OPERABLE UNIT 6 REMEDIAL INVESTIGATION/ FEASIBILITY STUDY REPORT

Sunnyside Yard Queens, New York

Prepared for:

NATIONAL RAILROAD PASSENGER CORPORATION Washington, D.C. 20002

ROUX ASSOCIATES, INC.

Environmental Consulting & Management

1.0 INTRODUCTION	1
2.0 ENVIRONMENTAL SETTING AND PHYSICAL CHARACTERISTICS OF THE	
YARD	
2.1 Yard Operating History	
2.2 General Yard Description	
2.3 OU-6 Description	
2.4 Topography and Yard Drainage	
2.5 Geology	
2.5.1 Regional Geology	
2.5.2 Yard Geology	
2.5.2.1 Fill and Historical Topographic Changes	
2.5.2.2 Bedrock Geology	
2.6 Hydrogeology	
2.6.1 Regional Hydrogeology	
2.6.1.1 Historic Pumping in the Upper Glacial Aquifer	
2.6.1.2 Regional Groundwater Quality	
2.6.2 Yard Hydrogeology	
2.6.2.1 Groundwater Flow Patterns	
2.6.2.2 Horizontal Gradients	
2.6.2.3 Vertical Gradients	
2.6.2.4 Hydraulic Coefficients	
2.6.2.5 Groundwater Flow Rates	25
3.0 SUMMARY OF PREVIOUS OU-6 INVESTIGATIONS	27
3.1 Previous Investigation Completed by Geraghty & Miller Related to OU-6 (198	
3.2 Previous Investigations Conducted by Roux Associates Through 1999	
3.2.1 Scopes of Work Completed Through 1999	
3.2.1.1 Phase I RI	29
3.2.1.2 Phase II RI/Phase II RI Addendum	
3.2.1.3 Limited Phase II Environmental Site Assessment (i.e., HSTF S&I/o	OU-1)31
3.2.1.4 Focused Remedial Investigation for OU-2	
3.2.1.5 OU-6 RI (1999)	
3.2.2 Summary of Previous Investigations Findings	
3.3 Post OU-6 RI Investigation Activities (1997 through 2007)	
3.4 Previous Investigations Completed by AKRF Related to OU-6	36
3.5 Previous Investigations Completed by PB/STV/PTG Related to OU-6	
3.6 Previous Investigations Completed by EMCG Related to OU-6	
3.7 Previous Investigations Completed by GES Related to OU-6	
3.8 Previous Investigations Completed Related to OU-4	
4.0 SUPPLEMENTAL OU-6 RI METHODOLOGY AND SCOPE OF WORK	
(2008 and 2009)	42
4.1 Field Methods	
4.1.1 Task 1: Monitoring Well Inventory/Inspection	
4.1.2 Task 2: Monitoring Well Installation/Development/Survey	

(Continued)

4.1.3 Task 3: Re-Development of Existing Monitoring Wells	48
4.1.4 Task 4: Monitoring Well Gauging/Groundwater Sampling	
4.1.5 Task 5: Limited Vapor Intrusion Survey	
4.2 Analytical Methods	
5.0 NATURE AND EXTENT OF CONTAMINATION	54
5.1 Groundwater Quality	
5.1.1 Groundwater Quality – VOCs	
5.1.1.1 Chlorinated VOCs	57
5.1.1.1.1 North Plume	59
5.1.1.1.2 West of Honeywell Plume	
5.1.1.1.3 Southeast Plume	62
5.1.1.2 BTEX and MTBE	
5.1.1.2.1 BTEX Associated with the North Plume	
5.1.1.2.2 BTEX and MTBE Associated with West of Honeywell Plum	
5.1.1.2.3 Isolated Occurrences of BTEX	65
5.1.1.3 Comparison of Supplemental OU-6 RI VOC Results to	
1997 RI VOC Results	
5.1.2 Groundwater Quality – SVOCs	68
5.1.2.1 Comparison of Supplemental OU-6 RI SVOC Results to	((
1997 RI SVOC Results	
5.1.3 Groundwater Quality – Metals	05
1997 RI Metals Results	70
5.1.4 Groundwater Quality – PCBs	
5.1.4.1 Comparison of Supplemental OU-6 RI PCB Results to	
1997 RI PCB Results	73
5.1.5 Groundwater Quality – Chloride and TDS	
5.1.5.1 Comparison of Supplemental OU-6 RI Chloride and TDS Results	
1997 RI Results	
5.2 Soil Vapor Results	75
5.2.1 General Evaluation of Sub-Slab, Indoor Air and Outdoor Vapor Data	76
5.2.2 Evaluation of Vapor Data with Respect to NYSDOH Decision Matrices	
5.3 Saturated Soil Quality	79
6.0 CONTAMINANT FATE AND TRANSPORT	82
6.1 Physicochemical Properties of Contaminants	
6.2 Processes Affecting Contaminant Migration	
6.2.1 Leaching From Soil to Groundwater	
6.2.2 Transport in Groundwater	84
6.2.3 Discharge from Groundwater to Surface Water	87
6.2.4 Volatilization from Soil, Groundwater, and Surface Water	
6.2.5 Transport in Vadose Zone Soil Vapor/Vapor Intrusion	
6.3 Degradation Processes	
6.4 Contaminant Fate and Transport at the Yard	90

(Continued)

7.0 EXPOSURE ASSESSMENT	93
7.1 Selection of COPCs	94
7.2 Identification of Exposure Pathways	94
7.2.1 Potential Receptors	
7.2.2 Soil	
7.2.3 Groundwater	96
7.2.4 Soil Vapor	96
7.3 Exposure Point Concentrations	97
7.4 Comparison to Relevant Criteria	97
7.5 Current and Future Site Conditions	
7.6 Summary	98
8.0 REMEDIAL GOALS AND REMEDIAL ACTION OBJECTIVES	99
8.1 Identification of SCGs	
8.1.1 Location-Specific SCGs	
8.1.2 Action-Specific SCGs	
8.1.3 Chemical-Specific SCGs	
8.2 Remedial Action Objectives for OU-6	
8.3 Remedial Requirements	
8.4 General Response Actions	
9.0 IDENTIFICATION AND SCREENING OF TECHNOLOGIES	104
9.1 Technology Screening for Groundwater	
9.1.1 Access/Use Restrictions	
9.1.2 Groundwater Use Restriction.	
9.1.3 Groundwater Monitoring	
9.1.4 Monitored Natural Attenuation	
9.2 Technology Screening for Soil Vapor	
9.2.1 Access/Use Restriction	
9.2.2 Active Sub-Slab Venting System	
9.2.3 Passive Venting System and Vapor Barrier	
9.3 Summary of Applicable Technologies	
10.0 DESCRIPTION AND EVALUATION OF REMEDIAL ALTERNATIVES	112
10.1 Remedial Alternative I: No Further Action	
10.1.1 Overall Protection of Human Health and the Environment	
10.1.2 Compliance with SCGs	
10.1.3 Long-Term Effectiveness and Permanence	
10.1.4 Reduction of Toxicity, Mobility, or Volume	
10.1.5 Short-Term Effectiveness	
10.1.6 Implementability	
10.1.7 Cost	
10.2 Remedial Alternative II: Groundwater Monitoring, Institutional and	
Engineering Controls	115
10.2.1 Overall Protection of Human Health and the Environment	117
10.2.2 Compliance with SCGs	117

(Continued)

10.2.3 Long-term Effectiveness and Permanence	117
10.2.4 Reduction of Toxicity, Mobility, or Volume	118
10.2.5 Short-Term Effectiveness	118
10.2.6 Implementability	118
10.2.7 Cost	
10.3 Comparison of Remedial Alternatives	119
10.3.1 Overall Protection of Human Health and the Environment	
10.3.2 Compliance with SCGs	120
10.3.3 Long-Term Effectiveness and Permanence	120
10.3.4 Reduction of Toxicity, Mobility, or Volume	121
10.3.5 Short-Term Effectiveness	
10.3.6 Implementability	122
10.3.7 Cost	122
11.0 OU-6 RI/FS CONCLUSIONS AND RECOMMENDATIONS	123
11.1 Conclusions	123
11.2 Recommendations	125
12.0 REFERENCES	127

TABLES

- 1. Summary of Construction Details for Monitoring Wells, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York
- 2. Summary of Gauging Data, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York
- 3. Vertical Hydraulic Gradient Calculations, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York
- 4. Summary of Groundwater, Saturated Soil and Soil Vapor Quality Sampling, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York
- 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York
- 6. Summary of Semivolatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York
- 7. Summary of Metals in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York
- 8. Summary of Polychlorinated Biphenyl Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York
- 9. Summary of Chloride and Total Dissolved Solids in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York
- 10. Summary of Volatile Organic Compounds in Soil Vapor Samples Collected Near Proposed Construction Area, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York
- 11. Summary of Volatile Organic Compounds in Soil Vapor Samples Collected Near HSTF S&I Building, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

(Continued)

- 12. Summary of Volatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Oueens, New York
- 13. Summary of Semivolatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York
- 14. Summary of Metals in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York
- 15. Summary of Polychlorinated biphenyls in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York
- 16. Summary of Physical and Chemical Properties of Organic Compounds Detected in Groundwater Above Standards or Sub-Surface Vapor During the Supplemental OU-6 RI, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York
- 17. Estimated Retardation Factors of Organic Compounds Detected in Groundwater Above Standards During the Supplemental OU-6 RI, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York
- 18. Action and Chemical-Specific SCGs, OU-6 RI/FS Report, Amtrak, Sunnyside Yard, Queens, New York
- 19. Remedial Alternative II Cost Estimate, OU-6 RI/FS Report, Amtrak Sunnyside Yard, Queens, New York

FIGURES

- 1. Location of Site
- 2. Amtrak Yard Layout
- 3. Pumping Test Configuration July 29, 1994
- 4. Location and Designation of Soil Vapor Samples Collected Near Proposed Construction Area
- 5. Location and Designation of Soil Vapor Samples Collected Near HSTF

APPENDICES (See Attached CD)

- A. Historic Groundwater Quality Data (Generated Prior to Competing the 1999 OU-6 RI)
- B. Historic Water Level Elevations and Separate-Phase Hydrocarbon Measurements Preceding OU-6 RI
- C. Soil Boring and Monitoring Well Construction Logs
- D. Groundwater Sampling Field Forms

PLATES

- 1. Monitoring Well Locations and Historic Surface Water Features
- 2. Water Table Contour Map May/June 2008

(Continued)

PLATES (Continued)

- 3. Equipotential Map for Groundwater in Wells Screened Below the Water Table June/July $2008\,$
- 4. Groundwater Quality at the Water Table May/June 2008
- 5. Groundwater Quality in Wells Screened Below the Water Table April/June 2008
- 6. Locations of Soil Borings with Saturated Soil Samples in OU-6

1.0 INTRODUCTION

On behalf of the National Railroad Passenger Corporation (Amtrak) and New Jersey Transit Corporation (NJTC), Roux Associates, Inc. (Roux Associates) and Remedial Engineering, P.C. (Remedial Engineering) have prepared this Remedial Investigation/Feasibility Study (RI/FS) Report for Operable Unit 6 (OU-6) of Amtrak's Sunnyside Yard, located in Queens, New York (Yard). The location of the Yard is shown on Figure 1, and the location of each Operable Unit within the Yard is presented in Figure 2. Operable Unit 6 is defined as groundwater and saturated soils beneath the entire Yard. In addition, at the request of the New York State Department of Environmental Conservation (NYSDEC), OU-6 has been expanded to include subsurface vapor relating to off-site volatile organic compound (VOC) groundwater plumes migrating on-site. The purpose of this RI/FS Report is to present a summary of findings from previous groundwater and saturated soil investigations completed at the Yard, as well as summarize the findings of the most recent groundwater and soil vapor investigation activities completed at the Yard from April through June 2008, and March 2009. The groundwater and soil vapor investigation activities completed from April through June 2008, and March 2009 are hereafter referred to as the Supplemental OU-6 RI. As will be described in greater detail in the following sections, this Supplemental OU-6 RI also incorporated groundwater data generated from within the Yard in 2008 by the Metropolitan Transit Authority/Long Island Railroad (MTA/LIRR) as part of the East Side Access Project (ESA Project). Additionally, historical groundwater and saturated soil data generated as part of the ESA Project is included. This report provides a comprehensive understanding of the nature and extent of groundwater, saturated soil, and soil vapor impacts found in OU-6. Further, the FS portion of this report evaluates remedial alternatives to address the limited impacts remaining in OU-6.

The ESA Project is a very large, multi-year construction project to support MTA/LIRR ridership. A significant portion of the construction will occur in and beneath the Yard, including the construction of multiple train tunnels beneath the Yard. This activity will generate large quantities of soil cuttings and groundwater dewatering effluent. Much of this work will be located in the area of the VOC groundwater plumes migrating on-site. As such, multiple investigations have been performed at the Yard on behalf of MTA/LIRR and those data are included herein.

Supplemental OU-6 RI activities were completed in 2008 and 2009, in accordance with the document titled Work Plan for the Operable Unit 6 (OU-6) Remedial Investigation/Feasibility Study, prepared by Roux Associates, dated October 30, 2007 (Roux Associates, 2007). Specifically, the additional OU-6 investigation activities completed at the Yard in 2008 and 2009 were designed to achieve the following:

- Confirm the findings of previous groundwater investigations conducted by Roux Associates, and others;
- Develop current groundwater quality data and hydrogeologic data (i.e., water level elevations, groundwater flow direction, horizontal and vertical gradients, etc.); and
- Provide additional data to further characterize OU-6 with respect to groundwater quality and subsurface vapor quality.

This RI/FS report was prepared in accordance with the provisions of the Order on Consent (OOC), Index #W2-0081-87-06, as modified between the NYSDEC, Amtrak, and the NJTC. In accordance with the OOC, several previous investigations have been performed at the Yard in addition to the Supplemental OU-6 RI activities performed in 2008 and 2009. Previous investigations completed at the Yard that pertain to OU-6 have included, in part, the Phase I RI (Roux Associates, 1992a), Phase II RI/Phase II RI Addendum (Roux Associates, 1995), and OU-6 RI (Roux Associates, 1999a). Previous investigations at the Yard have included significant sitewide soil components and significant sitewide groundwater components. Relevant findings from these reports that are related to OU-6 are summarized below in the Previous Investigations Section (Section 3.0).

Based on the results of inspections, discussions with Amtrak personnel, and previous investigations, initially 16 Areas of Concern (Areas) were identified at the Yard. During the performance of the Phase I RI (early 1990's), one additional Area was identified, giving a total of 17 Areas within the Yard. As discussed below, in 1997, the Yard was divided into Operable Units. It is important to note that OU-6 is groundwater and saturated soil beneath all 17 Areas within the Yard. The Areas are described below and are shown on Figure 2.

Area		Description
Area 1:	Underground Storage Tank and Fueling Area	Nine abandoned underground storage tanks (USTs), former locomotive fueling station, former Engine House, former Metro Shop
Area 2:	Material Control Area (Yard receiving area)	Central receiving, temporary storage, and distribution point for materials and supplies received at the Yard
Area 3:	Gas Tank Area	Formerly three 750-gallon USTs and pump used for storing and dispensing gasoline
Area 4:	Fuel Oil Tank Area	20,000-gallon UST used to store fuel oil for the Boiler House
Area 5:	Transformer Area	Former polychlorinated biphenyl (PCB) transformer area. Two transformers containing PCBs were located in this area.
Area 6:	Drum Storage Area (Oil House)	Drum and equipment storage area; formerly the Yard receiving area
Area 7:	Storage Area	Reported to be a former empty drum storage area; currently no drums stored there.
Area 8:	Transformer Area	Former PCB transformer area. This area is comprised of three distinct areas referred to as Area 8A, 8B, and 8C.
Area 9:	Compressor Area (Substation 1-A)	Two-story brick structure which houses air compressors and transformers.
Area 10:	Transformer Area (Substation 44)	PCB transformers
Area 11:	Empty Drum Area	Former empty drum storage area
Area 12:	Car Washer Area	Used to wash railroad cars.
Area 13:	Former Storage Area	Former storage area for materials including non-PCB transformers; currently contains a Consolidated Edison transformer substation.
Area 14:	Empty Drum Area	Former empty drum storage area; currently no drums stored there.

Area	Description
Area 15: Empty Drum Area	Former empty drum storage area; currently no drums stored there.
Area 16: Underground Storage Tank Area	Twelve abandoned USTs are located in this area. These USTs were emptied in 1989.
Area 17: 68 Spur	Used to store maintenance equipment and to stage materials.

The NYSDEC requested that Area 16 be removed from the RI/FS program following the cleaning and abandonment activities associated with the fourteen USTs. Details and results of the work completed in Area 16 were summarized in a report prepared by OHM Remediation Services Corporation, dated September 21, 1992 (OHM, 1992). Therefore, Area 16 is not discussed further in this OU-6 RI/FS Report.

In 1997, to accommodate a rigid construction schedule for Amtrak's High Speed Trainset Facility (HSTF) Service and Inspection (S&I) Building, and still address sitewide remedial efforts in a timely and orderly manner, the Yard was subdivided into six operable units with the NYSDEC's concurrence, shown on Figure 2. The operable units are described as follows:

- OU-1: Soil above the water table within the footprint of the proposed HSTF Service and Inspection (S&I) Building.
- OU-2: Soil above the water table within the footprint of the HSTF S&I Building ancillary structures (i.e., the access road and utilities route, the parking area, the construction easement area which surrounds the building and the construction lay down area).
- <u>OU-3</u>: Originally the soil and separate-phase petroleum hydrocarbon (SPH) accumulation (herein referred to as SPH plume) above the water table in the area previously referred to as Area 1 of the Yard; however, it has expanded to include Areas 6 and 7 of the Yard, and saturated soil within these Areas.
- OU-4: Soil above the water table in the remainder of the Yard.
- OU-5: Sewer system (water and sediment) beneath the Yard.
- <u>OU-6</u>: Saturated soil and the groundwater beneath the Yard. Operable Unit 6 was modified to include soil vapor.

Previous soil investigations, including the sampling and analysis of both saturated and unsaturated soils at the Yard located beneath OU-4 were summarized in the OU-4 RI Report, dated October 2, 2008 (Roux Associates, 2008). The dataset current at the time for saturated soil was included as part of OU-4 for completeness. Including the datasets for both unsaturated and saturated soil allowed for a comprehensive evaluation of all Yard soils with respect to both characterization of contamination, as well as remediation as part of OU-4. The OU-4 RI Report, as well as the subsequent OU-4 FS (Roux Associates, 2009a) has been approved by the NYSDEC. An OU-4 Proposed Remedial Action Plan (PRAP) and formal Record of Decision (ROD) have issued by the NYSDEC. Roux Associates is currently preparing a Remedial Action Work Plan (RAWP) for OU-4, which will detail the remedy for unsaturated soil in OU-4. Additional saturated soil data was generated by ESA since the submittal of the OU-4 RI. All saturated soil data, including the recent ESA data and the saturated soil data included in the OU-4 RI, is presented in this OU-6 RI report. At the request of NYSDEC, saturated soil located beneath the footprint of OU-3 was summarized in the OU-3 Final RI Report (Roux Associates, 2005a), and OU-3 FS (Roux Associates, 2005b), which were both approved by NYSDEC. An OU-3 PRAP and formal OU-3 ROD were issued by NYSDEC. Therefore, this OU-6 RI/FS Report is inclusive of groundwater and soil vapor beneath the entire Yard and saturated soil beneath OU-1, OU-2, and OU-4.

The Yard-specific compounds of concern (COCs) for soil are polychlorinated biphenyls (PCBs), semivolatile organic compounds (SVOCs), carcinogenic polycyclic aromatic hydrocarbons (cPAHs), and lead. The soil cleanup levels for the Yard were re-established in the OU-4 ROD and are as follows:

- Total PCBs 25 mg/kg;
- Total SVOCs 500 mg/kg; and
- Lead 3,900 mg/kg.

This OU-6 RI/FS Report has been divided into the following 12 sections with a brief description of each provided below.

• Section 1.0: Introduction

This section introduces the reader to what this report is about and provides an overview of what is contained in the report.

• Section 2.0: Environmental Setting and Physical Characteristics of the Yard

This section provides a summary of the Yard operating history, a Yard description, including geology and hydrogeology, and other relevant information pertaining to the Yard and OU-6.

• Section 3.0: Summary of Previous OU-6 Investigations

This section provides a summary of previous investigations completed at the Yard by Roux Associates and other parties with a focus on the results for work performed related to OU-6.

• Section 4.0: Supplemental OU-6 RI Methodology and Scope of Work (2008 and 2009) This section provides a detailed summary of the methods and scope of work completed as

part of the most recent Supplemental RI conducted in OU-6.

• Section 5.0: Nature and Extent of Contamination

This section presents a summary of the nature and extent of the contamination in OU-6, based on the Supplemental RI conducted in OU-6.

• Section 6.0: Contaminant Fate and Transport

This section discusses the contaminant fate and transport of compounds detected in OU-6.

• Section 7.0: Exposure Assessment

This section provides an analysis of potential health-based risks associated with contaminated groundwater, soil vapor and saturated soil in OU-6.

• Section 8.0: Remedial Goals and Remedial Action Objectives

This section presents the remedial goals and remedial action objectives (RAOs) that apply to the media of concern.

• Section 9.0: Identification and Screening of Technologies

This section develops the general response actions into potential remedial technologies by identifying, evaluating, and screening applicable remedial technologies that may be employed in OU-6 to achieve the RAOs.

• Section 10.0: Description and Evaluation of Remedial Alternatives

This section assembles the retained remedial technologies into remedial action alternatives and compares the remedial alternatives against seven evaluation criteria.

• Section 11.0: OU-6 RI/FS Conclusions and Recommendations

This section presents a comprehensive summary of the findings and conclusions of this OU-6 RI/FS based on contaminant distribution, source areas, and current regulations, and presents recommendations with respect to OU-6.

• Section 12.0: References

The remainder of this OU-6 RI/FS Report (with the exception of Section 3.0 – Summary of Previous OU-6 Investigations) focuses on the Supplemental OU-6 RI investigation activities, since all previous OU-6 RI groundwater investigation activities have been documented and submitted to the NYSDEC in the May 1999 RI Report. For completeness, however, all previous groundwater and saturated soil data are included in this RI/FS Report and/or its Appendices. Groundwater data generated as part of, and following the initial OU-6 RI activities (June 1997 and later) are provided in Tables 5 through 9. This report was organized in this fashion to allow for ease of comparison between the initial OU-6 RI data (generated in 1997) and the most recent, Supplemental OU-6 RI data (generated in 2008 and 2009). Also included in these tables are groundwater data generated by the MTA ESA Project from wells within and in the immediate vicinity of the Yard. All groundwater data generated preceding the initial OU-6 RI (prior to June 1997) are included in Appendix A.

2.0 ENVIRONMENTAL SETTING AND PHYSICAL CHARACTERISTICS OF THE YARD

This section includes a description of Yard operational history, including a more specific description of OU-6. Additionally, surface features (i.e., topography and drainage), and regional and site-specific geology and hydrogeology are included in this section. The description of the physical setting and history of OU-6 is based upon Roux Associates' review of available data and current conditions at the Site and the previous field investigations conducted by Roux Associates and others at the Yard.

2.1 Yard Operating History

The Pennsylvania Tunnel and Terminal Company, a subsidiary of the Pennsylvania Railroad (later known as the Penn Central Transportation Company), originally constructed the Yard in the early 1900s. The Yard officially opened on November 27, 1910. On April 1, 1976, the Consolidated Rail Corporation (Conrail) acquired the Yard and the same day conveyed it to Amtrak, which has continued to operate it as a storage and maintenance facility for railroad rolling stock. The Yard current functions primarily as a train maintenance and train layover storage facility for electric and diesel locomotives and railroad cars for Amtrak and NJTC.

2.2 General Yard Description

The Yard is located in an urban area in northwestern Queens County (Figure 1). The East River is located approximately one mile to the west and Newtown Creek, which defines the border between Queens and Kings Counties, is located less than 0.5 mile south of the western portion of the Yard. The Yard consists of a railroad maintenance and storage facility that currently encompasses approximately 133 acres. The land use surrounding the Yard is a combination of commercial, light industrial, and residential areas. The Long Island Rail Road (LIRR) owns a portion of the Yard along the northern boundary (including a portion of OU-3) and maintains rights of way through the Yard (within OU-4).

2.3 OU-6 Description

Operable Unit 6 is defined as groundwater, saturated soil, and soil vapor beneath OU-1, OU-2, OU-3 (excludes saturated soil), and OU-4. Operable Unit 6 encompasses an area of 133 acres (i.e., the area of the entire Yard). Unsaturated soils located within the physical footprint of OU-6

have either been previously addressed or are in the process of being addressed, as part of OU-1, OU-2, OU-3 (includes saturated soil) or OU-4. The portion of the sewer that lies within the extent of OU-6 will be addressed as part of OU-5.

Physical characteristics of the area encompassed by OU-6 (the entire Yard), including topography, geology, and hydrogeology have been investigated, and summaries of these characteristics are discussed in the following subsections.

2.4 Topography and Yard Drainage

The Yard lies in a topographically depressed area with ground elevations that range from approximately 10 to 25 feet below the surrounding land surface, thus forming a basin-like area. The Yard topography is generally flat and slopes gently to the west. The Yard topography and drainage patterns are strongly influenced by the large number of railroad tracks and bulkheaded areas. Surface runoff from the Yard does not appear to be a source of contamination to adjacent properties.

The Yard is underlain by a combined sanitary/storm sewer drainage system, consisting of two drainage subsystems that connect catch basins located throughout the Yard. By definition, this combined sewer system makes up OU-5. The primary subsystem serves approximately 90 percent of the Yard, and contains both sanitary and storm sewer drainage. Combined sewage from the primary subsystem leaves the Yard to the north, approximately 360 feet west of Honeywell Street. The secondary drainage subsystem is located in the southwest portion of the Yard and services approximately 10 percent of the Yard. This secondary system is limited to storm water (i.e., does not contain sanitary sewage). Storm water from the secondary subsystem exits the Yard to the south, approximately 360 feet west of the intersection of Skillman and Thompson Avenues.

Roux Associates has reviewed drawings prepared as part of the ESA Project to determine any additions or modifications that are proposed to the sewer system underlying the Yard to support the ESA Project. Based on our review, significant additions will be made to the Yard sewer system as part of this project. Details regarding modification to the sewer system, previous and

proposed investigation, and remediation activities associated with the sewer system will be provided under separate cover, as part of the OU-5 RI.

2.5 Geology

Published geologic data, historical maps and documents, and geologic logs for borings drilled by Roux Associates and others during previous investigations at the Yard were evaluated to define the current geologic conditions underlying the Yard.

2.5.1 Regional Geology

The Yard is located within the Atlantic Coastal Plain Physiographic Province. The regional subsurface geology consists of unconsolidated sand, silt, clay, and gravel deposits that overlie crystalline bedrock. The unconsolidated strata in the area dip gently to the southeast, following the topography of the bedrock surface (Soren, 1978). Boreholes drilled within northwestern Queens County indicate that the unconsolidated deposits consist predominantly of Upper Pleistocene glacial deposits that range from approximately 30 to 150 feet in thickness. These borehole logs also indicate that Lower Pleistocene deposits, consisting of the Jameco Gravel overlain by the Gardiner's Clay unit, may be discontinuously present beneath the Yard. These Lower Pleistocene deposits unconformably overlie bedrock.

A thin veneer of recent and Holocene deposits covers the Upper Pleistocene deposits. Unconsolidated Upper Pleistocene glacial (ground moraine) deposits of unstratified, poorly sorted mixtures of sand and silt with some gravel and cobbles (Buxton, et al., 1981) overlie the Lower Pleistocene deposits (where present), which overlie crystalline bedrock. The saturated portion of the Upper Pleistocene deposit forms the Upper Glacial aquifer of Long Island.

2.5.2 Yard Geology

The geologic logs of soil borings drilled throughout the Yard during both investigations conducted by Roux Associates, and investigations conducted by others indicate that the Yard is underlain by the following units (in order by increasing depth): fill (including ballast, cinders/ash), recent and Holocene deposits (where present), Upper Pleistocene glacial deposits (including both till and channel deposits), and bedrock. Fill activities, which were part of major topographic changes engineered at the Yard, are summarized below.

2.5.2.1 Fill and Historical Topographic Changes

The fill is predominantly comprised of reworked glacial deposits (unstratified sand, silt, clay and gravel) and railroad ballast (including cinders/ash), with minor amounts of construction debris (i.e., brick, wood) and other materials. The railroad ballast is ubiquitously present throughout the Yard at land surface, with the exception of paved areas and land occupied by buildings. As discussed below, additional information has been obtained that indicates that, between 1906 and 1910, Upper Pleistocene glacial deposits were excavated from topographically high parts of the Yard and re-deposited as fill in lower lying parts of the Yard including wetlands. Reworked glacial deposits (made land) are often visually indistinguishable from the underlying unstratified glacial deposits. The factors discussed below indicate that large volumes of fill were used at the Yard (including early reports that the Yard was a reclaimed marshland) for the construction of the elevated LIRR right-of-way and several extensive bulkheaded areas throughout the Yard. Documentation describing the origin of the current topography is summarized below.

During evaluation of the geologic and hydrogeologic data for the Yard, two historical topographic maps were obtained for reference: the first covering western Queens dated 1890 (Julius Bien & Co., 1890) and the second covering the Yard and surrounding area dated December 1906 (Pennsylvania Tunnel and Terminal Railroad Company, 1906). In addition, a Chief Engineering Report (Pennsylvania Tunnel and Terminal Railroad Company, circa 1910) and associated cross-sections of the Yard (dated August 16, 1907) describe the topographic changes implemented at the Yard between December 1906 and August 1909. Utilizing the engineering report, topographic maps, Yard maps dated 1910 and 1917, and recent area maps, a comparison was made between the historical and current topographic features of the Yard. This comparison indicated that:

- The majority of topographic changes that occurred at the Yard took place between December 1906 and August 1909.
- Current land surface elevation throughout much of the eastern half of the Yard (i.e., east of Honeywell Street) is lower than original pre-development elevation.
- Current land surface elevation throughout much of the western half of the Yard (i.e., west of Honeywell Street) is actually higher than original pre-development elevation.
- Two former surface-water bodies (the wetland in the northeast corner of the Yard and Dutch Kills Creek) at the Yard have been filled.

• Current elevation of the LIRR mainline is higher than the original pre-development (1890) elevation.

The topography shown on the 1890 map for the land now occupied by the Yard is much different than present topographic conditions. As shown in Plate 1, a wetland existed along Northern Boulevard (formerly Jackson Avenue) near the northeast corner of the Yard. The 1890 map also indicates that Dutch Kills Creek flowed through the western portion of the Yard, flowing southwest to Newtown Creek. Approximately 750 feet east of Dutch Kills Creek, land surface begins a rapid increase from less than 10 to greater than 60 feet above mean sea level west of Honeywell Street. Although this topographic high is still present south of the Yard, the mound no longer exists across the Yard. West of Honeywell Street, land surface gradually sloped downward to the north from a high elevation of approximately 80 feet above mean sea level along Skillman Avenue to a low of about 30 feet above mean sea level at the wetland along Northern Boulevard (designated Jackson Avenue on the 1890 map). The natural topography of the Yard still plays an integral role in the groundwater flow patterns, hydraulic gradients, and saline conditions occurring at the Yard.

A Chief Engineering Report (Pennsylvania Tunnel and Terminal Railroad Company, 1910) describes the topography of the Yard prior to December 1906, when major Yard construction began. A 40-acre swamp was located west of Honeywell Street, with the remaining 93 acres of the Yard consisting of "rolling ground" with elevations from "10 to 70 feet above the swamp [wetland]." Existing data indicate that major topographic changes took place at the Yard between 1906 and 1910, bringing the Yard close to its present topographic condition. These changes are discussed below.

Cross-sections of the Yard dated August 1907 show both pre-construction and post-construction profiles of the Yard. The construction consisted of moving railroad tracks, grading the Yard, and constructing bridges, roads, and buildings. Natural Upper Pleistocene glacial deposits were excavated from parts of the Yard and deposited as fill in other parts of the Yard to create the current, generally flat topography. A part of the construction involved moving the LIRR passenger tracks to extend across the wetland (filling the wetland) and connect with the old

passenger tracks west of Hunter's Point Avenue. During Yard construction, the following areas were excavated:

- the loop track under and south of the LIRR mainline;
- the north portion of the Yard both east and west of 39th Street (formerly Harold Avenue);
- beneath the 39th Street bridge (approximately from the LIRR mainline to Skillman Avenue) to accommodate both the mainline and loop tracks;
- the north part of the Yard (east of Queens Boulevard) to create the Multiple Unit yard; and
- from the retaining wall between the north and south yards south to the LIRR main line, to accommodate the body tracks and buildings and to create the Pullman and Coach Yard.

The following areas were filled with the excavated Upper Pleistocene glacial deposits:

- the LIRR mainline east of the Yard to bridge 43rd Street (formerly Laurel Hill Avenue);
- 39th Street (formerly Harold Avenue) to create the 39th Street bridge between Northern Boulevard (formerly Jackson Avenue) and Skillman Avenue, and the 39th Street ramp into the Yard;
- the north part of the Yard (west of Queens Boulevard) to create Multiple Unit Yard;
- the wetland associated with Dutch Kills Creek to accommodate the Multiple Unit Yard, Pullman and Coach Yard, LIRR mainline; and
- Meadow Street to create the Thompson Street Bridge.

Holocene Deposits

In the southwestern portion of the Yard, a Holocene wetland deposit was encountered below the fill (recent deposits) and above the Upper Pleistocene formation. This deposit, which is the buried Dutch Kills Creek and swamp, consists of organic silty clay and meadow mat, and overlies the Upper Pleistocene deposits. As a result of filling Dutch Kills, the Dutch Kills drainage was culverted beneath the northwest corner of the Yard, through a 48-inch diameter sewer line. This sewer line is charted on the Amtrak-supplied 1910 Yard map.

Upper Pleistocene Deposits

As previously described, the Upper Pleistocene glacial deposits consist mainly of ground moraine deposits; unstratified, poorly sorted mixtures of sand, silt, clay and gravel. Based on geologic logs for seven deep boreholes drilled at the Yard, an approximately 4-foot thick cobble

zone is located in the subsurface at locations MW-40D, MW-44 D, and MW-48D (See Plate 1). The cobble unit is encountered at an elevation of approximately 2.3 feet above mean sea level at MW-48D, and deepens to the west, where it is encountered at approximately 18 feet below mean sea level at MW-44D. This unit may be a relict stream channel deposit that was formed by glacial meltwaters. Based on 1997 ground-water quality data, a narrow band of saline groundwater occurring in the northern part of the Yard closely correlates with this cobble layer. These data suggest that the cobble layer is a narrow, yet continuous buried channel deposit beneath the Yard, extending from the former Dutch Kills Creek and wetland (near MW-44D) east to the buried wetland in the northeast corner of the Yard in the vicinity of MW-48D (See Plate 1).

2.5.2.2 Bedrock Geology

Based on published data, crystalline bedrock beneath the Site is Precambrian folded and faulted gneisses and schists that were eroded to a peneplain prior to deposition of the overlying glacial deposits (Soren, 1978). Based on information obtained from a file and well search at the NYSDEC, the bedrock surface appears to be highly irregular in this area. Boreholes drilled adjacent to the Yard indicate that the depth to bedrock ranges from approximately 30 to 150 feet below land surface (bls) (i.e., 10 to 130 feet below mean sea level [msl]).

As part of the New York City Department of Transportation (NYCDOT) reconstruction of Queens Boulevard Bridge over Sunnyside Yard, eight boreholes were drilled to the bedrock surface. The depth to bedrock ranged from 50 to 86 feet bls (Environmental Planning & Management, Inc., 1997). These depths are estimated to correspond to 40 to 70 feet below msl, with bedrock deepening to the south. As part of Roux Associates' work at the Yard, one borehole (P-3D), located in OU-1 (formerly a portion of Area 1), was drilled to the bedrock surface. Bedrock was encountered at a depth of 74 feet (53 feet below msl). The circa 1910 Chief Engineering Report (Pennsylvania Tunnel and Terminal Railroad Company, 1910) stated that bedrock was exposed in the stream bed of Dutch Kills Creek, near the south abutment of the Thompson Avenue Bridge and under the LIRR freight tracks on the north side of the Yard. This report also states that bedrock was generally located 30 to 50 feet beneath the wetland (approximately in 1907).

2.6 Hydrogeology

Published hydrogeologic data, (i.e., Buxton et al., 1981: McClymonds and Franke, 1972), historic data generated by the United States Geologic Survey (USGS), and Yard-specific water level elevation and aquifer test data collected during previous investigations conducted by Roux Associates were evaluated to define the historic and current hydrogeologic conditions observed at the Yard. These data were used to prepare water level elevation maps and hydrographs, calculate horizontal and vertical hydraulic gradients, estimate the hydraulic coefficients, and calculate groundwater flow rates. Discussion of these parameters is given below in the following sections.

2.6.1 Regional Hydrogeology

Groundwater in the area occurs under water-table (unconfined) conditions in the Upper Glacial aquifer. Regional groundwater flow in the area is to the northwest, eventually discharging to the East River approximately one mile northwest of the Yard (McClymonds and Franke, 1972). Vertical flow within the aquifer changes from a downward flow in central Queens to an upward flow nearing the East River, where groundwater discharges. The published horizontal hydraulic conductivity of the Upper Glacial aquifer in Queens County ranges from 214 feet per day (McClymonds and Franke, 1972) to 270 feet per day (Franke and Cohen, 1972).

2.6.1.1 Historic Pumping in the Upper Glacial Aquifer

Historic groundwater flow trends in Queens, as well as most of New York City, have been affected greatly by previous groundwater pumping activities. Groundwater pumping activities were conducted mainly for industrial and public water supply purposes beginning in the early twentieth century. Currently, Queens receives potable water from upstate New York. However, prior to receiving potable water from upstate New York, Queens depended almost entirely on groundwater pumped from underlying aquifers. The affects of these pumping activities are extremely evident when reviewing historic water-level data. Published water-level data for Long Island show that from the early 1930s to about 1960 the water table within Kings County and western Queens County was depressed to elevations below sea level due to over pumpage. The cone of depression (as much as 35 feet below sea level during the peak of pumping) caused significant salt-water intrusion into the Upper Glacial and confined aquifers beneath these areas, and as far inland as the center of Kings County (Smolensky, 1983). Historical data for wells

near the Yard indicate that salt-water intrusion also affected the aquifers beneath the Yard. In documentation obtained from a public records (Freedom of Information Act – FOIA) search, two bedrock wells (Q-173 and Q-58) are noted as having brackish water conditions during 1925 and 1932, respectively. Both wells are located northeast of the Yard, with well Q-173 being the closest (within 500 feet of the Yard). However, published data indicate that by the late-1950s the cone of depression within Queens County had recovered (Smolensky, 1983). Current water level elevations at the Yard have returned to pre-pumping elevations, ranging from 8 to 23 feet above mean sea level. However, the effects of the historical salt-water intrusion can still be detected in groundwater quality, which exhibits elevated concentrations of sodium, chloride and total dissolved solids (Soren, 1971). The Supplemental OU-6 RI data presented in this report (collected in 2008) indicate that saline groundwater conditions still exist beneath much of the Yard.

The MTA ESA project has performed, and will continue to perform extensive dewatering activities proximate to the Yard. As a requirement of the NYCDEP discharge permit, ESA is routinely monitoring groundwater quality associated with these dewatering activities. These dewatering activities may be affecting groundwater flow directions and hydraulic gradients in the Yard.

2.6.1.2 Regional Groundwater Quality

Regional groundwater quality of the Upper Glacial aquifer is characterized as having a wide range of iron and manganese concentrations (Buxton, et al., 1981). Concentrations of iron and manganese increase as conditions become anoxic (i.e., as the dissolved oxygen content decreases). Anoxic conditions are typically associated with swamp or wetland deposits, such as those buried in the northeastern and western portions of the Yard.

2.6.2 Yard Hydrogeology

Groundwater beneath the Yard occurs under water table (unconfined) conditions. The water table lies between 1 and 25 feet below land surface and occurs in either fill deposits or the Upper Pleistocene glacial deposits. The saturated Upper Pleistocene deposits comprise the Upper Glacial aquifer. Beneath the Yard, the saturated fill deposits and the shallow Upper Glacial aquifer were not always distinguishable, and are, therefore, collectively referred to as shallow

deposits (which contain the water table). Deeper wells (wells constructed with screen zones set entirely below the water table) at the Yard installed by Roux Associates (generally designated by a "D") are screened approximately 25 feet below the water table, but are still within the Upper Glacial aquifer. The MTA has also installed a significant number of wells at the Yard, most of which are constructed with screen zones set entirely below the water table, and are therefore considered deep wells. Similar to the deep wells installed by Roux Associates, these deep wells are also still within the Upper Glacial aquifer. The well construction for East Side Access deep wells varies. The shallowest of the deep wells are constructed with the top of screen set at approximately 18 feet bls, whereas the deepest ESA well at the Yard is constructed with the top of screen set at 89 feet bls. Most ESA wells are screened in the 40 to 50 feet bls range. Table 1 provides a complete summary of the construction of all wells at the Yard, including those installed by Roux Associates and those installed by others, and includes both current wells, and wells that have since been abandoned, destroyed, or unable to be located. Table 1 also provides a summary of which wells are water table wells, and which wells are deep wells at the Yard. Well construction elevation data, both relative to land surface, and relative to the North American Vertical Datum 1988 mean sea level (NAVD 88) are also provided in Table 1.

Over the course of the multiple environmental investigations completed at the Yard by Roux Associates, beginning with the Phase I RI (1991) through the implementation of the OU-6 RI (1997), multiple historic rounds of water level measurements were collected. Additionally, frequent water level measurements were collected in OU-3 as part of the various Interim Remedial Measures (IRMs) implemented. Tables providing a summary of the historic water level elevations and SPH thickness measurements (limited to OU-3) generated during these pervious water level rounds are provided in Appendix B. More current water level and SPH thickness measurements collected in OU-3 can be found in the Final OU-3 RI Report. During the implementation of the Supplemental OU-6 RI scope of work (2008), water level measurements were collected by Roux Associates from monitoring wells at the Yard on the following dates: May 21 and June 2 through 5, 2008. The MTA, as part of the ESA project, collected water level measurements on June 10, June 11, June 16, June 17, June 18, June 25, and July 7, 2008. Due to the close proximity in the timeframe of these gauging events, Roux Associates and ESA have collaborated and shared water level data. Table 2 presents a summary of the water level measurements collected during these rounds (May through July 2008).

Furthermore, water level elevations were then computed relative to the mean sea level (NAVD 88), and summarized in Table 2. Groundwater flow patterns for the water table and deeper Upper Glacial aquifer at the Yard during May, June, and July 2008 are shown in Plates 2 and 3, respectively.

As part of the previous OU-6 RI scope of work (implemented in 1997), multiple rounds of water level measurements were taken in the well clusters at the Yard to determine vertical hydraulic gradients, groundwater flow patterns within the Upper Glacial aquifer, and the hydraulic relationship between the water table and the deeper Upper Glacial aquifer. Prior to wells MW-40D, MW-47 and MW-57 being damaged and subsequently abandoned (April 1998), eight well clusters existed across the Yard: four clusters within Area 1 (MW-19/MW-39D, MW-16/MW-23D, MW-49/MW-38D and MW-57/MW-40D) and four clusters facility wide (MW-43/MW-44D, MW-47/MW-48D, MW-61/MW-62D and MW-68/MW-69D). Historic water level data for these wells are included in Appendix B. Measurements obtained from monitoring well MW-16 were not used because the well contained (SPH) and was part of the OU-3 IRM system. In 2008, only one of the original eight well clusters remained (MW-19/MW-39D). Additionally, as a result of replacing destroyed well MW-61 with new well MW-83, a new cluster (MW-83/MW-62D) was formed, and through the utilization of wells installed by Groundwater & Environmental Services, Inc. (GES) for the neighboring Standard Motors Products, Inc. (SMP) site, two additional shallow/deep well clusters were utilized (MW-9S/MW-9D, and MW-13S/MW-13D). Historic vertical hydraulic gradient calculations from February 8, 1993, June 14, 1994, and June 17-19, 1997 are included in Table 3. Further, the most recent vertical hydraulic gradient calculations from June 2-4, 2008 that were completed as part of the Supplemental OU-6 RI are also included in Table 3.

2.6.2.1 Groundwater Flow Patterns

Based on the Supplemental OU-6 RI data generated in 2008, groundwater within the shallow deposits flows predominantly west beneath the Yard (Plate 2). However, between Queens Boulevard and Honeywell Street, groundwater flows northerly and northwesterly toward the buried flow path of Dutch Kills Creek and/or the East River. This flow pattern is very similar to that exhibited in previous comprehensive water level rounds completed at the Yard (i.e., June 1997), as documented in the 1999 OU-6 RI (Roux Associates, 1999).

The groundwater flow lines shown in Plate 2 appear to mimic the topographic contours of the 1890 map, which depict a topographic high (presumably consisting of glacial till) in the area between Queens Boulevard and Honeywell Street, and Dutch Kills Creek flowing through the western portion of the Yard. Since in-situ glacial till is much less permeable than reworked glacial till (fill), horizontal flow gradients are expected to be much steeper within the in-situ deposits. The water level contours in the western portion of the Yard parallel the former flow path of Dutch Kills Creek (Plate 1), indicating that the buried Dutch Kills stream bed along the western edge of the Yard remains a groundwater discharge area. Water level elevations at the Yard may also be affected by a tidal influence associated with the relict stream channel of Dutch Kills, extensive bulkheaded areas, and parking lot drainage.

Water level elevations from the deep wells installed by Roux Associates (i.e., designated with "D"), and deep ESA wells were collected by Roux Associates in 2008 as part of the Supplemental OU-6 RI and by ESA, and were used to prepare a water level elevation map to determine groundwater flow patterns within the deeper Upper Glacial aquifer (Plate 3). Based on the data generated during the Supplemental OU-6 RI in the deeper deposits, groundwater predominantly flows west across the Yard. Similar to the water table groundwater flow, the deep groundwater flow has a northwest component between Queens Boulevard and Honeywell Street; however, this component is not as pronounced in the deep groundwater flow. Although a northwest flow component does exist in the deep groundwater flow map, it is not as well defined as it is on the water table groundwater flow map. This indicates that, similar to shallow water, deep groundwater flow is likely influenced by factors such as site topography and the buried Dutch Kills stream bed, however, this influence is not as apparent.

As shown in Plates 2 and 3, former monitoring wells TP-9, MW-30, MW-34, MW-47, and MW-61 and currently existing monitoring wells TP-10, MW-48D, MW-62D, MW-80, MW-83, MW-84, and TE-MW-QA-2 were installed at hydraulically upgradient portions of the Yard, near the Yard perimeter. Groundwater quality data from these wells, generated during the initial OU-6 RI and/or during the Supplemental OU-6 RI, were used to determine background ranges for metals in groundwater. Furthermore, data from these upgradient wells were used to determine background groundwater quality, and identify contaminants migrating onto the Yard

from upgradient, off-site sources. Additional discussion regarding groundwater quality data is provided below in Section 5.0 Nature and Extent of Contamination.

2.6.2.2 Horizontal Gradients

Horizontal flow gradients within the shallow deposits range from approximately 0.001 feet per foot from the 17-foot contour west to MW-83, up to 0.011 feet per foot from the 11-foot contour to MW-27 (near Area 9, west of the and Honeywell Street). The average shallow horizontal flow gradient for the Yard, calculated between the 21-foot contour and MW-90 is 0.003 feet per foot. An average horizontal flow gradient for the Yard of 0.003 feet per foot was calculated for the deeper deposits between the 17-foot contour and well TE-MW-A-1. These values are indicative of a relatively flat water table surface.

When compared to the geologic features of the Yard, lower horizontal gradients (i.e., a flatter water table or potentiometric surface) appear to correspond with areas of the Yard known to have been filled. These filled areas are generally less compacted and, therefore, more permeable than the undisturbed glacial deposits. These areas include the western portion of the Yard north of the LIRR right-of-way, and the central portion of the Yard between 39th Street and Honeywell Street. Areas of the Yard showing steeper horizontal gradients (i.e., less permeable deposits) include the northeast portion of the Yard, and the western portion of OU-3, extending west beyond the Honeywell Street bridge.

2.6.2.3 Vertical Gradients

The vertical gradients at each well cluster were calculated according to the following formula.

```
[Water – Level Elevation (shallow well)] – [Water – Level Elevation (deep well)]
[Elevation of Screen Center (shallow well)] – [Elevation of Screen Center (deep well)]
```

Based on this formula, a negative number represents an upward gradient, and a positive number represents a downward gradient. Vertical gradients were calculated using available well clusters on February 8, 1993, June 14, 1994, June 17-19, 1997, and June 2-4, 2008. Vertical gradient calculations for these gauging events are provided in Table 3, and described below.

February 8, 1993

On February 8, 1993, vertical gradients were calculated from well clusters MW-47/MW-48D, and MW-43/MW-44D. Well cluster MW-16/MW-23D also existed at this time in OU-3, however, the vertical direction of groundwater could not be determined with any certainty due to the significant SPH thickness present in monitoring well MW-16. The results are described below:

- at upgradient cluster MW-47/MW-48D, groundwater is flowing downward at an approximate vertical gradient of 0.0801 feet per foot (ft/ft); and
- at downgradient cluster MW-43/MW-44D, groundwater is flowing slightly upward with an approximate vertical gradient of -0.0030 ft/ft.

June 14, 1994

An additional round of water levels was completed at the Yard on June 14, 1994. These data were utilized to determine vertical gradients for all newly-installed clusters and confirm the vertical gradients previously calculated for clusters MW-43/MW-44D and MW 47/MW 48D. As previously stated, vertical gradients were not calculated for cluster MW 16/MW-23D due to the significant SPH thickness within Monitoring Well MW-16. The June 1994 data indicate that:

- at upgradient cluster MW-47/MW-48D, groundwater is flowing downward at an approximate vertical gradient of 0.1212 ft/ft, confirming the previous flow direction calculated for this cluster;
- at upgradient cluster MW-61/MW-62D, groundwater is flowing slightly downward at an approximate vertical gradient of 0.0011 ft/ft;
- at OU-3 clusters MW-19/MW-39D and MW-49/MW-38D, groundwater is flowing upward with approximate vertical gradients of -0.0274 and -0.0270 ft/ft, respectively, while groundwater is flowing very slightly upward at -0.0008 ft/ft (nearly horizontal flow) at cluster MW-57/MW-40D; and
- at downgradient cluster MW-43/MW-44D, groundwater is flowing slightly upward with an approximate vertical gradient of -0.0015 ft/ft, confirming the previous upward flow direction calculated for this cluster.

June 17-19, 1997

An additional comprehensive round of water levels was measured on June 17-19, 1997. Vertical gradients calculated using the June 1997 data indicate similar findings to those listed above for clusters MW-47/MW-48D (0.1287 ft/ft, downward), MW-19/MW-39D (-0.0272 ft/ft, upward), MW-49/MW-38D (-0.0254 ft/ft, upward), and MW-57/MW-40D (-0.0016 ft/ft, slightly upward).

Data for MW-68/MW-69D indicate a slightly upward vertical gradient of -0.0007 ft/ft (nearly horizontal flow), and similarly, at nearby cluster MW-57/MW-40D a slight upward gradient of -0.0016 ft/ft was observed. However, the June 1997 data indicate vertical gradient changes as follows:

- at upgradient cluster MW-61/MW-62D, groundwater was calculated as flowing slightly upward at a vertical gradient of -0.0008 ft/ft (nearly horizontal flow), reversing the previous flow direction calculated for this cluster during 1994; and
- at downgradient cluster MW-43/MW-44D, groundwater was calculated as flowing slightly downward at a vertical gradient of 0.0035 ft/ft, reversing the previous flow direction calculated for this cluster during 1993 and 1994. This reversal was likely due to extensive dewatering for the New York City Transit Authority's 63rd Street Tunnel Project. The dewatering occurred along Northern Boulevard in close proximity to the Yard beginning in mid to late 1996.

June 2-4, 2008

Current vertical gradients were calculated using the June 2 through 4, 2008 measurements for the four clusters that currently exist at the Yard. Since the initial OU-6 RI measurements completed in 1997, all of the clusters used to calculate vertical gradient were destroyed except MW-19/MW-39D. In cluster MW-61/MW-62D, MW-61 was destroyed and MW-83 was installed as its replacement. Additionally, well clusters MW-9S/MW-9D and MW-13S/MW-13D have since been installed by GES as part of the RI efforts completed associated with the SMP site (located immediately north of the Yard, west of 39th Street. These calculations indicate the following:

- at upgradient cluster MW-9S/MW-9D, groundwater is flowing downward at 0.0051 ft/ft;
- at upgradient cluster MW-13S/MW-13D, groundwater is flowing upward at -0.0028 ft/ft;
- at cluster MW-19/MW-39D, groundwater is flowing upward at -0.0560 ft/ft; and
- at cluster MW-83/MW-62D, groundwater is flowing slightly upward at -0.0007 ft/ft.

In comparison to the 1997 data, cluster MW-19/MW-39D has increased its upward flow in 2008 (-0.0272 ft/ft to -0.0560ft/ft). The cluster of MW-83/MW-62D (formerly MW-61/MW-62D in 1997) has remained almost identical (very slightly upward flow direction).

Based on a collective review of all four rounds of vertical gradient data generated, the following conclusions can be reached regarding vertical groundwater flow at the Yard. Note that these

conclusions are similar to those reached during the OU-6 RI submitted in 1999 (Roux Associates, 1999a). These data generated in 2008 supports these conclusions, where applicable.

The downward gradients at cluster MW-47/MW-48D observed in 1993, 1993, and 1997 indicate that the area near the northeastern corner of the Yard is a ground-water recharge area. Recharge is expected in this location based on historical information, which shows that a wetland was located in this area prior to being filled. In general, vertical gradients change from downward to upward with nearing proximity to the buried flow path of Dutch Kills Creek and the East River, the ground-water discharge areas. The upward flow measured beneath OU-3, and sometimes present along the downgradient property boundary, indicate that the northwest portion of the Yard is a discharge zone. Historical documentation confirms upward flow in the central portion of the Yard. Historic well search results have previously identified documents describing four wells (approximately 30 feet deep) located on-site west of Honeywell Street between Northern Boulevard and Skillman Avenue, as being "partly flowing". These wells were abandoned during 1926. A second group of four flowing wells was formerly located south of Skillman Avenue and west of Bridge Plaza (59th Street).

Stronger upward gradients are expected to occur with closer proximity to the buried flow path of Dutch Kills Creek and the East River. Strong upward gradients have historically been observed in OU-3 clusters MW-19/MW-39D and MW-49/MW-38D, when compared to the slight upward flow (nearly horizontal flow) seen at cluster MW-57/MW-40D. During the 1993 and 1994 water level rounds, downgradient cluster MW-43/MW-44D also showed a stronger upward gradient compared to cluster MW-57/MW-40D. The upward flow observed beneath OU-3 and the downgradient portion of the Yard (with the exception of June 1997) reduces or prevents the downward migration of contaminants within the aquifer, if present. In addition, the upward gradients beneath OU-3 assist in containment of the SPH accumulation by reducing or preventing the petroleum's impact on underlying groundwater quality. The upward vertical gradient in OU-3 was confirmed in 2008 with the water level elevations observed in cluster MW-19/MW-39D.

2.6.2.4 Hydraulic Coefficients

Hydraulic coefficients for the saturated fill deposits and Upper Glacial aquifer at the Yard were determined during the Phase I RI and a preliminary evaluation of the feasibility of dewatering was conducted related to the construction of the HSTF S&I Building. Initially, estimates of the horizontal hydraulic conductivity (K_H) were calculated from slug tests performed in shallow monitoring wells that were screened across the water table during the Phase I RI in 1991. These K_H values are representative of the varied geologic unit characteristics found at the water table at the Yard (i.e., tight clayey silt to coarse sands and gravel). The K_H values calculated during the Phase I RI are lower that the regional published K_H values cited in Section 2.6.1. The data generated during the Phase I suggest a horizontal K_H range of 0.59 to 60 feet per day (ft/d) at the Yard.

Several years later, during the dewatering feasibility work, a pumping test, and multiple slug tests were performed within OU-3 wells, and two slug tests were performed south of OU-3. Six piezometers were installed in the vicinity of Monitoring Well MW-40D (designated P-1D, P-2D, P-3D, P-4D, P-5S, and P-6S) prior to performing the pumping test on this well (Figure 3). Well construction and geologic logs for these piezometers are included in Appendices B.

Hydraulic coefficients derived from these additional slug tests suggest that K_H values beneath OU-3 are higher than those determined facility-wide during the Phase I RI, with calculated values ranging from 2.36 ft/d in the shallow deposits (MW-49) to approximately 127 ft/d in the deeper deposits (MW-40D). The higher values determined for OU-3 wells, particularly the deeper OU-3 wells, are attributed to the 4-foot thick cobble layer present in the subsurface from the vicinity of MW-44D in the west, through OU-3 and MW-40D, and continuing to MW-48D near the eastern boundary of the Yard. The following hydraulic coefficients for the water table aquifer were calculated from data derived during the pumping test performed on well MW-40D:

- an average K_H of 462 ft/d;
- an average transmissivity (T) of 33,135 square feet per day (ft²/d);
- an elastic storage coefficient range of 0.00001 to 0.036;
- a specific yield or water table storage coefficient range of 0.02 to 0.280; and
- an average vertical hydraulic conductivity (K_V) of 48 ft/d.

Using the average values calculated for K_H and K_V , the anisotropy (K_V : K_H) of the water table aquifer was calculated to be 0.10. All calculations are based on a saturated thickness of 70.59 feet determined near MW-40D.

These hydraulic coefficients suggest that the aquifer is highly transmissive. In general, higher K_H and T values were obtained for wells screened within the deeper deposits. The average K_H and T values calculated for the shallow wells/piezometers near MW-40D are 410 ft/d and 28,950 ft²/d, respectively. The average K_H and T values calculated for the deeper deposits screened by MW-40D and nearby piezometers are 500 ft/d and 35,300 ft²/d, respectively. Since the pumping well (MW-40D) screens a cobble layer, the calculated hydraulic coefficients were compared to published values for gravels, sand and gravel, and coarse sands of the Upper Glacial aquifer. According to McClymonds and Franke (1972), the average K_H for these deposits is 270 to 400 ft/d, which approximates the K_H value calculated for the Yard within OU-3 during the pumping test completed at MW-40D. Since the hydraulic coefficients derived from pumping test data are considered more accurate than slug test data and agree with published values, these data are used in the groundwater flow rate calculations presented in the following section.

2.6.2.5 Groundwater Flow Rates

Based on previously derived hydraulic coefficients for the Yard (see Section 2.6.2.4), and horizontal flow gradients calculated from Supplemental OU-6 RI water level measurements collected in 2008, average groundwater flow velocities within both the shallow deposits and the deeper deposits at the Yard were calculated using the following equation:

$$v = K_H \frac{I_H}{n_e}$$

Where:

v = the velocity of groundwater along a segment of a flow line (ft/d);

 K_H = the horizontal hydraulic conductivity of the aquifer (ft/d);

I_H = the horizontal hydraulic gradient along a segment of a flow line (ft/ft); and

 n_e = the effective porosity of the aquifer (dimensionless).

Using an average K_H of 410 ft/d for the shallow deposits at the Yard, an average horizontal hydraulic gradient of 0.003 ft/ft for the water table, based on Supplemental OU-6 RI data collected in 2008, and an estimated effective porosity of 0.25 (Walton, 1991), the groundwater flow velocity through the shallow deposits was calculated to be 4.92 ft/d. Using an average K_H of 500 ft/d for the deeper deposits at the Yard, an average horizontal hydraulic gradient of 0.003 ft/ft for the deeper deposits, based on Supplemental OU-6 RI data collected in 2008, and an average effective porosity of 0.35 for coarser deposits (Walton, 1991), the groundwater flow velocity through the deeper deposits was calculated to be 4.29 ft/d.

3.0 SUMMARY OF PREVIOUS OU-6 INVESTIGATIONS

This section provides a summary of all previous investigations conducted at the Yard related to OU-6. The results of all groundwater investigations conducted prior to 1999 were provided to the NYSDEC in the OU-6 RI report (Roux Associates, 1999a), and are summarized below. Additional investigation activities with groundwater or vapor components (i.e., relevant to OU-6) were completed at the Yard in the interim time period between the submittal of the OU-6 RI (1999) and the implementation of the Supplemental OU-6 RI (2008 and 2009). These interim investigation activities are also summarized below. In addition, saturated soil samples have been collected by Roux Associates and by others for the MTA ESA project. All saturated soil data is presented in this OU-6 RI report. The methodology and scope of the Supplemental OU-6 RI, which was conducted in 2008 and 2009 is discussed in detail in Section 4.0 of this report, and the results are discussed in detail in Section 5.0. Data summary tables of all groundwater analytical results for samples collected prior to the implementation of the initial OU-6 RI scope of work in June 1997 are provided in Appendix A. Data summary tables of all OU-6 groundwater analytical data for samples collected subsequent to, and including the initial OU-6 RI (1997), are provided in Tables 5 through 9. Data summary tables of all saturated soil samples are provided in Tables 12 through 15. Plate 6 presents the locations of all soil borings completed at the Yard where saturated soil samples were collected.

Previous investigations performed at the Yard include investigation activities conducted by Roux Associates, Geraghty and Miller (G&M), AKRF, Inc. (AKRF), the triventure team of PB Americas, Inc., STV Incorporated, and Parsons Transportation Group (PB/STV/PTG), identified as Parsons, Brinckerhoff, Quade & Douglas, Inc./STV Incorporated (PB/STV) in earlier phases of the ESA project, Environmental Management and Compliance Group, Inc. (EMCG), GES, and the NYCTA. Investigations conducted by AKRF, PB/STV/PTG and EMCG were conducted as part of the MTA/LIRR ESA project. Investigations conducted by the NYCTA were conducted as part of the MTA 63rd Street Tunnel Project, and investigations conducted by GES were part of an RI/FS completed at the SMP Site. The SMP Site is located at 37-18 Northern Boulevard, between Northern Boulevard and the Yard, hydraulically upgradient/sidegradient of the Yard. An RI/FS was conducted at the SMP Site, as stipulated in the Order on Consent between the NYSDEC and SMP. To facilitate groundwater investigation activities, Roux Associates, AKRF, PB/STV/PTG, and GES have installed monitoring wells at or

in the immediate vicinity of the Yard. The locations of all existing monitoring wells installed at or in the immediate vicinity of the Yard are presented in Plate 1. Abandoned or destroyed monitoring wells are also included in Plate 1. Table 1 summarizes all available well construction details for all wells at or in the immediate vicinity of the Yard (includes existing, abandoned or destroyed wells) installed by Roux Associates, AKRF, PB/STV/PTG, and GES. A comprehensive list of all groundwater samples previously collected at the Yard (including samples collected by Roux Associates, AKRF, PB/STV/PTG, GES, and EMCG) are presented in Table 4. A summary of all previous investigations conducted both by Roux Associates, and by others is provided below.

3.1 Previous Investigation Completed by Geraghty & Miller Related to OU-6 (1986)

Geraghty & Miller conducted an investigation of the former underground storage tank (UST) area, the Engine House, the former Oil House, and the former fuel transfer area in OU-3 to determine if leakage of hydrocarbon compounds had occurred and, if so, to determine the extent of contamination in both soil and groundwater. In their June 1986 report titled "Results of Hydrogeologic Investigation at Amtrak, Sunnyside Yard, Queens, New York Train Yard" (Geraghty & Miller, Inc., 1986), G&M concluded that a plume of SPH exists in the area east of the Engine House, and that this plume appears to have originated at the USTs of the former fuel storage area and has migrated beyond the Yard's northern property boundary. Polychlorinated biphenyls were detected in this SPH plume at concentrations ranging from 5 to 360 parts per million (ppm), with the highest concentrations being detected in samples located immediately east of the Engine House. PCBs were also detected in soil samples, with concentrations ranging from 0.19 to 24 ppm in the 0 to 2 ft bls interval, but no PCBs were detected in groundwater. (Geraghty & Miller, Inc., 1986).

3.2 Previous Investigations Conducted by Roux Associates Through 1999

Prior to the submittal of the OU-6 RI report in 1999 (Roux Associates, 1999a), Roux Associates, on behalf of Amtrak and NJTC, conducted numerous investigations throughout the Yard. Many of these investigations contained both soil and groundwater components. Major investigations that included a saturated soil and/or groundwater component, and are therefore relevant to OU-6, include the following:

• Phase I RI (Roux Associates, 1992a);

- Phase II RI/Phase II RI Addendum (Roux Associates, 1995);
- Limited Phase II Environmental Site Assessment (i.e., HSTF S&I/OU-1) (Roux Associates, 1996);
- Focused Remedial Investigation for OU-2 (Roux Associates, 1997a); and
- OU-6 RI (1999) (Roux Associates, 1999a).

A summary of each scope of work conducted prior to 1999, as it pertains to OU-6, is provided below. A cumulative summary of the results and findings of these investigations is provided below in Section 3.2.2.

3.2.1 Scopes of Work Completed Through 1999

A chronological summary of OU-6 related scopes of work performed by Roux Associates prior to 1999 is presented below.

3.2.1.1 Phase I RI

The Phase I RI work was conducted from October 1990 to March 1991 in accordance with the document titled "Work Plan for the Remedial Investigation and Feasibility Study, Sunnyside Yard, Queens, New York", dated March 14, 1989, revised February 27, 1990 (Roux Associates, 1990). The scope of this investigation included the collection of 28 soil samples from 24 soil or well borings and the collection of groundwater samples from 13 monitoring wells. The purpose of the Phase I Investigation was to accomplish the following: develop data necessary to evaluate the nature, extent and potential migration pathways of SPH containing concentrations of PCBs that had previously been identified; determine the nature and extent of hydrocarbon constituents and PCBs in soil; further define the extent of the SPH plume; determine groundwater quality; and determine hydrogeologic characteristics. The findings from this investigation are documented in the Phase I RI Report (Roux Associates, 1992a). Groundwater samples collected as part of the Phase I RI are summarized in Table 4, and groundwater quality data summary tables are presented in Appendix A. Both saturated soil and unsaturated soil samples were collected and analyzed during the Phase I RI. All but one of the saturated soil samples were analyzed for total petroleum hydrocarbons only. That data was deemed unusable by data validation and is not presented in this OU-6 RI report. The data from the saturated soil sample collected from soil boring S-35 is included in Tables 12 through 15.

3.2.1.2 Phase II RI/Phase II RI Addendum

The Phase II RI was conducted in accordance with the document titled "Work Plan for the Phase II Remedial Investigation, Sunnyside Yard, Queens, New York", dated August 5, 1992 (Roux Associates, 1992). The purpose of this RI was to fill in data gaps remaining from the Phase I RI and previous investigations at the Yard. The media that were investigated during the Phase II RI included unsaturated soil, SPH, groundwater (shallow and deep), sewer water and sewer sediment. Specifically, with respect to OU-6, the Phase II RI was designed to:

- further delineate the extent of contaminants detected in groundwater during the Phase I RI;
- determine if migration of contaminants in groundwater is occurring either on-site or off-site;
- develop additional information regarding the hydraulic relationship between the shallow deposits and the deeper Upper Glacial aquifer underlying the Yard; and
- confirm the analytical results presented in the Phase I RI report.

The Phase II RI activities included the installation of 19 additional monitoring wells and two temporary wellpoints, and the collection of 29 groundwater samples. Additionally, hydrogeologic investigations were conducted to:

- determine the relationship between the shallow deposits and the deeper Upper Glacial aquifer;
- determine vertical hydraulic gradients and deeper groundwater flow patterns; and
- characterize groundwater quality in the Upper Glacial aquifer.

The Phase II RI Addendum scope of work supplemented the Phase II RI scope of work. The objectives of the Phase II RI Addendum were to complete the previously postponed Phase II RI tasks and to adequately delineate (using permanent monitoring wells) the extent of the SPH accumulation recently detected to the east and southeast of the previously delineated accumulation. The scope of work for the Phase II RI Addendum was submitted to the NYSDEC on May 28, 1993, and revised on August 4, 1993 (Roux Associates, 1993a). The Phase II RI Addendum scope of work with respect to OU-6 included the following:

• completion of the field work (i.e., installation and sampling of one shallow and three deep monitoring wells) previously proposed for Area 1 (note that Area 1 was subsequently renamed OU-3) in the August 5, 1992 work plan for the Phase II RI;

- installation and sampling of 13 monitoring wells to delineate the nature and extent of the SPH accumulation in Area 1 including the recently detected area south of the Metro Shop;
- proper abandonment of Monitoring Wells MW-24 and MW-26 that were found during the Phase II RI to have been destroyed;
- installation and sampling of one shallow monitoring well to replace the destroyed Monitoring Wells MW-24 and MW-26;
- installation and sampling of one deep monitoring well in a cluster with the MW-24 and MW-26 replacement well to further characterize the hydraulic relationship between the shallow deposits and the deeper Upper Glacial aquifer;
- resampling of three monitoring locations to verify the absence of dissolved PCBs in groundwater; and
- installation and sampling of a temporary wellpoint (TW-3) in the vicinity of MW-26.

Complete findings from the Phase II RI/Phase II RI Addendum are documented in the Phase II RI Report (Roux Associates, 1995). Additionally, groundwater samples collected as part of the Phase II RI/Phase II RI Addendum are summarized in Table 4, and groundwater quality data summary tables are presented in Appendix A.

3.2.1.3 Limited Phase II Environmental Site Assessment (i.e., HSTF S&I/OU-1)

From April 9 to May 9, 1996, an investigation was performed at the then proposed HSTF S&I Building footprint (i.e., OU-1) and adjacent portions of the Yard. With respect to OU-6, monitoring wells, temporary piezometers, and wellpoints were installed, groundwater samples were collected and analyzed, and water levels were measured. The results of this investigation are documented in the Limited Phase II Environmental Assessment Report (Roux Associates, 1996). No saturated soil samples were collected as part of this investigation. Summaries of the scope of the investigation are provided below:

- To confirm that the location of the SHP accumulation had not changed in the vicinity of OU-1, five hand borings (TP-1 through TP-5) were completed to approximately two feet below the water table on April 9, 1996;
- To further evaluate hydrogeologic and groundwater quality conditions in and around OU-1, six monitoring wells (MW-64 through MW-68, and MW-69D) were installed, and two soil boring locations (TP-6 and TP-7) within the proposed HSTF S&I Building footprint were completed as 2-inch diameter temporary piezometers;

- On May 2, 1996, water level and SPH thickness measurements were performed to determine current groundwater elevations and groundwater flow patterns and to determine the location of the SPH accumulation in the vicinity of the proposed HSTF S&I Building; and
- On May 2, 1996, Roux Associates collected groundwater samples from five new monitoring wells (MW-64 through MW-68) and three previously-installed monitoring wells (MW-57, MW-59, and MW-63) surrounding the proposed HSTF S&I Building footprint.

Groundwater samples collected as part of the Limited Phase II Environmental Site Assessment are summarized in Table 4, and groundwater quality data summary tables are presented in Appendix A.

3.2.1.4 Focused Remedial Investigation for OU-2

As part of the field investigation performed in OU-2 on March 24 and 25, 1997, three 2-inch diameter monitoring wells (TP-8 through TP-10) were installed to evaluate groundwater elevations and flow directions. These wells were eventually incorporated into the OU-6 RI and used to develop groundwater quality data. Monitoring well construction details are summarized in Table 1. The results of this investigation were presented in the report titled "Focused Remedial Investigation for Operable Unit 2, Sunnyside Yard, Queens, New York" (Roux Associates, 1997a). Additionally, groundwater samples collected as part of this focused RI are summarized in Table 4, and groundwater quality data summary tables are presented in Appendix A. No saturated soil samples were collected as part of this investigation.

3.2.1.5 OU-6 RI (1999)

In June 1997, Roux Associates collected groundwater samples from 32 active permanent and three temporary monitoring wells at the Yard as part of the OU-6 baseline sampling program in accordance with a June 2, 1997 letter to the NYSDEC (Roux Associates, 1997b) and the sampling procedures detailed in the Phase II RI Addendum Work Plan (Roux Associates, 1993). All wells that did not contain SPH (including a sheen) were sampled for Target Compound List (TCL) volatile organic compounds (VOCs), TCL semivolatile organic compounds (SVOCs), PCBs, and Target Analyte List (TAL) metals, total dissolved solids (TDS), and chloride. Temperature, pH, and conductivity measurements of the groundwater samples were collected and recorded in the field. The results of this investigation were documented in the OU-6 RI Report

dated May 14, 1999 (Roux Associates, 1999a). Groundwater samples collected as part of the OU-6 RI are summarized in Table 4, and groundwater quality data summary tables are presented in Tables 5 through 9.

3.2.2 Summary of Previous Investigations Findings

A cumulative summary of the findings and conclusions related to OU-6 from all investigations prior to, and including the OU-6 RI activities were presented in detail in the OU-6 RI reports dated May 14, 1999 (Roux Associates, 1999a), and are summarized below.

- OU-6 consists of the groundwater and saturated soil beneath the Yard (the Upper Glacial Aquifer). The Upper Glacial Aquifer is present beneath the entire Yard, and occurs under water table (unconfined) conditions.
- Shallow groundwater beneath the Yard (i.e., the Upper Glacial aquifer) flows predominantly west at an average rate of 5.7 to 6.6 feet per day (ft/d), discharging to the buried flow path of Dutch Kills Creek in the western portion of the Yard and/or the East River, located approximately one mile west of the Yard. Although Dutch Kills is now buried in the western portion of the Yard, it emerges south of the Yard before joining Newtown Creek (See Plate 1). Deeper groundwater flow is predominantly west across the Yard.
- Upward vertical gradients (i.e., upward groundwater flow) exist beneath the west and northwest portions of the Yard, including OU-3, reducing or preventing the downward migration of petroleum-related contaminants from the OU-3 SPH accumulation into OU-6. This is supported by analytical data from monitoring wells screened either beneath or hydraulically downgradient of the SPH accumulation.
- Saline groundwater is present throughout the southwest half of the Yard, and along the north side of the Yard where it correlates with a buried channel (i.e., cobble zone) that trends east-west through the Yard, connecting the buried Dutch Kills and saline groundwater lens with the buried northeast wetland. There are no chemical-specific standards for saline groundwater (i.e., Class GSA). Thirteen Yard wells (38 percent) contained saline groundwater (defined by the NYSDEC as groundwater containing chloride at concentrations >250 milligrams per liter (mg/L) and/or TDS at concentrations >1,000 mg/L).
- At least three plumes of chlorinated VOCs in groundwater had migrated onto the Yard from off-site sources and were not related to Yard activities. Two of these plumes were determined to exceed the New York State Class GA groundwater standards, presented in the Division of Water Technical and Operational Guidance Series (1.1.1) "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" (NYSDEC, 1998), as amended in April 2000 and June 2004 (AWQSGVs). One plume with chlorinated VOC exceedances originated south of the Yard (south of MW-34) and extended north through the Yard and former well MW-42: the source of this plume was unknown, but has since been confirmed to be at least partially attributed to the ACCO

- Brands, Inc. (ACCO), formerly Swingline Staples site. The second plume with chlorinated VOC exceedances originates at the SMP site (i.e., the known source) and has migrated south to former locations MW-64 and MW-65.
- Two known plumes of benzene, toluene, ethylbenzene, and xylenes (BTEX) in groundwater had migrated onto the Yard from off-site sources, and were not related to Yard activities. Benzene within one plume was determined to exceed groundwater standards (i.e., MW-35 on June 18, 1997). This exceedance was confirmed by a NYCTA split sample collected November 14, 1997.
- Seven metals were detected above both background ranges and groundwater standards. All of these exceedances were attributable to an off-site, upgradient source (i.e., SMP), with salt-water intrusion of the aquifer contributing to the concentrations of magnesium, and anoxic conditions within the aquifer (e.g., the buried northeast wetland) contributing to the concentrations of iron and manganese.
- No SVOCs were detected in Yard groundwater above groundwater standards. In addition, the only SVOC detected above the practical quantitation limit occurred in Monitoring Well MW-35. MW-35 is located north of the sewer line that parallels the northern boundary of the Yard and is hydraulically downgradient of SMP.
- No PCBs were detected in Yard groundwater above groundwater standards. Low concentrations of PCBs were only detected in two monitoring wells: MW-23D and former MW-25A. Monitoring Well MW-23D was screened beneath the OU-3 SPH accumulation. The source of the low PCB concentrations was likely related to the well construction of MW-23D through the PCB-contaminated SPH accumulation. Former monitoring well MW-25A was located near the north property boundary and no clear source has been identified for the low-level PCB detection.
- Groundwater quality data confirm that there were no exceedances of groundwater standards by VOCs, SVOCs, PCBs and metals beneath or downgradient of the SPH accumulation in OU-3. The source of the low BTEX concentrations (i.e., below groundwater standards and below the practical quantitation limit) detected within MW-38D is something other than the OU-3 SPH accumulation because:
 - 1. The top of the screen zone in MW-38D is more than 26 feet below the water table (and therefore, more than 26 feet below the SPH accumulation).
 - 2. No VOCs were detected in groundwater directly beneath the SPH accumulation (i.e., MW-23D).
 - 3. There was an upward hydraulic gradient at location MW-38D (-0.0254 ft/ft).
 - 4. All VOCs, including BTEX, were non-detect in the shallow well clustered with MW-38D (i.e., MW-49, where the screen zone straddles the water table and is at the same elevation as the SPH accumulation). Subsequent to this sampling, SPH was noted in MW-49.

- Five wells contained TDS concentrations above the Class GA standard of 500 mg/L, but below 1,000 mg/L (the concentration that defines saline groundwater [i.e., Class GSA]). The proximity of these wells to the buried wetlands and/or buried channel (i.e., cobble zone) suggests that the TDS levels are attributable to historical salt-water intrusion of the aquifer.
- Yard-related impacts to groundwater were limited to a hydrocarbon sheen in one well, MW-68, a benzene detection in MW-27 and unregulated detections in two wells: former well MW-59 (4-Methyl-2-Pentanone [MIBK]) and well MW-27 (MIBK).

3.3 Post OU-6 RI Investigation Activities (1997 through 2007)

Additional investigation activities related to OU-6 conducted by Roux Associates and/or the NYCTA that Roux Associates has received records for since submittal of the OU-6 RI are summarized below:

- The NYCTA collected groundwater samples from MW-19 and MW-35 for SVOC and PCB analysis on August 13, 1998 and February 25, June 3 and September 9, 1999. Analytical results for these samples did not indicate exceedances of groundwater standards.
- On September 27, 1999, SPH was detected in MW-49 (Plate 1) for the first time. Shortly after this detection of SPH in MW-49, a soil boring and monitoring well gauging program was implemented in OU-3. As a result of this program, it was determined that a narrow finger of SHP migrated approximately 55 feet west, just north of the Engine House Track 6. Additionally, a new monitoring well (MW-70) was installed downgradient of MW-49 to monitor for possible further westward migration of the SPH accumulation. The results of this soil boring program were submitted to the NYSDEC in a letter report from Roux Associates dated October 14, 1999 (Roux Associates, 1999b). SPH has never been detected in MW-70, indicating that the horizontal extent of this narrow finger of SPH has not increased since first detected in 1999.
- Roux Associates collected groundwater samples in October 2000 at three boring locations: TSB-9, TSB-10 and TSB-16 (Plate 1), as part of the OU-3 RI. The groundwater samples were collected utilizing a tube passed through the GeoprobeTM rods and a peristaltic pump (no filter-packed screens were installed). The samples collected were analyzed for TCL VOCs, TCL SVOCs, PCBs, TAL metals, chloride, and TDS. Sampling results were provided in the Roux Associates report entitled, "Operable Unit 3 Remedial Investigation Report," dated March 29, 2001 (Roux Associates, 2001). In summary, VOCs were detected above groundwater standards only at TSB-9. Ethylbenzene was detected as a concentration of 5.4 micrograms per liter (μg/L), which slightly exceeds the Class GA standard of 5 μg/L, and xylenes were detected at a concentration of 14.6 μg/L, exceeding the Class GA standard of 5 μg/L. Metals (arsenic, iron, manganese, and sodium) were also detected in groundwater above the Class GA standards in one or more of the samples. SVOCs and PCBs were not detected above groundwater standards. Since the groundwater samples were not collected from

permanent monitoring wells, standard procedures for well development, waiting period between development and sample collection and purging procedures were not applicable. As a result, the groundwater data developed for these locations was considered for screening purposes only.

- Roux Associates installed seven monitoring wells (MW-71 through MW-77) in OU-3 in April 2004. The locations of these new monitoring wells are presented in Plate 1. The purpose of these monitoring wells was to further monitor and evaluate SPH characteristics in OU-3. Since their installation, these wells have been gauged regularly for SPH.
- In June 2005, Roux Associates installed two additional shallow monitoring wells (MW-78 and MW-79) located to the east of the existing Commissary Building (See Plate 1). These two additional monitoring wells were installed, in part, to further characterize shallow groundwater quality in this portion of the Yard to support proposed construction activities. On July 5, 2005, groundwater samples were collected from both wells and analyzed for TCL VOCs, TCL SVOCs, PCBs, TAL metals, chloride, and TDS. The analytical results did not indicate exceedances of any groundwater quality standards. It is not longer expected that these proposed construction activities will be performed.
- In June 2005, Roux Associates collected 13 soil gas samples from 12 locations (12 samples and one duplicate sample). The soil gas samples were designated PC-1 through PC-12, and the locations are shown on Figure 4. A summary of the soil gas samples collected in June 2005 is presented in Table 10. The soil gas samples were collected using SUMMA canisters and were submitted for analysis for VOCs using USEPA Method TO-15. Several VOCs (including BTEX) were detected at relatively low concentrations. It is not longer expected that these proposed construction activities will be performed.
- Roux Associates installed four additional monitoring wells in OU-3 in July 2005. The monitoring wells are designated CTB-1, CTB-19, CTB-20, and CTB-21 and the locations of these wells are presented in Plate 1. These monitoring wells were installed primarily to further characterize the areal extent and thickness of the SPH plume in OU-3. To date, groundwater samples were never collected from these wells.

3.4 Previous Investigations Completed by AKRF Related to OU-6

AKRF installed and sampled four monitoring wells at the Yard during their 1999 site investigation performed as part of the East Side Access Project. These wells, designated as SSY-23, SSY-46, SSY-49, and SSY-51, are shown as green symbols in Plate 1. Groundwater samples collected from these four wells were analyzed for VOCs, SVOCs, metals, and PCBs/Pesticides. Results of the monitoring well installation/groundwater sampling activities are provided in the AKRF report entitled, "Detailed Environmental Site Investigation – Sunnyside

Yard, Sunnyside, New York," dated December 1999 (AKRF, 1999), and can be summarized as follows:

- The chlorinated VOCs 1,2-dichloroethene (1,2-DCE), trichloroethene (TCE), and tetrachloroethene (PCE) were detected at SSY-23 at concentrations of 34 µg/L, 40 µg/L, and 400 µg/L, respectively, exceeding the Class GA groundwater standard of 5 µg/L for each compound. These detections coincide with the chlorinated VOC plume originating off-site previously identified by Roux Associates.
- Metals detected in groundwater and their concentrations were similar to those observed by Roux Associates.
- No SVOCs, PCBs, or pesticides were detected in the groundwater samples.

Since the four AKRF wells are screened in portions of the aquifer that are of interest, the data for these wells has been incorporated into Roux Associates' master database for the Yard, and were evaluated in conjunction with data developed during the RI/FS described herein.

3.5 Previous Investigations Completed by PB/STV/PTG Related to OU-6

Monitoring well installation and sampling activities were performed by PB/STV/PTG as part of the East Side Access Project. A description of monitoring well installation/sampling activities are provided in the document entitled, "Findings Report for the Environmental Site Investigation of the Sunnyside Yard and Harold Interlocking, Sunnyside, Queens County, New York – East Side Access Project Alignments and Replacement Yards Study," dated January 2001 (PB/STV/PTG, 2001), and are summarized as follows:

- Fifteen monitoring wells were installed by PB/STV/PTG in the Yard at the locations shown in Plate 1. According to the PB/STV/PTG report referenced above, the monitoring wells are screened significantly below the water table, with an average screened interval depth of 45 to 55 ft below land surface. Screened interval depths ranged from 25 ft to 35 ft below land surface (TE-IB/OB-1) to 89 ft to 99 ft below land surface (TE-MW-IB-2).
- Roux Associates has data from one comprehensive set of groundwater samples collected from the fifteen PB/STV/PTG wells and four existing Roux Associates wells: MW-28, MW-34, MW-42 and MW-45 (Plate 1). Groundwater samples were analyzed for VOCs, SVOCs and total and dissolved metals.
- Analytical results indicate detections of VOCs, primarily chlorinated VOCs, at
 concentrations similar to those documented by Roux Associates, and coinciding with the
 chlorinated VOC plumes identified migrating onto the Yard from off-site sources.
 Concentrations of metals and SVOCs detected at the Yard were also similar to those
 documented by Roux Associates.

In addition, based on the PB/STV/PTG report entitled "Supplemental Environmental Site Investigation Findings Report Summary", dated February 2007 (PB/STV/PTG, 2007), two additional groundwater samples were collected from wells located in Sunnyside Yard. Groundwater samples were collected from previously installed wells TE-MW-IB-3 and TE-MW-D-2 on November 14, 2006 and September 26, 2006, respectively. Both groundwater samples were analyzed for VOCs, SVOCs, and total and dissolved metals. VOCs were not detected in either of these samples and benzo(b)fluoranthene was the only SVOC detected slightly above the NYSDEC AWQSGV (detected at 1.2 µg/L in sample TE-MW-D-2). Several total and dissolved metals were detected in both samples at concentrations similar to those documented by Roux Associates.

The data developed by PB/STV/PTG for both the wells installed by PB/STV/PTG and for the above-referenced Roux Associates wells were incorporated into the master database for the Yard and will be evaluated in conjunction with data developed during the RI/FS described herein in order to provide more extensive characterization of groundwater quality from the deeper portions of the Upper Glacial aquifer beneath the Yard.

3.6 Previous Investigations Completed by EMCG Related to OU-6

Groundwater sampling activities were conducted from 2003 through 2005 by EMCG in response to the NYSDEC permit requirements for dewatering activities conducted at the Queens Open-Cut Excavation at the Existing Bellmouth. The groundwater monitoring events included the collection of groundwater samples from existing Roux Associates' monitoring wells MW-19 and MW-35 (Plate 1). According to data supplied to Roux Associates by ESA, groundwater samples were collected from MW-19 on April 15, April 22, April 30, May 14, June 3, August 25, and December 15, 2003, January 26, and August 31, 2004, and March 15, 2005. Groundwater samples were collected from MW-35 by EMCG on April 15, April 22, August 25, and December 12, 2003, February 4, and August 31, 2004, and March 15, 2005. Table 4 presents specific analysis performed for each of the groundwater samples collected by EMCG. The results for these groundwater samples can be summarized as follows:

• To date, groundwater samples were collected at MW-19 on 10 dates and at MW-35 on seven dates from April 2003 through May 2005.

- Concentrations of VOCs (primarily PCE and TCE) were detected in both MW-19 and MW-35.
- Low concentrations of SVOCs were detected at MW-19 and MW-35.
- No PCBs were detected in the groundwater samples collected at MW-19 and MW-35.
- Lead was detected at MW-19 and MW-35 at concentrations ranging from 3 to 240 μg/L.
 Relatively low concentrations of barium, chromium, and selenium were also detected at MW-19.

Analytical results developed by EMCG for MW-19 and MW-35 have been incorporated into Roux Associates master database for the Yard, and were evaluated in conjunction with data developed during the RI/FS described herein.

3.7 Previous Investigations Completed by GES Related to OU-6

- As part of the RI/FS conducted at the SMP Site, GES completed investigation activities that included soil and groundwater components. As part of these activities, GES installed two monitoring well clusters (each containing one monitoring well screened in the shallow zone and one monitoring well screened deeper in the aquifer) located on the MTA/LIRR owned property between Sunnyside Yard and SMP. The locations of these well clusters, designated MW-9 and MW-13, are presented on Plate 1 and well construction details are presented in Table 1. Based on the information Roux Associates obtained through a Freedom of Information Act (FOIA) document review conducted at the NYSDEC Long Island City office, groundwater samples were collected from all four wells associated with the two well clusters on July 28, 2003 and submitted for TCL VOC analysis. The results of these groundwater samples are summarized below:
- The chlorinated VOC vinyl chloride was found in shallow well MW-9S at a concentration exceeding the Class GA groundwater standard and the chlorinated VOCs cis 1,2 dichloroethene (cis 1,2-DCE) and vinyl chloride were detected in the shallow well MW-13S at concentrations exceeding the Class GA groundwater standards. In addition, methyl tert-butyl ether (MTBE) was detected at a concentration exceeding the groundwater standard in MW-13S.
- The chlorinated VOCs vinyl chloride and cis 1,2-DCE were detected at concentrations exceeding the Class GA groundwater standards in the deep well MW-9D. In addition, benzene and MTBE were detected at concentrations exceeding the Class GA groundwater standards in well MW-9D. The chlorinated VOC cis 1,2-DCE and the non-chlorinated VOC MTBE were detected at concentrations exceeding the Class GA groundwater standards in deep well MW-13D.

Analytical results developed by GES for MW-9S, MW-9D, MW-13S, and MW-13D have been incorporated into Roux Associates' master database for the Yard and were evaluated in conjunction with data developed during the OU-6 RI/FS described herein.

3.8 Previous Investigations Completed Related to OU-4

Although OU-4 is a separate Operable Unit, and by definition independent from OU-6, a brief discussion of previous investigation activities conducted in OU-4 is provided below. This discussion is relevant to OU-6 since OU-4 (unsaturated soil) and OU-6 (saturated soil, groundwater and soil vapor) exist in such close proximity to each other, and can interact with each other. As discussed above in Section 1.0, in order to have a comprehensive, holistic approach to evaluating OU-4, datasets generated both by Roux Associates and MTA ESA at the Yard, for both unsaturated and saturated soils (current at the time) were include in the OU-4 RI (Roux Associates, 2008). Below is a summary of investigation activities conducted in OU-4 (through the submittal of the RI Report in 2008). Furthermore, Section 5.3 provides a summary of all saturated soil data, including data already provided in the OU-4 RI, as well as more recent data generated since the submittal of the OU-4 RI. This summary of saturated soil data includes data generated both by Roux Associates, and by MTA ESA at the Yard.

Subsequent to the Phase I and Phase II RIs, numerous soil sampling investigations were associated with soil characterization to accommodate track maintenance, utility installation, and construction performed on behalf of Amtrak and NJTC. Independent investigations have also been performed by MTA ESA within OU-4.

In summary, 1560 soil samples were collected from 1105 sampling locations within OU-4. The field activities and findings of the numerous investigations were described in the OU-4 RI report (Roux Associates, 2008). Sampling and analysis was heavily biased towards the Yard-specific compounds of concern, PCBs, SVOCs, cPAHs, and lead. Several investigations completed in OU-4 were specifically performed to characterize soil for immediate maintenance or replacement of track and switches or in anticipation of new construction. The following provides a summary of the findings from remedial investigations performed in OU-4:

coc	Number of Samples Analyzed	Number of Samples Exceeding the Yard Soil Cleanup Level	Maximum Concentration Exceeding the Yard Soil Cleanup Level
Total PCB	1331	51	25,000 mg/kg (SB-68)
Total SVOC	872	0	_
Lead	882	1	7,020 mg/kg (LLS-15)

Of the 1,560 soil samples analyzed, 46 were saturated, and are included in Section 5.3 of this OU-6 RI Report. The data for these saturated soil samples are provided in Tables 12 through 15. As described in greater detail in Section 5.3, there were no exceedances of the Yard COCs detected in these saturated soil samples, and there were no exceedances of the NYSDEC Restricted Industrial Use soil cleanup objectives for the protection of public health as set forth in 6 NYCRR Part 375 (NYSDEC, 2006) for non-COCs in saturated soil. In addition to the OU-4 RI Report, Roux Associates has prepared an OU-4 FS (Roux Associates, 2009a). Both reports have been approved by NYSDEC, and a subsequent OU-4 PRAP (NYSDEC 2009a), and OU-4 ROD (NYSDEC, 2009b) have been issued to address contamination identified in unsaturated soil in OU-4.

4.0 SUPPLEMENTAL OU-6 RI METHODOLOGY AND SCOPE OF WORK (2008 and 2009)

A comprehensive, Yard-wide groundwater investigation has not been completed at Sunnyside Yard since the completion of the initial OU-6 RI activities in 1997 (over ten years ago). As described above in Section 3.0, this initial OU-6 RI did not identify any significant groundwater impacts attributed to Amtrak or NJTC, or their present or former operations at the Yard. All significant groundwater impacts identified were attributed to off-site contamination migrating on to the Yard. Following the completion of the OU-6 RI in 1997, as described in Section 3.0, only limited groundwater investigation activities related to OU-6 were conducted at the Yard. Most of these activities were conducted by Roux Associates, on behalf of Amtrak and NJTC, and some activities were conducted by other parties (i.e., as part of the ESA project). While these activities did include the installation of monitoring wells, groundwater sampling, and the collection of soil vapor samples (results described above in Section 3.0), these activities were limited in scope, focused on certain areas of the Yard, such as areas of proposed construction, or areas of the Yard that will be affected by the ESA project. Since groundwater is flowing and is therefore much more dynamic in nature than other media (i.e., soil), it would not be appropriate to rely on hydrogeologic data and groundwater quality data that is over ten years old. As such, this prompted the need for an additional, comprehensive Supplemental OU-6 RI to confirm the findings of previous OU-6 investigations, and prepare this final OU-6 RI/FS Report.

The Supplemental OU-6 RI was conducted in accordance with the document titled "Work Plan for the OU-6 Remedial Investigation/Feasibility Study", prepared by Roux Associates, dated October 30, 2007 (Roux Associates, 2007), and its associated plans (included as Appendices to the Work Plan), which include the following:

- Field Sampling Plan (FSP);
- Quality Assurance Project Plan (QAPP);
- Health and Safety Plan (HASP); and
- Citizen Participation Plan (CPP).

As described in the OU-6 RI/FS Work Plan, the major objectives of this Supplemental OU-6 RI scope of work were to achieve the following:

- confirm the findings of previous groundwater investigations conducted by Roux Associates and others at the Yard;
- develop up-to-date groundwater quality data and hydrogeologic data (i.e., water-level elevations, groundwater flow direction and rates, vertical gradients, etc.); and
- provide additional data to further characterize OU-6 with respect to the RI/FS through the installation of additional monitoring wells, and the completion of a comprehensive groundwater gauging and sampling round.

Part of the process in developing the Supplemental OU-6 RI scope of work presented in the Work Plan included an evaluation of each Area of Concern at the Yard (i.e., Area 1 through Area 17, as described in Section 1.0) with respect to OU-6 to ensure the objectives listed above were fully met for the Yard. A summary of this evaluation was provided in Table 4 of the Work Plan (Roux Associates, 2007). To summarize, additional investigation activities were proposed as part of the Supplemental OU-6 RI in Area 8, Area 12, and Area 14. These activities are described below.

As described in greater detail in the OU-4 RI (Roux Associates, 2008), Area 8 (previous PCB-containing transformer area) is a portion of the Yard that contains elevated concentrations of PCBs in unsaturated soil. The OU-6 RI/FS Work Plan proposed the installation on one well (MW-92) immediately downgradient of Area 8C to confirm PCBs have not impacted groundwater. As described below in Section 4.1.2, this well could not be installed due to constant train traffic in this portion of the Yard. The Area downgradient of Area 8C is located in the central portion of the body tracks, which is heavily used by Amtrak and NJTC for train storage and maintenance. Although this well could not be installed, there are other wells further downgradient of Area 8C. As will be discussed in detail in Section 5.0, these wells, TE-MW-A-1, TE-MW-D-1, SY-111Y, and MW-88 were all non-detect for PCBs in groundwater. This, coupled with the fact that PCBs have and extremely high affinity to remain bound to soil, and do not tend to leach into groundwater (as described in Section 6.0), indicate that PCBs in groundwater downgradient of Area 8C is not a concern.

Historic data generated during the Phase I and Phase II RIs identified low-levels of several SVOCs and metals downgradient of the car washer area (Area 12). To evaluate current groundwater conditions downgradient of Area 12, a new well (MW-82) was installed. Monitoring well MW-82 was installed west of its proposed location due to due to drilling refusal. As will be described in detail in Section 5.0, SVOCs were not detected, and there were no metals detected above Yard background concentrations in MW-82.

Monitoring well MW-68 (located downgradient of Area 14) contained a hydrocarbon sheen during the initial OU-6 RI (1997). This sheen, identified as diesel fuel (or similar), was an isolated occurrence, and was not connected to the SPH accumulation in OU-3. Since monitoring well MW-68 is located downgradient of a former heavy equipment fueling area, this sheen was attributed to localized occurrences of fuel spillage in this area. As part of the Supplemental OU-6 RI Work Plan (Roux Associates, 2007), additional investigation in the area surrounding MW-68 was proposed to evaluate to potential impacts due to this hydrocarbon sheen. As described in detail below, when the Supplemental OU-6 RI scope of work was implemented in 2008, there was no hydrocarbon sheen identified in well MW-68. Since there was no hydrocarbon sheen present in the well, a groundwater sample was collected. The only detection in this well was total xylenes, at t concentration 2.6 μg/L, well below the NYSDEC AWQSGV of 5 μg/L for total xylenes. No additional investigation activities were conducted surrounding MW-68 based on the following: there was no sheen present in MW-68; there were no exceedances detected in groundwater in MW-68; and fueling operation is no longer conducted in this area.

The Supplemental OU-6 RI/FS Work Plan was approved by the NYSDEC in their letter dated December 27, 2007 (NYSDEC, 2007e). Field activities associated with the Supplemental OU-6 RI were conducted from April through June 2008, and March 2009. A summary of the field methods and analytical methods followed during the implementation of the Supplemental OU-6 RI are provided below.

4.1 Field Methods

Field investigations pertaining to groundwater and soil vapor (i.e., OU-6) at the Yard included the following five tasks:

- Task 1: Monitoring Well Inventory/Inspection;
- Task 2: Monitoring Well Installation/Development/Survey;
- Task 3: Re-Development of Existing Monitoring Wells;
- Task 4: Monitoring Well Gauging/Groundwater Sampling; and
- Task 5: Limited Vapor Intrusion Survey.

4.1.1 Task 1: Monitoring Well Inventory/Inspection

Prior to the completion of the subsequent tasks, a comprehensive monitoring well inventory/inspection was completed at the Yard in late April 2008, before well installation was completed. The scope of these comprehensive inventory/inspections included not only wells installed by Roux Associates, but also wells that were proposed to be gauged and sampled as part of the OU-6 RI/FS scope of work that were installed by others (i.e., installed as part of the ESA Project or installed as part of the RI/FS at the SMP Site). These monitoring well inventory/inspections identified that a total of 26 wells had been abandoned, destroyed, or could not be located at the Yard since the submittal of the OU-6 RI/FS Work Plan. A summary of the wells that were found to be abandoned, destroyed or could not be located since the submittal of the OU-6 RI/FS Work Plan (Roux Associates, 2007) is provided in the table below. Additionally, Plate 1 depicts all wells currently remaining and intact at the Yard, and also depicts all wells that have been previously abandoned, destroyed, or could not be located.

Designation of Well(s)	Status of Well(s)	Comment
CTB-1, CTB-19, CTB-20, CTB-21, MW-16, MW-20, MW-23D, MW-49, MW-50, MW-52, MW-71, MW-72, MW-73, MW-74, MW-75, MW-77, RW-1, RW-2, TA-2	Properly Abandoned	 OU-3 SPH Plume Delineation wells. Abandoned by Roux in preparation for the implementation of OU-3 remedy.
MW-78	Could not be located	Construction materials/debris piled in area of well – well may still exist.
TE-MW-IB-1	Presumed Destroyed	Well possibly destroyed by construction.

Designation of Well(s)	Status of Well(s)	Comment	
SSY-23	Buried	Well may still exist.	
TE-MW-OB-2	Buried	Well may still exist.	
SSY-46	Presumed Abandoned	Presumed to have been abandoned by MTA ESA.	
SSY-49	Presumed Abandoned	Presumed to have been abandoned by MTA ESA.	
SSY-51	Destroyed	Well destroyed by construction.	

It is important to note that of the 26 wells listed above, a total of 19 wells were located within, or on the fringe of the OU-3 SPH plume. In accordance with the OU-3 Remedial Action Work Plan, Roux Associates properly abandoned all of these wells in as part of the site preparation associated with the remediation of OU-3. Most of these wells were located within the SPH plume, and therefore contained SPH and would not have been sampled as part of the Supplemental OU-6 RI. The other OU-3 wells mentioned above were intended solely for the delineation of SPH (addressed as part of OU-3), and not for the evaluation of groundwater quality, and therefore not essential to OU-6. Note that shallow groundwater was evaluated downgradient of the SPH plume as part of the Supplemental OU-6 RI through the sampling of still-existing wells MW-19, MW-35, and MW-70, and deep groundwater downgradient of the SPH plume was evaluated through the sampling of still-existing wells MW-38D and MW-39D.

It was not deemed necessary to replace any of the wells listed above as part of this OU-6 scope of work for the following reasons: 1) Well replacement and ongoing groundwater monitoring will be completed following the implementation of the remedy in OU-3. This ongoing groundwater monitoring will be completed as a component of the Yard-Wide Site Management Plan that is in currently being prepared for the Yard; and 2) The remaining seven wells listed above that were either abandoned, or could not be located were not critical to the OU-6 investigation (i.e., these well were not downgradient wells, or were not critical to delineating a plume or determining if soil vapor sampling would be required). As will be discussed in the following sections, Roux Associates collaborated with MTA ESA, and obtained groundwater

quality data from PB/STV/PTG that was incorporated in to this RI/FS. This additional data was collected by MTA to support the ESA project, and supplements the groundwater data generated by Roux Associates. This additional data alleviates any potential data gaps that may have been caused due to the loss of the wells mentioned above.

4.1.2 Task 2: Monitoring Well Installation/Development/Survey

To further evaluate hydrogeologic and groundwater quality conditions at the Yard, twelve 2-inch diameter monitoring wells were installed during the implementation of the Supplemental OU-6 RI in April 2008. Monitoring wells were installed under the direction of Roux Associates. All monitoring wells were installed using a track-mounted Geoprobe direct push drill rig. Monitoring wells were installed in pilot boreholes drilled by driving dual tube casing. Monitoring wells were installed in accordance with the procedures outlined in the Field Sampling Plan (FSP), which was provided to the NYSDEC as Appendix A of the OU-6 RI Work Plan (Roux Associates, 2007).

The monitoring wells were installed with the top of the well screen set approximately two to three feet above the existing water table, when conditions permitted (i.e., in accordance with the 2007 OU-6 RI/FS Work Plan, all newly installed wells are shallow, water table wells). Details regarding specific well construction for these 12 monitoring wells are provided in Table 1. Table 1 also provides a summary of well construction for all monitoring wells previously installed at the Yard (including those wells that have since been abandoned or destroyed).

With the exception of slight changes due to auger refusals, only monitoring wells MW-81, MW-82, and MW-92 were not installed at their originally proposed locations. Monitoring well MW-81 was not installed due to its proximity to UT-9. Well UT-9 was installed by ESA in 2007, and discovered during the monitoring well inventory/inspection. Well MW-82 was relocated west of the proposed location due to refusal at approximately 5 feet bls at five different locations near the proposed area. The proposed location of monitoring well MW-92 was in an area of the Yard in constant traffic and was not accessible with a drill rig, and therefore not installed. The designation of proposed well MW-93 was changed to MW-92 to remain sequential. The actual locations of all new wells installed at the Yard are presented in Plate 1.

In accordance with the FSP, the twelve new monitoring wells were constructed of 2-inch diameter polyvinyl chloride (PVC) screen and 2-inch diameter PVC riser pipe. Each monitoring well has 10 feet of 20-slot (0.020 inch) PVC flush-threaded well screen. The wells were packed with No. 1 Morie sand. The gravel pack extended approximately 1 to 2 feet above the well screen, followed by a 1-foot thick layer of bentonite. The remaining annular space was then filled with a bentonite/cement grout to approximately 1 to 2 feet below land surface (bls). An outer locking, steel protective casing was then placed over the well casing and the remaining annular space filled with concrete. In areas where the water table was extremely shallow (i.e., less than 5 feet bls) the installation procedure was modified based on the actual conditions encountered. Monitoring well construction logs are included in Appendix C.

Following installation, each well was developed using submersible pumps and a surge block to ensure hydraulic connection with the surrounding saturated deposits. Each newly installed monitoring well was surveyed for horizontal and vertical coordinates by Angle of Attack Land Surveying, LLC. of Setauket, New York. All new wells were surveyed relative to msl using NAVD 88.

4.1.3 Task **3**: Re-Development of Existing Monitoring Wells

To ensure that a good hydraulic connection exists between the well screen and the aquifer, existing monitoring wells previously installed at the Yard (when accessible) that were located during well inventory and were proposed for sampling, were re-developed using the same methods and techniques described above for the newly installed monitoring wells. All existing wells that were sampled were first re-developed with the exception of MW-13S, MW-13D, TE-MW-QA-2, and UT-9A, which were not redeveloped due to access issues. These, however are active wells that were recently sampled by either PB/STV/PTG or GES. Since these wells have not remained stagnant and inactive for a long period of time, redevelopment was not necessary.

4.1.4 Task 4: Monitoring Well Gauging/Groundwater Sampling

One round of water level measurements has been collected by Roux Associates during the Supplemental OU-6 RI, on June 2 through June 5, 2008 (Table 2). Roux Associates also collected water level measurements from monitoring wells MW-86 through MW-89 earlier on

May 21, 2008. The proximity of MW-86 through MW-89 to MTA ESA construction activities made these wells vulnerable to damage. Therefore, these wells were gauged soon after installation to avoid the risk of loss. Additional water level data for June and July 2008 was obtained from ESA and presented in Table 2, and was used in the construction of shallow and deep water level contour maps (Plate 2 and 3, respectively). All water level measurements were collected to the nearest 0.01 foot using an electronic oil/water interface probe. No wells gauged by either Roux Associates or MTA ESA as part of this Supplemental OU-6 RI scope of work contained SPH.

Roux Associates conducted groundwater sampling at the Yard on May 21, 1008 and June 2 through June 5, 2008. To ensure the groundwater samples collected were representative of the conditions in the surrounding aquifer, monitoring wells were purged prior to sample collection using low flow sampling procedures as outlined in the United States Environmental Protection Agency (USEPA) document titled "Low Stress (Low Flow) Purging and Sampling Procedure for the Collection of Groundwater Samples From Monitoring Wells" (USEPA, 1996). In accordance with this document, groundwater field parameters, including temperature, pH, dissolved oxygen (DO), turbidity, oxygen reduction potential (ORP), and conductivity were monitored during low flow purging activities. Groundwater samples were collected for laboratory analysis only after field parameters stabilized, as defined in this USEPA document. Field forms containing all sampling information, including field parameter measurements are included in Appendix D. After collection, groundwater samples were packed on ice and submitted to Hampton Clarke/Veritech of Fairfield, New Jersey (Veritech) for laboratory analysis. All groundwater samples were submitted for analysis for TCL VOCs, TCL SVOCs, PCBs, TAL metals, chloride, and TDS.

4.1.5 Task 5: Limited Vapor Intrusion Survey

In accordance with the OU-6 RI/FS Work Plan, a vapor intrusion study was conducted as part of the Supplemental OU-6 RI scope of work. Vapor sampling was conducted in accordance with the document titled "Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York", prepared by NYSDOH, dated October 2006 (NYSDOH, 2006). This vapor intrusion survey is required, based on the fact that there are several chlorinated VOC and benzene, toluene, ethylbenzene and xylene (BTEX) plumes migrating on-site under portions of the Yard from

off-site sources. Although these plumes are not attributed to Amtrak, or their current or previous operations at the Yard, NYSDEC and NYSDOH are requiring that Amtrak evaluate potential vapor intrusion at the Yard.

In accordance with the OU-6 RI/FS Work Plan, this limited vapor intrusion survey was focused on areas of the Yard where potential indoor air quality (IAQ) issues may exist due to vapor intrusion. Specifically, the OU-6 RI/FS Work Plan prescribed that subsurface vapor and indoor air were to be evaluated at or near occupied buildings located over or in the vicinity of the VOC plumes migrating on-site from off-site sources. In addition, representative outdoor air samples would be collected upwind of each building or group of buildings where subsurface vapor and indoor air samples were collected to determine ambient air quality it the area. This investigation did not include areas of the Yard with VOCs detected only in deep groundwater, and not at the water table (air/water interface) since there were no locations near occupied structures that only contained VOCs in deep groundwater and not in shallow groundwater.

Due to the fact that the location(s) of the vapor intrusion survey would be dependent on current groundwater quality data, it was necessary to await the Supplemental OU-6 RI groundwater results before developing and initiating the specific vapor intrusion scope of work. As such, following receipt of groundwater data, Roux Associates evaluated the distribution of groundwater impacts relative to occupied buildings at the Yard (this evaluation included both data generated by Roux Associates, and also data provided by MTA ESA). The results of groundwater quality data relative to occupied buildings at the Yard is presented in Plate 4 (groundwater quality data is discussed in detail in the following sections). Based on current groundwater quality, it was determined that the only location where groundwater quality exceeds NYSDEC AWQSGVs near an existing occupied building (hence requiring vapor intrusion investigation) is near the HSTF S&I Building, located in the northern portion of the Yard, west of the 39th Street Bridge.

Roux Associates provided this information to the NYSDEC is a letter titled "Plan for a Limited Soil Vapor Intrusion Survey", dated March 4, 2009 (Roux Associates, 2009b). This letter provided a proposed scope of work, which included the installation and sampling of two temporary sub-slab vapor monitoring points concurrently with the collection of two

corresponding indoor air samples, and one ambient outdoor air sample. This plan was approved by the NYSDEC prior to being implemented.

In accordance with the approved plan, on March 18, 2009 Roux Associates collected two subslab vapor samples beneath the floor of the HSTF S&I building, two indoor air samples within the building, and one outdoor ambient air sample. The locations of all sub-slab vapor, indoor air, and outdoor air samples collected proximate to the HSTF S&I building are presented in Figure 5. Specific Sampling methods (in accordance with the OU-6 RI/FS Work Plan and associated FSP) are described below.

Sub-Slab Vapor Sample Methods

Temporary sub-slab vapor samples were collected from the two-inch soil/aggregate interval located immediately below the slab on grade of the HSTF S&I building. These samples were not collected in close proximity to cracks or drains located in the floor slab, as to minimize potential ambient air infiltration. These temporary sample probes were constructed by first drilling a one-inch diameter borehole through the concrete slab using an electric rotary hammer drill. TeflonTM tubing was then inserted through the borehole, to a maximum of two inches into the sub-slab soil or aggregate. The borehole was then sealed to the surface with non-VOC emitting modeling clay. After installation, approximately three volumes of air was purged from the TeflonTM sampling tube using a low flow air pump at a rate of 100 milliliters per minute to ensure a representative soil sample is collected. During purging activities, a tracer gas (i.e., helium) was used to verify that the ambient air from above land surface did not dilute the sub-slab vapor sample that was collected. An enclosure (i.e., clean empty five-gallon bucket) was inverted over the sub-slab sampling point. Ultra-high purity (laboratory grade) helium was then introduced into the bucket, creating a helium-enriched environment immediately over the borehole. A tedlar sampling bag was attached to the low-flow air pump and filled with the purge vapor as the helium was added to the enclosure over the top of the borehole. The purge volume in the tedlar bag was then screened for the tracer gas (helium) using a direct read field meter. The atmosphere in the enclosure was also screened for helium using a direct read field meter. The helium concentration in the tedlar bag was compared to the concentration in the enclosure. If the helium concentration in the tedlar bag is greater than 20 percent of the helium concentration in the enclosure, the seals of the sampling equipment would need to be verified

and the tubing would need to be purged again until the helium concentration in the tedlar bag is less than 20 percent of the concentration in the enclosure. Note that at both sampling locations, the seals passed the helium tracer test on the first attempt, assuring that a true, representative sub-slab vapor sample that has not been influenced by ambient air was collected.

Following purging activities, a laboratory cleaned and evacuated six-liter SUMMA canister was then be attached to the top of the TeflonTM tubing above land surface. The SUMMA canister was equipped with a laboratory provided flow regulator that was pre-calibrated to collect samples over a continuous 8-hour time period. The valve on the SUMMA canister was opened, allowing for the collection of a sub-slab vapor sample. Sub-slab vapor samples were submitted to Accutest Laboratories of Dayton, New Jersey (Accutest) under chain-of-custody procedures for analysis. Sub-slab vapor samples were submitted for analysis for VOCs using USEPA Method TO-15.

Air Sample Methods

Both indoor and outdoor (ambient) air samples were collected concurrently with the sub-slab vapor samples described above. Indoor air samples were collected in a location in close proximity to their respective sub-slab vapor samples, at a height approximately three feet above the floor (the height at which occupants are normally seated). The outdoor (ambient) air sample was collected from a representative, upwind location (north of the HSTF S&I building, as shown on Figure 5) at a height of approximately four feet above the ground (a height representing the approximate breathing zone). Both indoor air and outdoor air samples were collected using 6-liter SUMMA canisters equipped with a pre-calibrated flow regulator set to collect samples over an 8-hour period. Samples were submitted for VOC analysis using USEPA Method TO-15.

4.2 Analytical Methods

Laboratory analysis for all groundwater samples collected by Roux Associates as part of the Supplemental OU-6 RI was performed by Veritech, and all vapor samples (sub-slab, indoor air, and ambient air) were performed by Accutest. Both Veritech and Accutest are certified New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) laboratories. Furthermore, all groundwater analysis was completed in accordance with NYSDEC Analytical Services Protocol (ASP) procedures for organic and inorganic parameters

using USEPA SW-846 methodology, and all vapor samples were analyzed in accordance with USEPA Method TO-15. All sample quality assurance and quality control (QA/QC) was completed in accordance with the QAPP (Appendix B of the OU-6 RI/FS Work Plan).

In cases where primary and duplicate sample results are not the same, the highest usable concentration detected for each constituent was (conservatively) considered the actual value. In cases where a sample was diluted and re-run, analytical results from the diluted sample were only used for those constituents that exceeded the instrument range in the first run (undiluted) sample.

Groundwater Samples

For groundwater sampling performed by Roux Associates during the course of this Supplemental OU-6 RI investigation, the following methods were performed in accordance with the specified ASP procedures using the USEPA SW-846.

- TCL VOCs USEPA Method 8240;
- TCL SVOCs USEPA Method 8270;
- PCBs USEPA Method 8081; and
- TAL Metals USEPA Method 6010 and 7471.

The OU-6 groundwater samples were additionally analyzed for the following wet chemistry parameters in accordance with the Methods of Chemical Analysis of Water and Wastes (USEPA, 1983).

- Chloride Method 325.2; and
- Total dissolved solids (TDS) Method 160.1.

Groundwater analytical results are presented in the format required by ASP (i.e., Category B deliverables package).

Vapor Samples

Vapor samples collected during this Supplemental OU-6 RI were analyzed for VOCs, using USEPA Method TO-15, and results were provided in a complete, full deliverable package, including all backup documentation (equivalent to Category B deliverable package).

5.0 NATURE AND EXTENT OF CONTAMINATION

The purpose of this section is to provide an evaluation of the nature and extent of contamination in OU-6 at the Yard. The nature and extent of OU-6 contamination was determined from data generated during the Supplemental OU-6 RI and related work at the Yard. Additionally, groundwater data generated by MTA ESA Project in 2008 (correlating to the approximate timeframe Roux Associates implemented the Supplemental OU-6 RI) has also been incorporated into this nature and extent of contamination evaluation. This dataset consists of the following:

- Water level and groundwater quality data generated by Roux Associates in May and June 2008 (Supplemental OU-6 RI);
- Water level and groundwater quality data generated by MTA ESA in March through September 2008 (MTA ESA Hydrogeologic Study Spring 2008); and
- Vapor data (sub-slab, indoor air, and ambient air) generated by Roux Associates at the HSTF S&I Building in March 2009 (Supplemental OU-6 RI).

In addition to the data listed above, this section will provide a general comparison to the previous groundwater results generated by Roux Associates in 1997 during the initial OU-6 RI report. This comparison is important to illustrate that hydrogeologic conditions in OU-6 (including groundwater quality) have not changed substantially over the course of the approximately ten years that have elapsed since the initial OU-6 RI was performed.

Also included in this Nature and Extent section is an evaluation of saturated soil sample results collected at the Yard. This section contains saturated soil samples collected by Roux Associates, as well as saturated soil samples collected by MTA ESA (that have been provided to Roux Associates by MTA ESA) in OU-6. This section does not include saturated soil beneath the footprint of OU-3. As discussed above in Section 1.0, at the request of NYSDEC, saturated soil beneath OU-3 was addressed as part of the OU-3 RI/FS process. Therefore, this OU-6 RI/FS Report is inclusive of saturated soil beneath OU-1, OU-2, and OU-4. Saturated soil quality is discussed below in Section 5.3.

A summary of all groundwater, vapor, and saturated soil samples collected as part of this Supplemental OU-6 RI/FS, as well as previous investigations related to OU-6 is provided in Table 4.

Operable Unit 3 (including the SPH plume and saturated soil) has been extensively investigated and characterized as part of activities conducted at the Yard related specifically to OU-3. The findings of these OU-3 activities were provided in detail in the following major documents:

- Final OU-3 RI Report, dated May 27, 2005 (Roux Associates, 2005a);
- OU-3 Final Feasibility Study, dated December 6, 2005 (Roux Associates, 2005b);
- Proposed Remedial Action Plan (PRAP) for Sunnyside Yard, Operable Unit 3, dated February 2007 (NYSDEC, 2007a); and
- Record of Decision for Sunnyside Yard, Operable Unit 3, dated March 2007 (NYSDEC 2007b).

To summarize, the SPH plume has been fully delineated both horizontally and vertically, and is located entirely within the boundaries of OU-3. The outer boundary of the plume (historic zero-foot SPH contour), which is very conservatively defined by the absence of a visible sheen on the water table, occupies an area of approximately three acres in the central part of OU-3. The combined operation of the OU-3 SPH IRMs has resulted in the recovery of more than 11,500 gallons of SPH and has caused a significant reduction of the extent of the SPH plume horizontally and vertically (thickness). The horizontal migration of the SPH plume in all four directions is prevented by a variety of conditions in OU-3, including subsurface building foundations and structures, geologic conditions, and hydrogeologic conditions (vertical and horizontal groundwater flow). Furthermore, soils (unsaturated and saturated), and subsurface structures were fully characterized as part of the OU-3 RI efforts.

In the OU-3 Final FS (Roux Associates, 2005b), remedial alternatives were developed and evaluated to address the SPH plume (including residual SPH), as well as impacted soils (unsaturated and saturated) and remaining subsurface structures in OU-3. A remedy was subsequently selected by the NYSDEC (as documented in the OU-3 ROD) to address these environmental concerns. Therefore, the SPH plume, soils, and subsurface structures located in OU-3 are not included in this OU-6 RI/FS Report. Groundwater beneath the SPH plume in OU-3; however, is by definition part of OU-6, and as such, will be included in this RI/FS Report. As discussed below, only two of the six wells located downgradient of OU-3 have a single petroleum-related VOC detected and only two of these six wells have petroleum-related SVOCs detected. Furthermore, there are no exceedances of the NYSDEC AWOSGVs of any petroleum-

related VOC or SVOC compound in the OU-3 monitoring wells (MW-19, MW-35, MW-37, MW-38D, MW-39D, and MW-70). Therefore, the SPH accumulation in OU-3 is not considered a source of groundwater contamination at the Yard.

5.1 Groundwater Quality

The following section will provide a detailed presentation of all groundwater quality data generated during Supplemental OU-6 RI, including data generated by MTA ESA in 2008. As part of this evaluation groundwater data is compared to the NYSDEC AWQSGVs. This is an extremely conservative approach to evaluating groundwater quality in OU-6 since the NYSDEC AWQSGVs are intended for groundwater that is considered suitable for drinking in its natural state. As previously stated, groundwater in western Queens County (including the Yard) is degraded, and not used as a source for drinking water. Additionally, as discussed in detail below in Section 5.1.5, a significant portion (19 percent) of the wells sampled during the Supplemental OU-6 RI throughout the Yard is classified as saline groundwater (i.e., Class GSA). There are no chemical-specific standards available for Class GSA (saline) groundwater; therefore, comparing saline groundwater to the NYSDEC AWQSGVs is an extremely conservative approach to evaluating groundwater quality in OU-6. Furthermore, as described below in Section 5.1.3, metals data is also compared to Yard background groundwater conditions, as determined from hydraulically upgradient wells located near the Yard perimeter.

A summary of all groundwater samples collected for laboratory analysis in OU-6 are presented in Table 4. Additionally, groundwater quality data for VOCs, SVOCs, metals, PCBs, and chloride and TDS are presented in Tables 5 through 9, respectively. A graphic summary of shallow (water table) groundwater quality and deep groundwater quality are presented in Plates 4 and 5, respectively.

5.1.1 Groundwater Quality – VOCs

During the Supplemental OU-6 RI (including groundwater samples collected by MTA ESA in 2008), a total of 62 groundwater samples were collected from 52 wells (24 shallow wells and 28 deep wells) and submitted for analysis for TCL VOCs. The following VOCs were detected in groundwater during the Supplemental OU-6 RI:

Chlorinated VOCs:

- Benzene, toluene, ethylbenzene, and total xylenes (BTEX); and
- Methyl tert-butyl ether (MTBE).

Acetone was detected in on-site monitoring well (SY-516W DUP) at a concentration of $3.3 \,\mu g/L$, which is significantly below the AWQSGV of 50 $\mu g/L$. This compound was also detected in the associated laboratory QA/QC blank (as indicated with the "b" qualifier), indicating that this detection was a result of laboratory contamination, rather than representative of actual groundwater quality in this well. Acetone is commonly used in the laboratory, and is a common laboratory contaminant. This is further substantiated by the fact that acetone was only found in the field duplicate sample (not detected in the initial sample collected in this well). Based on these facts, this detection of acetone will not be discussed further. Additionally, MTA ESA analyzed VOC samples for the compounds cyclohexane, methyl cyclohexane, and isopropylbenzene. These compounds are not typically included in the TCL VOC list, and therefore are not included in tables and plates associated with this Supplemental OU-6 RI. These three compounds were only detected in one sample, and were detected at concentrations less than the AWQSGVs (where applicable). Specifically, these compounds were detected in sample UT-4W at the following concentrations: cyclohexane (25 μ g/L), methyl cyclohexane (2.3 μ g/L), and isopropylbenzene (2 μ g/L).

The following sections discuss these detections of VOCs in relation to the known suspected source areas. The remainder of this section is divided into a discussion of chlorinated VOCs and a discussion of BTEX and MTBE.

5.1.1.1 Chlorinated VOCs

The following chlorinated VOCs were detected in one or more groundwater samples collected during the Supplemental OU-6 RI: 1,1,2-trichloroethane; 1,1-dichloroethane; 1,1-dichloroethane; 1,2-dichloroethane; chloroform; cis-1,2-dichloroethene; tetrachloroethene (PCE); trans-1,2-dichloroethene; trichloroethene (TCE); and vinyl chloride. The sum of the detections for all compounds listed above (i.e., Total CVOCs) is provided in Plates 4 (shallow groundwater quality) and Plate 5 (deep groundwater quality). Out of these 10 chlorinated VOCs listed above, eight were detected in one or more samples at a concentration in excess of the NYSDEC AWQSGVs. These exceedances are summarized below:

voc	AWQSGV (µg/L)	Number of Samples Collected	Number of exceedances	Maximum Concentration (μg/L)	Well with Maximum Concentration
1,1,2-trichloroethane	1	62	2	17	RT-6W
1,1-dichloroethene	5	62	2	11	RT-6W
1,2-dichlroethane	0.6	62	2	8	RT-6W
Cis-1,2-dichlroethene	5	62	7	93	RT-6W
PCE	5	62	14	760	RT-6W
Trans-1,2-dichloroethene	5	62	2	61	RT-6W
TCE	5	62	9	24,000	RT-6W
Vinyl chloride	2	62	3	18	RT-6W

As evident in the table above, one single well (RT-6W) contained the highest concentrations of all chlorinated VOCs detected during this investigation. This well sits within the footprint of one of the three chlorinated plumes migrating on-site, from upgradient, off-site sources. This particular well is within the plume designated the West of Honeywell Plume, which is discussed in detail below.

The distribution of chlorinated VOCs at the Yard defines three distinct plumes:

- 1. **North Plume** defined by shallow wells MW-19, MW-35, MW-85, MW-13S, and MW-9S and deep wells MW-13D and MW-9D.
- 2. **West of Honeywell Plume** defined by shallow wells MW-82, MW-27, and deep wells UT-9AW, TE-MW-QA-2, RT-8W, UT-5W, RT-6W, TE-MW-OB-1, SY-111W, TE-MW-D-1, and TE-MW-A-1.
- 3. **Southeast Plume** defined by shallow well MW-83 and deep well MW-62D.

Based on groundwater flow patterns at the Yard and knowledge of current and historic groundwater quality conditions at the Yard (developed based on over 20 years of groundwater investigation experience at the Yard), knowledge of material currently and formerly used at the Yard, and knowledge of Hazardous Waste sites surrounding the Yard, these three chlorinated VOC plumes are not attributed to Yard operations, but rather, are attributed to upgradient, off-site sources.

5.1.1.1.1 North Plume

As shown on Plate 4, a chlorinated VOC plume extends onto the Yard from the north, into OU-3. Standard Motor Products, Inc., which is located at 39th Street between Northern Boulevard and the Yard, lies hydraulically upgradient (east) of OU-3 (as show in Plate 2). As documented in the Remedial Investigation Report for Standard Motor Products, Inc. (Holzmacher, McLendon & Murrell, P.C., 1992), both soil and groundwater beneath the SMP site have been contaminated with chlorinated VOCs. The source of this contamination appears to be the SMP loading dock area, where drum washing took place and VOCs have been identified in soil greater than 20 feet bls.

Per the SMP RI report, total VOCs were detected in SMP soil at concentrations of up to 35,300 micrograms per kilogram (µg/kg). However, many of the SMP soil samples collected on the SMP site were collected below the water table (i.e., saturated soil samples). Known contamination reportedly extends to a depth of greater than 20 feet bls at the SMP site (Holzmacher, McLendon & Murrell, P.C., 1992). Historically, VOC distribution in groundwater was widespread at the SMP Site. A total of ten different VOCs (six chlorinated solvents and BTEX) were detected beneath the SMP site (Holzmacher, McLendon & Murrell, P.C., 1992). In addition, the 1992 RI report for SMP concluded that the contaminants detected at the site have migrated radially outward from the SMP loading dock in both stormwater runoff and groundwater. Water level data collected by Roux Associates indicate that groundwater is flowing west (parallel to the sewer line) from the SMP site toward the northern part of OU-3. However, the water table is nearly flat beneath the eastern part of OU-3, causing the VOC plume to spread radially outward from its source (Plate 2).

GES completed an RI at the SMP site in 2002 through 2003, which included, in part the collection of 18 groundwater samples from nine direct push, temporary borings and the collection of groundwater samples from eight newly installed monitoring wells and one existing monitoring well. The results of this investigation were documented in the January 30, 2004 RI Report prepared by GES (GES, 2004a). The 2004 RI Report identified a total of 14 VOCs detected above the NYSDEC AWQSGVs (nine of which are chlorinated VOCs) in direct push sample borings, and 12 VOCs detected above NYSDEC AWQSGVs (six of which were chlorinated VOCs) in permanent monitoring wells. The highest concentrations of VOCs were

detected south of the loading dock area, at a depth of approximately 6 feet bls (approximately the same elevation as the water table). The specific chlorinated VOCs identified on the SMP site are similar to those identified in OU-3; however, the concentrations detected at the SMP site are generally significantly higher than those detected in OU-3. For example, in the 2004 RI, TCE was detected in groundwater at concentrations as high as 800 µg/L (just south of the SMP loading dock, at 6 feet bls), and PCE was detected at concentrations as high as 44 µg/L (also just south of the loading dock, at 6 feet bls). For comparison, during the Supplemental OU-6 RI, TCE was detected in groundwater in downgradient well MW-85 (in OU-3) at a concentration of 1.9 µg/L, and PCE was detected in MW-85 at a concentration of 5.5 µg/L. Based on the direction of groundwater flow, and the distribution of chlorinated VOCs, it is apparent that the low levels of chlorinated VOCs identified in OU-3 during this Supplemental OU-6 RI are attributed to SMP. It is important to note that with the exception of the shallow/deep well clusters MW-9S/MW-9D and MW-13S/MW-13D (installed on MTA property, very close to the Yard boundary between the Yard and the SMP site by GES), the only chlorinated VOC that exceeded the AWOSGVs identified in either a shallow or deep well associated with the North Plume is in MW-85 (PCE was detected at 5.5 µg/L, marginally exceeding the AWQSGV of 5 μg/L). As part of the 2008 sampling, wells MW-9S/MW-9D and MW-13S/MW-13D (located on the MTA property, immediately downgradient of the SMP site) were found to contain cis-1,2dichloroethene at concentrations as high as 32 µg/L and vinyl chloride at concentrations as high as 13 μ g/L, both in excess of the AWQSGVs.

5.1.1.1.2 West of Honeywell Plume

Data collected from shallow wells MW-82, MW-27, and deep wells UT-9AW, TE-MW-QA-2, RT-8W, UT-5W, RT-6W, TE-MW-OB-1, SY-111W, TE-MW-D-1, and TE-MW-A-1 as part of the Supplemental OU-6 RI confirm that the chlorinated VOC plume previously documented west of Honeywell Street is still present (designated the West of Honeywell Plume). Plate 4 depicts the extent of this plume in shallow groundwater, which includes only wells screened across the water table. Based on the direction of groundwater flow in this portion of the Yard, it is apparent that this chlorinated VOC plume has migrated on-site from an upgradient, off-site source.

The ACCO facility sits less than 500 feet south of the Yard, at 32-00 Skillman Avenue (see Plate 2). The ACCO site is currently in a Voluntary Cleanup Agreement (VCA) with the

NYSDEC for the investigation and cleanup of this Site. As documented in the Off-site RI Work Plan prepared by GES, dated May 2004 (GES, 2004b), ACCO (or its predecessor companies) have occupied this site since 1952, where they manufactured staples and stapler components. As part of these operations, ACCO utilized paints, thinners, solvents, and cleaners. Additionally, prior to ACCO's occupancy, this site was used by automotive service centers and gasoline stations (GES, 2004b). Based on a review of site documents, on-site (designated OU-1) investigation activities have been completed at the ACCO site that have revealed significant concentrations of chlorinated VOCs in shallow, intermediate, and deep groundwater. Additionally, off site (designated OU-2) investigation activities have identified that chlorinated VOCs in groundwater are migrating off site. As documented in the RI Work Plan for the ACCO site, groundwater flows in the north-northwest direction (i.e., towards the Yard). In addition to chlorinated VOCs, BTEX compounds were also found off-site. The detections of BTEX may be partially or completely attributed to a gasoline service station with known petroleum impacts, located immediately northwest of the ACCO site. This gasoline station, like the ACCO site, is also hydraulically upgradient of the Yard.

The West of Honeywell Plume at the Yard is comprised primarily of PCE, TCE, and their daughter products, cis-1,2-dichloroethene, and trans-1,2-dichloroethene. Based on data provided in the ACCO RI Work Plan (GES, 2004b), a similar suite of compounds was found widespread beneath the upgradient, ACCO site. These compounds are, however, found at much higher concentrations at the ACCO site. For example, TCE was detected in 2002 in a well located at the ACCO site at a concentration of 460,000 µg/L, and their daughter product, cis-1,2-dichloroethene, was found in an on-site well at 5,810 µg/L in 2003. As a basis for comparison, the highest detections of chlorinated VOCs found at the Yard during the Supplemental OU-6 RI were in well RT-6W. On September 3, 2008, TCE was found at 24,000 µg/L, and cis-1,2-dichloroethene was found at 93 µg/L (both concentrations are substantially lower than concentrations historically found at the ACCO site). Well RT-6W is located approximately 200 north of the Yard boundary, directly hydraulically downgradient from the ACCO site.

This plume appears to span approximately from Honeywell Street to Queens Boulevard in the southern portion of the Yard. As shown in Plate 4, based on shallow groundwater data, the

shallow portion of the plume in the Yard extends north, approximately half way across the Yard (approximately to MW-45). Based on the total chlorinated VOC concentrations for deep wells (Plate 5), the deeper portion of the plume extends further north through the Yard, and likely off-site, toward the groundwater discharge area (i.e., the buried flow path of the Dutch Kills Creek).

The shallow extent of this plume is defined by wells MW-27 and MW-82. These wells do contain chlorinated VOCs; however, no compounds detected exceeded the AWQSGVs. The deep portion of this plume is defined at the Yard by wells UT-9AW, TE-MW-QA-2, RT-8W, UT-5W, RT-6W, TE-MW-OB-1, SY-111W, TE-MW-D-1, and TE-MW-A-1. All of these deep wells contain at least on chlorinated VOC detected at concentrations in excess of the AWQSGVs, with all of the highest detections being found in well RT-6W. Beneath the Yard, the most impacted groundwater associated with this plume is in the deep zone, supporting the fact that the source of this plume is not at the Yard, but rather further upgradient. Based on the direction of groundwater flow and the distribution of chlorinated VOCs, it is apparent that the chlorinated VOCs identified in the West of Honeywell Plume are attributed to an upgradient, off site source, which is most likely at least partially attributed to the ACCO Site.

5.1.1.1.3 Southeast Plume

As show in Plate 4, a chlorinated solvent plume extends on to the southern portion of the Yard, near 39^{th} Street (designated the Southeast Plume). This plume is defined by the shallow/deep well cluster MW-83/MW-62D. The only VOC detected in shallow well MW-83 is PCE, at a concentration of 1.9 μ g/L (below the AWQSGV of 5 μ g/L for PCE). Total chlorinated VOCs were detected at a concentration of 58.3 μ g/L in deep well MW-62D, with the majority of this total concentration attributed to PCE (54 μ g/L), and with lesser concentrations of chloroform (1.3 μ g/L), cis-1,2-dichloroethene (1.7 μ g/L), and TCE (1.3 μ g/L). PCE was the only compound to exceed the AWQSGVs in well MW-62D.

The direction of groundwater flow and vertical distribution of chlorinated VOCs in this plume indicate that this plume is originating from an unknown, upgradient off-site source located south to southeast of the Yard boundary.

5.1.1.2 BTEX and MTBE

Benzene, toluene, ethylbenzene, total xylenes (BTEX) and MTBE were detected in one or more groundwater samples collected during the Supplemental OU-6 RI. The sum of the BTEX detections (total BTEX) and MTBE concentrations are provided in Plates 4 (shallow groundwater quality) and Plate 5 (deep groundwater quality). Note that in accordance with the approved OU-6 RI/FS Work Plan (Roux associates, 2007), Roux Associates did not submit groundwater samples for MTBE analysis. The only samples that were analyzed for MTBE are those samples collected and submitted for analysis by MTA for the ESA project. Benzene, total xylenes, and MTBE were detected in one or more wells at a concentration in excess of the NYSDEC AWQSGVs. These exceedances are summarized below:

voc	AWQSGV (μg/L)	Number of Samples Collected	Number of exceedances	Maximum Concentration (μg/L)	Well with Maximum Concentration
Benzene	1	62	2	73	RT-6W
Total xylenes	5	62	1	5.5	TE-MW-QA-2
MTBE	10	24	7	660	TE-MW-IB-2

In general, the occurrence of BTEX and MTBE detections in groundwater at the Yard can be categorized as follows:

- Associated with the North Plume;
- Associated with the West of Honeywell Plume; or
- Isolated occurrences.

5.1.1.2.1 BTEX Associated with the North Plume

- The top of the screen zone of MW-38D is approximately 25 feet below the water table (and therefore, approximately 25 feet below the SPH plume);
- there is an upward hydraulic gradient beneath OU-3, reducing or preventing the downward flow of contaminants;
- No VOCs were detected in MW-70, which is a shallow well, located only 40 feet downgradient of the SPH plume (located approximately 50 feet west of MW-38D); and
- SMP is a known source of BTEX and is located hydraulically upgradient of MW-38D.

5.1.1.2.2 BTEX and MTBE Associated with West of Honeywell Plume

BTEX and MTBE were detected in several deep wells located within the West of Honeywell Plume (see Plate 5). It is important to note that every detection of BTEX and MTBE that was identified at the Yard that exceeded the AWQSGVs was located within, or in close proximity to this plume. Within this plume, total BTEX was detected at a maximum concentration of 73 μg/L (well RT-6W). Benzene and total xylenes were the only two BTEX constituents to exceed their respective AWQSGVs. Benzene was detected in excess of its AWQSGV of 1 μg/L in wells RT-6W and UT-4W with concentrations of 73 μg/L and 8.9 μg/L, respectively. The only location to contain total xylenes in excess of its AWQSGV was well TE-MW-QA-2, at a concentration of 5.5 μg/L (marginally exceeds its AWQSGV of 5 μg/L). MTBE was also detected in deep wells associated with the West of Honeywell Plume. A total of 24 samples were collected throughout OU-6 for MTBE, and of those 24 samples, seven exceeded its AWQSGV of 10 μg/L, all located in the West of Honeywell Plume. The highest of these exceedances was found in well TE-MW-IB-2, with an MTBE concentration of 660 μg/L. With the exception of wells TE-MW-IB-2 and UT-4W, all MTBE detections were identified in between Honeywell Street and Queens Boulevard.

As documented in the RI Work Plan for the ACCO site (GES, 2004b), ACCO, as part of their off-site groundwater investigation activities installed monitoring wells at a former gasoline station, located at the intersection of Queens Boulevard and Van Dam Street, approximately 100 feet west of the ACCO site. This former gasoline service station is located hydraulically upgradient of the Yard. Based on data provided in the ACCO RI Work Plan (GES, 2004b), BTEX was detected at elevated concentrations in wells installed within this former gasoline station. Benzene was detected at concentrations as high as 311 μg/L, ethylbenzene was detected at concentrations as high as 29,900 μg/L, and total xylenes were detected at concentrations as high as 3,460 μg/L, all well above their respective AWQSGVs, and indicative of a previous release. In addition, an active service station is located on the corner of Skillman Avenue and Queens Boulevard (31-05 Queens Boulevard), also hydraulically upgradient from the Yard. This site has had previously documented release(s), and has open Spill Numbers with the NYSDEC.

Similar to the chlorinated VOCs found in this plume, the BTEX and MTBE found in this portion of the Yard has migrated on-site from an upgradient, off-site source. It is likely that the BTEX and MTBE fractions of this plume are the result of contamination from the former and/or existing gasoline service stations located upgradient of the Yard.

5.1.1.2.3 Isolated Occurrences of BTEX

In addition to the detections described above, there are two other locations where total BTEX concentrations were detected at the Yard. As shown in Plate 4, shallow monitoring well MW-37 contained toluene at a concentration of $1.1~\mu g/L$ (well below the AWQSGV of $5~\mu g/L$). The source of this toluene detection is unknown. It is possible that this could be attributed to the North Plume, migrating on-site from SMP; however, this cannot be confirmed at this time based on the current data. Toluene was not detected in associated upgradient and downgradient wells, and therefore appears to be an isolated occurrence, limited to the area immediately around MW-37. This single detection was well below the conservative AWQSGVs (i.e., drinking water standards).

As presented in Plate 4, shallow monitoring well MW-68 contained total xylenes at a concentration of 2.6 μ g/L (below the AWQSGV of 5 μ g/L). Well MW-68 is located immediately downgradient of a former heavy equipment fueling area, and hence, this low-level detection may be attributed to past fueling operations. In 1997, SPH sheen was observed in this well. This SPH sheen was an isolated occurrence, and not associated with the OU-3 SPH plume. There was no SPH sheen observed during this Supplemental OU-6 RI, and fueling operations have since ceased in this area.

5.1.1.3 Comparison of Supplemental OU-6 RI VOC Results to 1997 RI VOC Results

The purpose of this section is to provide a general comparison of VOC results from this Supplemental OU-6 RI to the results found during this 1997 OU-6 RI. Groundwater data generated from 1997 through 2008 for VOCs is presented in Table 5. Overall, groundwater data generated in 2008 is consistent with that generated in 1997. The fundamental findings remain largely unchanged (i.e., three chlorinated VOC plumes have migrated onto the Yard from upgradient sources). There was, however some additional findings in 2008, such as two BTEX

plumes identified at the Yard in 1997 are no longer present (one plume was in the northeast corner of the Yard, and one was north of OU-3). These findings are discussed below.

Groundwater data collected from wells MW-19 and MW-35 suggests that the leading edge of the North Plume appears to have migrated further west (downgradient) along the Yard's northern boundary. In 2008, low-levels of chlorinated VOCs were identified in MW-19 and MW-35 (below AWQSGVs), whereas in 1997 VOCs were not detected in these wells. Current data does not suggest the plume has migrated south (i.e., further in the Yard). In 2008, BTEX was also identified within this plume at low-levels (i.e., total BTEX was 1.1 μg/L in MW-85), whereas in 1997 BTEX was not found within this plume. The source of this BTEX is likely SMP. Conversely, the small BTEX plume identified migrating on-site north of the SPH plume in OU-3 in 1997 was not present in 2008. This plume was based on a detection of total BTEX at 6.8 μg/L in 1997. In 2008, total BTEX was not found in MW-35.

The West of Honeywell Plume is still present at the Yard. Shallow groundwater data suggests the plume has increased in width in the southern portion of the Yard (the eastern edge of the plume begins just east of Honeywell Street, and extends west nearly to Queens Boulevard). Based on 1997 data, the shallow portion of the plume was narrower in width. The expansion to the west is supported by detections of chlorinated VOCs in MW-27 in 2008 (4.3 μg/L), whereas chlorinated VOCs were not detected in this well in 1997. Furthermore, chlorinated VOCs were detected in MW-82 (located immediately east of Honeywell Street) in 2008 at a concentration of 2.1 μg/L. Well MW-82 was not present in 1997. The shallow portion of this plume, however does not appear to extend as far north in 2008 as it did in 1997. For example, in 1997 chlorinated VOCs were detected in shallow downgradient wells MW-42 (102 μg/L), MW-43 (4 μg/L), and MW-28 (11.5 μg/L), indicating that the shallow portion of this plume passed entirely through the Yard. In 2008, wells MW-86, MW-87, and MW-88 (replacement wells for MW-42, MW-43, and MW-28, respectively) were all non-detect for chlorinated VOCs. This indicates that the leading edge for the shallow portion of this plume ends within the Yard, as opposed to the plume passing entirely through the Yard.

MTA ESA has installed several additional deep wells in this portion of the Site as part of their pre-construction activities, which were initiated in 2000. The addition of these wells to the

existing well network has resulted in better definition of the deep portion of the plume. These wells indicate the deep portion of this plume does extend further north into the Yard than the shallower portion of the plume (it is likely the deep portion of the plume passes entirely through the Yard). Based on data from RT-6W, it appears the deeper portion of this plume also extends further west than in 1997. This may, however be a function of having more deep monitoring wells and therefore, better definition of the deep portion of the plume in 2008. The portion of the plume with the highest concentration also appears to have shifted to the west. The maximum concentration of total VOCs found in this plume in 2008 was in well RT-6W (24,964.7 µg/L), which is significantly higher than the maximum concentration identified in 1997, which was 398 µg/L in well MW-34. Well RT-6W sits directly downgradient from the ACCO site (see Plate 5). Groundwater data generated in 2008 has also identified BTEX and MTBE within the deep portion of this plume (note that the BTEX and MTBE were only identified in deep wells associated with this plume). BTEX and MTBE were not detected in this plume in 1997. This BTEX and MTBE are likely attributed to the former and/or active service stations located upgradient of the Yard.

The Southeast Plume (located near 39^{th} Street, in the southern portion of the Yard) is still present. This plume is defined by wells MW-83 and MW-62D. The total chlorinated VOC concentration in the shallow portion of this plume has decreased. Well MW-61 contained chlorinated VOCs at a concentration of 7 μ g/L in 1997, and well MW-83 (replacement well for MW-61) contained chlorinated VOCs at a concentration of 1.9 μ g/L in 2008. Conversely, the deep portion of this plume appears to have increased in concentration. In MW-62D, total chlorinated VOCs were detected at 5.9 μ g/L in 1997, and detected 58.3 μ g/L in 2008. Based on the limited monitoring points, the overall horizontal footprint of this plume appears to have remained consistent from 1997 to 2008.

In 2008, low levels of BTEX were found in wells MW-37 and MW-68 (below AWQSGVs). In 1997, BTEX was not present in MW-37. Well MW-68 contained a SPH sheen in 1997, and therefore a groundwater sample was not collected in 1997. There was no SPH sheen observed in MW-68 in 2008; however, a low-level detection of BTEX was identified (total xylenes at 2.6 µg/L, which is below the AWQSGV). In 1997 a small, low-level BTEX plume was identified migrating on-site in the northeast corner of the Yard. There was no BTEX found in

groundwater sample MW-48D in 2008, suggesting that this BTEX plume is no longer present at the Yard.

In 1997, well MW-27 contained benzene (130 μ g/L), carbon disulfide (110 μ g/L), and MIBK (5,200 μ g/L). In 2008, these compounds were all non-detect in MW-27. Well MW-41 also contained MIBK in 1997 (4 μ g/L). Well MW-41 has since been destroyed; however, well MW-89 was installed as part of the Supplemental OU-6 RI, and is located approximately 80 feet downgradient of former MW-41. In 2008, MIBK was not detected in MW-89. Furthermore, in 2008 there was not a single detection of MIBK throughout the Yard.

5.1.2 Groundwater Quality – SVOCs

During the Supplemental OU-6 RI a total of 32 groundwater samples were collected from 30 wells (23 shallow wells and 7 deep wells) and submitted for analysis for TCL SVOCs. The following SVOCs were detected in groundwater during the Supplemental OU-6 RI:

- 3 PAHs (2-methylnaphthalene, acenaphthene, and fluorene); and
- Benzoic acid.

Supplemental OU-6 RI groundwater quality data identified detections of one or more of the compounds listed above in four of the 32 samples collected. None of the SVOCs detected exceeded their respective AWQSGVs. The wells with detections of SVOCs included: MW-35, MW-68, MW-70, and MW-87. The PAH 2-methylnaphthalene was detected in three samples (MW-70 at 2.6 μ g/L, MW-35 at 6.1 μ g/L, and MW-68 at 380 μ g/L). The detection of 2-methylnaphthalene in MW-68 is most likely attributed to diesel fueling operations that have previously been conducted at the Yard, immediately upgradient of this well. Note that in 1997 a SPH sheen was present in this well, and in 2008 there was no SPH sheen present. Acenaphthene was detected in two wells (MW-35 at 2.9 μ g/L and MW-70 at 2.2 μ g/L). Fluorene was detected only in well MW-70 (1.6 μ g/L), and benzoic acid was detected only in well MW-87 (2.5 μ g/L). All of these detections are lower than the conservative AWQSGVs.

5.1.2.1 Comparison of Supplemental OU-6 RI SVOC Results to 1997 RI SVOC Results

The purpose of this section is to provide a general comparison of SVOC results from this Supplemental OU-6 RI to the results found during the 1997 OU-6 RI. Groundwater data

generated from 1997 through 2008 for SVOCs is presented in Table 6. Similar to the 1997 RI, in 2008 there were no SVOCs detected above the AWQSGVs. Overall, groundwater quality data generated in 2008 for SVOCs confirms the findings of the previous RI – SVOCs in groundwater are not a concern at the Yard.

In June 1997, a total of five PAHs (2-methylnaphthalene, acenaphthene, anthracene, fluorene, and phenanthrene), 4-methylphenol, and dibenzofuran were detected in groundwater. In 2008, three PAHs (2-methylnaphthalene, acenaphthene, and fluorine), and benzoic acid were detected in groundwater at the Yard. Similar to the 1997 RI, in 2008 all detections were limited to shallow wells. Overall, the detections found in 2008 are at lower concentrations than those found in 1997. For example, in 1997 2-methylnaphthalene and acenaphthene were found in MW-35 at 20 µg/L and 5 µg/L, respectively. In 2008, the same SVOCs were detected in MW-35, but at lower concentrations (2-methylnaphthalene was at 6.1 µg/L, and acenaphthene was at 2.9 μg/L). In 1997, MW-19 contained 4-methylphenol (0.6 μg/L), acenaphthene (2 μg/L), dibenzofuran (1 µg/L), and phenanthrene (0.6 µg/L). In 2008, there were no SVOCs detected in MW-19. Similarly, in 1997 wells MW-27 and MW-37 had detections of SVOCs, and in 2008, SVOCs were not detected in these wells. In 2008 monitoring well MW-68 contained 2-methylnaphthalene at 380 µg/L. As described above, this well was not sampled in 1997 due to the presence of a SPH sheen. This sheen was no longer observed in 2008, and therefore a groundwater sample was collected. As stated above, there were no SVOCs detected in the Yard in 1997 or in 2008 that exceed the AWQSGVs.

5.1.3 Groundwater Quality – Metals

Since metals naturally occur in both soil and groundwater, background concentrations of metals in groundwater were determined for the Yard. As previously discussed, a combination of both shallow and deep monitoring wells, located along the hydraulically upgradient boundary of the Yard were utilized to determine Yard background concentrations for metals. Specifically, metals data from monitoring wells MW-30, MW-34, MW-47, MW-48D, MW-61, MW-62D, MW-80, MW-83, MW-84, TE-MW-QA-2, TP-9, and TP-10 was utilized. The locations of these wells relative to shallow and deep groundwater flow are presented in Plates 2 and 3, respectively. Analytical data generated both during this Supplemental OU-6 RI and/or during the initial OU-6 RI (1997) for these upgradient wells were used to determine background metals

concentrations. Several of these upgradient wells no longer exist at the Yard, and in this situation, only data generated during the previous OU-6 RI were utilized to determine background metals concentrations in these wells. These wells include: MW-30, MW-34, MW-47, MW-61, and TP-9. The background concentrations for each metal are presented in Table 7. The background ranges were compared to concentrations of metals in on-site monitoring wells so that potential impacts from the Yard could be differentiated from indigenous concentrations of metals in groundwater. Analytical data in a bolded font on Table 7 indicates the results exceed only the NYSDEC AWQSGV, analytical data outlined in a box indicates the results exceed only the Yard background concentration, and analytical data both in a bolded font and outlined indicates this results exceed both the NYSDEC AWQSGV and the Yard background concentration. Only detections of metals that exceed the Yard background concentrations or that exceed Yard background and AWQSGVs will be discussed further in this RI Report.

During the Supplemental OU-6 RI, 34 samples were collected from 32 wells and submitted for analysis for TAL metals. Seven of these 32 wells were determined to be background wells (i.e., MW-48D, MW-62D, MW-80, MW-83, MW-84, TE-MW-QA-2, and TP-10), and therefore the data from those wells are not discussed further. Of the remaining 25 wells, eight contained at least one metal above background range. Six of the 23 TAL metals exceeded background ranges at least once. Exceedances of Yard background concentrations are tabulated below in order of frequency of exceedance.

Metal	Background Concentration (μg/L)	No. of Wells Exceeding Background	Range of Concentrations Exceeding Background (µg/L)	Well Containing Highest Concentration
Arsenic	3.6 B	3	8.2 - 11	MW-35
Barium	280	3	410 - 580	MW-39D
Manganese	2,650	2	3,400 – 5,200	MW-13S
Potassium	11,900	2	12,000 – 17,000	MW-90
Copper	65.0 JV	1	66	MW-87
Lead	48	1	78	MW-87

No metals were detected above background in the following seventeen wells: MW-9D, MW-9S, MW-13D, MW-19, MW-27, MW-37, MW-45, MW-68, MW-70, MW-82, MW-85, MW-86, MW-88, MW-89, MW-92, TE-MW-OB-1, and UT-9AW. In addition, the following four wells each contained only one metal above the background range: MW-13S, MW-38D, MW-79, and MW-90. The remaining wells (i.e., MW-35, MW-39D, MW-87, and MW-91) contained either two or three metals above the background ranges. Complete results are provided in Table 7.

Four of the six metals listed above that were detected above background levels, were not detected above the conservative, NYSDEC AWQSGVs. These metals include arsenic, barium, potassium, and copper. Although these metals were found above Yard background levels in several wells, the concentrations were all below the NYSDEC AWQSGVs, and therefore these metals will not be discussed further. The remaining two metals – manganese and lead are discussed below.

Manganese

Manganese was found in excess of both Yard background and AWQSGVs in well MW-13S (5,200 μg/L) and MW-91 (3,400 μg/L). According to published and Yard hydrogeologic data, the Upper Glacial aquifer is known to contain elevated concentrations of manganese and iron. Yard data confirm that elevated concentrations of manganese and iron are indicative of groundwater quality within the shallow deposits. According to published data for Queens County (Buxton, et al., 1981), manganese concentrations vary within the Upper Glacial aquifer from less than 100 μg/L to greater than 10,000 μg/L, increasing as conditions become anoxic. Anoxic conditions are found in wetlands, such as the buried wetlands located beneath the western portion of the Yard and the northeast corner of the Yard. Well MW-13S is located proximate to the buried wetland located in the northeast corner of the Yard, and MW-91 is located in the western portion of the Yard, within the buried wetland. Published data also indicate that high manganese concentrations are associated with high iron concentrations. Both MW-13S and MW-91 contain elevated iron concentrations (although lower than Yard background), which further supports that the manganese identified in these wells is indicative of natural aquifer conditions.

Lead

Lead was detected in excess of Yard background levels and the AWQSGV only in one well, MW-87, with a concentration of 78 μ g/L. The groundwater sample collected at this location contained a high amount of suspended particles, as evident by the turbidity measurements recorded during sample collection (Appendix D). Although low-flow sampling methods were used to purge this well prior to sampling, the turbidity measured in the groundwater would not decrease to levels below 100 NTUs. Additional groundwater was purged from the well in an effort to reduce the turbidity; however, at the time of sample collection, the turbidity measured in the well was 129 NTUs. When this monitoring well was installed and sampled, the area around the wellhead was saturated with water from nearby ESA construction water discharge activities. This saturated soil made drilling and constructing the well difficult. Due to the muddy, saturated soil, there was initial difficulty setting the well casing, and the borehole had to be re-drilled. It is possible that this difficulty installing the well may have attributed to this turbid sample. Based on this turbid sample, it is likely that the lead identified in this well was caused by suspended particles in the sample, and this lead detection is not indicative of the dissolved-phase groundwater quality in the aquifer.

5.1.3.1 Comparison of Supplemental OU-6 RI Metals Results to 1997 RI Metals Results

In 1997, five monitoring wells at the Yard contained groundwater with one or more metals above both Yard background ranges and the AWQSGVs: MW-49 (iron), MW-59 (manganese), MW-64 (zinc), MW-65 (magnesium), and TP-8 (beryllium, chromium, iron, lead, manganese). A total of seven different metals were detected above both background ranges and the AWQSGVs: beryllium, chromium, iron, lead, manganese, magnesium, and zinc. With the exception of iron and manganese, each of these metals exceeded both background ranges and the AWQSGVs only once. All five wells that contained a metal exceedance in 1997 were located downgradient of, or in close proximity to SMP, a known source of metals-contaminated groundwater. These exceedances occurred in five wells located along the northern boundary of the Yard, with the known SMP metals contamination being the likely source. Furthermore, the elevated manganese and iron may have been attributed to the anoxic conditions found associated with the buried wetland, and the magnesium may have been attributed to salt-water intrusion.

During the Supplemental OU-6 RI in 2008, only two metals were found that exceeded both the Yard background concentrations and the AWQSGVs. These metals were manganese and lead. Manganese was found only in two wells at concentrations exceeding the Yard background and the AWQSGVs, and lead was found only in one well exceeding the Yard background and AWQSGVs. Elevated manganese was likely attributed to the anoxic conditions found associated with the buried wetlands, and the lead exceedance was like due to a turbid sample. This groundwater data demonstrates that metals concentrations in groundwater beneath the yard are showing a decreasing trend. This may be attributed to the attenuation of metals in groundwater at the upgradient sources (i.e., SMP). This Supplemental 2008 RI data also demonstrates that, consistent with the findings of the 1997 RI, there are no metals impacts to OU-6 attributed to past or current Yard operations.

5.1.4 Groundwater Quality – PCBs

During the Supplemental OU-6 RI a total of 34 groundwater samples were collected from 32 wells (23 shallow wells and 9 deep wells) and submitted for analysis for PCBs. As presented in Table 8, there were no detections of PCBs in groundwater found during the Supplemental OU-6 RI.

5.1.4.1 Comparison of Supplemental OU-6 RI PCB Results to 1997 RI PCB Results

In 1997, during the implementation of the initial OU-6 RI, PCBs were detected in two of the 34 monitoring wells sampled. PCBs were detected in well MW-23D at a concentration of 0.010 μg/L (Aroclor 1260), and PCBs were detected in sample MW-25A at a concentration of 0.019 μg/L (also Aroclor 1260). Both of these detections were below the NYSDEC AWQSGV for PCBs of 0.09 μg/L. As discussed earlier, in 1997 a petroleum sheen was identified in monitoring well MW-68. In June 1997 as part of the OU-6 RI, a sample of groundwater (with a sheen) was collected from well MW-68 and submitted for analysis for PCBs. PCBs were detected in this sample at a concentration of 0.077 μg/L (Aroclor 1260), which is also below the NYSDEC AWQSGV for PCBs. The PCB groundwater data generated in 2008 (i.e., non-detect) supports the initial OU-6 RI conclusions that PCBs in groundwater are not a concern at the Yard.

5.1.5 Groundwater Quality – Chloride and TDS

In addition to the groundwater quality parameters discussed above, groundwater samples collected in 2008 as part of the Supplemental OU-6 RI were analyzed for chloride and TDS. Groundwater was analyzed for these parameters to determine the salinity/potability of groundwater. The NYSDEC Water Quality Regulations define saline groundwaters as "groundwater that has a chloride concentration of more than 250 milligrams per liter (mg/L) or a total dissolved solids concentration of more than 1,000 mg/L."

In 2008 a total of 34 samples were collected from 32 wells and submitted for analysis for chloride and TDS. Chloride concentrations ranged from 10 to 750 mg/L, and TDS concentrations ranged from 160 to 1,600 mg/L. The results for chloride and TDS are presented in Table 9. Groundwater results for these analyses determined that saline groundwater exists at approximately 19 percent of the monitoring wells tested (i.e., 6 of 32 wells). Saline groundwater conditions were identified in both shallow and deep groundwater. Specifically, the following six wells were found to be classified as saline: MW-27, MW-45, MW-62D, MW-80, TE-MW-OB-1, and UT-9AW. In general, higher concentrations of chloride and TDS were detected in the southwest portion of the Yard, indicating that salt water intrusion affects are most prevalent in this portion of the Yard. The source of this salt water intrusion is likely both the Dutch Kills and Newtown Creek. Salt water intrusion likely occurred at the Yard from these sources due to historic overpumping of the aquifer (as described in Section 2.6.1.1).

5.1.5.1 Comparison of Supplemental OU-6 RI Chloride and TDS Results to 1997 RI Results

As part of the initial OU-6 RI in 1997, a total of 34 monitoring wells were sampled for chloride and TDS. Chloride concentrations ranged from 7 to 725 mg/L, and TDS concentrations ranged from 100 to 1,480 mg/L. A total of approximately 38 percent of the wells sampled (13 of 34 well), were found to contain saline groundwater conditions. Saline conditions were noted in the west to southwestern portion of the Yard, with almost the entire portion of the Yard west of Honeywell Street considered saline. The percentage of wells identified as saline in 1997 was higher than in 2008 (38 percent vs. 19 percent). In 2008, saline conditions were still noted in a substantial portion of the Yard (southwest portion); however, it appears that the northernmost extent of saline groundwater has receded slightly to the south since 1997. Furthermore, in 1997

wells MW-38D, MW-40D, MW-69D, and MW-66 were found to contain saline conditions, indicating that saline groundwater was present along the north side of the Yard. In 2008, saline groundwater was not found in wells MW-38D, MW-68, MW-9S/MW-9D, or wells MW-13S/MW-13D, indicating that saline groundwater is no longer found in the north side of the Yard.

5.2 Soil Vapor Results

As described above in Section 4.1.5, based on a review of current groundwater data generated during the Supplemental OU-6 RI, it was determined that the only location requiring vapor intrusion investigation is the HSTF S&I Building, located in the northern portion of the Yard, west of the 39th Street bridge. A graphic summary of the shallow groundwater plumes relative to Yard buildings is presented in Plate 4. As such, on March 18, 2009 a vapor intrusion investigation was conducted at the HSTF S&I Building (during the heating season, as defined by NYSDOH). This investigation involved the collection of two sub-slab vapor samples, two indoor air samples, and one outdoor (ambient) air sample for analysis for VOCs. The results of the vapor analysis are presented in Table 11, and the locations of these samples are presented in Figure 5.

As shown on Table 11, all of the samples collected (indoor air, sub-slab, and outdoor air) had very similar results. The five compounds detected at the highest concentrations in each of these samples are summarized below:

	Compound (Concentration in μg/m³)						
	INDOOR-1	INDOOR-2	SUBSLAB-1	SUBSLAB-2	OUTDOOR-1		
Highest Detection	Total xylenes (45.6)	Total xylenes (43.9)	Acetone (79.3)	Acetone (125)	t-butyl alcohol (105)		
2 nd Highest Detection	Ethanol (45.2)	Toluene (43.3)	Total xylenes (36)	Total xylenes (40)	Acetone (73.4)		
3 rd Highest Detection	Toluene (42.6)	Ethanol (31.7)	Toluene (33)	Toluene (38.1)	Total xylenes (45.2)		
4 th Highest Detection	Acetone (22)	n-Hexane (21)	Ethanol (31.7)	Ethanol (32.2)	Ethanol (43)		
5 th Highest Detection	n-Hexane (18)	Acetone (18)	n-Hexane (18)	n-Hexane (18)	Toluene (42.6)		

5.2.1 General Evaluation of Sub-Slab, Indoor Air and Outdoor Vapor Data

As evident in the table above, with the exception of the outdoor air sample, the same five compounds comprise the five highest detections in all samples. The outdoor air sample is the only sample to contain t-butyl alcohol in the top five detections (n-hexane was not found in the top five highest detections in the outdoor air sample). Based on the concentrations detected, the VOCs found in indoor air are likely attributed to outdoor air sources, and not from subsurface vapor intrusion.

Based on the vapor data collected associated with the HSTF S&I building, it does not appear that the dissolved-phase North Plume is having a significant impact on sub-slab vapors beneath the building. This is supported by the fact that of the five compounds detected with the highest concentrations in sub-slab vapor, only one compound (toluene) was also found in groundwater associated with the dissolved-phase North Plume. Toluene was found in all vapor samples; however, the two sub-slab samples contained toluene at the lowest concentrations. The two indoor air samples contain toluene at concentrations of 42.6 micrograms per cubic meter (µg/m³) and 43.3 µg/m³ in samples INDOOR-1 and INDOOR-2, respectively. These concentrations are nearly identical to the outdoor air sample, which contained toluene at a concentration of 42.6 µg/m³, and are at higher concentrations than the sub-slab samples. Based on this data, the source of toluene in indoor air is not from the subsurface (i.e., impacted groundwater), rather the source is likely from background levels found in the outdoor air. Note that the large doors on either side of the HSTF S&I building that allow trains to enter and exit the facility are often left open, allowing outdoor air to enter the interior of the building. The Yard is located in an active urban/industrial setting. Sources of VOCs (including toluene) in background outdoor air include local automobile and truck traffic, nearby gasoline service stations, emissions from nearby boilers and emissions from nearby industrial activities. Benzene, ethylbenzene, and total xylenes were also found in sub-slab vapor, indoor air, and outdoor air samples, and these VOCs were not present in groundwater associated with the dissolved-phase North Plume. In almost all cases, the highest concentrations of these VOCs were found in the outdoor air sample, further supporting that these detections are not from subsurface or indoor air sources. Similar to toluene, the source of these VOCs in background outdoor air is attributed to the urban setting surrounding the Yard (traffic, industrial operations, etc.).

The following chlorinated solvents present in the dissolved-phase North Plume were not detected in sub-slab vapor samples collected beneath the HSTF S&I Building, indoor air samples collected inside the HSTF S&I Building, or the outdoor air sample collected near the HSTF S&I Building: 1,1-dichloroethane, 1,1-dichloroethene, cis-1,2-dichloroethene, trans-1,2-dichloroehene, TCE, and vinyl chloride. The only chlorinated VOC common to both the dissolved-phase North Plume and sub-slab vapor beneath the building was PCE. PCE was detected in sub-slab samples SUBSLAB-1 and SUBSLAB-2 at concentrations of 4.7 µg/m³ and 5.2 µg/m³, respectively. PCE was also detected in indoor air samples INDOOR-1 and INDOOR-2 at concentrations of 5.5 µg/m³ and 5.4 µg/m³, respectively, and in OUTDOOR-1 at 5.1 µg/m³. PCE was detected at the lowest concentrations in both sub-slab samples. The fact that PCE was detected at higher concentrations in indoor air and outdoor air than in subsurface vapor, and the fact that the indoor air and outdoor air samples contained PCE at nearly identical concentrations, indicates that the source of the PCE is not from the subsurface (i.e., impacted groundwater), rather, the PCE detected is from background outdoor ambient air.

In both cases, a greater number of VOCs were detected in indoor air samples than in their corresponding sub-slab vapor samples, further supporting the fact that VOCs found in indoor air are not attributed to subsurface vapors. For instance, a total of 25 VOCs were detected in sample INDOOR-1 and only 19 VOCs were detected in corresponding sample SUBSLAB-1, and 26 VOCs were detected in sample INDOOR-2 and only 19 VOCs were detected in corresponding sample SUBSLAB-2. Additionally, 25 VOCs were detected in the outdoor air sample, which is more than in either sub-slab sample and nearly identical to the indoor air samples. In almost all cases, the concentrations for specific compounds found in all three sample types were comparable or lower in sub-slab sample than in indoor air or outdoor air samples.

The results of this vapor intrusion investigation did not identify a vapor intrusion concern in the HSTF S&I Building. Based on the concentrations of VOCs identified in sub-slab, indoor and outdoor air, the impacted groundwater (i.e., OU-6) is not acting as source of potential vapor intrusion.

Several VOCs were detected at low-level concentrations in indoor air samples. As mentioned above, almost every VOC detected in indoor air was also found in outdoor air at a higher

concentration, indicating outdoor ambient air quality is the source of low-level VOCs found in the building. With respect to worker protection, concentrations of VOCs detected in indoor air were compared to their applicable (when present) Occupational Safety and Health Administration (OSHA) Permissible Exposure Limits (PELs), as presented in 29 CFR 1910. The OSHA PELs provide limits for indoor air contaminants based on an 8-hour time weighted average. The concentrations detected in the HSTF S&I building are well below applicable OSHA PELs.

5.2.2 Evaluation of Vapor Data with Respect to NYSDOH Decision Matrices

In the document titled "Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York" (NYSDOH, 2006), the NYSDOH published decision matrices to provide guidance on evaluating what actions (if any) should be completed to address current and future exposures to vapor intrusion. These decision matrices take into account site-specific sub-slab vapor concentrations and corresponding indoor air concentrations for specific VOCs to provide guidance on what actions (if any) should be taken to mitigate vapor intrusion. Depending on the specific VOC identified, and the concentrations of indoor and sub-slab vapor, actions listed in the decision matrices could include no further action, identification and removal of indoor sources, monitoring, or mitigation. Based on the 2006 Guidance Document, the NYSDOH offers decision matrices for the following compounds: carbon tetrachloride, PCE, 1,1,1-trichloroethane, and TCE. In a NYSDOH letter dated June 25, 2007, the NYSDOH expanded their decision matrices to include the following VOCs in addition to those listed above: vinyl chloride, 1,1-dichloroethene, and cis-1,2-dichloroethene.

Roux Associates performed an evaluation of the vapor intrusion data generated in the HSTF S&I building using the NYSDOH decision matrices.

Of the seven specific VOCs with applicable decision matrices, five VOCs were not detected in any sample (sub-slab, indoor air, of ambient air), and therefore require no further evaluation. These five VOCs are 1,1,1-trichloroethane, 1,1-dichloroethene, cis-1,2-dichloroethene, TCE, and vinyl chloride. The two remaining compounds, PCE and carbon tetrachloride are discussed below.

PCE was detected in indoor air samples INDOOR-1 and INDOOR-2 at concentrations of $5.5 \,\mu\text{g/m}^3$ and $5.4 \,\mu\text{g/m}^3$, respectively, and in sub-slab samples SUBSLAB-1 and SUBSLAB-2 at concentrations of $4.7 \,\mu\text{g/m}^3$ and $5.2 \,\mu\text{g/m}^3$, respectively. When compared to the applicable decision matrix, the only action recommended is "take reasonable and practical actions to identify source(s) and reduce exposure". Essentially this means that based on the low concentration detected in the sub-slab (in both cases lower than their respective indoor air samples), the source is likely not from vapor intrusion, but rather background ambient air and/or indoor sources. PCE was found in the outdoor ambient air sample at a concentration of $5.1 \,\mu\text{g/m}^3$, indicating that this source is likely from background ambient air. Additionally, although solvents are used in the HSTF S&I building (some possibly containing PCE) as part of railroad maintenance operations, it appears that good housekeeping practices are followed in this building. For example, when not in use, solvents and other flammable materials are stored in flammable material cabinets, which are vented to the outside of the building, and drums/containers were observed to be capped tightly.

Carbon tetrachloride was detected in indoor air samples INDOOR-1 and INDOOR-2 at concentrations of $0.69~\mu g/m^3$ in both indoor air samples collected. Carbon tetrachloride was not detected in either sub-slab sample, indicating that the source of these very low indoor air detections is not from the subsurface. Similar to PCE, when compared to the applicable decision matrix, the only action recommended is "take reasonable and practical actions to identify source(s) and reduce exposure". These low-level detections are likely from indoor or outdoor sources.

5.3 Saturated Soil Quality

The following section provides a description of saturated soil quality beneath the Yard in OU-6. This discussion includes saturated soil samples collected both by Roux Associates, and by MTA ESA at the Yard. Many of these results were presented in the OU-4 RI Report prepared in 2008 (Roux Associates, 2008), however, MTA ESA has generated additional saturated soil samples since the submittal of the OU-4 RI report. This section contains all saturated soil samples that have been provided to Roux Associates by MTA ESA.

As part of this evaluation, saturated soil data for the Yard-specific COCs (i.e., PCBs, total SVOCs, cPAHs, and lead) were compared to the soil cleanup levels for the Yard that were reestablished in the OU-4 ROD, as follows:

- Total PCBs 25 mg/kg;
- Total SVOCs 500 mg/kg; and
- Lead -3,900 mg/kg.

Non-COCs for saturated soil samples were compared to the NYSDEC Restricted Industrial Use soil cleanup objectives for the protection of public health as set forth in 6 NYCRR Part 375 (NYSDEC, 2006). The results for saturated soil VOC, SVOCs (including total cPAHs), metal (including lead), and PCBs are presented in Tables 12 through 15, respectively. The locations of all soil borings where a saturated soil sample was collected are presented in Plate 6.

As part of previous investigations including a saturated soil component, a total of 159 analyses of saturated soil were performed from 29 boring locations. As presented in Tables 12 though 15, there was not a single exceedance of the Yard-Specific soil cleanup levels for COCs, or the NYSDEC Restricted Industrial Use soil cleanup objectives for non-COCs found anywhere in the Yard.

As presented in Plate 6, saturated soil samples were collected within the chlorinated VOC groundwater plumes in OU-6. Saturated soil results indicate that, while these samples were collected within the chlorinated VOC groundwater plumes, chlorinated VOCs are either non-detect, or detected at low concentrations in these saturated soil samples. For example, saturated soil sample TE-MW-QA-2 was collected immediately upgradient of the Yard – closest to the offsite plume source, centrally located within the West of Honeywell groundwater plume. The groundwater samples collected from well TE-MW-QA-2 on June 5, 2008 contained elevated detections of several chlorinated VOCs, including 1,1-dichloroethane, cis-1,2-dichloroethene, PCE, and TCE. As show in Table 12, the corresponding saturated soil samples collected from boring TE-MW-QA-2 contained only low level detections of few chlorinated VOCs. Specifically, cis-1,2-dichloroethene was detected at 26 μg/kg (the Part 375 Industrial standard is 1,000,000 μg/kg), PCE was detected at 44 μg/kg (the Part 375 Industrial standard is

 $300,000\,\mu g/kg)$, and TCE was detected at 9 $\mu g/kg$ (the Part 375 Industrial standard is $400,000\,\mu g/kg$). Similar trends were observed when evaluating other saturated soil samples collected from within groundwater plumes at the Yard. Additionally, the few low-level detections of VOCs (all below applicable standards) identified in saturated soil beneath OU-6 are attributed to groundwater impacted by VOCs. In all cases, the VOCs in groundwater are migrating onto the Yard from off-site sources. The saturated soil is not the source; rather it is being impacted by the groundwater plumes migrating onto the Yard.

6.0 CONTAMINANT FATE AND TRANSPORT

An evaluation of the environmental fate and transport of contaminants present in OU-6 at the Yard was performed to support the RI/FS. This evaluation consisted of the following two elements:

- 1) compilation of information regarding physicochemical properties that can influence the fate of contaminants; and
- 2) an evaluation of contaminant transport and degradation processes.

6.1 Physicochemical Properties of Contaminants

Physical and chemical properties that will affect the fate and transport of contaminants in groundwater, soil (including saturated soil), and soil vapor include:

- solubility;
- specific gravity;
- vapor pressure;
- Henry's Law constant;
- organic carbon partition coefficient (K_{oc}) ; and
- octanol-water partition coefficient (K_{ow}) .

<u>Solubility</u> is the maximum concentration of a chemical that will dissolve in water at a given temperature without forming a separate phase.

<u>Specific gravity</u> is the ratio of the density of a pure chemical to the density of water. As a separate phase, a compound with a specific gravity less than 1.0, such as benzene, will float on top of the water table, while a chemical with a specific gravity greater than 1.0, like trichloroethene, will sink. Specific Gravity does not affect the dissolved-phase distribution of contaminants.

<u>Vapor pressure</u> is a property of a chemical in its pure state and is an indicator of the rate of volatilization of a chemical in an aqueous environment.

<u>Henry's Law constant</u> is the ratio of a chemical's concentration in the vapor phase above water to its concentration in the aqueous phase, at equilibrium. It indicates the tendency of the chemical to evaporate from a water solution, and essentially represents the water to air partitioning coefficient.

The <u>organic carbon partition coefficient</u> (K_{oc}) is the ratio of a chemical's concentration bound to soil organic carbon to its concentration in soil pore water, at equilibrium.

The <u>octanol-water partition coefficient</u> (K_{ow}) is the ratio of a chemical's concentration in the n-octanol phase to its concentration in the aqueous phase of an octanol-water mixture at equilibrium. The K_{ow} can give an indication of how the chemical will preferentially distribute into an aqueous solution, such as groundwater. Low K_{ow} values indicate that the contaminant is more hydrophilic; that is, a large fraction will be dissolved in the water phase, and this implies higher environmental mobility.

Table 16 lists values for these properties obtained from literature references for the organic contaminants detected in groundwater at concentrations above the NYSDEC AWQSGVs, and detected in subsurface vapor (no standards exist) during the Supplemental OU-6 RI. Note that only compounds detected in sub-slab vapor samples are discussed in this section. Compounds detected only in indoor and/or outdoor air samples are not discussed, since the source of these compounds is likely not from the subsurface (i.e., OU-6). Additionally, there were no compounds detected in saturated soil above applicable standards (i.e., Yard-specific soil cleanup levels for COCs, or NYSDEC Part 375 Restricted Industrial Standards for non-COCs, therefore, compounds detected only in saturated soil are not included in Table 16.

6.2 Processes Affecting Contaminant Migration

The processes by which chemicals in OU-6 can migrate include: 1) leaching from soil to groundwater; 2) transport in groundwater; 3) discharge from groundwater to surface water; 4) volatilization from soil, groundwater and surface water; and 5) transport in vadose zone soil vapor/vapor intrusion. The parameters controlling contaminant transport by these processes are described below.

6.2.1 Leaching From Soil to Groundwater

The leaching of contaminants from soil into groundwater depends on the degree of binding of the chemical to soil, the amount of water the soil-bound chemical comes in contact with, and the chemical characteristics of the soil and recharging water. The degree of soil binding is reflected in the K_{oc} values, with higher K_{oc} values indicating greater binding and lower leaching propensities. Since K_{oc} values are available for only a few chemicals, K_{oc} has been found to be correlated with K_{ow} , such that higher K_{ow} values would also indicate greater binding to soil. The actual distribution coefficient (the ratio of bound to dissolved concentration at equilibrium, K_{dd}) for the binding of chemicals to soil must take into account the soil organic carbon content, and is discussed below. The amount of water available to leach chemicals from unsaturated soil is a function of annual rainfall and the fraction of rainfall that percolates downward. The key chemical characteristics of the soil and water that influence the ability to leach contaminants are Eh (redox potential), pH, and the presence of dissolved co-solvents. Eh influences the predominant oxidation state of metals, and therefore the aqueous solubilities of those metals. Water with low pH (acidic) is more efficient in leaching some metals from the soil. Co-solvents (i.e., of organic origin) act to increase the solubilities of organic chemicals in water.

6.2.2 Transport in Groundwater

The transport of contaminants in groundwater is affected by the hydrologic properties of the aquifer, chemical composition of the aquifer and chemical nature of the contaminants. The hydrologic properties of the aquifer are described in terms of advective and dispersive flow. The aquifer's organic carbon content and physical properties, along with the K_d of the chemical, are then used to calculate a retardation factor (R) for the chemical in the aquifer.

Advection and Dispersion

Advective flow is used to describe the transport of a non-reactive, water-soluble tracer at an average groundwater velocity (Freeze and Cherry, 1979). Darcian flow is assumed. Advective flow is usually the dominant transport mechanism in aquifer systems. The equation to describe advective flow is:

$$v = K_H \frac{I_H}{n_e}$$

Where:

v = the velocity of groundwater along a segment of a flow line (ft/d);

 n_e = the effective porosity of the aquifer (dimensionless);

 $K_H =$ the horizontal hydraulic conductivity of the aquifer (ft/d); and

I_H = the horizontal hydraulic gradient along a segment of a flow line (ft/ft).

The advective flow equation describes the flow velocity in an ideal system (that is, a system where the seepage velocity depends only on the aquifer properties and the hydraulic gradient). The main application of the simple advective flow equation is to determine the average time it takes for water to reach a certain location.

Dispersion can result in a spreading of the arrival time of this idealized groundwater flow. The arrival time of the center of mass of the contaminant can be calculated by the advection equation, but some of the contaminant arrives earlier than the center of mass, and some contaminant arrives later. Dispersion is controlled by molecular diffusion and mechanical mixing within the aquifer.

