Joe Pane

•

WORKPLAN FOR A SUPPLEMENTAL REMEDIAL INVESTIGATION/FEASIBILITY STUDY AT THE DEKNATEL FACILITY QUEENS VILLAGE, LONG ISLAND, NEW YORK

Contraction of the local division of the loc

Í.

ON BEHALF OF:

DEKNATEL, INC.

EER ERRENAL, NG.

Chemical Waste Analysis, Prevention and Combrol **RECRA ENVIRONMENTAL, INC.**

1/12266C

Chemical Waste Analysis, Prevention and Control

WORKPLAN FOR A SUPPLEMENTAL REMEDIAL INVESTIGATION/FEASIBILITY STUDY AT THE DEKNATEL FACILITY QUEENS VILLAGE, LONG ISLAND, NEW YORK

ON BEHALF OF:

DEKNATEL, INC. 96-14 222nd Street Queens Village, New York

PREPARED FOR:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 50 Wolf Road Albany, NY 12233-0001 Thomas C. Jorling, Commissioner

> PREPARED BY: RECRA ENVIRONMENTAL, INC. Audubon Business Centre 10 Hazelwood Drive, Suite No. 106 Amherst, NY 14150

> > IN CONJUNCTION WITH:

ROUX ASSOCIATES, INC. The Huntington Atrium 775 Park Avenue Suite 225 Huntington, NY 11743

AND :

LANGAN ENVIRONMENTAL SERVICES, INC. River Drive, Center 2 Elmwood Park, NJ 07407

TABLE OF CONTENTS

			Page
1.0	OVERV	/IEW	1
2.0	DATA	EVALUATION	4
	2.1	Site Background 2.1.1 Setting 2.1.2 History of Operations	4 4 4
		2.1.3 Disposal Practices	5
	2.2	Hazardous Materials Characterization 2.2.1 Quantitative Waste Disposal Estimates 2.2.1.1 Disposal Point 1 (DP-1) 2.2.1.2 Disposal Point 2 (DP-2) 2.2.1.3 Other Waste Materials Potentially	7 7 7 7
		Disposed on Site2.2.2Source Investigation Study	8 9
		2.2.2.1 Overview 2.2.2.2 Source Investigation Activities	10 11
		2.2.3 Overview of Laboratory Studies	13
		2.2.4 Waste Material Distribution in the Subsurface 2.2.5 Summary and Conclusions Regarding the Source	16
		Investigation Study	20
	2.3	Geology and Hydrology	38
		2.3.1 Introduction	38
		2.3.2Hydrogeology of the Study Area2.3.3Groundwater Flow Velocity and Direction	38 41
		2.3.4 Nearby Aquifer Usage	42
		2.3.5 Available Groundwater Quality Information	47
		2.3.6 Field Studies	52
		2.3.7 Hydrogeology at the Deknatel Site	54
		2.3.8 Hydrogeological Results	59
	2.4	Impact Assessment	60
3.0	REMED	DIAL ACTIVITIES	64
	3.1	Supplemental Remedial Investigation	64
		3.1.1 Field Sampling Plan	65
		3.1.2 Analytical Sampling and Analysis Plan	77
		3.1.2.1 Sampling Plan	77
		3.1.2.2 Analysis Plan	78
		3.1.3 Quality Assurance/Quality Control Plan	81
		3.1.4 Health and Safety Plan	81
		3.1.5 Community Relations Plan	82

TABLE OF CONTENTS

· -

(continued)

1

raa Mili

Page

3.2	FEASIBILITY STUDY	82
	3.2.1 Remedial Action Objectives	82
	3.2.2 Identification and Screening	83
	3.2.3 Development of Alternatives	87
	3.2.4 Alternatives Screening Process	88
	3.2.5 Treatability Studies	90
	3.2.6 Detailed Analysis of Alternatives	90
	3.2.6.1 Short-Term Effectiveness	91
	3.2.6.2 Long-Term Effectiveness and	
	Permanence	92
	3.2.6.3 Reduction of Toxicity, Mobility	52
	and Volume	92
	3.2.6.4 Implementability	93
	3.2.6.5 Cost	94
		96
	3.2.6.6 Compliance with ARARs	30
		00
	and the Environment	98
	3.2.6.8 Community Acceptance	98
	3.2.7 Preliminary Report	98
	3.2.8 Final Report	99

.

C

C

C

Ē

Ľ

ſ

L

L

L

L

1

LIST OF TABLES

Table 2-1 An	alytical	parameters	for	soil	and	groundwater	sample	es
--------------	----------	------------	-----	------	-----	-------------	--------	----

- Tame 2-2 Analytical results for groundwater
- Table 2-3 Total cadmium (ug/g dry weight)
- Table 2-4 Total chromium (ug/g dry weight)
- Table 2-5 Hexavalent chromium (ug/g dry weight)
- Table 2-6 Total copper (ug/g dry weight)
- Table 2-7 Total iron (ug/g dry weight)
- Table 2-8 Total lead (ug/g dry weight)
- Table 2-9 Total nickel (ug/g dry weight)
- Table 2-10 Total selenium (ug/g dry weight)
- Table 2-11 Total zinc (ug/g dry weight)
- Table 2-12 Leachable nitrate (ug/g dry weight)
- Table 2-13 Leachable phosphorus (ug/g dry weight)
- Table 2-14 Leachable sulfate (ug/g dry weight)
- Table 2-15 Percent dry weight
- Table 2-16 Summary of analytical results for soil samples collected at disposal areas 1 and 2
- Table 2-17 NYCHDOH non-potable water well permits active as of March 1988
- Table 2-18 Water table elevations (feet) at the Deknatel site
- Table 3-1 Sampling and Analysis of Soils
- Table 3-2 Remedial Action Responses for the Site
- Table 3-3 Possible Remedial Technologies

RECRA ENVIRONMENTAL, INC.

		LIST OF FIGURES
Figure	2-1	Deknatel, Inc. site map
Figure	2-2	Site map showing actual boring and well locations
Figure	2-3	Site map showing location of Section A-A'
Figure	2-4	Total chromium distribution (ug/g dry) Section A-A'
Figure	2-5	Hexavalent chromium distribution (ug/g dry) Section A-A'
Figure	2-6	Total lead distribution (ug/g dry) Section A-A'
Figure	2-7	Total phosphorus distribution (ug/g dry) Section A-A'
Figure	2-8	General strategic column underlying the Deknatel site
Figure	2-9	Jamaica Water Supply Company Distribution System
Figure	2-10	NYSDEC registered wells in the vicinity of the Deknatel site
Figure	2-11	NYSDEC registered wells in the immediate vicinity of the
		Deknatel site
Figure	2-12	Zip code map
Figure	2-13	JWSC wells in which chromium was detected
Figure	2-14	Typical monitoring well in unconsolidated material
Figure	2-15	Water table map
Figure	3-1	Locations of Monitoring Wells and Soil Borings
Figure	3-2	Well Construction Diagram
Figure	3-3	Proposed Meter Box Configuration for Monitoring Wells

RECRA ENVIRONMENTAL, INC.

•	
	LIST OF APPENDICES
Appendix A	Quantitative Waste Material Disposal Estimates
Appendix B	Hydrological Studies Methodologies and Results
Appendix C	Standard Operating Procedures
Appendix D	Laboratory Studies: Methodologies and Results
Appendix E	Health and Safety Plan
Appendix F	Decontamination of Equipment
Appendix G	Collection of Soil Samples for Laboratory Analyses
Appendix H	Protocol for Development of Monitoring Wells
Appendix I	Groundwater Sampling Procedures for Monitoring Wells
Appendix J	Specific Capacity Test Procedure

1/12266

1.0 OVERVIEW

This document is a Remedial Action Master Plan (RAMP) for the Deknatel site in Queens Village, New York. This RAMP is a plan for undertaking a Supplemental Remedial Investigation/Feasibility Study and potential Remedial Actions in response to a hazardous substance release, or a substantial threat of release, into the environment. It is based on the National Oil and Hazardous Substances Contingency Plan as promulgated by the United States Environmental Protection Agency (EPA).

