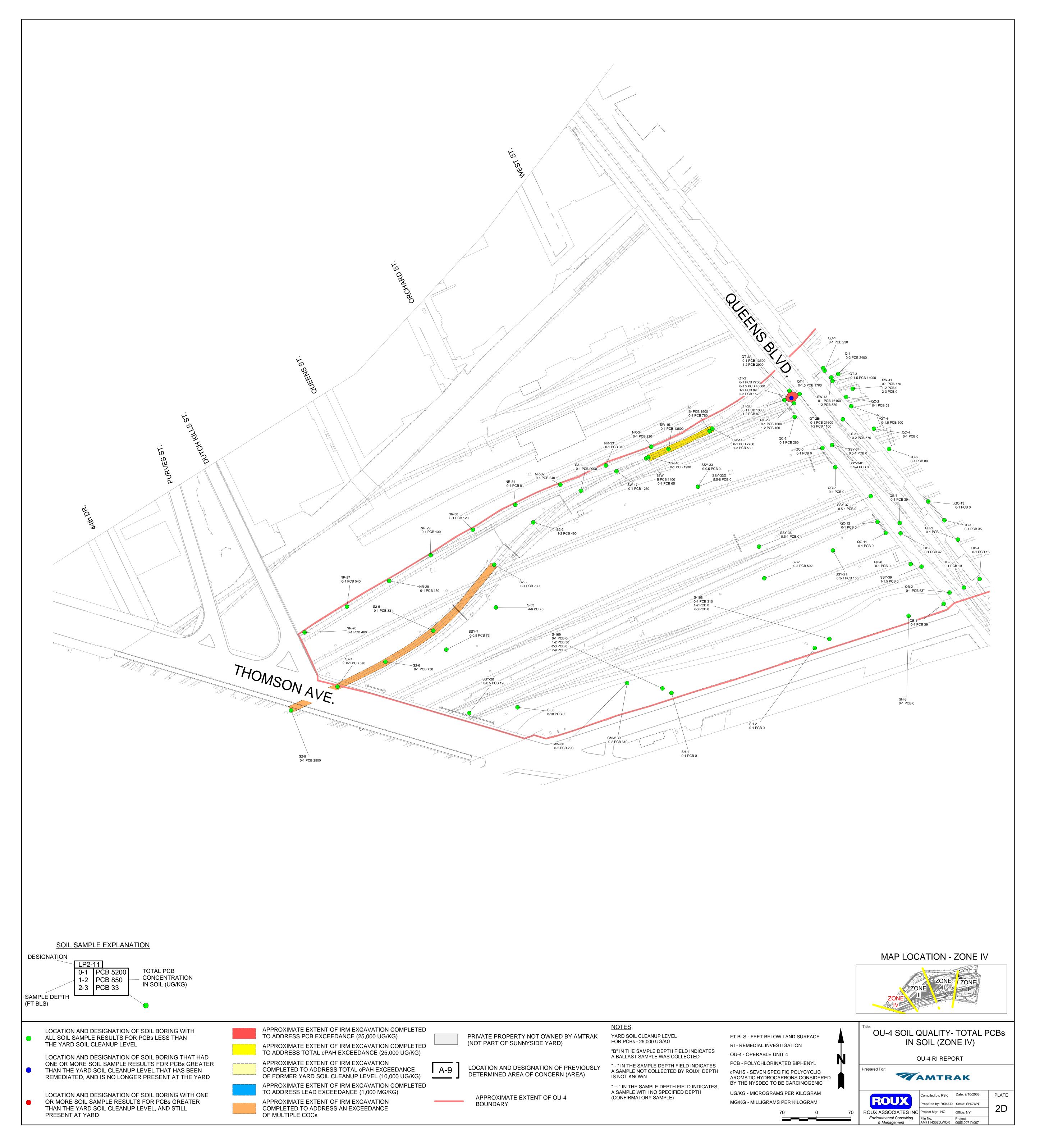
BOUNDARY


APPROXIMATE TOTAL AREA OF OPERABLE UNIT 4 IS 120 ACRES.





**OU-4 RI REPORT** 


MAMTRAK


Date: 9/18/2008 FIGURE Scale: 1 INCH = 400 FEET Office: NY Project: 0055.0071Y007