Retardation

Advection determines the rate of flow of groundwater in a formation. However, because most contaminants have chemical properties different from those of groundwater, the contaminants can move at velocities slower than that of groundwater due to binding reactions with the solids in the aquifer matrix. This is termed retardation.

Sorption on naturally-occurring organic matter is the predominant mechanism by which organic compounds are retarded in groundwater systems. The rate of movement of these compounds

relative to groundwater has been directly linked to the K_{ow} for the individual compounds (Lyman et al., 1982). The K_{ow} is a measurement of a compound's tendency to concentrate in an organic phase in preference to water. In groundwater systems, the compounds with lower K_{ow} values concentrate in the mobile water phase rather than in the immobile solid organic matter phase. Therefore, those compounds will migrate faster than other compounds with higher K_{ow} values.

The retardation of a specific compound is strongly influenced by the amount of organic matter in the aquifer matrix. The distribution coefficient, K_d , is calculated prior to determining retardation factors and provides another means of ranking organic compound mobilities in a specific geologic material. An equation of the form:

$$\log K_d = 1.00 \log K_{ow} + \log (f_{oc}) - 0.21$$

can be used to estimate K_d values (Lyman et al., 1982). The fraction organic carbon (f_{oc}) is obtained from the percentage of organic matter in the aquifer matrix. The equation to calculate K_ds assumes the organic carbon content has a uniform effect on all contaminants, although this is not always the case (Garbarini and Lion, 1986).

The $K_{d}s$ calculated using the above equation incorporate the chemical characteristics of the organic contaminant and the aquifer material into one term. The overall retardation characteristics of the aquifer are included in the calculation of retardation factors (R) by the equation:

$$R = 1 + (\frac{\rho}{n}) K_d = \frac{v}{v_c}$$

where ρ is the bulk density of the soil, and n is the soil porosity (Freeze and Cherry, 1979). The retardation factor is the ratio of the velocity of the groundwater (v) compared to the velocity of the compound of interest (v_c). Compounds that have K_ds of zero would move at the same velocity as the groundwater, and hence have a retardation factor of 1.0.

Table 17 shows the results of calculating R-values for the organic contaminants detected above groundwater standards during Supplemental OU-6 RI at the Yard, and categorizes chemicals with regard to their relative mobility based upon R. Contaminants which have R values ranging

from 1.0 to 2.0 (i.e., those chemicals which would travel at velocities greater than one-half of the groundwater velocity) are classified as having a high relative mobility; contaminants for which R ranges from 2.1 to 20 are classified as having medium relative mobility; contaminants for which R ranges from 21 through 50 are classified as having low relative mobility; and those compounds with R greater than 50 are considered relatively immobile. The classification scheme described above is useful for comparing the relative mobilities of the contaminants found at the Yard. The organic compounds detected above groundwater standards are aromatics and halogenated aliphatics, which are rated either medium or highly mobile.

The mobility of cationic metals depends upon the groundwater conditions and the nature of the aquifer matrix. For example, most metals are adsorbed more readily under alkaline pH conditions. The presence of clay minerals and iron hydroxides will also increase the extent of adsorption. Precipitation can also play a role in reducing contaminant concentrations for most metals. The metal can either form its own mineral phase or can be incorporated as a trace metal in another precipitating solid. The redox potential of the groundwater, Eh, can affect the redox state of metals dissolved in groundwater. Lower Eh values indicate the presence of reducing potential (for instance, Fe++), and can lead to the prevalence of the reduced forms of redoxactive metals like chromium, iron, and manganese.

6.2.3 Discharge from Groundwater to Surface Water

Dissolved contaminants can be transferred from groundwater to surface water off-site by discharge of the groundwater to the East River and Dutch Kills. Discharge of groundwater to surface water will occur when the hydraulic head of groundwater is higher than the head of surface water to which it is hydraulically connected. This process can cause removal of some of the dissolved organics in the groundwater by adsorption to the river bottom sediments, because the latter often contains a higher organic content than the aquifer matrix. As groundwater discharges through the sediments, contaminants can be immobilized temporarily or permanently. The relative f_{oc} -values of sediment and aquifer matrix will determine the degree of binding during discharge. The higher the f_{oc} of the sediment, the greater will be the binding of dissolved organic contaminants from groundwater. Contaminants bound to sediments would then be subject to migration downstream if the sediment were carried with the surface water.

6.2.4 Volatilization from Soil, Groundwater, and Surface Water

Volatilization can be an important migration mechanism whereby contaminants are removed from surface water, soil, and groundwater, and transferred to air or vapors in the vadose zone. Chemicals with high vapor pressures and low aqueous solubilities are generally most affected by this process. Those compounds with large Henry's Law constants (Table 16) will readily volatilize into the atmosphere (Nyer et al., 1991) where they may be degraded by reaction with sunlight (photolysis, as described in Section 6.3). Although a Henry's Law constant was unavailable for many compounds in Table 16, it would be predicted from their vapor pressures and solubility that the aromatic compounds would have a Henry's Law constant large enough for significant removal from waters and soils by this process. The more soluble compounds, such as the phenols, and the less volatile compounds, such as the PCBs, are not readily volatilized from water or soil.

6.2.5 Transport in Vadose Zone Soil Vapor/Vapor Intrusion

The transport of contaminants in soil vapor is affected by the geologic properties of the vadose zone, chemical composition of the vadose zone, and chemical nature of the contaminants. Several different mechanisms of transport can occur, including diffusion of vapors from sources in the vadose zone (i.e., soil source), and diffusion of vapors from sources in shallow groundwater. Concentration gradients between the source (i.e., impacted soil in the vadose zone or impacted shallow groundwater) can result in upward, lateral or downward (in the case of impacted soil in the vadose zone) migration in unsaturated soil. Characteristics such as soil porosity, effective permeability, ground surface cover, ambient temperature, age of release, and fluctuation in water table elevations may influence soil vapor migration (NJDEP, 2005). Based on previous soil investigations conducted at the Yard, volatile contaminants are not a compound of concern in unsaturated or saturated soil. Therefore, diffusion of vapors from vadose zone soils it not a significant concern at the Yard. Impacted shallow groundwater would be more likely to act as a source of soil vapor in the vadose zone at the Yard.

Vapor Intrusion is defined as the migration of volatile chemicals from the subsurface into overlying buildings (USEPA, 2002). Mechanisms that affect soil vapor migration in the vadose zone in close proximity to buildings, and hence can have a direct affect on potential vapor intrusion can include advective/convective transport of vapors and preferential pathways.

Advective/convective transport of vapors refers to chemical vapors entering a building as a result of building interiors that exhibit a negative pressure relative to outdoor ambient air, and the subsurface vadose zone. This pressure differential can be caused by the operation of heating, ventilation, and air conditioning (HVAC) systems, venting of exhaust gases to the exterior (such as from a fire place of exhaust fan), temperature gradients between the interior and exterior of a building, or pressure exerted on walls caused by wind movement. These factors can cause a subsurface zone of influence, which affects the vertical and horizontal movement of subsurface vapors near building foundations, and can cause vapors to enter the building through cracks, seams, etc. (NJDEP, 2005). Subsurface vapors can also migrate along preferential pathways, such as fractured rock or subsurface utility lines. If located near a source area, preferential pathways can greatly influence vapor intrusion into a building.

6.3 Degradation Processes

Degradation processes include biologically mediated degradation and chemical, or abiotic, degradation. Various naturally-occurring processes can result in the transformation of organic compounds to other compounds of the same type, to products of a different type (such as conversion of alcohols to carboxylic acids), or to the ultimate degradation products of organics: carbon dioxide and water (Nyer et al., 1991). Several factors must be considered in the evaluation of these reactions. The biological and abiotic degradation pathways for a given contaminant may produce different products, and the proportion of these products may vary depending upon the various reaction rates. Typically, the biologically mediated reactions will be faster than the strictly abiotic reactions. However, the biological reaction rates are also much more variable than the abiotic rates because of the extreme dependence of biological degradations on the conditions around the microbial colonies in the soil and aquifer matrix. These conditions include pH, Eh, temperature, contaminant concentration, and the presence of other nutrients or biological toxins in the soil pore water or groundwater. It is therefore not possible to predict degradation rates with certainty.

Photolysis occurs when a compound is broken down to smaller compounds by the action of light. It is dependent upon non-chemical-specific factors such as the intensity of the sunlight and the depth and turbidity of the surface-water body.

6.4 Contaminant Fate and Transport at the Yard

For the groups of compounds identified in Table 16, the following processes are considered to be important in affecting their fate and transport and, therefore, concentrations over time:

- leaching from soil to groundwater;
- transport in groundwater;
- discharge from groundwater to surface water;
- volatilization from soil, groundwater and surface water; and
- transport in vadose zone soil vapor/vapor intrusion.

The migration of contaminants in each of the media at the Yard is discussed below.

Soil

Contaminated unsaturated soil at the Yard is generally not covered with impermeable surfaces, such as pavement or buildings, allowing precipitation to percolate into the subsurface. Moreover, the depth to groundwater is relatively shallow (i.e., varying from 1 to 15 ft across the Yard), thereby increasing the potential for contaminated soil to impact groundwater.

Soil contamination at the Yard is primarily characterized by PAHs and PCBs of low or zero mobility. These compounds tend to remain tightly bound to soil particles, and do not have as great a potential for leaching from soil into groundwater relative to lower molecular weight organics and more soluble compounds. It is possible, however that during precipitation runoff may result in the transport of contaminated sediment into the sewer system, and subsequently, off-site. Detection of PCBs in sediments from the Yard sewer system indicates that this transport pathway may be present. This will be discussed in detail as part of the OU-5 RI/FS.

The metals previously detected in soil at the Yard may be subject to migration via precipitation runoff to the sewer system, or leaching from soil to groundwater. Historically, metals detected in soil above background concentrations or recommended soil cleanup objectives or site-specific cleanup levels have included: antimony, barium, beryllium, chromium, copper, iron, lead, magnesium, manganese, sodium, and zinc. Of these metals, only two (manganese and lead) were detected in groundwater above both the groundwater standards and background

concentration ranges during the Supplemental OU-6 RI. As previously discussed, the single detection of lead above the groundwater standard and background concentrations was likely a result of suspended sediment in the groundwater sample. Furthermore, the two instances where manganese was found in excess of the groundwater standards and background concentrations are likely attributed to the anoxic conditions found in buried wetlands. The fate and transport of the two mobile metals are discussed below. The other metals are presumably immobilized in soil at the Yard. Their mobilization and release from the soil could only occur as a result of a release of strong acid or alkali onto the soil at the Yard.

Overall, based on the chemical properties of the compounds detected in soil at the Yard (i.e., K_{oc} , K_{ow} , solubility), contaminants have a tendency to remain adsorbed to soil, therefore, leaching from Yard soils to groundwater is not considered significant transport process related to OU-6.

Groundwater

Groundwater contamination in the saturated fill and the Upper Glacial aquifer at the Yard is primarily characterized by the presence of chlorinated VOCs and petroleum-derived VOCs. The chlorinated VOCs and petroleum-derived VOCs detected in groundwater are relatively mobile in water, and in the dissolved state will migrate along with the groundwater flow, being partially retarded due to adsorption on the aquifer matrix.

Groundwater beneath the Yard also contains manganese and lead at concentrations above both ambient water quality standards and background concentration ranges. Lead and manganese can exist in different oxidation states. The oxidized form of lead [Pb(II)] forms insoluble hydroxides at mildly acidic to mildly alkaline pHs, therefore is not likely to be transported in groundwater. Manganese forms insoluble MnO₂ in the oxidized [Mn(IV)] form and exists as soluble Mn(II) species in the reduced form. Since groundwater at the Yard is generally neutral and probably tends toward anaerobic (reducing) conditions due to the buried wetland environment present in the western portion and northeastern corner of the Yard, some of the manganese would be expected to migrate as soluble species with very little retardation in groundwater.

Overall, transport in groundwater is a viable transport process related to OU-6. This is further supported by that fact that most of the groundwater impacts noted during this RI are directly

caused by contaminants migrating on to the Yard from off-site sources via transport in groundwater.

Groundwater flow is controlled by natural and artificial (i.e., resulting from historic cut and fill activities) hydraulic gradients. As shown in Plates 2 and 3, horizontal flow in the saturated fill and Upper Glacial aquifer underlying the Yard is generally toward the west and northwest, toward the buried flow path of Dutch Kills Creek and/or the East River. Dutch Kills, which is buried in the western portion of the Yard, emerges south of the Yard and discharges into Newtown Creek. No surface-water sampling has been performed to confirm or eliminate this potential migration pathway.

Calculated vertical hydraulic gradients between the shallow deposits and the deeper Upper Glacial aquifer deposits indicate that groundwater flow is predominantly horizontal, but has both downward and upward components at different locations at the Yard. All Yard groundwater discharges upward as it moves west and northwest toward the buried flow path of Dutch Kills Creek and/or the East River.

Soil Vapor

Based on the extensive database of historic soil quality data generated at the Yard as part of investigations in OU-1, OU-2, OU-3, OU-4, as well as OU-6, VOCs were not found to be a compound of concern in soil, hence volatilization from soil sources are not considered a significant transport mechanism at the Yard. Based on the presence of three groundwater VOC plumes at the Yard that have migrated on-site from off-site sources, and the chemical characteristics of the VOCs present in these plumes (i.e., high vapor pressures and large Henry's Law constants), volatilization from groundwater to the vadose zone in these limited areas of the Yard near impacted groundwater could be a viable transport mechanism. Further, if occupied structures were located proximate to the VOC-impacted groundwater, subsequent vapor intrusion could present a viable concern.

7.0 EXPOSURE ASSESSMENT

This Exposure Assessment (EA) for OU-6 was conducted following the NYSDEC Spill Guidance Manual (NYSDEC, 1995), the NYSDEC Technical Guidance for Site Investigation and Remediation (NYSDEC, 2002), the NYSDEC Generic Template for Final Engineering Report (NYSDEC, 2007c), the NYSDEC Generic Template for Final Remedial Action Work Plan (NYSDEC, 2007d), and was conducted to evaluate the potential for exposure to chemicals currently present in groundwater, saturated soil, and soil vapor/indoor air within the area defined as OU-6.

EAs describe the type and magnitude of exposures to chemicals of potential concern (COPCs) present at a site. The NYSDEC describes the following four components of an EA (NYSDEC, 1995, 2002):

- Selection of COPCs
- Identification of exposure pathways
- Measurement of the chemical concentrations at each exposure point (Exposure Point Concentrations)
- Comparison of exposure point concentrations to available health-based or other criteria (Comparison to Relevant Criteria)

This EA is based on a data evaluation from groundwater, saturated soil, and soil vapor/indoor air samples collected within OU-6 (Tables 5 through 8, 11, and 12 through 15). Unsaturated soil and sewer data collected within the boundaries of OU-6 will be addressed as part of the OU-4 and OU-5 RI/FSs, respectively. The organization of this section is based on the four NYSDEC EA elements identified above and follows the same order: Selection of COPCs (Section 7.1); Identification of Exposure Pathways (Section 7.2); Exposure Point Concentrations (Section 7.3), and Comparison to Relevant Criteria (Section 7.4). In addition, Current and Future Site Conditions are discussed in Section 7.5, and the EA Summary is presented in Section 7.6. Subsections are included as appropriate.

7.1 Selection of COPCs

COPCs are chemicals that are present at a site and have data that are of sufficient quality for use in the EA. Characteristics of COPCs include the following:

- Positively detected in at least one sample in a given environmental medium.
- Detected at concentrations significantly elevated above concentrations reported in associated blank samples.
- Detected at concentrations significantly elevated above naturally occurring levels of the same chemicals.
- Are the transformation products of chemicals detected at the site.

All constituents that were identified (i.e., detected via laboratory analysis) in OU-6 were initially considered COPCs, with the exception of the established COCs, since they are already considered compounds of concern by the NYSDEC. Data tables summarizing the concentrations of each chemical grouping of COPCs (VOCs, SVOCs, Metals, and PCBs) are presented as follows: Table 5 for VOCs in groundwater; Table 6 for SVOCs in groundwater; Table 7 for Metals in groundwater; Table 8 for PCBs in groundwater; and Table 11 for VOCs in vapor associated with the HSTF S&I Building. Additionally, analytical results for saturated soil samples for VOCs, SVOCs, metals, and PCBs are presented as follows: Table 12 for VOCs in saturated soil; Table 13 for SVOCs in saturated soil; Table 14 for Metals in saturated soil; and Table 15 for PCBs in saturated soil.

7.2 Identification of Exposure Pathways

Exposure pathways describe the ways in which persons (receptors) come into contact with COPCs present in environmental media at a site. Relevant exposure pathways for a site are determined by reviewing site-specific characteristics such as the following:

- Locations of COPCs at the site.
- Environmental fate of the COPCs.
- Potential receptor locations at or near the site.

A complete exposure pathway is defined by the USEPA (1989) as having the following components:

- A source and mechanism of chemical release.
- A retention or transport medium.
- A point of potential human contact with the medium containing the chemical(s) of potential concern.
- An exposure route (e.g., ingestion) at the contact point.

7.2.1 Potential Receptors

OU-6 is one area of an active railroad maintenance facility. The principal receptors will be adult workers conducting occasional construction projects that could result in limited excavation and dewatering. Additional receptors could include adult workers in occupied structures located in close proximity to vapors in the vadose zone. Residential uses for that Yard are not possible in the foreseeable future, therefore, residential receptors are not considered in this EA. The occurrence of limited trespassing activities is possible at the Yard, but OU-6 would be considered relatively inaccessible to trespassers because it is fenced, and access points to the Yard are guarded. Therefore, trespassers are also not considered as potential receptors at the Yard.

7.2.2 Soil

Based on the criteria given above, saturated soil has the possibility to be a complete exposure pathway in OU-6. Saturated soils may be a retention and transport medium for chemicals. Receptors may come into direct contact with saturated soil within OU-6 while performing deep excavation work. During the course of contacting the soil on their skin, persons may, under some circumstances, accidentally ingest soil derived from the Site. However, construction personnel who may contact saturated soils will likely be wearing waterproof gloves, thus limiting any direct contact with saturated soil by the hands. Additionally, there were no COCs detected in saturated soil in OU-6 at concentrations exceeding the Yard-specific soil cleanup levels, and there were no non-COCs detected in saturated soil at concentrations exceeding the NYSDEC Part 375 Restricted Industrial Standards.

Inhalation of fugitive dust is not considered a viable exposure pathway because OU-6 only includes saturated soil at depth. Dry, unsaturated soil was addressed in the OU-4 RI/FS.

Inhalation of vapors from VOCs volatilizing from saturated soils into the ambient air during soil moving activities is not considered a viable exposure pathway because the number of VOCs detected in saturated soil are limited and concentrations are sufficiently low that ambient air levels could not rise to a level of concern.

7.2.3 Groundwater

Groundwater associated with OU-6, or anywhere nearby in Queens County is not used as a source of drinking water, therefore, it can be stated that ingestion of groundwater in OU-6 would never be considered a complete exposure pathway. Further, groundwater is generally not encountered during routine operations, which significantly limits any direct contact. There is, however, the possibility of groundwater becoming a complete exposure pathway in OU-6 since direct contact with groundwater could occur during intrusive activities such as deep excavations or the OU-3 remedy. However, any potential contact with groundwater would likely be limited by the dewatering that will be required to conduct the planned activities. Furthermore, construction personnel who may work in this area will likely be wearing waterproof gloves, thus limiting any direct contact with groundwater by the hands. The potential exposure to contaminants in groundwater from construction dewatering will be addressed in the Site Management Plan, and exposures associated with the OU-3 remedy are addressed in the OU-3 RAWP (Roux Associates, 2007).

7.2.4 Soil Vapor

Depending on the location of soil vapor contamination relative to occupied structures at the Yard, soil vapor has the possibility to be a complete exposure pathway in OU-6. Based on the presence of VOC impacted groundwater at the Yard (from off-site sources), soil vapors from the vadose zone could potentially enter occupied structures, if located in close proximity to VOC-impacted groundwater. Therefore, soil vapor has the potential to be a complete exposure pathway, and will be addressed in the Site Management Plan.

7.3 Exposure Point Concentrations

Tables 5 to 8, 11 and 12 to 15 present data for individual sampling locations for the COC and non-COC parameters in saturated soil, groundwater, and vapor as described in Section 7.1. A detailed discussion of saturated soil quality, groundwater quality soil vapor results related to OU-6 is provided in the Nature and Extent section of this RI/FS Report (Section 5.0).

7.4 Comparison to Relevant Criteria

As stated by the NYSDEC (1995), exposure point concentrations should be compared to available health-based and/or environmental standards or criteria to determine the need to conduct a cleanup at a site. The current, intended, and reasonably anticipated future use of the Yard is for railroad maintenance purposes. The most likely exposure mechanism is construction activities involving deep excavation and/or dewatering. As such, the relevant criteria for evaluating saturated soil exposure point concentrations were determined to be NYSDEC Restricted Industrial Use soil cleanup objectives for the protection of public health as set forth in 6 NYCRR Part 375 (NYSDEC, 2006). Tables 12 to 15 present the concentrations of COPCs detected in saturated soils of OU-6 and a comparison to Yard soil cleanup levels for COCs, and the NYSDEC Part 375 Restricted Industrial Use soil cleanup objectives for all other compounds. As shown in these tables the concentrations of OU-6 related chemicals were below their respective Yard soil cleanup levels and the NYSDEC Part 375 Restricted Industrial Use soil cleanup objectives, indicating that OU-6 saturated soils are protective of human health and suitable for industrial use.

The relevant criteria for evaluating groundwater exposure point concentrations were determined to be NYSDEC AWQSGVs. The NYSDEC AWQSGVs are intended for groundwater that is considered suitable for drinking in its natural state. As previously stated, groundwater in OU-6 and nearby Queens is not used as a source for drinking water, making these conservative criteria for evaluating groundwater quality. Tables 5 to 8 present the concentrations of COPCs detected in groundwater in OU-6 and the NYSDEC AWQSGVs.

As stated in the NYSDOH soil vapor intrusion guidance document (NYSDOH, 2006), there are currently no chemical-specific SCGs for VOCs in subsurface vapor (i.e., soil vapor and sub-slab

vapor). Therefore, data evaluation consisted of a comparison of sub-slab vapor results to the indoor/outdoor samples results to determine the source of VOC concentrations.

7.5 Current and Future Site Conditions

As previously stated, OU-6 is part of a large and very active rail yard. Although specific plans for the future use of all portions of OU-6 are not finalized, it is anticipated that many of the currently routine activities will continue for the foreseeable future. Routine Yard activities do not result in exposures in OU-6. Possible exposures to soil and groundwater could result from ESA Project excavation and dewatering activities in the future. Additionally, vapor intrusion could occur if the off-site source VOC plumes migrate within close proximity to existing occupied structures, or if new structures are constructed in close proximity to the VOC plumes.

7.6 Summary

This EA addressed saturated soil, groundwater and soil vapor/indoor air conditions that currently exist in OU-6. No current complete exposure pathways exist in OU-6; however, several potential exposure pathways exist. As described above, exposure to saturated soil and groundwater in OU-6 is possible by workers engaged in deep excavation and dewatering activities. Soil vapor intrusion would only be a concern if plumes migrate close to existing occupied structures, or if new structures are constructed near VOC plumes. These potential exposures to contaminants will be addressed in the Site Management Plan, and exposures associated with the OU-3 remedy are addressed in the OU-3 RAWP (Roux Associates, 2007).

8.0 REMEDIAL GOALS AND REMEDIAL ACTION OBJECTIVES

This section presents the remedial goals and RAOs that apply to groundwater, soil vapor, and saturated soil that comprise OU-6. The remedial goals are common for all registered inactive hazardous waste sites, as provided in 6 NYCRR Part 375 and NYSDEC guidance (NYSDEC, 2002).

- Restoration to pre-disposal/pre-release conditions, to the extent feasible and authorized by law; and
- Elimination or mitigation of all significant threats to public health and the environment presented by the contaminants caused by site-related activities through the proper application of scientific and engineering principles.

The remedial goals serve to establish the foundation for developing RAOs specific to the impacted media in OU-6. RAOs are medium-specific objectives developed for the protection of public health and the environment and are expressed with regard to the concentration of COCs and comparison to chemical-specific standards, criteria, and guidance (SCGs). The RAOs were established utilizing NYSDEC guidance provided in NYSDEC TAGM 4030 (NYSDEC, 1990) and the Draft DER-10, Technical Guidance for Site Investigation and Remediation (NYSDEC, 2002).

General response actions (GRAs) are media-specific measures that can be performed to achieve the RAOs. GRAs include treatment, containment, extraction, excavation and disposal, institutional controls or a combination of these actions. The following sections describe the types of SCGs, present the RAOs and SCGs for each media of concern, and identify media-specific GRAs.

8.1 Identification of SCGs

SCGs are promulgated requirements and non-promulgated guidance that govern activities that may affect the environment. Specifically, the standards and criteria are cleanup standards, standards of control and other substantive environmental protection requirements, criteria, or limitations that are generally applicable, consistently applied, and officially promulgated under federal or state law. Guidance are not legal requirements, however should be considered based on professional judgment when applicable (NYSDEC, 2002).

The three general SCG categories specified in TAGM #4030 and United States Environmental Protection Agency (USEPA) guidance documents are: location-specific SCGs; action-specific SCGs; and chemical-specific SCGs. The SCGs, specific to the media of concern, will be discussed in the following sections.

8.1.1 Location-Specific SCGs

Location-specific SCGs are restrictions placed on the concentration of COCs or performance of remedial activities solely because they are in specific locations such as floodplains, wetlands, historic places, or sensitive ecosystems. The areas to be addressed in OU-6 are not located in the aforementioned locations. Therefore, no applicable location-specific SCGs were identified.

8.1.2 Action-Specific SCGs

Action-specific SCGs are technology or activity-based requirements or limitations on actions taken with respect to hazardous wastes and inactive hazardous waste sites. A listing of action-specific SCGs applicable to inactive hazardous waste sites and the remediation of groundwater, soil, and soil vapor is provided in Table 18.

8.1.3 Chemical-Specific SCGs

The following presents the chemical-specific SCGs identified for OU-6 media of concern.

Groundwater

The applicable NYSDEC chemical-specific SCGs for groundwater are the following:

- Water Quality Standards for Surface Waters and Groundwater (6 NYCRR 703.5)
- Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (NYSDEC TOGS 1.1.1)

As shown on Tables 5 through 9, the Class GA standards and guidance values were used for comparison to the OU-6 groundwater dataset.

Soil Vapor

As stated in the NYSDOH soil vapor intrusion guidance document (NYSDOH, 2006), there are currently no chemical-specific SCGs for VOCs in subsurface vapor (i.e., soil vapor and sub-slab vapor). Therefore, data evaluation consisted of a comparison of sub-slab vapor results to the

indoor/outdoor sample results to determine if a source of VOC concentrations exists or if vapor concentrations are a representation of background conditions.

Saturated Soil

The applicable chemical-specific SCGs for saturated soil are the Yard soil cleanup levels for the soil COCs (i.e., total PCBs, total SVOCs, and lead), Toxic Substance Control Act (TSCA) standards for PCBs (40 CFR 761), and the 6 NYCRR Part 375 Restricted Industrial soil cleanup objectives for VOCs.

Recognizing that restoration to predisposal conditions is not always feasible, the NYSDEC provided recommended soil cleanup levels for the Yard in February 1997 and modified the soil cleanup levels in the OU-4 ROD, dated March 2009. The Yard soil cleanup levels are:

- Total PCBs 25 mg/kg
- Total SVOCs 500 mg/kg
- Lead 3,900 mg/kg

The cleanup requirements for PCB remediation waste are provided in 40 CFR 761.61 (a)(4) and are dependent on PCB concentrations and potential exposure relevant to occupancy usage (i.e., high and low occupancy). The Yard soil cleanup level for PCBs (25 mg/kg) is consistent with the cleanup level for PCB remediation waste in low occupancy areas. Low occupancy use is defined as exposure for less than 335 hours annually, or an average of 6.75 hours per week for any one person.

The applicable chemical-specific SCG for evaluating VOCs in saturated soil in the offsite source plume areas are the Restricted Industrial Protection of Public Health soil cleanup objectives, provided in 6 NYCRR Subpart 375-6.8. As stated in 6 NYCRR Subpart 375-6.5, "the protection of groundwater soil cleanup objectives are not applicable if the contravention of groundwater standards at the site is determined to be the result of an off-site source." For this reason, the Restricted Industrial Protection of Public Health soil cleanup objectives are used for data comparison purposes.

8.2 Remedial Action Objectives for OU-6

The RAOs were developed based on the SCGs discussed above, the identification of offsite sources of groundwater contamination discussed in Section 5.0, and the exposure assessment (Section 7.0). The following are the RAOs for the media of concern in OU-6:

- Prevent contact with VOCs in groundwater that exceed applicable groundwater SCGs;
- Prevent the migration of COCs to groundwater;
- Mitigate the potential for exposure risks of soil vapor intrusion in existing and future Yard buildings; and
- Prevent ingestion, direct contact, and/or inhalation of soil that exceeds the applicable saturated soil SCGs.

8.3 Remedial Requirements

The nature and extent of contamination for groundwater, soil vapor, and saturated soil was discussed extensively in Section 5.0. Based on the above SCGs evaluation and established RAOs, the following summarizes the extent of contamination that requires remediation:

Groundwater:

- Eight CVOCs exceed the applicable groundwater SCGs in locations known to be associated with three offsite chlorinated plumes migrating into the Yard.
- Benzene, xylenes, and MTBE exceed the applicable groundwater SCGs in locations known to be associated with two offsite plumes migrating into the Yard.
- Manganese exceeds the applicable groundwater SCGs in two monitoring wells, which is attributed to anoxic conditions associated with the nearby buried wetland and is characteristic of the Upper Glacier aquifer.
- Lead exceeds the applicable groundwater SCGs in one monitoring well, which is attributed to the turbidity of the groundwater sample and not characteristic of the aquifer.

Based on the above summary, groundwater impacts of concern are from offsite sources. Therefore, active groundwater remediation of the CVOCs, BTEX, and MTBE impacts attributed to upgradient offsite sources will not be evaluated in this FS. However, groundwater monitoring and mitigative action items (e.g., soil vapor sampling and construction of sub-slab vapor barriers in the event of construction in the offsite source plume areas) will be evaluated, in accordance with 6 NYCRR 375.1-8 (d)(2).

Soil Vapor:

- Analytical results for the outdoor and indoor air samples exceeded the sub-slab vapor samples results indicating that the source of VOC detections in outdoor and indoor air was not from the subsurface, but rather an outdoor source.
- As discussed in the Exposure Assessment, the presence of the offsite source plumes
 presents the potential for soil vapor intrusion in existing and future buildings located in
 proximity to these plumes.

Saturated Soil:

• Saturated soil does not exceed any of the applicable SCGs. Therefore, the RAO for saturated soil is satisfied. Saturated soil remediation will not be evaluated further in this FS.

8.4 General Response Actions

General response actions (GRAs) are non-technology specific measures that can be performed to achieve the RAOs. GRAs include treatment, containment, extraction, excavation and disposal, institutional controls or a combination of these actions.

As discussed above, the CVOC and BTEX impacts to groundwater are attributed to three offsite sources. For this reason, active GRAs have not been selected for OU-6 groundwater and resultant soil vapor impacts. Similarly, saturated soil remediation was determined to not be a remedial requirement and GRAs have not been selected for saturated soil. The applicable GRAs for groundwater and soil vapor include:

- No Action
- Institutional and Engineering Controls
- Groundwater Monitoring
- Monitored Natural Attenuation

9.0 IDENTIFICATION AND SCREENING OF TECHNOLOGIES

This section develops the GRAs discussed in the previous section into potential remedial technologies by identifying, evaluating, and screening applicable remedial technologies that may be employed in OU-6 to achieve the RAOs. For the purpose of this screening, the remedial technologies are grouped by media of concern to which they would be applied.

The objective of screening the technologies is to narrow the field of available technologies, eliminating those with implementability concerns, those that are not deemed sufficiently protective of human health and the environment, or those associated with a high cost accompanied by no substantial increase in performance relative to the other technologies.

The technology screening process considers whether technologies and process options can by themselves or in combination, address the impacted media in OU-6, and meet the RAOs. During the screening of the technologies, the demonstrated ability of the technology to prevent potential impacts to human health and the environment and proven reliability of the technology under similar site conditions is evaluated.

The technology types and associated process options in this section have been identified through a review of NYSDEC and USEPA information and guidance, relevant literature, experience with similar types of environmental conditions, and engineering judgment. The selected remedial technologies will be evaluated on the basis of:

- <u>Effectiveness</u> The effectiveness criterion evaluates the extent to which the technology meets the established RAOs and considers the short-term effectiveness, long-term effectiveness, and potential impacts to human health and the environment. Short-term effectiveness refers to the effects during construction and/or implementation of the technology. Long-term effectiveness refers to the period after the remedial action is in place.
- <u>Implementability</u> The implementability criterion focuses on both technical and administrative feasibility of constructing and operating a remedial action. Institutional aspects of the remedial technologies with factors such as institutional constraints, time schedules, and the availability of services, equipment, and trained personnel, compliance with applicable rules and regulations being considered as part of the evaluation.

The evaluation of technology effectiveness and implementability for technology screening purposes incorporates elements from TAGM 4030 (NYSDEC, 1990), 6 NYCRR Part 375 –

Environmental Remediation Programs, the draft DER-10 (NYSDEC, 2002) and the USEPA document, "Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA" (USEPA, 1988b).

After screening, the remaining technologies will be combined in Section 10.0 to evaluate remedial alternatives and ultimately develop a recommended remedial alternative for OU-6.

9.1 Technology Screening for Groundwater

Four technologies have been identified to be potentially applicable in addressing groundwater. The technologies selected for screening include:

- Access/Use Restriction
- Groundwater Use Restriction
- Groundwater Monitoring
- Monitored Natural Attenuation

The following sections provide a brief description of the above technologies and present the evaluation of the technology's effectiveness and implementability. Based on this preliminary screening, the technology will either be carried forward and considered in the remedial alternative analysis or will be eliminated from further evaluation.

9.1.1 Access/Use Restrictions

Access/use restrictions would prevent untrained site workers (e.g., Amtrak workers, ESA workers, Amtrak's subcontractors) from working in known offsite source plume areas at depths that groundwater would be encountered. Institutional controls implemented to enforce the use restrictions include restriction of work within the approximated extent of the offsite source plumes shown on Plate 4 and filing a deed restriction to notify all parties that VOCs are present. Engineering controls including fencing or surface covers are typically used in conjunction with access/use restrictions.

EVALUATION

Effectiveness

- Access/use restrictions would limit site worker exposure to impacted groundwater. Internal communication would notify site workers of health and safety requirements for working in these areas.
- Access/use restrictions will be established based on the approximated extent of onsite impacts due to the offsite sources, but holds no mechanism for identifying migration of the plumes.

Implementability

- Implementation of the access/use restriction would rely on thorough communication to site workers of access limited areas and health and safety concerns. This effort would be fairly implementable given that all pertinent information regarding these areas would be included in a Site Management Plan
- Engineering controls such as fencing within track areas is not implementable. Surface covers would not effectively deter workers or alert workers of the presence of VOCs in groundwater.

The access/use restriction technology is typically teamed with the engineering controls discussed above. However, utilization of these engineering controls in the active railyard carries a low level of implementability.

Access/use restrictions would achieve the RAO associated with the prevention of contact with VOCs in groundwater at concentrations in excess of the applicable SCGs. This technology alone would not satisfy the RAO of preventing the potential for migration of contaminants in groundwater. Teamed with other technologies, access/use restrictions would meet the RAOs for impacted groundwater. Access/use restrictions will be retained for remedial alternative development.

9.1.2 Groundwater Use Restriction

Groundwater use restrictions would prohibit the use of onsite groundwater without treatment and place limitations on well drilling. This type of restriction would be filed with both the NYSDEC and the NYCDEP. Although the site is listed as an Inactive Hazardous Waste Site and groundwater in Queens County is not used for drinking water purposes, instituting a groundwater use restriction is an administrative measure that notifies the public of the presence of VOCs in groundwater at the Yard and health and safety concerns. Existing groundwater monitoring wells in the offsite source plume areas would be protected to prevent access to impacted groundwater by unauthorized people.

EVALUATION

Effectiveness	Implementability
 Groundwater use restrictions would be highly effective in informing non-Amtrak workers performing work in the area and limiting worker exposure to impacted groundwater. 	Groundwater is not used in Queens County for drinking water purposes. Therefore, enforcement of the restriction is highly implementable.
• Groundwater use restrictions hold no mechanism for identifying migration of the plume.	Obtaining the groundwater use restriction carries a low to moderate level of administrative effort.

This technology is typically teamed with engineering controls or active forms of groundwater remediation. In conjunction with groundwater monitoring, this technology would meet the RAO of preventing contact with VOCs in groundwater that exceed the applicable groundwater SCGs and identify the potential for migration of contaminants in groundwater. Therefore, this technology will be retained for remedial alternative development.

9.1.3 Groundwater Monitoring

Groundwater monitoring would consist of groundwater sampling of onsite wells located in the offsite source plume areas, performed at a routine frequency. Groundwater samples would be submitted for analytical analysis and the results would be reported and mapped to identify any migration or changes to the known plume conditions.

EVALUATION

Effectiveness	Implementability
• Groundwater monitoring would not be effective in preventing contact with VOCs in groundwater.	• Groundwater monitoring is highly implementable. The existing monitoring well network provides adequate coverage in these
 Routine sampling of onsite monitoring wells would identify any migration or changes in the offsite source plumes. 	areas for monitoring plume conditions. A subset of the existing monitoring wells located within the plumes and downgradient would be monitored (Plate 4).

This technology, teamed with institutional and engineering controls, would meet the RAOs for impacted groundwater. This technology will be retained for remedial alternative development.

9.1.4 Monitored Natural Attenuation

Monitored Natural Attenuation (MNA) is the process of relying on natural attenuation processes within a controlled and monitored cleanup approach to reduce contaminants in the subsurface

and achieve remedial objectives. The natural attenuation processes that may occur in the subsurface include biodegradation, volatilization, dilution, and adsorption (USEPA, 2004).

The key component of MNA is contaminant modeling for demonstrating that degradation would result in contaminant reduction within a reasonable timeframe and prohibiting migration via potential exposure pathways. Regular monitoring is performed to verify that contaminant reduction is occurring consistent with the RAOs. Monitoring would not only measure contaminant reduction, but also detect any changes in the subsurface (e.g., microbial and geochemical changes) and identify any potential migration caused by the breakdown of contaminants. Monitoring typically continues for 1 to 2 years after the RAOs are achieved for performance monitoring purposes.

EVALUATION

Effectiveness Implementability The existing monitoring well network can be This technology is best suited for addressing contamination where the source has been removed. utilized for routine monitoring. At present, two of the offsite source plumes have not initiated active remediation. The source of the A reasonable level of effort and time is required third plume is unknown. for preparation of monitoring and sampling plans, and NYSDEC approval. MNA is contingent on the existing microbial population in the subsurface and available nutrients, MNA success within a reasonable timeframe is which may result in slowed or limited success. unpredictable. This process may take years to reach the RAOs. Very few short-term effects are associated with MNA. This process would not pose exposure risks to workers, thus satisfying the RAO of preventing direct contact.

Although this technology would meet the RAOs for groundwater, the effectiveness of this technology is uncertain given that the offsite sources have not been addressed. In turn, the duration of MNA remediation would be highly unpredictable and there is no guarantee that contaminant reduction would occur. Based on this information, MNA will not be carried forward for remedial alternative development.

9.2 Technology Screening for Soil Vapor

Three technologies have been identified to be potentially applicable in addressing impacted soil vapor. The technologies selected for screening include:

- Access/Use Restriction
- Active Sub-Slab Venting System
- Passive Venting System with Vapor Barrier

The following sections provide a brief description of the above technologies and present the evaluation of the technology's effectiveness, implementability, and ability to fulfill the RAOs. Based on this preliminary screening, the technology will either be carried forward for further evaluation and development of remedial alternatives or the technology will be eliminated.

9.2.1 Access/Use Restriction

Access/use restriction is an institutional control that limits usage of a designated portion of a site in an effort to limit exposure. This technology would restrict untrained site workers from working in known offsite source plume areas. Institutional controls implemented to enforce the use restrictions include restriction of work within the approximated extent of the offsite source plumes shown on Plate 4 and filing a deed restriction to notify all parties that VOCs are present. Engineering controls including vapor barriers are typically used in conjunction with access/use restrictions.

EVALUATION

Effectiveness	Implementability
 Access/use restrictions would limit site worker exposure and prevent inhalation of impacted soil vapor. Internal communication would notify site workers of health and safety requirements for working in these areas. Access/use restrictions will be established based on the approximated extent of onsite impacts due to the offsite plume sources. 	 Implementation of the access/use restriction would rely on thorough communication to site workers of the access limited areas and health and safety concerns. This effort would be fairly implementable given that all pertinent information regarding these areas would be included in a Site Management Plan. Engineering controls such as installation of vapor barriers would be highly implementable and easily incorporated into new construction design plans.

Access/use restriction would meet the RAO for preventing inhalation of soil vapor in undeveloped portions of the Yard. In conjunction with soil vapor barrier construction, this technology would prevent any inhalation concerns associated with new construction in the offsite source plume areas. Therefore, this technology will be carried forward for remedial alternative development.

9.2.2 Active Sub-Slab Venting System

An active sub-slab venting system or depressurization system creates a negative pressure field directly under a building and on the outside of the building foundation (MDEP, 2005). The negative pressure field collects gases, preventing VOC impacted gases from permeating into the building. The gases are then piped to an ambient air discharge point. The sub-slab venting system does not remediate the soil gas, soil, or groundwater; however, it does remove VOC-impacted soil gas from the subsurface acting as a form of mass removal.

EVALUATION

Effectiveness Implementability Sub-slab venting systems are effective means of Sub-slab venting systems are easily constructed removing soil vapor from the subsurface under when part of new building construction. buildings and preventing soil vapor intrusion. This Installation for retro-fitting existing buildings is technology would meet the RAO for mitigating more difficult. Materials and trained contractors exposure risks of soil vapor intrusion. are readily available. Long-term operation, maintenance, and monitoring (OM&M) would be required.

The HSTF building is the only occupied onsite building that is located proximate to one of the offsite source plumes. For this reason, the soil vapor investigation was performed in this area. Based on the soil vapor concentrations observed under the HSTF building, in indoor air, and outdoor air, there does not appear to be evidence of soil vapor intrusion. For this reason, it does not appear that an active sub-slab venting system, entailing long-term costs associated with long-term OM&M would be required but rather a more passive approach would suffice. Based on this information, this technology has not been retained for remedial alternative development.

9.2.3 Passive Venting System and Vapor Barrier

A passive venting system is similar to the active sub-slab venting system in that it collects gases from below and around the building and prevents gases from permeating into the building;

however, a passive venting system does not create negative pressure through the use of a fan. Collected gases are piped away from the building to an ambient air discharge point. Similarly, a passive venting system does not remediate the soil gas, soil, or groundwater. In conjunction with the passive venting system, a vapor barrier consisting typically of polyethylene sheeting is installed during foundation construction.

EVALUATION

Effectiveness **Implementability** Passive venting systems are less effective than Passive venting systems are easily constructed active sub-slab venting systems in removing soil when part of new building construction. vapor from the subsurface under buildings and Materials and trained contractors are readily preventing soil vapor intrusion. A passive venting available. system can be converted to an active system through the installation of a vent fan. Long-term monitoring would be required. Teamed with the vapor barrier, this technology would meet the RAO for mitigating exposure risk of soil vapor intrusion.

Based upon monitoring sampling results, the passive venting system could easily be converted to an active system by installing a vent fan. This technology will be retained for remedial alternative development.

9.3 Summary of Applicable Technologies

The screened technologies are proven technologies that will fulfill the RAOs for groundwater and soil vapor. The following are the technologies that will be carried forward for remedial alternative development.

Groundwater

- Access Controls/Deed Restriction
- Groundwater Use Restriction
- Groundwater Monitoring

Soil Vapor

- Access/Use Restriction
- Passive Venting System with Vapor Barrier

10.0 DESCRIPTION AND EVALUATION OF REMEDIAL ALTERNATIVES

This section assembles the remedial technologies retained after the screening evaluation in Section 9.0 into remedial action alternatives that will address groundwater and soil vapor. The retained technologies each fulfill one or more of the RAOs identified in Section 8.0. The remedial alternative evaluation combines the retained technologies in an effort to expand the potential of meeting all of the RAOs. The following technologies were retained:

Groundwater

- Access Controls/Deed Restriction
- Groundwater Use Restriction
- Groundwater Monitoring

Soil Vapor

- Access/Use Restriction
- Passive Venting System with Vapor Barrier

Based on the RI data for groundwater, the exceedances of the applicable SCGs that have been identified are associated with offsite source plumes. In accordance with 6 NYCRR Subpart 375-1.8, onsite groundwater contamination can be attributed to offsite sources as demonstrated by the following:

- No onsite act has contributed to the upgradient contamination or caused the contamination to become worse.
- Based on review of onsite data and investigative reports obtained from the upgradient offsite sources (i.e., SMP and ACCO), there are known offsite sources of contamination located at one or more upgradient locations that has impacted onsite groundwater as a result of migration of contaminants in groundwater.
- There are no onsite sources in the Yard that may be causing or contributing more than inconsequential amounts to the groundwater contamination.

As a result of demonstrating that the source of groundwater contamination in OU-6 is from upgradient offsite sources, Amtrak has no remedial responsibility with respect to such groundwater contamination migrating to the Yard, continues to satisfy the above conditions that demonstrate groundwater contamination is attributed to offsite sources, and will identify a remedy for OU-6 that eliminates or mitigates, to the extent feasible, the impact of any offsite contamination entering the Yard, as given in 6 NYCRR Subpart 375-1.8.

NYSDEC's Draft DER-10 specifies that remedial alternatives that must be evaluated in the FS include a No Action alternative and an alternative which would restore the site to pre-disposal

conditions. However, as demonstrated above, remedial responsibility for the offsite source

contamination remains with the upgradient sources. For this reason, evaluation of a pre-disposal

remedial alternative where Amtrak would remediate the offsite source plume areas to pre-

disposal conditions is not applicable. The remedial alternatives that have been developed for

evaluation includes the No Action alternative and an alternative utilizing the screened

technologies that will mitigate the impacts of groundwater and soil vapor.

The remedial action alternatives for groundwater and soil vapor include:

Remedial Alternative I: No Action

Remedial Alternative II: Groundwater Monitoring, Institutional and Engineering Controls

Each of the above alternatives is evaluated based on seven specific criteria. The results of this

assessment are used to comparatively evaluate the alternatives to determine which is most

appropriate for implementation. The seven criteria are provided in NYSDEC TAGM 4030

(NYSDEC, 1990), the NCP (40 CFR Part 300.430), Guidance for Conducting Remedial

Investigations and Feasibility Studies Under CERCLA (USEPA, 1988b), and NYSDEC's Draft

DER-10 (NYSDEC, 2002). The seven evaluation criteria are the following:

• Overall protection of public health and the environment

Compliance with SCGs

• Long-term effectiveness and permanence

• Reduction of Toxicity, Mobility or Volume

Short-term effectiveness

Implementability

Cost

Overall protection of public health and the environment and compliance with SCGs are termed

threshold criteria, whereas the remedial alternative must meet these requirements in order to be

eligible for selection. The next five criteria are termed primary balancing criteria and are used as

the primary basis of comparison in selecting the recommended remedial alternative.

The following sections provide a description of the two remedial alternatives that were developed to address groundwater and soil vapor and evaluate the alternatives based on the above seven evaluation criteria.

10.1 Remedial Alternative I: No Further Action

In accordance with the NCP and the draft DER-10, a no action alternative is evaluated to provide a baseline for comparison of potential risks posed if no remedial action were performed. For this remedial alternative, no measures to mitigate exposure to impacted groundwater and soil vapor would be implemented.

10.1.1 Overall Protection of Human Health and the Environment

Remedial Alternative I would not be protective to human health and the environment. Risks posed through potential pathways of exposure would not be eliminated, reduced, or controlled through the use of institutional and engineering controls. The No Action alternative would not meet the RAOs.

10.1.2 Compliance with SCGs

A summary of the applicable SCGs is presented on Table 18. Since no remedial actions would be conducted under this alternative, many of the action-specific SCGs would not be relevant to this alternative. With the exception of groundwater contamination migrating onsite from the three offsite source plumes, the onsite groundwater meets the applicable chemical-specific SCGs. Therefore, this alternative complies with the applicable chemical-specific SCGs. The No Action alternative would not comply with the following action-specific alternatives:

- The 6 NYCRR 375 goals to restore the site to pre-disposal conditions to the extent feasible and authorized by law and to eliminate or mitigate all significant threats to public health and the environment; and
- NYSDEC and NYSDOH guidance provided for mitigation of vapor intrusion.

10.1.3 Long-Term Effectiveness and Permanence

Alternative I provides neither long-term effectiveness nor permanence of remedy. For wastes that will remain onsite, this evaluation criterion evaluates the magnitude of remaining risks, the adequacy and reliability of institutional and engineering controls in limiting risk, and the ability to meet the RAOs in the future. The No Action alternative would not reduce the magnitude of

exposure risk and would never meet the RAOs. No institutional and engineering controls would be implemented to limit risk. If Alternative I is implemented, the current level of risk to workers would remain.

10.1.4 Reduction of Toxicity, Mobility, or Volume

This alternative would not be effective in reducing the toxicity, mobility, or volume of impacted groundwater or soil vapor. Minimal effects from biodegradation that would reduce the volume of contaminants could be expected given that the offsite source areas have not been actively remediated to date and contaminants continue to migrate onsite.

10.1.5 Short-Term Effectiveness

Since there are no actions proposed for this alternative, there is no associated construction and implementation period, and therefore no associated short-term effects to human health and the environment.

10.1.6 Implementability

Implementability concerns posed by this alternative do not exist since there would not be any actions performed. Therefore, this alternative would be readily implementable.

10.1.7 Cost

Since there are no remedial actions for this alternative, there are no capital costs associated with Remedial Alternative I.

10.2 Remedial Alternative II: Groundwater Monitoring, Institutional and Engineering Controls

Remedial Alternative II consists of the performance of groundwater sampling at monitoring wells located within the three offsite source plume areas and implementation of institutional and engineering controls to mitigate risks of exposure to impacted groundwater and soil vapor.

Groundwater Monitoring

Groundwater monitoring in offsite source plume areas would be performed to determine if continued migration is occurring and monitor the exposure risks to site workers. A subset of the existing shallow monitoring wells within the offsite source plume areas and downgradient of these areas would be gauged and sampled. Based on minimal changes to the offsite source

plumes observed during the RI, sampling would be performed every other year until 2016 (one year after the anticipated ESA construction completion date). The monitoring wells to be included in the monitoring plan are shown on Plate 4.

Groundwater samples would be submitted for analysis for TCL VOCs. Groundwater sampling data would be reported within three months of sampling and would include any monitoring data obtained from ESA and the SMP and ACCO sites.

The Groundwater Monitoring Plan would be incorporated into the Site Management Plan.

Institutional and Engineering Controls

Access/use restrictions would be implemented to prevent untrained site workers from working in the offsite source plume areas in an effort to prevent exposure to impacted groundwater and soil vapor in these areas. Groundwater use restrictions would also be implemented to prohibit the use of onsite groundwater and notify the public of the presence of VOCs in groundwater at the Yard.

For future construction of buildings that will be occupied, soil vapor sampling would be performed to determine the potential for soil vapor intrusion and a passive venting system and vapor barrier would be incorporated into the building construction design, if necessary. Due to time constraints during future construction, a passive venting system and vapor barrier may be incorporated into the building design without prior soil vapor sampling. The venting system would be routinely monitored. The monitoring schedule would be incorporated into the Monitoring Plan portion of the comprehensive Site Management Plan.

Site Management Plan

The Site Management Plan will include details of the groundwater monitoring to be performed, the access/use restrictions, and soil vapor engineering controls. Operations personnel at the Yard would retain a copy of the Site Management Plan for reference by site workers. The Site Management Plan will be a comprehensive plan that includes institutional and engineering controls, O&M activities, and monitoring requirements for each OU (i.e., OU-1, OU-2, OU-3, OU-4, and OU-6).

Environmental Easements

An environmental easement is a form of institutional control that acts as an enforcement mechanism to ensure required institutional and engineering controls remain in place (NYSDEC, 2002). The environmental easement would:

- require compliance with the Site Management Plan;
- restrict the use of groundwater as a source of potable water, without necessary water quality treatment; and
- require an annual certification that certifies the institutional and engineering controls are unchanged from the previous annual certification and nothing has occurred to impair the ability of the controls to protect human health and the environment.

10.2.1 Overall Protection of Human Health and the Environment

This alternative would meet the RAOs for providing protection to human health. Future risk of exposure to impacted groundwater and soil vapor is prevented through implementation of the institutional and engineering controls.

10.2.2 Compliance with SCGs

A summary of the applicable SCGs is presented in Table 18. With the exception of groundwater contamination migrating onsite from the three offsite source plumes, the onsite groundwater meets the applicable chemical-specific SCGs. Remedial Alternative II would not comply with the 6 NYCRR 375 goals to restore the site to pre-disposal conditions to the extent feasible and authorized by law and to eliminate or mitigate all significant threats to public health and the environment. However, remediation to predisposal, unrestricted use standards is neither applicable nor appropriate given the current and intended future use as a railyard. Remedial Alternative II does comply with the criteria in 6 NYCRR Subpart 375-1.8 for remedial parties where an offsite source of groundwater contamination with no onsite contribution has been demonstrated.

10.2.3 Long-term Effectiveness and Permanence

The proposed institutional and engineering controls would provide long-term protection to site workers by restricting work in the offsite source plume areas and minimizing the exposure pathway. Groundwater monitoring would identify any continued onsite migration and increase in exposure risk.

Remedial Alternative II would not offer permanence in the remedy since active remediation of the offsite source plumes would not be performed by Amtrak. Implementation of an SVE/AS system to address the VOC plume at the SMP site is planned. Effective remediation of this plume would address the source of the North Plume. The source of the West of Honeywell Street Plume appears to be the ACCO Site, which is still performing a remedial investigation. Future remediation at the ACCO Site would address the source of the West of Honeywell Street Plume. Not until these plumes are remediated would the potential for removing the ongoing source of contamination migrating onsite be addressed and permanence in remedy for the onsite contamination from these plumes be achieved.

10.2.4 Reduction of Toxicity, Mobility, or Volume

Remedial Alternative II would not reduce the toxicity, mobility, or volume of groundwater contaminants in the offsite source plume areas. Minimal effects from biodegradation that would reduce the volume of contaminants could be expected given that the offsite source areas have not been actively remediated to date and contaminants continue to migrate onsite.

10.2.5 Short-Term Effectiveness

With the institutional and engineering controls in place, Alternative II only poses moderate short-term effects for site workers that may be exposed to impacted groundwater and soil vapor during future construction. There is also a potential for short term exposure to ESA workers performing extensive dewatering efforts. The short-term risk of exposure would be minimized through the use of proper personal protective equipment and health and safety monitoring during construction.

10.2.6 Implementability

The institutional and engineering controls associated with Remedial Alternative II are easily obtainable and implementable, with moderate administrative effort. Groundwater monitoring is also easily implementable, utilizing a subset of the existing onsite monitoring well network. A moderate level of effort will be required for remaining updated on activities performed at the upgradient offsite sources and obtaining monitoring data for these sites.

10.2.7 Cost

The estimated capital cost to implement Remedial Alternative II is \$46,200. The capital costs include administrative efforts in establishing the access/use restrictions, filing the groundwater use restriction with the NYCDEP, and preparation of a Monitoring Plan. The capital costs for installing a venting system and vapor barrier for future building construction have not been included in the estimate due to the uncertainty of future building design.

The estimated present worth cost for tasks associated with groundwater monitoring is \$36,414. It is anticipated that groundwater monitoring would be performed until 2016; one year after the ESA construction is completed. Therefore, the total net present value of Remedial Alternative II is \$82,614. The detailed cost estimate for Remedial Alternative II is provided on Table 19.

10.3 Comparison of Remedial Alternatives

This section provides a comparison of the remedial action alternatives that were developed to address the media of concern in OU-6. The NCP and the NYSDEC regulation and guidance on the selection of remedial alternatives for inactive hazardous waste disposal sites require that the seven evaluation criteria be used to individually evaluate the remedial action alternatives and also evaluate comparatively to identify advantages and disadvantages of each alternative relative to one another (NYSDEC, 1990 and NYSDEC, 2002).

The NCP and the NYSDEC guidance also require that alternatives be evaluated based on community acceptance. In accordance with NYSDEC guidance, alternatives are evaluated for community acceptance after the public comment period.

10.3.1 Overall Protection of Human Health and the Environment

Overall protection of human health and the environment and compliance with SCGs are threshold criteria. Therefore, the remedial action alternatives must adequately protect the human health and the environment and successfully comply with SCGs to be considered for selection as a recommended alternative. The protection of human health and the environment can be measured by the alternative's ability to satisfy the RAOs.

Alternative I – No Action would not reduce or control the potential for exposure to impacted groundwater and soil vapor and would not satisfy the associated RAOs. Alternative II would meet the RAOs for providing protection to human health through implementation of institutional and engineering controls that restrict working in the offsite source plume areas, prohibit the use of groundwater without treatment, and plan for construction of passive venting systems in any new construction in the offsite source plume areas. Under both remedial alternatives, protection to the environmental will not be provided until the offsite sources are remediated.

10.3.2 Compliance with SCGs

Compliance with SCGs, also a threshold criterion, determines whether an alternative satisfies regulatory requirements. A listing of applicable SCGs is provided on Table 18.

With the exception of groundwater contamination migrating onsite from the three upgradient offsite sources, the onsite groundwater meets the applicable chemical-specific SCGs. Chemical SCGs would only be attainable in the offsite source plume areas when the offsite sources are remediated and the continuing source to onsite groundwater is removed. The groundwater monitoring component of Remedial Alternative II would identify any changes in the offsite source plume areas and includes review of remedial efforts performed at the upgradient offsite source sites.

Both alternatives would not satisfy the remedial goal provided in 6 NYCRR Part 375 to restore the site to pre-disposal/pre-release conditions. However, as discussed earlier, remediation to predisposal, unrestricted use standards is neither applicable nor appropriate given the current and intended future use as a railyard. Remedial Alternative II complies with the criteria in 6 NYCRR Subpart 375-1.8 for remedial parties where an offsite source of groundwater contamination with no onsite contribution has been demonstrated.

10.3.3 Long-Term Effectiveness and Permanence

Long-term effectiveness examines the effectiveness of the alternative in providing protection to human health and the environment and is measured by the magnitude of residual risk remaining after the remedial actions, the adequacy and reliability of controls, and the ability to meet the RAOs in the future.

Remedial Alternative I provides neither long-term effectiveness nor permanence. No institutional and engineering controls would be implemented under this remedial alternative, resulting in an uncontrolled exposure risk associated with contaminants remaining onsite. Remedial Alternative II includes the implementation of institutional and engineering controls that restrict work in the offsite source plume areas and prevents the use of groundwater for drinking water purposes, which minimizes the magnitude of exposure risk. Therefore, Remedial Alternative II provides long-term effectiveness in providing protection to human health.

Neither of the proposed remedial alternatives provides long-term protection to the environment or permanence in remedy since active remediation of the offsite source plumes would not be performed. The sources of the contamination migrating onsite will need to be addressed before long-term protection and permanence in remedy can be achieved.

10.3.4 Reduction of Toxicity, Mobility, or Volume

This criterion evaluates the anticipated performance of the remedial action alternative in terms of the treatment used to reduce the toxicity, mobility, or volume, the type and quantity of residuals remaining after treatment, and the degree to which the treatment is irreversible.

Both of the proposed remedial alternatives would not reduce the toxicity, mobility, or volume of contaminants in groundwater. As discussed earlier, the extent of impacts from contaminants migrating onsite from the upgradient offsite sources will not be reduced until the source areas are remediated. In the interim, minimal effects from biodegradation could be expected due to the ongoing sources.

10.3.5 Short-Term Effectiveness

Short-term effectiveness refers to the potential effects and related risks associated with the implementation of the remedial action alternative. There are no short-term impacts to human health associated with both remedial alternatives because no active remediation is proposed.

Potential short-term effects would occur during any future construction in the offsite source plume areas. The short-term risk of exposure would be minimized through the use of proper personal protective equipment and health and safety monitoring during construction.

10.3.6 Implementability

The implementability criterion evaluates the feasibility of an alternative based on the ability to construct and operate the technology, reliability of the technology, ease of undertaking additional remedial actions, if necessary, ability to monitor effectiveness, the administrative feasibility, and the availability of services and materials.

Remedial Alternative I can be implemented with relative ease. No active construction or remedial actions would be performed. Remedial Alternative II would be technically and administratively feasible. Moderate administrative effort would be required to implement the proposed institutional and engineering controls. Groundwater monitoring is easily implementable utilizing a subset of the existing onsite monitoring well network. Future construction of passive venting systems and vapor barriers is equally easily implementable, with trained workers and materials widely available. A moderate level of effort will be required for obtaining data from the upgradient sources and incorporating the data into the proposed Groundwater Monitoring report.

10.3.7 CostThe following is a summary of the estimated costs for each of the remedial action alternatives.The detailed cost estimate for Remedial Alternative II is provided on Table 19.

	Capital Cost	Indirect Costs	Monitoring NPV	Total NPV
Alternative I	\$0	\$0	\$0	\$0
Alternative II	\$42,000	\$4,200	\$36,414	\$82,614

11.0 OU-6 RI/FS CONCLUSIONS AND RECOMMENDATIONS

Conclusions and recommendations generated as part of the OU-6 RI/FS are summarized in the following sections.

11.1 Conclusions

Based on all data presented in this report, the following conclusions have been reached regarding OU-6.

- OU-6 consists of the saturated soil and groundwater beneath the Yard which comprise the Upper Glacial aquifer. The Upper Glacial aquifer is present beneath the entire Yard. Groundwater within the Upper Glacial aquifer flows predominantly west at an average rate of 4.29 to 4.92 ft/d, discharging to the buried flow path of Dutch Kills Creek in the western portion of the Yard and/or the East River, located approximately one mile from the Yard. Although Dutch Kills is now buried in the western portion of the Yard, it emerges south of the Yard before joining Newtown Creek.
- Upward vertical gradients (i.e., upward groundwater flow) exist beneath the west and northwest portions of the Yard, including OU-3, reducing or preventing the downward migration of petroleum-related contaminants from the OU-3 SPH plume. This is supported by analytical data from monitoring wells screened either beneath or hydraulically downgradient of the SPH accumulation.
- Saline groundwater is present throughout the southwest portion of the Yard. The occurrence of saline groundwater correlates with the buried Dutch Kills wetland. The sources of these saline conditions are likely salt water intrusion from the Dutch Kills and Newtown Creek. There are no chemical-specific standards for saline groundwater (i.e., Class GSA). Six of 32 Yard wells sampled (19 percent) contain saline groundwater (i.e., chloride >250 mg/L and/or TDS >1,000 mg/L). To be conservative, as part of the groundwater quality data evaluation, even saline groundwater samples were compared to the Class GA NYSDEC AWQSGVs.
- Three plumes of chlorinated VOCs in shallow and deep groundwater have migrated onto the Yard from upgradient, off-site sources, and are not related to Yard activities. All three plumes contain groundwater that exceeds the NYSDEC AWQSGVs for select chlorinated VOCs. Only one of the three plumes (West of Honeywell Plume) contained BTEX and MTBE that exceeded the NYSDEC AWQSGVs.
- In general, deep groundwater at the Yard is more impacted than shallow groundwater at the Yard.
- Two metals were detected above both background ranges and NYSDEC AWQSGVs (manganese and lead). Manganese was found in wells MW-13S and MW-91 above background ranges and the AWQSGVs, and lead was found only in MW-87 above both background ranges and the AWQSGVs. The manganese is likely attributed to anoxic conditions within the aquifer (e.g., the buried western and northeast wetlands), and is

indicative of natural aquifer conditions. The detection of lead is likely the result of a turbid groundwater sample that contained a large amount of suspended particles.

- No SVOCs were detected in Yard groundwater above NYSDEC AWQSGVs.
- No PCBs were detected in Yard groundwater above NYSDEC AWQSGVs.
- An isolated detection of toluene was found in MW-37, and an isolated detection of total xylene was found in well MW-68, however, both detections were significantly below the NYSDEC AWQSGVs.
- There were no Yard-related NYSDEC AWQSGV exceedances in groundwater identified during this Supplemental OU-6 RI.
- Overall, the fundamental findings of the Supplemental OU-6 RI remain largely consistent
 with findings of the 1997 OU-6 RI. A comparison of the results, including the
 similarities and the subtle differences is provided below.
 - <u>VOCs</u> Three dissolved-phase chlorinated VOC groundwater plumes have migrated onto the Yard from off-site sources. The leading edge of the North Plume appears to have migrated further west (downgradient) since the 1997 RI was implemented. Additionally, minor detections of toluene (below AWQSGV) were found in this plume in 2008. The West of Honeywell Plume is still present at the Yard. This plume appears to have increased in width (east to west) in the southern portion of the Yard, however, the shallow portion of this plume does not appear to extend as far north as in 1997. BTEX and MTBE were also identified in the deep groundwater associated with this plume. The Southeast plume is still present at the Yard, and appears to be similar in size and configuration to that observed in 1997.

In 1997, well MW-27 contained elevated concentrations of benzene, carbon disulfide and MIBK. In 2008, these compounds were all non-detect in MW-27. Furthermore, in 2008 there was not a single detection of MIBK in groundwater throughout the Yard.

In 1997, two dissolved-phase BTEX groundwater plumes were found at the Yard. These BTEX plumes migrated onto the Yard from off-site sources. In 2008, these BTEX plumes were no longer present at the Yard.

In 1997, a hydrocarbon sheen was observed in well MW-68. In 2008, this hydrocarbon sheen was not present in MW-68, but a detection of total xylenes in groundwater below the NYSDEC AWQSGV was present.

- <u>SVOCs</u> With respect to SVOCs, the results of the Supplemental OU-6 RI are similar to the 1997 RI, there was not a single detection of SVOCs that exceed the NYSDEC AWQSGVs.
- Metals In 1997, a total of seven metals were detected in five wells above both the Yard background concentrations and the NYSDEC AWQSGVs. In 2008, only two metals were detected in three wells above both the Yard background concentrations

- and the NYSDEC AWQSGVs. This decrease is likely due to the attenuation of metals in the upgradient, off-site source (i.e., SMP).
- <u>PCBs</u> In 1997, PCBs were detected in two wells at low concentrations (both below the NYSDEC AWQSGV). In 2008, there was not a single detection of PCBs in groundwater.
- <u>Chloride and TDS</u> In 1997, 13 of 34 wells (38 percent) were found to be saline based on chloride and/or TDS data. In 2008, 6 of 32 wells (19 percent) were found to be saline based on chloride and/or TDS data.
- Based on current OU-6 data, the only occupied building that could potentially be subject to vapor intrusion from subsurface (OU-6) sources is the HSTF S&I building. Based on sub-slab vapor, indoor air, and outdoor ambient air samples collected in 2009, vapor intrusion from the subsurface is not occurring in this building.
- Saturated soil samples were collected from a number of locations throughout OU-6, many of which coincide with the presence of dissolved-phase groundwater plumes that have migrated onto the Yard from off-site sources. There were no exceedances of the Yard-specific soil cleanup levels for Yard COCs in saturated soil, or of the NYSDEC Part 375 Restricted Industrial Use soil cleanup objectives for non-COCs in saturated soil found anywhere in the Yard. A few low-level detections of VOCs were identified in saturated soil resulting from impacted groundwater migrating onto the Yard from off-site sources.
- No current complete exposure pathways exist in OU-6; however, several potential exposure pathways exist. These potential exposure pathways will be addressed in the Site Management Plan, or have been addressed as part of the OU-3 RAWP.

11.2 Recommendations

The recommended remedial action alternative for impacted groundwater and soil vapor is Remedial Alternative II – Groundwater Monitoring, Institutional and Engineering Controls. Remedial Alternative II would provide adequate protection from potential exposure risks to workers, meet the groundwater and soil vapor RAOs, comply with the majority of the applicable SCGs, and comply with the responsibilities outlined for remedial parties that have demonstrated that the source of onsite contamination is an upgradient source.

Respectfully submitted,

ROUX ASSOCIATES, INC.

Joseph Duminuco

Principal Hydrogeologist/

Vice President

REMEDIAL ENGINEERING, P.C.

Charles J. McGuckin, P.E. Principal Engineer

12.0 REFERENCES

- AKRF, 1999. Detailed Environmental Site Investigation Sunnyside Yard, Queens, New York. December 1999.
- Amtrak, 1989. Letter to Mr. Joseph Duminuco, Roux Associates, Inc., November 22, 1989.
- Buxton, et al., 1981. Reconnaissance of the Ground-Water Resources of Kings and Queens Counties, New York: U.S. Geological Survey Open-File Report, 81-1186.
- Environmental Planning & Management, Inc., 1997. Final Hazardous Waste Investigation Report, Queens Boulevard Bridge Over Sunnyside Yard. Revised March 1997.
- Fanning, Phillips & Molnar Engineers, 1992. Regional Water Table Hydrograph of U.S. Geological Survey Observation Well Q-3122, Intersection of 29th Street and 38th Avenue. Figure 3.9. June 25, 1992.
- Franke, O.L., and Philip Cohen, 1972. Regional Rates of Ground-Water Movement on Long Island, New York. U.S. Geological Survey Professional Paper 800-C, p. C-271 C-277.
- Freeze, R.A. and J.A. Cherry, 1979. Groundwater. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 604 pp.
- Garbarini, D.R. and L.W. Lion, 1986. Environ. Science Technol., Vol. 20, No. 12, pp. 1263-1269.
- Geraghty & Miller, Inc., 1986. Results of Hydrogeologic Investigation at the Amtrak, Sunnyside, Queens, New York Train Yard, June 1986.
- GES, 2004a. Remedial Investigation Report for the Remedial Investigation/Feasibility Study Standard Motor Products, Inc. Site, Long Island City, New York. January 30, 2004.
- GES, 2004b. Remedial Investigation Work Plan, OU-2 (Off-Site Area), ACCO Brands, Inc. May 2004.
- Holzmacher, McLendon & Murrell, P.C., 1992. Remedial Investigation Report, Standard Motor Products, Inc., 37-18 Northern Boulevard, Long Island City, New York. August 1992.
- Howard, P.M., R.S. Boethling, W.F. Jarvis, W.M. Meylan, and E.M. Michalenko, 1991. Handbook of Environmental Degradation Rates. Lewis Publishers.
- Julius Bien & Co., 1890. Topographic map of western Queens, New York, 1890.
- Lyman, S.J., W.F. Reehl, and D.H. Rosenblatt, 1982. Handbook of Chemical Property Estimation Methods. McGraw-Hill.
- McClymonds, N.E. and O.L. Franke, 1972. Water-Transmitting Properties of Aquifers on Long Island, New York.

- MDEP, 1995. Guidelines for the Design, Installation, and Operation of Sub-Slab Depressurization Systems, December 1995.
- New Jersey Department of Environmental Protection, 1995. Vapor Intrusion Guidance. October 2005.
- NYSDEC, 1990. NYSDEC Technical and Administrative Guidance Memorandum TAGM #4030: Selection of Remedial Actions at Inactive Hazardous Waste Sites, May 15, 1990.
- NYSDEC, 1992. Letter to Mr. Joseph Duminuco, Roux Associates, Inc., November 19, 1992.
- NYSDEC, 1995. Spill Guidance Manual. Technical Field Guidance: Corrective Action Exposure and Risk Assessment.
- NYSDEC, 1998. Memorandum. Division of Water and Technical and Operational Guidance Series (TOGs) (1.1.1). New York State Ambient Water Quality Standards and Guidance Values for Class GA Waters. June 1998.
- NYSDEC, 2002. Draft DER-10 Technical Guidance for Site Investigation and Remediation. December 2002.
- NYSDEC, 2006. 6 NYCRR Part 375 Environmental Remediation Programs Subparts 375-1 to 375-4 & 375-6. December 14, 2006.
- NYSDEC, 2007a. Proposed Remedial Action Plan for the Amtrak Sunnyside Yard Site, Operable Unit No. 3. February 2007.
- NYSDEC, 2007b. Record of Decision Amtrak Sunnyside Yard Site Operable Unit No. 3, Long Island City, Queens County, New York Site, Number 241006. March 2007.
- NYSDEC, 2007c. Generic Template for Final Engineering Report. Region 2 DER Managed Projects. May 7, 2007.
- NYSDEC, 2007d. Generic Template for Final Remedial Action Work Plan. Region 2 DER Managed Projects. May 7, 2007.
- NYSDEC, 2007e. Letter to R. Mohlenhoff, Re: Work Plan for the Operable Unit 6 (OU-6) Remedial Investigation/Feasibility Study. December 27, 2007
- NYSDEC, 2009a. Proposed Remedial Action Plan for the Amtrak Sunnyside Yard Site, Operable Unit No. 4. March 2009.
- NYSDEC, 2009b. Record of Decision Amtrak Sunnyside Yard Site Operable Unit No. 4, Long Island City, Queens County, New York, Site Number 241006. March 2009.
- NYSDOH, 2006. Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York. October 2006.

- Nyer, E., G. Boettcher, and B. Morello, 1991. Groundwater Monitoring Review, Fall 1991, pp. 81-86.
- OHM, 1992. Underground Storage Tank Closure and Assessment Report Sunnyside Yard, Long Island City, New York, September 21, 1992.
- PB/STV/PTG, 2001. Findings Report for the Environmental Site Investigation of the Sunnyside Yard and Harold Interlocking, Sunnyside Yard, Queens, New York East Side Access Project Alignments and Replacement Yards Study, Revision No. 1. January 2001.
- PB/STV/PTG, 2007. Supplemental Environmental Site Investigation findings Report Summary Queens Bored Tunnels and Structures. February 2007.
- Pennsylvania Tunnel and Terminal Railroad Company, 1906. Map of Sunnyside Yard and Surrounding Area, December 1906.
- Pennsylvania Tunnel and Terminal Railroad Company, Circa 1910. Chief Engineering Report and Associated Cross-Sections of Sunnyside Yard.
- Roux Associates, Inc., 1990. Work Plan for the Remedial Investigation and Feasibility Study, Sunnyside Yard, Queens, New York, March 14, 1989; revised February 27, 1990.
- Roux Associates, Inc., 1991. Data Usability Report; revised October 5, 1991.
- Roux Associates, Inc., 1992a. Phase I Remedial Investigation, Sunnyside Yard, Queens, New York, January 22, 1992. Volumes I through III.
- Roux Associates, Inc., 1992b. Letter report to Mr. James Quinn, New York State Department of Environmental Conservation, October 13, 1992.
- Roux Associates, Inc., 1992c. Results of Underground Storage Tank Investigation Area 2, Sunnyside Yard, Queens, New York, October 23, 1992.
- Roux Associates, Inc., 1993a. Addendum to the August 5, 1992 Work Plan for the Phase II Remedial Investigation, Sunnyside Yard, Queens, New York, May 28, 1993; revised August 4, 1993.
- Roux Associates, Inc., 1993b. Letter to Mr. James Quinn, New York State Department of Environmental Conservation, December 22, 1993.
- Roux Associates, Inc., 1995. Phase II Remedial Investigation, Sunnyside Yard, Queens, New York, February 15, 1995.
- Roux Associates, Inc., 1996. Limited Phase II Environmental Site Assessment Report. High Speed Trainset Facility, Sunnyside Yard, Queens, New York. December 3, 1996.
- Roux Associates, Inc., 1997a. Focused Remedial Investigation For Operable Unit 2, Sunnyside Yard, Queens, New York, May 23, 1997.

- Roux Associates, Inc., 1997b. Letter to Mr. Hari Agrawal, New York State Department of Environmental Conservation, June 2, 1997.
- Roux Associates, Inc., 1999a. Operable Unit 6 Remedial Investigation Report, Sunnyside Yard, Queens, New York. May 14, 1999.
- Roux Associates, Inc., 1999b. Letter Report to Mr. Hari O. Agrawal, Environmental Engineer, NYSDEC. Results of Additional Delineation of the Separate-Phase Petroleum Accumulation in OU-3, Sunnyside Yard, Queens, New York. October 14, 1999.
- Roux Associates, Inc., 2001. Operable Unit 3 Remedial Investigation Report, Sunnyside Yard, Queens, New York. March 29, 2001.
- Roux Associates, Inc., 2005a. Final Operable Unit 3 Remedial Investigation Report, Sunnyside Yard, Queens, New York. May 27, 2005.
- Roux Associates, Inc., 2005b. Operable Unit 3 Feasibility Study, Sunnyside Yard, Queens, New York. December 2005.
- Roux Associates, Inc., 2007. Work Plan for the Operable Unit 6 (OU-6) Remedial Investigation/Feasibility Study. Sunnyside Yard, Queens, New York. October 30, 2007.
- Roux Associates, Inc., 2008. Operable Unit 4 Remedial Investigation Report, Sunnyside Yard, Queens, New York. October 2, 2008.
- Roux Associates, Inc., 2009a. Operable Unit 4 Feasibility Study, Sunnyside Yard, Queens, New York. January 30, 2009.
- Roux Associates, Inc., 2009b. Letter to Mr. Shaun Bollers, Environmental Engineer, NYSDEC. Plan for a Limited Soil Vapor Intrusion Survey, Operable Unit 6 RI/FS, Sunnyside Yard, Queens, New York. March 4, 2009.
- Smolensky, Douglas A., 1983. Potentiometric Surfaces on Long Island, New York--A Bibliography of Maps. U.S. Geological Survey Open-File Report 84-070.
- Soren, Julian, 1971. Ground-Water and Geohydrologic Conditions in Queens County, Long Island, New York. United States Geological Survey Water-Supply Paper 2001-A.
- Soren, Julian, 1978. Subsurface Geology and Paleogeography of Queens County, Long Island, New York. U.S. Geological Survey Water-Resources Investigations 77-34 Open-File Report. February 1978.
- USEPA, 1983. Methods of Chemical Analysis of Water and Wastes.
- USEPA, 1988. CERCLA Compliance with Other Laws Manual: Interim Final, August 1988.
- USEPA, 1988b. Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA, Interim Final, EPA 540/G-89 004, October 1988.

- USEPA, 1989. Risk Assessment Guidance for Superfund (RAGS) Volume I: Human Health Evaluation Manual (Part A) Interim Final. Office of Emergency and Remedial Response. EPA/540/1-89/002.
- USEPA, 1990. National Oil and Hazardous Substances Pollution Contingency Plan, 40 CFR300 Final Rule, March 8, 1990.
- USEPA, 1996. Low Stress (Low Flow) Purging and Sampling Procedures for the Collection Ground Water Samples from Monitoring Wells. July 30, 1996.
- USEPA, 2002. OSWER Draft Guidance for Evaluating Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance). November 2002.
- USEPA, 2004. How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites, A Guide for Corrective Action Plan Reviewers, EPA 510-R-04-002, May 2004.
- Walton, W., 1991. Principles of Groundwater Engineering.

Table 1. Summary of Construction Details for Monitoring Wells, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Well Number	Date(s) Installed	Land Surface Elevation (ft relative to 1988 NAVD mean sea level)	Measuring point Elevation (ft relative to 1988 NAVD mean sea level)	Screen Type	Diameter (inches)	Screen Slot Size	Depth of Boring (ft below land surface)	Screened Interval (ft below land surface)	Interval Gravel Packed (ft below land surface)	Interval Sealed with Bentonite (ft below land surface)	Interval Sealed with Grout (ft below land surface)	Screen Setting (ft relative to mean sea level	Screen
CTB-1 (m)	7/14/2005	17.64	21.73	PVC	4	0.020	15	1.5 - 11.5	1 - 15	0.5 - 1	0 - 0.5	16 - 6	Water Table
CTB-19 (m)	7/15/2005	18.73	22.64	PVC	4	0.020	12	2 - 12	1 - 12	0.5 - 1	0 - 0.5	17 - 7	Water Table
CTB-20 (m)	7/14/2005	18.52	22.59	PVC	4	0.020	12.5	2.5 - 12.5	1.5 - 12.5	0.5 - 1.5	0 - 0.5	16 - 6	Water Table
CTB-21 (m)	7/14/2005	17.60	21.42	PVC	4	0.020	10.5	2 - 10.5	1 - 10.5	0.5 - 1	0 - 0.5	16 - 7	Water Table
CV-2 (j)	6/7/2006	29.7	29	PVC	1.25	NA	40	30 - 40	28 - 40	26 - 28	NA	-111	Deep
MW-13(a) (g)	11/6/1990	16.83	17.27	SS	4	0.020	14	2 - 12	1 - 14	0.5 - 1	0 - 0.5	15 - 5	Water Table
MW-16 (m)	11/7/1990	17.2	19.52	SS	4	0.020	14	2.5 - 12.5	2 - 14	1 - 2	0 - 1	15 - 5	Water Table
MW-17 (b)	11/8/1990	18.02	19.51	SS	4	0.020	13	2 - 12	1.3 - 13	0.5 - 1.3	0 - 0.5	16 - 6	Water Table
MW-19	12/20/1990	17.81	20.11	SS	4	0.020	15	4 - 14	2 - 15	0.5 - 2	0 - 0.5	14 - 4	Water Table
MW-20 (m)	12/11/1990	17.18	19.09	SS	4	0.020	14	2.5 - 12.5	1.5 - 14	0.5 - 1.5	0 - 0.5	15 - 5	Water Table
MW-21	12/6/1990	17.86	19.06	SS	4	0.020	14	2 - 12	1 - 14	0.3 - 1	0 - 0.3	16 - 6	Water Table
MW-22 (b)	10/20/1990	17.02	18.20	SS	4	0.020	12	1 - 11	0.5 - 12	0 - 0.5	+0.5 - 0	16 - 6	Water Table
MW-23D (m)	12/10/1990	17.19	19.17	PVC	4	0.020	37.5	26.5 - 36.5	22 - 37.5	18 - 22 (c)	0 - 18	-919	Deep
MW-24(d)	11/28/1990	NS	NS	PVC	4	0.020	27	14 - 24	11 - 27	4 - 11	0 - 4	NS	Water Table
MW-25(d)	11/17/1990	NS	NS	PVC	4	0.020	16.5	5.5 - 15.5	3.5 - 16.5	1.5 - 3.5	0 - 1.5	NS	Water Table
MW-25A (b)	1/6/1993	22.14	25.28	PVC	4	0.010	15.5	4 - 14	2.5 - 15.5	1.5 - 2.5	0 - 1.5	18 - 8	Water Table
MW-26(d)	12/5/1990	NS	NS	PVC	4	0.020	22.5	11 - 21	8 - 22.5	1.5 - 8	0 - 1.5	NS	Water Table
MW-27	12/1/1990	20.09	21.34	PVC	4	0.020	19	8 - 18	6 - 19	2 - 6	0 - 2	12 - 2	Water Table
MW-28 (g)	11/9/1990	18.92	18.22	PVC	4	0.020	17	6 - 16	4 - 17	2 - 4	0 - 2	13 - 3	Water Table
MW-29 (e)	11/17/1990	9.11	12.29	PVC	4	0.020	12	1 - 11	0.5 - 12	0 - 0.5	0 (f)	82	Water Table
MW-30 (e)	11/30/1990	13.88	16.39	PVC	4	0.020	16	4 - 14	2.5 - 16	1 - 2.5	0 - 1	10 - 0	Water Table
MW-31(b)	11/8/1990	14.34	14.35	PVC	4	0.020	13	2.5 - 12.5	1.5 - 13	0.5 - 1.5	0 - 0.5	12 - 2	Water Table
MW-32(g)	10/4/1990	NS	NS	PVC	4	0.020	17	2.6 - 12.6	1.5 - 17	0.5 - 1.5	0 - 0.5	NS	Water Table
MW-33(g)	11/15/1990	NS	NS	PVC	4	0.020	18.5	8 - 18	6 - 18.5	3 - 6	0 - 3	NS	Water Table
MW-34 (g)	11/29/1990	26.71	28.96	PVC	4	0.020	19	7.3 - 17.3	5 - 19	1.5 - 5	0 - 1.5	19 - 9	Water Table
MW-35	1/15/1991	16.73	18.98	PVC	4	0.020	14	3 - 13	2 - 14	1 - 2	0 - 1	14 - 4	Water Table
MW-36 (e)	1/15/1991	17.31	20.01	PVC	4	0.020	15	3 - 13	1.5 - 15	0.5 - 1.5	0 - 0.5	14 - 4	Water Table
MW-37	12/14/1993	15.30	17.27	PVC	4	0.010	14	1.5 - 11.5	0.6 - 14	0.1 - 0.6	0 - 0.1	14 - 4	Water Table
MW-38D	12/10-11/93	17.57	20.27	PVC	4	0.010	44	29.5 - 39.5	25 - 44	23 - 25	0 - 23	-1222	Deep
MW-39D	12/15-16/93	18.71	20.67	PVC	4	0.010	43.5	30.5 - 40.5	27 - 43.5	23 - 27	0 - 23	-1222	Deep
MW-40D (b)	11/9/1993	19.61	21.59	PVC	4	0.010	42	29 - 39	26 - 42	22 - 26	0 - 22	-919	Deep
MW-41 (e)	10/30/1991	15.58	14.98	SS	4	0.010	14	3.4 - 13.4	2 - 14	1 - 2	0 - 1	12 - 2	Water Table

Table 1. Summary of Construction Details for Monitoring Wells, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Well Number	Date(s) Installed	Land Surface Elevation (ft relative to 1988 NAVD mean sea level)	Measuring point Elevation (ft relative to 1988 NAVD mean sea level)	Screen Type	Diameter (inches)	Screen Slot Size	Depth of Boring (ft below land surface)	Screened Interval (ft below land surface)		Interval Sealed with Bentonite (ft below land surface)	Interval Sealed with Grout (ft below land surface)	Screen Setting (ft relative to mean sea level	Screen
MW-42 (g)	1/18/1993	14.71	15.71	PVC	4	0.010	13.5	2 - 12	0.8 - 13.5	0.2 - 0.8	0 - 0.2	13 - 3	Water Table
MW-43 (g)	1/29/1993	14.11	15.14	PVC	4	0.010	14	2.5 - 12.5	1.5 - 14	0.5 - 1.5	0 - 0.5	12 - 2	Water Table
MW-44D (g)	1/19-20/93	13.92	14.27	PVC	4	0.010	41	29.7 - 39.7	27.8 - 41	26 - 27.8	0 - 26	-1626	Deep
MW-45	1/11/1993	20.94	20.54	PVC	4	0.010	20	7 - 17	5 - 20	3.5 - 5	0 - 3.5	14 - 4	Water Table
MW-46 (e)	1/11/1993	24.55	26.51	PVC	4	0.010	19	6.7 - 16.7	4.5 - 19	3.0 - 4.5	0 - 3.0	18 - 8	Water Table
MW-47 (b)	1/5/1993	26.06	28.78	PVC	4	0.010	14.5	3 - 13	2 - 14.5	1 - 2	0 - 1	23 - 13	Water Table
MW-48D	2/1/1993	25.76	25.30	PVC	4	0.010	42	30 - 40	27 - 42	25 - 27	0 - 25	-414	Deep
MW-49 (m)	12/13/1993	17.76	19.18	PVC	4	0.010	14	1.7 - 11.7	0.8 - 14	0.3 - 0.8	0 - 0.3	16 - 6	Water Table
MW-50 (m)	12/17/1993	17.37	18.58	SS	4	0.020	15	2 - 12	1 - 15	0.3 - 1	0 - 0.3	15 - 5	Water Table
MW-51 (b)	12/15/1993	17.58	19.23	SS	4	0.020	14	1.5 - 11.5	0.7 - 14	0.2 - 0.7	0 - 0.2	16 - 6	Water Table
MW-52 (m)	12/9/1993	16.51	16.87	SS	4	0.020	14	1.7 - 11.7	1 - 14	0.6 - 1	0 - 0.6	15 - 5	Water Table
MW-53 (e)	12/7/1993	17.70	20.16	SS	4	0.020	14	1.5 - 11.5	0.8 - 14	0.2 - 0.8	0 - 0.2	16 - 6	Water Table
MW-54 (b)	11/29/1993	17.07	19.35	SS	4	0.020	14	1.3 - 11.3	0.7 - 14	0.2 - 0.7	0 - 0.2	16 - 6	Water Table
MW-55 (b)	11/17/1993	17.73	19.27	SS	4	0.020	14	1.5 - 11.5	1 - 14	0.5 - 1	0 - 0.5	16 - 6	Water Table
MW-56 (b)	11/17/1993	18.60	21.62	SS	4	0.020	13	2 - 12	1 - 13	0.5 - 1	0 - 0.5	17 - 7	Water Table
MW-57 (b)	11/10/1993	19.62	21.98	PVC	4	0.010	14.5	3 - 13	1 - 14.5	0.5 - 1	0 - 0.5	17 - 7	Water Table
MW-58 (b)	12/8/1993	16.92	18.37	SS	4	0.020	14	1.3 - 11.3	0.8 - 14	0.2 - 0.8	0 - 0.2	16 - 6	Water Table
MW-59 (b)	12/3/1993	17.85	21.36	PVC	4	0.010	12.5	1.5 - 11.5	0.5 - 12.5	0 - 0.5	0	16 - 6	Water Table
MW-60 (b)	12/28/1993	21.57	23.31	SS	4	0.020	18	4.5 - 14.5	3 - 18	1.5 - 3	0 - 1.5	17 - 7	Water Table
MW-61 (e)	11/12-13/93	29.32	30.95	PVC	4	0.010	24	12 - 22	10 - 24	9 - 10	0 - 9	17 - 7	Water Table
MW-62D	12/1/1993	29.54	30.46	PVC	4	0.010	52	39 - 49	35 - 52	31 - 35	0 - 31	-919	Deep
MW-63 (b)	12/14/1993	19.34	20.92	PVC	4	0.010	14	2.5 - 12.5	1.5 - 14	0.5 - 1.5	0 - 0.5	17 - 7	Water Table
MW-64 (b)	4/22/1996	20.43	21.55	PVC	4	0.010	15	4 - 14	2.5 - 15	0.5 - 2.5	0 - 0.5	16 - 6	Water Table
MW-65 (b)	4/22/1996	20.68	21.02	PVC	4	0.010	14.5	4 - 14	2 - 14.5	0.5 - 2	0 - 0.5	17 - 7	Water Table
MW-66 (e)	4/23/1996	21.43	22.80	PVC	4	0.010	15	4 - 14	2 - 15.5	0.5 - 2.5	0 - 0.5	17 - 7	Water Table
MW-67 (b)	4/19/1996	20.90	22.46	PVC	4	0.020	15	4 - 14	2 - 15	1 - 2	0 - 1	17 - 7	Water Table
MW-68	4/24/1996	25.03	25.43	PVC	4	0.010	17	6 - 16	4 - 17	2 - 4	0 - 2	19 - 9	Water Table
MW-69D (e)	4/24/1996	24.92	25.46	PVC	4	0.010	35	23 - 33	21 - 35	19 - 21	0 - 19	2 - 8	Deep
MW-70	10/18/1999	17.40	19.08	PVC	4	0.010	13.5	2.5 - 12.5	1.5 - 12.5	0.5 - 1.5	0 - 0.5	15 - 5	Water Table
MW-71 (m)	4/9/2004	16.66	17.25	PVC	4	0.020	10.5	0.25 - 10.5	0.08 - 10.5	0	0 - 0.08	16 - 6	Water Table
MW-72 (m)	4/12/2004	16.42	16.83	PVC	4	0.020	11	1 - 11	0.25 - 11	0 - 0.25	0	15 - 5	Water Table
MW-73 (m)	4/8/2004	17.43	18.63	PVC	4	0.020	10.5	1 - 10.5	0.5 - 10.5	0.2 - 0.5	0 - 0.2	16 - 7	Water Table

Table 1. Summary of Construction Details for Monitoring Wells, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Well Number	Date(s) Installed	Land Surface Elevation (ft relative to 1988 NAVD mean sea level)	Measuring point Elevation (ft relative to 1988 NAVD mean sea level)	Screen Type	Diameter (inches)	Screen Slot Size	Depth of Boring (ft below land surface)	Screened Interval (ft below land surface)		Interval Sealed with Bentonite (ft below land surface)	Grout	Screen Setting (ft relative to mean sea level)	Screen
MW-74 (m)	4/9/2004	17.07	17.98	PVC	4	0.020	10	1 - 10	0.5 - 10	0 - 0.5	0	16 - 7	Water Table
MW-75 (m)	4/8/2004	19.17	22.01	PVC	4	0.020	13	2 - 12	1 - 13	0.5 - 1	0 - 0.5	17 - 7	Water Table
MW-76 (g)	4/8/2004	18.42	21.10	PVC	4	0.020	13	2 - 12	1 - 13	0.5 - 1	0 - 0.5	16 - 6	Water Table
MW-77 (m)	4/8/2004	19.31	22.29	PVC	4	0.020	12	2 - 12	0.5 - 12	0 - 0.5	0	17 - 7	Water Table
MW-78 (5)	6/20/2005	23.23	23.01	PVC	2	0.010	17.5	5 - 15	3 - 15	2 - 3	0 - 2	18 - 8	Water Table
MW-79	6/21/2005	24.06	23.81	PVC	2	0.010	20	4.4 - 14.4	3 - 14.4	1.5 - 3	0 - 1.5	20 - 10	Water Table
MW-80	4/28/2008	16.37	19.20	PVC	2	0.020	16	6 - 16	4 - 16	1 - 4	0 - 1	10 0	Water Table
MW-82	4/30/2008	29.75	33.17	PVC	2	0.020	23.5	13.5 - 23.5	10 - 23.5	7 - 10	0 - 3	16 6	Water Table
MW-83	4/23/2008	29.23	30.33	PVC	2	0.020	20.5	10.5 - 20.5	8 - 20.5	5 - 8	0 - 5	19 9	Water Table
MW-84	4/23/2008	32.09	34.77	PVC	2	0.020	20	9.7 - 19.7	8 - 20	5 - 8	0 - 5	22 12	Water Table
MW-85	4/28/2008	20.19	23.19	PVC	2	0.020	13	3 - 13	2 - 13	0 - 2	0	17 7	Water Table
MW-86	4/29/2008	13.64	16.68	PVC	2	0.020	15	5 - 15	3 - 15	1 - 3	0 - 1	9 -1	Water Table
MW-87	4/29/2008	12.46	14.50	PVC	2	0.020	14	4 - 14	3 - 14	1 - 3	0 - 1	8 -2	Water Table
MW-88	4/30/2008	12.74	15.26	PVC	2	0.020	12	2 - 12	1 - 12	0 - 1	0	11 1	Water Table
MW-89	4/30/2007	12.07	14.63	PVC	2	0.020	11	1 - 11	0.5 - 11	0 - 0.5	0	11 1	Water Table
MW-90	4/30/2007	10.21	12.87	PVC	2	0.020	11	1 - 11	0.5 - 11	0 - 0.5	0	9 -1	Water Table
MW-91	4/30/2008	10.41	12.88	PVC	2	0.020	12	2 - 12	1 - 12	0 - 1	0	8 -2	Water Table
MW-92	4/23/2008	22.78	22.61	PVC	2	0.020	13.5	3.5 - 13.5	1 - 13.5	0 - 1	0	19 9	Water Table
MW-9S (l)	7/8/2003	20.49	20.42	PVC	4	0.010	20	3.45 - 18.45	2 - 18.45	0.5 - 2	0 - 0.5	17 - 2	Water Table
MW-9D (l)	7/8/2003	20.47	20.47	PVC	4	0.010	40	27.7 - 37.7	26 - 37.7	2 - 26	0 - 2	-717	Deep
MW-13S (l)	7/9/2003	20.31	20.00	PVC	4	0.010	20	4.45 - 18.95	3 - 19.45	0.5 - 3	0 - 0.5	16 - 1	Water Table
MW-13D (l)	7/9/2003	20.22	19.69	PVC	4	0.010	40	28.4 - 38.40	27 - 38.40	2 - 27	0 - 2	-818	Deep
RT-3AW (j)	10/9/2006	14.08	13.88	NA	1.25	NA	40	30 - 40	28 - 40	26 - 28	0 - 26	-1626	Deep
RT-6W (j)	10/2/2006	14.71	14.96	NA	1.25	NA	40	30 - 40	25 - 40	23 - 25	0 - 23	-1525	Deep
RT-8W (j)	8/30/2006	15.45	15.70	NA	1.25	NA	69	30 - 40	25 - 40	23 - 25	0 - 23	-1525	Deep
RW-1 (k)(m)	12/14/1990	16.66	19.55	SS	4	0.020	11	0 - 10	0.5 - 11	0	0 - 0.5	17 - 7	Water Table
SSY-23 (5)(i)	NA	NA	NA	PVC	2	0.020	NA	NA	NA	NA	NA	NA	NA
SSY-46 (5)(i)	NA	NA	NA	PVC	2	0.020	NA	NA	NA	NA	NA	NA	NA
SSY-49 (5)(i)	NA	NA	NA	PVC	2	0.020	NA	NA	NA	NA	NA	NA	NA
SSY-51 (3)(i)	NA	NA	NA	PVC	2	0.020	NA	NA	NA	NA	NA	NA	NA
SY-5W (2)(j)	5/11/1999	20.90	13.88	NA	2	NA	16	6 - 16	4 - 16	2 - 4	0 - 2	15 - 5	Deep
SY-104W (4)(j)	1/10/2000	19.40	14.96	NA	2	NA	51	41 - 51	40 - 51	38 - 40	0 - 38	-2232	Deep

Table 1. Summary of Construction Details for Monitoring Wells, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Well Number	Date(s) Installed	Land Surface Elevation (ft relative to 1988 NAVD mean sea level)	Measuring point Elevation (ft relative to 1988 NAVD mean sea level)	Screen Type	Diameter (inches)	Screen Slot Size	Depth of Boring (ft below land surface)	Screened Interval (ft below land surface)	Interval Gravel Packed (ft below land surface)	Interval Sealed with Bentonite (ft below land surface)	Interval Sealed with Grout (ft below land surface)	Screen Setting (ft relative to mean sea level)	Screen
SY-105W (4)(j)	2/15/2000	19.50	15.70	NA	2	NA	59	49 - 59	47 - 59	44 - 47	0 - 44	-3040	Deep
SY-107W (4)(j)	1/31/2000	19.40	15.70	NA	2	NA	42	32 - 42	30 - 42	28 - 30	0 - 28	-1323	Deep
SY-111W (j)	11/8/1999	20.20	20.12	NA	2	NA	69	59 - 69	58 - 69	55 - 58	0 - 55	-3949	Deep
SY-131AW (j)	2/17/2000	44.40	44.28	NA	2	NA	60	50 - 60	48 - 60	45 - 48	0 - 45	-616	Deep
SY-153 (j)	6/24/1999	52.1	51.98	NA	2	NA	60	50 - 60	48 - 60	45 - 48	NA	28	Deep
SY-163W (5)(j)	6/28/1999	53.10	53.02	NA	2	NA	49	39 - 49	36 - 49	33 - 36	0 - 33	14 - 4	Deep
SY-174W (j)	11/4/1999	55.70	55.45	NA	2	NA	40	30 - 40	28 - 40	25 - 28	0 - 25	26 - 16	Deep
SY-178W (j)	6/28/1999	56.00	55.92	NA	2	NA	40	30 - 40	28 - 40	25 - 28	0 - 25	26 - 16	Deep
SY-189W (j)	11/16/1999	61.20	60.70	NA	2	NA	40	30 - 40	28 - 40	25 - 28	0 - 25	31 - 21	Deep
SY-433W (j)	12/5/2001	51.70	51.50	NA	2	NA	40	30 - 40	29 - 40	27.5 - 29	0 - 27.5	22 - 12	Deep
SY-436W (j)	4/30/2002	55.01	54.76	NA	2	NA	95	85 - 95	83 - 95	81 - 83	0 - 81	-3040	Deep
SY-438W (j)	5/21/2002	50.62	50.37	NA	2	NA	63	45 - 60	43 - 60	41 - 43	0 - 41	69	Deep
SY-452W (j)	11/23/2001	44.90	44.70	NA	2	NA	35	21 - 31	21 - 31	20 - 21	0 - 20	24 - 14	Water Table
SY-516W (j)	10/24/2006	23.06	22.86	NA	1.25	NA	50	40 - 50	38 - 50	36 - 38	0 - 36	-1727	Deep
SY-532W (j)	3/22/2005	45.50	45.00	NA	2	NA	28	18 - 28	16 - 28	13 - 16	0 - 13	28 - 18	Deep
SY-534W (j)	4/9/2005	34.50	34.00	NA	2	NA	28	18 - 28	16 - 28	13 - 16	0 - 13	17 - 7	Deep
TA-2 (m)	NA	NA	NA	PVC	2	NA	NA	NA	NA	NA	NA	NA	Water Table
TE-MW-A-3 (j)	2/24/2000	45.11	44.91	PVC	2	0.020	60	50 - 60	48 - 60	45 - 48	0 - 45	-515	Deep
TE-MW-A-4 (j)	6/24/1999	51.01	50.89	PVC	2	0.020	60	50 - 60	48 - 60	45 - 48	0 - 45	19	Deep
TE-B/C-4 (j)	10/19/1999	50.11	49.99	PVC	2	0.020	60	50 - 60	48 - 60	46 - 48	0 - 46	010	Deep
TE-MW-D-2 (j)	3/28/2000	38.91	38.83	PVC	2	0.020	55	40 - 50	39 - 55	36 - 39	0 - 36	-111	Deep
TE-MW-IB/OB-1 (j)	9/11/2000	29.49	29.14	PVC	2	0.020	35	25 - 35	NA	NA	NA	46	Deep
TE-IB-1 (j)	2/25/2000	18.61	18.44	PVC	2	0.020	39	29 - 39	28 - 39	25 - 28	0 - 28	-1020	Deep
TE-IB-3 (j)	9/12/2000	29.09	28.59	PVC	2	0.020	55	45 - 55	NA	NA	NA	-1626	Deep
TE-MW-A-1 (j)	9/26/2000	19.83	20.57	PVC	2	0.020	36	26 - 36	22.5 - 36	12 - 22.5	0 - 12	-616	Deep
TE-MW-A-4 (j)	6/24/1999	51.71	51.71	PVC	2	0.020	60	50 - 60	48 - 60	45 - 48	0 - 45	2 -8	Deep
TE-MW-B/C-2 (j)	9/7/2000	44.36	44.16	PVC	2	0.020	85	75 - 85	NA	NA	NA	-3141	Deep
TE-MW-B/C-4 (j)	10/19/1999	51.20	51.08	NA	2	NA	60	50 - 60	48 - 60	46 - 48	0 - 46	19	Deep
TE-MW-D-1 (j)	9/25/2000	19.46	19.63	PVC	2	0.020	41	31 - 41	27 - 41	22 - 27	0 - 22	-1222	Deep
TE-MW-D-2 (3)(j)	3/28/2000	40.00	39.92	NA	2	NA	55	40 - 50	39 - 50	36 - 39	0 - 36	010	Deep
TE-MW-D-4 (5)(j)	7/6/1999	48.61	48.36	PVC	2	0.020	70	60 - 70	57 - 70	54 - 57	0 - 54	-1121	Deep
TE-MW-IB-1 (4)(j)	2/25/2000	19.70	19.53	NA	2	NA	39	29 - 39	28 - 39	25 - 28	0 - 25	-919	Deep

Table 1. Summary of Construction Details for Monitoring Wells, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Well Number	Date(s) Installed	Land Surface Elevation (ft relative to 1988 NAVD mean sea level)	Measuring point Elevation (ft relative to 1988 NAVD mean sea level)	Screen Type	Diameter (inches)	Screen Slot Size	Depth of Boring (ft below land surface)	Screened Interval (ft below land surface)	Interval Gravel Packed (ft below land surface)	Interval Sealed with Bentonite (ft below land surface)	Interval Sealed with Grout (ft below land surface)	Screen Setting (ft relative to mean sea level)	
TE-MW-IB-2 (j)	10/2/2000	21.63	22.27	PVC	2	0.020	99	89 - 99	NA	NA	NA	-6777	Deep
TE-MW-IB/OB-1 (j)	9/11/2000	30.58	30.23	NA	2	NA	35	25 - 35	NA	NA	NA	64	Deep
TE-MW-OB-1 (j)	10/12/2000	20.87	20.68	PVC	2	0.020	45	35 - 45	20 - 45	13 - 20	0 - 13	-1424	Deep
TE-MW-OB-2 (5)(j)	9/18/2000	21.88	21.63	PVC	2	0.020	62	52 - 62	NA	NA	NA	-3040	Deep
TE-MW-QA-2 (j)	10/23/2000	40.80	40.46	PVC	2	0.020	55	45 - 55	30 - 55	12 - 30	0 - 12	-414	Deep
TP-6 (g)	4/18/1996	18.57	18.92	PVC	2	0.010	10	3.7 - 8.7	2 - 10	1 - 2	0 - 1	15 - 10	Water Table
TP-7 (g)	4/23/1996	20.15	20.96	PVC	2	0.010	8	3 - 8	2 - 8	1 - 2	0 - 1	17 - 12	Water Table
TP-8 (b)	3/25/1997	23.22	25.60	PVC	2	0.010	15	3 - 13	2 - 15	1 - 2	0 - 1	20 - 10	Water Table
TP-9 (e)	3/24/1997	27.28	29.71	PVC	2	0.010	16	4 - 14	2.5 - 16	1.5 - 2.5	0 - 1.5	23 - 13	Water Table
TP-10	3/24/1997	34.56	36.64	PVC	2	0.010	19	8 - 18	6.5 - 19	4 - 6.5	0 - 4	26 - 16	Water Table
UT-1W (j)	8/21/2006	13.09	13.34	NA	1.25	NA	40	30 - 40	25 - 40	23 - 25	0 - 23	-1727	Deep
UT-2W (6)(j)	8/7/2006	16.52	19.52	NA	1.25	NA	40	30 - 40	30 - 40	28 - 30	0 - 28	-1323	Deep
UT-4W (7)(j)	12/14/2006	21.17	23.67	NA	2	NA	40	30 - 40	28 - 40	26 - 28	0 - 26	-919	Deep
UT-5W (j)	8/11/2006	26.48	26.08	NA	1.25	NA	29	19 - 29	2 - 29	0 - 2	NA	73	Deep
UT-9	2/7/2007	26.86	29.28	PVC	2	0.020	40	30 - 40	1	20 - 30	NA	-313	Deep
UT-9AW (j)	2/7/2007	26.72	24.22	NA	2	NA	40	30 - 40	30 - 40	20 - 30	0 - 20	-313	Deep
UT-11AW (j)	9/29/2006	23.76	23.36	NA	1.25	NA	30	20 - 30	4 - 30	1 - 4	0 - 1	46	Deep

- NAVD North American Vertical Datum
 - SS Stainless steel continuous slot.
- PVC Polyvinyl chloride schedule 40.
- NS Well destroyed prior to elevation being surveyed relative to 1988 NAVD mean sea level.
- NA Not available
- (1) Abandoned
- (2) Unable to locate Possibly paved over
- (3) Unable to locate Possibly destroyed
- (4) Destroyed by construction work
- (5) Unable to locate Buried
- (6) Screen interval obstructed by silt
- (7) All but top 1 foot of screen interval obstructed by silt
- (a) MW-13 replaced Geraghty & Miller Well No. 13 that had been destroyed.
- (b) Abandoned during 4/98
- (c) Bentonite and formation collapse.
- (d) Abandoned on 11/11/93
- (e) Destroyed during yard construction activities; currently unable to locate for proper abandonment.
- (f) Cement grout around protective steel casing.
- (g) Destroyed during Yard construction activities
- (h) Damaged during yard construction activities; currently being evaluated for repair or replacement.
- (i) Monitoring well installed by AKRF as part of the East Side Access Project. Not all well constructions data was available.

Table 1. Summary of Construction Details for Monitoring Wells, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

		Land	Measuring									
		Surface	point				Depth of				Interval	
		Elevation	Elevation				Boring	Screened	Interval	Interval Sealed	Sealed with	
		(ft relative to	(ft relative to 1988			Screen	(ft below	Interval	Gravel Packed	with Bentonite	Grout	Screen Setting
Well	Date(s)	1988 NAVD	NAVD	Screen	Diameter	Slot	land	(ft below land	(ft below	(ft below land	(ft below land	(ft relative to Screen
Number	Installed	mean sea level)	mean sea level)	Type	(inches)	Size	surface)	surface)	land surface)	surface)	surface)	mean sea level) Interval

⁽j) - Monitoring well installed by PB/STV/PTG as part of the East Side Access Project. Well construction details were provided by MTA/East Side Access.

⁽k) - Former separate phase hydrocarbon (SPH) recovery well.

^{(1) -} Monitoring well installed by GES as part of the RI/FS activities conducted at the Standard Motors Site. Well construction details were provided by GES.

⁽m) - Monitoring well abandoned as part of OU-3 Remedial Action.

Table 2. Summary of Gauging Data, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Well Number	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Water (ft below measuring point)	Water-Level Elevation NAVD88 (ft relative to mean sea level)	Measurement Date	Monitoring Well Screen Interval
MW-13D	19.69	3.79	15.9	6/3/2008	deep
MW-38D	20.27	5.66	14.61	6/2/2008	deep
MW-39D	20.67	6.30	14.37	6/2/2008	deep
MW-48D	25.30	7.03	18.27	6/3/2008	deep
MW-62D	30.46	14.27	16.19	6/4/2008	deep
MW-9D	20.47	4.22	16.25	6/3/2008	-
-					deep
RT-3AW	13.88	5.10	8.78	4/22/2008	deep
RT-6W	14.96	4.24	10.72	3/25/2008	deep
RT-8W	15.70	4.77	10.93	3/25/2008	deep
SY-111W	20.12	10.80	9.32	6/17/2008	deep
SY-131Aw	44.28	20.71	23.57	6/25/2008	deep
SY-174W	55.45	38.80	16.65	7/7/2008	deep
SY-178W	55.92	38.94	16.98	7/7/2008	deep
SY-433W	51.50	35.10	16.40	6/10/2008	deep
SY-436W	54.76	38.21	16.55	6/10/2008	deep
SY-438W	50.37	32.91	17.46	6/10/2008	deep
SY-516W	22.86	8.55	14.31	6/16/2008	deep
TE-MW-A-1	20.57	11.00	9.57	6/17/2008	deep
TE-MW-A-4	51.71	35.45	16.26	6/5/2008	deep
TE-MW-D-1	19.63	10.05	9.58	6/18/2008	deep
TE-MW-IB-2	22.27	7.15	15.12	6/16/2008	deep
TE-MW-OB-1	20.68	10.35	10.33	6/4/2008	deep
TE-MW-QA-2	40.46	28.79	11.67	6/5/2008	deep
UT-11Aw	23.36*	7.19	16.17	6/25/2008	deep
UT-5W	26.08*	14.80	11.28	4/22/2008	deep
UT-9W	29.28	17.43	11.85	6/4/2008	deep
SY-189W	60.70	40.07	20.63	7/7/2008	deep
SY-532W	45.00	21.57	23.43	6/11/2008	deep

Table 2. Summary of Gauging Data, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Well Number	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Water (ft below measuring point)	Water-Level Elevation NAVD88 (ft relative to mean sea level)	Measurement Date	Monitoring Well Screen Interval
MW-13S	20.00	4.16	15.84	6/2/2008	water table
MW-19	20.11	7.18	12.93	6/2/2008	water table
MW-27	21.34	10.91	10.43	6/4/2008	water table
MW-35	18.98	5.89	13.09	6/2/2008	water table
MW-37	17.27	5.57	11.7	6/2/2008	water table
MW-45	20.54	10.30	10.24	6/4/2008	water table
MW-68	25.43	9.49	15.94	6/4/2008	water table
MW-70	19.08	5.50	13.58	6/2/2008	water table
MW-79	23.81	7.94	15.87	6/3/2008	water table
MW-80	19.20	10.52	8.68	6/4/2008	water table
MW-82	33.17	18.13	15.04	6/5/2008	water table
MW-83	30.33	14.10	16.23	6/4/2008	water table
MW-84	34.77	17.76	17.01	6/5/2008	water table
MW-85	23.19	7.36	15.83	6/2/2008	water table
MW-86	16.68	7.54	9.14	5/21/2008	water table
MW-87	14.50	5.90	8.6	5/21/2008	water table
MW-88	15.26	5.05	10.21	5/21/2008	water table
MW-89	14.63	3.89	10.74	5/21/2008	water table
MW-90	12.87	4.74	8.13	6/3/2008	water table
MW-91	12.88	5.80	7.08	6/3/2008	water table
MW-92	22.61	7.50	15.11	6/3/2008	water table
MW-9S	20.42	4.06	16.36	6/3/2008	water table
SY-452W	44.70	22.95	21.75	6/11/2008	water table
TP-10	36.64	13.87	22.77	6/3/2008	water table

ft - Feet

Deep - Indicates screened interval is completely below water table

Water Table - Indicates screened interval straddles the water table

NAVD 1988 - North American Vertical Datum of 1988

^{* -} Measuring Point elevations obtained from Observation Well Installation Log prepared by PB/STV

Table 3. Vertical Hydraulic Gradient Calculations, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Vertical Hydraulic Gradients	Between Water Table a	nd Deeper Upper	Glacial Aquifer	Wells June 2-4, 2008

Monitoring Well Pair Designations	Ground-Water Elevation (ft above MSL)	Top of Screen Zone (ft above MSL)	Bottom of Screen Zone (ft above MSL)	Midpoint of Screen Zone (ft above MSL)	Midpoint of Water Column (ft above MSL)	Vertical Distance Between Midpoints of Screens or Screen and Water Column (ft)	Vertical Hydraulic Gradient (ft/ft)
MW-9S & MW-9D	16.36 16.25	17.04 -7.23	2.04 -17.23	9.54 -12.23	9.20	21.43	0.0051
MW-13S & MW-13D	15.84 15.9	15.86 -8.18	1.36 -18.18	8.61 -13.18	8.60	21.78	
MW-19 & MW-39D	12.93 14.37	14.96 -11.79	4.96 -21.79	9.96 -16.79	8.95	25.74	-0.0560
MW-83 & MW-62D	16.23 16.25	18.73 -9.46	8.73 -19.46	13.73 -14.46	12.48	26.94	-0.0007

Vertical Hydraulic Gradients Between Water Table and Deeper Upper Glacial Aquifer Wells June 17-19, 1997

										Vertical Distance Between	Vertical
	Ground	l-Water			Bottom of	f Screen	Midpoint	of Screen	Midpoint of Water	Midpoints of Screens or Screen	Hydraulic
Monitoring Well Pair	Eleva	ation	Top of Sc	reen Zone	Zon	ne	Zo	one	Column	and Water Column	Gradient
Designations	(ft abov	e MSL)	(ft abov	e MSL)	(ft above	MSL)	(ft abov	e MSL)	(ft above MSL)	(ft)	(ft/ft)
MW-47 & MW-48D	21.38	18.09	24.37	-2.69	14.37	-12.69	19.37	-7.69	17.88	25.57	0.1287
MW-61 & MW-62D	16.03	16.05	18.59	-8.24	8.59	-18.24	13.59	-13.24	12.31	25.55	-0.0008
MW-68 & MW-69D	15.48	15.49	18.80	1.92	8.80	-8.08	13.80	-3.08	12.14	15.22	-0.0007
MW-19 & MW-39D	12.25	12.93	14.96	-11.35	4.96	-21.35	9.96	-16.35	8.61	24.96	-0.0272
MW-49 & MW-38D	13.42	14.08	17.04	-10.80	7.04	-20.80	12.04	-15.80	10.23	26.03	-0.0254
MW-57 & MW-40D	15.1	15.14	17.24	-8.75	7.24	-18.75	12.24	-13.75	11.17	24.92	-0.0016
MW-43 & MW-44D	8.85	8.76	12.65	-14.64	2.65	-24.64	7.65	-19.64	5.75	25.39	0.0035

Table 3. Vertical Hydraulic Gradient Calculations, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Vertical Hydraulic Gradients Between Water Table and Deeper Upper Glacial Aquifer Wells June 14, 1994

Monitoring Well Pair Designations	Ground Eleva (ft above	ation	Top of Sc.		Bottom of Zon (ft above	e		one	Midpoint of Water Column (ft above MSL)	Vertical Distance Between Midpoints of Screens or Screen and Water Column (ft)	Vertical Hydraulic Gradient (ft/ft)
MW-47 & MW-48D	22.55	19.38	24.37	-2.69	14.37	-12.69	19.37	-7.69	18.46	26.15	0.1212
MW-61 & MW-62D	17.34	17.31	18.59	-8.24	8.59	-18.24	13.59	-13.24	12.97	26.21	0.0011
MW-19 & MW-39D	14.1	14.81	14.96	-11.35	4.96	-21.35	9.96	-16.35	9.53	25.88	-0.0274
MW-49 & MW-38D	14.76	15.48	17.04	-10.8	7.04	-20.8	12.04	-15.8	10.90	26.70	-0.0270
MW-57 & MW-40D	16.43	16.45	17.24	-8.75	7.24	-18.75	12.24	-13.75	11.84	25.59	-0.0008
MW-43 & MW-44D	10.99	11.03	12.65	-14.64	2.65	-24.64	7.65	-19.64	6.82	26.46	-0.0015

Vertical Hydraulic Gradients Between Water Table and Deeper Upper Glacial Aquifer Wells February 8, 1993

Monitoring Well Pair	Ground-Water Elevation	Top of Screen Zone	Bottom of Screen Zone	Zone	Column	Vertical Distance Between Midpoints of Screens or Screen and Water Column	Vertical Hydraulic Gradient
Designations	(ft above MSL)	(ft above MSL)	(ft above MSL)	(ft above MSL)	(ft above MSL)	(ft)	(ft/ft)
MW-47 & MW-48D	20.7 18.68	24.37 -2.69	14.37 -12.69	19.37 -7.69	17.54	25.23	0.0801
MW-43 & MW-44D	11.02 11.1	12.65 -14.64	2.65 -24.64	7.65 -19.64	6.84	26.48	-0.0030

Notes: A negative vertical hydraulic gradient indicates that the potential for ground water to flow upward (i.e., flow from the underlying to the overlying unit).

A positive vertical hydraulic gradient indicates that the potential for ground water to flow downward (i.e., flow from the overlying to the underlying unit).

ft = feet

MSL = North American Vertical Datum 1988 mean sea level

ft/ft = foot per foot

 $Table\ 4.\ Summary\ of\ Groundwater, Saturated\ Soil\ and\ Soil\ Vapor\ Quality\ Sampling,\ OU-6\ RI/FS\ Report,\ Sunnyside\ Yard,\ Queens,\ New\ York$

Monitoring Well/Sample Designation	Sample Media	Soil Depth	Sample Date	Analyte(s)	Sampled By	Logotion of Data
	•	-				Location of Data
CV-2W	Groundwater		09/26/06	VOCs	PB/STV/PTG	Data Summary Table
CV-2W	Groundwater		11/14/06	Metals (Total and Dissolved)	PB/STV/PTG	Data Summary Table
CV-2W	Groundwater		11/16/06	SVOCs	PB/STV/PTG	Data Summary Table
MW-13D	Groundwater		07/28/03	VOCs	GES	Data Summary Table
MW-13D	Groundwater		06/03/08	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tabl
MW-13D DUP	Groundwater		06/03/08	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tabl
MW-13S	Groundwater		07/28/03	VOCs	GES	Data Summary Table
MW-13S	Groundwater		06/02/08	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tabl
MW-19	Groundwater		01/04/91	TCL VOCs, TCL SVOCs, PCBs	ROUX	Appendix A
MW-19	Groundwater		01/05/91	TAL Metals	ROUX	Appendix A
MW-19	Groundwater		02/06/97	SVOCs, PCBs	ROUX*	Data Summary Table
MW-19	Groundwater		02/21/97	SVOCs, PCBs	ROUX*	Data Summary Table
MW-19	Groundwater		03/27/97	SVOCs, PCBs	ROUX*	Data Summary Table
MW-19	Groundwater		06/18/97	TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Table
MW-19	Groundwater		06/19/97	VOCs	ROUX	Data Summary Table
MW-19	Groundwater		09/18/97	SVOCs, PCBs	NYCTA	Data Summary Table
MW-19	Groundwater		11/14/97	VOCs, SVOCs, PCBs	ROUX*	Data Summary Tabl
MW-19	Groundwater		04/09/98	SVOCs	ROUX*	Data Summary Tabl
MW-19	Groundwater		08/13/98	SVOCs, PCBs	NYCTA	Data Summary Tabl
MW-19	Groundwater		02/25/99	SVOCs, PCBs	NYCTA	Data Summary Tabl
MW-19	Groundwater		06/03/99	SVOCs, PCBs	NYCTA	Data Summary Tabl
MW-19			09/09/99		NYCTA	Data Summary Tabl
	Groundwater			SVOCs, PCBs		
MW-19	Groundwater		04/15/03	VOCs, SVOCs, PCBs, Metals (Total and Dissolved)	EMCG	Data Summary Tabl
MW-19	Groundwater		04/22/03	VOCs, SVOCs, PCBs, Lead (Total and Dissolved)	EMCG	Data Summary Tabl
MW-19	Groundwater		04/30/03	VOCs, SVOCs, PCBs, Metals	EMCG	Data Summary Tabl
MW-19	Groundwater		05/14/03	VOCs, SVOCs, PCBs, Lead	EMCG	Data Summary Tabl
MW-19	Groundwater		08/25/03	VOCs, SVOCs, PCBs	EMCG	Data Summary Tabl
MW-19	Groundwater		06/02/08	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tab
MW-23D	Groundwater		01/07/91	TCL VOCs, TCL SVOCs, PCBs	ROUX	Appendix A
MW-23D	Groundwater		01/08/91	TAL Metals	ROUX	Appendix A
MW-23D	Groundwater		02/09/93	TCL VOCs, TCL SVOCs, PCBs	ROUX	Appendix A
MW-23D	Groundwater		06/20/97	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tabl
MW-25	Groundwater		01/15/93	TAL Metals	ROUX	Appendix A
MW-25A	Groundwater		01/22/93	PCBs	ROUX	Appendix A
MW-25A	Groundwater		06/18/97	TDS, Chloride	ROUX	Data Summary Tab
MW-25A	Groundwater		06/19/97	VOCs, SVOCs, Metals, PCBs	ROUX	Data Summary Tabl
MW-27	Groundwater		02/08/93	PCBs	ROUX	Appendix A
MW-27	Groundwater		06/18/97	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tab
MW-27	Groundwater		06/04/08	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tal
MW-27 DUP	Groundwater		06/04/08	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tal
			06/18/97	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	•
MW-28	Groundwater			, , , , , , , , , , , , , , , , , , , ,		Data Summary Tabl
MW-28	Groundwater		08/25/00	TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved)	PB/STV/PTG	Data Summary Tabl
MW-29	Groundwater		02/09/93	TAL Metals	ROUX	Appendix A
MW-29	Groundwater		06/18/97	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tabl
MW-30	Groundwater		06/18/97	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tabl
MW-34	Groundwater		06/18/97	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tabl
MW-34	Groundwater		08/25/00	TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved)	PB/STV/PTG	Data Summary Tabl
MW-35	Groundwater		02/09/93	TCL VOCs, TCL SVOCs, PCBs, TAL Metals	ROUX	Appendix A
MW-35	Groundwater		02/17/94	PCBs	ROUX	Appendix A
MW-35	Groundwater		02/06/97	PCBs	ROUX*	Data Summary Tabl
MW-35	Groundwater		02/21/97	SVOCs, PCBs	ROUX*	Data Summary Tab
MW-35	Groundwater		03/27/97	PCBs	ROUX*	Data Summary Tab
MW-35	Groundwater		06/18/97	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tabl
MW-35	Groundwater		09/18/97	SVOCs, PCBs	NYCTA	Data Summary Tabl
MW-35	Groundwater		11/14/97	VOCs, PCBs	ROUX*	Data Summary Tabl
MW-35	Groundwater		04/09/98	SVOCs, PCBs	ROUX*	Data Summary Tabl
MW-35	Groundwater		08/13/98	SVOCs, PCBs	NYCTA	Data Summary Tabl
لاد- ۱۴۱ ۲۴۰	Groundwater		UU/13/70	D + OCo, 1 CDo	MICIA	Data Summary Tab

 $Table\ 4.\ Summary\ of\ Groundwater, Saturated\ Soil\ and\ Soil\ Vapor\ Quality\ Sampling,\ OU-6\ RI/FS\ Report,\ Sunnyside\ Yard,\ Queens,\ New\ York$

Sample Media	Soil Depth	Sample Date	Analyte(s)	Sampled By	Location of Data
•				• •	Data Summary Table
					Data Summary Table
					Data Summary Table
					Data Summary Table
					Data Summary Table
					Data Summary Table
					Data Summary Table
					Appendix A
			, , ,		Data Summary Table
					Data Summary Tab
			· · · · · · · · · · · · · · · · · · ·		Appendix A
					Data Summary Table
					-
	<u></u>		· · · · · · · · · · · · · · · · · · ·		Data Summary Tab
					Appendix A
					Data Summary Tabl
					Data Summary Tabl
					Data Summary Tab
Groundwater			<u>'</u>		Appendix A
Groundwater		06/18/97	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tabl
Groundwater		11/06/91	TCL VOCs	ROUX	Appendix A
Groundwater		02/09/93	TCL VOCs	ROUX	Appendix A
Groundwater		06/18/97	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tab
Groundwater		02/09/93	TCL VOCs, TCL SVOCs	ROUX	Appendix A
Groundwater		06/18/97	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tabl
Groundwater		08/25/00	TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved)	PB/STV/PTG	Data Summary Tabl
Groundwater		02/09/93	TCL VOCs, TCL SVOCs, PCBs, TAL Metals	ROUX	Appendix A
Groundwater		06/18/97	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tabl
Groundwater		02/09/93	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Appendix A
Groundwater		06/18/97	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tabl
Groundwater		02/09/93	TCL VOCs, TCL SVOCs, PCBs, TAL Metals	ROUX	Appendix A
Groundwater		06/18/97	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tabl
Groundwater		08/25/00	TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved)	PB/STV/PTG	Data Summary Tabl
					Data Summary Tab
					Appendix A
					Appendix A
					Data Summary Tabl
					Appendix A
					**
					Appendix A
					Data Summary Tabl
					Appendix A
					Data Summary Tabl
					Data Summary Tab
					Appendix A
Groundwater					Data Summary Tabl
Groundwater			TCL VOCs, TCL SVOCs, PCBs, TAL Metals		Appendix A
Groundwater		05/02/96	TCL VOCs, TCL SVOCs, PCBs, TAL Metals	ROUX	Appendix A
Groundwater		06/18/97	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tabl
Groundwater		02/17/94	TCL VOCs, TCL SVOCs, PCBs, TAL Metals	ROUX	Appendix A
Groundwater		05/03/96	TCL VOCs, TCL SVOCs, PCBs, TAL Metals	ROUX	Appendix A
Groundwater		06/18/97	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tabl
Groundwater		02/17/94	TCL VOCs, TCL SVOCs, PCBs, TAL Metals	ROUX	Appendix A
Groundwater		06/18/97	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tabl
Groundwater		02/17/94	TCL VOCs, TCL SVOCs, PCBs, TAL Metals	ROUX	Appendix A
Groundwater		06/18/97	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tab
Groundwater		06/04/08	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tal
			, , , ,, .,,		,
Groundwater		02/17/94	TCL VOCs, TCL SVOCs, PCBs, TAL Metals	ROUX	Appendix A
	Groundwater	Groundwater	Groundwater 06/03/99 Groundwater 09/09/99 Groundwater 09/09/99 Groundwater 04/15/03 Groundwater 04/22/03 Groundwater 08/25/03 Groundwater 08/25/03 Groundwater 06/02/08 Groundwater 06/18/97	Groundwater	Geonadwater

 $Table\ 4.\ Summary\ of\ Groundwater, Saturated\ Soil\ and\ Soil\ Vapor\ Quality\ Sampling,\ OU-6\ RI/FS\ Report,\ Sunnyside\ Yard,\ Queens,\ New\ York$

Monitoring Well/Sample	Count Malla	C. I D d.	Samuel Date	Andrea	Consolid Pos	
Designation	Sample Media	Soil Depth	Sample Date	Analyte(s)	Sampled By	Location of Data
MW-64	Groundwater		05/03/96	TCL VOCs, TCL SVOCs, PCBs, TAL Metals	ROUX	Appendix A
MW-64	Groundwater		06/19/97	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tables
MW-65	Groundwater		05/03/96	TCL VOCs, TCL SVOCs, PCBs, TAL Metals	ROUX	Appendix A
MW-65	Groundwater		06/18/97	TDS, Chloride	ROUX	Data Summary Tables
MW-65	Groundwater		06/19/97	TCL VOCs, TCL SVOCs, PCBs, TAL Metals	ROUX	Data Summary Tables
MW-65R	Groundwater		06/19/97	VOCs, SVOCs, Metals, PCBs	ROUX	Data Summary Tables
MW-66	Groundwater		06/19/97	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tables
MW-67	Groundwater		05/03/96	TCL VOCs, TCL SVOCs, PCBs, TAL Metals	ROUX	Appendix A
MW-67	Groundwater		06/18/97	TDS, Chloride	ROUX	Data Summary Tables
MW-67	Groundwater		06/19/97	TCL VOCs, TCL SVOCs, PCBs, TAL Metals	ROUX	Data Summary Tables
MW-68	Groundwater		05/03/96	TCL VOCs, TCL SVOCs, PCBs, TAL Metals	ROUX	Appendix A
MW-68	Groundwater		06/19/97	PCBs	ROUX	Data Summary Tables
MW-68	Groundwater		06/04/08	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tables
MW-69D	Groundwater		05/09/96	TCL VOCs, TCL SVOCs, PCBs, TAL Metals	ROUX	Appendix A
MW-69D	Groundwater		06/20/97	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tables
MW-70	Groundwater		06/02/08	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tables
MW-78	Groundwater		07/05/05	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tables
MW-79	Groundwater		07/05/05	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tables
MW-79	Groundwater		06/03/08	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tables
MW-80	Groundwater		06/04/08	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tables Data Summary Tables
MW-82			06/05/08	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	-
	Groundwater					Data Summary Tables
MW-83	Groundwater		06/04/08	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tables
MW-84	Groundwater		06/05/08	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tables
MW-85	Groundwater		06/02/08	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tables
MW-86	Groundwater		05/21/08	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tables
MW-87	Groundwater		05/21/08	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tables
MW-88	Groundwater		05/21/08	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tables
MW-89	Groundwater		05/21/08	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tables
MW-90	Groundwater		06/03/08	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tables
MW-91	Groundwater		06/03/08	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tables
MW-92	Groundwater		06/03/08	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tables
MW-9S	Groundwater		07/28/03	TCL VOCs	GES	Data Summary Tables
MW-9S	Groundwater		06/03/08	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tables
MW-9D	Groundwater		07/28/03	TCL VOCs	GES	Data Summary Tables
MW-9D	Groundwater		06/03/08	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tables
RT-3AW	Groundwater		03/25/08	VOCs	PB/STV/PTG	Data Summary Tables
RT-6W	Groundwater		03/25/08	VOCs	PB/STV/PTG	Data Summary Tables
RT-6W						•
	Groundwater		09/03/08	VOCs	PB/STV/PTG	Data Summary Tables
RT-8W	Groundwater		03/25/08	VOCs	PB/STV/PTG	Data Summary Tables
SSY-23	Groundwater		08/20/99	TCL VOCs, TCL SVOCs, TAL Metals, PCBs/Pesticides	AKRF	Data Summary Tables
SSY-46	Groundwater		08/20/99	TCL VOCs, TCL SVOCs, TAL Metals, PCBs/Pesticides	AKRF	Data Summary Tables
SSY-49	Groundwater		08/20/99	TCL VOCs, TCL SVOCs, TAL Metals, PCBs/Pesticides	AKRF	Data Summary Tables
SSY-51	Groundwater		08/20/99	TCL VOCs, TCL SVOCs, TAL Metals, PCBs/Pesticides	AKRF	Data Summary Tables
SY-111W	Groundwater		06/17/08	VOCs	PB/STV/PTG	Data Summary Tables
SY-131AW	Groundwater		09/26/06	VOCs	PB/STV/PTG	Data Summary Tables
SY-131AW	Groundwater		06/26/08	VOCs	PB/STV/PTG	Data Summary Tables
SY-131W	Groundwater		09/26/06	SVOCs, Metals (Total and Dissolved)	PB/STV/PTG	Data Summary Tables
SY-153	Groundwater		09/26/06	VOCs	PB/STV/PTG	Data Summary Tables
SY-153W	Groundwater		09/26/06	Metals (Total and Dissolved)	PB/STV/PTG	Data Summary Tables
SY-174W	Groundwater		07/07/08	VOCs	PB/STV/PTG	Data Summary Tables
SY-174W DUP	Groundwater		07/07/08	VOCs	PB/STV/PTG	Data Summary Tables
SY-178W	Groundwater		08/16/06	VOCs, SVOCs, Metals (Total and Dissolved)	PB/STV/PTG	Data Summary Tables
SY-178W	Groundwater		07/07/08	VOCs, SVOCs, Metals (Total and Dissolved)	PB/STV/PTG	Data Summary Tables Data Summary Tables
						•
SY-433W	Groundwater		06/10/08	VOCs	PB/STV/PTG	Data Summary Tables
SY-436W	Groundwater		06/10/08	VOCs	PB/STV/PTG	Data Summary Tables
SY-436W DUP	Groundwater		06/10/08	VOCs	PB/STV/PTG	Data Summary Tables
SY-438W	Groundwater		06/10/08	VOCs	PB/STV/PTG	Data Summary Tables

 $Table\ 4.\ Summary\ of\ Groundwater, Saturated\ Soil\ and\ Soil\ Vapor\ Quality\ Sampling,\ OU-6\ RI/FS\ Report,\ Sunnyside\ Yard,\ Queens,\ New\ York$

Designation SY-452W SY-516W SY-516W DUP TE-A-3 TE-A-4 TE-B/C-4 TE-D-2 TE-IB-OB-1 TE-IB-1 TE-IB-3 TE-IB-3 TE-MW-A-1 TE-MW-A-3(SY-135) TE-MW-A-3(SY-135) TE-MW-A-4(SY-153W) TE-MW-A-4(SY-153W) TE-MW-B/C-2 TE-MW-B/C-2 TE-MW-B/C-2	Sample Media Groundwater Groundwater	Soil Depth	Sample Date 06/11/08 06/16/08 06/16/08 10/20/00 08/16/00 10/20/00 10/20/00 10/19/00 11/14/06 10/20/00 06/17/08 10/20/00 10/20/00 10/20/00 10/20/00 10/19/00 06/17/08 10/20/00 10/16/03 08/16/00	VOCs VOCs VOCs VOCs VOCs TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) VOCs VOCs SVOCs, Metals (Total and Dissolved) VOCs, SVOCs, Metals (Total and Dissolved)	Sampled By PB/STV/PTG PB/STV/PTG	Data Summary Table:
SY-516W SY-516W DUP TE-A-3 TE-A-4 TE-B/C-4 TE-D-2 TE-D-2 TE-IB-1 TE-IB-3 TE-IB-3 TE-MW-A-1 TE-MW-A-1 TE-MW-A-1 TE-MW-A-3(SY-135) TE-MW-A-3(SY-135) TE-MW-A-4(SY-153W) TE-MW-A-4(SY-153W) TE-MW-A-4(SY-153W) TE-MW-B/C-2 TE-MW-B/C-2	Groundwater		06/16/08 06/16/08 10/20/00 08/16/00 10/20/00 09/26/06 10/20/00 10/19/00 11/14/06 10/19/00 06/17/08 10/20/00 10/20/00 10/20/00 10/20/00	VOCs VOCs TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) VOCs VOCs SVOCs, Metals (Total and Dissolved)	PB/STV/PTG	Data Summary Table
SY-516W DUP TE-A-3 TE-A-4 TE-B/C-4 TE-D-2 TE-D-2 TE-IB/OB-1 TE-IB-3 TE-IB-3 TE-MW-A-1 TE-MW-A-1 TE-MW-A-3(SY-135) TE-MW-A-3(SY-135) TE-MW-A-4(SY-153W) TE-MW-A-4(SY-153W) TE-MW-A-4(SY-153W) TE-MW-B/C-2 TE-MW-B/C-2	Groundwater		06/16/08 10/20/00 08/16/00 08/16/00 10/20/00 09/26/06 10/20/00 10/19/00 11/14/06 10/19/00 06/17/08 10/20/00 10/20/00 10/20/00 10/16/03	TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) VOCs VOCs SVOCs, Metals (Total and Dissolved)	PB/STV/PTG	Data Summary Table:
TE-A-3 TE-A-4 TE-B/C-4 TE-D-2 TE-D-2 TE-IB-OB-1 TE-IB-3 TE-IB-3 TE-IB-3 TE-MW-A-1 TE-MW-A-1 TE-MW-A-3(SY-135) TE-MW-A-3(SY-135) TE-MW-A-3(SY-135W) TE-MW-A-4(SY-153W) TE-MW-A-4(SY-153W) TE-MW-A-4/SY-153W TE-MW-B/C-2 TE-MW-B/C-2	Groundwater		10/20/00 08/16/00 08/16/00 10/20/00 09/26/06 10/20/00 10/19/00 11/14/06 10/19/00 06/17/08 10/20/00 10/20/00 10/16/03	TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) VOCs VOCs SVOCs, Metals (Total and Dissolved)	PB/STV/PTG	Data Summary Table:
TE-A-4 TE-B/C-4 TE-D-2 TE-D-2 TE-D-2 TE-IB/OB-1 TE-IB-1 TE-IB-3 TE-IB-3 TE-IB-3 TE-MW-A-1 TE-MW-A-1 TE-MW-A-3(SY-135) TE-MW-A-3(SY-135) TE-MW-A-3(SY-135W) TE-MW-A-4(SY-153W) TE-MW-A-4/SY-153W TE-MW-A-4/SY-153W TE-MW-B/C-2 TE-MW-B/C-2	Groundwater		08/16/00 08/16/00 10/20/00 09/26/06 10/20/00 10/19/00 11/14/06 10/19/00 06/17/08 10/20/00 10/20/00 10/16/03	TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) VOCs VOCs SVOCs, Metals (Total and Dissolved)	PB/STV/PTG	Data Summary Table:
TE-B/C-4 TE-D-2 TE-D-2 TE-IB-OB-1 TE-IB-1 TE-IB-3 TE-IB-3 TE-MW-A-1 TE-MW-A-1 TE-MW-A-3(SY-135) TE-MW-A-3(SY-135) TE-MW-A-4(SY-153W) TE-MW-A-4(SY-153W) TE-MW-A-4/SY-153W TE-MW-A-4/SY-153W TE-MW-B/C-2 TE-MW-B/C-2	Groundwater		08/16/00 10/20/00 09/26/06 10/20/00 10/19/00 10/20/00 11/14/06 10/19/00 06/17/08 10/20/00 10/20/00 10/16/03	TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) VOCs VOCs	PB/STV/PTG	Data Summary Table:
TE-D-2 TE-D-2 TE-IB/OB-1 TE-IB-1 TE-IB-3 TE-IB-3 TE-MW-A-1 TE-MW-A-1 TE-MW-A-3(SY-135) TE-MW-A-3(SY-135) TE-MW-A-3(SY-135W) TE-MW-A-4(SY-153W) TE-MW-A-4/SY-153W TE-MW-A-4/SY-153W TE-MW-B/C-2 TE-MW-B/C-2	Groundwater		10/20/00 09/26/06 10/20/00 10/19/00 10/20/00 11/14/06 10/19/00 06/17/08 10/20/00 10/20/00 10/16/03	TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) VOCs VOCs SVOCs, Metals (Total and Dissolved)	PB/STV/PTG	Data Summary Table:
TE-D-2 TE-IB/OB-1 TE-IB-1 TE-IB-3 TE-IB-3 TE-MW-A-1 TE-MW-A-1 TE-MW-A-3(SY-135) TE-MW-A-3(SY-135) TE-MW-A-3(SY-135W) TE-MW-A-4 TE-MW-A-4 TE-MW-A-4 TE-MW-A-4/SY-153W TE-MW-A-4/SY-153W TE-MW-A-4/SY-153W TE-MW-B/C-2 TE-MW-B/C-2	Groundwater		09/26/06 10/20/00 10/19/00 10/20/00 11/14/06 10/19/00 06/17/08 10/20/00 10/20/00 10/16/03	TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) VOCs VOCs SVOCs, Metals (Total and Dissolved)	PB/STV/PTG PB/STV/PTG PB/STV/PTG PB/STV/PTG PB/STV/PTG PB/STV/PTG PB/STV/PTG PB/STV/PTG PB/STV/PTG	Data Summary Table
TE-IB/OB-1 TE-IB-1 TE-IB-3 TE-IB-3 TE-MW-A-1 TE-MW-A-1 TE-MW-A-3(SY-135) TE-MW-A-3(SY-135) TE-MW-A-3(SY-135W) TE-MW-A-4(SY-153W) TE-MW-A-4/SY-153W TE-MW-A-4/SY-153W TE-MW-B/C-2 TE-MW-B/C-2	Groundwater		10/20/00 10/19/00 10/20/00 11/14/06 10/19/00 06/17/08 10/20/00 10/20/00 10/16/03	TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) VOCs VOCs SVOCs, Metals (Total and Dissolved)	PB/STV/PTG PB/STV/PTG PB/STV/PTG PB/STV/PTG PB/STV/PTG PB/STV/PTG PB/STV/PTG	Data Summary Table
TE-IB-1 TE-IB-3 TE-IB-3 TE-MW-A-1 TE-MW-A-1 TE-MW-A-3(SY-135) TE-MW-A-3(SY-135) TE-MW-A-3(SY-135W) TE-MW-A-4(SY-153W) TE-MW-A-4/SY-153W TE-MW-A-4/SY-153W TE-MW-B/C-2 TE-MW-B/C-2	Groundwater		10/19/00 10/20/00 11/14/06 10/19/00 06/17/08 10/20/00 10/20/00 10/16/03	TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) VOCs VOCs SVOCs, Metals (Total and Dissolved)	PB/STV/PTG PB/STV/PTG PB/STV/PTG PB/STV/PTG PB/STV/PTG PB/STV/PTG	Data Summary Table
TE-IB-3 TE-IB-3 TE-MW-A-1 TE-MW-A-1 TE-MW-A-3(SY-135) TE-MW-A-3(SY-135W) TE-MW-A-3(SY-135W) TE-MW-A-4(SY-153W) TE-MW-A-4/SY-153W TE-MW-A-4/SY-153W TE-MW-B/C-2 TE-MW-B/C-2	Groundwater		10/20/00 11/14/06 10/19/00 06/17/08 10/20/00 10/20/00 10/16/03	TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) VOCs VOCs SVOCs, Metals (Total and Dissolved)	PB/STV/PTG PB/STV/PTG PB/STV/PTG PB/STV/PTG PB/STV/PTG	Data Summary Table
TE-IB-3 TE-MW-A-1 TE-MW-A-1 TE-MW-A-3(SY-135) TE-MW-A-3(SY-135W) TE-MW-A-3(SY-135W) TE-MW-A-4 TE-MW-A-4 TE-MW-A-4 TE-MW-A-4/SY-153W TE-MW-B/C-2 TE-MW-B/C-2	Groundwater		11/14/06 10/19/00 06/17/08 10/20/00 10/16/03	TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) VOCs VOCs SVOCs, Metals (Total and Dissolved)	PB/STV/PTG PB/STV/PTG PB/STV/PTG PB/STV/PTG PB/STV/PTG	Data Summary Table
TE-MW-A-1 TE-MW-A-3(SY-135) TE-MW-A-3(SY-135) TE-MW-A-3(SY-135W) TE-MW-A-4 TE-MW-A-4 TE-MW-A-4(SY-153W) TE-MW-A-4/SY-153W TE-MW-B/C-2 TE-MW-B/C-2	Groundwater Groundwater Groundwater Groundwater Groundwater Groundwater Groundwater Groundwater Groundwater		10/19/00 06/17/08 10/20/00 10/20/00 10/16/03	TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved) VOCs VOCs SVOCs, Metals (Total and Dissolved)	PB/STV/PTG PB/STV/PTG PB/STV/PTG PB/STV/PTG	Data Summary Table Data Summary Table Data Summary Table Data Summary Table
TE-MW-A-1 TE-MW-A-3(SY-135) TE-MW-A-3(SY-135) TE-MW-A-3(SY-135W) TE-MW-A-4 TE-MW-A-4 TE-MW-A-4(SY-153W) TE-MW-A-4/SY-153W TE-MW-B/C-2 TE-MW-B/C-2	Groundwater Groundwater Groundwater Groundwater Groundwater Groundwater Groundwater Groundwater		06/17/08 10/20/00 10/20/00 10/16/03	VOCs VOCs SVOCs, Metals (Total and Dissolved)	PB/STV/PTG PB/STV/PTG PB/STV/PTG	Data Summary Table Data Summary Table Data Summary Table
TE-MW-A-3(SY-135) TE-MW-A-3(SY-135) TE-MW-A-3(SY-135W) TE-MW-A-4 TE-MW-A-4(SY-153W) TE-MW-A-4/SY-153W TE-MW-B/C-2 TE-MW-B/C-2	Groundwater Groundwater Groundwater Groundwater Groundwater Groundwater Groundwater		10/20/00 10/20/00 10/16/03	VOCs SVOCs, Metals (Total and Dissolved)	PB/STV/PTG PB/STV/PTG	Data Summary Table Data Summary Table
TE-MW-A-3(SY-135W) TE-MW-A-4 TE-MW-A-4(SY-153W) TE-MW-A-4/SY-153W TE-MW-B/C-2 TE-MW-B/C-2	Groundwater Groundwater Groundwater Groundwater Groundwater Groundwater		10/20/00 10/16/03	SVOCs, Metals (Total and Dissolved)	PB/STV/PTG	Data Summary Table
TE-MW-A-3(SY-135W) TE-MW-A-4 TE-MW-A-4(SY-153W) TE-MW-A-4/SY-153W TE-MW-B/C-2 TE-MW-B/C-2	Groundwater Groundwater Groundwater Groundwater Groundwater		10/16/03			•
TE-MW-A-4 TE-MW-A-4(SY-153W) TE-MW-A-4/SY-153W TE-MW-B/C-2 TE-MW-B/C-2	Groundwater Groundwater Groundwater Groundwater			TOOS, DTOOS, PICIAIS (TOTAL AND DISSUIVED)	אומ/עוז א/FIU	
TE-MW-A-4(SY-153W) TE-MW-A-4/SY-153W TE-MW-B/C-2 TE-MW-B/C-2	Groundwater Groundwater Groundwater		00/10/00	VOCs, SVOCs, Metals (Total and Dissolved)	PB/STV/PTG	Data Summary Tabl
TE-MW-A-4/SY-153W TE-MW-B/C-2 TE-MW-B/C-2	Groundwater Groundwater		00/26/06			•
TE-MW-B/C-2 TE-MW-B/C-2	Groundwater		09/26/06	SVOCs	PB/STV/PTG	Data Summary Tabl
TE-MW-B/C-2		_	06/25/08	VOCs	PB/STV/PTG	Data Summary Tab
	Groundwater		10/20/00	TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved)	PB/STV/PTG	Data Summary Tabl
TFMWB/C4			09/26/06	VOCs, SVOCs, Metals (Total and Dissolved)	PB/STV/PTG	Data Summary Tabl
	Groundwater		08/16/00	VOCs, SVOCs, Metals (Total and Dissolved)	PB/STV/PTG	Data Summary Tabl
TE-MW-B/C-4/SY-154V	Groundwater		04/15/08	VOCs	PB/STV/PTG	Data Summary Tab
TE-MW-D-1	Groundwater		10/19/00	TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved)	PB/STV/PTG	Data Summary Tabl
TE-MW-D-1	Groundwater		06/18/08	VOCs	PB/STV/PTG	Data Summary Tab
TE-MW-D-2	Groundwater		11/14/06	VOCs, SVOCs, Metals (Total and Dissolved)	PB/STV/PTG	Data Summary Tabl
TE-MW-D-2(SY-8W)	Groundwater		10/20/00	VOCs, SVOCs, Metals (Total and Dissolved)	PB/STV/PTG	Data Summary Tabl
TE-MW-D-4	Groundwater		08/16/00	TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved)	PB/STV/PTG	Data Summary Tabl
TE-MW-IB/OB-1	Groundwater		10/20/00	VOCs, SVOCs, Metals (Total and Dissolved)	PB/STV/PTG	Data Summary Tabl
TE-MW-IB-1(SY-103)	Groundwater		10/19/00	VOCs, SVOCs, Metals (Total and Dissolved)	PB/STV/PTG	Data Summary Tabl
TE-MW-IB-2	Groundwater		10/19/00	TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved)	PB/STV/PTG	Data Summary Tabl
TE-MW-IB-2	Groundwater		06/16/08	VOCs	PB/STV/PTG	Data Summary Tab
TE-MW-OB-1	Groundwater		10/19/00	TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved)	PB/STV/PTG	Data Summary Tabl
TE-MW-OB-1	Groundwater		06/18/08	VOCs	PB/STV/PTG	Data Summary Tab
TE-MW-OB-1	Groundwater		06/04/08	VOCs, Metals, PCBs, Choride and TDS	ROUX	Data Summary Tab
TE-MW-OB-2	Groundwater		10/20/00	TCL VOCs, TCL SVOCs, TAL Metals (Total and Dissolved)	PB/STV/PTG	Data Summary Tabl
TE-MW-QA-2	Groundwater		10/31/00	TCL VOCs	PB/STV/PTG	Data Summary Tab
TE-MW-QA-2	Groundwater		11/08/00	TCL SVOCs	PB/STV/PTG	Data Summary Tabl
TE-MW-QA-2	Groundwater		11/03/00	TAL Metals	PB/STV/PTG	Data Summary Tabl
TE-MW-QA-2	Groundwater		04/08/08	VOCs	PB/STV/PTG	Data Summary Tab
TE-MW-QA-2	Groundwater		06/05/08	VOCs, Metals, PCBs, Choride and TDS	ROUX	Data Summary Tab
TP-8	Groundwater		06/18/97	TDS, Chloride	ROUX	Data Summary Tabl
TP-8	Groundwater		06/19/97	TCL VOCs, TCL SVOCs, PCBs, TAL Metals	ROUX	Data Summary Tabl
TP-9	Groundwater		06/18/97	TDS, Chloride	ROUX	Data Summary Tabl
TP-9	Groundwater		06/19/97	TCL VOCs, PCBs, TAL Metals	ROUX	Data Summary Tabl
TP-10	Groundwater		06/18/97	TDS, Chloride	ROUX	Data Summary Tabl
TP-10	Groundwater		06/19/97	TCL VOCs, TCL SVOCs, PCBs, TAL Metals	ROUX	Data Summary Tabl
TP-10	Groundwater		06/03/08	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tab
TSB-9	Groundwater		10/24/00	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tabl
TSB-10	Groundwater		10/23/00	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tabl
TSB-16	Groundwater		10/24/00	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Tabl
TW-1	Groundwater		01/26/93	TCL VOCs	ROUX	Appendix A
TW-2	Groundwater		01/26/93	TCL VOCs	ROUX	Appendix A
TW-3	Groundwater		12/06/93	TCL SVOCs, PCBs	ROUX	Appendix A Appendix A
UT-11AW	Groundwater		06/25/08	VOCs	PB/STV/PTG	Data Summary Tab
UT-1W	Groundwater		04/01/08	VOCs	PB/STV/PTG	Data Summary Tab

 $Table\ 4.\ Summary\ of\ Groundwater, Saturated\ Soil\ and\ Soil\ Vapor\ Quality\ Sampling,\ OU-6\ RI/FS\ Report,\ Sunnyside\ Yard,\ Queens,\ New\ York$

Decianotion	Comple Madic	Soil Donal	Sample Date	A polysto(c)	Compled D.	Looting of D. t.
Designation	Sample Media	Soil Depth	Sample Date	Analyte(s)	Sampled By	Location of Data
UT-4W UT-5W	Groundwater Groundwater		04/01/08 04/22/08	VOCs	PB/STV/PTG PB/STV/PTG	Data Summary Table
UT-9AW	Groundwater		06/04/08	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, TDS, Chloride	ROUX	Data Summary Table Data Summary Table
UT-9AWRE	Groundwater		04/08/08	VOCs	PB/STV/PTG	Data Summary Table
GE-31-5	Saturated Soil	25 - 25	08/16/06	VOCs, SVOCs, Metals	PB/STV/PTG	Data Summary Tables
GE-31-5DL	Saturated Soil	25 - 27	08/16/06	SVOCs SVOCS, Metals	PB/STV/PTG	Data Summary Tables
GE-31-5	Saturated Soil	36 - 38	08/16/06	VOCs, SVOCs, Metals	PB/STV/PTG	Data Summary Tables
GE-53-3	Saturated Soil	12	07/27/06	VOCs, SVOCs, Metals, PCBs	PB/STV/PTG	Data Summary Tables
GE-53-3	Saturated Soil	25 - 25	07/27/06	VOCs, SVOCs, Metals, PCBs	PB/STV/PTG	Data Summary Table
GE-53-5	Saturated Soil	18	07/27/06	VOCs, SVOCs, Metals, PCBs	PB/STV/PTG	Data Summary Table
GE-59-3	Saturated Soil	12 - 15	07/10/06	VOCs, SVOCs, Metals, PCBs	PB/STV/PTG	Data Summary Table
GE-59-3	Saturated Soil	23 - 25	07/10/06	VOCs, SVOCs, Metals, PCBs	PB/STV/PTG	Data Summary Table
GE-59-11	Saturated Soil	20 - 22	10/19/06	SVOCs, Metals, PCBs	PB/STV/PTG	Data Summary Table
GE-59-12	Saturated Soil	28 - 30	10/18/06	SVOCs, Metals, PCBs	PB/STV/PTG	Data Summary Table
MW-26	Saturated Soil	9 - 11	12/05/90	VOCs, SVOCs, Metals, PCBs	ROUX	Data Summary Table
RT-7	Saturated Soil	25 - 27	10/03/06	SVOCs, Metals, PCBs	PB/STV/PTG	•
RT-9	Saturated Soil	20 - 21	08/30/06	VOCs	PB/STV/PTG PB/STV/PTG	Data Summary Table Data Summary Table
RT-9	Saturated Soil	20 - 22	08/30/06	SVOCs, Metals, PCBs	PB/STV/PTG PB/STV/PTG	•
S-35	Saturated Soil	8 - 10	11/30/90		ROUX	Data Summary Table Data Summary Table
				VOCs, SVOCs, Metals, PCBs		•
SY-515	Saturated Soil	20 - 22	11/17/06	SVOCs, Metals, PCBs	PB/STV/PTG	Data Summary Table
SY-515	Saturated Soil	22	11/17/06	VOCs	PB/STV/PTG	Data Summary Table
SY-516	Saturated Soil	43 - 45	10/19/06	SVOCs, Metals, PCBs	PB/STV/PTG	Data Summary Table
SY-516	Saturated Soil	45 - 45	10/19/06	VOCs	PB/STV/PTG	Data Summary Table
SY-516	Saturated Soil	88 - 90	10/19/06	SVOCs, Metals, PCBs	PB/STV/PTG	Data Summary Table
SY-516	Saturated Soil	90	10/19/06	VOCs	PB/STV/PTG	Data Summary Table
TE-B/C-2	Saturated Soil	48 - 50	09/07/00	VOCs, SVOCs, PCBs	PB/STV/PTG	Data Summary Table
TE-B/C-2	Saturated Soil	85 - 86	09/08/00	VOCs, SVOCs, PCBs	PB/STV/PTG	Data Summary Table
TE-IB/OB-1	Saturated Soil	15 - 17	09/11/00	VOCs, SVOCs, PCBs	PB/STV/PTG	Data Summary Table
TE-IB/OB-1	Saturated Soil	33 - 35	09/11/00	VOCs, SVOCs, PCBs	PB/STV/PTG	Data Summary Table
TE-IB-3	Saturated Soil	23 - 25	09/11/00	SVOCs, PCBs	PB/STV/PTG	Data Summary Tabl
TE-IB-3	Saturated Soil	23 - 25	09/12/00	VOCs, PCBs	PB/STV/PTG	Data Summary Tabl
TE-IB-3	Saturated Soil	38 - 40	09/11/00	SVOCs, PCBs	PB/STV/PTG	Data Summary Tabl
TE-IB-3	Saturated Soil	38 - 40	09/12/00	VOCs, PCBs	PB/STV/PTG	Data Summary Tabl
TE-IB-3	Saturated Soil	53 - 55	09/11/00	SVOCs, PCBs	PB/STV/PTG	Data Summary Tabl
TE-IB-3	Saturated Soil	53 - 55	09/12/00	VOCs, PCBs	PB/STV/PTG	Data Summary Table
TE-MW-A-1	Saturated Soil	14 - 16	09/19/00	SVOCs	PB/STV/PTG	Data Summary Table
TE-MW-A-1	Saturated Soil	14 - 16	09/26/00	PCBs	PB/STV/PTG	Data Summary Table
TE-MW-A-1	Saturated Soil	37	09/19/00	SVOCs	PB/STV/PTG	Data Summary Table
TE-MW-A-1	Saturated Soil	37	09/26/00	PCBs	PB/STV/PTG	Data Summary Table
TE-MW-A-2	Saturated Soil	14 - 16	10/09/00	PCBs	PB/STV/PTG	Data Summary Table
TE-MW-A-2	Saturated Soil	20 - 22	10/09/00	PCBs	PB/STV/PTG	Data Summary Table
TE-MW-D-1	Saturated Soil	10 - 12	09/19/00	SVOCs	PB/STV/PTG	Data Summary Table
TE-MW-D-1	Saturated Soil	10 - 12	09/25/00	PCBs	PB/STV/PTG	Data Summary Table
TE-MW-D-1	Saturated Soil	25	09/19/00	SVOCs	PB/STV/PTG	Data Summary Table
TE-MW-D-1	Saturated Soil	25	09/25/00	PCBs	PB/STV/PTG	Data Summary Table
TE-MW-D-1	Saturated Soil	40 - 41	09/19/00	SVOCs	PB/STV/PTG	Data Summary Table
TE-MW-D-1	Saturated Soil	40 - 41	09/25/00	PCBs	PB/STV/PTG	Data Summary Table
TE-MW-IB-2	Saturated Soil	14 - 16	10/03/00	VOCs, SVOCs, PCBs	PB/STV/PTG	Data Summary Table
TE-MW-IB-2	Saturated Soil	62 - 64	10/03/00	VOCs, SVOCs, PCBs	PB/STV/PTG	Data Summary Table
TE-MW-IB-2	Saturated Soil	93 - 95	10/04/00	VOCs, SVOCs, PCBs	PB/STV/PTG	Data Summary Table
TE-MW-OB-1	Saturated Soil	14 - 16	10/11/00	PCBs	PB/STV/PTG	Data Summary Table
TE-MW-OB-1	Saturated Soil	45	10/11/00	PCBs	PB/STV/PTG	Data Summary Table
TE-MW-OB-2	Saturated Soil	29 - 31	09/19/00	SVOCs, PCBs	PB/STV/PTG	Data Summary Table
TE-MW-OB-2	Saturated Soil					•
1 12-1V1 VV -UD-Z	Saturateu 3011	60 - 62	09/19/00	SVOCs, PCBs VOCs, SVOCs, PCBs	PB/STV/PTG	Data Summary Table

Table 4. Summary of Groundwater, Saturated Soil and Soil Vapor Quality Sampling, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Monitoring Well/Sample Designation	Sample Media Soil Depth	Sample Date	Analyte(s)	Sampled By	Location of Data
TE-MW-QA-2	Saturated Soil 40 - 42	10/23/00	VOCs, SVOCs, PCBs	PB/STV/PTG	Data Summary Table
TE-OB-4	Saturated Soil 24 - 26	07/12/00	PCBs	PB/STV/PTG	Data Summary Table
TE-OB-4	Saturated Soil 24 - 26	07/14/00	VOCs, SVOCs	PB/STV/PTG	Data Summary Table
UT-4	Saturated Soil 30 - 32	01/02/07	SVOCs, Metals, PCBs	PB/STV/PTG	Data Summary Table
UT-4	Saturated Soil 32	01/02/07	VOCs	PB/STV/PTG	Data Summary Table
UT-4 RE	Saturated Soil 32	01/02/07	VOCs	PB/STV/PTG	Data Summary Table
UT-6	Saturated Soil 20 - 22	01/04/07	VOCs, SVOCs, Metals, PCBs	PB/STV/PTG	Data Summary Table
UT-9	Saturated Soil 20 - 22	01/05/07	SVOCs, Metals, PCBs	PB/STV/PTG	Data Summary Table
UT-9	Saturated Soil 22	01/05/07	VOCs	PB/STV/PTG	Data Summary Tabl
WB-4	Saturated Soil 10 - 12	06/15/06	SVOCs, Metals, PCBs	PB/STV/PTG	Data Summary Tabl
WB-4	Saturated Soil 12	06/15/06	VOCs	PB/STV/PTG	Data Summary Tabl
PC-1	Soil Vapor New Construction	06/22/05	VOCs	ROUX	Data Summary Tabl
PC-10	Soil Vapor New Construction	06/23/05	VOCs	ROUX	Data Summary Tabl
PC-11	Soil Vapor New Construction	06/23/05	VOCs	ROUX	Data Summary Tabl
PC-12	Soil Vapor New Construction	06/23/05	VOCs	ROUX	Data Summary Tabl
PC-2	Soil Vapor New Construction	06/22/05	VOCs	ROUX	Data Summary Tabl
PC-2 DL	Soil Vapor New Construction	06/22/05	VOCs	ROUX	Data Summary Tabl
PC-3	Soil Vapor New Construction	06/22/05	VOCs	ROUX	Data Summary Tabl
PC-3 DL	Soil Vapor New Construction	06/22/05	VOCs	ROUX	Data Summary Tabl
PC-4	Soil Vapor New Construction	06/22/05	VOCs	ROUX	Data Summary Tabl
PC-5	Soil Vapor New Construction	06/22/05	VOCs	ROUX	Data Summary Tabl
PC-6	Soil Vapor New Construction	06/22/05	VOCs	ROUX	Data Summary Tabl
PC-7	Soil Vapor New Construction	06/22/05	VOCs	ROUX	Data Summary Tabl
PC-7 DUP	Soil Vapor New Construction	06/22/05	VOCs	ROUX	Data Summary Tabl
PC-8	Soil Vapor New Construction	06/23/05	VOCs	ROUX	Data Summary Tabl
PC-9	Soil Vapor New Construction	06/23/05	VOCs	ROUX	Data Summary Tabl
INDOOR-1	Soil Vapor HSTF S Building	03/18/09	VOCs	ROUX	Data Summary Tabl
INDOOR-2	Soil Vapor HSTF S Building	03/18/09	VOCs	ROUX	Data Summary Tabl
OUTDOOR-1	Soil Vapor HSTF S Building	03/18/09	VOCs	ROUX	Data Summary Tabl
SUBSLAB-1	Soil Vapor HSTF S Building	03/18/09	VOCs	ROUX	Data Summary Tabl
SUBSLAB-2	Soil Vapor HSTF S Building	03/18/09	VOCs	ROUX	Data Summary Tabl

Bold and italicized samples above indicate samples were collected as part of the Supplemental OU-6 RI and related activities in 2008.

TCL - Target Compound List

TAL - Target Analyte List

VOCs - Volatile Organic Compounds

SVOCs - Semivolatile Organic Compounds

PCBs - Polychlorinated Biphenyls

TDS - Total Dissolved Solids

PB/STV/PTG - PB Americas, Inc./STV, Inc./Parsons Transportation Group

NYCTA - New York City Transit Authority

EMCG - Environmental Management and Compliance Group, Inc.

GES - Groundwater & Environmental Services, Inc.

ROUX* - Indicated Roux Associates collected a split sample with NYCTA.

Samples collected by AKRF, PB/STV/PTG, NYCTA 63rd Street Tunnel Project, or EMCG were collected to support the East Side Access Project.

 $Samples\ collected\ by\ GES\ were\ collected\ as\ part\ of\ the\ RI/FS\ conducted\ at\ the\ Standard\ Motors\ Products,\ Inc.\ Site.$

Samples TSB-9, TSB-10, and TSB-16 were collected using a Geoprobe groundwater sampler, set at a discrete depth. These samples were not collected from a monitoring well.