The Deknatel site contains elevated concentrations of chromium at two inactive waste disposal areas and within some parts of the underlying soils. The Deknatel facility manufactured costume jewelry and surgical needles. During a recent audit of the facility, certain past waste disposal practices were discovered that involved disposal of metals containing chromic and phosphoric acid solutions, of chromium on the property. Total and hexavalent chromium, lead and phosphorous were found in the soils at or near an area referred to as Disposal Point 2 (DP-2) at elevated concentrations. Elevated lead concentrations were found only in the surface and near surface depths; whereas, elevated total and hexavalent chromium and phosphorous concentrations extended to greater depths. The concentrations of all contaminants were highest near the surface and closest to the disposal point and decreased with increasing horizontal and vertical distance from DP-2.

Total and hexavalent chromium, lead and phosphorus were found also in the soils at Disposal Point 1 (DP-1); however, the recorded levels were considerably lower than those found at and near DP-2. The majority of the above mentioned constituents at both DP-1 and DP-2 are found within the

-1-

upper twenty feet of the soil column. Three monitoring wells were installed on-site to determine the impact of past waste disposal activities on the underlying groundwater. Analytical results on water samples from these wells show detectable total chromium concentrations in groundwater beneath the site. The supplemental remedial investigation will further investigate the question of groundwater quality.

Elevated total and hexavalent chromium and phosphorus concentrations were found in groundwater samples obtained from the monitoring well (MW-2) located 18.5 feet downgradient from DP-2. Of the three waste related substances found in the groundwater, New York State has established a water quality standard for only one, hexavalent chromium. To date, groundwater at the site has been sampled on three occasions. The average hexavalent chromium concentration found was below the New York State Water Quality Standard (50 ppb); however, on one of the three sampling occasions, its concentration did exceed the standard. Additional sampling and analysis efforts relative to the monitoring of the existing groundwater wells are being undertaken and results will be provided to the NYSDEC.

One aspect of the supplemental remedial investigation is to determine the spatial distribution of the contaminants on-site. If the soils or ground-water are contaminated, the extent of contamination and rate of migration will be determined. Modifications, if necessary, to the sampling and/or analytical plans as the field investigation proceeds can be made but will be done so only with the approval of the NYSDEC. Soils will be sampled from all borings at various intervals from the surface to approximately 70 feet.

RECRA ENVIRONMENTAL, INC.

-2-

The feasibility study will develop and evaluate remedial alternatives. Initial screening of alternatives will be based upon environmental effects, acceptable engineering practices, and cost to narrow the list of potential remedial actions for further detailed analysis. Final evaluation of alternatives will be based upon reliability of technologies, ease of implementation and constructability, the extent to which the alternative mitigates and minimizes adverse effects to public health and the environment, and detailed cost comparisons. The recommended alternatives will be the most environmentally sound and responsive remedial action plan and yet will also be the most cost effective action plan.

Potential remedial actions include: containment, groundwater recovery, treatment, removal, disposal, monitoring and the no action alternatives as well as combinations of one or more of these types of action either in whole or in part.

Given the nature of the activities to be performed during the Supplemental Remedial Investigation/Feasibility Study, the community relations plan measures to be undertaken during this phase of the work at the property are believed to be minimal. The NYSDEC and Deknatel will both play active roles in implementing community relations measures should such activities be required. Communications with the Jamaica Water Supply Company, the potable water supplier in the vicinity of the Deknatel property will continue throughout the completion of the Supplemental Remedial Investigation/ Feasibility Study.

-3-

2.0 DATA EVALUATION

2.1 Site Background

2.1.1 Setting

The Deknatel site is located at 96-14 222nd Street, Queens Village, New York. Queens Village is in the easternmost portion of Queens County. Queens County is in the western part of Long Island. The county includes about 113 square miles of land and is made up of numerous urban and suburban communities. The site is within a residential/light industrial part of the county. Queens county is bounded by the East River on the north, by Jamaica Bay and the Atlantic Ocean on the south, by Nassau County on the east, and by Kings County and the East River on the west.

The northern part of Queens County consists of low rolling hills. A narrow ridge trends east-northeast across the central part of the county north of and parallel to Jamaica Avenue. The south portion of the county consists of a relatively flat glacial outwash plain which has a gentle southward slope.

2.1.2 History of Operations

The facility where Deknatel is located was constructed about 1925. From that time until about 1956 costume jewelery, specifically artificial pearls, were manufactured at the facility. The manufacturing process involved placing small globules of molten glass on thin copper wires to form the cores of the artificial pearls. The glass beads were placed in a lacquer bath until layers of

-4-

lacquer had built up on the glass beads to give the appearance of pearls. The copper wire was dissolved in a nitric-sulfuric acid bath. The nitric-sulfuric baths accumulated copper salts and were discarded when they were spent.

About 1956, Deknatel changed product lines and began manufacturing its present line of surgical needles. These items are manufactured from stainless steel wire using various metal forming operations such as cutting, stamping, and grinding. Some of the raw stainless steel wire used has a thin copper coating which acts as a lubricant for the tools used in the various metal forming operations. Once the wire has been formed into the desired shape and size, the copper coating is removed by immersing the parts in a chromic-sulfuric acid bath which dissolves the copper coating. This bath accumulated copper salts, became spent and was removed The parts were then deburred and polished by from service. tumbling with powdered alumina. Finally, the parts were electropolished in a bath containing chromic and phosphoric acids, which removed a thin layer of the metal. This bath eventually accumulated salts of the metals comprising the stainless steel alloy used for making the needles, was depleted of chromic acid, became spent and was again removed from service.

2.1.3 Disposal Practices

The spent nitric-sulfuric acid baths containing copper salts generated by the imitation pearl manufacturing process (from about 1925 to about 1956) were reportedly disposed of through a sink in the laboratory. The sink was piped to a trap containing marble

-5-

chips that would neutralize the acid, then to Disposal Point One (DP-1), which is located at the southwest corner of the 96-14 222nd Street property. Liquids placed there seeped directly into the ground. This waste stream has not been produced at the Deknatel facility since about 1956 when the imitation pearl manufacturing process was discontinued. A site map depicting the location of DP-1 and other site characteristics is presented as Figure 2-1.

From about 1956 to about 1960, the spent chromic-sulfuric acid baths containing copper salts generated by the surgical needle manufacturing process were reportedly disposed of in the same laboratory sink. After about 1960, the sink drain was allowed to be discharged to the New York City sanitary sewer, and DP-1 was abandoned.

The spent electropolishing baths containing chromic and phosphoric acids and metal salts derived from the stainless steel used to make the surgical needles were reportedly disposed of in Disposal Point Two (DP-2) for its period of use, which spanned an approximate twenty year time frame beginning in 1956. DP-2 is located (see Figure 2-1) immediately adjacent to the west side of the main building, 5 to 10 feet north of the laboratory. Like DP-1, it has no direct outlet, and liquids placed there would have seeped into the ground.

RECRA ENVIRONMENTAL, INC.