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter	NYSDEC AWQSGVs	Sample DesigNRtion: Sample Date:	CV-2W 09/26/06	MW-9D 07/28/03	MW-9D 06/03/08	MW-9S 07/28/03	MW-9S 06/03/08	07/28/03	06/03/08	MW-13D DUP 06/03/08	07/28/03
(Concentrations in $\mu g/L$)	$(\mu g/L)$	Sampled By:	ESA	GES	Roux	GES	Roux	GES	Roux	Roux	GES
		Screen Interval:	Deep	Deep	Deep	WT	WT	Deep	Deep	Deep	WT
Benzene	1		ND	10 U	0.5 U	10 U	0.5 U	100 U	0.5 U	0.5 U	20 U
Toluene	5		ND	10 U	1 U	10 U	1 U	100 U	1 U	1 U	20 U
Ethylbenzene	5		ND	10 U	1 U	10 U	1 U	100 U	1 U	1 U	20 U
Xylenes (total)	5		ND	10 U	2 U	10 U	2 U	100 U	2 U	2 U	20 U
Total BTEX:			0	0	0	0	0	0	0	0	0
1,1,1-Trichloroethane	5		ND	10 U	1 U	1 J	1 U	1000 U	1 U	1 U	20 U
1,1,2,2-Tetrachloroethane	5		ND	10 U	1 U	10 U	1 U	100 U	1 U	1 U	20 U
1,1,2-Trichloroethane	1		ND	10 U	1 U	10 U	1 U	100 U	1 U	1 U	20 U
1,1-Dichloroethane	5		ND	3 J	1.7	.8 J	1 U	100 U	1 U	1 U	2 J
1,1-Dichloroethene	5		ND	10 U	1.1	10 U	1 U	100 U	1.3	1.4	20 U
1,2-Dichlorobenzene	3		ND	10 U	1 U	10 U	1 U	100 U	1 U	1 U	20 U
1,2-Dichloroethane	0.6		ND	10 U	0.5 U	10 U	0.5 U	100 U	0.5 U	0.5 U	20 U
1,2-Dichloroethene (total)	5		ND	NR	NR	NR	NR	NR	NR	NR	NR
1,2-Dichloropropane	1		ND	10 U	1 U	10 U	1 U	100 U	1 U	1 U	20 U
1,3-Dichlorobenzene	3		ND	10 U	1 U	10 U	1 U	100 U	1 U	1 U	20 U
1,4-Dichlorobenzene	3		ND	10 U	1 U	10 U	1 U	100 U	1 U	1 U	20 U
2-Butanone	50		ND	10 UJ	1 U	10 UJ	1 U	100 UJ	1 U	1 U	20 UJ
2-Hexanone	50		ND	10 UJ	1 U	10 UJ	1 U	100 UJ	1 U	1 U	20 UJ
4-Methyl-2-Pentanone			ND	10 U	1 U	10 U	1 U	100 U	1 U	1 U	20 U
Acetone	50		ND	8 J	5 U	10 U	5 U	100 U	5 U	5 U	20 U
Bromodichloromethane	50		ND	10 U	1 U	10 U	1 U	100 U	1 U	1 U	20 U
Bromoform	50		ND	10 U	1 U	10 U	1 U	100 U	1 U	1 U	20 U
Bromomethane	5		ND	10 U	1 U	10 U	1 U	100 U	1 U	1 U	20 U
Carbon disulfide	5		ND	10 U	1 U	10 U	1 U	100 U	1 U	1 U	20 U
Carbon tetrachloride	5		ND	10 U	1 U	10 U	1 U	100 U	1 U	1 U	20 U
Chlorobenzene	5		ND	10 U	1 U	10 U	1 U	100 U	1 U	1 U	20 U
Chloroethane	5		ND	10 U	1 U	10 U	1 U	100 U	1 U	1 U	20 U
Chloroform	7		ND	10 U	1 U	10 U	1 U	100 U	1 U	1 U	20 U
Chloromethane	5		ND	10 U	1 U	10 U	1 U	100 U	1 U	1 U	20 U
cis-1,2-Dichloroethene	5		ND	48	32	.9 J	4.6	34 J	28	28	44
cis-1,3-Dichloropropene			ND	10 U	1 U	10 U	1 U	100 U	1 U	1 U	20 U
Dibromochloromethane	50		ND	10 U	1 U	10 U	1 U	100 U	1 U	1 U	20 U
Methylene chloride	5		ND	10 U	1 U	10 U	1 U	100 U	1 U	1 U	20 U
Methyl tert-butyl ether	10		NA	NA	NA	NA	NA	NA	NA	NA	NA
Styrene	5		ND	10 U	1 U	10 U	1 U	100 U	1 U	1 U	20 U

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	NYSDEC	Sample DesigNRtion:	CV-2W	MW-9D	MW-9D	MW-9S	MW-9S	MW-13D	MW-13D	MW-13D DUI	MW-13S
Parameter	AWQSGVs	Sample Date:	09/26/06	07/28/03	06/03/08	07/28/03	06/03/08	07/28/03	06/03/08	06/03/08	07/28/03
(Concentrations in µg/L)	$(\mu g/L)$	Sampled By:	ESA	GES	Roux	GES	Roux	GES	Roux	Roux	GES
		Screen Interval:	Deep	Deep	Deep	WT	WT	Deep	Deep	Deep	WT
Tetrachloroethene	5		9.5	10 U	1 U	10 U	1 U	100 U	1 U	1 U	20 U
trans-1,2-Dichloroethene	5		ND	2 J	1 U	10 U	1 U	100 U	1.5	1.4	20 U
trans-1,3-Dichloropropene			ND	10 U	1 U	10 U	1 U	100 U	1 U	1 U	20 U
Trichloroethene	5		ND	3 J	1.3	10 U	1 U	100 U	1.9	1.8	1 J
Vinyl acetate			ND	NR	1 U	NR	1 U	NR	1 U	1 U	NR
Vinyl chloride	2		ND	4 J	13	11	1.4	100 U	1 U	1 U	3 J

B - Compound was detected in blank sample

BTEX - Benzene, Toluene, Ethylbenzene and Xylene

D - Dilution

DUP - Duplicate

J - Estimated value

NA - Not analyzed

NR - Not reported

ND - Not detected; reporting limit not available

R(following Sample Designation) - Replicate sample

RE - Reanalysis

U - Not Detected

V - Data was qualified by validator

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV

WT - Monitoring wells with screen zones that bridge the water table

⁽¹⁾ - GeoprobeTM sample collected from 17.5 feet below land surface

⁽²⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

^{(3) -} GeoprobeTM sample collected from 19.5 feet below land surface

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter	NYSDEC AWQSGVs	Sample DesigNRtion: Sample Date:	06/02/08	MW-19 06/19/97	MW-19 04/15/03	MW-19 04/22/03	MW-19 04/30/03	MW-19 05/14/03	MW-19 08/25/03	MW-19 06/02/08	MW-23D 06/20/97
(Concentrations in µg/L)	$(\mu g/L)$	Sampled By:		Roux	EMCG	EMCG	EMCG	EMCG	EMCG	Roux	Roux
		Screen Interval:	WT	WT	WT	WT	WT	WT	WT	WT	Deep
Benzene	1		0.5 U	5 U	1 U	1 U	1 U	0.6 U	0.1 U	0.5 U	5 U
Toluene	5		1 U	5 U	1 U	1 U	1 U	1 U	0.5 U	1 U	0.4 JB
Ethylbenzene	5		1 U	5 U	1 U	1 U	1 U	1.2 U	0.8 U	1 U	5 U
Xylenes (total)	5		2 U	5 U	3 U	3 U	3 U	3.4 U	2.3 U	2 U	5 U
Total BTEX:			0	0	0	0	0	0	0	0	0.4
1,1,1-Trichloroethane	5		1 U	5 U	1 U	1 U	1 U	0.8 U	0.5 U	1 U	5 U
1,1,2,2-Tetrachloroethane	5		1 U	5 U	1 U	1 U	1 U	0.8 U	1.9 U	1 U	5 U
1,1,2-Trichloroethane	1		1 U	5 U	1 U	1 U	1 U	1.5 U	1 U	1 U	5 U
1,1-Dichloroethane	5		1 U	5 U	1 U	1 U	1 U	1 U	1.3 U	1 U	5 U
1,1-Dichloroethene	5		1 U	5 U	1 U	1 U	1 U	1 U	0.1 U	1 U	5 U
1,2-Dichlorobenzene	3		1 U	NR	1 U	1 U	1 U	0.4 U	0.4 U	1 U	5 U
1,2-Dichloroethane	0.6		0.5 U	5 U	1 U	1 U	1 U	0.6 U	0.2 U	0.5 U	10 U
1,2-Dichloroethene (total)	5		NR	5 U	1 U	1 U	1 U	NR	NR	NR	5 U
1,2-Dichloropropane	1		1 U	5 U	1 U	1 U	1 U	0.8 U	0.2 U	1 U	5 U
1,3-Dichlorobenzene	3		1 U	NR	1 U	1 U	1 U	0.4 U	0.4 U	1 U	10 U
1,4-Dichlorobenzene	3		1 U	NR	1 U	1 U	1 U	0.2 U	0.3 U	1 U	10 U
2-Butanone	50		1 U	10 U	10 U	10 U	10 U	9.9 U	10 U	1 U	10 U
2-Hexanone	50		1 U	10 U	10 U	10 U	10 U	4.4 U	13 U	1 U	10 U
4-Methyl-2-Pentanone			1 U	10 U	10 U	10 U	10 U	5.9 U	9.7 U	1 U	10 U
Acetone	50		5 U	10 U	10 U	10 U	10 U	8.7 U	7 U	5 U	10 U
Bromodichloromethane	50		1 U	5 U	1 U	1 U	1 U	0.9 U	0.1 U	1 U	5 U
Bromoform	50		1 U	5 U	1 U	1 U	1 U	1.5 U	1.3 U	1 U	5 U
Bromomethane	5		1 U	10 U	1 U	1 U	1 U	1.7 U	2.9 U	1 U	10 U
Carbon disulfide	5		1 U	5 UJV	1 U	1 U	1 U	0.9 U	0.7 U	1 U	5 UJV
Carbon tetrachloride	5		1 U	5 U	1 U	1 U	1 U	0.5 U	0.1 U	1 U	5 U
Chlorobenzene	5		1 U	5 U	1 U	1 U	1 U	1 U	0.5 U	1 U	5 U
Chloroethane	5		1 U	10 UJV	1 U	1 U	1 U	1.8 U	2 U	1 U	10 UJV
Chloroform	7		1 U	5 U	1 U	1 U	1 U	0.8 U	1.5 U	1 U	5 U
Chloromethane	5		1 U	10 U	1 U	1 U	1 U	1.4 U	2.2 U	1 U	10 U
cis-1,2-Dichloroethene	5		3.4	NR	NR	NR	NR	1.5 U	0.9 U	1.8	NR
cis-1,3-Dichloropropene			1 U	5 U	1 U	1 U	1 U	1.5 U	0.7 U	1 U	5 U
Dibromochloromethane	50		1 U	5 U	1 U	1 U	NR	1.4 U	1.2 U	1 U	5 U
Methylene chloride	5		1 U	5 UV	1 U	1 U	1 U	1.2 U	1.2 U	1 U	5 UV
Methyl tert-butyl ether	10		NA	NA	NA	NA	NA	NA	NA	NA	NA
Styrene	5		1 U	5 U	1 U	1 U	1 U	NR	1.3 U	1 U	5 U

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (μg/L)	Sample DesigNRtion: Sample Date: Sampled By:	06/02/08	MW-19 06/19/97 Roux	MW-19 04/15/03 EMCG	MW-19 04/22/03 EMCG	MW-19 04/30/03 EMCG	MW-19 05/14/03 EMCG	MW-19 08/25/03 EMCG	MW-19 06/02/08 Roux	MW-23D 06/20/97 Roux
(Concentrations in µg/L)	(μg/L)	Screen Interval:		WT	Deep						
Tetrachloroethene	5		1 U	5 U	5	3	2	2.3 J	3.3 J	4	5 U
trans-1,2-Dichloroethene	5		1 U	NR	NR	NR	NR	1 U	1.3 U	1 U	NR
trans-1,3-Dichloropropene			1 U	5 U	1 U	1 U	1 U	1.5 U	0.7 U	1 U	5 U
Trichloroethene	5		1 U	5 U	4	3	2	2.2 J	2.3 J	2.9	5 U
Vinyl acetate			1 U	10 U	NR	NR	NR	NR	NR	1 U	10 U
Vinyl chloride	2		1 U	10 U	1 U	1 U	1 U	1.2 U	0.8 U	1 U	10 U

B - Compound was detected in blank sample

BTEX - Benzene, Toluene, Ethylbenzene and Xylene

D - Dilution

DUP - Duplicate

J - Estimated value

NA - Not analyzed

NR - Not reported

ND - Not detected; reporting limit not available

R(following Sample Designation) - Replicate sample

RE - Reanalysis

U - Not Detected

V - Data was qualified by validator

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV

WT - Monitoring wells with screen zones that bridge the water table

 $^{^{(1)}}$ - Geoprobe $^{\text{TM}}$ sample collected from 17.5 feet below land surface

⁽²⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

^{(3) -} Geoprobe TM sample collected from 19.5 feet below land surface

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter	NYSDEC AWQSGVs	Sample DesigNRtion: Sample Date:		MW-27 06/18/97	MW-27 06/04/08	MW-27 DUP 06/04/08	MW-28 06/18/97	MW-28 08/25/00	MW-29 06/18/97	MW-30 06/18/97	MW-34 06/18/97
(Concentrations in μ g/L)	$(\mu g/L)$	Sampled By:	Roux	Roux	Roux	Roux	Roux	'B/STV/PTC	Roux	Roux	Roux
		Screen Interval:	WT	WT	WT	WT	WT	WT	WT	WT	WT
Benzene	1		5 U	130 J	0.5 U	0.5 U	5 U	ND	5 U	5 U	25 U
Toluene	5		5 U	500 U	1 U	1 U	5 U	ND	5 U	2 JB	25 U
Ethylbenzene	5		5 U	500 U	1 U	1 U	5 U	ND	5 U	5 U	25 U
Xylenes (total)	5		5 U	500 U	2 U	2 U	5 U	NR	5 U	5 U	25 U
Total BTEX:			0	130	0	0	0	0	0	2	0
1,1,1-Trichloroethane	5		5 U	500 U	1 U	1 U	5 U	ND	5 U	5 U	25 U
1,1,2,2-Tetrachloroethane	5		5 U	500 U	1 U	1 U	5 U	0.4J	5 U	5 U	25 U
1,1,2-Trichloroethane	1		5 U	500 U	1 U	1 U	5 U	NR	5 U	5 U	25 U
1,1-Dichloroethane	5		5 U	500 U	1 U	1 U	5 U	ND	5 U	5 U	25 U
1,1-Dichloroethene	5		5 U	500 U	1 U	1 U	5 U	ND	5 U	5 U	25 U
1,2-Dichlorobenzene	3		5 U	500 U	1 U	1 U	5 U	ND	5 U	5 U	25 U
1,2-Dichloroethane	0.6		10 U	10 U	0.5 U	0.5 U	10 U	NR	10 U	10 U	10 U
1,2-Dichloroethene (total)	5		5 U	500 U	NR	NR	0.9 J	NR	5 U	5 U	22 J
1,2-Dichloropropane	1		5 U	500 U	1 U	1 U	5 U	NR	5 U	5 U	25 U
1,3-Dichlorobenzene	3		10 U	10 U	1 U	1 U	10 U	NR	10 U	10 U	10 U
1,4-Dichlorobenzene	3		10 U	10 U	1 U	1 U	10 U	NR	10 U	10 U	10 U
2-Butanone	50		10 U	1000 U	1 U	1 U	10 U	ND	10 U	10 U	50 U
2-Hexanone	50		10 U	1000 U	1 U	1 U	10 U	NR	10 U	10 U	50 U
4-Methyl-2-Pentanone			10 U	5200	1 U	1 U	10 U	NR	10 U	10 U	50 U
Acetone	50		10 U	850 JB	5 U	5 U	10 U	ND	10 U	10 U	49 JB
Bromodichloromethane	50		5 U	500 U	1 U	1 U	5 U	NR	5 U	5 U	25 U
Bromoform	50		5 U	500 U	1 U	1 U	5 U	NR	5 U	5 U	25 U
Bromomethane	5		10 U	1000 U	1 U	1 U	10 U	NR	10 U	10 U	50 U
Carbon disulfide	5		5 UJV	110 J	1 U	1 U	5 UJV	NR	5 UJV	5 UJV	25 UJV
Carbon tetrachloride	5		5 U	500 U	1 U	1 U	5 U	NR	5 U	5 U	25 U
Chlorobenzene	5		5 U	500 U	1 U	1 U	5 U	ND	5 U	5 U	25 U
Chloroethane	5		10 UJV	1000 UJV	1 U	1 U	10 UJV	NR	10 UJV	10 UJV	50 UJV
Chloroform	7		5 U	500 U	1 U	1 U	5 U	ND	5 U	5 U	25 U
Chloromethane	5		10 U	1000 U	1 U	1 U	10 U	ND	10 U	10 U	50 U
cis-1,2-Dichloroethene	5		NR	NR	1 U	1 U	NR	0.4J	NR	NR	NR
cis-1,3-Dichloropropene			5 U	500 U	1 U	1 U	5 U	NR	5 U	5 U	25 U
Dibromochloromethane	50		5 U	500 U	1 U	1 U	5 U	NR	5 U	5 U	25 U
Methylene chloride	5		5 U	270 JB	1 U	1 U	5 U	0.3J	5 U	5 U	12 JB
Methyl tert-butyl ether	10		NA	NA	NA	NA	NA	NA	NA	NA	NA
Styrene	5		5 U	500 U	1 U	1 U	5 U	ND	5 U	5 U	25 U

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter	NYSDEC AWQSGVs	Sample DesigNRtion: Sample Date:		MW-27 06/18/97	MW-27 06/04/08	MW-27 DUP 06/04/08	MW-28 06/18/97	MW-28 08/25/00	MW-29 06/18/97	MW-30 06/18/97	MW-34 06/18/97
(Concentrations in µg/L)	(µg/L)	Sampled By: Screen Interval:	Roux WT	Roux WT	Roux WT	Roux WT	Roux WT	'B/STV/PT(WT	Roux WT	Roux WT	Roux WT
Tetrachloroethene	5		5 U	500 U	4.3	4.1	0.6 J	0.6J	5 U	5 U	360
trans-1,2-Dichloroethene	5		NR	NR	1 U	1 U	NR	NR	NR	NR	NR
trans-1,3-Dichloropropene			5 U	500 U	1 U	1 U	5 U	NR	5 U	5 U	25 U
Trichloroethene	5		5 U	500 U	1 U	1.5	10	0.7J	5 U	5 U	16 J
Vinyl acetate			10 U	1000 U	1 U	1 U	10 U	ND	10 U	10 U	50 U
Vinyl chloride	2		10 U	1000 U	1 U	1 U	10 U	NR	10 U	10 U	50 U

B - Compound was detected in blank sample

BTEX - Benzene, Toluene, Ethylbenzene and Xylene

D - Dilution

DUP - Duplicate

J - Estimated value

NA - Not analyzed

NR - Not reported

ND - Not detected; reporting limit not available

R(following Sample Designation) - Replicate sample

RE - Reanalysis

U - Not Detected

V - Data was qualified by validator

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV

WT - Monitoring wells with screen zones that bridge the water table

⁽¹⁾ - GeoprobeTM sample collected from 17.5 feet below land surface

⁽²⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

^{(3) -} GeoprobeTM sample collected from 19.5 feet below land surface

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter	NYSDEC AWQSGVs	Sample DesigNRtion: MW-34 Sample Date: 08/25/00		MW-35 11/14/97	MW-35 04/15/03	MW-35 04/22/03	MW-35 08/25/03	MW-35 06/02/08	MW-37 06/18/97	MW-37 06/02/08	MW-38D 06/18/97
(Concentrations in µg/L)	AwQ5Gvs (μg/L)	Sampled By: B/STV/P		Roux	EMCG	EMCG	EMCG	Roux	Roux	Roux	Roux
(Concentrations in µg/L)	(μg/L)	Screen Interval: WT	WT	WT	WT	WT	WT	WT	WT	WT	Deep
Benzene	1	ND	3 J	2 J	1	1 U	0.1 U	0.5 U	5 U	0.5 U	5 U
Toluene	5	ND	0.8 J	5 U	1 U	1 U	0.5 U	1 U	5 U	1.1	0.9 J
Ethylbenzene	5	ND	5 U	3 J	1 U	1 U	0.8 U	1 U	5 U	1 U	0.7 J
Xylenes (total)	5	NR	3 J	4 J	3 U	3 U	2.3 U	2 U	5 U	2 U	3 J
Total BTEX:		0	6.8	9	1	0	0	0	0	1.1	4.6
1,1,1-Trichloroethane	5	4J	5 U	5 U	1 U	1 U	0.5 U	1 U	5 U	1 U	5 U
1,1,2,2-Tetrachloroethane	5	ND	5 U	5 U	1 U	1 U	1.9 U	1 U	5 U	1 U	5 U
1,1,2-Trichloroethane	1	NR	5 U	5 U	1 U	1 U	1 U	1 U	5 U	1 U	5 U
1,1-Dichloroethane	5	1J	5 U	5 U	1 U	1 U	1.3 U	1 U	5 U	1 U	5 U
1,1-Dichloroethene	5	ND	5 U	5 U	1 U	1 U	0.1 U	1 U	5 U	1 U	5 U
1,2-Dichlorobenzene	3	ND	5 U	NA	1 U	1 U	0.4 U	1 U	5 U	1 U	5 U
1,2-Dichloroethane	0.6	NR	10 U	5 U	1 U	1 U	0.2 U	0.5 U	10 U	0.5 U	10 U
1,2-Dichloroethene (total)	5	NR	5 U	5 U	1 U	1 U	NR	NR	5 U	NR	5 U
1,2-Dichloropropane	1	NR	5 U	5 U	1 U	1 U	0.2 U	1 U	5 U	1 U	5 U
1,3-Dichlorobenzene	3	NR	10 U	NA	1 U	1 U	0.4 U	1 U	10 U	1 U	10 U
1,4-Dichlorobenzene	3	NR	10 U	NA	1 U	1 U	0.2 U	1 U	10 U	1 U	10 U
2-Butanone	50	ND	10 U	10 U	10 U	10 U	10 U	1 U	10 U	1 U	10 U
2-Hexanone	50	NR	10 U	10 U	10 U	10 U	13 U	1 U	10 U	1 U	10 U
4-Methyl-2-Pentanone		NR	10 U	10 U	10 U	10 U	9.7 U	1 U	10 U	1 U	10 U
Acetone	50	2Ј	10 U	8 JB	10 U	10 U	7 U	5 U	10 U	5 U	10 U
Bromodichloromethane	50	NR	5 U	3 J	1 U	1 U	0.1 U	1 U	5 U	1 U	5 U
Bromoform	50	NR	5 U	5 U	1 U	1 U	1.3 U	1 U	5 U	1 U	5 U
Bromomethane	5	NR	10 U	10 U	1 U	1 U	2.9 U	1 U	10 U	1 U	10 U
Carbon disulfide	5	NR	0.7 J	5 U	1 U	1 U	0.7 U	1 U	5 UJV	1 U	5 UJV
Carbon tetrachloride	5	NR	5 U	5 U	1 U	1 U	0.1 U	1 U	5 U	1 U	5 U
Chlorobenzene	5	ND	5 U	5 U	1 U	1 U	0.5 U	1 U	5 U	1 U	5 U
Chloroethane	5	NR	10 UJV	10 U	1 U	1 U	2 U	1 U	10 UJV	1 U	10 UJV
Chloroform	7	0.8J	5 U	5 U	1 U	1 U	1.5 U	1 U	5 U	1 U	5 U
Chloromethane	5	ND	10 U	10 U	1 U	1 U	2.2 U	1 U	10 U	1 U	10 U
cis-1,2-Dichloroethene	5	8	NR	5 U	NR	NR	0.9 U	1 U	NR	1 U	NR
cis-1,3-Dichloropropene		NR	5 U	NA	1 U	1 U	0.7 U	1 U	5 U	1 U	5 U
Dibromochloromethane	50	NR	5 U	5 U	NR	NR	1.2 U	1 U	5 U	1 U	5 U
Methylene chloride	5	ND	5 U	5 U	1 U	1 U	1.2 U	1 U	5 U	1 U	5 UV
Methyl tert-butyl ether	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Styrene	5	ND	5 U	5 U	1 U	1 U	1.3 U	1 U	5 U	1 U	0.8 J

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Domonoston	NYSDEC	Sample DesigNRtion:		MW-35	MW-35	MW-35	MW-35	MW-35	MW-35	MW-37	MW-37	MW-38D
Parameter (Concentrations in µg/L)	AWQSGVs (μg/L)	Sample Date: Sampled By: I		06/18/97 Roux	11/14/97 Roux	04/15/03 EMCG	04/22/03 EMCG	08/25/03 EMCG	06/02/08 Roux	06/18/97 Roux	06/02/08 Roux	06/18/97 Roux
(Concentrations in µg/L)	(μg/L)	Screen Interval:	WT	WT	WT	WT	WT	WT	WT	WT	WT	Deep
Tetrachloroethene	5		190	5 U	5 U	1 U	1 U	0.1 U	1 U	5 U	1 U	1 J
trans-1,2-Dichloroethene	5		NR	NR	NA	NR	NR	1.3 U	1 U	NR	1 U	NR
trans-1,3-Dichloropropene			NR	5 U	5 U	1 U	1 U	0.7 U	1 U	5 U	1 U	5 U
Trichloroethene	5		17	5 U	5 U	1 U	1 U	0.1 U	1 U	5 U	1 U	5 U
Vinyl acetate			ND	10 U	10 U	NR	NR	NR	1 U	10 U	1 U	10 U
Vinyl chloride	2		NR	10 U	10 U	1 U	1 U	0.8 U	1.7	10 U	1 U	10 U

B - Compound was detected in blank sample

BTEX - Benzene, Toluene, Ethylbenzene and Xylene

D - Dilution

DUP - Duplicate

J - Estimated value

NA - Not analyzed

NR - Not reported

ND - Not detected; reporting limit not available

R(following Sample Designation) - Replicate sample

RE - Reanalysis

U - Not Detected

V - Data was qualified by validator

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV

WT - Monitoring wells with screen zones that bridge the water table

^{(1) -} GeoprobeTM sample collected from 17.5 feet below land surface

⁽²⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

 $^{^{(3)}}$ - $\mbox{Geoprobe}^{\mbox{\scriptsize TM}}$ sample collected from 19.5 feet below land surface

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in μg/L)	NYSDEC AWQSGVs (µg/L)	Sample DesigNRtion: Sample Date: Sampled By:	06/02/08 Roux	06/02/08 Roux	MW-40D 06/18/97 Roux	MW-41 06/18/97 Roux	MW-42 06/18/97 Roux	MW-42 08/25/00 'B/STV/PTO		MW-44D 06/18/97 Roux	MW-45 06/18/97 Roux
	1	Screen Interval:	Deep	Deep	Deep	WT	WT	WT	WT	Deep	WT
Benzene	1		0.5 U	0.5 U	5 U	5 U	5 U	ND	5 U	5 U	5 U
Toluene	5		1.9	1 U	5 U	5 U	5 U	.2J	5 U	5 U	5 U
Ethylbenzene	5		1 U	1 U	5 U	5 U	5 U	ND	5 U	5 U	5 U
Xylenes (total)	5		2 U	2 U	5 U	5 U	5 U	NR	5 U	5 U	5 U
Total BTEX:			1.9	0	0	0	0	0.2	0	0	0
1,1,1-Trichloroethane	5		1 U	1 U	5 U	5 U	5 U	ND	5 U	5 U	5 U
1,1,2,2-Tetrachloroethane	5		1 U	1 U	5 U	5 U	5 U	ND	5 U	5 U	5 U
1,1,2-Trichloroethane	1		1 U	1 U	5 U	5 U	5 U	NR	5 U	5 U	5 U
1,1-Dichloroethane	5		1 U	1 U	5 U	5 U	5 U	ND	5 U	5 U	5 U
1,1-Dichloroethene	5		1 U	1 U	5 U	5 U	5 U	ND	5 U	5 U	5 U
1,2-Dichlorobenzene	3		1 U	1 U	5 U	5 U	5 U	ND	5 U	5 U	5 U
1,2-Dichloroethane	0.6		0.5 U	0.5 U	10 U	10 U	10 U	NR	10 U	10 U	10 U
1,2-Dichloroethene (total)	5		NR	NR	5 U	5 U	15	NR	5 U	33	5 U
1,2-Dichloropropane	1		1 U	1 U	5 U	5 U	5 U	NR	5 U	5 U	5 U
1,3-Dichlorobenzene	3		1 U	1 U	10 U	10 U	10 U	NR	10 U	10 U	10 U
1,4-Dichlorobenzene	3		1 U	1 U	10 U	10 U	10 U	NR	10 U	10 U	10 U
2-Butanone	50		1 U	1 U	10 U	10 U	10 U	ND	10 U	10 U	10 U
2-Hexanone	50		1 U	1 U	10 U	10 U	10 U	NR	10 U	10 U	10 U
4-Methyl-2-Pentanone			1 U	1 U	10 U	4 J	10 U	NR	10 U	10 U	10 U
Acetone	50		5 U	5 U	10 U	10 U	10 U	ND	10 U	10 U	10 U
Bromodichloromethane	50		1 U	1 U	5 U	5 U	5 U	NR	5 U	5 U	5 U
Bromoform	50		1 U	1 U	5 U	5 U	5 U	NR	5 U	5 U	5 U
Bromomethane	5		1 U	1 U	10 U	10 U	10 U	NR	10 U	10 U	10 U
Carbon disulfide	5		1 U	1 U	5 UJV	5 UJV	5 UJV	NR	5 UJV	5 UJV	5 UJV
Carbon tetrachloride	5		1 U	1 U	5 U	5 U	5 U	NR	5 U	5 U	5 U
Chlorobenzene	5		1 U	1 U	5 U	5 U	5 U	ND	5 U	5 U	5 U
Chloroethane	5		1 U	1 U	10 UJV	10 UJV	10 UJV	NR	10 UJV	10 UJV	10 UJV
Chloroform	7		1 U	1 U	5 U	5 U	5 U	ND	5 U	5 U	5 U
Chloromethane	5		1 U	1 U	10 U	10 U	10 U	ND	10 U	10 U	10 U
cis-1,2-Dichloroethene	5		1 U	1 U	NR	NR	NR	ND	NR	NR	NR
cis-1,3-Dichloropropene			1 U	1 U	5 U	5 U	5 U	NR	5 U	5 U	5 U
Dibromochloromethane	50		1 U	1 U	5 U	5 U	5 U	NR	5 U	5 U	5 U
Methylene chloride	5		1 U	1 U	5 U	5 U	5 UV	ND	5 U	5 U	5 U
Methyl tert-butyl ether	10		NA	NA	NA	NA	NA	NA	NA	NA	NA
Styrene	5		1 U	1 U	5 U	5 U	5 U	ND	5 U	5 U	5 U

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in μg/L)	NYSDEC AWQSGVs (μg/L)	Sample DesigNRtion: Sample Date: Sampled By: Screen Interval:		MW-39D 06/02/08 Roux Deep	MW-40D 06/18/97 Roux Deep	MW-41 06/18/97 Roux WT	MW-42 06/18/97 Roux WT	MW-42 08/25/00 B/STV/PT0 WT	MW-43 06/18/97 Roux WT	MW-44D 06/18/97 Roux Deep	MW-45 06/18/97 Roux WT
Tetrachloroethene	5		1 U	1 U	1 J	5 U	75	ND	4 J	2 J	5 U
trans-1,2-Dichloroethene	5		1 U	1 U	NR	NR	NR	NR	NR	NR	NR
trans-1,3-Dichloropropene			1 U	1 U	5 U	5 U	5 U	NR	5 U	5 U	5 U
Trichloroethene	5		1 U	1 U	5 U	5 U	12	ND	5 U	34	5 U
Vinyl acetate			1 U	1 U	10 U	10 U	10 U	ND	10 U	10 U	10 U
Vinyl chloride	2		1 U	1 U	10 U	10 U	10 U	NR	10 U	10 U	10 U

B - Compound was detected in blank sample

BTEX - Benzene, Toluene, Ethylbenzene and Xylene

D - Dilution

DUP - Duplicate

J - Estimated value

NA - Not analyzed

NR - Not reported

ND - Not detected; reporting limit not available

R(following Sample Designation) - Replicate sample

RE - Reanalysis

U - Not Detected

V - Data was qualified by validator

µg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV

WT - Monitoring wells with screen zones that bridge the water table

⁽¹⁾ - GeoprobeTM sample collected from 17.5 feet below land surface

⁽²⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

^{(3) -} Geoprobe TM sample collected from 19.5 feet below land surface

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	NYSDEC	Sample DesigNRtion: MW-45	MW-45	MW-46	MW-47		MW-48D	MW-49	MW-57	MW-59	MW-61
Parameter	AWQSGVs	Sample Date: 08/25/00		06/18/97	06/20/97	06/20/97	06/03/08	06/18/97	06/18/97	06/18/97	06/18/97
(Concentrations in µg/L)	$(\mu g/L)$	Sampled By: B/STV/PT		Roux							
		Screen Interval: WT	WT	WT	WT	Deep	Deep	WT	WT	WT	WT
Benzene	1	ND	0.5 U	5 U	5 U	5 U	0.5 U	5 U	5 U	50 U	5 U
Toluene	5	ND	1 U	5 U	0.2 JB	0.6 J	1 U	5 U	5 U	50 U	5 U
Ethylbenzene	5	ND	1 U	5 U	5 U	5 U	1 U	5 U	5 U	50 U	5 U
Xylenes (total)	5	NR	2 U	5 U	0.8 J	5 U	2 U	5 U	5 U	50 U	5 U
Total BTEX:		0	0	0	1	0.6	0	0	0	0	0
1,1,1-Trichloroethane	5	ND	1 U	5 U	5 U	5 U	1 U	5 U	5 U	50 U	5 U
1,1,2,2-Tetrachloroethane	5	ND	1 U	5 U	5 U	5 U	1 U	5 U	5 U	50 U	5 U
1,1,2-Trichloroethane	1	NR	1 U	5 U	5 U	5 U	1 U	5 U	5 U	50 U	1 J
1,1-Dichloroethane	5	ND	1 U	5 U	5 U	5 U	1 U	5 U	5 U	50 U	5 U
1,1-Dichloroethene	5	ND	1 U	5 U	5 U	5 U	1 U	5 U	5 U	50 U	5 U
1,2-Dichlorobenzene	3	ND	1 U	5 U	5 U	5 U	1 U	5 U	5 U	50 U	2 J
1,2-Dichloroethane	0.6	NR	0.5 U	10 U	10 U	10 U	0.5 U	10 U	10 U	10 U	10 U
1,2-Dichloroethene (total)	5	NR	NR	5 U	5 U	5 U	NR	5 U	5 U	50 U	5 U
1,2-Dichloropropane	1	NR	1 U	5 U	5 U	5 U	1 U	5 U	5 U	50 U	5 U
1,3-Dichlorobenzene	3	NR	1 U	10 U	10 U	10 U	1 U	10 U	10 U	10 U	10 U
1,4-Dichlorobenzene	3	NR	1 U	10 U	10 U	10 U	1 U	10 U	10 U	10 U	10 U
2-Butanone	50	ND	1 U	10 U	10 U	10 U	1 U	10 U	10 U	100 U	10 U
2-Hexanone	50	NR	1 U	10 U	10 U	10 U	1 U	10 U	10 U	100 U	10 U
4-Methyl-2-Pentanone		NR	1 U	10 U	10 U	10 U	1 U	10 U	10 U	1300	10 U
Acetone	50	ND	5 U	10 U	10 U	10 U	5 U	10 U	10 U	100 U	10 U
Bromodichloromethane	50	NR	1 U	5 U	5 U	5 U	1 U	5 U	5 U	50 U	5 U
Bromoform	50	NR	1 U	5 U	5 U	5 U	1 U	5 U	5 U	50 U	5 U
Bromomethane	5	NR	1 U	10 U	10 U	10 U	1 U	10 U	10 U	100 U	10 U
Carbon disulfide	5	NR	1 U	5 UJV	5 UJV	5 UJV	1 U	5 UJV	5 UJV	50 UJV	5 UJV
Carbon tetrachloride	5	NR	1 U	5 U	5 U	5 U	1 U	5 U	5 U	50 U	5 U
Chlorobenzene	5	ND	1 U	5 U	5 U	5 U	1 U	5 U	5 U	50 U	5 U
Chloroethane	5	NR	1 U	10 UJV	10 UJV	10 UJV	1 U	10 UJV	10 UJV	100 UJV	10 UJV
Chloroform	7	ND	1 U	5 U	5 U	5 U	1 U	5 U	5 U	50 U	5 U
Chloromethane	5	ND	1 U	10 U	10 U	10 U	1 U	10 U	10 U	100 U	10 U
cis-1,2-Dichloroethene	5	ND	1 U	NR	NR	NR	1 U	NR	NR	NR	NR
cis-1,3-Dichloropropene		NR	1 U	5 U	5 U	5 U	1 U	5 U	5 U	50 U	5 U
Dibromochloromethane	50	NR	1 U	5 U	5 U	5 U	1 U	5 U	5 U	50 U	5 U
Methylene chloride	5	0.9JB	1 U	5 U	5 U	5 UV	1 U	5 U	5 U	50 U	5 UV
Methyl tert-butyl ether	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Styrene	5	ND	1 U	5 U	5 U	5 U	1 U	5 U	5 U	50 U	5 U

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter	NYSDEC AWQSGVs	Sample DesigNRtion: Sample Date:		MW-45 06/04/08	MW-46 06/18/97	MW-47 06/20/97	MW-48D 06/20/97	MW-48D 06/03/08	MW-49 06/18/97	MW-57 06/18/97	MW-59 06/18/97	MW-61 06/18/97
(Concentrations in µg/L)	$(\mu g/L)$	Sampled By: B	/STV/PT	Roux	Roux	Roux	Roux	Roux	Roux	Roux	Roux	Roux
		Screen Interval:	WT	WT	WT	WT	Deep	Deep	WT	WT	WT	WT
Tetrachloroethene	5		ND	1 U	5 U	5 U	5 U	1 U	5 U	5 U	50 U	4 J
trans-1,2-Dichloroethene	5		NR	1 U	NR	NR	NR	1 U	NR	NR	NR	NR
trans-1,3-Dichloropropene			NR	1 U	5 U	5 U	5 U	1 U	5 U	5 U	50 U	5 U
Trichloroethene	5		ND	1 U	5 U	5 U	5 U	1 U	5 U	5 U	50 U	5 U
Vinyl acetate			ND	1 U	10 U	10 U	10 U	1 U	10 U	10 U	100 U	10 U
Vinyl chloride	2		NR	1 U	10 U	10 U	10 U	1 U	10 U	10 U	100 U	10 U

B - Compound was detected in blank sample

BTEX - Benzene, Toluene, Ethylbenzene and Xylene

D - Dilution

DUP - Duplicate

J - Estimated value

NA - Not analyzed

NR - Not reported

ND - Not detected; reporting limit not available

R(following Sample Designation) - Replicate sample

RE - Reanalysis

U - Not Detected

V - Data was qualified by validator

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV

WT - Monitoring wells with screen zones that bridge the water table

 $^{^{(1)}}$ - Geoprobe $^{\text{TM}}$ sample collected from 17.5 feet below land surface

⁽²⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

 $^{^{(3)}}$ - $\mbox{Geoprobe}^{\mbox{\scriptsize TM}}$ sample collected from 19.5 feet below land surface

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in μg/L)	NYSDEC AWQSGVs (μg/L)	Sample DesigNRtion: Sample Date: Sampled By:	06/18/97 Roux		MW-64 06/19/97 Roux	MW-65 06/19/97 Roux	MW-65R 06/19/97 Roux	MW-66 06/19/97 Roux	MW-67 06/19/97 Roux	MW-68 06/04/08 Roux	MW-69D 06/20/97 Roux	06/02/08 Roux
-		Screen Interval:	Deep	Deep	WT	WT	WT	WT	WT	WT	Deep	WT
Benzene	1		5 U	0.5 U	5 U	5 U	5 U	5 U	5 U	0.5 U	5 U	0.5 U
Toluene	5		5 U	1 U	5 U	5 U	5 U	$0.6 \mathrm{JB}$	0.4 JB	1 U	5 U	1 U
Ethylbenzene	5		5 U	1 U	5 U	5 U	5 U	5 U	5 U	1 U	5 U	1 U
Xylenes (total)	5		5 U	2 U	5 U	5 U	5 U	5 U	5 U	2.6	5 U	2 U
Total BTEX:			0	0	0	0	0	0.6	0.4	2.6	0	0
1,1,1-Trichloroethane	5		5 U	1 U	5 U	5 U	5 U	5 U	5 U	1 U	5 U	1 U
1,1,2,2-Tetrachloroethane	5		5 U	1 U	5 U	5 U	5 U	5 U	5 U	1 U	5 U	1 U
1,1,2-Trichloroethane	1		5 U	1 U	5 U	5 U	5 U	5 U	5 U	1 U	5 U	1 U
1,1-Dichloroethane	5		5 U	1 U	5 U	2 J	2 J	5 U	5 U	1 U	5 U	1 U
1,1-Dichloroethene	5		5 U	1 U	5 U	2 J	2 J	5 U	5 U	1 U	5 U	1 U
1,2-Dichlorobenzene	3		5 U	1 U	5 U	5 U	5 U	5 U	5 U	1 U	5 U	1 U
1,2-Dichloroethane	0.6		10 U	0.5 U	10 U	10 U	10 U	10 U	10 U	0.5 U	10 U	0.5 U
1,2-Dichloroethene (total)	5		5 U	NR	5 U	9	9	5 U	5 U	NR	5 U	NR
1,2-Dichloropropane	1		5 U	1 U	5 U	5 U	5 U	5 U	5 U	1 U	5 U	1 U
1,3-Dichlorobenzene	3		10 U	1 U	10 U	10 U	10 U	10 U	10 U	1 U	10 U	1 U
1,4-Dichlorobenzene	3		10 U	1 U	10 U	10 U	10 U	10 U	10 U	1 U	10 U	1 U
2-Butanone	50		10 U	1 U	10 U	10 U	10 U	10 U	10 U	1 U	10 U	1 U
2-Hexanone	50		10 U	1 U	10 U	10 U	10 U	10 U	10 U	1 U	10 U	1 U
4-Methyl-2-Pentanone			10 U	1 U	10 U	10 U	10 U	10 U	10 U	1 U	10 U	1 U
Acetone	50		10 U	5 U	10 U	10 U	10 U	10 U	10 U	5 U	10 U	5 U
Bromodichloromethane	50		5 U	1 U	5 U	5 U	5 U	5 U	5 U	1 U	5 U	1 U
Bromoform	50		5 U	1 U	5 U	5 U	5 U	5 U	5 U	1 U	5 U	1 U
Bromomethane	5		10 U	1 U	10 U	10 U	10 U	10 U	10 U	1 U	10 U	1 U
Carbon disulfide	5		2 J	1 U	5 UJV	5 UJV	5 UJV	5 UJV	5 UJV	1 U	5 UJV	1 U
Carbon tetrachloride	5		5 U	1 U	5 U	5 U	5 U	5 U	5 U	1 U	5 U	1 U
Chlorobenzene	5		5 U	1 U	5 U	5 U	5 U	5 U	5 U	1 U	5 U	1 U
Chloroethane	5		10 UJV	1 U	10 UJV	10 UJV	10 UJV	10 UJV	10 UJV	1 U	10 UJV	1 U
Chloroform	7		5 U	1.3	5 U	5 U	5 U	5 U	5 U	1 U	5 U	1 U
Chloromethane	5		10 U	1 U	10 U	10 U	10 U	10 U	10 U	1 U	10 U	1 U
cis-1,2-Dichloroethene	5		NR	1.7	NR	NR	NR	NR	NR	1 U	NR	1 U
cis-1,3-Dichloropropene			5 U	1 U	5 U	5 U	5 U	5 U	5 U	1 U	5 U	1 U
Dibromochloromethane	50		5 U	1 U	5 U	5 U	5 U	5 U	5 U	1 U	5 U	1 U
Methylene chloride	5		5 UV	1 U	5 U	5 U	5 UV	5 U	5 UV	1 U	5 U	1 U
Methyl tert-butyl ether	10		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Styrene	5		5 U	1 U	5 U	5 U	5 U	5 U	5 U	1 U	5 U	1 U

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter	NYSDEC AWQSGVs	Sample DesigNRtion: Sample Date:		MW-62D 06/04/08	MW-64 06/19/97	MW-65 06/19/97	MW-65R 06/19/97	MW-66 06/19/97	MW-67 06/19/97	MW-68 06/04/08	MW-69D 06/20/97	MW-70 06/02/08
(Concentrations in $\mu g/L$)	$(\mu g/L)$	Sampled By:	Roux	Roux	Roux	Roux	Roux	Roux	Roux	Roux	Roux	Roux
		Screen Interval:	Deep	Deep	WT	WT	WT	WT	WT	WT	Deep	WT
Tetrachloroethene	5		5	54	6	5 U	5 U	5 U	5 U	1 U	5 U	1 U
trans-1,2-Dichloroethene	5		NR	1 U	NR	NR	NR	NR	NR	1 U	NR	1 U
trans-1,3-Dichloropropene			5 U	1 U	5 U	5 U	5 U	5 U	5 U	1 U	5 U	1 U
Trichloroethene	5		0.9 J	1.3	2 J	0.8 J	0.9 J	5 U	5 U	1 U	5 U	1 U
Vinyl acetate			10 U	1 U	10 U	10 U	10 U	10 U	10 U	1 U	10 U	1 U
Vinyl chloride	2		10 U	1 U	10 U	10 U	10 U	10 U	10 U	1 U	10 U	1 U

B - Compound was detected in blank sample

BTEX - Benzene, Toluene, Ethylbenzene and Xylene

D - Dilution

DUP - Duplicate

J - Estimated value

NA - Not analyzed

NR - Not reported

ND - Not detected; reporting limit not available

R(following Sample Designation) - Replicate sample

RE - Reanalysis

U - Not Detected

V - Data was qualified by validator

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV

WT - Monitoring wells with screen zones that bridge the water table

^{(1) -} GeoprobeTM sample collected from 17.5 feet below land surface

⁽²⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

^{(3) -} Geoprobe TM sample collected from 19.5 feet below land surface

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in μg/L)	NYSDEC AWQSGVs (μg/L)	Sample DesigNRtion: Sample Date: Sampled By:	07/05/05 Roux	MW-79 07/05/05 Roux	MW-79 06/03/08 Roux	MW-80 06/04/08 Roux	MW-82 06/05/08 Roux	MW-83 06/04/08 Roux	MW-84 06/05/08 Roux	MW-85 06/02/08 Roux	MW-86 05/21/08 Roux	MW-87 05/21/08 Roux
		Screen Interval:	WT	WT	WT	WT	WT	WT	WT	WT	WT	WT
Benzene	1		0.43 U	0.43 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Toluene	5		0.31 U	0.31 U	1 U	1 U	1 U	1 U	1 U	1.1	1 U	1 U
Ethylbenzene	5		0.49 U	0.49 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylenes (total)	5		0.86 U	0.86 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Total BTEX:			0	0	0	0	0	0	0	1.1	0	0
1,1,1-Trichloroethane	5		0.45 U	0.45 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	5		0.28 U	0.28 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1		0.4 U	0.4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	5		0.29 U	0.29 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	5		0.48 U	0.48 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	3		0.4 U	0.42 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	0.6		0.22 U	0.22 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethene (total)	5		NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
1,2-Dichloropropane	1		0.37 U	0.37 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,3-Dichlorobenzene	3		0.28 U	0.3 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	3		0.18 U	0.18 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Butanone	50		3.3 U	3.3 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Hexanone	50		0.39 U	0.39 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
4-Methyl-2-Pentanone			0.53 U	0.53 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Acetone	50		4 U	4 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Bromodichloromethane	50		0.46 U	0.46 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromoform	50		0.47 U	0.47 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromomethane	5		0.76 U	0.76 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon disulfide	5		0.51 U	0.51 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	5		0.54 U	0.54 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chlorobenzene	5		0.2 U	0.2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroethane	5		0.53 U	0.53 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	7		0.38 U	0.38 U	1 U	1 U	2.1	1 U	1 U	1 U	1 U	1 U
Chloromethane	5		0.32 U	0.32 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene			0.18 U	0.18 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane	50		0.56 U	0.56 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	5		0.87 U	0.87 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl tert-butyl ether	10		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Styrene	5		0.29 U	0.29 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter	NYSDEC AWQSGVs	Sample DesigNRtion: Sample Date:		MW-79 07/05/05	MW-79 06/03/08	MW-80 06/04/08		MW-83 06/04/08	MW-84 06/05/08	MW-85 06/02/08	MW-86 05/21/08	MW-87 05/21/08
(Concentrations in µg/L)	(µg/L)	Sampled By: Screen Interval:	Roux WT	Roux WT	Roux WT	Roux WT	Roux WT	Roux WT	Roux WT	Roux WT	Roux WT	Roux WT
-		Screen interval.	W I	VV 1	VV I	VV I	VV 1	W I	VV 1	VV 1	VV 1	VV 1
Tetrachloroethene	5		0.31 U	0.31 U	1 U	1 U	1 U	1.9	1 U	5.5	1 U	1 U
trans-1,2-Dichloroethene	5		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene			0.4 U	0.4 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene	5		0.36 U	0.36 U	1 U	1 U	1 U	1 U	1 U	1.9	1 U	1 U
Vinyl acetate			NR	NR	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	2		0.54 U	0.54 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

B - Compound was detected in blank sample

BTEX - Benzene, Toluene, Ethylbenzene and Xylene

D - Dilution

DUP - Duplicate

J - Estimated value

NA - Not analyzed

NR - Not reported

ND - Not detected; reporting limit not available

R(following Sample Designation) - Replicate sample

RE - Reanalysis

U - Not Detected

V - Data was qualified by validator

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV

WT - Monitoring wells with screen zones that bridge the water table

^{(1) -} Geoprobe TM sample collected from 17.5 feet below land surface

⁽²⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

^{(3) -} Geoprobe TM sample collected from 19.5 feet below land surface

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	NYSDEC	Sample DesigNRtion:		MW-89	MW-90	MW-91	MW-92	RT-3AW	RT-6W	RT-6W	RT-8W
Parameter	AWQSGVs	Sample Date:		05/21/08	06/03/08	06/03/08	06/03/08	03/25/08	03/25/08	09/03/08	03/25/08
(Concentrations in $\mu g/L$)	$(\mu g/L)$	Sampled By:	Roux	Roux	Roux	Roux	Roux	ESA	ESA	ESA	ESA
		Screen Interval:	WT	WT	WT	WT	WT	Deep	Deep	Deep	Deep
Benzene	1		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	ND	73	ND	ND
Toluene	5		1 U	1 U	1 U	1 U	1 U	ND	ND	ND	ND
Ethylbenzene	5		1 U	1 U	1 U	1 U	1 U	NR	NR	NR	NR
Xylenes (total)	5		2 U	2 U	2 U	2 U	2 U	ND	ND	ND	ND
Total BTEX:			0	0	0	0	0	0	73	0	0
1,1,1-Trichloroethane	5		1 U	1 U	1 U	1 U	1 U	NR	NR	NR	NR
1,1,2,2-Tetrachloroethane	5		1 U	1 U	1 U	1 U	1 U	NR	NR	NR	NR
1,1,2-Trichloroethane	1		1 U	1 U	1 U	1 U	1 U	ND	12 JD	17	ND
1,1-Dichloroethane	5		1 U	1 U	1 U	1 U	1 U	NR	NR	NR	NR
1,1-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	ND	11	9.2	ND
1,2-Dichlorobenzene	3		1 U	1 U	1 U	1 U	1 U	NR	NR	NR	NR
1,2-Dichloroethane	0.6		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	ND	ND	8	ND
1,2-Dichloroethene (total)	5		NR	NR	NR	NR	NR	NR	NR	NR	NR
1,2-Dichloropropane	1		1 U	1 U	1 U	1 U	1 U	NR	NR	NR	NR
1,3-Dichlorobenzene	3		1 U	1 U	1 U	1 U	1 U	NR	NR	NR	NR
1,4-Dichlorobenzene	3		1 U	1 U	1 U	1 U	1 U	NR	NR	NR	NR
2-Butanone	50		1 U	1 U	1 U	1 U	1 U	NR	NR	NR	NR
2-Hexanone	50		1 U	1 U	1 U	1 U	1 U	NR	NR	NR	NR
4-Methyl-2-Pentanone			1 U	1 U	1 U	1 U	1 U	NR	NR	NR	NR
Acetone	50		5 U	5 U	5 U	5 U	5 U	ND	ND	ND	ND
Bromodichloromethane	50		1 U	1 U	1 U	1 U	1 U	NR	NR	NR	NR
Bromoform	50		1 U	1 U	1 U	1 U	1 U	NR	NR	NR	NR
Bromomethane	5		1 U	1 U	1 U	1 U	1 U	NR	NR	NR	NR
Carbon disulfide	5		1 U	1 U	1 U	1 U	1 U	NR	NR	NR	NR
Carbon tetrachloride	5		1 U	1 U	1 U	1 U	1 U	NR	NR	NR	NR
Chlorobenzene	5		1 U	1 U	1 U	1 U	1 U	NR	NR	NR	NR
Chloroethane	5		1 U	1 U	1 U	1 U	1 U	NR	NR	NR	NR
Chloroform	7		1 U	1 U	1 U	1 U	1 U	ND	2.8 J	3.5 J	2.4 J
Chloromethane	5		1 U	1 U	1 U	1 U	1 U	NR	NR	NR	NR
cis-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	ND	82	93	14
cis-1,3-Dichloropropene			1 U	1 U	1 U	1 U	1 U	NR	NR	NR	NR
Dibromochloromethane	50		1 U	1 U	1 U	1 U	1 U	NR	NR	NR	NR
Methylene chloride	5		1 U	1 U	1 U	1 U	1 U	NR	NR	NR	NR
Methyl tert-butyl ether	10		NA	NA	NA	NA	NA	ND	120	110 D	5.1
Styrene	5		1 U	1 U	1 U	1 U	1 U	NR	NR	NR	NR

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter	NYSDEC AWQSGVs	Sample DesigNRtion: Sample Date:		MW-89 05/21/08	MW-90 06/03/08	MW-91 06/03/08	MW-92 06/03/08	RT-3AW 03/25/08	RT-6W 03/25/08	RT-6W 09/03/08	RT-8W 03/25/08
(Concentrations in μ g/L)	$(\mu g/L)$	Sampled By:	Roux	Roux	Roux	Roux	Roux	ESA	ESA	ESA	ESA
		Screen Interval:	WT	WT	WT	WT	WT	Deep	Deep	Deep	Deep
Tetrachloroethene	5		1 U	1 U	1 U	1 U	1 U	ND	280 D	760 D	140
trans-1,2-Dichloroethene	5		1 U	1 U	1 U	1 U	1 U	ND	61	58	ND
trans-1,3-Dichloropropene			1 U	1 U	1 U	1 U	1 U	NR	NR	NR	NR
Trichloroethene	5		1 U	1 U	1 U	1 U	1 U	ND	19000 D	24000 D	65
Vinyl acetate			1 U	1 U	1 U	1 U	1 U	NR	NR	NR	NR
Vinyl chloride	2		1 U	1 U	1 U	1 U	1 U	ND	18	16	ND

B - Compound was detected in blank sample

BTEX - Benzene, Toluene, Ethylbenzene and Xylene

D - Dilution

DUP - Duplicate

J - Estimated value

NA - Not analyzed

NR - Not reported

ND - Not detected; reporting limit not available

R(following Sample Designation) - Replicate sample

RE - Reanalysis

U - Not Detected

V - Data was qualified by validator

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV

WT - Monitoring wells with screen zones that bridge the water table

⁽¹⁾ - GeoprobeTM sample collected from 17.5 feet below land surface

⁽²⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

^{(3) -} Geoprobe TM sample collected from 19.5 feet below land surface

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	NYSDEC	Sample DesigNRtion:		SSY-46	SSY-49	SSY-51	SY-111W	SY-131AW	SY-131AW	SY-153
Parameter	AWQSGVs	Sample Date:	08/20/99	08/20/99	08/20/99	08/20/99	06/17/08	09/26/06	06/26/08	09/26/06
(Concentrations in µg/L)	$(\mu g/L)$	Sampled By:	AKRF	AKRF	AKRF	AKRF	ESA	ESA	ESA	ESA
		Screen Interval:	Unk	Unk	Unk	Unk	Deep	Deep	Deep	Deep
Benzene	1		10 U	10 U	10 U	10 U	ND	ND	ND	ND
Toluene	5		10 U	10 U	10 U	10 U	ND	ND	ND	ND
Ethylbenzene	5		10 U	10 U	10 U	10 U	NR	ND	NR	ND
Xylenes (total)	5		10 U	10 U	10 U	10 U	ND	ND	ND	ND
Total BTEX:			0	0	0	0	0	0	0	0
1,1,1-Trichloroethane	5		10 U	10 U	10 U	10 U	NR	ND	NR	ND
1,1,2,2-Tetrachloroethane	5		10 U	10 U	10 U	10 U	NR	ND	NR	ND
1,1,2-Trichloroethane	1		10 U	10 U	10 U	10 U	ND	ND	ND	ND
1,1-Dichloroethane	5		10 U	10 U	10 U	10 U	NR	ND	NR	ND
1,1-Dichloroethene	5		10 U	10 U	10 U	10 U	ND	ND	ND	ND
1,2-Dichlorobenzene	3		10 U	10 U	10 U	10 U	NR	ND	NR	ND
1,2-Dichloroethane	0.6		10 U	10 U	10 U	10 U	ND	ND	ND	ND
1,2-Dichloroethene (total)	5		34	10 U	10 U	10 U	NR	ND	NR	ND
1,2-Dichloropropane	1		10 U	10 U	10 U	10 U	NR	ND	NR	ND
1,3-Dichlorobenzene	3		10 U	10 U	10 U	10 U	NR	ND	NR	ND
1,4-Dichlorobenzene	3		10 U	10 U	10 U	10 U	NR	ND	NR	ND
2-Butanone	50		10 U	10 U	10 U	10 U	NR	ND	NR	ND
2-Hexanone	50		10 U	10 U	10 U	10 U	NR	ND	NR	ND
4-Methyl-2-Pentanone			10 U	10 U	10 U	10 U	NR	ND	NR	ND
Acetone	50		5 J	2 J	62	4 J	ND	ND	ND	ND
Bromodichloromethane	50		10 U	10 U	10 U	10 U	NR	ND	NR	ND
Bromoform	50		10 U	10 U	10 U	10 U	NR	ND	NR	ND
Bromomethane	5		10 U	10 U	10 U	10 U	NR	ND	NR	ND
Carbon disulfide	5		10 U	10 U	10 U	10 U	NR	ND	NR	ND
Carbon tetrachloride	5		10 U	10 U	10 U	10 U	NR	ND	NR	ND
Chlorobenzene	5		10 U	10 U	10 U	10 U	NR	ND	NR	ND
Chloroethane	5		10 U	10 U	10 U	10 U	NR	ND	NR	ND
Chloroform	7		10 U	10 U	10 U	10 U	ND	ND	ND	ND
Chloromethane	5		10 U	10 U	10 U	10 U	NR	ND	NR	ND
cis-1,2-Dichloroethene	5		NR	NR	NR	NR	3.9 J	ND	ND	ND
cis-1,3-Dichloropropene			10 U	10 U	10 U	10 U	NR	ND	NR	ND
Dibromochloromethane	50		10 U	10 U	10 U	10 U	NR	ND	NR	ND
Methylene chloride	5		10 U	10 U	10 U	10 U	NR	ND	NR	ND
Methyl tert-butyl ether	10		NA	NA	NA	NA	ND	NA	ND	NA
Styrene	5		10 U	10 U	10 U	10 U	NR	ND	NR	ND

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter	NYSDEC AWQSGVs	Sample DesigNRtion: Sample Date:		SSY-46 08/20/99	SSY-49 08/20/99	SSY-51 08/20/99	SY-111W 06/17/08	SY-131AW 09/26/06	SY-131AW 06/26/08	SY-153 09/26/06
(Concentrations in µg/L)	(µg/L)	Sampled By:	AKRF	AKRF	AKRF	AKRF	ESA	ESA	ESA	ESA
		Screen Interval:	Unk	Unk	Unk	Unk	Deep	Deep	Deep	Deep
Tetrachloroethene	5		340 D	10 U	10 U	10 U	42	ND	ND	ND
trans-1,2-Dichloroethene	5		NR	NR	NR	NR	ND	ND	ND	ND
trans-1,3-Dichloropropene			10 U	10 U	10 U	10 U	NR	ND	NR	ND
Trichloroethene	5		40	10 U	10 U	10 U	21 J	ND	ND	ND
Vinyl acetate			10 U	10 U	10 U	10 U	NR	ND	NR	ND
Vinyl chloride	2		10 U	10 U	10 U	10 U	ND	ND	ND	ND

B - Compound was detected in blank sample

BTEX - Benzene, Toluene, Ethylbenzene and Xylene

D - Dilution

DUP - Duplicate

J - Estimated value

NA - Not analyzed

NR - Not reported

ND - Not detected; reporting limit not available

R(following Sample Designation) - Replicate sample

RE - Reanalysis

U - Not Detected

V - Data was qualified by validator

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV

WT - Monitoring wells with screen zones that bridge the water table

^{(1) -} Geoprobe TM sample collected from 17.5 feet below land surface

⁽²⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

^{(3) -} Geoprobe TM sample collected from 19.5 feet below land surface

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter	NYSDEC AWQSGVs	Sample DesigNRtion: Sample Date:	SY-174W 07/07/08	SY-174W DUP 07/07/08	SY-178W 08/16/06	SY-178W 07/07/08	SY-433W 06/10/08	SY-436W 06/10/08
(Concentrations in µg/L)	$(\mu g/L)$	Sampled By:	ESA	ESA	ESA	ESA	ESA	ESA
		Screen Interval:	Deep	Deep	Deep	Deep	Deep	Deep
Benzene	1		ND	ND	ND	ND	ND	ND
Toluene	5		ND	ND	ND	ND	ND	ND
Ethylbenzene	5		NR	NR	ND	NR	NR	NR
Xylenes (total)	5		ND	ND	ND	ND	ND	ND
Total BTEX:			0	0	0	0	0	0
1,1,1-Trichloroethane	5		NR	NR	ND	NR	NR	NR
1,1,2,2-Tetrachloroethane	5		NR	NR	ND	NR	NR	NR
1,1,2-Trichloroethane	1		ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5		NR	NR	ND	NR	NR	NR
1,1-Dichloroethene	5		ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3		NR	NR	ND	NR	NR	NR
1,2-Dichloroethane	0.6		ND	ND	ND	ND	ND	ND
1,2-Dichloroethene (total)	5		NR	NR	ND	NR	NR	NR
1,2-Dichloropropane	1		NR	NR	ND	NR	NR	NR
1,3-Dichlorobenzene	3		NR	NR	ND	NR	NR	NR
1,4-Dichlorobenzene	3		NR	NR	ND	NR	NR	NR
2-Butanone	50		NR	NR	ND	NR	NR	NR
2-Hexanone	50		NR	NR	ND	NR	NR	NR
4-Methyl-2-Pentanone			NR	NR	ND	NR	NR	NR
Acetone	50		ND	ND	ND	ND	ND	ND
Bromodichloromethane	50		NR	NR	ND	NR	NR	NR
Bromoform	50		NR	NR	ND	NR	NR	NR
Bromomethane	5		NR	NR	ND	NR	NR	NR
Carbon disulfide	5		NR	NR	ND	NR	NR	NR
Carbon tetrachloride	5		NR	NR	ND	NR	NR	NR
Chlorobenzene	5		NR	NR	ND	NR	NR	NR
Chloroethane	5		NR	NR	ND	NR	NR	NR
Chloroform	7		ND	ND	ND	ND	ND	ND
Chloromethane	5		NR	NR	ND	NR	NR	NR
cis-1,2-Dichloroethene	5		ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene			NR	NR	ND	NR	NR	NR
Dibromochloromethane	50		NR	NR	ND	NR	NR	NR
Methylene chloride	5		NR	NR	ND	NR	NR	NR
Methyl tert-butyl ether	10		ND	ND	NA	ND	ND	ND
Styrene	5		NR	NR	ND	NR	NR	NR

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (μg/L)	Sample DesigNRtion: Sample Date: Sampled By:	SY-174W 07/07/08 ESA	SY-174W DUP 07/07/08 ESA	SY-178W 08/16/06 ESA	SY-178W 07/07/08 ESA	SY-433W 06/10/08 ESA	SY-436W 06/10/08 ESA
		Screen Interval:	Deep	Deep	Deep	Deep	Deep	Deep
Tetrachloroethene	5		ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5		ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene			NR	NR	ND	NR	NR	NR
Trichloroethene	5		ND	ND	ND	ND	ND	ND
Vinyl acetate			NR	NR	ND	NR	NR	NR
Vinyl chloride	2		ND	ND	ND	ND	ND	ND

B - Compound was detected in blank sample

BTEX - Benzene, Toluene, Ethylbenzene and Xylene

D - Dilution

DUP - Duplicate

J - Estimated value

NA - Not analyzed

NR - Not reported

ND - Not detected; reporting limit not available

R(following Sample Designation) - Replicate sample

RE - Reanalysis

U - Not Detected

V - Data was qualified by validator

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV

WT - Monitoring wells with screen zones that bridge the water table

^{(1) -} GeoprobeTM sample collected from 17.5 feet below land surface

⁽²⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

^{(3) -} Geoprobe TM sample collected from 19.5 feet below land surface

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Demonstra	NYSDEC	Sample DesigNRtion:	SY-436W DUP	SY-438W	SY-452W	SY-516W	SY-516W DUP	TE-MW-D-2
Parameter	AWQSGVs	Sample Date:	06/10/08	06/10/08	06/11/08	06/16/08	06/16/08	11/14/06
(Concentrations in $\mu g/L$)	$(\mu g/L)$	Sampled By:	ESA	ESA	ESA	ESA	ESA	PB/STV/PTG
		Screen Interval:	Deep	Deep	WT	Deep	Deep	Deep
Benzene	1		ND	ND	ND	ND	ND	ND
Toluene	5		ND	ND	ND	ND	ND	ND
Ethylbenzene	5		NR	NR	NR	NR	NR	ND
Xylenes (total)	5		ND	ND	ND	ND	ND	ND
Total BTEX:			0	0	0	0	0	0
1,1,1-Trichloroethane	5		NR	NR	NR	NR	NR	ND
1,1,2,2-Tetrachloroethane	5		NR	NR	NR	NR	NR	ND
1,1,2-Trichloroethane	1		ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5		NR	NR	NR	NR	NR	ND
1,1-Dichloroethene	5		ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3		NR	NR	NR	NR	NR	ND
1,2-Dichloroethane	0.6		ND	ND	ND	ND	ND	ND
1,2-Dichloroethene (total)	5		NR	NR	NR	NR	NR	ND
1,2-Dichloropropane	1		NR	NR	NR	NR	NR	ND
1,3-Dichlorobenzene	3		NR	NR	NR	NR	NR	ND
1,4-Dichlorobenzene	3		NR	NR	NR	NR	NR	ND
2-Butanone	50		NR	NR	NR	NR	NR	ND
2-Hexanone	50		NR	NR	NR	NR	NR	ND
4-Methyl-2-Pentanone			NR	NR	NR	NR	NR	ND
Acetone	50		ND	ND	ND	ND	3.3 JB	ND
Bromodichloromethane	50		NR	NR	NR	NR	NR	ND
Bromoform	50		NR	NR	NR	NR	NR	ND
Bromomethane	5		NR	NR	NR	NR	NR	ND
Carbon disulfide	5		NR	NR	NR	NR	NR	ND
Carbon tetrachloride	5		NR	NR	NR	NR	NR	ND
Chlorobenzene	5		NR	NR	NR	NR	NR	ND
Chloroethane	5		NR	NR	NR	NR	NR	ND
Chloroform	7		ND	ND	ND	ND	ND	ND
Chloromethane	5		NR	NR	NR	NR	NR	ND
cis-1,2-Dichloroethene	5		ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene			NR	NR	NR	NR	NR	ND
Dibromochloromethane	50		NR	NR	NR	NR	NR	ND
Methylene chloride	5		NR	NR	NR	NR	NR	ND
Methyl tert-butyl ether	10		ND	ND	ND	ND	0.99 J	NA
Styrene	5		NR	NR	NR	NR	NR	ND

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter	NYSDEC AWQSGVs	Sample DesigNRtion: Sample Date:	SY-436W DUP 06/10/08	SY-438W 06/10/08	SY-452W 06/11/08	SY-516W 06/16/08	SY-516W DUP 06/16/08	TE-MW-D-2 11/14/06
(Concentrations in µg/L)	$(\mu g/L)$	Sampled By:	ESA	ESA	ESA	ESA	ESA	PB/STV/PTG
		Screen Interval:	Deep	Deep	WT	Deep	Deep	Deep
Tetrachloroethene	5		ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5		ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene			NR	NR	NR	NR	NR	ND
Trichloroethene	5		ND	ND	ND	ND	ND	ND
Vinyl acetate			NR	NR	NR	NR	NR	ND
Vinyl chloride	2		ND	ND	ND	ND	ND	ND

B - Compound was detected in blank sample

BTEX - Benzene, Toluene, Ethylbenzene and Xylene

D - Dilution

DUP - Duplicate

J - Estimated value

NA - Not analyzed

NR - Not reported

ND - Not detected; reporting limit not available

R(following Sample Designation) - Replicate sample

RE - Reanalysis

U - Not Detected

V - Data was qualified by validator

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV

WT - Monitoring wells with screen zones that bridge the water table

^{(1) -} Geoprobe TM sample collected from 17.5 feet below land surface

⁽²⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

^{(3) -} Geoprobe TM sample collected from 19.5 feet below land surface

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	NYSDEC	Sample DesigNRtion: T	, , ,		TE-IB-3	TE-IB-3	TE-MW-A-1
Parameter	AWQSGVs	Sample Date:	10/20/00	10/20/00	10/20/00	11/14/06	10/19/00
(Concentrations in μ g/L)	$(\mu g/L)$	Sampled By:	PB/STV/PTG	PB/STV/PTG	PB/STV/PTG	PB/STV/PTG	PB/STV/PTG
		Screen Interval:	Deep	Deep	Deep	Deep	Deep
Benzene	1		ND	ND	ND	ND	ND
Toluene	5		ND	ND	ND	ND	ND
Ethylbenzene	5		ND	ND	ND	ND	ND
Xylenes (total)	5		ND	ND	ND	ND	ND
Total BTEX:			0	0	0	0	0
1,1,1-Trichloroethane	5		ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	5		ND	ND	ND	ND	ND
1,1,2-Trichloroethane	1		NR	NR	NR	ND	NR
1,1-Dichloroethane	5		ND	ND	ND	ND	ND
1,1-Dichloroethene	5		ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3		ND	ND	ND	ND	ND
1,2-Dichloroethane	0.6		NR	NR	NR	ND	NR
1,2-Dichloroethene (total)	5		NR	NR	NR	ND	NR
1,2-Dichloropropane	1		NR	NR	NR	ND	NR
1,3-Dichlorobenzene	3		NR	NR	NR	ND	NR
1,4-Dichlorobenzene	3		NR	NR	NR	ND	NR
2-Butanone	50		ND	ND	ND	ND	ND
2-Hexanone	50		NR	NR	NR	ND	NR
4-Methyl-2-Pentanone			NR	NR	NR	ND	NR
Acetone	50		ND	ND	ND	ND	ND
Bromodichloromethane	50		NR	NR	NR	ND	NR
Bromoform	50		NR	NR	NR	ND	NR
Bromomethane	5		NR	NR	NR	ND	NR
Carbon disulfide	5		NR	NR	NR	ND	NR
Carbon tetrachloride	5		NR	NR	NR	ND	NR
Chlorobenzene	5		ND	ND	ND	ND	ND
Chloroethane	5		NR	NR	NR	ND	NR
Chloroform	7		ND	ND	ND	ND	ND
Chloromethane	5		ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5		ND	ND	ND	ND	12
cis-1,3-Dichloropropene			NR	NR	NR	ND	NR
Dibromochloromethane	50		NR	NR	NR	ND	NR
Methylene chloride	5		ND	ND	ND	ND	ND
Methyl tert-butyl ether	10		NA	NA	NA	NA	NA
Styrene	5		ND	ND	ND	ND	ND

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in μg/L)	NYSDEC AWQSGVs (µg/L)	Sample DesigNRtion: T Sample Date: Sampled By: Screen Interval:	E-MW-D-2(SY-8W 10/20/00 PB/STV/PTG Deep	TE-MW-IB/OB-1 10/20/00 PB/STV/PTG Deep	TE-IB-3 10/20/00 PB/STV/PTG Deep	TE-IB-3 11/14/06 PB/STV/PTG Deep	TE-MW-A-1 10/19/00 PB/STV/PTG Deep
Tetrachloroethene	5		6	ND	5	ND	190
trans-1,2-Dichloroethene	5		NR	NR	NR	ND	NR
trans-1,3-Dichloropropene			NR	NR	NR	ND	NR
Trichloroethene	5		4J	ND	ND	ND	57
Vinyl acetate			ND	ND	ND	ND	ND
Vinyl chloride	2		NR	NR	NR	ND	NR

B - Compound was detected in blank sample

BTEX - Benzene, Toluene, Ethylbenzene and Xylene

D - Dilution

DUP - Duplicate

J - Estimated value

NA - Not analyzed

NR - Not reported

ND - Not detected; reporting limit not available

R(following Sample Designation) - Replicate sample

RE - Reanalysis

U - Not Detected

V - Data was qualified by validator

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV

WT - Monitoring wells with screen zones that bridge the water table

^{(1) -} Geoprobe TM sample collected from 17.5 feet below land surface

⁽²⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

 $^{^{(3)}}$ - $\mbox{Geoprobe}^{\mbox{\scriptsize TM}}$ sample collected from 19.5 feet below land surface

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter	NYSDEC AWQSGVs	Sample DesigNRtion: Sample Date:	TE-MW-A-1 06/17/08	ΓΕ-MW-A-3(SY-135) 10/20/00	ΓΕ-MW-A-3(SY-135W 10/16/03	TE-MW-A-4 08/16/00	ΓΕ-MW-A-4/SY-153W 06/25/08
(Concentrations in µg/L)	(μg/L)	Sampled By:	ESA	PB/STV/PTG	PB/STV/PTG	PB/STV/PTG	ESA
(Concentrations in µg/2)	(µB/L)	Screen Interval:	Deep	Deep	Deep	Deep	Deep
Benzene	1		ND	ND	ND	ND	ND
Toluene	5		1.1 J	ND ND	ND ND	.3J	ND ND
Ethylbenzene	5		NR	ND ND	ND ND	.3J	NR NR
-	5 5		NK 1 J	ND ND	ND ND	.3J 1J	NR ND
Xylenes (total)	3		1 J	ND	ND	1J	ND
Total BTEX:			2.1	0	0	1.6	0
1,1,1-Trichloroethane	5		NR	ND	ND	ND	NR
1,1,2,2-Tetrachloroethane	5		NR	ND	ND	ND	NR
1,1,2-Trichloroethane	1		ND	NR	ND	NR	ND
1,1-Dichloroethane	5		NR	ND	ND	ND	NR
1,1-Dichloroethene	5		ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3		NR	ND	ND	ND	NR
1,2-Dichloroethane	0.6		ND	NR	ND	NR	ND
1,2-Dichloroethene (total)	5		NR	NR	ND	NR	NR
1,2-Dichloropropane	1		NR	NR	ND	NR	NR
1,3-Dichlorobenzene	3		NR	NR	ND	NR	NR
1,4-Dichlorobenzene	3		NR	NR	ND	NR	NR
2-Butanone	50		NR	ND	ND	ND	NR
2-Hexanone	50		NR	NR	ND	NR	NR
4-Methyl-2-Pentanone			NR	NR	ND	NR	NR
Acetone	50		ND	ND	ND	3J	ND
Bromodichloromethane	50		NR	NR	ND	NR	NR
Bromoform	50		NR	NR	ND	NR	NR
Bromomethane	5		NR	NR	ND	NR	NR
Carbon disulfide	5		NR	NR	ND	NR	NR
Carbon tetrachloride	5		NR	NR	ND	NR	NR
Chlorobenzene	5		NR	ND	ND	.4J	NR
Chloroethane	5		NR	NR	ND	NR	NR
Chloroform	7		ND	ND	ND	ND	ND
Chloromethane	5		NR	ND	ND	ND	NR
cis-1,2-Dichloroethene	5		2.8 J	ND	ND	ND	ND
cis-1,3-Dichloropropene			NR	NR	ND	NR	NR
Dibromochloromethane	50		NR	NR	ND	NR	NR
Methylene chloride	5		NR	ND	ND	1J	NR
Methyl tert-butyl ether	10		110	NA	NA	NA	ND
Styrene	5		NR	ND	ND	.4J	NR

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	NYSDEC	Sample DesigNRtion:	TE-MW-A-1	ΓE-MW-A-3(SY-135)	ΓΕ-MW-A-3(SY-135W	TE-MW-A-4	ΓE-MW-A-4/SY-153W
Parameter	AWQSGVs	Sample Date:	06/17/08	10/20/00	10/16/03	08/16/00	06/25/08
(Concentrations in µg/L)	$(\mu g/L)$	Sampled By:	ESA	PB/STV/PTG	PB/STV/PTG	PB/STV/PTG	ESA
		Screen Interval:	Deep	Deep	Deep	Deep	Deep
Tetrachloroethene	5		66	4J	ND	18	ND
trans-1,2-Dichloroethene	5		ND	NR	ND	NR	ND
trans-1,3-Dichloropropene			NR	NR	ND	NR	NR
Trichloroethene	5		18	ND	ND	.5J	ND
Vinyl acetate			NR	ND	ND	ND	NR
Vinyl chloride	2		ND	NR	ND	NR	ND

B - Compound was detected in blank sample

BTEX - Benzene, Toluene, Ethylbenzene and Xylene

D - Dilution

DUP - Duplicate

J - Estimated value

NA - Not analyzed

NR - Not reported

ND - Not detected; reporting limit not available

R(following Sample Designation) - Replicate sample

RE - Reanalysis

U - Not Detected

V - Data was qualified by validator

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV

WT - Monitoring wells with screen zones that bridge the water table

⁽¹⁾ - GeoprobeTM sample collected from 17.5 feet below land surface

⁽²⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

 $^{^{\}rm (3)}$ - Geoprobe $^{\rm TM}$ sample collected from 19.5 feet below land surface

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	NYSDEC	Sample DesigNRtion:				ΓΕ-MW-B/C-4/SY-154V	TE-MW-D-1
Parameter	AWQSGVs	Sample Date:	10/20/00	09/26/06	08/16/00	04/15/08	10/19/00
(Concentrations in $\mu g/L$)	$(\mu g/L)$	Sampled By:	PB/STV/PTG	PB/STV/PTG	PB/STV/PTG	ESA	PB/STV/PTG
		Screen Interval:	Deep	Deep	Deep	Deep	Deep
Benzene	1		ND	ND	ND	ND	ND
Toluene	5		ND	ND	.3J	ND	ND
Ethylbenzene	5		ND	ND	ND	NR	ND
Xylenes (total)	5		ND	ND	1J	ND	ND
Total BTEX:			0	0	1.3	0	0
1,1,1-Trichloroethane	5		ND	ND	ND	NR	ND
1,1,2,2-Tetrachloroethane	5		ND	ND	.4J	NR	ND
1,1,2-Trichloroethane	1		NR	ND	NR	ND	NR
1,1-Dichloroethane	5		ND	ND	ND	NR	ND
1,1-Dichloroethene	5		ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3		ND	ND	ND	NR	ND
1,2-Dichloroethane	0.6		NR	ND	NR	ND	NR
1,2-Dichloroethene (total)	5		NR	ND	NR	NR	NR
1,2-Dichloropropane	1		NR	ND	NR	NR	NR
1,3-Dichlorobenzene	3		NR	ND	NR	NR	NR
1,4-Dichlorobenzene	3		NR	ND	NR	NR	NR
2-Butanone	50		ND	ND	ND	NR	ND
2-Hexanone	50		NR	ND	NR	NR	NR
4-Methyl-2-Pentanone			NR	ND	NR	NR	NR
Acetone	50		ND	ND	ND	ND	ND
Bromodichloromethane	50		NR	ND	NR	NR	NR
Bromoform	50		NR	ND	NR	NR	NR
Bromomethane	5		NR	ND	NR	NR	NR
Carbon disulfide	5		NR	ND	NR	NR	NR
Carbon tetrachloride	5		NR	ND	NR	NR	NR
Chlorobenzene	5		ND	ND	ND	NR	ND
Chloroethane	5		NR	ND	NR	NR	NR
Chloroform	7		ND	ND	ND	ND	ND
Chloromethane	5		ND	ND	ND	NR	ND
cis-1,2-Dichloroethene	5		17	ND	.6J	ND	2J
cis-1,3-Dichloropropene			NR	ND	NR	NR	NR
Dibromochloromethane	50		NR	ND	NR	NR	NR
Methylene chloride	5		ND	ND	1J	NR	ND
Methyl tert-butyl ether	10		NA	NA	NA	ND	NA
Styrene	5		ND	ND	.5J	NR	ND

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (μg/L)	Sample DesigNRtion: Sample Date: Sampled By:	TE-MW-B/C-2 10/20/00 PB/STV/PTG	TE-MW-B/C-2 09/26/06 PB/STV/PTG	TE-MW-B/C-4 08/16/00 PB/STV/PTG	ΓΕ-MW-B/C-4/SY-154W 04/15/08 ESA	TE-MW-D-1 10/19/00 PB/STV/PTG
		Screen Interval:	Deep	Deep	Deep	Deep	Deep
Tetrachloroethene	5		10	ND	49	ND	18
trans-1,2-Dichloroethene	5		NR	ND	NR	ND	NR
trans-1,3-Dichloropropene			NR	ND	NR	NR	NR
Trichloroethene	5		3J	ND	2J	ND	27
Vinyl acetate			ND	ND	ND	NR	ND
Vinyl chloride	2		NR	ND	NR	ND	NR

B - Compound was detected in blank sample

BTEX - Benzene, Toluene, Ethylbenzene and Xylene

D - Dilution

DUP - Duplicate

J - Estimated value

NA - Not analyzed

NR - Not reported

ND - Not detected; reporting limit not available

R(following Sample Designation) - Replicate sample

RE - Reanalysis

U - Not Detected

V - Data was qualified by validator

µg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV

WT - Monitoring wells with screen zones that bridge the water table

^{(1) -} Geoprobe TM sample collected from 17.5 feet below land surface

⁽²⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

^{(3) -} Geoprobe TM sample collected from 19.5 feet below land surface

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	NYSDEC	Sample DesigNRtion:	TE-MW-D-1	TE-MW-D-4	ΓE-MW-IB-1(SY-103)	TE-MW-IB-2	TE-MW-IB-2
Parameter	AWQSGVs	Sample Date:	06/18/08	08/16/00	10/19/00	10/19/00	06/16/08
(Concentrations in $\mu g/L$)	$(\mu g/L)$	Sampled By:	ESA	PB/STV/PTG	PB/STV/PTG	PB/STV/PTG	ESA
		Screen Interval:	Deep	Deep	Deep	Deep	Deep
Benzene	1		ND	ND	ND	ND	ND
Toluene	5		ND	ND	ND	ND	ND
Ethylbenzene	5		NR	ND	ND	ND	NR
Xylenes (total)	5		ND	NR	ND	ND	ND
Total BTEX:			0	0	0	0	0
1,1,1-Trichloroethane	5		NR	ND	ND	ND	NR
1,1,2,2-Tetrachloroethane	5		NR	ND	ND	ND	NR
1,1,2-Trichloroethane	1		ND	NR	NR	NR	ND
1,1-Dichloroethane	5		NR	ND	ND	ND	NR
1,1-Dichloroethene	5		ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3		NR	ND	ND	ND	NR
1,2-Dichloroethane	0.6		ND	NR	NR	NR	ND
1,2-Dichloroethene (total)	5		NR	NR	NR	NR	NR
1,2-Dichloropropane	1		NR	NR	NR	NR	NR
1,3-Dichlorobenzene	3		NR	NR	NR	NR	NR
1,4-Dichlorobenzene	3		NR	NR	NR	NR	NR
2-Butanone	50		NR	ND	ND	2JB	NR
2-Hexanone	50		NR	NR	NR	NR	NR
4-Methyl-2-Pentanone			NR	NR	NR	NR	NR
Acetone	50		ND	ND	ND	3J	ND
Bromodichloromethane	50		NR	NR	NR	NR	NR
Bromoform	50		NR	NR	NR	NR	NR
Bromomethane	5		NR	NR	NR	NR	NR
Carbon disulfide	5		NR	NR	NR	NR	NR
Carbon tetrachloride	5		NR	NR	NR	NR	NR
Chlorobenzene	5		NR	ND	ND	ND	NR
Chloroethane	5		NR	NR	NR	NR	NR
Chloroform	7		ND	3J	ND	ND	ND
Chloromethane	5		NR	ND	ND	ND	NR
cis-1,2-Dichloroethene	5		ND	ND	4J	ND	ND
cis-1,3-Dichloropropene			NR	NR	NR	NR	NR
Dibromochloromethane	50		NR	NR	NR	NR	NR
Methylene chloride	5		NR	1J	ND	1JB	NR
Methyl tert-butyl ether	10		ND	NA	NA	NA	660 D
Styrene	5		NR	ND	ND	ND	NR

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter	NYSDEC AWQSGVs	Sample DesigNRtion: Sample Date:	TE-MW-D-1 06/18/08	TE-MW-D-4 08/16/00	TE-MW-IB-1(SY-103) 10/19/00	TE-MW-IB-2 10/19/00	TE-MW-IB-2 06/16/08
(Concentrations in µg/L)	$(\mu g/L)$	Sampled By:	ESA	PB/STV/PTG	PB/STV/PTG	PB/STV/PTG	ESA
		Screen Interval:	Deep	Deep	Deep	Deep	Deep
Tetrachloroethene	5		12	2J	52	2J	ND
trans-1,2-Dichloroethene	5		ND	NR	NR	NR	ND
trans-1,3-Dichloropropene			NR	NR	NR	NR	NR
Trichloroethene	5		3.4 J	ND	54	ND	ND
Vinyl acetate			NR	ND	ND	ND	NR
Vinyl chloride	2		ND	NR	NR	NR	ND

B - Compound was detected in blank sample

BTEX - Benzene, Toluene, Ethylbenzene and Xylene

D - Dilution

DUP - Duplicate

J - Estimated value

NA - Not analyzed

NR - Not reported

ND - Not detected; reporting limit not available

R(following Sample Designation) - Replicate sample

RE - Reanalysis

U - Not Detected

V - Data was qualified by validator

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV

WT - Monitoring wells with screen zones that bridge the water table

⁽¹⁾ - GeoprobeTM sample collected from 17.5 feet below land surface

⁽²⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

^{(3) -} Geoprobe TM sample collected from 19.5 feet below land surface

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (µg/L)	Sample DesigNRtion: Sample Date: Sampled By: Screen Interval:	TE-MW-OB-1 10/19/00 PB/STV/PTG	TE-MW-OB-1 06/18/08 ESA	TE-MW-OB-1 06/04/08 Roux	TE-MW-OB-2 10/20/00 PB/STV/PTG	TE-MW-QA-2 10/31/00 PB/STV/PTG
		Screen Interval:	Deep	Deep	Deep	Deep	Deep
Benzene	1		ND	ND	0.5 U	ND	1J
Toluene	5		ND	ND	1 U	ND	.5J
Ethylbenzene	5		ND	NR	1 U	ND	ND
Xylenes (total)	5		ND	ND	2 U	ND	ND
Total BTEX:			0	0	0	0	1.5
1,1,1-Trichloroethane	5		ND	NR	1 U	ND	ND
1,1,2,2-Tetrachloroethane	5		ND	NR	1 U	ND	ND
1,1,2-Trichloroethane	1		NR	ND	1 U	NR	NR
1,1-Dichloroethane	5		ND	NR	1 U	ND	ND
1,1-Dichloroethene	5		ND	ND	1 U	ND	ND
1,2-Dichlorobenzene	3		ND	NR	1 U	ND	3J
1,2-Dichloroethane	0.6		NR	ND	0.5 U	NR	NR
1,2-Dichloroethene (total)	5		NR	NR	NR	NR	NR
1,2-Dichloropropane	1		NR	NR	1 U	NR	NR
1,3-Dichlorobenzene	3		NR	NR	1 U	NR	NR
1,4-Dichlorobenzene	3		NR	NR	1 U	NR	NR
2-Butanone	50		ND	NR	1 U	ND	7J
2-Hexanone	50		NR	NR	1 U	NR	NR
4-Methyl-2-Pentanone			NR	NR	1 U	NR	NR
Acetone	50		ND	ND	5 U	ND	9JB
Bromodichloromethane	50		NR	NR	1 U	NR	NR
Bromoform	50		NR	NR	1 U	NR	NR
Bromomethane	5		NR	NR	1 U	NR	NR
Carbon disulfide	5		NR	NR	1 U	NR	NR
Carbon tetrachloride	5		NR	NR	1 U	NR	NR
Chlorobenzene	5		ND	NR	1 U	ND	ND
Chloroethane	5		NR	NR	1 U	NR	NR
Chloroform	7		ND	ND	1 U	ND	4J
Chloromethane	5		ND	NR	1 U	ND	3J
cis-1,2-Dichloroethene	5		3J	ND	1 U	2J	8
cis-1,3-Dichloropropene			NR	NR	1 U	NR	NR
Dibromochloromethane	50		NR	NR	1 U	NR	NR
Methylene chloride	5		ND	NR	1 U	ND	2JB
Methyl tert-butyl ether	10		NA	310 D	NA	NA	NA
Styrene Styrene	5		ND	NR	1 U	ND	ND

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (µg/L)	Sample DesigNRtion: Sample Date: Sampled By: Screen Interval:	TE-MW-OB-1 10/19/00 PB/STV/PTG Deep	TE-MW-OB-1 06/18/08 ESA Deep	TE-MW-OB-1 06/04/08 Roux Deep	TE-MW-OB-2 10/20/00 PB/STV/PTG Deep	TE-MW-QA-2 10/31/00 PB/STV/PTG Deep
Tetrachloroethene	5		76	18	17	31	22
trans-1,2-Dichloroethene	5		NR	ND	1 U	NR	NR
trans-1,3-Dichloropropene			NR	NR	1 U	NR	NR
Trichloroethene	5		16	5 J	4.3	9	10
Vinyl acetate			ND	NR	1 U	ND	.7J
Vinyl chloride	2		NR	ND	1 U	NR	NR

B - Compound was detected in blank sample

BTEX - Benzene, Toluene, Ethylbenzene and Xylene

D - Dilution

DUP - Duplicate

J - Estimated value

NA - Not analyzed

NR - Not reported

ND - Not detected; reporting limit not available

R(following Sample Designation) - Replicate sample

RE - Reanalysis

U - Not Detected

V - Data was qualified by validator

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV

WT - Monitoring wells with screen zones that bridge the water table

^{(1) -} Geoprobe TM sample collected from 17.5 feet below land surface

⁽²⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

^{(3) -} Geoprobe TM sample collected from 19.5 feet below land surface

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in μg/L)	NYSDEC AWQSGVs (μg/L)	Sample DesigNRtion: Sample Date: Sampled By: Screen Interval:	TE-MW-QA-2 04/08/08 ESA Deep	TE-MW-QA-2 06/05/08 Roux Deep	TP-10 06/19/97 Roux WT	TP-10 06/03/08 Roux WT	TP-8 06/19/97 Roux WT
Benzene	1		ND	0.5 U	5 U	0.5 U	5 U
Toluene	5		ND	4.7	0.6 JB	1 U	1 JB
Ethylbenzene	5		NR	1.1	5 U	1 U	5 U
Xylenes (total)	5		ND	5.5	5 U	2 U	5 U
Total BTEX:			0	11.3	0.6	0	1
1,1,1-Trichloroethane	5		NR	1 U	5 U	1 U	5 U
1,1,2,2-Tetrachloroethane	5		NR	1 U	5 U	1 U	5 U
1,1,2-Trichloroethane	1		ND	1 U	5 U	1 U	5 U
1,1-Dichloroethane	5		NR	1 U	5 U	1 U	5 U
1,1-Dichloroethene	5		ND	1 U	5 U	1 U	5 U
1,2-Dichlorobenzene	3		NR	1 U	5 U	1 U	5 U
1,2-Dichloroethane	0.6		ND	3.7	10 U	0.5 U	10 U
1,2-Dichloroethene (total)	5		NR	NR	5 U	NR	5 U
1,2-Dichloropropane	1		NR	1 U	5 U	1 U	5 U
1,3-Dichlorobenzene	3		NR	1 U	10 U	1 U	10 U
1,4-Dichlorobenzene	3		NR	1 U	10 U	1 U	10 U
2-Butanone	50		NR	1 U	10 U	1 U	10 U
2-Hexanone	50		NR	1 U	10 U	1 U	10 U
4-Methyl-2-Pentanone			NR	1 U	10 U	1 U	10 U
Acetone	50		ND	5 U	10 U	5 U	10 U
Bromodichloromethane	50		NR	1 U	5 U	1 U	5 U
Bromoform	50		NR	1 U	5 U	1 U	5 U
Bromomethane	5		NR	1 U	10 U	1 U	10 U
Carbon disulfide	5		NR	1 U	5 UJV	1 U	5 UJV
Carbon tetrachloride	5		NR	1 U	5 U	1 U	5 U
Chlorobenzene	5		NR	1 U	5 U	1 U	5 U
Chloroethane	5		NR	1 U	10 UJV	1 U	10 UJV
Chloroform	7		ND	1 U	5 U	1 U	5 U
Chloromethane	5		NR	1 U	10 U	1 U	10 U
cis-1,2-Dichloroethene	5		ND	1.6	NR	1 U	NR
cis-1,3-Dichloropropene			NR	1 U	5 U	1 U	5 U
Dibromochloromethane	50		NR	1 U	5 U	1 U	5 U
Methylene chloride	5		NR	1 U	5 U	1 U	5 U
Methyl tert-butyl ether	10		110	NA	NA	NA	NA
Styrene	5		NR	1 U	5 U	1 U	5 U

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in μg/L)	NYSDEC AWQSGVs (µg/L)	Sample DesigNRtion: Sample Date: Sampled By: Screen Interval:	TE-MW-QA-2 04/08/08 ESA Deep	TE-MW-QA-2 06/05/08 Roux Deep	TP-10 06/19/97 Roux WT	TP-10 06/03/08 Roux WT	TP-8 06/19/97 Roux WT
Tetrachloroethene	5		27	85	5 U	1 U	5 U
trans-1,2-Dichloroethene	5		ND	1 U	NR	1 U	NR
trans-1,3-Dichloropropene			NR	1 U	5 U	1 U	5 U
Trichloroethene	5		4.4	28	5 U	1 U	5 U
Vinyl acetate			NR	1 U	10 U	1 U	10 U
Vinyl chloride	2		ND	1 U	10 U	1 U	10 U

B - Compound was detected in blank sample

BTEX - Benzene, Toluene, Ethylbenzene and Xylene

D - Dilution

DUP - Duplicate

J - Estimated value

NA - Not analyzed

NR - Not reported

ND - Not detected; reporting limit not available

R(following Sample Designation) - Replicate sample

RE - Reanalysis

U - Not Detected

V - Data was qualified by validator

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV

WT - Monitoring wells with screen zones that bridge the water table

⁽¹⁾ - GeoprobeTM sample collected from 17.5 feet below land surface

⁽²⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

 $^{^{\}rm (3)}$ - Geoprobe $^{\rm TM}$ sample collected from 19.5 feet below land surface

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in μg/L)	NYSDEC AWQSGVs (µg/L)	Sample DesigNRtion: Sample Date: Sampled By: Screen Interval:	TP-9 06/19/97 Roux WT	TSB-10 ⁽²⁾ 10/23/00 Roux	TSB-16 ⁽³⁾ 10/24/00 Roux	TSB-9 ⁽¹⁾ 10/24/00 Roux	UT-11AW 06/25/08 ESA Deep
Benzene	1	Screen meet var.	5 U	10 U	10 U	10 U	ND
Toluene	5		0.8 JB	10 U	10 U	10 U	ND
Ethylbenzene	5		5 U	10 U	10 U	5.4 J	NR
Xylenes (total)	5		1 J	10 U	10 U	14.6 J	ND
Total BTEX:			1.8	0	0	20	0
1,1,1-Trichloroethane	5		5 U	10 U	10 U	10 U	NR
1,1,2,2-Tetrachloroethane	5		5 U	10 U	10 U	10 U	NR
1,1,2-Trichloroethane	1		5 U	10 U	10 U	10 U	ND
1,1-Dichloroethane	5		5 U	10 U	10 U	10 U	NR
1,1-Dichloroethene	5		5 U	10 U	10 U	10 U	ND
1,2-Dichlorobenzene	3		5 U	10 U	10 U	10 U	NR
1,2-Dichloroethane	0.6		10 U	10 U	10 U	10 U	ND
1,2-Dichloroethene (total)	5		5 U	NR	NR	NR	NR
1,2-Dichloropropane	1		5 U	10 U	10 U	10 U	NR
1,3-Dichlorobenzene	3		10 U	10 U	10 U	10 U	NR
1,4-Dichlorobenzene	3		10 U	10 U	10 U	10 U	NR
2-Butanone	50		10 U	10 U	10 U	10 U	NR
2-Hexanone	50		10 U	4.8 J	10 U	10 U	NR
4-Methyl-2-Pentanone			10 U	10 U	10 U	10 U	NR
Acetone	50		10 U	14	10 U	10 U	ND
Bromodichloromethane	50		5 U	10 U	10 U	10 U	NR
Bromoform	50		5 U	10 U	10 U	10 U	NR
Bromomethane	5		10 U	10 U	10 U	10 U	NR
Carbon disulfide	5		5 UJV	10 U	10 U	10 U	NR
Carbon tetrachloride	5		5 U	10 U	10 U	10 U	NR
Chlorobenzene	5		5 U	10 U	10 U	10 U	NR
Chloroethane	5		10 UJV	10 U	10 U	10 U	NR
Chloroform	7		5 U	10 U	10 U	10 U	ND
Chloromethane	5		10 U	10 U	10 U	10 U	NR
cis-1,2-Dichloroethene	5		NR	NR	NR	NR	ND
cis-1,3-Dichloropropene			5 U	10 U	10 U	10 U	NR
Dibromochloromethane	50		5 U	10 U	10 U	10 U	NR
Methylene chloride	5		5 U	10 U	10 U	10 U	NR
Methyl tert-butyl ether	10		NA	NA	NA	NA	ND
Styrene	5		5 U	10 U	10 U	10 U	NR

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in μg/L)	NYSDEC AWQSGVs (µg/L)	Sample DesigNRtion: Sample Date: Sampled By: Screen Interval:	TP-9 06/19/97 Roux WT	TSB-10 ⁽²⁾ 10/23/00 Roux	TSB-16 ⁽³⁾ 10/24/00 Roux	TSB-9 ⁽¹⁾ 10/24/00 Roux	UT-11AW 06/25/08 ESA Deep
Tetrachloroethene	5		5 U	10 U	10 U	10 U	ND
trans-1,2-Dichloroethene	5		NR	NR	NR	NR	ND
trans-1,3-Dichloropropene			5 U	10 U	10 U	10 U	NR
Trichloroethene	5		5 U	10 U	10 U	10 U	ND
Vinyl acetate			10 U	10 U	10 U	10 U	NR
Vinyl chloride	2		10 U	10 U	10 U	10 U	ND

B - Compound was detected in blank sample

BTEX - Benzene, Toluene, Ethylbenzene and Xylene

D - Dilution

DUP - Duplicate

J - Estimated value

NA - Not analyzed

NR - Not reported

ND - Not detected; reporting limit not available

R(following Sample Designation) - Replicate sample

RE - Reanalysis

U - Not Detected

V - Data was qualified by validator

µg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV

WT - Monitoring wells with screen zones that bridge the water table

⁽¹⁾ - GeoprobeTM sample collected from 17.5 feet below land surface

⁽²⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

^{(3) -} GeoprobeTM sample collected from 19.5 feet below land surface

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	NYSDEC	Sample DesigNRtion:	UT-1W	UT-4W	UT-5W	UT-9AW	UT-9AWRE
Parameter	AWQSGVs	Sample Date:	04/01/08	04/01/08	04/22/08	04/08/08	04/08/08
(Concentrations in µg/L)	$(\mu g/L)$	Sampled By:	ESA	ESA	ESA	ESA	ESA
		Screen Interval:	Deep	Deep	Deep	Deep	Deep
Benzene	1		ND	8.9	ND	ND	ND
Toluene	5		ND	ND	ND	ND	ND
Ethylbenzene	5		NR	NR	NR	NR	NR
Xylenes (total)	5		ND	ND	ND	ND	ND
Total BTEX:			0	8.9	0	0	0
1,1,1-Trichloroethane	5		NR	NR	NR	NR	NR
1,1,2,2-Tetrachloroethane	5		NR	NR	NR	NR	NR
1,1,2-Trichloroethane	1		ND	ND	ND	ND	ND
1,1-Dichloroethane	5		NR	NR	NR	NR	NR
1,1-Dichloroethene	5		ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3		NR	NR	NR	NR	NR
1,2-Dichloroethane	0.6		ND	ND	ND	ND	ND
1,2-Dichloroethene (total)	5		NR	NR	NR	NR	NR
1,2-Dichloropropane	1		NR	NR	NR	NR	NR
1,3-Dichlorobenzene	3		NR	NR	NR	NR	NR
1,4-Dichlorobenzene	3		NR	NR	NR	NR	NR
2-Butanone	50		NR	NR	NR	NR	NR
2-Hexanone	50		NR	NR	NR	NR	NR
4-Methyl-2-Pentanone			NR	NR	NR	NR	NR
Acetone	50		ND	ND	ND	ND	ND
Bromodichloromethane	50		NR	NR	NR	NR	NR
Bromoform	50		NR	NR	NR	NR	NR
Bromomethane	5		NR	NR	NR	NR	NR
Carbon disulfide	5		NR	NR	NR	NR	NR
Carbon tetrachloride	5		NR	NR	NR	NR	NR
Chlorobenzene	5		NR	NR	NR	NR	NR
Chloroethane	5		NR	NR	NR	NR	NR
Chloroform	7		ND	ND	ND	ND	ND
Chloromethane	5		NR	NR	NR	NR	NR
cis-1,2-Dichloroethene	5		ND	ND	ND	5.4	5.4
cis-1,3-Dichloropropene			NR	NR	NR	NR	NR
Dibromochloromethane	50		NR	NR	NR	NR	NR
Methylene chloride	5		NR	NR	NR	NR	NR
Methyl tert-butyl ether	10		ND	3.1 J	ND	130	130
Styrene	5		NR	NR	NR	NR	NR

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (µg/L)	Sample DesigNRtion: Sample Date: Sampled By:	UT-1W 04/01/08 ESA	UT-4W 04/01/08 ESA	UT-5W 04/22/08 ESA	UT-9AW 04/08/08 ESA	UT-9AWRE 04/08/08 ESA
		Screen Interval:	Deep	Deep	Deep	Deep	Deep
Tetrachloroethene	5		ND	ND	ND	21	96
trans-1,2-Dichloroethene	5		ND	ND	ND	ND	ND
trans-1,3-Dichloropropene			NR	NR	NR	NR	NR
Trichloroethene	5		ND	ND	14	9	22
Vinyl acetate			NR	NR	NR	NR	NR
Vinyl chloride	2		ND	ND	ND	ND	ND

B - Compound was detected in blank sample

BTEX - Benzene, Toluene, Ethylbenzene and Xylene

D - Dilution

DUP - Duplicate

J - Estimated value

NA - Not analyzed

NR - Not reported

ND - Not detected; reporting limit not available

R(following Sample Designation) - Replicate sample

RE - Reanalysis

U - Not Detected

V - Data was qualified by validator

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV

WT - Monitoring wells with screen zones that bridge the water table

⁽¹⁾ - GeoprobeTM sample collected from 17.5 feet below land surface

⁽²⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

 $^{^{(3)}}$ - $\mbox{Geoprobe}^{\mbox{\scriptsize TM}}$ sample collected from 19.5 feet below land surface

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	NYSDEC	Sample DesigNRtion:	UT-9AW
Parameter	AWQSGVs	Sample Date:	06/04/08
(Concentrations in µg/L)	$(\mu g/L)$	Sampled By:	Roux
		Screen Interval:	Deep
Benzene	1		0.5 U
Toluene	5		1.4
Ethylbenzene	5		1 U
Xylenes (total)	5		2.4
Total BTEX:			3.8
1,1,1-Trichloroethane	5		1 U
1,1,2,2-Tetrachloroethane	5		1 U
1,1,2-Trichloroethane	1		1 U
1,1-Dichloroethane	5		1 U
1,1-Dichloroethene	5		1 U
1,2-Dichlorobenzene	3		1 U
1,2-Dichloroethane	0.6		0.5 U
1,2-Dichloroethene (total)	5		NR
1,2-Dichloropropane	1		1 U
1,3-Dichlorobenzene	3		1 U
1,4-Dichlorobenzene	3		1 U
2-Butanone	50		1 U
2-Hexanone	50		1 U
4-Methyl-2-Pentanone			1 U
Acetone	50		5 U
Bromodichloromethane	50		1 U
Bromoform	50		1 U
Bromomethane	5		1 U
Carbon disulfide	5		1 U
Carbon tetrachloride	5		1 U
Chlorobenzene	5		1 U
Chloroethane	5		1 U
Chloroform	7		1 U
Chloromethane	5		1 U
cis-1,2-Dichloroethene	5		1 U
cis-1,3-Dichloropropene			1 U
Dibromochloromethane	50		1 U
Methylene chloride	5		1 U
Methyl tert-butyl ether	10		NA
Styrene	5		1 U

Table 5. Summary of Volatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in μg/L)	NYSDEC AWQSGVs (µg/L)	Sample DesigNRtion: Sample Date: Sampled By: Screen Interval:	UT-9AW 06/04/08 Roux Deep
Tetrachloroethene	5		39
trans-1,2-Dichloroethene	5		1 U
trans-1,3-Dichloropropene			1 U
Trichloroethene	5		7
Vinyl acetate			1 U
Vinyl chloride	2		1 U

B - Compound was detected in blank sample

BTEX - Benzene, Toluene, Ethylbenzene and Xylene

D - Dilution

DUP - Duplicate

J - Estimated value

NA - Not analyzed

NR - Not reported

ND - Not detected; reporting limit not available

R(following Sample Designation) - Replicate sample

RE - Reanalysis

U - Not Detected

V - Data was qualified by validator

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV

- (1) GeoprobeTM sample collected from 17.5 feet below land surface
- ⁽²⁾ GeoprobeTM sample collected from 13.5 feet below land surface
- (3) GeoprobeTM sample collected from 19.5 feet below land surface

WT - Monitoring wells with screen zones that bridge the water table

Table 6. Summary of Semivolatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (µg/L)	Sample Designation: Sample Date:	CV-2W 11/16/06			MW-13D 06/03/08	MW-13D DUF 06/03/08	P MW-13S 06/02/08	MW-19 02/06/97	MW-19 02/21/97	MW-19 03/27/97	MW-19 06/18/97	MW-19 11/14/97	MW-19 04/09/98
(Concentrations in µg/2)	(#8/2)													
1,2,4-Trichlorobenzene	5		NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 U	10 U	5 U
2,2-oxybis (1-chloropropane)	5		NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 U	10 U	5 U
2,4,5-Trichlorophenol			NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	NA	50 U	NA	50 U	NA	NA
2,4,6-Trichlorophenol			NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	NA	10 U	NA	10 U	NA	NA
2,4-Dichlorophenol	5		NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	NA	10 U	NA	10 U	NA	NA
2,4-Dimethylphenol	50		NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	NA	10 U	NA	10 U	NA	NA
2,4-Dinitrophenol	10		NA	11 U	11 U	11 U	11 U	11 U	NA	50 U	NA	50 U	NA	NA
2,4-Dinitrotoluene	5		NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 U	10 U	5 U
2,6-Dinitrotoluene	5		NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 U	10 U	5 U
2-Chloronaphthalene	10		NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 U	10 U	5 U
2-Chlorophenol			NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	NA	10 U	NA	10 U	NA	NA
2-Methylnaphthalene			NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 U	10 U	NA
2-Methylphenol			NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	NA	10 U	NA	10 U	NA	NA
2-Nitroaniline	5		NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	50 U	50 U	59 U	50 U	50 U	NA
2-Nitrophenol			NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	NA	10 U	NA	10 U	NA	NA
3,3-Dichlorobenzidine	5		NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	20 U	20 U	24 U	20 U	20 U	5 U
3-Nitroaniline	5		NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	50 U	50 U	59 U	50 U	50 U	NA
4,6-Dinitro-2-methylphenol			NA	11 U	11 U	11 U	11 U	11 U	NA	50 U	NA	50 U	NA	NA
4-Bromophenyl phenyl ether			NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 U	10 U	5 U
4-Chloro-3-methylphenol			NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	NA	10 U	NA	10 U	NA	NA
4-Chloroaniline	5		NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 U	10 U	NA
4-Chlorophenyl phenyl ether			NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 U	10 U	5 U
4-Methylphenol			NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	NA	0.4 J	NA	0.6 J	NA	NA
4-Nitroaniline	5		NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	20 U	20 U	24 U	20 U	20 U	NA
4-Nitrophenol			NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	NA	50 U	NA	50 U	NA	NA
Acenaphthene	20		NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	0.2 J	0.7 J	2 J	10 U	5 U
Acenaphthylene			NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 U	10 U	5 U
Anthracene	50		ND	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	0.4 J	10 U	10 U	5 U
Benzo(a)anthracene	0.002		ND	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 U	10 U	5 U
Benzo(a)pyrene	ND		ND	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 U	10 U	5 U
Benzo(b)fluoranthene	0.002		ND	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 U	10 U	5 U
Benzo(g,h,i)perylene			NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 U	10 U	5 U
Benzo(k)fluoranthene	0.002		NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 U	10 U	5 U
Benzoic acid			NA	11 U	11 U	11 U	11 U	11 U	NA	50 U	NA	50 URV	NA	NA
Benzyl alcohol			NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 U	10 U	NA
Bis(2-chloroethoxy)methane	5		NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 U	10 U	5 U
Bis(2-chloroethyl)ether	1		NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 U	10 U	5 U
Bis(2-ethylhexyl)phthalate	5		NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	0.4 JB	12 U	10 U	10 U	5 U
Butylbenzylphthalate	50		NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 U	10 U	5 U
Carbazole			NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	NA	10 U	NA	10 U	NA	NA
Chrysene	0.002		ND	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 U	10 U	5 U

Table 6. Summary of Semivolatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (µg/L)	Sample Designation: Sample Date:	CV-2W 11/16/06	MW-9D 06/03/08			MW-13D DUP 06/03/08	MW-13S 06/02/08	MW-19 02/06/97	MW-19 02/21/97	MW-19 03/27/97	MW-19 06/18/97	MW-19 11/14/97	MW-19 04/09/98
Di-n-butyl phthalate			NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 UV	10 U	5 U
Di-n-octyl phthalate			NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 U	10 U	5 U
Dibenzo(a h)anthracene	50		NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 U	10 U	5 U
Dibenzofuran	50		NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	1 J	10 U	NA
Diethyl phthalate	50		ND	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	0.3 JB	12 U	10 U	0.6 J	5 U
Dimethyl phthalate	50		NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 U	10 U	5 U
Fluoranthene	50		ND	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 U	10 U	5 U
Fluorene	50		NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	0.4 J	2 J	10 U	10 U	5 U
Hexachlorobenzene	0.04		NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 U	10 U	5 U
Hexachlorobutadiene	0.5		NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 U	10 U	5 U
Hexachlorocyclopentadiene	5		NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 UJV	10 U	5 U
Hexachloroethane	5		NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 U	10 U	5 U
Indeno(1,2,3-cd)pyrene	0.002		NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 U	10 U	5 U
Isophorone	50		NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 U	10 U	5 U
n-Nitroso-di-n-propylamine			NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	NA	NA	5 U
n-Nitrosodiphenylamine	50		NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 U	10 U	NA
Naphthalene	10		NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 U	10 U	5 U
Nitrobenzene	0.4		NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 U	10 U	5 U
Pentachlorophenol	1		NA	11 U	11 U	11 U	11 U	11 U	NA	50 U	NA	50 U	NA	NA
Phenanthrene	50		NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	0.5 J	0.6 J	10 U	5 U
Phenol	1		NA	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	NA	10 U	NA	10 U	NA	NA
Pyrene	50		ND	2.1 U	2.2 U	2.2 U	2.2 U	2.2 U	10 U	10 U	12 U	10 U	10 U	5 U
Total SVOCs:			0	0	0	0	0	0	0	1.7	3.6	4.2	0.6	0

J - Estimated value

B - Compound was detected in blank sample

D - Dilution

U - Not Detected

V - Data was qualified by validator

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV

ND - Not detected; reporting limit not available

DUP - Duplicate

SVOCs - Semivolatile Organic Compounds

R - Rejected

NA - Not analyzed

* - Data analyzed but detection limit unknown

(1) - Sampled and analyzed by New York City Transit

(2) - Geoprobe TM sample collected from 17.5 feet below land surface

(3) - GeoprobeTM sample collected from 13.5 feet below land surface

Table 6. Summary of Semivolatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	NYSDEC	Sample Designation:		MW-19	MW-19	MW-19	MW-19	MW-19	MW-19 ⁽¹⁾				
Parameter	AWQSGVs	Sample Date:	04/15/03	04/22/03	04/30/03	05/14/03	08/25/03	06/02/08	09/18/97	08/13/98	02/25/99	06/03/99	09/09/99
(Concentrations in µg/L)	(µg/L)												
1,2,4-Trichlorobenzene	5		1 U	1 U	1 U	0.4 U	0.4 U	1.1 U	*	*	*	*	*
2,2-oxybis (1-chloropropane)	5		1 U	1 U	1 U	0.6 U	0.6 U	1.1 U	*	*	*	*	*
2,4,5-Trichlorophenol			NA	NA	NA	NA	NA	1.1 U	*	*	*	*	*
2,4,6-Trichlorophenol			NA	NA	NA	NA	NA	1.1 U	*	*	*	*	*
2,4-Dichlorophenol	5		NA	NA	NA	NA	NA	1.1 U	*	*	*	*	*
2,4-Dimethylphenol	50		NA	NA	NA	NA	NA	1.1 U	*	*	*	*	*
2,4-Dinitrophenol	10		NA	NA	NA	NA	NA	5.7 U	*	*	*	*	*
2,4-Dinitrotoluene	5		1 U	1 U	1 U	0.6 U	0.6 U	1.1 U	*	*	*	*	*
2,6-Dinitrotoluene	5		1 U	1 U	1 U	0.4 U	0.4 U	1.1 U	*	*	*	*	*
2-Chloronaphthalene	10		1 U	1 U	1 U	0.5 U	0.5 U	1.1 U	*	*	*	*	*
2-Chlorophenol			NA	NA	NA	NA	NA	1.1 U	*	*	*	*	*
2-Methylnaphthalene			1 U	1 U	1 U	0.7 U	0.7 U	1.1 U	2 J	ND	ND	ND	ND
2-Methylphenol			NA	NA	NA	NA	NA	1.1 U	*	*	*	*	*
2-Nitroaniline	5		1 U	1 U	1 U	0.6 U	0.6 U	1.1 U	*	*	*	*	*
2-Nitrophenol			NA	NA	NA	NA	NA	1.1 U	*	*	*	*	*
3,3-Dichlorobenzidine	5		10 U	10 U	10 U	0.3 U	0.3 U	1.1 U	*	*	*	*	*
3-Nitroaniline	5		1 U	1 U	1 U	0.8 U	0.8 U	1.1 U	*	*	*	*	*
4,6-Dinitro-2-methylphenol			NA	NA	NA	NA	NA	5.7 U	*	*	*	*	*
4-Bromophenyl phenyl ether			1 U	1 U	1 U	0.5 U	0.5 U	1.1 U	*	*	*	*	*
4-Chloro-3-methylphenol			NA	NA	NA	NA	NA	1.1 U	*	*	*	*	*
4-Chloroaniline	5		1 U	1 U	1 U	NA	0.3 U	1.1 U	*	*	*	*	*
4-Chlorophenyl phenyl ether			1 U	1 U	1 U	0.5 U	0.5 U	1.1 U	*	*	*	*	*
4-Methylphenol			NA	NA	NA	NA	NA	1.1 U	*	*	*	*	*
4-Nitroaniline	5		1 U	1 U	1 U	0.7 U	0.7 U	1.1 U	*	*	*	*	*
4-Nitrophenol			NA	NA	NA	NA	NA	1.1 U	*	*	*	*	*
Acenaphthene	20		1 U	1 U	1 U	0.6 U	0.6 U	1.1 U	ND	ND	ND	ND	ND
Acenaphthylene			1 U	1 U	1 U	0.5 U	0.5 U	1.1 U	*	*	*	*	*
Anthracene	50		1 U	1 U	1 U	0.6 U	0.6 U	1.1 U	ND	ND	*	*	*
Benzo(a)anthracene	0.002		1 U	1 U	1 U	0.3 U	0.3 U	1.1 U	*	*	*	*	*
Benzo(a)pyrene	ND		1 U	1 U	1 U	0.7 U	0.7 U	1.1 U	*	*	*	*	*
Benzo(b)fluoranthene	0.002		1 U	1 U	1 U	1.3 U	1.3 U	1.1 U	*	*	*	*	*
Benzo(g,h,i)perylene			1 U	1 U	1 U	1 U	1 U	1.1 U	*	*	*	*	*
Benzo(k)fluoranthene	0.002		1 U	1 U	1 U	0.1 U	0.2 U	1.1 U	*	*	*	*	*
Benzoic acid			NA	NA	NA	NA	NA	5.7 U	*	*	*	*	*
Benzyl alcohol			NA	NA	NA	NA	NA	1.1 U	*	*	*	*	*
Bis(2-chloroethoxy)methane	5		1 U	1 U	1 U	0.6 U	0.6 U	1.1 U	*	*	*	*	*
Bis(2-chloroethyl)ether	1		1 U	1 U	1 U	0.3 U	0.3 U	1.1 U	*	*	*	*	*
Bis(2-ethylhexyl)phthalate	5		1 U	6 B	1 U	7.3 J	3.8 J	1.1 U	*	*	*	ND	*
Butylbenzylphthalate	50		1 U	1 U	1 U	0.3 U	0.3 U	1.1 U	*	*	*	*	*
Carbazole			1 U	1 U	1 U	0.4 U	0.4 U	1.1 U	*	*	*	*	*
Chrysene	0.002		1 U	1 U	1 U	0.6 U	0.6 U	1.1 U	*	*	*	*	*

Table 6. Summary of Semivolatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (μg/L)	Sample Designation: MW-19 Sample Date: 04/15/03	MW-19 04/22/03	MW-19 04/30/03	MW-19 05/14/03	MW-19 08/25/03	MW-19 06/02/08	MW-19 ⁽¹⁾ 09/18/97	MW-19 ⁽¹⁾ 08/13/98	MW-19 ⁽¹⁾ 02/25/99	MW-19 ⁽¹⁾ 06/03/99	MW-19 ⁽¹⁾ 09/09/99
Di-n-butyl phthalate		1 U	1 U	1 U	0.5 U	0.5 U	1.1 U	*	*	*	*	*
Di-n-octyl phthalate		1 U	1 U	1 U	0.3 U	0.3 U	1.1 U	*	*	ND	*	*
Dibenzo(a h)anthracene	50	1 U	1 U	1 U	0.8 U	0.8 U	1.1 U	*	*	*	*	*
Dibenzofuran	50	1 U	1 U	1 U	0.5 U	0.5 U	1.1 U	ND	ND	*	ND	*
Diethyl phthalate	50	1 U	1 U	1 U	0.5 U	0.5 U	1.1 U	*	*	*	*	*
Dimethyl phthalate	50	1 U	1 U	1 U	0.5 U	0.5 U	1.1 U	*	*	*	*	*
Fluoranthene	50	1 U	1 U	1 U	0.7 U	0.7 U	1.1 U	*	*	*	*	*
Fluorene	50	1 U	1 U	1 U	0.5 U	0.5 U	1.1 U	2 J	ND	ND	ND	ND
Hexachlorobenzene	0.04	1 U	1 U	1 U	0.7 U	0.7 U	1.1 U	*	*	*	*	*
Hexachlorobutadiene	0.5	1 U	1 U	1 U	0.3 U	0.3 U	1.1 U	*	*	*	*	*
Hexachlorocyclopentadiene	5	10 U	10 U	10 U	0.1 U	0.1 U	5.7 U	*	*	*	*	*
Hexachloroethane	5	1 U	1 U	1 U	0.5 U	0.5 U	1.1 U	*	*	*	*	*
Indeno(1,2,3-cd)pyrene	0.002	1 U	1 U	1 U	0.6 U	0.6 U	1.1 U	*	*	*	*	*
Isophorone	50	1 U	1 U	1 U	0.6 U	0.6 U	1.1 U	*	*	*	*	*
n-Nitroso-di-n-propylamine		1 U	1 U	1 U	0.5 U	0.5 U	1.1 U	*	*	*	*	*
n-Nitrosodiphenylamine	50	1 U	1 U	1 U	0.4 U	0.4 U	1.1 U	*	*	*	*	*
Naphthalene	10	1 U	1 U	1 U	0.3 U	0.3 U	1.1 U	*	*	*	*	*
Nitrobenzene	0.4	1 U	1 U	1 U	0.5 U	0.5 U	1.1 U	*	*	*	*	*
Pentachlorophenol	1	NA	NA	NA	NA	NA	5.7 U	*	*	*	*	*
Phenanthrene	50	1 U	1 U	1 U	0.7 U	0.7 U	1.1 U	ND	ND	*	*	ND
Phenol	1	NA	NA	NA	NA	NA	1.1 U	*	*	*	*	*
Pyrene	50	1 U	1 U	1 U	0.4 U	0.4 U	1.1 U	*	*	*	*	*
Total SVOCs:		0	6	0	7.3	3.8	0	4	0	0	0	0

J - Estimated value

B - Compound was detected in blank sample

D - Dilution

U - Not Detected

V - Data was qualified by validator

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV

ND - Not detected; reporting limit not available

DUP - Duplicate

SVOCs - Semivolatile Organic Compounds

R - Rejected

NA - Not analyzed

* - Data analyzed but detection limit unknown

(1) - Sampled and analyzed by New York City Transit

(2) - Geoprobe TM sample collected from 17.5 feet below land surface

(3) - GeoprobeTM sample collected from 13.5 feet below land surface

Table 6. Summary of Semivolatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (µg/L)	Sample Designation: Sample Date:	MW-23D 06/20/97	MW-25A 06/19/97	MW-27 06/18/97	MW-27 06/04/08	MW-27 DUP 06/04/08	MW-28 06/18/97	MW-28 08/25/00	MW-29 06/18/97	MW-30 06/18/97	MW-34 06/18/97	MW-34 08/25/00
(Concentrations in µg/L)	(μg/L)												
1,2,4-Trichlorobenzene	5		10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
2,2-oxybis (1-chloropropane)	5		10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
2,4,5-Trichlorophenol			50 U	50 U	50 U	2.2 U	2.2 U	50 U	NA	50 U	50 U	50 U	NA
2,4,6-Trichlorophenol			10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
2,4-Dichlorophenol	5		10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
2,4-Dimethylphenol	50		10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
2,4-Dinitrophenol	10		50 U	50 U	50 U	11 U	11 U	50 U	NA	50 U	50 U	50 U	NA
2,4-Dinitrotoluene	5		10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
2,6-Dinitrotoluene	5		10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
2-Chloronaphthalene	10		10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
2-Chlorophenol			10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
2-Methylnaphthalene			10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
2-Methylphenol			10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
2-Nitroaniline	5		50 U	50 U	50 U	2.2 U	2.2 U	50 U	NA	50 U	50 U	50 U	NA
2-Nitrophenol			10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
3,3-Dichlorobenzidine	5		20 U	20 UJV	20 U	2.2 U	2.2 U	20 U	NA	20 U	20 U	20 U	NA
3-Nitroaniline	5		50 U	50 UJV	50 U	2.2 U	2.2 U	50 U	NA	50 U	50 U	50 U	NA
4,6-Dinitro-2-methylphenol			50 U	50 U	50 U	11 U	11 U	50 U	NA	50 U	50 U	50 U	NA
4-Bromophenyl phenyl ether			10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
4-Chloro-3-methylphenol			10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
4-Chloroaniline	5		10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
4-Chlorophenyl phenyl ether			10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
4-Methylphenol			10 U	10 U	0.8 J	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
4-Nitroaniline	5		20 U	20 U	20 U	2.2 U	2.2 U	20 U	NA	20 U	20 U	20 U	NA
4-Nitrophenol			50 U	50 U	50 U	2.2 U	2.2 U	50 U	NA	50 U	50 U	50 U	NA
Acenaphthene	20		10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	0.8 J	10 U	10 U	NA
Acenaphthylene			10 U	10 U	10 U	2.2 U	2.2 U	10 U	ND	10 U	10 U	10 U	ND
Anthracene	50		10 U	10 U	10 U	2.2 U	2.2 U	10 U	ND	10 U	10 U	10 U	ND
Benzo(a)anthracene	0.002		10 U	10 U	10 U	2.2 U	2.2 U	10 U	ND	10 U	10 U	10 U	ND
Benzo(a)pyrene	ND		10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
Benzo(b)fluoranthene	0.002		10 U	10 U	10 U	2.2 U	2.2 U	10 U	ND	10 U	10 U	10 U	ND
Benzo(g,h,i)perylene			10 U	10 U	10 U	2.2 U	2.2 U	10 U	ND	10 U	10 U	10 U	ND
Benzo(k)fluoranthene	0.002		10 U	10 U	10 U	2.2 U	2.2 U	10 U	ND	10 U	10 U	10 U	ND
Benzoic acid			50 URV	50 URV	50 URV	2.2 U	2.2 U	50 URV	NA	50 URV	50 URV	50 URV	NA
Benzyl alcohol			10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
Bis(2-chloroethoxy)methane	5		10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
Bis(2-chloroethyl)ether	1		10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
Bis(2-ethylhexyl)phthalate	5		10 U	10 U	10 UV	2.2 U	2.2 U	10 UV	0.7J	10 U	10 U	10 U	2J
Butylbenzylphthalate	50		10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
Carbazole			10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
Chrysene	0.002		10 U	10 U	10 U	2.2 U	2.2 U	10 U	ND	10 U	10 U	10 U	ND

Table 6. Summary of Semivolatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (μg/L)	Sample Designation: Sample Date:	MW-23D 06/20/97	MW-25A 06/19/97	MW-27 06/18/97	MW-27 06/04/08	MW-27 DUP 06/04/08	MW-28 06/18/97	MW-28 08/25/00	MW-29 06/18/97	MW-30 06/18/97	MW-34 06/18/97	MW-34 08/25/00
Di-n-butyl phthalate			10 UV	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 UV	10 U	NA
Di-n-octyl phthalate			10 U	10 U	10 U	2.2 U	2.2 U	10 U	ND	10 U	10 U	10 U	ND
Dibenzo(a h)anthracene	50		10 U	10 U	10 U	2.2 U	2.2 U	10 U	.1J	10 U	10 U	10 U	.2J
Dibenzofuran	50		10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
Diethyl phthalate	50		10 UV	10 U	10 UV	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
Dimethyl phthalate	50		10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
Fluoranthene	50		10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
Fluorene	50		10 U	10 U	10 U	2.2 U	2.2 U	10 U	ND	10 U	10 U	10 U	ND
Hexachlorobenzene	0.04		10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
Hexachlorobutadiene	0.5		10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
Hexachlorocyclopentadiene	5		10 UJV	10 UJV	10 UJV	11 U	11 U	10 UJV	NA	10 UJV	10 UJV	10 UJV	NA
Hexachloroethane	5		10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
Indeno(1,2,3-cd)pyrene	0.002		10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
Isophorone	50		10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
n-Nitroso-di-n-propylamine			NA	NA	NA	2.2 U	2.2 U	NA	NA	NA	NA	NA	NA
n-Nitrosodiphenylamine	50		10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
Naphthalene	10		10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
Nitrobenzene	0.4		10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
Pentachlorophenol	1		50 U	50 U	50 U	11 U	11 U	50 U	ND	50 U	50 U	50 U	ND
Phenanthrene	50		10 U	10 U	10 U	2.2 U	2.2 U	10 U	ND	10 U	10 U	10 U	ND
Phenol	1		10 U	10 U	10 U	2.2 U	2.2 U	10 U	NA	10 U	10 U	10 U	NA
Pyrene	50		10 U	10 U	10 U	2.2 U	2.2 U	10 U	ND	10 U	10 U	10 U	ND
Total SVOCs:			0	0	0.8	0	0	0	0.8	0.8	0	0	2.2

J - Estimated value

B - Compound was detected in blank sample

D - Dilution

U - Not Detected

V - Data was qualified by validator

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV

ND - Not detected; reporting limit not available

DUP - Duplicate

SVOCs - Semivolatile Organic Compounds

R - Rejected

NA - Not analyzed

* - Data analyzed but detection limit unknown

(1) - Sampled and analyzed by New York City Transit

(2) - Geoprobe TM sample collected from 17.5 feet below land surface

(3) - GeoprobeTM sample collected from 13.5 feet below land surface

Table 6. Summary of Semivolatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	NYSDEC	Sample Designation:		MW-35	MW-35	MW-35	MW-35	MW-35	MW-35 ⁽¹⁾				
Parameter	AWQSGVs	Sample Date:	02/21/97	06/18/97	04/15/03	04/22/03	08/25/03	06/02/08	09/18/97	08/13/98	02/25/99	06/03/99	09/09/99
(Concentrations in µg/L)	(µg/L)												
1.2.4-Trichlorobenzene	5		10 U	10 U	1 U	1 U	0.4 U	2.2 U	*	*	*	*	*
2,2-oxybis (1-chloropropane)	5		10 U	10 U	1 U	1 U	0.6 U	2.2 U	*	*	*	*	*
2,4,5-Trichlorophenol			50 U	50 U	NA	NA	NA	2.2 U	*	*	*	*	*
2,4,6-Trichlorophenol			10 U	10 U	NA	NA	NA	2.2 U	*	*	*	*	*
2,4-Dichlorophenol	5		10 U	10 U	NA	NA	NA	2.2 U	*	*	*	*	*
2,4-Dimethylphenol	50		10 U	10 U	NA	NA	NA	2.2 U	*	*	*	*	*
2,4-Dinitrophenol	10		50 U	50 U	NA	NA	NA	11 U	*	*	*	*	*
2,4-Dinitrotoluene	5		10 U	10 U	1 U	1 U	0.6 U	2.2 U	*	*	*	*	*
2,6-Dinitrotoluene	5		10 U	10 U	1 U	1 U	0.4 U	2.2 U	*	*	*	*	*
2-Chloronaphthalene	10		10 U	10 U	1 U	1 U	0.5 U	2.2 U	*	*	*	*	*
2-Chlorophenol			10 U	10 U	NA	NA	NA	2.2 U	*	*	*	*	*
2-Methylnaphthalene			7 J	20	1	2	17	6.1	33	ND	3 J	4 J	ND
2-Methylphenol			10 U	10 U	NA	NA	NA	2.2 U	*	*	*	*	*
2-Nitroaniline	5		50 U	50 U	1 U	1 U	0.6 U	2.2 U	*	*	*	*	*
2-Nitrophenol			10 U	10 U	NA	NA	NA	2.2 U	*	*	*	*	*
3,3-Dichlorobenzidine	5		20 U	20 U	10 U	10 U	0.3 U	2.2 U	*	*	*	*	*
3-Nitroaniline	5		50 U	50 U	1 U	1 U	0.8 U	2.2 U	*	*	*	*	*
4,6-Dinitro-2-methylphenol			50 U	50 U	NA	NA	NA	11 U	*	*	*	*	*
4-Bromophenyl phenyl ether			10 U	10 U	1 U	1 U	0.5 U	2.2 U	*	*	*	*	*
4-Chloro-3-methylphenol			10 U	10 U	NA	NA	NA	2.2 U	*	*	*	*	*
4-Chloroaniline	5		10 U	10 U	1 U	1 U	0.3 U	2.2 U	*	*	*	*	*
4-Chlorophenyl phenyl ether			10 U	10 U	1 U	1 U	0.5 U	2.2 U	*	*	*	*	*
4-Methylphenol			10 U	10 U	NA	NA	NA	2.2 U	*	*	*	*	*
4-Nitroaniline	5		20 U	20 U	1 U	1 U	0.7 U	2.2 U	*	*	*	*	*
4-Nitrophenol			50 U	50 U	NA	NA	NA	2.2 U	*	*	*	*	*
Acenaphthene	20		3 J	5 J	1 U	1	2.3 J	2.9	4 J	6 J	2 J	2 J	2 J
Acenaphthylene			10 U	10 U	1 U	1 U	0.5 U	2.2 U	*	*	*	*	*
Anthracene	50		0.8 J	10 U	1 U	1 U	0.6 U	2.2 U	1 J	2 J	*	*	*
Benzo(a)anthracene	0.002		10 U	10 U	1 U	1 U	0.3 U	2.2 U	*	*	*	*	*
Benzo(a)pyrene	ND		10 U	10 U	1 U	1 U	0.7 U	2.2 U	*	*	*	*	*
Benzo(b)fluoranthene	0.002		10 U	10 U	1 U	1 U	1.3 U	2.2 U	*	*	*	*	*
Benzo(g,h,i)perylene			10 U	10 U	1 U	1 U	1 U	2.2 U	*	*	*	*	*
Benzo(k)fluoranthene	0.002		10 U	10 U	1 U	1 U	0.1 U	2.2 U	*	*	*	*	*
Benzoic acid			50 U	50 URV	NA	NA	NA	11 U	*	*	*	*	*
Benzyl alcohol			10 U	10 U	NA	NA	NA	2.2 U	*	*	*	*	*
Bis(2-chloroethoxy)methane	5		10 U	10 U	1 U	1 U	0.6 U	2.2 U	*	*	*	*	*
Bis(2-chloroethyl)ether	1		10 U	10 U	1 U	1 U	0.3 U	2.2 U	*	*	*	*	*
Bis(2-ethylhexyl)phthalate	5		0.2 JB	10 U	1 U	1 U	3.6 J	2.2 U	*	*	*	ND	*
Butylbenzylphthalate	50		10 U	10 U	1 U	1 U	0.3 U	2.2 U	*	*	*	*	*
Carbazole			10 U	10 U	1 U	1 U	0.4 U	2.2 U	*	*	*	*	*
Chrysene	0.002		10 U	10 U	1 U	1 U	0.6 U	2.2 U	*	*	*	*	*

Table 6. Summary of Semivolatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in μg/L)	NYSDEC AWQSGVs (µg/L)	Sample Designation: Sample Date:	MW-35 02/21/97	MW-35 06/18/97	MW-35 04/15/03	MW-35 04/22/03	MW-35 08/25/03	MW-35 06/02/08	MW-35 ⁽¹⁾ 09/18/97	MW-35 ⁽¹⁾ 08/13/98	MW-35 ⁽¹⁾ 02/25/99	MW-35 ⁽¹⁾ 06/03/99	MW-35 ⁽¹⁾ 09/09/99
Di-n-butyl phthalate			10 U	10 U	1 U	1 U	0.5 U	2.2 U	*	*	*	*	*
Di-n-octyl phthalate			10 U	10 U	1 U	1 U	0.3 U	2.2 U	*	*	ND	*	*
Dibenzo(a h)anthracene	50		10 U	10 U	1 U	1 U	0.8 U	2.2 U	*	*	*	*	*
Dibenzofuran	50		2 J	3 J	1 U	1 U	0.5 U	2.2 U	3 J	ND	*	1 J	*
Diethyl phthalate	50		10 U	10 U	1 U	1 U	0.5 U	2.2 U	*	*	*	*	*
Dimethyl phthalate	50		10 U	10 U	1 U	1 U	0.5 U	2.2 U	*	*	*	*	*
Fluoranthene	50		0.2 J	10 U	1 U	1 U	0.7 U	2.2 U	*	*	*	*	*
Fluorene	50		4 J	10 U	1 U	1 U	2.1 J	2.2	6 J	9 J	2 J	3 J	4 J
Hexachlorobenzene	0.04		10 U	10 U	1 U	1	0.7 U	2.2 U	*	*	*	*	*
Hexachlorobutadiene	0.5		10 U	10 U	1 U	1 U	0.3 U	2.2 U	*	*	*	*	*
Hexachlorocyclopentadiene	5		10 U	10 UJV	10 U	10 U	0.1 U	11 U	*	*	*	*	*
Hexachloroethane	5		10 U	10 U	1 U	1 U	0.5 U	2.2 U	*	*	*	*	*
Indeno(1,2,3-cd)pyrene	0.002		10 U	10 U	1 U	1 U	0.6 U	2.2 U	*	*	*	*	*
Isophorone	50		10 U	10 U	1 U	1 U	0.6 U	2.2 U	*	*	*	*	*
n-Nitroso-di-n-propylamine			10 U	NA	1 U	1 U	0.5 U	2.2 U	*	*	*	*	*
n-Nitrosodiphenylamine	50		10 U	10 U	1 U	1 U	0.4 U	2.2 U	*	*	*	*	*
Naphthalene	10		10 U	10 U	1 U	1 U	0.3 U	2.2 U	*	*	*	*	*
Nitrobenzene	0.4		10 U	10 U	1 U	1 U	0.5 U	2.2 U	*	*	*	*	*
Pentachlorophenol	1		50 U	50 U	NA	NA	NA	11 U	*	*	*	*	*
Phenanthrene	50		1 J	3 J	1 U	1 U	0.7 U	2.2 U	3 J	4 J	*	*	1 J
Phenol	1		10 U	10 U	NA	NA	NA	2.2 U	*	*	*	*	*
Pyrene	50		0.2 J	10 U	1 U	1 U	0.4 U	2.2 U	*	*	*	*	*
Total SVOCs:			18.4	31	1	4	25	11.2	50	21	7	10	7

J - Estimated value

B - Compound was detected in blank sample

D - Dilution

U - Not Detected

V - Data was qualified by validator

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV

ND - Not detected; reporting limit not available

DUP - Duplicate

SVOCs - Semivolatile Organic Compounds

R - Rejected

NA - Not analyzed

* - Data analyzed but detection limit unknown

(1) - Sampled and analyzed by New York City Transit

(2) - Geoprobe TM sample collected from 17.5 feet below land surface

(3) - GeoprobeTM sample collected from 13.5 feet below land surface

Table 6. Summary of Semivolatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter	NYSDEC AWQSGVs	Sample Designation: MW- Sample Date: 06/18			MW-38D 06/18/97	MW-38D 06/02/08	MW-39D 06/02/08	MW-40D 06/18/97	MW-41 06/18/97	MW-42 06/18/97	MW-42 08/25/00	MW-43 06/18/97	MW-44D 06/18/97
(Concentrations in µg/L)	(μg/L)												
1,2,4-Trichlorobenzene	5	10 1	IJ 2.	1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
2,2-oxybis (1-chloropropane)	5	10 1		1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
2,4,5-Trichlorophenol		50 1		1 U	50 U	2.1 U	2.2 U	50 U	50 U	50 U	NA	50 U	50 U
2,4,6-Trichlorophenol		10 1		1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
2,4-Dichlorophenol	5	10 1		1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
2,4-Dimethylphenol	50	10 1		1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
2,4-Dinitrophenol	10	50 1		1 U	50 U	11 U	11 U	50 U	50 U	50 U	NA	50 U	50 U
2,4-Dinitrotoluene	5	10 1	U 2.	1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
2,6-Dinitrotoluene	5	10 1	U 2.	1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
2-Chloronaphthalene	10	10 1		1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
2-Chlorophenol		10 1		1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
2-Methylnaphthalene		10 1		1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
2-Methylphenol		10 1		1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
2-Nitroaniline	5	50 1		1 U	50 U	2.1 U	2.2 U	50 U	50 U	50 U	NA	50 U	50 U
2-Nitrophenol		10 1		1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
3,3-Dichlorobenzidine	5	201		1 U	20 U	2.1 U	2.2 U	20 U	20 U	20 U	NA	20 U	20 U
3-Nitroaniline	5	50 1	IJ 2.	1 U	50 U	2.1 U	2.2 U	50 U	50 U	50 U	NA	50 U	50 U
4,6-Dinitro-2-methylphenol		501		1 U	50 U	11 U	11 U	50 U	50 U	50 U	NA	50 U	50 U
4-Bromophenyl phenyl ether		10 1		1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
4-Chloro-3-methylphenol		10 1		1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
4-Chloroaniline	5	10 1		1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
4-Chlorophenyl phenyl ether		10 1		1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
4-Methylphenol		10 1		1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
4-Nitroaniline	5	201		1 U	20 U	2.1 U	2.2 U	20 U	20 U	20 U	NA	20 U	20 U
4-Nitrophenol		50 1	IJ 2.	1 U	50 U	2.1 U	2.2 U	50 U	50 U	50 U	NA	50 U	50 U
Acenaphthene	20	10 1	U 2.	1 U	10 U	2.1 U	2.2 U	10 U	0.5 J	10 U	NA	10 U	10 U
Acenaphthylene		10 1		1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	ND	10 U	10 U
Anthracene	50	10 1	U 2.	1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	ND	10 U	10 U
Benzo(a)anthracene	0.002	10 1		1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	ND	10 U	10 U
Benzo(a)pyrene	ND	10 1	U 2.	1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
Benzo(b)fluoranthene	0.002	10 1	U 2.	1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	ND	10 U	10 U
Benzo(g,h,i)perylene		10 1	U 2.	1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	ND	10 U	10 U
Benzo(k)fluoranthene	0.002	10 1	U 2.	1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	ND	10 U	10 U
Benzoic acid		50 UI			50 URV	11 U	11 U	50 URV	50 URV	50 URV	NA	50 URV	50 URV
Benzyl alcohol		10 1		1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
Bis(2-chloroethoxy)methane	5	10 1		1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
Bis(2-chloroethyl)ether	1	10 1		1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
Bis(2-ethylhexyl)phthalate	5	10 1	U 2.	1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 UV	1J	10 U	10 U
Butylbenzylphthalate	50	10 1		1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
Carbazole		10 1		1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
Chrysene	0.002	10 1		1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	ND	10 U	10 U

Table 6. Summary of Semivolatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (µg/L)	 MW-37 06/18/97	MW-37 06/02/08	MW-38D 06/18/97	MW-38D 06/02/08	MW-39D 06/02/08	MW-40D 06/18/97	MW-41 06/18/97	MW-42 06/18/97	MW-42 08/25/00	MW-43 06/18/97	MW-44D 06/18/97
Di-n-butyl phthalate		10 UV	2.1 U	10 UV	2.1 U	2.2 U	10 UV	10 UV	10 UV	NA	10 UV	10 UV
Di-n-octyl phthalate		10 U	2.1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	ND	10 U	10 U
Dibenzo(a h)anthracene	50	10 U	2.1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	.3J	10 U	10 U
Dibenzofuran	50	0.4 J	2.1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
Diethyl phthalate	50	10 U	2.1 U	10 U	2.1 U	2.2 U	10 UV	10 U	10 UV	NA	10 U	10 U
Dimethyl phthalate	50	10 U	2.1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
Fluoranthene	50	0.4 J	2.1 U	10 U	2.1 U	2.2 U	10 U	0.3 J	10 U	NA	10 U	10 U
Fluorene	50	10 U	2.1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	ND	10 U	10 U
Hexachlorobenzene	0.04	10 U	2.1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
Hexachlorobutadiene	0.5	10 U	2.1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
Hexachlorocyclopentadiene	5	10 UJV	11 U	10 UJV	11 U	11 U	10 UJV	10 UJV	10 UJV	NA	10 UJV	10 UJV
Hexachloroethane	5	10 U	2.1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
Indeno(1,2,3-cd)pyrene	0.002	10 U	2.1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
Isophorone	50	10 U	2.1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
n-Nitroso-di-n-propylamine		NA	2.1 U	NA	2.1 U	2.2 U	NA	NA	NA	NA	NA	NA
n-Nitrosodiphenylamine	50	10 U	2.1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
Naphthalene	10	10 U	2.1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
Nitrobenzene	0.4	10 U	2.1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
Pentachlorophenol	1	50 U	11 U	50 U	11 U	11 U	50 U	50 U	50 U	ND	50 U	50 U
Phenanthrene	50	10 U	2.1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	ND	10 U	10 U
Phenol	1	10 U	2.1 U	10 U	2.1 U	2.2 U	10 U	10 U	10 U	NA	10 U	10 U
Pyrene	50	0.2 J	2.1 U	10 U	2.1 U	2.2 U	10 U	0.6 J	10 U	ND	10 U	10 U
Total SVOCs:		1	0	0	0	0	0	1.4	0	1.3	0	0

J - Estimated value

B - Compound was detected in blank sample

D - Dilution

U - Not Detected

V - Data was qualified by validator

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV

ND - Not detected; reporting limit not available

DUP - Duplicate

SVOCs - Semivolatile Organic Compounds

R - Rejected

NA - Not analyzed

* - Data analyzed but detection limit unknown

(1) - Sampled and analyzed by New York City Transit

(2) - Geoprobe TM sample collected from 17.5 feet below land surface

(3) - GeoprobeTM sample collected from 13.5 feet below land surface

Table 6. Summary of Semivolatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in μg/L)	NYSDEC AWQSGVs (μg/L)	Sample Designation: Sample Date:	MW-45 06/18/97	MW-45 08/25/00	MW-45 06/04/08	MW-46 06/18/97	MW-47 06/20/97	MW-48D 06/20/97	MW-48D 06/03/08	MW-49 06/18/97	MW-57 06/18/97	MW-59 06/18/97	MW-61 06/18/97
1,2,4-Trichlorobenzene	5		10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
2,2-oxybis (1-chloropropane)	5		10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
2,4,5-Trichlorophenol			50 U	NA	2.2 U	50 U	50 U	50 U	1.3 U	50 U	50 U	50 U	50 U
2,4,6-Trichlorophenol			10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
2,4-Dichlorophenol	5		10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
2,4-Dimethylphenol	50		10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
2,4-Dinitrophenol	10		50 U	NA	11 U	50 U	50 U	50 U	6.7 U	50 U	50 U	50 U	50 U
2,4-Dinitrotoluene	5		10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
2,6-Dinitrotoluene	5		10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
2-Chloronaphthalene	10		10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
2-Chlorophenol			10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
2-Methylnaphthalene			10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
2-Methylphenol			10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
2-Nitroaniline	5		50 U	NA	2.2 U	50 U	50 U	50 U	1.3 U	50 U	50 U	50 U	50 U
2-Nitrophenol			10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
3,3-Dichlorobenzidine	5		20 U	NA	2.2 U	20 U	20 U	20 U	1.3 U	20 U	20 U	20 U	20 U
3-Nitroaniline	5		50 U	NA	2.2 U	50 U	50 U	50 U	1.3 U	50 U	50 U	50 U	50 U
4,6-Dinitro-2-methylphenol			50 U	NA	11 U	50 U	50 U	50 U	6.7 U	50 U	50 U	50 U	50 U
4-Bromophenyl phenyl ether			10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
4-Chloro-3-methylphenol			10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
4-Chloroaniline	5		10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
4-Chlorophenyl phenyl ether			10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
4-Methylphenol			10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	0.7 J	10 U
4-Nitroaniline	5		20 U	NA	2.2 U	20 U	20 U	20 U	1.3 U	20 U	20 U	20 U	20 U
4-Nitrophenol			50 U	NA	2.2 U	50 U	50 U	50 U	1.3 U	50 U	50 U	50 U	50 U
Acenaphthene	20		10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	4 J	10 U	10 U	10 U
Acenaphthylene			10 U	ND	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
Anthracene	50		10 U	ND	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
Benzo(a)anthracene	0.002		10 U	ND	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
Benzo(a)pyrene	ND		10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
Benzo(b)fluoranthene	0.002		10 U	ND	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
Benzo(g,h,i)perylene			10 U	ND	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
Benzo(k)fluoranthene	0.002		10 U	ND	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
Benzoic acid			50 URV	NA	2.2 U	2 JRV	50 URV	50 URV	6.7 U	50 URV	50 URV	50 URV	50 URV
Benzyl alcohol			10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
Bis(2-chloroethoxy)methane	5		10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
Bis(2-chloroethyl)ether	1		10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
Bis(2-ethylhexyl)phthalate	5		10 U	8J	2.2 U	10 U	10 UV	10 UV	1.3 U	10 U	10 U	10 U	10 U
Butylbenzylphthalate	50		10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
Carbazole			10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
Chrysene	0.002		10 U	ND	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U

Table 6. Summary of Semivolatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (µg/L)	Sample Designation: Sample Date:	MW-45 06/18/97	MW-45 08/25/00	MW-45 06/04/08	MW-46 06/18/97	MW-47 06/20/97	MW-48D 06/20/97	MW-48D 06/03/08	MW-49 06/18/97	MW-57 06/18/97	MW-59 06/18/97	MW-61 06/18/97
Di-n-butyl phthalate			10 U	NA	2.2 U	10 UV	10 UV	UV JB	1.3 U	10 UV	10 UV	10 U	10 U
Di-n-octyl phthalate			10 U	ND	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
Dibenzo(a h)anthracene	50		10 U	.5J	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
Dibenzofuran	50		10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	1 J	10 U	10 U	10 U
Diethyl phthalate	50		10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 UV	10 UV	10 U	10 U
Dimethyl phthalate	50		10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
Fluoranthene	50		10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	0.3 J	10 U	10 U	10 U
Fluorene	50		10 U	ND	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
Hexachlorobenzene	0.04		10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
Hexachlorobutadiene	0.5		10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
Hexachlorocyclopentadiene	5		10 UJV	NA	11 U	10 UJV	10 UJV	10 UJV	1.3 U	10 UJV	10 UJV	10 UJV	10 UJV
Hexachloroethane	5		10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
Indeno(1,2,3-cd)pyrene	0.002		10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
Isophorone	50		10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
n-Nitroso-di-n-propylamine			NA	NA	2.2 U	NA	NA	NA	1.3 U	NA	NA	NA	NA
n-Nitrosodiphenylamine	50		10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
Naphthalene	10		10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
Nitrobenzene	0.4		10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
Pentachlorophenol	1		50 U	ND	11 U	50 U	50 U	50 U	6.7 U	50 U	50 U	50 U	50 U
Phenanthrene	50		10 U	ND	2.2 U	10 U	10 U	10 U	1.3 U	0.6 J	10 U	10 U	10 U
Phenol	1		10 U	NA	2.2 U	10 U	10 U	10 U	1.3 U	10 U	10 U	10 U	10 U
Pyrene	50		10 U	ND	2.2 U	10 U	10 U	10 U	1.3 U	0.3 J	10 U	10 U	10 U
Total SVOCs:			0	8.5	0	2	0	0	0	6.2	0	0.7	0

J - Estimated value

B - Compound was detected in blank sample

D - Dilution

U - Not Detected

V - Data was qualified by validator

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV

ND - Not detected; reporting limit not available

DUP - Duplicate

SVOCs - Semivolatile Organic Compounds

R - Rejected

NA - Not analyzed

* - Data analyzed but detection limit unknown

(1) - Sampled and analyzed by New York City Transit

(2) - Geoprobe TM sample collected from 17.5 feet below land surface

(3) - GeoprobeTM sample collected from 13.5 feet below land surface

Table 6. Summary of Semivolatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (μg/L)	Sample Designation: Sample Date:	MW-62D 06/18/97	MW-62D 06/04/08	MW-64 06/19/97	MW-65 06/19/97	MW-65R 06/19/97	MW-66 06/19/97	MW-67 06/19/97	MW-68 06/04/08	MW-69D 06/20/97	MW-70 06/02/08	MW-78 07/05/05
1,2,4-Trichlorobenzene	5		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.17 U
2,2-oxybis (1-chloropropane)	5		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.21 U
2,4,5-Trichlorophenol			50 U	2 U	50 U	50 U	50 U	50 U	50 U	2 U	50 U	1.3 U	1.6 U
2,4,6-Trichlorophenol			10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.75 U
2,4-Dichlorophenol	5		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	1.3 U
2,4-Dimethylphenol	50		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.85 U
2,4-Dinitrophenol	10		50 U	10 U	50 U	50 U	50 U	50 U	50 U	10 U	50 U	6.3 U	1.8 U
2,4-Dinitrotoluene	5		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.36 U
2,6-Dinitrotoluene	5		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.45 U
2-Chloronaphthalene	10		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.11 U
2-Chlorophenol			10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	1.8 U
2-Methylnaphthalene			10 U	2 U	10 U	10 U	10 U	10 U	10 U	380 D	10 U	2.6	1.7 U
2-Methylphenol			10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	3.7 U
2-Nitroaniline	5		50 U	2 U	50 U	50 U	50 U	50 U	50 U	2 U	50 U	1.3 U	1.3 U
2-Nitrophenol			10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	1.2 U
3,3-Dichlorobenzidine	5		20 U	2 U	20 UJV	20 U	20 UJV	20 U	20 UJV	2 U	20 U	1.3 U	1.8 U
3-Nitroaniline	5		50 U	2 U	50 UJV	50 U	50 UJV	50 U	50 UJV	2 U	50 U	1.3 U	2.5 U
4,6-Dinitro-2-methylphenol			50 U	10 U	50 U	50 U	50 U	50 U	50 U	10 U	50 U	6.3 U	1.9 U
4-Bromophenyl phenyl ether			10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.41 U
4-Chloro-3-methylphenol			10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	2 U
4-Chloroaniline	5		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	6.8 U
4-Chlorophenyl phenyl ether			10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.28 U
4-Methylphenol			10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	3.7 U
4-Nitroaniline	5		20 U	2 U	20 U	20 U	20 U	20 U	20 U	2 U	20 U	1.3 U	1.5 U
4-Nitrophenol			50 U	2 U	50 U	50 U	50 U	50 U	50 U	2 U	50 U	1.3 U	1.4 U
Acenaphthene	20		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	2.2	0.16 U
Acenaphthylene			10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.15 U
Anthracene	50		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.2 U
Benzo(a)anthracene	0.002		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.14 U
Benzo(a)pyrene	ND		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.17 U
Benzo(b)fluoranthene	0.002		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.28 U
Benzo(g,h,i)perylene			10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.14 U
Benzo(k)fluoranthene	0.002		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.35 U
Benzoic acid			50 URV	2 U	50 URV	50 URV	50 URV	50 URV	50 URV	2 U	50 URV	6.3 U	NA
Benzyl alcohol			10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	NA
Bis(2-chloroethoxy)methane	5		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.23 U
Bis(2-chloroethyl)ether	1		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.44 U
Bis(2-ethylhexyl)phthalate	5		10 UV	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 UV	1.3 U	0.63 U
Butylbenzylphthalate	50		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.27 U
Carbazole			10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.19 U
Chrysene	0.002		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.28 U

Table 6. Summary of Semivolatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (μg/L)	Sample Designation: Sample Date:	MW-62D 06/18/97	MW-62D 06/04/08	MW-64 06/19/97	MW-65 06/19/97	MW-65R 06/19/97	MW-66 06/19/97	MW-67 06/19/97	MW-68 06/04/08	MW-69D 06/20/97	MW-70 06/02/08	MW-78 07/05/05
Di-n-butyl phthalate			10 U	2 U	10 U	10 U	10 U	10 UV	10 U	2 U	10 UV	1.3 U	0.2 U
Di-n-octyl phthalate			10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.34 U
Dibenzo(a h)anthracene	50		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.18 U
Dibenzofuran	50		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	1.3 U
Diethyl phthalate	50		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.24 U
Dimethyl phthalate	50		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.17 U
Fluoranthene	50		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.16 U
Fluorene	50		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.6	0.24 U
Hexachlorobenzene	0.04		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.41 U
Hexachlorobutadiene	0.5		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.25 U
Hexachlorocyclopentadiene	5		10 UJV	10 U	10 UJV	10 UJV	10 UJV	10 UJV	10 UJV	10 U	10 UJV	6.3 U	2.7 U
Hexachloroethane	5		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.35 U
Indeno(1,2,3-cd)pyrene	0.002		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.17 U
Isophorone	50		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	5.3 U
n-Nitroso-di-n-propylamine			NA	2 U	NA	NA	NA	NA	NA	2 U	NA	1.3 U	0.32 U
n-Nitrosodiphenylamine	50		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.27 U
Naphthalene	10		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.097 U
Nitrobenzene	0.4		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.28 U
Pentachlorophenol	1		50 U	10 U	50 U	50 U	50 U	50 U	50 U	10 U	50 U	6.3 U	0.97 U
Phenanthrene	50		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.22 U
Phenol	1		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	1.7 U
Pyrene	50		10 U	2 U	10 U	10 U	10 U	10 U	10 U	2 U	10 U	1.3 U	0.23 U
Total SVOCs:			0	0	0	0	0	0	0	380	0	6.4	0

J - Estimated value

B - Compound was detected in blank sample

D - Dilution

U - Not Detected

V - Data was qualified by validator

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV

ND - Not detected; reporting limit not available

DUP - Duplicate

SVOCs - Semivolatile Organic Compounds

R - Rejected

NA - Not analyzed

* - Data analyzed but detection limit unknown

(1) - Sampled and analyzed by New York City Transit

(2) - Geoprobe TM sample collected from 17.5 feet below land surface

(3) - GeoprobeTM sample collected from 13.5 feet below land surface

Table 6. Summary of Semivolatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	NYSDEC	Sample Designation:		MW-79	MW-80	MW-82	MW-83	MW-84	MW-85	MW-86	MW-87	MW-88	MW-89
Parameter	AWQSGVs	Sample Date:	07/05/05	06/03/08	06/04/08	06/05/08	06/04/08	06/05/08	06/02/08	05/21/08	05/21/08	05/21/08	05/21/08
(Concentrations in µg/L)	(µg/L)												
1.2.4-Trichlorobenzene	5		0.18 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
2,2-oxybis (1-chloropropane)	5		0.22 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
2,4,5-Trichlorophenol			1.6 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
2,4,6-Trichlorophenol			0.79 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
2,4-Dichlorophenol	5		1.4 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
2,4-Dimethylphenol	50		0.89 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
2,4-Dinitrophenol	10		1.9 U	10 U	10 U	11 U	11 U	10 U	12 U	10 U	10 U	10 U	10 U
2,4-Dinitrotoluene	5		0.38 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
2,6-Dinitrotoluene	5		0.47 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
2-Chloronaphthalene	10		0.12 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
2-Chlorophenol			1.9 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
2-Methylnaphthalene			1.8 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
2-Methylphenol			3.9 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
2-Nitroaniline	5		1.4 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
2-Nitrophenol			1.3 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
3,3-Dichlorobenzidine	5		1.8 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
3-Nitroaniline	5		2.7 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
4,6-Dinitro-2-methylphenol			2 U	10 U	10 U	11 U	11 U	10 U	12 U	10 U	10 U	10 U	10 U
4-Bromophenyl phenyl ether			0.43 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
4-Chloro-3-methylphenol			2.1 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
4-Chloroaniline	5		7.1 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
4-Chlorophenyl phenyl ether			0.3 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
4-Methylphenol			3.9 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
4-Nitroaniline	5		1.6 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
4-Nitrophenol			1.5 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
Acenaphthene	20		0.17 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
Acenaphthylene			0.16 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
Anthracene	50		0.21 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
Benzo(a)anthracene	0.002		0.15 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
Benzo(a)pyrene	ND		0.17 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
Benzo(b)fluoranthene	0.002		0.29 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
Benzo(g,h,i)perylene			0.15 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
Benzo(k)fluoranthene	0.002		0.37 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
Benzoic acid			NA	10 U	2 U	2.2 U	2.2 U	2 U	12 U	2 U	2.5	2 U	2 U
Benzyl alcohol			NA	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
Bis(2-chloroethoxy)methane	5		0.25 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
Bis(2-chloroethyl)ether	1		0.47 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
Bis(2-ethylhexyl)phthalate	5		1.3	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
Butylbenzylphthalate	50		0.29 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
Carbazole			0.2 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
Chrysene	0.002		0.3 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U

Table 6. Summary of Semivolatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in μg/L)	NYSDEC AWQSGVs (µg/L)	Sample Designation: Sample Date:	MW-79 07/05/05	MW-79 06/03/08	MW-80 06/04/08	MW-82 06/05/08	MW-83 06/04/08	MW-84 06/05/08	MW-85 06/02/08	MW-86 05/21/08	MW-87 05/21/08	MW-88 05/21/08	MW-89 05/21/08
Di-n-butyl phthalate			0.21 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
Di-n-octyl phthalate			0.36 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
Dibenzo(a h)anthracene	50		0.19 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
Dibenzofuran	50		1.4 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
Diethyl phthalate	50		0.25 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
Dimethyl phthalate	50		0.18 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
Fluoranthene	50		0.17 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
Fluorene	50		0.25 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
Hexachlorobenzene	0.04		0.43 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
Hexachlorobutadiene	0.5		0.26 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
Hexachlorocyclopentadiene	5		2.8 U	2.1 U	10 U	11 U	11 U	10 U	2.5 U	2 U	2 U	2 U	2 U
Hexachloroethane	5		0.37 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
Indeno(1,2,3-cd)pyrene	0.002		0.18 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
Isophorone	50		5.6 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
n-Nitroso-di-n-propylamine			0.34 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
n-Nitrosodiphenylamine	50		0.29 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
Naphthalene	10		0.1 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
Nitrobenzene	0.4		0.3 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
Pentachlorophenol	1		1 U	10 U	10 U	11 U	11 U	10 U	12 U	2 U	2 U	2 U	2 U
Phenanthrene	50		0.23 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
Phenol	1		1.7 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
Pyrene	50		0.24 U	2.1 U	2 U	2.2 U	2.2 U	2 U	2.5 U	2 U	2 U	2 U	2 U
Total SVOCs:			1.3	0	0	0	0	0	0	0	2.5	0	0

J - Estimated value

B - Compound was detected in blank sample

D - Dilution

U - Not Detected

V - Data was qualified by validator

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV

ND - Not detected; reporting limit not available

DUP - Duplicate

SVOCs - Semivolatile Organic Compounds

R - Rejected

NA - Not analyzed

* - Data analyzed but detection limit unknown

(1) - Sampled and analyzed by New York City Transit

(2) - Geoprobe TM sample collected from 17.5 feet below land surface

(3) - GeoprobeTM sample collected from 13.5 feet below land surface

Table 6. Summary of Semivolatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (μg/L)	Sample Designation: Sample Date:	MW-90 06/03/08	MW-91 06/03/08	MW-92 06/03/08	SSY-23 08/20/99	SSY-46 08/20/99	SSY-49 08/20/99	SSY-51 08/20/99	SY-131W 09/26/06	SY-178W 08/16/06	TE-MW-D-2 11/14/06
1,2,4-Trichlorobenzene	5		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
2,2-oxybis (1-chloropropane)	5		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
2,4,5-Trichlorophenol			1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
2,4,6-Trichlorophenol			1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
2,4-Dichlorophenol	5		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
2,4-Dimethylphenol	50		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
2,4-Dinitrophenol	10		6.2 U	11 U	11 U	26 U	26 U	26 U	25 U	NA	NA	ND
2,4-Dinitrotoluene	5		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
2,6-Dinitrotoluene	5		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
2-Chloronaphthalene	10		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
2-Chlorophenol			1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
2-Methylnaphthalene			1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
2-Methylphenol			1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
2-Nitroaniline	5		1.2 U	2.2 U	2.2 U	26 U	26 U	26 U	25 U	NA	NA	ND
2-Nitrophenol			1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
3,3-Dichlorobenzidine	5		1.2 U	2.2 U	2.2 U	21 U	21 U	21 U	20 U	NA	NA	ND
3-Nitroaniline	5		1.2 U	2.2 U	2.2 U	26 U	26 U	26 U	25 U	NA	NA	ND
4,6-Dinitro-2-methylphenol			6.2 U	11 U	11 U	26 U	26 U	26 U	25 U	NA	NA	ND
4-Bromophenyl phenyl ether			1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
4-Chloro-3-methylphenol			1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
4-Chloroaniline	5		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
4-Chlorophenyl phenyl ether			1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
4-Methylphenol			1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
4-Nitroaniline	5		1.2 U	2.2 U	2.2 U	26 U	26 U	26 U	25 U	NA	NA	ND
4-Nitrophenol			1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
Acenaphthene	20		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
Acenaphthylene			1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
Anthracene	50		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	ND	ND	ND
Benzo(a)anthracene	0.002		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	ND	ND	ND
Benzo(a)pyrene	ND		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	ND	ND	ND
Benzo(b)fluoranthene	0.002		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	ND	ND	1.2
Benzo(g,h,i)perylene			1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
Benzo(k)fluoranthene	0.002		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
Benzoic acid			6.2 U	11 U	11 U	10 U	10 U	11 U	10 U	NA	NA	ND
Benzyl alcohol			1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
Bis(2-chloroethoxy)methane	5		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
Bis(2-chloroethyl)ether	1		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
Bis(2-ethylhexyl)phthalate	5		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
Butylbenzylphthalate	50		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
Carbazole			1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
Chrysene	0.002		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	ND	ND	ND

Table 6. Summary of Semivolatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (µg/L)	Sample Designation: Sample Date:	MW-90 06/03/08	MW-91 06/03/08	MW-92 06/03/08	SSY-23 08/20/99	SSY-46 08/20/99	SSY-49 08/20/99	SSY-51 08/20/99	SY-131W 09/26/06	SY-178W 08/16/06	TE-MW-D-2 11/14/06
Di-n-butyl phthalate			1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
Di-n-octyl phthalate			1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
Dibenzo(a h)anthracene	50		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
Dibenzofuran	50		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
Diethyl phthalate	50		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	ND	ND	ND
Dimethyl phthalate	50		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
Fluoranthene	50		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	ND	ND	ND
Fluorene	50		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
Hexachlorobenzene	0.04		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
Hexachlorobutadiene	0.5		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
Hexachlorocyclopentadiene	5		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
Hexachloroethane	5		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
Indeno(1,2,3-cd)pyrene	0.002		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
Isophorone	50		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
n-Nitroso-di-n-propylamine			1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
n-Nitrosodiphenylamine	50		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
Naphthalene	10		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
Nitrobenzene	0.4		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
Pentachlorophenol	1		6.2 U	11 U	11 U	26 U	26 U	26 U	25 U	NA	NA	ND
Phenanthrene	50		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
Phenol	1		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	NA	NA	ND
Pyrene	50		1.2 U	2.2 U	2.2 U	10 U	10 U	11 U	10 U	ND	ND	ND
Total SVOCs:			0	0	0	0	0	0	0	0	0	1.2

J - Estimated value

B - Compound was detected in blank sample

D - Dilution

U - Not Detected

V - Data was qualified by validator

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV

ND - Not detected; reporting limit not available

DUP - Duplicate

SVOCs - Semivolatile Organic Compounds

R - Rejected

NA - Not analyzed

* - Data analyzed but detection limit unknown

(1) - Sampled and analyzed by New York City Transit

(2) - Geoprobe TM sample collected from 17.5 feet below land surface

(3) - GeoprobeTM sample collected from 13.5 feet below land surface

Table 6. Summary of Semivolatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter	NYSDEC AWQSGVs	Sample Designation: T Sample Date:	E-MW-D-2(SY-8W) 10/20/00	TE-MW-IB/OB-1 10/20/00	TE-IB-3 10/20/00	TE-IB-3 11/14/06	TE-MW-A-1 10/19/00	TE-MW-A-3(SY-135) 10/20/00	TE-MW-A-3(SY-135W) 10/16/03	TE-MW-A-4 08/16/00
(Concentrations in µg/L)	(μg/L)									
1,2,4-Trichlorobenzene	5		NA	NA	NA	ND	NA	NA	NA	NA
2,2-oxybis (1-chloropropane)	5		NA	NA	NA	ND	NA	NA	NA	NA
2,4,5-Trichlorophenol			NA	NA	NA	ND	NA	NA	NA	NA
2,4,6-Trichlorophenol			NA	NA	NA	ND	NA	NA	NA	NA
2,4-Dichlorophenol	5		NA	NA	NA	ND	NA	NA	NA	NA
2,4-Dimethylphenol	50		NA	NA	NA	ND	NA	NA	NA	NA
2,4-Dinitrophenol	10		NA	NA	NA	ND	NA	NA	NA	NA
2,4-Dinitrotoluene	5		NA	NA	NA	ND	NA	NA	NA	NA
2,6-Dinitrotoluene	5		NA	NA	NA	ND	NA	NA	NA	NA
2-Chloronaphthalene	10		NA	NA	NA	ND	NA	NA	NA	NA
2-Chlorophenol			NA	NA	NA	ND	NA	NA	NA	NA
2-Methylnaphthalene			NA	NA	NA	ND	NA	NA	NA	NA
2-Methylphenol			NA	NA	NA	ND	NA	NA	NA	NA
2-Nitroaniline	5		NA	NA	NA	ND	NA	NA	NA	NA
2-Nitrophenol			NA	NA	NA	ND	NA	NA	NA	NA
3,3-Dichlorobenzidine	5		NA	NA	NA	ND	NA	NA	NA	NA
3-Nitroaniline	5		NA	NA	NA	ND	NA	NA	NA	NA
4,6-Dinitro-2-methylphenol			NA	NA	NA	ND	NA	NA	NA	NA
4-Bromophenyl phenyl ether			NA	NA	NA	ND	NA	NA	NA	NA
4-Chloro-3-methylphenol			NA	NA	NA	ND	NA	NA	NA	NA
4-Chloroaniline	5		NA	NA	NA	ND	NA	NA	NA	NA
4-Chlorophenyl phenyl ether			NA	NA	NA	ND	NA	NA	NA	NA
4-Methylphenol			NA	NA	NA	ND	NA	NA	NA	NA
4-Nitroaniline	5		NA NA	NA NA	NA	ND	NA	NA NA	NA NA	NA
4-Nitrophenol			NA NA	NA NA	NA	ND	NA	NA NA	NA NA	NA
Acenaphthene	20		NA NA	NA NA	NA	ND	NA	NA NA	NA NA	NA
Acenaphthylene			ND	ND	ND	ND	ND	ND	NA NA	.1J
Anthracene	50		ND	ND ND	ND	ND	ND	ND	ND	.13 .2J
Benzo(a)anthracene	0.002		ND	ND ND	ND	ND	ND	ND ND	ND	.2J
Benzo(a)pyrene	ND		NA	NA	NA	ND	NA	NA	ND	NA
Benzo(b)fluoranthene	0.002		ND	ND	ND	ND	ND	ND	ND	.4J
Benzo(g,h,i)perylene	0.002		ND	ND ND	ND	ND	ND	ND ND	NA	.3J
Benzo(k)fluoranthene	0.002		ND	ND ND	ND	ND	ND	ND ND	NA NA	.3J
Benzoic acid	0.002		NA NA	NA NA	NA NA	ND ND	NA	NA NA	NA NA	NA
Benzyl alcohol			NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA
Bis(2-chloroethoxy)methane	5		NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA
Bis(2-chloroethyl)ether	1		NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA
Bis(2-ethylhexyl)phthalate	5		ND	ND	0.6JB	ND ND	NA ND	0.2JB	NA NA	.6J
Butylbenzylphthalate	50		NA NA	NA NA	NA	ND ND	NA	0.23B NA	NA NA	NA
Carbazole	50 		NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA
Chrysene	0.002		NA ND	NA ND	NA ND	ND ND	NA ND	NA ND	NA ND	.3J

Table 6. Summary of Semivolatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (μg/L)	Sample Designation: TE-MW-D-2(SY-8W) Sample Date: 10/20/00	TE-MW-IB/OB-1 10/20/00	TE-IB-3 10/20/00	TE-IB-3 11/14/06	TE-MW-A-1 10/19/00	TE-MW-A-3(SY-135) 10/20/00	TE-MW-A-3(SY-135W) 10/16/03	TE-MW-A-4 08/16/00
D' 1 1 1 1 1 1 1		N/4	NYA	NY A	MD	27.4	N/A	NY A	27.4
Di-n-butyl phthalate		NA	NA	NA	ND	NA	NA	NA	NA
Di-n-octyl phthalate		ND	ND	0.1J	ND	ND	ND	NA	ND
Dibenzo(a h)anthracene	50	ND	ND	0.3J	ND	ND	ND	NA	ND
Dibenzofuran	50	NA	NA	NA	ND	NA	NA	NA	NA
Diethyl phthalate	50	NA	NA	NA	ND	NA	NA	ND	NA
Dimethyl phthalate	50	NA	NA	NA	ND	NA	NA	NA	NA
Fluoranthene	50	NA	NA	NA	ND	NA	NA	21	NA
Fluorene	50	ND	ND	ND	ND	ND	ND	NA	.4J
Hexachlorobenzene	0.04	NA	NA	NA	ND	NA	NA	NA	NA
Hexachlorobutadiene	0.5	NA	NA	NA	ND	NA	NA	NA	NA
Hexachlorocyclopentadiene	5	NA	NA	NA	ND	NA	NA	NA	NA
Hexachloroethane	5	NA	NA	NA	ND	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene	0.002	NA	NA	NA	ND	NA	NA	NA	NA
Isophorone	50	NA	NA	NA	ND	NA	NA	NA	NA
n-Nitroso-di-n-propylamine		NA	NA	NA	ND	NA	NA	NA	NA
n-Nitrosodiphenylamine	50	NA	NA	NA	ND	NA	NA	NA	NA
Naphthalene	10	NA	NA	NA	ND	NA	NA	NA	NA
Nitrobenzene	0.4	NA	NA	NA	ND	NA	NA	NA	NA
Pentachlorophenol	1	ND	ND	ND	ND	ND	ND	NA	.8J
Phenanthrene	50	ND	ND	ND	ND	ND	ND	NA	.1J
Phenol	1	NA	NA	NA	ND	NA	NA	NA	NA
Pyrene	50	ND	ND	ND	ND	ND	ND	ND	.4J
Total SVOCs:		0	0	1	0	0	0.2	21	4.1

J - Estimated value

B - Compound was detected in blank sample

D - Dilution

U - Not Detected

V - Data was qualified by validator

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV

ND - Not detected; reporting limit not available

DUP - Duplicate

SVOCs - Semivolatile Organic Compounds

R - Rejected

NA - Not analyzed

* - Data analyzed but detection limit unknown

(1) - Sampled and analyzed by New York City Transit

(2) - Geoprobe TM sample collected from 17.5 feet below land surface

(3) - GeoprobeTM sample collected from 13.5 feet below land surface

Table 6. Summary of Semivolatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	NYSDEC	Sample Designation: The			TE-MW-B/C-2				TE-MW-IB-1(SY-10	,
Parameter	AWQSGVs	Sample Date:	09/26/06	10/20/00	09/26/06	08/16/00	10/19/00	08/16/00	10/19/00	10/19/00
(Concentrations in µg/L)	(µg/L)									
1,2,4-Trichlorobenzene	5		NA	NA	NA	NA	NA	NA	NA	NA
2,2-oxybis (1-chloropropane)	5		NA	NA	NA	NA	NA	NA	NA	NA
2,4,5-Trichlorophenol			NA	NA	NA	NA	NA	NA	NA	NA
2,4,6-Trichlorophenol			NA	NA	NA	NA	NA	NA	NA	NA
2,4-Dichlorophenol	5		NA	NA	NA	NA	NA	NA	NA	NA
2,4-Dimethylphenol	50		NA	NA	NA	NA	NA	NA	NA	NA
2,4-Dinitrophenol	10		NA	NA	NA	NA	NA	NA	NA	NA
2,4-Dinitrotoluene	5		NA	NA	NA	NA	NA	NA	NA	NA
2,6-Dinitrotoluene	5		NA	NA	NA	NA	NA	NA	NA	NA
2-Chloronaphthalene	10		NA	NA	NA	NA	NA	NA	NA	NA
2-Chlorophenol			NA	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene			NA	NA	NA	NA	NA	NA	NA	NA
2-Methylphenol			NA	NA	NA	NA	NA	NA	NA	NA
2-Nitroaniline	5		NA	NA	NA	NA	NA	NA	NA	NA
2-Nitrophenol			NA	NA	NA	NA	NA	NA	NA	NA
3,3-Dichlorobenzidine	5		NA	NA	NA	NA	NA	NA	NA	NA
3-Nitroaniline	5		NA	NA	NA	NA	NA	NA	NA	NA
4,6-Dinitro-2-methylphenol			NA	NA	NA	NA	NA	NA	NA	NA
4-Bromophenyl phenyl ether			NA	NA	NA	NA	NA	NA	NA	NA
4-Chloro-3-methylphenol			NA	NA	NA	NA	NA	NA	NA	NA
4-Chloroaniline	5		NA	NA	NA	NA	NA	NA	NA	NA
4-Chlorophenyl phenyl ether			NA	NA	NA	NA	NA	NA	NA	NA
4-Methylphenol			NA	NA	NA	NA	NA	NA	NA	NA
4-Nitroaniline	5		NA	NA	NA	NA	NA	NA	NA	NA
4-Nitrophenol			NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	20		NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA
Acenaphthylene			NA NA	ND	NA NA	ND	ND	ND	ND	ND
Anthracene	50		1.9 J	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	0.002		1.6 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Benzo(a)pyrene	ND		ND	NA NA	ND ND	NA	NA NA	NA NA	NA NA	NA NA
Benzo(b)fluoranthene	0.002		3.2 J	ND ND	1.5 J	ND	ND ND	ND ND	ND ND	ND ND
Benzo(g,h,i)perylene	0.002		NA	ND ND	NA	ND ND	ND	ND ND	ND ND	ND ND
Benzo(k)fluoranthene	0.002		NA NA	ND ND	NA NA	ND ND	ND	ND ND	ND ND	ND ND
Benzoic acid	0.002		NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzyl alcohol Bis(2-chloroethoxy)methane	 5		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	. J		NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	
Bis(2-chloroethyl)ether	5			0.2JB		NA ND		NA ND	NA ND	NA ND
Bis(2-ethylhexyl)phthalate			NA		NA		ND			
Butylbenzylphthalate	50		NA	NA	NA NA	NA	NA	NA	NA	NA
Carbazole	0.002		NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	0.002		2 J	ND	ND	ND	ND	ND	ND	ND

Table 6. Summary of Semivolatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	NYSDEC	Sample Designation: TE	-MW-A-4(SY-153	W) TE-MW-B/C-2	TE-MW-B/C-2	TE-MW-B/C-4	TE-MW-D-1	TE-MW-D-4	TE-MW-IB-1(SY-103)	TE-MW-IB-2
Parameter (Concentrations in µg/L)	AWQSGVs (μg/L)	Sample Date:	09/26/06	10/20/00	09/26/06	08/16/00	10/19/00	08/16/00	10/19/00	10/19/00
Di-n-butyl phthalate			NA	NA	NA	NA	NA	NA	NA	NA
Di-n-octyl phthalate			NA	ND	NA	ND	ND	ND	ND	ND
Dibenzo(a h)anthracene	50		NA	0.6J	NA	ND	ND	ND	ND	0.6J
Dibenzofuran	50		NA	NA	NA	NA	NA	NA	NA	NA
Diethyl phthalate	50		ND	NA	ND	NA	NA	NA	NA	NA
Dimethyl phthalate	50		NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	50		2.8 J	NA	1.4 J	NA	NA	NA	NA	NA
Fluorene	50		NA	ND	NA	ND	ND	ND	ND	ND
Hexachlorobenzene	0.04		NA	NA	NA	NA	NA	NA	NA	NA
Hexachlorobutadiene	0.5		NA	NA	NA	NA	NA	NA	NA	NA
Hexachlorocyclopentadiene	5		NA	NA	NA	NA	NA	NA	NA	NA
Hexachloroethane	5		NA	NA	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene	0.002		NA	NA	NA	NA	NA	NA	NA	NA
Isophorone	50		NA	NA	NA	NA	NA	NA	NA	NA
n-Nitroso-di-n-propylamine			NA	NA	NA	NA	NA	NA	NA	NA
n-Nitrosodiphenylamine	50		NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	10		NA	NA	NA	NA	NA	NA	NA	NA
Nitrobenzene	0.4		NA	NA	NA	NA	NA	NA	NA	NA
Pentachlorophenol	1		NA	ND	NA	ND	ND	ND	ND	ND
Phenanthrene	50		NA	ND	NA	ND	ND	ND	ND	ND
Phenol	1		NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	50		2.3 J	ND	ND	ND	ND	ND	ND	ND
Total SVOCs:			15.2	0.8	2.9	0	0	0	0	0.6

J - Estimated value

B - Compound was detected in blank sample

D - Dilution

U - Not Detected

V - Data was qualified by validator

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV

ND - Not detected; reporting limit not available

DUP - Duplicate

SVOCs - Semivolatile Organic Compounds

R - Rejected

NA - Not analyzed

* - Data analyzed but detection limit unknown

(1) - Sampled and analyzed by New York City Transit

(2) - Geoprobe TM sample collected from 17.5 feet below land surface

(3) - GeoprobeTM sample collected from 13.5 feet below land surface

(4) - Geoprobe TM sample collected from 19.5 feet below land surface

Table 6. Summary of Semivolatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	NYSDEC	Sample Designation: TE-MW-OB-		-	TP-8	TP-9	TP-10	TSB-9 ⁽²⁾	TSB-10 ⁽³⁾	TSB-16 ⁽⁴⁾	UT-9AW
Parameter	AWQSGVs	Sample Date: 10/19/00	10/20/00	11/08/00	06/19/97	06/19/97	06/03/08	10/24/00	10/23/00	10/24/00	06/04/08
(Concentrations in µg/L)	(µg/L)										
1.2.4-Trichlorobenzene	5	NA	NA	NA	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
2,2-oxybis (1-chloropropane)	5	NA	NA	NA	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
2,4,5-Trichlorophenol		NA	NA	NA	50 U	50 U	2.2 U	25 U	25 U	25 U	2.1 U
2,4,6-Trichlorophenol		NA	NA	NA	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
2,4-Dichlorophenol	5	NA	NA	NA	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
2,4-Dimethylphenol	50	NA	NA	NA	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
2,4-Dinitrophenol	10	NA	NA	NA	50 U	50 U	11 U	25 U	25 U	25 U	11 U
2,4-Dinitrotoluene	5	NA	NA	NA	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
2,6-Dinitrotoluene	5	NA	NA	NA	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
2-Chloronaphthalene	10	NA	NA	NA	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
2-Chlorophenol		NA	NA	NA	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
2-Methylnaphthalene		NA	NA	NA	10 U	10 U	2.2 U	210 D	10 U	28	2.1 U
2-Methylphenol		NA	NA	NA	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
2-Nitroaniline	5	NA	NA	NA	50 U	50 U	2.2 U	25 U	25 U	25 U	2.1 U
2-Nitrophenol		NA	NA	NA	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
3,3-Dichlorobenzidine	5	NA	NA	NA	20 U	20 U	2.2 U	10 U	10 U	10 U	2.1 U
3-Nitroaniline	5	NA	NA	NA	50 U	50 U	2.2 U	25 U	25 U	25 U	2.1 U
4,6-Dinitro-2-methylphenol		NA	NA	NA	50 U	50 U	11 U	25 U	25 U	25 U	11 U
4-Bromophenyl phenyl ether		NA	NA	NA	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
4-Chloro-3-methylphenol		NA	NA	NA	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
4-Chloroaniline	5	NA	NA	NA	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
4-Chlorophenyl phenyl ether		NA	NA	NA	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
4-Methylphenol		NA	NA	NA	10 U	10 U	2.2 U	*	*	*	2.1 U
4-Nitroaniline	5	NA	NA	NA	20 U	20 U	2.2 U	25 U	25 U	25 U	2.1 U
4-Nitrophenol		NA	NA	NA	50 U	50 U	2.2 U	25 U	25 U	25 U	2.1 U
Acenaphthene	20	NA	NA	NA	10 U	10 U	2.2 U	5.9 J	2.9 J	3.4 J	2.1 U
Acenaphthylene		ND	ND	ND	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
Anthracene	50	ND	ND	ND	10 U	10 U	2.2 U	1.8 J	10 U	1.1 J	2.1 U
Benzo(a)anthracene	0.002	ND	ND	ND	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
Benzo(a)pyrene	ND	NA	NA	NA	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
Benzo(b)fluoranthene	0.002	ND	ND	ND	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
Benzo(g,h,i)perylene		ND	ND	ND	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
Benzo(k)fluoranthene	0.002	ND	ND	ND	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
Benzoic acid		NA	NA	NA	50 U	50 URV	11 U	*	*	*	2.1 U
Benzyl alcohol		NA	NA	NA	10 U	10 U	2.2 U	*	*	*	2.1 U
Bis(2-chloroethoxy)methane	5	NA	NA	NA	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
Bis(2-chloroethyl)ether	1	NA	NA	NA	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
Bis(2-ethylhexyl)phthalate	5	ND	ND	4J	10 U	10 UV	2.2 U	10 U	10 U	10 U	2.1 U
Butylbenzylphthalate	50	NA	NA	NA	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
Carbazole		NA	NA	NA	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
Chrysene	0.002	ND	ND	ND	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U

Table 6. Summary of Semivolatile Organic Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in μg/L)	NYSDEC AWQSGVs (µg/L)	Sample Designation: TE-MV Sample Date: 10/1	W-OB-1 9/00	1 TE-MW-OB-2 10/20/00	ΓΕ-MW-QA-2 11/08/00	TP-8 06/19/97	TP-9 06/19/97	TP-10 06/03/08	TSB-9 ⁽²⁾ 10/24/00	TSB-10 ⁽³⁾ 10/23/00	TSB-16 ⁽⁴⁾ 10/24/00	UT-9AW 06/04/08
Di-n-butyl phthalate		N	ΙA	NA	NA	0.2 JB	10 UV	2.2 U	10 U	10 U	10 U	2.1 U
Di-n-octyl phthalate		N	D	ND	.7Ј	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
Dibenzo(a h)anthracene	50	N	D	ND	.7Ј	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
Dibenzofuran	50	N	ΙA	NA	NA	10 U	10 U	2.2 U	4.7 J	10 U	2.6 J	2.1 U
Diethyl phthalate	50	N	ΙA	NA	NA	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
Dimethyl phthalate	50	N	ΙA	NA	NA	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
Fluoranthene	50	N	ΙA	NA	NA	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
Fluorene	50	N	D	ND	ND	10 U	10 U	2.2 U	8.5 J	3.7 J	5.8 J	2.1 U
Hexachlorobenzene	0.04	N	ΙA	NA	NA	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
Hexachlorobutadiene	0.5	N	ΙA	NA	NA	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
Hexachlorocyclopentadiene	5	N	ΙA	NA	NA	10 U	10 UJV	2.2 U	10 U	10 U	10 U	11 U
Hexachloroethane	5	N	ΙA	NA	NA	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
Indeno(1,2,3-cd)pyrene	0.002	N	ΙA	NA	NA	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
Isophorone	50	N	ΙA	NA	NA	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
n-Nitroso-di-n-propylamine		N	ΙA	NA	NA	10 U	NA	2.2 U	10 U	10 U	10 U	2.1 U
n-Nitrosodiphenylamine	50	N	ΙA	NA	NA	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
Naphthalene	10	N	ΙA	NA	NA	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
Nitrobenzene	0.4	N	ΙA	NA	NA	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
Pentachlorophenol	1	N	D	ND	ND	50 U	50 U	11 U	25 U	25 U	25 U	11 U
Phenanthrene	50	0.	.5J	ND	ND	10 U	10 U	2.2 U	8.4 J	10 U	6.3 J	2.1 U
Phenol	1	N	ΙA	NA	NA	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
Pyrene	50	N	D	ND	ND	10 U	10 U	2.2 U	10 U	10 U	10 U	2.1 U
Total SVOCs:		0	.5	0	5.4	0.2	0	0	239.3	6.6	19.2	0

J - Estimated value

B - Compound was detected in blank sample

D - Dilution

U - Not Detected

V - Data was qualified by validator

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV

ND - Not detected; reporting limit not available

DUP - Duplicate

SVOCs - Semivolatile Organic Compounds

R - Rejected

NA - Not analyzed

* - Data analyzed but detection limit unknown

(1) - Sampled and analyzed by New York City Transit

(2) - Geoprobe TM sample collected from 17.5 feet below land surface

(3) - GeoprobeTM sample collected from 13.5 feet below land surface

(4) - Geoprobe TM sample collected from 19.5 feet below land surface

Table 7. Summary of Metals in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	Background	NYSDEC	Sample Designation:	CV-2W	MW-9D	MW-9S	MW-13D	MW-13D DUP	MW-13S		MW-19	
Parameter	Concentrations	AWQSGVs	Sample Date:	11/14/06	06/03/08	06/03/08	06/03/08	06/03/08	06/02/08	06/18/97	04/15/03	04/22/03
(Concentrations in µg/L)	(μg/L)*	(μg/L)**										
Aluminum	28400 JV			ND	180 U	180 U	180 U	180 U	1200	575 JV	NA	NA
Antimony	46.9 B	3		ND	12 U	12 U	12 U	12 U	12 U	3 U	NA	NA
Arsenic	3.6 B	25		ND	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	5.4 B	NA	NA
Barium	280	1,000		129 J	180	74	87	86	170	150 B	NA	NA
Beryllium	1.8 B	(3)		ND	4 U	4 U	4 U	4 U	4 U	1 U	NA	NA
Cadmium	2.2 B	5		2.8 J	3.5 U	3.5 U	3.5 U	3.5 U	3.5 U	3 UJV	NA	NA
Calcium	150000		_	83300	100000	87000	99000	99000	77000	67500	NA	NA
Chromium	70.9 JV	50		8.53 J	50 U	50 U	50 U	50 U	50 U	3.8 BJV	NA	NA
Cobalt	23.3 B			ND	20 U	20 U	20 U	20 U	20 U	3.5 B	NA	NA
Copper	65.0 JV	200		ND	50 U	50 U	50 U	50 U	50 U	4.3 BJV	NA	NA
Iron	46500 JV	300		195	2200	280 U	280 U	280 U	2800	15900 JV	NA	NA
Lead	48	25		ND	4 U	4 U	4 U	4 U	4 U	2.2 BJV	0.023	0.19
Magnesium	53000	(35,000)		34100	40000	32000	37000	37000	30000	10200	NA	NA
Manganese	2650	300		363	700	2300	800	810	5200	2210	NA	NA
Mercury	0.33	0.7		0.9 J	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.2 U	NA	NA
Nickel	48.1	100	_	ND	50 U	50 U	50 U	50 U	50 U	15.6 B	NA	NA
Potassium	11900			3090 J	5000 U	6300	5000 U	5000 U	5100	4820 B	NA	NA
Selenium	10.1	10		ND	40 U	40 U	40 U	40 U	40 U	4.5 B	NA	NA
Silver	20 U	50		ND	20 U	20 U	20 U	20 U	20 U	1 U	NA	NA
Sodium	280000	20,000		137000	68000	78000	110000	110000	150000	31700	NA	NA
Thallium	10 U	(0.5)		9.27	10 U	10 U	10 U	10 U	10 U	3 UJV	NA	NA
Vanadium	72.9			ND	50 U	50 U	50 U	50 U	50 U	2.3 B	NA	NA
Zinc	160 JV	(2,000)		41.5	50 U	55	50 U	50 U	84	27.3 JV	NA	NA

R(following Sample Designation) - Replicate sample

- B Analyte concentration was between method detection limit and practical quantitation limit
- E Reported valude is estimated because of the presence of interference
- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data was qualified by validator
- ND Not detected; reporting limit not available
- μg/L Micrograms per liter
- NA Not analyzed

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWOSGV

- $^{(1)}$ GeoprobeTM sample collected from 17.5 feet below land surface $^{(2)}$ GeoprobeTM sample collected from 13.5 feet below land surface $^{(3)}$ GeoprobeTM sample collected from 19.5 feet below land surface
- F Filtered sample
- * Background concentrations for metals were determined based on analytical results for upgradient Yard boundary wells MW-30, MW-34, MW-47, MW-48D, MW-61, MW-62D, MW-80, MW-83, MW-84, TE-MW-QA-2, TP-9, and TP-10. Analytical data generated as part of both the initial OU-6 RI and the Supplemental OU-6 RI were used in determining the Background Concentrations.
- ** NYSDEC Standards and Guidance Values taken from October 22, 1993 (Reissued June, 1998) NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1), Ambient Water Quality Standards and Guidance Values. Guidance Values are shown (in parentheses).

Table 7. Summary of Metals in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	Background	NYSDEC	Sample Designation:					MW-25A	MW-27	MW-27	MW-27 DUP	MW-28	MW-28	MW-28
Parameter	Concentrations	AWQSGVs	Sample Date:	04/30/03	05/14/03	06/02/08	06/20/97	06/19/97	06/18/97	06/04/08	06/04/08	06/18/97	08/25/00	08/25/00
(Concentrations in µg/L)	(μg/L)*	(μg/L)**												(Dissolved)
Aluminum	28400 JV			NA	NA	180 U	420 JV	2800 JV	160 BJV	180 U	180 U	438 JV	28600	23.3B
Antimony	46.9 B	3		NA	NA	12 U	42 U	3 U	3 U	12 U	12 U	3 U	8.9B	3.5B
Arsenic	3.6 B	25		0.005 U	NA	7.5 U	3 U	3 U	3.6 B	7.5 U	7.5 U	3 U	70.7	2.0U
Barium	280	1,000		0.11	NA	61	202	32.3 B	601	120	120	202	1690	460
Beryllium	1.8 B	(3)		NA	NA	4 U	1 U	1 U	1 B	4 U	4 U	1 U	2.3B	0.20U
Cadmium	2.2 B	5		0.005 U	NA	3.5 U	3 U	3 UJV	3 U	3.5 U	3.5 U	3 U	79.4	8
Calcium	150000			NA	NA	66000	46800	16300	102000	100000	100000	69600	159000	143000
Chromium	70.9 JV	50		0.029	NA	50 U	6 UJV	8.8 BJV	42.7 JV	50 U	50 U	1.7 BJV	65.9	1.0U
Cobalt	23.3 B			NA	NA	20 U	9 U	2 B	33.3 B	20 U	20 U	4 B	69.5	5.9B
Copper	65.0 JV	200		NA	NA	50 U	4.9 BJV	11 BJV	4.7 BJV	50 U	50 U	2 BJV	220	3.3B
Iron	46500 JV	300		NA	NA	310	2490 JV	6520 JV	91300 JV	280 U	280 U	2960 JV	261000	4180
Lead	48	25		0.006	31	4 U	2.6 BJV	21.6 JV	2 UJV	4 U	4 U	9.2 JV	309	1.3U
Magnesium	53000	(35,000)		NA	NA	9100	10500	3640 B	32800	32000	32000	8780	31100	16400
Manganese	2650	300		NA	NA	270	917	132	4980	120	110	3280	22400	4830
Mercury	0.33	0.7		0.001 U	NA	0.7 U	0.35	0.2 U	0.2 U	0.7 U	0.7 U	0.2 U	0.38	0.10U
Nickel	48.1	100		NA	NA	50 U	0.2 U	6.7 B	52.8	50 U	50 U	3.4 B	91.6	6.2B
Potassium	11900			NA	NA	5000 U	4040 B	1310 B	3410 B	5000 U	5000 U	7260	36,900E	32,200E
Selenium	10.1	10		0.009	NA	40 U	3 U	3 U	3 U	40 U	40 U	3 U	3.4U	3.4U
Silver	20 U	50		0.005 U	NA	20 U	2.4 B	1 U	1 U	20 U	20 U	1 U	1.0U	1.0U
Sodium	280000	20,000		NA	NA	11000	112000	11300	126000	100000	100000	207000	98,800E	10,600E
Thallium	10 U	(0.5)		NA	NA	10 U	3 UJV	3 UJV	3 UJV	10 U	10 U	3 UJV	3.8U	3.8U
Vanadium	72.9	`		NA	NA	50 U	9 U	9.2 B	6.4 B	50 U	50 U	1.6 B	88.4	1.0U
Zinc	160 JV	(2,000)		NA	NA	50 U	11.7 BJV	51.2 JV	103 JV	50 U	50 U	28.8 JV	835	56.5

R(following Sample Designation) - Replicate sample

- B Analyte concentration was between method detection limit and practical quantitation limit
- E Reported valude is estimated because of the presence of interference
- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data was qualified by validator
- ND Not detected; reporting limit not available
- μg/L Micrograms per liter
- NA Not analyzed

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWOSGV

- $^{(1)}$ GeoprobeTM sample collected from 17.5 feet below land surface $^{(2)}$ GeoprobeTM sample collected from 13.5 feet below land surface $^{(3)}$ GeoprobeTM sample collected from 19.5 feet below land surface

- * Background concentrations for metals were determined based on analytical results for upgradient Yard boundary wells MW-30, MW-34, MW-47, MW-48D, MW-61, MW-62D, MW-80, MW-83, MW-84, TE-MW-QA-2, TP-9, and TP-10. Analytical data generated as part of both the initial OU-6 RI and the Supplemental OU-6 RI were used in determining the Background Concentrations.
- ** NYSDEC Standards and Guidance Values taken from October 22, 1993 (Reissued June, 1998) NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1), Ambient Water Quality Standards and Guidance Values. Guidance Values are shown (in parentheses).

Table 7. Summary of Metals in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	Background	NYSDEC	Sample Designation: MW-29	MW-30	MW-34	MW-34	MW-34	MW-35			MW-35	MW-37
Parameter	Concentrations	AWQSGVs	Sample Date: 06/18/97	06/18/97	06/18/97	08/25/00	08/25/00		04/15/03	04/22/03	06/02/08	06/18/97
(Concentrations in µg/L)	(μg/L)*	(μg/L)**		Background Well	Background Well		(Dissolved)					
Aluminum	28400 JV		168 BJV	227 JV	274 JV	2510	31.6B	58.4 BJV	NA	NA	180 U	404 JV
Antimony	46.9 B	3	3.7 B	42 U	3 U	2.1U	2.1U	3.5 B	NA	NA	12 U	3.7 B
Arsenic	3.6 B	25	3 U	3 U	3 U	2.0U	2.0U	20.9	NA	NA	11	3 U
Barium	280	1,000	150 B	189 B	169 B	124B	106B	319	NA	NA	550	118 B
Beryllium	1.8 B	(3)	1 U	1 U	1 B	0.20U	0.20U	1 U	NA	NA	4 U	1 U
Cadmium	2.2 B	5	3 U	3 U	3 U	0.40U	0.40U	3 UJV	NA	NA	3.5 U	3 UJV
Calcium	150000		67400	108000	132000	102000	105000	36700	NA	NA	75000	14200
Chromium	70.9 JV	50	1 UJV	6 U	4.2 BJV	8.6B	4.6B	1.3 BJV	NA	NA	50 U	1.4 BJV
Cobalt	23.3 B		1 U	9 U	1 U	1.9B	0.50U	1 U	NA	NA	20 U	1 U
Copper	65.0 JV	200	1 UJV	19.4 B	1 UJV	8.2B	2.1B	3.3 BJV	NA	NA	50 U	4.3 BJV
Iron	46500 JV	300	24800 JV	11100	579 JV	3990	45.3B	30600 JV	NA	NA	29000	774 JV
Lead	48	25	2 UJV	2 U	2 UJV	2.2B	1.3U	2 UJV	0.005 U	0.019	4 U	2.6 BJV
Magnesium	53000	(35,000)	22800	42100	47600	41000	40700	6670	NA	NA	16000	2350 B
Manganese	2650	300	2170	2650	12.3 B	114	3.2B	856	NA	NA	980	1210
Mercury	0.33	0.7	0.2 U	0.33	0.2 U	0.10U	0.10U	0.2 U	NA	NA	0.7 U	0.2 U
Nickel	48.1	100	1.6 B	0.2 U	2.2 B	5.8B	1.9B	2.3 B	NA	NA	50 U	3.8 B
Potassium	11900		7110	7680	3070 B	6290E	5,480E	3830 B	NA	NA	5000 U	1030 B
Selenium	10.1	10	3 U	3 U	3 U	3.4U	3.4U	3 U	NA	NA	40 U	3 B
Silver	20 U	50	1 U	2 U	1 U	1.0U	1.0U	1 U	NA	NA	20 U	1 U
Sodium	280000	20,000	113000	216000	164000	204,000E	225,000E	30900	NA	NA	57000	123000
Thallium	10 U	(0.5)	3 UJV	3 UJV	3 UJV	7.0B	4.2B	3 UJV	NA	NA	10 U	3 UJV
Vanadium	72.9		1 U	9 U	1 U	6.7B	1.7B	2.1 B	NA	NA	50 U	2.9 B
Zinc	160 JV	(2,000)	16 BJV	12.9 B	48 JV	22.7	23	22.1 JV	NA	NA	50 U	22.6 JV

R(following Sample Designation) - Replicate sample

- B Analyte concentration was between method detection limit and practical quantitation limit
- E Reported valude is estimated because of the presence of interference
- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data was qualified by validator
- ND Not detected; reporting limit not available
- μg/L Micrograms per liter
- NA Not analyzed

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWOSGV

- $^{(1)}$ GeoprobeTM sample collected from 17.5 feet below land surface $^{(2)}$ GeoprobeTM sample collected from 13.5 feet below land surface $^{(3)}$ GeoprobeTM sample collected from 19.5 feet below land surface

- F Filtered sample
- * Background concentrations for metals were determined based on analytical results for upgradient Yard boundary wells MW-30, MW-34, MW-47, MW-48D, MW-61, MW-62D, MW-80, MW-83, MW-84, TE-MW-QA-2, TP-9, and TP-10. Analytical data generated as part of both the initial OU-6 RI and the Supplemental OU-6 RI were used in determining the Background Concentrations.
- ** NYSDEC Standards and Guidance Values taken from October 22, 1993 (Reissued June, 1998) NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1), Ambient Water Quality Standards and Guidance Values. Guidance Values are shown (in parentheses).

Table 7. Summary of Metals in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	Background	NYSDEC	Sample Designation: MW-37	MW-38D	MW-38D	MW-39D	MW-40D		MW-42		MW-42		
Parameter	Concentrations	AWQSGVs	Sample Date: 06/02/08	06/18/97	06/02/08	06/02/08	06/18/97	06/18/97	06/18/97	08/25/00	08/25/00	06/18/97	06/18/97
(Concentrations in µg/L)	(μg/L)*	(μg/L)**									(Dissolved)		
Aluminum	28400 JV		180 U	717 JV	180 U	180 U	92.8 BJV	207 JV	438 JV	12500	21.7B	58.9 BJV	7 153 BJV
Antimony	46.9 B	3	12 U	42 U	12 U	12 U	3 U	3 U	3.8 B	2.1U	2.1U	3 U	3 U
Arsenic	3.6 B	25	7.5 U	3 U	7.5 U	8.2	3 U	3.1 B	3 U	2.0U	2.0U	3 U	3 U
Barium	280	1,000	190	362	410	580	176 B	108 B	55.6 B	214	70.9B	87.2 B	166 B
Beryllium	1.8 B	(3)	4 U	1 U	4 U	4 U	1 U	1 U	1 U	1.2B	0.20U	1 U	1 U
Cadmium	2.2 B	5	3.5 U	3 U	3.5 U	3.5 U	3 U	3 U	3 U	0.40U	0.40U	3 U	3 U
Calcium	150000		47000	95800	110000	110000	123000	54900	52000	69100	65900	55200	137000
Chromium	70.9 JV	50	50 U	6 UJV	50 U	50 U	1 UJV	1.1 BJV	4.3 BJV	25.9	4.4B	1 UJV	2.1 BJV
Cobalt	23.3 B		20 U	9 U	20 U	20 U	1 U	1 U	1 U	13.0B	0.50U	1 U	2.6 B
Copper	65.0 JV	200	50 U	16.8 BJV	50 U	50 U	1 UJV	1 UJV	35.3 JV	615	14.5B	1 UJV	1 UJV
Iron	46500 JV	300	280 U	4460 JV	13000	9300	137 JV	2580 JV	641 JV	18200	37.7B	158 JV	583 JV
Lead	48	25	4 U	4.5 JV	4 U	4 U	2 UJV	2.3 BJV	2.6 BJV	27.3	1.3U	2.7 BJV	3.4 JV
Magnesium	53000	(35,000)	12000	31600	30000	34000	50000	9410	9340	15400	10600	21800	46200
Manganese	2650	300	1600	599	820	1200	515	648	33.4	979	22	66.2	455
Mercury	0.33	0.7	0.7 U	0.2 U	0.7 U	0.7 U	0.2 U	0.2 U	0.2 U	0.10U	0.10U	0.2 U	0.2 U
Nickel	48.1	100	50 U	0.2 U	50 U	50 U	1.5 B	4.4 B	3.4 B	34.6B	1.7B	3.5 B	7 B
Potassium	11900		5000 U	3510 B	5000 U	5000 U	3320 B	4820 B	2720 B	7,680E	3,940BE	4220 B	6820
Selenium	10.1	10	40 U	3 U	40 U	40 U	3 U	3 U	3.4 B	3.4U	3.4U	3 B	3 U
Silver	20 U	50	20 U	2 U	20 U	20 U	1 U	1 U	1 U	1.0U	1.0U	1 U	1 U
Sodium	280000	20,000	120000	94100	79000	83000	97100	144000	17200	18,800E	19,800E	72900	70100
Thallium	10 U	(0.5)	10 U	3 UJV	10 U	10 U	3 UJV	3 UJV	3 UJV	3.8U	3.8U	3 UJV	3 UJV
Vanadium	72.9		50 U	9 U	50 U	50 U	1 U	1 U	1.6 B	24.2B	1.0U	1 U	1 U
Zinc	160 JV	(2,000)	50 U	12.9 BJV	50 U	50 U	28.1 JV	37.8 JV	30.1 JV	163	20.8	67.5 JV	18.4 BJV

R(following Sample Designation) - Replicate sample

- B Analyte concentration was between method detection limit and practical quantitation limit
- E Reported valude is estimated because of the presence of interference
- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data was qualified by validator
- ND Not detected; reporting limit not available
- μg/L Micrograms per liter
- NA Not analyzed

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWOSGV

- $^{(1)}$ GeoprobeTM sample collected from 17.5 feet below land surface $^{(2)}$ GeoprobeTM sample collected from 13.5 feet below land surface $^{(3)}$ GeoprobeTM sample collected from 19.5 feet below land surface
- F Filtered sample
- * Background concentrations for metals were determined based on analytical results for upgradient Yard boundary wells MW-30, MW-34, MW-47, MW-48D, MW-61, MW-62D, MW-80, MW-83, MW-84, TE-MW-QA-2, TP-9, and TP-10. Analytical data generated as part of both the initial OU-6 RI and the Supplemental OU-6 RI were used in determining the Background Concentrations.
- ** NYSDEC Standards and Guidance Values taken from October 22, 1993 (Reissued June, 1998) NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1), Ambient Water Quality Standards and Guidance Values. Guidance Values are shown (in parentheses).

Table 7. Summary of Metals in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter	Background Concentrations	NYSDEC AWQSGVs	Sample Designation: MW-45 Sample Date: 06/18/97	MW-45 08/25/00	MW-45 08/25/00	MW-45 06/04/08	MW-46	MW-47 06/20/97	MW-48D 06/20/97	MW-48D 06/03/08	MW-49 06/18/97
(Concentrations in µg/L)	Concentrations (μg/L)*	AwQ30 vs (μg/L)**	Sample Date: 00/18/9/	06/23/00	(Dissolved)	00/04/08	00/10/97	Background Well	Background Well	00/03/08	00/16/97
(Concentrations in µg/1)	(μg/L)	(μg/L)			(Dissolved)			Buckground Wen	Buckground Wen		
Aluminum	28400 JV		39.4 BJV	64.8B	15.2B	180 U	2300 JV	68.6 BJV	483 JV	180 U	159 BJV
Antimony	46.9 B	3	4.1 B	2.1U	2.2B	12 U	42 U	42 U	42 U	12 U	3 U
Arsenic	3.6 B	25	3 U	2.2B	3.0B	7.5 U	3 U	3 U	3 U	7.5 U	22.3
Barium	280	1,000	110 B	85.9B	93.8B	130	158 B	114 B	43.1 B	50 U	187 B
Beryllium	1.8 B	(3)	1 U	0.20U	0.20U	4 U	1 U	1 U	1 U	4 U	1 U
Cadmium	2.2 B	5	3 U	0.4U	0.4U	3.5 U	3 U	3 U	3 U	3.5 U	3 UJV
Calcium	150000		59100	44900	49300	63000	61000	75600	81900	16000	15000
Chromium	70.9 JV	50	2.1 BJV	2.7B	2.7B	50 U	7.5 BJV	6 UJV	6 UJV	50 U	1.2 BJV
Cobalt	23.3 B		1 U	0.50U	0.50U	20 U	9 U	9 U	9 U	20 U	9.4 B
Copper	65.0 JV	200	1 UJV	4.8B	2.7B	50 U	26.3 JV	5.6 BJV	10 BJV	50 U	86.8 JV
Iron	46500 JV	300	67.9 BJV	191	12.8B	280 U	4060 JV	102 JV	996 JV	880	73300 JV
Lead	48	25	2 UJV	1.3U	1.3U	4 U	5.5 JV	2 UJV	2 UJV	4 U	2.4 BJV
Magnesium	53000	(35,000)	14500	10000	10800	17000	16200	11400	27800	2200	4020 B
Manganese	2650	300	1 U	5.6B	1.0B	40 U	163	11.4 B	203	1100	1550
Mercury	0.33	0.7	0.2 U	0.10U	0.10U	0.7 U	0.2 U	0.25	0.2 U	0.7 U	0.2 U
Nickel	48.1	100	1 U	1.4B	1.2B	50 U	0.2 U	0.2 U	0.2 U	50 U	9.2 B
Potassium	11900		3490 B	4,950BE	5,300E	5000 U	5490	5640	4120 B	5000 U	3000 B
Selenium	10.1	10	3.9 B	3.4U	3.4U	40 U	3 U	3 U	3 U	40 U	5.5
Silver	20 U	50	1 U	1.0U	1.0U	20 U	2.3 B	2 U	2.2 B	20 U	1 U
Sodium	280000	20,000	101000	174,000E	19,500E	210000	69100	98900	74700	19000	7960
Thallium	10 U	(0.5)	3 UJV	1.0B	3.8U	10 U	3 UJV	3 UJV	3 UJV	10 U	3 UJV
Vanadium	72.9		1 U	1.0U	1.0U	50 U	9 U	9 U	9 U	50 U	2.1 B
Zinc	160 JV	(2,000)	38.7 JV	18.7B	9.6B	50 U	53.2 JV	20.2 JV	26.4 JV	73	157 JV

R(following Sample Designation) - Replicate sample

- B Analyte concentration was between method detection limit and practical quantitation limit
- E Reported valude is estimated because of the presence of interference
- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data was qualified by validator
- ND Not detected; reporting limit not available
- μg/L Micrograms per liter
- NA Not analyzed

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWOSGV

- $^{(1)}$ GeoprobeTM sample collected from 17.5 feet below land surface $^{(2)}$ GeoprobeTM sample collected from 13.5 feet below land surface $^{(3)}$ GeoprobeTM sample collected from 19.5 feet below land surface

- F Filtered sample
- * Background concentrations for metals were determined based on analytical results for upgradient Yard boundary wells MW-30, MW-34, MW-47, MW-48D, MW-61, MW-62D, MW-80, MW-83, MW-84, TE-MW-QA-2, TP-9, and TP-10. Analytical data generated as part of both the initial OU-6 RI and the Supplemental OU-6 RI were used in determining the Background Concentrations.
- ** NYSDEC Standards and Guidance Values taken from October 22, 1993 (Reissued June, 1998) NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1), Ambient Water Quality Standards and Guidance Values. Guidance Values are shown (in parentheses).

Table 7. Summary of Metals in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	Background	NYSDEC	Sample Designation: MW-57		MW-61	MW-62D	MW-62D			MW-65R	
Parameter	Concentrations	AWQSGVs	Sample Date: 06/18/97	06/18/97	06/18/97	06/18/97	06/04/08	06/19/97	06/19/97	06/19/97	05/03/96
(Concentrations in µg/L)	(μg/L)*	(μg/L)**			Background Well	Background Well	Background Well				
Aluminum	28400 JV		246 JV	151 BJV	2140 JV	253 JV	180 U	208 JV	12700 JV	5900 JV	16300
Antimony	46.9 B	3	8.6 B	3 U	4 B	3 U	12 U	42 U	42 U	42 U	6 U
Arsenic	3.6 B	25	3 U	7.7 B	3 U	3 U	7.5 U	3 U	3 U	3 U	5.2 B
Barium	280	1,000	16 B	42.9 B	72.8 B	89.9 B	110	44.6 B	177 B	114 B	282
Beryllium	1.8 B	(3)	1 U	1 U	1.1 B	1 U	4 U	1 U	2.5 B	1.5 B	1 U
Cadmium	2.2 B	5	3 U	3 U	3 U	3 U	3.5 U	3 U	3 U	3 U	1 U
Calcium	150000		7200	62300	80100	110000	110000	28500	112000	105000	95200
Chromium	70.9 JV	50	1.2 BJV	1.1 BJV	9 BJV	2.1 BJV	50 U	6 UJV	37.8 JV	16.7 JV	31
Cobalt	23.3 B		1 U	1 U	3.7 B	1 U	20 U	9 U	13.1 B	9 U	10.9 B
Copper	65.0 JV	200	2.4 BJV	1 UJV	7.6 BJV	1 UJV	50 U	4 UJV	69.2 JV	34.3 JV	42.1
Iron	46500 JV	300	454 JV	3550 JV	3800	373 JV	300	853 JV	42000 JV	19000 JV	23100
Lead	48	25	2.6 BJV	2.9 BJV	4.7 JV	2.1 BJV	4 U	2.5 BJV	16.8 JV	7.4 JV	17.5
Magnesium	53000	(35,000)	1130 B	5470	21000	43200	42000	7400	48200	42900	40700
Manganese	2650	300	123	6310	213	37.6	40 U	71.2	2360	1720	1570
Mercury	0.33	0.7	0.2 U	0.2 U	0.2 U	0.2 U	0.7 U	0.42	0.3	0.29	0.2 U
Nickel	48.1	100	3.1 B	2 B	10 B	1.8 B	50 U	0.2 U	21.3 B	9.9 B	19.5 B
Potassium	11900		1320 B	5790	2490 B	2010 B	5000 U	2280 B	8940	7750	14900
Selenium	10.1	10	3.1 B	3 U	10.1	3.8 B	40 U	3 U	3 U	3 U	11.4
Silver	20 U	50	1 U	1 U	1 U	1 U	20 U	2 U	2 U	2 U	1 U
Sodium	280000	20,000	70100	11900	23400	89300	130000	28600	105000	99200	95400
Thallium	10 U	(0.5)	3 UJV	3 UJV	3 UJV	3 UJV	10 U	3 UJV	3 UJV	3 UJV	6 U
Vanadium	72.9	`	2.7 B	1 U	5.1 B	1 U	50 U	9 U	51.8	23.4 B	43.7 B
Zinc	160 JV	(2,000)	21.9 JV	46.9 JV	48.4 JV	35.9 JV	50 U	763 JV	91.7 JV	45.5 JV	42.9

R(following Sample Designation) - Replicate sample

- B Analyte concentration was between method detection limit and practical quantitation limit
- E Reported valude is estimated because of the presence of interference
- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data was qualified by validator
- ND Not detected; reporting limit not available
- μg/L Micrograms per liter
- NA Not analyzed

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWOSGV

- $^{(1)}$ GeoprobeTM sample collected from 17.5 feet below land surface $^{(2)}$ GeoprobeTM sample collected from 13.5 feet below land surface $^{(3)}$ GeoprobeTM sample collected from 19.5 feet below land surface

- * Background concentrations for metals were determined based on analytical results for upgradient Yard boundary wells MW-30, MW-34, MW-47, MW-48D, MW-61, MW-62D, MW-80, MW-83, MW-84, TE-MW-QA-2, TP-9, and TP-10. Analytical data generated as part of both the initial OU-6 RI and the Supplemental OU-6 RI were used in determining the Background Concentrations.
- ** NYSDEC Standards and Guidance Values taken from October 22, 1993 (Reissued June, 1998) NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1), Ambient Water Quality Standards and Guidance Values. Guidance Values are shown (in parentheses).

Table 7. Summary of Metals in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	Background	NYSDEC	Sample Designation:	MW-66	MW-67	MW-68	MW-69D	MW-70	MW-78	MW-79	MW-79	MW-80	MW-82
Parameter	Concentrations	AWQSGVs	Sample Date:	06/19/97	06/19/97	06/04/08	06/20/97	06/02/08	07/05/05	07/05/05	06/03/08	06/04/08	06/05/08
(Concentrations in µg/L)	(μg/L)*	(μg/L)**										Background Wel	<u>l</u>
	20.400 114			2060 111	20.60 111	100 11	504 117	100 11	12000	2000	100 11	100 11	100 11
Aluminum	28400 JV			2860 JV	3860 JV	180 U	524 JV	180 U	13000	2900	180 U	180 U	180 U
Antimony	46.9 B	3		42 U	42 U	12 U	42 U	12 U	7.5 U	7.5 U	12 U	12 U	12 U
Arsenic	3.6 B	25		3 U	3 U	7.5 U	3 U	7.5 U	4 U	4.6	7.5 U	7.5 U	7.5 U
Barium	280	1,000		210	81 B	50 U	100 B	130	310	160	120	280	68
Beryllium	1.8 B	(3)		1 U	1 U	4 U	1 U	4 U	4 U	4 U	4 U	4 U	4 U
Cadmium	2.2 B	5		3 U	3 U	3.5 U	3 U	3.5 U	2 U	2 U	3.5 U	3.5 U	3.5 U
Calcium	150000			112000	74900	13000	105000	26000	76000	80000	75000	150000	36000
Chromium	70.9 JV	50		9.7 BJV	10.4 JV	50 U	6 UJV	50 U	28	25 U	50 U	50 U	50 U
Cobalt	23.3 B			9 U	9 U	20 U	9 U	20 U	15	10 U	20 U	20 U	20 U
Copper	65.0 JV	200		17.9 BJV	18.2 BJV	50 U	4.4 BJV	50 U	80	28	50 U	50 U	50 U
Iron	46500 JV	300		$7220 \mathrm{JV}$	9050 JV	7100	2830 JV	18000	21000	4900	280 U	6700	300
Lead	48	25		5.4 JV	5.7 JV	4 U	2 UJV	4 U	20	5 U	4 U	4 U	4 U
Magnesium	53000	(35,000)		43100	27400	4100	35700	4700	21000	15000	12000	42000	11000
Manganese	2650	300		1770	789	1300	4810	580	1000	480	40 U	2400	280
Mercury	0.33	0.7		0.31	0.36	0.7 U	0.34	0.7 U	0.2 U	0.2 U	0.7 U	0.7 U	0.7 U
Nickel	48.1	100		2.4 B	6.3 B	50 U	0.2 U	50 U	28	14	50 U	50 U	50 U
Potassium	11900			8090	3730 B	5000 U	3350 B	5000 U	9400	12000	12000	5000 U	5000 U
Selenium	10.1	10		3 U	3 U	40 U	3 U	40 U	25 U	25 U	40 U	40 U	40 U
Silver	20 U	50		2 B	2.2 B	20 U	2 U	20 U	5 U	5 U	20 U	20 U	20 U
Sodium	280000	20,000		168000	54400	56000	72500	18000	47000	45000	16000	280000	45000
Thallium	10 U	(0.5)		3 UJV	3 UJV	10 U	3 UJV	10 U	5 U	5 U	10 U	10 U	10 U
Vanadium	72.9			9 U	9 U	50 U	9 U	50 U	35	25 U	50 U	50 U	50 U
Zinc	160 JV	(2,000)		36 JV	64.4 JV	50 U	44.6 JV	50 U	120	45	50 U	110	50 U

R(following Sample Designation) - Replicate sample

- B Analyte concentration was between method detection limit and practical quantitation limit
- E Reported valude is estimated because of the presence of interference
- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data was qualified by validator
- ND Not detected; reporting limit not available
- μg/L Micrograms per liter
- NA Not analyzed

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWOSGV

- $^{(1)}$ GeoprobeTM sample collected from 17.5 feet below land surface $^{(2)}$ GeoprobeTM sample collected from 13.5 feet below land surface $^{(3)}$ GeoprobeTM sample collected from 19.5 feet below land surface

- F Filtered sample
- * Background concentrations for metals were determined based on analytical results for upgradient Yard boundary wells MW-30, MW-34, MW-47, MW-48D, MW-61, MW-62D, MW-80, MW-83, MW-84, TE-MW-QA-2, TP-9, and TP-10. Analytical data generated as part of both the initial OU-6 RI and the Supplemental OU-6 RI were used in determining the Background Concentrations.
- ** NYSDEC Standards and Guidance Values taken from October 22, 1993 (Reissued June, 1998) NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1), Ambient Water Quality Standards and Guidance Values. Guidance Values are shown (in parentheses).

Table 7. Summary of Metals in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	Background	NYSDEC	Sample Designation:	MW-83	MW-84	MW-85	MW-86	MW-87	MW-88	MW-89	MW-90	MW-91	MW-92
Parameter	Concentrations	AWQSGVs	Sample Date:	06/04/08	06/05/08	06/02/08	05/21/08	05/21/08	05/21/08	05/21/08	06/03/08	06/03/08	06/03/08
(Concentrations in µg/L)	(μg/L)*	(µg/L)**		Background Well	Background Well								
Aluminum	28400 JV			180 U	180 U	180 U	180 U	8400	180 U				
Antimony	46.9 B	3		12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U
Arsenic	3.6 B	25		7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	8.5	7.5 U
Barium	280	1,000		74	50 U	50 U	130	51	50 U	65	130	110	110
Beryllium	1.8 B	(3)		4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U
Cadmium	2.2 B	5		3.5 U	3.5 U	3.5 U	3.5 U	3.5 U	3.5 U	3.5 U	3.5 U	3.5 U	3.5 U
Calcium	150000			78000	35000	27000	55000	3600	50000	22000	76000	31000	84000
Chromium	70.9 JV	50		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Cobalt	23.3 B			20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
Copper	65.0 JV	200		50 U	50 U	50 U	50 U	66	50 U				
Iron	46500 JV	300		280 U	280 U	280 U	280 U	15000	9900	280 U	280 U	27000	280 U
Lead	48	25		4 U	4 U	4 U	4 U	78	4 U	4 U	4 U	4 U	4 U
Magnesium	53000	(35,000)		26000	15000	8400	15000	2000 U	5200	4400	15000	9700	9400
Manganese	2650	300		40 U	40 U	170	40 U	180	720	270	1200	3400	150
Mercury	0.33	0.7		0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U
Nickel	48.1	100		50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Potassium	11900			5000 U	5000 U	5000 U	5000 U	5200	5000 U	5000 U	17000	5000 U	6600
Selenium	10.1	10		40 U	40 U	40 U	40 U	40 U	40 U	40 U	40 U	40 U	40 U
Silver	20 U	50		20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
Sodium	280000	20,000		56000	8200	34000	10000	110000	57000	85000	110000	28000	110000
Thallium	10 U	(0.5)		10 U	10 U	10 U	8 U	8 U	8 U	8 U	10 U	10 U	10 U
Vanadium	72.9			50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Zinc	160 JV	(2,000)		50 U	50 U	110	160	90	50 U	50 U	51	50 U	50 U

R(following Sample Designation) - Replicate sample

- B Analyte concentration was between method detection limit and practical quantitation limit
- E Reported valude is estimated because of the presence of interference
- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data was qualified by validator
- ND Not detected; reporting limit not available
- μg/L Micrograms per liter
- NA Not analyzed

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWOSGV

Outlined - Exceeds Yard Background Conentration

- $^{(1)}$ GeoprobeTM sample collected from 17.5 feet below land surface $^{(2)}$ GeoprobeTM sample collected from 13.5 feet below land surface $^{(3)}$ GeoprobeTM sample collected from 19.5 feet below land surface

- F Filtered sample
- * Background concentrations for metals were determined based on analytical results for upgradient Yard boundary wells MW-30, MW-34, MW-47, MW-48D, MW-61, MW-62D, MW-80, MW-83, MW-84, TE-MW-QA-2, TP-9, and TP-10. Analytical data generated as part of both the initial OU-6 RI and the Supplemental OU-6 RI were used in determining the Background Concentrations.
- ** NYSDEC Standards and Guidance Values taken from October 22, 1993 (Reissued June, 1998) NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1), Ambient Water Quality Standards and Guidance Values. Guidance Values are shown (in parentheses).

AM0055.0065Y003.113/WKB

Table 7. Summary of Metals in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	Background	NYSDEC	Sample Designation: SSY-23				SY-131W	SY-131W	SY-153W	SY-153W	SY-178W
Parameter	Concentrations	AWQSGVs	Sample Date: 08/20/99	08/20/99	08/20/99	08/20/99	09/26/06	09/26/06	09/26/06	09/26/06	08/16/06
(Concentrations in µg/L)	(μg/L)*	$(\mu g/L)**$						(Dissolved)		(Dissolved)	
Aluminum	28400 JV		3920	105600	12100	56500	3030	268	4670	231	14600 E
Antimony	46.9 B	3	46.9 B	147 U	43.2 B	73.3 U	14 J	7.3 J	19.7 J	ND	ND
Arsenic	3.6 B	25	3.1 U	46.8	9.1 B	27.5	3.76 J	$\neg ND $	17 J	ND	ND
Barium	280	1,000	179 B	1150	120 B	447	117 JE	2376 JE	67.9 JE	ND [1120 E
Beryllium	1.8 B	(3)	0.5 U	4.6 B	2.3 B	2.9 B	0.63 J	0.38 J	0.7 J	0.31 J	2.1 J
Cadmium	2.2 B	5	4.3 B	15.6 U	39. U	7.8 U	0.92 J	ND	2.53 J	ND L	ND
Calcium	150000		131000	47600	67200	63000	10100	6870	5670	4320 J	56400
Chromium	70.9 JV	50	117	524	21	192	18.7	ND	38.4	0.35 J	67.5
Cobalt	23.3 B		7.1 U	173 B	14.8 B	58 B	6190 J	ND	9500 J	ND	45.1 J
Copper	65.0 JV	200	22.6 B	613	70.4	248	77.4 N	5 JN	405 N	26 N	299
Iron	46500 JV	300	5190	212000	39500	132000	38300	360	44100	540	5590
Lead	48	25	5.4	221	10.9	76.8	88.2	ND	456	7690	17.4
Magnesium	53000	(35,000)	48400	51700	22900	29700	2840 J	1220 J	2250 J	731 J	18300
Manganese	2650	300	150 E	9510 E	6930 E	2980 E	415	27.1	434	38.6	4740
Mercury	0.33	0.7	0.2 U	0.3	0.2 U	0.2 U	0.12 J	ND	0.56	ND	0.45 N
Nickel	48.1	100	13.6 B	593	56.4	138	30.5 J	1.68 J	35.4 J	2130 J	238
Potassium	11900		3370 BE	59600 E	7150 E	14800 E	19100	15700	2260 J	1490 J	4030 JE
Selenium	10.1	10	2.4 U	2.4 UW	2.4 UW	2.4 UW	8.17 J	3.63 J	12.5 J	7.68 J	7.6 J
Silver	20 U	50	3.7 U	14.8 U	3.7 U	7.4 U	ND	ND	2550 J	ND	3.2 J
Sodium	280000	20,000	133000	17400	49000	96600	35900	31200	1470 J	1450 J	7470 E
Thallium	10 U	(0.5)	3.9 U	22.3 B	11.4	10.2 B	ND	ND	ND	ND	3.9 J
Vanadium	72.9		30.6 B	347	50.2	261	19.5 J	4.78 J	49 J	4570 J	1.3 J
Zinc	160 JV	(2,000)	50.1 *	539 *	45.4 *	341 *	582 N	70.4	217 N	41 N	173 E

R(following Sample Designation) - Replicate sample

- B Analyte concentration was between method detection limit and practical quantitation limit
- E Reported valude is estimated because of the presence of interference
- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data was qualified by validator
- ND Not detected; reporting limit not available
- μg/L Micrograms per liter
- NA Not analyzed

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWOSGV

- $^{(1)}$ GeoprobeTM sample collected from 17.5 feet below land surface $^{(2)}$ GeoprobeTM sample collected from 13.5 feet below land surface $^{(3)}$ GeoprobeTM sample collected from 19.5 feet below land surface

- * Background concentrations for metals were determined based on analytical results for upgradient Yard boundary wells MW-30, MW-34, MW-47, MW-48D, MW-61, MW-62D, MW-80, MW-83, MW-84, TE-MW-QA-2, TP-9, and TP-10. Analytical data generated as part of both the initial OU-6 RI and the Supplemental OU-6 RI were used in determining the Background Concentrations.
- ** NYSDEC Standards and Guidance Values taken from October 22, 1993 (Reissued June, 1998) NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1), Ambient Water Quality Standards and Guidance Values. Guidance Values are shown (in parentheses).

Table 7. Summary of Metals in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	Background	NYSDEC	Sample Designation:	SY-178W	TE-MW-D-2	TE-MW-D-2	TE-MW-D-2(SY-8W)	TE-MW-D-2(SY-8W)	TE-MW-IB/OB-1
Parameter	Concentrations	AWQSGVs	Sample Date:	08/16/06	11/14/06	11/14/06	10/20/00	10/20/00	10/20/00
(Concentrations in µg/L)	(μg/L)*	(μg/L)**		(Dissolved)		(Dissolved)		(Dissolved)	
Aluminum	28400 JV			ND	2100	254	212	ND	ND
Antimony	46.9 B	3		ND	5.490 J	15.1 J	ND	ND	ND
Arsenic	3.6 B	25		ND	3.370 J	ND	ND	ND	ND
Barium	280	1,000		ND	117 JE	ND	90.2B	85.5B	84.7B
Beryllium	1.8 B	(3)		ND	0.660 J	0.410 J	ND	ND	ND
Cadmium	2.2 B	5		ND	ND	ND	ND	ND	ND
Calcium	150000			20000	11500	8880	103000	99700	95000
Chromium	70.9 JV	50		ND	7.720 J	13.6	3.6B	2.0B	17.4
Cobalt	23.3 B			ND	2.580 J	0.770 J	ND	ND	ND
Copper	65.0 JV	200		30	77.4 N	ND	3.0B	ND	ND
Iron	46500 JV	300		ND	11500	391	386	ND	ND
Lead	48	25		ND	75.4	ND	ND	ND	ND
Magnesium	53000	(35,000)		6500	4440 J	3350 J	40300	38700	30500
Manganese	2650	300		17	229	6980 J	26.4	12.4B	6.4B
Mercury	0.33	0.7		ND	ND	ND	ND	ND	ND
Nickel	48.1	100		ND	8.020 J	2.260 J	1.4B	1.4B	1.5B
Potassium	11900			6700	2500 J	1380 J	4950B	4,710B	6870
Selenium	10.1	10		ND	5.560 J	8980 J	5.1	ND	ND
Silver	20 U	50		ND	ND	ND	ND	ND	ND
Sodium	280000	20,000		14000	2540 J	2910 J	80500	79100	97000
Thallium	10 U	(0.5)		ND	ND	ND	ND	ND	ND
Vanadium	72.9			ND	17.2 J	4.160 J	ND	ND	ND
Zinc	160 JV	(2,000)		62	84.8 N	25.4 N	29.2	15.4B	8.1B

R(following Sample Designation) - Replicate sample

- B Analyte concentration was between method detection limit and practical quantitation limit
- E Reported valude is estimated because of the presence of interference
- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data was qualified by validator
- ND Not detected; reporting limit not available
- μg/L Micrograms per liter
- NA Not analyzed

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWOSGV

- $^{(1)}$ GeoprobeTM sample collected from 17.5 feet below land surface $^{(2)}$ GeoprobeTM sample collected from 13.5 feet below land surface $^{(3)}$ GeoprobeTM sample collected from 19.5 feet below land surface

- F Filtered sample
- * Background concentrations for metals were determined based on analytical results for upgradient Yard boundary wells MW-30, MW-34, MW-47, MW-48D, MW-61, MW-62D, MW-80, MW-83, MW-84, TE-MW-QA-2, TP-9, and TP-10. Analytical data generated as part of both the initial OU-6 RI and the Supplemental OU-6 RI were used in determining the Background Concentrations.
- ** NYSDEC Standards and Guidance Values taken from October 22, 1993 (Reissued June, 1998) NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1), Ambient Water Quality Standards and Guidance Values. Guidance Values are shown (in parentheses).

Table 7. Summary of Metals in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	Background	NYSDEC	Sample Designation:	TE-MW-IB/OB-1	TE-IB-3	TE-IB-3	TE-IB-3	TE-IB-3	TE-MW-A-1	TE-MW-A-1	TE-MW-A-3(SY-135)
Parameter	Concentrations	AWQSGVs	Sample Date:	10/20/00	10/20/00	10/20/00	11/14/06	11/14/06	10/19/00	10/19/00	10/20/00
(Concentrations in µg/L)	$(\mu g/L)^*$	$(\mu g/L)**$		(Dissolved)		(Dissolved)		(Dissolved)		(Dissolved)	
Aluminum	28400 JV			ND	296	ND	99.1 J	ND	54200	18.8B	4010
Antimony	46.9 B	3		ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	3.6 B	25		ND	ND	ND	ND	ND	11.2	l ND	ND
Barium	280	1,000		81.1B	67.5B	70.0B	115 J	95.6 J	1650	148B	66.6B
Beryllium	1.8 B	(3)		ND	ND	ND	0.110 J	0.110 J	4.2B	ND	ND
Cadmium	2.2 B	5		ND	ND	ND	3.020 J	2.920 J	ND	ND	ND
Calcium	150000			92600	112000	121000	119000	101000	150000	120000	33700
Chromium	70.9 JV	50		17.1	1.0B	ND	17.3	18.4	341	140	9.7B
Cobalt	23.3 B			ND	ND	ND	ND	ND	115	ND	2.8B
Copper	65.0 JV	200		ND	1.6B	ND	ND	ND	231	ND	17.3B
Iron	46500 JV	300		ND	350	ND	249 J	70.8 J	137000	ND	4710
Lead	48	25		ND	2.5B	ND	ND	ND	63.7	ND	3
Magnesium	53000	(35,000)		29400	33400	36200	44500	37800	74100	44700	9500
Manganese	2650	300		7.5B	101	82.7	5050 J	8.250 J	19600	239	1000
Mercury	0.33	0.7		ND	ND	ND	0.0900 J	$0.0800 \mathrm{J}$	ND	ND	ND
Nickel	48.1	100		1.7B	2.2B	2.0B	4.3 J	4.840 J	158	1.9B	9.8B
Potassium	11900			6750	5780	6350	4.350 J	3580 J	28300	6610	2,800B
Selenium	10.1	10		ND	ND	ND	ND	ND	11.9	ND	ND
Silver	20 U	50		ND	ND	ND	$4.740 \mathrm{J}$	4.110 J	ND	ND	ND
Sodium	280000	20,000		94700	106000	114000	175000	145000	97900	93500	27200
Thallium	10 U	(0.5)		ND	ND	ND	6.930 J	5.240 J	22.4	ND	ND
Vanadium	72.9			ND	2.2B	1.3B	1.890 J	ND	148	ND	6.7B
Zinc	160 JV	(2,000)		13.2B	8.0B	11.2B	57	49.2	303	7.0B	18.2B

R(following Sample Designation) - Replicate sample

- B Analyte concentration was between method detection limit and practical quantitation limit
- E Reported valude is estimated because of the presence of interference
- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data was qualified by validator
- ND Not detected; reporting limit not available
- μg/L Micrograms per liter
- NA Not analyzed

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWOSGV

- $^{(1)}$ GeoprobeTM sample collected from 17.5 feet below land surface $^{(2)}$ GeoprobeTM sample collected from 13.5 feet below land surface $^{(3)}$ GeoprobeTM sample collected from 19.5 feet below land surface

- F Filtered sample
- * Background concentrations for metals were determined based on analytical results for upgradient Yard boundary wells MW-30, MW-34, MW-47, MW-48D, MW-61, MW-62D, MW-80, MW-83, MW-84, TE-MW-QA-2, TP-9, and TP-10. Analytical data generated as part of both the initial OU-6 RI and the Supplemental OU-6 RI were used in determining the Background Concentrations.
- ** NYSDEC Standards and Guidance Values taken from October 22, 1993 (Reissued June, 1998) NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1), Ambient Water Quality Standards and Guidance Values. Guidance Values are shown (in parentheses).

Table 7. Summary of Metals in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	Background	NYSDEC	Sample Designation:	TE-MW-A-3(SY-135)	TE-MW-A-3(SY-135W)	TE-MW-A-3(SY-135W)	TE-MW-A-4	TE-MW-A-4	TE-MW-B/C-2
Parameter	Concentrations	AWQSGVs	Sample Date:	10/20/00	10/16/03	10/16/03	08/16/00	08/16/00	10/20/00
(Concentrations in µg/L)	(μg/L)*	(μg/L)**		(Dissolved)		(Dissolved)		(Dissolved)	
Aluminum	28400 JV			ND	1400	ND	1860	20	20.6B
	46.9 B			ND ND	ND	ND ND	8.3B	20 3.1	20.6B ND
Antimony		3							
Arsenic	3.6 B	25		ND	ND	ND	ND	ND	ND
Barium	280	1,000		40.5B	ND	ND	48.6B	29.2	56.4B
Beryllium	1.8 B	(3)		ND	ND	ND	ND	ND	ND
Cadmium	2.2 B	5		ND	ND	ND	0.45B	ND	ND
Calcium	150000			31200	21000	20000	18100	18600	136000
Chromium	70.9 JV	50		ND	ND	ND	11.7	0.61	ND
Cobalt	23.3 B			1.1B	ND	ND	3.7B	0.62	ND
Copper	65.0 JV	200		4.1B	45	30	127	8.4	ND
Iron	46500 JV	300		120	4100	ND	14800	ND	ND
Lead	48	25		ND	15	ND	116	ND	ND
Magnesium	53000	(35,000)		8260	7200	6500	6510	6190	58400
Manganese	2650	300		868	2700	17	187	7	18.1
Mercury	0.33	0.7		ND	ND	ND	ND	ND	ND
Nickel	48.1	100		2.5B	ND	ND	11.5B	1.3	1.2B
Potassium	11900			1,780B	6800	6700	1,830B	1660	5700
Selenium	10.1	10		ND	ND	ND	1.5B	2.8	5
Silver	20 U	50		ND	ND	ND	0.62B	ND	ND
Sodium	280000	20,000		26800	14000	14000	25600	26800	78700
Thallium	10 U	(0.5)		ND	ND	ND	ND	ND	ND
Vanadium	72.9			ND	ND	ND	13.2B	ND	ND
Zinc	160 JV	(2,000)		6.3B	140	62	89.6	16.7	6.6B

R(following Sample Designation) - Replicate sample

- B Analyte concentration was between method detection limit and practical quantitation limit
- E Reported valude is estimated because of the presence of interference
- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data was qualified by validator
- ND Not detected; reporting limit not available
- μg/L Micrograms per liter
- NA Not analyzed

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWOSGV

- $^{(1)}$ GeoprobeTM sample collected from 17.5 feet below land surface $^{(2)}$ GeoprobeTM sample collected from 13.5 feet below land surface $^{(3)}$ GeoprobeTM sample collected from 19.5 feet below land surface

- F Filtered sample
- * Background concentrations for metals were determined based on analytical results for upgradient Yard boundary wells MW-30, MW-34, MW-47, MW-48D, MW-61, MW-62D, MW-80, MW-83, MW-84, TE-MW-QA-2, TP-9, and TP-10. Analytical data generated as part of both the initial OU-6 RI and the Supplemental OU-6 RI were used in determining the Background Concentrations.
- ** NYSDEC Standards and Guidance Values taken from October 22, 1993 (Reissued June, 1998) NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1), Ambient Water Quality Standards and Guidance Values. Guidance Values are shown (in parentheses).

Table 7. Summary of Metals in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	Background	NYSDEC	Sample Designation:	TE-MW-B/C-2	TE-MW-B/C-2	TE-MW-B/C-2	TE-MW-B/C-4	TE-MW-B/C-4	TE-MW-D-1	TE-MW-D-1	TE-MW-D-4
Parameter	Concentrations	AWQSGVs	Sample Date:	10/20/00	09/26/06	09/26/06	08/16/00	08/16/00	10/19/00	10/19/00	08/16/00
(Concentrations in µg/L)	(μg/L)*	$(\mu g/L)**$		(Dissolved)		(Dissolved)		(Dissolved)		(Dissolved)	
Aluminum	28400 JV			ND	3920	403	624	14.5	3250	ND	168B
Antimony	46.9 B	3		ND	9570 J	7.12 J	4.4B	4.3	ND	ND	2.2B
Arsenic	3.6 B	25		ND	7730 J	ND	ND	ND	ND	ND	ND
Barium	280	1,000		54.8B	87.9 JE	26.5 J	22.7B	19	233	182B	70.8B
Beryllium	1.8 B	(3)		ND	0.72 J	0.39 J	ND	ND	ND	ND	ND
Cadmium	2.2 B	5		ND	0.84 J	ND	ND	ND	ND	ND	0.29B
Calcium	150000			132000	19200	17400	14000	14700	106000	103000	119000
Chromium	70.9 JV	50		ND	13.6	1.42 J	2.6B	0.82	8.7B	ND	2.4B
Cobalt	23.3 B			ND	5.67 J	ND	1.3B	0.37	4.6B	1.0B	0.35B
Copper	65.0 JV	200		ND	105 N	9800 JN	6.0B	1.7	7.6B	ND	3.3B
Iron	46500 JV	300		ND	12800	596	1110	ND	21400	ND	224
Lead	48	25		ND	102	7.58	ND	ND	2.6B	ND	ND
Magnesium	53000	(35,000)		57000	4670 J	2430 J	5100	5210	35800	33900	43600
Manganese	2650	300		15.7	363	39.2	85.4	60.8	19800	1620	74.9
Mercury	0.33	0.7		ND	0.07 J	ND	ND	ND	ND	ND	ND
Nickel	48.1	100		1.3B	15 J	ND	2.3B	1.8	8.3B	1.4B	3.2B
Potassium	11900			5360	7420	7150	1,470B	1300	12800	11000	3,550B
Selenium	10.1	10		ND	11.5 J	6.39 J	ND	ND	ND	ND	3.1B
Silver	20 U	50		ND	1.64 J	ND	0.32B	0.46	ND	ND	ND
Sodium	280000	20,000		76200	10800	11700	29700	31700	94100	92100	60300
Thallium	10 U	(0.5)		ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	72.9			ND	27.3 J	8.07 J	1.9B	0.37	11.5B	ND	ND
Zinc	160 JV	(2,000)		14.0B	108 N	33.7 N	21.8	10.2	24.7	11.8B	25.5

R(following Sample Designation) - Replicate sample

- B Analyte concentration was between method detection limit and practical quantitation limit
- E Reported valude is estimated because of the presence of interference
- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data was qualified by validator
- ND Not detected; reporting limit not available
- μg/L Micrograms per liter
- NA Not analyzed

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWOSGV

- $^{(1)}$ GeoprobeTM sample collected from 17.5 feet below land surface $^{(2)}$ GeoprobeTM sample collected from 13.5 feet below land surface $^{(3)}$ GeoprobeTM sample collected from 19.5 feet below land surface

- F Filtered sample
- * Background concentrations for metals were determined based on analytical results for upgradient Yard boundary wells MW-30, MW-34, MW-47, MW-48D, MW-61, MW-62D, MW-80, MW-83, MW-84, TE-MW-QA-2, TP-9, and TP-10. Analytical data generated as part of both the initial OU-6 RI and the Supplemental OU-6 RI were used in determining the Background Concentrations.
- ** NYSDEC Standards and Guidance Values taken from October 22, 1993 (Reissued June, 1998) NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1), Ambient Water Quality Standards and Guidance Values. Guidance Values are shown (in parentheses).

Table 7. Summary of Metals in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	Background	NYSDEC			, ,	, ,		TE-MW-IB-2		TE-MW-OB-1
Parameter	Concentrations	AWQSGVs	Sample Date:	08/16/00	10/19/00	10/19/00	10/19/00	10/19/00	10/19/00	10/19/00
(Concentrations in µg/L)	(μg/L)*	(μg/L)**		(Dissolved)		(Dissolved)		(Dissolved)		(Dissolved)
Aluminum	28400 JV			16.3	ND	16.6B	4480	ND	568	ND
Antimony	46.9 B	3		7.7	ND	ND	ND	ND	ND	ND
Arsenic	3.6 B	25		ND	ND	ND	ND	ND	ND	ND
Barium	280	1,000		74.1	152B	153B	113B	67.4B	194B	183B
Beryllium	1.8 B	(3)		ND	ND	ND	ND	ND	ND	ND
Cadmium	2.2 B	5		ND	ND	ND	ND	ND	ND	ND
Calcium	150000			126000	108000	109000	51000	49100	129000	126000
Chromium	70.9 JV	50		2	173	173	18.6	ND	10.4	9.0B
Cobalt	23.3 B			0.48	ND	ND	8.2B	1.8B	3.4B	3.4B
Copper	65.0 JV	200		2.4	ND	ND	22.9B	ND	2.1B	ND
Iron	46500 JV	300		ND	ND	ND	28900	20.5B	137000	ND
Lead	48	25		ND	ND	ND	15	ND	ND	ND
Magnesium	53000	(35,000)		46000	28600	28600	17300	15900	52000	50700
Manganese	2650	300		75.8	43.9	47.6	3180	2560	2330	2220
Mercury	0.33	0.7		ND	ND	ND	ND	ND	ND	ND
Nickel	48.1	100		2.7	2.6B	2.5B	16.7B	5.3B	5.2B	5.2B
Potassium	11900			3800	11100	11300	8010	6810	9200	8730
Selenium	10.1	10		2.8	ND	ND	ND	ND	ND	ND
Silver	20 U	50		ND	ND	ND	ND	ND	ND	ND
Sodium	280000	20,000		63300	97500	98000	27700	28300	75000	74000
Thallium	10 U	(0.5)		ND	ND	ND	ND	ND	ND	ND
Vanadium	72.9			ND	ND	ND	23.5B	ND	ND	ND
Zinc	160 JV	(2,000)		26.5	26.3	23.6	61.5	11.2B	15.6B	8.8B

R(following Sample Designation) - Replicate sample

- B Analyte concentration was between method detection limit and practical quantitation limit
- E Reported valude is estimated because of the presence of interference
- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data was qualified by validator
- ND Not detected; reporting limit not available
- μg/L Micrograms per liter
- NA Not analyzed

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWOSGV

- $^{(1)}$ GeoprobeTM sample collected from 17.5 feet below land surface $^{(2)}$ GeoprobeTM sample collected from 13.5 feet below land surface $^{(3)}$ GeoprobeTM sample collected from 19.5 feet below land surface
- F Filtered sample
- * Background concentrations for metals were determined based on analytical results for upgradient Yard boundary wells MW-30, MW-34, MW-47, MW-48D, MW-61, MW-62D, MW-80, MW-83, MW-84, TE-MW-QA-2, TP-9, and TP-10. Analytical data generated as part of both the initial OU-6 RI and the Supplemental OU-6 RI were used in determining the Background Concentrations.
- ** NYSDEC Standards and Guidance Values taken from October 22, 1993 (Reissued June, 1998) NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1), Ambient Water Quality Standards and Guidance Values. Guidance Values are shown (in parentheses).

Table 7. Summary of Metals in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter	Background Concentrations	NYSDEC AWQSGVs	Sample Designation: TE-MW-OB-1 Sample Date: 06/04/08	TE-MW-OB-2 10/20/00	TE-MW-OB-2 10/20/00	TE-MW-QA-2 11/03/00	TE-MW-QA-2 11/03/00	TE-MW-QA-2 06/05/08	TP-10 06/19/97
(Concentrations in µg/L)	Concentrations (μg/L)*	AwQ3Gvs (μg/L)**	Sample Date: 00/04/08	10/20/00	(Dissolved)	11/03/00	(Dissolved)	Background Well	Background Well
(Concentrations in µg/L)	(μg/L)*	(μg/L)			(Dissolved)		(Dissolved)	Dackground Wen	Dackground Wen
Aluminum	28400 JV		520	13500	ND	15700	28.5B	1300	3740 JV
Antimony	46.9 B	3	12 U	ND	ND	ND	5.8B	12 U	42 U
Arsenic	3.6 B	25	7.5 U	ND	ND	ND	ND	7.5 U	3 U
Barium	280	1,000	130	340	171B	195B	35.2B	120	64.6 B
Beryllium	1.8 B	(3)	4 U	1.2B	ND	0.61B	ND	4 U	1 U
Cadmium	2.2 B	5	3.5 U	ND	ND	ND	ND	3.5 U	3 U
Calcium	150000		150000	149000	137000	67000	54700	140000	38400
Chromium	70.9 JV	50	50 U	53.5	ND	66.2	2.1B	50 U	11.4 JV
Cobalt	23.3 B		20 U	17.3B	1.7B	15.0B	ND	20 U	9 U
Copper	65.0 JV	200	50 U	39.3	ND	46.5	1.6B	50 U	27 JV
Iron	46500 JV	300	880	103000	283	44100	ND	6800	3900 JV
Lead	48	25	4 U	14.8	ND	17.9	ND	48	6.6 JV
Magnesium	53000	(35,000)	52000	62800	56300	27700	18700	53000	6630
Manganese	2650	300	170	5090	2790	1960	573	880	23
Mercury	0.33	0.7	0.7 U	ND	ND	ND	ND	0.7 U	0.2 U
Nickel	48.1	100	50 U	35.2B	3.1B	33.5B	2.6B	50 U	3.4 B
Potassium	11900		5000 U	4950B	10300	17100	9720	5000 U	4870 B
Selenium	10.1	10	40 U	6.8N	ND	ND	ND	40 U	3 U
Silver	20 U	50	20 U	ND	ND	ND	ND	20 U	2.7 B
Sodium	280000	20,000	140000	79400	78100	65000	60600	81000	67400
Thallium	10 U	(0.5)	10 U	12.2	7.9B	ND	ND	10 U	3 UJV
Vanadium	72.9		50 U	47.8B	ND	45.0B	ND	50 U	9 U
Zinc	160 JV	(2,000)	50 U	69.3	7.2B	111	5.2B	50 U	28.6 JV

R(following Sample Designation) - Replicate sample

- B Analyte concentration was between method detection limit and practical quantitation limit
- E Reported valude is estimated because of the presence of interference
- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data was qualified by validator
- ND Not detected; reporting limit not available
- μg/L Micrograms per liter
- NA Not analyzed

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWOSGV

- $^{(1)}$ GeoprobeTM sample collected from 17.5 feet below land surface $^{(2)}$ GeoprobeTM sample collected from 13.5 feet below land surface $^{(3)}$ GeoprobeTM sample collected from 19.5 feet below land surface

- F Filtered sample
- * Background concentrations for metals were determined based on analytical results for upgradient Yard boundary wells MW-30, MW-34, MW-47, MW-48D, MW-61, MW-62D, MW-80, MW-83, MW-84, TE-MW-QA-2, TP-9, and TP-10. Analytical data generated as part of both the initial OU-6 RI and the Supplemental OU-6 RI were used in determining the Background Concentrations.
- ** NYSDEC Standards and Guidance Values taken from October 22, 1993 (Reissued June, 1998) NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1), Ambient Water Quality Standards and Guidance Values. Guidance Values are shown (in parentheses).

Table 7. Summary of Metals in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	Background	NYSDEC	Sample Designation:	TP-10	TP-8	TP-9	TSB-9 ⁽¹⁾	TSB-9 ⁽¹⁾ F	TSB-10 ⁽²⁾	TSB-10 ⁽²⁾ F	TSB-16 ⁽³⁾	TSB-16 ⁽³⁾ F
Parameter	Concentrations	AWQSGVs	Sample Date:	06/03/08	06/19/97	06/19/97	10/24/00	10/24/00	10/23/00	10/23/00	10/24/00	10/24/00
(Concentrations in µg/L)	(μg/L)*	(μg/L)**		Background Well		Background Well						
Aluminum	28400 JV			180 U	38000 JV	28400 JV	213	27.2	73.2	187	3670	19.8
Antimony	46.9 B	3		12 U	42 U	42 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U
Arsenic	3.6 B	25		7.5 U	9 B	3 U	22.7	3.7 U	27.5	20.8	3.7 U	3.7 U
Barium	280	1,000		52	291	275	682	391	266	242	192	108
Beryllium	1.8 B	(3)		4 U	7.1	1.8 B	0.1 U	0.1 U	0.1 U	0.1	0.27	0.1 U
Cadmium	2.2 B	5		3.5 U	3 U	3 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
Calcium	150000			65000	22200	35800	42600	33800	22900	22500	47400	36500
Chromium	70.9 JV	50		50 U	161 JV	70.9 JV	3.7	0.55	0.5 U	2.2	32.9	0.5 U
Cobalt	23.3 B			20 U	38.8 B	23.3 B	3.2	2.5	0.5 U	0.86	4.7	0.5 U
Copper	65.0 JV	200		50 U	119 JV	65 JV	11.1	0.7 U	0.92	6.1	36.1	0.7 U
Iron	46500 JV	300		280 U	104000 JV	46500 JV	59600	10700	22100	21400	15900	242
Lead	48	25		4 U	60.5 JV	21.9 JV	4	1.4 U	1.4 U	2.9	11.1	1.4 U
Magnesium	53000	(35,000)		5200	15900	24300	9490	7710	5340	5200	11600	7600
Manganese	2650	300		40 U	2980	685	2960 J	2290	734 J	721	1630 J	1160
Mercury	0.33	0.7		0.7 U	0.36	0.27	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Nickel	48.1	100		50 U	69.4	48.1	7.2	4.4	4.3	4.5	16.2	2.3
Potassium	11900			5000 U	6980	9750	5170	4300	5060	5070	4220	2560
Selenium	10.1	10		40 U	3 U	3 U	4	3.8 U	3.8 U	3.8 U	3.8 U	4.2 J
Silver	20 U	50		20 U	2 U	2 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.86
Sodium	280000	20,000		76000	14900	10200	14100	11700	18964	11964	13928	49464
Thallium	10 U	(0.5)		10 U	3 UJV	3 UJV	4.8 U	4.8 U	6.3	4.8 U	4.8 U	4.8 U
Vanadium	72.9	`		50 U	181	72.9	2.9	0.62	1.8	3	11.5	0.9
Zinc	160 JV	(2,000)		50 U	269 JV	160 JV	41.1	21.5	31.4	30.4	59	16.2

R(following Sample Designation) - Replicate sample

- B Analyte concentration was between method detection limit and practical quantitation limit
- E Reported valude is estimated because of the presence of interference
- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data was qualified by validator
- ND Not detected; reporting limit not available
- μg/L Micrograms per liter
- NA Not analyzed

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWOSGV

- $^{(1)}$ GeoprobeTM sample collected from 17.5 feet below land surface $^{(2)}$ GeoprobeTM sample collected from 13.5 feet below land surface $^{(3)}$ GeoprobeTM sample collected from 19.5 feet below land surface
- F Filtered sample
- * Background concentrations for metals were determined based on analytical results for upgradient Yard boundary wells MW-30, MW-34, MW-47, MW-48D, MW-61, MW-62D, MW-80, MW-83, MW-84, TE-MW-QA-2, TP-9, and TP-10. Analytical data generated as part of both the initial OU-6 RI and the Supplemental OU-6 RI were used in determining the Background Concentrations.
- ** NYSDEC Standards and Guidance Values taken from October 22, 1993 (Reissued June, 1998) NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1), Ambient Water Quality Standards and Guidance Values. Guidance Values are shown (in parentheses).

Table 7. Summary of Metals in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	Background	NYSDEC	Sample Designation: UT-9AW
Parameter	Concentrations	AWQSGVs	Sample Date: 06/04/08
(Concentrations in µg/L)	(μg/L)*	$(\mu g/L)**$	
Aluminum	28400 JV		330
Antimony	46.9 B	3	12 U
Arsenic	3.6 B	25	7.5 U
Barium	280	1,000	170
Beryllium	1.8 B	(3)	4 U
Cadmium	2.2 B	5	3.5 U
Calcium	150000		120000
Chromium	70.9 JV	50	50 U
Cobalt	23.3 B		20 U
Copper	65.0 JV	200	50 U
Iron	46500 JV	300	800
Lead	48	25	4 U
Magnesium	53000	(35,000)	42000
Manganese	2650	300	40 U
Mercury	0.33	0.7	0.7 U
Nickel	48.1	100	50 U
Potassium	11900		5000 U
Selenium	10.1	10	40 U
Silver	20 U	50	20 U
Sodium	280000	20,000	230000
Thallium	10 U	(0.5)	10 U
Vanadium	72.9	`	50 U
Zinc	160 JV	(2,000)	50 U

R(following Sample Designation) - Replicate sample

- B Analyte concentration was between method detection limit and practical quantitation limit
- E Reported valude is estimated because of the presence of interference
- J Estimated value
- U Indicates that the compound was analyzed for but not detected
- V Data was qualified by validator
- ND Not detected; reporting limit not available
- μg/L Micrograms per liter
- NA Not analyzed

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWOSGV

- $^{(1)}$ GeoprobeTM sample collected from 17.5 feet below land surface $^{(2)}$ GeoprobeTM sample collected from 13.5 feet below land surface $^{(3)}$ GeoprobeTM sample collected from 19.5 feet below land surface

- F Filtered sample
- * Background concentrations for metals were determined based on analytical results for upgradient Yard boundary wells MW-30, MW-34, MW-47, MW-48D, MW-61, MW-62D, MW-80, MW-83, MW-84, TE-MW-QA-2, TP-9, and TP-10. Analytical data generated as part of both the initial OU-6 RI and the Supplemental OU-6 RI were used in determining the Background Concentrations.
- ** NYSDEC Standards and Guidance Values taken from October 22, 1993 (Reissued June, 1998) NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1), Ambient Water Quality Standards and Guidance Values. Guidance Values are shown (in parentheses).

Table 8. Summary of Polychlorinated Biphenyl Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (μg/L)	Sample Designation: Sample Date:	MW-9D 06/03/08	MW-9S 06/03/08	MW-13D 06/03/08	MW-13D DUP 06/03/08	MW-13S 06/02/08
Aroclor-1016			0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Aroclor-1221			0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Aroclor-1232			0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Aroclor-1242			0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Aroclor-1248			0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Aroclor-1254			0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Aroclor-1260			0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Aroclor-1262			0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Aroclor-1268			0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Total PCBs:	0.09		0	0	0	0	0

J - Estimated value

U - Not Detected

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV (No exceedances on this table)

PCBs - Polychlorinated Biphenyl Compounds

DUP - Duplicate

NA - Not analyzed

ND - Not detected; reporting limit not available

* A petroleum sheen was present

(1) - Split sample analyzed by New York City Transit

⁽²⁾ - GeoprobeTM sample collected from 17.5 feet below land surface

⁽³⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

⁽⁴⁾ - GeoprobeTM sample collected from 19.5 feet below land surface

Table 8. Summary of Polychlorinated Biphenyl Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (μg/L)	Sample Designation: Sample Date:	MW-19 02/06/97	MW-19 02/21/97	MW-19 03/27/97	MW-19 06/18/97	MW-19 ⁽¹⁾ 09/18/97
Aroclor-1016			1 U	1.0 U	1 U	0.07 U	ND
Aroclor-1221			2 U	2.0 U	2.1 U	0.14 U	ND
Aroclor-1232			1 U	1.0 U	1 U	0.07 U	ND
Aroclor-1242			1 U	1.0 U	1 U	0.07 U	ND
Aroclor-1248			1 U	1.0 U	1 U	0.07 U	ND
Aroclor-1254			1 U	1.0 U	1 U	0.07 U	ND
Aroclor-1260			1 U	1.0 U	1 U	0.07 U	ND
Aroclor-1262			NA	NA	NA	NA	NA
Aroclor-1268			NA	NA	NA	NA	NA
Total PCBs:	0.09		0	0	0	0	ND

J - Estimated value

U - Not Detected

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV (No exceedances on this table)

PCBs - Polychlorinated Biphenyl Compounds

DUP - Duplicate

NA - Not analyzed

ND - Not detected; reporting limit not available

* A petroleum sheen was present

^{(1) -} Split sample analyzed by New York City Transit

⁽²⁾ - GeoprobeTM sample collected from 17.5 feet below land surface

⁽³⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

⁽⁴⁾ - GeoprobeTM sample collected from 19.5 feet below land surface

Table 8. Summary of Polychlorinated Biphenyl Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in μg/L)	NYSDEC AWQSGVs (μg/L)	Sample Designation: Sample Date:	MW-19 11/14/97	MW-19 ⁽¹⁾ 08/13/98	MW-19 ⁽¹⁾ 02/25/99	MW-19 ⁽¹⁾ 06/03/99	MW-19 ⁽¹⁾ 09/09/99
Aroclor-1016			1 U	ND	ND	ND	ND
Aroclor-1221			2 U	ND	ND	ND	ND
Aroclor-1232			1 U	ND	ND	ND	ND
Aroclor-1242			1 U	ND	ND	ND	ND
Aroclor-1248			0.22 J	ND	ND	ND	ND
Aroclor-1254			1 U	ND	ND	ND	ND
Aroclor-1260			1 U	ND	ND	ND	ND
Aroclor-1262			NA	NA	NA	NA	NA
Aroclor-1268			NA	NA	NA	NA	NA
Total PCBs:	0.09		0.22	ND	ND	ND	ND

J - Estimated value

U - Not Detected

 $\mu g/L$ - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV (No exceedances on this table)

PCBs - Polychlorinated Biphenyl Compounds

DUP - Duplicate

NA - Not analyzed

ND - Not detected; reporting limit not available

* A petroleum sheen was present

^{(1) -} Split sample analyzed by New York City Transit

⁽²⁾ - GeoprobeTM sample collected from 17.5 feet below land surface

⁽³⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

⁽⁴⁾ - GeoprobeTM sample collected from 19.5 feet below land surface

Table 8. Summary of Polychlorinated Biphenyl Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (μg/L)	Sample Designation: Sample Date:	MW-19 04/15/03	MW-19 04/22/03	MW-19 04/30/03	MW-19 05/14/03	MW-19 08/25/03
Aroclor-1016			1 U	1 U	1 U	0.25 U	0.025 U
Aroclor-1221			1 U	1 U	1 U	0.083 U	0.0082 U
Aroclor-1232			1 U	1 U	1 U	0.094 U	0.0093 U
Aroclor-1242			1 U	1 U	1 U	0.083 U	0.0082 U
Aroclor-1248			1 U	1 U	1 U	0.12 U	0.012 U
Aroclor-1254			1 U	1 U	1 U	0.052 U	0.0052 U
Aroclor-1260			1 U	1 U	1 U	0.01 U	0.001 U
Aroclor-1262			NA	NA	NA	NA	NA
Aroclor-1268			NA	NA	NA	NA	NA
Total PCBs:	0.09		0	0	0	0	0

J - Estimated value

U - Not Detected

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV (No exceedances on this table)

PCBs - Polychlorinated Biphenyl Compounds

DUP - Duplicate

NA - Not analyzed

ND - Not detected; reporting limit not available

* A petroleum sheen was present

^{(1) -} Split sample analyzed by New York City Transit

⁽²⁾ - GeoprobeTM sample collected from 17.5 feet below land surface

⁽³⁾ - Geoprobe TM sample collected from 13.5 feet below land surface

⁽⁴⁾ - Geoprobe TM sample collected from 19.5 feet below land surface

Table 8. Summary of Polychlorinated Biphenyl Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (μg/L)	Sample Designation: Sample Date:	MW-19 06/02/08	MW-23D 06/20/97	MW-25A 06/19/97	MW-27 06/18/97	MW-27 06/04/08
Aroclor-1016			0.25 U	0.06 U	0.07 U	0.06 U	0.31 U
Aroclor-1221			0.25 U	0.13 U	0.14 U	0.13 U	0.31 U
Aroclor-1232			0.25 U	0.06 U	0.07 U	0.06 U	0.31 U
Aroclor-1242			0.25 U	0.06 U	0.07 U	0.06 U	0.31 U
Aroclor-1248			0.25 U	0.06 U	0.07 U	0.06 U	0.31 U
Aroclor-1254			0.25 U	0.06 U	0.07 U	0.06 U	0.31 U
Aroclor-1260			0.25 U	0.01 J	0.019 J	0.06 U	0.31 U
Aroclor-1262			0.25 U	NA	NA	NA	0.31 U
Aroclor-1268			0.25 U	NA	NA	NA	0.31 U
Total PCBs:	0.09		0	0.01	0.019	0	0

J - Estimated value

U - Not Detected

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV (No exceedances on this table)

PCBs - Polychlorinated Biphenyl Compounds

DUP - Duplicate

NA - Not analyzed

ND - Not detected; reporting limit not available

* A petroleum sheen was present

^{(1) -} Split sample analyzed by New York City Transit

⁽²⁾ - GeoprobeTM sample collected from 17.5 feet below land surface

⁽³⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

⁽⁴⁾ - GeoprobeTM sample collected from 19.5 feet below land surface

Table 8. Summary of Polychlorinated Biphenyl Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (μg/L)	Sample Designation: Sample Date:	MW-27 DUP 06/04/08	MW-28 06/18/97	MW-29 06/18/97	MW-30 06/18/97	MW-34 06/18/97
Aroclor-1016			0.31 U	0.06 U	0.06 U	0.06 U	0.06 U
Aroclor-1221			0.31 U	0.13 U	0.13 U	0.13 U	0.13 U
Aroclor-1232			0.31 U	0.06 U	0.06 U	0.06 U	0.06 U
Aroclor-1242			0.31 U	0.06 U	0.06 U	0.06 U	0.06 U
Aroclor-1248			0.31 U	0.06 U	0.06 U	0.06 U	0.06 U
Aroclor-1254			0.31 U	0.06 U	0.06 U	0.06 U	0.06 U
Aroclor-1260			0.31 U	0.06 U	0.06 U	0.06 U	0.06 U
Aroclor-1262			0.31 U	NA	NA	NA	NA
Aroclor-1268			0.31 U	NA	NA	NA	NA
Total PCBs:	0.09		0	0	0	0	0

J - Estimated value

U - Not Detected

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV (No exceedances on this table)

PCBs - Polychlorinated Biphenyl Compounds

DUP - Duplicate

NA - Not analyzed

ND - Not detected; reporting limit not available

* A petroleum sheen was present

^{(1) -} Split sample analyzed by New York City Transit

⁽²⁾ - GeoprobeTM sample collected from 17.5 feet below land surface

⁽³⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

⁽⁴⁾ - GeoprobeTM sample collected from 19.5 feet below land surface

Table 8. Summary of Polychlorinated Biphenyl Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in μg/L)	NYSDEC AWQSGVs (μg/L)	Sample Designation: Sample Date:	MW-35 02/06/97	MW-35 02/21/97	MW-35 03/27/97	MW-35 06/18/97	MW-35 ⁽¹⁾ 09/18/97
Aroclor-1016			1 U	1 U	1 U	0.06 U	ND
Aroclor-1221			2 U	2 U	2 U	0.13 U	ND
Aroclor-1232			1 U	1 U	1 U	0.06 U	ND
Aroclor-1242			1 U	1 U	1 U	0.06 U	ND
Aroclor-1248			1 U	1 U	1 U	0.06 U	ND
Aroclor-1254			1 U	1 U	1 U	0.06 U	ND
Aroclor-1260			1 U	1 U	1 U	0.06 U	ND
Aroclor-1262			NA	NA	NA	NA	NA
Aroclor-1268			NA	NA	NA	NA	NA
Total PCBs:	0.09		0	0	0	0	ND

J - Estimated value

U - Not Detected

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV (No exceedances on this table)

PCBs - Polychlorinated Biphenyl Compounds

DUP - Duplicate

NA - Not analyzed

ND - Not detected; reporting limit not available

* A petroleum sheen was present

^{(1) -} Split sample analyzed by New York City Transit

⁽²⁾ - GeoprobeTM sample collected from 17.5 feet below land surface

⁽³⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

⁽⁴⁾ - GeoprobeTM sample collected from 19.5 feet below land surface

Table 8. Summary of Polychlorinated Biphenyl Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (μg/L)	Sample Designation: Sample Date:	MW-35 11/14/97	MW-35 ⁽¹⁾ 08/13/98	MW-35 DUP ⁽¹⁾ 08/13/98	MW-35 ⁽¹⁾ 02/25/99	MW-35 ⁽¹⁾ 06/03/99
Aroclor-1016			1 U	ND	ND	ND	ND
Aroclor-1221			2 U	ND	ND	ND	ND
Aroclor-1232			1 U	ND	ND	ND	ND
Aroclor-1242			1 U	ND	ND	ND	ND
Aroclor-1248			0.3 J	ND	ND	ND	ND
Aroclor-1254			1 U	ND	ND	ND	ND
Aroclor-1260			1 U	ND	ND	ND	ND
Aroclor-1262			NA	NA	NA	NA	NA
Aroclor-1268			NA	NA	NA	NA	NA
Total PCBs:	0.09		0.3	ND	ND	ND	ND

J - Estimated value

U - Not Detected

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV (No exceedances on this table)

PCBs - Polychlorinated Biphenyl Compounds

DUP - Duplicate

NA - Not analyzed

ND - Not detected; reporting limit not available

* A petroleum sheen was present

^{(1) -} Split sample analyzed by New York City Transit

⁽²⁾ - GeoprobeTM sample collected from 17.5 feet below land surface

⁽³⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

⁽⁴⁾ - GeoprobeTM sample collected from 19.5 feet below land surface

Table 8. Summary of Polychlorinated Biphenyl Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (μg/L)	Sample Designation: Sample Date:	MW-35 ⁽¹⁾ 09/09/99	MW-35 04/15/03	MW-35 04/22/03	MW-35 08/25/03	MW-35 06/02/08
Aroclor-1016			ND	1 U	1 U	0.024 U	0.25 U
Aroclor-1221			ND	1 U	1 U	0.0082 U	0.25 U
Aroclor-1232			ND	1 U	1 U	0.0092 U	0.25 U
Aroclor-1242			ND	1 U	1 U	0.0082 U	0.25 U
Aroclor-1248			ND	1 U	1 U	0.012 U	0.25 U
Aroclor-1254			ND	1 U	1 U	0.0051 U	0.25 U
Aroclor-1260			ND	1 U	1 U	0.001 U	0.25 U
Aroclor-1262			NA	NA	NA	NA	0.25 U
Aroclor-1268			NA	NA	NA	NA	0.25 U
Total PCBs:	0.09		ND	0	0	0	0

J - Estimated value

U - Not Detected

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV (No exceedances on this table)

PCBs - Polychlorinated Biphenyl Compounds

DUP - Duplicate

NA - Not analyzed

ND - Not detected; reporting limit not available

* A petroleum sheen was present

^{(1) -} Split sample analyzed by New York City Transit

⁽²⁾ - GeoprobeTM sample collected from 17.5 feet below land surface

⁽³⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

⁽⁴⁾ - GeoprobeTM sample collected from 19.5 feet below land surface

Table 8. Summary of Polychlorinated Biphenyl Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (μg/L)	Sample Designation: Sample Date:	MW-37 06/18/97	MW-37 06/02/08	MW-38D 06/18/97	MW-38D 06/02/08	MW-39D 06/18/97
Aroclor-1016			0.06 U	0.25 U	0.07 U	0.25 U	0.06 U
Aroclor-1221			0.13 U	0.25 U	0.14 U	0.25 U	0.13 U
Aroclor-1232			0.06 U	0.25 U	0.07 U	0.25 U	0.06 U
Aroclor-1242			0.06 U	0.25 U	0.07 U	0.25 U	0.06 U
Aroclor-1248			0.06 U	0.25 U	0.07 U	0.25 U	0.06 U
Aroclor-1254			0.06 U	0.25 U	0.07 U	0.25 U	0.06 U
Aroclor-1260			0.06 U	0.25 U	0.07 U	0.25 U	0.06 U
Aroclor-1262			NA	0.25 U	NA	0.25 U	NA
Aroclor-1268			NA	0.25 U	NA	0.25 U	NA
Total PCBs:	0.09		0	0	0	0	0

J - Estimated value

U - Not Detected

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV (No exceedances on this table)

PCBs - Polychlorinated Biphenyl Compounds

DUP - Duplicate

NA - Not analyzed

ND - Not detected; reporting limit not available

* A petroleum sheen was present

^{(1) -} Split sample analyzed by New York City Transit

⁽²⁾ - GeoprobeTM sample collected from 17.5 feet below land surface

⁽³⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

⁽⁴⁾ - GeoprobeTM sample collected from 19.5 feet below land surface

Table 8. Summary of Polychlorinated Biphenyl Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (μg/L)	Sample Designation: Sample Date:	MW-39D 06/02/08	MW-40D 06/18/97	MW-41 06/18/97	MW-42 06/18/97	MW-43 06/18/97
Aroclor-1016			0.25 U	0.06 U	0.07 U	0.07 U	0.06 U
Aroclor-1221			0.25 U	0.13 U	0.14 U	0.14 U	0.13 U
Aroclor-1232			0.25 U	0.06 U	0.07 U	0.07 U	0.06 U
Aroclor-1242			0.25 U	0.06 U	0.07 U	0.07 U	0.06 U
Aroclor-1248			0.25 U	0.06 U	0.07 U	0.07 U	0.06 U
Aroclor-1254			0.25 U	0.06 U	0.07 U	0.07 U	0.06 U
Aroclor-1260			0.25 U	0.06 U	0.07 U	0.07 U	0.06 U
Aroclor-1262			0.25 U	NA	NA	NA	NA
Aroclor-1268			0.25 U	NA	NA	NA	NA
Total PCBs:	0.09		0	0	0	0	0

J - Estimated value

U - Not Detected

 $\mu g/L$ - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV (No exceedances on this table)

PCBs - Polychlorinated Biphenyl Compounds

DUP - Duplicate

NA - Not analyzed

ND - Not detected; reporting limit not available

* A petroleum sheen was present

^{(1) -} Split sample analyzed by New York City Transit

⁽²⁾ - GeoprobeTM sample collected from 17.5 feet below land surface

⁽³⁾ - Geoprobe TM sample collected from 13.5 feet below land surface

⁽⁴⁾ - Geoprobe TM sample collected from 19.5 feet below land surface

Table 8. Summary of Polychlorinated Biphenyl Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (μg/L)	Sample Designation: Sample Date:	MW-44D 06/18/97	MW-45 06/18/97	MW-45 06/04/08	MW-46 06/18/97	MW-47 06/20/97
Aroclor-1016			0.07 U	0.06 U	0.5 U	0.06 U	0.06 U
Aroclor-1221			0.14 U	0.13 U	0.5 U	0.13 U	0.13 U
Aroclor-1232			0.07 U	0.06 U	0.5 U	0.06 U	0.06 U
Aroclor-1242			0.07 U	0.06 U	0.5 U	0.06 U	0.06 U
Aroclor-1248			0.07 U	0.06 U	0.5 U	0.06 U	0.06 U
Aroclor-1254			0.07 U	0.06 U	0.5 U	0.06 U	0.06 U
Aroclor-1260			0.07 U	0.06 U	0.5 U	0.06 U	0.06 U
Aroclor-1262			NA	NA	0.5 U	NA	NA
Aroclor-1268			NA	NA	0.5 U	NA	NA
Total PCBs:	0.09		0	0	0	0	0

J - Estimated value

U - Not Detected

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV (No exceedances on this table)

PCBs - Polychlorinated Biphenyl Compounds

DUP - Duplicate

NA - Not analyzed

ND - Not detected; reporting limit not available

* A petroleum sheen was present

^{(1) -} Split sample analyzed by New York City Transit

⁽²⁾ - GeoprobeTM sample collected from 17.5 feet below land surface

⁽³⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

⁽⁴⁾ - GeoprobeTM sample collected from 19.5 feet below land surface

Table 8. Summary of Polychlorinated Biphenyl Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (µg/L)	Sample Designation: Sample Date:	MW-48D 06/20/97	MW-48D 06/03/08	MW-49 06/18/97	MW-57 06/18/97	MW-59 06/18/97
Aroclor-1016			0.06 U	0.28 U	0.06 U	0.06 U	0.06 U
Aroclor-1221			0.13 U	0.28 U	0.13 U	0.13 U	0.13 U
Aroclor-1232			0.06 U	0.28 U	0.06 U	0.06 U	0.06 U
Aroclor-1242			0.06 U	0.28 U	0.06 U	0.06 U	0.06 U
Aroclor-1248			0.06 U	0.28 U	0.06 U	0.06 U	0.06 U
Aroclor-1254			0.06 U	0.28 U	0.06 U	0.06 U	0.06 U
Aroclor-1260			0.06 U	0.28 U	0.06 U	0.06 U	0.06 U
Aroclor-1262			NA	0.28 U	NA	NA	NA
Aroclor-1268			NA	0.28 U	NA	NA	NA
Total PCBs:	0.09		0	0	0	0	0

J - Estimated value

U - Not Detected

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV (No exceedances on this table)

PCBs - Polychlorinated Biphenyl Compounds

DUP - Duplicate

NA - Not analyzed

ND - Not detected; reporting limit not available

* A petroleum sheen was present

^{(1) -} Split sample analyzed by New York City Transit

⁽²⁾ - GeoprobeTM sample collected from 17.5 feet below land surface

⁽³⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

⁽⁴⁾ - GeoprobeTM sample collected from 19.5 feet below land surface

Table 8. Summary of Polychlorinated Biphenyl Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (μg/L)	Sample Designation: Sample Date:	MW-61 06/18/97	MW-62D 06/18/97	MW-62D 06/04/08	MW-64 06/19/97	MW-65 06/19/97
Aroclor-1016			0.06 U	0.06 U	0.27 U	0.06 U	0.06 U
Aroclor-1221			0.13 U	0.13 U	0.27 U	0.13 U	0.13 U
Aroclor-1232			0.06 U	0.06 U	0.27 U	0.06 U	0.06 U
Aroclor-1242			0.06 U	0.06 U	0.27 U	0.06 U	0.06 U
Aroclor-1248			0.06 U	0.06 U	0.27 U	0.06 U	0.06 U
Aroclor-1254			0.06 U	0.06 U	0.27 U	0.06 U	0.06 U
Aroclor-1260			0.06 U	0.06 U	0.27 U	0.06 U	0.06 U
Aroclor-1262			NA	NA	0.27 U	NA	NA
Aroclor-1268			NA	NA	0.27 U	NA	NA
Total PCBs:	0.09		0	0	0	0	0

J - Estimated value

U - Not Detected

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV (No exceedances on this table)

PCBs - Polychlorinated Biphenyl Compounds

DUP - Duplicate

NA - Not analyzed

ND - Not detected; reporting limit not available

* A petroleum sheen was present

^{(1) -} Split sample analyzed by New York City Transit

⁽²⁾ - GeoprobeTM sample collected from 17.5 feet below land surface

⁽³⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

⁽⁴⁾ - GeoprobeTM sample collected from 19.5 feet below land surface

Table 8. Summary of Polychlorinated Biphenyl Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (μg/L)	Sample Designation: Sample Date:	MW-65R 06/19/97	MW-66 06/19/97	MW-67 06/19/97	MW-68 06/04/08	MW-68* 06/19/97
Aroclor-1016			0.06 U	0.06 U	0.06 U	0.28 U	0.14 U
Aroclor-1221			0.13 U	0.13 U	0.13 U	0.28 U	0.29 U
Aroclor-1232			0.06 U	0.06 U	0.06 U	0.28 U	0.14 U
Aroclor-1242			0.06 U	0.06 U	0.06 U	0.28 U	0.14 U
Aroclor-1248			0.06 U	0.06 U	0.06 U	0.28 U	0.14 U
Aroclor-1254			0.06 U	0.06 U	0.06 U	0.28 U	0.14 U
Aroclor-1260			0.06 U	0.06 U	0.06 U	0.28 U	0.077 J*
Aroclor-1262			NA	NA	NA	0.28 U	NA
Aroclor-1268			NA	NA	NA	0.28 U	NA
Total PCBs:	0.09		0	0	0	0	0.077

J - Estimated value

U - Not Detected

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV (No exceedances on this table)

PCBs - Polychlorinated Biphenyl Compounds

DUP - Duplicate

NA - Not analyzed

ND - Not detected; reporting limit not available

* A petroleum sheen was present

^{(1) -} Split sample analyzed by New York City Transit

⁽²⁾ - GeoprobeTM sample collected from 17.5 feet below land surface

⁽³⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

⁽⁴⁾ - GeoprobeTM sample collected from 19.5 feet below land surface

Table 8. Summary of Polychlorinated Biphenyl Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (μg/L)	Sample Designation: Sample Date:	MW-69D 06/20/97	MW-70 06/02/08	MW-78 07/05/05	MW-79 07/05/05	MW-79 06/03/08
Aroclor-1016			0.06 U	0.25 U	0.25 U	0.25 U	0.25 U
Aroclor-1221			0.13 U	0.25 U	0.25 U	0.25 U	0.25 U
Aroclor-1232			0.06 U	0.25 U	0.25 U	0.25 U	0.25 U
Aroclor-1242			0.06 U	0.25 U	0.25 U	0.25 U	0.25 U
Aroclor-1248			0.06 U	0.25 U	0.25 U	0.25 U	0.25 U
Aroclor-1254			0.06 U	0.25 U	0.25 U	0.25 U	0.25 U
Aroclor-1260			0.06 U	0.25 U	0.25 U	0.25 U	0.25 U
Aroclor-1262			NA	0.25 U	NA	NA	0.25 U
Aroclor-1268			NA	0.25 U	NA	NA	0.25 U
Total PCBs:	0.09		0	0	0	0	0

J - Estimated value

U - Not Detected

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV (No exceedances on this table)

PCBs - Polychlorinated Biphenyl Compounds

DUP - Duplicate

NA - Not analyzed

ND - Not detected; reporting limit not available

* A petroleum sheen was present

^{(1) -} Split sample analyzed by New York City Transit

⁽²⁾ - GeoprobeTM sample collected from 17.5 feet below land surface

⁽³⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

⁽⁴⁾ - GeoprobeTM sample collected from 19.5 feet below land surface

Table 8. Summary of Polychlorinated Biphenyl Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (µg/L)	Sample Designation: Sample Date:	MW-80 06/04/08	MW-82 06/05/08	MW-83 06/04/08	MW-84 06/05/08	MW-85 06/02/08
Aroclor-1016			0.29 U	0.31 U	0.36 U	0.33 U	0.5 U
Aroclor-1221			0.29 U	0.31 U	0.36 U	0.33 U	0.5 U
Aroclor-1232			0.29 U	0.31 U	0.36 U	0.33 U	0.5 U
Aroclor-1242			0.29 U	0.31 U	0.36 U	0.33 U	0.5 U
Aroclor-1248			0.29 U	0.31 U	0.36 U	0.33 U	0.5 U
Aroclor-1254			0.29 U	0.31 U	0.36 U	0.33 U	0.5 U
Aroclor-1260			0.29 U	0.31 U	0.36 U	0.33 U	0.5 U
Aroclor-1262			0.29 U	0.31 U	0.36 U	0.33 U	0.5 U
Aroclor-1268			0.29 U	0.31 U	0.36 U	0.33 U	0.5 U
Total PCBs:	0.09		0	0	0	0	0

J - Estimated value

U - Not Detected

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV (No exceedances on this table)

PCBs - Polychlorinated Biphenyl Compounds

DUP - Duplicate

NA - Not analyzed

ND - Not detected; reporting limit not available

* A petroleum sheen was present

^{(1) -} Split sample analyzed by New York City Transit

⁽²⁾ - GeoprobeTM sample collected from 17.5 feet below land surface

⁽³⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

⁽⁴⁾ - GeoprobeTM sample collected from 19.5 feet below land surface

Table 8. Summary of Polychlorinated Biphenyl Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in μg/L)	NYSDEC AWQSGVs (μg/L)	Sample Designation: Sample Date:	MW-86 05/21/08	MW-87 05/21/08	MW-88 05/21/08	MW-89 05/21/08	MW-90 06/03/08
Aroclor-1016			0.28 U	0.25 U	0.25 U	0.25 U	0.33 U
Aroclor-1221			0.28 U	0.25 U	0.25 U	0.25 U	0.33 U
Aroclor-1232			0.28 U	0.25 U	0.25 U	0.25 U	0.33 U
Aroclor-1242			0.28 U	0.25 U	0.25 U	0.25 U	0.33 U
Aroclor-1248			0.28 U	0.25 U	0.25 U	0.25 U	0.33 U
Aroclor-1254			0.28 U	0.25 U	0.25 U	0.25 U	0.33 U
Aroclor-1260			0.28 U	0.25 U	0.25 U	0.25 U	0.33 U
Aroclor-1262			0.28 U	0.25 U	0.25 U	0.25 U	0.33 U
Aroclor-1268			0.28 U	0.25 U	0.25 U	0.25 U	0.33 U
Total PCBs:	0.09		0	0	0	0	0

J - Estimated value

U - Not Detected

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV (No exceedances on this table)

PCBs - Polychlorinated Biphenyl Compounds

DUP - Duplicate

NA - Not analyzed

ND - Not detected; reporting limit not available

^{*} A petroleum sheen was present

^{(1) -} Split sample analyzed by New York City Transit

⁽²⁾ - GeoprobeTM sample collected from 17.5 feet below land surface

⁽³⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

⁽⁴⁾ - GeoprobeTM sample collected from 19.5 feet below land surface

Table 8. Summary of Polychlorinated Biphenyl Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (μg/L)	Sample Designation: Sample Date:	MW-91 06/03/08	MW-92 06/03/08	SSY-23 08/20/99	SSY-46 08/20/99	SSY-49 08/20/99
Aroclor-1016			0.27 U	0.25 U	0.51 U	0.55 U	0.5 U
Aroclor-1221			0.27 U	0.25 U	0.51 U	0.55 U	0.5 U
Aroclor-1232			0.27 U	0.25 U	0.51 U	0.55 U	0.5 U
Aroclor-1242			0.27 U	0.25 U	0.51 U	0.55 U	0.5 U
Aroclor-1248			0.27 U	0.25 U	0.51 U	0.55 U	0.5 U
Aroclor-1254			0.27 U	0.25 U	1 U	1.1 U	1 U
Aroclor-1260			0.27 U	0.25 U	1 U	1.1 U	1 U
Aroclor-1262			0.27 U	0.25 U	NA	NA	NA
Aroclor-1268			0.27 U	0.25 U	NA	NA	NA
Total PCBs:	0.09		0	0	0	0	0

J - Estimated value

U - Not Detected

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV (No exceedances on this table)

PCBs - Polychlorinated Biphenyl Compounds

DUP - Duplicate

NA - Not analyzed

ND - Not detected; reporting limit not available

* A petroleum sheen was present

^{(1) -} Split sample analyzed by New York City Transit

⁽²⁾ - GeoprobeTM sample collected from 17.5 feet below land surface

⁽³⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

⁽⁴⁾ - GeoprobeTM sample collected from 19.5 feet below land surface

Table 8. Summary of Polychlorinated Biphenyl Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (μg/L)	Sample Designation: Sample Date:	SSY-51 08/20/99	TE-MW-OB-1 06/04/08	TE-MW-QA-2 06/05/08	TP-8 06/19/97	TP-9 06/19/97
Aroclor-1016			0.51 U	0.38 U	0.33 U	0.06 U	0.06 U
Aroclor-1221			0.51 U	0.38 U	0.33 U	0.13 U	0.13 U
Aroclor-1232			0.51 U	0.38 U	0.33 U	0.06 U	0.06 U
Aroclor-1242			0.51 U	0.38 U	0.33 U	0.06 U	0.06 U
Aroclor-1248			0.51 U	0.38 U	0.33 U	0.06 U	0.06 U
Aroclor-1254			1 U	0.38 U	0.33 U	0.06 U	0.06 U
Aroclor-1260			1 U	0.38 U	0.33 U	0.06 U	0.06 U
Aroclor-1262			NA	0.38 U	0.33 U	NA	NA
Aroclor-1268			NA	0.38 U	0.33 U	NA	NA
Total PCBs:	0.09		0	0	0	0	0

J - Estimated value

U - Not Detected

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV (No exceedances on this table)

PCBs - Polychlorinated Biphenyl Compounds

DUP - Duplicate

NA - Not analyzed

ND - Not detected; reporting limit not available

* A petroleum sheen was present

^{(1) -} Split sample analyzed by New York City Transit

⁽²⁾ - GeoprobeTM sample collected from 17.5 feet below land surface

⁽³⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

⁽⁴⁾ - Geoprobe TM sample collected from 19.5 feet below land surface

Table 8. Summary of Polychlorinated Biphenyl Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (μg/L)	Sample Designation: Sample Date:	TP-10 06/19/97	TP-10 06/03/08	TSB-9 ⁽²⁾ 10/24/00	TSB-9 ⁽²⁾ F 10/24/00	TSB-10 ⁽³⁾ 10/23/00
Aroclor-1016			0.06 U	0.31 U	0.5 U	0.5 U	0.5 U
Aroclor-1221			0.13 U	0.31 U	0.5 U	0.5 U	0.5 U
Aroclor-1232			0.06 U	0.31 U	0.5 U	0.5 U	0.5 U
Aroclor-1242			0.06 U	0.31 U	0.5 U	0.5 U	0.5 U
Aroclor-1248			0.06 U	0.31 U	0.5 U	0.5 U	0.5 U
Aroclor-1254			0.06 U	0.31 U	0.5 U	0.5 U	0.5 U
Aroclor-1260			0.06 U	0.31 U	0.5 U	0.5 U	0.5 U
Aroclor-1262			NA	0.31 U	NA	NA	NA
Aroclor-1268			NA	0.31 U	NA	NA	NA
Total PCBs:	0.09		0	0	0	0	0

J - Estimated value

U - Not Detected

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV (No exceedances on this table)

PCBs - Polychlorinated Biphenyl Compounds

DUP - Duplicate

NA - Not analyzed

ND - Not detected; reporting limit not available

* A petroleum sheen was present

^{(1) -} Split sample analyzed by New York City Transit

⁽²⁾ - GeoprobeTM sample collected from 17.5 feet below land surface

⁽³⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

⁽⁴⁾ - GeoprobeTM sample collected from 19.5 feet below land surface

Table 8. Summary of Polychlorinated Biphenyl Compounds in Groundwater Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in μg/L)	NYSDEC AWQSGVs (μg/L)	Sample Designation: Sample Date:	TSB-10 ⁽³⁾ F 10/23/00	TSB-16 ⁽⁴⁾ 10/24/00	TSB-16 ⁽⁴⁾ F 10/24/00	UT-9AW 06/04/08
Aroclor-1016			0.5 U	0.5 U	0.5 U	0.31 U
Aroclor-1221			0.5 U	0.5 U	0.5 U	0.31 U
Aroclor-1232			0.5 U	0.5 U	0.5 U	0.31 U
Aroclor-1242			0.5 U	0.5 U	0.5 U	0.31 U
Aroclor-1248			0.5 U	0.5 U	0.5 U	0.31 U
Aroclor-1254			0.5 U	0.5 U	0.5 U	0.31 U
Aroclor-1260			0.5 U	0.5 U	0.5 U	0.31 U
Aroclor-1262			NA	NA	NA	0.31 U
Aroclor-1268			NA	NA	NA	0.31 U
Total PCBs:	0.09		0	0	0	0

J - Estimated value

U - Not Detected

μg/L - Micrograms per liter

NYSDEC - New York State Department of Environmental Conservation

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

Bold - Exceeds NYSDEC AWQSGV (No exceedances on this table)

PCBs - Polychlorinated Biphenyl Compounds

DUP - Duplicate

NA - Not analyzed

ND - Not detected; reporting limit not available

* A petroleum sheen was present

(1) - Split sample analyzed by New York City Transit

⁽²⁾ - GeoprobeTM sample collected from 17.5 feet below land surface

⁽³⁾ - GeoprobeTM sample collected from 13.5 feet below land surface

⁽⁴⁾ - Geoprobe TM sample collected from 19.5 feet below land surface

Table 9. Summary of Chloride and Total Dissolved Solids in Groundwater Samples, OU-6 RI/FS Report Sunnyside Yard, Queens, New York

		(Conce	Parameter entrations in mg/L)
Sample Designation	Date Sampled	Chloride	Total Dissolved Solids
Class GA Ground-		250	500
Class GSA (saline g	ground water) Criteria	>250	> 1000
MW-9D	6/3/2008	170	740
MW-9S	6/3/2008	150	740
MW-13D	6/3/2008	230	910
MW-13D DUP	6/3/2008	230	840
MW-13S	6/2/2008	220	740
MW-19	6/18/1997	19	373
MW-19	6/2/2008	10	330
MW-23D	6/20/1997	105	464
MW-25A	6/18/1997	17.4	114
MW-27	6/18/1997	76 V	1090
MW-27	6/4/2008	280 D	850
MW-27 DUP	6/4/2008	280 D	840
MW-27 DO1 MW-28	6/18/1997	725	1480
MW-29	6/18/1997	277	725
MW-30	6/18/1997	313	826
MW-34	6/18/1997	540	1410
MW-35	6/18/1997	20.3	254
MW-35	6/2/2008	150 D	560
MW-37	6/18/1997	115	493
MW-37	6/2/2008	160	500
MW-38D	6/18/1997	220	1030
MW-38D	6/2/2008	220 D	730
MW-39D	7/17/1997	226	842
MW-39D	6/2/2008	240 D	810
MW-40D	6/18/1997	339	1150
MW-41	6/18/1997	384	832
MW-42	6/18/1997	12.2	235
MW-43	6/18/1997	208	580
MW-44D	6/18/1997	345	1230
MW-45	6/18/1997	253	693
MW-45	6/4/2008	450 D	950
MW-46	6/18/1997	127	436
MW-47	6/20/1997	220	625
MW-48D	6/20/1997	126	583
MW-48D	6/3/2008	30	160
MW-49	6/18/1997	15.1	134
MW-57	6/18/1997	48.4	318
MW-59	6/18/1997	7	297
MW-61	6/18/1997	81.1	455
MW-62D	6/18/1997	292	1060
MW-62D MW-62D	6/4/2008	370 D	1100
MW-64	6/19/1997	43.6	214
MW-65	6/18/1997	166	602
MW-66	6/19/1997	358	1180
MW-67	6/18/1997	54.1	222
MW-68	6/4/2008	42	230

Table 9. Summary of Chloride and Total Dissolved Solids in Groundwater Samples, OU-6 RI/FS Report Sunnyside Yard, Queens, New York

		Parameter (Concentrations in mg/L)			
Sample Designation	Date Sampled	Chloride	Total Dissolved Solids		
Class GA Ground	-Water Standard	250	500		
Class GSA (saline	ground water) Criteria	>250	> 1000		
MW-69D	6/20/1997	290 V	936		
MW-70	6/2/2008	34	220		
MW-78	7/5/2005	68	430		
MW-79	7/5/2005	28	430		
MW-79	6/3/2008	26	360		
MW-80	6/4/2008	750 D	1600		
MW-82	6/5/2008	91	380		
MW-83	6/4/2008	110	550		
MW-84	6/5/2008	11	210		
MW-85	6/2/2008	37	270		
MW-86	5/21/2008	20	290		
MW-87	5/21/2008	31	390		
MW-88	5/21/2008	37	340		
MW-89	5/21/2008	130	320		
MW-90	6/3/2008	200 D	680		
MW-91	6/3/2008	32	270		
MW-92	6/3/2008	160	640		
TE-MW-OB-1	6/4/2008	380 D	960		
TE-MW-QA-2	6/5/2008	230 D	960		
TP-8	6/18/1997	16.3	100		
TP-9	6/18/1997	34.4	172		
TP-10	6/18/1997	100	348		
TP-10	6/3/2008	130	440		
TSB-9	10/24/2000	17	160		
TSB-10	10/23/2000	48	220		
TSB-16	10/24/2000	110	350		
UT-9AW	6/4/2008	530 D	1200		

mg/L - Milligrams per liter

D - Dilution

V - Data was qualified by data validator

Table 10. Summary of Volatile Organic Compounds in Soil Vapor Samples Collected Near Proposed Construction Area, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter	Sample Designation: Sample Date:	PC-1 06/22/05	PC-1 06/22/05	PC-2 06/22/05	PC-2 06/22/05
	Concentration Units:	ppbv	ug/m ³	ppbv	ug/m ³
1,1,1-Trichloroethane		0.2 U	1.1 U	0.99	5.4
1,1,2,2-Tetrachloroethane		0.2 U	1.4 U	0.2 U	1.4 U
1,1,2-Trichloroethane		0.2 U	1.1 U	0.2 U	1.1 U
1,1-Dichloroethane		0.2 U	0.81 U	0.2 U	0.81 U
1,1-Dichloroethene		0.2 U	0.79 U	0.2 U	0.79 U
1,2,4-Trichlorobenzene		0.5 U	3.7 U	0.5 U	3.7 U
1,2,4-Trimethylbenzene		6	29	0.92	4.5
1,2-Dibromoethane		0.2 U	1.5 U	0.2 U	1.5 U
1,2-Dichlorobenzene		0.2 U	1.2 U	0.2 U	1.2 U
1,2-Dichloroethane		0.2 U	0.81 U	0.2 U	0.81 U
1,2-Dichloroethene (total)		0.2 U	0.31 U 0.79 U	0.2 U	0.31 U 0.79 U
1,2-Dichloropropane		0.2 U	0.79 U	0.2 U	0.79 U
1,2-Dichlorotetrafluoroethane		0.2 U	1.4 U	0.2 U	1.4 U
		1.5		0.2 0	
1,3,5-Trimethylbenzene 1,3-Butadiene		6.3	7.4 14	0.23 8.7	1.1 19
		0.3 0.2 U	1.2 U	8.7 0.2 U	1.2 U
1,3-Dichlorobenzene		0.2 U 0.2 U	1.2 U 1.2 U	0.2 U 0.2 U	
1,4-Dichlorobenzene		0.2 U 5 U			1.2 U
1,4-Dioxane			18 U	5 U	18 U
2,2,4-Trimethylpentane		0.46	2.1	0.2 U	0.93 U
2-Chlorotoluene		0.2 U	1 U	0.2 U	1 U
3-Chloropropene		0.2 U	0.63 U	0.2 U	0.63 U
4-Ethyltoluene		4.9	24	0.85	4.2
Acetone		38	90	44 E	100 E
Benzene		2.5	8	4	13
Bromodichloromethane		0.2 U	1.3 U	0.2 U	1.3 U
Bromoethene		0.2 U	0.87 U	0.2 U	0.87 U
Bromoform		0.2 U	2.1 U	0.2 U	2.1 U
Bromomethane		0.2 U	0.78 U	0.2 U	0.78 U
Carbon Disulfide		1.3	4	2.1	6.5
Carbon Tetrachloride		0.2 U	1.3 U	0.2 U	1.3 U
Chlorobenzene		0.2 U	0.92 U	0.2 U	0.92 U
Chloroethane		0.2 U	0.53 U	0.2 U	0.53 U
Chloroform		0.2 U	0.98 U	0.3	1.5
Chloromethane		0.5 U	1 U	0.54	1.1
cis-1,2-Dichloroethene		0.2 U	0.79 U	0.2 U	0.79 U
cis-1,3-Dichloropropene		0.2 U	0.91 U	0.2 U	0.91 U
Cyclohexane		0.61	2.1	0.99	3.4
Dibromochloromethane		0.2 U	1.7 U	0.2 U	1.7 U
Dichlorodifluoromethane		0.68	3.4	1.7	8.4
Ethylbenzene		3.4	15	1	4.3
Freon TF		0.2 U	1.5 U	0.2 U	1.5 U
Hexachlorobutadiene		0.2 U	2.1 U	0.2 U	2.1 U
Isopropyl Alcohol		5 U	12 U	5 U	12 U
m+p-Xylenes		15	65	3.2	14
Methyl Butyl Ketone		0.58	2.4	0.55	2.3
Methyl Ethyl Ketone		8.7	26	7.9	23
Methyl Isobutyl Ketone		0.5 U	2 U	0.5 U	2 U
Methylene Chloride		0.5 U	1.7 U	0.5 U	1.7 U
MTBE		0.5 U	1.8 U	0.5 U	1.8 U

Table 10. Summary of Volatile Organic Compounds in Soil Vapor Samples Collected
Near Proposed Construction Area, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	Sample Designation:	PC-1	PC-1	PC-2	PC-2
Parameter	Sample Date:	06/22/05	06/22/05	06/22/05	06/22/05
	Concentration Units:	ppbv	ug/m ³	ppbv	ug/m ³
n-Heptane		3.1	13	2.5	10
n-Hexane		4.6	16	4.3	15
o-Xylene		5.1	22	1.4	6.1
Styrene		2.3	9.8	1.2	5.1
tert-Butyl Alcohol		5 U	15 U	5 U	15 U
Tetrachloroethene		0.32	2.2	0.64	4.3
Tetrahydrofuran		5 U	15 U	5 U	15 U
Toluene		15	57	5.8	22
trans-1,2-Dichloroethene		0.2 U	0.79 U	0.2 U	0.79 U
trans-1,3-Dichloropropene		0.2 U	0.91 U	0.2 U	0.91 U
Trichloroethene		0.2 U	1.1 U	0.2 U	1.1 U
Trichlorofluoromethane		0.4	2.2	0.69	3.9
Vinyl Chloride		0.2 U	0.51 U	0.2 U	0.51 U
Xylenes (total)		20	87	4.6	20

ppbv - Parts per billion volume

ug/m³ - Micrograms per cubic meter

D - Dilution

E - Serial dilution exceeds the control limits

Table 10. Summary of Volatile Organic Compounds in Soil Vapor Samples Collected Near Proposed Construction Area, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter	Sample Designation: Sample Date:	PC-2 DL 06/22/05	PC-2 DL 06/22/05	PC-3 06/22/05	PC-3 06/22/05
	Concentration Units:	ppbv	ug/m ³	ppbv	ug/m ³
1,1,1-Trichloroethane		1 D	5.5 D	1.1	6
1,1,2,2-Tetrachloroethane		1 U	6.9 U	0.2 U	1.4 U
1,1,2-Trichloroethane		1 U	5.5 U	0.2 U	1.4 U
1,1-Dichloroethane		1 U	4 U	0.2 U	0.81 U
1,1-Dichloroethene		1 U	4 U	0.2 U	0.81 U 0.79 U
1,2,4-Trichlorobenzene		2.5 U	19 U	0.2 U 0.5 U	3.7 U
				1.5	3.7 U 7.4
1,2,4-Trimethylbenzene		1 U	4.9 U	0.2 U	
1,2-Dibromoethane		1 U	7.7 U		1.5 U
1,2-Dichlorobenzene		1 U	6 U	0.2 U	1.2 U
1,2-Dichloroethane		1 U	4 U	0.2 U	0.81 U
1,2-Dichloroethene (total)		1 U	4 U	0.2 U	0.79 U
1,2-Dichloropropane		1 U	4.6 U	0.2 U	0.92 U
1,2-Dichlorotetrafluoroethane		1 U	7 U	0.2 U	1.4 U
1,3,5-Trimethylbenzene		1 U	4.9 U	0.39	1.9
1,3-Butadiene		9.6 D	21 D	6.5	14
1,3-Dichlorobenzene		1 U	6 U	0.2 U	1.2 U
1,4-Dichlorobenzene		1 U	6 U	0.2 U	1.2 U
1,4-Dioxane		25 U	90 U	5 U	18 U
2,2,4-Trimethylpentane		1 U	4.7 U	0.26	1.2
2-Chlorotoluene		1 U	5.2 U	0.2 U	1 U
3-Chloropropene		1 U	3.1 U	0.2 U	0.63 U
4-Ethyltoluene		1 U	4.9 U	1.3	6.4
Acetone		48 D	110 D	36	86
Benzene		4 D	13 D	2.8	8.9
Bromodichloromethane		1 U	6.7 U	0.2 U	1.3 U
Bromoethene		1 U	4.4 U	0.2 U	0.87 U
Bromoform		1 U	10 U	0.2 U	2.1 U
Bromomethane		1 U	3.9 U	0.2 U	0.78 U
Carbon Disulfide		2.5 U	7.8 U	0.89	2.8
Carbon Tetrachloride		1 U	6.3 U	0.2 U	1.3 U
Chlorobenzene		1 U	4.6 U	0.2 U	0.92 U
Chloroethane		1 U	2.6 U	0.2 U	0.53 U
Chloroform		1 U	4.9 U	0.2 U	0.98 U
Chloromethane		2.5 U	5.2 U	0.5 U	1 U
cis-1,2-Dichloroethene		1 U	4 U	0.2 U	0.79 U
cis-1,3-Dichloropropene		1 U	4.5 U	0.2 U	0.75 U
Cyclohexane		1 D	3.4 D	0.76	2.6
Dibromochloromethane		1 U	8.5 U	0.7 U	1.7 U
Dichlorodifluoromethane		2.5 U	12 U	1.4	6.9
		2.5 U	4.3 U	1.4	6.1
Ethylbenzene Freon TF		1 U	4.3 U 7.7 U	0.2 U	1.5 U
Hexachlorobutadiene		1 U	7.7 U 11 U	0.2 U 0.2 U	2.1 U
		25 U		0.2 U 5 U	
Isopropyl Alcohol			61 U		12 U
m+p-Xylenes		3 D	13 D	4.9	21
Methyl Butyl Ketone		2.5 U	10 U	0.6	2.5
Methyl Ethyl Ketone		8.5 D	25 D	7.7	23
Methyl Isobutyl Ketone		2.5 U	10 U	0.5 U	2 U
Methylene Chloride		2.5 U	8.7 U	0.5 U	1.7 U
MTBE		2.5 U	9 U	0.5 U	1.8 U

Table 10. Summary of Volatile Organic Compounds in Soil Vapor Samples Collected
Near Proposed Construction Area, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	Sample Designation:	PC-2 DL	PC-2 DL	PC-3	PC-3
Parameter	Sample Date:	06/22/05	06/22/05	06/22/05	06/22/05
	Concentration Units:	ppbv	ug/m ³	ppbv	ug/m ³
n-Heptane		2.4 D	9.8 D	2.6	11
n-Hexane		4.7 D	17 D	4.4	16
o-Xylene		1.3 D	5.6 D	1.9	8.3
Styrene		1 D	4.3 D	1.4	6
tert-Butyl Alcohol		25 U	76 U	5 U	15 U
Tetrachloroethene		1 U	6.8 U	0.29	2
Tetrahydrofuran		25 U	74 U	5 U	15 U
Toluene		5.1 D	19 D	6.6	25
trans-1,2-Dichloroethene		1 U	4 U	0.2 U	0.79 U
trans-1,3-Dichloropropene		1 U	4.5 U	0.2 U	0.91 U
Trichloroethene		1 U	5.4 U	0.2 U	1.1 U
Trichlorofluoromethane		1 U	5.6 U	1.1	6.2
Vinyl Chloride		1 U	2.6 U	0.2 U	0.51 U
Xylenes (total)		4.3 D	19 D	6.8	30

ppbv - Parts per billion volume

ug/m³ - Micrograms per cubic meter

D - Dilution

E - Serial dilution exceeds the control limits

Table 10. Summary of Volatile Organic Compounds in Soil Vapor Samples Collected Near Proposed Construction Area, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter	Sample Designation: Sample Date:	PC-3 DL 06/22/05	PC-3 DL 06/22/05	PC-4 06/22/05	PC-4 06/22/05
	Concentration Units:	ppbv	ug/m ³	ppbv	ug/m ³
1,1,1-Trichloroethane		1.1 D	6 D	0.44	2.4
1,1,2,2-Tetrachloroethane		0.4 U	2.7 U	0.44 0.2 U	2.4 1.4 U
1,1,2-Trichloroethane		0.4 U 0.4 U	2.7 U 2.2 U	0.2 U	1.4 U 1.1 U
1,1-Dichloroethane		0.4 U 0.4 U	2.2 U 1.6 U	0.2 U	0.81 U
1,1-Dichloroethene		0.4 U 0.4 U	1.6 U	0.2 U 0.2 U	0.81 U 0.79 U
1,2,4-Trichlorobenzene		0.4 U 1 U	7.4 U	0.2 U 0.5 U	
* *		1.4 D	7.4 U 6.9 D	0.5 U 1.6	3.7 U
1,2,4-Trimethylbenzene		0.4 U		0.2 U	7.9 1.5 U
1,2-Dibromoethane			3.1 U		
1,2-Dichlorobenzene		0.4 U	2.4 U	0.2 U	1.2 U
1,2-Dichloroethane		0.4 U	1.6 U	0.2 U	0.81 U
1,2-Dichloroethene (total)		0.4 U	1.6 U	0.2 U	0.79 U
1,2-Dichloropropane		0.4 U	1.8 U	0.2 U	0.92 U
1,2-Dichlorotetrafluoroethane		0.4 U	2.8 U	0.2 U	1.4 U
1,3,5-Trimethylbenzene		0.4 U	2 U	0.38	1.9
1,3-Butadiene		6.6 D	15 D	4.1	9.1
1,3-Dichlorobenzene		0.4 U	2.4 U	0.2 U	1.2 U
1,4-Dichlorobenzene		0.4 U	2.4 U	0.2 U	1.2 U
1,4-Dioxane		10 U	36 U	5 U	18 U
2,2,4-Trimethylpentane		0.4 U	1.9 U	0.2 U	0.93 U
2-Chlorotoluene		0.4 U	2.1 U	0.2 U	1 U
3-Chloropropene		0.4 U	1.3 U	0.2 U	0.63 U
4-Ethyltoluene		1.2 D	5.9 D	1.4	6.9
Acetone		36 D	86 D	22	52
Benzene		2.7 D	8.6 D	1.4	4.5
Bromodichloromethane		0.4 U	2.7 U	0.2 U	1.3 U
Bromoethene		0.4 U	1.7 U	0.2 U	0.87 U
Bromoform		0.4 U	4.1 U	0.2 U	2.1 U
Bromomethane		0.4 U	1.6 U	0.2 U	0.78 U
Carbon Disulfide		1 U	3.1 U	1.3	4
Carbon Tetrachloride		0.4 U	2.5 U	0.2 U	1.3 U
Chlorobenzene		0.4 U	1.8 U	0.2 U	0.92 U
Chloroethane		0.4 U	1.1 U	0.2 U	0.53 U
Chloroform		0.4 U	2 U	0.2 U	0.98 U
Chloromethane		1 U	2.1 U	0.5 U	1 U
cis-1,2-Dichloroethene		0.4 U	1.6 U	0.2 U	0.79 U
cis-1,3-Dichloropropene		0.4 U	1.8 U	0.2 U	0.91 U
Cyclohexane		0.76 D	2.6 D	0.59	2
Dibromochloromethane		0.4 U	3.4 U	0.2 U	1.7 U
Dichlorodifluoromethane		1.5 D	7.4 D	0.84	4.2
Ethylbenzene		1.3 D	5.6 D	1.4	6.1
Freon TF		0.4 U	3.1 U	0.2 U	1.5 U
Hexachlorobutadiene		0.4 U	4.3 U	0.2 U	2.1 U
Isopropyl Alcohol		10 U	25 U	5 U	12 U
m+p-Xylenes		4.4 D	19 D	5.5	24
Methyl Butyl Ketone		1 U	4.1 U	0.5 U	2 U
Methyl Ethyl Ketone		7.5 D	22 D	4.9	14
Methyl Isobutyl Ketone		1 U	4.1 U	0.5 U	2 U
Methylene Chloride		1 U	3.5 U	0.5 U	1.7 U
MTBE		1 U	3.6 U	0.5 U	1.7 U

Table 10. Summary of Volatile Organic Compounds in Soil Vapor Samples Collected
Near Proposed Construction Area, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	Sample Designation:	PC-3 DL	PC-3 DL	PC-4	PC-4
Parameter	Sample Date:	06/22/05	06/22/05	06/22/05	06/22/05
	Concentration Units:	ppbv	ug/m ³	ppbv	ug/m ³
n-Heptane		2.4 D	9.8 D	1.7	7
n-Hexane		4.2 D	15 D	2.9	10
o-Xylene		1.7 D	7.4 D	2	8.7
Styrene		1.2 D	5.1 D	1.7	7.2
tert-Butyl Alcohol		10 U	30 U	5 U	15 U
Tetrachloroethene		0.4 U	2.7 U	0.39	2.6
Tetrahydrofuran		10 U	29 U	5 U	15 U
Toluene		5.9 D	22 D	5.4	20
trans-1,2-Dichloroethene		0.4 U	1.6 U	0.2 U	0.79 U
trans-1,3-Dichloropropene		0.4 U	1.8 U	0.2 U	0.91 U
Trichloroethene		0.4 U	2.1 U	0.2 U	1.1 U
Trichlorofluoromethane		1.1 D	6.2 D	4	22
Vinyl Chloride		0.4 U	1 U	0.2 U	0.51 U
Xylenes (total)		6 D	26 D	7.5	33

ppbv - Parts per billion volume

ug/m³ - Micrograms per cubic meter

D - Dilution

E - Serial dilution exceeds the control limits

Table 10. Summary of Volatile Organic Compounds in Soil Vapor Samples Collected Near Proposed Construction Area, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter	Sample Designation: Sample Date:	PC-5 06/22/05	PC-5 06/22/05	PC-6 06/22/05	PC-6 06/22/05
	Concentration Units:	ppbv	ug/m ³	ppbv	ug/m ³
1,1,1-Trichloroethane		2 U	11 U	1 U	5.5 U
1,1,2,2-Tetrachloroethane		2 U	14 U	1 U	6.9 U
1,1,2-Trichloroethane		2 U	11 U	1 U	5.5 U
1,1-Dichloroethane		2 U	8.1 U	1 U	4 U
1,1-Dichloroethene		2 U	7.9 U	1 U	4 U
1,2,4-Trichlorobenzene		5 U	37 U	2.5 U	19 U
1,2,4-Trimethylbenzene		2 U	9.8 U	2.5	12
1,2-Dibromoethane		2 U	15 U	1 U	7.7 U
1,2-Dichlorobenzene		2 U	12 U	1 U	6 U
1,2-Dichloroethane		2 U	8.1 U	1 U	4 U
1,2-Dichloroethene (total)		2 U	7.9 U	1 U	4 U
1,2-Dichloropropane		2 U	9.2 U	1 U	4.6 U
1,2-Dichlorotetrafluoroethane		2 U	14 U	1 U	7 U
1,3,5-Trimethylbenzene		2 U	9.8 U	1 U	4.9 U
1,3-Butadiene		6.4	9.8 C 14	9.3	21
1,3-Dichlorobenzene		0.4 2 U	14 12 U	9.3 1 U	6 U
1,4-Dichlorobenzene		2 U	12 U	1 U	6 U
1,4-Dioxane		50 U	180 U	25 U	90 U
2,2,4-Trimethylpentane		2 U	9.3 U	25 U	4.7 U
2,2,4-17methyrpentane 2-Chlorotoluene		2 U	9.5 U 10 U	1 U	
		2 U		1 U	5.2 U
3-Chloropropene			6.3 U		3.1 U
4-Ethyltoluene		2 U	9.8 U	1 U	4.9 U
Acetone		51	120	59 2.7	140
Benzene		2.8	8.9	2.7	8.6
Bromodichloromethane		2 U	13 U	1 U	6.7 U
Bromoethene		2 U	8.7 U	1 U	4.4 U
Bromoform		2 U	21 U	1 U	10 U
Bromomethane		2 U	7.8 U	1 U	3.9 U
Carbon Disulfide		5 U	16 U	9.2	29
Carbon Tetrachloride		2 U	13 U	1 U	6.3 U
Chlorobenzene		2 U	9.2 U	1 U	4.6 U
Chloroethane		2 U	5.3 U	1 U	2.6 U
Chloroform		2.2	11	1 U	4.9 U
Chloromethane		5 U	10 U	2.5 U	5.2 U
cis-1,2-Dichloroethene		2 U	7.9 U	1 U	4 U
cis-1,3-Dichloropropene		2 U	9.1 U	1 U	4.5 U
Cyclohexane		2 U	6.9 U	4.5	15
Dibromochloromethane		2 U	17 U	1 U	8.5 U
Dichlorodifluoromethane		37	180	15	74
Ethylbenzene		2 U	8.7 U	2	8.7
Freon TF		2 U	15 U	1 U	7.7 U
Hexachlorobutadiene		2 U	21 U	1 U	11 U
Isopropyl Alcohol		50 U	120 U	25 U	61 U
m+p-Xylenes		2 U	8.7 U	6.2	27
Methyl Butyl Ketone		5 U	20 U	2.5 U	10 U
Methyl Ethyl Ketone		7.5	22	6.4	19
Methyl Isobutyl Ketone		5 U	20 U	2.5 U	10 U
Methylene Chloride		5 U	17 U	2.5 U	8.7 U
MTBE		5 U	18 U	2.5 U	9 U

Table 10. Summary of Volatile Organic Compounds in Soil Vapor Samples Collected
Near Proposed Construction Area, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	Sample Designation:	PC-5	PC-5	PC-6	PC-6
Parameter	Sample Date:	06/22/05	06/22/05	06/22/05	06/22/05
	Concentration Units:	ppbv	ug/m ³	ppbv	ug/m ³
n-Heptane		2 U	8.2 U	11	45
n-Hexane		2.5	8.8	36	130
o-Xylene		2.3 2 U	8.7 U	2.4	10
Styrene		2 U	8.5 U	1.6	6.8
tert-Butyl Alcohol		50 U	150 U	25 U	76 U
Tetrachloroethene		2 U	14 U	1 U	6.8 U
Tetrahydrofuran		50 U	150 U	25 U	74 U
Toluene		3	11	6.8	26
trans-1,2-Dichloroethene		2 U	7.9 U	1 U	4 U
trans-1,3-Dichloropropene		2 U	9.1 U	1 U	4.5 U
Trichloroethene		2 U	11 U	1 U	5.4 U
Trichlorofluoromethane		2.2	12	1 U	5.6 U
Vinyl Chloride		2 U	5.1 U	1 U	2.6 U
Xylenes (total)		2 U	8.7 U	8.5	37

ppbv - Parts per billion volume

ug/m³ - Micrograms per cubic meter

D - Dilution

E - Serial dilution exceeds the control limits

Table 10. Summary of Volatile Organic Compounds in Soil Vapor Samples Collected Near Proposed Construction Area, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter	Sample Designation: Sample Date:	PC-7 06/22/05	PC-7 06/22/05	PC-7 DUP 06/22/05	PC-7 DUP 06/22/05
	Concentration Units:	ppbv	ug/m ³	ppbv	ug/m ³
1,1,1-Trichloroethane		2.8 U	15 U	1 U	5.5 U
1,1,2,2-Tetrachloroethane		2.8 U	19 U	1 U	6.9 U
1,1,2-Trichloroethane		2.8 U	15 U	1 U	5.5 U
1,1-Dichloroethane		2.8 U	11 U	1 U	4 U
1,1-Dichloroethene		2.8 U	11 U	1 U	4 U
1,2,4-Trichlorobenzene		7 U	52 U	2.5 U	19 U
1,2,4-Trimethylbenzene		6.4	31	7.6	37
1,2-Dibromoethane		2.8 U	22 U	1 U	7.7 U
1,2-Dichlorobenzene		2.8 U	17 U	1 U	6 U
1,2-Dichloroethane		2.8 U	11 U	1 U	4 U
1,2-Dichloroethene (total)		2.8 U	11 U	1 U	4 U
1,2-Dichloropropane		2.8 U	13 U	1 U	4.6 U
1,2-Dichlorotetrafluoroethane		2.8 U	20 U	1 U	7 U
1,3,5-Trimethylbenzene		4.4	22	5.2	26
1,3-Butadiene		7.2	16	8.4	19
1,3-Dichlorobenzene		2.8 U	17 U	1 U	6 U
1,4-Dichlorobenzene		2.8 U	17 U	1 U	6 U
1,4-Dioxane		70 U	250 U	25 U	90 U
2,2,4-Trimethylpentane		2.8 U	13 U	1.5	7
2-Chlorotoluene		2.8 U	14 U	1 U	5.2 U
3-Chloropropene		2.8 U	8.8 U	1 U	3.1 U
4-Ethyltoluene		3.5	17	4.5	22
Acetone		70 U	170 U	25 U	59 U
Benzene		13	42	14	45
Bromodichloromethane		2.8 U	19 U	1 U	6.7 U
Bromoethene		2.8 U	12 U	1 U	4.4 U
Bromoform		2.8 U	29 U	1 U	10 U
Bromomethane		2.8 U	11 U	1 U	3.9 U
Carbon Disulfide		2.6 U	22 U	2.5 U	7.8 U
Carbon Tetrachloride		2.8 U	18 U	1 U	6.3 U
Chlorobenzene		2.8 U	13 U	1 U	4.6 U
Chloroethane		4	11	4.2	11
Chloroform		2.8 U	14 U	2.8	14
Chloromethane		7 U	14 U	4.1	8.5
cis-1,2-Dichloroethene		2.8 U	11 U	1 U	4 U
cis-1,3-Dichloropropene		2.8 U	13 U	1 U	4.5 U
Cyclohexane		17	59	17	59
Dibromochloromethane		2.8 U	24 U	1 U	8.5 U
Dichlorodifluoromethane		30	150	30	150
Ethylbenzene Ethylbenzene		7.6	33	8.2	36
Freon TF		2.8 U	21 U	1 U	7.7 U
Hexachlorobutadiene		2.8 U	30 U	1 U	1.7 U
Isopropyl Alcohol		70 U	170 U	25 U	61 U
m+p-Xylenes		9.4	41	11	48
Methyl Butyl Ketone		9.4 7 U	29 U	2.5 U	10 U
Methyl Ethyl Ketone		7 U	29 U 21 U	3.9	12
Methyl Isobutyl Ketone		7 U	21 U 29 U	2.5 U	10 U
Methylene Chloride		7 U	24 U	2.5 U	8.7 U
MTBE		7 U	24 U	2.5 U	9 U

Table 10. Summary of Volatile Organic Compounds in Soil Vapor Samples Collected
Near Proposed Construction Area, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	Sample Designation:	PC-7	PC-7	PC-7 DUP	PC-7 DUP
Parameter	Sample Date:	06/22/05	06/22/05	06/22/05	06/22/05
	Concentration Units:	ppbv	ug/m ³	ppbv	ug/m ³
n-Heptane		5.9	24	6.4	26
n-Hexane		12	42	13	46
o-Xylene		6.8	30	7.6	33
Styrene		2.8 U	12 U	1 U	4.3 U
tert-Butyl Alcohol		70 U	210 U	25 U	76 U
Tetrachloroethene		2.8 U	19 U	1 U	6.8 U
Tetrahydrofuran		70 U	210 U	25 U	74 U
Toluene		11	41	11	41
trans-1,2-Dichloroethene		2.8 U	11 U	1 U	4 U
trans-1,3-Dichloropropene		2.8 U	13 U	1 U	4.5 U
Trichloroethene		2.8 U	15 U	1 U	5.4 U
Trichlorofluoromethane		2.8 U	16 U	1 U	5.6 U
Vinyl Chloride		2.8 U	7.2 U	1 U	2.6 U
Xylenes (total)		16	69	18	78

ppbv - Parts per billion volume

ug/m³ - Micrograms per cubic meter

D - Dilution

E - Serial dilution exceeds the control limits

Table 10. Summary of Volatile Organic Compounds in Soil Vapor Samples Collected Near Proposed Construction Area, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter	Sample Designation: Sample Date:	PC-8 06/23/05	PC-8 06/23/05	PC-9 06/23/05	PC-9 06/23/05
	Concentration Units:	ppbv	ug/m ³	ppbv	ug/m ³
1,1,1-Trichloroethane		4 U	22 U	1 U	5.5 U
1,1,2,2-Tetrachloroethane		4 U	27 U	1 U	6.9 U
1,1,2-Trichloroethane		4 U	22 U	1 U	5.5 U
1,1-Dichloroethane		4 U	16 U	1 U	4 U
1,1-Dichloroethene		4 U	16 U	1 U	4 U
1,2,4-Trichlorobenzene		10 U	74 U	2.5 U	19 U
1,2,4-Triemorobenzene		22	110	1.8	8.8
1,2-Dibromoethane		4 U	31 U	1.8 1 U	7.7 U
1,2-Diofolioethane 1,2-Dichlorobenzene		4 U	24 U	1 U	6 U
		4 U	24 U 16 U	1 U	4 U
1,2-Dichloroethane					
1,2-Dichloroethene (total)		4 U	16 U	1 U	4 U
1,2-Dichloropropane		4 U	18 U	1 U	4.6 U
1,2-Dichlorotetrafluoroethane		4 U	28 U	1 U	7 U
1,3,5-Trimethylbenzene		9.4	46	1 U	4.9 U
1,3-Butadiene		4 U	8.8 U	6.5	14
1,3-Dichlorobenzene		4 U	24 U	1 U	6 U
1,4-Dichlorobenzene		4 U	24 U	1 U	6 U
1,4-Dioxane		100 U	360 U	25 U	90 U
2,2,4-Trimethylpentane		4 U	19 U	1 U	4.7 U
2-Chlorotoluene		4 U	21 U	1 U	5.2 U
3-Chloropropene		4 U	13 U	1 U	3.1 U
4-Ethyltoluene		15	74	1.5	7.4
Acetone		100 U	240 U	43	100
Benzene		4 U	13 U	2.2	7
Bromodichloromethane		4 U	27 U	1 U	6.7 U
Bromoethene		4 U	17 U	1 U	4.4 U
Bromoform		4 U	41 U	1 U	10 U
Bromomethane		4 U	16 U	1 U	3.9 U
Carbon Disulfide		12	37	2.5 U	7.8 U
Carbon Tetrachloride		4 U	25 U	1 U	6.3 U
Chlorobenzene		4 U	18 U	1 U	4.6 U
Chloroethane		4 U	11 U	1 U	2.6 U
Chloroform		4 U	20 U	1.2	5.9
Chloromethane		10 U	21 U	2.5 U	5.2 U
cis-1,2-Dichloroethene		4 U	16 U	1 U	4 U
cis-1,3-Dichloropropene		4 U	18 U	1 U	4.5 U
Cyclohexane		5.3	18	1 U	3.4 U
Dibromochloromethane		4 U	34 U	1 U	8.5 U
Dichlorodifluoromethane		10 U	49 U	10	49
Ethylbenzene		23	100	1.6	6.9
Freon TF		4 U	31 U	1 U	7.7 U
Hexachlorobutadiene		4 U	43 U	1 U	11 U
Isopropyl Alcohol		100 U	250 U	25 U	61 U
m+p-Xylenes		26	110	5.7	25
Methyl Butyl Ketone		10 U	41 U	2.5 U	10 U
Methyl Ethyl Ketone		10 U	29 U	7.1	21
Methyl Isobutyl Ketone		10 U	41 U	2.5 U	10 U
Methylene Chloride		10 U	35 U	2.5 U	8.7 U
MTBE		10 U	35 U 36 U	2.5 U 2.5 U	8.7 U 9 U

Table 10. Summary of Volatile Organic Compounds in Soil Vapor Samples Collected
Near Proposed Construction Area, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	Sample Designation:	PC-8	PC-8	PC-9	PC-9
Parameter	Sample Date:	06/23/05	06/23/05	06/23/05	06/23/05
	Concentration Units:	ppbv	ug/m ³	ppbv	ug/m ³
n-Heptane		7.3	30	2.7	11
n-Hexane		17	60	5.2	18
o-Xylene		10	43	1.9	8.3
Styrene		4.9	21	1 U	4.3 U
tert-Butyl Alcohol		100 U	300 U	25 U	76 U
Tetrachloroethene		4 U	27 U	1 U	6.8 U
Tetrahydrofuran		100 U	290 U	25 U	74 U
Toluene		71	270	8.2	31
trans-1,2-Dichloroethene		4 U	16 U	1 U	4 U
trans-1,3-Dichloropropene		4 U	18 U	1 U	4.5 U
Trichloroethene		4 U	21 U	1 U	5.4 U
Trichlorofluoromethane		4 U	22 U	1.6	9
Vinyl Chloride		4 U	10 U	1 U	2.6 U
Xylenes (total)		36	160	7.6	33

ppbv - Parts per billion volume

ug/m³ - Micrograms per cubic meter

D - Dilution

E - Serial dilution exceeds the control limits

Table 10. Summary of Volatile Organic Compounds in Soil Vapor Samples Collected Near Proposed Construction Area, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter	Sample Designation: Sample Date:	PC-10 06/23/05	PC-10 06/23/05	PC-11 06/23/05	PC-11 06/23/05
	Concentration Units:	ppbv	ug/m ³	ppbv	ug/m ³
1,1,1-Trichloroethane		2 U	11 U	1.6 U	8.7 U
1,1,2,2-Tetrachloroethane		2 U	14 U	1.6 U	11 U
1,1,2-Trichloroethane		2 U	11 U	1.6 U	8.7 U
1,1-Dichloroethane		2 U	8.1 U	1.6 U	6.5 U
1,1-Dichloroethene		2 U	7.9 U	1.6 U	6.3 U
1,2,4-Trichlorobenzene		5 U	37 U	4 U	30 U
1,2,4-Trimethylbenzene		3.1	15	3.8	19
1,2-Dibromoethane		2 U	15 U	1.6 U	12 U
1,2-Dichlorobenzene		2 U	12 U	1.7	10
1,2-Dichloroethane		2 U	8.1 U	1.6 U	6.5 U
1,2-Dichloroethene (total)		2 U	7.9 U	1.6 U	6.3 U
1,2-Dichloropropane		2 U	9.2 U	1.6 U	7.4 U
1,2-Dichlorotetrafluoroethane		2 U	9.2 U 14 U	1.6 U	11 U
		2 U	9.8 U	1.6 U	9.3
1,3,5-Trimethylbenzene		13			
1,3-Butadiene			29	14	31
1,3-Dichlorobenzene		2 U	12 U	1.6 U	9.6 U
1,4-Dichlorobenzene		2 U	12 U	1.6 U	9.6 U
1,4-Dioxane		50 U	180 U	40 U	140 U
2,2,4-Trimethylpentane		2 U	9.3 U	1.6 U	7.5 U
2-Chlorotoluene		2 U	10 U	1.6 U	8.3 U
3-Chloropropene		2 U	6.3 U	1.6 U	5 U
4-Ethyltoluene		2.4	12	3.3	16
Acetone		50 U	120 U	40 U	95 U
Benzene		6.6	21	5.4	17
Bromodichloromethane		2 U	13 U	1.6 U	11 U
Bromoethene		2 U	8.7 U	1.6 U	7 U
Bromoform		2 U	21 U	1.6 U	17 U
Bromomethane		2 U	7.8 U	1.6 U	6.2 U
Carbon Disulfide		5 U	16 U	13	40
Carbon Tetrachloride		2 U	13 U	1.6 U	10 U
Chlorobenzene		2 U	9.2 U	1.6 U	7.4 U
Chloroethane		2 U	5.3 U	1.6 U	4.2 U
Chloroform		2 U	9.8 U	2.7	13
Chloromethane		5 U	10 U	4 U	8.3 U
cis-1,2-Dichloroethene		2 U	7.9 U	1.6 U	6.3 U
cis-1,3-Dichloropropene		2 U	9.1 U	1.6 U	7.3 U
Cyclohexane		5.8	20	3.7	13
Dibromochloromethane		2 U	17 U	1.6 U	14 U
Dichlorodifluoromethane		240	1200	4 U	20 U
Ethylbenzene		2.5	11	6.9	30
Freon TF		2 U	15 U	1.6 U	12 U
Hexachlorobutadiene		2 U	21 U	1.6 U	17 U
Isopropyl Alcohol		50 U	120 U	40 U	98 U
m+p-Xylenes		8.4	36	22	96
Methyl Butyl Ketone		5 U	20 U	4 U	16 U
Methyl Ethyl Ketone		5 U	15 U	8.2	24
Methyl Isobutyl Ketone		5 U	20 U	4 U	16 U
Methylene Chloride		5 U	17 U	4 U	14 U
MTBE		50	180	4 U	14 U

Table 10. Summary of Volatile Organic Compounds in Soil Vapor Samples Collected
Near Proposed Construction Area, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	Sample Designation:	PC-10	PC-10	PC-11	PC-11
Parameter	Sample Date:	06/23/05	06/23/05	06/23/05	06/23/05
	Concentration Units:	ppbv	ug/m ³	ppbv	ug/m ³
n Hantana		5.4	22	5.7	23
n-Heptane					
n-Hexane		9.4	33	5.5	19
o-Xylene		3.2	14	7.2	31
Styrene		2 U	8.5 U	1.6 U	6.8 U
tert-Butyl Alcohol		50 U	150 U	40 U	120 U
Tetrachloroethene		2 U	14 U	1.6 U	11 U
Tetrahydrofuran		50 U	150 U	40 U	120 U
Toluene		13	49	270	1000
trans-1,2-Dichloroethene		2 U	7.9 U	1.6 U	6.3 U
trans-1,3-Dichloropropene		2 U	9.1 U	1.6 U	7.3 U
Trichloroethene		2 U	11 U	1.6 U	8.6 U
Trichlorofluoromethane		40	220	2	11
Vinyl Chloride		2 U	5.1 U	1.6 U	4.1 U
Xylenes (total)		11	48	29	130

ppbv - Parts per billion volume

ug/m³ - Micrograms per cubic meter

D - Dilution

E - Serial dilution exceeds the control limits

Table 10. Summary of Volatile Organic Compounds in Soil Vapor Samples Collected Near Proposed Construction Area, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

The second secon	Sample Designation:	PC-12	PC-12
Parameter	Sample Date:	06/23/05	06/23/05
	Concentration Units:	ppbv	ug/m ³
1,1,1-Trichloroethane		1 U	5.5 U
1,1,2,2-Tetrachloroethane		1 U	6.9 U
1,1,2-Trichloroethane		1 U	5.5 U
1,1-Dichloroethane		1 U	4 U
1,1-Dichloroethene		1 U	4 U
1,2,4-Trichlorobenzene		2.5 U	19 U
1,2,4-Trimethylbenzene		1.5	7.4
1,2-Dibromoethane		1 U	7.7 U
1,2-Dichlorobenzene		1 U	6 U
1,2-Dichloroethane		1 U	4 U
1,2-Dichloroethene (total)		1 U	4 U
1,2-Dichloropropane		1 U	4.6 U
1,2-Dichlorotetrafluoroethane		1 U	7 U
1,3,5-Trimethylbenzene		1 U	4.9 U
1,3-Butadiene		8.9	20
1,3-Dichlorobenzene		0.9 1 U	6 U
1,4-Dichlorobenzene		1 U	6 U
1,4-Dioxane		25 U	90 U
		23 U 1 U	
2,2,4-Trimethylpentane 2-Chlorotoluene		1 U	4.7 U 5.2 U
		_	
3-Chloropropene		1 U	3.1 U
4-Ethyltoluene		1.4	6.9
Acetone		35	83
Benzene		2.6	8.3
Bromodichloromethane		1 U	6.7 U
Bromoethene		1 U	4.4 U
Bromoform		1 U	10 U
Bromomethane		1 U	3.9 U
Carbon Disulfide		2.5 U	7.8 U
Carbon Tetrachloride		1 U	6.3 U
Chlorobenzene		1 U	4.6 U
Chloroethane		1 U	2.6 U
Chloroform		1 U	4.9 U
Chloromethane		2.5 U	5.2 U
cis-1,2-Dichloroethene		1 U	4 U
cis-1,3-Dichloropropene		1 U	4.5 U
Cyclohexane		1 U	3.4 U
Dibromochloromethane		1 U	8.5 U
Dichlorodifluoromethane		4.3	21
Ethylbenzene		1.5	6.5
Freon TF		1 U	7.7 U
Hexachlorobutadiene		1 U	11 U
Isopropyl Alcohol		25 U	61 U
m+p-Xylenes		4.9	21
Methyl Butyl Ketone		2.5 U	10 U
Methyl Ethyl Ketone		6.5	19
Methyl Isobutyl Ketone		2.5 U	10 U
Methylene Chloride		2.5 U	8.7 U
MTBE		2.5 U	9 U

Table 10. Summary of Volatile Organic Compounds in Soil Vapor Samples Collected
Near Proposed Construction Area, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	Sample Designation:	PC-12	PC-12
Parameter	Sample Date:	06/23/05	06/23/05
	Concentration Units:	ppbv	ug/m ³
n Hantana		3.3	14
n-Heptane n-Hexane		3.3 4.8	17
o-Xylene		1.6	6.9
Styrene		1 U	4.3 U
tert-Butyl Alcohol		25 U	76 U
Tetrachloroethene		1 U	6.8 U
Tetrahydrofuran		25 U	74 U
Toluene		8.4	32
trans-1,2-Dichloroethene		1 U	4 U
trans-1,3-Dichloropropene		1 U	4.5 U
Trichloroethene		1 U	5.4 U
Trichlorofluoromethane		2	11
Vinyl Chloride		1 U	2.6 U
Xylenes (total)		6.5	28

ppbv - Parts per billion volume

ug/m³ - Micrograms per cubic meter

D - Dilution

E - Serial dilution exceeds the control limits

Table 11. Summary of Volatile Organic Compounds in Soil Vapor Samples Collected Near HSTF Building, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

D	Sample Designation:		INDOOR-1	INDOOR-2	INDOOR-2	OUTDOOR-1	OUTDOOR-1
Parameter	Sample Date:	03/18/09	03/18/09	03/18/09	03/18/09	03/18/09	03/18/09
	Units:	ppbv	μg/m ³	ppbv	μg/m ³	ppbv	μg/m ³
1,1,1-Trichloroethane		0.2 U	1.1 U	0.2 U	1.1 U	0.2 U	1.1 U
1,1,2,2-Tetrachloroethane		0.2 U	1.4 U	0.2 U	1.4 U	0.2 U	1.4 U
1,1,2-Trichloroethane		0.2 U	1.1 U	0.2 U	1.1 U	0.2 U	1.1 U
1,1-Dichloroethane		0.2 U	0.81 U	0.2 U	0.81 U	0.2 U	0.81 U
1,1-Dichloroethene		0.2 U	0.79 U	0.2 U	0.79 U	0.2 U	0.79 U
1,2,4-Trichlorobenzene		0.2 U	1.5 U	0.2 U	1.5 U	0.2 U	1.5 U
1,2,4-Trimethylbenzene		1.2	5.9	1	4.9	1.3	6.4
1,2-Dibromoethane		0.2 U	1.5 U	0.2 U	1.5 U	0.2 U	1.5 U
1,2-Dichlorobenzene		0.2 U	1.2 U	0.2 U	1.2 U	0.2 U	1.2 U
1,2-Dichloroethane		0.2 U	0.81 U	0.2 U	0.81 U	0.2 U	0.81 U
1,2-Dichloropropane		0.2 U	0.92 U	0.2 U	0.92 U	0.2 U	0.92 U
1,3,5-Trimethylbenzene		0.32	1.6	0.32	1.6	0.34	1.7
1,3-Butadiene		0.2 U	0.44 U	0.2 U	0.44 U	0.2 U	0.44 U
1,3-Dichlorobenzene		0.2 U	1.2 U	0.2 U	1.2 U	0.2 U	1.2 U
1,4-Dichlorobenzene		0.2 U	1.2 U	0.2 U	1.2 U	0.2 U	1.2 U
1,4-Dioxane		0.2 U	0.72 U	0.2 U	0.72 U	0.2 U	0.72 U
2-Butanone (MEK)		2.6	7.7	2.9	8.6	5	15
2-Chlorotoluene		0.2 U	1 U	0.2 U	1 U	0.2 U	1 U
2-Hexanone		0.2 U	0.82 U	0.2 U	0.82 U	0.2 U	0.82 U
2-Propanol		3.8	9.3	2.6	6.4	3.4	8.4
3-Chloropropene		0.2 U	0.63 U	0.2 U	0.63 U	0.2 U	0.63 U
4-Ethyltoluene		0.34	1.7	0.28	1.4	0.33	1.6
4-Methyl-2-pentanone		0.2 U	0.82 U	0.2 U	0.82 U	0.2 U	0.82 U
Acetone		9.1	22	7.6	18	30.9	73.4
Benzene		1.8	5.8	2.1	6.7	2.5	8
Benzyl Chloride		0.2 U	1 U	0.2 U	1 U	0.2 U	1 U
Bromodichloromethane		0.2 U	1.3 U	0.2 U	1.3 U	0.2 U	1.3 U
Bromoethene		0.2 U	0.87 U	0.2 U	0.87 U	0.2 U	0.87 U
Bromoform		0.2 U	2.1 U	0.2 U	2.1 U	0.2 U	2.1 U
Bromomethane		0.2 U	0.78 U	0.2 U	0.78 U	0.2 U	0.78 U
Carbon disulfide		0.2 U	0.62 U	0.2 U	0.62 U	0.2 U	0.62 U
Carbon tetrachloride		0.11 J	0.69 J	0.11 J	0.69 J	0.2 U	1.3 U
Chlorobenzene		0.2 U	0.92 U	0.2 U	0.92 U	0.2 U	0.92 U
Chloroethane		0.2 U	0.53 U	0.2 U	0.53 U	0.2 U	0.53 U
Chloroform		0.2 U	0.98 U	0.2 U	0.98 U	0.2 U	0.98 U
Chloromethane		0.93	1.9	0.9	1.9	0.89	1.8
cis-1,2-Dichloroethene		0.2 U	0.79 U	0.2 U	0.79 U	0.2 U	0.79 U

Table 11. Summary of Volatile Organic Compounds in Soil Vapor Samples Collected Near HSTF Building, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Demonstra	Sample Designation: INDO		INDOOR-2	INDOOR-2	OUTDOOR-1	OUTDOOR-1
Parameter	•	18/09 03/18/09	03/18/09	03/18/09	03/18/09	03/18/09
	Units: p	pbv μg/m ³	ppbv	μg/m ³	ppbv	μg/m ³
1,1,1-Trichloroethane	0.	2 U 1.1 U	0.2 U	1.1 U	0.2 U	1.1 U
cis-1,3-Dichloropropene	0.	2 U 0.91 U	0.2 U	0.91 U	0.2 U	0.91 U
Cyclohexane	1	.5 5.2	1.9	6.5	2.2	7.6
Dibromochloromethane	0.	2 U 1.7 U	0.2 U	1.7 U	0.2 U	1.7 U
Dichlorodifluoromethane	0.	73 3.6	0.8	4	0.8	4
Ethanol	2	24 45.2	16.8	31.7	22.8	43
Ethyl Acetate	0.	35 1.3	0.68	2.4	2.2	7.9
Ethylbenzene	2	.3 10	2.3	10	2.3	10
Freon 113	0.	2 U 1.5 U	0.2 U	1.5 U	0.2 U	1.5 U
Freon 114	0.	2 U 1.4 U	0.2 U	1.4 U	0.2 U	1.4 U
Hexachlorobutadiene	0.	2 U 2.1 U	0.2 U	2.1 U	0.2 U	2.1 U
Isooctane	1	.1 5.1	1.3	6.1	1.6	7.5
m+p-Xylene		8 35	7.8	34	8.1	35
Methylene chloride	0.	38 1.3	0.82	2.8	0.31	1.1
MTBE	0.	2 U 0.72 U	0.2 U	0.72 U	0.2 U	0.72 U
n-Heptane	2	.7 11	2.8	11	3	12
n-Hexane		5 18	6	21	7.7	27
o-Xylene	2	.4 10	2.3	10	2.4	10
Propylene	0.	5 U 0.86 U	1.4	2.4	7.2	12
Styrene	0.	18 J 0.77 J	0.13 J	0.55 J	0.2	0.85
t-Butyl Alcohol	2	.3 7	3.4	10	34.7	105
Tetrachloroethene	0.	81 5.5	0.8	5.4	0.75	5.1
Tetrahydrofuran	1	.9 5.6	2.4	7.1	3.2	9.4
Toluene	1	1.3 42.6	11.5	43.3	11.3	42.6
trans-1,2-Dichloroethene	0.	2 U 0.79 U	0.2 U	0.79 U	0.2 U	0.79 U
trans-1,3-Dichloropropene	0.	2 U 0.91 U	0.2 U	0.91 U	0.2 U	0.91 U
Trichloroethene	0.0	0.21 U	0.04 U	0.21 U	0.04 U	0.21 U
Trichlorofluoromethane	0.	39 2.2	0.46	2.6	0.36	2
Vinyl Acetate	0.	2 U 0.7 U	0.2 U	0.7 U	0.2 U	0.7 U
Vinyl chloride	0.	2 U 0.51 U	0.2 U	0.51 U	0.2 U	0.51 U
Xylenes (total)	10).5 45.6	10.1	43.9	10.4	45.2

ppb - parts per billion

μg/m³ - micrograms per cubic meter

J - Estimated value

U - Not Detected

Table 11. Summary of Volatile Organic Compounds in Soil Vapor Samples Collected Near HSTF Building, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	Sample Designation:	SUBSLAB-1	SUBSLAB-1	SUBSLAB-2	SUBSLAB-2
Parameter	Sample Date:	03/18/09	03/18/09	03/18/09	03/18/09
	Units:	ppbv	$\mu g/m^3$	ppbv	$\mu g/m^3$
1,1,1-Trichloroethane		0.8 U	4.4 U	0.8 U	4.4 U
1,1,2,2-Tetrachloroethane		0.8 U	5.5 U	0.8 U	5.5 U
1,1,2-Trichloroethane		0.8 U	4.4 U	0.8 U	4.4 U
1,1-Dichloroethane		0.8 U	3.2 U	0.8 U	3.2 U
1,1-Dichloroethene		0.8 U	3.2 U	0.8 U	3.2 U
1,2,4-Trichlorobenzene		0.8 U	5.9 U	0.8 U	5.9 U
1,2,4-Trimethylbenzene		1.1	5.4	1.1	5.4
1,2-Dibromoethane		0.8 U	6.1 U	0.8 U	6.1 U
1,2-Dichlorobenzene		0.8 U	4.8 U	0.8 U	4.8 U
1,2-Dichloroethane		0.8 U	3.2 U	0.8 U	3.2 U
1,2-Dichloropropane		0.8 U	3.7 U	0.8 U	3.7 U
1,3,5-Trimethylbenzene		0.8 U	3.9 U	0.8 U	3.9 U
1,3-Butadiene		0.8 U	1.8 U	0.8 U	1.8 U
1,3-Dichlorobenzene		0.8 U	4.8 U	0.8 U	4.8 U
1,4-Dichlorobenzene		0.8 U	4.8 U	0.8 U	4.8 U
1,4-Dioxane		0.8 U	2.9 U	0.8 U	2.9 U
2-Butanone (MEK)		2.7	8	3.1	9.1
2-Chlorotoluene		0.8 U	4.1 U	0.8 U	4.1 U
2-Hexanone		0.8 U	3.3 U	0.8 U	3.3 U
2-Propanol		0.8 U	2 U	0.8 U	2 U
3-Chloropropene		0.8 U	2.5 U	0.8 U	2.5 U
4-Ethyltoluene		0.8 U	3.9 U	0.8 U	3.9 U
4-Methyl-2-pentanone		0.8 U	3.3 U	0.8 U	3.3 U
Acetone		33.4	79.3	52.5	125
Benzene		1.8	5.8	2	6.4
Benzyl Chloride		0.8 U	4.1 U	0.8 U	4.1 U
Bromodichloromethane		0.8 U	5.4 U	0.8 U	5.4 U
Bromoethene		0.8 U	3.5 U	0.8 U	3.5 U
Bromoform		0.8 U	8.3 U	0.8 U	8.3 U
Bromomethane		0.8 U	3.1 U	0.8 U	3.1 U
Carbon disulfide		0.8 U	2.5 U	0.8 U	2.5 U
Carbon tetrachloride		0.8 U	5 U	0.8 U	5 U
Chlorobenzene		0.8 U	3.7 U	0.8 U	3.7 U
Chloroethane		0.8 U	2.1 U	0.8 U	2.1 U
Chloroform		0.8 U	3.9 U	0.8 U	3.9 U
Chloromethane		0.8 U	1.7 U	0.8 U	1.7 U
cis-1,2-Dichloroethene		0.8 U	3.2 U	0.8 U	3.2 U

Table 11. Summary of Volatile Organic Compounds in Soil Vapor Samples Collected Near HSTF Building, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Donomatan	Sample Designation:	SUBSLAB-1 03/18/09	SUBSLAB-1	SUBSLAB-2	SUBSLAB-2 03/18/09
Parameter	Sample Date:		03/18/09	03/18/09	
	Units:	ppbv	μg/m ³	ppbv	μg/m ³
1,1,1-Trichloroethane		0.8 U	4.4 U	0.8 U	4.4 U
cis-1,3-Dichloropropene		0.8 U	3.6 U	0.8 U	3.6 U
Cyclohexane		1.7	5.9	1.7	5.9
Dibromochloromethane		0.8 U	6.8 U	0.8 U	6.8 U
Dichlorodifluoromethane		0.71 J	3.5 J	0.83	4.1
Ethanol		16.8	31.7	17.1	32.2
Ethyl Acetate		2	7.2	2.3	8.3
Ethylbenzene		1.9	8.3	2.1	9.1
Freon 113		0.8 U	6.1 U	0.8 U	6.1 U
Freon 114		0.8 U	5.6 U	0.8 U	5.6 U
Hexachlorobutadiene		0.8 U	8.5 U	0.8 U	8.5 U
Isooctane		1.1	5.1	1.3	6.1
m+p-Xylene		6.5	28	7.2	31
Methylene chloride		0.68 J	2.4 J	1.4	4.9
MTBE		0.8 U	2.9 U	0.8 U	2.9 U
n-Heptane		2.2	9	2.6	11
n-Hexane		5.1	18	5.2	18
o-Xylene		1.9	8.3	2.1	9.1
Propylene		2 U	3.4 U	2 U	3.4 U
Styrene		0.8 U	3.4 U	0.8 U	3.4 U
t-Butyl Alcohol		3.8	12	4.4	13
Tetrachloroethene		0.69	4.7	0.76	5.2
Tetrahydrofuran		2.2	6.5	2.5	7.4
Toluene		8.8	33	10.1	38.1
trans-1,2-Dichloroethene		0.8 U	3.2 U	0.8 U	3.2 U
trans-1,3-Dichloropropene		0.8 U	3.6 U	0.8 U	3.6 U
Trichloroethene		0.16 U	0.86 U	0.16 U	0.86 U
Trichlorofluoromethane		0.44 J	2.5 J	1.1	6.2
Vinyl Acetate		0.8 U	2.8 U	0.8 U	2.8 U
Vinyl chloride		0.8 U	2 U	0.8 U	2 U
Xylenes (total)		8.4	36	9.2	40

ppb - parts per billion

μg/m³ - micrograms per cubic meter

J - Estimated value

U - Not Detected

Table 12. Summary of Volatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	NYSDEC									
	Part 375	Sample Designation:	GE-31-5	GE-31-5	GE-53-3	GE-53-3	GE-53-5	GE-59-3	GE-59-3	MW-26
Parameter	Restricted	Sample Date:								12/5/1990
(Concentrations in µg/kg)	Industrial	Sample Depth (ft bls):	25-25	38-38	12-12	25-25	18-18	12-15	23-25	9-11
(Concentrations in µg/kg)	maasarar	Sample Depth (It bis):	23 23	30 30	12 12	23 23	10 10	12 13	23 23	<i>y</i> 11
1,1,1,2-Tetrachloroethane			NR							
1,1,1-Trichloroethane	1000000		2.2 U	2.2 U	2.3 U	2.2 U	2.3 U	2.3 U	2.4 U	5 U
1,1,2,2-Tetrachloroethane			1.6 U	1.7 U	1.7 U	1.6 U	1.7 U	1.7 U	1.8 U	5 U
1,1,2-Trichloroethane			1.5 U	1.6 U	1.6 U	1.5 U	1.6 U	1.6 U	1.7 U	5 U
1,1-Dichloroethane	480000		1.4 U	1.4 U	1.5 U	1.4 U	1.5 U	1.5 U	1.6 U	5 U
1,1-Dichloroethene	1000000		3 U	3.1 U	3.1 U	3 U	3.2 U	3.2 U	3.3 U	5 U
1,1-Dichloropropene			NR							
1,2,3-Trichlorobenzene			NR							
1,2,3-Trichloropropane			NR							
1,2,4-Trichlorobenzene			3.6 U	3.7 U	3.7 U	3.6 U	3.8 U	3.8 U	4 U	NR
1,2,4-Trimethylbenzene	380000		NR	NA						
1,2-Dibromo-3-Chloropropane			5 U	5.1 U	5.1 U	4.9 U	5.3 U	5.2 U	5.5 U	NR
1,2-Dibromoethane			2.1 U	2.2 U	2.2 U	2.1 U	2.3 U	2.2 U	2.3 U	NR
1,2-Dichloroethene (total)			NR	5 U						
1,2-Dichlorobenzene	1000000		2 U	2.1 U	2.1 U	2 U	2.2 U	2.1 U	2.2 U	5 U
1,2-Dichloroethane	60000		1.6 U	1.6 U	1.7 U	1.6 U	1.7 U	1.7 U	1.8 U	5 U
1,2-Dichloropropane			2.1 U	2.1 U	2.2 U	2.1 U	2.2 U	2.2 U	2.3 U	5 U
1,3,5-Trimethlybenzene			NR							
1,3,5-Trimethylbenzene	380000		NR							
1,3-Dichlorobenzene	560000		2.9 U	3 U	3 U	2.9 U	3.1 U	3.1 U	3.2 U	5 U
1,3-Dichloropropane			NR							
1,4-Dichlorobenzene	250000		2.9 U	2.9 U	3 U	2.8 U	3.1 U	3 U	3.2 U	5 U
2,2-Dichloropropane			NR							
2-Chloroethylvinylether			NR	10 U						
2-Butanone (MEK)	1000000		15 U	23 U	15 U	15 U	16 U	16 U	16 U	10 U
2-Chlorotoluene			NR							
2-Hexanone			19 U	19 U	20 U	19 U	20 U	20 U	21 U	10 U
4-Chlorotoluene			NR	NA						
4-isopropyltoluene			NR	NA						
4-Methyl-2-Pentanone (MIBK)			10 U	11 U	11 U	10 U	11 U	11 U	11 U	10 U
Acetone	1000000		210 B	180 B	18 U	18 U	19 U	110 JB	120 JB	11
Benzene	89000		2.1 U	2.1 U	2.2 U	2.1 U	2.2 U	2.2 U	2.3 U	5 U
Bromobenzene			NR							
Bromochloromethane			NR	5 U						

Table 12. Summary of Volatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	NYSDEC									
	Part 375	Sample Designation:	GE-31-5	GE-31-5	GE-53-3	GE-53-3	GE-53-5	GE-59-3	GE-59-3	MW-26
Parameter	Restricted	Sample Date:							7/10/2006	12/5/1990
(Concentrations in µg/kg)	Industrial	Sample Depth (ft bls):	25-25	38-38	12-12	25-25	18-18	12-15	23-25	9-11
Bromodichloromethane			1.8 U	1.8 U	1.8 U	1.7 U	1.9 U	1.8 U	1.9 U	NR
Bromoform			1.6 U	1.7 U	1.7 U	1.6 U	1.7 U	1.7 U	1.8 U	5 U
Bromomethane			11 U	12 U	10 U					
Carbon disulfide			1.9 U	2 U	2 U	1.9 U	2.1 U	2 U	2.1 U	5 U
Carbon tetrachloride	44000		2.3 U	2.4 U	2.4 U	2.3 U	2.5 U	2.4 U	2.6 U	5 U
Chlorobenzene	1000000		1.9 U	1.9 U	2 U	1.9 U	2 U	2 U	2.1 U	5 U
Chloroethane			11 U	11 U	12 U	11 U	12 U	12 U	12 U	10 U
Chloroform	700000		1.8 U	1.9 U	1.9 U	1.8 U	2 U	1.9 U	2 U	5 U
Chloromethane			4.5 U	4.6 U	4.6 U	4.5 U	4.8 U	4.7 U	4.9 U	10 U
cis-1,2-Dichloroethene	1000000		1.7 U	1.7 U	1.8 U	1.7 U	1.8 U	1.8 U	1.9 U	NR
cis-1,3-Dichloropropene			1.7 U	1.8 U	1.8 U	1.7 U	1.9 U	1.8 U	1.9 U	5 U
Cyclohexane			1.7 U	1.7 U	1.8 U	1.7 U	1.8 U	1.8 U	1.9 U	NR
Dibromochloromethane			1.2 U	1.2 U	1.2 U	1.2 U	1.3 U	1.3 U	1.3 U	5 U
Dibromomethane			NR	NR						
Dichlorodifluoromethane			4.5 U	4.6 U	4.7 U	4.5 U	4.8 U	4.7 U	5 U	NR
Ethylbenzene	780000		1.9 U	1.9 U	1.9 U	1.8 U	2 U	1.9 U	2.1 U	5 U
Freon 113			3.5 U	3.6 U	3.6 U	3.5 U	3.7 U	3.7 U	3.9 U	NR
Hexachlorobutadiene			NR	NR						
Isopropylbenzene			2.2 U	2.2 U	2.3 U	2.2 U	2.3 U	2.3 U	2.4 U	NA
m+p-Xylene			4.6 U	4.6 U	4.7 U	4.5 U	4.8 U	4.8 U	5 U	NA
Methyl Acetate			4.6 U	4.6 U	4.7 U	4.5 U	4.8 U	4.8 U	5 U	NR
Methyl tert-butyl ether			NR	NR						
Methylcyclohexane			2.2 U	2.3 U	2.3 U	2.2 U	2.4 U	2.3 U	2.4 U	NR
Methylene Chloride	1000000		9.6 U	9.8 U	9.9 U	9.5 U	10 U	10 U	11 U	5 U
MTBE	1000000		1.9 U	2 U	2 U	1.9 U	2.1 U	2 U	2.1 U	NA
Naphthalene	1000000		NR	NA						
n-Butylbenzene	1000000		NR	NA						
n-Propylbenzene	1000000		NR	NA						
o-Xylene			2 U	2.1 U	2.1 U	2 U	2.2 U	2.1 U	2.2 U	NA
sec-Butylbenzene	1000000		NR	NA						
Styrene			2.4 U	2.5 U	2.5 U	2.4 U	2.6 U	2.5 U	2.7 U	5 U
tert-Butylbenzene	1000000		NR	NA						
Tetrachloroethene	300000		3.8 U	3.9 U	4 U	3.8 U	4.1 U	4 U	4.2 U	5 U
Toluene	1000000		2.1 U	2.2 U	2.2 U	2.1 U	2.3 U	2.2 U	2.3 U	5 U

Table 12. Summary of Volatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	NYSDEC									
	Part 375	Sample Designation:	GE-31-5	GE-31-5	GE-53-3	GE-53-3	GE-53-5	GE-59-3	GE-59-3	MW-26
Parameter	Restricted	Sample Date:	8/16/2006	8/16/2006	7/27/2006	7/27/2006	7/27/2006	7/10/2006	7/10/2006	12/5/1990
(Concentrations in µg/kg)	Industrial	Sample Depth (ft bls):	25-25	38-38	12-12	25-25	18-18	12-15	23-25	9-11
trans-1,2-Dichloroethene	1000000		3.4 U	3.4 U	3.5 U	3.3 U	3.6 U	3.5 U	3.7 U	NR
trans-1,3-Dichloropropene			1.9 U	1.9 U	2 U	1.9 U	2 U	2 U	2.1 U	5 U
Trichloroethene	400000		1.6 U	1.7 U	1.7 U	1.6 U	1.7 U	1.7 U	1.8 U	5 U
Trichlorofluoromethane			6.6 U	6.7 U	6.8 U	6.5 U	7 U	6.9 U	7.2 U	5 U
Vinyl Acetate			NR	10 U						
Vinyl chloride	27000		4.3 U	4.4 U	4.5 U	4.3 U	4.6 U	4.5 U	4.8 U	10 U
Xylenes (total)	1000000		NR	5 U						

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

ND - Compound was analyzed for but not detected

NR - No data reported

DUP - Duplicate sample

 $\mu g/kg$ - Micrograms per kilogram

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservation

-- No NYSDEC Part 375 Restricted Commercial Standards available

Table 12. Summary of Volatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter Part 375 Sample Designation: RT-9 S-35 SY-515 SY-516 SY-516 TE-B/C-2 TE-B/C-2 TE-B/C-2 Concentrations in μg/kg) Restricted Sample Date: 8/30/2006 11/30/1990 11/17/2006 10/19/2006 10/19/2006 9/7/2000 9/8/2000 (Concentrations in μg/kg) Sample Depth (ft bls): 20-20 8-10 22-22 45-45 90-90 48-50 85-86 1,1,1,2-Tetrachloroethane NR NR NR NR NR NR NR 1,1,2,2-Tetrachloroethane 1.9 U 6 U 2.5 U 2.3 U 2.5 U 6 U 6 U 1,1,2-Trichloroethane 1.8 U 6 U 1.8 U 1.6 U 1.8 U 6 U 6 U 1,1-Dichloroethane 1.8 U 6 U 1.6 U 1.5 U 1.6 U 6 U 6 U
(Concentrations in μ g/kg) Industrial Sample Depth (ft bls): 20-20 8-10 22-22 45-45 90-90 48-50 85-86 1,1,1,2-Tetrachloroethane NR NR
1,1,1,2-Tetrachloroethane NR NB 10 <th< td=""></th<>
1,1,1-Trichloroethane 1000000 2.6 U 6 U 2.5 U 2.3 U 2.5 U 6 U 6 U 1,1,2,2-Tetrachloroethane 1.9 U 6 U 1.9 U 1.7 U 1.9 U 6 U 6 U 1,1,2-Trichloroethane 1.8 U 6 U 1.8 U 1.6 U 1.8 U 6 U 6 U
1,1,1-Trichloroethane 1000000 2.6 U 6 U 2.5 U 2.3 U 2.5 U 6 U 6 U 1,1,2,2-Tetrachloroethane 1.9 U 6 U 1.9 U 1.7 U 1.9 U 6 U 6 U 1,1,2-Trichloroethane 1.8 U 6 U 1.8 U 1.6 U 1.8 U 6 U 6 U
1,1,2,2-Tetrachloroethane 1.9 U 6 U 1.9 U 1.7 U 1.9 U 6 U 6 U 1,1,2-Trichloroethane 1.8 U 6 U 1.8 U 1.6 U 1.8 U 6 U 6 U
1,1,2-Trichloroethane 1.8 U 6 U 1.8 U 1.6 U 1.8 U 6 U
1.1-Dichloroethane 480000 1.7 U 6U 1.6U 1.5U 1.6U 6U
-,- =
1,1-Dichloroethene 1000000 3.5 U 6 U 3.5 U 3.1 U 3.5 U 6 U
1,1-Dichloropropene NR NR NR NR NR NR NR NR
1,2,3-Trichlorobenzene NR NR NR NR NR NR NR NR
1,2,3-Trichloropropane NR NR NR NR NR NR NR NR
1,2,4-Trichlorobenzene 4.2 U NR 4.2 U 3.7 U 4.1 U NR NR
1,2,4-Trimethylbenzene 380000 NR NA NR NR NR NR NR NR
1,2-Dibromo-3-Chloropropane 5.8 U NR 5.7 U 5.1 U 5.7 U NR NR
1,2-Dibromoethane 2.5 U NR 2.5 U 2.2 U 2.4 U NR NR
1,2-Dichloroethene (total) NR 6 U NR NR NR NR NR
1,2-Dichlorobenzene 1000000 2.4 U 6 U 2.4 U 2.1 U 2.3 U NR NR
1,2-Dichloroethane 60000 1.9 U 1.9 U 1.7 U 1.8 U 6 U 6 U
1,2-Dichloropropane 2.5 U 6 U 2.4 U 2.2 U 2.4 U 6 U 6 U
1,3,5-Trimethlybenzene NR NR NR NR NR NR NR NR
1,3,5-Trimethylbenzene 380000 NR NR NR NR NR NR NR NR
1,3-Dichlorobenzene 560000 3.5 U 6 U 3.4 U 3 U 3.4 U NR NR
1,3-Dichloropropane NR NR NR NR NR NR NR NR
1,4-Dichlorobenzene 250000 3.4 U 6 U 3.3 U 3 U NR NR
2,2-Dichloropropane NR NR NR NR NR NR NR NR
2-Chloroethylvinylether NR 11 U NR NR NR NR NR
2-Butanone (MEK) 1000000 17 U 11 U 17 U 15 U 17 U 11 U 3 J
2-Chlorotoluene NR NR NR NR NR NR NR NR
2-Hexanone 22 U 11 U 22 U 20 U 22 U 11 U 12 U
4-Chlorotoluene NR NA NR NR NR NR NR NR
4-isopropyltoluene NR NA NR NR NR NR NR NR
4-Methyl-2-Pentanone (MIBK) 12 U 11 U 12 U 11 U 12 U 11 U 12 U
Acetone 1000000 21 U 15 20 U 70 JB 82 JB 22 B 8 JB
Benzene 89000 2.5 U 6 U 2.4 U 2.2 U 2.4 U 6 U 6 U
Bromobenzene NR NR NR NR NR NR NR NR
Bromochloromethane NR 6 U NR NR NR NR NR

Table 12. Summary of Volatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	NYSDEC								
	Part 375	Sample Designation:	RT-9	S-35	SY-515	SY-516	SY-516	TE-B/C-2	TE-B/C-2
Parameter	Restricted	Sample Date:	8/30/2006	11/30/1990	11/17/2006	10/19/2006	10/19/2006	9/7/2000	9/8/2000
(Concentrations in µg/kg)	Industrial	Sample Depth (ft bls):	20-20	8-10	22-22	45-45	90-90	48-50	85-86
Bromodichloromethane			2.1 U	NR	2 U	1.8 U	2 U	6 U	6 U
Bromoform			1.9 U	6 U	1.9 U	1.7 U	1.9 U	6 U	6 U
Bromomethane			13 U	11 U	12 U	11 U	12 U	11 U	12 U
Carbon disulfide			2.3 U	6 U	2.2 U	2 U	2.2 U	6 U	6 U
Carbon tetrachloride	44000		2.7 U	6 U	2.7 U	2.4 U	2.7 U	6 U	6 U
Chlorobenzene	1000000		2.2 U	6 U	2.2 U	2 U	2.2 U	6 U	6 U
Chloroethane			13 U	11 U	13 U	12 U	13 U	11 U	12 U
Chloroform	700000		2.2 U	6 U	2.1 U	1.9 U	2.1 U	6 U	6 U
Chloromethane			5.3 U	11 U	5.2 U	4.7 U	5.1 U	11 U	12 U
cis-1,2-Dichloroethene	1000000		2 U	NR	2 U	1.8 U	2 U	6 U	6 U
cis-1,3-Dichloropropene			2 U	6 U	2 U	1.8 U	2 U	6 U	6 U
Cyclohexane			2 U	NR	2 U	1.8 U	2 U	NR	NR
Dibromochloromethane			1.4 U	6 U	1.4 U	1.3 U	1.4 U	6 U	6 U
Dibromomethane			NR	NR	NR	NR	NR	NR	NR
Dichlorodifluoromethane			5.3 U	NR	5.2 U	4.7 U	5.2 U	NR	NR
Ethylbenzene	780000		2.2 U	6 U	2.2 U	1.9 U	2.1 U	6 U	6 U
Freon 113			4.1 U	NR	4.1 U	3.6 U	4 U	NR	NR
Hexachlorobutadiene			NR	NR	NR	NR	NR	NR	NR
Isopropylbenzene			2.6 U	NA	2.5 U	2.3 U	2.5 U	NR	NR
m+p-Xylene			5.4 U	NA	5.3 U	4.7 U	5.2 U	NR	NR
Methyl Acetate			5.4 U	NR	5.3 U	4.7 U	5.2 U	NR	NR
Methyl tert-butyl ether			NR	NR	NR	NR	NR	NR	NR
Methylcyclohexane			2.6 U	NR	2.6 U	2.3 U	2.5 U	NR	NR
Methylene Chloride	1000000		11 U	6 U	61 B	10 U	11 U	9 B	8 B
MTBE	1000000		12 J	NA	2.2 U	2 U	2.2 U	NR	NR
Naphthalene	1000000		NR	NA	NR	NR	NR	NR	NR
n-Butylbenzene	1000000		NR	NA	NR	NR	NR	NR	NR
n-Propylbenzene	1000000		NR	NA	NR	NR	NR	NR	NR
o-Xylene			2.4 U	NA	2.3 U	2.1 U	2.3 U	NR	NR
sec-Butylbenzene	1000000		NR	NA	NR	NR	NR	NR	NR
Styrene			2.8 U	6 U	2.8 U	2.5 U	2.8 U	6 U	6 U
tert-Butylbenzene	1000000		NR	NA	NR	NR	NR	NR	NR
Tetrachloroethene	300000		4.5 U	6 U	4.5 U	4 U	4.4 U	6 U	6 U
Toluene	1000000		2.5 U	6 U	2.5 U	2.2 U	2.4 U	6 U	6 U

Table 12. Summary of Volatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	NYSDEC								
	Part 375	Sample Designation:	RT-9	S-35	SY-515	SY-516	SY-516	TE-B/C-2	TE-B/C-2
Parameter	Restricted	Sample Date: 8	3/30/2006	11/30/1990	11/17/2006	10/19/2006	10/19/2006	9/7/2000	9/8/2000
(Concentrations in µg/kg)	Industrial	Sample Depth (ft bls):	20-20	8-10	22-22	45-45	90-90	48-50	85-86
trans-1,2-Dichloroethene	1000000		4 U	NR	3.9 U	3.5 U	3.8 U	6 U	6 U
trans-1,3-Dichloropropene			2.2 U	6 U	2.2 U	2 U	2.2 U	6 U	6 U
Trichloroethene	400000		1.9 U	6 U	1.9 U	1.7 U	1.9 U	6 U	6 U
Trichlorofluoromethane			7.7 U	6 U	7.6 U	6.8 U	7.5 U	NR	NR
Vinyl Acetate			NR	11 U	NR	NR	NR	11 U	12 U
Vinyl chloride	27000		5.1 U	11 U	5 U	4.5 U	5 U	11 U	12 U
Xylenes (total)	1000000		NR	6 U	NR	NR	NR	6 U	6 U
-									

J - Estimated value

U - Indicates that the compound was analyzed for but not detected

ND - Compound was analyzed for but not detected

NR - No data reported

DUP - Duplicate sample

 $\mu g/kg$ - Micrograms per kilogram

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservatio

-- No NYSDEC Part 375 Restricted Commercial Standards available

Table 12. Summary of Volatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

NYSDEC	
Part 375 Sample Designation: TE-IB/C	B-1 TE-IB/OB-1 TE-IB-3 TE-IB-3 TE-IB-3 TE-MW-A-1 TE-MW-A-
Parameter Restricted Sample Date: 9/11/20	00 9/11/2000 9/12/2000 9/12/2000 9/12/2000 9/26/2000 9/26/2000
(Concentrations in µg/kg) Industrial Sample Depth (ft bls): 15-1	33-35 38-40 23-25 53-55 37 - 37 14 - 16
1,1,1,2-Tetrachloroethane NR	NR NR NR NR NR
1,1,1-Trichloroethane 1000000 6 U	6U 6U 6U 6U 7U
1,1,2,2-Tetrachloroethane 0.5.	3 J 1 J 6 U 6 U 7 U
1,1,2-Trichloroethane 6 U	6U 6U 6U 6U 7U
1,1-Dichloroethane 480000 6 U	6U 6U 6U 6U 7U
1,1-Dichloroethene 1000000 6 U	6U 6U 6U 6U 7U
1,1-Dichloropropene NR	NR NR NR NR NR
1,2,3-Trichlorobenzene NR	NR NR NR NR NR
1,2,3-Trichloropropane NR	NR NR NR NR NR
1,2,4-Trichlorobenzene NR	NR NR NR NR NR
1,2,4-Trimethylbenzene 380000 NR	NR NR NR NR NR
1,2-Dibromo-3-Chloropropane NR	NR NR NR NR NR
1,2-Dibromoethane NR	NR NR NR NR NR
1,2-Dichloroethene (total) NR	NR NR NR NR NR
1,2-Dichlorobenzene 1000000 NR	NR NR NR NR NR
1,2-Dichloroethane 60000 6 U	6U 6U 6U 6U 7U
1,2-Dichloropropane 6 U	6U 6U 6U 6U 7U
1,3,5-Trimethlybenzene NR	NR NR NR NR NR
1,3,5-Trimethylbenzene 380000 NR	NR NR NR NR NR
1,3-Dichlorobenzene 560000 NR	NR NR NR NR NR
1,3-Dichloropropane NR	NR NR NR NR NR
1,4-Dichlorobenzene 250000 NR	NR NR NR NR NR
2,2-Dichloropropane NR	NR NR NR NR NR
2-Chloroethylvinylether NR	NR NR NR NR NR
2-Butanone (MEK) 1000000 12 U	12 U 12 U 12 U 12 U 12 U 14 U
2-Chlorotoluene NR	NR NR NR NR NR
2-Hexanone 12 U	12 U 12 U 12 U 12 U 12 U 14 U
4-Chlorotoluene NR	NR NR NR NR NR
4-isopropyltoluene NR	NR NR NR NR NR
4-Methyl-2-Pentanone (MIBK) 12 U	12 U 12 U 12 U 12 U 12 U 14 U
Acetone 1000000 15 F	17 B 20 15 B 21 15 16
Benzene 89000 6 U	6U 6U 6U 6U 7U
Bromobenzene NR	NR NR NR NR NR
Bromochloromethane NR	NR NR NR NR NR