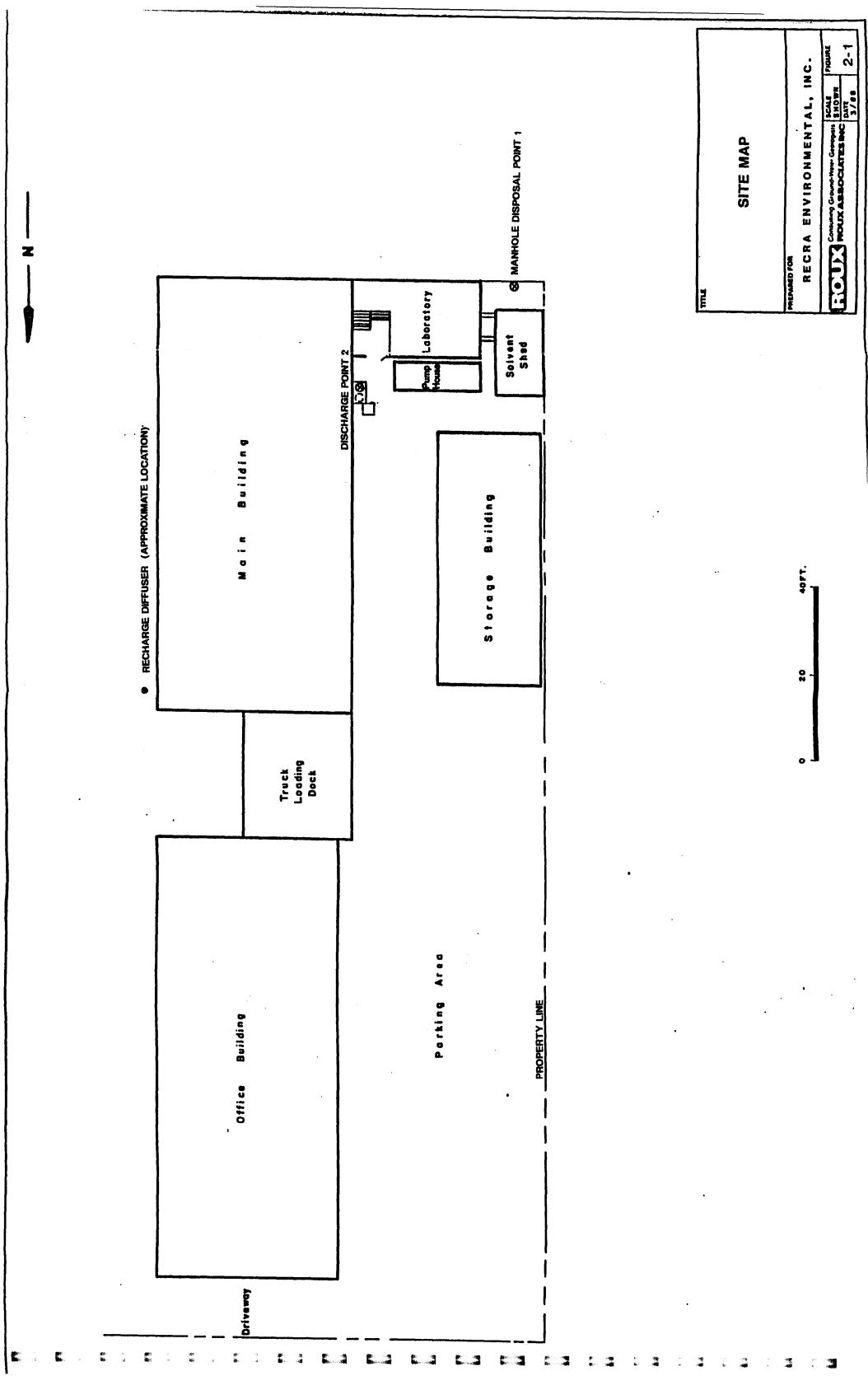
-6-

2.2 HAZARDOUS MATERIALS CHARACTERIZATION

2.2.1 Quantitative Waste Disposal Estimates

2.2.1.1 Disposal Point 1 (DP-1)

Nitric-sulfuric acid baths containing copper salts were disposed in DP-1 from about 1925 to about 1956. Because of the complete absence of any records or employee recollections going back to this time period, it has proven impossible to make any quantitative estimate of the amount of this material that may have been disposed.


Spent chromic-sulfuric acid baths containing copper salts were disposed in DP-1 from about 1956 to about 1960. This material is believed to be the same material that is in use today for stripping the copper sheathing from the surgical needle after they have been formed. A material safety data sheet (MSDS) describing this material and the calculations by which the following estimates were made are included in Appendix A. The best available estimates indicate that about 480 gallons of this material, which, based upon materials used today, would have contained about 700 pounds of chromium, 180 pounds of sulfuric acid, and an unknown but small amount of copper, were disposed at DP-1.

2.2.1.2 Disposal Point 2 (DP-2)

Spent chromic-phosphoric acid electropolishing baths were disposed in DP-2 over its period of use. The material of this description, which was disposed in DP-2, is also believed to be

-7-

(1) A set of the se

the second se

the same material that is in use today and which is currently disposed off-site as a hazardous waste. A material safety data sheet which describes this material as a raw material and a typical analysis of it when it is disposed today as a waste material are included in Appendix A, along with the calculations by which the following estimates were obtained. The best available estimates indicate that about 1,500 gallons of this material, which (based upon materials used today) would have contained about 1,700 pounds of chromium and about 13,000 pounds of phosphoric acid (4,213 pounds phosphorus), were disposed at DP-2.

2.2.1.3 Other Waste Materials Potentially Disposed on Site

A number of other materials were believed to have been used in Deknatel's costume jewelry manufacturing process and a possibility exists that miscellaneous quantities of some of these materials if used at the facility, may have been disposed on site from time to time between about 1926 and about 1956. However, most of these materials, such as a nitrocellulosic lacquer and some nonhalogenated organic solvents including mineral spirits, acetone, hexane, kerosene, monoethyl ether derivatives of amyl acetate and cellosolve acetate, and ethylene glycol, that may have been used in jewelery manufacturing would normally be consumed in the manufacturing process by incorporation into the product (such as lacquer) or would be lost due to evaporation (solvents). Since these items are costly raw materials and costume jewelry manufacturing was a low budget operation, it is likely that every effort was made to use these materials up completely and discard as little as

-8-

possible. There is no evidence that any of these materials were even periodically disposed of in any systematic way however, occasional disposal of small quantities cannot be ruled out. Due to the uncertain nature of any disposal of these materials that may have occurred and the time period (about 1926 to about 1956) during which such disposal may have occurred, no estimate of the identity or quantity of these materials that may have been disposed can be made.

A small amount of acetone is used today in the surgical needle manufacturing process and is washed with copious quantities of water into the sink in the laboratory, which leads to the sanitary sewer system. It is unknown whether or how much acetone may have been used during the years from 1956 to 1960 when needle manufacturing was in progress and the laboratory sink led to the cistern at DP-1. It is also unknown whether acetone that may have been used during that period was disposed in the sink in the laboratory. A possiblility exists, then, that some small quantity of acetone may have gone to the cistern at DP-1 between 1956 and 1960, but it is not possible to make any meaningful estimate of the quantity involved, if any. If disposal occurred, it is equally likely to assume that, like the chromium disposed of in DP-1, the acetone has been flushed from the soil column beneath this disposal area.

2.2.2 SOURCE INVESTIGATION STUDY

The disposal activities at DP-1 and DP-2 referenced in the previous sections of this document were initially investigated during

RECRA ENVIRONMENTAL, INC.

-9-

an internal environmental audit of this Deknatel facility. Immediately upon such discovery of these past practices, investigative activities ultimately resulting in the source investigation study were undertaken by Deknatel as was a notification of the Region 2 Office of the NYSDEC.