Table 12. Summary of Volatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	NYSDEC								
	Part 375	Sample Designation:	TE-IB/OB-1	TE-IB/OB-1	TE-IB-3	TE-IB-3	TE-IB-3	TE-MW-A-1	TE-MW-A-1
Parameter	Restricted	Sample Date:	9/11/2000	9/11/2000	9/12/2000	9/12/2000	9/12/2000	9/26/2000	9/26/2000
(Concentrations in µg/kg)	Industrial	-	15-17	33-35	38-40	23-25	53-55	37 - 37	14 - 16
Bromodichloromethane			6 U	6 U	6 U	6 U	6 U	6 U	7 U
Bromoform			6 U	6 U	6 U	6 U	6 U	6 U	7 U
Bromomethane			12 U	12 U	12 U	12 U	12 U	12 U	14 U
Carbon disulfide			6 U	6 U	6 U	6 U	6 U	6 U	7 U
Carbon tetrachloride	44000		6 U	6 U	6 U	6 U	6 U	6 U	7 U
Chlorobenzene	1000000		6 U	6 U	6 U	6 U	6 U	6 U	7 U
Chloroethane			12 U	12 U	12 U	12 U	12 U	12 U	14 U
Chloroform	700000		6 U	6 U	6 U	6 U	6 U	6 U	7 U
Chloromethane			12 U	12 U	12 U	12 U	12 U	12 U	14 U
cis-1,2-Dichloroethene	1000000		6 U	6 U	6 U	6 U	6 U	6 U	7 U
cis-1,3-Dichloropropene			6 U	6 U	6 U	6 U	6 U	6 U	7 U
Cyclohexane			NR	NR	NR	NR	NR	NR	NR
Dibromochloromethane			6 U	6 U	6 U	6 U	6 U	6 U	7 U
Dibromomethane			NR	NR	NR	NR	NR	NR	NR
Dichlorodifluoromethane			NR	NR	NR	NR	NR	NR	NR
Ethylbenzene	780000		6 U	6 U	6 U	6 U	6 U	6 U	7 U
Freon 113			NR	NR	NR	NR	NR	NR	NR
Hexachlorobutadiene			NR	NR	NR	NR	NR	NR	NR
Isopropylbenzene			NR	NR	NR	NR	NR	NR	NR
m+p-Xylene			NR	NR	NR	NR	NR	NR	NR
Methyl Acetate			NR	NR	NR	NR	NR	NR	NR
Methyl tert-butyl ether			NR	NR	NR	NR	NR	NR	NR
Methylcyclohexane			NR	NR	NR	NR	NR	NR	NR
Methylene Chloride	1000000		10 B	10 B	10 B	10 B	11 B	5 JB	7 B
MTBE	1000000		NR	NR	NR	NR	NR	NR	NR
Naphthalene	1000000		NR	NR	NR	NR	NR	NR	NR
n-Butylbenzene	1000000		NR	NR	NR	NR	NR	NR	NR
n-Propylbenzene	1000000		NR	NR	NR	NR	NR	NR	NR
o-Xylene			NR	NR	NR	NR	NR	NR	NR
sec-Butylbenzene	1000000		NR	NR	NR	NR	NR	NR	NR
Styrene			6 U	6 U	6 U	6 U	6 U	6 U	7 U
tert-Butylbenzene	1000000		NR	NR	NR	NR	NR	NR	NR
Tetrachloroethene	300000		6 U	6 U	6 U	6 U	6 U	2 J	7 U
Toluene	1000000		6 U	6 U	6 U	6 U	0.5 JB	6 U	7 U

Table 12. Summary of Volatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	NYSDEC								
	Part 375	Sample Designation:	TE-IB/OB-1	TE-IB/OB-1	TE-IB-3	TE-IB-3	TE-IB-3	TE-MW-A-1	TE-MW-A-1
Parameter	Restricted	Sample Date:	9/11/2000	9/11/2000	9/12/2000	9/12/2000	9/12/2000	9/26/2000	9/26/2000
(Concentrations in µg/kg)	Industrial	Sample Depth (ft bls):	15-17	33-35	38-40	23-25	53-55	37 - 37	14 - 16
trans-1,2-Dichloroethene	1000000		6 U	6 U	6 U	6 U	6 U	6 U	7 U
trans-1,3-Dichloropropene			6 U	6 U	6 U	6 U	6 U	6 U	7 U
Trichloroethene	400000		6 U	6 U	6 U	6 U	6 U	0.6 J	7 U
Trichlorofluoromethane			NR	NR	NR	NR	NR	NR	NR
Vinyl Acetate			12 U	12 U	12 U	12 U	12 U	12 U	14 U
Vinyl chloride	27000		12 U	12 U	12 U	12 U	12 U	12 U	14 U
Xylenes (total)	1000000		6 U	6 U	6 U	6 U	6 U	6 U	6 U
-									

J - Estimated value

ND - Compound was analyzed for but not detected

NR - No data reported

DUP - Duplicate sample

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservatio

Table 12. Summary of Volatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	NYSDEC							
	Part 375	Sample Designation:	TE-MW-D-1	TE-MW-D-1	TE-MW-D-1	TE-MW-IB-2	TE-MW-IB-2	TE-MW-IB-2
Parameter	Restricted	Sample Date:	9/25/2000	9/25/2000	9/25/2000	10/3/2000	10/3/2000	10/4/2000
(Concentrations in µg/kg)	Industrial	•	10 - 12	25 - 25	40 - 41	14-16	62-64	93-95
1,1,1,2-Tetrachloroethane			NR	NR	NR	NR	NR	NR
1,1,1-Trichloroethane	1000000		6 U	6 U	6 U	5 U	6 U	5 U
1,1,2,2-Tetrachloroethane			4 J	7	1 J	5 U	6 U	1 J
1,1,2-Trichloroethane			6 U	6 U	6 U	5 U	6 U	5 U
1,1-Dichloroethane	480000		6 U	6 U	6 U	5 U	6 U	5 U
1,1-Dichloroethene	1000000		6 U	6 U	6 U	5 U	6 U	5 U
1,1-Dichloropropene			NR	NR	NR	NR	NR	NR
1,2,3-Trichlorobenzene			NR	NR	NR	NR	NR	NR
1,2,3-Trichloropropane			NR	NR	NR	NR	NR	NR
1,2,4-Trichlorobenzene			NR	NR	NR	NR	NR	NR
1,2,4-Trimethylbenzene	380000		NR	NR	NR	NR	NR	NR
1,2-Dibromo-3-Chloropropane			NR	NR	NR	NR	NR	NR
1,2-Dibromoethane			NR	NR	NR	NR	NR	NR
1,2-Dichloroethene (total)			NR	NR	NR	NR	NR	NR
1,2-Dichlorobenzene	1000000		NR	NR	NR	NR	NR	NR
1,2-Dichloroethane	60000		6 U	6 U	6 U	5 U	6 U	5 U
1,2-Dichloropropane			6 U	6 U	6 U	5 U	6 U	5 U
1,3,5-Trimethlybenzene			NR	NR	NR	NR	NR	NR
1,3,5-Trimethylbenzene	380000		NR	NR	NR	NR	NR	NR
1,3-Dichlorobenzene	560000		NR	NR	NR	NR	NR	NR
1,3-Dichloropropane			NR	NR	NR	NR	NR	NR
1,4-Dichlorobenzene	250000		NR	NR	NR	NR	NR	NR
2,2-Dichloropropane			NR	NR	NR	NR	NR	NR
2-Chloroethylvinylether			NR	NR	NR	NR	NR	NR
2-Butanone (MEK)	1000000		12 U	11 U	11 U	11 U	12 U	10 U
2-Chlorotoluene			NR	NR	NR	NR	NR	NR
2-Hexanone			12 U	11 U	11 U	11 U	12 U	10 U
4-Chlorotoluene			NR	NR	NR	NR	NR	NR
4-isopropyltoluene			NR	NR	NR	NR	NR	NR
4-Methyl-2-Pentanone (MIBK)			12 U	11 U	11 U	11 U	12 U	10 U
Acetone	1000000		25	28	13	11 U	19	30
Benzene	89000		6 U	6 U	6 U	5 U	6 U	5 U
Bromobenzene			NR	NR	NR	NR	NR	NR
Bromochloromethane			NR	NR	NR	NR	NR	NR

Table 12. Summary of Volatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	NYSDEC							
	Part 375	Sample Designation:						
Parameter	Restricted	Sample Date:	9/25/2000	9/25/2000	9/25/2000	10/3/2000	10/3/2000	10/4/2000
(Concentrations in µg/kg)	Industrial	Sample Depth (ft bls):	10 - 12	25 - 25	40 - 41	14-16	62-64	93-95
Bromodichloromethane			6 U	6 U	6 U	5 U	6 U	5 U
Bromoform			6 U	6 U	6 U	5 U	6 U	5 U
Bromomethane			12 U	11 U	11 U	11 U	12 U	10 U
Carbon disulfide			6 U	6 U	6 U	0.6 J	1 J	0.5 J
Carbon tetrachloride	44000		6 U	6 U	6 U	5 U	6 U	5 U
Chlorobenzene	1000000		6 U	6 U	6 U	5 U	6 U	5 U
Chloroethane			12 U	11 U	11 U	11 U	12 U	10 U
Chloroform	700000		6 U	6 U	6 U	5 U	6 U	5 U
Chloromethane			12 U	11 U	11 U	11 U	12 U	10 U
cis-1,2-Dichloroethene	1000000		6 U	6 U	6 U	5 U	6 U	5 U
cis-1,3-Dichloropropene			6 U	6 U	6 U	5 U	6 U	5 U
Cyclohexane			NR	NR	NR	NR	NR	NR
Dibromochloromethane			6 U	6 U	6 U	5 U	6 U	5 U
Dibromomethane			NR	NR	NR	NR	NR	NR
Dichlorodifluoromethane			NR	NR	NR	NR	NR	NR
Ethylbenzene	780000		6 U	6 U	6 U	5 U	6 U	5 U
Freon 113			NR	NR	NR	NR	NR	NR
Hexachlorobutadiene			NR	NR	NR	NR	NR	NR
Isopropylbenzene			NR	NR	NR	NR	NR	NR
m+p-Xylene			NR	NR	NR	NR	NR	NR
Methyl Acetate			NR	NR	NR	NR	NR	NR
Methyl tert-butyl ether			NR	NR	NR	NR	NR	NR
Methylcyclohexane			NR	NR	NR	NR	NR	NR
Methylene Chloride	1000000		8 B	9 B	6 B	10 B	4 JB	6 B
MTBE	1000000		NR	NR	NR	NR	NR	NR
Naphthalene	1000000		NR	NR	NR	NR	NR	NR
n-Butylbenzene	1000000		NR	NR	NR	NR	NR	NR
n-Propylbenzene	1000000		NR	NR	NR	NR	NR	NR
o-Xylene			NR	NR	NR	NR	NR	NR
sec-Butylbenzene	1000000		NR	NR	NR	NR	NR	NR
Styrene			6 U	6 U	6 U	5 U	6 U	5 U
tert-Butylbenzene	1000000		NR	NR	NR	NR	NR	NR
Tetrachloroethene	300000		6 U	6 U	6 U	5 U	6 U	5 U
Toluene	1000000		6 U	6 U	6 U	5 U	6 U	0.6 JB

Table 12. Summary of Volatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	NYSDEC Part 375	Sample Designation:	TE-MW-D-1	TE-MW-D-1	TE-MW-D-1	TE-MW-IB-2	TE-MW-IB-2	TE-MW-IB-2
Parameter	Restricted	Sample Date:	9/25/2000	9/25/2000	9/25/2000	10/3/2000	10/3/2000	10/4/2000
(Concentrations in µg/kg)	Industrial	Sample Depth (ft bls):	10 - 12	25 - 25	40 - 41	14-16	62-64	93-95
trans-1,2-Dichloroethene	1000000		6 U	6 U	6 U	5 U	6 U	5 U
trans-1,3-Dichloropropene			6 U	6 U	6 U	5 U	6 U	5 U
Trichloroethene	400000		6 U	6 U	6 U	5 U	6 U	5 U
Trichlorofluoromethane			NR	NR	NR	NR	NR	NR
Vinyl Acetate			12 U	11 U	11 U	11 U	12 U	10 U
Vinyl chloride	27000		12 U	11 U	11 U	11 U	12 U	10 U
Xylenes (total)	1000000		6 U	5 U	6 U	5 U	6 U	5 U

J - Estimated value

ND - Compound was analyzed for but not detected

NR - No data reported

DUP - Duplicate sample

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservatio

Table 12. Summary of Volatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	NYSDEC								
	Part 375	Sample Designation:	TE-MW-OB-2	TE-MW-OB-2	TE-MW-OA-2	TE-MW-OA-2	TE-OB-4	UT-4	UT-4RE
Parameter	Restricted	Sample Date:	9/19/2000	9/19/2000	10/23/2000	10/23/2000	7/14/2000		
(Concentrations in µg/kg)	Industrial	•	29 - 31	60 - 62	18-20	40-42	24-26	32-32	32-32
(Concentrations in µg/ng)	maasarar	Sumple Depth (It Sis).	2) 31	00 02	10 20	10 12	2.20	32 32	
1,1,1,2-Tetrachloroethane			NR	NR	ND	ND	ND	NR	NR
1,1,1-Trichloroethane	1000000		6 U	6 U	ND	ND	ND	6.5 U	6.7 U
1,1,2,2-Tetrachloroethane			1 J	6 U	ND	ND	ND	4.9 U	5 U
1,1,2-Trichloroethane			6 U	6 U	ND	ND	ND	4.6 U	4.7 U
1,1-Dichloroethane	480000		6 U	6 U	ND	ND	ND	4.2 U	4.3 U
1,1-Dichloroethene	1000000		6 U	6 U	ND	ND	ND	9 U	9.2 U
1,1-Dichloropropene			NR	NR	ND	ND	ND	NR	NR
1,2,3-Trichlorobenzene			NR	NR	ND	ND	ND	NR	NR
1,2,3-Trichloropropane			NR	NR	ND	ND	ND	NR	NR
1,2,4-Trichlorobenzene			NR	NR	ND	ND	ND	11 U	11 U
1,2,4-Trimethylbenzene	380000		NR	NR	ND	ND	ND	NR	NR
1,2-Dibromo-3-Chloropropane			NR	NR	ND	ND	ND	15 U	15 U
1,2-Dibromoethane			NR	NR	ND	ND	ND	6.3 U	6.5 U
1,2-Dichloroethene (total)			NR	NR	NR	NR	NR	NR	NR
1,2-Dichlorobenzene	1000000		NR	NR	ND	ND	ND	6 U	6.2 U
1,2-Dichloroethane	60000		6 U	6 U	ND	ND	ND	4.8 U	5 U
1,2-Dichloropropane			6 U	6 U	NR	NR	NR	6.2 U	6.4 U
1,3,5-Trimethlybenzene			NR	NR	NR	NR	NR	NR	NR
1,3,5-Trimethylbenzene	380000		NR	NR	ND	ND	ND	NR	NR
1,3-Dichlorobenzene	560000		NR	NR	ND	ND	ND	8.7 U	9 U
1,3-Dichloropropane			NR	NR	ND	ND	ND	NR	NR
1,4-Dichlorobenzene	250000		NR	NR	ND	ND	ND	8.5 U	8.8 U
2,2-Dichloropropane			NR	NR	ND	ND	ND	NR	NR
2-Chloroethylvinylether			NR	NR	NR	NR	NR	NR	NR
2-Butanone (MEK)	1000000		12 U	12 U	ND	ND	ND	83 J	99 J
2-Chlorotoluene			NR	NR	ND	ND	ND	NR	NR
2-Hexanone			12 U	12 U	ND	ND	ND	56 U	58 U
4-Chlorotoluene			NR	NR	ND	ND	ND	NR	NR
4-isopropyltoluene			NR	NR	ND	ND	ND	NR	NR
4-Methyl-2-Pentanone (MIBK)			12 U	12 U	NR	NR	NR	31 U	32 U
Acetone	1000000		8 JB	14 B	16	16	33 B	480	510
Benzene	89000		6 U	6 U	ND	ND	ND	6.2 U	6.4 U
Bromobenzene			NR	NR	ND	ND	ND	NR	NR
Bromochloromethane			NR	NR	ND	ND	ND	NR	NR

Table 12. Summary of Volatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	NYSDEC								
	Part 375	Sample Designation:	TE-MW-OB-2	TE-MW-OB-2	TE-MW-OA-2	TE-MW-OA-2	TE-OB-4	UT-4	UT-4RE
Parameter	Restricted	Sample Date:	9/19/2000	9/19/2000	10/23/2000	10/23/2000	7/14/2000		
(Concentrations in µg/kg)	Industrial	Sample Depth (ft bls):	29 - 31	60 - 62	18-20	40-42	24-26	32-32	32-32
(C									
Bromodichloromethane			6 U	6 U	ND	ND	ND	5.2 U	5.4 U
Bromoform			6 U	6 U	ND	ND	ND	4.9 U	5 U
Bromomethane			12 U	12 U	ND	ND	ND	32 U	33 U
Carbon disulfide			6 U	6 U	ND	ND	3 JB	47 J	52 J
Carbon tetrachloride	44000		6 U	6 U	ND	ND	ND	6.9 U	7.1 U
Chlorobenzene	1000000		6 U	6 U	ND	ND	ND	5.7 U	5.8 U
Chloroethane			12 U	12 U	ND	ND	ND	33 U	34 U
Chloroform	700000		6 U	6 U	ND	ND	ND	5.4 U	5.6 U
Chloromethane			12 U	12 U	ND	ND	ND	13 U	14 U
cis-1,2-Dichloroethene	1000000		6 U	6 U	ND	26	ND	5.1 U	5.2 U
cis-1,3-Dichloropropene			6 U	6 U	ND	ND	ND	5.2 U	5.3 U
Cyclohexane			NR	NR	NR	NR	NR	5.1 U	5.2 U
Dibromochloromethane			6 U	6 U	ND	ND	ND	3.6 U	3.7 U
Dibromomethane			NR	NR	ND	ND	ND	NR	NR
Dichlorodifluoromethane			NR	NR	ND	ND	ND	13 U	14 U
Ethylbenzene	780000		6 U	6 U	ND	ND	ND	5.5 U	5.7 U
Freon 113			NR	NR	NR	NR	NR	10 U	11 U
Hexachlorobutadiene			NR	NR	ND	ND	ND	NR	NR
Isopropylbenzene			NR	NR	ND	ND	ND	6.5 U	6.7 U
m+p-Xylene			NR	NR	ND	ND	ND	14 U	14 U
Methyl Acetate			NR	NR	NR	NR	NR	14 U	14 U
Methyl tert-butyl ether			NR	NR	ND	ND	ND	NR	NR
Methylcyclohexane			NR	NR	NR	NR	NR	6.6 U	6.8 U
Methylene Chloride	1000000		8 B	8 B	7 B	8 B	8 B	65 J	65 J
MTBE	1000000		NR	NR	NR	NR	NR	5.8 U	5.9 U
Naphthalene	1000000		NR	NR	ND	ND	ND	NR	NR
n-Butylbenzene	1000000		NR	NR	ND	ND	ND	NR	NR
n-Propylbenzene	1000000		NR	NR	ND	ND	ND	NR	NR
o-Xylene			NR	NR	ND	ND	ND	6 U	6.2 U
sec-Butylbenzene	1000000		NR	NR	ND	ND	ND	NR	NR
Styrene			6 U	6 U	ND	ND	ND	7.2 U	7.4 U
tert-Butylbenzene	1000000		NR	NR	ND	ND	ND	NR	NR
Tetrachloroethene	300000		0.4 J	1 J	ND	44	ND	11 U	12 U
Toluene	1000000		0.4 J	0.8 J	1 J	ND	ND	6.3 U	6.5 U

Table 12. Summary of Volatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	NYSDEC								
	Part 375	Sample Designation:	TE-MW-OB-2	TE-MW-OB-2	TE-MW-QA-2	TE-MW-QA-2	TE-OB-4	UT-4	UT-4RE
Parameter	Restricted	Sample Date:	9/19/2000	9/19/2000	10/23/2000	10/23/2000	7/14/2000	1/2/2007	1/2/2007
(Concentrations in µg/kg)	Industrial	Sample Depth (ft bls):	29 - 31	60 - 62	18-20	40-42	24-26	32-32	32-32
trans-1,2-Dichloroethene	1000000		6 U	6 U	ND	0.4 J	ND	10 U	10 U
trans-1,3-Dichloropropene			6 U	6 U	ND	ND	ND	5.7 U	5.9 U
Trichloroethene	400000		6 U	0.4 J	ND	9	ND	4.8 U	5 U
Trichlorofluoromethane			NR	NR	ND	ND	ND	20 U	20 U
Vinyl Acetate			12 U	12 U	NR	NR	NR	NR	NR
Vinyl chloride	27000		12 U	12 U	ND	ND	ND	13 U	13 U
Xylenes (total)	1000000		6 U	6 U	NR	NR	NR	NR	NR
-									

J - Estimated value

ND - Compound was analyzed for but not detected

NR - No data reported

DUP - Duplicate sample

 $\mu g/kg$ - Micrograms per kilogram

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservatio

Table 12. Summary of Volatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	NYSDEC				
	Part 375	Sample Designation:	UT-6	UT-9	WB-4
Parameter	Restricted	Sample Date:	1/4/2007	1/5/2007	6/15/2006
(Concentrations in µg/kg)	Industrial	Sample Depth (ft bls):	20-22	22-22	12-12
1,1,1,2-Tetrachloroethane			NR	NR	NR
1,1,1-Trichloroethane	1000000		2.5 U	2.5 U	2.6 U
1,1,2,2-Tetrachloroethane			1.9 U	1.8 U	2 U
1,1,2-Trichloroethane			1.8 U	1.7 U	1.9 U
1,1-Dichloroethane	480000		1.6 U	1.6 U	1.7 U
1,1-Dichloroethene	1000000		3.5 U	3.4 U	3.6 U
1,1-Dichloropropene			NR	NR	NR
1,2,3-Trichlorobenzene			NR	NR	NR
1,2,3-Trichloropropane			NR	NR	NR
1,2,4-Trichlorobenzene			4.1 U	4 U	4.3 U
1,2,4-Trimethylbenzene	380000		NR	NR	NR
1,2-Dibromo-3-Chloropropane			5.7 U	5.5 U	5.9 U
1,2-Dibromoethane			2.4 U	2.4 U	2.5 U
1,2-Dichloroethene (total)			NR	NR	NR
1,2-Dichlorobenzene	1000000		2.3 U	2.3 U	2.4 U
1,2-Dichloroethane	60000		1.8 U	1.8 U	1.9 U
1,2-Dichloropropane			2.4 U	2.3 U	2.5 U
1,3,5-Trimethlybenzene			NR	NR	NR
1,3,5-Trimethylbenzene	380000		NR	NR	NR
1,3-Dichlorobenzene	560000		3.4 U	3.3 U	3.5 U
1,3-Dichloropropane			NR	NR	NR
1,4-Dichlorobenzene	250000		3.3 U	3.2 U	3.4 U
2,2-Dichloropropane			NR	NR	NR
2-Chloroethylvinylether			NR	NR	NR
2-Butanone (MEK)	1000000		17 U	17 U	18 U
2-Chlorotoluene			NR	NR	NR
2-Hexanone			22 U	21 U	23 U
4-Chlorotoluene			NR	NR	NR
4-isopropyltoluene			NR	NR	NR
4-Methyl-2-Pentanone (MIBK)			12 U	12 U	12 U
Acetone	1000000		20 U	20 U	71 J
Benzene	89000		2.4 U	2.3 U	2.5 U
Bromobenzene			NR	NR	NR
Bromochloromethane			NR	NR	NR

Table 12. Summary of Volatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	MAGDEC				
	NYSDEC	C	T III	TITE O	WD 4
	Part 375	Sample Designation:	UT-6	UT-9	WB-4
Parameter	Restricted	Sample Date:			
(Concentrations in µg/kg)	Industrial	Sample Depth (ft bls):	20-22	22-22	12-12
D 11.11 4			0.11	2.11	0.1.11
Bromodichloromethane			2 U	2 U	2.1 U
Bromoform			1.9 U	1.8 U	2 U
Bromomethane			12 U	12 U	13 U
Carbon disulfide			2.2 U	2.2 U	2.3 U
Carbon tetrachloride	44000		2.7 U	2.6 U	2.8 U
Chlorobenzene	1000000		2.2 U	2.1 U	2.3 U
Chloroethane			13 U	13 U	13 U
Chloroform	700000		2.1 U	2 U	2.2 U
Chloromethane			5.1 U	5 U	5.4 U
cis-1,2-Dichloroethene	1000000		2 U	1.9 U	2 U
cis-1,3-Dichloropropene			2 U	1.9 U	2.1 U
Cyclohexane			2 U	1.9 U	2 U
Dibromochloromethane			1.4 U	1.3 U	1.4 U
Dibromomethane			NR	NR	NR
Dichlorodifluoromethane			5.2 U	5 U	5.4 U
Ethylbenzene	780000		2.1 U	2.1 U	2.2 U
Freon 113			4 U	3.9 U	4.2 U
Hexachlorobutadiene			NR	NR	NR
Isopropylbenzene			2.5 U	2.4 U	2.6 U
m+p-Xylene			5.2 U	5.1 U	5.4 U
Methyl Acetate			5.2 U	5.1 U	5.4 U
Methyl tert-butyl ether			NR	NR	NR
Methylcyclohexane			2.5 U	2.5 U	2.6 U
Methylene Chloride	1000000		11 U	11 U	11 U
MTBE	1000000		2.2 U	2.2 U	2.3 U
Naphthalene	1000000		NR	NR	NR
n-Butylbenzene	1000000		NR	NR	NR
n-Propylbenzene	1000000		NR	NR	NR
o-Xylene			2.3 U	2.3 U	2.4 U
sec-Butylbenzene	1000000		NR	NR	NR
Styrene			2.8 U	2.7 U	2.9 U
tert-Butylbenzene	1000000		NR	NR	NR
Tetrachloroethene	300000		4.4 U	17 J	4.6 U
Toluene	1000000		2.4 U	2.4 U	2.6 U
•					

Table 12. Summary of Volatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	NYSDEC				
	Part 375	Sample Designation:	UT-6	UT-9	WB-4
Parameter	Restricted	Sample Date:	1/4/2007	1/5/2007	6/15/2006
(Concentrations in µg/kg)	Industrial	Sample Depth (ft bls):	20-22	22-22	12-12
trans-1,2-Dichloroethene	1000000		3.8 U	3.7 U	4 U
trans-1,3-Dichloropropene			2.2 U	2.1 U	2.3 U
Trichloroethene	400000		1.9 U	7 J	1.9 U
Trichlorofluoromethane			7.5 U	7.3 U	7.9 U
Vinyl Acetate			NR	NR	NR
Vinyl chloride	27000		5 U	4.8 U	5.2 U
Xylenes (total)	1000000		NR	NR	NR
-					

J - Estimated value

ND - Compound was analyzed for but not detected

NR - No data reported

DUP - Duplicate sample

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservatio

Table 13. Summary of Semivolatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

		NYSDEC								
	Site Specific	Part 375	Sample Designation:	GE-31-5	GE-31-5	GE-31-5DL	GE-40-1-1	GE-40-1-2	GE-40-1-3	GE-40-7-6
Parameter	Soil Cleanup	Restricted	Sample Date:	8/16/2006	8/16/2006	8/16/2006	10/24/2007	10/24/2007	10/24/2007	10/25/2007
(Concentrations in µg/kg)	Level	Industrial	Sample Depth (ft bls):	25-27	36-38	25-27	10-14	12-16	12-16	10-14
188			1 1 1							
1,1-Biphenyl				NR	NR	NR	62 U	86 U	64 U	1100
1,2,4-Trichlorobenzene				NR	NR	NR	NR	NR	NR	NR
1,2-Dichlorobenzene		1000000		NR	NR	NR	NR	NR	NR	NR
1,2-Diphenylhydrazine (as Azol				NR	NR	NR	NR	NR	NR	NR
1,3-Dichlorobenzene		560000		NR	NR	NR	NR	NR	NR	NR
1,4-Dichlorobenzene		250000		NR	NR	NR	NR	NR	NR	NR
2,2-oxybis(1-Chloropropane)				55 U	55 U	280 UD	60 U	84 U	62 U	60 U
2,4,5-Trichlorophenol				52 U	52 U	260 UD	57 U	80 U	59 U	57 U
2,4,6-Trichlorophenol				50 U	50 U	250 UD	55 U	77 U	57 U	55 U
2,4-Dichlorophenol				63 U	63 U	320 UD	69 U	97 U	72 U	69 U
2,4-Dimethylphenol				54 U	54 U	270 UD	60 U	83 U	62 U	59 U
2,4-Dinitrophenol				290 U	290 U	1500 UD	320 U	450 U	330 U	320 U
2,4-Dinitrotoluene				50 U	50 U	250 UD	55 U	77 U	57 U	55 U
2,6-Dinitrotoluene				49 U	48 U	240 UD	53 U	74 U	55 U	53 U
2-Chloronaphthalene				57 U	56 U	280 UD	62 U	87 U	64 U	62 U
2-Chlorophenol				55 U	54 U	270 UD	60 U	84 U	62 U	60 U
2-Methylnaphthalene				460	57 U	440 JD	63 U	87 U	65 U	3600 E
2-Methylphenol		1000000		57 U	56 U	290 UD	62 U	87 U	64 U	62 U
2-Nitroaniline				44 U	43 U	220 UD	48 U	66 U	49 U	48 U
2-Nitrophenol				53 U	52 U	260 UD	58 U	80 U	60 U	58 U
3,3-Dichlorobenzidine				59 U	58 U	290 UD	64 U	90 U	66 U	64 U
3+4-Methylphenols				NR	NR	NR	59 U	83 U	61 U	59 U
3-Nitroaniline				45 U	44 U	220 UD	49 U	68 U	51 U	49 U
4,6-Dinitro-2-methylphenol				67 U	66 U	330 UD	73 U	100 U	75 U	73 U
4-Bromophenyl phenyl ether				51 U	51 U	260 UD	56 U	78 U	58 U	56 U
4-Chloro-3-methylphenol				47 U	47 U	240 UD	52 U	72 U	54 U	52 U
4-Chloroaniline				41 U	40 U	200 UD	45 U	62 U	46 U	45 U
4-Chlorophenyl phenyl ether				54 U	54 U	270 UD	59 U	83 U	61 U	59 U
4-Methylphenol		1000000		54 U	53 U	270 UD	NR	NR	NR	NR
4-Nitroaniline				59 U	58 U	290 UD	64 U	89 U	66 U	64 U
4-Nitrophenol				42 U	42 U	210 UD	47 U	65 U	48 U	46 U
Acenaphthene		1000000		410	60 U	420 JD	67 U	93 U	120 J	67 U
Acenaphthylene		1000000		420	55 U	420 JD	61 U	85 U	63 U	61 U
Acetophenone				50 U	50 U	250 UD	55 U	77 U	57 U	55 U
Anthracene		1000000		1700	51 U	2000 D	57 U	79 U	130 J	270 J
Atrazine				53 U	52 U	260 UD	58 U	80 U	59 U	57 U

Table 13. Summary of Semivolatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

		NYSDEC								
	Site Specific	Part 375	Sample Designation:	CE 21.5	CE 21.5	CE 21 5DI	CE 40 1 1	GE 40.1.2	GE 40.1.2	GE 40.7.6
Parameter	Soil Cleanup	Restricted	Sample Designation. Sample Date:							
			_							
(Concentrations in µg/kg)	Level	Industrial	Sample Depth (ft bls):	25-27	36-38	25-27	10-14	12-16	12-16	10-14
Benzaldehyde				70 U	70 U	350 UD	77 U	110 U	80 U	77 U
Benzidine				NR	NR	NR	NR	NR	NR	NR
Benzo[a]anthracene		11000		2200	47 U	2300 D	53 U	73 U	110 J	52 U
Benzo[a]pyrene		1100		2400	54 U	2200 D	60 U	84 U	95 J	60 U
Benzo[b]fluoranthene		11000		3200 E	37 U	3000 D	41 U	58 U	120 J	41 U
Benzo(b+k)fluoranthenes				NR	NR	NR	NR	NR	NR	NR
Benzo[g,h,i]perylene		1000000		990	56 U	940 JD	62 U	87 U	64 U	62 U
Benzo[k]fluoranthene		110000		1600	75 U	1700 D	83 U	120 U	85 U	82 U
Benzoic acid				NR	NR	NR	NR	NR	NR	NR
Benzyl alcohol				NR	NR	NR	NR	NR	NR	NR
Bis(2-chloroethoxy)methane				56 U	56 U	280 UD	62 U	86 U	64 U	62 U
Bis(2-chloroethyl) ether				54 U	54 U	270 UD	59 U	83 U	61 U	59 U
Bis(2-chloroisopropyl)ether				NR	NR	NR	NR	NR	NR	NR
Bis(2-ethylhexyl) phthalate				180 J	170 J	330 UD	80 J	100 U	110 J	180 JB
Butylbenzylphthalate				55 U	55 U	280 UD	61 U	85 U	63 U	61 U
Caprolactam				55 U	55 U	280 UD	60 U	84 U	62 U	60 U
Carbazole				680	52 U	280 JD	57 U	80 U	59 U	57 U
Chrysene		110000		2400	61 U	2600 D	67 U	94 U	97 J	67 U
Dibenzo[a,h]anthracene		1100		83 J	43 U	220 UD	47 U	66 U	49 U	47 U
Dibenzofuran		1000000		590	56 U	590 JD	62 U	87 U	64 U	62 U
Diethyl phthalate				59 U	58 U	300 UD	65 U	90 U	67 U	65 U
Dimethyl phthalate				55 U	55 U	280 UD	60 U	84 U	62 U	60 U
Di-n-butyl phthalate				52 U	52 U	260 UD	57 U	80 U	59 U	57 U
Di-n-octyl phthalate				58 U	58 U	290 UD	64 U	89 U	66 U	64 U
Diphenyl				130 J	56 U	280 UD	NR	NR	NR	NR
Fluoranthene		1000000		4300 E	50 U	5600 D	56 U	78 U	270 J	85 J
Fluorene		1000000		880	57 U	920 JD	63 U	88 U	75 J	63 U
Hexachlorobenzene		12000		55 U	54 U	270 UD	60 U	84 U	62 U	60 U
Hexachlorobutadiene				53 U	52 U	260 UD	58 U	80 U	60 U	58 U
Hexachlorocyclopentadiene				55 U	54 U	270 UD	60 U	84 U	62 U	60 U
Hexachloroethane				58 U	58 U	290 UD	64 U	89 U	66 U	64 U
Indeno[1,2,3-cd]pyrene		11000		390	43 U	560 JD	48 U	66 U	52 J	48 U
Isophorone				52 U	51 U	260 UD	56 U	79 U	58 U	56 U
Naphthalene		1000000		790	58 U	840 JD	64 U	89 U	66 U	64 U
Nitrobenzene				75 U	74 U	370 UD	82 U	110 U	85 U	82 U
N-Nitrosodimethylamine				NR	NR	NR	NR	NR	NR	NR

Table 13. Summary of Semivolatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

		NYSDEC								
	Site Specific	Part 375	Sample Designation:	GE-31-5	GE-31-5	GE-31-5DL	GE-40-1-1	GE-40-1-2	GE-40-1-3	GE-40-7-6
Parameter	Soil Cleanup	Restricted	Sample Date:	8/16/2006	8/16/2006	8/16/2006	10/24/2007	10/24/2007	10/24/2007	10/25/2007
(Concentrations in µg/kg)	Level	Industrial	Sample Depth (ft bls):	25-27	36-38	25-27	10-14	12-16	12-16	10-14
n-Nitrosodi-n-propylamine				57 U	56 U	280 UD	62 U	87 U	64 U	NR
n-Nitrosodiphenylamine				56 U	56 U	280 UD	62 U	86 U	64 U	NR
Pentachlorophenol		55000		79 U	78 U	400 UD	87 U	120 U	90 U	NR
Phenanthrene		1000000		4500 E	54 U	6100 D	60 U	83 U	290 J	NR
Phenol		1000000		52 U	51 U	260 UD	57 U	79 U	59 U	NR
Pyrene		1000000		5900 E	60 U	5800 D	66 U	93 U	280 J	NR
Total cPAHs	25000			12273	0	12360	0	0	474	0
Total SVOCs	500000			34203	170	36710	80	0	1749	5235

J - Estimated value

ND - Compound was analyzed for but not detected

NR - No data reported

R - Results rejected by validator

DUP - Duplicate sample

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservation

-- No NYSDEC Part 375 Restricted Commercial Standards available

cPAHs - Carcinogenic polyaromatic hydrocarbons

Table 13. Summary of Semivolatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter (Concentrations in μg/kg) Soil Cleanup (Concentrations in μg/kg) Restricted Level Sample Date: Sample Date: 10/25/2007 7/27/2006 7/27/2006 7/27/2006 7/27/2006 7/10/2006 7/10/2006 10/19	GE-59-11 0/19/2006
Parameter Soil Cleanup (Concentrations in μg/kg) Restricted Level Sample Date: 10/25/2007 7/27/2006 7/27/2006 7/27/2006 7/27/2006 7/10/2006 7/10/2006 10/19 1,1-Biphenyl 740 JD NR NR <th></th>	
(Concentrations in μg/kg) Level Industrial Sample Depth (ft bls): 10-14 12-12 25-25 18-18 12-15 23-25 20 1,1-Biphenyl 740 JD NR N	
1,1-Biphenyl 740 JD NR NR<	20 - 22
1,2,4-Trichlorobenzene NR NR NR NR NR 75 U 77 U N	
	NR
1000000	NR
· ·	NR
	NR
	NR
1,4-Dichlorobenzene 250000 NR NR NR NR NR NR NR N	NR
	NR
2,4,5-Trichlorophenol 110 UD 55 U 54 U 55 U 56 U 57 U N	NR
	NR
2,4-Dichlorophenol 140 UD 66 U 66 U 67 U 69 U N	NR
2,4-Dimethylphenol 120 UD 57 U 56 U 57 U 58 U 59 U N	NR
2,4-Dinitrophenol 640 UD 310 U 300 U 310 U 320 U N	NR
2,4-Dinitrotoluene 110 UD 53 U 52 U 53 U 55 U N	NR
2,6-Dinitrotoluene 110 UD 51 U 50 U 51 U 53 U N	NR
2-Chloronaphthalene 120 UD 59 U 59 U 60 U 62 U N	NR
2-Chlorophenol 120 UD 57 U 57 U 58 U 60 U N	NR
2-Methylnaphthalene 3500 D 60 U 59 U 60 U 61 U 62 U N	NR
2-Methylphenol 1000000 120 UD 59 U 59 U 59 U 60 U 62 U N	NR
2-Nitroaniline 95 UD 45 U 45 U 46 U 47 U N	NR
2-Nitrophenol 120 UD 55 U 55 U 56 U 58 U N	NR
3,3-Dichlorobenzidine 130 UD 61 U 61 U 62 U 64 U N	NR
3+4-Methylphenols 120 UD NR NR NR NR NR NR NR	NR
3-Nitroaniline 98 UD 47 U 46 U 47 U 49 U N	NR
4,6-Dinitro-2-methylphenol 150 UD 69 U 69 U 71 U 73 U N	NR
4-Bromophenyl phenyl ether 110 UD 53 U 53 U 54 U 56 U N	NR
4-Chloro-3-methylphenol 100 UD 49 U 49 U 50 U 52 U N	NR
4-Chloroaniline 89 UD 43 U 42 U 43 U 43 U 45 U N	NR
4-Chlorophenyl phenyl ether 120 UD 57 U 56 U 57 U 58 U 59 U N	NR
4-Methylphenol 1000000 NR 56 U 56 U 57 U 59 U N	NR
	NR

Table 13. Summary of Semivolatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

		NYSDEC								
	Site Specific	Part 375	Sample Designation:	GE-40-7-6DL	GE-53-3	GE-53-3	GE-53-5	GE-59-3	GE-59-3	GE-59-11
Parameter	Soil Cleanup		Sample Date:				7/27/2006		7/10/2006	10/19/2006
(Concentrations in µg/kg)	Level		Sample Depth (ft bls):	10-14	12-12	25-25	18-18	12-15	23-25	20 - 22
100			<u> </u>							
Benzaldehyde				150 UD	73 U	73 U	73 U	NR	NR	NR
Benzidine				NR	NR	NR	NR	NR	NR	NR
Benzo[a]anthracene		11000		100 UD	180 J	50 U	260 J	51 U	52 U	ND
Benzo[a]pyrene		1100		120 UD	250 J	57 U	280 J	58 U	60 U	ND
Benzo[b]fluoranthene		11000		82 UD	330 J	39 U	380	40 U	41 U	ND
Benzo(b+k)fluoranthenes				NR	NR	NR	NR	NR	NR	NR
Benzo[g,h,i]perylene		1000000		120 UD	120 J	59 U	140 J	60 U	62 U	NR
Benzo[k]fluoranthene		110000		160 UD	130 J	78 U	150 J	80 U	82 U	ND
Benzoic acid				NR	NR	NR	NR	NR	NR	NR
Benzyl alcohol				NR	NR	NR	NR	NR	NR	NR
Bis(2-chloroethoxy)methane				120 UD	59 U	58 U	59 U	60 U	61 U	NR
Bis(2-chloroethyl) ether				120 UD	57 U	56 U	57 U	58 U	59 U	NR
Bis(2-chloroisopropyl)ether				NR	NR	NR	NR	NR	NR	NR
Bis(2-ethylhexyl) phthalate				140 JBD	69 U	230 J	140 J	70 U	72 U	NR
Butylbenzylphthalate				120 UD	58 U	57 U	58 U	59 U	60 U	NR
Caprolactam				120 UD	58 U	57 U	58 U	59 U	60 U	NR
Carbazole				110 UD	55 U	54 U	110 J	56 U	57 U	NR
Chrysene		110000		130 UD	210 J	64 U	280 J	65 U	67 U	ND
Dibenzo[a,h]anthracene		1100		94 UD	45 U	44 U	45 U	46 U	47 U	ND
Dibenzofuran		1000000		120 UD	59 U	59 U	59 U	60 U	62 U	NR
Diethyl phthalate				130 UD	62 U	61 U	62 U	63 U	65 U	NR
Dimethyl phthalate				120 UD	58 U	57 U	58 U	59 U	60 U	NR
Di-n-butyl phthalate				110 UD	54 U	54 U	55 U	55 U	57 U	NR
Di-n-octyl phthalate				130 UD	61 U	60 U	61 U	62 U	64 U	NR
Diphenyl				NR	59 U	58 U	59 U	60 U	62 U	NR
Fluoranthene		1000000		110 UD	380	53 U	680	54 U	56 U	NR
Fluorene		1000000		660 JD	60 U	60 U	60 U	61 U	63 U	NR
Hexachlorobenzene		12000		120 UD	57 U	57 U	57 U	58 U	60 U	NR
Hexachlorobutadiene				120 UD	55 U	55 U	55 U	56 U	58 U	NR
Hexachlorocyclopentadiene				120 UD	57 U	57 U	57 U	58 U	60 U	NR
Hexachloroethane				130 UD	61 U	60 U	61 U	62 U	64 U	NR
Indeno[1,2,3-cd]pyrene		11000		95 UD	200 J	45 U	230 J	46 U	47 U	ND
Isophorone				110 UD	54 U	53 U	54 U	55 U	56 U	NR
Naphthalene		1000000		$440 \mathrm{JD}$	61 U	61 U	78 J	62 U	64 U	NR
Nitrobenzene				160 UD	78 U	77 U	78 U	79 U	82 U	NR
N-Nitrosodimethylamine				NR	NR	NR	NR	NR	NR	NR

Table 13. Summary of Semivolatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

		NYSDEC								
	Site Specific	Part 375	Sample Designation:	GE-40-7-6DL	GE-53-3	GE-53-3	GE-53-5	GE-59-3	GE-59-3	GE-59-11
Parameter	Soil Cleanup	Restricted	Sample Date:	10/25/2007	7/27/2006	7/27/2006	7/27/2006	7/10/2006	7/10/2006	10/19/2006
(Concentrations in µg/kg)	Level	Industrial	Sample Depth (ft bls):	10-14	12-12	25-25	18-18	12-15	23-25	20 - 22
n-Nitrosodi-n-propylamine				62 U	59 U	59 U	59 U	60 U	62 U	NR
n-Nitrosodiphenylamine				62 U	59 U	58 U	59 U	60 U	62 U	NR
Pentachlorophenol		55000		87 U	83 U	82 U	83 U	84 U	87 U	NR
Phenanthrene		1000000		1500	240 J	56 U	610	58 U	60 U	NR
Phenol		1000000		57 U	54 U	54 U	54 U	55 U	57 U	NR
Pyrene		1000000		310 J	330 J	63 U	550	64 U	66 U	NR
Total cPAHs	25000			0	1300	0	1580	0	0	0
Total SVOCs	500000			7870	2427	230	4121	0	0	0

J - Estimated value

ND - Compound was analyzed for but not detected

NR - No data reported

R - Results rejected by validator

DUP - Duplicate sample

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservation

-- No NYSDEC Part 375 Restricted Commercial Standards available

cPAHs - Carcinogenic polyaromatic hydrocarbons

Table 13. Summary of Semivolatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

		NYSDEC							
	Site Specific	Part 375	Sample Designation:	GE-59-12	MW-26 R	RT-7	RT-9	S-35	SY-515
Parameter	Soil Cleanup	Restricted	Sample Date:		12/5/1990	10/3/2006		11/30/1990	11/17/2006
(Concentrations in µg/kg)	Level	Industrial	Sample Depth (ft bls):	28 - 30	9-11	25 - 27	20-22	8-10	20-22
(100 8)			T (-		-		
1,1-Biphenyl				NR	NR	NR	NR	NR	NR
1,2,4-Trichlorobenzene				NR	340 UR	NR	88 U	380 U	NR
1,2-Dichlorobenzene		1000000		NR	340 UR	NR	NR	380 U	NR
1,2-Diphenylhydrazine (as Azol	b			NR	NR	NR	NR	NR	NR
1,3-Dichlorobenzene		560000		NR	340 UR	NR	NR	380 U	NR
1,4-Dichlorobenzene		250000		NR	340 UR	NR	NR	380 U	NR
2,2-oxybis(1-Chloropropane)				NR	NA	NR	69 U	NA	63 U
2,4,5-Trichlorophenol				NR	1670 UR	NR	66 U	1840 U	60 U
2,4,6-Trichlorophenol				NR	340 UR	NR	63 U	380 U	58 U
2,4-Dichlorophenol				NR	340 UR	NR	79 U	380 U	72 U
2,4-Dimethylphenol				NR	340 UR	NR	68 U	380 U	62 U
2,4-Dinitrophenol				NR	1670 UR	NR	370 U	1840 U	340 U
2,4-Dinitrotoluene				NR	340 UR	NR	63 U	380 U	58 U
2,6-Dinitrotoluene				NR	340 UR	NR	61 U	380 U	55 U
2-Chloronaphthalene				NR	340 UR	NR	71 U	380 U	65 U
2-Chlorophenol				NR	340 UR	NR	68 U	380 U	62 U
2-Methylnaphthalene				NR	340 UR	NR	72 U	380 U	65 U
2-Methylphenol		1000000		NR	340 UR	NR	71 U	380 U	65 U
2-Nitroaniline				NR	1670 UR	NR	54 U	1840 U	50 U
2-Nitrophenol				NR	340 UR	NR	66 U	380 U	60 U
3,3-Dichlorobenzidine				NR	690 UR	NR	73 U	760 U	67 U
3+4-Methylphenols				NR	NR	NR	NR	NR	NR
3-Nitroaniline				NR	1670 UR	NR	56 U	1840 U	51 U
4,6-Dinitro-2-methylphenol				NR	1670 UR	NR	83 U	1840 U	76 U
4-Bromophenyl phenyl ether				NR	340 UR	NR	64 U	380 U	58 U
4-Chloro-3-methylphenol				NR	340 UR	NR	59 U	380 U	54 U
4-Chloroaniline				NR	340 UR	NR	51 U	380 U	47 U
4-Chlorophenyl phenyl ether				NR	340 UR	NR	68 U	380 U	62 U
4-Methylphenol		1000000		NR	340 UR	NR	68 U	380 U	62 U
4-Nitroaniline				NR	1670 UR	NR	73 U	1840 U	67 U
4-Nitrophenol				NR	1670 UR	NR	53 U	1840 U	49 U
Acenaphthene		1000000		NR	340 UR	NR	76 U	380 U	70 U
Acenaphthylene		1000000		NR	340 UR	NR	70 U	380 U	64 U
Acetophenone				NR	NR	NR	63 U	NR	57 U
Anthracene		1000000		NR	340 UR	NR	65 U	380 U	59 U
Atrazine				NR	NR	NR	66 U	NR	60 U

Table 13. Summary of Semivolatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

		NYSDEC							
	Site Specific	Part 375	Sample Designation:	GE-59-12	MW-26 R	RT-7	RT-9	S-35	SY-515
	Soil Cleanup	Restricted	Sample Date:		12/5/1990	10/3/2006	8/30/2006	11/30/1990	11/17/2006
(Concentrations in µg/kg)	Level	Industrial	Sample Depth (ft bls):	28 - 30	9-11	25 - 27	20-22	8-10	20-22
16 6			1 1 /						
Benzaldehyde				NR	NR	NR	NR	NR	80 U
Benzidine				NR	625 UR	NR	NR	690 U	NR
Benzo[a]anthracene		11000		ND	340 UR	ND	60 U	380 U	55 U
Benzo[a]pyrene		1100		ND	340 UR	ND	68 U	380 U	63 U
Benzo[b]fluoranthene		11000		ND	NA	ND	47 U	NA	43 U
Benzo(b+k)fluoranthenes				NR	340 UR	NR	NR	380 U	NR
Benzo[g,h,i]perylene		1000000		NR	340 UR	NR	71 U	380 U	65 U
Benzo[k]fluoranthene		110000		ND	NA	ND	94 U	NA	86 U
Benzoic acid				NR	1670 UR	NR	NR	1840 U	NR
Benzyl alcohol				NR	340 UR	NR	NR	380 U	NR
Bis(2-chloroethoxy)methane				NR	340 UR	NR	70 U	380 U	64 U
Bis(2-chloroethyl) ether				NR	340 UR	NR	68 U	380 U	62 U
Bis(2-chloroisopropyl)ether				NR	340 UR	NR	NR	380 U	NR
Bis(2-ethylhexyl) phthalate				NR	829 R	NR	82 U	203 J	75 U
Butylbenzylphthalate				NR	340 UR	NR	69 U	380 U	63 U
Caprolactam				NR	NR	NR	69 U	NR	63 U
Carbazole				NR	NA	NR	65 U	NA	60 U
Chrysene		110000		ND	340 UR	ND	77 U	380 U	70 U
Dibenzo[a,h]anthracene		1100		ND	340 UR	ND	54 U	380 U	49 U
Dibenzofuran		1000000		NR	340 UR	NR	71 U	380 U	65 U
Diethyl phthalate				NR	340 UR	NR	74 U	380 U	68 U
Dimethyl phthalate				NR	340 UR	NR	69 U	380 U	63 U
Di-n-butyl phthalate				NR	340 UR	NR	65 U	380 U	60 U
Di-n-octyl phthalate				NR	340 UR	NR	73 U	380 U	67 U
Diphenyl				NR	NR	NR	71 U	NR	64 U
Fluoranthene		1000000		NR	340 UR	NR	64 U	380 U	58 U
Fluorene		1000000		NR	340 UR	NR	72 U	380 U	66 U
Hexachlorobenzene		12000		NR	340 UR	NR	68 U	380 U	63 U
Hexachlorobutadiene				NR	340 UR	NR	66 U	380 U	60 U
Hexachlorocyclopentadiene				NR	340 UR	NR	68 U	380 U	62 U
Hexachloroethane				NR	340 UR	NR	73 U	380 U	67 U
Indeno[1,2,3-cd]pyrene		11000		ND	340 UR	ND	54 U	380 U	50 U
Isophorone				NR	340 UR	NR	64 U	380 U	59 U
Naphthalene		1000000		NR	340 UR	NR	73 U	380 U	67 U
Nitrobenzene				NR	340 UR	NR	93 U	380 U	85 U
N-Nitrosodimethylamine				NR	340 UR	NR	NR	380 U	NR

Table 13. Summary of Semivolatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

		NYSDEC							
	Site Specific	Part 375	Sample Designation:	GE-59-12	MW-26 R	RT-7	RT-9	S-35	SY-515
Parameter	Soil Cleanup	Restricted	Sample Date:	10/18/2006	12/5/1990	10/3/2006	8/30/2006	11/30/1990	11/17/2006
(Concentrations in µg/kg)	Level	Industrial	Sample Depth (ft bls):	28 - 30	9-11	25 - 27	20-22	8-10	20-22
n-Nitrosodi-n-propylamine				NR	340 UR	NR	71 U	380 U	65 U
n-Nitrosodiphenylamine				NR	340 UR	NR	71 U	380 U	64 U
Pentachlorophenol		55000		NR	1670 UR	NR	99 U	1840 U	91 U
Phenanthrene		1000000		NR	340 UR	NR	68 U	380 U	62 U
Phenol		1000000		NR	340 UR	NR	65 U	380 U	59 U
Pyrene		1000000		NR	340 UR	NR	76 U	380 U	69 U
Total cPAHs	25000			0	0	0	0	0	0
Total SVOCs	500000			0	829	0	0	203	0

J - Estimated value

ND - Compound was analyzed for but not detected

NR - No data reported

R - Results rejected by validator

DUP - Duplicate sample

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservation

-- No NYSDEC Part 375 Restricted Commercial Standards available

cPAHs - Carcinogenic polyaromatic hydrocarbons

Table 13. Summary of Semivolatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter Parameter Parameter Parameter Parameter Parameter Parameter Soli Cleanup Restricted Sample Date: 10/19/2006 10/19/2006 10/19/2006 9/7/2000 9/8/2000 9/11/2000 9/11/2000 9/11/2000 10/19/2000 9/8/2000 9/11/200 9/11/2000 9/11			NYSDEC								
Parameter Soil Cleanup Restricted Concentrations in μg/kg) Level Industrial Sample Depth (ft bls): 43-45 88-90 48-50 85-86 15-17 33-35 23-25 1,1-Biphenyl		Site Specific		Sample Designation:	SY-516	SY-516	TE-B/C-2	TE-B/C-2	TE-IB/OB-1	TE-IB/OB-1	TE-IB-3
Concentrations in μg/kg Level Industrial Sample Depth (ft bls): 43-45 88-90 48-50 85-86 15-17 33-35 23-25	Parameter			_							
1,1-Bipheny		-		-							
1,2,4-Trichlorobenzene	(**************************************										
1,2-Dichlorobenzene							NR	NR	NR		
1,2-Diphenylhydrazine (as Azob 560000	1,2,4-Trichlorobenzene					83 U	380 U	400 U	350 U	380 U	390 U
1,3-Dichlorobenzene	1,2-Dichlorobenzene		1000000		NR	NR	380 U	400 U	350 U	380 U	390 U
1,4-Dichlorobenzene 250000 NR NR NR 380 U 400 U 350 U 380 U 390 U 2,2-oxybis(1-Chloropropane) 65 U 65 U 380 U 400 U 350 U 380 U 390 U 2,4,5-Trichlorophenol 61 U 62 U 1900 U 2000 U 1700 U 1800 U 1900 U 2,4,6-Trichlorophenol 59 U 60 U 380 U 400 U 350 U 380 U 390 U 2,4-Dichlorophenol 74 U 75 U 380 U 400 U 350 U 380 U 390 U 2,4-Dinitrophenol 64 U 64 U 380 U 400 U 350 U 380 U 390 U 2,4-Dinitrophenol 59 U 60 U 380 U 400 U 350 U 380 U 390 U 2,4-Dinitrophenol 59 U 60 U 380 U 400 U 350 U 380 U 390 U	1,2-Diphenylhydrazine (as Azob				NR	NR	NR	NR	NR	NR	NR
2,2-oxybis(1-Chloropropane) 65 U 65 U 380 U 400 U 350 U 380 U 390 U 2,4,5-Trichlorophenol 59 U 60 U 380 U 400 U 350 U 380 U 390 U 2,4-Dichlorophenol 74 U 75 U 380 U 400 U 350 U 380 U 390 U 2,4-Dinitrophenol 64 U 64 U 380 U 400 U 350 U 380 U 390 U 2,4-Dinitrophenol 340 U 350 U 380 U 400 U 350 U 380 U 390 U 2,4-Dinitrotoluene 340 U 350 U 380 U 400 U 350 U 380 U 390 U 2,4-Dinitrotoluene 59 U 60 U 380 U 400 U 350 U 380 U 390 U 2,6-Dinitrotoluene 57 U 57 U 380 U 400 U 350 U 380 U 390 U	1,3-Dichlorobenzene		560000		NR	NR	380 U	400 U	350 U	380 U	390 U
2,4,5-Trichlorophenol 1900 U 2000 U 1700 U 1800 U 1900 U 2,4,6-Trichlorophenol 59 U 60 U 380 U 400 U 350 U 380 U 390 U 2,4-Dinchlorophenol 64 U 64 U 380 U 400 U 350 U 380 U 390 U 2,4-Dinitrophenol 340 U 350 U 1900 U 2000 U 1700 U 1800 U 390 U 2,4-Dinitrophenol 340 U 350 U 1900 U 2000 U 1700 U 1800 U 1900 U 2,4-Dinitrotoluene 340 U 350 U 1900 U 2000 U 1700 U 1800 U 1900 U 2,4-Dinitrotoluene 57 U 57 U 380 U 400 U 350 U 380 U 390 U 2,6-Dinitrotoluene 67 U 67 U 380 U 400 U 350 U 380 U 390 U 2-Chlorop	1,4-Dichlorobenzene		250000		NR	NR	380 U	400 U	350 U	380 U	390 U
2,4,6-Trichlorophenol 59 U 60 U 380 U 400 U 350 U 380 U 390 U 2,4-Dichlorophenol 74 U 75 U 380 U 400 U 350 U 380 U 390 U 2,4-Dimethylphenol 340 U 350 U 1900 U 2000 U 1700 U 1800 U 1900 U 2,4-Dinitrophenol 340 U 350 U 380 U 400 U 350 U 1900 U 1900 U 2000 U 1700 U 1800 U 1900 U 2,4-Dinitrophenol	2,2-oxybis(1-Chloropropane)				65 U	65 U	380 U	400 U	350 U	380 U	390 U
2,4-Dichlorophenol 74 U 75 U 380 U 400 U 350 U 380 U 390 U 2,4-Dimethylphenol 64 U 64 U 380 U 400 U 350 U 380 U 390 U 2,4-Dinitrophenol 340 U 350 U 1900 U 2000 U 1700 U 1800 U 1900 U 2,4-Dinitrophenol 59 U 60 U 380 U 400 U 350 U 380 U 390 U 2,6-Dinitrotoluene 57 U 57 U 380 U 400 U 350 U 380 U 390 U 2,6-Dinitrotoluene 57 U 57 U 380 U 400 U 350 U 380 U 390 U 2,6-Dinitrotoluene 67 U 67 U 380 U 400 U 350 U 380 U 390 U 2,6-Dinitrotoluene 67 U 67 U 380 U 400 U 350 U 380 U 390 U 2,-Methylaph	2,4,5-Trichlorophenol				61 U	62 U	1900 U	2000 U	1700 U	1800 U	1900 U
2,4-Dimethylphenol 64 U 64 U 380 U 400 U 350 U 380 U 390 U 2,4-Dinitrophenol 340 U 350 U 1900 U 2000 U 1700 U 1800 U 1900 U 2,4-Dinitrotoluene 59 U 60 U 380 U 400 U 350 U 380 U 390 U 2,6-Dinitrotoluene 57 U 57 U 380 U 400 U 350 U 380 U 390 U 2-Chloronaphthalene 67 U 67 U 380 U 400 U 350 U 380 U 390 U 2-Methylnaphthalene 67 U 68 U 380 U 400 U 350 U 380 U 390 U 2-Methylphenol 1000000 67 U 67 U 380 U 400 U 350 U 380 U 390 U 2-Nitrophenol 51 U 51 U NR NR 1700 U 1800 U 1900 U 2-Nitrophenol <td>2,4,6-Trichlorophenol</td> <td></td> <td></td> <td></td> <td>59 U</td> <td>60 U</td> <td>380 U</td> <td>400 U</td> <td>350 U</td> <td>380 U</td> <td>390 U</td>	2,4,6-Trichlorophenol				59 U	60 U	380 U	400 U	350 U	380 U	390 U
2,4-Dinitrophenol 340 U 350 U 1900 U 2000 U 1700 U 1800 U 1900 U 2,4-Dinitrotoluene 59 U 60 U 380 U 400 U 350 U 380 U 390 U 2,6-Dinitrotoluene 57 U 57 U 380 U 400 U 350 U 380 U 390 U 2-Chloronaphthalene 67 U 67 U 380 U 400 U 350 U 380 U 390 U 2-Methylnaphthalene 67 U 68 U 380 U 400 U 350 U 380 U 390 U 2-Methylphenol 1000000 67 U 67 U 380 U 400 U 350 U 380 U 390 U 2-Nitroaniline 51 U 51 U NR NR 1700 U 1800 U 1900 U 2-Nitrophenol 62 U 62 U 380 U 400 U 350 U 380 U 390 U	2,4-Dichlorophenol				74 U	75 U	380 U	400 U	350 U	380 U	390 U
2,4-Dinitrotoluene 59 U 60 U 380 U 400 U 350 U 380 U 390 U 2,6-Dinitrotoluene 57 U 57 U 380 U 400 U 350 U 380 U 390 U 2-Chloronaphthalene 67 U 67 U 380 U 400 U 350 U 380 U 390 U 2-Methylnaphthalene 67 U 68 U 380 U 400 U 350 U 380 U 390 U 2-Methylphenol 1000000 67 U 67 U 380 U 400 U 350 U 380 U 390 U 2-Nitroaniline 51 U 51 U NR NR 1700 U 1800 U 1900 U 2-Nitrophenol 62 U 62 U 380 U 400 U 350 U 380 U 390 U	2,4-Dimethylphenol				64 U	64 U	380 U	400 U	350 U	380 U	390 U
2,6-Dinitrotoluene 57 U 57 U 380 U 400 U 350 U 380 U 390 U 2-Chloronaphthalene 67 U 67 U 380 U 400 U 350 U 380 U 390 U 2-Chlorophenol 64 U 65 U 380 U 400 U 350 U 380 U 390 U 2-Methylnaphthalene 67 U 68 U 380 U 400 U 350 U 11 J 390 U 2-Methylphenol 1000000 67 U 67 U 380 U 400 U 350 U 380 U 390 U 2-Nitroaniline 51 U 51 U NR NR 1700 U 1800 U 1900 U 2-Nitrophenol 62 U 62 U 380 U 400 U 350 U 380 U 390 U	2,4-Dinitrophenol				340 U	350 U	1900 U	2000 U	1700 U	1800 U	1900 U
2-Chloronaphthalene 67 U 67 U 380 U 400 U 350 U 380 U 390 U 2-Chlorophenol 64 U 65 U 380 U 400 U 350 U 380 U 390 U 2-Methylnaphthalene 67 U 68 U 380 U 400 U 350 U 11 J 390 U 2-Methylphenol 1000000 67 U 67 U 380 U 400 U 350 U 380 U 390 U 2-Nitroaniline 51 U 51 U NR NR 1700 U 1800 U 1900 U 2-Nitrophenol 62 U 62 U 380 U 400 U 350 U 380 U 390 U	2,4-Dinitrotoluene				59 U	60 U	380 U	400 U	350 U	380 U	390 U
2-Chlorophenol 64 U 65 U 380 U 400 U 350 U 380 U 390 U 2-Methylnaphthalene 67 U 68 U 380 U 400 U 350 U 11 J 390 U 2-Methylphenol 1000000 67 U 67 U 380 U 400 U 350 U 380 U 390 U 2-Nitroaniline 51 U 51 U NR NR 1700 U 1800 U 1900 U 2-Nitrophenol 62 U 62 U 380 U 400 U 350 U 380 U 390 U	2,6-Dinitrotoluene				57 U	57 U	380 U	400 U	350 U	380 U	390 U
2-Methylnaphthalene 67 U 68 U 380 U 400 U 350 U 11 J 390 U 2-Methylphenol 1000000 67 U 67 U 380 U 400 U 350 U 380 U 390 U 2-Nitroaniline 51 U 51 U NR NR 1700 U 1800 U 1900 U 2-Nitrophenol 62 U 62 U 380 U 400 U 350 U 380 U 390 U	2-Chloronaphthalene				67 U	67 U	380 U	400 U	350 U	380 U	390 U
2-Methylphenol 1000000 67 U 67 U 380 U 400 U 350 U 380 U 390 U 2-Nitroaniline 51 U 51 U NR NR 1700 U 1800 U 1900 U 2-Nitrophenol 62 U 62 U 380 U 400 U 350 U 380 U 390 U	2-Chlorophenol				64 U	65 U	380 U	400 U	350 U	380 U	390 U
2-Nitroaniline 51 U 51 U NR NR 1700 U 1800 U 1900 U 2-Nitrophenol 62 U 62 U 380 U 400 U 350 U 380 U 390 U	2-Methylnaphthalene				67 U	68 U	380 U	400 U	350 U	11 J	390 U
2-Nitroaniline 51 U 51 U NR NR 1700 U 1800 U 1900 U 2-Nitrophenol 62 U 62 U 380 U 400 U 350 U 380 U 390 U	2-Methylphenol		1000000		67 U	67 U	380 U	400 U	350 U	380 U	390 U
					51 U	51 U	NR	NR	1700 U	1800 U	1900 U
2.2 Dishlorohonzidina 60.11 60.11 ND ND 700.11 750.11 790.11	2-Nitrophenol				62 U	62 U	380 U	400 U	350 U	380 U	390 U
5,5-DICHIOIOUCHIZIUHC 09 U 09 U NK NK /00 U /50 U /80 U	3,3-Dichlorobenzidine				69 U	69 U	NR	NR	700 U	750 U	780 U
3+4-Methylphenols NR NR 770 U 800 U 700 U 750 U 780 U	3+4-Methylphenols				NR	NR	770 U	800 U	700 U	750 U	780 U
3-Nitroaniline 52 U 53 U 1900 U 2000 U 1700 U 1800 U 1900 U	3-Nitroaniline				52 U	53 U	1900 U	2000 U	1700 U	1800 U	1900 U
4,6-Dinitro-2-methylphenol 78 U 79 U 1900 U 2000 U 1700 U 1800 U 1900 U	4,6-Dinitro-2-methylphenol				78 U	79 U	1900 U	2000 U	1700 U	1800 U	1900 U
4-Bromophenyl phenyl ether 60 U 61 U 380 U 400 U 350 U 380 U 390 U	4-Bromophenyl phenyl ether				60 U	61 U	380 U	400 U	350 U	380 U	390 U
4-Chloro-3-methylphenol 55 U 56 U 380 U 400 U 350 U 380 U 390 U	4-Chloro-3-methylphenol				55 U	56 U	380 U	400 U	350 U	380 U	390 U
4-Chloroaniline 48 U 48 U 380 U 400 U 350 U 380 U 390 U	4-Chloroaniline				48 U	48 U	380 U	400 U	350 U	380 U	390 U
4-Chlorophenyl phenyl ether 63 U 64 U 380 U 400 U 350 U 390 U	4-Chlorophenyl phenyl ether				63 U	64 U	380 U	400 U	350 U	380 U	390 U
4-Methylphenol 1000000 63 U 64 U 380 U 400 U 350 U 380 U 390 U	4-Methylphenol		1000000		63 U	64 U	380 U	400 U	350 U	380 U	390 U
4-Nitroaniline 69 U 69 U 1900 U 2000 U 1700 U 1800 U 1900 U					69 U	69 U	1900 U	2000 U	1700 U	1800 U	1900 U
4-Nitrophenol 50 U 50 U 1900 U 2000 U 1700 U 1800 U 1900 U	4-Nitrophenol				50 U	50 U	1900 U	2000 U	1700 U	1800 U	1900 U
Acenaphthene 1000000 71 U 72 U 380 U 400 U 350 U 380 U 390 U			1000000								
Acenaphthylene 1000000 65 U 66 U 380 U 400 U 350 U 380 U 390 U			1000000		65 U						390 U
Acetophenone 59 U 59 U NR NR NR NR NR											
Anthracene 1000000 61 U 61 U 380 U 400 U 350 U 380 U 390 U	*		1000000								
Atrazine 61 U 62 U NR NR NR NR NR	Atrazine				61 U	62 U	NR	NR	NR	NR	NR

Table 13. Summary of Semivolatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter Site Specific Soil Cleanup (Concentrations in μg/kg) Part 375 Sample Designation: SY-516 SY-516 TE-B/C-2 TE-B/C-2 TE-IB/OB-1 TE-IB-OB-1			NYSDEC								
Parameter Soil Cleanup (Concentrations in μg/kg) Restricted Level Sample Date: 10/19/2006 10/19/2006 9/7/2000 9/8/2000 9/8/2000 9/11/2000 9/1		Site Specific	Part 375	Sample Designation:	SY-516	SY-516	TE-B/C-2	TE-B/C-2	TE-IB/OB-1	TE-IB/OB-1	TE-IB-3
(Concentrations in μg/kg) Level Industrial Sample Depth (ft bls): 43-45 88-90 48-50 85-86 15-17 33-35 23-25 Benzaldehyde NR NR <t< td=""><td>Parameter</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>9/11/2000</td></t<>	Parameter										9/11/2000
NR		_		-							
Benzidine NR	(contourations in Fig.11g)	20,01	11100001101	sumpre 2 open (10 ols)		00 70	.000	00 00	10 1,		
Benzo[a]anthracene 11000 56 U 57 U 380 U 400 U 350 U 380 U 390 U Benzo[a]pyrene 1100 64 U 65 U 380 U 400 U 350 U 380 U 390 U Benzo[b]fluoranthene 11000 44 U 45 U 380 U 400 U 350 U 380 U 390 U Benzo(b+k)fluoranthenes NR NR NR NR NR NR NR	Benzaldehyde				NR	NR	NR	NR	NR	NR	NR
Benzo[a]pyrene 1100 64 U 65 U 380 U 400 U 350 U 380 U 390 U Benzo[b]fluoranthene 11000 44 U 45 U 380 U 400 U 350 U 380 U 390 U Benzo(b+k)fluoranthenes NR NR NR NR NR NR NR	Benzidine				NR	NR	NR	NR	NR	NR	NR
Benzo[b]fluoranthene 11000 44 U 45 U 380 U 400 U 350 U 380 U 390 U Benzo(b+k)fluoranthenes NR NR NR NR NR NR NR	Benzo[a]anthracene		11000		56 U	57 U	380 U	400 U	350 U	380 U	390 U
Benzo(b+k)fluoranthenes NR NR NR NR NR NR NR NR	Benzo[a]pyrene		1100		64 U	65 U	380 U	400 U	350 U	380 U	390 U
	Benzo[b]fluoranthene		11000		44 U	45 U	380 U	400 U	350 U	380 U	390 U
Benzo[g,h,i]perylene 1000000 66 U 67 U 380 U 400 U 350 U 380 U 390 U	Benzo(b+k)fluoranthenes				NR	NR	NR	NR	NR	NR	NR
- LOT 7 II - 7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Benzo[g,h,i]perylene		1000000		66 U	67 U	380 U	400 U	350 U	380 U	390 U
Benzo[k]fluoranthene 110000 88 U 89 U 380 U 400 U 350 U 380 U 390 U	Benzo[k]fluoranthene		110000		88 U	89 U	380 U	400 U	350 U	380 U	390 U
Benzoic acid NR NR 1900 U 2000 U 1700 U 1800 U 1900 U	Benzoic acid				NR	NR	1900 U	2000 U	1700 U	1800 U	1900 U
Benzyl alcohol NR NR 380 U 400 U 350 U 380 U 390 U	Benzyl alcohol				NR	NR	380 U	400 U	350 U	380 U	390 U
Bis(2-chloroethoxy)methane 66 U 67 U 380 U 400 U 350 U 380 U 390 U	Bis(2-chloroethoxy)methane				66 U	67 U	380 U	400 U	350 U	380 U	390 U
Bis(2-chloroethyl) ether 63 U 64 U 380 U 400 U 350 U 380 U 390 U	Bis(2-chloroethyl) ether				63 U	64 U	380 U	400 U	350 U	380 U	390 U
Bis(2-chloroisopropyl)ether NR NR NR NR NR NR NR NR	Bis(2-chloroisopropyl)ether				NR	NR	NR	NR	NR	NR	NR
Bis(2-ethylhexyl) phthalate 77 U 98 J 380 U 110 J 350 U 53 J 390 U					77 U	98 J	380 U	110 J	350 U	53 J	390 U
Butylbenzylphthalate 65 U 66 U 380 U 400 U 350 U 380 U 390 U					65 U	66 U	380 U	400 U	350 U	380 U	390 U
Caprolactam 65 U 65 U NR NR NR NR NR					65 U	65 U	NR	NR	NR	NR	NR
Carbazole 61 U 62 U 380 U 400 U 350 U 380 U 390 U					61 U	62 U	380 U	400 U	350 U	380 U	390 U
Chrysene 110000 72 U 73 U 380 U 400 U 350 U 380 U 390 U	Chrysene		110000		72 U	73 U	380 U	400 U	350 U	380 U	390 U
Dibenzo[a,h]anthracene 1100 50 U 51 U 380 U 400 U 350 U 380 U 390 U	Dibenzo[a,h]anthracene		1100		50 U	51 U	380 U	400 U	350 U	380 U	390 U
Dibenzofuran 1000000 66 U 67 U 380 U 400 U 350 U 380 U 390 U	Dibenzofuran		1000000		66 U	67 U	380 U	400 U	350 U	380 U	390 U
Diethyl phthalate 69 U 70 U 380 U 400 U 350 U 380 U 390 U							380 U				390 U
Dimethyl phthalate 65 U 65 U 380 U 400 U 350 U 380 U 390 U					65 U	65 U	380 U	400 U	350 U	380 U	390 U
Di-n-butyl phthalate 61 U 62 U 380 U 400 U 350 U 380 U 390 U					61 U	62 U	380 U	400 U	350 U	380 U	390 U
Di-n-octyl phthalate 68 U 69 U 380 U 400 U 350 U 380 U 390 U					68 U	69 U	380 U	400 U	350 U	380 U	390 U
Diphenyl 66 U 67 U NR NR NR NR NR	• 1				66 U	67 U	NR	NR		NR	NR
Fluoranthene 1000000 60 U 60 U 380 U 400 U 350 U 380 U 390 U			1000000		60 U	60 U	380 U	400 U	350 U	380 U	390 U
Fluorene 1000000 68 U 68 U 380 U 400 U 350 U 380 U 390 U	Fluorene		1000000		68 U	68 U	380 U	400 U	350 U	380 U	390 U
Hexachlorobenzene 12000 64 U 65 U 380 U 400 U 350 U 380 U 390 U	Hexachlorobenzene		12000		64 U	65 U	380 U	400 U	350 U	380 U	390 U
Hexachlorobutadiene 62 U 62 U 380 U 400 U 350 U 380 U 390 U	Hexachlorobutadiene				62 U		380 U				390 U
Hexachlorocyclopentadiene 64 U 65 U 380 U 400 U 350 U 380 U 390 U											
Hexachloroethane 68 U 69 U 380 U 400 U 350 U 380 U 390 U											
Indeno[1,2,3-cd]pyrene 11000 51 U 51 U 380 U 400 U 350 U 380 U 390 U			11000								
Isophorone 60 U 61 U 380 U 400 U 350 U 380 U 390 U											
Naphthalene 1000000 69 U 69 U 380 U 400 U 350 U 10 J 390 U			1000000								
Nitrobenzene 88 U 88 U 380 U 400 U 350 U 380 U 390 U	*										
N-Nitrosodimethylamine NR NR NR NR NR NR NR NR											

Table 13. Summary of Semivolatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

		NYSDEC								
	Site Specific	Part 375	Sample Designation:	SY-516	SY-516	TE-B/C-2	TE-B/C-2	TE-IB/OB-1	TE-IB/OB-1	TE-IB-3
Parameter	Soil Cleanup	Restricted	Sample Date:	10/19/2006	10/19/2006	9/7/2000	9/8/2000	9/11/2000	9/11/2000	9/11/2000
(Concentrations in µg/kg)	Level	Industrial	Sample Depth (ft bls):	43-45	88-90	48-50	85-86	15-17	33-35	23-25
X**. 1* 1 *				66.11	<i>(7.</i> II	200 11	400 II	250 11	200 11	200 11
n-Nitrosodi-n-propylamine				66 U	67 U	380 U	400 U	350 U	380 U	390 U
n-Nitrosodiphenylamine				66 U	67 U	380 U	400 U	350 U	380 U	390 U
Pentachlorophenol		55000		93 U	94 U	1900 U	2000 U	1700 U	1800 U	1900 U
Phenanthrene		1000000		64 U	65 U	380 U	400 U	350 U	380 U	390 U
Phenol		1000000		61 U	61 U	380 U	400 U	12 J	29 J	16 J
Pyrene		1000000		71 U	72 U	380 U	400 U	350 U	380 U	390 U
Total cPAHs	25000			0	0	0	0	0	0	0
Total SVOCs	500000			0	98	0	110	12	103	16

J - Estimated value

ND - Compound was analyzed for but not detected

NR - No data reported

R - Results rejected by validator

DUP - Duplicate sample

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservation

-- No NYSDEC Part 375 Restricted Commercial Standards available

cPAHs - Carcinogenic polyaromatic hydrocarbons

Table 13. Summary of Semivolatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

		NYSDEC							
	Site Specific	Part 375	Sample Designation:	TE-IB-3	TE-IB-3	TE-MW-A-1	TE-MW-A-1	TE-MW-D-1	TE-MW-D-1
Parameter	Soil Cleanup	Restricted	Sample Date:	9/11/2000		9/19/2000	9/19/2000	9/19/2000	9/19/2000
(Concentrations in µg/kg)	Level		Sample Depth (ft bls):	38-40	53-55	14 - 16	37 - 37	10 - 12	25 - 25
100									
1,1-Biphenyl				NR	NR	NR	NR	NR	NR
1,2,4-Trichlorobenzene				410 U	400 U	390 U	390 U	360 U	380 U
1,2-Dichlorobenzene		1000000		410 U	400 U	390 U	390 U	360 U	380 U
1,2-Diphenylhydrazine (as Azol	:			NR	NR	NR	NR	NR	NR
1,3-Dichlorobenzene		560000		410 U	400 U	390 U	390 U	360 U	380 U
1,4-Dichlorobenzene		250000		410 U	400 U	390 U	390 U	360 U	380 U
2,2-oxybis(1-Chloropropane)				410 U	400 U	390 U	390 U	360 U	380 U
2,4,5-Trichlorophenol				2000 U	1900 U	1900 U	1900 U	1700 U	1800 U
2,4,6-Trichlorophenol				410 U	400 U	390 U	390 U	360 U	380 U
2,4-Dichlorophenol				410 U	400 U	390 U	390 U	360 U	380 U
2,4-Dimethylphenol				410 U	400 U	390 U	390 U	360 U	380 U
2,4-Dinitrophenol				2000 U	1900 U	1900 U	1900 U	1700 U	1800 U
2,4-Dinitrotoluene				410 U	400 U	390 U	390 U	360 U	380 U
2,6-Dinitrotoluene				410 U	400 U	390 U	390 U	360 U	380 U
2-Chloronaphthalene				410 U	400 U	390 U	390 U	360 U	380 U
2-Chlorophenol				410 U	400 U	390 U	390 U	360 U	380 U
2-Methylnaphthalene				410 U	10 J	390 U	390 U	360 U	380 U
2-Methylphenol		1000000		410 U	400 U	390 U	390 U	360 U	380 U
2-Nitroaniline				2000 U	1900 U	1900 U	1900 U	1700 U	1800 U
2-Nitrophenol				410 U	400 U	390 U	390 U	360 U	380 U
3,3-Dichlorobenzidine				810 U	800 U	780 U	780 U	720 U	760 U
3+4-Methylphenols				810 U	800 U	NR	NR	NR	NR
3-Nitroaniline				2000 U	1900 U	1900 U	1900 U	1700 U	1800 U
4,6-Dinitro-2-methylphenol				2000 U	1900 U	1900 U	1900 U	1700 U	1800 U
4-Bromophenyl phenyl ether				410 U	400 U	390 U	390 U	360 U	380 U
4-Chloro-3-methylphenol				410 U	400 U	390 U	390 U	360 U	380 U
4-Chloroaniline				410 U	400 U	390 U	390 U	360 U	380 U
4-Chlorophenyl phenyl ether				410 U	400 U	390 U	390 U	360 U	380 U
4-Methylphenol		1000000		410 U	400 U	390 U	390 U	360 U	380 U
4-Nitroaniline				2000 U	1900 U	1900 U	1900 U	1700 U	1800 U
4-Nitrophenol				2000 U	1900 U	1900 U	1900 U	1700 U	1800 U
Acenaphthene		1000000		410 U	400 U	390 U	390 U	360 U	380 U
Acenaphthylene		1000000		410 U	400 U	390 U	390 U	360 U	380 U
Acetophenone				NR	NR	NR	NR	NR	NR
Anthracene		1000000		410 U	400 U	390 U	390 U	360 U	380 U
Atrazine				NR	NR	NR	NR	NR	NR

Table 13. Summary of Semivolatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter	-		NYSDEC							
Parameter Soil Cleanup Restricted Sample Date: 9/11/2000 9/19/2000		Site Specific	Part 375	Sample Designation:	TE-IB-3	TE-IB-3	TE-MW-A-1	TE-MW-A-1	TE-MW-D-1	TE-MW-D-1
Concentrations in pg/kg Level Industrial Sample Depth (R bis): 38-40 53-55 14-16 37-37 10-12 25-25	Parameter	-						9/19/2000	9/19/2000	9/19/2000
Benzaldehyde		-		-						
Benzicaline										
Benzo[a]anthracene										
Benzo[a]pyrene	Benzidine									
Benzo[b]Fluoranthene										
Benzolg-hi/pluoranthenes			1100		410 U					
Benzolg,h.ilperylene			11000							
Benzo k fluoranthene	Benzo(b+k)fluoranthenes				NR	NR	NR	NR	NR	NR
Benzoic acid 2000 U 1900 U 1900 U 790 U 1700 U 1800 U 1800 U 1800 U 1800 U 1900 U 390 U 360 U 380 U 1800 U 18	Benzo[g,h,i]perylene				410 U					
Benzyl alcohol	Benzo[k]fluoranthene		110000		410 U	400 U	390 U	390 U	26 J	21 J
Bis(2-chloroethxy)methane	Benzoic acid				2000 U					
Bis(2-chloroethyl) ether	Benzyl alcohol				410 U	400 U			360 U	
Bis(2-chloroisopropyl)ether	Bis(2-chloroethoxy)methane				410 U	400 U	390 U	390 U	360 U	380 U
Bis(2-ethylhexyl) phthalate	Bis(2-chloroethyl) ether				410 U	400 U	390 U	390 U	360 U	380 U
Butylbenzylphthalate 410 U 400 U 390 U 390 U 58 J 380 U Caprolactam NR	Bis(2-chloroisopropyl)ether				NR	NR	NR	NR	NR	NR
Caprolactam NR 380 U 380 U <td>Bis(2-ethylhexyl) phthalate</td> <td></td> <td></td> <td></td> <td>410 U</td> <td>400 U</td> <td>240 J</td> <td>390 U</td> <td>57 J</td> <td>380 U</td>	Bis(2-ethylhexyl) phthalate				410 U	400 U	240 J	390 U	57 J	380 U
Carbazole 410 U 400 U 390 U 390 U 360 U 380 U Chrysene 110000 410 U 400 U 390 U 390 U 441 U 25 J Dibenzofuran 11000000 410 U 400 U 390 U 390 U 360 U 380 U Dientyl phthalate 1000000 410 U 400 U 390 U 390 U 360 U 380 U Dimethyl phthalate 410 U 400 U 390 U 390 U 360 U 380 U Di-n-butyl phthalate 410 U 400 U 390 U 390 U 360 U 380 U Di-n-butyl phthalate 410 U 400 U 390 U 390 U 360 U 380 U Di-n-octyl phthalate NR	Butylbenzylphthalate				410 U	400 U	390 U	390 U	58 J	380 U
Chrysene 110000 410 U 400 U 390 U 390 U 344 J 25 J Dibenzo[a,h]anthracene 1100 410 U 400 U 390 U 390 U 360 U 380 U Dibenzofuran 1000000 410 U 400 U 390 U 390 U 360 U 380 U Diethyl phthalate 410 U 400 U 390 U 390 U 360 U 380 U Dimethyl phthalate 410 U 400 U 390 U 390 U 360 U 380 U Di-n-octyl phthalate 410 U 400 U 390 U 390 U 360 U 380 U Di-n-octyl phthalate 410 U 400 U 390 U 390 U 360 U 380 U Di-n-octyl phthalate NR	Caprolactam				NR	NR	NR	NR	NR	NR
Dibenzo[a,h]anthracene 1100 410 U 400 U 390 U 390 U 360 U 380 U Dibenzofuran 1000000 410 U 400 U 390 U 390 U 360 U 380 U Dientyl phthalate 410 U 400 U 390 U 390 U 360 U 380 U Di-n-butyl phthalate 410 U 400 U 390 U 390 U 360 U 380 U Di-n-butyl phthalate 410 U 400 U 390 U 390 U 360 U 380 U Di-n-octyl phthalate 410 U 400 U 390 U 390 U 360 U 380 U Di-n-octyl phthalate 410 U 400 U 390 U 390 U 360 U 380 U Di-n-octyl phthalate NR					410 U	400 U	390 U	390 U	360 U	380 U
Dibenzofuran 1000000 410 U 400 U 390 U 390 U 360 U 380 U Diethyl phthalate 410 U 400 U 390 U 390 U 360 U 380 U Dimethyl phthalate 410 U 400 U 390 U 390 U 360 U 380 U Di-n-octyl phthalate 410 U 400 U 390 U 390 U 360 U 380 U Di-n-octyl phthalate 410 U 400 U 390 U 390 U 360 U 380 U Di-n-octyl phthalate 410 U 400 U 390 U 390 U 360 U 380 U Di-n-octyl phthalate NR 140 U 400 U 390 U	Chrysene		110000		410 U	400 U	390 U	390 U	44 J	25 J
Diethyl phthalate 410 U 400 U 390 U 390 U 360 U 380 U Dimethyl phthalate 410 U 400 U 390 U 390 U 360 U 380 U Di-n-butyl phthalate 410 U 400 U 390 U 390 U 360 U 380 U Di-n-octyl phthalate 410 U 400 U 390 U 390 U 360 U 380 U Di-n-octyl phthalate 410 U 400 U 390 U 390 U 360 U 380 U Diphenyl NR 10 40 40 390 U 390 U 360 U 380 U	Dibenzo[a,h]anthracene		1100		410 U	400 U	390 U	390 U	360 U	380 U
Dimethyl phthalate 410 U 400 U 390 U 390 U 360 U 380 U Di-n-butyl phthalate 410 U 400 U 390 U 390 U 360 U 380 U Di-n-octyl phthalate 410 U 400 U 390 U 390 U 360 U 380 U Diphenyl NR	Dibenzofuran		1000000		410 U	400 U	390 U	390 U	360 U	380 U
Di-n-butyl phthalate 410 U 400 U 390 U 390 U 360 U 380 U Di-n-octyl phthalate 410 U 400 U 390 U 390 U 360 U 380 U Diphenyl NR NS U J J 40 J J 390 U 390 U 360 U 380 U 380 U Hexachlorobutadiene <	Diethyl phthalate				410 U	400 U	390 U	390 U	360 U	380 U
Di-n-butyl phthalate 410 U 400 U 390 U 390 U 360 U 380 U Di-n-octyl phthalate 410 U 400 U 390 U 390 U 360 U 380 U Diphenyl NR VI 40 J J 390 U 390 U 360 U 380 U 380 U 380 U Hexachlorobetaclenee 410 U 400 U 390 U 390 U 360 U 380 U 380 U 380 U 380 U<					410 U	400 U	390 U	390 U	360 U	380 U
Di-n-octyl phthalate 410 U 400 U 390 U 390 U 360 U 380 U Diphenyl NR NB U 400 U 390 U 390 U 360 U 380 U 380 U 410 U 400 U 390 U 390 U 360 U 380 U <					410 U	400 U	390 U	390 U	360 U	380 U
Diphenyl NR NB <					410 U	400 U	390 U	390 U	360 U	380 U
Fluoranthene 1000000 410 U 400 U 390 U 390 U 390 U 360 U 380 U Fluorene 1000000 410 U 400 U 390 U 390 U 360 U 380 U Hexachlorobenzene 12000 410 U 400 U 390 U 390 U 360 U 380 U Hexachlorobutadiene 410 U 400 U 390 U 390 U 360 U 380 U Hexachlorocyclopentadiene 410 U 400 U 390 U 390 U 360 U 380 U Hexachlorocethane 410 U 400 U 390 U 390 U 360 U 380 U Indeno[1,2,3-cd]pyrene 11000 410 U 400 U 390 U 390 U 360 U 380 U Isophorone 410 U 400 U 390 U 390 U 360 U 380 U Nitrobenzene </td <td>• 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	• 1									
Fluorene 1000000 410 U 400 U 390 U 390 U 360 U 380 U Hexachlorobenzene 12000 410 U 400 U 390 U 390 U 360 U 380 U Hexachlorobutadiene 410 U 400 U 390 U 390 U 360 U 380 U Hexachlorocyclopentadiene 410 U 400 U 390 U 390 U 360 U 380 U Hexachlorocethane 410 U 400 U 390 U 390 U 360 U 380 U Indeno[1,2,3-cd]pyrene 11000 410 U 400 U 390 U 390 U 360 U 380 U Isophorone 410 U 400 U 390 U 390 U 360 U 380 U Naphthalene 1000000 410 U 10 J 390 U 390 U 360 U 380 U Nitrobenzene			1000000							
Hexachlorobenzene 12000 410 U 400 U 390 U 390 U 360 U 380 U Hexachlorobutadiene 410 U 400 U 390 U 390 U 360 U 380 U Hexachlorocyclopentadiene 410 U 400 U 390 U 390 U 360 U 380 U Hexachlorocyclopentadiene 410 U 400 U 390 U 390 U 360 U 380 U Hexachlorocyclopentadiene 410 U 400 U 390 U 390 U 360 U 380 U Hexachlorocyclopentadiene 410 U 400 U 390 U 390 U 360 U 380 U Hexachlorocyclopentadiene 410 U 400 U 390 U 390 U 360 U 380 U Indeno[1,2,3-cd]pyrene 410 U 400 U 390 U 390 U 360 U 380 U Isophorone 410 U 400 U 390 U	Fluorene									
Hexachlorobutadiene 410 U 400 U 390 U 390 U 360 U 380 U Hexachlorocyclopentadiene 410 U 400 U 390 U 390 U 360 U 380 U Hexachlorocthane 410 U 400 U 390 U 390 U 360 U 380 U Indeno[1,2,3-cd]pyrene 11000 410 U 400 U 390 U 390 U 360 U 380 U Isophorone 410 U 400 U 390 U 390 U 360 U 380 U Naphthalene 1000000 410 U 10 J 390 U 390 U 360 U 380 U Nitrobenzene 410 U 400 U 390 U 390 U 360 U 380 U										
Hexachlorocyclopentadiene 410 U 400 U 390 U 390 U 360 U 380 U Hexachlorocthane 410 U 400 U 390 U 390 U 360 U 380 U Indeno[1,2,3-cd]pyrene 11000 410 U 400 U 390 U 390 U 360 U 380 U Isophorone 410 U 400 U 390 U 390 U 360 U 380 U Naphthalene 1000000 410 U 10 J 390 U 390 U 360 U 380 U Nitrobenzene 410 U 400 U 390 U 390 U 360 U 380 U										
Hexachloroethane 410 U 400 U 390 U 390 U 360 U 380 U Indeno[1,2,3-cd]pyrene 11000 410 U 400 U 390 U 390 U 360 U 380 U Isophorone 410 U 400 U 390 U 390 U 360 U 380 U Naphthalene 1000000 410 U 10 J 390 U 390 U 360 U 380 U Nitrobenzene 410 U 400 U 390 U 390 U 360 U 380 U										
Indeno[1,2,3-cd]pyrene 11000 410 U 400 U 390 U 390 U 360 U 380 U Isophorone 410 U 400 U 390 U 390 U 360 U 380 U Naphthalene 1000000 410 U 10 J 390 U 390 U 360 U 380 U Nitrobenzene 410 U 400 U 390 U 390 U 360 U 380 U										
Isophorone 410 U 400 U 390 U 390 U 360 U 380 U Naphthalene 1000000 410 U 10 J 390 U 390 U 360 U 380 U Nitrobenzene 410 U 400 U 390 U 390 U 360 U 380 U			11000							
Naphthalene 1000000 410 U 10 J 390 U 390 U 360 U 380 U Nitrobenzene 410 U 400 U 390 U 390 U 360 U 380 U										
Nitrobenzene 410 U 400 U 390 U 390 U 360 U 380 U			1000000							
TO THE COORDINATION OF THE TAX	N-Nitrosodimethylamine				NR	NR	NR	NR	NR	NR

Table 13. Summary of Semivolatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

		NYSDEC							
	Site Specific	Part 375	Sample Designation:	TE-IB-3	TE-IB-3	TE-MW-A-1	TE-MW-A-1	TE-MW-D-1	TE-MW-D-1
Parameter	Soil Cleanup	Restricted	Sample Date:	9/11/2000	9/11/2000	9/19/2000	9/19/2000	9/19/2000	9/19/2000
(Concentrations in µg/kg)	Level	Industrial	Sample Depth (ft bls):	38-40	53-55	14 - 16	37 - 37	10 - 12	25 - 25
n-Nitrosodi-n-propylamine				410 U	400 U	390 U	390 U	360 U	380 U
n-Nitrosodiphenylamine				410 U	400 U	390 U	390 U	360 U	380 U
Pentachlorophenol		55000		2000 U	1900 U	1900 U	1900 U	1700 U	1800 U
Phenanthrene		1000000		410 U	400 U	390 U	390 U	61 J	25 J
Phenol		1000000		11 J	30 J	390 U	390 U	360 U	380 U
Pyrene		1000000		410 U	400 U	390 U	390 U	69 J	36 J
Total cPAHs	25000			0	0	0	0	164	102
Total SVOCs	500000			11	50	240	790	476	203

J - Estimated value

ND - Compound was analyzed for but not detected

NR - No data reported

R - Results rejected by validator

DUP - Duplicate sample

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservation

-- No NYSDEC Part 375 Restricted Commercial Standards available

cPAHs - Carcinogenic polyaromatic hydrocarbons

Table 13. Summary of Semivolatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

		NYSDEC						
	Site Specific	Part 375	Sample Designation:	TE MW D 1	TE-MW-IB-2	TE-MW-IB-2	TE-MW-IB-2	TE-MW-OB-1
Parameter	Soil Cleanup	Restricted	Sample Designation. Sample Date:	9/19/2000	10/3/2000	10/3/2000	10/4/2000	10/11/2000
			-					
(Concentrations in µg/kg)	Level	Industrial	Sample Depth (ft bls):	40 - 41	14-16	62-64	93-95	14-16
1,1-Biphenyl				NR	NR	NR	NR	NR
1,2,4-Trichlorobenzene				380 U	360 U	400 U	390 U	NR
1,2-Dichlorobenzene		1000000		380 U	360 U	400 U	390 U	NR
1,2-Diphenylhydrazine (as Azol	·			NR	NR	NR	NR	NR
1,3-Dichlorobenzene		560000		380 U	360 U	400 U	390 U	NR
1,4-Dichlorobenzene		250000		380 U	360 U	400 U	390 U	NR
2,2-oxybis(1-Chloropropane)				380 U	360 U	400 U	390 U	NR
2,4,5-Trichlorophenol				1900 U	1700 U	1900 U	1900 U	NR
2,4,6-Trichlorophenol				380 U	360 U	400 U	390 U	NR
2,4-Dichlorophenol				380 U	360 U	400 U	390 U	NR
2,4-Dimethylphenol				380 U	360 U	400 U	390 U	NR
2,4-Dinitrophenol				1900 U	1700 U	1900 U	1900 U	NR
2,4-Dinitrotoluene				380 U	360 U	400 U	390 U	NR
2,6-Dinitrotoluene				380 U	360 U	400 U	390 U	NR
2-Chloronaphthalene				380 U	360 U	400 U	390 U	NR
2-Chlorophenol				380 U	360 U	400 U	390 U	NR
2-Methylnaphthalene				380 U	150 J	43 J	390 U	220 J
2-Methylphenol		1000000		380 U	360 U	400 U	390 U	NR
2-Nitroaniline				1900 U	NR	NR	NR	NR
2-Nitrophenol				380 U	360 U	400 U	390 U	NR
3,3-Dichlorobenzidine				770 U	NR	NR	NR	NR
3+4-Methylphenols				NR	720 U	790 U	780 U	NR
3-Nitroaniline				1900 U	1700 U	1900 U	1900 U	NR
4,6-Dinitro-2-methylphenol				1900 U	1700 U	1900 U	1900 U	NR
4-Bromophenyl phenyl ether				380 U	360 U	400 U	390 U	NR
4-Chloro-3-methylphenol				380 U	360 U	400 U	390 U	NR
4-Chloroaniline				380 U	360 U	400 U	390 U	NR
4-Chlorophenyl phenyl ether				380 U	360 U	400 U	390 U	NR
4-Methylphenol		1000000		380 U	360 U	400 U	390 U	NA
4-Nitroaniline				1900 U	1700 U	1900 U	1900 U	NR
4-Nitrophenol				1900 U	1700 U	1900 U	1900 U	NR
Acenaphthene		1000000		380 U	48 J	27 J	390 U	910
Acenaphthylene		1000000		380 U	150 J	24 J	390 U	160 J
Acetophenone				NR	NR	NR	NR	NR
Anthracene		1000000		380 U	370	95 J	390 U	820
Atrazine				NR	NR	NR	NR	NR

Table 13. Summary of Semivolatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

_		NYSDEC						
	Site Specific	Part 375	Sample Designation:	TE-MW-D-1	TE-MW-IB-2	TE-MW-IB-2	TE-MW-IB-2	TE-MW-OB-1
Parameter	Soil Cleanup	Restricted	Sample Date:	9/19/2000	10/3/2000	10/3/2000	10/4/2000	10/11/2000
(Concentrations in µg/kg)	Level	Industrial	-	40 - 41	14-16	62-64	93-95	14-16
(Concentitutions in µg/kg)	Level	maasutal	Sample Depth (1t bis).	40 - 41	17-10	02-04	75-75	14-10
Benzaldehyde				NR	NR	NR	NR	NR
Benzidine				NR	NR	NR	NR	NA
Benzo[a]anthracene		11000		380 U	870	240 J	390 U	1300
Benzo[a]pyrene		1100		380 U	720	200 J	390 U	580 J
Benzo[b]fluoranthene		11000		380 U	770	240 J	390 U	650 J
Benzo(b+k)fluoranthenes				NR	NR	NR	NR	NR
Benzo[g,h,i]perylene		1000000		380 U	420	230 J	390 U	310 J
Benzo[k]fluoranthene		110000		380 U	640	160 J	390 U	690 J
Benzoic acid				1900 U	1700 U	1900 U	1900 U	ND
Benzyl alcohol				380 U	360 U	400 U	390 U	NR
Bis(2-chloroethoxy)methane				380 U	360 U	400 U	390 U	NR
Bis(2-chloroethyl) ether				380 U	360 U	400 U	390 U	NA
Bis(2-chloroisopropyl)ether				NR	NR	NR	NR	NR
Bis(2-ethylhexyl) phthalate				80 J	340 J	300 J	91 J	66 JB
Butylbenzylphthalate				380 U	360 U	400 U	390 U	ND
Caprolactam				NR	NR	NR	NR	NR
Carbazole				380 U	110 J	35 J	390 U	51 J
Chrysene		110000		380 U	940	290 J	390 U	1500
Dibenzo[a,h]anthracene		1100		380 U	240 J	80 J	390 U	130 J
Dibenzofuran		1000000		380 U	98 J	29 J	390 U	240 J
Diethyl phthalate				380 U	360 U	400 U	390 U	NA
Dimethyl phthalate				380 U	360 U	400 U	390 U	NA
Di-n-butyl phthalate				380 U	24 JB	400 U	390 U	20 J
Di-n-octyl phthalate				380 U	360 U	400 U	390 U	NA
Diphenyl				NR	NR	NR	NR	NR
Fluoranthene		1000000		380 U	920	400	29 J	3100
Fluorene		1000000		380 U	79 J	40 J	390 U	590 J
Hexachlorobenzene		12000		380 U	360 U	400 U	390 U	NR
Hexachlorobutadiene				380 U	360 U	400 U	390 U	NR
Hexachlorocyclopentadiene				380 U	360 U	400 U	390 U	NR
Hexachloroethane				380 U	360 U	400 U	390 U	NR
Indeno[1,2,3-cd]pyrene		11000		380 U	550	220 J	390 U	270 J
Isophorone				380 U	360 U	400 U	390 U	NR
Naphthalene		1000000		380 U	150 J	40 J	390 U	23 J
Nitrobenzene				380 U	360 U	400 U	390 U	NR
N-Nitrosodimethylamine				NR	NR	NR	NR	NR

Table 13. Summary of Semivolatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	C:4- C:£:-	NYSDEC	Comple Designations	TE MW D 1	TE MW ID 2	TE MW ID 2	TE MW ID 2	TE MW OD 1
	Site Specific		Sample Designation:		TE-MW-IB-2	TE-MW-IB-2		TE-MW-OB-1
Parameter	Soil Cleanup	Restricted	Sample Date:	9/19/2000	10/3/2000	10/3/2000	10/4/2000	10/11/2000
(Concentrations in µg/kg)	Level	Industrial	Sample Depth (ft bls):	40 - 41	14-16	62-64	93-95	14-16
n-Nitrosodi-n-propylamine				380 U	360 U	400 U	390 U	NR
n-Nitrosodiphenylamine				380 U	360 U	400 U	390 U	NR
Pentachlorophenol		55000		1900 U	1700 U	1900 U	1900 U	NA
Phenanthrene		1000000		380 U	630	270 J	18 J	4100
Phenol		1000000		380 U	360 U	400 U	390 U	NA
Pyrene		1000000		380 U	1100	410	20 J	3000
Total cPAHs	25000			0	4730	1430	0	4990
Total SVOCs	500000			80	9319	3373	158	17230

J - Estimated value

ND - Compound was analyzed for but not detected

NR - No data reported

R - Results rejected by validator

DUP - Duplicate sample

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservation

-- No NYSDEC Part 375 Restricted Commercial Standards available

cPAHs - Carcinogenic polyaromatic hydrocarbons

Table 13. Summary of Semivolatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

		NYSDEC						
	Site Specific	Part 375	Sample Designation:	TF-MW-OR-1	TF-MW-OR-2	TF-MW-OR-2	TF-MW-OA-2	TF-MW-OA-2
Parameter	Soil Cleanup		Sample Date:	10/11/2000	9/19/2000	9/19/2000	10/23/2000	10/23/2000
(Concentrations in µg/kg)	Level		Sample Depth (ft bls):	45-45	29 - 31	60 - 62	18-20	40-42
(Concentrations in µg/kg)	Level	musurar	Sample Depth (It bis).	43-43	29 - 31	00 - 02	10-20	40-42
1,1-Biphenyl				NR	NR	NR	NR	NR
1,2,4-Trichlorobenzene				NR	390 U	390 U	ND	ND
1,2-Dichlorobenzene		1000000		NR	390 U	390 U	ND	ND
1,2-Diphenylhydrazine (as Azob				NR	NR	NR	ND	ND
1,3-Dichlorobenzene		560000		NR	390 U	390 U	ND	ND
1,4-Dichlorobenzene		250000		NR	390 U	390 U	ND	ND
2,2-oxybis(1-Chloropropane)				NR	390 U	390 U	NR	NR
2,4,5-Trichlorophenol				NR	1900 U	1900 U	ND	ND
2,4,6-Trichlorophenol				NR	390 U	390 U	NR	NR
2,4-Dichlorophenol				NR	390 U	390 U	NR	NR
2,4-Dimethylphenol				NR	390 U	390 U	ND	ND
2,4-Dinitrophenol				NR	1900 U	1900 U	ND	ND
2,4-Dinitrotoluene				NR	390 U	390 U	ND	ND
2,6-Dinitrotoluene				NR	390 U	390 U	ND	ND
2-Chloronaphthalene				NR	390 U	390 U	ND	ND
2-Chlorophenol				NR	390 U	390 U	ND	ND
2-Methylnaphthalene				ND	30 J	390 U	ND	ND
2-Methylphenol		1000000		NR	390 U	390 U	ND	ND
2-Nitroaniline				NR	1900 U	1900 U	ND	ND
2-Nitrophenol				NR	390 U	390 U	ND	ND
3,3-Dichlorobenzidine				NR	780 U	780 U	ND	ND
3+4-Methylphenols				NR	NR	NR	NR	NR
3-Nitroaniline				NR	1900 U	1900 U	ND	ND
4,6-Dinitro-2-methylphenol				NR	1900 U	1900 U	ND	ND
4-Bromophenyl phenyl ether				NR	390 U	390 U	ND	ND
4-Chloro-3-methylphenol				NR	390 U	390 U	ND	ND
4-Chloroaniline				NR	390 U	390 U	ND	ND
4-Chlorophenyl phenyl ether				NR	390 U	390 U	ND	ND
4-Methylphenol		1000000		NA	390 U	390 U	ND	ND
4-Nitroaniline				NR	1900 U	1900 U	ND	ND
4-Nitrophenol				NR	1900 U	1900 U	ND	ND
Acenaphthene		1000000		ND	220 J	390 U	ND	ND
Acenaphthylene		1000000		ND	20 J	390 U	ND	ND
Acetophenone				NR	NR	NR	NR	NR
Anthracene		1000000		ND	620	390 U	ND	ND
Atrazine				NR	NR	NR	NR	NR

Table 13. Summary of Semivolatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

		NYSDEC						
	Site Specific	Part 375	Sample Designation:	TE-MW-OB-1	TE-MW-OB-2	TE-MW-OB-2	TE-MW-QA-2	TE-MW-QA-2
Parameter	Soil Cleanup		Sample Date:	10/11/2000	9/19/2000	9/19/2000	10/23/2000	10/23/2000
(Concentrations in µg/kg)	Level	Industrial	Sample Depth (ft bls):	45-45	29 - 31	60 - 62	18-20	40-42
Benzaldehyde				NR	NR	NR	NR	NR
Benzidine				NA	NR	NR	ND	ND
Benzo[a]anthracene		11000		ND	1300	24 J	ND	ND
Benzo[a]pyrene		1100		ND	970	17 J	ND	ND
Benzo[b]fluoranthene		11000		ND	840	17 J	ND	ND
Benzo(b+k)fluoranthenes				NR	NR	NR	NR	NR
Benzo[g,h,i]perylene		1000000		ND	640	390 U	ND	ND
Benzo[k]fluoranthene		110000		ND	750	17 J	ND	ND
Benzoic acid				ND	1900 U	1900 U	ND	ND
Benzyl alcohol				NR	390 U	390 U	ND	ND
Bis(2-chloroethoxy)methane				NR	390 U	390 U	ND	ND
Bis(2-chloroethyl) ether				NA	390 U	390 U	ND	ND
Bis(2-chloroisopropyl)ether				NR	NR	NR	ND	ND
Bis(2-ethylhexyl) phthalate				24 JB	160 J	66 J	65 J	87 U
Butylbenzylphthalate				ND	390 U	390 U	ND	ND
Caprolactam				NR	NR	NR	NR	NR
Carbazole				ND	110 J	390 U	ND	ND
Chrysene		110000		ND	1300	28 J	ND	ND
Dibenzo[a,h]anthracene		1100		ND	390 U	390 U	ND	ND
Dibenzofuran		1000000		ND	60 J	390 U	ND	ND
Diethyl phthalate				NA	390 U	390 U	ND	ND
Dimethyl phthalate				NA	390 U	390 U	ND	ND
Di-n-butyl phthalate				10 J	25 J	390 U	ND	ND
Di-n-octyl phthalate				NA	390 U	390 U	ND	ND
Diphenyl				NR	NR	NR	NR	NR
Fluoranthene		1000000		ND	2300	51 J	ND	ND
Fluorene		1000000		ND	230 J	390 U	ND	ND
Hexachlorobenzene		12000		NR	390 U	390 U	ND	ND
Hexachlorobutadiene				NR	390 U	390 U	ND	ND
Hexachlorocyclopentadiene				NR	390 U	390 U	ND	ND
Hexachloroethane				NR	390 U	390 U	ND	ND
Indeno[1,2,3-cd]pyrene		11000		ND	530	390 U	ND	ND
Isophorone				NR	390 U	390 U	ND	ND
Naphthalene		1000000		5 J	15 J	390 U	ND	ND
Nitrobenzene				NR	390 U	390 U	ND	ND
N-Nitrosodimethylamine				NR	NR	NR	ND	ND

Table 13. Summary of Semivolatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

		NYSDEC						
	Site Specific	Part 375	Sample Designation:	TE-MW-OB-1	TE-MW-OB-2	TE-MW-OB-2	TE-MW-QA-2	TE-MW-QA-2
Parameter	Soil Cleanup	Restricted	Sample Date:	10/11/2000	9/19/2000	9/19/2000	10/23/2000	10/23/2000
(Concentrations in µg/kg)	Level	Industrial	Sample Depth (ft bls):	45-45	29 - 31	60 - 62	18-20	40-42
n Nitrosodi n propylamina				NR	390 U	390 U	ND	ND
n-Nitrosodi-n-propylamine n-Nitrosodiphenylamine				NR NR	390 U	390 U	ND ND	ND ND
- ·								
Pentachlorophenol		55000		NA	1900 U	1900 U	ND	ND
Phenanthrene		1000000		5 J	2100	31 J	ND	ND
Phenol		1000000		NA	390 U	390 U	ND	ND
Pyrene		1000000		3 J	2300	42 J	ND	ND
Total cPAHs	25000			0	5690	103	0	0
Total SVOCs	500000			47	15160	293	65	87

J - Estimated value

ND - Compound was analyzed for but not detected

NR - No data reported

R - Results rejected by validator

DUP - Duplicate sample

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservation

-- No NYSDEC Part 375 Restricted Commercial Standards available

cPAHs - Carcinogenic polyaromatic hydrocarbons

Table 13. Summary of Semivolatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

		MAGDEC						
	a., a .e.	NYSDEC	C	TELOD 4	T.1777. 4	I III C	TITE O	MAD 4
	Site Specific	Part 375	Sample Designation:		UT-4	UT-6	UT-9	WB-4
Parameter	Soil Cleanup		Sample Date:		1/2/2007	1/4/2007	1/5/2007	6/15/2006
(Concentrations in µg/kg)	Level	Industrial	Sample Depth (ft bls):	24-26	30-32	20-22	20-22	10-12
1,1-Biphenyl				NR	NR	NR	NR	NR
1,2,4-Trichlorobenzene				ND	91 U	NR	NR	85 U
1,2-Dichlorobenzene		1000000		ND ND	NR	NR	NR	NR
1,2-Diphenylhydrazine (as Azob				ND ND	NR	NR	NR	NR
1,3-Dichlorobenzene		560000		ND ND	NR	NR	NR	NR
1,4-Dichlorobenzene		250000		ND ND	NR	NR	NR	NR
2,2-oxybis(1-Chloropropane)		230000		NR	71 U	65 U	75 U	66 U
				ND	68 U	61 U	73 U 71 U	63 U
2,4,5-Trichlorophenol								
2,4,6-Trichlorophenol				NR	65 U	59 U	68 U	61 U
2,4-Dichlorophenol				NR	82 U	74 U	86 U	76 U
2,4-Dimethylphenol				ND	70 U	64 U	74 U	65 U
2,4-Dinitrophenol				ND	380 U	340 U	400 U	350 U
2,4-Dinitrotoluene				ND	65 U	59 U	68 U	61 U
2,6-Dinitrotoluene				ND	63 U	57 U	66 U	58 U
2-Chloronaphthalene				ND	73 U	67 U	77 U	68 U
2-Chlorophenol				ND	71 U	64 U	74 U	66 U
2-Methylnaphthalene				ND	74 U	67 U	77 U	69 U
2-Methylphenol		1000000		ND	74 U	67 U	77 U	69 U
2-Nitroaniline				ND	56 U	51 U	59 U	52 U
2-Nitrophenol				ND	68 U	62 U	71 U	63 U
3,3-Dichlorobenzidine				ND	NR	NR	NR	NR
3+4-Methylphenols				NR	76 U	69 U	79 U	71 U
3-Nitroaniline				ND	58 U	52 U	60 U	54 U
4,6-Dinitro-2-methylphenol				ND	86 U	78 U	90 U	80 U
4-Bromophenyl phenyl ether				ND	66 U	60 U	69 U	62 U
4-Chloro-3-methylphenol				ND	61 U	55 U	64 U	57 U
4-Chloroaniline				ND	53 U	48 U	55 U	49 U
4-Chlorophenyl phenyl ether				ND	70 U	63 U	73 U	65 U
4-Methylphenol		1000000		ND	70 U	63 U	73 U	65 U
4-Nitroaniline				ND	76 U	68 U	79 U	70 U
4-Nitrophenol				ND	55 U	50 U	57 U	51 U
Acenaphthene		1000000		ND	79 U	71 U	83 U	73 U
Acenaphthylene		1000000		ND	72 U	65 U	75 U	67 U
Acetophenone				NR	65 U	59 U	68 U	60 U
Anthracene		1000000		ND	67 U	60 U	70 U	140 J
Atrazine				NR	68 U	61 U	71 U	63 U

Table 13. Summary of Semivolatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

-		NYSDEC						
	Site Specific	Part 375	Sample Designation:	TE_OR 4	UT-4	UT-6	UT-9	WB-4
Domomotom	Soil Cleanup		Sample Designation: Sample Date:		1/2/2007	1/4/2007		
Parameter			_				1/5/2007	6/15/2006
(Concentrations in µg/kg)	Level	Industrial	Sample Depth (ft bls):	24-26	30-32	20-22	20-22	10-12
Benzaldehyde				NR	NR	82 U	95 U	NR
Benzidine				ND	NR	NR	NR	NR
Benzo[a]anthracene		11000		ND	62 U	56 U	65 U	170 J
Benzo[a]pyrene		1100		ND	71 U	64 U	74 U	110 J
Benzo[b]fluoranthene		11000		ND	49 U	44 U	51 U	120 J
Benzo(b+k)fluoranthenes				NR	NR	NR	NR	NR
Benzo[g,h,i]perylene		1000000		ND	73 U	66 U	77 U	68 U
Benzo[k]fluoranthene		110000		ND	97 U	88 U	100 U	91 U
Benzoic acid				ND	NR	NR	NR	NR
Benzyl alcohol				ND	NR	NR	NR	NR
Bis(2-chloroethoxy)methane				ND	73 U	66 U	76 U	68 U
Bis(2-chloroethyl) ether				ND	70 U	63 U	73 U	65 U
Bis(2-chloroisopropyl)ether				ND	NR	NR	NR	NR
Bis(2-ethylhexyl) phthalate				ND	85 U	77 U	89 U	79 U
Butylbenzylphthalate				ND	72 U	65 U	75 U	67 U
Caprolactam				NR	71 U	64 U	75 U	66 U
Carbazole				ND	68 U	61 U	71 U	63 U
Chrysene		110000		ND	79 U	72 U	83 U	150 J
Dibenzo[a,h]anthracene		1100		ND	56 U	50 U	58 U	52 U
Dibenzofuran		1000000		ND	73 U	66 U	77 U	68 U
Diethyl phthalate				ND	76 U	69 U	80 U	71 U
Dimethyl phthalate				ND	71 U	64 U	75 U	66 U
Di-n-butyl phthalate				560 J	67 U	61 U	71 U	63 U
Di-n-octyl phthalate				ND	75 U	68 U	79 U	70 U
Diphenyl				NR	73 U	66 U	76 U	68 U
Fluoranthene		1000000		ND	66 U	60 U	69 U	380 J
Fluorene		1000000		ND	75 U	68 U	78 U	70 U
Hexachlorobenzene		12000		ND	71 U	64 U	74 U	66 U
Hexachlorobutadiene				ND	68 U	62 U	71 U	63 U
Hexachlorocyclopentadiene				ND	71 U	64 U	74 U	66 U
Hexachloroethane				ND	75 U	68 U	79 U	70 U
Indeno[1,2,3-cd]pyrene		11000		ND	56 U	51 U	59 U	79 J
Isophorone				ND	66 U	60 U	70 U	62 U
Naphthalene		1000000		ND	76 U	68 U	79 U	70 U
Nitrobenzene				ND	97 U	88 U	100 U	90 U
N-Nitrosodimethylamine				ND	NR	NR	NR	NR

Table 13. Summary of Semivolatile Organic Compounds in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

		NYSDEC						
	Site Specific	Part 375	Sample Designation:	TE-OB-4	UT-4	UT-6	UT-9	WB-4
Parameter	Soil Cleanup	Restricted	Sample Date:	7/14/2000	1/2/2007	1/4/2007	1/5/2007	6/15/2006
(Concentrations in µg/kg)	Level	Industrial	Sample Depth (ft bls):	24-26	30-32	20-22	20-22	10-12
n-Nitrosodi-n-propylamine				ND	73 U	66 U	77 U	68 U
n-Nitrosodiphenylamine				ND	73 U	66 U	76 U	68 U
Pentachlorophenol		55000		ND	100 U	93 U	110 U	95 U
Phenanthrene		1000000		ND	71 U	64 U	74 U	410 J
Phenol		1000000		520 J	67 U	61 U	70 U	62 U
Pyrene		1000000		ND	78 U	71 U	82 U	330 J
Total cPAHs	25000			0	0	0	0	629
Total SVOCs	500000			1080	0	0	0	1889

J - Estimated value

ND - Compound was analyzed for but not detected

NR - No data reported

R - Results rejected by validator

DUP - Duplicate sample

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservation

-- No NYSDEC Part 375 Restricted Commercial Standards available

cPAHs - Carcinogenic polyaromatic hydrocarbons

Table 14. Summary of Metals in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

		NYSDEC									
	Site Specific	Part 375	Sample Designation:			GE-40-1-1					
Parameter	Soil Cleanup	Restricted	Sample Date:								
(Concentrations in mg/kg)	Level	Industrial	Sample Depth (ft bls):	25-27	36-38	10-14	12-16	12-16	10-14	12-12	25-25
Aluminum				2050	2180	2250	5310	2660	1920	NR	NR
Antimony				0.34 U	0.34 U	0.26 U	0.36 U	0.27 U	0.26 U	NR	NR
Arsenic		16		1.3	0.5 J	0.15 U	2.1	0.16 U	0.15 U	1.65	0.414 U
Barium		10000		213 E	29.4 E	15.6	20.5	21.2	13.5	38.9 NE	36.9 NE
Beryllium		2700		0.13 J	0.16 J	0.2 J	0.45	0.32	$0.16 \mathrm{J}$	NR	NR
Cadmium		60		0.03 U	0.03 U	0.05 U	0.06 U	0.05 U	0.05 U	0.035 U	0.035 U
Calcium				3660	3960	2660	1960	2990	652	NR	NR
Chromium				16.4 N	17.4 N	7	13.3	10.3	6.3	9.01 E	5.93 E
Cobalt				3 JE	2.9 JE	2.9	5.3	4.1	2.6	NR	NR
Copper		10000		12.3	8.7	8.6	13.9	11.5	5.4	NR	NR
Iron				5910	6230	7000	13100	11900	5950	NR	NR
Lead	3,900	3900		48.6	6.3	21.5	37.7	21	9.3	41	3.21
Magnesium				1510	2780	2250	2680	2540	1060	NR	NR
Manganese		10000		214	202	58	103	230	75	NR	NR
Mercury		5.7		0.088 N	0.009 JN	0.17	0.025	0.005 J	0.004 U	0.166 N*	0.014 N*
Nickel		10000		12.4	13	5.5	14.8	8.8	6.3	NR	NR
Potassium				393 J	444 J	432	893	558	563	NR	NR
Selenium		6800		0.89 J	0.35 U	0.14 U	0.19 U	0.14 U	0.14 U	0.365 U	0.36 U
Silver		6800		0.64 J	0.61 J	0.14 U	0.19 U	0.14 U	0.14 U	0.085 U	0.083 U
Sodium				257 JN	256 JN	234	1030	258	451	NR	NR
Thallium				0.55 U	0.54 U	1.4 U	2 U	1.5 U	1.4 U	NR	NR
Vanadium				7.8 E	9.4 E	11.9	18.2	14.5	6.9	NR	NR
Zinc		10000		98.6	19.3	25.2	77.7	48.1	13.5	NR	NR

J - Estimated value

mg/kg - Milligrams per kilogram

E - Value exceeds calibration range

U - Indicates that the compound was analyzed for but not detected

N - Spiked sample recovery not within control limits

S - Value determined by method of standard addition

W - Post-digestion spike was outside 85-115% control limits

B - Indicates analyte result between instrument detection limit and the contract required detection limit

ND - Compound was analyzed for but not detected

NR - No data reported

DUP - Duplicate sample

⁻⁻ No NYSDEC Part 375 Restricted Commercial Standards available

NYSDEC - New York State Department of Environmental Conservation

ft bls - Feet below land surface

Table 14. Summary of Metals in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	Cita Caraifia	NYSDEC	Comple Designations	CE 52 5	CE 50.2	CE 50.2	GE-59-11	GE-59-12	MW-26	RT-7	RT-9
Parameter	Site Specific	Part 375 Restricted	Sample Designation: Sample Date:					10/18/2006		10/3/2006	
(Concentrations in mg/kg)	Soil Cleanup Level	Industrial	Sample Depth (ft bls):	18-18	12-15	23-25	20 - 22	28 - 30	9-11	25 - 27	20-22
(~ F ·F (· · · · · · · · ·								
Aluminum				NR	NR	NR	NR	NR	3010	NR	NR
Antimony				NR	NR	NR	NR	NR	1.6 UN	NR	NR
Arsenic		16		1.9	0.52 J	0.954 J	NR	NR	0.6 U	NR	1.3 J
Barium		10000		38.2 NE	24.4	29.4	NR	NR	16 B	NR	41.9 E
Beryllium		2700		NR	NR	NR	NR	NR	0.34 U	NR	NR
Cadmium		60		0.036 U	0.037 UN	0.037 UN	NR	NR	1.1 U	NR	0.04 U
Calcium				NR	NR	NR	NR	NR	772 B	NR	NR
Chromium				19.2 E	10.2 E	8.32 E	NR	NR	6.5 SN	NR	9.6 E
Cobalt				NR	NR	NR	NR	NR	1.9 B	NR	NR
Copper		10000		NR	NR	NR	NR	NR	8.2	NR	NR
Iron				NR	NR	NR	NR	NR	5990	NR	NR
Lead	3,900	3900		22.3	2.75 E	9.85 E	5.4	6.27	2.3	2.74	4.2 E
Magnesium				NR	NR	NR	NR	NR	1360	NR	NR
Manganese		10000		NR	NR	NR	NR	NR	148	NR	NR
Mercury		5.7		0.05 N*	0.006 U	0.007 U	NR	NR	0.1 U	NR	0.008 U
Nickel		10000		NR	NR	NR	NR	NR	6.7 B	NR	NR
Potassium				NR	NR	NR	NR	NR	416 B	NR	NR
Selenium		6800		0.37 U	0.815 J	$0.81 \mathrm{J}$	NR	NR	0.55 UNW	NR	1.3
Silver		6800		0.086 U	0.087 UN	0.089 UN	NR	NR	0.53 U	NR	0.38 J
Sodium				NR	NR	NR	NR	NR	113 B	NR	NR
Thallium				NR	NR	NR	NR	NR	0.74 U	NR	NR
Vanadium				NR	NR	NR	NR	NR	7.6 B	NR	NR
Zinc		10000		NR	NR	NR	NR	NR	16	NR	NR

J - Estimated value

E - Value exceeds calibration range

U - Indicates that the compound was analyzed for but not detected

N - Spiked sample recovery not within control limits

S - Value determined by method of standard addition

W - Post-digestion spike was outside 85-115% control limits

B - Indicates analyte result between instrument detection limit and the contract required detection limit

ND - Compound was analyzed for but not detected

NR - No data reported

DUP - Duplicate sample

mg/kg - Milligrams per kilogram

⁻⁻ No NYSDEC Part 375 Restricted Commercial Standards available

NYSDEC - New York State Department of Environmental Conservation

ft bls - Feet below land surface

Table 14. Summary of Metals in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Parameter Soi (Concentrations in mg/kg) Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium	e Specific	NYSDEC Part 375	Sample Designation:	S-35	CW 515	CXX #4.5	CXX #4.5	*****			
Parameter Soi (Concentrations in mg/kg) Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium			Sample Designation:	S-35	037 515	OTT -1 -	CTT #4 6	T 7000 4			
(Concentrations in mg/kg) Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium	l Cleanup	D (1	• 0	5-33	SY-515	SY-516	SY-516	UT-4	UT-6	UT-9	WB-4
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium		Restricted	Sample Date:	11/30/1990	11/17/2006	10/19/2006	10/19/2006	1/2/2007	1/4/2007	1/5/2007	6/15/2006
Antimony Arsenic Barium Beryllium Cadmium Calcium	Level	Industrial	Sample Depth (ft bls):	8-10	20-22	43-45	88-90	30-32	20-22	20-22	10-12
Antimony Arsenic Barium Beryllium Cadmium Calcium				4550							1 TD
Arsenic Barium Beryllium Cadmium Calcium				4770	NR	NR	NR	NR	NR	NR	NR
Barium Beryllium Cadmium Calcium				1.7 UN	NR	NR	NR	NR	NR	NR	NR
Beryllium Cadmium Calcium		16		0.68 UW	0.792 J	0.479 U	1.94	1.12 J	0.477 U	4.18	0.572 J
Cadmium Calcium		10000		32 B	50.7	17.9 J	21.9 J	16.2 J	13.4 JE	249 E	13.9 J
Calcium		2700		0.36 U	NR	NR	NR	NR	NR	NR	NR
		60		1.1 U	0.039 U	0.04 U	0.041 U	0.045 U	0.04 U	0.046 U	ND
O1				1400	NR	NR	NR	NR	NR	NR	NR
Chromium				8.2 N	34.2	7.12	17.9	10.1	7 E	36.7 E	7.69
Cobalt				3 B	NR	NR	NR	NR	NR	NR	NR
Copper		10000		12	NR	NR	NR	NR	NR	NR	NR
Iron				11200	NR	NR	NR	NR	NR	NR	NR
Lead	3,900	3900		3.5	3.62	2.42	7.66	4.08	1 J	13.3	0.8
Magnesium				2510	NR	NR	NR	NR	NR	NR	NR
Manganese		10000		224	NR	NR	NR	NR	NR	NR	NR
Mercury		5.7		0.11 U	0.007 UN	0.007 UN	0.007 UN	0.008 U	0.007 U	0.014 J	ND
Nickel		10000		11	NR	NR	NR	NR	NR	NR	NR
Potassium				861 B	NR	NR	NR	NR	NR	NR	NR
Selenium		6800		0.59 UNW	0.405 U	0.417 U	0.423 U	0.463 U	0.415 U	0.478 U	ND
Silver		6800		0.57 U	0.094 U	0.097 U	0.098 U	0.107 U	0.857 J	7.04	ND
Sodium				456 B	NR	NR	NR	NR	NR	NR	NR
Thallium				0.8 U	NR	NR	NR	NR	NR	NR	NR
Vanadium				13	NR	NR	NR	NR	NR	NR	NR
Zinc				1.0	1 11/	7 417	1 11/	1 11/	1 11/	7 41/	1 117
Zine		10000		20	NR	NR	NR	NR	NR	NR	NR

J - Estimated value

E - Value exceeds calibration range

U - Indicates that the compound was analyzed for but not detected

N - Spiked sample recovery not within control limits

S - Value determined by method of standard addition

W - Post-digestion spike was outside 85-115% control limits

B - Indicates analyte result between instrument detection limit and the contract required detection limit

ND - Compound was analyzed for but not detected

NR - No data reported

DUP - Duplicate sample

mg/kg - Milligrams per kilogram

⁻⁻ No NYSDEC Part 375 Restricted Commercial Standards available

NYSDEC - New York State Department of Environmental Conservation

ft bls - Feet below land surface

Table 15. Summary of Polychlorinated biphenyls in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	Site Specific	Sample Designation:						GE-53-3	GE-53-5	GE-59-3
Parameter	Soil Cleanup	Sample Date:	10/25/2007	10/25/2007	10/25/2007	10/25/2007	7/27/2006	7/27/2006	7/27/2006	7/10/2006
(Concentrations in µg/kg)	Level	Sample Depth (ft bls):	10-14	12-16	12-16	10-14	12-12	25-25	18-18	12-15
Aroclor-1016			2.9 U	4 U	3 U	2.9 U	2.7 U	2.7 U	2.7 U	2.8 U
Aroclor-1010 Aroclor-1221			4.5 U	6.2 U	4.6 U	4.5 U	4.3 U	4.2 U	4.3 U	4.3 U
Aroclor-1232			6.7 U	9.3 U	6.9 U	6.7 U	6.4 U	6.3 U	6.4 U	6.5 U
Aroclor-1242			5.9 U	8.3 U	6.1 U	5.9 U	5.7 U	5.6 U	5.7 U	5.8 U
Aroclor-1248			2.9 U	4 U	3 U	2.9 U	2.8 U	2.7 U	2.8 U	2.8 U
Aroclor-1254			1.9 U	2.6 U	1.9 U	1.9 U	320 P	1.8 U	1.8 U	1.8 U
Aroclor-1260			4.8 U	6.7 U	4.9 U	28	4.6 U	4.5 U	4.6 U	4.6 U
TOTAL PCBs	25,000		0	0	0	28	320	0	0	0

J - Estimated value

ND - Compound was analyzed for but not detected

NR - No data reported

DUP - Duplicate sample

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservation

Table 15. Summary of Polychlorinated biphenyls in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	Site Specific	Sample Designation:	GE-59-3	GE-59-11	GE-59-12	MW-26	RT-7	RT-9	S-35	SY-515
Parameter	Soil Cleanup	Sample Date:	7/10/2006	10/19/2006	10/18/2006	12/5/1990	10/3/2006	8/30/2006	11/30/1990	11/17/2006
(Concentrations in µg/kg)	Level	Sample Depth (ft bls):	23-25	20 - 22	28 - 30	9-11	25 - 27	20-22	8-10	20-22
Aroclor-1016			2.9 U	ND	ND	85 U	NR	3.3 U	90 U	3 U
Aroclor-1010 Aroclor-1221			4.4 U	ND	ND	85 U	NR	5.1 U	90 U	4.6 U
Aroclor-1232			6.6 U	ND	ND	85 U	NR	7.6 U	90 U	6.9 U
Aroclor-1242			5.9 U	ND	ND	85 U	NR	6.7 U	90 U	6.2 U
Aroclor-1248			2.9 U	ND	ND	85 U	NR	3.3 U	90 U	3 U
Aroclor-1254			1.9 U	ND	ND	85 U	NR	2.1 U	90 U	2 U
Aroclor-1260			4.8 U	ND	ND	85 U	NR	5.4 U	90 U	5 U
TOTAL PCBs	25,000		0	0	0	0	19 J	0	0	0

J - Estimated value

NR - No data reported

DUP - Duplicate sample

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservation

U - Indicates that the compound was analyzed for but not detected

ND - Compound was analyzed for but not detected

Table 15. Summary of Polychlorinated biphenyls in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	Site Specific	Sample Designation:	SY-516	SY-516	TE-B/C-2	TE-B/C-2	TE-IB/OB-1	TE-IB/OB-1	TE-IB-3
Parameter	Soil Cleanup	Sample Date:	10/19/2006	10/19/2006	9/7/2000	9/8/2000	9/11/2000	9/11/2000	9/12/2000
(Concentrations in µg/kg)	Level	Sample Depth (ft bls):	43-45	88-90	48-50	85-86	15 - 17	33 - 35	23 - 25
Aroclor-1016			3.1 U	3.1 U	38 U	40 U	35 U	37 U	38 U
Aroclor-1221			4.7 U	4.8 U	77 U	81 U	71 U	76 U	78 U
Aroclor-1232			7.1 U	7.2 U	38 U	40 U	35 U	37 U	38 U
Aroclor-1242			6.3 U	6.4 U	38 U	40 U	35 U	37 U	38 U
Aroclor-1248			3.1 U	3.1 U	38 U	40 U	35 U	37 U	38 U
Aroclor-1254			2 U	2 U	38 U	40 U	35 U	37 U	38 U
Aroclor-1260			5.1 U	5.1 U	38 U	40 U	35 U	37 U	38 U
TOTAL PCBs	25,000		0	0	0	0	0	0	0

J - Estimated value

NR - No data reported

DUP - Duplicate sample

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservation

U - Indicates that the compound was analyzed for but not detected

ND - Compound was analyzed for but not detected

Table 15. Summary of Polychlorinated biphenyls in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	Site Specific	Sample Designation:	TE-IB-3	TE-IB-3	TE-MW-A-1	TE-MW-A-1	TE-MW-A-2	TE-MW-A-2	TE-MW-D-1
Parameter	Soil Cleanup	Sample Date:	9/12/2000	9/12/2000	9/26/2000	9/26/2000	10/9/2000	10/9/2000	9/25/2000
(Concentrations in µg/kg)	Level	Sample Depth (ft bls):	38 - 40	53 - 55	14 - 16	37 - 37	14 - 16	20 - 22	10 - 12
Aroclor-1016			40 U	40 U	25 II	39 U	33 U	33 U	36 U
					35 U	-, -			
Aroclor-1221			80 U	80 U	70 U	79 U	67 U	67 U	73 U
Aroclor-1232			40 U	40 U	35 U	39 U	33 U	33 U	36 U
Aroclor-1242			40 U	40 U	35 U	39 U	33 U	33 U	36 U
Aroclor-1248			40 U	40 U	35 U	39 U	33 U	33 U	36 U
Aroclor-1254			40 U	40 U	35 U	39 U	33 U	33 U	36 U
Aroclor-1260			40 U	2.1 J	2.4 J	39 U	170	6.2 J	4 J
TOTAL PCBs	25,000		0	2.1	2.4	0	170	6.2	4

J - Estimated value

NR - No data reported

DUP - Duplicate sample

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservation

U - Indicates that the compound was analyzed for but not detected

ND - Compound was analyzed for but not detected

Table 15. Summary of Polychlorinated biphenyls in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	Site Specific	Sample Designation:	TE-MW-D-1	TE-MW-D-1	TE-MW-IB-2	TE-MW-IB-2	TE-MW-IB-2	TE-MW-IB-2
Parameter	Soil Cleanup	Sample Date:	9/25/2000	9/25/2000		10/3/2000		10/3/2000
(Concentrations in µg/kg)	Level	Sample Depth (ft bls):	25 - 25	40 - 41	14-16	14-16	62-64	62-64
Aroclor-1016			35 U	34 U	NR	720 U	NR	200 U
Aroclor-1221			71 U	69 U	1500 U	NR	400 U	NR
Aroclor-1232			35 U	34 U	720 U	NR	200 U	NR
Aroclor-1242			35 U	34 U	720 U	NR	200 U	NR
Aroclor-1248			35 U	34 U	720 U	NR	200 U	NR
Aroclor-1254			35 U	34 U	680 J	NR	310	NR
Aroclor-1260			18 J	34 U	1300	NR	400	NR
TOTAL PCBs	25,000		18	0	1980	0	710	0

J - Estimated value

ND - Compound was analyzed for but not detected

NR - No data reported

DUP - Duplicate sample

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservation

Table 15. Summary of Polychlorinated biphenyls in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	Site Specific	Sample Designation:	TE-MW-IB-2	TE-MW-IB-2	TE-MW-OB-1	TE-MW-OB-1	TE-MW-OB-2	TE-MW-OB-2
Parameter	Soil Cleanup	Sample Date:		10/4/2000	10/11/2000	10/11/2000	9/19/2000	9/19/2000
(Concentrations in µg/kg)	Level	Sample Depth (ft bls):	93-95	93-95	14 - 16	45 - 45	29 - 31	60 - 62
Aroclor-1016			NR	39 U	33 U	33 U	38 U	38 U
Aroclor-1221			79 U	NR	67 U	67 U	78 U	77 U
Aroclor-1232			39 U	NR	33 U	33 U	38 U	38 U
Aroclor-1242			39 U	NR	33 U	33 U	6.7 J	38 U
Aroclor-1248			39 U	NR	33 U	33 U	38 U	38 U
Aroclor-1254			5.1 J	NR	33 U	33 U	38 U	38 U
Aroclor-1260			9.9 J	NR	14 J	33 U	9.8 J	2.4 J
TOTAL PCBs	25,000		15	0	14	0	16.5	2.4

J - Estimated value

ND - Compound was analyzed for but not detected

NR - No data reported

DUP - Duplicate sample

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservation

Table 15. Summary of Polychlorinated biphenyls in Saturated Soil Samples, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	Site Specific	Sample Designation:	TE-MW-QA-2	TE-MW-QA-2	TE-OB-4	UT-4	UT-6	UT-9	WB-4
Parameter	Soil Cleanup	Sample Date:	10/23/2000	10/23/2000	7/12/2000	1/2/2007	1/4/2007	1/5/2007	6/15/2006
(Concentrations in µg/kg)	Level	Sample Depth (ft bls):	18-20	40-42	24-26	30-32	20-22	20-22	10-12
Aroclor-1016			ND	ND	ND	3.3 U	3.1 U	3.6 U	3.1 U
Aroclor-1221			ND	ND	ND	5.2 U	4.8 U	5.5 U	4.9 U
Aroclor-1232			ND	ND	ND	7.8 U	7.1 U	8.3 U	7.3 U
Aroclor-1242			ND	ND	ND	6.9 U	6.3 U	7.4 U	6.5 U
Aroclor-1248			ND	ND	ND	3.4 U	3.1 U	3.6 U	3.2 U
Aroclor-1254			ND	ND	ND	2.2 U	2 U	2.3 U	2.1 U
Aroclor-1260			ND	ND	ND	5.6 U	5.1 U	5.9 U	5.2 U
TOTAL PCBs	25,000		0	0	0	0	0	0	0

J - Estimated value

ND - Compound was analyzed for but not detected

NR - No data reported

DUP - Duplicate sample

μg/kg - Micrograms per kilogram

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservation

Table 16. Summary of Physical and Chemical Properties of Organic Compounds Detected in Groundwater Above Standards or Sub-Surface Vapor During the Supplemental OU-6 RI, OU-6 RI/FS Report Sunnyside Yard, Queens, New York

Compound	Matrix Where Detected (Groundwater and/or Sub-Slab Vapor)	Solubility in Water ⁽¹⁾ (mg/L)	Vapor Pressure (1) (mm Hg)	Specific Gravity ⁽¹⁾	Henry's Law Constant (atm·m³/ mole)	Log Organic Carbon Distribution Coefficient (Log Koc)	Log Octanol/Water Partition Coefficient (Log Kow)
Aromatics							
Benzene	Groundwater and Sub-slab Vapor	1780	76	0.8786	5.56E-03	1.8	2.13
Cyclohexane	Sub-slab Vapor	55	95	0.78	1.50E-01	(3)	3.44
Ethylbenzene	Sub-slab Vapor	152	7	0.867	7.88E-03	(3)	3.15
n-Heptane	Sub-slab Vapor	(3)	40	0.684	(3)	(3)	(3)
n-Hexane	Sub-slab Vapor	9.5	150 (25°)	0.6603	1.69 (25°)	2.9	3.29
Isooctane	Sub-slab Vapor	(3)	41	0.692	(3)	(3)	(3)
Toluene	Sub-slab Vapor	515	22	0.867	6.63E-03	1.9	2.6
1,2,4-Trimethylbenzene	Sub-slab Vapor	57	4.15	0.88	5.18E-03	472	3.78
Methyl tert-butyl ether	Groundwater	50,000	245	0.74	5.87E-04	2.89	1.24
o-Xylene(2)	Groundwater and Sub-slab Vapor	175	5	0.88	5.20E-03	(3)	2.77
m-Xylene(2)	Groundwater and Sub-slab Vapor	(3)	6	0.864	7.34E-03	(3)	3.2
p-Xylene(2)	Groundwater and Sub-slab Vapor	198 (25°)	6.5	0.86	7.66E-03	(3)	3.15
Chlorinated Volatile Organic Compou	nds						
cis-1,2-Dichloroethene	Groundwater	800	200 (25°)	1.28	4.07E-03	(3)	0.7
Dichlorodifluoromethane	Sub-slab Vapor	(3)	(3)	(3)	(3)	(3)	(3)
trans-1,2-Dichloroethene	Groundwater	600	200 (14°)	1.26	9.39E-03	(3)	0.48
Methylene Chloride (Dichloromethane)	Sub-slab Vapor	20000	349	1.366	2.19E-03	(3)	1.28
1,1-Dichloroethene	Groundwater	2500	500	1.218	1.90E-01	1.81	1.32
1,2-Dichloroethane	Groundwater	8690	79.1 (25)	1.253	1.10E-03	1.62	1.48
Tetrachloroethene	Groundwater and Sub-slab Vapor	150 (25°)	14	1.626	1.84E-02	(3)	2.6
Trichloroethene	Groundwater	1100 (25°)	60	1.46	1.03E-02	(3)	2.38
1,1,2-Trichloroethane	Groundwater	4400	22.49 (25°)	1.44	9.10E-04	1.06	2.42
Vinyl chloride	Groundwater	2763 (25°)	2600	0.9106	2.78E-02	1.99	1.36
Ketones			•				
Acetone	Sub-slab Vapor	miscible	270 (30°)	0.791	3.88E-05	0.73	-0.22
2-Butanone (MEK)	Sub-slab Vapor	136000 (25°)	90.6 (25°)	0.8054	5.77E-05	0.55	0.29
Other Organics	•	 			•	•	
Ethyl Acetate	Sub-slab Vapor	(3)	76	0.902	1.38E-04	(3)	0.73
Ethanol	Sub-slab Vapor	(3)	(3)	0.79	(3)	(3)	
T-Butyl alcohol	Sub-slab Vapor	1000000	40.7 (25°)	0.79	9.05E-06	(3)	0.35
Tetrahydrofuran	Sub-slab Vapor	(3)	<0.01 (25°)	0.88	(3)	(3)	(3)
Trichlorofluoromethane	Sub-slab Vapor	1100	687	1.49	(3)	2.13	2.12

mg/L - milligrams per liter

Sources: Verschueren, 1983. Mackay et al., 1982. Mackay, 1982. Gossett, 1987. Nyer et al., 1991. Sims et al., 1984. Federal Register, Vol. 55, No. 61, p. 11816-11817, March 29, 1990. Hutzinger et al., 1974. Monsanto Chemical Co., undated. Mackay and Leiononen, 1975. Hwang, 1982. U.S. EPA, 1980. ATSDR, 1995. USEPA, 1996.

mm - millimeters Hg

 $n{\cdot}m^3\!/\!mole$ - atmosphere-cubic meters per mole

⁽¹⁾ Solubility, Vapor Pressure, and Specific Gravity values reported at 20°C, except as noted by values in parentheses.

⁽²⁾ Because xylene analysis was often done for total xylenes, the most stringent isomer chemical property will be used as appropriate in the modeling performed in the

 $^{^{\}left(3\right) }$ No information available in the reference sources consulted.

Table 17. Estimated Retardation Factors of Organic Compounds Detected in Groundwater Above Standards During the Supplemental OU-6 RI, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

	Log Octanol/Water Partition Coefficient(Log		
Compound	Kow)	Retardation Factor (R) ⁽¹⁾	Relative Mobility ⁽²⁾
Aromatics	•	•	
Benzene	2.13	7	Medium
Methyl tert-butyl ether	1.24	2	High
o-Xylene	2.77	27	Low
m-Xylene	3.2	71	Immobile
p-Xylene	3.15	64	Immobile
Chlorinated Volatile Organic Com	pounds		
cis-1,2-Dichloroethene	0.7	1.2	High
trans-1,2-Dichloroethene	0.48	1.1	High
1,1-Dichloroethene	1.32	6	Medium
1,2-Dichloroethane	1.48	4	Medium
Tetrachloroethene	2.6	19	Medium
1,1,2-Trichloroethane	2.42	13	Medium
Trichloroethene	2.38	12	Medium
Vinyl chloride	1.36	2.5	Medium

⁽¹⁾ Estimates based on octanol/water partition coefficients, according to the following steps.

Retardation Factor (R) = the ratio (velocity of ground water/velocity of dissolved compound).

 ρb = the bulk density of the soil, estimated to be 1.8 g/cm3;

n =the soil porosity, estimated to be 0.25; and

Kd = the distribution coefficient for the contaminant.

Kd was estimated from the log Kow using the relationship (Lyman et al., 1982)

log Kd = 1.00 log Kow + log foc -0.21, where foc is the fraction of organic content in soil.

In the absence of valid analytical data on the total organic carbon (TOC) of the aquifer at the Yard,
a default value of 0.01 (1%) was taken as the value of foc for the natural aquifer matrix in these calculations.

⁽²⁾ Characterization used: High (R between 1.0 and 2.0); Medium (R between 2.1 and 20); Low (R between 21 and 50); and Immobile (R greater than 50).

Table 18. Action and Chemical-Specific SCGs, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

Citation	Title	Description	SCG Type
NEW YORK STATE SCGs			
6 NYCRR Subparts 375-1 and 375-2	Environmental Remediation Programs - Inactive Hazardous Waste Sites	Provides general requirements and IHWDS remedial program requirements and procedures for developing RAOs and remedy selection.	Action
6 NYCRR Section 375-1.8 (d)(2)	Groundwater Protection and Control Measures	Specifies the criteria for demonstrating off-site sources of groundwater contamination with no onsite source (or contribution).	Action
6 NYCRR Subpart 375-6	Remedial Program Soil Cleanup Objectives	Establishes the soil cleanup objectives for restricted industrial sites. The Yard soil cleanup level for lead is based on the Restricted Industrial cleanup level.	Chemical
6 NYCRR Section 701.5	Classification of Surface Water and Groundwater - Class GA Fresh Groundwaters	Defines and provides the best usage for Class GA groundwater	Chemical
6 NYCRR Sections 700.1 and 701.16	Classification of Surface Water and Groundwater - Class GSA Saline Groundwaters	Defines and provides the best usage for Class GSA groundwater	Chemical
6 NYCRR Sections 700.1 and 701.18	Assignment of Groundwater Classifications	Designates that all groundwaters of the State are defined by Section 701.15 (Class GA) or 701.16 (Class GSA).	Chemical
6 NYCRR Section 703.5	Water Quality Standards Surface Waters and Groundwater	Provides promulgated numeric groundwater quality standards used for comparison to OU-6 groundwater data and determination of remedial requirements for OU-6 groundwater.	Action, Chemical
Record of Decision	Modifies NYSDEC recommended soil cleanup levels for COCs	Current Yard soil cleanup levels for the COCs.	Chemical
FEDERAL SCGs			T
NCP, 40 CFR 300.430	Remedial Investigation/Feasibility Study and Selection of Remedy	Establishes procedures and requirements in developing the RAOs and remedy selection.	Action
TSCA, 40 CFR 761.61	PCB Remediation Waste	This standard sets the cleanup levels and the treatment, storage and disposal requirements of PCB-impacted material.	Action, Chemical
29 CFR 1910	Occupational Safety and Health Standards	This regulation will be applicable and relevant to any selected remedy.	Action
29 CFR 1926	Occupational Safety and Health	This regulation will be applicable and relevant to any selected remedy.	Action
LOCAL SCGs			
RCNY Titles 1,15,16	Rules of the City of New York		Action
GUIDANCE			
NYSDEC TAGM 4030	Selection of Remedial Actions at Inactive Hazardous Waste Sites	Provides procedures for development of RAOs and remedial alterative evaluation.	Action
NYSDEC TAGM 4046	Determination of Soil Cleanup Objectives and Cleanup Levels	Provides recommended soil cleanup levels. The Yard soil cleanup level for total SVOCs is derived from this guidance document.	Action, Chemical
NYSDEC TOGS 1.1.1	Ambient Water Quality Standards and Guidance Values	Provides the groundwater quality standards provided in 6 NYCRR Section 703.5 and additional groundwater quality guidance values	Action, Chemical
NYSDOH Generic CAMP for Ground Intrusive Activities	Generic Community Air Monitoring Protocol	Would relate to intrusive remedial actions	Action

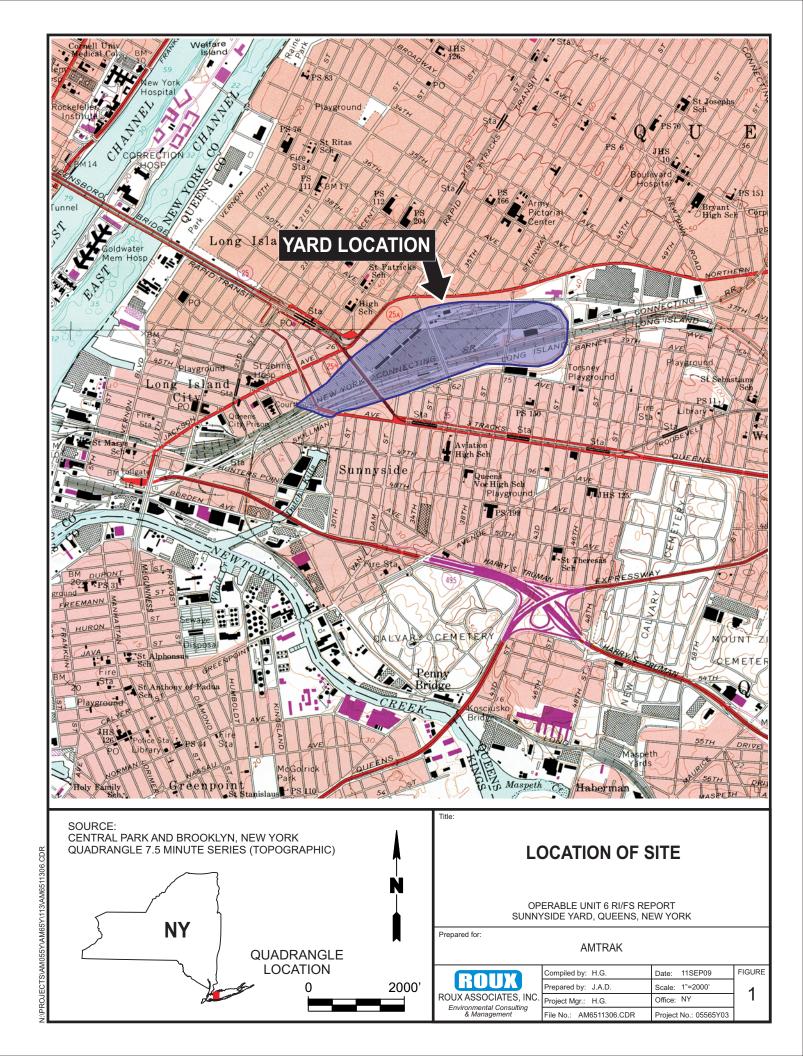
Table 18. Action and Chemical-Specific SCGs, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York

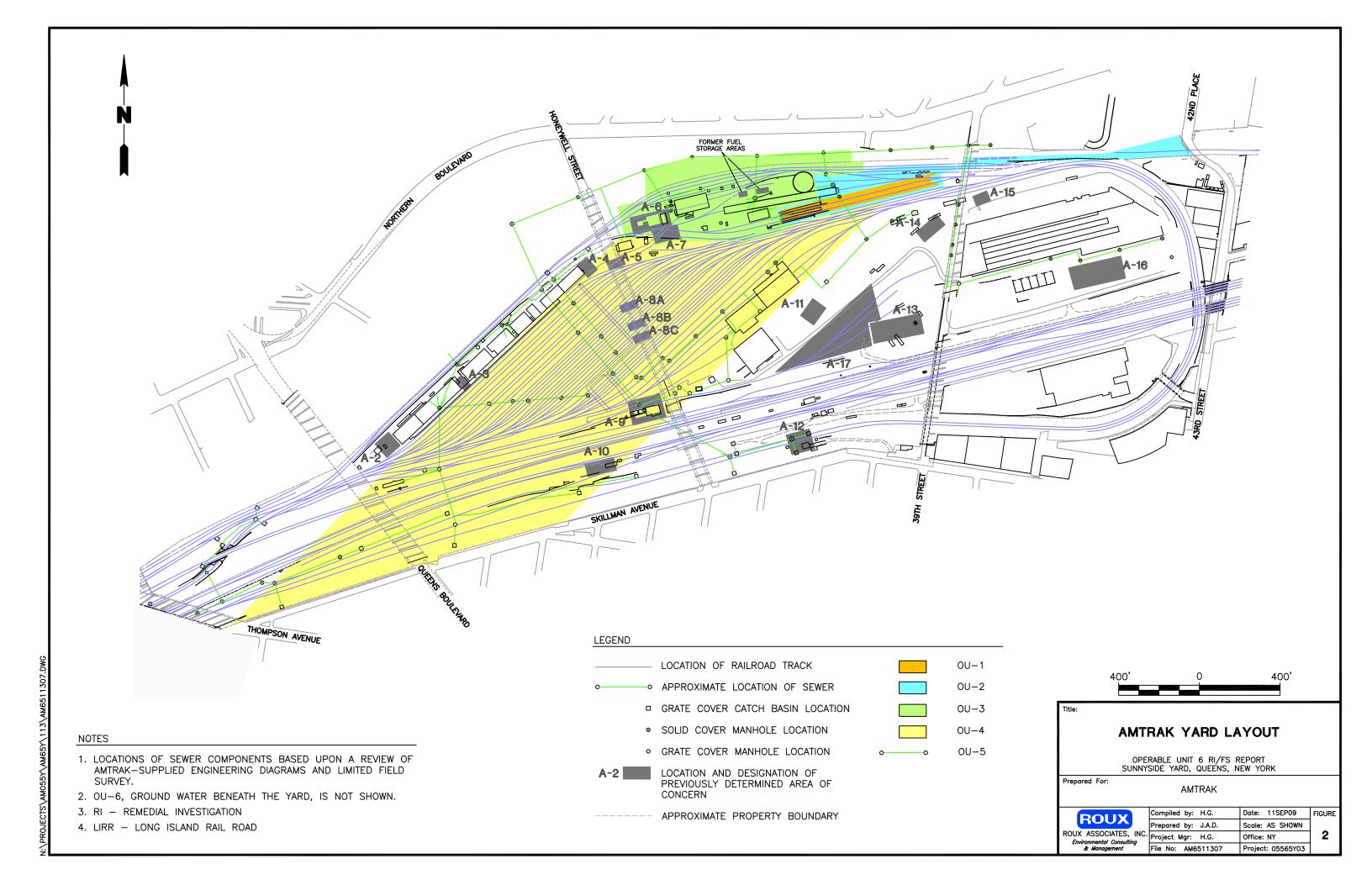
Citation	Title	Description	SCG Type
	Technical Guidance for Site	Guidance provides procedures for developing	
NYSDEC Draft DER-10	Investigation and Remediation	RAOs, remedial alternative screening and selection	Action
	Strategy for Evaluating Soil Vapor	Requires the evaluation of soil vapor intrusion	
	Intrusion at Remedial Sites in New	pathways as part of investigations for sites without	
NYSDEC Draft DER-13	York	final remedial decisions (RODs).	Action
	Guidance for Evaluating Soil Vapor	Guidance document that provides procedures for	
NYSDOH	in the State of New York	soil vapor intrusion investigations	Action, Chemical

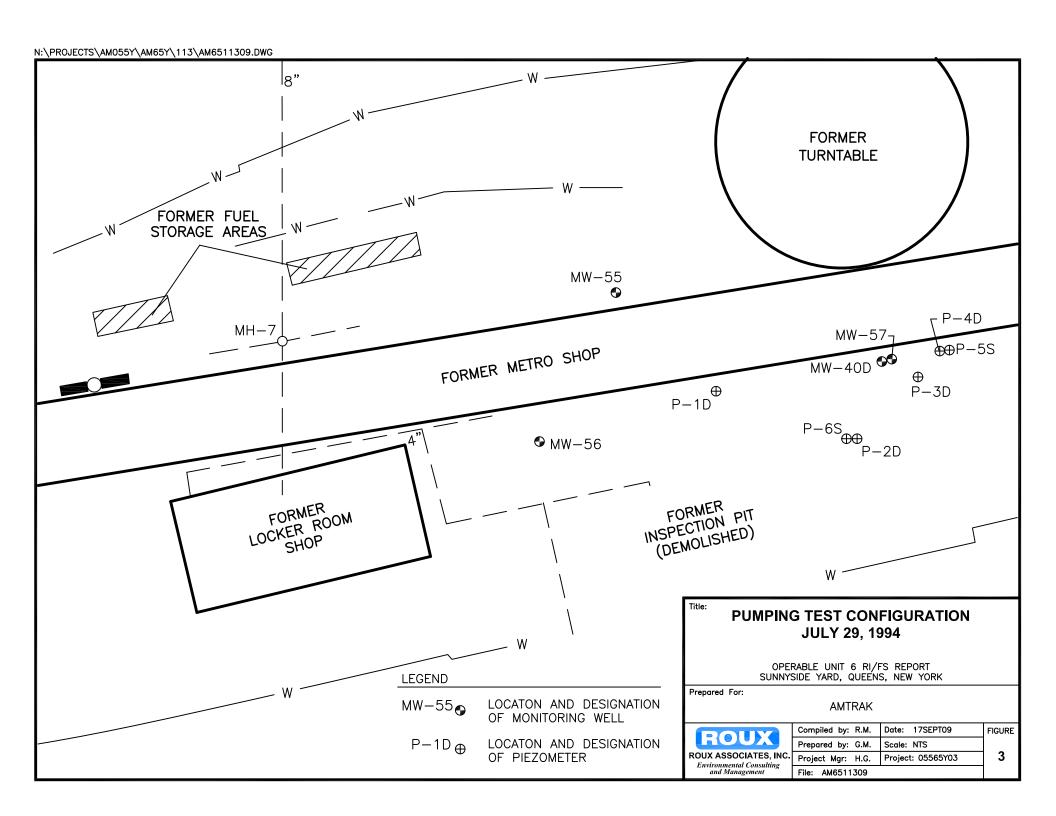
Glossary of Acronyms

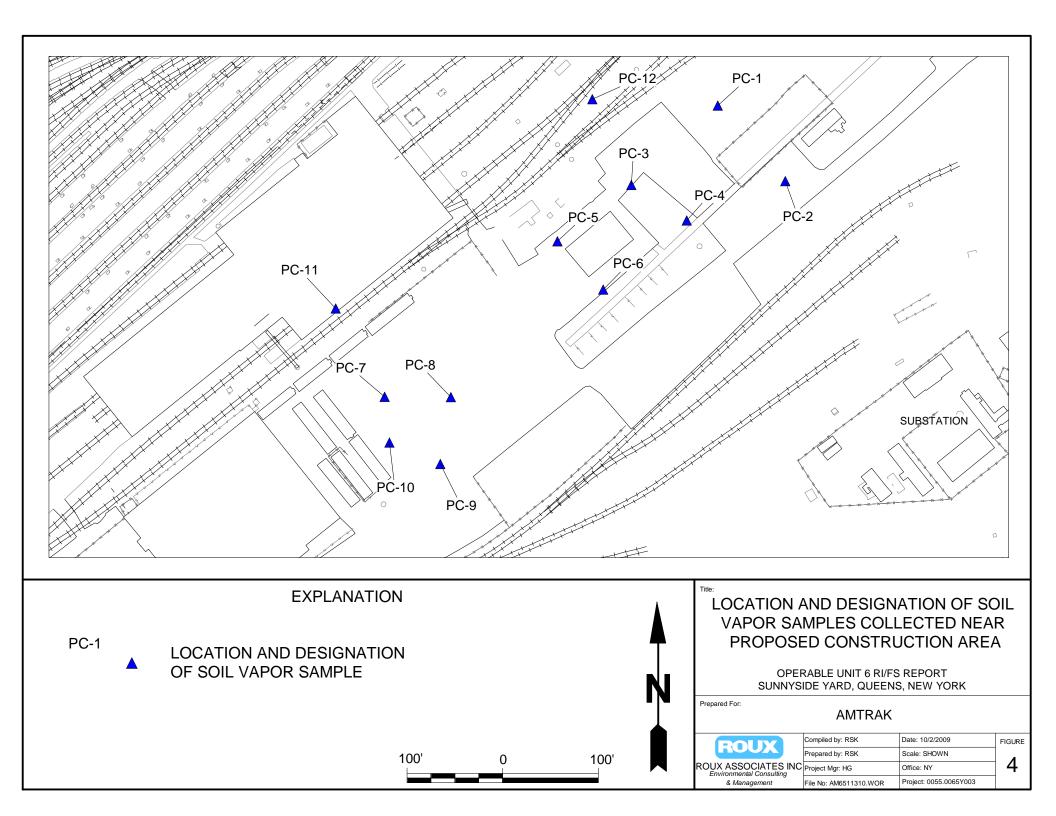
CFR Code of Federal Regulations

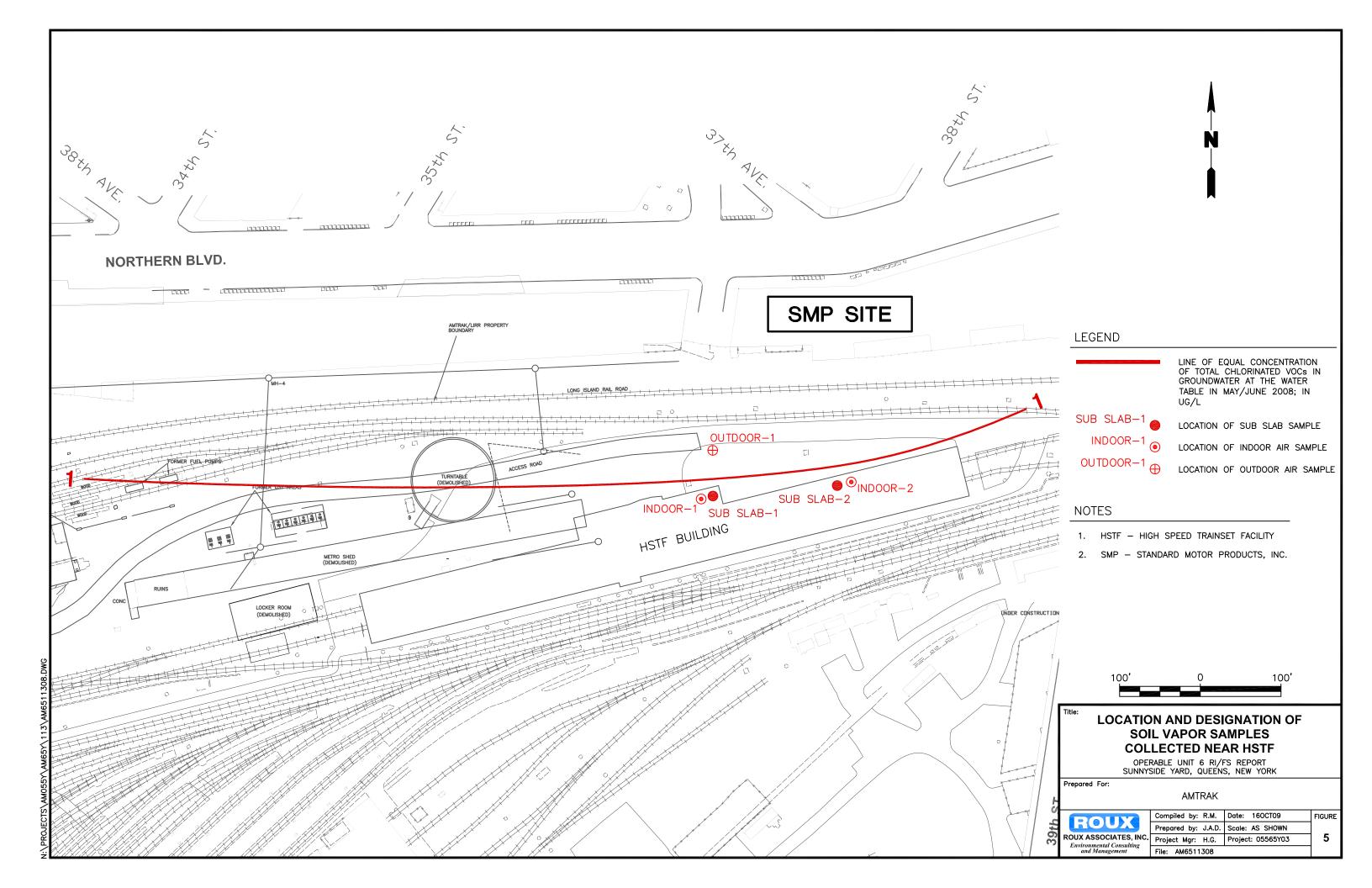
NYSDEC New York State Department of Environmental Conservation


NYCRR New York Code of Rules and Regulations


OSHA Occupational Safety and Health SCG Standards, Criteria, and Guidance


USEPA United States Environmental Protection Agency
DER Department of Environmental Remediation


Table 19. Remedial Alternative II Cost Estimate, OU-6 RI/FS Report, Sunnyside Yard, Queens, New York


Description	Quantity	Unit	Unit Cost	Total Cost
INSTITUTIONAL/ENGINEERING CONTROLS				
Groundwater Use Restriction	1	LS	\$10,000	\$10,000
Subte	otal			\$10,000
SITE MANAGEMENT PLAN				
Preparation and Implementation of Site Management Plan	1	LS	\$15,000	\$15,000
Subte	otal			\$15,000
ENVIRONMENTAL EASEMENTS				
Environmental Easements	1	LS	\$10,000	\$10,000
Subto	otal			\$10,000
		Subtota	ıl Direct Costs	\$35,000
		Cont	\$7,000	
		TOTAL DI	\$42,000	
		Project Mana	gement (10%)	\$4,200
		•	PITAL COSTS	\$46,200
GROUNDWATER MONITORING				
Present Value of groundwater monitoring of offsite source p sources (SMP and ACCO) to be performed every other year		of sampling data, c	and data collected fro	om offsite
Groundwater Sampling for 10 years (\$5,000/round)		1 LS	\$16,552.00	\$16,552.00
Reporting for 10 years (\$5,000/report)		1 LS	\$16,552.00	\$16,552.00
	Subtotal Net F	Present Worth of	OM&M Costs	\$33,104
		v	gement (10%)	\$3,310
TO	TAL PRESENT	•	OM&M COSTS	\$36,414
		TOTAL C	OU-6 FS COSTS	\$82,614

APPENDIX A

Historic Groundwater Quality Data (Generated Prior to Completing the 1999 OU-6 RI)

Table A-1. Summary of Volatile Organic Compound Concentrations in Pre-1997 Groundwater Samples, Sunnyside Yard, Queens, New York

	Sample Designation: Sample Date:	MW-19 1/4/1991	MW-23D 1/7/1991	MW-23D 2/9/1993	MW-35 2/9/1993	MW-37 2/17/1994	MW-38D 2/17/1994	
Parameter (Concentrations in $\mu g/L$)	Class GA Ground-Water Standard (µg/L)*							
Benzene	0.7	5 U	5 U	10 U	10 U	5 U	5 U	
Toluene	5	5 U	5 U	10 U	10 U	5 U	5 U	
Ethylbenzene	5	5 U	8.8	10 U	10 U	5 U	5 U	
Xylene (total)	5	5 U	18	1 J	10 U	5 U	5 U	
Total BTEX		0	26.8	1	0	0	0	
1,1,1-Trichloroethane	5	5 U	5 U	10 U	10 U	5 U	5 U	
1,1,2,2-Tetrachloroethane		5 U	5 U	10 U	10 U	5 U	5 U	
1,1,2-Trichloroethane	5	5 U	5 U	10 U	10 U	5 U	5 U	
1,1-Dichloroethane	5	5 U	5 U	2 J	10 U	5 U	3 J	
1,1-Dichloroethene	5	5 U	5 U	10 U	10 U	5 U	5 U	
1,2-Dichloroethane	5	5 U	5 U	10 U	10 U	5 U	5 U	
1,2-Dichloroethene (total)	5	5 U	5 U	10 U	10 U	5 U	5 U	
1,2-Dichloropropane		5 U	5 U	10 U	10 U	5 U	5 U	
2-Butanone		10 U	10 U	10 U	10 U	10 U	10 U	
2-Hexanone		10 U	10 U	10 U	10 U	10 U	10 U	
4-Methyl-2-Pentanone		10 U	10 U	10 U	10 U	10 U	10 U	
Acetone		10 U	10 U	10 U	10 UV	10 UV	10 U	
Bromodichloromethane		5 U	5 U	10 U	10 U	5 U	5 U	
Bromoform		5 U	5 U	10 U	10 U	5 U	5 U	
Bromomethane		10 U	10 U	10 U	10 U	10 U	10 U	
Carbon Disulfide		5 U	5 U	10 U	10 U	5 U	5 U	
Carbon Tetrachloride		5 U	5 U	10 U	10 U	5 U	5 U	
Chlorobenzene		5 U	5 U	10 U	10 U	5 U	5 U	
Chloroethane		10 U	10 U	10 U	10 U	10 U	10 U	
Chloroform		5 U	5 U	10 U	10 U	5 U	5 U	
Chloromethane		10 U	10 U	10 U	10 U	10 UJ	10 U	
cis-1,3-Dichloropropene		5 U	5 U	10 U	10 U	5 U	5 U	
Dibromochloromethane		5 U	5 U	10 U	10 U	5 U	5 U	
Methylene Chloride	~	5 U	5 U	10 U	10 U	5 U	5 U	
Styrene	5	5 U	5 U	10 U	10 U	5 U	5 U	
Tetrachloroethene	5	2.9 J	5 U	10 U	10 U	5 U	5 U	
trans-1,3-Dichloropropene	E	5 U	5 U	10 U	10 U	5 U	5 U	
Trichloroethene	5	2 J	5 U	10 U	10 U	5 U	5 U	
Vinyl Chlorida		10 U	10 U	NA	NA	NA	NA	
Vinyl Chloride		10 U	10 U	10 U	10 U	10 U	10 U	

 $R(following\ Sample\ Designation)\ -\ Replicate\ sample$

BTEX - Benzene, Toluene, Ethylbenzene and Xylene

U - Compound was analyzed for but not detected

J - Estimated value

B - Compound was detected in blank sample

V - Data was qualified by validator

NA - Not analyzed

^{* -} NYS Standards and Guidance Values taken from October, 1993 New York State Department of Environmental Conservation Division of Water Technical and Operational Guidance Series (1.1.1.), Ambient Water Quality Standards and Guidance Values. Guidance Values (in parentheses) and Standards are only for those compounds for which concentrations were detected.

Table A-1. Summary of Volatile Organic Compound Concentrations in Pre-1997 Groundwater Samples, Sunnyside Yard, Queens, New York

	Sample Designation: Sample Date:	MW-39D 2/17/1994	MW-40D 2/17/1994	MW-41 11/6/1991	MW-41 2/9/1993	MW-42 2/9/1993	MW-43 2/9/1993	
Parameter (Concentrations in μg/L)	Class GA Ground-Water Standard (µg/L)*							
Benzene	0.7	5 U	5 U	5 U	10 U	10 U	10 U	
Toluene	5	5 U	5 U	5 U	10 U	10 U	10 U	
Ethylbenzene	5	5 U	5 U	5 U	2 J	10 U	10 U	
Xylene (total)	5	5 U	5 U	5 U	10 U	10 U	10 U	
Total BTEX		0	0	0	2	0	0	
1,1,1-Trichloroethane	5	5 U	5 U	5 U	10 U	10 U	10 U	
1,1,2,2-Tetrachloroethane		5 U	5 U	5 U	10 U	10 U	10 U	
1,1,2-Trichloroethane	5	5 U	5 U	5 U	10 U	10 U	10 U	
1,1-Dichloroethane	5	5 U	5 U	5 U	10 U	10 U	10 U	
1,1-Dichloroethene	5	5 U	5 U	5 U	10 U	10 U	10 U	
1,2-Dichloroethane	5	5 U	5 U	5 U	10 U	10 U	10 U	
1,2-Dichloroethene (total)	5	5 U	5 U	5 U	10 U	10 U	2 J	
1,2-Dichloropropane		5 U	5 U	5 U	10 U	10 U	10 U	
2-Butanone		10 U	10 U	10 U	10 U	10 U	10 U	
2-Hexanone		10 U	10 U	10 U	10 U	10 U	10 U	
4-Methyl-2-Pentanone		10 U	10 U	10 U	10 U	10 U	10 U	
Acetone		10 UV	10 UV	10 U	10 U	10 U	10 UV	
Bromodichloromethane		5 U	5 U	5 U	10 U	10 U	10 U	
Bromoform		5 U	5 U	5 U	10 U	10 U	10 U	
Bromomethane		10 U	10 U	10 U	10 U	10 U	10 U	
Carbon Disulfide		5 U	5 U	5 U	10 U	10 U	10 U	
Carbon Tetrachloride		5 U	5 U	5 U	10 U	10 U	10 U	
Chlorobenzene		5 U	5 U	5 U	10 U	10 U	10 U	
Chloroethane		10 U	10 U	10 U	10 U	10 U	10 U	
Chloroform		5 U	5 U	5 U	10 U	10 U	10 U	
Chloromethane		10 U	10 U	10 U	10 U	10 U	10 U	
cis-1,3-Dichloropropene		5 U	5 U	5 U	10 U	10 U	10 U	
Dibromochloromethane		5 U	5 U	5 U	10 U	10 U	10 U	
Methylene Chloride	_	5 U	5 U	5 U	10 U	10 U	10 U	
Styrene	5	5 U	5 U	5 U	10 U	10 U	10 U	
Tetrachloroethene	5	5 U	5	5 U	10 U	10 U	10 U	
trans-1,3-Dichloropropene	-	5 U	5 U	5 U	10 U	10 U	10 U	
Trichloroethene	5	5 U	5 U	5 U	10 U	10 U	11	
Vinyl Acetate		NA	NA	10 U	NA	NA	NA	
Vinyl Chloride		10 U	10 U	10 U	10 U	10 U	10 U	

 $R(following\ Sample\ Designation)\ -\ Replicate\ sample$

BTEX - Benzene, Toluene, Ethylbenzene and Xylene

U - Compound was analyzed for but not detected

J - Estimated value

B - Compound was detected in blank sample

V - Data was qualified by validator

NA - Not analyzed

^{* -} NYS Standards and Guidance Values taken from October, 1993 New York State Department of Environmental Conservation Division of Water Technical and Operational Guidance Series (1.1.1.), Ambient Water Quality Standards and Guidance Values. Guidance Values (in parentheses) and Standards are only for those compounds for which concentrations were detected.

Table A-1. Summary of Volatile Organic Compound Concentrations in Pre-1997 Groundwater Samples, Sunnyside Yard, Queens, New York

	Sample Designation: Sample Date:	MW-44D 2/9/1993	MW-45 2/9/1993	MW-45R 2/9/1993	MW-46 2/9/1993	MW-47 2/9/1993	MW-48D 2/9/1993	
Parameter (Concentrations in µg/L)	Class GA Ground-Water Standard (µg/L)*							
Benzene	0.7	10 U	10 U	10 U	10 U	10 U	10 U	
Toluene	5	10 U	10 U	10 U	10 U	10 U	10 U	
Ethylbenzene	5	10 U	10 U	10 U	10 U	10 U	10 U	
Xylene (total)	5	10 U	10 U	10 U	10 U	10 U	10 U	
Total BTEX		0	0	0	0	0	0	
1,1,1-Trichloroethane	5	10 U	2 Ј	1 J	10 U	10 U	10 U	
1,1,2,2-Tetrachloroethane		2 J	10 U	10 U	10 U	10 U	10 U	
1,1,2-Trichloroethane	5	10 U	10 U	10 U	10 U	10 U	10 U	
1,1-Dichloroethane	5	10 U	10 U	10 U	10 U	10 U	10 U	
1,1-Dichloroethene	5	10 U	10 U	10 U	10 U	10 U	10 U	
1,2-Dichloroethane	5	10 U	10 U	10 U	10 U	10 U	10 U	
1,2-Dichloroethene (total)	5	46	10 U	10 U	10 U	10 U	10 U	
1,2-Dichloropropane		10 U	10 U	10 U	10 U	10 U	10 U	
2-Butanone		10 U	10 U	10 U	10 U	10 U	10 U	
2-Hexanone		10 UV	10 U	10 U	10 U	10 U	10 U	
4-Methyl-2-Pentanone		10 UV	10 U	10 U	10 U	10 U	10 U	
Acetone		10 UV	10 UV	10 U	10 UV	10 UV	10 UV	
Bromodichloromethane		10 U	10 U	10 U	10 U	10 U	10 U	
Bromoform		10 U	10 U	10 U	10 U	10 U	10 U	
Bromomethane		10 U	10 U	10 U	10 U	10 U	10 U	
Carbon Disulfide		10 U	10 U	10 U	10 U	10 U	10 U	
Carbon Tetrachloride		10 U	10 U	10 U	10 U	10 U	10 U	
Chlorobenzene		10 U	10 U	10 U	10 U	10 U	10 U	
Chloroethane		10 U	10 U	10 U	10 U	10 U	10 U	
Chloroform		10 U	10 U	10 U	10 U	10 U	10 U	
Chloromethane		10 U	10 U	10 U	10 U	10 U	10 U	
cis-1,3-Dichloropropene		10 U	10 U	10 U	10 U	10 U	10 U	
Dibromochloromethane		10 U	10 U	10 U	10 U	10 U	10 U	
Methylene Chloride		10 U	10 U	10 U	10 U	10 U	10 U	
Styrene	5	10 U	10 U	10 U	10 U	10 U	10 U	
Tetrachloroethene	5	10 U	10 U	10 U	10 U	10 U	10 U	
trans-1,3-Dichloropropene	-	10 U	10 U	10 U	10 U	10 U	10 U	
Trichloroethene	5	75	10 U	10 U	10 U	10 U	10 U	
Vinyl Acetate	-	NA	NA	NA	NA	NA	NA	
Vinyl Chloride		10 U	10 U	10 U	10 U	10 U	10 U	

 $R(following\ Sample\ Designation)\ -\ Replicate\ sample$

BTEX - Benzene, Toluene, Ethylbenzene and Xylene

U - Compound was analyzed for but not detected

J - Estimated value

B - Compound was detected in blank sample

V - Data was qualified by validator

NA - Not analyzed

^{* -} NYS Standards and Guidance Values taken from October, 1993 New York State Department of Environmental Conservation Division of Water Technical and Operational Guidance Series (1.1.1.), Ambient Water Quality Standards and Guidance Values. Guidance Values (in parentheses) and Standards are only for those compounds for which concentrations were detected.

Table A-1. Summary of Volatile Organic Compound Concentrations in Pre-1997 Groundwater Samples, Sunnyside Yard, Queens, New York

	Sample Designation: Sample Date:	MW-49 2/17/1994	MW-57 2/17/1994	MW-57R 2/17/1994	MW-57 5/2/1996	MW-59 2/17/1994	MW-59 5/3/1996	
Parameter (Concentrations in μg/L)	Class GA Ground-Water Standard (µg/L)*							
Benzene	0.7	5 U	5 U	5 U	5 U	5 U	5 U	
Toluene	5	5 U	5 U	5 U	5 U	5 U	5 U	
Ethylbenzene	5	5 U	5 U	5 U	5 U	5 U	5 U	
Xylene (total)	5	5 U	5 U	5 U	5 U	5 U	5 U	
Total BTEX		0	0	0	0	0	0	
1,1,1-Trichloroethane	5	5 U	5 U	5 U	5 U	5 U	5 U	
1,1,2,2-Tetrachloroethane		5 U	5 U	5 U	5 U	5 U	5 U	
1,1,2-Trichloroethane	5	5 U	5 U	5 U	5 U	5 U	5 U	
1,1-Dichloroethane	5	5 U	5 U	5 U	5 U	5 U	5 U	
1,1-Dichloroethene	5	5 U	5 U	5 U	5 U	5 U	5 U	
1,2-Dichloroethane	5	5 U	5 U	5 U	5 U	5 U	5 U	
1,2-Dichloroethene (total)	5	5 U	5 U	5 U	5 U	5 U	5 U	
1,2-Dichloropropane		5 U	5 U	5 U	5 U	5 U	5 U	
2-Butanone		10 U	10 U	10 U	10 U	10 U	10 U	
2-Hexanone		10 U	10 U	10 U	10 U	10 U	10 U	
4-Methyl-2-Pentanone		10 U	10 U	10 U	10 U	10 U	10 U	
Acetone		10 U	10 U	10 UV	10 U	10 U	10 U	
Bromodichloromethane		5 U	5 U	5 U	5 U	5 U	5 U	
Bromoform		5 U	5 U	5 U	5 U	5 U	5 U	
Bromomethane		10 U	10 U	10 U	10 U	10 U	10 U	
Carbon Disulfide		5 U	5 U	5 U	5 U	5 U	5 U	
Carbon Tetrachloride		5 U	5 U	5 U	5 U	5 U	5 U	
Chlorobenzene		5 U	5 U	5 U	5 U	5 U	5 U	
Chloroethane		10 U	10 U	10 U	10 U	10 U	10 U	
Chloroform		5 U	5 U	5 U	5 U	5 U	5 U	
Chloromethane		10 UJ	10 U	10 UJ	10 U	10 U	10 U	
cis-1,3-Dichloropropene		5 U	5 U	5 U	5 U	5 U	5 U	
Dibromochloromethane		5 U	5 U	5 U	5 U	5 U	5 U	
Methylene Chloride	<i>-</i>	5 U	5 U	5 U	5 U	5 U	5 U	
Styrene	5	5 U	5 U	5 U	5 U	5 U	5 U	
Tetrachloroethene	5	5 U	5 U	5 U	5 U	5 U	5 U	
trans-1,3-Dichloropropene	5	5 U	5 U	5 U	5 U	5 U	5 U	
Trichloroethene	3	5 U	5 U	5 U	5 U	5 U	5 U	
Vinyl Acetate Vinyl Chloride		NA	NA	NA	10 U	NA 10 H	10 U	
vinyi Cinoriue		10 U	10 U	10 U	10 U	10 U	10 U	

 $R(following\ Sample\ Designation)\ -\ Replicate\ sample$

BTEX - Benzene, Toluene, Ethylbenzene and Xylene

U - Compound was analyzed for but not detected

J - Estimated value

B - Compound was detected in blank sample

V - Data was qualified by validator

NA - Not analyzed

^{* -} NYS Standards and Guidance Values taken from October, 1993 New York State Department of Environmental Conservation Division of Water Technical and Operational Guidance Series (1.1.1.), Ambient Water Quality Standards and Guidance Values. Guidance Values (in parentheses) and Standards are only for those compounds for which concentrations were detected.

Table A-1. Summary of Volatile Organic Compound Concentrations in Pre-1997 Groundwater Samples, Sunnyside Yard, Queens, New York

	Sample Designation: Sample Date:	MW-61 2/17/1994	MW-62D 2/17/1994	MW-63 2/17/1994	MW-63 5/2/1996	MW-64 5/3/1996	MW-65 5/3/1996
Parameter (Concentrations in μg/L)	Class GA Ground-Water Standard (µg/L)*						
Benzene	0.7	5 U	5 U	5 U	5 U	5 U	5 U
Toluene	5	5 U	5 U	5 U	5 U	5 U	5 U
Ethylbenzene	5	5 U	5 U	5 U	5 U	5 U	5 U
Xylene (total)	5	5 U	5 U	5 U	5 U	5 U	5 U
Total BTEX		0	0	0	0	0	0
1,1,1-Trichloroethane	5	5 U	5 U	5 U	5 U	5 U	5 U
1,1,2,2-Tetrachloroethane		5 U	5 U	5 U	5 U	5 U	5 U
1,1,2-Trichloroethane	5	5 U	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethane	5	5 U	5 U	3 J	5 U	5 U	5 U
1,1-Dichloroethene	5	5 U	5 U	5 U	5 U	5 U	5 U
1,2-Dichloroethane	5	5 U	5 U	5 U	5 U	5 U	5 U
1,2-Dichloroethene (total)	5	5 U	5 U	14	2 J	5 U	6
1,2-Dichloropropane		5 U	5 U	5 U	5 U	5 U	5 U
2-Butanone		10 U	10 U	10 U	10 U	10 U	10 U
2-Hexanone		10 U	10 U	10 U	10 U	10 U	10 U
4-Methyl-2-Pentanone		10 U	10 U	10 U	10 U	10 U	10 U
Acetone		10 U	10 U	10 U	10 U	10 U	10 U
Bromodichloromethane		5 U	5 U	5 U	5 U	5 U	5 U
Bromoform		5 U	5 U	5 U	5 U	5 U	5 U
Bromomethane		10 U	10 U	10 U	10 U	10 U	10 U
Carbon Disulfide		5 U	5 U	5 U	5 U	5 U	5 U
Carbon Tetrachloride		5 U	5 U	5 U	5 U	5 U	5 U
Chlorobenzene		5 U	5 U	5 U	5 U	5 U	5 U
Chloroethane		10 U	10 U	10 U	10 U	10 U	10 U
Chloroform		5 U	5 U	5 U	5 U	5 U	5 U
Chloromethane		10 UJ	10 UJ	10 U	10 U	10 U	10 U
cis-1,3-Dichloropropene		5 U	5 U	5 U	5 U	5 U	5 U
Dibromochloromethane Mathylana Chlorida		5 U	5 U	5 U	5 U	5 U	5 U
Methylene Chloride	5	5 U	5 U	5 U	5 U	5 U	5 U
Styrene Tetrachloroethene	5 5	5 U	5 U	5 U	5 U	5 U	5 U
trans-1,3-Dichloropropene	J	9	3 J	23	5 U	7	5 U
Trichloroethene	5	5 U	5 U	5 U	5 U	5 U	5 U
Vinyl Acetate	5	5 U	5 U	24	2 J	5 U	5 U
Vinyl Chloride		NA 10 U	NA 10 U	NA 10 U	10 U 10 U	10 U 10 U	10 U 10 U
, my i cinoriae		10 0	10 0	10 0	10 0	10 0	10 0

 $R(following\ Sample\ Designation)\ -\ Replicate\ sample$

BTEX - Benzene, Toluene, Ethylbenzene and Xylene

U - Compound was analyzed for but not detected

J - Estimated value

B - Compound was detected in blank sample

V - Data was qualified by validator

NA - Not analyzed

^{* -} NYS Standards and Guidance Values taken from October, 1993 New York State Department of Environmental Conservation Division of Water Technical and Operational Guidance Series (1.1.1.), Ambient Water Quality Standards and Guidance Values. Guidance Values (in parentheses) and Standards are only for those compounds for which concentrations were detected.

Table A-1. Summary of Volatile Organic Compound Concentrations in Pre-1997 Groundwater Samples, Sunnyside Yard, Queens, New York

	Sample Designation: Sample Date:	MW-65R 5/3/1996	MW-67 5/3/1996	MW-68 5/3/1996	MW-69D 5/9/1996	TW-1 1/26/1993	TW-2 1/26/1993	
Parameter (Concentrations in μ g/L)	Class GA Ground-Water Standard (µg/L)*							
Benzene	0.7	5 U	5 U	5 U	5 U	10 U	10 U	
Toluene	5	5 U	5 U	5 U	5 U	10 U	10 UV	
Ethylbenzene	5	5 U	5 U	5 U	5 U	10 U	10 U	
Xylene (total)	5	5 U	5 U	5 U	5 U	10 U	10 U	
Total BTEX		0	0	0	0	0	0	
1,1,1-Trichloroethane	5	5 U	5 U	5 U	5 U	10 U	10 U	
1,1,2,2-Tetrachloroethane		5 U	5 U	5 U	5 U	10 U	10 U	
1,1,2-Trichloroethane	5	5 U	5 U	5 U	5 U	10 U	10 U	
1,1-Dichloroethane	5	5 U	5 U	5 U	5 U	10 U	10 U	
1,1-Dichloroethene	5	5 U	5 U	5 U	5 U	10 U	10 U	
1,2-Dichloroethane	5	5 U	5 U	5 U	5 U	10 U	10 U	
1,2-Dichloroethene (total)	5	6	5 U	5 U	5 U	10 U	10 U	
1,2-Dichloropropane		5 U	5 U	5 U	5 U	10 U	10 U	
2-Butanone		10 U	10 U	10 U	10 U	10 U	10 U	
2-Hexanone		10 U	10 U	10 U	10 U	10 U	10 U	
4-Methyl-2-Pentanone		10 U	10 U	10 U	10 U	10 U	10 U	
Acetone		10 U	10 U	10 U	10 U	10 U	13 UV	
Bromodichloromethane		5 U	5 U	5 U	5 U	10 U	10 U	
Bromoform		5 U	5 U	5 U	5 U	10 U	10 U	
Bromomethane		10 U	10 U	10 U	10 U	10 U	10 U	
Carbon Disulfide		5 U	5 U	5 U	5 U	10 U	10 UV	
Carbon Tetrachloride		5 U	5 U	5 U	5 U	10 U	10 U	
Chlorobenzene		5 U	5 U	5 U	5 U	10 U	10 U	
Chloroethane		10 U	10 U	10 U	10 U	10 U	10 U	
Chloroform		5 U	5 U	5 U	5 U	10 U	10 U	
Chloromethane		10 U	10 U	10 U	10 U	10 U	10 U	
cis-1,3-Dichloropropene		5 U	5 U	5 U	5 U	10 U	10 U	
Dibromochloromethane		5 U	5 U	5 U	5 U	10 U	10 U	
Methylene Chloride	E	5 U	5 U	5 U	5 U	10 U	10 U	
Styrene	5 5	5 U	5 U	5 U	5 U	10 U	10 U	
Tetrachloroethene	3	5 U	3 J	5 U	5 U	10 U	10 U	
trans-1,3-Dichloropropene	5	5 U	5 U	5 U	5 U	10 U	10 U	
Trichloroethene Vinyl Acetate	3	5 U	5 U	5 U	5 U	10 U	10 U	
Vinyl Acetate Vinyl Chloride		10 U	10 U	10 U	10 U	NA 10 H	NA 10 II	
v myr Chloride		10 U	10 U	10 U	10 U	10 U	10 U	

 $R(following\ Sample\ Designation)\ -\ Replicate\ sample$

BTEX - Benzene, Toluene, Ethylbenzene and Xylene

U - Compound was analyzed for but not detected

J - Estimated value

B - Compound was detected in blank sample

V - Data was qualified by validator

NA - Not analyzed

^{* -} NYS Standards and Guidance Values taken from October, 1993 New York State Department of Environmental Conservation Division of Water Technical and Operational Guidance Series (1.1.1.), Ambient Water Quality Standards and Guidance Values. Guidance Values (in parentheses) and Standards are only for those compounds for which concentrations were detected.

Table A-2. Summary of Semivolatile Organic Compound Concentrations in Pre-1997 Groundwater Samples Sunnyside Yard, Queens, New York

	Sample Designation: Sample Date:	MW-19 1/4/1991	MW-23D 1/7/1991	MW-23D 2/9/1993	MW-35 2/9/1993	MW-37 2/17/1994	MW-38D 2/17/1994
Parameter (Concentrations in μg/L)	Class GA Ground-Water Standard (µg/L)*						
1,2,4-Trichlorobenzene	(5)	10 U	10 U	10 U	10 U	11 U	11 U
1,2-Dichlorobenzene		10 U	10 U	10 U	10 U	11 U	11 U
1,3-Dichlorobenzene		10 U	10 U	10 U	10 U	11 U	11 U
1,4-Dichlorobenzene		10 U	10 U	10 U	10 U	11 U	11 U
2,2'-oxybis(1-Chloropropane)		10 U	10 U	10 U	10 U	11 U	11 U
2,4,5-Trichlorophenol		50 U	50 UIV	25 U	25 U	53 U	53 U
2,4,6-Trichlorophenol		10 U	10 UIV	10 U	10 U	11 U	11 U
2,4-Dichlorophenol		10 U	10 UIV	10 U	10 U	11 U	11 U
2,4-Dimethylphenol		10 U	10 UIV	10 U	10 U	11 U	11 U
2,4-Dinitrophenol		50 U	50 UIV	25 U	25 U	53 U	53 U
2,4-Dinitrotoluene		10 U	10 U	10 U	10 U	11 U	11 U
2,6-Dinitrotoluene		10 U	10 U	10 U	10 U	11 U	11 U
2-Chloronaphthalene		10 U	10 U	10 U	10 U	11 U	11 U
2-Chlorophenol		10 U	10 UIV	10 U	10 U	11 U	11 U
2-Methylnaphthalene		10 U	96	23	5 J	11 U	11 U
2-Methylphenol		10 U	10 UIV	10 U	10 U	11 U	11 U
2-Nitroaniline		50 U	50 U	25 U	25 U	53 U	53 U
2-Nitrophenol		10 U	10 UIV	10 U	10 U	11 U	11 U
3,3'-Dichlorobenzidine		20 U	20 U	10 U	10 U	21 U	21 U
3-Nitroaniline		50 U	50 U	25 U	25 U	53 U	53 U
4,6-Dinitro-2-methylphenol		50 U	50 UIV	25 U	25 U	53 U	53 U
4-Bromophenyl-phenylether		10 U	10 U	10 U	10 U	11 U	11 U
4-Chloro-3-methylphenol		10 U	10 UIV	10 U	10 U	11 U	11 U
4-Chloroaniline		10 U	10 U	10 U	10 U	11 U	11 U
4-Chlorophenyl-phenylether		10 U	10 U	10 U	10 U	11 U	11 U
4-Methylphenol		10 U	10 UIV	10 U	10 U	11 U	11 U
4-Nitroaniline		50 U	50 U	25 U	25 U	53 U	53 U
4-Nitrophenol		50 U	50 UIV	25 U	25 U	53 U	53 U
Acenaphthene	(20)	10 U	10 U	4 J	2 J	11 U	11 U
Acenaphthylene		10 U	10 U	10 U	10 U	11 U	11 U
Anthracene	(50)	10 U	10 U	10 U	1 J	11 U	11 U
Benzo(a)anthracene	(0.002)	10 U	10 U	10 U	10 U	11 U	11 U
Benzo(a)pyrene	ND	10 U	10 U	10 U	10 U	11 U	11 U
Benzo(b)fluoranthene	(0.002)	10 U	10 U	10 U	10 U	11 U	11 U
Benzo(g,h,i)perylene		10 U	10 U	10 U	10 U	11 U	11 U
Benzo(k)fluoranthene	(0.002)	10 U	10 U	10 U	10 U	11 U	11 U
Benzoic acid		50 U	50 UIV	NA	NA	53 U	53 U
Benzyl alcohol		10 U	10 U	NA	NA	11 U	11 U
bis(2-Chloroethoxy)methane		10 U	10 U	10 U	10 U	11 U	11 U
bis(2-Chloroethyl)ether	- 0	10 U	32	10 U	10 U	11 U	11 U
bis(2-Ethylhexyl)phthalate	50	10 U	10 U	10 UV	10 UV	11 UV	11 U
Butylbenzylphthalate	(50)	10 U	10 U	10 U	10 U	11 U	11 U
Carbazole		NA	NA	NA	NA	NA	NA
Chrysene	(0.002)	10 U	10 U	10 U	10 U	11 U	11 U
Di-n-butylphthalate		10 U	10 U	10 U	10 UV	11 UV	11 U

Table A-2. Summary of Semivolatile Organic Compound Concentrations in Pre-1997 Groundwater Samples Sunnyside Yard, Queens, New York

	Sample Designation: Sample Date:	MW-19 1/4/1991	MW-23D 1/7/1991	MW-23D 2/9/1993	MW-35 2/9/1993	MW-37 2/17/1994	MW-38D 2/17/1994
Parameter (Concentrations in $\mu g/L$)	Class GA Ground-Water Standard (µg/L)*						
Di-n-octylphthalate	(50)	10 U	10 U	10 U	10 U	11 U	11 U
Dibenzo(a,h)anthracene		10 U	10 U	10 U	10 U	11 U	11 U
Dibenzofuran		10 U	10 U	4 J	10 U	1 J	11 U
Diethylphthalate	(50)	10 U	10 U	10 U	10 U	11 U	11 U
Dimethyl Phthalate		10 U	10 U	10 U	10 U	11 U	11 U
Dimethylphthalate		NA	NA	NA	NA	NA	NA
Fluoranthene	(50)	10 U	10 U	10 U	1 J	11 U	11 U
Fluorene	(50)	10 U	9.4 J	10 U	10 U	11 U	11 U
Hexachlorobenzene		10 U	10 U	10 U	10 U	11 U	11 U
Hexachlorobutadiene		10 U	10 U	10 U	10 U	11 U	11 U
Hexachlorocyclopentadiene		10 U	10 U	10 U	10 U	11 U	11 U
Hexachloroethane		10 U	10 U	10 U	10 U	11 U	11 U
Indeno(1,2,3-cd)pyrene	(0.002)	10 U	10 U	10 U	10 U	11 U	11 U
Isophorone		10 U	10 U	10 U	10 U	11 U	11 U
N-Nitroso-di-n-propylamine		10 U	10 U	10 U	10 U	11 U	11 U
N-Nitrosodiphenylamine (1)		10 U	10 U	10 U	10 U	11 U	11 U
Naphthalene	(10)	10 U	10 U	10 U	10 U	0.4 J	11 U
Nitrobenzene		10 U	10 U	10 U	10 U	11 U	11 U
Pentachlorophenol		50 U	50 UIV	25 U	25 U	53 U	53 U
Phenanthrene	(50)	10 U	10 U	2 J	10 U	11 U	11 U
Phenol		10 U	10 UIV	10 U	10 U	11 U	11 U
Pyrene	(50)	10 U	10 U	10 U	0.9 J	0.4 J	11 U
Т	Total SVOCs	0	137.4	33	9.9	1.8	0

R(following Sample Designation) - Replicate sample

R(qualifier) - Data unusable

 $\mu g/L$ - Micrograms per liter

SVOCs - Semivolatile Organic Compounds

U - Compound was analyzed for but not detected

J - Estimated value

B - Compound was detected in blank sample

V - Data was qualified by validator

NA - Not analyzed

^{-- -} No standard available

^{*} NYS Standards and Guidance Values taken from October, 1993 New York State Department of Environmental Conservation Division of Water Technical and Operational Guidance Series (1.1.1.), Ambient Water Quality Standards and Guidance Values. Guidance Values (in parentheses) and Standards are only for those compounds for which concentrations were detected.

Table A-2. Summary of Semivolatile Organic Compound Concentrations in Pre-1997 Groundwater Samples Sunnyside Yard, Queens, New York

	Sample Designation: Sample Date:	MW-39D 2/17/1994	MW-40D 2/17/1994	MW-42 2/9/1993	MW-43 2/9/1993	MW-44D 2/9/1993	MW-45 2/9/1993	
Parameter (Concentrations in μg/L)	Class GA Ground-Water Standard (µg/L)*							
1,2,4-Trichlorobenzene	(5)	11 U	11 U	10 U	10 U	10 U	10 U	
1,2-Dichlorobenzene		11 U	11 U	10 U	10 U	10 U	10 U	
1,3-Dichlorobenzene		11 U	11 U	10 U	10 U	10 U	10 U	
1,4-Dichlorobenzene		11 U	11 U	10 U	10 U	10 U	10 U	
2,2'-oxybis(1-Chloropropane))	11 U	11 U	10 U	10 UJV	10 UJV	10 UJ\	
2,4,5-Trichlorophenol		53 U	54 URV	25 U	26 U	26 U	26 U	
2,4,6-Trichlorophenol		11 U	11 URV	10 U	10 U	10 U	10 U	
2,4-Dichlorophenol		11 U	11 URV	10 U	10 U	10 U	10 U	
2,4-Dimethylphenol		11 U	11 URV	10 U	10 U	10 U	10 U	
2,4-Dinitrophenol		53 U	54 URV	25 U	26 UJV	26 UJV	26 UJV	
2,4-Dinitrotoluene		11 U	11 U	10 U	10 U	10 U	10 U	
2,6-Dinitrotoluene		11 U	11 U	10 U	10 U	10 U	10 U	
2-Chloronaphthalene		11 U	11 U	10 U	10 U	10 U	10 U	
2-Chlorophenol		11 U	11 URV	10 U	10 U	10 U	10 U	
2-Methylnaphthalene		11 U	11 U	10 U	10 U	10 U	10 U	
2-Methylphenol		11 U	11 U	10 U	10 U	10 U	10 U	
2-Nitroaniline		53 U	54 U	25 U	26 U	26 U	26 U	
2-Nitrophenol		11 U	11 URV	10 U	10 U	10 U	10 U	
3,3'-Dichlorobenzidine		21 U	22 U	10 U	10 U	10 U	10 U	
3-Nitroaniline		53 U	54 U	25 U	26 U	26 U	26 U	
4,6-Dinitro-2-methylphenol		53 U	54 U	25 U	26 U	26 U	26 U	
4-Bromophenyl-phenylether		11 U	11 U	10 U	10 U	10 U	10 U	
4-Chloro-3-methylphenol		11 U	11 URV	10 U	10 U	10 U	10 U	
4-Chloroaniline		11 U	11 U	10 U	10 UJV	10 UJV	10 UJV	
4-Chlorophenyl-phenylether		11 U	11 U	10 U	10 U	10 U	10 U	
4-Methylphenol		11 U	11 U	10 U	10 U	10 U	10 U	
4-Nitroaniline		53 U	54 U	25 U	26 U	26 U	26 U	
4-Nitrophenol		53 U	54 URV	25 U	26 U	26 U	26 U	
Acenaphthene	(20)	11 U	11 U	10 U	10 U	10 U	10 U	
Acenaphthylene		11 U	11 U	10 U	10 U	10 U	10 U	
Anthracene	(50)	11 U	11 U	10 U	10 U	10 U	10 U	
Benzo(a)anthracene	(0.002)	11 U	11 U	10 U	10 U	10 U	10 U	
Benzo(a)pyrene	ND	11 U	11 U	10 U	10 U	10 U	10 U	
Benzo(b)fluoranthene	(0.002)	11 U	11 U	10 U	10 U	10 U	10 U	
Benzo(g,h,i)perylene		11 U	11 U	10 U	10 U	10 U	10 U	
Benzo(k)fluoranthene	(0.002)	11 U	11 U	10 U	10 U	10 U	10 U	
Benzoic acid		53 U	54 U	NA	NA	NA	NA	
Benzyl alcohol		11 U	11 U	NA	NA	NA	NA	
bis(2-Chloroethoxy)methane		11 U	11 U	10 U	10 U	10 U	10 U	
bis(2-Chloroethyl)ether		11 U	11 U	10 U	10 U	10 U	10 U	
bis(2-Ethylhexyl)phthalate	50	11 UV	11 UV	10 UV	10 UV	10 UV	10 UV	
Butylbenzylphthalate	(50)	11 U	11 U	10 U	10 U	10 U	10 U	
Carbazole		NA	NA	NA	NA	NA	NA	
Chrysene	(0.002)	11 U	11 U	10 U	10 U	10 U	10 U	
Di-n-butylphthalate		11 U	11 UV	10 U	10 UV	10 UV	10 U	

Table A-2. Summary of Semivolatile Organic Compound Concentrations in Pre-1997 Groundwater Samples Sunnyside Yard, Queens, New York

	Sample Designation: Sample Date:	MW-39D 2/17/1994	MW-40D 2/17/1994	MW-42 2/9/1993	MW-43 2/9/1993	MW-44D 2/9/1993	MW-45 2/9/1993
Parameter (Concentrations in $\mu g/L$)	Class GA Ground-Water Standard (µg/L)*						
Di-n-octylphthalate	(50)	11 U	11 U	10 U	10 U	10 U	10 U
Dibenzo(a,h)anthracene		11 U	11 U	10 U	10 U	10 U	10 U
Dibenzofuran		11 U	11 U	10 U	10 U	10 U	10 U
Diethylphthalate	(50)	11 U	11 U	10 U	10 U	10 U	10 U
Dimethyl Phthalate		11 U	11 U	10 U	10 U	10 U	10 U
Dimethylphthalate		NA	NA	NA	NA	NA	NA
Fluoranthene	(50)	11 U	11 U	10 U	10 U	10 U	10 U
Fluorene	(50)	11 U	11 U	10 U	10 U	10 U	10 U
Hexachlorobenzene		11 U	11 U	10 U	10 U	10 U	10 U
Hexachlorobutadiene		11 U	11 U	10 U	10 U	10 U	10 U
Hexachlorocyclopentadiene		11 U	11 U	10 U	10 U	10 U	10 U
Hexachloroethane		11 U	11 U	10 U	10 U	10 U	10 U
Indeno(1,2,3-cd)pyrene	(0.002)	11 U	11 U	10 U	10 U	10 U	10 U
Isophorone		11 U	11 U	10 U	10 U	10 U	10 U
N-Nitroso-di-n-propylamine		11 U	11 U	10 U	10 U	10 U	10 U
N-Nitrosodiphenylamine (1)		11 U	11 U	10 U	10 U	10 U	10 U
Naphthalene	(10)	1 J	11 U	10 U	10 U	10 U	10 U
Nitrobenzene		11 U	11 U	10 U	10 U	10 U	10 U
Pentachlorophenol		53 U	54 URV	25 U	26 U	26 U	26 U
Phenanthrene	(50)	11 U	11 U	10 U	10 U	10 U	10 U
Phenol		11 U	11 URV	10 U	10 U	10 U	10 U
Pyrene	(50)	11 U	11 U	10 U	10 U	10 U	10 U
Т	Cotal SVOCs	1	0	0	0	0	0

R(following Sample Designation) - Replicate sample

R(qualifier) - Data unusable

 $\mu g/L$ - Micrograms per liter

SVOCs - Semivolatile Organic Compounds

U - Compound was analyzed for but not detected

NA - Not analyzed

-- - No standard available

J - Estimated value

B - Compound was detected in blank sample

V - Data was qualified by validator

^{*} NYS Standards and Guidance Values taken from October, 1993 New York State Department of Environmental Conservation Division of Water Technical and Operational Guidance Series (1.1.1.), Ambient Water Quality Standards and Guidance Values. Guidance Values (in parentheses) and Standards are on for those compounds for which concentrations were detected.

Table A-2. Summary of Semivolatile Organic Compound Concentrations in Pre-1997 Groundwater Samples Sunnyside Yard, Queens, New York

	Sample Designation: Sample Date:	MW-45R 2/9/1993	MW-46 2/9/1993	MW-47 2/9/1993	MW-48D 2/9/1993	MW-49 2/17/1994	MW-57 2/17/1994
Parameter (Concentrations in µg/L)	Class GA Ground-Water Standard (µg/L)*						
1,2,4-Trichlorobenzene	(5)	10 U	10 U	10 U	10 U	10 U	10 U
1,2-Dichlorobenzene	, ,	10 U	10 U	10 U	10 U	10 U	10 U
1,3-Dichlorobenzene		10 U	10 U	10 U	10 U	10 U	10 U
1,4-Dichlorobenzene		10 U	10 U	10 U	10 U	10 U	10 U
2,2'-oxybis(1-Chloropropane))	10 UJV	10 UJV	10 UJV	10 U	10 U	10 U
2,4,5-Trichlorophenol		26 U	26 U	26 U	26 U	51 URV	50 U
2,4,6-Trichlorophenol		10 U	10 U	10 U	10 U	10 URV	10 U
2,4-Dichlorophenol		10 U	10 U	10 U	10 U	10 URV	10 U
2,4-Dimethylphenol		10 U	10 U	10 U	10 U	10 URV	10 U
2,4-Dinitrophenol		26 UJV	26 UJV	26 UJV	26 U	51 URV	50 U
2,4-Dinitrotoluene		10 U	10 U	10 U	10 U	10 U	10 U
2,6-Dinitrotoluene		10 U	10 U	10 U	10 U	10 U	10 U
2-Chloronaphthalene		10 U	10 U	10 U	10 U	10 U	10 U
2-Chlorophenol		10 U	10 U	10 U	10 U	10 URV	10 U
2-Methylnaphthalene		10 U	10 U	10 U	10 U	0.4 J	10 U
2-Methylphenol		10 U	10 U	10 U	10 U	10 URV	10 U
2-Nitroaniline		26 U	26 U	26 U	26 U	51 U	50 U
2-Nitrophenol		10 U	10 U	10 U	10 U	10 URV	10 U
3,3'-Dichlorobenzidine		10 U	10 U	10 U	10 U	20 U	20 U
3-Nitroaniline		26 U	26 U	26 U	26 U	51 U	50 U
4,6-Dinitro-2-methylphenol		26 U	26 U	26 U	26 U	51 URV	50 UJ\
4-Bromophenyl-phenylether		10 U	10 U	10 U	10 U	10 U	10 U
4-Chloro-3-methylphenol		10 U	10 U	10 U	10 U	10 URV	10 U
4-Chloroaniline		10 UJV	10 UJV	10 UJV	10 U	10 UJV	10 UJ\
4-Chlorophenyl-phenylether		10 U	10 U	10 U	10 U	10 U	10 U
4-Methylphenol		10 U	10 U	10 U	10 U	10 URV	10 U
4-Nitroaniline		26 U	26 U	26 U	26 U	51 U	50 U
4-Nitrophenol		26 U	26 U	26 U	26 U	51 URV	50 U
Acenaphthene	(20)	10 U	10 U	10 U	10 U	3 J	10 U
Acenaphthylene		10 U	10 U	10 U	10 U	10 U	10 U
Anthracene	(50)	10 U	10 U	10 U	10 U	0.2 J	10 U
Benzo(a)anthracene	(0.002)	10 U	10 U	10 U	10 U	10 U	10 U
Benzo(a)pyrene	ND	10 U	10 U	10 U	10 U	10 UJV	10 UJ\
Benzo(b)fluoranthene	(0.002)	10 U	10 U	10 U	10 U	10 UJV	10 UJ\
Benzo(g,h,i)perylene		10 U	10 U	10 U	10 U	10 UJV	10 UJ\
Benzo(k)fluoranthene	(0.002)	10 U	10 U	10 U	10 U	10 UJV	10 UJ\
Benzoic acid		NA	NA	NA	NA	51 U	50 U
Benzyl alcohol		NA	NA	NA	NA	10 U	10 U
bis(2-Chloroethoxy)methane		10 U	10 U	10 U	10 U	10 U	10 U
bis(2-Chloroethyl)ether		10 U	10 U	10 U	10 U	10 U	10 U
bis(2-Ethylhexyl)phthalate	50	10 UV	10 U	10 UV	10 U	10 UV	10 UV
Butylbenzylphthalate	(50)	10 U	10 U	10 U	10 U	10 U	10 U
Carbazole	, o :	NA	NA	NA	NA	NA	NA
Chrysene	(0.002)	10 U	10 U	10 U	10 U	10 U	10 U
Di-n-butylphthalate		10 UV	10 UV	10 U	10 UV	10 UV	10 UV

Table A-2. Summary of Semivolatile Organic Compound Concentrations in Pre-1997 Groundwater Samples Sunnyside Yard, Queens, New York

	Sample Designation: Sample Date:	MW-45R 2/9/1993	MW-46 2/9/1993	MW-47 2/9/1993	MW-48D 2/9/1993	MW-49 2/17/1994	MW-57 2/17/1994
Parameter (Concentrations in $\mu g/L$)	Class GA Ground-Water Standard (µg/L)*						
Di-n-octylphthalate	(50)	10 U	10 U	10 U	10 U	10 UJV	10 UJV
Dibenzo(a,h)anthracene		10 U	10 U	10 U	10 U	10 UJV	10 UJV
Dibenzofuran		10 U	10 U	10 U	10 U	0.8 J	10 U
Diethylphthalate	(50)	10 U	10 U	10 U	10 U	10 U	10 U
Dimethyl Phthalate		10 U	10 U	10 U	10 U	10 U	10 U
Dimethylphthalate		NA	NA	NA	NA	NA	NA
Fluoranthene	(50)	10 U	10 U	10 U	10 U	0.2 J	10 U
Fluorene	(50)	10 U	10 U	10 U	10 U	3 J	10 U
Hexachlorobenzene		10 U	10 U	10 U	10 U	10 U	10 U
Hexachlorobutadiene		10 U	10 U	10 U	10 U	10 U	10 U
Hexachlorocyclopentadiene		10 U	10 U	10 U	10 U	10 U	10 U
Hexachloroethane		10 U	10 U	10 U	10 U	10 U	10 U
Indeno(1,2,3-cd)pyrene	(0.002)	10 U	10 U	10 U	10 U	10 UJV	10 UJV
Isophorone		10 U	10 U	10 U	10 U	10 U	10 U
N-Nitroso-di-n-propylamine		10 U	10 U	10 U	10 U	10 U	10 U
N-Nitrosodiphenylamine (1)		10 U	10 U	10 U	10 U	10 U	10 U
Naphthalene	(10)	10 U	10 U	10 U	10 U	2 J	10 U
Nitrobenzene		10 U	10 U	10 U	10 U	10 U	10 U
Pentachlorophenol		26 U	26 U	26 U	26 U	51 URV	50 U
Phenanthrene	(50)	10 U	10 U	10 U	10 U	0.5 J	10 U
Phenol		10 U	10 U	10 U	10 U	10 URV	10 U
Pyrene	(50)	10 U	10 U	10 U	10 U	0.4 J	10 U
Т	Total SVOCs	0	0	0	0	10.5	0

R(following Sample Designation) - Replicate sample

R(qualifier) - Data unusable

 $\mu g/L$ - Micrograms per liter

SVOCs - Semivolatile Organic Compounds

U - Compound was analyzed for but not detected

J - Estimated value

B - Compound was detected in blank sample

V - Data was qualified by validator

NA - Not analyzed

^{-- -} No standard available

^{*} NYS Standards and Guidance Values taken from October, 1993 New York State Department of Environmental Conservation Division of Water Technical and Operational Guidance Series (1.1.1.), Ambient Water Quality Standards and Guidance Values. Guidance Values (in parentheses) and Standards are on for those compounds for which concentrations were detected.

Table A-2. Summary of Semivolatile Organic Compound Concentrations in Pre-1997 Groundwater Samples Sunnyside Yard, Queens, New York

	Sample Designation: Sample Date:	MW-57R 2/17/1994	MW-57 5/2/1996	MW-59 2/17/1994	MW-59 5/3/1996	MW-61 2/17/1994	MW-62D 2/17/1994
Parameter (Concentrations in μg/L)	Class GA Ground-Water Standard (µg/L)*						
1,2,4-Trichlorobenzene	(5)	11 U	10 U	10 U	10 U	11 U	11 U
1,2-Dichlorobenzene		11 U	10 U	10 U	10 U	11 U	11 U
1,3-Dichlorobenzene		11 U	10 U	10 U	10 U	11 U	11 U
1,4-Dichlorobenzene		11 U	10 U	10 U	10 U	11 U	11 U
2,2'-oxybis(1-Chloropropane))	11 U	10 U	10 U	10 U	11 U	11 U
2,4,5-Trichlorophenol		53 U	50 U	50 U	50 U	56 U	53 U
2,4,6-Trichlorophenol		11 U	10 U	10 U	10 U	11 U	11 U
2,4-Dichlorophenol		11 U	10 U	10 U	10 U	11 U	11 U
2,4-Dimethylphenol		11 U	10 U	10 U	10 U	11 U	11 U
2,4-Dinitrophenol		53 U	50 U	50 U	50 U	56 U	53 U
2,4-Dinitrotoluene		11 U	10 U	10 U	10 U	11 U	11 U
2,6-Dinitrotoluene		11 U	10 U	10 U	10 U	11 U	11 U
2-Chloronaphthalene		11 U	10 U	10 U	10 U	11 U	11 U
2-Chlorophenol		11 U	10 U	10 U	10 U	11 U	11 U
2-Methylnaphthalene		11 U	10 U	10 U	10 U	11 U	11 U
2-Methylphenol		11 U	10 U	10 U	10 U	11 U	11 U
2-Nitroaniline		53 U	50 U	50 U	50 U	56 U	53 U
2-Nitrophenol		11 U	10 U	10 U	10 U	11 U	11 U
3,3'-Dichlorobenzidine		21 U	20 U	20 U	20 U	22 U	22 U
3-Nitroaniline		53 U	50 U	50 U	50 U	56 U	53 U
4,6-Dinitro-2-methylphenol		53 UJV	50 U	50 U	50 U	56 UJV	53 UJV
4-Bromophenyl-phenylether		11 U	10 U	10 U	10 U	11 U	11 U
4-Chloro-3-methylphenol		11 U	10 U	10 U	10 U	11 U	11 U
4-Chloroaniline		11 UJV	10 U	10 U	10 U	11 UJV	11 UJV
4-Chlorophenyl-phenylether		11 U	10 U	10 U	10 U	11 U	11 U
4-Methylphenol		11 U	10 U	10 U	10 U	11 U	11 U
4-Nitroaniline		53 U	20 U	50 U	20 U	56 U	53 U
4-Nitrophenol		53 U	50 U	50 U	50 U	56 U	53 U
Acenaphthene	(20)	11 U	10 U	10 U	10 U	11 U	11 U
Acenaphthylene		11 U	10 U	10 U	10 U	11 U	11 U
Anthracene	(50)	11 U	10 U	10 U	0.2 J	11 U	11 U
Benzo(a)anthracene	(0.002)	11 U	10 U	10 U	10 U	11 U	11 U
Benzo(a)pyrene	ND	11 U	10 U	10 U	0.2 J	11 U	11 U
Benzo(b)fluoranthene	(0.002)	11 U	10 U	10 U	0.2 J	11 U	11 U
Benzo(g,h,i)perylene	(0.002)	11 U	10 U	10 U	10 U	11 U	11 U
Benzo(k)fluoranthene	(0.002)	11 U	10 U	10 U	0.3 J	11 U	11 U
Benzoic acid	(0.002)	53 U	50 U	50 U	50 U	56 U	53 U
Benzyl alcohol		11 U	10 U	10 U	10 U	11 U	11 U
bis(2-Chloroethoxy)methane		11 U	10 U	10 U	10 U	11 U	11 U
bis(2-Chloroethyl)ether		11 U	10 U	10 U	10 U	11 U	11 U
bis(2-Ethylhexyl)phthalate	50	11 UV	0.3 JB	10 UV	0.9 JB	11 UV	11 UV
Butylbenzylphthalate	(50)	11 U V	10 U	10 U V	0.9 JB 0.2 J	11 U V	11 U V
Carbazole	(50)	NA	NA	NA	NA	NA	NA
Chrysene	(0.002)	11 U	10 U	10 U	10 U	11 U	11 U
Di-n-butylphthalate	(0.002)	11 UV	2 JB	10 UV	0.7 JB	11 UV	11 U

Table A-2. Summary of Semivolatile Organic Compound Concentrations in Pre-1997 Groundwater Samples Sunnyside Yard, Queens, New York

	Sample Designation: Sample Date:	MW-57R 2/17/1994	MW-57 5/2/1996	MW-59 2/17/1994	MW-59 5/3/1996	MW-61 2/17/1994	MW-62D 2/17/1994
Parameter (Concentrations in $\mu g/L$)	Class GA Ground-Water Standard (µg/L)*						
Di-n-octylphthalate	(50)	11 U	10 U	10 U	0.3 Ј	11 U	11 U
Dibenzo(a,h)anthracene		11 U	10 U	10 U	10 U	11 U	11 U
Dibenzofuran		11 U	10 U	10 U	10 U	11 U	11 U
Diethylphthalate	(50)	11 U	0.4 JB	10 U	0.2 J	11 U	11 U
Dimethyl Phthalate		11 U	NA	10 U	NA	11 U	11 U
Dimethylphthalate		NA	10 U	NA	10 U	NA	NA
Fluoranthene	(50)	11 U	10 U	10 U	0.2 J	11 U	11 U
Fluorene	(50)	11 U	10 U	10 U	10 U	11 U	11 U
Hexachlorobenzene		11 U	10 U	10 U	10 U	11 U	11 U
Hexachlorobutadiene		11 U	10 U	10 U	10 U	11 U	11 U
Hexachlorocyclopentadiene		11 U	10 U	10 U	10 U	11 U	11 U
Hexachloroethane		11 U	10 U	10 U	10 U	11 U	11 U
Indeno(1,2,3-cd)pyrene	(0.002)	11 U	10 U	10 U	0.2 J	11 U	11 U
Isophorone		11 U	10 U	10 U	10 U	11 U	11 U
N-Nitroso-di-n-propylamine		11 U	10 U	10 U	10 U	11 U	11 U
N-Nitrosodiphenylamine (1)		11 U	10 U	10 U	10 U	11 U	11 U
Naphthalene	(10)	11 U	10 U	10 U	10 U	11 U	0.4 J
Nitrobenzene		11 U	10 U	10 U	10 U	11 U	11 U
Pentachlorophenol		53 U	50 U	50 U	50 U	56 U	53 U
Phenanthrene	(50)	11 U	10 U	10 U	0.1 J	11 U	11 U
Phenol		11 U	10 U	10 U	10 U	11 U	11 U
Pyrene	(50)	11 U	10 U	10 U	0.2 J	11 U	11 U
Т	Total SVOCs	0	0	0	2.3	0	0.4

R(following Sample Designation) - Replicate sample

R(qualifier) - Data unusable

 $\mu g/L$ - Micrograms per liter

SVOCs - Semivolatile Organic Compounds

U - Compound was analyzed for but not detected

J - Estimated value

B - Compound was detected in blank sample

V - Data was qualified by validator

NA - Not analyzed

^{-- -} No standard available

^{*} NYS Standards and Guidance Values taken from October, 1993 New York State Department of Environmental Conservation Division of Water Technical and Operational Guidance Series (1.1.1.), Ambient Water Quality Standards and Guidance Values. Guidance Values (in parentheses) and Standards are on for those compounds for which concentrations were detected.

Table A-2. Summary of Semivolatile Organic Compound Concentrations in Pre-1997 Groundwater Samples Sunnyside Yard, Queens, New York

	Sample Designation: Sample Date:	MW-63 2/17/1994	MW-63 5/2/1996	MW-64 5/3/1996	MW-65 5/3/1996	MW-65R 5/3/1996	MW-67 5/3/199
Parameter (Concentrations in μg/L)	Class GA Ground-Water Standard (µg/L)*						
1,2,4-Trichlorobenzene	(5)	11 U	10 U	10 U	10 U	10 U	10 U
1,2-Dichlorobenzene		11 U	10 U	10 U	10 U	10 U	10 U
1,3-Dichlorobenzene		11 U	10 U	10 U	10 U	10 U	10 U
1,4-Dichlorobenzene		11 U	10 U	10 U	10 U	10 U	10 U
2,2'-oxybis(1-Chloropropane)		11 U	10 U	10 U	10 U	10 U	10 U
2,4,5-Trichlorophenol		56 URV	50 U	50 U	50 U	50 U	50 U
2,4,6-Trichlorophenol		11 URV	10 U	10 U	10 U	10 U	10 U
2,4-Dichlorophenol		11 URV	10 U	10 U	10 U	10 U	10 U
2,4-Dimethylphenol		11 U	10 U	10 U	10 U	10 U	10 U
2,4-Dinitrophenol		56 URV	50 U	50 U	50 U	50 U	50 U
2,4-Dinitrotoluene		11 U	10 U	10 U	10 U	10 U	10 U
2,6-Dinitrotoluene		11 U	10 U	10 U	10 U	10 U	10 U
2-Chloronaphthalene		11 U	10 U	10 U	10 U	10 U	10 U
2-Chlorophenol		11 URV	10 U	10 U	10 U	10 U	10 U
2-Methylnaphthalene		11 U	10 U	10 U	10 U	10 U	10 U
2-Methylphenol		11 URV	10 U	10 U	10 U	10 U	10 U
2-Nitroaniline		56 U	50 U	50 U	50 U	50 U	50 U
2-Nitrophenol		11 URV	10 U	10 U	10 U	10 U	10 U
3,3'-Dichlorobenzidine		22 U	20 U	20 U	20 U	20 U	20 U
3-Nitroaniline		56 U	50 U	50 U	50 U	50 U	50 U
4,6-Dinitro-2-methylphenol		56 UJV	50 U	50 U	50 U	50 U	50 U
4-Bromophenyl-phenylether		11 U	10 U	10 U	10 U	10 U	10 U
4-Chloro-3-methylphenol		11 U	10 U	10 U	10 U	10 U	10 U
4-Chloroaniline		11 U	10 U	10 U	10 U	10 U	10 U
4-Chlorophenyl-phenylether		11 U	10 U	10 U	10 U	10 U	10 U
4-Methylphenol		11 URV	10 U	10 U	10 U	10 U	10 U
4-Nitroaniline		56 U	20 U	20 U	20 U	20 U	20 U
4-Nitrophenol		56 URV	50 U	50 U	50 U	50 U	50 U
Acenaphthene	(20)	11 U	10 U	10 U	10 U	10 U	10 U
Acenaphthylene		11 U	10 U	10 U	10 U	10 U	10 U
Anthracene	(50)	11 U	10 U	10 U	10 U	10 U	10 U
Benzo(a)anthracene	(0.002)	11 U	10 U	10 U	10 U	10 U	10 U
Benzo(a)pyrene	ND	11 U	10 U	10 U	10 U	10 U	10 U
Benzo(b)fluoranthene	(0.002)	11 U	10 U	10 U	10 U	10 U	10 U
Benzo(g,h,i)perylene		11 U	10 U	10 U	10 U	10 U	10 U
Benzo(k)fluoranthene	(0.002)	11 U	10 U	10 U	10 U	10 U	10 U
Benzoic acid		56 U	50 U	50 U	50 U	50 U	50 U
Benzyl alcohol		11 U	10 U	10 U	10 U	10 U	10 U
ois(2-Chloroethoxy)methane		11 U	10 U	10 U	10 U	10 U	10 U
ois(2-Chloroethyl)ether		11 U	10 U	10 U	10 U	10 U	10 U
ois(2-Ethylhexyl)phthalate	50	11 UV	0.6 JB	1 JB	0.4 JB	2 JB	0.4 J
Butylbenzylphthalate	(50)	11 U	10 U	10 U	10 U	0.2 J	10 U
Carbazole	, a ·	NA	NA	NA	NA	NA	NA
Chrysene	(0.002)	11 U	10 U	10 U	10 U	10 U	10 U
Di-n-butylphthalate		11 UV	0.5 JB	0.6 JB	0.6 JB	0.8 JB	1 J

Table A-2. Summary of Semivolatile Organic Compound Concentrations in Pre-1997 Groundwater Samples Sunnyside Yard, Queens, New York

	Sample Designation: Sample Date:	MW-63 2/17/1994	MW-63 5/2/1996	MW-64 5/3/1996	MW-65 5/3/1996	MW-65R 5/3/1996	MW-67 5/3/1996
Parameter (Concentrations in $\mu g/L$)	Class GA Ground-Water Standard (µg/L)*						
Di-n-octylphthalate	(50)	11 UV	0.3 J	0.2 Ј	10 U	0.3 Ј	0.1 J
Dibenzo(a,h)anthracene		11 U	10 U	10 U	10 U	10 U	10 U
Dibenzofuran		11 U	0.2 J	10 U	10 U	10 U	10 U
Diethylphthalate	(50)	0.5 J	10 U	10 U	0.2 JB	0.3 JB	0.3 JB
Dimethyl Phthalate		11 U	NA	NA	NA	NA	NA
Dimethylphthalate		NA	10 U	10 U	10 U	10 U	10 U
Fluoranthene	(50)	11 U	10 U	10 U	10 U	10 U	10 U
Fluorene	(50)	11 U	10 U	10 U	10 U	10 U	10 U
Hexachlorobenzene		11 U	10 U	10 U	10 U	10 U	10 U
Hexachlorobutadiene		11 U	10 U	10 U	10 U	10 U	10 U
Hexachlorocyclopentadiene		11 U	10 U	10 U	10 U	10 U	10 U
Hexachloroethane		11 U	10 U	10 U	10 U	10 U	10 U
Indeno(1,2,3-cd)pyrene	(0.002)	11 U	10 U	10 U	10 U	10 U	10 U
Isophorone		11 U	10 U	10 U	10 U	10 U	10 U
N-Nitroso-di-n-propylamine		11 U	10 U	10 U	10 U	10 U	10 U
N-Nitrosodiphenylamine (1)		11 U	10 U	10 U	10 U	10 U	10 U
Naphthalene	(10)	0.1 J	10 U	10 U	10 U	10 U	10 U
Nitrobenzene		11 U	10 U	10 U	10 U	10 U	10 U
Pentachlorophenol		56 URV	50 U	50 U	50 U	50 U	50 U
Phenanthrene	(50)	11 U	10 U	10 U	10 U	10 U	10 U
Phenol		11 URV	10 U	10 U	10 U	10 U	10 U
Pyrene	(50)	11 U	10 U	10 U	10 U	10 U	10 U
Т	otal SVOCs	0.6	0.5	0.2	0	0.5	0.1

R(following Sample Designation) - Replicate sample

R(qualifier) - Data unusable

 $\mu g/L$ - Micrograms per liter

SVOCs - Semivolatile Organic Compounds

U - Compound was analyzed for but not detected

J - Estimated value

B - Compound was detected in blank sample

V - Data was qualified by validator

NA - Not analyzed

^{-- -} No standard available

^{*} NYS Standards and Guidance Values taken from October, 1993 New York State Department of Environmental Conservation Division of Water Technical and Operational Guidance Series (1.1.1.), Ambient Water Quality Standards and Guidance Values. Guidance Values (in parentheses) and Standards are on for those compounds for which concentrations were detected.

Table A-2. Summary of Semivolatile Organic Compound Concentrations in Pre-1997 Groundwater Samples Sunnyside Yard, Queens, New York

	Sample Designation: Sample Date:	MW-68 5/3/1996	MW-68R 5/3/1996	MW-69D 5/9/1996	TW-3 12/6/1993
Parameter (Concentrations in µg/L)	Class GA Ground-Water Standard (µg/L)*				
1,2,4-Trichlorobenzene	(5)	10 U	10 U	10 U	11 U
1,2-Dichlorobenzene		10 U	10 U	10 U	11 U
1,3-Dichlorobenzene		10 U	10 U	10 U	11 U
1,4-Dichlorobenzene		10 U	10 U	10 U	11 U
2,2'-oxybis(1-Chloropropane))	10 U	10 U	10 U	11 U
2,4,5-Trichlorophenol		50 U	50 U	50 U	56 U
2,4,6-Trichlorophenol		10 U	10 U	10 U	11 U
2,4-Dichlorophenol		10 U	10 U	10 U	11 U
2,4-Dimethylphenol		10 U	10 U	10 U	11 U
2,4-Dinitrophenol		50 U	50 U	50 U	56 U
2,4-Dinitrotoluene		10 U	10 U	10 U	11 U
2,6-Dinitrotoluene		10 U	10 U	10 U	11 U
2-Chloronaphthalene		10 U	10 U	10 U	11 U
2-Chlorophenol		10 U	10 U	10 U	11 U
2-Methylnaphthalene		10 U	10 U	2 J	11 U
2-Methylphenol		10 U	10 U	10 U	11 U
2-Nitroaniline		50 U	50 U	50 U	56 U
2-Nitrophenol		10 U	10 U	10 U	11 U
3,3'-Dichlorobenzidine		20 U	20 U	20 U	20 U
3-Nitroaniline		50 U	50 U	50 U	56 U
4,6-Dinitro-2-methylphenol		50 U	50 U	50 U	56 U
4-Bromophenyl-phenylether		10 U	10 U	10 U	11 U
4-Chloro-3-methylphenol		10 U	10 U	10 U	11 U
4-Chloroaniline		10 U	10 U	10 U	11 U
4-Chlorophenyl-phenylether		10 U	10 U	10 U	11 U
4-Methylphenol		10 U	10 U	10 U	11 U
4-Nitroaniline		20 U	20 U	20 U	56 U
4-Nitrophenol		50 U	50 U	50 U	56 U
Acenaphthene	(20)	10 U	10 U	10 U	11 U
Acenaphthylene	(7 0)	10 U	10 U	10 U	11 U
Anthracene	(50)	10 U	10 U	10 U	11 U
Benzo(a)anthracene	(0.002)	10 U	0.1 J	10 U	11 U
Benzo(a)pyrene	ND	10 U	10 U	10 U	11 U
Benzo(b)fluoranthene	(0.002)	0.1 J	0.1 J	10 U	11 U
Benzo(g,h,i)perylene	(0.000)	10 U	10 U	10 U	11 U
Benzo(k)fluoranthene	(0.002)	0.1 J	0.1 J	10 U	11 U
Benzoic acid		50 U	50 U	50 U	10 J
Benzyl alcohol		10 U	10 U	10 U	11 U
bis(2-Chloroethoxy)methane		10 U	10 U	10 U	11 U
bis(2-Chloroethyl)ether	50	10 U	10 U	10 U	11 U
bis(2-Ethylhexyl)phthalate	50	0.6 JB	0.4 JB	1 J	10 UV
Butylbenzylphthalate	(50)	10 U	10 U	10 U	11 U
Chryson	(0.002)	NA	NA	NA	NA
Chrysene Din butylphthelete	(0.002)	10 U	0.1 J	10 U	11 U
Di-n-butylphthalate		0.7 JB	0.6 JB	0.9 JB	11 U

Table A-2. Summary of Semivolatile Organic Compound Concentrations in Pre-1997 Groundwater Samples Sunnyside Yard, Queens, New York

	Sample Designation: Sample Date:	MW-68 5/3/1996	MW-68R 5/3/1996	MW-69D 5/9/1996	TW-3 12/6/1993
	Class GA				
	Ground-Water				
Parameter	Standard				
(Concentrations in µg/L)	(μg/L)*				
Di-n-octylphthalate	(50)	1 J	10 U	10 U	0.8 J
Dibenzo(a,h)anthracene	(00)	10 U	10 U	10 U	11 U
Dibenzofuran		10 U	10 U	10 U	11 U
Diethylphthalate	(50)	10 U	1 JB	10 U	11 U
Dimethyl Phthalate	,	NA	NA	NA	11 U
Dimethylphthalate		10 U	10 U	10 U	NA
Fluoranthene	(50)	0.3 J	0.2 J	10 U	11 U
Fluorene	(50)	3 J	2 J	10 U	11 U
Hexachlorobenzene		10 U	10 U	10 U	11 U
Hexachlorobutadiene		10 U	10 U	10 U	11 U
Hexachlorocyclopentadiene		10 U	10 U	10 U	11 U
Hexachloroethane		10 U	10 U	10 U	11 U
Indeno(1,2,3-cd)pyrene	(0.002)	10 U	10 U	10 U	11 U
Isophorone		10 U	10 U	10 U	11 U
N-Nitroso-di-n-propylamine		10 U	10 U	10 U	11 U
N-Nitrosodiphenylamine (1)		10 U	10 U	10 U	11 U
Naphthalene	(10)	10 U	10 U	0.4 J	1 J
Nitrobenzene		10 U	10 U	10 U	11 U
Pentachlorophenol		50 U	50 U	50 U	56 U
Phenanthrene	(50)	10 U	10 U	10 U	11 U
Phenol		10 U	10 U	10 U	11 U
Pyrene	(50)	0.2 J	0.1 J	10 U	0.7 J
ר	Total SVOCs	4.7	2.7	3.4	12.5

R(following Sample Designation) - Replicate sample

R(qualifier) - Data unusable

 $\mu g/L$ - Micrograms per liter

SVOCs - Semivolatile Organic Compounds

ND - Not detectable

U - Compound was analyzed for but not detected

J - Estimated value

B - Compound was detected in blank sample

V - Data was qualified by validator

NA - Not analyzed

^{-- -} No standard available

^{*} NYS Standards and Guidance Values taken from October, 1993 New York State Department of Environmental Conservation Division of Water Technical and Operational Guidance Series (1.1.1.), Ambient Water Quality Standards and Guidance Values. Guidance Values (in parentheses) and Standards are on for those compounds for which concentrations were detected.

Table A-3. Summary of Polychlorinated Biphenyl Compound Concentrations in Pre-1997 Groundwater Samples, Sunnyside Yard, Queens, New York

Sa	mple Designation: Sample Date:	MW-19 1/4/1991	MW-23D 1/7/1991	MW-23D 2/9/1993	MW-25A 1/22/1993	MW-27 2/8/1993	MW-35 2/9/1993	MW-35 2/17/1994	MW-37 2/17/1994	MW-38D 2/17/1994
Parameter (Concentrations in μg/	Class GA Ground-Water Standard (L) (µg/L)**									
Aroclor-1016		0.05 U	0.05 U	0.066 U	0.066 U	0.067 U	0.066 U	0.065 UJV	0.065 U	0.065 U
Aroclor-1221		0.05 U	0.05 U	0.066 UJV	0.066 U	0.067 U	0.066 U	0.065 UJV		0.065 U
Aroclor-1232		0.05 U	0.05 U	0.066 U	0.066 U	0.067 U	0.066 U	0.065 UJV	0.065 U	0.065 U
Aroclor-1242		0.05 U	0.05 U	0.066 U	0.066 U	0.067 U	0.066 U	0.065 UJV	0.065 U	0.065 U
Aroclor-1248		0.05 U	0.05 U	0.066 U	0.066 U	0.067 U	0.066 U	0.065 UJV	0.065 U	0.065 U
Aroclor-1254		1 U	1 U	0.066 U	0.066 U	0.067 U	0.089	0.065 UJV	0.065 U	0.065 U
Aroclor-1260		1 U	1 U	0.066 U	0.067	0.067 U	0.066 U	0.065 UJV	0.065 U	0.065 UJ
Total PC	CBs 0.1	0	0	0	0.067	0	0.089	0	0	0

U - Compound was analyzed for but not detected

J - Estimated value

V - Data was qualified by validator

^{*} A petroleum sheen was present

 ^{** -} NYS Standards and Guidance Values taken from October, 1993
 New York State Department of Environmental Conservation
 Division of Water Technical and Operational Guidance
 Series (1.1.1.), Ambient Water Quality Standards and Guidance
 Values. Guidance Values (in parentheses) and Standards are only for those compounds for which concentrations were detected.

Table A-3. Summary of Polychlorinated Biphenyl Compound Concentrations in Pre-1997 Groundwater Samples, Sunnyside Yard, Queens, New York

Samp	le Designation: Sample Date:		MW-40D 2/17/1994	MW-43 2/9/1993	MW-44D 2/9/1993	MW-45 2/9/1993	MW-45R 2/9/1993	MW-46 2/9/1993	MW-46 2/17/1994	MW-47 1/22/1993	MW-47 2/9/1993
Parameter (Concentrations in μg/L)	Class GA Ground-Water Standard (µg/L)**										
Aroclor-1016		0.065 U	0.065 U	0.066 U	0.066 U	0.067 U	0.065 U	0.065 U	0.065 U	0.067 U	0.066 U
Aroclor-1221		0.065 U	0.065 U	0.066 U	0.066 U	0.067 U	0.065 U	0.065 U	0.065 U	0.067 U	0.066 U
Aroclor-1232		0.065 U	0.065 U	0.066 U	0.066 U	0.067 U	0.065 U	0.065 U	0.065 U	0.067 U	0.066 U
Aroclor-1242		0.065 U	0.065 U	0.066 U	0.066 U	0.067 U	0.065 U	0.065 U	0.065 U	0.067 U	0.066 U
Aroclor-1248		0.065 U	0.065 U	0.066 U	0.066 U	0.067 U	0.065 U	0.065 U	0.065 U	0.067 U	0.066 U
Aroclor-1254		0.065 U	0.065 UJV	0.066 U	0.066 U	0.067 U	0.065 U	0.59	0.065 U	0.067 U	0.066 U
Aroclor-1260		0.065 U	0.065 U	0.066 U	0.066 U	0.067 U	0.065 U	1.7 JV	0.065 U	0.067 U	0.066 U
Total PCBs	0.1	0	0	0	0	0	0	2.29 J	0	0	0

U - Compound was analyzed for but not detected

J - Estimated value

V - Data was qualified by validator

^{*} A petroleum sheen was present

 ^{** -} NYS Standards and Guidance Values taken from October, 1993
 New York State Department of Environmental Conservation
 Division of Water Technical and Operational Guidance
 Series (1.1.1.), Ambient Water Quality Standards and Guidance
 Values. Guidance Values (in parentheses) and Standards are only for those compounds for which concentrations were detected.

Table A-3. Summary of Polychlorinated Biphenyl Compound Concentrations in Pre-1997 Groundwater Samples, Sunnyside Yard, Queens, New York

Sa	ample Designation: Sample Date:		MW-49 2/17/1994	MW-57 2/17/1994	MW-57R 2/17/1994	MW-57 5/2/1996	MW-59 2/17/1994	MW-59 5/3/1996	MW-61 2/17/1994	MW-62D 2/17/1994	MW-63 2/17/1994
Parameter (Concentrations in με	Class GA Ground-Water Standard (µg/L)**										
Aroclor-1016		0.066 U	0.065 U	0.065 U	0.065 U	1 U	0.065 U	1.1 U	0.065 U	0.065 U	0.065 U
Aroclor-1221		0.066 U	0.065 U	0.065 U	0.065 U	2 U	0.065 U	2.2 U	0.065 U	0.065 U	0.065 U
Aroclor-1232		0.066 U	0.065 U	0.065 U	0.065 U	1 U	0.065 U	1.1 U	0.065 U	0.065 U	0.065 U
Aroclor-1242		0.066 U	0.065 U	0.065 U	0.065 U	1 U	0.065 U	1.1 U	0.065 U	0.065 U	0.065 U
Aroclor-1248		0.066 U	0.065 U	0.065 U	0.065 U	1 U	0.065 U	1.1 U	0.065 U	0.065 U	0.065 U
Aroclor-1254		0.066 U	0.065 U	0.065 U	0.065 U	1 U	0.065 U	1.1 U	0.065 U	0.065 U	0.065 U
Aroclor-1260		0.066 U	0.065 U	0.065 U	0.065 U	1 U	0.065 U	1.1 U	0.065 U	0.065 U	0.065 U
Total P	CBs 0.1	0	0	0	0	0	0	0	0	0	0

U - Compound was analyzed for but not detected

J - Estimated value

V - Data was qualified by validator

^{*} A petroleum sheen was present

^{** -} NYS Standards and Guidance Values taken from October, 1993 New York State Department of Environmental Conservation Division of Water Technical and Operational Guidance Series (1.1.1.), Ambient Water Quality Standards and Guidance Values. Guidance Values (in parentheses) and Standards are only for those compounds for which concentrations were detected.

Table A-3. Summary of Polychlorinated Biphenyl Compound Concentrations in Pre-1997 Groundwater Samples, Sunnyside Yard, Queens, New York

Samp	le Designation: Sample Date:	MW-63 5/2/1996	MW-64 5/3/1996	MW-65 5/3/1996	MW-67 5/3/1996	MW-68 5/3/1996	MW-69D 5/9/1996	TW-3 12/6/1993
Parameter (Concentrations in $\mu g/L$)	Class GA Ground-Water Standard (µg/L)**							
Aroclor-1016		1 U	1.1 U	1.1 U	1 U	1 U	1 U	0.072 U
Aroclor-1221		2 U	2.2 U	2.2 U	2.1 U	2.1 U	2.1 U	0.072 U
Aroclor-1232		1 U	1.1 U	1.1 U	1 U	1 U	1 U	0.072 U
Aroclor-1242		1 U	1.1 U	1.1 U	1 U	1 U	1 U	0.072 U
Aroclor-1248		1 U	1.1 U	1.1 U	1 U	1 U	1 U	0.072 U
Aroclor-1254		1 U	1.1 U	1.1 U	1 U	1 U	1 U	2.4
Aroclor-1260		1 U	1.1 U	1.1 U	1 U	1 U	1 U	1.9
Total PCBs	0.1	0	0	0	0	0	0	4.3

U - Compound was analyzed for but not detected

J - Estimated value

V - Data was qualified by validator

^{*} A petroleum sheen was present

 ^{** -} NYS Standards and Guidance Values taken from October, 1993
 New York State Department of Environmental Conservation
 Division of Water Technical and Operational Guidance
 Series (1.1.1.), Ambient Water Quality Standards and Guidance
 Values. Guidance Values (in parentheses) and Standards are only for those compounds for which concentrations were detected.

Table A-4. Summary of Metal Concentrations in Pre-1997 Groundwater Samples, Sunnyside Yard, Queens, New York

		Sample Designation: Sample Date:	MW-47 2/9/1993	MW-48D 2/9/1993	MW-61 2/17/1994	MW-62D 2/17/1994	MW-19 1/5/1991	MW-23D 1/8/1991	MW-25 1/15/1993
		Sumple Bute.	2 ()(1))0		UND WELLS		1/0/1//1	1/0/1//1	1/10/1//0
Parameter (Concentrations in μg/L)	Background Concentrations (μg/L)*	Class GA Ground-Water Standard (µg/L)**							
Aluminum	28,400 JV	NS	7660	11900	174 B	264	1710 N*V	887 N*V	18000
Antimony	46.9 B	(3)	21 U	21 U	29 U	46.9 B	7.6 U	7.6 U	21 U
Arsenic	3.6 B	25	2.1 B	3.6 B	1 U	1 U	3 U	3 U	1 U
Barium	275	1,000	87.6 B	199 B	64.1 B	102 B	89 B	532 B	191 B
Beryllium	1.8 B	(3)	1 U	1 U	1 U	1 U	1.6 U	1.6 U	1.1 B
Cadmium	2.2 B	10	2.2 B	2 U	2 U	2 U	5 U	5 U	2 U
Calcium	132,000	NS	83800	95300	79800	108000	49300	70300	28100
Chromium	70.9 JV	50	17.4	39.1	8 U	8 U	6.7 BWV	9 BWV	42
Cobalt	23.3 B	NS	5.8 B	11.3 B	3 U	3 U	8.7 U	8.7 U	26.1 B
Copper	65.0 JV	200	38.8	62	8.1 B	11.8 B	17 B	31 B	98.1
Iron	46,500 JV	300	9890	28500	377	679	2710	14000	50000 JV
Lead	21.9 JV	25	10.8	19	1 J	1 UJV	50 N*V	31 N*V	37.8
Magnesium	47,600	(35,000)	28000	42200	21100	42900	6290	15900	13400
Manganese	2,650	300	135	721	96.8	130	2340 NV	2940 NV	2550
Mercury	0.33	2	0.2 U	0.2 U	0.2 U	0.2 U	0.5	0.7	0.2 U
Nickel	48.1	NS	21.1 B	24.5 B	11 U	11 U	22 U	22 U	56.3
Potassium	11,900	NS	7160	11900	2220 B	2860 B	5820	5460	4870 B
Selenium	10.1	10	2 U	2 U	4.7 B	2.7 BJV	3.3 UN*V	3.3 UN*V	1 U
Silver	3.0 U	50	3 U	3 U	3 U	3 U	2.8 U	2.5 U	3 U
Sodium	216,000	20,000	61900	19300	26800	130000	40700	209000	16700
Thallium	3.0 U	(4)	2 U	2 U	1 U	1 U	3.5 UWNV	3.5 UWNV	2 U
Vanadium	72.9	NS	47 B	53.5	7 U	7 U	9.2 U	9.2 U	61.6
Zinc	160 JV	300	53	67.4	13.7 B	14.6 B	32	28	234 UV

R(following Sample Designation) - Replicate sample

μg/L - Micrograms per liter

U - Analyte was analyzed for but not detected

B - Analyte concentration was between method detection limit and practical quantitation limit

J - Estimated value

V - Data was qualified by validator

NS - No standard or guidance value available

^{* -} Background concentrations for metals were determined from analytical results for upgradient boundary Monitoring Wells TP-9, TP-10, MW-30, MW-34, MW-47, MW-48D, MW-61 and MW-62D.

^{** -} NYS Standards and Guidance Values taken from October, 1993
New York State Department of Environmental Conservation
Division of Water Technical and Operational Guidance
Series (1.1.1.), Ambient Water Quality Standards and Guidance
Values. Guidance Values (in parentheses) and Standards are only
for those compounds for which concentrations were detected.

Table A-4. Summary of Metal Concentrations in Pre-1997 Groundwater Samples, Sunnyside Yard, Queens, New York

		Sample Designation: Sample Date:	MW-29 2/9/1993	MW-35 2/9/1993	MW-37 2/17/1994	MW-43 2/9/1993	MW-44D 2/9/1993	MW-45 2/9/1993	MW-45R 2/9/1993	MW-46 2/9/1993	MW-49 2/17/1994
Parameter (Concentrations in μg/L)	Background Concentrations (µg/L)*	Class GA Ground-Water Standard (µg/L)**									
Aluminum	28,400 JV	NS	5800	9210	297	4420	3260	1030	872	80000	86.2 B
Antimony	46.9 B	(3)	21 U	21 U	29 U	21 U	21 U	21 U	21 U	21 U	29 U
Arsenic	3.6 B	25	5.4 B	16.5	3.4 BJ	1.2 B	2 B	1 U	1.2 B	10.9	7.4 B
Barium	275	1,000	168 B	696	59.8 B	142 B	207	67.5 B	66 B	1030	330
Beryllium	1.8 B	(3)	1 U	1 U	1 U	1 U	1 U	1 U	1 U	3.7 B	1 U
Cadmium	2.2 B	10	2 U	2 U	2 U	2 U	2 U	2 U	2 U	4.4 B	2 U
Calcium	132,000	NS	63600	65300	9950	29800	148000	47600	47700	57000	24400
Chromium	70.9 JV	50	4.9 B	27.8	8 U	3 U	9.3 B	3 U	3 U	146	8 U
Cobalt	23.3 B	NS	4.3 B	6.2 B	3 U	5.6 B	3.4 B	3 U	3 U	111	15.5 B
Copper	65.0 JV	200	40.3	114	6.5 B	46.2	43	31.2	19.1 B	421	13.8 B
Iron	46,500 JV	300	32600	45200	749	8410	8930	1760	1570	152000	118000
Lead	21.9 JV	25	43.7	207	1.3 BJ	5.4	5.7	2.2 B	2.2 B	165	1 BJ
Magnesium	47,600	(35,000)	21700	15100	1540 B	15000	49800	12500	12400	47200	5340
Manganese	2,650	300	2380	1280	803	3470	1750	142	126	9410	3030
Mercury	0.33	2	0.2 U	0.49	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.4	0.2 U
Nickel	48.1	NS	21 U	22.6 B	11 U	21 U	21 U	21 U	21 U	186	11 U
Potassium	11,900	NS	7030	6180	1220 B	1590 B	7470	2950 B	3040 B	19800	2630 B
Selenium	10.1	10	2 U	2 U	1.2 B	2 U	2 U	2 U	2 U	2 U	1 JV
Silver	3.0 U	50	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Sodium	216,000	20,000	132000	131000	176000	213000	91900	14700	14700	41400	13700
Thallium	3.0 U	(4)	2 U	2 U	1	2 U	2 U	2 U	2 U	2 U	1 U
Vanadium	72.9	NS	24.8 B	51.4	9.4 B	6 U	9.2 B	6 U	6 U	205	7 U
Zinc	160 JV	300	35.8	153	19.1 B	55.1	36.3	27.8	20.3	696	76.5

R(following Sample Designation) - Replicate sample $\mu g/L$ - Micrograms per liter

U - Analyte was analyzed for but not detected

B - Analyte concentration was between method detection limit and practical quantitation limit

J - Estimated value

V - Data was qualified by validator

NS - No standard or guidance value available

Background concentrations for metals were determined from analytical results for upgradient boundary Monitoring Wells TP-9, TP-10, MW-30, MW-34, MW-47, MW-48D, MW-61 and MW-62D.

^{** -} NYS Standards and Guidance Values taken from October, 1993
New York State Department of Environmental Conservation
Division of Water Technical and Operational Guidance
Series (1.1.1.), Ambient Water Quality Standards and Guidance
Values. Guidance Values (in parentheses) and Standards are only
for those compounds for which concentrations were detected.

Table A-4. Summary of Metal Concentrations in Pre-1997 Groundwater Samples, Sunnyside Yard, Queens, New York

		Sample Designation: Sample Date:	MW-57 2/17/1994	MW-57R 2/17/1994	MW-57 5/2/1996	MW-59 2/17/1994	MW-59 5/3/1996	MW-63 2/17/1994	MW-63 5/2/1996	MW-64 5/3/1996	MW-65 5/3/1996
Parameter (Concentrations in $\mu g/L$)	Background Concentrations (µg/L)*	Class GA Ground-Water s Standard (µg/L)**									
Aluminum	28,400 JV	NS	470	371	1770	614	752	823	402	5940	290
Antimony	46.9 B	(3)	29 U	45.5 B	6 U	29 U	6 U	29 U	6 U	6 U	6 U
Arsenic	3.6 B	25	1 B	1 U	4 U	3 B	4 U	1 U	4 U	4 U	4 U
Barium	275	1,000	47 B	34.7 B	66.9 B	18.1 B	30.2 B	176 B	126 B	119 B	74.6 B
Beryllium	1.8 B	(3)	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Cadmium	2.2 B	10	2 U	2 U	1 U	2 U	1 U	2 U	1 U	1 U	1 U
Calcium	132,000	NS	27300	27500	51500	26800	40200	128000	66000	21300	107000
Chromium	70.9 JV	50	8 U	8 U	3.6 B	8 U	2.5 B	8 U	1.5 B	16.8	1.3 B
Cobalt	23.3 B	NS	3 U	3.5 B	3 B	3 U	1.7 B	3.4 B	1.4 B	10.8 B	2.2 B
Copper	65.0 JV	200	31.2	28.7	17.9 B	9.6 B	6.8 B	10.5 B	8.3 B	29.2	3.9 B
Iron	46,500 JV	300	874	689	2980	966	1630	1900	1520	21500	803
Lead	21.9 JV	25	5.7	4.9	8.6	3.2 JV	4	1.4 BJ	2 U	9.6	2 U
Magnesium	47,600	(35,000)	5760	5760	12000	1750 B	3160	30900	20600	7420	39500
Manganese	2,650	300	1700	1700	522	85.2	1200	2120	1370	1500	1680
Mercury	0.33	2	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Nickel	48.1	NS	11 U	11 U	7.3 B	11 U	4 B	11 U	8.1 B	22 B	7.7 B
Potassium	11,900	NS	2890 B	2980 B	5440	4370 B	3900	5140	3560	2710	8030
Selenium	10.1	10	1.1 BJ	1.9 B	5.4	3 BJ	4 U	1.4 BJ	5.8	4.5 B	4 U
Silver	3.0 U	50	3 U	3 U	1 U	3 U	1 U	3 U	1 U	1 U	1 U
Sodium	216,000	20,000	71500	71400	76700	54300	21200	77200	38300	17500	89100
Thallium	3.0 U	(4)	1 U	1 U	6 U	1 U	6 U	1 U	6 U	6 U	6 U
Vanadium	72.9	NS	7 U	7 U	5 B	10.9 B	3 B	7 U	2.6 B	19 B	1 U
Zinc	160 JV	300	41.5	39.8	47.6	25.2	37.3	25.9	13.6 B	534	12.5 B

R(following Sample Designation) - Replicate sample $\mu g/L$ - Micrograms per liter

U - Analyte was analyzed for but not detected

B - Analyte concentration was between method detection limit and practical quantitation limit

J - Estimated value

V - Data was qualified by validator

NS - No standard or guidance value available

Background concentrations for metals were determined from analytical results for upgradient boundary Monitoring Wells TP-9, TP-10, MW-30, MW-34, MW-47, MW-48D, MW-61 and MW-62D.

^{** -} NYS Standards and Guidance Values taken from October, 1993
New York State Department of Environmental Conservation
Division of Water Technical and Operational Guidance
Series (1.1.1.), Ambient Water Quality Standards and Guidance
Values. Guidance Values (in parentheses) and Standards are only
for those compounds for which concentrations were detected.

Table A-4. Summary of Metal Concentrations in Pre-1997 Groundwater Samples, Sunnyside Yard, Queens, New York

		Sample Designation: Sample Date:	MW-65R 5/3/1996		V-66 1996	MW-67 5/3/1996	MW-68 5/3/1996	MW-69I 5/9/1996
Parameter (Concentrations in μg/L)	Background Concentrations (µg/L)*	Class GA Ground-Water Standard (µg/L)**						
Aluminum	28,400 JV	NS	500	16300)	142 B	1290	445
Antimony	46.9 B	(3)	6 U	6	U	6 U	6 U	6 U
Arsenic	3.6 B	25	4 U	5.2	В	4 U	4 U	4.1 B
Barium	275	1,000	77.9 B	282		22.9 B	95.2 B	76.9 B
Beryllium	1.8 B	(3)	1 U	1	U	1 U	1 U	1 U
Cadmium	2.2 B	10	1 U	1	U	1 U	1 U	1 U
Calcium	132,000	NS	109000	95200)	51000	19600	78800
Chromium	70.9 JV	50	1.7 B	31		1.1 B	4.3 B	1.7 B
Cobalt	23.3 B	NS	2.5 B	10.9	В	1 U	3.9 B	1.2 B
Copper	65.0 JV	200	5.6 B	42.1		2 U	11.1 B	2.8 B
Iron	46,500 JV	300	1540	23100)	219	13000	999
Lead	21.9 JV	25	2 U	17.5		2 U	3.6	2 U
Magnesium	47,600	(35,000)	40300	40700)	19900	6880	27200
Manganese	2,650	300	1710	1570		252	4750	3180
Mercury	0.33	2	0.2 U	0.2	U	0.2 U	0.2 U	0.2 U
Nickel	48.1	NS	5 B	19.5	В	3.3 B	8.2 B	3.8 B
Potassium	11,900	NS	8230	14900)	2350	2850	3410
Selenium	10.1	10	4.1 B	11.4		4 U	4.6 B	4 U
Silver	3.0 U	50	1 U	1	U	1 U	1 U	1 U
Sodium	216,000	20,000	92500	95400)	37500	28300	71300
Thallium	3.0 U	(4)	6 U	6	U	6 U	6 U	6 U
Vanadium	72.9	NS	1.8 B	43.7	В	1 U	5.1 B	1 U
Zinc	160 JV	300	22.6	42.9		14.8 B	42.6	9.2 B

R(following Sample Designation) - Replicate sample $\mu g/L$ - Micrograms per liter

U - Analyte was analyzed for but not detected

B - Analyte concentration was between method detection limit and practical quantitation limit

J - Estimated value

V - Data was qualified by validator

NS - No standard or guidance value available

^{* -} Background concentrations for metals were determined from analytical results for upgradient boundary Monitoring Wells TP-9, TP-10, MW-30, MW-34, MW-47, MW-48D, MW-61 and MW-62D.

^{** -} NYS Standards and Guidance Values taken from October, 1993
New York State Department of Environmental Conservation
Division of Water Technical and Operational Guidance
Series (1.1.1.), Ambient Water Quality Standards and Guidance
Values. Guidance Values (in parentheses) and Standards are only
for those compounds for which concentrations were detected.

APPENDIX B

Historic Water Level Elevations and Separate-Phase Hydrocarbon Measurements Preceding OU-6 RI

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

		July 9	9, 1991		
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)
MW-13 MW-16 MW-17 MW-19 MW-20 MW-21 MW-22 MW-23D RW-2	16.08 20.92 19.51 20.13 19.09 17.54 16.51 19.19 19.69	5.12 5.16 4.95 1.87 5.40	2.63 8.60 7.21 7.62 5.50 3.14 2.40 5.19 5.61	3.48 2.05 0.55 0.53 0.21	13.45 15.36 * 14.09 * 12.51 14.07 * 14.40 14.57 * 14.00 14.26 *
		July 2	9, 1991		
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)
MW-13 MW-16 MW-17 MW-19 MW-20 MW-21 MW-22 MW-23D	16.08 20.92 19.51 20.13 19.09 17.54 16.51 19.19	4.45 4.43 4.44 1.53	2.31 8.90 7.58 7.33 4.83 2.39 2.26 4.87	4.45 3.15 0.39 0.73	13.77 15.91 * 14.68 * 12.80 14.60 * 15.15 14.89 * 14.32

^{-- -} No measurable petroleum

^{* -} Water-level elevations corrected for presence of separate-phase petroleum. Correction assumes density of 0.874 (average specific gravity of petroleum samples collected at the Yard).

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

		August	t 5, 1991		
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)
MW-13	16.08		2.55		13.53
MW-16	20.92	4.96	9.10	4.14	15.44 *
MW-17	19.51	7.95	9.87	1.92	11.32 *
MW-19	20.13		7.54		12.59
MW-20	19.09	4.69	5.26	0.57	14.33 *
MW-21	17.54		3.05		14.49
MW-22	16.51	1.77	2.43	0.66	14.66 *
MW-23D	19.19		5.09		14.10
		August	12, 1991		
	Measuring Point Elevation	Depth to Petroleum	Depth to Water	Petroleum	Water-Level Elevation
Well Designation	(ft above NAVD 1988 mean sea level)	(ft below measuring point)	(ft below measuring point)	Thickness	(ft relative to
Well Designation	(`	`		
	NAVD 1988	measuring	measuring	Thickness	(ft relative to
Designation MW-13	NAVD 1988 mean sea level)	measuring point)	measuring point)	Thickness (ft)	(ft relative to mean sea level)
Designation MW-13 MW-16	NAVD 1988 mean sea level)	measuring point)	measuring point) 2.11	Thickness (ft)	(ft relative to mean sea level)
Designation MW-13 MW-16 MW-17	NAVD 1988 mean sea level) 16.08 20.92	measuring point)	measuring point) 2.11 9.93	Thickness (ft)	(ft relative to mean sea level) 13.97 15.89 *
Designation MW-13 MW-16 MW-17 MW-19	NAVD 1988 mean sea level) 16.08 20.92 19.51	measuring point) 4.32 4.33	measuring point) 2.11 9.93 7.69	Thickness (ft) 5.61 3.36	(ft relative to mean sea level) 13.97 15.89 * 14.76 *
Designation MW-13 MW-16 MW-17 MW-19 MW-20	NAVD 1988 mean sea level) 16.08 20.92 19.51 20.13	measuring point) 4.32 4.33	measuring point) 2.11 9.93 7.69 7.10	Thickness (ft) 5.61 3.36	(ft relative to mean sea level) 13.97 15.89 * 14.76 * 13.03
Designation	NAVD 1988 mean sea level) 16.08 20.92 19.51 20.13 19.09	measuring point) 4.32 4.33 4.28	measuring point) 2.11 9.93 7.69 7.10 4.67	Thickness (ft) 5.61 3.36 0.39	(ft relative to mean sea level) 13.97 15.89 * 14.76 * 13.03 14.76 *

^{-- -} No measurable petroleum

^{* -} Water-level elevations corrected for presence of separate-phase petroleum. Correction assumes density of 0.874 (average specific gravity of petroleum samples collected at the Yard).

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

		August	21, 1991		
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)
MW-13 MW-16 MW-17 MW-19 MW-20 MW-21 MW-22 MW-23D	16.08 20.92 19.51 20.13 19.09 17.54 16.51 19.19	3.85 3.83 4.10 0.91	1.65 9.08 7.97 6.72 4.39 1.96 2.33 4.35	5.23 4.14 0.29 1.42	14.43 16.41 * 15.16 * 13.41 14.95 * 15.58 15.42 * 14.84
		Septemb	er 6, 1991		
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)
MW-13 MW-16 MW-17 MW-19 MW-20 MW-21 MW-22 MW-23D	16.08 20.92 19.51 20.13 19.09 17.54 16.51 19.19	4.94 4.83 4.68 1.69	2.51 8.45 7.36 7.50 5.22 3.01 2.19 5.07	3.51 2.53 0.54 0.50	13.57 15.54 * 14.36 * 12.63 14.34 * 14.53 14.76 * 14.12

^{-- -} No measurable petroleum

^{* -} Water-level elevations corrected for presence of separate-phase petroleum. Correction assumes density of 0.874 (average specific gravity of petroleum samples collected at the Yard).

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

October 4, 1991								
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)			
MW-13 MW-16 MW-17 MW-19 MW-20 MW-21 MW-22 MW-23D	16.08 20.92 19.51 20.13 19.09 17.54 16.51 19.19	4.82 4.73 4.67 1.65	2.53 8.81 7.52 7.54 5.21 2.97 2.16 4.99	3.99 2.79 0.54 0.51	13.55 15.60 * 14.43 * 12.59 14.35 * 14.57 14.80 * 14.20			
		October	23, 1991					
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)			
MW-13 MW-16 MW-17 MW-19 MW-20 MW-21 MW-22 MW-23D MW-35	16.08 20.92 19.51 20.13 19.09 17.54 16.51 19.19 18.68 20.01	5.08 4.98 4.74 2.15 6.81	2.63 8.73 7.43 7.57 5.31 3.04 2.54 5.18 6.00 8.08	3.65 2.45 0.57 0.39	13.45 15.38 * 14.22 * 12.56 14.28 * 14.50 14.31 * 14.01 12.68 13.04 *			

^{-- -} No measurable petroleum

^{* -} Water-level elevations corrected for presence of separate-phase petroleum. Correction assumes density of 0.874 (average specific gravity of petroleum samples collected at the Yard).

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

November 26, 1991							
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)		
MW-13	16.08		2.56		13.52		
MW-16	20.92	5.03	8.85	3.82	15.41 *		
MW-17	19.51	4.98	7.32	2.34	14.24 *		
MW-19	20.13		7.54		12.59		
MW-20	19.09	4.65	5.21	0.56	14.37 *		
MW-21	17.54		2.99		14.55		
MW-22	16.51	1.88	2.57	0.69	14.54 *		
MW-23D	19.19		5.18		14.01		
MW-35	18.68		5.96		12.72		
MW-36	20.01	6.73	8.33	1.60	13.08 *		
		Decembe	er 30, 1991				
	Measuring Point Elevation (ft above	Depth to Petroleum (ft below	Depth to Water (ft below	Petroleum	Water-Level Elevation		
Well Designation	NAVD 1988 mean sea level)	measuring point)	measuring point)	Thickness (ft)	(ft relative to mean sea level)		
	NAVD 1988	measuring	measuring		,		
Designation MW-16	NAVD 1988 mean sea level)	measuring point)	measuring point)	(ft)	mean sea level)		
Designation MW-16 MW-17	NAVD 1988 mean sea level) 20.92	measuring point) 4.92	measuring point) 6.99	(ft) 2.07	mean sea level)		
Designation MW-16 MW-17 MW-19	NAVD 1988 mean sea level) 20.92 19.51	measuring point) 4.92 5.01	measuring point) 6.99 7.87	2.07 2.86	mean sea level) 15.74 * 14.14 *		
Designation MW-16 MW-17 MW-19 MW-20	NAVD 1988 mean sea level) 20.92 19.51 20.13	measuring point) 4.92 5.01	measuring point) 6.99 7.87 7.47	2.07 2.86	mean sea level) 15.74 * 14.14 * 12.66		
Designation MW-16 MW-17 MW-19 MW-20 MW-21	NAVD 1988 mean sea level) 20.92 19.51 20.13 19.09	measuring point) 4.92 5.01 4.60	measuring point) 6.99 7.87 7.47 5.13	2.07 2.86 0.53	15.74 * 14.14 * 12.66 14.42 *		
Designation MW-16 MW-17 MW-19 MW-20 MW-21 MW-22	NAVD 1988 mean sea level) 20.92 19.51 20.13 19.09 17.54	measuring point) 4.92 5.01 4.60	measuring point) 6.99 7.87 7.47 5.13 3.01	2.07 2.86 0.53	mean sea level) 15.74 * 14.14 * 12.66 14.42 * 14.53		
Designation	NAVD 1988 mean sea level) 20.92 19.51 20.13 19.09 17.54 16.51	measuring point) 4.92 5.01 4.60 1.87	measuring point) 6.99 7.87 7.47 5.13 3.01 2.59	2.07 2.86 0.53 0.72	15.74 * 14.14 * 12.66 14.42 * 14.53 14.55 *		

^{-- -} No measurable petroleum

^{* -} Water-level elevations corrected for presence of separate-phase petroleum. Correction assumes density of 0.874 (average specific gravity of petroleum samples collected at the Yard).

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

February 10, 1992								
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)			
MW-13	16.08	2.85	2.85	0.00	13.23 *			
MW-16	20.92	5.46	8.61	3.15	15.06 *			
MW-17	19.51	5.41	7.25	1.84	13.87 *			
MW-19	20.13		7.81		12.32			
MW-20	19.09	4.92	5.58	0.66	14.09 *			
MW-21	17.54		3.26		14.28			
MW-22	16.51	2.13	2.78	0.65	14.30 *			
MW-23D	19.19		5.45		13.74			
MW-25	22.77		6.34		16.43			
MW-27	21.50		11.16		10.34			
MW-28	18.22		8.29		9.93			
MW-30	16.39		8.57		7.82			
ИW-31	14.35		4.51		9.84			
MW-32	26.07		5.23		20.84			
/W-33	24.90		9.31		15.59			
MW-34	28.96		15.79		13.17			
/W-35	18.68		6.24		12.44			
MW-36	20.01	7.01	8.62	1.61	12.80 *			

^{-- -} No measurable petroleum

^{* -} Water-level elevations corrected for presence of separate-phase petroleum. Correction assumes density of 0.874 (average specific gravity of petroleum samples collected at the Yard).

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

June 4, 1992								
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)			
MW-13	16.08		2.53		13.55			
MW-16	20.92	4.88	8.62	3.74	15.57 *			
MW-17	19.51	4.76	7.71	2.95	14.38 *			
MW-19	20.13		7.46		12.67			
MW-20	19.09	4.53	5.03	0.50	14.50 *			
MW-21	17.54		2.78		14.76			
MW-22	16.51	1.87	2.62	0.75	14.55 *			
MW-23D	19.19		5.15		14.04			
MW-35	18.68		5.89		12.79			
MW-36	20.01	6.59	8.46	1.87	13.18 *			

^{-- -} No measurable petroleum

^{* -} Water-level elevations corrected for presence of separate-phase petroleum. Correction assumes density of 0.874 (average specific gravity of petroleum samples collected at the Yard).

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

February 8, 1993								
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)			
MW-13	16.08		2.22		13.86			
MW-16	20.92	4.74	7.31	2.57	15.86 *			
MW-17	19.51	4.54	7.20	2.66	14.63 *			
MW-19	20.13		7.31		12.82			
MW-20	19.09	4.33	4.69	0.36	14.71 *			
MW-21	17.54		2.42		15.12			
MW-22	16.51	1.48	1.86	0.38	14.98 *			
MW-23D	19.19		4.80		14.39			
MW-25	22.77		5.71		17.06			
MW-25A	25.28		9.59		15.69			
MW-27	21.50		10.71		10.79			
MW-28	18.22		7.97		10.25			
MW-29	12.29		4.60		7.69			
MW-29	12.29		4.60		7.69			
MW-30	16.39		7.97		8.42			
MW-31	14.35		4.24		10.11			
MW-32	26.07		4.61		21.46			
MW-33	24.90		8.63		16.27			
MW-34	28.96		14.68		14.28			
MW-35	18.68		5.74		12.94			
MW-36	20.01	6.51	7.40	0.89	13.39 *			
MW-41	14.98		4.35		10.63			
MW-42	15.71		5.99		9.72			
MW-43	15.14		5.33		9.81			
MW-44D	14.27		4.36		9.91			
MW-45	22.64		12.12		10.52			
MW-46	26.51		10.65		15.86			
MW-47	28.78		9.32		19.46			
MW-48D	28.97		11.53		17.44			

^{-- -} No measurable petroleum

^{* -} Water-level elevations corrected for presence of separate-phase petroleum. Correction assumes density of 0.874 (average specific gravity of petroleum samples collected at the Yard).

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

September 8, 1993								
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)			
MW-13	16.08		NM		NM			
MW-17	19.51	4.44	7.11	2.67	14.73 *			
MW-19	20.13		7.39		12.74			
MW-20	19.09	4.32	4.77	0.45	14.71 *			
MW-21	17.54		2.58		14.96			
MW-22	16.51	1.35	1.99	0.64	15.08 *			
MW-23D	19.19		4.49		14.70			
MW-35	18.68		5.73		12.95			
MW-36	20.01	6.58	6.61	0.03	13.43 *			
RW-2	19.69		4.82		14.87			
		Septembe	er 22, 1993					
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)			
	Elevation (ft above NAVD 1988 mean sea level)	to Petroleum (ft below measuring point)	to Water (ft below measuring point)	Thickness (ft)	Elevation (ft relative to mean sea level)			
Designation MW-13 MW-17	Elevation (ft above NAVD 1988 mean sea level) 16.08 19.51	to Petroleum (ft below measuring point)	to Water (ft below measuring point) 1.89 7.21	Thickness (ft)	Elevation (ft relative to mean sea level) 14.19 14.83 *			
Designation MW-13 MW-17 MW-19	Elevation (ft above NAVD 1988 mean sea level) 16.08 19.51 20.13	to Petroleum (ft below measuring point) 4.32	to Water (ft below measuring point) 1.89 7.21 7.23	Thickness (ft) 2.89	Elevation (ft relative to mean sea level) 14.19 14.83 * 12.90			
Designation MW-13 MW-17 MW-19 MW-20	Elevation (ft above NAVD 1988 mean sea level) 16.08 19.51 20.13 19.09	to Petroleum (ft below measuring point) 4.32	to Water (ft below measuring point) 1.89 7.21 7.23 4.69	Thickness (ft)	Elevation (ft relative to mean sea level) 14.19 14.83 * 12.90 15.00 *			
Designation MW-13 MW-17 MW-19 MW-20 MW-21	Elevation (ft above NAVD 1988 mean sea level) 16.08 19.51 20.13 19.09 17.54	to Petroleum (ft below measuring point) 4.32 4.00	to Water (ft below measuring point) 1.89 7.21 7.23 4.69 2.26	Thickness (ft) 2.89 0.69	Elevation (ft relative to mean sea level) 14.19 14.83 * 12.90 15.00 * 15.28			
Designation MW-13 MW-17 MW-19 MW-20 MW-21 MW-22	Elevation (ft above NAVD 1988 mean sea level) 16.08 19.51 20.13 19.09 17.54 16.51	to Petroleum (ft below measuring point) 4.32 4.00	to Water (ft below measuring point) 1.89 7.21 7.23 4.69 2.26 1.97	Thickness (ft) 2.89 0.69	Elevation (ft relative to mean sea level) 14.19 14.83 * 12.90 15.00 * 15.28 15.17 *			
Designation MW-13 MW-17 MW-19 MW-20 MW-21 MW-22 MW-23D	Elevation (ft above NAVD 1988 mean sea level) 16.08 19.51 20.13 19.09 17.54 16.51 19.19	to Petroleum (ft below measuring point) 4.32 4.00	to Water (ft below measuring point) 1.89 7.21 7.23 4.69 2.26 1.97 4.61	Thickness (ft) 2.89 0.69	Elevation (ft relative to mean sea level) 14.19 14.83 * 12.90 15.00 * 15.28 15.17 * 14.58			
Designation MW-13 MW-17 MW-19 MW-20 MW-21 MW-22 MW-23D MW-35	Elevation (ft above NAVD 1988 mean sea level) 16.08 19.51 20.13 19.09 17.54 16.51 19.19 18.68	to Petroleum (ft below measuring point) 4.32 4.00 1.25	to Water (ft below measuring point) 1.89 7.21 7.23 4.69 2.26 1.97 4.61 5.53	Thickness (ft) 2.89 0.69 0.72	Elevation (ft relative to mean sea level) 14.19 14.83 * 12.90 15.00 * 15.28 15.17 * 14.58 13.15			
Designation	Elevation (ft above NAVD 1988 mean sea level) 16.08 19.51 20.13 19.09 17.54 16.51 19.19	to Petroleum (ft below measuring point) 4.32 4.00 1.25	to Water (ft below measuring point) 1.89 7.21 7.23 4.69 2.26 1.97 4.61	Thickness (ft) 2.89 0.69 0.72	Elevation (ft relative to mean sea level) 14.19 14.83 * 12.90 15.00 * 15.28 15.17 * 14.58			

^{-- -} No measurable petroleum

^{* -} Water-level elevations corrected for presence of separate-phase petroleum. Correction assumes density of 0.874 (average specific gravity of petroleum samples collected at the Yard).

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

October 19, 1993								
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)			
MW-13	16.08		2.13		13.95			
MW-17	19.51	4.65	7.15	2.50	14.55 *			
MW-19	20.13		7.38		12.75			
MW-20	19.09	4.34	4.76	0.42	14.70 *			
MW-21	17.54		2.54		15.00			
MW-22	16.51	1.43	1.99	0.56	15.01 *			
MW-23D	19.19		4.79		14.40			
MW-35	18.68		5.74		12.94			
MW-36	20.01	6.65	6.79	0.14	13.34 *			
RW-2	19.69		5.06		14.63			

^{-- -} No measurable petroleum

^{* -} Water-level elevations corrected for presence of separate-phase petroleum. Correction assumes density of 0.874 (average specific gravity of petroleum samples collected at the Yard).

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

December 9, 1993								
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)			
MW-17 MW-19 MW-20 MW-21 MW-23D MW-35 MW-36 RW-2	19.51 20.13 19.09 17.54 19.19 18.68 20.01 19.69	4.33 4.12 6.34	7.28 6.98 4.54 2.12 4.64 5.38 6.97 4.32	2.95 0.42 0.63	14.81 * 13.15 14.92 * 15.42 14.55 13.30 13.59 * 15.37			
		Decembe	er 23, 1993					
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)			
MW-13 MW-17 MW-19 MW-20 MW-21 MW-22 MW-23D MW-35 MW-36 RW-2	16.08 19.51 20.13 19.09 17.54 18.20 19.19 18.68 20.01 19.69	4.17 4.02 2.99 6.14	1.78 7.34 6.72 4.48 1.95 3.13 4.48 5.02 7.13 4.01	3.17 0.46 0.14 0.99	14.30 14.94 * 13.41 15.01 * 15.59 15.19 * 14.71 13.66 13.75 * 15.68			

^{-- -} No measurable petroleum

^{* -} Water-level elevations corrected for presence of separate-phase petroleum. Correction assumes density of 0.874 (average specific gravity of petroleum samples collected at the Yard).

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

		Februar	y 1, 1994		
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)
MW-13 MW-17 MW-19 MW-20 MW-21 MW-22	16.08 19.51 20.13 19.09 17.54 18.20	4.02 3.96 2.83	1.67 7.06 6.77 4.36 1.89 2.94	3.04 0.40 0.11	14.41 15.11 * 13.36 15.08 * 15.65 15.36 *
MW-23D MW-25A MW-27 MW-28 MW-29	19.19 25.28 21.50 18.22 12.29	 	4.33 9.13 10.26 7.45 3.87	 	14.86 16.15 11.24 10.77 8.42
MW-30 MW-31 MW-34 MW-35 MW-36 MW-37	16.39 14.35 28.96 18.68 20.01 17.87	 5.97	6.37 3.72 14.72 4.84 7.27 4.92	 1.30	10.02 10.63 14.24 13.84 13.88 * 12.95
MW-38D MW-39D MW-40D MW-42 MW-43	20.27 20.12 21.59 15.71 15.14	 	5.71 6.25 6.15 5.47 4.71	 	14.56 13.87 15.44 10.24 10.43
MW-44D MW-45 MW-46 MW-47 MW-48D	14.27 22.64 26.51 28.78 28.97	 	3.92 11.75 11.07 7.84 10.84	 	10.35 10.89 15.44 20.94 18.13
MW-49 MW-50 MW-51 MW-52 MW-53 MW-54	19.17 19.00 19.23 18.02 20.16 19.35	4.04 4.71 3.90	5.06 8.60 3.89 3.14 6.09 4.28	 4.56 1.38 0.38	14.11 14.39 * 15.34 14.88 15.28 * 15.40 *
MW-55 MW-56 MW-57 MW-58 MW-59	19.27 21.62 21.98 18.37 21.36	 	3.79 5.90 6.52 2.93 5.91	 	15.48 15.72 15.46 15.44 15.45
MW-60	23.31	7.81	8.84	1.03	15.37 *

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

February 1, 1994								
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)			
MW-61	30.95		14.52		16.43			
MW-62D	30.61		14.82		15.79			
MW-63	20.92		5.55		15.37			

^{-- -} No measurable petroleum

^{* -} Water-level elevations corrected for presence of separate-phase petroleum. Correction assumes density of 0.874 (average specific gravity of petroleum samples collected at the Yard).

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

March 7, 1994								
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)			
MW-13	16.08		1.52		14.56			
MW-17	19.51	3.71	7.20	3.49	15.36 *			
MW-19	20.13		6.50		13.63			
MW-20	19.09	3.88	4.36	0.48	15.15 *			
MW-21	19.06		4.01		15.05			
MW-22	18.20	2.63	3.35	0.72	15.48 *			
MW-23D	19.19		4.17		15.02			
MW-35	18.68		4.89		13.79			
MW-36	20.01	5.59	6.59	1.00	14.29 *			
MW-37	17.87		4.79		13.08			
MW-38D	20.27		5.57		14.70			
MW-39D	20.12		6.04		14.08			
MW-40D	21.59		5.90		15.69			
MW-49	19.17		4.59		14.58			
MW-50	19.00	3.89	7.17	3.28	14.70 *			
MW-51	19.23		3.84		15.39			
MW-52	18.02	2.99	2.99	0.00	15.03 *			
MW-53	20.16	4.59	6.05	1.46	15.39 *			
MW-54	19.35	3.69	5.20	1.51	15.47 *			
MW-55	19.27		3.70		15.57			
MW-56	21.62		5.79		15.83			
MW-57	21.98		6.46		15.52			
MW-58	18.37		2.86		15.51			
MW-59	21.36		5.61		15.75			
MW-60	23.31	7.72	8.89	1.17	15.44 *			
MW-63	20.92		5.50		15.42			

^{-- -} No measurable petroleum

^{* -} Water-level elevations corrected for presence of separate-phase petroleum. Correction assumes density of 0.874 (average specific gravity of petroleum samples collected at the Yard).

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

		April 1	1, 1994		
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)
MW-13	16.08		1.66		14.42
MW-17	19.51	4.17	6.82	2.65	15.01 *
MW-19	20.13		6.93		13.20
MW-20	19.09	3.98	4.47	0.49	15.05 *
MW-21	19.06		4.20		14.86
MW-22	18.20	2.68	3.64	0.96	15.40 *
MW-23D	19.19		4.31		14.88
MW-35	18.68		5.34		13.34
MW-36	20.01	6.21	6.31	0.10	13.79 *
MW-37	17.87		5.06		12.81
MW-38D	20.27		5.70		14.57
MW-39D	20.12		6.27		13.85
MW-40D	21.59		6.09		15.50
MW-49	19.17		5.18		13.99
MW-50	19.00	4.14	7.95	3.81	14.38 *
MW-51	19.23	3.92	4.03	0.11	15.30 *
MW-52	18.02		3.16		14.86
MW-53	20.16	4.68	6.15	1.47	15.29 *
MW-54	19.35	3.72	5.17	1.45	15.45 *
MW-55	19.27		3.74		15.53
MW-56	21.62		5.84		15.78
MW-57	21.98		6.48		15.50
MW-58	18.37		2.88		15.49
MW-59	21.36		5.83		15.53
MW-60	23.31	7.80	8.84	1.04	15.38 *
MW-63	20.92		5.56		15.36

^{-- -} No measurable petroleum

^{* -} Water-level elevations corrected for presence of separate-phase petroleum. Correction assumes density of 0.874 (average specific gravity of petroleum samples collected at the Yard).

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

		April 2	25, 1994		
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)
MW-13	16.08		1.76		14.32
MW-17	19.51	4.15	6.91	2.76	15.01 *
MW-19	20.13		7.03		13.10
MW-20	19.09	4.04	4.54	0.50	14.99 *
MW-21	19.06		4.28		14.78
MW-22	18.20	2.82	3.00	0.18	15.36 *
MW-23D	19.19		4.37		14.82
MW-35	18.68		5.43		13.25
MW-36	20.01	6.27	6.41	0.14	13.72 *
MW-37	17.87		5.22		12.65
MW-38D	20.27		5.82		14.45
MW-39D	20.12		6.33		13.79
MW-40D	21.59		6.14		15.45
MW-49	19.17		5.29		13.88
MW-50	19.00	4.14	8.85	4.71	14.27 *
MW-51	19.23	3.96	4.12	0.16	15.25 *
MW-52	18.02		3.26		14.76
MW-53	20.16	4.75	6.11	1.36	15.24 *
MW-54	19.35	3.87	4.74	0.87	15.37 *
MW-55	19.27		3.81		15.46
MW-56	21.62		5.94		15.68
MW-57	21.98		6.55		15.43
MW-58	18.37		2.96		15.41
MW-59	21.36		5.89		15.47
MW-60	23.31	7.87	8.83	0.96	15.32 *
MW-63	20.92		5.61		15.31

^{-- -} No measurable petroleum

^{* -} Water-level elevations corrected for presence of separate-phase petroleum. Correction assumes density of 0.874 (average specific gravity of petroleum samples collected at the Yard).

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

		May 3	31, 1994		
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)
MW-13	16.08		1.84		14.24
MW-17	19.51	4.12	7.04	2.92	15.02 *
MW-19	20.13		7.11		13.02
MW-20	19.09	4.08	4.59	0.51	14.95 *
MW-21	19.06		4.39		14.67
MW-22	18.20	2.86	3.62	0.76	15.24 *
MW-23D	19.19		4.44		14.75
MW-35	18.68		5.47		13.21
MW-36	20.01	6.36	6.50	0.14	13.63 *
MW-37	17.87		5.28		12.59
MW-38D	20.27		5.86		14.41
MW-39D	20.12		6.38		13.74
MW-40D	21.59		6.22		15.37
MW-49	19.17		5.35		13.82
MW-50	19.00	4.17	8.75	4.58	14.25 *
MW-51	19.23	4.02	4.18	0.16	15.19 *
MW-52	18.02		3.30		14.72
MW-53	20.16	4.80	6.08	1.28	15.20 *
MW-54	19.35	3.92	4.80	0.88	15.32 *
MW-55	19.27		3.87		15.40
MW-56	21.62		6.03		15.59
AW-57	21.98		6.14		15.84
MW-58	18.37		3.03		15.34
MW-59	21.36		5.99		15.37
MW-60	23.31	7.92	8.85	0.93	15.27 *
MW-63	20.92		5.68		15.24

^{-- -} No measurable petroleum

^{* -} Water-level elevations corrected for presence of separate-phase petroleum. Correction assumes density of 0.874 (average specific gravity of petroleum samples collected at the Yard).

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

		June 1	4, 1994		
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)
MW-13	17.30		3.29		14.01
MW-17	19.51	4.39	6.98	2.59	14.79 *
MW-19	20.13		7.26		12.87
MW-20	19.09	4.21	4.70	0.49	14.82 *
MW-20 MW-21	19.06		4.65		14.41
MW-21 MW-22	18.20	3.10	3.93	0.83	15.00 *
MW-23D	18.20		3.93 4.68		
					14.51
MW-25A	25.28		9.28		16.00
MW-27	21.50		10.69		10.81
MW-28	18.22		7.97		10.25
MW-29	12.29		5.05		7.24
MW-30	16.39		8.13		8.26
MW-31	14.35		4.28		10.07
MW-32	26.07		4.00		22.07
MW-33	24.90		8.31		16.59
MW-34	28.96		14.58		14.38
MW-35	18.68		5.63		13.05
MW-36	20.01	6.50	6.61	0.11	13.50 *
MW-37	17.87		5.50		12.37
MW-38D	20.27		6.02		14.25
MW-39D	20.12		6.54		13.58
MW-40D	21.59		6.40		15.19
MW-41	14.98		3.79		11.19
MW-42	15.71		6.10		9.61
MW-43	15.14		5.36		9.78
MW-44D	14.27		4.43		9.84
MW-45	22.64		12.13		10.51
MW-46	26.51		11.38		15.13
MW-47	28.78		7.47		21.31
					
MW-48D	28.97		10.83		18.14
MW-49	19.17	 4 41	5.63	 4.57	13.54
MW-50	19.00	4.41	8.96	4.55	14.02 *
MW-51	19.23	4.23	4.42	0.19	14.98 *
MW-52	18.02		3.55		14.47
MW-53	20.16	5.03	6.40	1.37	14.96 *
MW-54	19.35	4.15	4.85	0.70	15.11 *
MW-55	19.27		4.05		15.22
MW-56	21.62		6.25		15.37
MW-57	21.98		6.81		15.17
MW-58	18.37		3.27		15.10
MW-59	21.36		6.20		15.16

June 14, 1994

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)
MW-60	23.31	8.14	8.88	0.74	15.08 *
MW-61	30.95		14.85		16.10
MW-62D	30.61		14.55		16.06
MW-63	20.92		5.85		15.07

^{-- -} No measurable petroleum

^{* -} Water-level elevations corrected for presence of separate-phase petroleum. Correction assumes density of 0.874 (average specific gravity of petroleum samples collected at the Yard).

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

		July 1	2, 1994		
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)
MW-13	17.30		3.05		14.25
MW-17	19.51	4.21	7.02	2.81	14.95 *
MW-19	20.13		7.16		12.97
MW-20	19.09	4.12	4.62	0.50	14.91 *
MW-21	19.06		4.48		14.58
MW-22	18.20	2.90	3.68	0.78	15.20 *
MW-23D	19.19		4.47		14.72
MW-35	18.68		5.48		13.20
MW-36	20.01	6.34	6.52	0.18	13.65 *
MW-37	17.87		5.24		12.63
MW-38D	20.27		5.88		14.39
MW-39D	20.12		6.42		13.70
MW-40D	21.59		6.26		15.33
MW-49	19.17		5.34		13.83
MW-50	19.00	4.20	8.79	4.59	14.22 *
MW-51	19.23	4.06	4.17	0.11	15.16 *
MW-52	18.02		3.32		14.70
MW-53	20.16	4.85	6.13	1.28	15.15 *
MW-54	19.35	3.95	4.96	1.01	15.27 *
MW-55	19.27		3.91		15.36
MW-56	21.62		6.10		15.52
MW-57	21.98		6.67		15.31
MW-58	18.37		3.08		15.29
MW-59	21.36		6.02		15.34
MW-60	23.31	7.96	8.90	0.94	15.23 *
MW-63	20.92		5.71		15.21

^{-- -} No measurable petroleum

^{* -} Water-level elevations corrected for presence of separate-phase petroleum. Correction assumes density of 0.874 (average specific gravity of petroleum samples collected at the Yard).

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

		August	25, 1994		
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)
MW-13	17.30		2.50		14.80
MW-17	19.51	3.57	7.05	3.48	15.50 *
MW-19	20.13		6.47		13.66
MW-20	19.09	3.77	4.27	0.50	15.26 *
MW-21	19.06		4.04		15.02
MW-22	18.20	2.36	2.98	0.62	15.76 *
MW-23D	19.19		3.93		15.26
MW-35	18.68		4.80		13.88
MW-36	20.01	5.81	6.12	0.31	14.16 *
MW-37	17.87		4.66		13.21
MW-38D	20.27		5.45		14.82
MW-39D	20.12		5.82		14.30
MW-40D	21.59		5.75		15.84
MW-49	19.17		4.89		14.28
MW-50	19.00	3.65	8.31	4.66	14.76 *
MW-51	19.23	3.54	3.61	0.07	15.68 *
MW-52	18.02		2.79		15.23
MW-53	20.16	4.40	5.92	1.52	15.57 *
MW-54	19.35	3.25	4.40	1.15	15.96 *
MW-55	19.27		3.40		15.87
MW-56	21.62		5.62		16.00
AW-57	21.98		6.17		15.81
MW-58	18.37		2.58		15.79
MW-59	21.36		5.51		15.85
MW-60	23.31	7.33	9.30	1.97	15.73 *
MW-63	20.92		5.19		15.73

^{-- -} No measurable petroleum

^{* -} Water-level elevations corrected for presence of separate-phase petroleum. Correction assumes density of 0.874 (average specific gravity of petroleum samples collected at the Yard).

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

		Septembe	er 29, 1994		
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)
MW-13	17.30		3.01		14.29
MW-17	19.51	4.16	7.13	2.97	14.98 *
MW-19	20.13		7.06		13.07
MW-20	19.09	4.06	4.57	0.51	14.97 *
MW-21	19.06		4.39		14.67
MW-22	18.20	2.90	3.68	0.78	15.20 *
MW-23D	19.19		4.42		14.77
MW-35	18.68		5.12		13.56
MW-36	20.01	6.27	6.53	0.26	13.71 *
MW-37	17.87		4.94		12.93
MW-38D	20.27		5.85		14.42
MW-39D	20.12		6.36		13.76
MW-40D	21.59		6.25		15.34
MW-49	19.17		5.26		13.91
MW-50	19.00	4.11	8.74	4.63	14.31 *
MW-51	19.23	4.07	4.19	0.12	15.14 *
MW-52	18.02		3.29		14.73
AW-53	20.16	4.88	5.89	1.01	15.15 *
MW-54	19.35	3.92	5.19	1.27	15.27 *
AW-55	19.27		3.93		15.34
AW-56	21.62		6.13		15.49
AW-57	21.98		6.67		15.31
MW-58	18.37		3.08		15.29
MW-59	21.36		6.03		15.33
MW-60	23.31	7.97	8.95	0.98	15.22 *
MW-63	20.92		5.70		15.22

^{-- -} No measurable petroleum

^{* -} Water-level elevations corrected for presence of separate-phase petroleum. Correction assumes density of 0.874 (average specific gravity of petroleum samples collected at the Yard).

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

		October	25, 1994		
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)
MW-13	17.30		3.14		14.16
MW-17	19.51	4.38	6.93	2.55	14.81 *
MW-19	20.13		7.20		12.93
MW-20	19.09	4.13	4.63	0.50	14.90 *
MW-21	19.06		4.44		14.62
MW-22	18.20	3.10	3.54	0.44	15.04 *
MW-23D	19.19		4.60		14.59
MW-35	18.68		5.53		13.15
MW-36	20.01	6.43	6.64	0.21	13.55 *
MW-37	17.87		5.16		12.71
MW-38D	20.27		5.99		14.28
MW-39D	20.12		6.52		13.60
MW-40D	21.59		6.40		15.19
MW-49	19.17		5.50		13.67
MW-50	19.00	4.29	8.95	4.66	14.12 *
MW-51	19.23	4.22	4.31	0.09	15.00 *
MW-52	18.02		3.44		14.58
MW-53	20.16	5.05	6.06	1.01	14.98 *
MW-54	19.35	4.15	4.71	0.56	15.13 *
MW-55	19.27		4.07		15.20
MW-56	21.62		6.29		15.33
MW-57	21.98		6.82		15.16
MW-58	18.37		3.25		15.12
MW-59	21.36		6.20		15.16
MW-60	23.31	8.14	8.82	0.68	15.08 *
MW-63	20.92		5.81		15.11

^{-- -} No measurable petroleum

^{* -} Water-level elevations corrected for presence of separate-phase petroleum. Correction assumes density of 0.874 (average specific gravity of petroleum samples collected at the Yard).

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

November 29, 1994							
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)		
MW-13	17.30		2.78		14.52		
MW-17	19.51	4.20	7.01	2.81	14.96 *		
MW-19	20.13		6.80		13.33		
MW-20	19.09	3.94	4.43	0.49	15.09 *		
MW-21	19.06		4.14		14.92		
MW-22	18.20	2.85	3.09	0.24	15.32 *		
MW-23D	19.19		4.34		14.85		
MW-35	18.68		4.96		13.72		
MW-36	20.01	6.08	6.54	0.46	13.87 *		
MW-37	17.87		4.76		13.11		
MW-38D	20.27		5.69		14.58		
MW-39D	20.12		6.28		13.84		
MW-40D	21.59		6.19		15.40		
MW-49	19.17		5.04		14.13		
MW-50	19.00	4.09	7.72	3.63	14.45 *		
MW-51	19.23	4.02	4.08	0.06	15.20 *		
MW-52	18.02		3.15		14.87		
MW-53	20.16	4.83	5.76	0.93	15.21 *		
MW-54	19.35	3.89	4.80	0.91	15.35 *		
MW-55	19.27		3.86		15.41		
MW-56	21.62		6.01		15.61		
MW-57	21.98		6.60		15.38		
MW-58	18.37		3.01		15.36		
MW-59	21.36		5.95		15.41		
MW-60	23.31	7.89	8.90	1.01	15.29 *		
MW-63	20.92		5.57		15.35		

^{-- -} No measurable petroleum

^{* -} Water-level elevations corrected for presence of separate-phase petroleum. Correction assumes density of 0.874 (average specific gravity of petroleum samples collected at the Yard).

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

		Decembe	er 29, 1994		
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)
MW-13	17.30		3.18		14.12
MW-17	19.51	4.45	7.24	2.79	14.71 *
MW-19	20.13		7.14		12.99
MW-20	19.09	4.10	4.59	0.49	14.93 *
MW-21	19.06		4.52		14.54
MW-22	18.20	3.17	3.72	0.55	14.96 *
MW-23D	19.19		4.65		14.54
MW-35	18.68		5.44		13.24
MW-36	20.01	6.42	6.95	0.53	13.52 *
MW-37	17.87		5.32		12.55
MW-38D	20.27		6.03		14.24
MW-39D	20.12		6.55		13.57
MW-40D	21.59		6.47		15.12
MW-49	19.17		5.42		13.75
MW-50	19.00	4.41	8.54	4.13	14.07 *
MW-51	19.23	4.29	4.40	0.11	14.93 *
MW-52	18.02		3.51		14.51
MW-53	20.16	5.13	6.12	0.99	14.91 *
MW-54	19.35	4.21	5.11	0.90	15.03 *
MW-55	19.27		4.14		15.13
MW-56	21.62		6.39		15.23
MW-57	21.98		6.88		15.10
MW-58	18.37		3.32		15.05
MW-59	21.36		6.25		15.11
MW-60	23.31	8.19	9.04	0.85	15.01 *
MW-63	20.92		5.89		15.03

^{-- -} No measurable petroleum

^{* -} Water-level elevations corrected for presence of separate-phase petroleum. Correction assumes density of 0.874 (average specific gravity of petroleum samples collected at the Yard).

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

February 16, 1995							
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)		
MW-13	17.30		3.15		14.15		
MW-17	19.51	4.42	7.16	2.74	14.74 *		
MW-19	20.13		7.29		12.84		
MW-20	19.09	4.08	4.49	0.41	14.96 *		
MW-22	18.20	3.00	3.70	0.70	15.11 *		
MW-23D	19.19		4.57		14.62		
MW-35	18.68		5.64		13.04		
MW-36	20.01	6.43	7.27	0.84	13.47 *		
MW-37	17.87		5.34		12.53		
MW-38D	20.27		6.03		14.24		
MW-39D	20.12		6.67		13.45		
MW-40D	21.59		6.46		15.13		
MW-49	19.17		5.53		13.64		
MW-50	19.00	4.44	8.73	4.29	14.02 *		
MW-51	19.23	4.28	4.37	0.09	14.94 *		
MW-52	18.02		3.47		14.55		
MW-53	20.16	5.09	6.04	0.95	14.95 *		
MW-54	19.35	4.25	4.78	0.53	15.03 *		
MW-55	19.27		4.12		15.15		
MW-56	21.62		6.32		15.30		
MW-57	21.98		6.85		15.13		
MW-58	18.37		3.27		15.10		
MW-59	21.36		6.20		15.16		
MW-60	23.31	8.18	8.85	0.67	15.05 *		
MW-63	20.92		5.88		15.04		

^{-- -} No measurable petroleum

^{* -} Water-level elevations corrected for presence of separate-phase petroleum. Correction assumes density of 0.874 (average specific gravity of petroleum samples collected at the Yard).

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

March 14, 1995						
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)	
MW-13	17.30		3.27		14.03	
MW-17	19.51	4.30	7.56	3.26	14.80 *	
MW-19	20.13		7.23		12.90	
MW-20	19.09	4.08	4.55	0.47	14.95 *	
MW-21	19.06		4.57		14.49	
MW-22	18.20	3.33	3.90	0.57	14.80 *	
MW-23D	19.19		4.78		14.41	
MW-36	20.01	6.33	8.09	1.76	13.46 *	
MW-37	17.87		5.34		12.53	
MW-38D	20.27		6.13		14.14	
MW-39D	20.12		6.67		13.45	
MW-40D	21.59		6.68		14.91	
MW-49	19.17		5.39		13.78	
MW-50	19.00	4.53	8.44	3.91	13.98 *	
MW-51	19.23	4.48	4.68	0.20	14.72 *	
MW-52	18.02		3.61		14.41	
MW-53	20.16	6.30	6.35	0.05	13.85 *	
MW-54	19.35	4.43	5.44	1.01	14.79 *	
MW-55	19.27		4.66		14.61	
MW-56	21.62		6.54		15.08	
MW-57	21.98		7.15		14.83	
MW-58	18.37		3.49		14.88	
MW-59	21.36		6.44		14.92	
MW-60	23.31	8.53	9.85	1.32	14.61 *	
MW-63	20.92		7.12		13.80	

^{-- -} No measurable petroleum

^{* -} Water-level elevations corrected for presence of separate-phase petroleum. Correction assumes density of 0.874 (average specific gravity of petroleum samples collected at the Yard).

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

		April 2	28, 1995			
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)	
MW-13	17.30		3.59		13.71	
MW-17	19.51	4.63	7.40	2.77	14.53 *	
MW-19	20.13		7.61		12.52 14.66 *	
MW-20	19.09	4.37	4.85	0.48		
MW-21	19.06		5.11		13.95	
MW-22	18.20	3.62	4.18	0.56	14.51 * 14.12	
MW-23D	19.19		5.07 5.93			
MW-35	18.68				12.75	
MW-36	20.01	6.68	8.21	1.53	13.14 *	
MW-37	17.87		5.77		12.10	
MW-38D	20.27		6.46		13.81	
MW-39D	20.12		7.02		13.10	
MW-40D	21.59		6.95		14.64	
MW-49	19.17		5.90		13.27	
MW-50	19.00	4.81	9.29	4.48	13.63 *	
/IW-51	19.23	4.72	4.90	0.18	14.49 *	
MW-52	18.02	3.92	4.15	0.23	14.07 *	
AW-53	20.16	5.56	6.64	1.08	14.46 *	
MW-54	19.35	4.71	5.29	0.58	14.57 *	
AW-55	19.27		4.59		14.68	
/W-56	21.62		6.85		14.77	
/W-57	21.98		6.86		15.12	
MW-58	18.37		3.77		14.60	
MW-59	21.36		6.71		14.65	
MW-60	23.31	8.66	9.30	0.64	14.57 *	
MW-63	20.92		6.34		14.58	

^{-- -} No measurable petroleum

^{* -} Water-level elevations corrected for presence of separate-phase petroleum. Correction assumes density of 0.874 (average specific gravity of petroleum samples collected at the Yard).

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

September 19, 1995							
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)		
MW-13	17.30		3.53		13.77		
MW-17	19.51	4.87	6.93	2.06	14.38 *		
MW-19	20.13		7.59		12.54		
MW-20	19.09	4.77	5.18	0.41	14.27 *		
MW-21	19.06		5.19		13.87		
MW-22	18.20	3.71	4.05	0.34	14.45 *		
MW-23D	19.19		5.12		14.07		
/W-35	18.68		5.96		12.72		
/IW-36	20.01	6.84 	7.54 5.54	0.70	13.08 * 12.33		
/IW-37	17.87						
MW-38D	20.27		6.49		13.78		
MW-39D	20.12		7.10		13.02		
MW-40D	21.59		7.02		14.57		
MW-49	19.17		6.03		13.14		
/IW-50	19.00	4.87	8.96	4.09	13.61 *		
MW-51	19.23	4.81	4.90	0.09	14.41 *		
MW-52	18.02	3.90	4.09	0.19	14.10 *		
/IW-53	20.16	5.65	6.65	1.00	14.38 *		
MW-54	19.35	4.73	5.60	0.87	14.51 *		
MW-55	19.27		4.68		14.59		
/IW-56	21.62		6.95		14.67		
∕IW-57	21.98		7.45		14.53		
/IW-58	18.37		3.87		14.50		
MW-59	21.36		6.83		14.53		
MW-60	23.31	8.79	9.14	0.35	14.48 *		
MW-63	20.92		6.43		14.49		

^{-- -} No measurable petroleum

^{* -} Water-level elevations corrected for presence of separate-phase petroleum. Correction assumes density of 0.874 (average specific gravity of petroleum samples collected at the Yard).

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

November 9, 1995							
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)		
MW-13	17.30		2.97		14.33		
MW-17	19.51	4.33	7.19	2.86	14.82 *		
MW-19	20.13		6.92		13.21		
MW-20	19.09	4.05	4.38	4.38 0.33	15.00 *		
MW-21	19.06		4.35		14.71		
MW-22	22 18.20		3.25	0.03	14.98 *		
MW-23D	19.19		4.62		14.57 13.45 13.64 *		
MW-35	18.68		5.23 8.05 4.84				
MW-36	20.01	6.13		1.92			
MW-37	17.87				13.03		
MW-38D	20.27		5.96		14.31		
MW-39D	20.12		6.58		13.54		
MW-40D	21.59		6.55		15.04		
MW-49	19.17		5.03		14.14		
MW-50	19.00	4.34	8.42	4.08	14.15 *		
MW-51	19.23	4.35	4.39	0.04	14.87 *		
MW-52	18.02	3.38	3.75	0.37	14.59 *		
MW-53	20.16	5.16	6.13	0.97	14.88 *		
MW-54	19.35	4.21	5.65	1.44	14.96 *		
MW-55	19.27		4.21		15.06		
MW-56	21.62		6.57		15.05		
MW-57	21.98		6.99		14.99		
MW-58	18.37		3.36		15.01		
MW-59	21.36		6.33		15.03		
MW-60	23.31	8.25	9.21	0.96	14.94 *		
MW-63	20.92		5.91		15.01		

^{-- -} No measurable petroleum

^{* -} Water-level elevations corrected for presence of separate-phase petroleum. Correction assumes density of 0.874 (average specific gravity of petroleum samples collected at the Yard).

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

		May 2	2, 1996		
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)
MW-13	17.30		3.03		14.27
MW-17	19.51	4.14	6.83	2.69	15.03 *
MW-19	20.13		6.97		13.16
MW-20	19.09	4.06	4.36	0.30	14.99 *
MW-21	19.06		4.27		14.79
MW-22	18.20	3.14	3.22	0.08	15.05 *
MW-23D	19.19	5.11	4.53		14.66
MW-25A	25.28		9.40		15.88
MW-27	21.50		10.45		11.05
MW-28	18.22		8.09		10.13
MW-29	12.29		3.86		8.43
MW-30 12.29 16.39			7.17		9.22
MW-31	14.35		4.34		10.01
MW-34	28.96		13.98		14.98
MW-35	18.68		5.22		13.46
MW-36	20.01	6.09	7.70	1.61	13.72 *
MW-37	17.87	0.09	5.20	1.01	12.67
MW-38D	20.27		5.89		14.38
MW-39D	20.12		6.40		13.72
MW-40D	21.59		6.44		15.15
MW-41	14.98		3.89		11.09
MW-42	15.71		6.20		9.51
MW-43	15.14		5.72		9.42
MW-44D	14.27		5.72		9.42
MW-45	22.64		12.04		10.60
MW-46	26.51		11.28		15.23
MW-47	28.78		7.22		21.56
MW-48D	28.97		10.82		18.15
MW-49	19.17		5.29		13.88
MW-50	19.00	4.22	7.82	3.60	14.33 *
MW-51	19.00	4.22	4.22	0.01	15.02 *
		3.28		0.01	
MW-52 MW-53	18.02 20.16	3.28 4.87	3.81 7.16	0.53 2.29	14.67 * 15.00 *
MW-54	19.35	4.87 4.07	7.16 5.16	2.29 1.09	15.14 *
MW-55	19.33 19.27	4.07	5.16 4.15	1.09	15.14 **
MW-56	21.62		4.13 6.47		15.15
MW-57	21.62		6.47		15.15
MW-58	21.98 18.37				15.12
MW-59			3.25		15.12
	21.36	 0 1 <i>1</i>	6.22	0.69	
MW-60 MW-61	23.31 30.95	8.14	8.82 14.65	0.68	15.08 * 16.30

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)
MW-62D	30.61		14.98		15.63
MW-63	20.92		5.87		15.05
MW-64	21.55		6.16		15.39
MW-65	21.02		5.35		15.67
MW-66	22.80		6.79		16.01
MW-67	22.46		7.57		14.89
MW-68	25.38		9.93		15.45

^{-- -} No measurable petroleum

^{* -} Water-level elevations corrected for presence of separate-phase petroleum. Correction assumes density of 0.874 (average specific gravity of petroleum samples collected at the Yard).

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

(ft above (ft below (ft below Petroleum Ele Well NAVD 1988 measuring measuring Thickness (ft rel	er-Level
MW-19 20.13 7.88 12.25 MW-20 19.09 4.31 4.63 0.32 14.74 MW-21 19.06 4.77 14.29 MW-22 18.20 3.18 3.32 0.14 15.00 MW-23D 19.19 4.76 14.43 MW-25A 25.28 9.28 16.00 MW-27 21.50 10.61 10.89 MW-28 18.22 8.16 10.06	vation lative to sea level)
MW-19 20.13 7.88 12.25 MW-20 19.09 4.31 4.63 0.32 14.74 MW-21 19.06 4.77 14.29 MW-22 18.20 3.18 3.32 0.14 15.00 MW-23D 19.19 4.76 14.43 MW-25A 25.28 9.28 16.00 MW-27 21.50 10.61 10.89 MW-28 18.22 8.16 10.06	*
MW-20 19.09 4.31 4.63 0.32 14.74 MW-21 19.06 4.77 14.29 MW-22 18.20 3.18 3.32 0.14 15.00 MW-23D 19.19 4.76 14.43 MW-25A 25.28 9.28 16.00 MW-27 21.50 10.61 10.89 MW-28 18.22 8.16 10.06	
MW-21 19.06 4.77 14.29 MW-22 18.20 3.18 3.32 0.14 15.00 MW-23D 19.19 4.76 14.43 MW-25A 25.28 9.28 16.00 MW-27 21.50 10.61 10.89 MW-28 18.22 8.16 10.06	*
MW-22 18.20 3.18 3.32 0.14 15.00 MW-23D 19.19 4.76 14.43 MW-25A 25.28 9.28 16.00 MW-27 21.50 10.61 10.89 MW-28 18.22 8.16 10.06	
MW-23D 19.19 4.76 14.43 MW-25A 25.28 9.28 16.00 MW-27 21.50 10.61 10.89 MW-28 18.22 8.16 10.06	*
MW-25A 25.28 9.28 16.00 MW-27 21.50 10.61 10.89 MW-28 18.22 8.16 10.06	
MW-27 21.50 10.61 10.89 MW-28 18.22 8.16 10.06	
MW-28 18.22 8.16 10.06	
MW-30 16.39 8.00 8.39	
MW-34 28.96 14.55 14.41	
MW-35 18.68 6.25 12.43	
MW-36 20.01 6.62 8.65 2.03 13.13	*
MW-37 17.87 6.11 11.76	
MW-38D 20.27 6.19 14.08	
MW-39D 20.12 7.19 12.93	
MW-40D 21.59 6.45 15.14	
MW-41 14.98 4.47 10.51	
MW-42 15.71 6.84 8.87	
MW-43 15.14 6.29 8.85	
MW-44D 14.27 5.51 8.76	
MW-45 22.64 10.15 12.49	
MW-46 26.51 11.30 15.21	
MW-47 28.78 7.40 21.38	
MW-48D 28.97 10.88 18.09	
MW-49 19.17 5.75 13.42	
MW-50 19.00 4.70 8.83 4.13 13.78	*
MW-51 19.23 4.28 4.29 0.01 14.95	*
MW-52 18.02 3.45 4.61 1.16 14.42	*
MW-56 21.62 6.49 6.52 0.03 15.13	*
MW-57 21.98 6.88 15.10	
MW-59 21.36 6.24 15.12	
MW-60 23.31 8.17 8.91 0.74 15.05	*
MW-61 30.95 14.92 16.03	
MW-62D 30.61 14.56 16.05	
MW-64 21.55 6.16 15.39	
MW-65 21.02 5.43 15.59	
MW-66 22.80 7.05 15.75	
MW-67 22.46 7.50 14.96	

Appendix B. Historic Water-Level Elevations and Separate-Phase Hydrocarbon Thickness Measurements OU-6 RI/FS Report , Sunnyside Yard, Queens, New York

June 17 - 19, 1997								
Well Designation	Measuring Point Elevation (ft above NAVD 1988 mean sea level)	Depth to Petroleum (ft below measuring point)	Depth to Water (ft below measuring point)	Petroleum Thickness (ft)	Water-Level Elevation (ft relative to mean sea level)			
MW-68	25.38		9.90		15.48			
MW-69D	25.46		9.97		15.49			
RW-2	19.69		5.01		14.68			
TP-8	25.60		9.26		16.34			
TP-9	29.71		10.13		19.58			
TP-10	36.83		14.05		22.78			

^{-- -} No measurable petroleum

^{* -} Water-level elevations corrected for presence of separate-phase petroleum. Correction assumes density of 0.874 (average specific gravity of petroleum samples collected at the Yard).

APPENDIX C

Soil Boring and Monitoring Well Construction Logs

l .	1 4 1./0
	PROJECT NAME Amtrak/Sunnyside Yard NUMBER 05509Y
LAND SURFACE	WELL NO. MW-13 PERMIT NO.
	TOWN/CITY Long Island City
	COUNTY Queens STATE New York
10 INCH DIAMETER, DRILLED HOLE	LAND-SURFACE ELEVATION
ИИ	AND DATUM FEET D SURVEYED
-WELL CASING 4 INCH DIAMETER,	ESTIMATED
THOR DIAMETER,	INSTALLATION DATE(S) 11/06/90
BACKFILL	DRILLING METHOD Hollow Stem Auger
⊠ GROUT <u>cement</u>	DRILLING CONTRACTOR Land, Air, Water Enviro. Services
	DRILLING FLUID None
0.5 FT.	
□ SLURRY BENTONITE N PELLETS	DEVELOPMENT TECHNIQUE(S) AND DATE(S)
1FT.	Pump & surge - submersible pump.
	10 gpm for 1 hour, 12/18/90.
2 FT.	FLUID LOSS DURING DRILLING None GALLONS
	WATER REMOVED DURING DEVELOPMENT 600 GALLONS
WELL SCREEN	STATIC DEPTH TO WATER 4 FEET BELOW M.P.
4 INCH DIAMETER, SS* 20 SLOT	PUMPING DEPTH TO WATERFEET BELOW M.P.
<u>33 _20</u> SLOT	PUMPING DURATIONHOURS
	YIELD GPM DATE
#,	SPECIFIC CAPACITY GPM/FT.
#2_ GRAVEL PACK	WELL PURPOSE Monitoring
	WELL FOR OCE MOINTOINE
12 FT.	
14 FT.	REMARKS *SS - stainless steel continuous slot.
	HEMANNS '55 - Stanness Steel Continuous Stot.
NOTE:	
ALL DEPTHS IN FEET	
BELOW LAND SURFACE	· ·
·	H Gregory
	HYDROGEOLOGIST H. Gregory

			TES, INC.	MANAGEMENT	GEOLOGIC LOG					LOG	
						WELL I	DATA		<u>G</u> .	-W READI	NGS (1)
Study	No(05509Y	Da	ate 11/06/90	Hole Diam. (in.)		-		Date	DTW MP (2	
•			ard		Final Depth (ft.)						T
Client	AMT	ΓRAK			Casing Diam. (in	•			I		
			of <u>1</u>		Casing Length (ft	•			1		
					Screen Setting (ft				1		
					Screen Slot & Ty			-	ļ	1	
					Well Status Mor		veII			T ODLIENI	
			40 En			PLER				ELOPMENT	ľ
			40 En		Type <u>Split Spoor</u> Hammer <u>140</u>		lb.	Pump	and surge	;	
			stem auger		Fall <u>30</u>		ID. in.				
	JI 17-15.	TIUIIO	SAMPLI					<u> </u>			
PID	No.	Rec.	Depth	Blows/6"	Strata Change & Gen. Desc.	Depth (ft)	SAMP	'LE D	ESCRIP	'TION	
(ppm) 0	110.	100.	0-2'	Grab sample	& GCII. Desc.	0-2-		fine to r	medium S	AND, trace sil	lt and fine
			" -	J.22 2	1	-	gravel.	1414	nous.	71.12, t. 1.1.	IL une
ļ				,	,	1	1				
0.1	1		2-4'	Grab sample	,	2-4-	Brown	sine to r	nedium S	AND, trace sil	lt and fine
!	'			· ['	 	gravel, g	gray stai able at	ining to sil 4 fr	lt.	
!			Í	,	1	1 1	Water	abic at	+ It.		
1	ĺ			}	,		ĺ				
	'	!	1	·	1		1				
1	1	'	1	'	24377	[]	1				
1	ĺ	1	1	1	SAND	1 1	1				
	1	1	1			1 1	1				
	i '	'] '	'	'	1 1	1				
	'	_ '	· !	1	1	()	ĺ				
30	1 '	1.7	9-11'	3, 3, 10, 12	1	9-11-	Brown f gravel, g	ine to n	nedium SA	AND, trace sil	lt, fine
1	i !	'	1	1	1	1 }	graver, E	ζΓäy sιαι	ning.		
	1	1	1	1	1	1 1	ĺ				
	1	'	1	'	1	1 1	l				
1		1 1	1 1	'	1 '	1 1	ĺ				
1	, 1	'	'	1	1	1					
,	. !		1	1 '	1	1	į				
		1 1	1 1	1	14 ft Bottom of	1	I				
	,	1 1	1 1	1	boring	1	l				
ł		1 1	1	1 1	1	1	I				
1		1	1	1	1	1	I				
	,	1 1	1	1	1	1	I				
]		1	1	1	1	1	I				
		1	1	1	1	ı	ı				
		1	1	1	1	, [
- 1	}	1	()	1	1	<i>i</i> [

Consulting Ground-Water Geologists
ROUX ASSOCIATES INC

<u> </u>	PROJECT NAME Amtrak/Sunnyside Yard NUMBER 05509Y
2.5 FT.	
LAND SURFACE	WELL NO. MW-16 PERMIT NO.
	TOWN/CITY Long Island City
10 INCH DIAMETER,	COUNTY Queens STATE New York
DRILLED HOLE	LAND-SURFACE ELEVATION
WELL CASING	AND DATUM FEET SURVEYED
4 INCH DIAMETER,	ESTIMATED
	INSTALLATION DATE(S)
BACKFILL	DRILLING METHOD Hollow Stem Auger
⊠ GROUT cement	DRILLING CONTRACTOR Land, Air, Water Enviro. Services
	DRILLING FLUID None
1.0 FT.	
	DEVELOPMENT TECHNIQUE(S) AND DATE(S)
BENTONITE PELLETS 2.0 FT.	Bailed; pump & surge - submersible pump, 12/17/90, 12/19/90.
2.5 FT.	FLUID LOSS DURING DRILLING None GALLONS
	WATER REMOVED DURING DEVELOPMENT 50 GALLONS
WELL SCREEN	STATIC DEPTH TO WATER 7 FEET BELOW M.P.
4 INCH DIAMETER, 20 SLOT	PUMPING DEPTH TO WATER FEET BELOW M.P.
SLOT	_
	PUMPING DURATION HOURS
	YIELD GPM DATE
#2 GRAVEL PACK	SPECIFIC CAPACITY GPM/FT.
	WELL PURPOSE Monitoring
12.5 FT.	
14 _{FT} .	
<u></u> FT.	REMARKS *SS - stainless steel continuous slot.
NOTE: ALL DEPTHS IN FEET	
BELOW LAND SURFACE	
and dom not	
	HYDROGEOLOGIST H. Gregory

			res, inc.	WANAGEMENT	GEOLOGIC LOG						
			_	· · · · · · · · · · · · · · · · · · ·	WELL DATA			G-W READINGS (1)			
Study	No()5509Y	Da	te <u>11/07/90</u>	Hole Diam. (in.)	_10			Date	DTW MP (2)	Elev. W.
Projec	t <u>Sun</u>	nyside Y	ard		Final Depth (ft.)	_14					
Client	AMT	RAK_		<u> </u>	Casing Diam. (in	n.) <u>4</u>					
Page _	1		of <u>1</u>	<u> </u>	Casing Length (f	t.) <u>15</u>					
Logge	d By _	H. Grego	ory		Screen Setting (f	t.) <u>12.5 -</u>	2.5	_			
Well 1	No. <u>M</u>	W-16			Screen Slot & T						
					Well Status Mo		<u>ell</u>				
P						<u>PLER</u>			DEVE	LOPMENT	` •
			5En		Type <u>Split Spoo</u>			Pump	and surge	- bail product	· ·
		_			Hammer <u>140</u>						
Туре	of Rig	<u>Hollow</u>	stem auger		Fall <u>30</u>		in.				
PID			SAMPLI	Ε	Strata Change	Depth	CAMD	TE D	ESCRIP	TION	
(ppm)	No.	Rec.	Depth	Blows/6"	Strata Change & Gen. Desc.	Depth (ft)	JAMP	LE D	ESCKIP	110N	
30			0-2'	Grab sample	1	0-2-				AND and silt;	railroad
							bea III;	brokei	concrete		
35			2-4'	Grab sample	1	2-4-	Brown i	ine to	medium SA	AND stained g	ray
					SAND					_	
60		1.1	4-6'	5, 7, 21, 27	}	4-6-	Brown r	nediun	i SAND, ti gray, wet	race fine sand	and fine
			ĺ .			li	graver si	ailleu į	gray, wei		
							Water to	able at	5.2 ft.		
81		1.4	6-8'	11, 12, 36, 25	·	1 1					
			{		[ĺĺ					
						1					
121		1.4	10-12'	0 10 05 17		1010	D	1.		04375	•
131		1,4	10-12	8, 12, 25, 17		10-12-	Brown n	nedium	to coarse	SAND stained	gray
	ľ										
}						}					
ł	}				14.6						
					14 ft Bottom of						
					boring						
ľ						1					
	(
											•

⁽¹⁾ in feet relative to a common datum(2) from top of PVC casing

<u>+</u>	PROJECT NAME Amtrak/Sunnyside Yard NUMBER 05509Y
3 FT.	
LAND SURFACE	WELL NO PERMIT NO
	TOWN/CITY Long Island City
10	COUNTY Queens STATE New York
10 INCH DIAMETER, DRILLED HOLE	LAND-SURFACE ELEVATION
ИИ	AND DATUM FEET
-WELL CASING	ESTIMATED
4 INCH DIAMETER,	INSTALLATION DATE(S) 11/08/90
BACKFILL	DRILLING METHOD Hollow Stem Auger
S GROUT cement	DRILLING CONTRACTOR Land, Air, Water Enviro. Service
	DRILLING FLUID None
0.5 FT. □ SLURRY	_
BENTONITE PELLETS	DEVELOPMENT TECHNIQUE(S) AND DATE(S)
1.3 FT.	Pump & surge - submersible pump, 7 gpm for 1 hour
2 FT.	FLUID LOSS DURING DRILLING None GALLONS
	WATER REMOVED DURING DEVELOPMENT 420 GALLONS
WELL SCREEN	STATIC DEPTH TO WATER 7 FEET BELOW M.P.
4 INCH DIAMETER,	
<u>SS*</u> <u>20</u> s∟o⊤	PUMPING DEPTH TO WATER FEET BELOW M.P.
	PUMPING DURATION HOURS
	YIELD GPM DATE
#2 GRAVEL PACK	SPECIFIC CAPACITY GPM/FT.
	WELL PURPOSE Monitoring
12	
12 FT.	
<u>13</u> FT.	REMARKS *SS - stainless steel continuous slot
	SS - Stanness steel continuous stot
NOTE:	
ALL DEPTHS IN FEET	
BELOW LAND SURFACE	
	HYDROGEOLOGIST H. Gregory

[SULTING & I	MANAGEMENT	GEOLOGIC LOG						
					WELL DATA			G-W READINGS (1)			
Study	No()5509Y	Da	te <u>11/08/90</u>	Hole Diam. (in.)	_10			Date	DTW MP (2	
-		_	ard		Final Depth (ft.)						
		-			Casing Diam. (in	.) <u>4</u>					
Page_	1		of _1		Casing Length (f						
			ls		Screen Setting (f						
					Screen Slot & Ty						
Locati	on		_		Well Status Moi	nitoring v	vell				<u> </u>
					<u>SAM</u>	<u>PLER</u>			DEVE	LOPMEN	Σ
Drillin	ig Start	ed <u>12:3</u>	5En	ded <u>15:00</u>	Type Split Spoot	<u>n</u>		Pump	and surge	•	
Drille	r <u>Land.</u>	Air, W	ater Enviror	nmental Services	Hammer <u>140</u>		lb.				
Type	of Rig	<u>Hollow</u>	stem auger		Fall 30		in.				
PID			SAMPL	E	Strata Change	Denth	CANO	rrn	rconin	TTON	-
(ppm)	No.	Rec.	Depth	Blows/6"	Strata Change & Gen. Desc.	Depth (ft)	SAMP	LE D	ESCRIP	TION	
0			0-2'	Grab sample		0-2-	Brown a	and bla	ck sand, li	ttle gravel.	
		Ì		Ì							
		1									•
62			2-4'	Grab sample		2-4-	Strong h	iydroca	rbon odor		
'					ļ						
_	1	 			SAND						
52		1.0	4-6'	N/R	}	4-6-	Gray fin	e to m	edium SA	ND, little grav	el, strong
							hydrocai	roon oc	uor.		
										•	
			İ]							
			l.								
60		1.3	9-11'	6, 12, 12, 25		9-11-	Gray sta	ined fi	ne to medi	ium SAND, tr	ace silt,
							strong h	ydrocai	rbon odor.		
ľ											
			!								
					,						
			ľ								
-					13 ft						
					Bottom of boring						
					Coring						
]							,	
						{					
ļ				ļ .	J	J					
				ļ		1					
						1					,

in feet relative to a common datum
 from top of PVC casing
 NOTE: 3rd attempt to install well. 1st and 2nd attempts were abandoned due to auger refusal and heaving sand.

<u>+</u> _	PROJECT NAME Amtrak/Sunnyside Yard NUMBER 05509Y
2.5 FT.	
LAND SURFACE	WELL NO PERMIT NO
1, 8 8	TOWN/CITY Long Island City
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	COUNTY Queens STATE New York
10 INCH DIAMETER, DRILLED HOLE	LAND-SURFACE ELEVATION
	AND DATUM FEET
WELL CASING	
4 INCH DIAMETER,	INSTALLATION DATE(S) 12/20/90
BACKFILL	DRILLING METHOD Hollow Stem Auger
⊠ GROUT cement	DRILLING CONTRACTOR Land, Air, Water Enviro. Services
	DRILLING FLUID None
0.5 FT. □ SLURRY	
BENTONITE PELLETS	DEVELOPMENT TECHNIQUE(S) AND DATE(S)
2 FT.	Bailed; pump & surge - submersible pump, 12/20/90
	
4FT.	FLUID LOSS DURING DRILLING None GALLONS
	WATER REMOVED DURING DEVELOPMENT 25 GALLONS
WELL SCREEN	STATIC DEPTH TO WATER 8 FEET BELOW M.P.
4 INCH DIAMETER, SS* 20 SLOT	PUMPING DEPTH TO WATER FEET BELOW M.P.
	PUMPING DURATION HOURS
	YIELD DATE
	SPECIFIC CAPACITY GPM/FT.
#2_ GRAVEL PACK	
	WELL PURPOSE Monitoring
14_ FT.	
15 FT.	
F1.	REMARKS *SS - stainless steel continuous slot.
NOTE:	
ALL DEPTHS IN FEET BELOW LAND SURFACE	
January Son Age	
· ·	HYDROGEOLOGIST J. Duminuco

ROUX ASSO			MANAGEMENT	GEOLOGIC LOG						
	<u>-</u>				VELL I	OATA		<u>G</u> .	W READ	INGS (1)
Study No. <u>055</u>	09Y	Dat	e <u>12/07/90</u>	Hole Diam. (in.) 10				Date		(2) Elev. W
Project Sunnys				Final Depth (ft.)	15					
Client AMTRA	AK			Casing Diam. (in	.) _4					
Page _ 1		_ of <u>1</u>		Casing Length (f	t.) <u>16.5</u>					
Logged By <u>H.</u>	Gregor	<u>y</u>		Screen Setting (fi	•					
Well No. <u>MW</u>				Screen Slot & Ty					1	
Location				Well Status Mor		ell		DELE	T ODI (E)	TOD
M.P. Elevation		-	1-1 2-20		<u>PLER</u>				ELOPMEN	<u>7.1.</u>
Drilling Started				Type <u>Split Spoor</u> Hammer <u>140</u>			Pump	and surge	2	
Type of Rig H			mental Services	Fall 30		10. in.				
Type of Rig 11		SAMPLE		1 au _50	1 7			_		
PID No. I	Rec.	Depth	Blows/6"	Strata Change & Gen. Desc.	Depth (ft)	SAMP	LE D	ESCRIP	TION	
(ppm) No. I		0-2'	Grab sample	de Gom. Dose.	0-2-			ne to medi ad bed fill	ium SAND.	Gravel to
70/23		2-4'	Grab sample	SAND	2-4-	gravel as Bottom	nd cind	lers, Railro	e to coarse soad bed fill. to coarse SA	-
18 1	l.1	4-6'	1, 3, 4, 10	and	4-6-				e SAND, tra	
3.9	1.5	6-8'	4, 5, 5, 6	SILT	6-8-	Water to Top 0.5's	: Gray-	-brown fin	e SAND, tra to medium S	• •
60	3	12-14'	18, 21, 29, 30	15 ft Bottom of boring	12-14-	Brown fi	ine to d	coarse SAl	ND, trace sil	t.

I ₊	1
2_FT.	PROJECT NAME Amtrak/Sunnyside Yard NUMBER 05509Y
LAND SURFACE	WELL NOMW-20 PERMIT NO
	TOWN/CITY Long Island City
10 INCH DIAMETER.	COUNTY Queens STATE New York
DRILLED HOLE	LAND-SURFACE ELEVATION
WELL CASING	AND DATUM FEET
4 INCH DIAMETER,	ESTIMATED
	INSTALLATION DATE(S) 12/11/90
BACKFILL	DRILLING METHOD Hollow Stem Auger
⊠ GROUT cement	DRILLING CONTRACTOR Land, Air, Water Enviro. Services
	DRILLING FLUID None
0.5 FT.	
☐ SLURRY BENTONITE MEDILETS	DEVELOPMENT TECHNIQUE(S) AND DATE(S)
1.5 FT.	Pump & surge - submersible pump, 12/17/90
	
2 <u>.5</u> FT.	FLUID LOSS DURING DRILLING GALLONS
WELL SCREEN	WATER REMOVED DURING DEVELOPMENT 60 GALLONS
4 INCH DIAMETER,	STATIC DEPTH TO WATER 4.5 FEET BELOW M.P.
SS* 20 SLOT	PUMPING DEPTH TO WATER FEET BELOW M.P.
	PUMPING DURATION HOURS
	YIELD GPM DATE
#2_ GRAVEL PACK	SPECIFIC CAPACITY GPM/FT.
	WELL PURPOSE Monitoring
12.5 FT.	
14 _{FT.}	
<u> </u>	REMARKS *SS - stainless continuous slot
NOTE:	
ALL DEPTHS IN FEET	
BELOW LAND SURFACE	
	HYDROGEOLOGIST H. Gregory
	·

			TES, INC.	MANAGEMENT	GEOLOGIC LOG					
-			_		v	VELL [DATA_	G-W READINGS (1)		
Study	No. <u>(</u>)5509Y	Dai	te <u>12/11/90</u>	Hole Diam. (in.)	10				
Projec	t <u>Sun</u> ı	nyside Y	ard		Final Depth (ft.)	_14				
					Casing Diam. (in	•				
			of <u>1</u>		Casing Length (fi	-				
			ory		Screen Setting (fi					
					Screen Slot & Ty Well Status <u>Mor</u>					
							<u>CII</u>	DEVEL ODMENT		
			0En		Type Split Spoor	<u>PLER</u>		DEVELOPMENT Pump and surge		
	_			mental Services			lb.	I ump and surge		
			stem auger		Fall 30		in.			
			SAMPLI							
PID (ppm)	No.	Rec.	Depth	Blows/6"	Strata Change & Gen. Desc.	Depth (ft)	SAMP	LE DESCRIPTION		
12.2			0-2'	Grab sample		0-2-		own fine to medium SAND and cinders		
			1		[[(railroad	d bed fill).		
		'	\		1					
19.1		}	2-4'	Grab sample	SAND	2-4-		ay-brown stained fine to medium SAND. lt, oil soaked, free product entering hole.		
							Trace Si	n, on soaked, tree product entering noie.		
59.1		1.1	4-6'	6, 5, 5, 9		4-6-	Donk on	ov knovm stained fine to seems SAND		
39.1		1.1	40	0, 3, 3, 9		4-0-7		ay-brown stained fine to coarse SAND, t, oil soaked, wet oily sheen.		
							Water ta	able at 4 ft.		
					Į į]				
					1					
50.4		0.8	9-11'	7, 12, 8, 17		9-11-	Grav-bro	own fine to coarse SAND, trace silt, wet,		
				,, -, - ·			oily shee			
,						i l				
l					}					
1	j			ĺ	14 ft					
		ì			Bottom of					
					boring					
Ì						. [
	}]				.				
}	ł	ł		}		ì				
								•		
]]		J							
			·							

<u> </u>	PROJECT NAME Amtrak/Sunnyside Yard NUMBER 05509Y						
0_FT.							
LAND SURFACE	WELL NO. MW-21 PERMIT NO						
	TOWN/CITY Long Island City						
10 INCH DIAMETER,	COUNTY Queens STATE New York						
DRILLED HOLE	LAND-SURFACE ELEVATION						
WELL CASING	AND DATUM FEET D SURVEYED						
4 INCH DIAMETER,	DESTIMATED						
	INSTALLATION DATE(S) 12/06/90						
BACKFILL	DRILLING METHOD Hollow Stem Auger						
⊠ GROUT cement	DRILLING CONTRACTOR Land, Air, Water Enviro. Services						
	DRILLING FLUID None						
0.3 FT.							
BENTONITE DELLETS	DEVELOPMENT TECHNIQUE(S) AND DATE(S)						
DELLETS MELLETS	Pump & surge - submersible pumps, 12/13/90						
2 FT.	FLUID LOSS DURING DRILLING None GALLONS						
	WATER REMOVED DURING DEVELOPMENT 25 GALLONS						
WELL SCREEN	STATIC DEPTH TO WATER 3 FEET BELOW M.P.						
4 INCH DIAMETER, 20	PUMPING DEPTH TO WATER FEET BELOW M.P.						
SS* _20 SLOT							
	PUMPING DURATION HOURS						
	YIELD GPM DATE						
GRAVEL PACK	SPECIFIC CAPACITY GPM/FT.						
	WELL PURPOSE Monitoring						
12 FT.							
14 FT.							
<u> </u>	REMARKS *SS - stainless steel continuous slot						
NOTE:							
ALL DEPTHS IN FEET BELOW LAND SURFACE							
JEEGW EARD GOM ROE							
	·						
	HYDROGEOLOGIST H. Gregory						

			ISULTING & I	MANAGEMENT	GEOLOGIC LOG						
					WELL DATA			G-W READINGS (1)			
Study	No()550 <u>9</u> Y	Da	te <u>12/06/90</u>	Hole Diam. (in.)	10			Date		(2) Elev. W.
-		_	ard		Final Depth (ft.)	_					
Client	AMT	RAK			Casing Diam. (in	.) <u>4</u>		_			
Page _	1		of <u>1</u> _		Casing Length (f	t.) <u>12</u>			<u>'</u>		
_			ory		Screen Setting (f	t.) <u>12 - 2</u>	2				
					Screen Slot & Ty						
1					Well Status Mon	itoring v	vell				
					SAM	<u>PLER</u>			DEVE	LOPMEN	T.
Drillin	ig Stari	ted <u>10:0</u>	0 En	ded 12:50	Type Split Spoon			Pump	and surge		
Drille	Land	Air, W	ater Environ	nmental Services	Hammer <u>140</u>		lb.	_			
Туре	of Rig	Hollow	stem auger		Fall <u>30</u>		in.				
			SAMPL			-	1			:	
PID (ppm)	No.	Rec.	Depth	Blows/6"	Strata Change & Gen. Desc.	Depth (ft)	SAMP	LE D	ESCRIP	TION	
8.2		-	0-2'	Grab sample		0-2-	Dark br	own to	black stai	ned fine to r	nedium
										oad bed cind	
		Į.			1						
19			2-4'	Grab sample)	2-4-	Brown f	ine SA	ND, little	silt.	
				1	lii		,		,,		
					SAND						
1.5		1.3	4-6'	N/R	SAND	4-6-	Brown f	ine SA	ND, trace	Silt wet	
				(- ,	\		Water to			oni, woi.	
			j		J						
]								
						l					
4 7.7		0.2	9-9.5'	26, 102/0	•	9-9.5-		efusal a	it 9.5; Dar	k gray stain	ed medium
*		1.8	9-11	10, 12, 28, 35	}	9-11-				ctured gravel d fine to coa	
				12, 12, 20, 20	}	7 11	trace gra		dek Stanie	a ime to coa	use om ub,
			ļ								
					14 ft						
			`		Bottom of						
Ĭ					boring	ĺ					
i	{		1	ı							
						l					
						Į					
Í				·		ľ					
						ļ					
				j							
	ĺ		ĺ		ľ						

<u> </u>	PROJECT NAME Amtrak/Sunnyside Yard NUMBER 05509Y
0 FT. LAND SURFACE	WELL NO. MW-22 PERMIT NO.
	TOWN/CITY Long Island City
	COUNTY Queens STATE New York
10 INCH DIAMETER,	LAND-SURFACE ELEVATION
DRILLED HOLE	AND DATUM FEET
WELL CASING	□ ESTIMATED
4 INCH DIAMETER,	INSTALLATION DATE(S) 10/20/90
BACKFILL	DRILLING METHOD Hollow Stem Auger
⊠ GROUT cement	DRILLING CONTRACTOR Land, Air, Water Enviro. Services
	DRILLING FLUID None
<u>0</u> FT.	
BENTONITE PELLETS	DEVELOPMENT TECHNIQUE(S) AND DATE(S)
0.5 FT.	Pump & surge - submersible pump, 8-9 gpm for 1 hour, 12/13/90
1FT.	FLUID LOSS DURING DRILLING GALLONS
	WATER REMOVED DURING DEVELOPMENT 500 GALLONS
WELL SCREEN 4 INCH DIAMETER,	STATIC DEPTH TO WATER 1.5 FEET BELOW M.P.
SS* 20 SLOT	PUMPING DEPTH TO WATER FEET BELOW M.P.
	PUMPING DURATION HOURS
	YIELD GPM DATE
#2_ GRAVEL PACK	SPECIFIC CAPACITY GPM/FT.
	WELL PURPOSE Monitoring
11 FT.	
12 _{FT} .	
FI.	REMARKS Flush mount curb box installed 0.5 ft. above grade. *SS-stainless steel continuous slot.
	55-stamess steel continuous siot.
NOTE:	
ALL DEPTHS IN FEET	
BELOW LAND SURFACE	•
	HYDROGEOLOGIST H. Gregory
	HYDHOGEOLOGIST

			SULTING & N TES, INC.	MANAGEMENT	GEOLOGIC LOG						
						WELL D)ATA	_	<u>G</u> .	-W READIN	VGS (1)
Study	No. <u>(</u>)5509Y	Dat	te <u>10/20/90</u>	Hole Diam. (in.)	10		'	Date	DTW MP (2)	Elev. W.S
-			ard		Final Depth (ft.)	12			_		
			_		Casing Diam. (in]]
			of <u>1</u>		Casing Length (fi					!	1
			ory		Screen Setting (ft					!	1
					Screen Slot & Ty				1	!	
					Well Status Mor		<u>ell</u>				
						PLER	!	1		ELOPMENT	-
			0 End		Type Split Spoor			Pump	and surge	3	
				nmental Services			lb. in.	1			
1 ype	JI KIK	Honow	stem auger		Fall 30		n.	Щ_			
PID	<u> </u>		SAMPLE		Strata Change & Gen. Desc.	Depth (ft)	SAMP	'LE D	DESCRIP	MOIT	
(ppm)	No.	Rec.	Depth 0.2'	Blows/6"	& Gen. Desc.	+			<u> </u>		
40 .			0-2'	Grab sample		0-2-				AND, little coar and staining.	ırse
55	1		2-4'	Grab sample	SAND	2-4	Brown n Hydroca Water ta	arbon o	odor, black	trace coarse gra	vel; product.
44		2	8-10'	4, 3, 3, 3		8-10-		nedium ack stai	n to coarse iining; Wet	e SAND; Hydro t	carbon
					Bottom of boring						

NOON
Consulting Ground-Water Geologists
ROUX ASSOCIATES INC

<u> </u>	1 A_t_t/Cumavaida Vard
2.5 FT \(\square \)	PROJECT NAME Amtrak/Sunnyside Yard NUMBER 05509Y
LAND SURFACE	WELL NO PERMIT NO
	TOWN/CITY Long Island City
10 ,000,000,000	COUNTY Queens STATE New York
10 INCH DIAMETER, DRILLED HOLE	LAND-SURFACE ELEVATION
	AND DATUM FEET
WELL CASING 4 INCH DIAMETER,	ESTIMATED
I A A THOM SIAMETEN,	INSTALLATION DATE(S) 12/10/90
BACKFILL	DRILLING METHOD Hollow Stem Auger
⊠ GROUT cement	DRILLING CONTRACTOR Land, Air, Water Enviro. Services
	DRILLING FLUID None
18* FT.	
	DEVELOPMENT TECHNIQUE(S) AND DATE(S)
BENTONITE ☐ SLURRY BENTONITE ☐ PELLETS 22FT.	Pump & surge - submersible pump, 6-7 gmp for 1 hour, 12/14/90
<u>"</u> "	Tamp to targe statement pump, to a garage and a statement pump, and a statemen
	
265	None
2 <u>6.5</u> _{FT} .	FLUID LOSS DURING DRILLING None GALLONS
WELL SCREEN	WATER REMOVED DURING DEVELOPMENT 400 GALLONS
4 INCH DIAMETER.	STATIC DEPTH TO WATER 5 FEET BELOW M.P.
PVC 20 SLOT	PUMPING DEPTH TO WATER FEET BELOW M.P.
	PUMPING DURATION HOURS
	YIELD GPM DATE
#2_ GRAVEL PACK	SPECIFIC CAPACITY GPM/FT.
	WELL PURPOSE Monitoring Well.
36.5 FT.	
37.5 FT.	REMARKS Well completed on third attempt.
	* 22 ft to 18 ft - Bentonite and formation collapse.
NOTE:	
ALL DEPTHS IN FEET	
BELOW LAND SURFACE	
	V Singh
	HYDROGEOLOGIST V. Singh

			TES, INC.	MANAGEMENI	GEOLOGIC LOG						
						WELL D	DATA_		G.	W READIN	1GS (1)
Study	No. ()5509Y	Da	te_ <u>11/16/90</u>	Hole Diam. (in.)				Date_	DTW MP (2)	T
•	_		ard		Final Depth (ft.)						-
		RAK			Casing Diam. (in				1	!	1
			of <u>3</u>		Casing Length (f				1	1	1
			01 <u></u>		Screen Setting (fi				1	1	1
	•	_			Screen Slot & Ty	-			1	'	1
					Well Status Mon				•	1	
LUCALI	OII							$\overline{}$	DEVE	ELOPMENT	-
Drillir	Stort	ου •54 00•1	5En	dod 17:00		PLER	I	D,,,,,,,			•
					Type <u>Split Spoor</u> Hammer <u>140</u>		lb.	Pump	p and surge	;	
		_						ļ			
Type o	of Kig	Hollow	stem auger		Fall <u>30</u>		in.	<u> </u>			
PID			SAMPLI		Strata Change	Depth	SAMP	игг	DESCRIP	TION	
(ppm)	No.	Rec.	Depth	Blows/6"	Strata Change & Gen. Desc.	Depth (ft)	_				
35	[!		0-2'	Grab sample		0-2-				AND with grav	el and
!			!	1			cinders	(railro	ad bed fill)	•	
			!	1	1	}	İ				
107			2-4'	Grab sample		2-4-				to coarse SAN	
ľ				1	•	1 1	gravel, h observed	ydroca	irbon odor	; free floating p	product
ļ	'	'		1	1]	Water ta				
!		j '] '	j	1]]	77410	abic at	J.J 11.		
		'	1	· '	1		l				
		['	['	'	1		l				
		['	1	'	1		l				
		['	!	1			l				
		1 '	'	1	SAND	1	l				I
.		1 '	'	'	 		l				Ī
		('	'	'	!		l				
75		0.8	9-11'	N/R	!	9-11-				se SAND; stroi	
					!		hydrocar	rbon o	dor, free H	oating product,	, wet.
		'					Į.				
			1 1	1	1	1 1					
				!	<u> </u>	1					
					 	1 [
ļ	, ['	1 1					
100		1 !			'	1	_		_		
100		1.2	14-16'	N/R		14-16-		e to co	arse SANI	D, trace gravel,	, wet;
I						1	Strong o	dor.			
1	ı		1			1 1					
}	i		!	1		i					
						i					
						1					
						1					
100			40.041							_	
100		1.4	19-21'	N/R		19-21-	Gray fine	e to co	arse SANI	D, wet; Strong	odor.
								_			

⁽¹⁾ in feet relative to a common datum (2) from top of PVC casing

ROUX AS			MANAGEMENT	GEOLOGIC LOG						
			_	WELL DATA			<u>.G</u> .	W READI	NGS (1)	
Study No.	05509Y	Da	te <u>11/16/90</u>	Hole Diam. (in.)	10		_	Date	DTW MP (2)	Elev. W.
Project Si	nnyside Y	ard		Final Depth (ft.)	40					
Client AM	TRAK			Casing Diam. (in	ı.) <u>4</u>					
Page _2		of <u>3</u>		Casing Length (f	t.) <u>39</u>					1
Logged By	V. Singh			Screen Setting (f	t.) <u>36.5 -</u>	26.5				
				Screen Slot & T					1	
				Well Status Mo		vell		<u></u>		
					<u>PLER</u>				LOPMENT	
l		<u>5En</u>		Type Split Spoo			Pump	and surge	•	
I			mental Services							
Type of Ri	Hollow	stem auger		Fall 30		in.				
PID		SAMPLI		Strata Change & Gen. Desc.	Depth (ft)	SAMP	LE D	ESCRIP	TION	
(ppm) No	Rec.	Depth	Blows/6"	& Gen. Desc.	(ft)					
				SAND						
45	1.7	24-26'	N/R		24-26-	odor; (5 and rem	of hea	ave in Aug	se SAND, wet gers; used split us, keeping 5th mple).	spoon
65	2.0	29-31'	N/R	·	29-31-	Gray sta odor (sa	ined fi mpling	ne to med procedure	ium SAND, we as above).	et: Strong
32	2.0	34-36'	N/R	36 ft SILT	34-36-	Gray fine to coarse SAND, Wet: Strong od (sampling procedure same as above). Bottom of boring abandoned 11/06/90; res 11/26/90; plugged auger and drilled to 40' per Chris Magee of DEC.); plug had dislod and heave measures 9' inside auger. Unable set screen; augers pulled at this time. Botto auger contained a fine gray clayey SILT wit trace coarse gravel and cobbles (inside auge outside); samples of this were collected and archived at 36- to 40' sample. Gray clayey trace coarse gravel and cobbles.				restart 40' (OK slodged hable to ottom with hauger and and

ENVIRO	NMEN	TAL CON	SULTING & I	MANAGEMENT							
1			TES, INC.		GEOLOGIC LOG						
					WELL DATA			G-W READINGS (1)			
' Study	No. 0)5509Y	Da	te <u>11/16/90</u>	Hole Diam. (in.) 10			Date _	DTW MP (2)		
•			ard		Final Depth (ft.)						
		RAK			Casing Diam. (in	ı.) <u>4</u>					
			of <u>3</u>		Casing Length (f	t.) <u>39</u>			ı	1	
			_		Screen Setting (f)
Well l	No. <u>M</u>	W-23			Screen Slot & Ty						
Location					Well Status Mon	nitoring v	vell				
M.P. Elevation					SAM	PLER		ĺ	DEVE	LOPMENT	•
Drilling Started <u>09:15</u> Ended <u>17:00</u>					Type Split Spoot	n		Pump	and surge	;	
				mental Services	I						
Туре	of Rig	Hollow	stem auger		Fall <u>30</u>		in.				
PID			SAMPLI	2	Strata Change	Depth	CAMD	ת מו	ECCDID	TION	
(ppm)	No.	Rec.	Depth	Blows/6"	Strata Change & Gen. Desc.	(ft)	SAMP	LE D	ESCRIP	TION	_
	[40 ft	40-				time. Well co	ompleted
					Bottom of		12/10/9 	0 (see	well consti	ruction log).	
		1			boring	ł					
		}					NOTE:	Well c	ompleted o	on third attemp	ot
						1	1.012		ompious (on the dittern	,,,,
			}		}	}	ł				
					j						
			1		}						
			1								
						1					
			1								
		}									
			1		}						
			ĺ								
]								
	.										
	İ										
S	, [
ľ				,							
1	ĺ	ľ									
						ì					

(MOO)
Consulting Ground-Water Geologists
ROUX ASSOCIATES INC

l ≛ ┍┐	PROJECT NAME Amtrak/Sunnyside Yard NUMBER 05509Y
2_FT. LAND SURFACE	WELL NO. MW-24 PERMIT NO.
1188	TOWN/CITY Long Island City
	COUNTY Queens STATE New York
10 INCH DIAMETER,	LAND-SURFACE ELEVATION
DRILLED HOLE	AND DATUM FEET
WELL CASING	BSTIMATED
4 INCH DIAMETER,	INSTALLATION DATE(S) 11/28/90
BACKFILL	DRILLING METHOD Hollow Stem Auger
☑ GROUT cement	DRILLING CONTRACTOR Land, Air, Water Enviro. Services
1 88	DRILLING FLUID None
□ SLURRY BENTONITE ☑ PELLETS	DEVELOPMENT TECHNIQUE(S) AND DATE(S)
11 FT.	Pump & surge - submersible pump, 18-20 gpm for 1 hour, 12/12/90
14 FT.	FLUID LOSS DURING DRILLING None GALLONS
	WATER REMOVED DURING DEVELOPMENT 1100-1200 GALLONS
WELL SCREEN	STATIC DEPTH TO WATER 18 FEET BELOW M.P.
4 INCH DIAMETER, PVC 20 SLOT	PUMPING DEPTH TO WATER FEET BELOW M.P.
	PUMPING DURATION HOURS
	YIELD DATE
#2 GRAVEL PACK	SPECIFIC CAPACITY GPM/FT.
GRAVEL PACK	WELL PURPOSE Monitoring
1	
<u>24</u> FT.	
27 FT.	REMARKS
NOTE:	
ALL DEPTHS IN FEET	•
BELOW LAND SURFACE	
	HYDROGEOLOGIST H. Gregory
L	

1			SULTING & I	MANAGEMENT		,	GEO	LO	GIC 1	LOG	
		·			1		G-W READINGS (1)				
] Study	No (15509Y	Da	te 11/27&28/90	Hole Diam. (in.)		DATA_	_	Date	DTW MP (2	
-					Final Depth (ft.)					(-	
		'RAK			Casing Diam. (in					1	
			of <u>2</u>		Casing Length (f						
-			ory		Screen Setting (f						
Well	No. <u>M</u>	W-24			Screen Slot & Ty						
					Well Status Mo	nitoring w	rell				<u> </u>
					<u>SAM</u>	<u>PLER</u>			DEVE	LOPMEN	T
1	-			ided <u>13:30/28</u>	Type <u>Split Spoo</u>			Pump	and surge	:	
1					Hammer <u>140</u>		lb.				
Type	of Rig	Hollow	stem auger		Fall <u>30</u>	_	in.				
PID			SAMPL	E	Strata Change	Depth	CAMD	IED	ESCRIP	TION	
(ppm)	No.	Rec.	Depth	Blows/6"	Strata Change & Gen. Desc.	Depth (ft)					
0			0-2'	Grab sample		0-2-		1.3': B	rown medi	e SAND and um to coarse	
0		<u> </u> 	2-4'	Grab sample		2-4-	Brown n gravel.	nedium	to coarse	SAND, little	fine
0		0.6	4-6'	60, 70, 100/1"		4-6-	Brown n coarse g	nedium ravel a	to coarse	SAND, somed gravel.	e fine to
0	ı	.5	6-7'	17,100/5"	SAND	6-7-				SAND, little	gravel
0		.3	7-8'	39, 150/6"		7-8-	and fracture	d rock.	ravei.		
0		.6	8-9'	119, 77	ļ	8-9-	Brown fi			ND and grave	l with
0		1.2	9-11'	13, 15, 53, 87		9-11-	Brown n	Brown medium to coarse SAND, little gravel; fractured gravel at tip.			
0		1.5	11-13'	9, 27, 42, 57		11-13-	Brown n gravel.	nedium	to coarse	SAND, trace	efine
0		1.4	13-15'	7, 20, 27, 34		13-15-	Brown fi	ne to r	medium SA	AND	
0		1.6	15-17'	15, 33, 47, 65		15-17-	Brown fi	ne to n	nedium SA	AND, wet at I	tip

Water table at 16 ft.

REMARKS

			SULTING & N TES, INC.	MANAGEMENT	GEOLOGIC LOG						
					<u>v</u>	VELL I	DATA		G-W READINGS (1)		
Study	No. <u>0</u>)5 <u>509Y</u>	Dat	te 11/27&28/90	Hole Diam. (in.)	_			Date	DTW MP (2)	
					Final Depth (ft.)						
-		-			Casing Diam. (in	.) 4					Ì
					Casing Length (ft						
Logge	d By <u>J</u>	H. Grego	ory		Screen Setting (ft	.) <u>24 - 1</u>	i 4				
Well No. MW-24				Screen Slot & Ty							
Locati	on				Well Status Mor	itoring w	vell				
M.P. I	Elevatio	מכ			SAM	PLER			DEVE	LOPMENT	•
Drillin	g Start	ed <u>11:3(</u>	<u>)/27</u> En	ded <u>13:30/28</u>	Type Split Spoor	1	_	Pump	and surge	:	
Driller	Land,	<u>, Air, Wa</u>	<u>iter Environ</u>	mental Services	Hammer <u>140</u>		lb.				
Type of	of Rig_	Hollow	stem auger		Fall <u>30</u>		in.				
DID			SAMPLE	3	Strate Change	Donth	G 4 3 4 D		TOODIN		
PID (ppm)	No.	Rec.	Depth	Blows/6"	Strata Change & Gen. Desc.	Depth (ft)	SAMP.	LE D	ESCRIP	TION	
0			22-24	4, 3, 8, 14	SAND27 ft Bottom of boring	22-24-	Brown fi	ine to 1	medium S	AND, wet.	