2.2.2.1 Overview

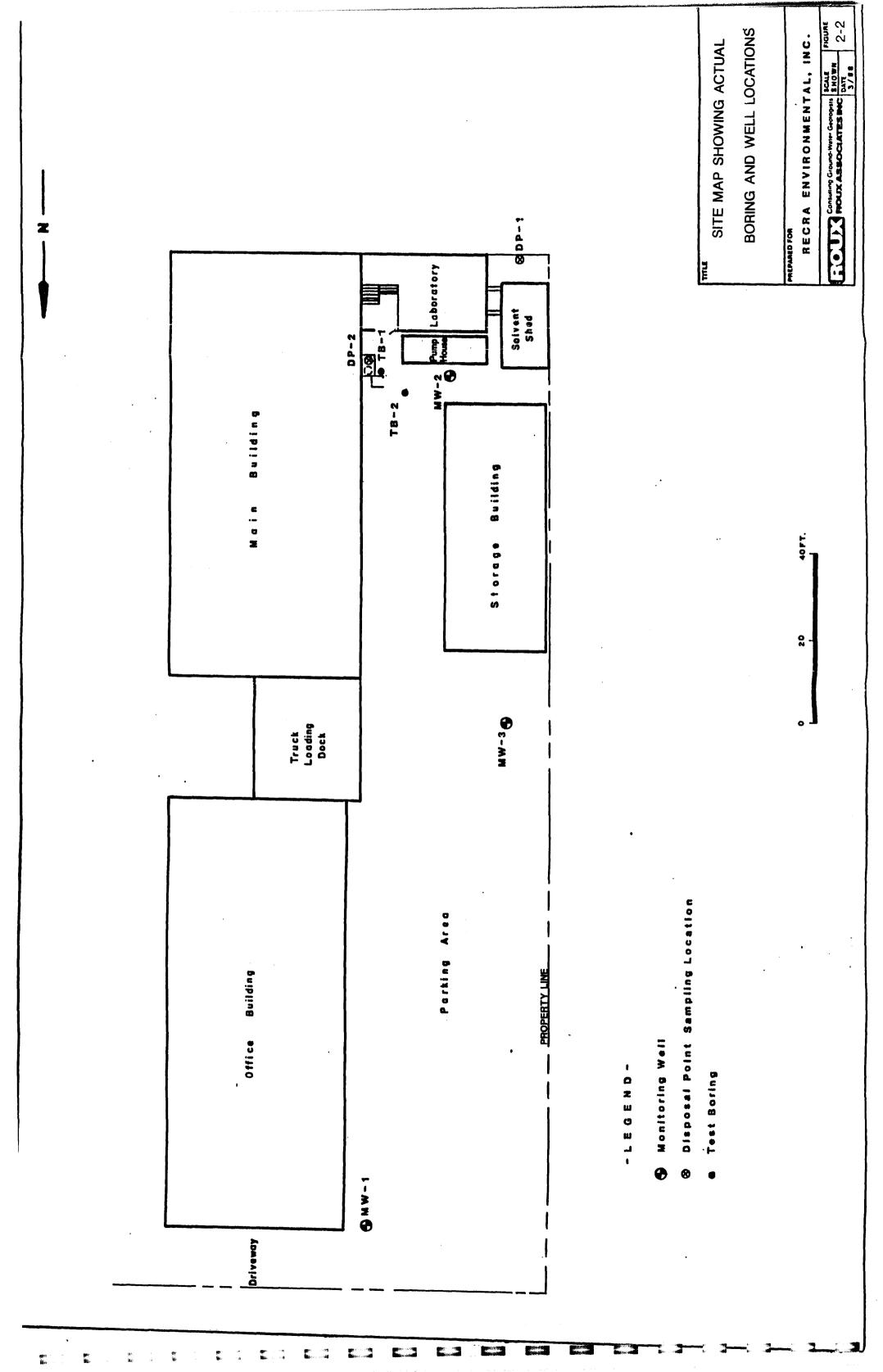
Recra Environmental, Inc., on behalf of Deknatel, Inc., proposed a source investation study with the following objectives:

- o determine whether and to what extent waste materials released at two disposal points as a result of past disposal practices have remained at the Deknatel site.
- o determine the location and distribution of any waste materials that have remained at the site,
- o determine whether waste materials have been or are affecting groundwater,
- develop information on the geology and hydrogeology at the
 Deknatel site, and
- o provide data which could serve as a basis for developing a remedial action should source remediation prove necessary.

The proposed study involved advancing seven (7) test borings at various locations on the Deknatel property in order to collect soil samples from the surface to a depth of approximately 10 feet below the water table. The core samples obtained were to be used both to assess the geology of the site and to provide subsurface soil samples for chemical analysis. Two (2) of the test borings

RECRA ENVIRONMENTAL, INC.

-10-


were to be converted to monitoring wells in order to obtain hydrogeological information on the site and groundwater samples for analysis. One of the borings to be converted to a monitoring well (MW-1) was placed at a location expected to provide information on background soil and groundwater conditions in the area. Four (4) test borings, including the other boring to be converted to a monitoring well, were to be placed at intervals downgradient (relative to the expected water table) from Disposal Point Two (DP-2) and the final two (2) borings were to be placed near Disposal Point One (DP-1). Permeability testing of the monitoring wells was proposed in order to assess some of the hydrogeological properties of the water table aquifer at the site. The soil and groundwater samples collected were to be analyzed for a range of metals and inorganic substances which seemed likely to have been constituents of the waste materials disposed at the two disposal points.

2.2.2.2 Source Investigation Activities

Four (4) test borings have been completed, two of which have been converted to monitoring wells. The locations of these borings are shown in Figure 2-2. Several of the borings were relocated slightly from the proposed locations for the following reasons. MW-1 was moved from a location very close to the northern property line to a location off the northwest corner of the main building which was somewhat better protected from traffic using the driveway along the northern property line to enter and leave the parking lot behind the main building. TB-1 was offset slightly

-11-

from DP-2 and TB-2 was offset from the pump house because it proved impossible to position the drilling rig any closer to the adjacent buildings. A hand auger was used to collect shallow soil samples directly in and below DP-2 to supplement the core samples obtained from TB-1. It also proved impossible to get the drilling rig around the corner of the storage building and down the passageway between the storage building and the pump house to the proposed location of the second monitoring well near the western property line between the storage building and the solvent shed. Therefore, as an alternative, it was decided to convert the test boring south of the southeast corner of the storage building to a monitoring well (MW-2) and dispense with plans for the test boring near the western property line.

While work was in progress on the source investigation study being described, a third monitoring well (MW-3) was installed near the western property line north of the storage building (Figure 2-2). Installation of MW-3 was, for reasons unrelated to the source investigation study, installed during the time frame concurrent with the source investigation. Since it was completed as a 4-inch well (MW-1 and MW-2 are 2-inch wells), it was utilized in this investigation to further define the hydrogeology of the site and as a means of conducting a pump test instead of performing less rigorous surge tests in MW-1 and MW-2, as was originally planned.

The two test borings planned for the southwest corner of the site near DP-1 could not be completed because of the difficulties in

RECRA ENVIRONMENTAL, INC.

-12-

identifying and locating drilling equipment capable of advancing borings in compliance with NYSDEC technical requirements (dry nollow stem augering) that is also small and portable enough to gain access to the drilling location through the narrow passageways between the buildings.

Alternatively, a portable tripod drilling rig has been used to collect split spoon soil samples through the floor of the cistern at DP-1 to a depth of greater than 30 feet below ground surface in order to determine the nature, extent, and concentration of waste materials that are present at this location.

2.2.3 Overview of Laboratory Studies

The soil and groundwater samples collected from the test borings and monitoring wells were analyzed for a range of metals, inorganic and selected organic substances listed in Table 2-1 which seemed likely to have been constituents of the waste materials disposed at the two disposal points.

The rationale for parameter selection was as follows. Total and hexavalent chromium were constituents of the spent chromic acid solutions used. Copper was the principal constituent of the wire used in the costume jewelry operation and was used as a protective coating on stainless steel wire stock used in the surgical needle manufacturing operation. In both operations, the copper was dissolved in acid solutions. Lead may have leached into the chromic acid solutions from the lead lining of vats used to hold the solutions. The other metals analyzed

(<u>cadmium</u>, iron, nickel, selenium and zinc) were potential constituents of the stainless steel wire and small amounts could nave been released to the chromic acid bath in the electropolishing process which electrolytically dissolves a thin layer of metal from the surface of the needles. The inorganic anions analyzed, nitrate, sulfate and phosphate (as phosphorous), correspond to nitric, sulfuric and phosphoric acids which were constituents of the chromic acid baths, either in the costume jewelry or the surgical needle manufacturing processes. Volatile organic compounds including acetone, were measured in samples from DP-1 because acetone, used in needle manufacturing, may have been disposed there.

pH was measured because of the acidity of the waste materials involved. The dry weight of the soils was determined in order to express the analytical results on a dry weight basis. The EP toxicity test was performed on some of the soils to assess the leachability of metals present and to determine whether the potentially contaminated soils were characteristic hazardous wastes.

-14-

TABLE 2-1

ANALYTICAL PARAMETERS FOR SOIL AND GROUNDWATER SAMPLES

PARAMETER	SOIL SAMPLES	GROUNDWATER SAMPLES
<u>METALS</u> Cadmium Chromium, total Chromium, hexavalent Copper Iron Nickel Selenium Zinc	•	• • •
<u>INORGANICS</u> Nitrate Phosphorus Sulfate	• • •	•
<u>ORGANICS</u> Volatile Organics Including Acetone	•	
MISCELLANEOUS pH (field determined) Dry Weight (total solids) EP Toxicity (metals only)	•	•

Details of the sample collection, preservation and shipment procedures, along with a listing of the standard USEPA methodologies used in analyzing the samples, can be found in Appendix D.

2.2.4 Waste Material Distribution in the Subsurface

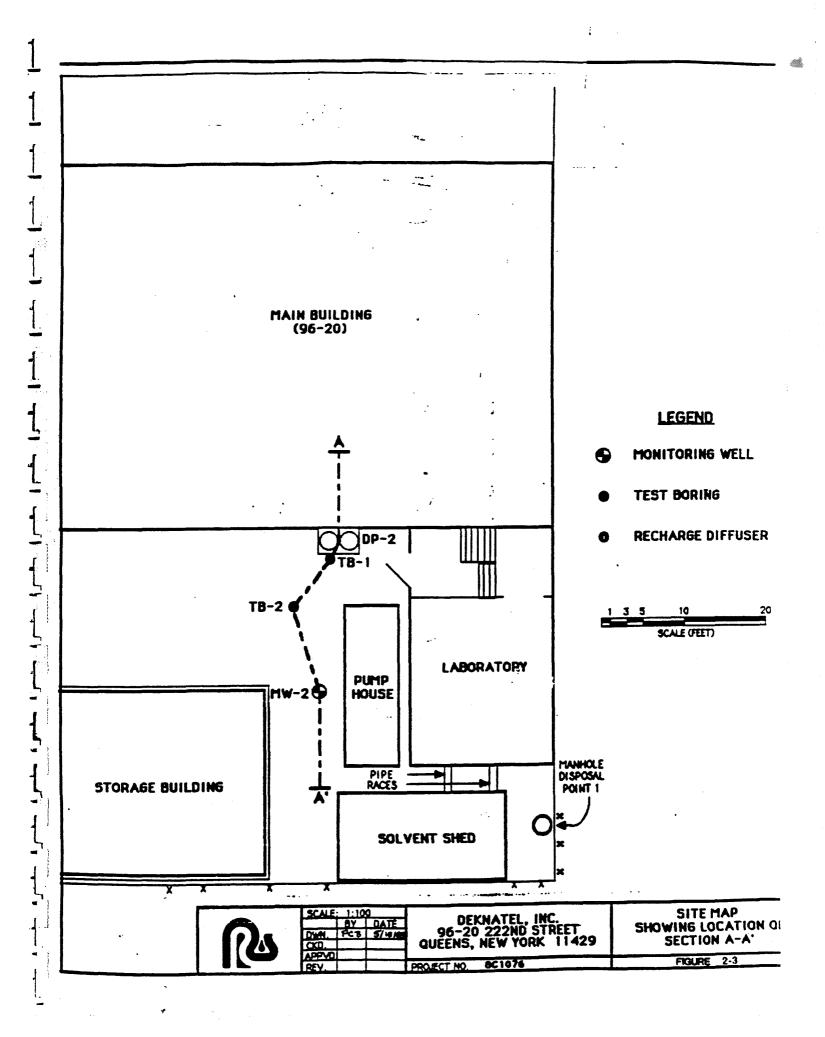
Of the eleven substances potentially present in the waste materials disposed at the Deknatel facility, only seven were found in the soil and/or groundwater near DP-2 at concentrations substantially higher than those found at the background location. These were total and hexavalent chromium, copper, iron, lead, nitrate and phosphorus. The results of the groundwater analyses are given in Table 2-2 and the soil analyses are presented in Tables 2-3 through 2-15. These results are discussed in detail within the Source Investigation Study report previously submitted to the NYSDEC.

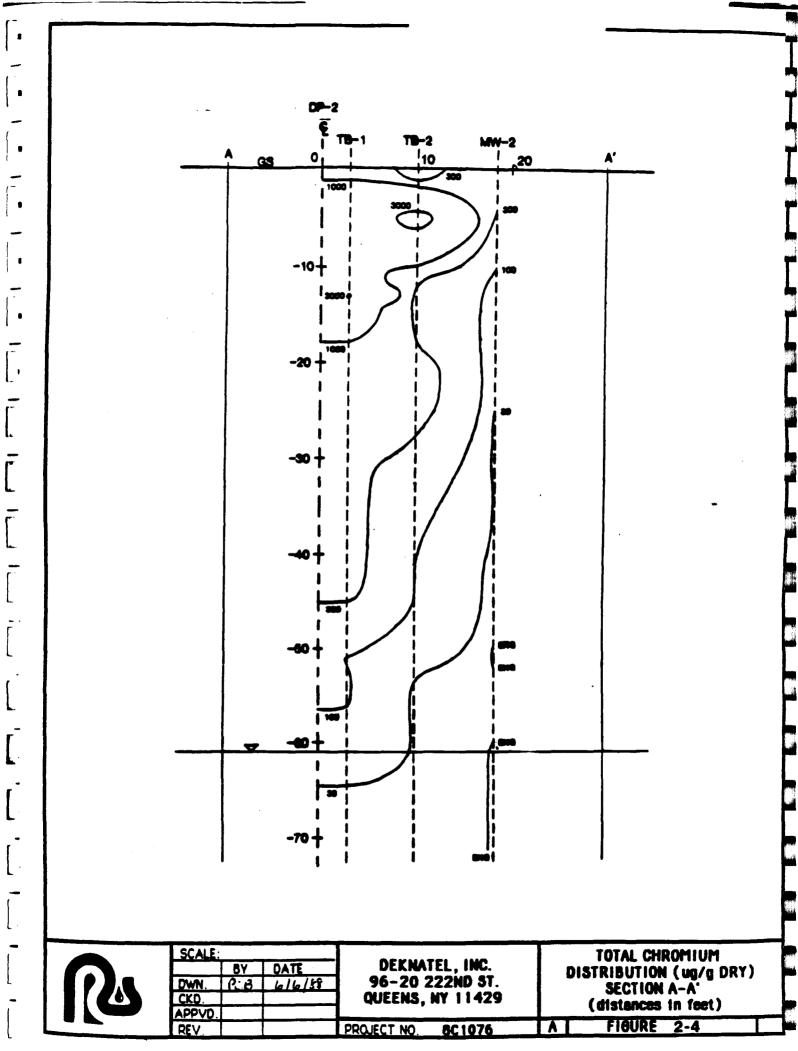
Soil samples taken directly from the disposal points themselves were analyzed for the waste materials disposed there and the analytical results are presented in Table 2-16. The depths of the soil samples are limited due to the type of sampling equipment which could be utilized at these locations (DP-1 and DP-2). Elevated levels of total and hexavalent chromium, iron, lead, phosphorous and, to a lesser extent, copper, zinc and sulfate were found.

The laboratory reports containing the analytical results discussed in this section are included in Appendix D.