ROUA
Consulting Ground-Water Geologists
ROUX ASSOCIATES INC

1.	
0_FT.	PROJECT NAME <u>Amtrak/Sunnyside Yard</u> NUMBER <u>05509Y</u>
LAND SURFACE	WELL NO PERMIT NO
1	TOWN/CITY Long Island City
	COUNTY Queens STATE New York
10 INCH DIAMETER, DRILLED HOLE	LAND-SURFACE ELEVATION
1 1/1 1/2	AND DATUM FEET
-WELL CASING 4 INCH DIAMETER,	ESTIMATED
I I I I I I I I I I I I I I I I I I I	INSTALLATION DATE(S) 11/17/90
BACKFILL	DRILLING METHOD Hollow Stem Auger
☑ GROUT cement	DRILLING CONTRACTOR Land, Air, Water Enviro. Services
1 1 1 1 1 1	DRILLING FLUID None
<u>1.5</u> FT.	
☐ SLURRY BENTONITE PELLETS	DEVELOPMENT TECHNIQUE(S) AND DATE(S)
3.5 FT.	Pump & surge - submersible pump, 18-20 gpm for 1 hour, 12/11/90
	<u> </u>
5 <u>.5</u> FT.	FLUID LOSS DURING DRILLING None GALLONS
	WATER REMOVED DURING DEVELOPMENT 1100-1200 GALLONS
WELL SCREEN	STATIC DEPTH TO WATER 8 FEET BELOW M.P.
PVC 20 SLOT	PUMPING DEPTH TO WATER FEET BELOW M.P.
	PUMPING DURATION HOURS
	YIELD GPM DATE
#2 GRAVEL PACK	SPECIFIC CAPACITY GPM/FT.
GRAVEL FACE	WELL PURPOSE Monitoring
15.5 FT.	ő
16.5 FT.	REMARKS
NOTE:	
ALL DEPTHS IN FEET	_
BELOW LAND SURFACE	
·	HYDROGEOLOGIST B. Woods

			FES, INC.	MANAGEMENT	GEOLOGIC LOG								
						WELL I	DATA		G-	W READI	NGS (1)		
Study	No()5509 <u>Y</u>	Da	te <u>11/17/90</u>	Hole Diam. (in.)	10			Date	DTW MP (2)			
•			ard		Final Depth (ft.)	15.5							
Client AMTRAK					Casing Diam. (in	ı.) <u>4</u>							
Page	1		of <u>1</u>		Casing Length (f	t.) <u>15</u>							
			<u>ls</u>		Screen Setting (f								
					Screen Slot & Ty								
					Well Status Mon		vell	╼	227				
						<u>PLER</u>		_		ELOPMENT	C		
			55 En		Type Split Spoon			Pump	and surge	;			
			stem auger	nmental Services	Hammer <u>140</u> Fall <u>30</u>		lb. in.	ŀ					
Турс	DI KIR	HUHUW			ran <u>50</u>								
PID	No.	Rec.	SAMPLI Depth	Blows/6"	Strata Change & Gen. Desc.	Depth	SAMP	LE D	ESCRIP	TION			
(ppm)	NO.	Kec.	0-2'	Grab sample	& Gen. Desc.	(ft) 0-2-	<u></u>			ine SAND, litt			
U	1	'	0-2	Grav sample	1	0-2-7	Bottom	0.8-2.0	: Light brown	own fine SAND	tie gravei. D.		
l	'	'							-				
0	'	'	2-4'	Grab sample		2-4-	Light b	own m	edium SAI	ND, well sorte	ed.		
	'	'						U		112, 1102 00:10	, 		
ļ	'	'		 			1						
0	'	1.2	4-6'	j	1	4-6-	Light br	own-gr	ay mediun	n SAND, well	sorted.		
		1		1	!			_	•	,			
				 	SAND								
0		1.5	6-8'	3, 8, 16, 25		6-8-		o light	brown me	dium to coarse	e SAND,		
l				1	'	[]	moist. Water ta	ahla at	o fe				
l				1	!		water to	avic at	O 11.				
		1 1			1	1 1	1						
					1	1 1	1						
					1								
					'								
							1						
	i				1	1	İ						
		ı J			1	. [l						
0	,	1.8	13-15'	6, 8, 5, 4	1	13-15-	Brown r	nedium	SAND, w	ell sorted, wet	t.		
	,					, [ı						
	,]						I						
					15.55		I						
			[15.5 ft Bottom of	,]	I						
	.				boring		I						
			1			,	ı						
		ı				.							
		. [.							
		. 1											

2 FT. LAND SURFACE	PROJECT NAME AMTRAK NUMBER 05 WELL NO. MW-25A PERMIT NO. — TOWN/CITY Long Island City COUNTY Queens STATE New Yor LAND SURFACE ELEVATION AND DATUM FEET SURVEYED INSTALLATION DATE(S) 01/06/93 DRILLING METHOD Hollow Stem Auger DRILLING CONTRACTOR A.D.T. DRILLING FLUID None	rk
	DEVELOPMENT TECHNIQUE(S) AND DATE(S) Pump and Surge - Submersible Pump. FLUID LOSS DURING DRILLING	GALLONS GALLONS FEET BELOW M.P FEET BELOW M.P
	HYDROGEOLOGIST C. Clark	

			ULTING & M. TES, INC	ANAGEMENT			GEO	LOC	GIC L	OG	
				WELL DATA			G-W READINGS (1)				
			_					-	· -		
Study No. <u>05526Y</u> Date <u>01/06/93</u>					Hole Diam. (in.) 10			Date	DTW MP (2)	Elev. W.S	
Project Sunnyside Yard					Final Depth (ft.) 15.5						
Client AMTRAK				Casing Diam. (in.) 4							
Page _1 of _1				Casing Length (ft.)							
Logged By C. Clark				Screen Setting (ft.) 14' to 4'bls.							
Well/Boring No. MW-25A					Screen Slot & Type 10 Slot - PVC						
Location					Well Status Monitoring Well						
M.P. Elevation					<u>SAMPLER</u>			DEVELOPMENT			
Drilling Started 12:00 Ended 12:45					Type Cuttings				<u> </u>	_	
Driller A.D.T.					Hammerlb.						
Type of Rig Hollow Stem Auger					Fallin.						
			SAMPL		1	T					-
PID	No.	Rec.	Depth	Blows 6	Strata Change & Gen. Desc.	Depth (ft)		SAM	PLE DE	SCRIPTION	(3)
(ppm)	140.	Acc.	Depair	Cuttings	Sand, gravel,	0-	Dork br	own to	black fine	e to coarse(+)	2 4 NID
				Cuttings	cobbles				parse Grave		DAND,
	,					_					
						۱ ۲	D		. 4	(1) CAND 14	
						2-				e(+) SAND, litt rge Cobble at 2	
							Brown 1	mediun	n to coarse	SAND, trace	fine to
							coarse (Gravel.		•	
						4-					
					Sand	.]	Brown	mediun	n to coarse	SAND.	
						_				011101	
						6-					
					,						
						8-					
						1					
		ł			Sand, gravel	10-	Brownis	h gray	medium t	o coarse SANI), trace
			l			-	fine Gra	vel. V	Vet at 10 f	t bls.	
						j					
					,	12-					
						4					
						14-					
						- 1					
					\			C1 .			
	l	ľ			Bottom of	16-	Bottom	of bor	ing 15.5 ft	bis.	
					Boring	[[
						-					
	1					,,-					
						18-					
		ļ				4					
						4					

REMARKS (1) in feet relative to a common datum
(2) from top of PVC casing
(3) logged cuttings

<u>+ _</u>	PROJECT NAME Amtrak/Sunnyside Yard NUMBER 05509Y					
1_FT. LAND SURFACE	WELL NO. MW-26 PERMIT NO					
	TOWN/CITY Long Island City					
	COUNTY Queens STATE New York					
10 INCH DIAMETER,	LAND-SURFACE ELEVATION					
DRILLED HOLE	AND DATUM FEET U SURVEYED					
-WELL CASING	BATOM BESTIMATED					
4 INCH DIAMETER,	INSTALLATION DATE(S) 12/05/90					
BACKFILL	DRILLING METHOD _ Hollow Stem Auger					
⊠ GROUT cement	DRILLING CONTRACTOR Land, Air, Water Enviro. Services					
	DRILLING FLUID None					
1.5_FT.						
BENTONITE □ SLURRY ■ PELLETS	DEVELOPMENT TECHNIQUE(S) AND DATE(S)					
8_FT.	Pump & surge - submersible pump, 18-20 gpm for 1 hour, 12/12/90					
11_FT.	FLUID LOSS DURING DRILLING None GALLONS					
	WATER REMOVED DURING DEVELOPMENT 1100-1200 GALLONS					
well screen 4 Inch diameter,	STATIC DEPTH TO WATER 13 FEET BELOW M.P.					
PVC _20 SLOT	PUMPING DEPTH TO WATERFEET BELOW M.P.					
	PUMPING DURATION HOURS					
	YIELD DATE					
#2_ GRAVEL PACK	SPECIFIC CAPACITY GPM/FT.					
	WELL PURPOSE Monitoring.					
21_ FT.						
22.5 FT.						
· · ·	REMARKS					
NOTE:						
ALL DEPTHS IN FEET						
BELOW LAND SURFACE						
	HYDROGEOLOGIST B. Woods					

									_		
			SULTING & I TES, INC.	MANAGEMENT	GEOLOGIC LOG						
						VELL I	DATA		G-W READINGS (1)		
Study	No()5509Y	Da	te <u>12/05/90</u>	Hole Diam. (in.)	8			Date	DTW MP (2)	
•			ard		Final Depth (ft.)	22.5					
_		RAK			Casing Diam. (in	ı.) <u>4</u>				1	l
Page _	1		of <u>1</u>		Casing Length (f	t.) <u>20</u>				j	{
					Screen Setting (f						
Well No. <u>MW-26</u>					Screen Slot & Ty	•					
Locati	io n				Well Status Mo	nitoring v	vell				
						PLER			DEVE	ELOPMENT	•
			0En		Type <u>Split Spoo</u>			Pump	and surge	e	
l				-	Hammer 140	_					
Туре	of Rig	Hollow	stem auger		Fall 30		in.				
PID			SAMPL	E	Strata Change	Denth	CAMD	TE D	ECCDID	————	
(ppm)	No.	Rec.	Depth	Blows/6"	Strata Change & Gen. Desc.	Depth (ft)			ESCRIP		
0)	1	0-2'	Grab sample	SAND &	0-2-			ne to medi	ium SAND and	SILT
					SILT		(Railroa	id IIII)			
0			2-3'	Grab sample	2 ft	2-3-	Brown r	nedium	to fine S.	AND (Railroae	d fill).
				•	(·	ŕ
0		0.8	3-4'			3-4	Brown i	ine to	medium Sa	AND, trace gra	avei.
,		0	4-6'	N/R	}	4-6-	Repeate	d auge	r refusals.		
12		0.25'	6-8'	N/R		6-8-	Fracture	ed grave	el (not enc	ough for sampl	ing).
70		1.1'	9-11'	N/R		9-11-	Brown n	nedium	to fine Sz	AND.	
				•							
-		0	11-11.7	N/R							
40		0.9'	12-14	38, 28, 66, 80	SAND	12-14-	Brown n gravel, w		to fine SA	AND, some fra	ctured
J							Water ta		13 ft		
	ì									•	
34		0.8'	17-19'	12 67 20 62		17.10	D	1.			
<i>J</i>		U. 0	1/*17	43, 67, 38, 62	·	17-19-	Drown n	nediu m	to fine SA	AIND.	
					22.5 ft						-
					Bottom of boring	ļ					
	1		· •		~~	I					

(1) in feet relative to a common datum
(2) from top of PVC casing
NOTE: 3rd attempt to install well. 1st and 2nd attempts abandoned due to auger refusal, and heaving sands

<u> </u>	PROJECT NAME Amtrak/Sunnyside Yard NUMBER 05509Y						
2_FT.							
LAND SURFACE	WELL NO. MW-27 PERMIT NO.						
	TOWN/CITY Long Island City						
10 INCH DIAMETER,	COUNTY Queens STATE New York						
DRILLED HOLE	LAND-SURFACE ELEVATION						
WELL CASING	AND DATUM FEET						
4 INCH DIAMETER,	ESTIMATED						
	INSTALLATION DATE(S) 12/01/90						
BACKFILL	DRILLING METHOD Hollow Stem Auger						
☐ GROUT cement	DRILLING CONTRACTOR Land, Air, Water Enviro. Services						
	DRILLING FLUID None						
2 FT.							
	DEVELOPMENT TECHNIQUE(S) AND DATE(S)						
BENTONITE PELLETS 6 FT.	Pump & surge - submersible pump, 8-9 gpm for 1 hour,						
<u> </u>	12/05/90						
	12/03/30						
	ELUID LOGO BURING BRILLING						
<u>8</u> FT.	FLUID LOSS DURING DRILLING GALLONS WATER REMOVED DURING DEVELOPMENT 500 GALLONS						
WELL SCREEN							
4 INCH DIAMETER,	STATIC DEPTH TO WATER 11 FEET BELOW M.P.						
PVC 20 SLOT	PUMPING DEPTH TO WATERFEET BELOW M.P.						
	PUMPING DURATIONHOURS						
	YIELD DATE						
#2 GRAVEL PACK	SPECIFIC CAPACITY GPM/FT.						
	WELL PURPOSE Monitoring						
18 FT.							
	` \						
19 FT.	REMARKS						
NOTE:							
ALL DEPTHS IN FEET							
BELOW LAND SURFACE							
·	HYDROGEOLOGIST H. Gregory						
	HIDNOGEOLOGICI						

			SULTING & 1 TES, INC.	MANAGEMENT	GEOLOGIC LOG						
					WELL DATA			G-W READINGS (1)			
Study	No. ()5509Y	Da	te <u>12/01/90</u>	Hole Diam. (in.) 10				Date	DTW MP (· /
-			ard		Final Depth (ft.)						
, -		RAK			Casing Diam. (in				J	}	
Page _	1		of <u>1</u>		Casing Length (f	t.) <u>20</u>					
_			ory, B. Woo		Screen Setting (fi	t.) <u>18 - 8</u>					
Well 1	No. <u>M</u>	W- <u>27</u>			Screen Slot & Ty						
Locati	ion				Well Status Mon	nitoring v	vell	_			
M.P. 1	Elevatio	on			<u>SAM</u>	<u>PLER</u>		[DEVE	LOPMEN	T
l	_		5En		Type Split Spoot			Pump	and surge	e	
l				mental Services							
Туре	of Rig	Hollow	stem auger		Fall 30		in.				
PID			SAMPL	E	Strata Change	Depth	CAMD	ת בוז	ESCRIE	TION	
(ppm)	No.	Rec.	Depth	Blows/6*	Strata Change & Gen. Desc.	Depth (ft)					_
37			0-2'	Grab sample		0-2-	Dark br some gr interval.	avel, tr	light brove ace cobble	vn, medium S es; dark stain	SAND, ed in 0-7"
9.0			2-4'	Grab sample		2-4-	Light br cobbles.		ine to med	lium SAND,	trace
15.5		1.2	4-6'	N/R		4-6-			brown fin wet in top	e to coarse S 0.2.	AND,
		0	6-8'	N/R	SAND						
2.3		0.8	7-9'	11, 32, 56, 65		7-9-	Gray me	edium	to fine SA	ND, crushed	rock.
3.9		1.1	9-11'	4, 9, 21, 19		9-11-	Brown f	ine to	medium S	AND, well so	orted; wet.
							Water ta	able at	10 ft		
11.1		1.8	14-16'	12, 34, 19, 25		14-16-	Brown,	mediun	n to fine, S	SAND, wet.	
					Bottom of boring 19 ft						

(1) in feet relative to a common datum (2) from top of PVC casing

<u>+</u>	PROJECT NAME Amtrak/Sunnyside Yard NUMBER 05509Y						
0_FT. LAND SURFACE							
TAND SURFACE	WELL NO. MW-28 PERMIT NO.						
	TOWN/CITY Long Island City						
10 INCH DIAMETER,	COUNTY Queens STATE New York						
DRILLED HOLE	LAND-SURFACE ELEVATION						
WELL CASING	AND DATUM FEET SURVEYED						
4 INCH DIAMETER.	ESTIMATED						
	INSTALLATION DATE(S) 11/09/90						
BACKFILL	DRILLING METHOD Hollow Stem Auger						
⊠ GROUT cement	DRILLING CONTRACTOR Land, Air, Water Enviro. Services						
	DRILLING FLUID None						
2 FT.							
□ SLURRY	DEVELOPMENT TECHNIQUE(S) AND DATE(S)						
BENTONITE PELLETS 4 _FT.	Pump & surge - submersible pump, 12/11/90						
6 FT.	FLUID LOSS DURING DRILLING None GALLONS						
WELL SCREEN	WATER REMOVED DURING DEVELOPMENT 50 GALLONS						
4 INCH DIAMETER,	STATIC DEPTH TO WATER 7.5 FEET BELOW M.P.						
PVC _20 SLOT	PUMPING DEPTH TO WATER FEET BELOW M.P.						
	PUMPING DURATION HOURS						
	YIELD GPM DATE						
#2 GRAVEL PACK	SPECIFIC CAPACITY GPM/FT.						
	WELL PURPOSE Monitoring						
16_FT.							
<u>17</u> FT.	REMARKS 6" clay layer encountered at 14 ft, sand, silt and clay						
	below.						
NOTE:							
ALL DEPTHS IN FEET							
BELOW LAND SURFACE							
	H Gregory						
	HYDROGEOLOGIST H. Gregory						

_			ISULTING & N TES, INC.	MANAGEMENT	GEOLOGIC LOG						
						<u>VELL I</u>	DATA		<u>G</u> .	-W READIN	7
-				te <u>11/09/90</u>	Hole Diam. (in.)	_10			Date	DTW MP (2)	Elev. W.
-		•	ard		Final Depth (ft.)				1		
					Casing Diam. (in	•			1		
Page _1 of _1					Casing Length (fi	•			1		
Logged By <u>H. Gregory</u> Well No. <u>MW-28</u>					Screen Setting (ft	•	-		l '		
					Screen Slot & Ty Well Status <u>Mor</u>				i		
							/en	一	DEVE	T ODMENIA	
			0En			<u>PLER</u>	1	,		<u>ELOPMENT</u>	_
	-			nmental Services	Type <u>Split Spoor</u> Hammer <u>140</u>		lb.	Pump	and surge	;	
			stem auger		Fall 30		1D. in.				
	JI 1016 -	TIONOW	SAMPLE		Ган <u>50</u>			Щ_			
PID (ppm)	No.	Rec.	Depth	Blows/6"	Strata Change & Gen. Desc.	Depth (ft)	SAMP	LE D	ESCRIP	MOIT	
7.1	1.0.	100.	0-2'	Grab sample	C COLL DOG.	0-2-		fine SA	ND. trace	gravel and silt	 t.
21.4			2-4'	Grab sample	SAND	2-4	Brown f	fine SA	ND, trace	gravel and silt	t.
10.6		1.1	6-8'	2, 2, 2, 6 5, 5,, 6, 7		6-8-		fine SAI		silt and gravel	
7.4		1.3 1.8	13-15' 14-16'	10, 13, 10, 7 7, 6, 13, 21	14.5 ft CLAY 15 ft	13-15— 14-16—	layer abo Brown fi medium	ine SAI out 0.5' ine SAI to coar	ND, Trace ' at 14.5 - 1 ND; Botton rse SAND.	e Silt and clay; 15'. om .3': Gray bro . Middle 0,8': I clay top 0.5'.	own
					SAND17 ft Bottom of boring						-

⁽¹⁾ in feet relative to a common datum (2) from top of PVC casing

Consulting Ground-Water Geologists ROUX ASSOCIATES INC

	Amtrok/Sumunida Vard
3 FT.	PROJECT NAME Amtrak/Sunnyside Yard NUMBER 05509Y
LAND SURFACE	WELL NO. MW-29 PERMIT NO.
	TOWN/CITY Long Island City
10	COUNTY Queens STATE New York
10_ INCH DIAMETER, DRILLED HOLE	LAND-SURFACE ELEVATION
	AND DATUM FEET SURVEYED
-WELL CASING 4 INCH DIAMETER,	
I INCH DIAMETER,	INSTALLATION DATE(S) 11/17/90
BACKFILL	DRILLING METHOD Hollow Stem Auger
□ GROUT cement*	DRILLING CONTRACTOR Land, Air, Water Enviro. Services
	DRILLING FLUID None
0 FT.	
	DEVELOPMENT TECHNIQUE(S) AND DATE(S)
BENTONITE PELLETS 0.5_FT.	Pump & surge - submersible pump, 12/13/90
· · · · · · · · · · · · · · · · · · ·	The same of the sa
1	None
<u>1</u> FТ.	FLUID LOSS DURING DRILLING None GALLONS
WELL SCREEN	WATER REMOVED DURING DEVELOPMENT 100 GALLONS
4 INCH DIAMETER.	STATIC DEPTH TO WATER 4 FEET BELOW M.P.
PVC 20 SLOT	PUMPING DEPTH TO WATERFEET BELOW M.P.
	PUMPING DURATION HOURS
	YIELD DATE
#2_ GRAVEL PACK	SPECIFIC CAPACITY GPM/FT.
	WELL PURPOSE Monitoring
11_FT.	
<u>12</u> FT.	REMARKS *Cement grout around protective steel casing.
NOTE:	
ALL DEPTHS IN FEET	
BELOW LAND SURFACE	
	HYDROGEOLOGIST H. Gregory
	HYDROGEOLOGIS I

			SULTING & P	MANAGEMENT	GEOLOGIC LOG						
					<u>v</u>	DATA	G-W READINGS			NGS (1)	
Study	No(5509Y	Dat	te <u>11/17/90</u>	Hole Diam. (in.) 10				Date	DTW MP (2	Elev. W.S
Projec	t <u>Sun</u> ı	nyside Y	<u>ard</u>		Final Depth (ft.)	_13					
		RAK_			Casing Diam. (in	-					ļ
_			of <u>1</u>		Casing Length (ft						
				Screen Setting (ft							
Well No. MW-29 Location				Screen Slot & Ty Well Status <u>Mor</u>							
		ac				PLER			DEVE	LOPMEN	
			0 En	ded _11:35	Type Split Spoor			Pump	and surge		-
	_			mental Services							
Туре	of Rig	Hollow	stem auger		Fall <u>30</u>		in.				
PID			SAMPLI	3	Strata Change	Depth	CAMD	IED	ECCDID	TTON	
(ppm)	No.	Rec.	Depth	Blows/6"	Strata Change & Gen. Desc.	(ft)	SAMP	LE D	ESCRIP	TION	
0			0-2'	Grab sample	!	0-2-				ium SAND an	
					ļ		ft.	na cina	iers, (Kaiii	road bed fill),	wet at 2
0			2-4'	Grab sample		2-4	Brown f	ine to	medium S	AND, trace sil	lt and
				_			gravel, v	vet. W	ater table	at 2 ft.	
]						
					CAND						
					SAND						
					1						
0		1.4	7-9'	2, 4, 3, 4		7-9-	Brown f	ine SA	ND, trace	silt and gravel	1.
	ĺ										
0		1.8	11-13'	2, 2, 2, 3		11-13-	Brown f	ine SAl	ND. trace	silt and gravel	1
		ľ		, ,					,	one una gravo	•
			ı 		13 ft						
					Bottom of						
					boring	ĺ					
	ĺ		ĺ			Ï					
	1		}								
					1						
					,						
						ľ					
									_		

(1) in feet relative to a common datum(2) from top of PVC casing

<u>+</u>	PROJECT NAME Amtrak/Sunnyside Yard NUMBER 05509Y
3_FT. LAND SURFACE	
LAND SORFACE	WELL NO. MW-30 PERMIT NO.
	TOWN/CITY Long Island City
10 INCH DIAMETER,	COUNTY Queens STATE New York
DRILLED HOLE	LAND-SURFACE ELEVATION
WELL CASING	AND DATUM FEET D SURVEYED
4 INCH DIAMETER,	ESTIMATED
	INSTALLATION DATE(S) 11/30/90
BACKFILL	DRILLING METHOD Hollow Stem Auger
□ GROUT <u>cement</u>	DRILLING CONTRACTOR Land, Air, Water Enviro. Services
	DRILLING FLUID None
1 FT.	
BENTONITE PELLETS	DEVELOPMENT TECHNIQUE(S) AND DATE(S)
2.5 FT.	Pump & surge - submersible pump, 12/05/90
4_FT.	FLUID LOSS DURING DRILLING None GALLONS
	WATER REMOVED DURING DEVELOPMENT 25 GALLONS
WELL SCREEN	STATIC DEPTH TO WATER 7.5 FEET BELOW M.P.
4 INCH DIAMETER, PVC 20 SLOT	PUMPING DEPTH TO WATER FEET BELOW M.P.
SLOT	PUMPING DURATIONHOURS
	YIELD DATE
42	SPECIFIC CAPACITY GPM/FT.
#2_ GRAVEL PACK	WELL PURPOSE Monitoring
	WELL FORFOOL Womtoring
<u>14</u> FT.	
<u>16</u> _{FT.}	
	REMARKS Screen set in meadow mat with organic silty clay.
NOTE:	
ALL DEPTHS IN FEET	
BELOW LAND SURFACE	
	HYDROGEOLOGIST H. Gregory
	·

			SULTING & I TES, INC.	MANAGEMENT	GEOLOGIC LOG						
	-		-		WELL DATA				G-W READINGS (1)		
Study	No()5509Y	Da	te_ <u>11/30/90</u>	Hole Diam. (in.)	10			Date	DTW MP (2)	
-			ard		Final Depth (ft.)	16					
Client	AMT	RAK			Casing Diam. (in	ı.) <u>4</u>	_				
Page_	1		of <u>1</u>		Casing Length (f	t.) <u>17</u>					
Logged By H. Gregory					Screen Setting (f	t.) <u>14 - 4</u>	<u> </u>]	Ì
Well No. <u>MW-30</u>					Screen Slot & Ty						
Locati	on			_	Well Status Mon	nitoring y	vell				
M.P. I	Elevation	on	.————		<u>SAM</u>	<u>PLER</u>			DEVE	LOPMENT	
Drillin	ig Stari	ted <u>9:00</u>	En	ded <u>14:00</u>	Type Split Spoot	<u>n</u>		Pump	and surge	;	
Driller Land, Air, Water Environmental Services					Hammer 140		lb.				
Type of Rig Hollow stem auger					Fall <u>30</u>		in.				
PID SAMPLE				Strata Change	Depth	CAMD			TTON		
(ppm)	No.	Rec.	Depth	Blows/"6	Strata Change & Gen. Desc.	(ft)	SAMP	LE D	ESCRIP	TION	
0			0-2'	Grab sample	SAND,	0-2-				e to medium S	SAND
					SILT & GRAVEL				le 0.4': Cir	nders coarse SAND	and
					GIGIVEE		gravel.				
0		{	2-4'	Grab sample		2-4-	Brown f	ine to	coarse SAl	ND and gravel	
						Ì		_			
0		1.0	4-6'	4, 8, 7, 11	4 ft	4-6-	Brown t	ine to (coarse SAI able at 6 f	ND, Trace gra	vel; wet
		Ì					at tip.	valui t	able at 0 i	ι.	
11		1,	C 01	2460	CAND			_			
11		1.2	6-8'	2, 4, 6, 9	SAND	6-8-			ine to coar	se SAND lty clay; organ	ic: trace
							Peat.	0.2 · D	ark gray st	ity ciay, organ	ic, nace
ſ		2	8-10'	40611	0.4	0 10	T 0.51	D		- 04370	
		2	0-10	4, 9, 6, 11	8 ft CLAY	8-10-			n tine to co eadow Ma	oarse SAND	
}					9 ft					,	
			Į į								
13		2	11-13'	5, 7, 7, 9		11-13-	Meadow	mat w	ith gray bl	ack organic si	lty clay.
					Meadow Mat						•
					with						

Silty

CLAY
-----16 ft----Bottom of

boring

REMARKS

(1) in feet relative to a common datum(2) from top of PVC casing

<u>+ _</u>	PROJECT NAME Amtrak/Sunnyside Yard NUMBER 05509Y
0_FT. LAND SURFACE	
TTD DEATH SON AS	WELL NO. MW-31 PERMIT NO.
	TOWN/CITY Long Island City
10 INCH DIAMETER,	COUNTY Queens STATE New York
DRILLED HOLE	LAND-SURFACE ELEVATION
WELL CASING	AND DATUM FEET D SURVEYED
4 INCH DIAMETER,	DESTIMATED
	INSTALLATION DATE(S) 11/08/90
BACKFILL	DRILLING METHOD _ Hollow Stem Auger
□ GROUT <u>cement</u>	DRILLING CONTRACTOR Land, Air, Water Enviro. Services
	DRILLING FLUID None
<u>0.5</u> FT.	
BENTONITE PELLETS	DEVELOPMENT TECHNIQUE(S) AND DATE(S)
1.5 FT.	Pump & surge - submersible pump, 18-20 gpm for 1 hour, 12/11/90
	·
2.5 FT.	fluid loss during drilling None Gallons
	WATER REMOVED DURING DEVELOPMENT 1100-1200 GALLONS
WELL SCREEN	STATIC DEPTH TO WATER 4 FEET BELOW M.P.
4 INCH DIAMETER, PVC 20 SLOT	PUMPING DEPTH TO WATER FEET BELOW M.P.
SLOT	PUMPING DURATION HOURS
	YIELD DATE
	SPECIFIC CAPACITY GPM/FT.
#2_ GRAVEL PACK	
	WELL PURPOSE Monitoring
<u>12.5</u> FT.	
13 _{FT.}	
	REMARKS
·	
NOTE:	
ALL DEPTHS IN FEET	
BELOW LAND SURFACE	·
	HYDROGEOLOGIST H. Gregory

1			SULTING & TES, INC	MANAGEMENT	GEOLOGIC LOG					
					WELL DATA			G-	W READINGS (1)	
{ Study	No.	05509Y	Da	ite <u>11/08/90</u>	Hole Diam. (in.)			_	Date	DTW MP (2) Elev. W.
-			ard		Final Depth (ft.)					
1		-			Casing Diam. (in					
					Casing Length (f	-				{
			ory		Screen Setting (f	-	-			
		_			Screen Slot & Ty					
Locat	ion		_		Well Status Mon	nitoring v	vell			
					<u>SAM</u>	PLER			DEVE	LOPMENT
Drillin	ng Stari	ted <u>08:2</u>	<u>0</u> Er	nded <u>11:10</u>	Type Split Spoon	n		Pump	and surge	<u> </u>
Drille	r <u>Land</u>	<u>, Air, W</u>	ater Environ	nmental Services	Hammer <u>140</u>		lb.			
Туре	of Rig	Hollow	stem auger	, 	Fall <u>30</u>		in.			
PID			SAMPL	E	Strata Change	Donth	643.67		Each	
(ppm)	No.	Rec.	Depth	Blows/6"	Strata Change & Gen. Desc.	Depth (ft)	SAMP	LE D	ESCRIP	TION
0			0-2'	Grab sample	SAND and Silt	0-2-				lt, trace gravel, stained
					B		dark bro	own to	black.	
0	•		2-4'	Grab sample		2-4	Brown i gravel.	ine to	medium S.	AND and silt, trace
0		0.7	4-6'	N/R	4 ft	4-6-	Brown f	ine to	medium S	AND, trace silt, wet.
1							Water to	able at	4.5 ft.	
					SAND		·			
25		1.2	10-12'	5, 7, 25, 50		10-12~	Brown r gravel.	nedium	to coarse	SAND, little fine
					13 ft Bottom of boring					

⁽¹⁾ in feet relative to a common datum (2) from top of PVC casing

	Ametrick/Summunide Vord
0 FT.	PROJECT NAME Amtrak/Sunnyside Yard NUMBER 05509Y
LAND SURFACE	WELL NO PERMIT NO
1, 8 8	TOWN/CITY Long Island City
10	COUNTY Queens STATE New York
10 INCH DIAMETER, DRILLED HOLE	LAND-SURFACE ELEVATION
	AND DATUM FEET
WELL CASING 4 INCH DIAMETER,	ESTIMATED
1 9 9 - 111011 0111111111111111111111111	INSTALLATION DATE(S) 10/04/90
BACKFILL	DRILLING METHOD Hollow Stem Auger
⊠ GROUT cement	DRILLING CONTRACTOR Land, Air, Water Enviro. Services
1 44	DRILLING FLUID None
0.5 FT.	
	DEVELOPMENT TECHNIQUE(S) AND DATE(S)
BENTONITE PELLETS 1.5 FT.	Pump & surge - submersible pump, 12/05/90.
2 <u>.6</u> _{FT} .	FLUID LOSS DURING DRILLING None GALLONS
	WATER REMOVED DURING DEVELOPMENT 25 GALLONS
WELL SCREEN	STATIC DEPTH TO WATER 4.5 FEET BELOW M.P.
4 INCH DIAMETER,	
PVC 20 SLOT	PUMPING DEPTH TO WATER FEET BELOW M.P.
	PUMPING DURATION HOURS
	YIELD GPM DATE
#2 GRAVEL PACK	SPECIFIC CAPACITY GPM/FT.
	WELL PURPOSE Monitoring
12.6 FT.	
<u>17</u> _{FT} .	
<u> </u>	REMARKS
NOTE: ALL DEPTHS IN FEET	
BELOW LAND SURFACE	
	HYDROGEOLOGIST V. Singh

			SULTING & I	MANAGEMENT			GEC	LO	GIC I	LOG	
		_			v	VELL I	DATA	_	G-	W READIN	IGS (1)
{ Study	No()5509Y	Da	te <u>10/04/90</u>	Hole Diam. (in.)	_10			Date	DTW MP (2)	1
-			ard		Final Depth (ft.)	17					
Client	AMT	RAK			Casing Diam. (in	ı.) <u>4</u>					
Page_	1		of <u>1</u>		Casing Length (f	t.) <u>12.6</u>				[
Logge	d By	V. Singh			Screen Setting (fi	t.) <u>12.2</u> -	2.6				
Well l	No. <u>M</u>	W-32			Screen Slot & Ty	pe <u>PVC</u>	<u> </u>			,	
Locati	on				Well Status Mon	nitoring v	vell				
M.P. 3	Elevati	on			SAM	<u>PLER</u>		,	DEVE	ELOPMENT	•
Drillin	g Start	ed <u>08:3</u>	0En	ded <u>1000</u>	Type Split Spoot	<u> </u>		Pump	and surge	2	
Drille	r <u>Land</u>	Air, W	ater Enviror	nmental Services	Hammer <u>140</u>		lb.				
Туре	of Rig	Hollow	stem auger		Fall 30	_	in.				
PID			SAMPL	Е	Strate Change	Donth	0.43.47		ECCDIE		
(ppm)	No.	Rec.	Depth	Blows/6"	Strata Change & Gen. Desc.	Depth (ft)	SAMP	LE D	ESCRIP	TION	
		1.3	0-2'	7, 11, 10, 15		0-2-				oarse SAND, tr	ace
					(ĺ	gravel fi	ner tov	vard botto	m.	
I]]	· ·					
		1.3	2-4'	8, 16, 19, 8	1	2-4				oarse SAND, tr	race
]					gravel c	oarser	toward bo	ttom.	
		ļ			j						
		1.1	4-6'	24, 16, 8, 10	1	4-6-			to coarse	SAND, trace	gravel in
							Top .8'; Water ta		5 ft		
			i	1			Water to	acie at	J II.	•	
			ł	}	CANTO						
					SAND						
			ļ		1						
						_					
		1.4	10-12'	7, 7, 9, 14		10-12-			medium o	coarse SAND,	trace
					·		gravel; v	vct.			
-											
ļ											
-											
		1.3	15-17	4, 8, 9, 8	15 ft	15-17-	Gray/br	own fir	e to medi	um SAND and	SILT.
}				· · · ·	SAND &		trace cla				- ,
	ļ				SILT						
					17 ft	ľ					
	l				Bottom of	1					
					boring						•

(1) in feet relative to a common datum (2) from top of PVC casing

Consulting Ground-Water Geologists
ROUX ASSOCIATES INC

PROJECT NAME Amtrak/Sunnyside Yard NUMBER 05509Y WELL NO. MW-33 PERMIT NO. TOWN/CITY Long Island City COUNTY Queens STATE New York LAND-SURFACE ELEVATION AND DATUM FEET SURVEYED BACKFILL GROUT CEMENT DRILLING METHOD Hollow Stem Auger DRILLING CONTRACTOR Land, Air, Water, Enviro. Services
TOWN/CITY Long Island City COUNTY Queens STATE New York LAND-SURFACE ELEVATION AND DATUM FEET SURVEYED INSTALLATION DATE(S) 11/15/90 DRILLING METHOD Hollow Stem Auger
OUNTY Queens STATE New York LAND-SURFACE ELEVATION AND DATUM FEET SURVEYED WELL CASING FEET ESTIMATED INSTALLATION DATE(S) INSTALLATION DATE(S) DRILLING METHOD Hollow Stem Auger
DRILLED HOLE WELL CASING MELL CASING MINCH DIAMETER, INSTALLATION DATE(S) DRILLING METHOD Hollow Stem Auger
DRILLED HOLE WELL CASING 4 INCH DIAMETER, INSTALLATION DATE(S) DRILLING METHOD Hollow Stem Auger
WELL CASING 4 INCH DIAMETER, INSTALLATION DATE(S) 11/15/90 DRILLING METHOD Hollow Stem Auger
4 INCH DIAMETER, INSTALLATION DATE(S) 11/15/90 DRILLING METHOD Hollow Stem Auger
BACKFILL DRILLING METHOD Hollow Stem Auger
DRILLING CONTRACTOR Land, Air, Water, Enviro. Services
DRILLING FLUID None
<u></u>
BENTONITE SLURRY DEVELOPMENT TECHNIQUE(S) AND DATE(S)
Pump & surge - submersible pump, 18-20 gpm for 1 hour 12/05/90
8 FT. FLUID LOSS DURING DRILLING None GALL
WATER REMOVED DURING DEVELOPMENT 1100-1200 GALL
WELL SCREEN STATIC DEPTH TO WATER 10 FEET BELOW
4 INCH DIAMETER, PVC 20 SLOT PUMPING DEPTH TO WATERFEET BELOW
PUMPING DURATIONHOURS
YIELD GPM DATE
#2 GRAVEL PACK SPECIFIC CAPACITY GPM/FT. WELL PURPOSE Monitoring Well
[3] <mark>— В. В. Бт. В. В. В. В. В. В. В. В. В. В. В. В. В.</mark>
18.5 FT. REMARKS
nemanko
NOTE:
ALL DEPTHS IN FEET
BELOW LAND SURFACE
V C:1
HYDROGEOLOGIST V. Singh

			SULTING & N TES, INC.	MANAGEMENT			GEO	LOGIC LOG
					v	<u>VELL I</u>	DATA	G-W READINGS (1)
Study	No()5 <u>509Y</u>	Da ^r	te <u>11/15/90</u>	Hole Diam. (in.)	_		Date DTW MP (2) Elev. W.S
•			ard		Final Depth (ft.)			
					Casing Diam. (in	•		
_			of <u>1</u>	Y Control of the Cont	Casing Length (ft	·		
					Screen Setting (ft			
					Screen Slot & Ty Well Status <u>Mor</u>			
						PLER	VC11	DEVELOPMENT
			0En	ded 3:20	Type Split Spoor			Pump and surge
	_			nmental Services			lb.	Tamp and so-ge
		-	stem auger		Fall 30		in.	
חות			SAMPLI	E	Charte Charge	Danth		
PID (ppm)	No.	Rec.	Depth	Blows/6"	Strata Change & Gen. Desc.	Depth (ft)	SAMP	LE DESCRIPTION
0			0-2'	Grab sample	1	0-2-	Black/b	rown fine to medium SAND and gravel
		'	'		!		(railroad	d bed fill).
	l '	'		_ ,	!			
3.8		1 '	2-4'	Grab sample	1	2-4-	Brown for cobbles.	ine to medium SAND, trace gravel and
		1 '		1		1 [0000.02.	
0	ļ '	1.25	4-6'	N/R	SAND	4-6-	Brown f	ine to medium SAND.
	ļ	1.25		17,10	D711.12		Diowii	me to medium gravis.
				1	'	1 1		
0		0	6-8'	N/R	!	6-8-		
				1	'	1 1		
_					'			
0		.9	8-10'	13, 21, 53, 31	!	8-10-	Brown fi	ine to medium SAND; Wet at top.
	,				! . !	1		
				!		1	Water to	able at 10 ft.
						1	Water to	ible at 10 it.
						1		
[1 1	ı İ		
				i		. [
						,)		
				1		1		
[1		
	1					.		
]	l				1		
		,	,]		D-44	.]		
			1	ı	Bottom of			
	0.5	18-20'	N/R		boring	18-20-		e to coarse SAND, trace fine gravel;
}	1		,)	1	20 ft		wet.	}

(1) in feet relative to a common datum (2) from top of PVC casing

<u> </u>	PROJECT NAME Amtrak/Sunnyside Yard NUMBER 05509Y
2.5 FT. LAND SURFACE	WELL NO. MW-34 PERMIT NO.
1799	TOWN/CITY Long Island City
	COUNTY Queens STATE New York
10 INCH DIAMETER, DRILLED HOLE	LAND-SURFACE ELEVATION
	AND DATUM FEET
WELL CASING 4 INCH DIAMETER,	DESTIMATED
I A A THOM BRANCIES.	INSTALLATION DATE(S) 11/29/90
BACKFILL	DRILLING METHOD Hollow Stem Auger
⊠ GROUT cement	DRILLING CONTRACTOR Land, Air, Water Enviro. Services
	DRILLING FLUID None
1.5 FT.	
BENTONITE PELLETS	DEVELOPMENT TECHNIQUE(S) AND DATE(S)
5 FT.	Pump & surge - submersible pump, 12/05/90
	
7 <u>.3</u> FT.	FLUID LOSS DURING DRILLING None GALLONS
WELL SCREEN	WATER REMOVED DURING DEVELOPMENT 15 GALLONS
4_ INCH DIAMETER,	STATIC DEPTH TO WATER 14.5 FEET BELOW M.P.
PVC 20 SLOT	PUMPING DEPTH TO WATERFEET BELOW M.P.
	PUMPING DURATION HOURS
	YIELD DATE DATE
#2_ GRAVEL PACK	SPECIFIC CAPACITY GPM/FT.
	WELL PURPOSE Monitoring
17.3 FT.	
<u>19</u> FT.	REMARKS Screen set 3 ft above proposed depth to avoid silty
	clay layers below 17 ft depth.
NOTE:	
ALL DEPTHS IN FEET BELOW LAND SURFACE	
SCEON EARL GOIL ROE	
	HYDROGEOLOGIST H. Gregory/V.Singh
	<u> </u>
	j

i			SULTING & IFES, INC.	MANAGEMENT			GEC	LO	GIC 1	LOG	
						VELL I	DATA		_G·	W READI	NGS (1)
Study	No()5509Y	Da	te <u>11/29/90</u>	Hole Diam. (in.)	10			Date	DTW MP (2	
Projec	t <u>Sun</u>	nyside Y	ard		Final Depth (ft.)	21					
Client	<u>AMT</u>	RAK_			Casing Diam. (in	ı.) <u>4</u>					
Page _	1		of <u>1</u>		Casing Length (f	t.) <u>19.8</u>				Í	{
Logge	d By _	V. Singh			Screen Setting (f	t.) <u>17.3 -</u>	7.3]	
Well l	No. <u>M</u>	W-34			Screen Slot & Ty					1	
					Well Status Mon		vell	<u> </u>	_		
						<u>PLER</u>				LOPMENT	
			5 En		Type Split Spoo			Pump	and surge	:	
				nmental Services			lb. in.				
Type	or Rig	Hollow	stem auger		Fall <u>30</u>		in.	L			
PID			SAMPLI		Strata Change & Gen. Desc.	Depth (ft)	SAMP	LE D	ESCRIP	TION	
(ppm) 0	No.	Rec.	Depth 0-2'	Blows/6"				_	ne SAND		
U .			0-2	Grab sample	SAND & SILT	0-2-	Dark or	own III	ie Sand	and sut.	
0			2-4'	Grab sample	2 ft	2-4-	Brown f	ine to i	medium S.	AND, trace fir	ne gravel
_		İ								,	ao gravon
0		1.6	4-6'	9, 17, 23, 28	SAND	4-6	Brown f	ine to 1	medium S	AND, trace sil	lt and
				Į.			gravel.				
0		1.2	6-8'	13, 18, 22, 27	}	6-8-		ine to 1	medium Sa	AND, trace sil	lt and
							gravel.				
•]]					
0		1.3	8-10'	17, 19, 25, 32		8-10-	Top 0.5':	Brown	n fine SAI	ND, trace grav to medium SA	el.
							0.5-1.5.	iccu/bi	Own Thic t	o medium SA	ND,
0		1.2	10-12'	22 27 45 49		10.12	D - 1/L -		1.	CAND !	
U		1.2	10-12	32, 37, 45, 48		10-12-	in layers			ım SAND, into	erbedded
						ļ	,-	,	P·		
0		1.7	12-14'	7, 12, 17, 20	<u> </u>	12-14-	Red/bro	wn fine	SAND;	Wet	
				, =2, 11, 20		12 1.	Water ta				
	1										
						ŀ					
0		1.8	17-19'	5, 12, 25, 32	Sand, Silt and	17-19-	Red/bro	พก โกล	e cand cilt	, and CLAY	
-			<u>-</u> .	-, - - ,, <i>5</i>	Clay	-/ -/]	interbed	ded in	layers; We	t.	1
*0		1.8	19-21'	N/R		19-21-	Dad/bas	um Cī	Λ₩ <u></u>	len alamia ta	
· I		1.0	1,7-21	17/1	19 ft	13-21	layers.			lty clay in inte	rpeaded
ľ	ľ				Clay			of bori	ng at 21 ft.	•	

(1) in feet relative to a common datum (2) from top of PVC casing

↓		
2.5 FT.	PROJECT NAME AMTRAK	NUMBER <u>05526Y</u>
LAND SURFACE	WELL NO. MW-35	PERMIT NO
 	TOWN/CITY Long Island City	
1' 12 12	COUNTY Queens	STATE New York
10 INCH DIAMETER, DRILLED HOLE	LAND SURFACE ELEVATION	
I И М	AND DATUM FEET	☐ SURVEYED
WELL CASING		☐ ESTIMATED
4 INCH DIAMETER	INSTALLATION DATE(S) 10/15/91	
□ BACKFILL	DRILLING METHOD Hollow Stem Auger	
GROUT <u>cement</u>	DRILLING CONTRACTOR A.D.T.	
	DRILLING FLUID None	
<u> </u>	JAILENO TEOD	
□ SLURRY	DEVELOPMENT TECHNIQUE(S) AND DATE(S)	
BENIONIE PELLETS 2_FT.	Pump and Surge, 10/15/91	
3 FT.	STILL LOSS BURNO DELL'INO	04110410
	FLUID LOSS DURING DRILLING	
WELL SCREEN		
4 INCH DIAMETER,	STATIC DEPTH TO WATER	
PVC <u>0.020</u> slot	PUMPING DEPTH TO WATER	
	PUMPING DURATION	
	YIELD GPM	
#1_ GRAVEL PACK	SPECIFIC CAPACITY	GPM/FT.
	WELL PURPOSE Monitoring well	
<u>13</u> П.		
_14_FT.		
<u> 19</u> Fl.	REMARKS	
NOTE:		
ALL DEPTHS IN FEET BELOW LAND SURFACE		•
DELOTI DAID SURFACE		
·		
	HYDROGEOLOGIST H. Gregory	

			ULTING & M FES, INC	ANAGEMENT	GEOLOGIC LOG						
			-		v	VELL D	ATA		G-	W READIN	GS (1)
Study	No(5509Y	Dat	e _10/15/91	Hole Diam. (in.)	_10			Date	DTW MP (2)	
	_		ard		Final Depth (ft.)	14					
Client	AMT	RAK			Casing Diam. (in]		
Page _	1		of <u>1</u>		Casing Length (fl	:.) <u>3 ft to</u>	grade				
Logge	d By <u>l</u>	H. Grego	ry		Screen Setting (ft	.) <u>3-13</u>			ŀ		
Well/E	Boring	No. <u>M</u>	W-35		Screen Slot & Ty	pe <u>PVC</u>	.020 slot				
Locati	on No	rth of se	wer line		Well Status Mon	itoring_					
M.P. I	Elevatio	on			SAM	PLER			DEVE:	<u>LOPMENT</u>	_
Drillin	g Start	ed <u>10:4</u>	5 End	ded <u>11:15</u>	Type <u>cuttings</u>	_					
Driller	Land,	Air, Wa	ter, Inc.		Hammer						
Type o	of Rig	Hollow_	Stem Auger	·	Fall		in.				
PID			SAMPL	Е	Strata Change	Donth		C 4 3 4	DIE DE	a an ingle	-(3)
(ppm)	No.	Rec.	Depth	Blows 6	& Gen. Desc.	Depth (ft)		SAM	PLE DE	SCRIPTION	(3)
			0-5 ft	Cuttings	Sand, silt and gravel, fill	0-				fine to mediu Iding debris.	n SAND,
			5-10 ft	Cuttings	Sand, silt and gravel	2	Wet at of Gray-brosome G	own fi		um SAND and	l Silt,
			10-14 ft	Cuttings	Bottom of Boring	10-	some G	ravel.	ne to medi	um SAND and	l Silt,

REMARKS (1) in feet relative to a common datum
(2) from top of PVC casing
(3) sample description logged from drill cuttings

	PROJECT NAME AMTRAK NU	MBER <u>05526Y</u>
2.5 FT. LAND SURFACE	WELL NO. MW-36 PERMIT	NO
	TOWN/CITY Long Island City	
	COUNTY _Queens	RVEYED
BENIONIE □ PELLETS 1.5 FT. 3 FT.	Pump and Surge, 10/15/91 FLUID LOSS DURING DRILLING	
- WELL SCREEN 4 INCH DIAMETER, PVC 0.020 SLOT	WATER REMOVED DURING DEVELOPMENT _~50 STATIC DEPTH TO WATER PUMPING DEPTH TO WATER PUMPING DURATION HOURS	GALLONS
#1 GRAVEL PACK 13FT.	YIELD GPM GPM/FT. SPECIFIC CAPACITY GPM/FT. WELL PURPOSE Monitoring well	
15 FT. NOTE: ALL DEPTHS IN FEET BELOW LAND SURFACE	REMARKS Product observed, development water drummed	J.

			ULTING & M. TES, INC	ANAGEMENT	GEOLOGIC LOG						
					<u></u>	ÆLL D	ATA	_	G-	W READIN	GS (1)
Study	No. (5509Y	Date	e <u>10/15/91</u>	Hole Diam. (in.)	10			Date	DTW MP (2)	Elev. W.S
-			ard		Final Depth (ft.)				l		
Client	AMT	RAK			Casing Diam. (in)			l		
Page	1		of <u>1</u>		Casing Length (ft	.)					
			ry		Screen Setting (ft	.)					
Well/I	Boring	No. <u>M</u>	W-36		Screen Slot & Ty	ре					
Locati	on So	uth of se	wer line		Well Status						
					SAMI	<u> LER</u>			DEVE:	LOPMENT	
Drillin	g Start	ed <u>14:4</u>	5 Enc	ded <u>15:40</u>	Type <u>cuttings</u>					•	
Driller	Land,	Air, Wa	ater, Inc.		Hammer		lb.				
Type	of Rig	Hollow	Stem Auger		Fall		in.				
DID			SAMPLI	Е	Strata Change	Donth		C 4 3 4		CODIDITION	(3)
PID (ppm)	No.	Rec.	Depth	Blows 6	Strata Change & Gen. Desc.	Depth (ft)		SAM	PLE DE	SCRIPTION'	(3)
			0-4 ft	Cuttings	Sand, silt and gravel, fill	0-	Brown and deb		medium S	AND and Silt,	bricks
						2-					
						\dashv					
			4-7 ft	Cuttings	İ	4-				AND and Silt,	
						-	and deb	ris; Pe	troleum od	lor. Wet at 4.5	- 5 ft bls.
						4					
						6-					
			7-9 ft	Cuttings		╛	Grav-br	own f	ine to med	ium SAND and	1 5:1+
			1-51	Cuttings		4				rong petroleum	
						8-					
			9-13 ft	Cuttings	Sand, silt and		Grav-bro	own. f	ine to med	ium SAND and	d Silt.
			, 13 11	ougs	gravel	_	some G				- 0114,
						10-					
						4					
						12					
•			13-15 ft	Cuttings		7	Gray-bro	own fi	ne to coars	e SAND, some	Gravel.
				-		14					
						14-	Bottom	of bor	ing 15 ft b	ls.	
						-	Dottoin	01 001		15.	
					Bottom of	1,-					
					Boring	16-					
						\dashv					
						18-					
						187					
						-					

REMARKS (1) in feet relative to a common datum (2) from top of PVC casing (3) sample description logged from drill cuttings

2 FT. LAND SURFACE	PROJECT NAME _AMTRAK		
	TOWN/CITY Long Island City COUNTY Queens LAND SURFACE ELEVATION		York
WELL CASING _4 INCH DIAMETER BACKFILL GROUT _cement/bentonite_	INSTALLATION DATE(S) _12/14/93 DRILLING METHODHollow Stem Auger		
0.1_ FT. — BENTONITE — PELLETS — 0.6 FT.	DRILLING CONTRACTOR —A.D.T. DRILLING FLUID ————————————————————————————————————		
_ <u>1.5</u> _{FT} .	FLUID LOSS DURING DRILLINGWATER REMOVED DURING DEVELOPMENT		
WELL SCREEN -4 INCH DIAMETER, -PVC -10 SLOT	PUMPING DEPTH TO WATER HO PUMPING DURATION HO YIELD CPM	DURS	FEET BELOW M.F
#0 GRAVEL PACK	SPECIFIC CAPACITY — WELL PURPOSE Monitoring well	GPM/FT.	
	REMARKS		
	HYDROGEOLOGIST H. Gregory		

			ULTING & M TES, INC	ANAGEMENT	GEOLOGIC LOG							
						VELL D	ATA	_	G-	W READIN	GS (1)	
I Study	No. 0)5526Y	Dat	e 12/14/93	Hole Diam. (in.)	_10			Date	DTW MP (2)		
			ard		Final Depth (ft.)							
ľ					Casing Diam. (in	.) _4			}			
î .			of _1_		Casing Length (f	t.)				1		
			ry		Screen Setting (fl	.) <u>11.5'</u> 1	to 1.5'bls.					
Well/E	Boring :	No. <u>M</u>	W-37		Screen Slot & Ty	pe <u>10 Sl</u>	ot - PVC		1			
Locati	on				Well Status Mor	itoring W	/ell					
					SAM1	<u>PLER</u>			<u>DEVE</u>	LOPMENT	-	
Drillin	g Start	ed 11:3	0En	ded 14:20	Type 2" Split-sp	oon						
					Hammer 140 lb.							
Type of	of Rig	Hollow	Stem Auger	·	Fall 30		in.			_		
PID			SAMPL:		Strata Change	Depth		CAR		CODIDTION	(3)	
(ppm)	No.	Rec.	Depth	Blows 6	Strata Change & Gen. Desc.	(ft)		SAIVI	PLE DE	SCRIPTION	(-)	
**			0 - 3'	Posthole	Sand	0-	Brown	fine to	medium S	SAND.		
						l d						
	•					_						
						2-						
0	1	2	3-4'		Sand, gravel,		Grev br	own to	black stat	ined fine to me	dium	
·	•	_			cinders,	l ⊣	SAND,	trace (Gravel and	Cinders; Rail		
			4-6'		railroad fill Sand, gravel	4-			t 3 ft bls.	SAND, trace Gi	ovel: No	
			4-0		Salid, graver		odor; N			AND, trace Gi	avei, No	
						_						
						6-						
						_						
						Ľ°						
0	2	1.9	9 - 11'		Sand, silt	-	Tan fine	SAN	D, trace Si	ilt.		
						10-						
						\						
						-						
						12-						
						-						
						14-	Bottom	of Bor	ing 14 ft b	ols.		
					Bottom of	-						
					Boring							
						16-						
		,				-						
						18-						
						_						

23_ FT. — BENTONITE — PELLETS — 25_ FT.	DEVELOPMENT TECHNIQUE(S) AND DATE(S) Pump and Surge		
29.5FT. WELL SCREEN 4 INCH DIAMETER, PVC. 10 SLOT	FLUID LOSS DURING DRILLING		GALLONS
#0_ GRAVEL PACK _39.5FT.	YIELD GPM SPECIFIC CAPACITY WELL PURPOSE Monitoring well	DATE	
44_ FT. NOTE: ALL DEPTHS IN FEET	REMARKS		

			ULTING & M TES, INC	ANAGEMENT	GEOLOGIC LOG						
						VELL D	ATA		G-	W READIN	IGS (1)
Study	No. ()5526Y	Dat	e <u>12/10-13/93</u>	Hole Diam. (in.)	10		_	Date	DTW MP (2)	
			ard		Final Depth (ft.)						
_		RAK			Casing Diam. (in						
			of _2		Casing Length (f						
					Screen Setting (fi						
		_	W-38D		Screen Slot & Type 10 Slot - PVC						
1	-				Well Status Mor						
					SAM	PLER_			DEVE	LOPMENT	
			0 En		Type 2" Split-sp						_
					Hammer 140						
			Stem Auger		Fall 30		in.				
	1		SAMPL			I I			<u> </u>		
PID (ppm)	No.	Rec.	Depth	Blows 6	Strata Change & Gen. Desc.	Depth (ft)		SAM	PLE DE	SCRIPTION	T ⁽³⁾
(5511)	 		0-4'	Posthole	Railroad Fill,	0-	Brown-	black s	tained fin	e to medium S	AND;
		•	}		sand	. ⊢	Railroa				
		l 		}	Sand	l • <u>]</u>	Orange-	-brown	fine to m	edium SAND.	
						2-					
			1		1	-					
					}						
0	1	1.2	4-6'		J	4-	Grey/br	own m	edium to	coarse SAND.	
						-					
ı						1]				•	
0	2	2	6-8'		Sand, gravel,	6-				se SAND, trac	e Gravel,
			(brick		trace of	red br	ick (fill).		
						1]					
						8-					
0	3	1	9-11'	10,5,6,6	Sand, cinders	l i	Grev-br	own m	edium to	coarse SAND;	Cinders
Ü		1)	10,5,0,0	Baild, Ciliders		(fill).	OWII III	carain to	coasc BAND,	Cinders
)			1	10-					
						-					
						12-					
								_			
0	4	1	14-16'	24,16,14,15	Sand, gravel	14-	Grey-br	own fi	ne to coars	se SAND, trace	e Gravel.
]				•	
						16-					
				ı.		18-					
						107					
						-					
						-					

			ULTING & M. TES, INC	ANAGEMENT	GEOLOGIC LOG						
					Γ v	VELL D	ATA		G-	W READIN	GS (1)
Study	No ()5526Y	Dat	e <u>12/13/93</u>	Hole Diam. (in.) 10				Date	DTW MP (2)	
			ard		Final Depth (ft.)			_	25 0000	DI 11 1144 127	LICT
_		RAK_			Casing Diam. (in						
			of <u>2</u>		Casing Length (fi			1	1		
			ory		Screen Setting (ft		ĺ				
			W-3 <u>8D</u>		Screen Slot & Ty				İ		
					Well Status Mon				l		
	LocationM.P. Elevation					PLER			DEVE	LOPMENT	
	Drilling Started 10:00 Ended 13:00				Type 2" Split-spe						-
	Driller A.D.T.				Hammer 140		lb.				
Type of Rig Hollow Stem Auger					Fall <u>30</u>		in.				
SAMPI F						T					_
PID	No.	Rec.	Depth	Blows 6	Strata Change & Gen. Desc.	Depth (ft)		SAM	PLE DE	SCRIPTION	(3)
(ppm)	140.	RCC.	Depth	Diows	& Gen. Desc.	40-			· · · · · · · · · · · · · · · · · · ·		
]			`~					
		[-					
	[42-					
			}			"_					
						-					
 -						44-	Rottom	of bor	ing 44 ft b	ale.	
		(Bottom of]]	Donon.	01 00.	III5 77 10 0	115.	
		•			Boring	-					
			[46-					
						<u>`</u> _					
					1	-					
						48-					
						 - -					
					1	-					
		.				50-					ļ
						~~_					
						-					
						52-					
1						-					
						54-					
						-				•	
ĺ						56-					
						~~					
						-					
1						58-					
						-					
						LL					
D.T. (D	.									

-⊓	PROJECT NAME _AMTRAK	NUMBER _05526Y	
2 FT. LAND SURFACE	WELL NO. MW-39D	PERMIT NO	
	TOWN/CITY Long Island City		
	COUNTY _Queens LAND SURFACE ELEVATION AND DATUM FEET INSTALLATION DATE(S) _12/15 - 16/93 DRILLING METHODHollow Stem Auger DRILLING CONTRACTORA.D.T DRILLING FLUID DEVELOPMENT TECHNIQUE(S) AND DATE(S) Pump and Surge	□ SURVEYED □ ESTIMATED	
	FLUID LOSS DURING DRILLING	GALLO GALLO GALLO FEET BELOW I HOURS DATE	M.F
NOTE: ALL DEPTHS IN FEET BELOW LAND SURFACE		·	
	HYDROGEOLOGIST H. Gregory		-

l .			ULTING & M TES, INC	IANAGEMENT	GEOLOGIC LOG							
					v	VELL D	ATA		G-	W READIN	GS (1)	
l Study	No. ()5526Y	Dat	te <u>12/</u> 15- <u>16/93</u>	Hole Diam. (in.)	10		_	Date	DTW MP (2)		
			ard		Final Depth (ft.)							
1 -					Casing Diam. (in							
ſ			of <u>3</u>		Casing Length (fi							
_			ry and J. G		Screen Setting (ft.) 40.5' to 30.5'bls.							
			W-39D		Screen Slot & Type 10 Slot - PVC							
	_				Well Status Mor	_						
					SAM	PLER			DEVE	LOPMENT		
			5En		Type 2" Split-spe						•	
Driller A.D.T.					Hammer <u>140</u>		lb.					
Type of Rig Hollow Stem Auger					Fall 30		in.					
SAMPI F				E			_					
PID (ppm)	No.	Rec.	Depth	Blows 6	Strata Change & Gen. Desc.	Depth (ft)		SAM	PLE DE	SCRIPTION	(3)	
30	• • • • • • • • • • • • • • • • • • • •		0-2'	Grab Sample	Sand, railroad	0-	0 - 19'	based	on log MV	V-19(Project #0)5509Y).	
					fill	-	Dark br	rown fi	ne to medi	ium SAND; Gr		
					Į.		Cinders	; Railre	oad bed fil	1.		
70/23			2-4'	Grab Sample		2-	Dark br	own fi	ne to medi	um SAND; Gr	avel;	
				1		-	Cinders	; Railre	oad bed fil	1.	·	
					Sand, silt		Brown	fine to	coarse SA	ND, trace Silt.		
18]	4-6'	1,3,4,10		4-	Brown	to gray	-brown fin	ne SAND, trace	Silt; Iron	
						-	staining			with wet clayey		
		ĺ					tip. Wet at	5 5 A 1	de			
3.9			6-8'	4,5,5,6		6-	Gray-br	own fi	ne SAND,	trace clayey S	ilt.	
					Sand	-	Brown	fine to	medium S	AND.		
]						
						8-						
						10-						
60			12-14'	18,21,29,30	Sand, silt	12-	Brown	fine to	coarse SA	ND, trace Silt.		
					}]						
						_						
						14-						
						コ						
						16-						
						7						
						,						
						18-					•	
ľ						4						
			,			-						

						_					
			ULTING & M. TES, INC	ANAGEMENT	GEOLOGIC LOG						
						VELL D	ATA	_	G-	W READIN	GS (1)
Study	No. 0)5526Y	Dat	e <u>12/15-16/93</u>	Hole Diam. (in.)	10			Date	DTW MP (2)	Elev. W.S
		_	ard		Final Depth (ft.)	43.5					
Client	AMT.	RAK			Casing Diam. (in	.) _4		_			
Page	2		of <u>3</u>		Casing Length (fl	.)					
Logge	d By _l	H. Grego	ry and J. Ge	erlach	Screen Setting (ft.) 40.5' to 30.5'bls.						
	_		W-39D		Screen Slot & Ty					}	
					Well Status Mon		ell				
						PLER			<u>DEVE</u>	LOPMENT	_
				ded <u>13:00</u>	Type 2" Split-spe						
			O4 A		Hammer <u>140</u>		lb.				
Type of Rig Hollow Stem Auger SAMPLE				Fall <u>30</u>		in.		_			
PID (ppm)	No.	Rec.	SAMPL Depth	Blows 6	Strata Change & Gen. Desc.	Depth (ft)		SAM	PLE DE	SCRIPTION	(3)
0	1	2	19-21'	-	Sand, silt	20-			edium SA1		
							Grey-br	own fi	ne to med	ium SAND, tra	ice Silt.
					ĺ	. →					•
						22					
		ľ									
					Ì	24-	No som	mla	ahla ta wa	ush out over 5:	A of sond
						247	in auger		aute to wa	ish out over 3	it or sailu
						-					
					1	26-					
						- 4					
										•	
						28-					
						j					
					•	4					
						30-					
						口					
						22					
						32-					
						\dashv					
		1				34-					
						4					
		ı				36-					
						-					
						38_					-
						\exists					
						4					
									_		

Study No. 05526Y	i			ULTING & M FES, INC	ANAGEMENT	GEOLOGIC LOG						
Study No. 05526Y	_		_	_		T	VELL D	ATA		G-	W READIN	IGS (1)
Project Summyside Yard	Study	No (5526V	Dat	e 12/15-16/93							1
Client AMTRAK										Dute	DIW WII (2)	/ 1510 V. W.
Page 3	_					_						
Logged By H. Gregory and J. Gerlach Screen Setting (ft.) 40.5° to 30.5° bls.											(
Well/Boring No. MW-39D Screen Slot & Type 10 Slot - PVC Well Status Monitoring Well										l		
Metalography		_		-		_						
M.P. Elevation		_										
Drilling Started 14:15 Ended 13:00 Type 2" Split-spoon Hammer 140 Ib.	M.P. Elevation									DEVE	LOPMENT	
Driller A.D.T.										<u> </u>		_
Fall 30 in in in in in in in i								1b.				
PID								·				
No. Rec. Depth Blows 6 Strata Change Gen. Desc. High SAMPLE DESCRIPTION SAM	SAMPI F					1		<u></u>				
40			Rec			Strata Change	Depth (ff)		SAM	PLE DE	SCRIPTION	$1_{(3)}$
Bottom of Boring 43.5 ft bls. Bottom of Boring 43.5 ft bls. 48- 48- 50- 50- 54- 56- 56-		1,0,					_				_	
Bottom of Boring 43.5 ft bls. 44- 46- 48- 50- 50- 54- 54- 54- 56-							-					
Bottom of Boring 43.5 ft bls. 44- 46- 48- 50- 50- 54- 54- 54- 56-												
Bottom of Boring - 44- 46- 46- 50- 50- 50- 54- 54- 56- 56- 56- 56- 56- 56- 56- 56- 56- 56				l			42-					
Bottom of Boring - 44- 46- 46- 50- 50- 50- 54- 54- 56- 56- 56- 56- 56- 56- 56- 56- 56- 56							-					
Bottom of Boring - 44- 46- 46- 50- 50- 50- 54- 54- 56- 56- 56- 56- 56- 56- 56- 56- 56- 56								Bottom	of Bor	ing 43.5 fi	t bls.	
48- - - - - 50- - - - - - - - - - - - - -						1	44-			0		
48- - - - 50- - - - - - - - - - - - - - -						Boring						
48- - - - 50- - - - - - - - - - - - - - -	'											
50-							46-					
50-												
50-							-					
52- 52- 54- 56-							48-					
52- 52- 54- 56-]					
52- 52- 54- 56-				'			-					
54-					•		50-					
54-	1						1					
54-												
56-							52-					
56-							_					
56-												
			'	u.			34-					
							-					
							56-					
58-							707					
58-	ı						-					
							58					
							-					

1	_ [-		PROJECT NAME AMTRAK	NUMBER _Q	5526Y
2	F1.	LAND SURFACE	WELL NO. MW-40D	PERMIT NO	
🛊			TOWN/CITY Long Island City	<u> </u>	
'			COUNTY Queens	STATE New Yo	rk
			LAND SURFACE ELEVATION		
		M	AND DATUM — FEET	□ SURVEYED	
		WELL CASING		ESTIMATED	
	И	_4_ INCH DIAMETER	INSTALLATION DATE(S) 11/09/93		
		BACKFILL	DRILLING METHOD Hollow Stem Auger		
		GROUT <u>cement/bentonite</u>	DRILLING CONTRACTOR A.D.T.		
			DRILLING FLUID		
	4	FT.			
		BENTONITE SLURRY	DEVELOPMENT TECHNIQUE(S) AND DATE(S)		
		— BENTONITE □ PELLETS _26_ FT.	Dump and Curan		
		<u>29</u> гт.	FLUID LOSS DURING DRILLING		CALLONS
			WATER REMOVED DURING DEVELOPMENT		
		- WELL SCREEN	STATIC DEPTH TO WATER		
		4 INCH DIAMETER,	PUMPING DEPTH TO WATER		
		PVC 10 SLOT	PUMPING DURATION		_ / EC OCCOT M.1
			YIELD GPM		
			SPECIFIC CAPACITY		
		#0_ GRAVEL PACK	WELL PURPOSE Monitoring well		
			WELL FURFUSE Monitoring Well		
		਼ <u>39</u> ਜ.			
		<u>42</u> FT.	REMARKS		
			NEMPANS		
	NOTE	E: Depths in feet			
		OW LAND SURFACE			
			HYDROGEOLOGIST H. Gregory		

			ULTING & M. TES, INC	ANAGEMENT	GEOLOGIC LOG						
					v	VELL D	ATA		<u>G</u> -	W READIN	GS (1)
Study	No()5526Y_	Dat	te <u>11/09/93</u>	Hole Diam. (in.)	10			Date	DTW MP (2)	
			ard		Final Depth (ft.)	42					
Client	AMT	RAK			Casing Diam. (in	.) _4					
Page	1		of <u>3</u>		Casing Length (fl				Ī	1	
Logge	d By _l	H. Grego	ory and J. Ge	erlach	Screen Setting (ft	.) <u>39' to</u>	29'bls.				
Well/H	Boring	No. <u>M</u>	<u>W-40D</u>		Screen Slot & Type 10 Slot - PVC						
Locati	on				Well Status Mon	itoring W	Vell				
			_			PLER			DEVE	LOPMENT	_
Drillin	g Start	ed <u>10:0</u>	0En	ded 19:30	Type 2" Split-spe						
					Hammer <u>140</u>						
Type of Rig Hollow Stem Auger					Fall <u>30</u>		in.				
PID			SAMPL		Strata Change Depth SAM				ם ב חם	SCRIPTION	r(3)
(ppm)	No.	Rec.	Depth	Blows 6	Strata Change & Gen. Desc.	Depth (ft)					
		ĺ	0 - 3'	Posthole	Railroad Fill	0-	Black state ballast.	tained	SAND and	d Gravel; Railr	oad
							banası.				
	·					_					
						2-					
10.0	1	1.5	3 - 5'	9,10,9,11	Sand, gravel	4	Brown	fine to	coarse(+)	SAND, trace (Gravel;
						ا ,⊣	Moderat	te sew	er odor.		
						4 7					
14.5	2	1.5	5 - 7'	25,18,15,19						se SAND, trace	
						6-	Finer gr Wet at			oon; Mild sew	er odor.
						_	W Ct at	o it ois	••		
						-					
						8-					
						-					
			,								
12.0	3	1	10 - 12'	1,13,16,19	1	10-			n to coarse	e(+) SAND, tra	ce Gravel;
						-	No odo	r .			
						12-					
						-					
						14-					
7.0	4	0.7	15 - 17'	27,22,10,9			Brown 1	mediun	n to coarse	e(+) SAND, tra	ce Gravel;
						, -	No odo				ĺ
						16-					
						-					
						18-					
						107					
						4					
						٦					

	TAL CONSULTING & MANAGEMENT SOCIATES, INC.		GEO	LOGIC L	.OG	
		WELL D	ATA	G	-W READING	GS (1)
Study	05526Y Date 11/09/93 Hole Diam. ((in.) <u>10</u>		Date	DTW MP (2)	Elev. W.S
-		(ft.) 42				_
		. (in.) <u>4</u>				
Page _	of 3 Casing Lengt	th (ft.)			1	
Logge	H. Gregory and J. Gerlach Screen Settin	ig (ft.) 39' to	29'bls.			
Well/B		& Type <u>10 S</u> I				
Location	Well Status	Monitoring W	Vell			
		<u>AMPLER</u>		DEVE	LOPMENT	Ī
Drillin	rted 10:00 Ended 19:30 Type 2" Spli	it-spoon				
Driller		0	lb.			
Type o	Hollow Stem Auger Fall 30		in.			_
PID	SAMPLE Strata Chan	ge Denth		CAMBIE DE	ECCRIPTION	3)
(ppm)	. Rec. Depth Blows 6 & Gen. Des	ge Depth sc. (ft)		SAMPLE DE	ESCRIPTION [©]	
5.0	2 20 - 22' 31,25,23,23 Sand, grav	vel 20-	Brown No odo	medium to coars	e(+) SAND, tra	ce Gravel;
	Sand, sil	t 22-	Grey-br trace Si	own fine to med lt.	lium(+) to coarse	e SAND,
		24-				
3.5	1.7 25 - 27' 18,30,54,58 Sand, grav	vel		to coarse SANI ager wash)	D, trace Gravel;	(appears
	28 - 32' Cuttings Cobble lay	/er 28-	Cobble	zone.		
		30-				
	Cuttings Sand, grave cobbles	32- - 34- - 36- - 38-		coarse SAND, tr	race Gravel; Cob	obles;

			ULTING & M. TES, INC	ANAGEMENT	GEOLOGIC LOG						
					v	VELL D	ATA	_	G-	W READII	NGS (1)
l Study	No0)5526Y	Dat	te <u>11/09/93</u>	Hole Diam. (in.)	10			Date	DTW MP (2	
		nyside Y			Final Depth (ft.)	42					
Client	AMT	RAK			Casing Diam. (in	.) _4					
Page _	3		of <u>3</u>		Casing Length (fl						
Logge	d By _l	H. Grego	ry and J. Ge	erlach	Screen Setting (ft.) 39' to 29'bls.						
Well/H	Boring	No. <u>M</u>	<u>W-40D</u>		Screen Slot & Ty						
					Well Status Mon		/ell	_			
		on				PLER			<u>DEVE</u>	<u>LOPMENT</u>	
	-		0 End	ded <u>19:30</u>	Type 2" Split-spe		11	l			
1	A.D.1		Ct A		Hammer <u>140</u> Fall <u>30</u>		lb. _ in.				
Type (Type of Rig Hollow Stem Auger SAMPLE				raii <u>30</u>	-	m.				
PID (ppm)	No. Rec. Depth Blows 6				Strata Change & Gen. Desc.	Depth (ft)		SAM	PLE DE	SCRIPTIO	V ⁽³⁾
				Cuttings	Sand, gravel,	40-				ace Gravel, tr	ace
					cobbles		Copples	; Dnii	ed like Sar	10	
			}		Bottom of	42	Bottom	of Bo	ring 42 ft l	bls	
					Boring						
					'	44-					
				{	1	\ ** 7					
						-					
						46-					
]	-					
							,				
						48-					
						ī					
						50-					
						52					
						4					
						54-					
						77					
						-				,	
					[56-					
						-					
						58-					
						_					
						7					

	PROJECT NAME AMTRAK NUMBER 05511Y
O FT. LAND SURFACE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LAND SURFACE	WELL NOMW-41
1 FT BENTONITE	DEVELOPMENT TECHNIQUE(S) AND DATE(S) Pump and Surge - Centrifugal Pump, 10/30/91
3.4 FT. WELL SCREEN 4 INCH DIAMETER, SS 10 SLOT #0 GRAVEL PACK 13.4 FT. 14 FT. NOTE: ALL DEPTHS IN FEET BELOW LAND SURFACE	FLUID LOSS DURING DRILLING None GALLONS WATER REMOVED DURING DEVELOPMENT ~500 GALLONS STATIC DEPTH TO WATER FEET BELOW M.F PUMPING DEPTH TO WATER FEET BELOW M.F PUMPING DURATION 2 HOURS YIELD GPM DATE SPECIFIC CAPACITY GPM/FT. WELL PURPOSE Monitoring well REMARKS Flush mount to grade.
	HYDROGEOLOGIST H. Gregory

			TES, INC	ANAGEMENT	GEOLOGIC LOG								
			-		7	VELL D	ATA	-	G-	W READIN	IGS (1)		
Study	No. ()5511Y	Dat	te 10/30/91	Hole Diam. (in.)			_	Date	DTW MP (2)			
1			ard UST		Final Depth (ft.)		<u>-</u>						
1 *		•			Casing Diam. (in								
					Casing Length (f				Ĭ				
_			ory		Screen Setting (f				1				
		No. M			1	creen Slot & Type 10 Slot - SS							
1	_				Well Status					[
1		on				PLER_			DEVE	LOPMENT	_		
1			0En	ded 14:15	Type Split spoor					-	_		
1	_		ater		Hammer 140		lb.						
Type o	of Rig	B-61 M	<u>lobile</u>		Fall <u>30</u>		in.						
DID			SAMPL		Strate Change	Donah		~					
PID (ppm)	No.	Rec.	Depth	Blows 6	Strata Change & Gen. Desc.	Depth (ft)		SAN	MPLE D	ESCRIPTIO:	N		
159 ppm			0 - 2'	Grab Sample	Railroad Fill	0-	Dark be		ine to coar	se SAND with	railroad		
	,		}			-							
			2 - 4'	Grab Sample	Sand	2-	Brown	to oran	ige brown	medium to co	arse		
				_	and	│				troleum odor.			
<u>{</u>					Gravel	lj							
151 ppm	0.9		4 - 6'	4,7,12,18		4-				to coarse SAN moist, odor.	D trace		
54.8	0.5		6 - 8'	8,7,16,19		6-	Brown Odor, v	mediun vet, wa	n to coarse ter table a	e SAND/trace t 6.4 ft.	gravel.		
40 .1	0.6		8 - 10'	25,17,9,8		8- -			medium to staining.	o coarse SANI), trace		
38.2	1.1		10 - 12'	8,7,10,11		10-	Grey m Slight o		to coarse	SAND, trace g	ravel.		
					,	4							
						12-							
]			•				
							_			_			
					_	14-	Bottom	of bor	ing 14 ft b	ols.			
					Bottom of]							
					Boring								
						16-							
						-							
						,-							
						18-					•		
1		i	1		1								

REMARKS (1) in feet relative to a common datum (2) from top of PVC casing

2 FT. LAND SURFACE	PROJECT NAME AMTRAK NUMBER WELL NO. MW-42 PERMIT NO TOWN/CITY Long Island City COUNTY Queens STATE New.) LAND SURFACE ELEVATION AND DATUM FEET SURVEYED INSTALLATION DATE(S) 01/18/93 DRILLING METHOD Hollow Stem Auger DRILLING CONTRACTOR A.D.T. DRILLING FLUID None DEVELOPMENT TECHNIQUE(S) AND DATE(S) Pump and Surge FLUID LOSS DURING DRILLING None WATER REMOVED DURING DEVELOPMENT STATIC DEPTH TO WATER PUMPING DEPTH TO WATER PUMPING DURATION HOURS YIELD GPM DATE SPECIFIC CAPACITY GPM/FT. WELL PURPOSE Monitoring well REMARKS Pump at end of screen extends form 12' to 12.5'bls	GALLONS GALLONS GALLONS FEET BELOW M.P.
	HYDROGEOLOGISTD. Keohane	

ENVIRONMENTAL CONSULTING & MANAGEMENT
ROUX ASSOCIATES, INC.

GEOLOGIC LOG

KUUA	A A D D	OCIA	IES, INC	•			OEO	LUC		OG	
						VELL D			G-	W READIN	GS (1)
Study	No. <u>0</u>)5526Y	Date	e <u>01/18/93</u>	Hole Diam. (in.)				Date	DTW MP (2)	Elev. W.S
Projec	t <u>Sunr</u>	iyside Y	ard		Final Depth (ft.)	13.5					
Client	<u>AMT</u>	RAK			Casing Diam. (in.	.) 4					
Page _	_1		of <u>1</u>		Casing Length (ft						
Logge	d By <u>I</u>	D. Keoha	ane		Screen Setting (ft	.) <u>12' - 2</u>	2'bls				
			W-42		Screen Slot & Ty						
Location				Well Status Mon							
M.P. Elevation				SAMI	PLER			DEVE:	LOPMENT	_	
			5End		Type 2" Split-spo	oon					-
					Hammer 140		lb.				
Туре	of Rig	Hollow	Stem Auger	·	Fall 30		in.	ĺ			
			SAMPLI		}	T					
PID (ppm)	No.	Rec.	Depth	Blows 6	Strata Change & Gen. Desc.	Depth (ft)		SAM	PLE DE	SCRIPTION	(3)
ppiii)	110.	Noc.	Dop.ii	Posthole	Sand, railroad fill	0-			nedium to o	coarse SAND,	trace
						2-	Dark brogravel;	own to Coal; C	black coa	urse SAND, sor gments.	
0.3		2.0	3-5'	15,20,20,18	Sand, gravel	4- 4- -	Reddish fine to d	coarse (Gravel.	to coarse SAN	D, little
				Cuttings	Sand	6- - - - 8- -	Reddish	-brown	medium	to coarse SAN	D.
0.0		2.0	10-12'	10,14,26,36	Sand, silt	10- - - 12-	Reddish	-brown	fine SAN	ID, little Silt; 1	Fight.
					Bottom of Boring	14- - - 16-	Bottom	of bori	ing 13.5 ft	bls.	
	,	, ,	í l	1	1						

! ┌┐	PROJECT NAME _AMTRAK	NUMBER <u>05526Y</u>
2 FT. LAND SURFACE	WELL NOMW-43	_ PERMIT NO
	TOWN/CITY Long Island City COUNTY Queens LAND SURFACE ELEVATION AND DATUM FEET INSTALLATION DATE(S) 01/29/93 DRILLING METHOD Hollow Stem Auger DRILLING CONTRACTOR A.D.T.	STATE _New York □ SURVEYED □ ESTIMATED
BENTONITE	DEVELOPMENT TECHNIQUE(S) AND DATE(S) Pump and Surge - Submersible Pump.	
2.5 FT. WELL SCREEN 4— INCH DIAMETER, —PVC10 SLOT #0 GRAVEL PACK 12.5FT. 14.0FT. NOTE:	FLUID LOSS DURING DRILLING None WATER REMOVED DURING DEVELOPMENT STATIC DEPTH TO WATER PUMPING DEPTH TO WATER PUMPING DURATION 6 HOUR YIELD 230 GPM 0.5 SPECIFIC CAPACITY G WELL PURPOSE Monitoring well REMARKS Sump at end of screen extends from 1 -Well pumped sporadically(approx. 7.5gpm for <1 m -Well as originally installed on 1-14-93 but was damaged.	GALLONS FEET BELOW M.F FEET BELOW M.F S DATE 02/01/93 PM/FT. 12.5' to 13.0'bls. inute before running dry).
ALL DEPTHS IN FEET BELOW LAND SURFACE	HYDROGEOLOGIST C. Clark	

			ULTING & M. FES, INC	ANAGEMENT	GEOLOGIC LOG						
					V	ELL D	ATA		<u>G-</u>	W READIN	GS (1)
Study	No0	5526Y	Dat	e <u>01/29/93</u>	Hole Diam. (in.)	10			Date	DTW MP (2)	Elev. W.S
Projec	t Sunr	nyside Y	ard		Final Depth (ft.)	14'					
Client	AMT	RAK			Casing Diam. (in.) _4					
Page _	1		of <u>1</u>		Casing Length (ft	-					
Logge	d By <u>(</u>	C. Clark			Screen Setting (ft	.) 12.5'	ro 1.5'bls.				
Well/Boring No. MW-43			Screen Slot & Ty								
Location				Well Status Mon		/ell					
						PLER			<u>DEVE</u>	<u>LOPMENT</u>	•
				ded	Type 2" Split-spe		lb.				
			Stem Auger		Hammer <u>140</u> Fall <u>30</u>		15. in.				
Type	JI KIB.	Hollow			raii 30		ш.				
PID	No.	Rec.	SAMPL: Depth	Blows 6	Strata Change & Gen. Desc.	Depth (ft)		SAM	PLE DE	SCRIPTION	(3)
(ppm)	NO.	Rec.	0-3'	Posthole	Sand, railroad	0-	0-0, pa	sed on	Log MW-		
•			0-3	Tostiloic	fill	Γ̈́				D; Railroad ba	llast.
					Sand, gravel,	-	Tioht b		- adium ta	comme(1) SAN	D 1:41
					cobbles	2				coarse(+) SAN trace Cobbles.	
						-		•			
					}	4-					
						j					
						4					
						6-					
						口					
					}	\vdash					
						8-					
		1.5	9-11'	6,7,6,7	Sand, silt,	4				t, trace coarse	Gravel;
				1	gravel Silt, clay	10-			9 ft bls.	-brown SILT a	nd Clay
					Jin, clay	70-7	Mottled	gray a	nia readisii	-olowii SiLi t	ild Clay.
						12-					
						⊣					
						4					
					D-44 - C	14-	Botte	om of	boring 14	ft bls.	
					Bottom of Boring						
					Į į	16-					
						7					
						 18					
	l					'07					
						-					
										_	

<u> </u>	٦	PROJECT NAME AMTRAK NUMBER C)5526Y
2 FT.	LAND SURFACE		
		TOWN/CITY Long Island City	
1' 1/1		COUNTY Queens STATE New Yo	ork
	DRILLED HOLE	LAND SURFACE ELEVATION	
	\bowtie	AND DATUM FEET	
	WELL CASING 4 INCH DIAMETER	ESTIMATED	
	MON DIFFICIEN	INSTALLATION DATE(S) 01/19/93 - 01/20/93	
	BACKFILL	DRILLING METHOD Hollow Stem Auger	
	□ GROUTcement	DRILLING CONTRACTOR A.D.T.	
		DRILLING FLUID None	
	<u>_26</u>		
	BENTONITE □ SLURRY □ PELLETS	DEVELOPMENT TECHNIQUE(S) AND DATE(S)	
	_27.8FT.	Pump and Surge - Submersible Pump.	
🐉_	<u></u>	FLUID LOSS DURING DRILLING None	GALLONS
	WELL 000551	WATER REMOVED DURING DEVELOPMENT	GALLONS
	- WELL SCREEN	STATIC DEPTH TO WATER	FEET BELOW M.F
	INCH DIAMETER, 	PUMPING DEPTH TO WATER	FEET BELOW M.F
		PUMPING DURATION HOURS	
		YIELD DATE	01/27/93
	#0_ GRAVEL PACK	SPECIFIC CAPACITY GPM/FT.	
		WELL PURPOSE Monitoring well	
EASTA.	41_FT.	REMARKS Sump at end of screen extenda from 39.7 tp 40.2'bls.	
NO	DTE:	-Well was originally on 01/13/93 but was damaged & had to be abando	nea.
AL	L DEPTHS IN FEET LOW LAND SURFACE		
02	LUN DAN SURFACE		
		HYDROGEOLOGISTC. Clark	
1		T. Control of the con	

			ULTING & M. TES, INC	ANAGEMENT	GEOLOGIC LOG						
			•		V	VELL D	ATA		G-W	READIN	GS (1)
Study	No. 0	5526Y	Dat	e	Hole Diam. (in.)	11		- 1 -		ΓW MP (2)	
			ard		Final Depth (ft.)						
•					Casing Diam. (in.) 4						
					Casing Length (ft						
_					Screen Setting (ft	.) <u>39.7 t</u>	o 28.7 ft bl	s			
			W-44		Screen Slot & Ty	pe <u>10 Sl</u>	ot - PVC				
					Well Status Mon	itoring W	/ell				
M.P. Elevation				<u>SAMI</u>	PLER		DE	VELO	PMENT	•	
				ded	Type 2" Split-spe	_					
Driller A.D.T.			Hammer <u>140</u>								
Туре	of Rig	B-57_A	ΓV		Fall <u>30</u>		in.				
PID			SAMPL	Е	Strata Change	Depth		SAMPLE 1	DESC	יארודמומי	(3)
(ppm)	No.	Rec.	Depth	Blows 6	Strata Change & Gen. Desc.	(ft)		SAMELE	DESC	MIPTION	
				Posthole	Sand, railroad fill	0-	Dark bro ballast.	own stained o	oarse	SAND; Rail	lroad
					Sand, gravel, cobbles	2~		own medium coarse Gravel,			ND, little
		0	4-6'	5,3,5,4		4	No reco	very. Wet at	4 ft h	le .	
		V		2,2,2,1		-	110 1000	very. Wer at	THE O		
						6-					
						 8					
		1.5	9-11'	6,7,6,7	Sand, silt, gravel	-	Grey fin	e SAND and	Silt, t	race coarse	Gravel.
					Silt, clay	10-	Grey to Clay; Ti	reddish-brown ght.	n mott	led fine SIL	T and
						12-					
		0	14-16'	20,20,20,22		14-	No Reco	overy.			
]	٦					
						16-	6 111				
					Cobbles		Cobble 2	zone.			
					Sand	18~	Grey me	edium to coars	se (+)	SAND	
		2	19-21'	7,3,2,2	Sand, silt, clay	7	Brown n Clay; Ti	nedium to fin ght.	e SAN	D, some Si	lt, trace

			ULTING & M TES, INC	ANAGEMENT	GEOLOGIC LOG					
_					T v	VELL D	ATA	G:	-W READIN	GS (1)
Study	No. (15526V	Dat	e 01/13/03	Hole Diam. (in.)			Date	DTW MP (2)	-
					Final Depth (ft.)			Date	DIW MI (2)	Liev. W.
-			<u>ard</u>		Casing Diam. (in			_		
			of <u>3</u>		Casing Diam. (III					
					Screen Setting (ft			_		ļ
	-				Screen Slot & Ty				}	
	_		W-44		Well Status Mon			_	ľ	
						PLER		DEVE	LOPMENT	<u></u>
					Type 2" Split-spe		•	<u>DL V L</u>	EOI MENT	-
Drilling Started 12:55 Ended Ended					Hammer <u>140</u>					
Type of Rig B-57 ATV					Fall 30					
-71-]		SAMPL		-					
PID	No.	Rec.	Depth	Blows 6	Strata Change & Gen. Desc.	Depth (ft)	SA	MPLE DE	SCRIPTION	(3)
(ppm)	140.	Rec.	Бериг	Blows 0	Sand, silt, clay	20-				
		Ì		ĺ	Sure, sire, ciay					
						. –				
		ļ	Ì			22				
						-				
		ļ								
		2	24-26'	26,14,6,14	Sand, silt	24-	Tan, fine(+)	to medium	SAND, trace S	ilt; Tight.
						┤				
]							•	
						26-				
						╛				
						28-				
		1.3	29-31'	14,15,16,24		.]	Tan medium	to fine(+)	SAND, trace Si	lt; Tight.
					1			()	,	, 0
						30				
						- 4				
						32-				
					<u> </u>	327				
		}		1	Cobbles	-	Cobble zone	: .		
		0.25	34-36'	64, 50/3"	Cobbles, sand	34-	Fractured co	hhles		
		0.23	34 30	01, 50/5	Coooles, suite	<u> </u>	Red-brown		√D.	
	1					. ⊢			•	
				•		36-				
						-				
						∃				
						38-				
							Cobbles.			
				li		コ	Coooles.			
		I	1		1					

			ULTING & M. TES, INC	ANAGEMENT			GEO:	LOC	OGIC LOG			
					v	VELL D	ATA		G-	W READIN	GS (1)	
 Study	No. ()5526Y	Dat	e 01/13/93	Hole Diam. (in.)				Date	DTW MP (2)		
. •			ard		Final Depth (ft.)						210,,,,,,,	
_					Casing Diam. (in				•			
i			of _3		Casing Length (fi							
					Screen Setting (ft							
Well/Boring No. MW-44			Screen Slot & Ty									
Location			Well Status Mor	itoring W	<u>'ell</u>							
M.P. I	Elevatio	on			SAM	PLER			DEVE	LOPMENT	_	
Drillin	g Start	ed 12:5	5Enc	ded	Type 2" Split-spe	oon				_		
					Hammer 140		lb.					
Туре	of Rig	B-57 A	<u>rv</u>		Fall <u>30</u>		in.					
DID		-	SAMPLI	 E	Starts Channel	Daniel		~			(2)	
PID (ppm)	No.	Rec.	Depth	Blows 6	Strata Change & Gen. Desc.	Depth (ft)		SAM	PLE DES	SCRIPTION	(3)	
\ <u>F</u>		_			Cobbles	40-						
							T) -44 ama	- f h o=	' 41 A L	•		
					Bottom of]	Bottom	OI DOI	ing 41 ft b	ls.		
					Boring	42-						
						1 -						
						44-						
						-						
]						
						46-						
						-						
					[1 7						
						48-						
						-						
]						
						50-						
						52-						
					1							
						54-						
						56-						
										•		
						58-						
		ĺ	. [[ו ב					ľ	
						-						

2 FT.	PROJECT NAME AMTRAK	NUMBER <u>05526Y</u>
LAND SURFACE	WELL NO. MW-45	PERMIT NO
	AND DATUM FEET	STATE New York SURVEYED ESTIMATED
	DEVELOPMENT TECHNIQUE(S) AND DATE(S) Pump and Surge - Submersible Pump	
7 FT. WELL SCREEN 4 INCH DIAMETER, PVC 10 SLOT #0 GRAVEL PACK _17.0FT. _20 FT. NOTE: ALL DEPTHS IN FEET BELOW LAND SURFACE	FLUID LOSS DURING DRILLING	GALLONS FEET BELOW M.F FEET BELOW M.F DATE 01/12/93 M/FT.
	HYDROGEOLOGIST D. Keohane	

			•	ANAGEMENT			OEO.			~~~	
ROUX	K ASS	OCIA	TES, INC	·•	 .		GEU		GIC L	0G	
Í						VELL D		_	<u>G-</u>	W READIN	T
Study	No. <u>0</u>)5526Y_	Dat	e <u>01/11/93</u>	Hole Diam. (in.)				Date	DTW_MP (2)	Elev. W.S
Projec	t Sunr	iyside Y	ard		Final Depth (ft.)				ĺ		,
		RAK			Casing Diam. (in.		l	!			
Page _1 of _1				Casing Length (ft.)							
Logged By D. Keohane			Screen Setting (ft.								
Well/Boring No. MW-45			Screen Slot & Ty								
					Well Status Mon		<u>/ell</u>				
					<u>SAM</u> F				DEVE:	LOPMENT	-
				ded <u>10:25</u>	Type 2" Split-spo						
		_			Hammer <u>140</u>						
Type o	of Rig	B-57_A?	<u> </u>		Fall <u>30</u>		in.				
PID			SAMPLI	Ē	Strata Change	Depth		CAM	DIE DE	SCRIPTION	(3)
(ppm)	No.	Rec.	Depth	Blows 6	& Gen. Desc.	(ft)		2WIM	PLE DE	SCRIPTION	
		[]		Posthole	Sand, gravel,	0-				e to coarse SAI	ND, little
				1	cobbles				trace Cob	oble. oarse SAND, li	ittle fine
				1		- 4				Cobble; Moist.	ttie inic
				1		2-				•	
				Cuttings	}	ı I	Red-bro	wn me	dium to co	oarse SAND, li	ittle fine
				Cuttings		-				obble, moist.	ittio inio
		1 1		1		4-					
							Red-bro	wn me	edium to co	oarse SAND, li	ittle fine
							to coars	e grave	el, trace co	bble.	
						6-					
						.]					
						, _, ,					
				İ		8-					
				l							
					G11	, ,,-	D.,,,,,,,,	- 42	4	2437D 1:41- 6	
					Sand, gravel	10-	coarse(+			SAND little f	ine to
						_	**********	,	V.		
						12-	Wet at	12 A N	lo.		
						12]	wei ai	12 11 01	15.		1
						-					
						14					
						'-					
						-					
		, ,		1		16-					
				1		1~1					
				1		4					
				1		18-					
	1			1			Bottom	of Bor	ing 20 ft b	ols.	•
				1	Bottom of	7					
					Boring	\Box					

<u> </u>	PROJECT NAME _AMTRAK	AULIDED OSEOSV
3 FT. LAND SURFACE		
The solid so	WELL NO. MW-46 TOWN/CITY Long Island City	
	COUNTY Queens LAND SURFACE ELEVATION AND DATUM FEET	STATE New York SURVEYED ESTIMATED
6.7 FT. WELL SCREEN 4 INCH DIAMETER, PVC 10 SLOT #0 GRAVEL PACK 16.7FT. 19 FT. NOTE: ALL DEPTHS IN FEET BELOW LAND SURFACE	FLUID LOSS DURING DRILLING None WATER REMOVED DURING DEVELOPMENT STATIC DEPTH TO WATER PUMPING DEPTH TO WATER PUMPING DURATION HOURS YIELD GPM SPECIFIC CAPACITY GPM WELL PURPOSE Monitoring well REMARKS Sump at end of screen extends from 16.	GALLONS FEET BELOW M.I FEET BELOW M.I DATE 01/12/93 M/FT.
	HYDROGEOLOGISTD. Keohane	

			ULTING & M. FES, INC	ANAGEMENT	GEOLOGIC LOG						
			-	-	v	VELL D	ATA		G-W READINGS (1)		
Study	No C	15526V	Date	e 01/11/93	Hole Diam. (in.)			-	Date	DTW MP (2)	
			ard		Final Depth (ft.)				Date	DIW WI (2)	LICY. W.
_			<u></u>		Casing Diam. (in	1					
			of <u>1</u>	_	Casing Length (fi				i	}	
					Screen Setting (ft						
	-		W-46		Screen Slot & Ty			•			
					Well Status Mon						
					SAMPLER			DEVE	LOPMENT	_	
			0Enc		Type 2" Split-spe				22.2	2011112111	_
					Hammer 140						
					Fall 30						
Type of Rig B-57 ATV SAMPLE					1						
PID	No.	Rec.	Depth	Blows 6	Strata Change & Gen. Desc.	Depth (ft)		SAM	PLE DE	SCRIPTION	J ⁽³⁾
(ppm)	140.	Rec.	Deptii	Posthole	Sand, gravel	0-	_	own to	hlack sta	ined, medium	to coarse
				Tosmole	Sailu, graver	l ~]				rse(+) Gravel,	
						-	Cobble;				
					1	ا_ر _د ا	Dark br Gravel.	own fi	ne to med	ium SAND, tra	ace coarse
						-	Glavei.				
						-					
		1.2'	4 - 6'	3,3,4,11		4_	Dark hr	own fi	ne to medi	ium SAND, tra	ace coarse
		1.2	4-0	3,3,4,11			Gravel;	Coal f	ragments.	•	
						l ⊢				coarse SAND,	little fine
5.3		1.5'	6 - 8'	16,11,11,17		6-	to coars Cobble				
5.5		1.5		10,11,11,1,	ì	Ĭ — Ĭ⊣	Light b			coarse SAND,	trace fine
						-	Gravel.				
4.7		1.2'	8 - 10'	5,20,25,34		8-	Light b	own n	nedium to	coarse SAND,	little fine
,			0 10	-,, ,			grey Gr	avel.			
					•	-	Light by	rown n	nedium to	coarse SAND, et at 9 ft bls.	little fine
					}	107	to coars	e(+) U	Tavel. We	at 9 It bis.	
						-					
						l j					
		1				12-					
<i>c c</i>		2.0	10 151	17702 40 20		-	D	٠		ANTS A	
5.5		2.0	13 - 15'	17,23,42,39]				SAND, trace confined for the state of the st	oarse
						14-	G ,		, proce o	(1117)	
							No onlis		holow 15	foot	
			,	l			NO Spili	spoon	below 15	reet	
						16-					
i.						-					
]					
						18-	Th	C 1			•
					Bottom of		Bottom	oi bor	ing 19.0 ft	DIS.	
					boring	4					

28 FT.	PROJECT NAME AMTRAK	NUMBER _C	5526Y
LAND SURFACE	WELL NO. MW-47	PERMIT NO	
	TOWN/CITY Long Island City		
	COUNTY Queens	STATE New You	<u>'k</u>
— 11 INCH DIAMETER, DRILLED HOLE	LAND SURFACE ELEVATION		
WELL OLDING	AND DATUM FEET	□ SURVEYED	
WELL CASING 4 INCH DIAMETER		☐ ESTIMATED	
	INSTALLATION DATE(S) 01/05/93	<u> </u>	
BACKFILL	DRILLING METHOD Hollow Stem Auger		
GROUT _cement	DRILLING CONTRACTOR A.D.T.		
	DRILLING FLUID None		
_1_FT.			
BENTONITE DELLETS	DEVELOPMENT TECHNIQUE(S) AND DATE(S)		
_2_FT.	Pump and Surge - Submersible Pump.	<u> </u>	
<u>3</u> п.	FLUID LOSS DURING DRILLING None		GALLONS
	WATER REMOVED DURING DEVELOPMENT		GALLONS
WELL SCREEN	STATIC DEPTH TO WATER	<u>-</u>	_ FEET BELOW M.F
4 INCH DIAMETER, PVC 10 SLOT	PUMPING DEPTH TO WATER		_ FEET BELOW M.F
3601	PUMPING DURATION HOU	JRS .	
	YIELD GPM	DATE	01/7-8/93
#0_ GRAVEL PACK	SPECIFIC CAPACITY	GPM/FT.	
GRAVEL PACK	WELL PURPOSE Monitoring well	·	
_13_FT.			
_14.5FT.	REMARKS Sump at end of screen extends from	13' to 13.5'bls.	
NOTE: ALL DEPTHS IN FEET			-
BELOW LAND SURFACE			
	HYDROGEOLOGIST D. Keohane		

ENVIRONMENTAL	CONSULTING	& MANAGEMENT

ROUX ASSOCIATES, INC.

GEOLOGIC LOG

	WELL DATA	G-W READINGS (1)			
Study No. <u>05526Y</u> Date <u>01/05/93</u>	Hole Diam. (in.) 11	Date DTW MP (2) Elev. W.S			
Project Sunnyside Yard	Final Depth (ft.) 14.5				
Client AMTRAK	Casing Diam. (in.) 4]			
Page _1 of _1	Casing Length (ft.)				
Logged By D. Keohane	Screen Setting (ft.) 13' to 3'bls.]			
Well/Boring No. MW-47	Screen Slot & Type 10 Slot - PVC				
Location	Well Status Monitoring Well				
M.P. Elevation	<u>SAMPLER</u>	<u>DEVELOPMENT</u>			
Drilling Started 12:10 Ended 16:45	Type 2" Split-spoon				
Driller A.D.T.	Hammer <u>140</u> lb.				
Type of Rig Hollow Stem Auger	Fall <u>30</u> in.				
SAMPLE	Streets Change Donth G. 13	DI E DES COMPENSON (3)			

Type	of Kig	Hollow	Stem Auger	<u> </u>	Fall 30		in.	
PID			SAMPL:	E	Strata Change	Depth		SAMPLE DESCRIPTION(3)
ppm)	No.	Rec.	Depth	Blows 6	& Gen. Desc.	Depth (ft)		SAMPLE DESCRIPTION (*)
••			0-2'	Posthole	Concrete Sand, silt	0-	Brown,	ne pavement. medium to coarse SAND. ne to coarse SAND, little silt, moist.
0.0		1.0	2-4'	7,6,5,11	Sand ailt	2-	·	ne to coarse SAND.
0.0		0.0	4-6'	7,6,3,4	Sand, silt, mica	4-	Gray III	ne SAND and Silt; Mica flakes; Moist.
0.0		1.0	6-8'	7,2,2,4	Sand, gravel Sand	6-	Gray fir Brown i bls.	ne to coarse SAND, trace fine Gravel. medium to coarse SAND. Wet at 6.5 ft
0.0		2.0	8-10'	7,6,4,4		$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$	Brown	medium to coarse SAND.
		0.0	10-12'	14,12,14,9	Sand, gravel	10-	Brown in Gravel.	medium to coarse SAND, trace fine
0.0		1.2	12-14'	15,20,16,17		14-		medium to coarse SAND, some fine(+) to Gravel; Loose.
					Bottom of Boring	16- - - - 18-	Bottom	of boring 14.5 ft bls.
						107		

2.88 FT. LAND SURFACE — 10 INCH DIAMETER, DRILLED HOLE — WELL CASING 4 INCH DIAMETER	PROJECT NAME AMTRAK NUMBER 05526Y WELL NO. MW-48 PERMIT NO. TOWN/CITY Long Island City COUNTY Queens STATE New York LAND SURFACE ELEVATION AND DATUM 28.29 FEET SURVEYED INSTALLATION DATE(S) 2/1/93	
BACKFILL GROUT _cement 25_ FT. BENTONITE	DRILLING METHOD Hollow Stem Auger DRILLING CONTRACTOR A.D.T. DRILLING FLUID None DEVELOPMENT TECHNIQUE(S) AND DATE(S) Pump and Surge - Submersible Pump	
30 FT. WELL SCREEN 4 INCH DIAMETER, PVC 10 SLOT #0 GRAVEL PACK 40 FT. 42 FT.	FLUID LOSS DURING DRILLING None WATER REMOVED DURING DEVELOPMENT 950 STATIC DEPTH TO WATER	GALLONS ET BELOW M.F ET BELOW M.F
ALL DEPTHS IN FEET BELOW LAND SURFACE	HYDROGEOLOGIST H. Gregory, D. Keohane	

1			ILTING & M. FES, INC	ANAGEMENT	GEOLOGIC LOG						
				_	v	VELL D	ATA		G-	W READIN	IGS (1)
Study	No 0	5526Y	Dat	e <u>02/01/93</u>	Hole Diam. (in.)	11			Date	DTW MP (2	
			ard		Final Depth (ft.)					21 (7 1/11 (2	, 5101. 11
		RAK			Casing Diam. (in						
			of <u>3</u>		Casing Length (fi						
					Screen Setting (ft						
			W-48		Screen Slot & Ty						
	_			• • • • • • • • • • • • • • • • • • • •	Well Status Monitoring Well						
						PLER			DEVE	LOPMENT	
				ded	Type 2" Split-spe				<u> </u>	<u> </u>	_
					Hammer 140		lb.	l			
l			Stem Auger		Fall 30		in.				
-JF-			SAMPL							<u> </u>	
PID	No.	Rec.	Depth	Blows 6	Strata Change & Gen. Desc.	Depth (ft)	* 1.3 1	SAM	PLE DE	SCRIPTION	J ⁽³⁾
(ppm)	110.	Roc.	0-2'	Posthole	Concrete	0-	Concret			sed on log for	- MW-47_
••			0 2	1 0541010	Sand, silt		Brown,	mediu	m to coars	e SAND. D, little silt, 1	noist.
0.0		1.0	2-4'	7,6,5,11		2-	•		oarse SAN	,	
					Sand, silt,		Gray fi	ne SAl	ND and Sil	t; Mica flakes	; Moist.
0.0		0.0	4-6'	7,6,3,4	mica	- 4-					
0.0		1.0	6-8'	7,2,2,4	Sand, gravel	6-	Gray fir	e to c	oarse SAN	D, trace fine	Gravel.
					Sand		Brown a		n to coarse ols.	SAND.	
0.0		2.0	8-10'	7,6,4,4		8-	Brown	nediun	n to coarse	SAND.	
		"			Sand, gravel			nediur	n to coarse	SAND, trace	fine
		0.0	10-12'	14,12,14,9		10-	Gravel.				
0.0		1.2	12-14'	15,20,16,17		12-				SAND, some	e fine(+) to
							coarse (iravel;	Loose.		
2.1		2.0	14-16'	11,7,5,6		14-	Brown coarse (SAND, trace	fine to
		0.0	16-18'	15,11,14,17		16-	No reco	very.			

18-

Brown medium(+) to coarse SAND.

REMARKS (1) in feet relative to a common datum (2) from top of PVC casing (3) logged cuttings

18-20'

1.5

12,11,13

			ULTING & M TES, INC	ANAGEMENT	GEOLOGIC LOG						
			_		<u>v</u>	VELL D	ATA		_G-	W READIN	GS (1)
Study	No. ()5526Y	Dat	e <u>02/01/93</u>	Hole Diam. (in.)	10			Date	DTW MP (2)	
4			ard		Final Depth (ft.) 42						
					Casing Diam. (in.) 4]		}
Page	2	_	of <u>3</u>		Casing Length (f						
Logge	d By _l	H. Grego	ry, D. Keoh	ane & C. Clark	Screen Setting (ft.)						
Well/I	Boring	No. <u>M</u>	W-48		Screen Slot & Type 10 Slot - PVC						
Locati	on				Well Status Monitoring Well						
M.P. Elevation						PLER			<u>DEVE</u>	<u>LOPMENT</u>	•
				ded	Type 2" Split-sp			l			
					Hammer <u>140</u>						
Type	of Rig	Hollow	Stem Auger		Fall <u>30</u>		in.				
PID			SAMPL		Strata Change & Gen. Desc.	Depth		SAM	PLE DE	SCRIPTION	(3)
(ppm)	No.	Rec.	Depth	Blows 6		(ft)		D1 1117			
) 				Sand	20-	•				
]								
	<u> </u>	!				22					
				}]	22]					
						-					
						24					
			}								
2.2		2.0	25-27'	54,40,55/5	Cobble zone	_	Cobble Brown		NID		
1]	26			AND and S	Silt.	
						-	Brown	mediur	n to coarse	SAND and fi	ne Gravel;
					Sand, silt,]			of green st ND and Sil	aining. lt, little coarse	Gravel.
•				ı	gravel	28-				,	014.01.
						-					
					(30-	D.::!!!		!1	41.5.011	
							Drilling	advan	ces easily	to 41.5 ft bls.	
						32					
						-					
						34					
						-				•	
		ı				36-					
						-					
						38-					
						-					
		L				<u> </u>					

			ULTING & M. FES, INC	ANAGEMENT	GEOLOGIC LOG						
					V	VELL D	ATA		G-	W READIN	NGS (1)
Study	No. 0	5526Y	Dat	e 02/01/93	Hole Diam. (in.)		_		Date	DTW MP (2	
			ard		Final Depth (ft.)		·				
-		RAK			Casing Diam. (in						
					Casing Length (ft						Ì
				ne&C. Clark	Screen Setting (ft						
			W-48		Screen Slot & Type 10 Slot - PVC						
					Well Status Monitoring Well						
M.P. Elevation					SAMI	PLER			DEVE	LOPMENT	
Drilling StartedEnded					Type 2" Split-spe						_
Driller A.D.T.					Hammer 140						
			Stem Auger		Fall _30						
			SAMPLI		St. 1 St.	n					-(2)
PID (ppm)	No.	Rec.	Depth	Blows 6	Strata Change & Gen. Desc.	Depth (ft)		SAM	PLE DE	SCRIPTION	$I_{(3)}$
(PP)						40-					
						-					
							Bottom	of Bor	ring 41.5 f	t his	
					Bottom of	42-	Bottom	0. 20.	m.g 1110 1	- 0101	
					Boring	_					
				,		44-					
				1							
				Ti							
						46-					
						48-					
		ı									
						50					
						52-					
						4					
						- 54-					
						-					
						4					
			1		{	56-					
						-					
						⊢					
						58-					
						4					
		_									

LAND SURFACE	PROJECT NAME _AMTRAK	GALLONS GALLONS FEET BELOW M.P
	DEVELOPMENT TECHNIQUE(S) AND DATE(S) Pump and Surge FLUID LOSS DURING DRILLING WATER REMOVED DURING DEVELOPMENT STATIC DEPTH TO WATER PUMPING DEPTH TO WATER	GALLONS GALLONS FEET BELOW M.P. FEET BELOW M.P.
NOTE: ALL DEPTHS IN FEET BELOW LAND SURFACE	REMARKS	

			ULTING & M. FES, INC	ANAGEMENT			GEO!	LOC	GIC L	OG	
			-		T v	VELL D	ATA		G-W READINGS (1)		
Study	No. 0	5545Y	Dat	e <u>12/13/93</u>	Hole Diam. (in.)	10		•	Date	DTW MP (2)	
ì -			ard		Final Depth (ft.)						
					Casing Diam. (in.				}		
			of <u>1</u>		Casing Length (ft						
			ry		Screen Setting (ft				Ì		
			W-49		Screen Slot & Ty						
					Well Status Monitoring Well						
					SAMI	PLER_	l		DEVE	LOPMENT	
			<u>5</u> En		Type 2" Split-spe					_	•
					Hammer 140		lb.				
Type of Rig Hollow Stem Auger					Fall <u>30</u>		in.				
			SAMPL		G G.	D 11					(2)
PID (ppm)	No.	Rec.	Depth	Blows 6	Strata Change & Gen. Desc.	Depth (ft)		SAM	IPLE DE	SCRIPTION	(3)
V-F7			0 - 4'	Posthole	Railroad Fill,	0-	Brown-l Railroad			e to medium SA	AND;
				ļ	Sand	1	Rainoac	i Varia	31.		
					Sand	2-	Orange-	brown	fine to m	edium SAND.	
							Wet at	3.2 ft l	ols.		
0	1	1.2	4 - 6'			4-	Orange-	brown	fine to m	edium SAND.	
							Grey-bro	own m	edium to	coarse SAND.	
0	2	2	6 - 8'		Sand, gravel,	6-				se SAND, trace	Gravel,
			ļ		brick		trace Re	ed Bric	K (IIII).		
						-					
						8-					
0	3	1	9 - 11'	10,5,6,6	Sand, cinders		Grey-bre	own m	edium to	coarse SAND;	Cinders
				, , ,		10-	(fill).			,	
					Sand, silt, clay	10-	Gray br	num fi	na SAND	and Silt, trace	Clay in
					Sand, Silt, Clay	=	spoon ti		ile sand	and Sin, trace	Ciay III
						12-					
						,,-	D				C
					Bottom of	14-	Bottom	of Bor	ng at 14'	below land sur	tace.
					Boring	٦					

		1		
2 FT.	7	PROJECT NAME AMTRAK	NUMBER _0	5545Y
	LAND SURFACE	WELL NO. MW-50	PERMIT NO	
		TOWN/CITY Long Island City		
1, 1		COUNTY Queens	STATE New Yo	ork
	DRILLED HOLE	LAND SURFACE ELEVATION		
	M	AND DATUM FEET	□ SURVEYED	
	WELL CASING		ESTIMATED	
	4_ INCH DIAMETER	INSTALLATION DATE(S) 12/17/93		
	BACKFILL	DRILLING METHOD Hollow Stem Auger		
	GROUT <u>cement/bentonite</u>			
		DRILLING FLUID		
		Julian Control		
	☐ SLURRY	DEVELOPMENT TECHNIQUE(S) AND DATE(S)	1	
	DELLETS 1 FT.	Pump and Surge		
	<u>2</u> FT.	THE LOCE BURNE SHILING		041104
		FLUID LOSS DURING DRILLING		
	- WELL SCREEN	WATER REMOVED DURING DEVELOPMENT_		
	4 INCH DIAMETER,	STATIC DEPTH TO WATER		
	PVC 10 SLOT	PUMPING DEPTH TO WATER		_ FEET BELOW M.F
		PUMPING DURATION		
		YIELD GPM	DATE	
	#2_ GRAVEL PACK	SPECIFIC CAPACITY	GPM/FT.	
	합성 조항	WELL PURPOSE Monitoring well		
	_12_FT.			
<u> </u>	<u>்</u> _15_ FT.	REMARKS		
NOT	nc.			
ALL	DEPTHS IN FEET			
BEL	OW LAND SURFACE			
		HYDROGEOLOGIST H. Gregory		

			ULTING & M. TES, INC	ANAGEMENT			GEO	LOC	GIC L	OG	
		_			<u></u>	VELL D	ATA		<u>G</u> -	W READIN	GS (1)
Study	No ()5545Y	Dat	e <u>12/17/93</u>	Hole Diam. (in.)	_10			Date	DTW MP (2)	Elev. W.S
Ртојес	t <u>Sun</u>	nyside Y	ard		Final Depth (ft.)						
Client	AMT	RAK			Casing Diam. (in						
Page	1		of <u>1</u>		Casing Length (fl		{				
Logge	d By _	H. Grego	ry		Screen Setting (ft	.) <u>12 - 2</u>	,				ļ
Well/I	Boring	No. <u>M</u>	<u>W-50</u>		Screen Slot & Ty						
Locati	on				Well Status Mon	itoring W	ell				
						PLER			DEVE:	<u>LOPMENT</u>	•
Drilling Started 11:15 Ended 13:00					Type 2" Split-spe						
Driller A.D.T.					Hammer 140						
Type of Rig Hollow Stem Auger					Fall 30		in.		_		
PID			SAMPL	E	Strata Change	Depth		CAM	DIE DE	SCRIPTION	
(ppm)	No.	Rec.	Depth	Blows 6	Strata Change & Gen. Desc.	Depth (ft)		SAIVI	FLE DE	SCRIPTION	
	}	\	0 - 5'	Posthole	Railroad Fill,	0-	Brown	fine to	medium S	AND; Railroad	d ballast.
		ľ	,		sand]					
	1	İ				' _⊣					•
		Į				2			-		
					Sand, silt, clay		Green-g	rey fin	e SAND a	and Silt, trace (Clay.
13.5	}	ļ				4_	Green-g	rey fin	e SAND a	and Silt, trace (Clay;
	<u> </u>					-		grey; l	Moist; Petr	oleum hydroca	rbon
				in	1		odor.				
						6-					
	<u> </u>					-					
						7					
			l l		\	8-					
50.4	1	2	9 - 11'		Sand, silt]	Grev sta	ined fi	ne to med	ium SAND, tra	ace Silt
			,		. 5414, 511	4	Grey bu	.m.ou i	iio to mou	0/11\D, uc	 511t.
					1	10-					
						コ					
						12-					
20.1	2	1	13 - 15'		Sand	4	Grey-bro	own fir	ne to medi	um SAND.	
		' I				1,4					
						14-					
						\dashv	Bottom	of Bor	ing 15 ft b	ols.	
					Bottom of Boring	16-					
	1				Dorning	107					
						4					
						18-					_
											-

↓			
<u>↓</u> 2 ft.□	PROJECT NAMEAMTRAK	NUMBER _0	5545Y
LAND SURFACE	WELL NO. MW-51	PERMIT NO	
1 † 1/3 1/3	TOWN/CITY Long Island City		
10 INCH DIAMETER,	COUNTY Queens	STATE New Yo	rk
DRILLED HOLE	LAND SURFACE ELEVATION	□ SURVEYED	
WELL CASING	AND DATUM FEET	□ ESTIMATED	
4 INCH DIAMETER			
	INSTALLATION DATE(S) 12/15/93		
BACKFILL GROUT _cement/bentonite	DRILLING METHOD Hollow Stem Auger		
	DRILLING CONTRACTORA.D.T.		
	DRILLING FLUID		-
	DOG OPUTAT TECHNIQUES		
— BENTONITE □ PELLETS	DEVELOPMENT TECHNIQUE(S) AND DATE(S) Pump and Surge		
0.7 ғт.			
1.5 FT.	FLUID LOSS DURING DRILLING		GALLONS
	WATER REMOVED DURING DEVELOPMENT		
WELL SCREEN	STATIC DEPTH TO WATER		_ FEET BELOW M.F
4 INCH DIAMETER, S/Steel 20 SLOT	PUMPING DEPTH TO WATER		_ FEET BELOW M.F
	PUMPING DURATION	HOURS	
	YIELD GPM	DATE	
#2_ GRAVEL PACK	SPECIFIC CAPACITY	GPM/FT.	
	WELL PURPOSE Monitoring well		
_14_FT.			
	REMARKS		
NOTE: ALL DEPTHS IN FEET			
BELOW LAND SURFACE			
	HYDROGEOLOGIST H. Gregory		

			TES, INC		GEOLOGIC LOG						
						VELL D	ATA		G-	W READIN	GS (1)
l Study	No()5545Y_	Dat	e <u>12/15/93</u>	Hole Diam. (in.)	10			Date	DTW MP (2)	
-			ard		Final Depth (ft.)						
Client	AMT	RAK			Casing Diam. (in.) 4						
Page _	1		of <u>1</u>		Casing Length (ft.)						
Logge	d By _I	H. Grego	ory		Screen Setting (fl	t.) <u>11.5'</u>	to 1.5'bls.				
	_		W-51		Screen Slot & Ty				!		
,					Well Status Mor	_	/ell		<u> </u>		
M.P. Elevation						PLER			<u>DEVE</u>	LOPMENT	_
Driller A D T					Type 2" Split-spe		11	ł			
Driller A.D.T. Type of Rig Hollow Stem Auger					Hammer <u>140</u> Fall 30						
Type	or Kig	Hollow			Trail 30		in.				-
PID			SAMPLI		Strata Change & Gen. Desc.	Depth		SAM	PLE DE	SCRIPTION	(3)
(ppm)	No.	Rec.	Depth 0 - 3'	Blows 6 Posthole		(ft)	D				
			0 - 3	Postnoie	Railroad Fill, sand	0-	Railroad			ND, trace Gra	vei;
] -{	.		_	G.1375 5	
İ]		Sand	2				rse SAND; Peti rate phase note	
l <u>.</u>						-	2 ft bls.		_	-	
50.1	1	1.5	3 - 5'				Grey sta hydroca			rse SAND; Petr	roleum
						4-	ny ar oca	roon o	401.		
						6-					
]					
						87					
32.7	2	2	9 - 11'		-		Grey sta	ained f	ine to coar	rse SAND; Petr	roleum
		ĺ		I I	1	10-	hydroca	rbon o	dor.		
				1							
				1							
				1		12-					
		}		ı]					
						_					
					Bottom of	14-	Bottom	of Bor	ing 14 ft b	ols.	
					Boring						
						16					
						16-					
						. ⊢					
						18-					
	 				1	; ~~ <u>~</u>					
						Π.					

	1	PROJECT NAME AMTRAK	NUM	BER <u>05</u>	545Y
	LAND SURFACE	WELL NO. MW-52	PERMIT	NO	
🕈 /		TOWN/CITY Long Island City			
	INCH DIAMETER,	COUNTY Queens	STATE	New York	k
	DRILLED HOLE	LAND SURFACE ELEVATION	□ eus		
	WELL CASING	AND DATUM FEET	□ SUR		
	4_ INCH DIAMETER		☐ ESTI		
	Ŋ	INSTALLATION DATE(S) _12/09/93		_	· ·
	BACKFILL coment /hontonite	DRILLING METHOD Hollow Stem Auger			
	GROUT _cement/bentonite	DRILLING CONTRACTOR A.D.T.			
	Ŋ	DRILLING FLUID			-
	BENTONITE PELLETS	DEVELOPMENT TECHNIQUE(S) AND DATE(S)			
	<u> </u>	Pump and Surge			
(4) (4)	12				
	<u>17</u> ғ.	FLUID LOSS DURING DRILLING			
	- WELL SCREEN	WATER REMOVED DURING DEVELOPMENT			
	4 INCH DIAMETER.	STATIC DEPTH TO WATER			
	S/Steel 20 SLOT	PUMPING DEPTH TO WATER			_ FEET BELOW M.
		PUMPING DURATION			
		YIELD GPM		DATE .	
	#2_ GRAVEL PACK	SPECIFIC CAPACITY	GPM/FT.		
		WELL PURPOSE Monitoring well			
108 					
		25,4242			
		REMARKS			
NOT	_ ·				
	DEPTHS IN FEET OW LAND SURFACE				
		HYDROCEOLOGIST H. Gregory			
		HYDROGEOLOGIST H. Gregory			

			ULTING & M. FES, INC	ANAGEMENT	GEOLOGIC LOG						
					<u> v</u>	VELL D	ATA	_	<u>G</u> .	-W READIN	IGS (1)
Study	No0	5545Y	Dat	e 12/09/93	Hole Diam. (in.)	10			Date	DTW MP (2)	Elev. W.S
-		yside Y			Final Depth (ft.)	14					
Client	AMT	RAK			Casing Diam. (in						
Page	1		of <u>1</u>		Casing Length (ft.)						
-		G. Murph			Screen Setting (ft	.) <u>11.7' t</u>	o 1.7'bls.		ļ		
Well/I	Boring	No. <u>M</u>	W- <u>52</u>	<u> </u>	Screen Slot & Ty				İ		
Locati	on				Well Status Mon	itoring W	<u>'ell</u>				
M.P. I	Elevatio	on			<u>SAM</u>	<u>PLER</u>		1	<u>DEVE</u>	LOPMENT	_
	_		0En	ded <u>11:25</u>	Type 2" Split-spe	oon		Ĭ			
	A.D.1	_					lb.				
Type	of Rig	Hollow	Stem Auger		Fall <u>30</u>		in.				
PID (ppm)	No.	Rec.	SAMPL Depth	Blows 6	Strata Change & Gen. Desc.	Depth (ff)		SAM	IPLE DE	ESCRIPTION	1(3)
8.6			0-0.5'		Concrete Sand	0-	Concret Brown		coarse SA	AND and silt.	
						2-					
3.2	1		4-6'	13,10,4,6	Sand, silt, clay	4-	Brown odor. V	mediur Vet at	n SAND; 4 ft bls.	Petroleum hyd	rocarbon
				3		6-	Brown	fine SA	AND and S	Silt, trace Clay	
					Bottom of Boring	10- 12- 14- 16- 18-	Bottom	of Bo	ring 14 ft 1	bls.	

2 FT. LAND SURFACE	PROJECT NAMEAMTRAK WELL NOMW-53 TOWN/CITY _Long Island City COUNTY _Queens LAND SURFACE ELEVATION AND DATUM FEET INSTALLATION DATE(S)12/07/93 DRILLING METHODHollow Stem Auger	PERMIT STATE - SURV	New Yor /EYED	k		
	DRILLING CONTRACTOR — A.D.T. DRILLING FLUID — DEVELOPMENT TECHNIQUE(S) AND DATE(S) Pump and Surge FLUID LOSS DURING DRILLING — WATER REMOVED DURING DEVELOPMENT —				— GALTO	ONS
4 INCH DIAMETER, _S/Steel_20 SLOT #2 GRAVEL PACK11_5FT14_ FT.	STATIC DEPTH TO WATER PUMPING DEPTH TO WATER PUMPING DURATION YIELD GPM SPECIFIC CAPACITY WELL PURPOSE Monitoring well REMARKS	HOURS		_ FEET	BELOW	M.F
NOTE: ALL DEPTHS IN FEET BELOW LAND SURFACE	HYDROGEOLOGIST H. Gregory				-	

			ULTING & M TES, INC	ANAGEMENT		SIC LOG					
						VELL D	ATA		_G-	W READII	NGS (1)
l Study	No. ()5545Y	Dat	e 12/07/93		Hole Diam. (in.) 10			Date	DTW MP (2	
•			ard		Final Depth (ft.) 14			_			
1		•			Casing Diam. (in.) 4						
Page	1		of _1		Casing Length (f	t.)					
1			ny		Screen Setting (fl	t.) <u>11.5 t</u>	o 1.5bls.				
Well/I	Boring	No. <u>M</u>	<u>W-53</u>		Screen Slot & Ty						
Locati	on				Well Status Mor	itoring W	/ell				
					<u>SAM</u>			1	<u>DEVE</u>	<u>LOPMENT</u>	_
			0En		Type			l			
ı					Hammer		lb.				
Type of Rig Hollow Stem Auger					Fall		in				
PID			SAMPL	E	Strata Change	Denth		CAN		CONTRACTO	т(3)
(ppm)	No.	Rec.	Depth	Blows 6	Strata Change & Gen. Desc.	Depth (ft)		SAM	PLE DE	SCRIPTION	N ^{e7}
			0 - 3.5'	Posthole	Sand	0-	Stained	fill - S	SAND.		
	}		}	1							
						[4					
		İ				2-					
		ļ]					
			Ì	Cuttings		1 -		ained f	ine to coar	rse SAND. W	Vet at 3.5 ft
		ļ			ł	4-	bls.				
						J					
					İ						•
						6-					
ı					1						
				1		۱ ۵					
						8-					
						-					
		,				1,-					
						10-					
					}	-					
						12-					
						'2]					
						-					
			1			14-	Rottom	of Bor	ing 14 ft b	nle	
					Bottom of	``-	Bottom	0. 20.		.	
					Boring	-				•	
						16-					
		'				-					
		i e				18-					
				<u> </u>							

₩			
2 FT.	PROJECT NAME AMTRAK	NUMBE	R <u>05545Y</u>
LAND SURFACE	WELL NO. MW-54	PERMIT N	0
	TOWN/CITY Long Island City		
	COUNTY Queens	STATE _	New York
— 10 INCH DIAMETER, DRILLED HOLE	LAND SURFACE ELEVATION		
	AND DATUM FEET	☐ SURVE	YED
WELL CASING		□ ESTIMA	ATED
2 INCH DIAMETER	INSTALLATION DATE(S) 11/29/93		<u> </u>
BACKFILL	DRILLING METHOD Hollow Stem Auger		
GROUT _cement/bentonite	DRILLING CONTRACTOR A.D.T.		
	DRILLING FLUID		
BENTONITE SILVERY	DEVELOPMENT TECHNIQUE(S) AND DATE(S))	
O.Z FT.	Pump and Surge		
		_	
<u>13</u> FT.	FLUID LOSS DURING DRILLING		CALLONG
	WATER REMOVED DURING DEVELOPMENT		
WELL SCREEN			
_4 INCH DIAMETER,	STATIC DEPTH TO WATER		
_S/Steel_20SLOT	PUMPING DEPTH TO WATER		FEET BELOW M.F
	PUMPING DURATION		
	YIELD GPM		DATE
#2 GRAVEL PACK	SPECIFIC CAPACITY	GPM/FT.	
	WELL PURPOSE Monitoring well		
11_3FT.			
_14_FT.			
<u> </u>	REMARKS		
NOTE:			
ALL DEPTHS IN FEET BELOW LAND SURFACE			
DELON DATO SONTABLE			
	HYDROGEOLOGIST H. Gregory		

			ULTING & M. TES, INC		GEOLOGIC LOG						
					v	VELL D	ATA	G-W READINGS (1)			
l Study	No. ()5545Y	Dat	e 11/29/93	Hole Diam. (in.)						
			ard		Final Depth (ft.)						
					Casing Diam. (in						
			of _1		Casing Length (ft.)						
			ory		Screen Setting (ft.) 11.3' to 1.3'bls.						
		No. M			Screen Slot & Ty						
	_		_		Well Status Mor	•					
M.P. Elevation					SAM	PLER_		DEVELOPMENT			
	Drilling Started 10:45 Ended 13:35				Type 2" Split-sp						
	Driller A.D.T.				Hammer 140		lb.				
Type of Rig Hollow Stem Auger				Fall 30		in.					
	1		SAMPL		- 01						
PID (ppm)	No.	Rec.	Depth	Blows 6	Strata Change & Gen. Desc.	Depth (ft)		SAMPLE DESCRIPTION ⁽³⁾			
(ррш)			0 - 3'	Posthole	Railroad Fill	0-	Railroad	d ballast; Fill.			
					Sand		Tan me	edium to coarse SAND.			
	 				Suite	2-	Tan Inc	didni to comic office.			
20.1	١,		2 6,		0. 4	-	C •	saland for the control of the			
20.1	1	2	3 - 5'		Sand, gravel	l]		tained fine to coarse SAND, trace Gravel; arbon odor. Wet at 3 ft bls.			
			,			4-	Brown	to black separate phase on water table,			
							sample	collected for analysis.			
								·			
						6-					
						_					
]					
						8-					
45.8	2	2	9 - 11'				Grev st	ained fine to medium(+) to coarse SAND,			
4 3.0			9-11]	trace G	ravel.			
		l				10-					
						12-					
]					
					Bottom of	14-	Bottom	of Boring 14 ft bls.			
					Boring]		·			
						16-					
]					
						,					
						18-					

2 FT. LAND SURFACE	PROJECT NAME <u>AMTRAK</u> WELL NO. <u>MW-55</u> TOWN/CITY <u>Long Island City</u>	PERMIT NO	
	COUNTY Queens LAND SURFACE ELEVATION AND DATUM FEET INSTALLATION DATE(S) 11/17/93 DRILLING METHOD Hollow Stem Auger DRILLING CONTRACTOR A.D.T. DRILLING FLUID	STATE New You SURVEYED ESTIMATED	rk
	DEVELOPMENT TECHNIQUE(S) AND DATE(S) Pump and Surge		
1.5 FT. WELL SCREEN 4 INCH DIAMETER, S/Steel 20 SLOT #2 GRAVEL PACK 11.5FT. 14 FT. NOTE: ALL DEPTHS IN FEET BELOW LAND SURFACE	FLUID LOSS DURING DRILLING ————————————————————————————————————	HOURS DATE	GALLONS _ FEET BELOW M.I
	HYDROGEOLOGIST H. Gregory		

			ULTING & M TES, INC	ANAGEMENT	GEOLOGIC LOG					
		-				VELL D	ATA	G-W READINGS (1)		
l Study	No. ()5545Y	Dat	te <u>11/17/93</u>	Hole Diam. (in.)	_10				
			ard		Final Depth (ft.)	14				
Client	AMT	RAK_			Casing Diam. (in	.) _4				
Page	1	_	of <u>1</u>		Casing Length (f	t.)				
Logge	d By_	G. Murp	hy		Screen Setting (fi	t.) <u>11.5'</u> 1	to 1.5'bls.			
Well/I	3oring	No. <u>M</u>	W-55		Screen Slot & Ty	•				
			-		Well Status Mor		/ell			
		on				PLER		<u>DEVELOPMENT</u>		
			En En	ded <u>16:30</u>	Type 2" Split-spe		11			
	A.D.7		<u> </u>		Hammer <u>140</u>					
Type	of Kig	Hollow	Stem Auger		Fall 30		in.			
PID (ppm)	No.	Rec.	SAMPL Depth	Blows 6	Strata Change & Gen. Desc.	Depth (ft)		SAMPLE DESCRIPTION(3)		
S4.1			0 - 3'	Posthole	Sand, silt, cobbles	0-	Brown Cobbles	fine to medium SAND, trace Silt, trace		
		Ì	ł			-				
						2				
•						-				
	1	1	4 - 6'	12,7,6,5	Sand	4-		ained fine to medium to coarse SAND; arbon odor. Wet at 4 ft bls.		
						-				
		}				6-				
						- 8-				
	2	2	9 - 11'	12,13,25,30	Sand, gravel		Grey state Grace G	ained fine to medium(+) to coarse SAND, ravel; Hydrocarbon odor.		
						10				
						4				
						12-				
						12-				
						-				
					===========	14	Bottom	of Boring 14 ft bls.		
					Bottom of	-		-		
					Boring					
						16-				
						18-		•		

		· I					
2 FT.		PROJECT NAME AMTRAK	NUMI	BER <u>05</u>	<u>545Y</u>		
	LAND SURFACE	WELL NO. MW-56	PERMIT	NO			
		TOWN/CITY Long Island City					
	10 INCL NAMETER	COUNTY Queens	STATE	New Yor	<u>k</u> _		
		LAND SURFACE ELEVATION	□ sur				
	WELL CASING	AND DATUM FEET	□ ESTI				
	4 INCH DIAMETER	INSTALLATION DATE(S) 11/17/93					
	BACKFILL	DRILLING METHOD Hollow Stem Auger					
	GROUTcement/bentonite	DRILLING CONTRACTOR A.D.T.					
		DRILLING CONTRACTOR					
	0.5 FT.	DNILLING (COID					
	☐ SLURRY	DEVELOPMENT TECHNIQUE(S) AND DATE(S	:)				
	DENIONIE □ PELLETS 1 FT.	Pump and Surge	'				
	2 FT. WELL SCREEN 4 INCH DIAMETER, S/Steel 20 SLOT #2 GRAVEL PACK 12 FT. 13 FT. DEPTHS IN FEET DW LAND SURFACE	FLUID LOSS DURING DRILLING	HOURS		_ FEET _ FEET	GALL BELOW BELOW	:0N: M. M.
		HYDROGEOLOGIST H. Gregory					

ENVIRONMENTAL CONSULTING & MANAGEMENT ROUX ASSOCIATES, INC.					GEOLOGIC LOG								
					WELL DATA				G-W READINGS (1)				
Study	No (15545Y	Dat	te 11/17/93		Hole Diam. (in.) 10				DTW MP (2)			
Study No. 05545Y Date 11/17/93 Project Sunnyside Yard					, ,	Final Depth (ft.) 13				21 11 111 (2)	Diev. w.s		
Client AMTRAK					Casing Diam. (in.) 4				1				
Page 1 of 1					Casing Length (ft.)								
Logged By G. Murphy					Screen Setting (ft.) 12 - 2'bls.								
Well/Boring No. MW-56					Screen Slot & Type 20 Slot - S/S				1				
Location					Well Status Monitoring Well								
					SAMPLER				DEVELOPMENT				
Drillir	ng Start	ed 09:1	5En	ded 12:00	Type 2" Split-spoon						_		
					Hammer 140	Hammer <u>140</u> lb.							
Туре	of Rig	<u>Hollow</u>	Stem Auger	<u>. </u>	Fall 30		in.						
DID		-	SAMPL	 E	Street Change	Danah		~			-(2)		
PID (ppm)	No.	Rec.	Depth	Blows 6	Strata Change & Gen. Desc.	Depth (ft)		SAMPLE DESCRIPTION(3)					
KFJ Z			0 - 4'	Posthole	Railroad Fill	0-	Railroa	d balla:	st; Fill.				
											•		
						2-							
]							
	1	1.3	4 - 6'	12,7,10,11	Sand, silt	4-		Brown fine to Silt. Wet at 4		coarse SAND, trace Gravel, trace			
										; Hydrocarbon	odor.		
_						 	•			,			
						6-							
						-							
						- 8-							
	2	1.2	9 - 11'	32,39,12,27	Sand, gravel	l °ī	Grev st	ained n	medium to coarse SAND, trace				
								Gravel; Hydrocarbon					
						107							
						^~_							
					Bottom of Boring	12-							
						-	Bottom	of Bor	of Boring 13 ft bls.				
						14-							
						_							
	,]]							
						16-							
]							
						18-					•		
,						⊢							

3 FT. LAND SURFACE - 10 INCH DIAMETER, DRILLED HOLE - WELL CASING - 4 INCH DIAMETER - BACKFILL - GROUTcement/bentonite_ - 0.5 FT BENTONITE PELLETS _ 1_ FT.	AND DATUM FEET	PERMIT NO STATE New Yor SURVEYED ESTIMATED	rk
3 FT. WELL SCREEN 4 INCH DIAMETER, _PVC _10 SLOT #0 GRAVEL PACK _13 FT. _14.5FT. NOTE: ALL DEPTHS IN FEET BELOW LAND SURFACE	FLUID LOSS DURING DRILLING WATER REMOVED DURING DEVELOPMENT STATIC DEPTH TO WATER PUMPING DEPTH TO WATER PUMPING DURATION GPM SPECIFIC CAPACITY GF WELL PURPOSE Monitoring well HYDROGEOLOGIST J. Gerlach & H. Gregory	DATE	GALLONS _ FEET BELOW M.P. _ FEET BELOW M.P.

			ULTING & MA TES, INC		GEOLOGIC LOG							
-				WELL DATA				G-W READINGS (1)				
Study	No()5545Y	Date	e <u>11/10/93</u>	Hole Diam. (in.)	_10			Date	DTW MP (2)	Elev. W.S	
Project Sunnyside Yard					Final Depth (ft.)							
Client	AMT	RAK			Casing Diam. (in.) 4				}			
Page 1 of 1					Casing Length (ft.)				[
Logge	d By _}	J. Gerlach	<u>h</u> _		Screen Setting (ft.) 13' to 3'bls.]			
Well/F	3oring	No. <u>M</u> '	W-57		Screen Slot & Type 10 Slot - PVC							
Locati	on				Well Status Monitoring Well							
					<u>SAMPLER</u>				DEVE	LOPMENT	_	
Drillin	g Start	ed <u>08:1</u>	5 End	ded 10:30	Type 2" Split-spoon							
Driller	<u>A.D.T</u>	Ī			Hammer <u>140</u> lb.							
Туре	of Rig	Hollow	Stem Auger	<u> </u>	Fall 30 in.							
DID			SAMPLI	 E	G G1	D 41					(2)	
PID (ppm)	No.	Rec.	Depth	Blows 6	Strata Change & Gen. Desc.	Depth (ft)		SAM	IPLE DE	SCRIPTION	(3)	
			0-3'	Posthole	Railroad Fill	0-		stained SAND and Gravel; Railroad				
						2-						
10.0	1	1.5	3-5'	9,10,9,11	Sand, gravel		Brown : Moderat	fine to te sew	coarse(+) er odor.	SAND, trace C	Gravel;	
						4-						
14.5	2	1.5	5-7'	25,18,15,19			Brown fine to coarse(+) SAND, trace Gra Moderate sewer odor; finer grained at tip				Gravel; ip of	
						6-	spoon.	Wet at	t 5 ft bls.	_		
						8-						
12.0	3	1	10-12'	1,13,16,19		10-	Brown 1	medium to coarse(+)SAND, trace gra				
						 12						
						ı "H						
						14-	Rottom	of Bot	ring 14.5 ft	t ble		
					Bottom of		Bottoili	OI DOI	.iiig 14.5 ii	. DIS.		
			1		Boring							
						16-						
						, 4						
						٦, ١						
						18-						
						, 4						
			1		[, ⊢						

		ı		
2 FT.	1	PROJECT NAME AMTRAK	NUMBE	R <u>05545Y</u>
	LAND SURFACE	WELL NO. MW-58	PERMIT N	0
		TOWN/CITY Long Island City		
		COUNTY Queens	State _!	New York
		LAND SURFACE ELEVATION		
	WEST GROWN	AND DATUM FEET		YED
	WELL CASING _4 INCH DIAMETER		☐ ESTIMA	ATED
	INCH DIAMETER	INSTALLATION DATE(S) _12/08/93		
	BACKFILL	DRILLING METHOD Hollow Stem Auger		
	☐ GROUTcement/bentonite_	DRILLING CONTRACTOR A.D.T.		
		DRILLING FLUID		
	<u> </u>			
	☐ SLURRY — BENTONITE ☐ RELUCES	DEVELOPMENT TECHNIQUE(S) AND DATE(S)		
	— BENTONITE ☐ PELLETS — 0.8 FT.	Pump and Surge		
		· ·		
		FLUID LOSS DURING DRILLING		CALLONS
	· ·	WATER REMOVED DURING DEVELOPMENT		
	WELL SCREEN	STATIC DEPTH TO WATER		
	4 INCH DIAMETER,	PUMPING DEPTH TO WATER		
	_S/Steel_20SLOT	PUMPING DEPTH TO WATER		PEET BELOW M.I
		YIELD GPM		NATE:
				JAIL
	#2_ GRAVEL PACK	SPECIFIC CAPACITY	_ GPM/FT.	
		WELL PURPOSE Monitoring well		
	_11.3FT.			
		REMARKS		
TON				
	DEPTHS IN FEET OW LAND SURFACE			
		4.0		
		HYDROGEOLOGIST H. Gregory		

			ULTING & M. FES, INC	ANAGEMENT			GEO	LOC	GIC L	OG	****
					v	VELL D	ATA		G-	W READIN	GS (1)
Study	No. 0	5545Y	Dat	e 12/08/93	Hole Diam. (in.)			_	Date	DTW MP (2)	
-			ard		Final Depth (ft.)						
_		•			Casing Diam. (in						
					Casing Length (ft.)						
			ıy		Screen Setting (ft	.) <u>11.3 t</u>	o 1.3'bls.				
			W- <u>58</u>		Screen Slot & Ty						
Location	on				Well Status Mon	itoring W	/ell				
M.P. I	Elevatio	n			<u>SAM</u> I	PLER			DEVE	LOPMENT	•
Drillin	g Starte	ed <u>09:2</u>	0End	ied 14:30	Туре						
Driller A.D.T.					Hammer						
Type of Rig Hollow Stem Auger					Fall		in.				
PID			SAMPL	Е	Strata Change	Denth		CANA	DIE DE	SCRIPTION	(3)
(ppm)	No.	Rec.	Depth	Blows 6	Strata Change & Gen. Desc.	Depth (ft)					.,
			0-3'	Posthole	Railroad Fill	0-	Black s	tained	SAND; Ra	ailroad ballast.	
					}		Wet at	2 ft bls	3.		
			,	п		, <u> </u>					
			- -			-					
30.4			3 - 5'	Cuttings	Sand	╛	Grey sta	ained f	ine to coar	se SAND; Hyd	irocarbon
						4	0.000				
						-					
						╕					
						6					
					•						
						-					
,						8-					
						\Box					
									. ,	C4375 II	
						10-	odor.	ained i	ine to coar	se SAND; Hyd	irocarbon
							-				
						12-					
						127					
						-					
						14-	Bottom	of Bor	ing 14 ft b	ols.	
					Bottom of	1					
					Boring	j					
						16					
						18-					
						-					

REMARKS (1) in feet relative to a common datum
(2) from top of PVC casing
(3) logged cuttings

<u> </u>	PROJECT NAME _AMTRAK	NUMBER	
3.5 FT. LAND SURFACE	- WELL NO. <u>MW-59</u>	PERMIT NO.	
	TOWN/CITY Long Island City		
	COUNTY Queens		
	LAND SURFACE ELEVATION	JIAIC	
l M M	AND DATUM FEET	☐ SURVEY	ED
WELL CASING	AND DATOM — TEL	□ ESTIMAT	ED
4 INCH DIAMETER	INSTALLATION DATE(S) 12/03/93		
BACKFILL	DRILLING METHOD Hollow Stem Auger		
GROUT _cement/bentonite_			
	DRILLING CONTRACTOR		
	DRILLING FLOID		
□ SLURRY	DOWN ORMENT TECHNIQUES AND DATES		
— BENTONITE □ PELLETS	DEVELOPMENT TECHNIQUE(S) AND DATE(S) Pump and Surge		
0.5 FT.	Pump and Surge		
1.5 FT.			
	FLUID LOSS DURING DRILLING		
- WELL SCREEN	WATER REMOVED DURING DEVELOPMENT		
4 INCH DIAMETER,	STATIC DEPTH TO WATER		
PVC 10 SLOT	PUMPING DEPTH TO WATER		FEET BELOW M.F
	PUMPING DURATION		
	YIELD GPM		ME
#0_ GRAVEL PACK	SPECIFIC CAPACITY	_ GPM/FT.	
	WELL PURPOSE Monitoring well		
_11.5FT.			
<u> </u>	REMARKS		
NOTE:			
ALL DEPTHS IN FEET BELOW LAND SURFACE			•
SEEGII STIS GONI POE			
	HYDROGEOLOGIST H. Gregory		

					GEOLOGIC LOG						
		_	,			VELL D	ATA		G-	W READIN	GS (1)
 Study	No.)5545Y	Dat	te 12/03/93	Hole Diam. (in.)	_			Date	DTW MP (2)	
•					Final Depth (ft.)						
1 -	-				Casing Diam. (in						
ſ					Casing Length (f					1	
_					Screen Setting (f						
					Screen Slot & Ty						
Locati	on				Well Status Mor	nitoring W	/ell				
					SAM	PLER_			DEVE	LOPMENT	
Drillin	g Start	ed <u>13:0</u>	<u>0</u> En	ded <u>16:45</u>	Type 2" Split-sp	oon				· ·	-
Driller	A.D.1	Γ			Hammer 140		lb.				
					Fall <u>30</u>		in.				
DID	PID SAMPLE				St. 4 G1	D 11					(2)
PID (ppm)	No.	Rec.		Blows 6	Strata Change & Gen. Desc.	Depth (ft)		SAM	PLE DE	SCRIPTION	(3)
<u> </u>			0 - 0.7'	Posthole	Concrete Sand	0-	Concret Tan fine		arse SANI	D.	-
		}	Į		1]					
						2-					
			2 0,	Enomo outtina-a	Sand aresist	1 -	Т б		CANT) to	
			3-9	From cuttings	Sand, gravel]	ran iin	e to coa	arse SAINL), trace Gravel.	•
					ļ	4-					
				ļ		4				•	
						6-					
				ļ	ĺ						
						-					
						8-					
0	1	2	9 - 11'	10.6.9.12			Tan-bro	wn me	dium to co	oarse SAND, tr	ace
				, , ,					or. Wet at		
						10-					
						_					
						1,7					
						12-	Bottom	of Bor	ing 12.5 ft	t bls.	
					Bottom of	-				0.13.	
					Boring	14-					
						177					
						-				•	
						16-					
						18-					
						4					
				_							

REMARKS (1) in feet relative to a common datum (2) from top of PVC casing (3) logged cuttings

	I				- 05-1-11	
2 FT. 1		JECT NAME AMTRAK				
LAND SURFAC	XET.	L NOMW-60		_ PERMIT NO	D	
	TOW	N/CITY Long Island City	<u> </u>			
10 10	CH DIAMETER,	NTY Queens		State _N	lew York	
DRILLED H	HOLE LANG	SURFACE ELEVATION		- CHOVE	VED	
WELL CAS	ING AND	DATUM	_ FEET	□ SURVE		
	ICH DIAMETER			□ ESTIMA	MED	
		ALLATION DATE(S) 12/	<u>/28/93</u>	_		
BACKFILL	-··-	LING METHOD Hollow	v Stem Auger			
GROUT _	cement/bentonite DRIU	LING CONTRACTOR —	A.D.T.			
	DRIL	LING FLUID				
BENTONITE	E PELLETS DEVE	ELOPMENT TECHNIQUE	(S) AND DATE(S)			
_3_FT.		and Surge				
4.5 FT.	FLUI	D LOSS DURING DRILL	LING			GALLON!
		ER REMOVED DURING				
WELL SCREE	EN	IC DEPTH TO WATER _				
	H DIAMETER,	IPING DEPTH TO WATE				
_S/Siteel_2	<u> 20 SLUI</u>	PING DURATION			, ,	DELOW M.
		D		_	TATE	
		CIFIC CAPACITY				
#2_ GRA	TACK FACK			GFM/F1.		
	WELL	L PURPOSE Monitorin	ng well			
	95.4	ACKC				
	KEM	ARKS				
NOTE:						
ALL DEPTHS IN FEET BELOW LAND SURFACE	E					
	HYDI	ROGEOLOGIST H. Gre	igory		<u> </u>	

			ULTING & M. TES, INC	ANAGEMENT			GEO	LOC	GIC L	OG	
						VELL D	ATA		G-	W READIN	GS (1)
Study	No. 0	5545Y	Dat	e <u>12/28/93</u>	Hole Diam. (in.)	10			Date	DTW_MP (2)	
			ard		Final Depth (ft.)						
_					Casing Diam. (in						
					Casing Length (fl						
Logge	d By_J	. Gerlacl	h		Screen Setting (ft						
Well/E	Boring [No. <u>M</u>	W-60		Screen Slot & Ty						
Locati	on				Well Status Mon		/ell				
					<u>SAMI</u>				DEVE	LOPMENT	_
			5 End		Туре						
					Hammer		lb.				
Type of Rig Hollow Stem Auger				·	Fall		in.				
PID		Des	SAMPL	Blows 6	Strata Change & Gen. Desc.	Depth (ft)		SAM	PLE DE	SCRIPTION	(3)
(ppm)	No.	Rec.	Depth 0 - 3'	Posthole	Sand	(11)	Tan SA	ND.			
]					
					1						
]			2					
			3 - 5'	Cuttings		-	Dlask C	ANID			
			3 - 5	Cuttings			Black S	AND.			
			}			4-					
					1						
						4				,	•
					[6-					
			7 - 18'	Cuttings		_	Black S	AND;	Petroleum	odor and stain	ing.
					}	\exists					
						8-					
						4					
l						10-					
						- T					
						-					
		ı]	12-					
						4					
											ı
						14-					
				 		7					
				1		16-					
				1		7					
										_	
					Bottom of	18-	Bottom	of Bor	ing 18 ft t	ols.	
					Boring	4					
						4					

REMARKS (1) in feet relative to a common datum (2) from top of PVC casing (3) logged cuttings

<u> </u>	PROJECT NAME _AMTRAK	NUMBER	_05545Y
FT. LAND SURFACE	WELL NO. MW-61	PERMIT NO.	
	TOWN/CITY Long Island City		
10_ INCH DIAMETER,	COUNTY Queens	STATE _ Ne	w York
DRILLED HOLE	LAND SURFACE ELEVATION AND DATUM FEET	□ SURVEY	ED
WELL CASING 4 INCH DIAMETER		□ ESTIMAT	ED
	INSTALLATION DATE(S) _11/12-13/93		
BACKFILL GROUTcement/bentonite_	DRILLING METHOD Hollow Stem Auger		
	DRILLING CONTRACTOR A.D.T. DRILLING FLUID		
<u>9</u> гт.	DRILLING FLOID		
BENTONITE	DEVELOPMENT TECHNIQUE(S) AND DATE(S)		
<u>10</u> FT.	Pump and Surge		
	FLUID LOSS DURING DRILLING		GALLONS
WELL SCREEN	WATER REMOVED DURING DEVELOPMENT		
_4 INCH DIAMETER,	STATIC DEPTH TO WATER		
PVC 10 SLOT	PUMPING DURATION F		TEET BELOW MI.F
	YIELD GPM	DA	NTE
#0_ GRAVEL PACK	SPECIFIC CAPACITY	_ GPM/FT.	
	WELL PURPOSE Monitoring well	•	
_22_FT.			
<u>24</u> гг.	REMARKS		
NOTE: ALL DEPTHS IN FEET BELOW LAND SURFACE			
	HYDROGEOLOGIST H. Gregory		

l			res, inc	ANAGEMENT			GEO!	LOGIC 1	LOG			
	-		-	-	v	VELL D	ATA		3-W READIN	IGS (1)		
 Study	No. ()5545Y	Dat	te 11/12/93	Hole Diam. (in.)				DTW MP (2			
			ard		Final Depth (ft.)				DIW WI (2	J LIEV. W.		
1 -		RAK			Casing Diam. (in							
			of _2		Casing Length (f	_			li li			
_			h and H. Gr		Screen Setting (fi							
	_		W-61		Screen Slot & Ty							
	-	· ·			Well Status Mor	•						
					SAM	PLER		DEV	ELOPMENT	<u> </u>		
				ded	Type 2" Split-sp				<u> </u>	_		
1					Hammer 140		lb.					
			Stem Auger		Fall 30							
	1		SAMPL			1 1		_				
PID	No.	Rec.	Depth	Blows 6	Strata Change & Gen. Desc.	Depth (ft)		SAMPLE D	ESCRIPTION	J ⁽³⁾		
(ppm) 0ppm	140.	Rec.	<u> Бериг</u>	Blows 0	Sand, silt,	0-	Brown	ine to medium	SAND, trace S	ilt: Organi		
оррии				ĺ	organics	~	material		ornab, nace s	iit, Organi		
		l				2]						
	1	0	3-5'	22,24,20,14	Sand, gravel	¦ ⊣			SAND, trace c	obbles		
		Į					(from c	ıtings).				
		[4]						
	2	1	5-7'	8,31,50		-	Light br	own fine to co	arse SAND, tra	ce Gravel;		
·							Rounde	quartz pebble	blocking tip of	spoon.		
						6-						
	,	1	7.02	26 50 46 50	Sand sabble	-	Timba ba	e	diam CAND A			
	3	1	7-9'	26,58,46,50	Sand, cobble layer, gravel]		own tine to me Cobbles.	edium SAND, ti	race		
					,, g	8-	,					
	4	0	9-11'	62,70/3"			Light be		o comes CAND	t ma		
	4	"	9-11	02,70/3]	Gravel;		o coarse SAND,	, trace		
				1		10-	ŕ					
5ppm	5	0.5	11-13'	88,100/5"			Brown 1	ine to medium	(+) to coarse SA	ND trace		
эррш	,	0.5	11-15	66,100/3		1 7		Wet at 11 ft bl		ind, nacc		
						12-						
4ppm	6	1.5	13-15'	8,18,22,28]	Brown 1	ine to medium	(+) to coarse SA	ND. trace		
			15 16	0,10,==,=0		1 4	Gravel.		() 10 00	11,2, 11,000		
						14-						
						-						
						16-						
]						
						18-				-		
	l '	I		l	1	1 7						

REMARKS (1) in feet relative to a common datum
(2) from top of PVC casing
(3) logged cuttings

,												
			ULTING & M FES, INC	ANAGEMENT			GEO	LOC	GIC L	OG		
				<u>—</u>	v	VELL D	ATA	_	G-	W READ	INC	3S (1)
Study	No. 0	5545Y	Dat	e <u>11/12/93</u>	Hole Diam. (in.)			_	Date	DTW MP		
_			ard		Final Depth (ft.)							
-					Casing Diam. (in							
Page	2		of <u>2</u>		Casing Length (fl							
			n and H. Gr		Screen Setting (fl	.) <u>22' - 1</u>	2'bls					
Well/I	Boring :	No. <u>M</u>	W <u>-61</u>		Screen Slot & Type 10 Slot - PVC							
			-		Well Status Mor		ell					
M.P. 3	Elevatio	on				PLER			<u>DEVE</u>	<u>LOPMEN</u>	<u>T</u>	
				ded	Type 2" Split-spe							
					Hammer <u>140</u>							
Type	of Rig	Hollow	Stem Auger		Fall <u>30</u>		in.					
PID			SAMPL	_	Strata Change & Gen. Desc.	Depth (ft)		SAM	PLE DE	SCRIPTIO	ON ⁽³	5)
(ppm)	No.	Rec.	Depth	Blows 6		_						
				1	Sand, gravel	20-	and Gra		medium S	AND, trace	coa	rse Sand
		l]	-						
	ļ					22						
					ĺ	1						
						24-	Bottom	of Bor	ing 24 ft b	ols.		
					Bottom of	-			Ü			
					Boring							
	Ì					26-						
						_						
						28-						
						30-						
						-						
						32-						
						~~						
						_						
						34-						
						4						
					[
						36-						
						-						
						38						•
						7						
			•									
				<u> </u>							-	

REMARKS (1) in feet relative to a common datum (2) from top of PVC casing (3) logged cuttings

<u> </u>	DDO JEGT NAME ANTDAY	NII II 1050	DEFAEV
FT. LAND SURFACE	PROJECT NAME AMTRAK		
T J J J J J J J J J J J J J J J J J J J	WELL NO. MW-62D		
	TOWN/CITY Long Island City		
10_ INCH DIAMETER,	COUNTY Queens	STATE New '	York
DRILLED HOLE	LAND SURFACE ELEVATION	□ SURVEYED	
WELL CASING	AND DATUM FEET	□ ESTIMATED	
INCH DIAMETER			
	INSTALLATION DATE(S) 12/01/93		
BACKFILL GROUTcement/bentonite_	DRILLING METHOD Hollow Stem Auger		
	DRILLING CONTRACTOR ALD.1.		
	DRILLING FLUID	<u> </u>	
31 FT. □ SLURRY			
BENTONITE PELLETS	DEVELOPMENT TECHNIQUE(S) AND DATE(S)		
_35_FT.	Pump and Surge		
	·		
	FLUID LOSS DURING DRILLING		GALLONS
WELL SCREEN	WATER REMOVED DURING DEVELOPMENT		GALLONS
4 INCH DIAMETER,	STATIC DEPTH TO WATER		FEET BELOW M.F
PVC 10 SLOT	PUMPING DEPTH TO WATER	_	FEET BELOW M.F
	PUMPING DURATION	HOURS	
	YIELD GPM	DATE	
#0_ GRAVEL PACK	SPECIFIC CAPACITY	GPM/FT.	
	WELL PURPOSE Monitoring well		
_49_FT.			
<u>\$2.</u> FI.	REMARKS		
NOTE:			
ALL DEPTHS IN FEET			
BELOW LAND SURFACE			
	HYDROGEOLOGIST H. Gregory		

ROUX			ULTING & M. FES, INC	ANAGEMENT			GEOI		GIC L	.OG		
				-	V	VELL D	ATA		. G-W READINGS (1)			
Study	No 0	5545Y	Dat	e 11/16/93	Hole Diam. (in.)				Date	DTW MP (2)		
•			ard	_	Final Depth (ft.) 52						Diev. W.	
•		RAK			Casing Diam. (in.) 4							
			of 3		Casing Length (fi			i				
			ry and G. M		Screen Setting (ft							
		No. M			Screen Slot & Ty							
	_				Well Status Mon							
					SAMI	PLER			DEVE	ELOPMENT		
				ded	Type 2" Split-spe						_	
	Driller A.D.T.				Hammer 140		lb.					
Type of Rig Hollow Stem Auger					Fall 30		in.					
	_		SAMPL		St. 4 C1	D (1)					(2)	
PID (ppm)	No.	Rec.	Depth	Blows 6	Strata Change & Gen. Desc.	Depth (ft)		SAM	AMPLE DESCRIPTION(3)			
ppm					Sand, silt, organics	0-	Brown f material		medium	SAND, trace S	ilt; Organic	
	1	0	3-5'	22,24,20,14	Sand, gravel	2-	Brown i			SAND, trace co	obbles	
	2	1	5-7'	8,31,50		4- - - 6-				rse SAND, trac blocking tip of		
	3	1	7-9'	26,58,46,50	Sand, cobble, gravel	- - 8-	Light br Gravel,			dium SAND, tr	ace	
	4	0	9-11'	62,70/3"		10-	Light br Gravel;			coarse SAND,	trace	
5	5	0.5	11-13'	88,100/5"		12-			medium(- 11 ft bls	+) to coarse SA.	ND, trace	
	6	1.5	13-15'	8,18,22,28		14-	Brown f Gravel.	ine to	medium(-	+) to coarse SA	ND, trace	

REMARKS (1) in feet relative to a common datum (2) from top of PVC casing (3) logged cuttings

19-21'

13,15,12,10

Sand, gravel

Tan fine to coarse SAND, trace Gravel.

1

1.2

1			ULTING & M TES, INC	ANAGEMENT			GEO	LOC	GIC L	OG	
						VELL D)ATA	_	G-	W READIN	GS (1)
l Study	No. ()5545Y	Dat	e 11/1 6/93	Hole Diam. (in.)				Date	DTW MP (2)	
-			ard		Final Depth (ft.)						
	AMT	_			Casing Diam. (in	.) 4					
			of <u>3</u>		Casing Length (f	t.)		-	ľ]
Logge	d By]	H. Grego	ry and G. N	<u>lurphy</u>	Screen Setting (fi	Screen Setting (ft.) 49' to 39'bls.					
Well/I	3 oring	No. <u>M</u>	W-62D		Screen Slot & Ty	pe 10 S	lot - PVC				
Locati	on				Well Status Mor	itoring V	Vell				
					SAM	PLER_			<u>DEVE</u>	LOPMENT	_
			En		Type 2" Split-sp			ļ			
					Hammer 140		lb.	ĺ			
Type	Type of Rig Hollow Stem Auger				Fall <u>30</u>		in.				
PID			SAMPL	Е	Strata Change	Denth	_	CANA		CODIDTION	(3)
(ppm)	No.	Rec.	Depth	Blows 6	Strata Change & Gen. Desc.	Depth (ft)		5AIV	PLE DE	SCRIPTION	(-)
					Sand, gravel	20-					
		1	ļ		Ì						
						-					
						22-					
					1	1]					
		۱									
0	2	2'	24-26'	18,20,11,20	1	24-	Tan fin Gravel.	e to me	edium(+) t	o coarse SAND), trace
		ļ				_	Giavei.				
1		Ì)	26					
						26-					
		<u> </u>				-					
						28-					
0	3	2'	29-31'	27,14,12,16			Tan fin	e to me	edium(+) to	o coarse SAND), trace
							Gravel.				
					1	30-					
						-					
						コ					
						32-	•				
						_					
						l I					
0	4	2'	34-36'	24,33,30,38		34-		e to co	arse SAND), trace Gravel,	trace
							Silt.				
		}				-					
						36-	•				
						38-	1				
]		'			-					

REMARKS (1) in feet relative to a common datum
(2) from top of PVC casing
(3) logged cuttings

1			ULTING & M TES, INC	ANAGEMENT			GEO	LOC	GIC L	OG	
					v	VELL D	ATA		G-	W READIN	GS (1)
Study	No. 0)5545Y	Dat	e 11/16/93	Hole Diam. (in.)				Date	DTW MP (2)	· ·
		nyside_Y			Final Depth (ft.)			-			
					Casing Diam. (in				1		
			of 3		Casing Length (f						
Logge	d By _l	H. Grego	ry and G. N	/urphy	Screen Setting (f	t.) <u>49' to</u>	39'bls.				}
Well/I	3 oring	No. <u>M</u>	W-62D		Screen Slot & Ty						
Locati	on				Well Status Mor	itoring W	<u>/ell</u>				
M.P. 1	Elevatio	on			SAM:	PLER	١	1	DEVE	LOPMENT	_
				ded	Type 2" Split-sp						
I					Hammer <u>140</u>						
Type	of Rig	Hollow	Stem Auger	·	Fall <u>30</u>		in.				
PID (ppm)	No.	Rec.	SAMPL! Depth	Blows 6	Strata Change & Gen. Desc.	Depth (ft)		SAM	PLE DE	SCRIPTION	(3)
(PP-11-)						40-		_			
			{			\					
						42-					
			[
0	1	1.5'	44 - 46'	20,30,27,38		44-	Tan fine	e to co	arse SANI	O, trace Gravel	•
				1	į.	l ⊣					
ſ						46-					
						""]					
						-					
						48-					
		,									
		l									
						50-					
					1						
						' ⊒					
					D.44	52-	Bottom	of Bor	ing 52 ft b	ols.	
					Bottom of Boring						
]	54-					
					}	_					
						56-					
					[
						58					
						-					
_						\sqcup					

REMARKS (1) in feet relative to a common datum (2) from top of PVC casing (3) logged cuttings

1			ULTING & M. FES, INC	ANAGEMENT			GEOLO	OGIC LOG	
					T	VELL D	ATA	G-W READINGS (1)	`
l Study	No. ()5545Y	Dat	e 12/14/93	Hole Diam. (in.)			Date DTW MP (2) Elev.	
-			ard		Final Depth (ft.)				
_					Casing Diam. (in				
l .					Casing Length (ft				
ı					Screen Setting (ft				
			W-63		Screen Slot & Ty	pe <u>10 Sl</u>	ot - PVC		
ı					Well Status Mon				
M.P. 1	Elevatio	on			SAMI	PLER		DEVELOPMENT	
Drillin	g Start	ed <u>8:45</u>	Enc	ded <u>10:45</u>	Type 2" Split-spe	oon			
					Hammer 140		lb.		
Туре	of Rig	<u>Hollow</u>	Stem Auger		Fall 30		in.		
PID			SAMPL	Е	Strata Change	Denth	G.A.	ADLE DECORPTION(3)	
(ppm)	No.	Rec.	Depth	Blows 6	Strata Change & Gen. Desc.	Depth (ft)	SA	MPLE DESCRIPTION(3)	
			0 - 3'	Posthole	Sand, gravel, railroad fill	0-	Brown fine Railroad bal	to medium SAND, trace gravel; llast, cinders.	
0	2	2	3 - 5' 9-11'		Sand, silt, clay Sand, silt, clay, gravel	2- 2- 4- 6- 8- 10- 12-	Tan fine SA bls. Tan fine SA Gravel.	AND and Silt, trace Clay. Wet at 4	ft
					Bottom of Boring	14- 16- 18- 	Bottom of E	Boring 14 ft bls.	

REMARKS (1) in feet relative to a common datum
(2) from top of PVC casing
(3) logged cuttings

Project: AMTRAK - Sunnysid	e Yard HST		T T								
Queens, New York			Log	g of Well N	lo.	MV	V-64				
Date Started: 4/23/96	Completed: 4/2	23/96	Measur	ing Point Elev	vation:		T	otal Dep	th: 15.0	ft	
Logged By: M. Pancoast	Checked By: 1	H. Gregory		evel During l					elopment:		ft
Drilling Co: ADT	Driller:		<u>-</u>	4-inch Sch		40 PV	C D		Diameter:	8-inch	
Drilling Method: Hollow-Stem Au	ger			tion: 10-Slot	t ——-			from	14	to	4
Drilling Equipment:				1 Gravel	11-4-		<u> </u>	from	15	to	2.5
Sampler: 2-inch Split Spoon			-	entonite Pe Frout	nets		- 	from	0.5	to to	0.5
LITHOLOGIC DE	ESCRIPTION	Litholo	ogy		Sampler Blows per 6"	PID (ppm)			EMAR		
Black to brown fine to SAND, some Silt; Dr Black to brown fine to SAND, some Silt; Dr Black to brown fine to SAND, some Silt; Dr Orange to tan medium SAND, some Silt, litt Moist to wet Tan medium to coarse Gravel; Wet Tan medium to coarse Gravel; Wet Tan medium to coarse Gravel; Wet Tan medium to coarse Gravel; Wet Tan medium to coarse Gravel; Wet 20— 25— 25—	o medium y o medium y to moist n to coarse le Gravel; e SAND, trace	SW		Construction	Sa C Ba	0	Wet at	7 feet b	elow land	surface	
Project: 05552Y		Roux	Assoc	iates					Page		of 1

Project: AMTRAK - Sunnysic Queens, New York	le Yard HST		Log of We	ll No.	MW	7-65			
Date Started: 4/22/96	Completed: 4/2	22/96	Measuring Point	Elevation:		Tota	al Depth: 1	14.5 ft	
Logged By: M. Pancoast	Checked By: I	H. Gregory	Water Level Dur	ing Drilling	g: 7.0	ft Pos	t-Developr	nent: 5.2	ft
Drilling Co: ADT	Driller:		Casing: 4-inch		40 PV	Dril	ll Bit Diam	eter: 8-in	ch
Drilling Method: Hollow-Stem Au			Perforation: 10-				from	14 to	4
Drilling Equipment:			Pack: #1 Grave			15.7		14.5 to	2.0
Sampler: 2-inch Split Spoon			Seal: Bentonite	Pellets			from from	2.0 to	0
LITHOLOGIC D	ESCRIPTION	Litholo	Monitori	Sampler Blows	(ppm)	<u> </u>		IARKS	
Dark brown to black SAND, some Silt, so Dark brown to black SAND, some Silt, so Orange brown to tan coarse SAND, some Gravel; Dry to moist Orange brown to tan coarse SAND, some Gravel; Moist to wet Orange brown to tan coarse SAND, some Gravel; Wet Orange brown to tan coarse SAND, some Gravel; Wet Orange brown to tan coarse SAND, some Gravel; Wet Orange brown to tan coarse SAND, some Gravel; Wet Orange brown to tan coarse SAND, some Gravel; Wet 15— 20— 20— 20— 20— 21— 220— 23— 24— 25— 26— 26— 27— 28— 28— 29— 20— 20— 20— 20— 20— 20— 20	fine to medium me coal; Dry fine to medium me Coal; Dry fine to medium me Coal; Dry medium to Silt, some medium to Silt, some medium to Silt, some medium to Silt, some	SW	gy Construct		0	Wet at 7	y derived f	rom cutting	ce
25— Project: 05552Y		Roux	Associates					Page 1	of 1

Project: AMTRAK - Sunnyside Yard I Queens, New York	HST	Log of Well No.	MW-60	5	
Date Started: 4/23/96 Com	pleted: 4/23/96	Measuring Point Elevation:		Total Depth: 15.0	0 ft
Logged By: M. Pancoast Chec	cked By: H. Gregory	Water Level During Drilling	: 6.5 ft	Post-Developmen	t: 5.3 ft
Drilling Co: ADT Drill	ler:	Casing: 4-inch Schedule	40 PVC	Drill Bit Diameter	r: 8-inch
Drilling Method: Hollow-Stem Auger		Perforation: 10-Slot		from 14	
Drilling Equipment:		Pack: #1 Gravel Seal: Bentonite Pellets		from 15	
Sampler: 2-inch Split Spoon		Grout	<u></u>		
LITHOLOGIC DESCRIPT	TION Litholo	<u> </u>	PID (ppm)	REMAI	_
Dark brown to black fine to medium to coar SAND, little Silt, little Gravel Orange brown medium to coar SAND, some Gravel; Dry Orange brown medium to coar SAND, little Gravel; Dry to medium to coar SAND, little Gravel; Moist to Orange brown medium to coar SAND, little Gravel; Moist to Orange brown medium to coar SAND, little Gravel; Wet Orange brown medium to coar SAND, little Gravel; Wet Orange to tan fine to medium little Silt; Wet Orange to tan fine to medium little Silt; Wet Orange to tan fine to medium little Silt; Wet	rse rse rse wet SAND,	Construction & A	0 Litho	logy derived from	n cuttings
25 — Project: 05552V	n	Associates			

Proj		MTRAK - Su ueens, New Y	nnyside Yard HST ork		L	og of Well	No.		MV	V-67				
Date	Started	: 4/19/96	Completed: 4/	19/96	Meas	uring Point Ele	vatio	on:		Т	otal Dep	th: 17.0 f	ìt	
Logg	ed By:	M. Pancoast	Checked By: 1	H. Gregory	Water	r Level During	Dril	ling:	6.5	ft P	ost-Deve	lopment:	5.9	ft
Drilli	ing Co:	ADT	Driller:		Casin	g: 4-inch Sc	hedi	ule 4	0 PV	C D	rill Bit I	Diameter:	8-inch	<u> </u>
		hod: Hollow-St	em Auger			ration: 20-Slo	ot				from	14	to	4
<u> </u>		ipment:		_		#1 Gravel						15	to	2.0
<u> </u>		inch Split Spoo			Seal:	Bentonite Post	ellet	S		<u>₩</u>	from	$\frac{2.0}{1.0}$	to	$\frac{1.0}{0}$
Depth (feet)	ner. 2		iC DESCRIPTION	Litholo	gy	Monitoring Well Construction	Sampler	Blows per 6"	PID (ppm)			EMAR	KS	
ay) 10 15 20	- SI - SI - SI - SI - SI - SI - SI - SI	Dark brown to AND, trace cory Black brown to AND, trace cory Black brown to AND, trace cory Drange brown race Gravel; It Drange brown race Gravel; Vorange to tan race AND, trace Cory Drange to tan r	black fine to coarse ement, trace Gravel; tan fine to coarse ement, trace Gravel; tan fine to coarse ement, trace Gravel; fine to coarse SAND, Ory to moist fine to coarse SAND, Vet fine to coarse SAND, Vet nedium to coarse bravel; Wet nedium to coarse bravel; Wet	SW	Ey	Construction		Blc Blc Blc Blc Blc Blc Blc Blc Blc Blc	(ppm) 0 0	Wet at	6.5 feet	below lar	euttings	
	Project	. 05552Y		Roux	Asso			l				Page	. 1 c	f 1

Project	: AMTRAK - Sunn Queens, New Yor			L	og of Well I	No.		MV	V-68		_		
Date Sta	arted: 4/24/96	Completed: 4/2	24/96	Meas	uring Point Ele	vatio	n:		To	otal Dep	th: 17.0	ft	
Logged	By: M. Pancoast	Checked By:	H. Gregory	Water	Level During	Drilli	ing:	14.0	ft Po	ost-Deve	lopment:	9.4	ft
Drilling	Co: ADT	Driller:		Casin	g: 4-inch Sc	hedu	le 4	10 PV	C D	rill Bit I	Diameter:	8-incl	h
	Method: Hollow-Sten				ration: 10-Slo	t				from	16	to	6
<u> </u>	Equipment:				#1 Gravel					from	17	to	4.0
<u> </u>	: 2-inch Split Spoon			Seal:	Bentonite Pe	ellets			<u>₩</u>	from	2.0	to	$\frac{2.0}{0}$
Depth (feet)		C DESCRIPTION	Litholo) Ogy	Monitoring Well Construction	Sampler	per 6"	PID (ppm)		from R	EMAR	kS	
5 — — — — — — — — — — — — — — — — — — —	Black to brown find SAND, some Grand Black to brown find SAND, some coal Cobbles; Dry Orange to tan find some Silt; Dry Orange to tan find some Silt; Dry Dark black to brown find some Silt; Dry Dark black to brown find some Silt; Dry	ne to medium avel, some Cobbles; one to medium arse Gravel, some cobbles; one to medium sand, eto medium sand, own fine to medium; Dry	SW		Construction		10 15 16 12 15 17 10 7	70	Slight v		ntent from	14 fee	t below
20	Dark black to bro SAND, some Silt	wn fine to medium; Moist							Bottom		ng at 17 fe	et belo	w land
Pro	piect: 05552Y		Roux	Asso	ciates				-		Page	. 1	of 1

Proje	ct: AMTRAK - Sunnysic Queens, New York	le Yard HST		Log	g of V	Well No		MV	V-69	D			
Date S	Started: 4/24/96	Completed: 4/2	4/96	Measur	ing Po	int Eleva	tion:	_	Т	otal Dept	h: 35.0 f	ît	
Logge	d By: M. Pancoast	Checked By: H	I. Gregory	Water I	Level I	During D	rilling	10.0	ft P	ost-Deve	lopment:	9.5	ft
	ng Co: ADT	Driller:		Casing	4-in	ch Sche	dule -	40 PV	C D	rill Bit D	iameter:	8-incl	h
<u> </u>	ng Method: Hollow-Stem Au			Perfora	tion:	10-Slot				from	33	to	23
				Pack: #						from	35	to	21
	eg Equipment:			Seal: I	Bentor	nite Pell	ets		<u> </u>	from	21	to	19
Sample	er: 2-inch Split Spoon		1		Frout	Ι.	1		<u> </u>	from	19	to	0
Depth (feet)	LITHOLOGIC D		Litholo	ogy		toring ell uction	Blows per 6"	PID (ppm)		R	EMARI	KS	
5 -	Black to brown fine to SAND, some Gravel Dry Black to brown fine to SAND, some Gravel Dry Orange to tan medium SAND; Dry Orange to tan medium SAND; Dry	o medium, some Cobbles; some Cobbles; n to coarse	SW	120020000000000000000000000000000000000	**************************************		60 NR NR NR						
10-	Orange to tan medium SAND; Dry Orange to tan medium				**************************************		11	46	Wet at	10 feet b	elow land	l surfac	ce
	Orange to tan medium SAND, some Silt, so				**************************************		13 11 10		Strong feet be	petroleui low land	n odor fr surface	om 10 t	to 15
15-	Orange to tan medium SAND, some Gravel	, some Silt; Wet					17 17	35					
 - <u> </u>	Orange to tan medium SAND, some Gravel	, some Silt; Wet		222222			15 15	40					
-	Orange to tan medium SAND, little Silt; We	et											
20-	Orange to tan mediur SAND, little Silt; We	et					10 15 14 15	50					
-	Orange to tan medium SAND, little Silt; We	et		•				62				•	
25-	Orange to tan medium SAND, little Silt; We	et											
	Continued N	елі гиде			•_,			<u> </u>					
P	Project: 05552Y		Roux.	ASSOC:	iates	j					Page	: 1 (of 2

roject:	AMTRAK - Sunnyside Yard HST Queens, New York		Log of Well N	lo.	MV	V-69D
(feet)	LITHOLOGIC DESCRIPTION	Litholo	gy Monitoring Well Construction	Sampler Blows	(ppm) PID	REMARKS
	Orange to tan fine to coarse SAND, some Silt; Wet			10	20	
-	Orange to tan fine to coarse SAND, some Silt; Wet					
- 30 —	Orange to tan fine to coarse SAND, some Silt, Wet			13		
-	Orange to tan fine to coarse SAND, some Silt; Wet			12 10 9)	
-	Orange to tan fine to coarse SAND, some Silt; Wet					
35		-1-1-1		4		Bottom of boring at 35 feet below land surface
-						
_						·
10-						
-						
-						
-						
5						
1						
-						
-						
50—						
-						
-						
	ject: 05552Y		Associates			Page 2 of 2

MW-70 PROJECT NO./NAME 05545Y04 / Amtrak	Not Measure	- 	Not Measured LOCATION		
5545Y04 / Amtrak					
			Sunnside Yard		
PPROVED BY	LOGGED BY				
I. Gregory	H. Gregory		Queens, New York		
PRILLING CONTRACTOR/D			GEOGRAPHIC AREA		
.and, Air & Water / La PRILL BIT DIAMETER/TYPE	BOREHOLE DIAM	FTFR	DRILLING EQUIPMENT/METHOD	SAMPLING METHOD	START-FINISH DATE
/	10-inches		Hollow Stem Auger /	Split-spoon	10/18/99-10/18/99
ASING MAT./DIA.	SCREEN:		Tionon otom Augus	ориг ороон	10/10/00 10/10/00
VC / 4-inch	TYPE Slotte	d MAT	PVC TOTAL LENGTH	DIA. 4-inch	SLOT SIZE 10-Slot
ELEVATION OF: G	ROUND SURFACE	TOP OF WEL	L CASING TOP & BOTTOM SCF	REEN GW SURFAC	
2.5' protective \	locking cap	`	1		Morie #1
epth, casing	locking cap	Graphic		Blow PID	
eet	\neg \lfloor	Log	Visual Description	Counts Values per 6" (ppm)	REMARKS
Cement		°.°.°.°.	rown fine to medium SAND, trace Silt,	рего (ррпп)	
Odinoni — 12.7	Grout		ravel and Ballast		
\mathbb{A}					
····	Bentonite				
	chips				
	(2.7)				
***	4 inch PVC		TO SAND THE SAND		
	riser		range/Tan fine SAND and SILT, trace ravel		
· E		First G	rey fine SAND and Clayey SILT, wet		
. **E			,		Water table at 3.5 feet
· :E	= .				More clay here at depth
		000000000000000000000000000000000000000			
- E	= ' .				
5					
_					
···					
: F					
[-					
···	=				
. =	4 inch 10 slot				
	PVC screen				
····	<u></u> '	[*************************************			
· ··E	= .	1			
	=				
					No Recovery-wood in spoon
	<u> </u>				
· E					
<u>o</u> . <u>_</u>	<u> </u>		rey medium to coarse SAND, trace one		
			ch Grey Silty Clay at 10 feet		
· -	=				
····					
	= .::				
i E					Organic odor
E	=				Caroon not annihominantly in
.	= :				Screen set predominantly in tight clayey silt- low yield
• • • • •	••••				- · · · · · · · · · · · · · · · · · · ·
* * * * * * * * * * * * * * * * * * *	૾૾૾ ૾૾૾૾૾ Sand				
* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *				
0000	0 0 0 0				

	NATION	NORTHING	ad	EASTING Not Measured			
PROJE	MW-71 CT NO./NAME	Not Measur	e <u>u</u>	LOCATION			
	Y09 / Amtrak			Sunnyside Yard			
APPRO	VED BY	LOGGED BY					
I. Gre	egory	R. Kovacs		Queens, NY			
	NG CONTRACTOR/DR		mer	GEOGRAPHIC AREA OU-3			
	BIT DIAMETER/TYPE	BOREHOLE DIAM	METER	DRILLING EQUIPMENT/METHOD	SAMPLING	METHOD	START-FINISH DATE
3.25 /	Auger	10-inches		6610-DT / HSA	Cuttings	-	4/9/04-4/9/04
CASING	MAT./DIA.	SCREEN:	_		_		
	4-inch	TYPE Slotte	TOP OF WEI	T. PVC TOTAL LENGTH 1 LL CASING TOP & BOTTOM SCI	10.0 DIA	A. 4-inch IW SURFACE	SLOT SIZE 20-Slot GRAVEL PACK
F)	HON OF: GF	ROUND SURFACE	TOP OF WEI	LE CASING TOP & BOTTOM SCI	KEEN G	W SURFACE	Morie #2
	Steel locking \	4" J-plug		•			INOTIC #L
epth,	protective casing		Graphic	Visual Description	Blow Counts	PID Values	REMARKS
eet	casing		Log	Visual Description	per 6"	(ppm)	NEWANKS
	Cement/			Brown to black Clay and Silt little medium		I F	lydrocarbon odor, free
	•••••	Schedule 40	' t	o fine Sand; Wet			roduct
_	- GROUND - :::	, ° ° ° °				4	
٧	WATER LEVEL .*.*.*						
	4/9/04						
	:::::					1	
	: : : :						
	* * * * *						
	:						
	:						
·	š; š, š, š						
		°.°.° Gravel Pack °.°.∘ #2 Morie Sa					
	°°°°°						
	:,::						

·		,					
	****					(
	\$.\$\$\$\$						
	,,*,						
	:,,,,	, , , , , , , , , , , , , , , , , , ,		Gray to brown fine to medium SAND, som	ie		lydrocarbon odor
	, , , ,	20 Slot Scre		Silt, trace Clay, trace coarse Sand, trace		NM	
	*****		+ '	Gravel; Wet			
	:::::		<u> </u>				
	°°°°°	_ `					
			<u> </u>				
	,,*,					T	

		,,,,					
	*****		- · · · - · ·				
	::::		F				
	.,,,,	∃∵∴ ∵					
	*;***	≓ ೆ					
	*;**						
	,,*,		F				
	****		Ļ [−] ¬			1	
	:,,,,,	- \`.\`.					
	,,,,,		. 				
	*; *. ::		[<u> </u>				
		·	<u> </u>				
	*****		F — []				
	0.00		1:		r l		
0	, , , , ,	4" threaded					_

age DESIGN	1 of 1 NATION	NORTHING	LL OO	NSTRUCTION LOG			
	MW-72	Not Measure	d	Not Measured			
	CT NO./NAME S Y09 / Amtrak			LOCATION Sunnyside Yard			
	VED BY	LOGGED BY					
l. Gre	egory	R. Kovacs		Queens, NY			
	NG CONTRACTOR/DRII Air Water Environ		er	GEOGRAPHIC AREA OU-3			
ORILL E	BIT DIAMETER/TYPE	BOREHOLE DIAME	TER	DRILLING EQUIPMENT/METHOD	SAMPLING N	METHOD	START-FINISH DATE
3.25 /	Auger MAT./DIA.	10-inches SCREEN:		6610-DT / HSA	Cuttings		4/12/04-4/12/04
PVC /	4-inch	TYPE Slotted	i MA	TOTAL LENGTH	10.0 DIA	. 4-inch	SLOT SIZE 20-Slot
LEVAT		OUND SURFACE		TOP & BOTTOM SC		W SURFACE	
F) 6"	Steel locking \	4" J-plug		/			Morie #2
epth,	protective casing		Graphic	Visual Description	Blow Counts	PID Values	REMARKS
eet	Gasing		Log		per 6"	(ppm)	
	Cement	Bentonite chips		Black to gray medium to fine SAND, some coarse Sand, some Silt; Moist to wet	9		strong hydrocarbon odor,
		o o o		coarse dand, some ont, Wost to wet		[s	taining, and free product
1		Schedule 40					
1		ို°ို°ို့ Riser					
	, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,					
			[-]				
·	GROUND		$\begin{bmatrix} - \end{bmatrix}$				
٧	WATER LEVEL	, , , , , , , , , , , , , , , , , , ,	[-]				
			$\lfloor - \rfloor$				
3		,,,,,					
	,,,,	``, ', ', ', ', ', ', ', ', ', ', ', ', ',					
	*****	, , , , , , , , , , , , , , , , , , ,					
}	°, °, °, °, °, °, °, °, °, °, °, °, °, °						
		ໍ.ໍ.ໍ. Gravel Pack ຸ້.ໍ.ໍ #2 Mone Sand					
5	,,,,,	0000		Districts dealed because to seem and discovery	<u> </u>		
	••••			Black to dark brown to gray medium to fin- SAND, some Silt; Wet			trong hydrocarbon odor and taining
	*****		-				-
	•••••	ີ່ ຳໍາໍ່ ວິດ Slot Screen					
		2000000000	-				
7							
	,,,,,						
3	, , , ,						
	, , , , , , , , , , , , , , , , , , ,		-				
.	, °, °, °, °, °, °, °, °, °, °, °, °, °,						
9			- -				
^		, , , , , , , , , , , , , , , , , , ,					
0_	,,,,,	• • • • • • • • • • • • • • • • • • •		Black to gray medium to fine SAND, some	.		trong hydrocarbon odor and
	* * * * * * * * * * * * * * * * * * * *		[-]	Silt; Wet		NM s	taining
	* * * * * * * * * * * * * * * * * * * *						
1	, , , ,	4" threaded					
		сар					
2							
			-				
3						11	

ESIGNATION MW-73	NORTHING Not Measure	ed	EASTING Not Measured		
ROJECT NO./NAME			LOCATION		
5545Y09 / Amtrak			Sunnyside Yard		
PPROVED BY	LOGGED BY				
. Gregory	R. Kovacs		Queens, NY		
RILLING CONTRACTOR/DF	ILLER		GEOGRAPHIC AREA		
and Air Water Enviro	nmental / J. Paln	ner	OU-3		
RILL BIT DIAMETER/TYPE	BOREHOLE DIAM	ETER	DRILLING EQUIPMENT/METHOD	SAMPLING METHOD	START-FINISH DATE
.25 / Auger	10-inches		6610-DT / HSA	Cuttings	4/8/04-4/8/04
ASING MAT./DIA.	SCREEN:				
VC / 4-inch	TYPE Slotte	d MA	T. PVC TOTAL LENGTH 9		SLOT SIZE 20-Slot
	ROUND SURFACE	TOP OF WE	LL CASING TOP & BOTTOM SCR	REEN GW SURFACE	
5)			I		Morie #2
6" Steel locking \	4" J-plug				
pth protective casing		Graphic	Visual Description	Blow PID Counts Values	REMARKS
eet Casing		Log	Visual Description	per 6" (ppm)	KEWAKKO
Cement		11111	Brown to black medium to fine SAND,		
Cellient	Cement		some Silt, some Ballast; Moist	NM	
	 Bentonite 			1	
૾ૢ૾૾ૺ૾ૢ૾૾૾૾ૢ૽૽	chips	HHH			
• • • • • •	Schedule 40	1444			
	°,°,°, Riser	MA			
, , , ,		MM			
:•:.•:	∃ ં	KHHH			
· · · · · · =	⇒		Dark brown to black SILT little medium to	— G _F	lydrocarbon odor and free
_ *.*.*	∃		fine Sand; Moist to wet		roduct
···					
GROUND ****** WATER LEVEL	•••••				
4/8/04	_ ;				
*, *, *, *, *, *, *, *, *, *, *, *, *, *		F1			
		- <u>-</u>			
	_: ::::				
****	= `.`				
, ° , ° , °	7	<u> </u>		NM	
::	≓	<u> </u>			
,,*,*					
	∄ંંં .				
···					

****		<u></u>			
* * * * * *					
* * * * * * *			_		
	ີ່∘ຸ້∙ໍ• − Gravel Pack ສຸ່າ * • • • #2 Morie San		Dark brown to black medium to coarse		lydrocarbon odor and
:			SAND, some fine Sand, some Silt; Wet	NM s	taining
,,,,,	-				
,,*,*	20 Slot Scree	<u>_</u>			
		" [_]			
••••	****	-			
:		[-]			
• • • •					
	_	_			
		-			
• • • • • • • • • • • • • • • • • • • •		1 [-1			
*****	=::::	1 - 1			
:					
• • • • • •		[-]			
	,				
	*******	-			
,,,,,,,	_ ,				
::::: 					
		1			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
*****	_ ,,	[_1]			
,,,,,		1			
* * * * * *	∃ ૅઃ•ૅઃ•••••••••••••••••••••••••••••••••				
,°,°,°		[]			
<u> </u>		1 + +			

°°,°°,				1 - 1	
*, *, *,	4" threaded				
	***** 4" threaded				

nch		er TER MAT TOP OF WEI Graphic Log	Not Measured LOCATION Sunnyside Yard Queens, NY GEOGRAPHIC AREA OU-3 DRILLING EQUIPMENT/METHOD 6610-DT / HSA T. PVC TOTAL LENGTH 9. LL CASING TOP & BOTTOM SCRE / Visual Description Dark brown to black coarse to fine SAND, some Silt; Moist to wet	Blow PID Counts Values per 6" (ppm)	START-FINISH DATE 4/9/04-4/9/04 SLOT SIZE 20-Slot E GRAVEL PACK Morie #2 REMARKS Hydrocarbon odor
D BY DIAN CONTRACTOR/DRILL Water Environr DIAMETER/TYPE ger At./DIA. nch N OF: GRO Bel locking protective casing	R. Kovacs LER Mental / J. Palm BOREHOLE DIAME 10-inches SCREEN: TYPE Slotted UND SURFACE 4" J-plug Cement Bentonite chips Schedule 40	MAT TOP OF WEI Graphic Log	Queens, NY GEOGRAPHIC AREA OU-3 DRILLING EQUIPMENT/METHOD 6610-DT / HSA T. PVC TOTAL LENGTH 9. LL CASING TOP & BOTTOM SCRE / Visual Description Dark brown to black coarse to fine SAND,	O DIA 4-inch EEN GW SURFAC Blow PID Counts Values per 6" (ppm)	SLOT SIZE 20-Slot E GRAVEL PACK Morie #2 REMARKS
CONTRACTOR/DRILL Water Environr DIAMETER/TYPE ger AT./DIA. nch N OF: GRO Bel locking protective casing	R. Kovacs LER Mental / J. Palm BOREHOLE DIAME 10-inches SCREEN: TYPE Slotted UND SURFACE 4" J-plug Cement Bentonite chips Schedule 40	MAT TOP OF WEI Graphic Log	GEOGRAPHIC AREA OU-3 DRILLING EQUIPMENT/METHOD 6610-DT / HSA T. PVC TOTAL LENGTH 9. LL CASING TOP & BOTTOM SCRE / Visual Description Dark brown to black coarse to fine SAND,	O DIA 4-inch EEN GW SURFAC Blow PID Counts Values per 6" (ppm)	SLOT SIZE 20-Slot E GRAVEL PACK Morie #2 REMARKS
Water Environr DIAMETER/TYPE ger AT./DIA. nch N OF: GRO Bel locking protective casing	LER nental / J. Palm BOREHOLE DIAME 10-inches SCREEN: TYPE Slotted UND SURFACE 4" J-plug Cement Bentonite chips Schedule 40	MAT TOP OF WEI Graphic Log	GEOGRAPHIC AREA OU-3 DRILLING EQUIPMENT/METHOD 6610-DT / HSA T. PVC TOTAL LENGTH 9. LL CASING TOP & BOTTOM SCRE / Visual Description Dark brown to black coarse to fine SAND,	O DIA 4-inch EEN GW SURFAC Blow PID Counts Values per 6" (ppm)	SLOT SIZE 20-Slot E GRAVEL PACK Morie #2 REMARKS
Water Environr DIAMETER/TYPE ger AT./DIA. nch N OF: GRO Bel locking protective casing	nental / J. Palm BOREHOLE DIAME 10-inches SCREEN: TYPE Slotted UND SURFACE 4" J-plug Cement Bentonite chips Schedule 40	MAT TOP OF WEI Graphic Log	OU-3 DRILLING EQUIPMENT/METHOD 6610-DT / HSA T. PVC TOTAL LENGTH 9. LL CASING TOP & BOTTOM SCRE / Visual Description Dark brown to black coarse to fine SAND,	O DIA 4-inch EEN GW SURFAC Blow PID Counts Values per 6" (ppm)	SLOT SIZE 20-Slot E GRAVEL PACK Morie #2 REMARKS
DIAMETER/TYPE ger AT./DIA. nch N OF: GRO el locking orotective casing	BOREHOLE DIAME 10-inches SCREEN: TYPE Slotted UND SURFACE 4" J-plug Cement Bentonite chips Schedule 40	MAT TOP OF WEI Graphic Log	TOTAL LENGTH 9. TOTAL LENGTH 9. TOP & BOTTOM SCRE / Visual Description Dark brown to black coarse to fine SAND,	O DIA 4-inch EEN GW SURFAC Blow PID Counts Values per 6" (ppm)	SLOT SIZE 20-Slot E GRAVEL PACK Morie #2 REMARKS
ger AT./DIA. nch N OF: GRO al locking protective casing	10-inches SCREEN: TYPE Slotted UND SURFACE 4" J-plug Cement Bentonite chips Schedule 40	MATOP OF WEI	T. PVC TOTAL LENGTH 9. LL CASING TOP & BOTTOM SCRE / Visual Description Dark brown to black coarse to fine SAND,	O DIA 4-inch EEN GW SURFAC Blow PID Counts Values per 6" (ppm)	SLOT SIZE 20-Slot E GRAVEL PACK Morie #2 REMARKS
AT./DIA. nch N OF: GRO el locking protective casing	SCREEN: TYPE Slotted UND SURFACE 4" J-plug Cement Bentonite chips Schedule 40	Graphic Log	T. PVC TOTAL LENGTH 9. TOP & BOTTOM SCRE / Visual Description Dark brown to black coarse to fine SAND,	O DIA. 4-inch EEN GW SURFAC Blow PID Counts Values per 6" (ppm)	SLOT SIZE 20-Slot E GRAVEL PACK Morie #2 REMARKS
nch NOF: GRO all locking protective casing	TYPE Slotted UND SURFACE 4" J-plug Cement Bentonite chips Schedule 40	Graphic Log	TOP & BOTTOM SCRE / Visual Description Dark brown to black coarse to fine SAND,	Blow PID Counts Values per 6" (ppm)	E GRAVEL PACK Morie #2 REMARKS
N OF: GRO el locking protective casing	4" J-plug Cement Bentonite chips Schedule 40	Graphic Log	TOP & BOTTOM SCRE / Visual Description Dark brown to black coarse to fine SAND,	Blow PID Counts Values per 6" (ppm)	E GRAVEL PACK Morie #2 REMARKS
el locking protective casing	4" J-plug Cement Bentonite chips Schedule 40	Graphic Log	/ Visual Description Dark brown to black coarse to fine SAND,	Blow PID Counts Values per 6" (ppm)	Morie #2
protective casing	Cement Bentonite chips Schedule 40	Log	Visual Description Dark brown to black coarse to fine SAND,	Counts Values per 6" (ppm)	REMARKS
protective casing	Cement Bentonite chips Schedule 40	Log	Dark brown to black coarse to fine SAND,	Counts Values per 6" (ppm)	
	Bentonite chips Schedule 40	Log	Dark brown to black coarse to fine SAND,	per 6" (ppm)	
ent	Bentonite chips Schedule 40				Hydrocarbon odor
	Bentonite chips Schedule 40				riyurocarbon odor
	chips Schedule 40				i.
	ີ່ ເວົ້າ Schedule 40				
		[-]			
	Riser				
		1 1 -1			
		- []			
				G	
		[F_]			
	, , , , ,				
• • • • • •	, , , , , , , , , , , , , , , , , , ,				
****	, , , ,				
* * * * * * * * * * * * * * * * * * * *					
	, , , , ,				
₹ŎŪND - :::::		= -	Dark brown to black coarse to fine SAND		Hydrocarbon odor, free
ER LEVEL	, , , ,				product
1/9/04	`	-			·
:,:::		-			l
2,000	, *				
		<u> </u>			

,°,°,°,					
		[_]		 	Į
`					I
• • • • • • • • • • • • • • • • • • • •	Gravel Pack	_	Dark brown to black coarse to fine SAND.		Strong hydrocarbon odor
• • • • • • • • • • • • • • • • • • • •	, , , #2 Morte Sand	L		NM	
****	20 Slot Screen	. ⊢ . ⊢			
,,,,,,					
	, , , ,				
,,*	, , , , , , , , , , , , , , , , , , ,				
****		-			
,,,,,	, , , ,	<u> </u> [=]			
*.\.\.	· · · · · · · · · · · · · · · · · · ·				
:::::		-			
	, , , , , , , , , , , , , , , , , , ,				
::::		· · · ·			
:::::	, , , , , , , , , , , , , , , , , , ,				
		-		[¶]	
****	, , , ,				
	, , , , ,				}
		-			
:*::		- - - - - - - -			
	,				
*: *: *	, , , , , , , , , , , , , , , , , , ,	1 1 1			
	, , , , ,				
		l LTJ		 	
* * * * * * * * * * * * * * * * * * * *	4" threaded				Auger refusal at 10 ft bgs
۰٬۰٬۰	<u> </u>	<u> </u>			
Ε	OUND R LEVEL 99/04	R LEVEL 19/04	Gravel Pack #2 Morie Sand 20 Slot Screen 4" threaded	### Ittle Silt; Wet Gravel Pack	ittle Sit; Wet - Gravel Pack #2 Morie Sand 20 Slot Screen A" threaded

DESIGN	NATION MVV-75	NORTHING Not Measure		EASTING Not Measu	ured				
PROJE	CT NO./NAME	, ,	-	LOCATION					
05545	Y09 / Amtrak			Sunnyside	Yard				
	OVED BY	LOGGED BY							
H. Gre	egory NG CONTRACTOR/DR	R. Kovacs		Queens, N GEOGRAPHI	CAREA				
	Air Water Enviro		or	OU-3	CAREA				
DRILL B	BIT DIAMETER/TYPE	BOREHOLE DIAME	ETER		UIPMENT/METHOD	SAMPLING	METHOD	START-FINISH DATE	
	Auger	10-inches		6610-DT /		Cuttings		4/8/04-4/8/04	
CASING	G MAT./DIA.	SCREEN:							
	4-inch	TYPE Slotte	d MA	T. PVC	TOTAL LENGTH 1	1 0.0 DI.	A. 4-inch	SLOT SIZE 20-Slot	t
	TION OF: GR	OUND SURFACE	TOP OF WE	LL CASING	TOP & BOTTOM SCF	REEN C	SW SURFACE		
(F)	Ot-all-alden	4" 1			1			Morie #2	
	Steel locking protective	4" J-plug	Obi-			Blow	PID		
Depth, feet	casing	7	Graphic Log	Visual	Description	Counts	Values	REMARKS	
				DI1	Sine CAND to the Oill	per 6"	(ppm)		
(Cement	Q.e. Cement			fine SAND, some Silt, ace Cobbles; Moist to we	et	15.1		
	⁴ Q.6		DDD .		and despite, moist to me				
		 Bentonite 	444						
1	• • •	chips							
	, , , ,		14444						
	, , , , , , , , , , , , , , , , , , ,	Schedule 40					1		
2	*. * * * * * * * * * * * * * * * * * *	ໍ.ໍ.ໍ. ເຄືອນ	HHH						
.2			H++++						•
	*,**,*		DDD -						
		: ::::	1						
3	; * ; * ; *								
.7	,,,,,		177771						
	*, *, *,		1444 1						
	:::::		mm				1		
4			H+++						
	GROUND	=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							
V	4/8/04	∄૾૾૾ ૾૽૾	HH				4 1		
	•••••								
5	****	Gravel Pack					<u>.</u>		-
	, , , , ,	#2 Morie Sand			edium to fine SAND, d, some Silt; Wet		59		
	••••			some coarse can	a, como one, troc				
	* * * * * =	* ****					•		
6	• • • • •								
	::::		1 1						
	::::	≓ ;;;;							
7	****	₹					1		
7		20 Slot Screen	Ŋ [<u>—</u>]						
	:::::								
	.,,,,								
8	• • • • • •								
×	****	≓°°°°°					s	trong hydrocarbon odor	
		∄ઃ, ೆ:•							
	*****	* .*.*.*							
9									
			-						
	0,000	****	[]						
	****		-						
10_	,,,,,	-,°,°,°,°		Di1-4-1	- di to 0.415				-
	*, *, *, *,			Black to brown me some Silt; Wet	edium to coarse SAND,		NM		
		*	[-]	Some Out, Wet					
	, , , , ,		· *]						
11									
	*: * * * *								
	*****		-						
							T		
12	<u></u>	4" threaded	[[=1						
		cap	<u> </u>						
13									

Page 1 DESIGNATION	of 1	NORTHING	LL OO	NSTRUCTION LOG	-			
MW-		Not Measure	d	Not Measured				
PROJECT NO./				LOCATION Sunnyside Yard				
05545Y09 / / APPROVED BY		LOGGED BY		Suffriyside raid				
H. Gregory		R. Kovacs		Queens, NY				
DRILLING CON	TRACTOR/DRIL	LER		GEOGRAPHIC AREA				
		mental / J. Palm	ner	OU-3				
DRILL BIT DIAN	(ETER/TYPE	BOREHOLE DIAME		DRILLING EQUIPMENT/METHOD	SAMPLING	METHOD	START-FINISH DATE	
6.25 / Auger	•	10-inches		6610-DT / HSA	Cuttings	:	4/8/04-4/8/04	
CASING MAT./E		SCREEN:						
PVC / 4-inch		TYPE Slotte	d MA	T. PVC TOTAL LENGTH	10.0 D	IA. 4-inch	SLOT SIZE 20-Slot	t
ELEVATION OF (F)	: GRC	OUND SURFACE	TOP OF WE	LL CASING TOP & BOTTOM SC	REEN (GW SURFAC		
6" Steel loc	-kina ·	4" J-plug		/			Morie #2	
protec	ctive \	T o plug	Graphic		Blow	PID		
epth, ca	ising \	Ī	Log	Visual Description	Counts	Values	REMARKS	
			K 1 7 1 7 1	Dorle borne de bassina as adicione de conse	per 6"	(ppm)		
Cement		O Cement		Dark brown to brown medium to coarse SAND, some Ballast, some Silt; Dry		0.4		
	.0.0	.0 - Cement	DDD	State, some suited, come on, sty				
		- Bentonite	1					
.1	• • • •	chips	DICT			G		
	, ° ° ° ° °	0000	HIII					
	· · · · · · · · · · · · · · · · · · ·	Schedule 40	1444					
	, , , ,	Riser	FEFF					
2	, , , ,	0.000	THE PARTY					
	••••	,,,,		Dark brown to black medium to coarse SAND, some Ballast, some Gravel; Moist		4.9	Slight hydrocarbon odor	
	****			SAND, some ballast, some Graver, Moist to wet	·			
	:] · · · · · · · · · · · · · · · · · · ·	HHH	·- ·				
3		,,,,,,	1444					
	••••							
	****	6,000				G		
	* * * * * * * * * * * * * * * * * * * *		HHH			M		
4 ▽	*****		4444					
GROUN				Gray medium to coarse SAND, some fine	;	NM	Strong hydrocarbon odor	
WATER LE 4/8/04	EVEL :			Sand; wet		NIM		
	` ;;;;							
5	*: *: *:					i I		
<u> </u>	::::	•ໍ•ໍ•ໍຸ Gravel Pack •ຸໍ•ໍ•ໍຸ #2 Morie Sand	,r-r=t	Gray to black medium to coarse SAND,		T	Strong hydrocarbon odor	_
	****		1	some Silt; wet	İ	NM		
	*: *: *: 							
6	••••							
٩	****							

	:	000	- T					
7	****	0000	[]					
7	*::::	20 Slot Screet	n					
	****	,,,,,,						
		000	1: F-71					
D	****	0000						
3	****							
	..	0000	1 [27]					
	****	* * * * *						
9	*; *; *, *,	* ,	[<u>[</u> _1			7		
	\$.,,		1 1 1 1 1 1 1 1					
	****	000	-			1		
0	****	, , , , , , , , , , , , , , , , , , ,	H-L-L-L			H		-
	****			Gray to black medium to coarse SAND, trace fine Sand; wet		NM		
	: : : : :	0000		trace line dand, wet				
1	`	, , , , , , , , , , , , , , , , , , ,						
	****	0,000	1: 1					
		000						
	* * * * * •	0000	T 11-1					
12	• • • • • •	,,,,						
	<u> </u>	4" threaded cap				 		
		h						
						1		
			, ,		1	111		
13								

DESIGNATION MV	N 1-77	NORTHII	NG easured		EASTING Not Meas	ured				
PROJECT NO		TAOL ME	Jasui <u>eu</u>		LOCATION					
05545Y09	Amtrak				Sunnysid	e Yard				
APPROVED B	iΥ	LOGGED								
H. Gregory	<u> </u>	R. Kov	acs		Queens, I	NY				
	NTRACTOR/DR		Dal	_	GEOGRAPH	IC AREA				
	/ater Enviror	BOREHOLE			OU-3	QUIPMENT/METHOD	SAMPLING	METHOD	START-FINISH DATE	
6.25 / Auge		10-inche			6610-DT /		2" Macro		4/8/04-4/8/04	
CASING MAT	/DIA.	SCREEN:			10010 017					
PVC / 4-ind		TYPE \$	Slotted		AT. PVC	TOTAL LENGTH 1		A. <u>4-inch</u>	SLOT SIZE 20-Slo	t
ELEVATION C	OF: GR	OUND SURFA	ACE	TOP OF W	ELL CASING	TOP & BOTTOM SCR	REEN (SW SURFAC		
(F)		411				1			Morie #2	
6" Steel I	ocking tective	4",	J-plug	.			Blow	PID		
	casing	f		Graphic Log	Visual	Description	Counts	Values	REMARKS	
				3			per 6"	(ppm)		
Cement		0 0 - Cem	k	444		rown medium to coarse e Sand, some Ballast, little		0.0		
	00		1	加加	Silt; Dry	o cana, come ballaci, little		G		
		- Bent	onite)	444	-					
	<u>.</u>	· · · · ·	· K	444		rown medium to coarse		0.2		
			edule 40	加加	SAND, some fine moist	e Sand, some Ballast;				
	, , , , ,	Riser	г [HH						
	****		J.	大 大人				4		
		* *****	Į.	HH						
	`````		F	444						
	:::::	<b>≓ઃ</b> ःः	<u> </u>	200	Dark brown to bl	ack medium to coarse	-	H	Strong hydrocarbon odor	
		.,,,,	Į.		SAND, some fine	e Sand, some Gravel,		20.4		
	_ ****	<b>⊒∷</b> ೆ:	Į.	· () ° [	trace Cobble; Mo	pist to wet				
····	7	<b>∄</b> ઃ∴	P	00				lGl		
GRO: WATER	LEVEL		ŀ	0 0				[ ]		
4/8		<b>≓</b> ઃ∴ः	C					[ ]		
5		Service Grave	rel Pack	<u>. 0 °                                   </u>						
	****		fone Sand			ack medium to coarse		71.2	Strong hydrocarbon odor	
			].		SAND, some fin	e Sand, trace Gravel; Wet				
		<b>≓</b> ં∴ે∴								
	\$ \$ \$ \$ \$	<b>*</b> ;;;;	1							
	::::									
	::::							1		
		20 S	lot Screen		Gray to dark bro	wn medium to coarse			Strong hydrocarbon odor	
	*,*,*,					e Sand, trace Gravel; Wet		94.3		
	:	<b>::::</b> ::	-							
	****									
	****	<b></b>	-							
	, , , , ,	• • • • • •								
			-			· OAND · ·				
		<b>∃</b>	·.		Gray coarse to fi Silt: Wet	ine SAND, trace Gravel,		128	Strong hydrocarbon odor	
	****	<b>:::::</b>			J.1., *****					
10_	* * * * * *		.							
	:::::	<b></b>								
	• • • • • •	<b></b>								
			-							
	****	<b>***</b> **	].		Gray coarse to f	ine SAND, trace Gravel,		AA E	Strong hydrocarbon odor	
	*****				Silt; Wet			44.5		
	::::	::::::	].							
			readed :	· ·.				[		
		cap		.				[ ]		
			ļ.							
						in- CAND			Hudroophan adaa	
			c	, ~ ~	Gray coarse to f Silt; Wet	ine SAND, some Gravel,		44.5	Hydrocarbon odor	
			į.	o () o	Ont, FVCt					
			Ď							
				0 0						
			c	$^{\circ}$						
				· \ o						
15			ľ							



ROUX ASSOCIATES, INC. Environmental Consulting & Management

209 Shafter Street Islandia, New York 11749 Telephone: (631) 232-2600 Fax: (631) 232-9898

WELL NO.	NORTHING		EASTING	CTION LOG			
MW-78 PROJECT NO./NAME	Not Meas	ured	Not Meas LOCATION	ured			
05571Y05 / Amtra	k		Sunnysid	e Yard			
APPROVED BY	LOGGED BY		_				
H. Gregory	R. Kovac	s/M. Kroll	Sunnysid	e, Queens, New York	Κ		
DRILLING CONTRACTO			GEOGRAPH	IC AREA			
<b>ROUX ASSOCIATES</b> DRILL BIT DIAMETER/I	J. Veiss/J. Sakell		DRILLING FO	QUIPMENT/METHOD	SAMPLING N	METHOD	START-FINISH DATE
4.25 ID / Auger	8-inches			6420DT / Geoprobe			6/20/05-6/20/05
CASING MAT./DIA.	SCREEN:						40.00
PVC / 2-inch ELEVATION OF:	TYPE <b>Sig</b> GROUND SURFACE	tted MA	AT. <b>PVC</b> ELL CASING	TOTAL LENGTH 10 TOP & BOTTOM SCRE	.Oft DIA	. 2-inch	SLOT SIZE 10-Slot PACK SIZES
(Feet)	GROOME COR ACE	101 01 111	LLL GAOING	I		Morie #	
Flush Mount \	Lockin	g "J"			DI	DID	
epth, Road Box \ feet _	Plug	Graphic	Visual	Description	Blow Counts	PID Values	REMARKS
reet		Log			per 6"	(ppm)	
<u> </u>				to medium SAND, some			
	$\bowtie$	mm	Gravel, little Silt;	uiy		1.2	
	// <i>\\</i> ///.	HHH	Dark brown to be	own fine to medium		'.*	
	$\otimes$		SAND, trace Gra	avel, trace coarse Sand;			
Ž	//) ¥///.	HHH	dry			1.8	
				own fine to medium			
			SAND, some ligit Gravel: dry	nt brown Sand, trace		li <u> </u>	
		mm	Giavei, uly			0	
		HHH					
		mm			1		
· · · · · · · · · · · · · · · · · · ·		HHH					
		mm					
5		HHH					
<del>-</del>				shed stone, little fine to			
		HHH	coarse Sand, litt	e Gravel; dry			
<u>.</u>		mm					
<u></u>		HHH				0.5	
		mm					
···		MAH					
		THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE PARTY IN THE P					
				to coarse SAND, some little Gravel; wet at 9' bls			
···		THE PARTY	J. 25,156 510/16,	oraro, wordt o bid		0.6	
•		FFFF					
···		HHH					
		ppp					
10		HHH					
10		him	Dark brown to br	own fine to coarse SAND,		ll l	
			little Gravel, trac				
· ·							
:: ::						0.7	
···							
_							
<u>5</u>	<u>∴.⊢</u>		Brown to occasion	-brown medium to coarse			
			SAND; wet	-DIOWITHIGUIUHT (U COZISE			
			•				
•••						0.7	
						"."	
•		The Association of the			1 14	II R	otton of boring at 17.5 feet.



WELL NO. <b>MW-79</b>	NORTHING Not Meas	ıred	EASTING Not Measured			
PROJECT NO./NAME	110t moust		LOCATION			
05571Y05 / Amtrak			Sunnyside Yard			
APPROVED BY	LOGGED BY					
H. Gregory	R. Kovacs	/M. Kroll	Sunnyside, Queens, New York			
DRILLING CONTRACTOR			GEOGRAPHIC AREA			
Roux Associates /	J. Veiss/J. Sakelli	<u> </u>				OTART CHUCK DATE
ORILL BIT DIAMETER/TY		AVIE I EK		SAMPLING M		START-FINISH DATE
4.25 ID / Auger	8-inches SCREEN:	-	Geoprobe 6420DT / Geoprobe	2" Macro-	Core	6/20/05-6/21/05
CASING MAT./DIA.	TYPE SIO	Mad 50	AT. PVC TOTAL LENGTH 10.	0= 514	2 inch	CLOT CIZE 40 Clot
PVC / 2-inch ELEVATION OF:	GROUND SURFACE		ELL CASING TOP & BOTTOM SCREI		2-inch	SLOT SIZE 10-Slot PACK SIZES
(Feet)	CHOOND CON ACE	101 01 11	I STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA		Morie #	
Flush Mount	/ Locking				WOITE W	<u>-</u>
epth, Road Box	Plug	Graphic		Blow	PID	
feet		Log	Visual Description	Counts	Values	REMARKS
		_	A OPILIAL T	per 6"	(ppm)	
و با			ASPHALT			
.\\	$\mathbb{M} = \mathbb{M}$		Dark brown fine to medium SAND and		[	
··· <b>·</b>		83333	SILT; dry		0.1	
<u> </u>	<b>2 X</b>	mm	Brwon fine to medium SAND, little Silt; dry		[[	
		HHH			]	
• • • •		HHH			0.3	
		ann	Gray BALLAST			
		airi	•			
		1444	Brown to light brown fine to medium SAND, little Gravel; dry			
		TTT	inue Gravel, dry			
···						
		HHH			0.4	
5 (4)		KHHH				
<del>-</del> (4)		+++++	Brown fine to coarse SAND, some light			
\$1.50 \$1.50			brown Sand, trace Silt; wet at 10' bls			
(4.5) 						
- 44					0.4	
<b>1</b>						
···						
TT (5)						
<u>io</u>			Design for to answer OAND to the			
			Brown fine to coarse SAND, trace dark brown Sand; wet			
			oromi odiu, wet			
···						
					0.8	
<u> </u>						
N						
					H	
<u>~,","</u>					W	
5_					1	
<del></del>			Brown fine to coarse SAND, trace brown			
			Sand; wet			
				12		
					0.2	
					<u> </u>	
•••						
••••					<u>'</u>	
				i la	ll l.	ottom of boring at 20 feet.



WELL N	NO. <b>MW-80</b>	NORTHING Not Measure	.d	EASTING Not Meas	surad			
	CT NO./NAME		·u	LOCATION				
	0065Y003 / Amtra	LOGGED BY		Sunnysid	e Yard			
4PPRO	VED BY	H. Gregory		Queens.	New York			
	NG CONTRACTOR/DR	ILLER		GEOGRAPH	IIC AREA			
Land,	Air, Water / E. Sa BIT DIAMETER/TYPE	antiago   Borehole Diame	TER	DRILLING E	QUIPMENT/METHOD	SAMPLING M	ETHOD	START-FINISH DATE
3-in. /	Drive Sampler	3-inches	.,		Geoprobe	G um Enton	iziriob	4/22/08-4/28/08
CASING	MAT./DIA.	SCREEN:	J	- DV	TOTAL LENGTH	40.00 514	O imak	01 OT 017F 20 Clot
	<b>2-inch</b> TION OF: GR	TYPE Slotte	TOP OF WE	T. <b>PVC</b> ELL CASING	TOTAL LENGTH ' TOP & BOTTOM SC	<u>10.01t</u> DIA. REEN	2-inch GRAVEL F	SLOT SIZE <b>20-Slot</b> PACK SIZES
(Feet)							Morie #	
	Steel locking protective	2" J-plug	0 11			Blow	PID	
epth, feet	casing	ŦĹ	Graphic Log	Visual	Description	Counts per 6"	Values (ppm)	REMARKS
	Cement/		\( \lambda \cdot \lambda \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot	Dark brown, fine	to coarse SAND and	per 0	(ppm)	
	•••••	2" Sch-40 PV	1 A. A. A.	oallast (fili)				
	****	ຳຳຳ Riser	000					
			000					
			1	Orange brown	ine to coarse SAND			
		- Bentonite sea		J. L. 190 DIOIIII, 1	10 000100 01110			
		201 ROTING GOOD						
	• • • •	• • • •						
	*****	•						
5	• • • •							
<del>-</del>	**** ****		F				1	
	**** ****							
	****	<b>-</b>						
	****							
		<b>∄∷</b> ∷						
	•••••	<b>-</b>						
		<b></b>						
		<b>#</b>						
10								
	•••••							
		<b></b>						
	• • • • • • • • • • • • • • • • • • • •	2" Sch-40 0.20						
		Screen						
	••••	ਹੈ:਼ੇ:਼ੇ- Morie #2 Sand						
	••••							
	****							
	•••••							
	****							
	::::	<b></b>						
	*,*,*	<b></b>						
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •						
15_								
		<b>₹</b> ::::						
	:::: <del></del> ⊨	<b>ા</b> ઃઃઃ						



WELL NO	). MW-82	NORTHING Not Measured	I	EASTING Not Measured			
PROJECT	T NO./NAME	1100111100000100		LOCATION			
0055.00	065Y003 / Amtra	ık		Sunnyside Yard			
APPROVI	ED BY	LOGGED BY					
		H. Gregory		Queens, New York GEOGRAPHIC AREA	_		
	CONTRACTOR/DR			GEOGRAPHIC AREA			<u> </u>
Land, A	<b>\ir, Water / K. M</b> I DIAMETER/TYPE	cGourty					T
			ER	DRILLING EQUIPMENT/M		G METHOD	START-FINISH DATE
3-In. / L	Drive Sampler MAT./DIA.	3-inches SCREEN:		7720DT / Geoprobe			4/22/08-4/30/08
PVC / 2		TYPE Slotted	MA	T. <b>PVC</b> TOTAL	LENGTH 10.0ft	DIA. <b>2-inch</b>	SLOT SIZE 20-Slot
ELEVATION		ROUND SURFACE	TOP OF WE	LL CASING TOP & BO	OTTOM SCREEN		PACK SIZES
(Feet)			,	1		Morie #	
6" S	teel locking \	2" J-plug				•	<u> </u>
epth,	protective casing		Graphic	Viewal Basasi	Blow	PID	2511210
feet	Casing	T L	Log	Visual Descri	ption Counts per6"	Values (ppm)	REMARKS
Ce	ement/					(6611)	
06	**************************************		Į				
	****						
	:•:•:•	····					
<b>.</b> .	•••••						
	••••						
	****						
	*****	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$					
	*.*.*	2" Sch-40 PVC					
5	*****						
<u>-</u>	****						
	****				ľ		
		D					
		<ul> <li>Bentonite seal</li> </ul>					
• • • •							
10							
<u></u>	••••	••••					
		****					
	•••••						
	••••						
	••••						
	• • • • • •						
	∷∷⊨	<b>∄∷</b> ∷					
	::::=						
5	::::=						
_		Morie #2 Sand				11	
	::::=	<b></b>					
• • • •	::::=					11 1	
	:::::	<b>∄∷∷</b>				11	
	::::=						
	::::=	2" Sch-40 0.20					
		Skot PVC					
	:::::=	J Sureen					
0_	****	<b>∃</b>					
_	****						
	·••••						
• • • •							
• • • •	:::::						
	***						
	····	<b>⊒.•.••</b>	1				
	• • •				Į.	1 1	



ROUX ASSOCIATES, INC.

Environmental Consulting

& Management

209 Shafter Street Islandia, New York 11749 Telephone: (631) 232-2600 Fax: (631) 232-9898

WELL CONSTRUCTION LOG Page 1 of 1 WELL NO. NORTHING EASTING Not Measured MW-83 **Not Measured** PROJECT NO./NAME LOCATION 0055.0065Y003 / Amtrak **Sunnyside Yard** LOGGED BY APPROVED BY Queens, New York GEOGRAPHIC AREA H. Gregory DRILLING CONTRACTOR/DRILLER Land, Air, Water / K. McGourty
DRILL BIT DIAMETER/TYPE BOREHOLE DIAMETER DRILLING EQUIPMENT/METHOD SAMPLING METHOD START-FINISH DATE 3-in. / Drive Sampler CASING MAT./DIA. 3-inches 7720DT / Geoprobe 4/22/08-4/23/08 SCREEN: PVC / 2-inch MAT. PVC TYPE Slotted SLOT SIZE 20-Slot TOTAL LENGTH 10.0ft DIA. 2-inch GROUND SURFACE **ELEVATION OF:** TOP OF WELL CASING **TOP & BOTTOM SCREEN** GRAVEL PACK SIZES Morie #2 (Feet) 6" Steel locking protective 2" J-plug PID Blow Depth, Graphic Visual Description REMARKS Counts Values feet Log (ppm) Cement Light brown, fine to coarse SAND 2" Sch-40 PVC 5 5 10 10 Morie #2 Sand 15 15 9/11/09 2" Sch-40 0 20 Screen ROUX.GDT GP. 20 20 2" PVC cap



ROUX ASSOCIATES, INC. Environmental Consulting

209 Shafter Street Islandia, New York 11749 Telephone: (631) 232-2600 Fax: (631) 232-9898

- 2" PVC cap

& Management **WELL CONSTRUCTION LOG** Page of 1 WELL NO. NORTHING EASTING MW-84 **Not Measured Not Measured** PROJECT NO./NAME LOCATION 0055.0065Y003 / Amtrak Sunnyside Yard LOGGED BY APPROVED BY Queens, New York GEOGRAPHIC AREA H. Gregory DRILLING CONTRACTOR/DRILLER Land, Air, Water / K. McGourty
DRILL BIT DIAMETER/TYPE BOREHOLE DIAMETER DRILLING EQUIPMENT/METHOD SAMPLING METHOD START-FINISH DATE 3-in. / Drive Sampler 3-inches 7720DT / Geoprobe 4/22/08-4/23/08 CASING MAT./DIA SCREEN: PVC / 2-inch ELEVATION OF: MAT. PVC TYPE Slotted SLOT SIZE 20-Slot TOTAL LENGTH 10.0ft DIA. 2-inch TOP OF WELL CASING **GROUND SURFACE** TOP & BOTTOM SCREEN GRAVEL PACK SIZES Morie #2 (Feet) 6" Steel locking protective √2" J-plug PID Blow Depth, Graphic casing Visual Description Counts Values REMARKS feet Log per 6" (ppm) Tan, fine to medium SAND Cement. 2" Sch-40 PVC Brown, fine to coarse SAND Orange brown, fine to coarse SAND 5 5 Bentonite seal 10 10 Morie #2 Sand 9/11/09 2" Sch-40 0.20 Slot PVC 15 15 ROUX.GDT 05565Y03.GPJ BORING/FEET 0

20



Page	1 of 1			NSTRUCTION LOG			
WELL NO	D. MW-85	NORTHING Not Measure		EASTING Not Measured			
PROJEC	T NO./NAME	110t HEASUIE		LOCATION			
<u>0055.0</u> 0	065Y003 / Amtrak	<u> </u>		Sunnyside Yard			
APPROV	ED BY	LOGGED BY					
DRII I ING	G CONTRACTOR/DRIL	H. Gregory		Queens, New York GEOGRAPHIC AREA			
				GEOGRAFIIIC AREA			
DRILL BI	<b>Air, Water / E. Sai</b> T DIAMETER/TYPE	BOREHOLE DIAME	ETER	DRILLING EQUIPMENT/METHOD	SAMPLING M	ETHOD	START-FINISH DATE
3-in. / [	Orive Sampler	3-inches		7720DT / Geoprobe			4/21/08-4/28/08
	MAT./DIA.	SCREEN:			10.0	0.1	0) 07 07 00 01-4
PVC / 2 ELEVATION	CN OF: GRO	TYPE Slotted DUND SURFACE	TOP OF WE	T. PVC TOTAL LENGTH 1 ELL CASING TOP & BOTTOM SCI	<u>IO.Uft DIA.</u> REEN	2-inch	SLOT SIZE <b>20-Slot</b> PACK SIZES
(Feet)	ON OIL	JONE SON AGE	101 01 112	I	VL_LIV	Morie #2	
6" S	Steel locking \	2" J-plug					
Depth,	protective casing	3	Graphic	Visual Description	Blow Counts	PID Values	REMARKS
feet	Gasing		Log	Visual Bescription	per 6"	(ppm)	TEMP TO CO
Ce	ement/_		4.4.4	Dark brown, fine to coarse SAND, some			
			. \(\omega\). \(\omega\).	ballast (fill)			
			10.0.0		1		
1		<ul> <li>Bentonite seal</li> </ul>	1.0.0.0.				•
			12.0.0.				
			[4.4.4.4]				
^			A. A. A.				
2	****	••••	1AAA	Orange brown, fine to coarse SAND, trace	<u>-</u>		
		****		cobbles; wet			
	• • • • • • • • • • • • • • • • • • • •	2" Sch-40 PV(	9. : : : :		G	Ä	
3		0 0 0					
		• • • • •					••
	:::::	*					
	• • • • • •			-			
4	:::: <u>=</u>	<b></b>					
	::::	•••••					
_	::::	•••••					
<u>5</u>			F		-	-	ئہ
	• • • • • • • • • • • • • • • • • • • •		1				
		<b>*</b>				] [	
6		••••			1 1		(
7							***
	::::						
	::::						
. <del>.</del>							••
	****						
•		****	1		}		
.8		2" Sch-40 0.20 Slot PVC Screen	D				
	::::	Screen					
	::::	<b></b>					
9							
	•••••						
	*: *: *	"····					
			1				
10_	::::	• • • • • • • • • • • • • • • • • • •					_1
	::::=						
14	***						4
11	*;*;*		1				1
						1	
	::::	· · · · ·					
12							.1
·=	::::	<b>{∷∴</b>					
	::::						
		011010				1	
	* * *	2" PVC end				1	_1



Environmental Consulting & Management

209 Shafter Street Islandia, New York 11749 Telephone: (631) 232-2600 Fax: (631) 232-9898

Page 1 of 1

**WELL CONSTRUCTION LOG** 

WELL NO.	-	NORTHING		EASTING	JIION LOG			
MW-86	**	Not Measure	d	Not Meas	ured			
PROJECT NO./NAMI 0055.0065Y003				LOCATION Sunnyside	Yard			
APPROVED BY	<i>i P</i> anuak	LOGGED BY		-	<del></del>			
		H. Gregory		Queens, N GEOGRAPHI	lew York			
DRILLING CONTRAC		ER		GEOGRAPHI	C AREA			
Land, Air, Wate DRILL BIT DIAMETE	r / E. Sant	<u>iago</u> Borehole diame	TER	DRILLING FO	UIPMENT/METHOD	SAMPLING M	ETHOD	START-FINISH DATE
3-in. / Drive San		3-inches		7720DT / C		O-MAIL FILAG IAI	-1100	4/21/08-4/29/08
CASING MAT./DIA.	5	SCREEN:						<del></del>
PVC / 2-inch	0000	TYPE Slotted	TOD OC 14	T. PVC	TOTAL LENGTH 1	0.0ft DIA.	2-inch	SLOT SIZE 20-Slot
ELEVATION OF: (Feet)	GROU	IND SURFACE	TOP OF WE	LL CASING	TOP & BOTTOM SCF	KEEN	GRAVEL F Morie #	PACK SIZES 2
6" Steel locking	\	2" J-plug				_		<u> </u>
Depth, protective casing		T	Graphic	Vienal	Description	Blow Counts	PID Values	REMARKS
feet Casing			Log	v i o u a !	Description	per 6"	(ppm)	NEWNING
Cement	4.  .	لَكِياً.			ick, fine to coarse SAND			_ <del>_</del> _
		. ٠٠٠٠ 2" Sch-40 PVC	A A A	and coarse ballas	st (fill)			
		Riser	000					
••••			0.0.0					
			\(\frac{1}{2}\), \(\frac{1}{2}\), \(\frac{1}{2}\). \(\frac{1}{2}\).					
			000					•
		<ul> <li>Bentonite seal</li> </ul>	\(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}{12}\), \(\frac{1}\), \(\frac{1}{12}\), \(\frac{1}\), \(\frac{1}\), \(\fra					
			4.4.4				<u> </u>	
			A A A				1	
		•••		Drange brown, fil	ne to medium SAND			
		•••						
								••
5		• •						
<u>····</u>						-	1	<del></del>
		• • •						
****								••
	····=	•••						
	···:=	•••						
		•••						••
	····	•••						
		•••						
								**
	<b>₩</b>	*						
• • • • •		•••						
		***						
10		•••						<u>-</u>
<del></del>		2" Sch-40 0.20 Slot PVC						_
		Screen						
		• • • •						
• • • •		• • • •						••
		• • • • •						
		***						
• • • •		Morie #2 Sand						••
		***						
	:::: <b>:</b>	• •						
		, , , , , , , , , , , , , , , , , , ,						••
		•••						
		• • •						
••••		• • • •						
		• • • •						
15		*. *						1
15	***	2" PVC cap						



ROUX ASSOCIATES, INC.

Environmental Consulting
& Management

209 Shafter Street Islandia, New York 11749 Telephone: (631) 232-2600 Fax: (631) 232-9898

WELL NO. MW-87	NORTHING Not Measure	 d	EASTING Not Meas				
PROJECT NO./NAME	IAOF IAIGSZALG	<u> </u>	LOCATION		<del></del>		
0055.0065Y003 / Amti			Sunnysid	e Yard			
APPROVED BY	LOGGED BY		7_				
ORILLING CONTRACTOR/D	H. Gregory		Queens,	New York			
Land, Air, Water / E. S			GEOGRAPH	IIC AREA			
DRILL BIT DIAMETER/TYPE	BOREHOLE DIAME	TER	DRILLING E	QUIPMENT/METHOD	SAMPLING MI	ETHOD	START-FINISH DATE
3-in. / Drive Sampler	3-inches		7720DT /	Geoprobe_			4/21/08-4/29/08
CASING MAT./DIA.	SCREEN:						
PVC / 2-inch ELEVATION OF: 0	TYPE Slotted GROUND SURFACE	TOP OF WE	T. PVC	TOTAL LENGTH 1 TOP & BOTTOM SCR	0.0ft DIA	2-inch	SLOT SIZE 20-Slot
(Feet)	SKOUND SUK ACE	TOP OF WE	LL CASING	I A BOLLOW SCI	CEN	Morie #	PACK SIZES
6" Steel locking \	2" J-plug	<del>-</del>		<del></del>			<u> </u>
protective casing		Graphic	Vieual	Description	Blow Counts	PID Values	REMARKS
feet Casing		Log	VISUAI	Description	per 6"	(ppm)	KLINKINO
Cement				ack, fine to coarse SAND			
	2" Sch-40 PVC	.0.0.0	and coarse balla	st (fill)			
	Riser	000					
1		0.0.0					
		444					
2	<ul> <li>Bentonite seal</li> </ul>	A A A A A A A A A A A A A A A A A A A					
		1.12 .12 .12			}		
		A A A A			G		
3		444					
****	****	.0.0.0					
	* <b>,</b> * <b>,</b> * <b>,</b>						
,	****		urange brown, f	ine to coarse SAND			
4 • • • • • • • • • • • • • • • • •							
•••••	<b>⋥</b> ः∷:						
	<b>→</b> :						
5		LL-		<b></b>			
****							
	<b>:::::</b>						
6 · · · · ·							
					-   -		•
::::	<b>=</b> :::::						
_	<b>=</b> ::::						
7							
	<b>#:::</b> :						
₿ •••••	<b>=::::</b>						
	<b>:::</b>						
	<b>⊒</b> ::::						
9							
•••••	2" Sch-40 0.20 Slot PVC Screen				] ] ]		•
	Screen						
0	****				] ]		
• • • • • • • • • • • • • • • • • • • •							
••••							
1	<b></b>						
, , , , , , , , , , , , , , , , , , ,							
****							
2					-		
	Morie #2 Sand						•
****	<b>-</b> ::::						
13	<b>⋽</b> ∷∷						
::::							
•••••							
4	2" PVC cap						



ROUX ASSOCIATES, INC.

Environmental Consulting
& Management

209 Shafter Street Islandia, New York 11749 Telephone: (631) 232-2600 Fax: (631) 232-9898

Page 1 of WELL NO.	1		LL COM		CTION LOG			
MW-88		RTHING Measure	d	EASTING Not Meas	ured			
PROJECT NO./NAME				LOCATION				
0055.0065Y003/	<u>Amtrak</u>	OCD DV		Sunnysid	e Yard			
APPROVED BY		GED BY Gregory		Queene	New York			
DRILLING CONTRAC	TOR/DRILLER			GEOGRAPH	IIC AREA			
<mark>Land, Air, Wate</mark> r DRILL BIT DIAMETER	/ K. McGourty	/						
			TER		QUIPMENT/METHOD	SAMPLING M	ETHOD	START-FINISH DATE
<b>3-in. / Drive Sam</b> CASING MAT./DIA.	pler 3-inc	<u>nes</u> EN:	_	1120011	Geoprobe			4/21/08-4/30/08
PVC / 2-inch		PE Slotted	TAM I	PVC	TOTAL LENGTH 1	10.0ft DIA	2-inch	SLOT SIZE 20-Slot
ELEVATION OF:	GROUND SU	JRFACE	TOP OF WEL		TOP & BOTTOM SCI	REEN		PACK SIZES
(Feet) 6" Steel locking \		- 2" J-plug					Morie #	2
protective \		- 2 3-plug	Graphic			Blow	PID	
feet casing			Log	Visual	Description	Counts per 6"	Values (ppm)	REMARKS
Cement			[A.A.A.] D	ark grey to bla	ck, fine to coarse SAND		Ι	
			a a	nd ballast (fill);	stained, no odor			
		Bentonite seal	4.4.4.					
1			[ \( \Delta \), \( \Delta \), \( \Delta \),					
•			A A A					
•		2" Sch-40 PVC	1.7.7.7					
		2" Sch-40 PVC Riser	7.7.					
2			4.4.4					
•			0.00					
•			444					
3			\(\D \D \D \)					•
• • • • • • • • • • • • • • • • • • • •			7 7 7					••
			Q. Q. Q.					
			[\alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \a					
4			△ △ △ □ D all	ark grov to blad	ck, fine to coarse SAND			
			al al	nd ballast (fill);	stained, no odor, wet			
			4.4.4.					
5			A A A A					_
<u> </u>			F					-
•								
•								
6								
•								
•								
,								
7		2" Sch-40 0.20 Slot PVC						
۰		Screen						
•								
8								
•								
•								
9								
•								
•								
10								_
· •								_
•								
•								
<u>11</u> :								
٠								
•								
ه م		2" PVC end						
12		cap						1



WELL N	IO.	NORTHING		EASTING	HON LOG			
-	MW-89	Not Measure	d	Not Measur	<u>ed</u>			
	CT NO./NAME			LOCATION Sunnyside	Vard			
<u>0055.0</u>	<u>)065Y003 / Amtrak</u> VED BY	LOGGED BY		- Jurinyside	laiu			
A. 1 10	*LD D1	H. Gregory		Queens, Ne	w York			
DRILLIN	IG CONTRACTOR/DRIL	LER		GEOGRAPHIC A	AREA			
Land,	Air, Water / K. Mc	Gourty						
			TER		IPMENT/METHOD	SAMPLING M	ETHOD	START-FINISH DATE
3-in./	Drive Sampler MAT./DIA.	3-inches SCREEN:		7720DT / Ge	eoprobe			4/21/08-4/30/08
	2-inch	TYPE Slotted	- AM P	т. <b>РVС</b>	TOTAL LENGTH	SO OH DIA	2-inch	SLOT SIZE 20-Slot
ELEVAT	TION OF: GRO	OUND SURFACE	TOP OF WE		TOP & BOTTOM SCI	REEN	GRAVEL P	PACK SIZES
(Feet)					<u> </u>		Morie #2	2
	Steel locking protective	2" J-plug				Blow	PID	
Depth, feet	casing	₹	Graphic Log	Visual D	escription	Counts	Values	REMARKS
	Cement		=	Dod bears to block	for to see - CAND	per 6"	(ppm)	
	Jenlen Z	- Bentonite seal		and ballast, some c	(, fine to coarse SAND inders (fill)			
		• • •	1.1.1.1		, ,			
	::::• <u> </u>	2" Sch-40 PV	7777					
1	****	Riser	444					
			000					
			10 0 0					
	::::	****** *****		Orange brown, fine	to coarse SAND			
2	::::	<b>***</b> **						•••
	*:::	****						.,
							[	
	::::=	****						
3	****							
				Drange brown, fine	to coarse SAND; wet			••
	****							
	****	]°•°•°•						
.4	*::::							
_								
5							.	<u> </u>
	:::: <u> </u>		[				[ [	
	****	••••						
6		2" Sch-40 0.20				i l		
		Slot PVC						
	::::							
7	****							
	::::							
8	• • • • • •							
	****	••••						••
	****	• • • •						
	****							
9								!
· · · · ·								'
	\$ <b>\$ \$</b>							
	****	• • • •						
40								_
10_	****							<u>.1</u>
	•••••							
		]`•`• <b>`</b> •						
		2" PVC end						
11	• • • •	cap						1



	1 of 1			NSTRUCTION LO			
WELL N	MW-90	NORTHING Not Measure	ed	EASTING Not Measured			
PROJEC	CT NO./NAME	110t modoare		LOCATION			
	0065Y003 / Amtrak			Sunnyside Yard			
APPRO\	VED BY	LOGGED BY		Ousana New York			
DRILLIN	G CONTRACTOR/DRIL	H. Gregory		Queens, New York GEOGRAPHIC AREA			
	Air, Water / K. Mc						
			TER	DRILLING EQUIPMENT/METHOD	SAMPLING N	METHOD	START-FINISH DATE
3-in. /	Drive Sampler MAT./DIA.	3-inches		7720DT / Geoprobe			<u>4/21/08-4/30/08</u>
	2-inch	SCREEN: TYPE Slotte	d Ma	T. <b>PVC</b> TOTAL LENGT	H 10 0# DIA	2-inch	SLOT SIZE 20-Slot
ELEVAT	TON OF: GRO	OUND SURFACE	TOP OF WE	LL CASING TOP & BOTTOM		GRAVEL F	PACK SIZES
(Feet)						Morie #	
	Steel locking protective	2" J-plug			Blow	PID	
epth, feet	casing	<del>[</del> ]	Graphic Log	Visual Description	Counts	Values	REMARKS
	Cement/			Dark brown to black, fine to coarse SA	per 6"	(ppm)	
	zenierii/	- Bentonite sea		and ballast, some cinders (fill)	ND		
	• • •	• • •	7.7.7	` '			
	::::::	2" Sch-40 PV	d A A A				
1	****	Riser	111				
	::::		444				
			000				
				Drange brown, fine to coarse SAND			
2		[ •					
						7	
	•••••					1	
3							
		• • • •	TAKE TO THE	Drange brown, fine to coarse SAND; w	ret		
	*****	• • • • •					
4	::::=						
	::::	• • • • • • • • • • • • • • • • • • •					•
	****	• • • • • • • • • • • • • • • • • • • •					
	****	****					
5		••••					_
_							•
		[ •					
§							
<del>.</del>		2" Sch-40 0.20	]				
		Slot PVC					
	****						
7	****	• • • •				1	
	****	* • • • • • • • •					
	****	• • • •				1 1	
		* •					
,	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •					
3	*.*.*	• • • • • • • • • • • • • • • • • • •					
	• • • • •	٠٠٠ <u>٠</u>					
	****						
2		* * * * * * * * * * * * * * * * * * * *					,
		• • • •					
		· · · · · · · · · · · · · · · · · · ·					
	****	• • • •					
10							-
		• • • • • • • • • • • • • • • • • • • •					
	::::	\					
						1	
	:•:•: <b>-</b>	2" PVC end	1 1		J	1	



Page WELL N	1 of 1	NORTHING	<u> </u>	EASTING EASTING	<u> </u>		
AAETT IA	MW-91	Not Measure	ed	Not Measured			
	CT NO./NAME			LOCATION			
0055.0	0065Y003 / Amtra	<u>k</u>		Sunnyside Yard			
APPRO\	VED BY	LOGGED BY		N N N N			
DDII LIN	IG CONTRACTOR/DR	H. Gregory		Queens, New York GEOGRAPHIC AREA			
				GEOGRAPHIC AREA			
DRILL B	Air, Water / K. M	BOREHOLE DIAM	ETER	DRILLING EQUIPMENT/METHO	DD SAMPLING N	METHOD	START-FINISH DATE
	Drive Sampler_	3-inches	_,	7720DT / Geoprobe			4/21/08-4/30/08
CASING	MAT./DIA.	SCREEN:	_ <del>_</del>				<u> </u>
	2-inch	TYPE Slotte	<u>d</u>	AT. PVC TOTAL LENG	TH <b>10.0</b> ft DIA	2-inch	SLOT SIZE 20-Slot
	TION OF: GR	OUND SURFACE	TOP OF W	ELL CASING TOP & BOTTO	M SCREEN	Morie #	PACK SIZES
Feet) 6" :	Steel locking \					_ INOTIC_#	<u> </u>
epth,	protective \		Graphic	Wisual Dassaintis	Blow	PID	DEMA BIO
feet	casing	$\top$	Log	Visual Descriptio	n Counts per 6"	Values (ppm)	REMARKS
	Cement		TX:X:X:	Dark brown to black, fine to coarse \$		T	
`			0.00	and ballast, some cinders (fill)		1	
		<ul> <li>Bentonite sea</li> </ul>	400				
1			4.4.4				
1	••••		444				
			000				
	• • • • • • • • • • • • • • • • • • • •	2" Sch-40 PV					
2		o o o	1000				
?	* * * * * * * * * * * * * * * * * * * *		10.0.0				
	****	<b>₹</b> :					
		<b>₹</b> :::::	444		(	<del>]</del>	
	:::: <u> </u>	<b>⋾</b> ∷∷	000			1	
3		<b>∄</b> ઃઃ	A A A A				
		<b>∄</b>					
	:::: <u>=</u>	<b>#</b> :::::	4.4.4				
		<b>-</b> †•••••	000			1	
		<b>∄∷</b> ः	444	Orange brown, fine to coarse SAND			
	::::=	<b></b>			,		
		<b>⊒::::</b>			i l		
=		<b>∄∷</b> ∷					
5		<b>‡</b> ::::	<b>├</b>			-	
		<b>‡</b> ∷:	}		1	}	
	::::	<b>***</b> ***					
		<b>⊒</b> .				1	
ð	••••	<b>∄:</b> ∷:					
	::::	<b>∄ઃઃ</b> ः					
		<b>∄∷</b> ∷					
,	::::=	<b>⋣</b> ∰					
	::::=	2" Sch-40 0.2	0 0				
		2" Sch-40 0.2 Slot PVC Screen				1	
	••••	<b>₹:</b> :::	1				
,	::::=	<b>∓∷:</b> :					
B							
	***	<b></b>					
	• • • • • • • • • • • • • • • • • • • •						
?	*: *:	<b>∄∷</b> ∷:	1				
	:::: <u>-</u>	<b>ૻ૽૾</b> ઃઃ				1	
_		<b>₹</b> ::::					
0_	<b>∷</b> ∷:⊨						
	****	<b>#</b>					
		<b>∄</b> ઃ∴`					
		<b>∄</b> ःः					
1	*:*:	<b></b>					
	· · · · · ·	<b>***</b> :					
	:::: <u>:</u> :	2" PVC end					
	19.00	cap					



WELL CONSTRUCTION LOG Page of 1 WELL NO. NORTHING EASTING MW-92 Not Measured Not Measured PROJECT NO./NAME LOCATION
Sunnyside Yard 0055.0065Y003 / Amtrak APPROVED BY LOGGED BY H. Gregory Queens, New York DRILLING CONTRACTOR/DRILLER GEOGRAPHIC AREA Land, Air, Water / K. McGourty
DRILL BIT DIAMETER/TYPE | BOREHOLE DIAMETER DRILLING EQUIPMENT/METHOD SAMPLING METHOD START-FINISH DATE 3-inches 3-in. / Drive Sampler 7720DT / Geoprobe 4/22/08-4/23/08 CASING MAT./DIA. SCREEN: PVC / 2-inch ELEVATION OF: MAT. PVC TOP OF WELL CASING TYPE Slotted TOTAL LENGTH 10.0ft SLOT SIZE 20-Slot DIA. 2-inch GROUND SURFACE TOP & BOTTOM SCREEN GRAVEL PACK SIZES Morie #2 (Feet) 6" Steel locking protective 2" J-plug PID Blow Depth, feet Graphic casing Visual Description Counts Values REMARKS Log per 6" (ppm) Cement ____/ 0.0 Dark brown, fine to coarse SAND and ballast (fill) 4. 4. 4. Bentonite seal Q Q Q .1... 4.4.4. AAA 0.00 4.4.4 2... . 2 000 2" Sch-40 PVC Riser AAA 4. 4. 4. 3... 44 . 3 Orange brown, fine to coarse SAND, some 4... Orange brown, fine to coarse SAND 5 _5 6... *.*7.... ..7. 8... ..8 2" Sch-40 0 20 9 . 9 10 10 9/11/09 ROUX.GDT .11... .11 05565Y03.GPJ 12 .12 13 .13



2.3 FT.  LAND SURFACE	PROJECT NAME AMTRAK  WELL NO. P-1D  TOWN/CITY Long Island City  COUNTY LAND SURFACE ELEVATION  AND DATUM FEET  INSTALLATION DATE(S) 07/08/94  DRILLING METHOD Land, Air, Water En	STATE New Y	ork
3 FT.  BENTONITE PELLETS  7 FT.  29.8 FT.  WELL SCREEN  2 INCH DIAMETER, PVC 10 SLOT  #0 GRAVEL PACK	DRILLING FLUID  DEVELOPMENT TECHNIQUE(S) AND DATE(S) Pumping and Surging  FLUID LOSS DURING DRILLING  WATER REMOVED DURING DEVELOPMENT  STATIC DEPTH TO WATER  PUMPING DEPTH TO WATER  PUMPING DURATION  YIELD  SPECIFIC CAPACITY  WELL PURPOSE  Piezometer	HOURS DATE	GALLON GALLON FEET BELOW M. FEET BELOW M.
39.8 _{FT} .  42 FT.  NOTE: ALL DEPTHS IN FEET BELOW LAND SURFACE	REMARKS #00 Sand from 7' to 27'bls.  HYDROGEOLOGIST H. Gregory		



<del>∷</del> a⊓	PROJECT NAME AMTRAK NUMBER 05	525Y02
2.4 FT. LAND SURFACE	WELL NO. P-2D PERMIT NO	
	TOWN/CITY Long Island City	
	COUNTY Queens STATE New Yor	k
8 INCH DIAMETER, DRILLED HOLE	LAND SURFACE ELEVATION	
WELL CASING	AND DATUM FEET	
2 INCH DIAMETER	ESTIMATED	
	INSTALLATION DATE(S) 07/06/94	
BACKFILL	DRILLING METHOD Hollow Stem Auger	
GROUT #00 sand/cement	DRILLING CONTRACTOR Land, Air, Water Environmental Services, Inc.	
	DRILLING FLUID	
_14_ FT.		
BENTONITE PELLETS	DEVELOPMENT TECHNIQUE(S) AND DATE(S)	
	Pumping and Surging	
29.6FT.  WELL SCREEN  2 INCH DIAMETER, PVC10 SLOT  #0 GRAVEL PACK	FLUID LOSS DURING DRILLING  WATER REMOVED DURING DEVELOPMENT  STATIC DEPTH TO WATER  PUMPING DEPTH TO WATER  PUMPING DURATION HOURS  YIELD GPM DATE  SPECIFIC CAPACITY GPM/FT.  WELL PURPOSE Piezometer  REMARKS	GALLONS _ FEET BELOW M.F _ FEET BELOW M.F
·	HYDROGEOLOGIST _ H. Gregory	



<u> </u>	PROJECT NAME AMTRAK	NUMBER _	05525Y02
-0.5 FT. LAND SURFACE	WELL NO. P-3D	PERMIT NO	
	TOWN/CITY Long Island City		
	COUNTY Queens	STATE _New Y	ork
DRILLED HOLE			
WELL CASING	AND DATUM FEET	□ SURVEYED □ ESTIMATED	
INCH			
	INSTALLATION DATE(S) _07/07/94		
BACKFILL GROUT _#00	DRILLING METHOD Hollow Stem Auger		
GROU! _#M	DRILLING CONTRACTOR Land. Air. Water B	Environmental Services, Inc	λ
	DRILLING FLUID		
_6_ FT.			
BENTONITE	☐ SLURRY ☐ PELLETS ☐ DEVELOPMENT TECHNIQUE(S) AND DATE(S	S)	•
	Pumping and Surging		
		-	GALLONS
	YIELD GPM	DATE	·
_#0 GRAVEL	SPECIFIC CAPACITY	GPM/FT.	
<b>⊒</b> _39.8 FT.			
_41_FT.	REMARKS #00 Sand from 7' to 27'bls.		
NOTE: ALL DEPTHS IN FEET BELOW LAND SURFACE			
	HYDROGEOLOGIST H. Gregory		



<b>_</b>	·	
[⊥] _□	PROJECT NAME _AMTRAK NUMBER	_05525Y02
2.2 FT. LAND SURFACE	WELL NO. P4D PERMIT NO.	
	TOWN/CITY Long Island City	
	COUNTY Queens STATE New	York
	LAND SURFACE ELEVATION	
WELL CASING	AND DATUM FEET	
_2 INCH_DIAMETER	ESTIMATED	
	INSTALLATION DATE(S) _07/06/94	
BACKFILL  GROUT #00 sand/cement	DRILLING METHODHollow Stem Auger	
	DRILLING CONTRACTOR Land, Air, Water Environmental Services, in	
	DRILLING FLUID	
□ SLURRY	DEVELOPMENT TECHNIQUE(S) AND DATE(S)	
BENIONIE □ PELLETS  15. FT.	Pumping and Surging	
	FLUID LOSS DURING DRILLING	GALLONS
WELL SCREEN	WATER REMOVED DURING DEVELOPMENT	GALLONS
2 INCH_DIAMETER,	STATIC DEPTH TO WATER	FEET BELOW M.F
PVC 10 SLOT	PUMPING DEPTH TO WATER	FEET BELOW M.F
	PUMPING DURATION HOURS	
	YIELD DATE	
-#0_ GRAVEL PACK	SPECIFIC CAPACITY GPM/FT.	
	WELL PURPOSE Piezometer	
_39,8FT.		
42 FT.	REMARKS	
NOTE: ALL DEPTHS IN FEET		
BELOW LAND SURFACE		
i	HYDROGEOLOGIST H. Gregory	



<b>├</b> ┴_ <b>┌</b> ┐	PROJECT NAME AMTRAK NUMBER _0	5525Y02
2.5 FT. LAND SURFACE	WELL NO. P-5S PERMIT NO	
	TOWN/CITY Long Island City	
_8 INCH DIAMETER.	COUNTY Queens STATE New Yo	rķ
DRILLED HOLE	LAND SURFACE ELEVATION	
WELL CASING	AND DATUM ———— FEET	
2 INCH DIAMETER	□ ESTIMATED	
	INSTALLATION DATE(S) 07/06/94	
BACKFILL (100 and 1/a and 1/a	DRILLING METHOD Hollow Stern Auger	
GROUT #00 sand/cement	DRILLING CONTRACTOR Land, Air, Water Environmental Services, Inc.	
	DRILLING FLUID	
_1,3. FT.		
BENTONITE PELLETS	DEVELOPMENT TECHNIQUE(S) AND DATE(S)	
2.3. FT.	Pumping and Surging	
<u>3.3</u> гт.	FLUID LOSS DURING DRILLING	GALLONS
WELL SCREEN	WATER REMOVED DURING DEVELOPMENT	
2 INCH_DIAMETER,	STATIC DEPTH TO WATER	_ FEET BELOW M.P.
PVC _10 SLOT	PUMPING DEPTH TO WATER	_ FEET BELOW M.P.
	PUMPING DURATION HOURS	
	YIELD DATE	
-#0_ GRAVEL PACK	SPECIFIC CAPACITY GPM/FT.	
	WELL PURPOSE Piezometer	
_16_FT.		
<u>10</u> F1,	REMARKS	
NOTE: ALL DEPTHS IN FEET BELOW LAND SURFACE		
	HYDROGEOLOGIST H. Gregory	



<del>                                     </del>	PROJECT NAME AMTRAK NUMBER 05	525Y02
2 FT. LAND SURFACE	- WELL NO. P-6S PERMIT NO. —	
	TOWN/CITY Long Island City	
	COUNTY Queens STATE New Yor	k
	LAND SURFACE ELEVATION	
WELL CASING	AND DATUM FEET	
2 INCH DIAMETER	ESTIMATED	
ИИ	INSTALLATION DATE(S) 07/08/94	<u> </u>
BACKFILL	DRILLING METHOD Hollow Stem Auger	
GROUT _cement	DRILLING CONTRACTOR Land, Air, Water Environmental Services, Inc.	
	DRILLING FLUID	
_1_FT.		·
BENTONITE DELLETS	DEVELOPMENT TECHNIQUE(S) AND DATE(S)	•
<u>2.</u> FT.	Pumping and Surging	
<u>3</u> гт.	FLUID LOSS DURING DRILLING	GALLONS
WELL SCREEN	WATER REMOVED DURING DEVELOPMENT	GALLONS
2 INCH DIAMETER,	STATIC DEPTH TO WATER	_ FEET BELOW M.P
PVC 10 SLOT	PUMPING DEPTH TO WATER	_ FEET BELOW M.P
	PUMPING DURATION HOURS	
	YIELD DATE	
#0_ GRAVEL PACK	SPECIFIC CAPACITY GPM/FT.	
	WELL PURPOSE Piezometer	
_13_FT.		
_15_FT.		
Entrophical D_F1.	REMARKS	
NOTE:		
ALL DEPTHS IN FEET BELOW LAND SURFACE		
	HYDROGEOLOGIST H. Gregory	
	TIDROGEOLOGISI STOSSTY	



Pro	ject:	AMTRAK - Sunny Queens, New York	L	og of Well I	No.	TP-	·6				_		
Date	Start	red: 4/17/96	Completed: 4/1	8/96	Meası	uring Point Ele	vation:		To	otal Dep	th: 10.0	ft	
Logg	ed By	y: H. Gregory	Checked By: J	.Duminuco	Water	Level During	Drillin	g: <b>6.0</b>	ft Po	st-Deve	lopment:	3.6	ft
Drill	ing C	co: ADT	Driller:		<del></del>	g: 2-inch Sc		40 PV	C D	rill Bit D	iameter:	3	
$\vdash$		Method: Hollow-Stem	 Auger	<del></del> -	<b>├</b> ───	ration: 10-Slo	<u>t</u>		_ <u>=</u>	from	8.7	to	3.7
		quipment: Mobil Drill				#1 Gravel	11.4			from	10	to	2.0
Samp		quipment: 1720012 22 111			<b>├</b> ─	Bentonite Po	enets		<u> </u>	from from	$\frac{2.0}{1.0}$	to	1.0
Depth (feet)	1	LITHOLOGIC	DESCRIPTION	Litholo		Monitoring Well Construction	Sampler Blows	(ppm)			EMAR	KS	
10 15 20		Brown to black finsome Gravel; Dry Orange tan to brow SAND, trace Grav Orange tan mediun trace Gravel; Wet Orange tan mediun trace Gravel; mois  Orange tan mediun trace Gravel; Wet  Orange tan mediun trace Gravel; Wet	e to coarse SAND, on fine to coarse el on fine to coarse el; Dry to moist n to coarse SAND, n to coarse SAND, t to wet n to coarse SAND,	SW	763		Sam Blic	S (ppm)	Litholo Sample laborat Wet at Sample laborat	gy derive from 0- ory analy 3 feet be from 3- ory analy	2 feet waysis	s collected surface	e for
	Proje	ect: 05552Y		Roux	Asso	∟ ciates					Page	1	of <b>1</b>

ROUX

Projec		AMTRAK - Sunny Queens, New York		L	og of Well	No.	,	TP-	·7					
Date S	tarte	ed: 4/17/96	Completed: 4/2	3/96	Meas	uring Point E	levat	ion:		Т	otal Dep	oth: <b>8.0</b> ft	t	_
Logge	d By	: H. Gregory	Checked By: J	.Duminuco										
Drillin	ıg Co	D: <b>ADT</b>	Driller:		Casing: 2-inch Schedule 40 PVC Drill Bit Diameter: 3									
Drillin	g M	ethod: Hollow-Stem	Auger		Perforation: 10-Slot from 8.0 to									3.0
Drillin	g Eq	uipment: Mobil Dril	B-57		Pack: #1 Gravel from 8.0 to  Seal: Bentonite Pellets from 2.0 to									$\frac{2.0}{1.0}$
Sample	er:				Scar.	Grout	- CHC			-	from	1.0	to_	0
Depth (feet)		LITHOLOGIC	ogy	Monitoring Well Constructio	Sampler	Blows per 6"	PID (ppm)			REMAR	KS	_		
dag)		Black to brown fir SAND, some Grave to tan med SAND, some Grave to moist  Orange to tan med SAND, some Grave to tan med SAND, some Grave Moist to wet	ne to medium vel; Dry lium to coarse vel, little Silt; Dry	Litholo	ogy	Well Constructio		Blo	(ppm)	Litholo Sample laborat  Wet at  Sample laborat	e from 0 ory ana  4.5 feet	ved from o	cuttings  llected	for ice for
Pı	roiec	et: <b>05552Y</b>		Roux	Asso	ciates						Page	: 1 0	of 1



Project:	AMTRAK - S Queens, New	Sunnyside Yard HST York		L	og of Well	No.	TP-	8		_				
Date Star	rted: 3/25/97	Completed: 3/2	5/ <b>97</b>	Meas	uring Point El	evation:		Te	otal Depth	: 15.0 1	ft			
Logged F	By: <b>H. Gregory</b>	Checked By: J	.Dominuco											
Drilling (	Co: L.A.W.	Driller:		Casing: 2-inch Schedule 40 PVC Drill Bit Diameter: 6										
Drilling l	Method: Hollow-	Stem Auger		Perforation: 10-Slot from 3 to Pack: #1 Gravel from 2 to										
Drilling I	Equipment: <b>B-61</b>	 Rig		-	Pack: #1 Gravel from 2 Seal: Bentonite Pellets from 1									
<u> </u>	140lb / 30" spl		_	Seal:	Cement Gre		-		from from	0	to			
Depth (feet)		OGIC DESCRIPTION	Litholo	ogy	Monitoring Well Construction	npler	PID (ppm)			MARI				
5 —	Orange-brow SAND, trace Orange-brow Moist to wet	o medium SAND, trace avel, trace Cinders; Dry on fine to medium Gravel; Dry to moist on fine to coarse SAND; on fine to coarse SAND, Gravel; Wet	SW				0.0	land su	finished a rface					
- 10		n fine to coarse SAND, Gravel; Wet n fine to coarse SAND, Gravel; Wet					0.0			·				
-	Orange-brow some coarse	n fine to coarse SAND, Gravel; Wet					0.0							
15 —	Brown to ora coarse SAND	nge-brown fine to ; Wet					0.0	Bottom surface	of boring	at 15 fe	et belov	w land		
25 — Proje	ect: <b>05552Y</b>		Roux A	<b>A</b> seo.	riates					Dogo	1 o			



									_		<u> </u>	$\leq$
Project	AMTRAK - Sunn Queens, New Yor			L	og of Well N	0.	TP-	9				
Date Sta	rted: 3/24/97	Completed: 3.	/24/97	Meas	uring Point Elev	ation:		Т	otal Depi	th: <b>16.0</b> f	ft	_
Logged 1	By: H. Gregory	Checked By:	J.Dominuco	Wate	r Level During D	Drilling	: 6.2	ft P	ost-Deve	lopment:	6.2	ft
Drilling	Co: L.A.W.	Driller:			g: 2-inch Sch		40 PV	C D	rill Bit D	iameter:	6	
Drilling	Method: Hollow-Stem	Auger		<u> </u>	ration: 10-Slot			•	from	- 4	to	14
Drilling	Equipment: <b>B-61 Rig</b>				Bentonite Pel	letc		$\stackrel{\underline{\cdots}}{\rhd}$	from from	$\frac{2.5}{1.5}$	to	2.5
Sampler	140lb / 30" split-spo	on		Jean.	Cement Grou					0	to	1.5
Depth (feet)	LITHOLOGIC	DESCRIPTION	Litholo	egy	Monitoring Well Construction	Sampler Blows ner 6"	PID (ppm)		_	EMARI	KS	
	Brown to orange- coarse SAND, tra Silt; Dry Orange-brown fin SAND, trace Gra		SW				0.0	Casing land su	finished Irface	as stick-	up 2 fee	et above
5 —	Orange-brown fin little Clay; dry to	e SAND and Silt, moist	SM				0.0					
-	Brown to orange-l Clay; Wet	brown SILT and	ML				0.0	Wet at	6.2 feet	below lar	nd surfa	ce
-	Brown to orange-l Clay; Wet	orown SILT and					0.0					
10—	Brown to orange-l Clay; Wet Grey-brown fine S		SM				0.0					
-	Wet Wet		i i i sw				0.0					
15—	Orange-brown fine trace Silt; Wet	e to coarse SAND,					0.0					
-								Bottom surface		g at 16 fe	et belo	w land
_												
20—												
-												
25—												
Pro	ject: <b>05552Y</b>		Roux	Asso	 ciates		<u></u>			Page	<b>1</b> c	of 1



Project	: AMTRAK - Su Queens, New Y	L	og of W	ell No.	,	TP-	10						
Date Sta	rted: 3/24/97	Completed: 3/2	4/97	Meas	uring Poir	nt Elevat	ion:		To	otal Dept	h: <b>19.0</b> 1	ft	
Logged 1	By: H. Gregory	Checked By: J	.Dominuco	'	Level Di	<u> </u>				st-Devel	opment:	11.0	ft
Drilling	Co: L.A.W.	Driller:		Casing: 2-inch Schedule 40 PVC Drill Bit Diameter: 6									
Drilling	Method: Hollow-St	tem Auger	_	Perforation: 10-Slot from 8 to Pack: #1 Gravel from 6.5 to									
Drilling	Equipment: <b>B-61</b> Ri				Bentoni		ts			from from	6.5	to to	$-\frac{19}{6.5}$
Sampler:	140lb / 30" split-	spoon			Cement					from	0	to	4
Depth (feet)	LITHOLOG	GIC DESCRIPTION	Litholo	gy	Monito Wel Construc	Sampler loits	Blows per 6"	PID (ppm)		RI	EMARI	KS	
5	SAND, trace O Dark brown fin SAND, some O trace Silt; Dry Brown to orang coarse SAND, Silt, trace Clay Brown to light SAND; Dry Light brown fin Dry	ne to medium loomy Gravel, trace Silt; Dry ne to medium loomy Cinders, trace Gravel, ge-brown fine to trace Gravel, trace; Dry brown fine to medium ne to medium SAND; tine to medium SAND;	sw					0.0	Casing land su		as stick-u	up 2 fee	t above
10	Moist to wet	ne to medium SAND;						0.0					
-	SAND, trace C							0.0	Wet at	l 1 feet bo	elow land	l surface	e
15—		tan medium to coarse Gravel; Wet tan medium to coarse Gravel; Wet						0.0					,
- - 20									Bottom surface	of boring	g at 19 fe	et belov	v land
-													
25 Proj	ect: <b>05552Y</b>		Roux A	Assoc							Page	1 of	f <b>1</b>

Page 1 of 1



1377 Motor Parkway Islandia, NY 11788 Telephone: 516-232-2600 Fax: 516-232-9898

WELL NO.		NORTHING	EASTING			=					
TSB-9											
PROJECT NO./NA	ME		LOCATION								
<u>05545Y04 / An</u>	ntrak		Sunnyside Rail Yard								
APPROVED BY		LOGGED BY									
H. Gregory		R. Kovacs	Queens, New York								
DRILLING CONTR	ACTOR/DRIL	LER	GEOGRAPHIC AREA	GEOGRAPHIC AREA							
Land, Air & W	ater / Chri	s O'Sh <u>ea</u>	OU-3	_							
DRILL BIT DIAMET	ILL BIT DIAMETER/TYPE BOREHOLE DIAMETER		DRILLING EQUIPMENT/METHOD	SAMPLING	METHOD	START-FINISH DATE					
	Inch / Drive Sampler 2-inches		Geoprobe / Geoprobe	2" Macro	-Core	10/24/00-10/24/00					
LAND SURFACE E	LEVATION	DEPTH TO WATER	BACKFILL								
(FT.)		(Feet BLS)	Cuttings								
epth, feet	Graphic Log	Visu	al Description	Blow Counts per 6"	PID Values (ppm)	REMARKS					
	0	Black medium to coarse SAN	D, trace Gravel, trace Ballast		41.8						

teet	Log		per 6"	(ppm)	
	0 0	Black medium to coarse SAND, trace Gravel, trace Ballast	ł	41.8	
	,				Strong hydrocarbon odor
					Strong hydrocarbon odor detected
			1 1	l	
			1		
	`o`. `. o				
		Grey coarse to medium SAND, some fine Sand, trace Gravel, trace Ballast		64.9	
	8.10.0				
				i l	
					Water encountered
			1	1	
	u				
<del>-</del> -					
5					
	0 0	Grey medium SAND, some fine Sand, trace Gravel		75.6	
				75.6	
	[ 0 0				Odor detected
	0 0		] ] ]		
			1 1		1
	0 0		1 18	}	}
				))	
	0 0		l l		
	[ ]	-	4		
	[0]0	Grey coarse to medium SAND, trace Gravel		68.9	
	. ` . `a ` . ` .		]	ľ	
<u>10                                    </u>	0 0				
	1.7.2.1.1			1	Soil staining observed
	[ 0 ] [ 0 ]				
	• •				
			]	J	
	0, , , , 0				
	المان المان إم	Grey fine to coarse Sand, some black Sand, some Gravel		25	
	8.70.0.				
	<b>5:::::</b> ::::4				
	· & O				
15_	الم في م				
	D				
	ازم: الم			1	
	3:00:00				Bottom of soil boring 17 feet



1377 Motor Parkway Islandia, NY 11788 Telephone: 516-232-2600 Fax: 516-232-9898

Page 1 of 1 SOIL BORING LOG

WELL NO.	NOTTINO	FACTIVO										
	NORTHING	EASTING										
<u>TSB-10</u>												
PROJECT NO./NAME		LOCATION										
05545Y04 / Amtrak		Sunnyside Rail Yard										
APPROVED BY	LOGGED BY											
H. Gregory	R. Kovacs	Queens, New York										
DRILLING CONTRACTOR/DRIL	LER	GEOGRAPHIC AREA										
Land, Air & Water / Chri	is O'Shea	OU-3										
DRILL BIT DIAMETER/TYPE	BOREHOLE DIAMETER	DRILLING EQUIPMENT/METHOD	SAMPLING METHOD	START-FINISH DATE								
2 Inch / Drive Sampler	2-inches	Geoprobe / Geoprobe	2" Macro-Core	10/23/00-10/23/00								
LAND SURFACE ELEVATION	DEPTH TO WATER	BACKFILL										
(FT.)	(Feet BLS)	Cuttings										

epth, feet	Graphic Log	Visual Description	Blow Counts per 6"	PID Values (ppm)	REMARKS	
	0 0	Dark brown to black, medium to coarse SAND, trace Ballast, trace Gravel		V		
	. ` . ` . ` .			<b>y</b>		
				<b> </b>		
1_					04 4	
	[ · . · ]			V	Odor detected	
	0 0			<b>X</b>		
2						
2_		Dark grey to black fine to coarse SAND, trace Silt, trace Gravel	$\dashv$			
	77.6			V		
				Å	Water encountered at 2.5'	
3_	· 6 · · 0 · · ·					
		Grey fine Sand and Silt, trace Clay	7	41		
				Y  ~``		
4_		On Entransa CAND to a Const	_			
		Grey fine to coarse SAND, trace Gravel		32		
	· O ·			🛚		
	0 0			A		
5		Grey fine to coarse SAND, trace Gravel	_			
	1			52		
	$\circ \circ \circ$			<b> </b>		
6_	0 0					
		Light grey to tan fine to medium SAND		28		
				Y 20		
	-  -  -  -  -  -  -  -  -  -  -  -  -					
7_		Light against to modify the against SAND trace County				
	0 0	Light grey to tan medium to coarse SAND, trace Gravel		38		
	a			Ţ		
•	0 0			Ţ		
8_				1		
				A		
9_						
	0 0	Light grey to tan medium to coarse SAND, trace Gravel		7.5		
	00			<b>[</b>		
10_						
	0 0					
11						
	8 ⁹ 9	Tan fine to medium SAND, trace Gravel	<b>1</b>	4.0		
	. O °			4.2		
	D			<b>T</b>		
12	0 D			<b>!</b>		
11_ 12_ 13				1		
	<b>1</b>				. مصد و دور م	
	[ ° O ° ]				Bottom of soil boring 13 feet bls.	
3	D.15 (\$14.15 \$		1 1		DIG.	



1377 Motor Parkway Islandia, NY 11788 Telephone: 516-232-2600 Fax: 516-232-9898

Page 1 of 1 SOIL BORING LOG

WELL NO.		NORTHING	EASTING	-		
TSE	3-16					
PROJECT NO.	./NAME		LOCATION			
05545Y <u>04 /</u>	Amtrak		Sunnyside Rail Yard			
APPROVED B		LOGGED BY				
H. Gregory	NTD A CTOE (TOT)	R. Kovacs	Queens, New York			
	NTRACTOR/DRIL		GEOGRAPHIC AREA OU-3			
<u>Lanu, Air o</u> Driil Bit Dia	METER/TYPE	BOREHOLE DIAMETER	DRILLING EQUIPMENT/METHOD	SAMPLING N	METHOD	START-FINISH DATE
	ve Sampler	2-inches	Geoprobe / Geoprobe	2" Macro		10/24/00-10/24/00
LAND SURFAC	CE ELEVATION	DEPTH TO WATER	BACKFILL	_ inacio	3010	
(FT.)		(Feet BLS)	Cuttings			
		-				
Depth, feet	Graphic Log	Vi	sual Description	Blow Counts	PID Values	REMARKS
				per 6"	(ppm)	<del>-</del>
	0	Black coarse to medium	SAND, trace Gravel, trace Ballast		43.2	
		+			<b>T</b>	
	0				II .	Odor detected
				/	<b>A</b>	
		Grey fine SAND, some m	edium Sand		<b>▼</b>	
		+		را ا	<b>A</b>	
		Grey medium Sand. som	e coarse Sand, trace Gravel	<del> </del>	44	
		, , , , , , , , , , , , , , , , , , , ,	,		44	10/
		1				Water encountered
	00	1				
-	. j . ja j . j	1				
5	0.70					Odor detected
						July delibered
- <b>-</b>	0 0	1			<b>A</b>	
	. ` . `a ` . `	+				
		Grey coarse Sand, some	medium to fine Sand	——		
		Sie, Soulde Calle, Sollie			120	
		}			<b>[</b>	
		}			<u> </u>	
		1				
10_		1				
_	<b>,</b>	<b> </b>				1
		}				
		Croy medium Cand a	Sino Cand, some source Card			
		Gray medium Sand, some	e fine Sand, some coarse Sand		62.3	
		}				
• •		}			<b>!</b>	Odor detected
		}			<b>[</b> ]	
		1			[ ]	
						i
					4	i
- <del>-</del>					4	i
	:::::::::::::::::::::::::::::::::::::					
15		0	AND			
		Grey medium to coarse S	ANU		18	
		-				
		1			<i> </i>	
<b></b>	[				[	
		1			1	
		}				
					1 [	
		1			<b>4</b>	Bottom of soil boring 19 feet

#### APPENDIX D

Groundwater Sampling Field Forms

Client:		A	mtrak			······	Project Nu	mber: 0055.00	65Y003	
Site Loc	ation:	0	U-6							
2,00		••••					<b></b>			
Well No	:	<u> 1</u>	nw-9	<u>D</u>		Weather:	10°F, 500	my, clear		
Date:		t	013/08		Purge Wa	ter Disposal: _	groun	<u>d.</u>		
Sampled	l Rv	PART	. In t	V	Well Dia	meter / Type:	YPVC_			
numproo	. 27.		<u> </u>	<u>.v</u>		_				
Depth of	f Well (ft):	; كـ	37.75	>			r Column (ft):	<u></u>		
Depth to	Water(ft):	E	4.22	·	Vo	lume of Water	r in Well (gal)			****
Depth to	Product (ft):	_			Volum	e of Water to	Remove (gal):			
_	well diameter:			1 in	2 in	4 in	6 in	8 in		
	gallons per foot:			0.041	0.163	0.653	1.469	2.611		
t.	ganous por roon								1 .	
Start Pu	rging:	_	<u>0935</u>				Purge Rate:	400 mL	<u>lmin</u>	
End Pur	ging:		100	3	Volu		emoved (gal):	225		
Method	of Purge:		1/20 X ista	lhic ain	n)	Method	d of Sampling:	pridattie	Drivib _	
	•	_	į.		T			1	, ,	
Physica	l Appearance/		Clu	<u>w, sui</u>	ant graj	<u>94 </u>				_
Comme	nts:				<i>J</i> 0 1					
Sample	s Collected:		VOC, SVC	C, PCBs, M	letals, Chloride,	Total Dissolve	ed Solids			
	/ no. bottles)									
			INAE				Laboratory:	Vocita	ch	
	Jample	JHWQ.	1005			<del></del>				
Field M	<b>leasurements</b>	# 								
	Time	Flow		PΗ	Conductivity	Turbidity NTU	DO mg/l	Temperature C°	ORP mV	
Cotul Linksb	0938	ш/л 4оС		SU	mS/cm	,,,10				
4.22		4 OC		7.21	1.27	0.0	0.00	16.47	-59	
4.22	0948	400		7.10	1.25	10.6	0.00	16.43	.62	
		400	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	L.O.	1.25	5.0	0.00	16.36	-66	
4.22		<u>'4α'</u>	)	7. 17	1.25	5.1	0.00	16.3i 16,29	-80	
4.22		400		1.25	1.25	5.7	0.00	16.20	-82	
4.22	1000	40		7.30	1.24	5.0	0.00	16.19	- 87	
41.22	1 <u>∞3</u>	40	2	7.32	1.24	5,3	0.00	10.17		
		****			<u> </u>					
-										
-					-					
}					+					
				·····		<u> </u>	<u> </u>			
ļ	<del></del>									
					<del> </del>	<del> </del>	<u> </u>			

Client:	Amtrak	Project Number: 0055.0065Y003
Site Location:	OU-6	
Well No: Date: Sampled By:	MW-95 6/3/08 JD, EV	Weather: 70F, putty (la ply) Purge Water Disposal: pw/4 Well Diameter / Type: PVC 4  **Topic Purge Water Disposal: pw/4  **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic Pvc 4 **Topic
Depth of Well (ft):	<u> 18:7</u> 0	Water Column (ft): 14.60
Depth to Water(ft):	4.06	Volume of Water in Well (gal)
Depth to Product (ft):		Volume of Water to Remove (gal):
well diameter: gallons per foot:	1 in 0.041	2 in 6 in 8 in 0.163 1.469 2.611
Start Purging:	1029	Purge Rate: 400ml Win
End Purging:	1057	Volume of Water Removed (gal):
Method of Purge:	peri pump	Method of Sampling: Pori, Plump.
Physical Appearance/ Comments:	cloon, slight	sity grey
Samples Collected: (analyses / no. bottles)	VOC, SVOC, PCBs, Met	tals, Chloride, Total Dissolved Solids
Sample	4me 1100	Laboratory :
Tiald Maganeamants:		

Riela i	vieasurement	S:						
. [	Time	Flow Rate	PH	Conductivity	Turbidity	DO	Temperature	ORP
dh		ml/min	SÜ	mS/cm	NTU	mg/l	C°	mV
4.06	1029	400						<u> </u>
4.00	1034	400	7.08	1.26	0.0*	0.00	16.07	<u> </u>
4.06	1039	400	6.97	1.19	0' O	0.83	16.03	<del>88</del> 79
4.06	1042	100	7.00	1,18	0.0A	<u> </u>	25 g	
4.00	1045	400	7.03	1.18	0,04	0.00	15.91	
4:0b	i ০৭%	400	7.06	1.18	0.0*	<u> </u>	)5.90	71
4.00	1051	400	7.08	1:18	0.0X	0.00	15.00	70
4.00	1054	400	7.10	1.17	0,0	0.00	5.70 15.80	69 69
4,0	, 1057	400	7.11	1.18	_0.0	0,00	15.00	
							<u> </u>	
						1		
		]				<u> </u>		
		<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>

Client:		Ā	Amtrak				Project Nu	mber: 0055.00	55Y003	
Site Loc	ation:	(	)U-6							
Well No		_	mw	-13D		Weather:	70°F, 01	ar,sunny		
Date:			Co 13	108	Purge Wa	Purge Water Disposal: <u>ayound</u>				
Sample	l By:	•	dDi	1	Well Dia	meter / Type:	PVC			
	f Well (ft):	-	38,	20		Wate	<u> 3</u> 4,41			
•	Depth to Water(ft): 3.79				Vo	olume of Wate	r in Well (gal)			
-	Product (ft):	-			Volum	ne of Water to	Remove (gal):			
рерш и	) i todace (11).	-			A. *	( Aim	\ 6 in	8 in		
	vell diameter:	,		1 in	2 in	4 in 0.653	1.469	2.611		
£	callons per foot:			0.041	0.163	0.033	/ 15407	2,011		
Start Pu	rging:	_	<u> </u>	319			Purge Rate:	450mL/mi	<i>v</i> 0	
End Pu	rging:		Ø	347	Volu	me of Water F	Removed (gal): _	2.4 gyl		
Method	of Purge:	-	ponistratic pump Method of Sampling: poristatic pump						pump	
Physica Comme	1 Appearance/ ents:		Clear	, slight .	follow 4mt					
-	s Collected: s/no. bottles)		VOC, S	VOC, PCBs, M	etals, Chloride,	Total Dissolv	ed Solids			
<	sample thing		08E	Ō			Laboratory:	Vovi tech		
7	DID '9(KO	s.; I	XVP- C	D 808Dax	30930					
Field N	Time	Flon	Rate	pН	Conductivity	Turbidity	<b>D</b> O	Temperature C	ORP mV	
	c.a	mi	min	SU	mS/cm	NTU	mg/l		440.*	
3.79 3.80	<u>0819</u> 0524	450	<b>)</b>	7.04	1.43	32.4	0.00	15. bg	201	
3,80	0829	45		7.19	1.43	31.6	0.00	15.76	177	
3.80		450		7.21	1.42	31.5	0.00	<u> 5-</u> 83	<u> </u>	
3.80		45:		7.27	1.42	32.7	0.00	1574	161	
3.≪0	0838	450	<u> </u>	7.32	1,41	34,7	0,0D	<u>15.79</u>	151	
3.80	0841	45	<b>)</b>	7.35	1,41	34.8	0.00	15.89	145	
3,80	0844	450	)	7.36	1.41	34.4	0.00	15.88	141	
3, 50	0547	<u>450</u>	>	7,30	1.40	34.6	6.00	15.5%	136	
						<u> </u>				
						<u> </u>	1			
						<u> </u>				
					1					
					<del> </del>	1				

Client:	:	Amtrak	Project Number: 0055.0065Y003
Site Lo	cation:	OU-6	
Well N	o:	<u>mw135</u>	Weather: 75°F SUMY Clar
Date:	•	6208	Purge Water Disposal:
Sample	ed By:	_ UDIEV	Well Diameter / Type:PVC
Depth (	of Well (ft):	19.10	Water Column (ft): 14,94
Depth :	to Water(ft):	4.10	Volume of Water in Well (gal)
Depth 1	to Product (ft):		Volume of Water to Remove (gal):
·	well diameter:	1 is	n 2 in (4 in 6 in 8 in
	gallons per foot:	0.04	11 0.163 0.653 1.469 2.611
Start P	urging:	1460	Purge Rate: 400 mV www
End Pu	rging:	1515	Volume of Water Removed (gal):
Metho	d of Purge:	peri pun	Method of Sampling: PRI PIMP
Physics Comm	al Appearance/ ents:	<u>Clan</u>	stight groupish tint.
_	es Collected:	VOC, SVOC, PCBs,	Metals, Chloride, Total Dissolved Solids
. ,		Hme 1520	Laboratory: \/cvited).
	Sampa		
Field I	Measurements		Conductivity Turbidity DO Temperature ORP
hw.	Time	Flow Rate pH ml/min SU	Conductivity Turbidity DO Temperature ORP  mS/cm NTU mg/l C° mV
16	1450	400	121 969 1711 1756 -7

riciu n	Measin cinche	).		NAMES OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY	erre to vertical apparation.	Maria de Maria de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería de Caractería d		
دطا	Time	Flow Rate	pН	Conductivity	Turbidity NTU	DO mg/l	Temperature C	ORP mV
dtw		anl/min	SU	mS/cm	IN LO	mga	I	A11.*
4.16	1450	400					1	
4.16	1455	400	(0.64	1.31	95,9	<u> </u>	17.55	
4.16	1500	400	6.62	1,33	60.0	1.23	17.62	-21
4.16	1503	400	6.63	1,33	61.6	1,09	17.77	-Z6
,	506	400	6.64	1.33	57.7	0.98	17:46	-31
4.16		400	6.67	1.33	66.3	080	17.99	-36
4.16		400	6.69	1.33	67.0	0.83	17.63	-38
4.16	i515	400	(0. (09)	1.33	<b>65.5</b>	0.82	17.58	-39
4.10	1515	400	6.65	1,33	67.3	0.20	17.60	- 37
Ī								
ļ	L	l	1	<del></del>				

Client:	Amtrak	<b>Project Number:</b> 0055.0065Y003					
Site Location:	OU-6						
Well No:	mw-19	Weather: 705, SUNTY 1 CKOV					
Date:	6/2/08	Purge Water Disposal: <u>Grand</u>					
Sampled By:	JD, EV	Well Diameter / Type: PVC					
Depth of Well (ft):	16.28	Water Column (ft):					
Depth to Water(ft):	7.18	Volume of Water in Well (gal)					
Depth to Product (ft):		Volume of Water to Remove (gal):					
well diameter:	1 in	2 in 4 in 6 in 8 in					
gallons per foot:	0.041	0.163 0.653 1.469 2.611					
Start Purging:	1015.	Purge Rate: 400ml min					
End Purging:	10496	Volume of Water Removed (gal):					
Method of Purge:	peristaltic pump	Method of Sampling:					
Physical Appearance/ Comments:	CVac						
Samples Collected: (analyses / no. bottles)	VOC, SVOC, PCBs, Metals	, Chloride, Total Dissolved Solids					
Simples	filme 1045 on 12	DHUA Laboratory :					

#### Field Measurements:

Field N	Aeasurement	s:						
	Time	Flow Rate	pН	Conductivity	Turbidity	DO.	Temperature	ORP
dtw		ml/min	SU	mS/cm	NIU.	mg/l	C°	mV
7.18	10:15	400						
7.50	1020	400	6,96	0.458	0.7	1.15	16.15	-32
7.80	1025	400	6.80	0.455	0:0X	1.39	16,20	131
5,00		400	6.78	G:455	1.3	2.24	16.19	~25
010	iďsl	400	6.81	0.463	0.0	2.03	15.92	Z9
8.25	1034	400	6.84	0,459	0.0	0.90	15.76	-37
8.45	1037	4 <i>0</i> 0	6.85	0.457	0.0	0.80	15.65	-39
8 <del>5</del> 6	1040	400	656	0,457	0.0	0.67	15.56	~43
8.70		400	4.88	0.456	0.0	0,63	15,58	<u>-4</u> S
5.83		400	6.87	0.455	0.0	0.61	<u>15.65</u>	-46
8.95		400	6.90	0,455	0.0	0.60	15.45	-47
0.1-						<u> </u>		
	<u></u>							
		<del></del>						
	<b></b>	<del> </del>						
	<u></u>		<u> </u>			<u> </u>		

### Low Flow Groundwater Sampling Field Form

Amtrak - Operable Unit 6, Sunnyside Yard, Queens, New York

Weli ID:	Mw-27
DTW:	10.91
nTD.	19 75

Date: 6/4/08
Intake (Depth of Pump): ~ \ \ 5 '

Total Volume Purged:

Purge Start: 0 (5

Time 1015 1020 1035 1035 1046	DTW (ft bls) [0.3 ft*] 10.91 10.95 10.95 10.95	FR (ml/min) [100-500 ml/min] 550 550 550 550 550 550	T (°C) [3%] 15.16 15.01 15.03 15.03	Sp. Cond. (mS/cm) [3%] 1.30 1.24 1.24 1.26 1.27	DO (mg/L) [10%] 4.06 1.82 1.35 1.35	7.00 6.96 6.92 6.91	37 31 26 29 26 21	0.0 0.0 0.0 0.0 0.0	Volume Purged (gallons)  O, (  Q, (  2.75  2.75  3.35
1043	10.95	550	15.07 15.07	1.30	1.10	7.00	20	0.0	4.5

*Ideal drawdown from start to finish, not stabilization criteria

Purge Water Description:	CLEAF,	moriess,	NO NOTICEABLE	SAGEN
Purge End:				
105			Sample Time on Bottles:	1050

NOTE: DUPLICATE (DUP-060408) COLLECTED AT 1100 (COLLECTED IN MW-27)

		Well 52	amping.	<u> </u>			
ent:	Amtrak			L	Project Nu	mber: 0055.00	)65Y003
Location:	OU-6		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
ill No:	mw-35			Weather:	75°,50	nou de	ear
	6/2/08		Purge Wate	er Disposal:	avouns	4	
te: mpled By:	<u> </u>	,		eter / Type:	U _{PVC}		
	<u></u>			Water	Column (ft):		
epth of Well (ft):			37-1	ume of Water		<del>,</del>	
epth to Water(ft):	<u> 5.89</u>					<u></u>	
epth to Product (ft):			Volume	of Water to R	temove (gai):	<del></del>	
well diameter:		1 in	2 in	4 in	6 in	8 in	
gallons per foot:		0.041	0.163	0.653	1.469	2.611	
art Purging:	DIES 18	313			Purge Rate:	400m	Llun
nd Purging:	1345	~	Volum	e of Water Re	emoved (gal):	Band	
-					of Sampling:	ar Dan	up
ethod of Purge:	-pri-pr	mp_			• - •		
nysical Appearance/	<del>,</del>						
omments:			<u></u>				
amples Collected:	VOC, SVOC,	PCBs, Metals, 0	Chloride, T	otal Dissolve	d Solids		
nalyses / no. bottles)							
range de	u on bothus	1245			Laboratory:		
sounder AM	M THI POW COR			<del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del>	·		
ield Measurements:				Turbidity	ĐO	Temperature	ORP
Time tw	Flow Rate ml/min	*	ductivity iS/cm	NIU	ng/l	C°	mV
39 1814	400				0.10	1714	165
20 1314		55 0.9 53 0.9	76	18.4	0,50	17.66	-155 -154
30 324				40.0	0.46	17,60	-152

oldra		ml/min	SU	mS/cm	NIU	rogy.	U	JJ134
5.84	1314	400						
is. 20	1319	400	6.55	096	18.4	6.49	17.66	-155
(v.30	324	400	6.53	094	218	0.50	17.57	-154
		400	6.51	096	40.0	0.46	17.60	-152
6.35 6.39		400	10.50	0.96	43,4	0,46	17.00	-151
		400	6.53	0.96	43.8	0.43	17.66	~154
641	1\$33	400		0.96	53.O	0.42	17.76	- 157
6.43			6.60	0.95	80.1	0.41	1786	1-164
6.43		400	6.75		803	0.39	17.90	-168
6,43	1342	400	6.87	0,95	77.8	0.37	17,95	-172
6.43	1345	400	6.93	0.95		<del></del>	17.95	-175
6.43	1348	400	6.99	0.95	80.9	G:35	3 15 13	-1.0
•						<u> </u>		<del> </del>
					<u> </u>	<u> </u>		
		4		"1	1	1	ì	1

### **Low Flow Groundwater Sampling Field Form**

Amtrak - Operable Unit 6, Sunnyside Yard, Queens, New York

Well ID: /	•	e Onk 6, Sunny				Date: 6/8/08 Intake (Depth of Pump):				
DTB: 14	1,35					Total Volume Purged:				
Purge Star	<b>t</b> :									
Time  200   305   210   215   220   225   230   235	DTW (ft bls) [0.3 ft*] 5.57 5.68 5.75 5.77 5.78 5.72 5.69 5.70	FR (ml/min) [100-500 ml/min] 300 ml/mn 250 - 250 250 250 250 250 250 250	T (°C) [3%] 16.83 17.09 \7.11 \7.21 \7.28 \7.23 \7.43	0.92	DO (mg/L) [10%] 3.0子 G.14 の、0 の、0 の、0	pH (SU) [+/- 0.1 units] 7, 91 7, 53 7, 58 7, 68 7, 68 7, 69 7, 73 7, 73	ORP (mV) [+/- 10 mV] 253 260 246 225 210 198 191 189	Turb (NTU) [10%] 27.8 32.2 35.8 36.4 39.4 39.1 39.2	Volume Purged (gallons)  O.H  O.6  I.1  I.5  Z.0  Z.Z	
	l wdown from ater Descri	n start to finish, not			00	OFLESS 1	ho /	y is iBLE	SHEE	
Purge En	4	· 40	-			Sample Time	e on Bottles	. \2	90	

### Low Flow Groundwater Sampling Field Form

Amtrak - Operable Unit 6, Sunnyside Yard, Queens, New York

Well ID: MW-38D	Date: 6/2/08
DTW: 5.66	Intake (Depth of Pump): ~35
ртв: 43.44	Total Volume Purged:

Purge Start: (320

^{*}Ideal drawdown from start to finish, not stabilization criteria

Purge Water Description: SUGHTLY YELLO	W ODDFLESS, NO NOTICEABLE SHEEN
Cyc	<u>.</u>
Purge End:	
Sample Time: \355	Sample Time on Bottles: 1355

Client:		Amtrak				Project Nu	mber: 0055.00	)65Y003			
Site Location:		OU-6						·			
Well No:			371)	Weather: 705, Clar, SUNNY							
Date:	_	6/2/	08	Purge W	ater Disposal:	ground					
Sampled By:	-										
Depth of Well (	ate:    C   2   68     ID   EV     Property   C   2   68     ID   EV     Property   C   2   68     ID   EV     Property   C   2   68     Property   C   2   68     Property   C   2   68     Property   C   2   68     Property   C   2   68     Property   C   2   68     Property   C   2   68     Property   C   2   68     Property   C   2   68     Property   C   2   68     Property   C   2   68     Property   C   2   68     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property   C   2     Property				Water Column (ft): 30.29						
Depth to Water(	ft):	(0.30	S	V	olume of Wate	er in Well (gal)					
-				Volun	ne of Water to	Remove (gal):					
wall dian	gallons per foot:  tart Purging:  Ind Purging:  Method of Purge:  POAL			2 in	4 in	∖ 6 in	8 in				
					(	1.469	2.611				
ganous pe	i toot.		0.072								
Start r mgmg.						400 mL	(min				
				Volu	ıme of Water F	Removed (gal):	1.494				
Method of Purge: POLI PIMP Method of Sampling: POLI PIMP						mb					
Physical Appearance/ Comments:  Clean, Slight brown Unt											
Samples Collection (analyses / no. bott	•	VOC, SV	OC, PCBs, M	etals, Chloride,	tals, Chloride, Total Dissolved Solids						
Sim	pie .	1145				Laboratory:					
Field Measure	ments:										
Tim Jhu	e Flow	Rate	pH SU	Conductivity mS/cm	Turbidity . NTU	<b>DO</b> mg/l	Temperature C	ORP mV			
6.30 1118	400	min									
6.30 1123			7.43	1.32	20.4	1.01	16.89	-182			
6.30 1126	ł u		7.43	1.31	27.2	0,80	17.07	-187			
6-30 1129	400		<u> 7.43</u>	<u>                                   </u>	30.6	0.73	17.09	-187 -188			
4.30 US2			7,43	1.31	26.1	0.65	17.26	- 188			
6.30 <u>1136</u>			<del> </del>	1.31	22.9	0.60	17.32	-189			
430 1138			7 <i>.44</i>	1.31	214	0.5%	17.84	184			
6.30 1141	<u>40</u>	<u> </u>	1/77	1: 31							
\$											
					<u> </u>						
-			· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>			<del> </del>			
				<u> </u>	<del> </del>	<del> </del>		<del> </del>			

### Low Flow Groundwater Sampling Field Form

Amtrak - Operable Unit 6, Sunnyside Yard, Queens, New York

Well ID:	MW	-45
DTW:	16.30	
DTB:	18.11	

Intake (Depth of Pump): 13.00

Total Volume Purged: 3.0

Purge Start: 405

							·			
Time	<b>DTW</b> (ft bls) [0.3 ft*]	FR (ml/min) [100-500 ml/min]	T (°C) [3%]	<b>Sp. Cond.</b> (mS/cm) [3%]	<b>DO</b> (mg/L) [10%]	pH (SU) [+/- 0.1 units]	ORP (mV) [+/- 10 mV]	<b>Turb</b> (NTU) [10%]	Volume Purged (gallons)	(
855		a5()				6.84		· · · · · ·	· A.	۲
905	10.30	550	15.00	1.62	8.46	7.05	87	79	· <u>O</u>	ł
960	10.37	550	14.75	1.64	8,44		.95	<b>48.0.0</b>	1.0	l
415	10.38	550	14.64	1.63	3 9.19	6.48	103	4.1	1.5	-
915 920	10.40	รรบ	14.67	164	8.56	6.90	110	5.6	7-0	-
425	10.34	550	14.67	1.63	8.50	6.85	115	59 <b>F. (</b> P	3,0	
930	10.34	550	14.65	1.63	8.55	6-80	119	5 2	3,0	
										1
<b></b>										1
	<u> </u>	<u> </u>								1
<u> </u>	<b></b>									
										1
	<u> </u>									1
<b> </b>	<del> </del>	<u> </u>		<u> </u>						
	<b> </b>	<u> </u>	<u> </u>	<u> </u>			<u> </u>			1
	<u> </u>		<del> </del>	<del> </del>						1
						<u> </u>				1
			<u> </u>	<del>                                     </del>	<del> </del>	1			<u> </u>	1
<u> </u>	ļ				<u> </u>			1		1
			<u> </u>	<u> </u>	1					ā

*Ideal drawdown from start to finish, not stabilization criteria

Purge Water Description: C PW

Purge End: 930

Sample Time: 0935

Sample Time on Bottles: 0935

Note: Pump running of AC correct in generator. Can not go any slower.

### Low Flow Groundwater Sampling Field Form

Amtrak - Operable Unit 6, Sunnyside Yard, Queens, New York

Well ID: Mw-480	Date: 6/3/08				
DTW: 7.03	Intake (Depth of Pump): $\sim 15^{\circ}$				
DTB: 39.42	Total Volume Purged:				

15

Purge Start: 1350

Time 1350 1355 1400 1405 1410 1418 1418	DTW (ft bis) [0.3 ft*]	FR (ml/min) [100-500 ml/min] 25() 45() 45() 45() 45() 25() 25() 25() 25() 25()	T (°C) [3%] 22.17 19.33 19.64 19.63 19.63 19.63 19.63	Sp. Cond. (mS/cm) [3%] \$576 \$364 \$256 \$256 \$254 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$245 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255 \$255	DO (mg/L) [10%] 15.81 2.96 2.10 1.30 1.30 1.26	pH (SU) [+/- 0.1 units] 7.77 6.02 5.81 5.84 5.87 5.92 5.93	ORP (mV) [+/- 10 mV] - 39 - 50 - 51 - 50 - 56 - 58 - 59 - 61 - 61	Turb (NTU) [10%] 56.4 31.9 9.0 6.8 6.0 5.8 5.6 5.9	Volume Purged (gallons)  O.5 O.75 I.25 I.25 I.2 2.5 3.0
1 1 , V					1.26			5,7	

*Ideal drawdown from start to finish, not stabilization criteria

Purge Water Description:

Purge End:

Sample Time: 1430 .

Sample Time on Bottles: 1430

Client:	Amtrak	Projec	t Number: 0055.0065Y003
Site Location:	OU-6		
Well No: Date: Sampled By:	MW-620 6/4/08 TO, AF	Weather: Purge Water Disposal: Well Diameter / Type: PV	c 4" Ø
Depth of Well (ft): Depth to Water(ft): Depth to Product (ft):	50.40 14.27	Water Column ( Volume of Water in Well (g	gal)
well diameter:	1 in 0.041	2 in 4 in 6 0.163 0.653 1.4	2.611
Start Purging: End Purging: Method of Purge:	1235 Lowflow	Purge Ra Volume of Water Removed (g Method of Sampli	al):
Physical Appearance/ Comments:			
Samples Collected: (analyses / no. bottles)	VOC, SVOC, PCBs, Metz	als, Chloride, Total Dissolved Solids Laborato	ry: VERITECH

Field

asurement:	5:	- Name of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control						1 ~ -
Time	Flow Rate	pН	Conductivity	Turbidity	DO	Temperature	ORP	VI
	ml/min	SU	mS/cm	NTU	mg/l	C°	mV	( f
ころグ	550	7.23	1.63	63,9	4.15	16.33	4!	19
7.40	530	7.16	1.60	37.1	6.21	16.30	45	14
2.45	550	7.16	1.60	18.8	3.05	16.42	46_	14
2 50	350	31.F	1.60	20.1	2.88	16.35	48_	14
253	550	7.16	1.62	Z0.8	2.61	16.41	48	T
1756	350	7.16	1.62	19.9	2.30	16.42	48	14
12 59		7.16	1.61	20.7	2.26	16.43	<i>5</i> 0	14
1305	550 550	7.16	1.62	19.9	2,25	16.48	50	19
		1713						
								]
								1
	<u> </u>		<b> </b>		<b> </b>			1
								1
			ļ					1
					<u> </u>			1
			<u> </u>	<u></u>	<u> </u>			┦ .
				<u> </u>	ļ			4
								J

TIMEON BOTTLES: 13:05

Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Contro

				VI OH DAMPALL	<u> </u>				
Client:		Amtrak				Project N	umber: 0055.0	0065Y003	
Site Lo	ocation:	OU-6							
Well N	o:	n	NN-188	_	Weather:	70%	claring	OVENCER	
Date: VOIL ON Purge Water Disposal: Crowd									
Sample	ed By:	<u></u>	Well Diameter / Type: PVC						
Depth (	of Well (ft):	<u></u>	7.10	<del></del>	Wat	er Column (ft):			
Depth 1	to Water(ft):		,49	v	olume of Wat	er in Well (gal)	<del></del>		
Depth 1	to Product (ft):			Volum	ne of Water to	Remove (gal):			
	well diameter:	•	1 in		4 in	6 in	8 in		
	gallons per foot:		0.041	0.163	0.653	1.469	2.611		
Start P	urging:	(0	<u>51 </u>			Purge Rate:	350		
End Pu	rging:	<u>lo</u>	<u>56</u>	Vol:	me of Water	Removed (gal):	1.5 gel	)	
Method	d of Purge:	pui	staltic	fump	Metho	od of Sampling:	ν.		
Physica Comme	al Appearance/ ents:	<u>_ct</u>	staltic our						
	es Collected: es / no. bottles)	VOC, S	SVOC, PCBs, 1	Metals, Chloride	, Total Dissolv	ed Solids			
	sample	tmo;	1105			Laboratory:	Venider	Δ	
Field N	Measurements	•							
	Time	Flow Rate	pH SU	Conductivity mS/cm	Turbidity NTU	DO mg/l	Temperature C°	ORP mV	
, 4ej	1036	350	6.44	0.297	3.3	0.00	14,978	-99	
.49	1041	350	6.28	0.301	2.7	0.00	14.90	98	
2,00	1744	3 <b>5</b> 0	6.30	0.304	2.4	0.00	ોત્ર-ક્ષ્	~(O5	

O. 4 -109 <u>0.00</u> 14.84 <u>ن،33</u> 0.306 1047 350 14.83 14.80 3.5 0.00 6.36 0 308 -113 1050 350 -115 <u>0.308</u> 3.4 3.3 0,00 6.37 1053 <u> 360</u> 14.86 -118 0.00 0.301 1056 350

			سنسب					CENTODO.	
Client:		Amtrak		<u> </u>		Project Nu	mber: 0055.00	165 Y 003	
Site Lo	cation:	OU-6	<u>,,</u>		<del></del>				
Well No	o:	m	N-70		Weather:	-705, <u>C</u> lea	ar \$5000	1	
Date:			2/08,	Purge Wa	nter Disposal:				
Sample	d By:	<u>ان</u>	>ie/	Well Dia	meter / Type:	PVC			
Depth c	of Well (ft):	15	. O		Water	r Column (ft):	<u></u>		
Depth to Water(ft): 5,50				. Vo	olume of Water	r in Well (gal)	<u></u>		
-	o Product (ft):			Volum	e of Water to	Remove (gal):	<u> </u>	······································	
•	well diameter:		1 in	2 in	4 in	6 in	8 in		
	gallons per foot:		0.041	0.163	0.653	1.469	2.611		
Start Pu	າເວັກວະ	091	O ^O I			Purge Rate:	400h	Ulma	
End Pu	_	09	35	• Volu	me of Water R	emoved (gal):	3,59d		
	l of Purge:	plus	stallic p			d of Sampling:			,
Physica Comme	al Appearance/ ents:		stallic pl						
	es Collected: s/no. bottles)	VOC, S	VOC, PCBs, M	fetals, Chloride,	Total Dissolve	ed Solids			
Z	imple time	onbottles.	0935			Laboratory:	- Linderstand - A Will William		
	Measurements								
	Time	Flow Rate	pН	Conductivity	Turbidity NTU	DO mg/l	Temperature C°	ORP mV	
₩ ,50	0909	ml/min 400	50 10:36	mS/cm 1-0-3-51-	5.8	0.96	16.97	=58=	
الق	0914	400	6.3Z	0.351	5.8	0.96	16.97	-55	ļ
.78	09 19	400	ن. ا <del>ق</del>	0.349	4.8	0.78	17.00	59	ĺ

Field M	Measurements	•						
	Time	Flow Rate	PH	Conductivity	Turbidity	DO	Temperature	ORP
dtw		ral/min	SU	mS/cm	NTU	mg/l	C°	m∀
5,60	0909	400	to. 32	0.381	5,8	<del></del>	1697	- <del>5</del>
5,47	0	400	6.32	0.351	5.8	0.96	16.97	-55
5.78	09 19	400	(b. 18	0.349	4.8	0,78	170010	-59
5.80	0922	400	6.23	0,350	4,2	0,76	17.06	-67
5.91	0925	400	28.0	৫.३५४	2.3	0.63	16.763	-72
5.98	0928	460	6.28	0.348	2.5	<u>0.63</u>	16.57	- 73
6.03	0931	400	(29	0.346	2.8	0.62	া ৬, 58	-75
80.0	0934	400	6.30	0.345	3,0	0.62	16.60	~77
•								
								<u> </u>
								ļ

Client:		Amtrak Project Number: 0055.0065Y003							065Y003	
Site Loc	eation:		OU-6							
Well No	);		wi	N-79	Damen W	Weather:	75°F,	nosti	y pun	n
Date:		-		3 0 0	•		2" PVC			
Sample	i By:	_	Č	D, EV	Well Dia	meter / Type:	2 PVC			<b></b>
Depth o	f Well (ft):	_	[4.4	58		Wate	er Column (ft):	-6	, 64	
Depth to Water(ft):			7,0	n)	. Ve	olume of Wate	r in Well (gal)	<u> </u>		
Depth to Product (ft):		: _	<u> </u>		Volum	ne of Water to	Remove (gal):			
well diameter:		:		1 in	2 in	4 in	6 in	8 in		
gallons per foot:				0.041	0.163	0.653	1.469	2.611		
Start Purging: 1317			7			Purge Rate:				
		•			Volu	me of Water F	Removed (gal):			
End Purging:  Method of Purge:			perist	ultie pu	MD	Metho	d of Sampling:	peristelle	: pump	
Comme	Il Appearance ents: s Collected:		Clear voc, s		1114 & W	MMG ON	thoritog red Solids			
(analyses	s / no. bottles)	•								
Sa	imple tim	٠ .	[34	9			Laboratory:			, <u> </u>
Field M	1easurement	s:								
dtw	Time	46.0	Rate min 1	p∄ ▼V SU	Conductivity mS/cm	Turbidity NTU	DO mg/l	Temperature C°	ORP mV	
1.94	1317	400	)							•
7.90	1322	400		6.32	0.513	123,0 190,0	5.62	15.05 14.83	205 200	
7.90	1327	40		6.23	0.509	264.0	5.28	14.72	203	
7.90	1330	400		6.31	0.508	302.6	5.32	14,77	197	
7,90	1333 133V	40		6.57	0.506	300.0		1488	192	
7.90		40		6.69	6.504	302-0	5.31 5.26	14.81	16]	
7.90	1342	40		6.71	0,503	301.0	5.29	14,79	186	
7,90	1345	4 c	Ø	6.71	0.503	305,6	5,29	14.80	1/855	
						1				
										ĺ
İ								<u> </u>		

Client:	Amtrak		Project Number	: 0055.0065Y003 "	
Site Location:	OU-6		•		
Well No:	MN-80	Weather:	(Fig. cle	zd <b>y</b>	
Date:	4108	Purge Water Disposal:	<u>ground</u>		
Sampled By:		Well Diameter / Type: _	Z"PVC		
Depth of Well (ft):	18.95	Water	Column (ft):	8.43	
Depth to Water(ft):					
Depth to Product (ft):	Volume of Water to Remove (gal):				
well diameter:	1 in	(2 in ) 4 in	6 in	8 in	
gallons per foot:	0.041	0.163 0.653	1.469	2.611	
Start Purging:	1254	_	Purge Rate: 300	)-350 mL/min	
End Purging:		Volume of Water Re	emoved (gal): 2.(	<i>૦</i> જારી	
Method of Purge:	DOM OWN	Method	of Sampling: 1001	i ⁰ pump.	
Physical Appearance/ Comments:	clear puge	waler	<b>1</b>		
Samples Collected: (analyses / no. bottles)	VOC, SVOC, PCBs, Metal	s, Chloride, Total Dissolve	d Solids		
sample time:	1940		Laboratory: VQV	ritech	
Field Measurements:					
	w Rate pH Co d/min SU	onductivity Turbidity mS/cm NTU	1	oerature ORP.  C° mV	

Riefd I	Aeasurement	s:		and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s				
	Time	Flow Rate	рH	Conductivity	Turbidity	DO	Temperature	ORP
	55.000	mVmin	SU	mS/cm	NTU	mg/l	C°	mV
0.52	1254	350						
10.62	1259	350	(0.77	0.450	14.4	5.32	14.30	80
10.61	1304	<i>3</i> 00	0.70	0,515	13.1	3.4	14.07	34
10.01	1301	300	6.80	0.769	12.7	<u> 2.57</u>	14.63	15
10.121	1310	300	6.74	0.896	13.0	2.35	14.31	3
10.01	1313_	300	6.65	1,44	13.4	2.19	14.32	-26 -37
10.61	1316	300	6.64	1.82	10.9	202	14.30	
10.01	<u> 1319 </u>	<u> 300 </u>	60.67	2.09	M10	1.88	14.30	55
10.6	1322	<u>608</u>	(s.12 ·	2.25	8,9	1.77	14.47	-54
10.61	1325	300	674	2,39	10.1	1.77	<u>  14.41</u>	57
10.01	1328	<i>वे</i> फ	6.75	2.46	11.9	1776	14,45	~(oO
10.0	1331	300	_ الترا	2,49	121	1.75	14.43	~(c2
***************************************							<u> </u>	
							<u> </u>	
					ļ	ļ		
			<u> </u>			<u> </u>	<b></b>	
			<u> </u>		<u> </u>	<u> </u>	<u> </u>	

Client:	Amtrak	<b>Project Number:</b> 0055.0065Y003
Site Location:	OU-6	
Well No: Date: Sampled By:	50-60 10-60 10-70 10-70	Weather: OOF, OverCOST.  Purge Water Disposal: OVOVO  Well Diameter / Type: PVC
Depth of Weil (ft):  Depth to Water(ft):  Depth to Product (ft):	27.15	Water Column (ft): 9.02  Volume of Water in Well (gal)  Yolume of Water to Remove (gal):
well diameter: gallons per foot:	1 in 0.041	2 in 4 in 6 in 8 in 0.163 0.653 1.469 2.611
Start Purging:	<u>_0920</u>	Purge Rate: 300 mUM7
End Purging:	0954	Volume of Water Removed (gal): 2.75
Method of Purge:	paristaltic	pump. Method of Sampling: pen Stelling pump
Physical Appearance/ Comments:	wood think	nsilm
Samples Collected: (analyses / no. bottles)	VOC, SVOC, PCBs, Met	etals, Chloride, Total Dissolved Solids
Sampleto	ne: 0555	Laboratory: Van Hoh.

### Field Measurements:

T. KOMO A	TOM SEE CAROLE							
	Time	Flow Rate	pН	Conductivity	Turbidity	DO	Temperature	ORP
d'w		ml/min	SU	mS/cm	NIU	mg/l	C -	mV
18.13	0920	300						L 460 CT
18,13	0925	<u>3</u> 00	6.45	0.635	<u> 203 O</u>	6.17	14.58	165
18:13	09.30	300	6.04	0.631	<i>1</i> 58	6,48	14.01	17)
1813	CP33	300	607	0-612	144	650	14.57	173
18,13	0936	300	6,03	0,581	1060	6.68	1450	174
18.3	0939	300	6,04	0.558	97.4	6.52 6.55	14,49	175
18.13	0942	300	6004	೦೮೩೨	70,9		14.47	176
18,13	0945	300	w. 01	0.516	43.0	しいち	14.47	178
18113	Gruz	300	(a, C)]	0.50%	<i>উ</i> ₹,5	6.58	14.49	179
18:13	O751	300	6.01	0.495	26.8	6.54	14,45	180
18/13		350	6.09	0.502	23.7	6,55	14.47	<u>। द्य</u> ी
1 - 1			16					
				A				]]
,	<u> </u>	·····						

Purge Start:

Amtrak - Operable Unit 6, Sunnyside Yard, Queens, New York

Well ID: MV-83	Date: 6/4/08
DTW: 14.10	Intake (Depth of Pump): 201
DTB: \$2.10	Total Volume Purged:

Time 1145 1150 1155 1200 1205 1210	DTW (ft bis) [0.3 ft*] 14.10 14.10 14.10 14.10 14.10	FR (ml/min) [100-500 ml/min] 550 550 550 550 550 550	T (°C) [3%] 14.61 14.36 14.31 14.35 14.37	Sp. Cond. (mS/cm) [3%] 1.37 1.12 0.430 0.895 0.410 0.840	DO (mg/L) [10%] フ.34 フ.43 フ.83 フ.86 フ.86 マ.84	pH (SU) [+/- 0.1 units] 子の1 子の4 スの1 スの1 スの4	ORP (mV) [+/- 10 mV] 9   9 8 10 3 10 6 10 5	Turb (NTU) [10%] 35.7 17.6 19.8 2.5 2.5	Volume Purged (gallons)  1.0 2.10 2.75 3.75 4.75

*Ideal drawdown from start to finish, not stabilization criteria		
Purge Water Description: Clear		
Purge End: 1210		
Sample Time: 1315	Sample Time on Bottles:	1215

Client:	Amtrak	Project Number: 0055.0065Y003					
Site Location:	OU-6						
Well No:	MW-84	Weather: ~60° overcast					
Date:	615/08	Purge Water Disposal:					
Sampled By:	<u>07,70</u>	Well Diameter / Type: PVC					
Depth of Well (ft):	2230	Water Column (ft):					
Depth to Water(ft):	17.76	Volume of Water in Well (gal)					
Depth to Product (ft):	- TAT. (10)	Volume of Water to Remove (gal):					
well diameter: gallons per foot:	1 in 0.041	2 in 4 in 6 in 8 in 0.653 1.469 2.611					
Start Purging:	808	Purge Rate: 550 mL/wiv					
End Purging:	<u> </u>	Volume of Water Removed (gal):					
Method of Purge:	penistaltic pun	w Method of Sampling: purshautic way					
Physical Appearance/ Comments:	clear						
Samples Collected: (analyses / no. bottles)	VOC, SVOC, PCBs, Met	als, Chloride, Total Dissolved Solids					
Sample time:	. <u>0535</u>	Laboratory: Ventech					
Field Measurements:							
Time Flo	w Rate pH	Conductivity Turbidity DO Temperature ORP					

Me	asurement	s:							3
	Time	Flow Rate	pΗ	Conductivity	Turbidity	DO	Temperature	ORP	PTu
		ml/min	SU	mS/cm	NIU .	.mg/l	C°		
	808	550	7.88	0,346	51.0	9.48	12,23	79	11.76
	813	560	7.52	6.383	60.0	981	12-17	99	17.76 17.80 17.80
	0818	550	7.20	0,372	58.8	9.81	12.13	113	11.80
<u> </u>	C521	550	7.20	0.35K	50.2	93.79	12.17	113	17.79
	O 24	450	7.30	0.35#	60.0	9.75	(2.22	109	∫17.7Ĥ
	U827	รรอ	7.36	0,354	61.0	9.79	12.19	100	1779
	283U	550	7,43	0.347	600	9.74	12.21	103	
	7833	<u> </u>	7.48	0.3460	61.2	9,77	12.17	100	
ļ`		~							
	······	1			7				
			0 /						
									]
ļ			M	1					]
<b>—</b>									
									]
-			<u> </u>	<u> </u>					]
l		<del></del>		L	l.,,	L	<b></b>	A	us.

Amtrak - Operable Unit 6, Sunnyside Yard, Queens, New York

Well ID: /	MW-85		Date: 6/2/08								
	7.36					Intake (Depth	of Pump):	(1)			
DTB: !	5,99					Total Volume					
	,	- 2									
Purge Star	rt: '4°	<u>5U</u>									
	DTW	FR	T	Sp. Cond.	DO	pН	ORP	Turb	Volume		
Time	(ft bls) [0.3 ft*]	(ml/min) [100-500 ml/min]	(°C) [3%]	(mS/cm) [3%]	(mg/L) [10%]	(SU) [+/- 0.1 units]	(mV) [+/- 10 mV]	(NTU) [10%]	Purged (gallons)		
1450	7. <b>リ</b>	250mL	17.80	• 189	7.02	6.77	13%	25.5	ر <del>و</del> د		
145.5	7.41	250	1777	0,200	6.0	5.55	193	25.0	0 75		
1500	7A1	250	17,84		5.81	5.40	213	16.0	1,2		
1505	7-41	350	17.34	5.30×	5.))	5-64	317	17.7	1.75		
1510	7.4	250	17.70	0.336	4.65	5-76	715	18.1	7.0		
1515	7,41	250	17.73	0.339	4.48	5.93	213	33,8	2,3		
15 20	7.41	250	17.56	0.339	4.39	6.08	510	40.1	2.6		
1523	741	250		0.339	4.36	6.11	208	46.9	2.9		
1252	7.41	250	13.61	0,311	4.33	6.12	<u>F05</u>	40.9	3.3		
			············								
					***************************************						
								•			
								-			
	<u> </u>										
*1-1			otobili-oti	L			1				
"ideal draw	vaown trom	start to finish, not	stadilizatio!	i cineria							
Purge Wat	ter Descrip	otion:									

Purge water Description:	
Purge End:	
ruige Liid.	
Sample Time:	Sample Time on Bottles:

Amtrak - Operable Unit 6, Sunnyside Yard, Queens, New York

Well ID: DTW:

DTB:

1200 Purge Start:

05/21/08

Intake (Depth of Pump):

Total Volume Purged:

1221	Time 1200 1204 1208 1212 1224	DTW (ft bis) [0.3 ft*] 7.54 7.65 7.65 7.65 7.65	FR (ml/min) [100-500 ml/min] 350 350 350 350 350 350	T (°C) [3%] 14.77 13.92 13.36 13.17 13.08	0,423 0,422 0,424	DO (mg/L) [10%] 2.63 2.45 2.42 2.39 2.43 2.43	pH (SU) [+/- 0.1 units] 6.41 6.36 6.29 6.24 6.20 6.20	ORP (mV) [+/- 10 mV] 132 133 144 151 163	Turb (NTU) [10%] 39.6 25.6 11.2 8.7 8.3 7.7	Volume Purged (gallons)  O. 2.5  O. 5  I.O  1.75  2.0

*Ideal drawdown from start to finish, not stabilization criteria

Purge Water Description:	HOSTLY	CLEAR	oroptess	

1225 Sample Time on Bottles:

Sample Time: 1225

Shoupich for vois, Svois, TAL metals,
PLBS, Chlorid, TOS

Amtrak - Operable Unit 6, Sunnyside Yard, Queens, New York

Well ID:	MW-87
DTW:	5,90
DTB:	13,75

Date: 5/21/08

Intake (Depth of Pump): 12 ft Sclov TOC

Total Volume Purged: 2,5 5cl

Purge Start: 1050

Time 1050 1054 1058 1102 1108 1111 1114 1117	DTW (ft bls) [0.3 ft*] 5.90 6.46 6.59 6.60 6.64 6.63 6.67 6.67	FR (ml/min) [100-500 ml/min] 350 350 350 300 300 300 300	13.81 13.02 13.48	\$p. Cond. (m\$/cm) [3%] 0.542 0.52] 0.490 0.490 0.485 0.485 0.489	DO (mg/L) [10%]  \ . & ( \therefore \therefore \therefore \there \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \therefore \	pH (SU) [+/-0.1 units] 7.17 7.30 7.59 7.76 7.91 7.88 7.95 7.97 7.97	ORP (mV) [+/- 10 mV] - 71 - 10 7 - 130 - 144 - 154 - 156 - 161 - 161	Turb (NTU) [10%] 198 165 167 157 163 159 139 121	Volume Purged (gallons)  0 0.75  1.0  1.5  1.75  2.0  2.25  2.50

*Ideal drawdown from start to finish, not stabilization criteria

Purge Water Description: Purge hade is Slight brownish, turbid Colur. Turbidity does not appear to be decreasing with purging.

Purge End: 1120

Sample Time on Bottles: 1120

Sample Time: 1/20
Simpled for vois, Svois, TAL Metals, pels, PDS, Chloride

Amtrak - Operable Unit 6, Sunnyside Yard, Queens, New York

MW-88 5.05 14.94 Well ID: DTW:

DTB:

5/21/08

Intake (Depth of Pump): 10 ft Balou TOZ

Total Volume Purged: 1.75 50)

Purge Start: 0955

Time 0955 0959 1004 1008 1012 1015	DTW (ft bis) [0.3 ft*]  \$ 5.05  5.52  5.55  5.57  5.59  5.59	FR (ml/min) [100-500 ml/min] 3 50 3 50 3 50 3 06 3 06 3 0 6	(3.55 13.25 13.27	Sp. Cond. (mS/cm) [3%] 0.548 0.535 0.524 0.526 0.529 0.530	DO (mg/L) [10%] 1, 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	pH (SU) [+/- 0.1 units] 6.88 6.91 6.82 6.81 6.81	ORP (mV) [+/- 10 mV] - 9.3 - 10.9 - 11.5 - 11.7 - 11.7 - 11.7	Turb (NTU) [10%] [32 136 66.6 34.2 21.3 21.1	Volume Purged (gallons) O.25 O.50 O.75 1.25 1.50 1.75

^{*}Ideal drawdown from start to finish, not stabilization criteria

*ideal drawdown	from start to line	SH, HUL Stabilization Green			1	
Purge Water De	scription:	Clerry minur am	ounts of Smi	11, red fr	AMIC ( possis)	y iron Shle)
		J				
					100000000000000000000000000000000000000	
man and Provide	1020					
Purge End:	<u> </u>					
Sample Time:	1020			Sample Tir	ne on Bottles:	<u>(620</u>
Sample Time.	C- 11066 S	UDEC. TOL Metall,				
Jun by	L tor Voes, 5	vocs, TAL Metall, Chloride, TOS				
•	( (12)	71101 100/ 100				

Amtrak - Operable Unit 6, Sunnyside Yard, Queens, New York

Well ID: Mw-89 3.89

DTW: 13.87 DTB:

Purge Start: 0905

5/21/08

Intake (Depth of Pump): 9 ft Selan TOL

Total Volume Purged: 1.5 50

Time 0905 0909 9913 0917 0920 0923	DTW (ft bls) [0.3 ft*] 3.8°C 4.17 4.17 4.17 4.17	FR (ml/min) [100-500 ml/min] 400 400 350 350 350 350 350	14.21 14.12 14.22 14.16 14.13	0,518 0,515	DO (mg/L) [10%] 1.48 1.25 1.11 1.03 1.05	pH (SU) [+/- 0.1 units] 6.44 6.61 6.59 6.59 6.61 6.62	ORP (mV) [+/- 10 mV] \ 3 Z \ 2 O 窓子 ⓒ 3 5 G	Turb (NTU) [10%] 36.2 24.2 13.7 9.8 10.0 Q.1	Volume Purged (galions)  O.S. O.F. I.O. I.25 I.SO

*ideal drawdown	from	start to	finish,	not	stabilization	criteria

figeal drawdown				SOHE	STAULENTS.	ONORLESS	
Purge Water Des	scription:	1 (0) / 1/8	- CLE 1717 +	7-7(6)			
						A CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF TH	
		····	<u>,</u>				
Purge End:	0925	<b>&gt;</b>					

0925 Sample Time on Bottles:

Sample Time: 0925

Shaph for UUCI, Sucia, TAL Models, Peas, Chlorid, TOS

Amtrak - Operable Unit 6, Sunnyside Yard, Queens, New York

Well ID: MW - 90	Date: 6/3/08
DTW: 4.74	Intake (Depth of Pump):
DTB: 1409	Total Volume Purged:

Purge Start: (O() ()

Sample Time:

Time   000   005   010   1015   1020   1023   1026   1031   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035   1035	DTW (ft bls) [0.3 ft*]  4,74  4,89  4,90  4,91  4,91  4,91  4,91  4,91  4,91  4,91  4,91	FR (ml/min) [100-500 ml/min] 350 350 250 250 350 350 350 350 350 350 350 350 350	T (°C) [3%] 18.22 17.4) 17.88 17.89 17.71 17.71 17.62 17.64	Sp. Cond. (mS/cm) [3%] 1.33 1.21 1.18 1.24 1.43 1.50 1.50 1.50 1.48	DO (mg/L) [10%] 7.02 2.23 1.61 1.30 1.30 1.07 1.03 1.00 0.95	pH (SU) [±/- 0.1 units] 6.5 7 6.31 6.10 6.20 6.33 6.40 6.49 6.55 6.58	ORP (mV) [+/- 10 mV]  1	Turb (NTU) [10%] 64.\ 18.\ 0.0 6.0 6.0 1.1 1.1 0.0	Volume Purged (gallons)  O.6 O.8 1.3 1.6 1.9 2.3 2.5 2.5

*Ideal drawdown from start to finish, not stabilization criteria		
Purge Water Description: Clear		WALLES TO THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE
Purge End: 1035		
Sample Time: 640	Sample Time on Bottles:	1040

Amtrak - Operable Unit 6, Sunnyside Yard, Queens, New York

Well ID: 1	Date: 6/3/08
DTW: 5.80	Intake (Depth of Pump): ~   2 '
DTB: (5,00	Total Volume Purged:

Purge Start: 🗢 🕄 🖰

Time  0830 0835 0840 0845 0850 0855 0900 0903	DTW (ft bls) [0.3 ft*] 6.0 6.03 6.03 6.04 6.05 6.05 6.05	FR (ml/min) [100-500 ml/min] 250 250 250 250 250 250 250 250 250 250	15.81 15.71 15.88 15.89 15.78 15.90	Sp. Cond. (mS/cm) [3%] 1.99 1.50 1.11 0.738 0.533 0.480 0.473 0.484	DO (mg/L) [10%] 5.07 3.19 2.56 2.29 2.01 1.71 1.45 1.38	pH (SU) [+/- 0.1 units] 6 . 5 \ 6 . 44 6 . 22 6 . 22 6 . 19 6 . 35 6 . 47 6 . 55	ORP (mV) [+/- 10 mV] - 1 2 0 - 11 0 - 7 2 - 5 9 - 10 5 - 11 7 - 1 2 0	Turb (NTU) [10%] 869 418 220 103 99.6 74.5 65.7 48.1	Volume Purged (gallons) 0.2 0.4 0.6 0.75 1.25 1.5 1.75 2.0
0909	6.07	250	16.08	0.485	1.29	6.56	-125	42.2	

"ideal drawdown from start to	Julisti, not stabilization ontena	
Purge Water Description:	SLIGHTLY BROWN AT THE BEGINNING.	MOSTLY
	CLEAR AFTER 5 MW. PURGING. DOG	orless.
	NO NOTICEABLE SHEEN	
Purge End:		
Sample Time: 09\	5 Sample Time on Bottles:	0915

Client:		Amtrak				Project N	umber: 0055.00	065Y003	
Site Lo	cation:	OU-6							
Well N	o;	<u>mw</u>	)2	ı			nostly si	onny, ba	lly
Date:		6/3/08		Purge W	ater Disposal:	groung	······································		
Sample	ed By:	<u> </u>	,EV	Well Dia	ameter / Type:	Z" PVC			···
Depth o	of Well (ft):	13_	.9		Wate	er Column (ft):	<u>(o.</u>	4	
Depth t	to Water(ft):	7.5	0	v	olume of Wate	er in Well (gal)			~
Depth t	to Product (ft):			Volur	ne of Water to	Remove (gal):			
-			+	2 in	4 in	6 in	8 in		
	well diameter:		1 in 0.041	$\begin{pmatrix} 2 \text{ in} \\ 0.163 \end{pmatrix}$	0.653	1.469	2.611		
	gallons per foot:		0.041	0.103/	0.033	2.107	#		
Start P	urging:	115	9			Purge Rate:	<u>400ml</u>	Juny	
End Pu	rging:	122	7	Volu	ıme of Water F	Removed (gal):	2.5 gw		
	d of Purge:	Onai	ish Han.	eunio	Metho	d of Sampling:	noviotal	tic per	up
		Fem	<u> </u>	γγ					,
Physica	al Appearance, ents:	c/ec	<u> </u>						····
			TIOG DOD. M	Catalan Chinaida	Total Diasak	rad Colido			<del></del>
-	es Collected: s / no. bottles)	voc, s	VOC, PCBs, M	leiais, Chionde	, Total Dissolv	eu sonus			
•							3 / +1 .		
50m	nple time:	123	4			Laboratory:	<u>Von tech</u>	•	
Field N	Measurements	s:					- Constitution Picture		7
	Time	Flow Rate	Hq	Conductivity	Turbidity	<b>D</b> 0	Temperature	ORP	
grw		ml/min	SÜ	mS/cm	NTU	mg/l	C"	mV	
7.50 7.53	11:59 1204	400	78، ی	0.987	24.1	0.04	17.56	157	
, 53 , 53	1209	400	6 68	1.17	17.8	0.00	17:58	157	
7,53	1212	400	(0.7)	i.16	13.9	0.00	17, 47	155	
7.53	1215	400	6.75	1.14	6.প্র	0,00	17.54	151 147	ł
7.53	1218	400	6.82	1.13	40.5	0.00	17.55	143	
7.53	1221	400 400	6.88 6.90	1.13	40,4	0.00	17.50	142	
7.53	1224	400	6,91	1,14	40.9	0,00	17.50	140	
7.53	16-6-1		(01.7)	<del>                                     </del>					
									-
					<u> </u>	<u> </u>			1
				<u> </u>		<u></u>			1
		~~~~~			<u> </u>				1
					<u> </u>				1
		<u> </u>			<del> </del>		1	<b></b>	1

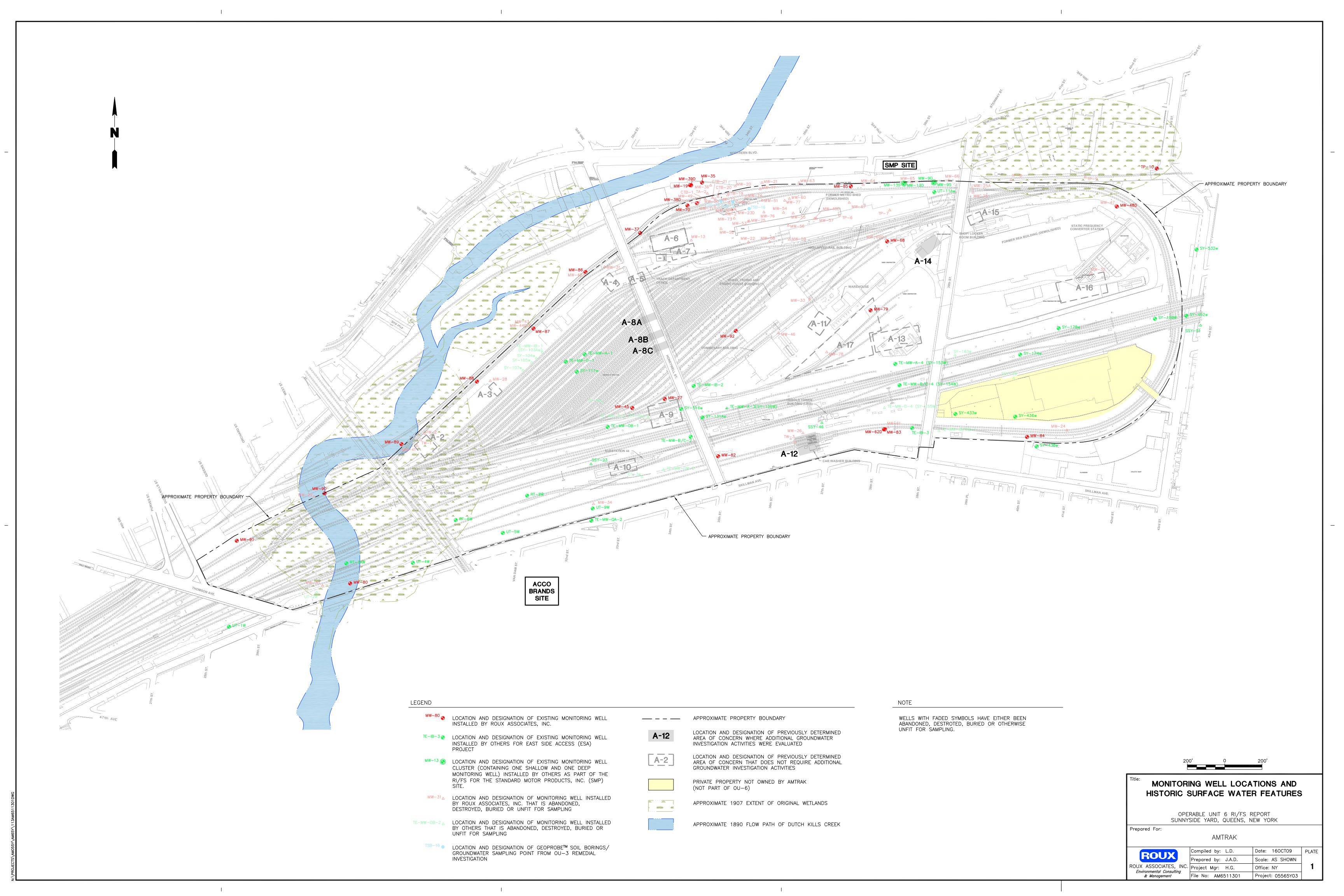
Client:	Amtrak	Proj	ect Number: 0055.00	065Y003
Site Location:	OU-6			
Well No: Date: Sampled By:	TE-MW-A4 6/5/08 0,70		-, overcast yound to	
Depth of Well (ft):  Depth to Water(ft):  Depth to Product (ft):	58.20 35.45	Water Column Volume of Water in Well Volume of Water to Remove	(gal)	
well diameter:	1 in 0.041	2 in 4 in 0.163 0.653	6 in 8 in 1.469 2.611	, e
Start Purging: End Purging:		Purge Volume of Water Removed	,	
Method of Purge:	peristaltic por	Method of Sam	pling: <u>PeriStalt</u>	is brub.
Physical Appearance/ Comments:	note: well ber	y sithy your partie	M Hany	defermines
Samples Collected: (analyses / no. bottles)		tals, Chloride, Total Dissolved Solids		
Sample tim	v:	Labora	atory: Verite	<i>y</i>

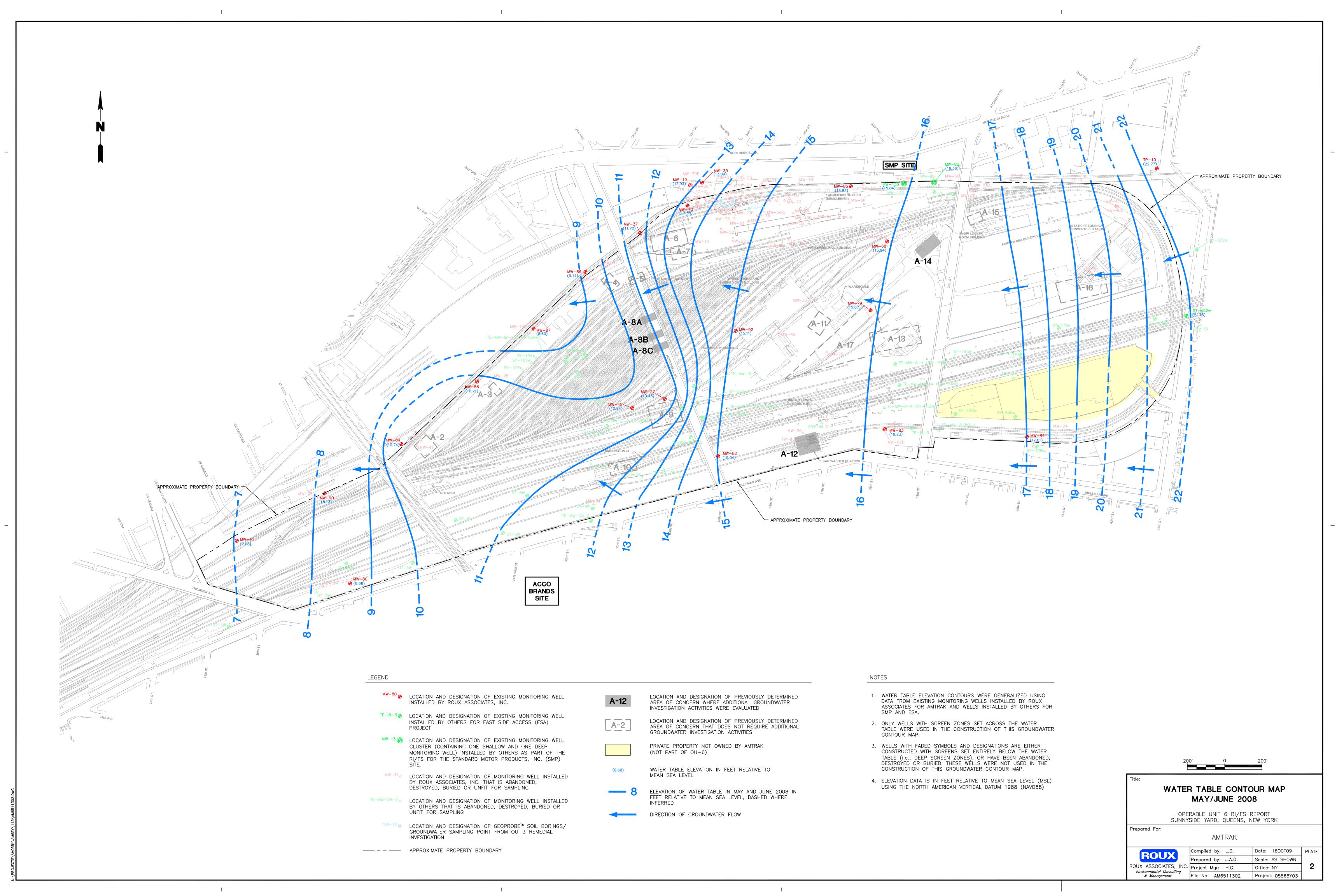
### Field Measurements:

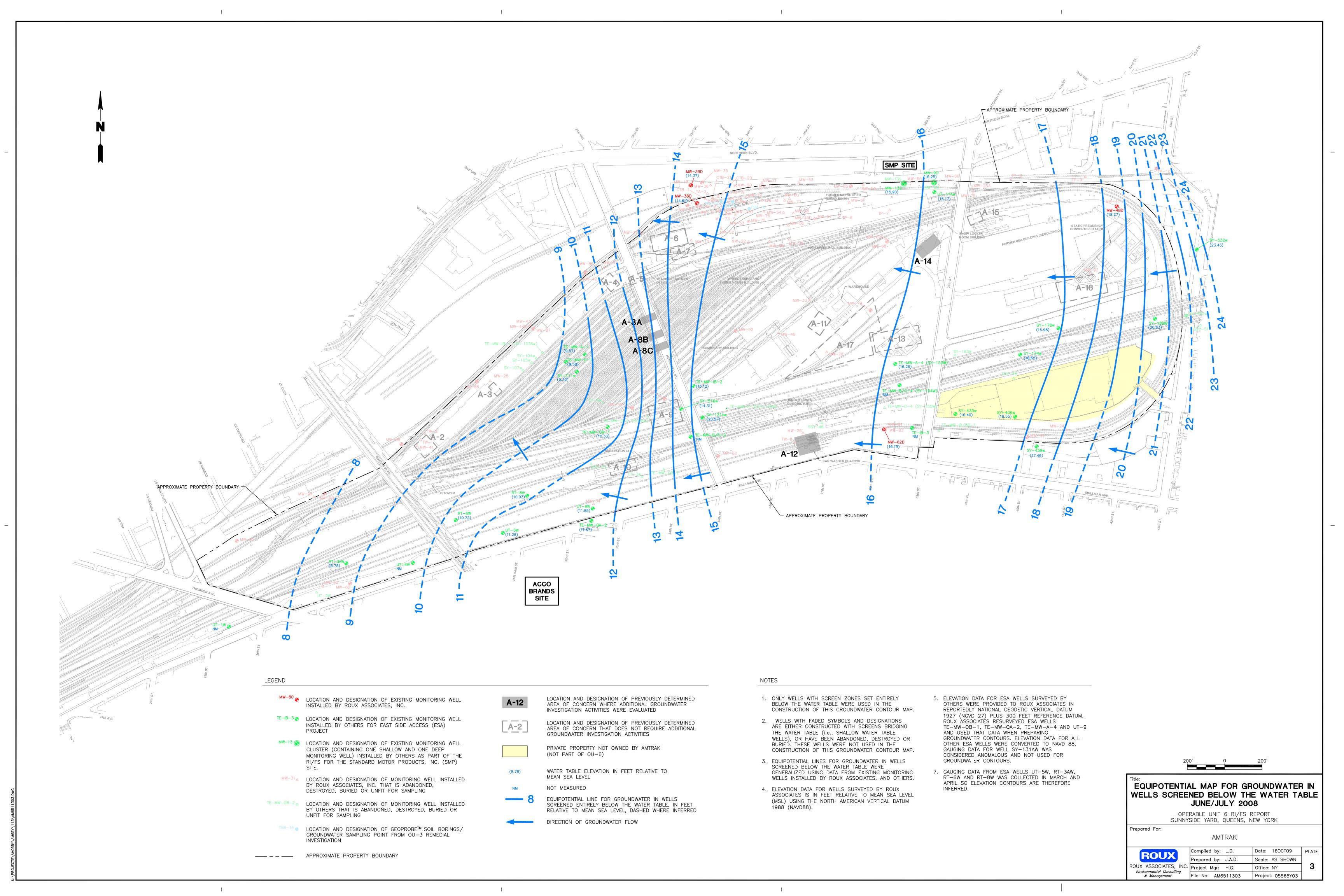
	Flow Rate		Conductivity		D0	Temperature	
	ml/min	SU	mS/cm	NIU	mg/l	C°	mV
·····							
							1.4.4
			ļ				

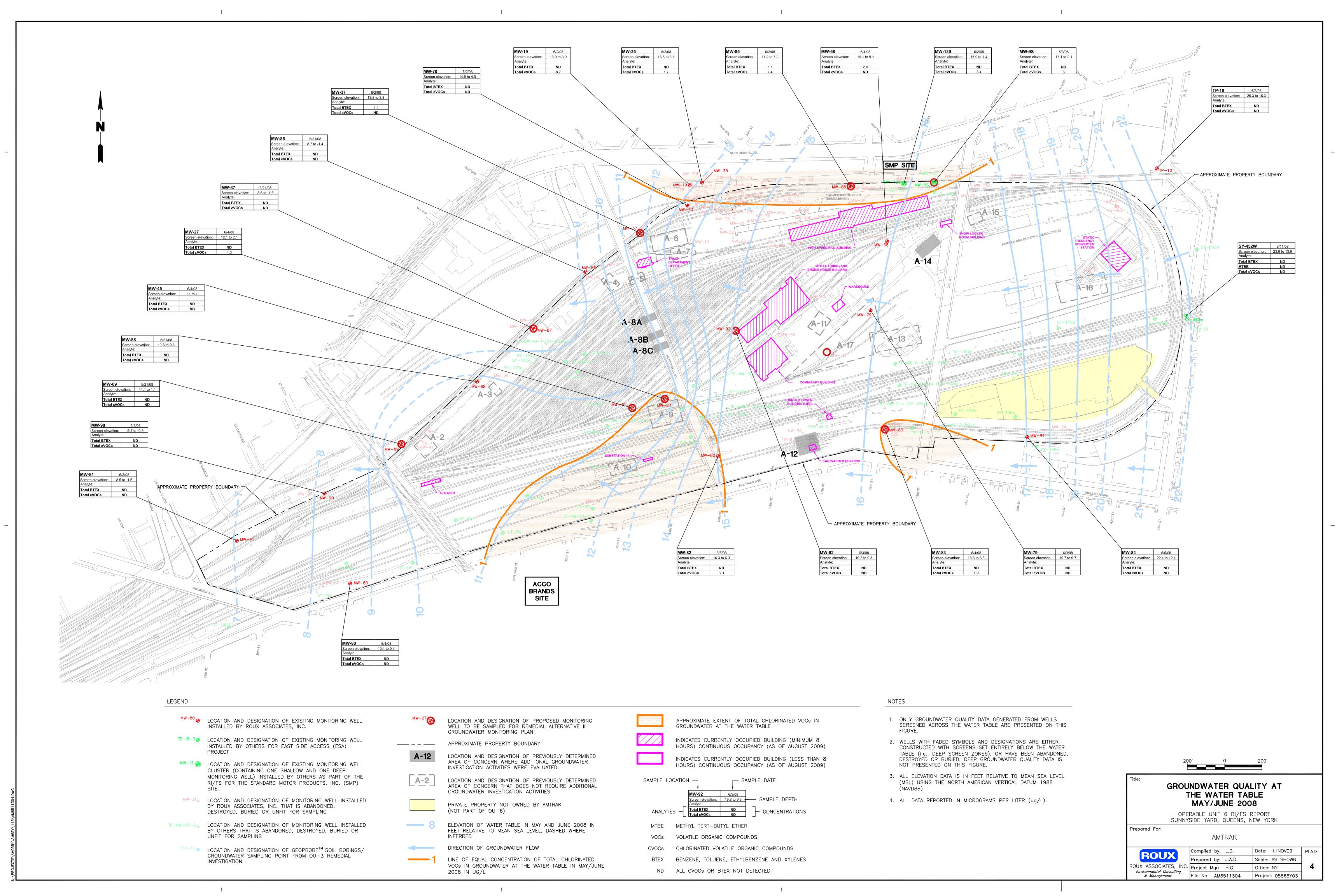
Client:	· •		Amtrak				Project N	umber: 0055.0	065Y003	
Site Lo	ocation:		OU-6							
Well N	lo:		<b>'</b> †1	=-MW_0B	~ )	Weather:	1605, OVE	mast so	merain	************
Date:			<u></u>	4/08		ater Disposal:	<u> 470000</u>	A .		
Sample	ed Rv			10		ameter / Type:				
ошири				<i></i>	,	7.				
Depth	of Well (ft):		40	170		Wate	er Column (ft):	39	.35	
Depth 1	to Water(ft):		10	.35	·	olume of Wate	er in Well (gal)			
Depth 1	to Product (ft)	:			Volum	ne of Water to	Remove (gal):	<b>3-00-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-</b>		****
	well diameter	:		1 in	2 in	\ 4 in	6 in	8 in		
	gallons per foot:			0.041	( 0.163	0.653	1.469	2.611		
Start P	urging:		0,	904			Purge Rate:	250-30	Dim Umin	
End Pu				735	Volu	me of Water I	Removed (gal):			
				1-042 a			d of Sampling:		h's on w	\ N2+
Metho	d of Purge:		bonz	macine p	my	would	d or omnpmis.	trans	<u> </u>	NO
Physica Comm	al Appearance ents:	/	Cle	om, slug	nt brown	<u>usntint</u>	-	,		
Sample	es Collected:		VOC, S	SVOC, PCBs, M	etals, Chloride,	, Total Dissolv	ed Solids		4	
(analyse	es / no. bottles)						1			
	معاليه			40			Laboratory:	Veritech	)	
	imple time									
Field I	Measurement Time		v Rate	Нq	Conductivity	Turbidity	DO	Temperature	ORP	
outw			/min	SU	mS/cm	NTU	mg/l	Ċ°	mV	
10.35	<u> </u>	<u>  30</u>			126	28.9	4.61	14.58	290	
10.35	0909	30 30		6.78	1.75	32.0	4.44	i4.61	287	
10.35	0917	30		6.10 6.80	1.73	33.3	4.31	14.02	277	
10,35 10,35		300		6,93	1.73	32,3	4,25	14.604	268	
10.35		25		697	1.72	30.2	4.12	14.82	262	]
10.35		25		7.01	1:72	24.8	4.15	14.89	255	
10,35		24		7.02	1.73	24.0	4.00	14.90	252	
10.35			50	7.04	1.73	23,7	4.02	14.92	248	
10.35			50	7,05	1,73	23.0	3,99	14.93	246	
· · · · · · · · · · · ·		T	<del></del>							
										1
		<b>T</b>								
				·						
		<b></b>				<u> </u>				ŀ
	I	§		1	l	1	1	1	1	1

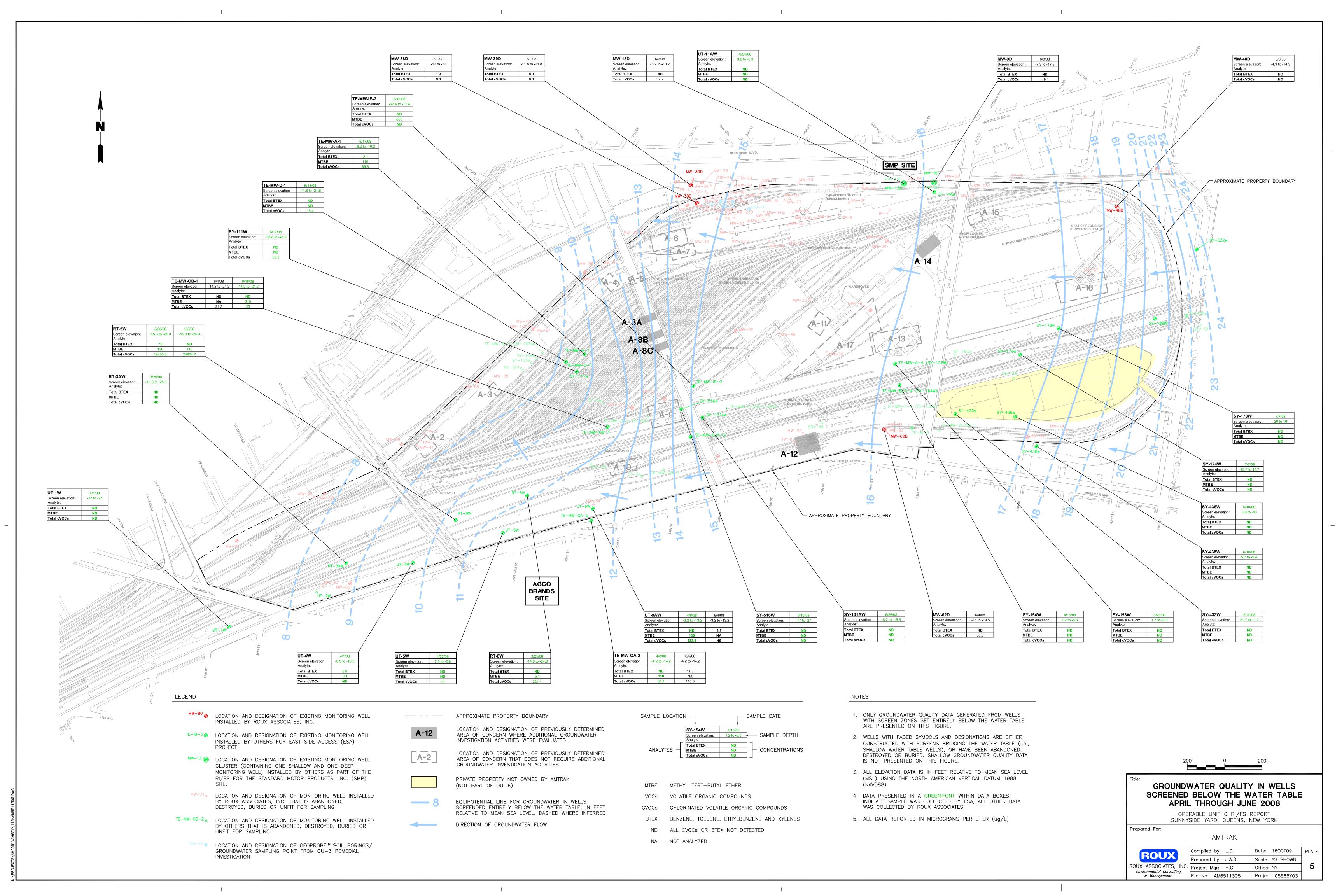
Client:	Amtrak	Project Number: 0055.0065Y003
Site Location:	OU-6	
Well No: Date:	TE-MW-QA-Z _6/5/CB	Weather: 65% OVO(COST
Sampled By:		Well Diameter / Type: U PVC
Depth of Well (ft):  Depth to Water(ft):  Depth to Product (ft):  well diameter:	28.75	Water Column (ft):  Volume of Water in Well (gal) *  Volume of Water to Remove (gal):  2 in 4 in 6 in 8 in  0.163 0.653 1.469 2.611
gallons per foot:	0.041	0.163 0.653 1.469 2.611
Start Purging:	_1215	Purge Rate: 100 ml min
End Purging:	1255	Volume of Water Removed (gal):
Method of Purge:	berg brand	Method of Sampling: Diny.
Physical Appearance/ Comments:	Slighty	brown suy.
Samples Collected: (analyses / no. bottles)	VOC, SVOC, PCBs, Mo	etals, Chloride, Total Dissolved Solids
sample time;	1250	Laboratory :


#### Field Measurements:


rieiu r	Measurement:	S.			wall 120 mark - 100 More Transport (120 mark)	The large and an arranged the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the	nc has an account of the state and a second	
	Time	Flow Rate	Hq	Conductivity	Turbidity	DO	Temperature	ORP
Ì		ml/min	SU	mS/em	NTU	mg/l	. C°	mV
28:79	i 217	<b>3</b> 00	7.71	0,013	3240	11-075	18/56	34
30.11	1220	200	7.74	1.51	218	1.62	18.13	-10-4
30.69	1225	(00)	7.67	/ 1.50	3554.0	1,39	18:47	<u>'-160</u>
30.90	12.28	100	7.06/	1.50	144.0	1,27	16,62	(Z
31.00	1231	( Ø)	7.68	1.50	116-0	1.15	18,24	~ ( )
31.12	1234	100	7.72	1.50	769	1.11	19.01	-17
31.16	1237	/ <i>c</i> o	7.75	1.50	797.5 91. 2	1.07	19.24	-75
31.18	(240	100	7.77	150	91,2	০.পপ্ত	19.36	-22
51.20	1243	100	7.78	1.5D	₹5.7	0.54	<u>19.53</u>	~23
31,21	1246	(00	7,80	ょうひ	631	0.92	19,37	-20
31.22	1249	1000	7,80	しいちロ	55,3	0.85	19,45	-35
3322	1252	001	7.81	1.49	56-2	0.80	19.64	-34
51-22	1255	<b>∖</b> ©0	7.81	1.43	522	0.85	19.74	-31
J. 2-								
				W /				
			<u> </u>	N/				
				ſ				


Amtrak - Operable Unit 6, Sunnyside Yard, Queens, New York


MILLIAN -	- polabi	o ome o, oam,	,		-,						
Well ID:	TP-10	)				Date: 6/3/08					
<b>DTW:</b> (3	.87			Intake (Depth of Pump): ( ]							
DTB: \9.45			Total Volume Purged:								
Purge Sta	rt: \( (	3 O							pr		
Time 1130 1135 1140 1153 1156 1159 1202 1205 1208	DTW (ft bls) [0.3 ft*] 13.87 13.91 13.92 13.92 13.92 13.92 13.92 13.92	FR (ml/min) [100-500 ml/min] 2 5 0 2 5 0 2 5 0 2 5 0 2 5 0 2 5 0 2 5 0 2 5 0 2 5 0 2 5 0 2 5 0 2 5 0 2 5 0 2 5 0 2 5 0	T (°C) [3%] 17.06 16.84 16.55 16.82 16.89 16.99 17.01 17.00 17.00 17.00	Sp. Cond. (mS/cm) [3%] 0.844 0.853 0.836 0.816 0.800 6.796 0.790 0.787 0.787	DO (mg/L) [10%] 10.01 5.9 2 5.41 4.33 4.25 4.23 4.19 4.09 4.12	pH (SU) [+/- 0.1 units] 6. 2 ( 6. 06 5. 64 5. 52 5. 6 ( 5. 65 5. 77 5. 89 6. 03 6. 06 6. 08	ORP (mV) (mV) (±/-10 mV) 4-3 4-5 6-5 7-5 6-5 7-5 6-7 6-7 6-7 4-2	Turb (NTU) [10%] 46.0 27.3 7.5 12.1 16.1 28.4 29.1 30.7 42.7 41	Volume Purged (gallons) O. 1 O. 2 O. 4 O. 7 I. 5 I. 7 I. 8 I. 7 Z. 1 Z. 3		
*Ideal draw	vdown from	start to finish, not									
Purge Water Description: MOSTLY CLEAR, MORLESS, NO NOTICEABLE											
SHEEN											
Purge End:  Sample Time: \2\0  Sample Time on Bottles: \2\0											
			-								


Client:		_	Amtrak Project Number: 0055.0065Y003							
Site Location:			OU-6							
Well No: Date: Sampled By:		-	Weather: 70°F, Clox Clox  O 4 08 Purge Water Disposal: 2000 A  Well Diameter / Type: PVC							
Depth of Well (ft):  Depth to Water(ft):  Depth to Product (ft):			17, 43 Volume of			Volume of Wa	Vater Column (ft): 23.27 Vater in Well (gal) to Remove (gal):			
well diameter: gallons per foot:			1 in 2 in 4 in 6 in 8 in 0.041 0.163 0.653 1.469 2.611							-
	Start Purging:  End Purging:		Purge Rate: 300 m Umin  Volume of Water Removed (gal):							
Method of Purge:			De le Dimono Method of Sampling: 100 Li Moles.							
Memod of rurge:			the sampling May Dimy .							
Physical Appearance/ Comments:			clean							
Samples Collected: (analyses / no. bottles)		- -	VOC, S	VOC, PCBs, M	letals, Chloride	, Total Dissol	ved Solids			
Sample 48ms.			1435 (95 UT) Labor					atory: Vevitech		
Field I	Measurement	<b>s:</b>	Andrew Co. 20 Stem							
atw	Time	Flow ral/s	nio	pH SU	Conductivity mS/cm	Turbidity NTU	DO mg/l	Temperature C°	ORP mV	
17.80 17.80 17.80 17.80 17.80		300 250 250 250 250 250	2	(6.93 (6.91 (6.90 (6.90 (6.91 (6.91	2.15 2.15 2.15 2.14 2.15 2.15	11.2 9.1 8,9 18.2 20.0 20.5	5,54 5,06 5,92 5,95 5,95	16.97 17.17 17.03 16.96 16.73 16.60	97 93 93 95 975 101	
-										