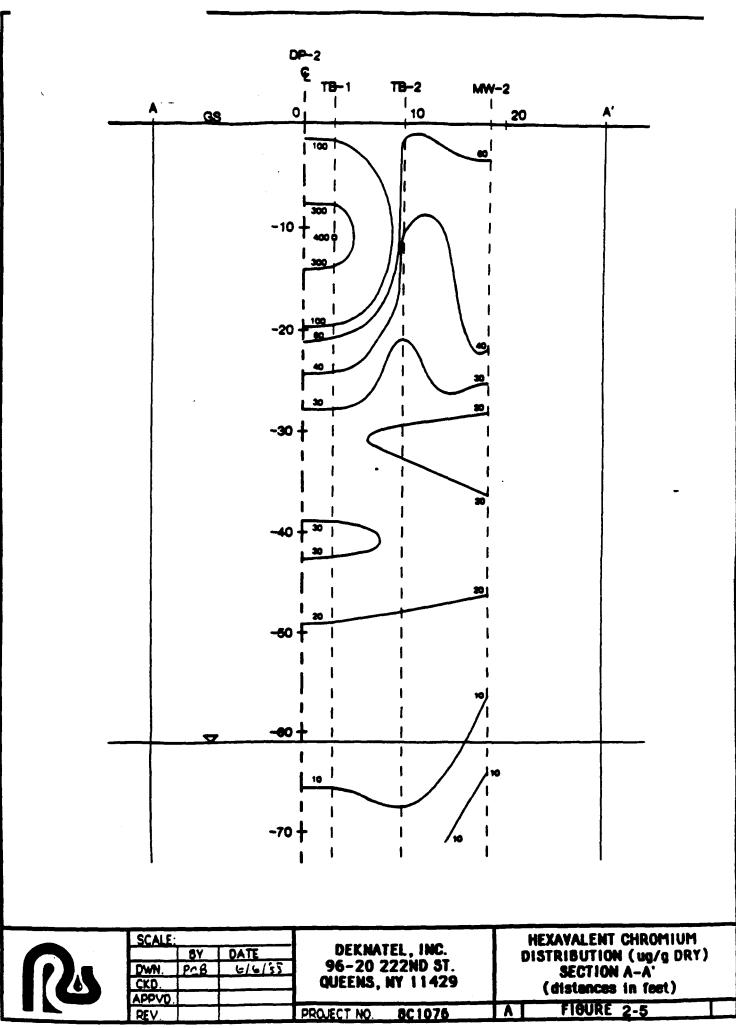
Concentration distribution profiles along the Section A to A'

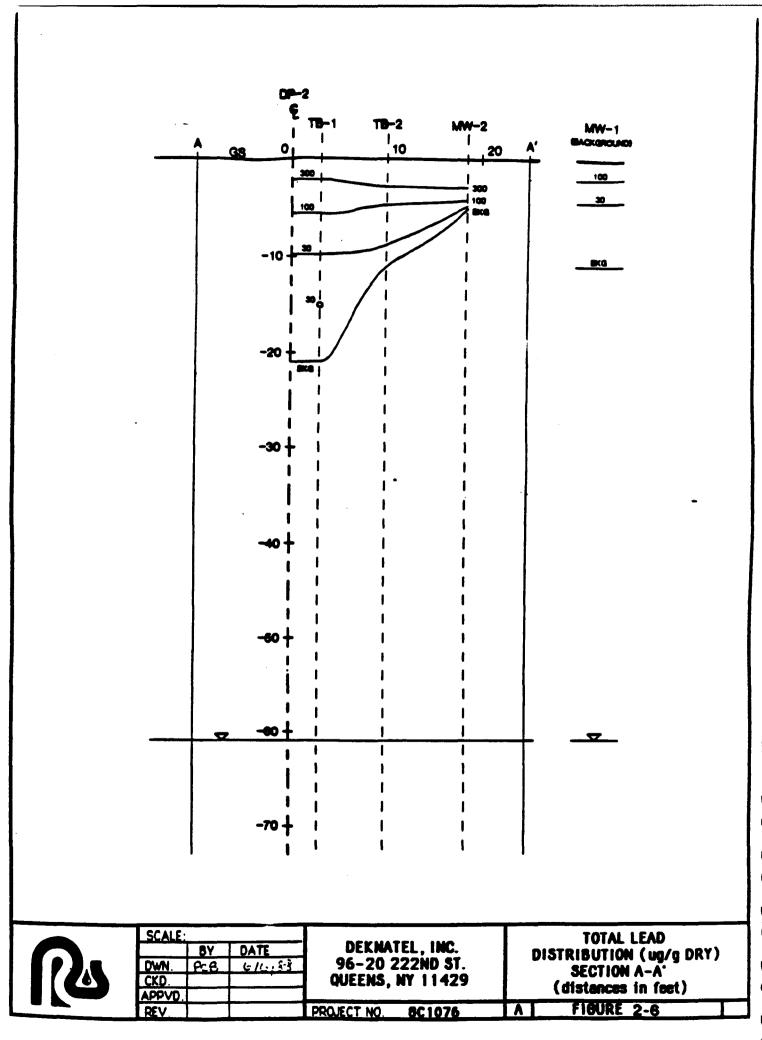
-16-


shown in Figure 2-3 were prepared for total and hexavalent chromium, lead and phosphorous and are presented in Figures 2-4 through 2-7. Profiles were not prepared for the other constituents since these substances were elevated at only a few sampling locations and their distribution patterns are readily apparent trom the tables of analytical results.


Total and hexavalent chromium concentrations greater than background levels were found from directly within DP-1 to a depth of ten feet and in DP-2 to the extent of the collections (i.e., 75 feet). Greater than background concentrations of total and hexavalent chromium were found from the surface to 72 feet below the surface in TB-1, nearest to DP-2, and from the surface to 40-50 teet in MW-2, which was the boring furthest from DP-2. Elevated soil chromium concentrations (total and hexavalent) extended into the water table, which was found at about 61 feet, and were present in groundwater samples obtained from MW-2 located 18.5 feet downgradient from DP-2. The results of the groundwater analyses to date are presented in Table 2-2. On average, the chromium concentrations found in the groundwater did not exceed state and federal drinking water standards; however, hexavalent chromium exceeded the standards in one out of three sampling events (>0.05)mg/l). Additional sampling and analysis efforts relative to the monitoring the existing groundwater wells are of being undertaken and results will be provided to the NYSDEC.

Both total and hexavalent chromium concentrations in the soil are highest near the surface and decrease with increasing depth and




-17-

[

]

[

[

-

ł

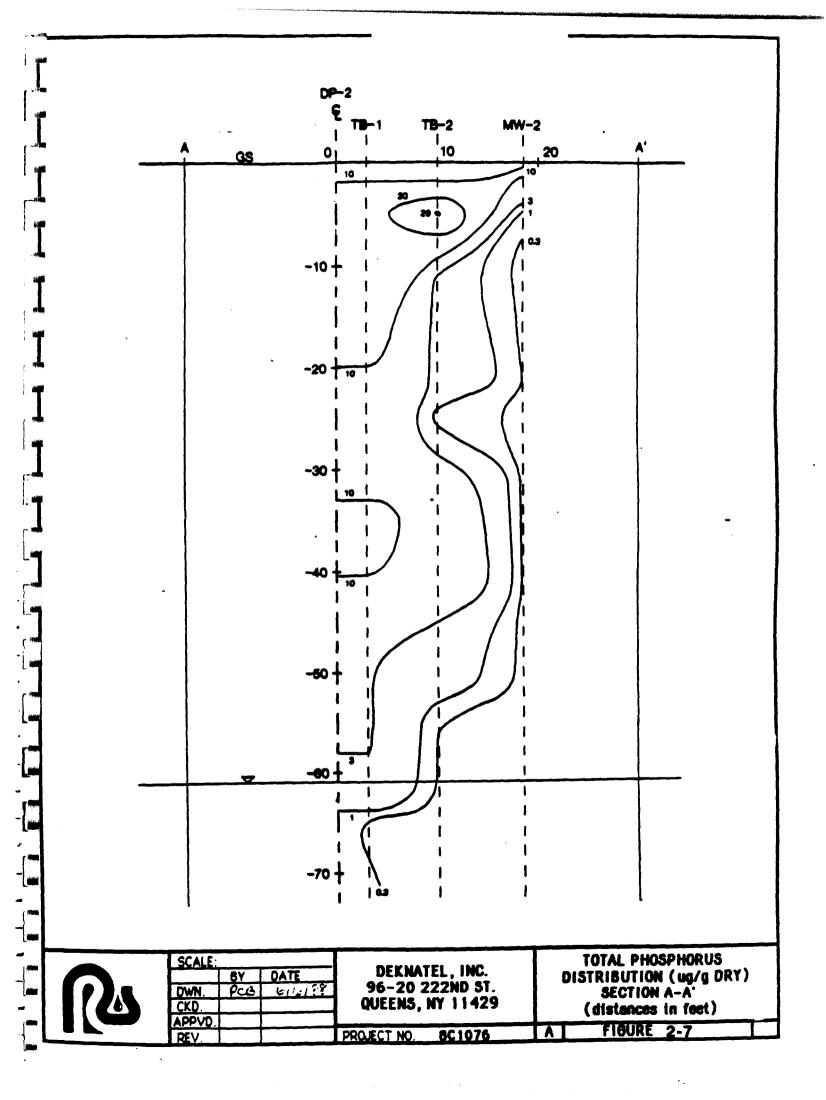
....

ł

w

{

ø


-[J.

in de

. 1977

Had,

- 25

horizontal distance from the disposal point. Approximately 90% of the total chromium and 55% of the hexavalent chromium present in the soil were found in the top twenty feet of the soil column.

Lead concentrations were elevated mainly at and near the surface in the soils and extend to a depth of <12 to <13 feet directly below the discharge points (DP-1, DP-2). Lead was also elevated at and near the surface at the background location relative to the deeper soils, and the maximum level recorded was 130 ug/g.

Leachable phosphorous concentrations were elevated throughout the soil column at all three sampling locations (TB-1, TB-2, and MW-2) near DP-2. Like the chromium concentrations, the phosphorous concentrations were highest at and near the surface, decreasing with both increasing depth and horizontal distance from DP-2, however, the rate of decrease was not nearly as great for phosphorous as for chromium. Leachable phosphorous concentrations remained substantially elevated in the soil samples furthest removed from the discharge point in both the horizontal and vertical directions. Soil phosphorous concentrations remained elevated into the water table and the groundwater samples obtained from MW-2 also had elevated total phosphorous concentrations.

Leachable phosphorus levels in the soil column at DP-1 also exceeded background levels to a depth of at least 35 feet. These levels, however, are substantially lower than those encountered downgradient from DP-2 and no value exceeds 10 ug/g (see Table 2-16).

-18-

The phosphorus detected in the soil and groundwater samples is presumed to be primarily in the form of ortho phosphate derived from phosphoric acid, which is a constituent of the waste materials disposed at the site. Phosphate and phosphoric acid in moderate amounts are generally regarded as safe for human consumption and are found in many foods and beverages. Consequently, no standards have been established for phosphate in drinking water.

Composites of the soil samples collected from each boring advanced at a potentially contaminated location (TB-1, TB-2 and MW-2) were tested by EP toxicity for leachable metals. Chromium and barium were the only metals detected in the leachates. The highest leachate chromium concentration was 0.064 mg/l, which is well below the criteria concentration for chromium of 5.0 mg/l. Barium was detected in the leachate from one composite at 0.22 mg/l, which is also well below its criterion of 100 mg/l. The soils in the vicinity of DP-2, therefore, are not characteristic nazardous wastes due to EP toxicity for metals. Samples from DP-1 were not analyzed for EP Toxicity because all metals detected were substantially lower than those detected in DP-2, and therefore, 1t was assumed the EP Toxicity results would be at levels similar to or less than those found from the DP-2 samples.

Composite soil samples from DP-1, analyzed for volatile organic constituents, illustrated the general absence of acetone from the soil column. Only at low levels (4.1 ug/g) in the 21-29' composite sample was acetone detected. The absence of acetone in the upper 21 feet of soil beneath DP-1 and only trace concentrations

-19-

being found in the 21-29' fractions suggests that little, if any, acetone was disposed of at DP-1; or, if acetone was disposed of, it is of minor concern from an environmental standpoint.

2.2.5 Summary and Conclustions Regarding the Source Investigation Study

Total and hexavalent chromium, lead and phosphorus were found in the soils at or near DP-2 at elevated concentrations in comparison to the concentrations found at a background location at the Deknatel site. Elevated lead concentrations were found only in the surface and near surface soils; whereas, concentrations in excess of background for total and hexavalent chromium and phosphorus concentrations extended from the ground surface to 72 The concentrations of all contaminants were feet subsurface. highest near the surface and closest to the disposal point and decreased with increasing horizontal and vertical distance from the disposal point #2. Based on estimates of the amount of chromium disposed in DP-2 and the amount present in the soil around DP-2, it appears that the majority of the chromium disposed in DP-2 has remained in the adjacent soils and 90% of that chromium is in the top 20 feet of the soil column.

Total and hexavalent chromium, lead and phosphorus were found also in the soils at DP-1; however, the recorded levels were considerably less than those found at and near DP-2 (see Table 2-16). The majority of the above mentioned constituents are found within the upper twelve feet of the soil column. Of the estimated 699 pounds of chromium which was disposed of at DP-1, only 8.1 pounds of chromium are calculated as remaining in the underlying soils.

-20-

This is believed to be due to the method of disposal and the amount of dilution (water rinse) used at the time of disposal and the subsequent flushing of the chromium from the soil column beneath DP-1.

Elevated total and hexavalent chromium and phosphorus concentrations were also found in groundwater samples obtained from the monitoring well (MW-2) located 18.5 feet downgradient from DP-2. Of the three waste related substances found in the groundwater, New York State has established a water quality standard for only one, hexavalent chromium. To date, groundwater at the site has been sampled on three occasions. The average hexavalent chromium concentration found was below the New York State Water Quality standard (50 ppb); however, on one of the three sampling occasions, its concentration did exceed the standard. Additional sampling and analysis efforts relative to the monitoring of the existing groundwater wells are being undertaken and results will be provided to the NYSDEC. No elevated levels of total or hexavalent chromium or phosphorous were found in groundwater samples analyzed at the MW-1 or MW-3 locations.

The results of the source investigation study clearly indicate that chromium disposed of as a consequence of past practices at Deknatel is present at the site and may represent a degree of environmental impact. Of all the other parameters tested for during the source investigation study, only lead and phosphorous (in addition to total and hexavalent chromium) were of signifi-

-21-

cance in this investigation. Further, it was seen that lead contamination was limited in extent (both vertically and horizontally) and that phosphorous appears to present little threat of environmental impact. The supplemental RI/FS therefore will utilize as its operative paramaters total and hexavalent chromium for purposes of problem definition, remedial planning and remedial implementation.

1/T12266.2

. .

--

TABLE 2-2

ANALYTICAL RESULTS FOR GROUNDWATER

PARAMETER	SAMPLE DATE	MW-1 (BACKGROUND)	MW-2 (DOWNGRADIENT)	MW-3 (CROSS GRADIENT)
Total Chromium	2-11-88	0.006	0.091	NA
(mg/1)	3-15-88	0.097	0.10	NA
	3-21-88	0.027	0.15	0.012
Hexavalent Chromium	2-11-88	<0.005	0.029	NA
(mg/l)	3-15-88	<0.003	0,090	NA
	3-21-88	<0.005	0.023	<0.005
Total Copper	2-11-88	<0.005	0.041	NA
(mg/1)	3-15-88	0.096	0.11	NA
	3-21-88	0.083	0.070	0.061
Nitrate	2-11-88	1.8	7.1	NA
(mg NO _{3-N/1})	3-15-88	8.7	7.5	NA
•	3-21-88	8.7 8.1	7.5 6.2	19
Total Phosphorus	2-11-88	<0.02	4,4	NA
(mg/1)	3-15-88	0.12	<0.02	NA
	3-21-88	3.6	6.2	1.6
Sulfate	2-11-88	53	56	NA
(mg/1)	3-15-88	67	42	NA
-	3-21-88	55	36	37
pH (Standard Units)	2-11-88	6,23	6.79	NA
	3-15-88	NA	NA	NA
	3-21-88	NA	NA	NA

NA = Not Analyzed

.

TOTAL CADMIUM (ug/g Dry Weight)

ιų.

1

ų,

and the second

٥ż

	BORING/MONITORING WELL					
SAMPLE	<u>TB-1</u>	TB-2	<u>MW-2</u>	MW-1		
DEPTH		FROM CENTER	R OF DP-2			
(ft)	<u>3 ft.</u>	<u> 10 ft.</u>	<u>18.5 ft.</u>	BACKGROUND		
0-2	<0.6	1.4	1.0	0.76		
4-6	<0.5	<0.6	<0.5	<0.6		
10-12	<0.5	<0.6	<0.5	<0.5		
14-16	<0.5	<0.6	<0.5	<0.6 -		
20-22	<0.5	<0.6	<0.5	<0.6		
24-26	<0.5	<0.5	<0.5	<0.5		
30-32	<0.5	<0.5	<0.5	<0.5		
34-36	. <0.5	<0.6	<0.5	<0.5		
40-42	<0.5	<0.5	<0.5	<0.6		
44-46	<0.5	<0.5	<0.5	<0.5		
50-52	<0.5	<0.6	<0.5	<0.6		
54-56	<0.5	<0.5	<0.6	<0.5		
60-62	<0.6	<0.6	<0.6	<0.5		
64-66	<0.6	<0.6	<0.6	<0.6		
70-72	<0.6	<0.6	<0.6	<0.6		

{

Ł

1

ĺ

L

TOTAL CHROMIUM (ug/g Dry Weight)

SAMPLE	TB-1	TB-2	ITORING WEL MW-2	L MW-1
DEPTH (ft)	DISTANCE 3 ft.	FROM CENTER 10 ft.	OF DP-2 18.5 ft.	BACKGROUND
0-2	900	260	790	17
2-4	2,010			
4-6	1,220	3,580	200	11
6-8	1,770			
8-10	1,440	:		•
10-12	1,760	340	86	7.0
12-14	3,050	•	•	
14-16	. 1,680	210	71	5.5
16-18	1,240			
18-20	710			•
20-22	500	410	36	6.9
24-25	440	380	30	6.5
30-32	370	200	21	6.2
34-36	380	130	· 28	4.8
40-42	380	100	21 -	8.6
44-46	300	100	·· 17 ··-	9.2
50-52	98	51	6.5	8.2
54-56	. 110	18	12	5.4
60-62	59	28	7.8	7.8
64-66	26	27	5.6	9.2
70-72	15	13	7.3	5.4

(**** 1 in:

-

RECRA ENVIRONMENTAL, INC.

R

:

The second s

1. A. A.

And and

L'AND

		BORING/MON	ITORING WELL	
SAMPLE	TB-1	TB-2	MW-Z	MW-1
DEPTH	DISTANCE	FROM CENTER	OF DP-2	
(ft)	<u> </u>	<u>10 ft.</u>	18.5 ft.	BACKGROUND
0-2	8.2	4:3	11	<0.09
4-6	16	29	0.46	<0.09
10-12	19	2.0	0.095	<0.09
14-16	18	2.3	0.14	<0.09
20-22	7.9	2.4	0.31	<0.09
24-26	9.2	0.53	0.22	<0.09
30-32	7.0	4.7	0.15	<0.09
34-36	13	6.2	0.10	<0.09
40-42	9.6	6.8	0.17	<0.09
44-46	7.3	3.0	0.10	<0.09
50-52	3.1	1.7	<0.09	<0.09
54-56	3.2	0.32	0.12	<0.09
60-62	2.8	0.19	<0.09	0.32
64-66	0.26	0.19	<0.09	0.44
70-72	0.32	0.17	0.17	0.28

HEXAVALENT CHROMIUM (ug/g Dry Weight)

[

[

L

l

۱

TOTAL COPPER (ug/g Dry Weight)

.

BORING/MONITORING WELL TB-1 TB-2 MW-2 MW-1					
	FROM CENTER	OF DP-2	BACKGROUND		
12	120	120	97		
7.2	14	8.3	9.6		
8.8	5.4	5.5	7.0		
7.1	5.9	14	7.4		
5.8	7.6	21	5.9		
5.2	5.9	17	9.6		
12	10 -	7.9	9.1		
10	18 '	11	6.9		
6.7	8.8	10	6.8		
7.6	12	12	8.6		
4.9	5.9	4.0	7.9		
6.2	4.3	5.1	3.8		
5.7	6.3	4.5	5.9		
4.4	7.ľ	3.6	4.5		
4.2	6.7	4.2	3.3		
	3 ft. 12 7.2 8.8 7.1 5.8 5.2 12 10 6.7 7.6 4.9 6.2 5.7 4.4	DISTANCE FROM CENTER 10 ft. 12 120 7.2 14 8.8 5.4 7.1 5.9 5.8 7.6 5.2 5.9 12 10. 10 18 6.7 8.8 7.6 12 4.9 5.9 6.2 4.3 5.7 6.3 4.4 7.1	DISTANCE FROM CENTER OF DP-2 3 ft. 10 ft. 18.5 ft. 12 120 120 7.2 14 8.3 8.8 5.4 5.5 7.1 5.9 14 5.8 7.6 21 5.2 5.9 17 12 10. 7.9 10 18 11 6.7 8.8 10 7.6 12 12 4.9 5.9 4.0 6.2 4.3 5.1 5.7 6.3 4.5 4.4 7.1 3.6		

1

. مده در المرد م

(<u>__</u> 5 S 5 نبينى 5 i an a 5 <u>ب</u> 5 £ 4

£

4

TOTAL IRON (ug/g Dry Weight)

.

[BORING/MONITORING WELL					
SAMPLE	TB-1	<u></u> TB-2	MW-2	MW-1		
DEPTH	DISTANCE	FROM CENTER	OF DP-2			
(ft)	<u>3 ft.</u>	<u>10 ft.</u>	<u>18.5 ft.</u>	BACKGROUND		
0-2	. 6 ,140	12,700	13,400	8,710		
4-6	6,600	18,900	8,420	7,840		
10-12	12,600	5,560	4,470	4,350		
14-16	9,050	4,080	7.510	5,960		
20-22	5,860	6,810	7,510	3,890		
24-26	4,720	5,360	5,110	6,360		
30-32	8,790	8,110	6,560	7,180		
34-36	· 9,140	8,650	7,910	6,380		
40-42	10,400	10,700	9,000	7,410		
44-46	9 ,090	10,800	12,200	7 ₁ 440		
50-52	4,340	5,540	4,940	6,320		
54-56	6,380	4,410	5,850	5,530		
60-62	3,930	4,940	5,220	8,000		
64-66	3,090	5,210	• 4,440	4,960		
70-72	2,810	3,580	3,930	3,460		

,

[

[

TABL	Ε	2-8
------	---	-----

TO	ral I	LEAD
(ug/g	Dry	Weight)

_

			ITORING WEL	
SAMPLE	TB-1	TB-2 FROM CENTER	<u>MW-2</u>	<u>MW-1</u>
DEPTH (ft)	3 ft.	10 ft.		BACKGROUND
0-2	380	480	590	130
4-6	110	71	4.0	15
10-12	11	5.1	<4	<5
14-16	31	<6	<4	6.2
20-22	5.0	<6	<4	<6
24-26	<3	6.0	<4	<5
30-32	<3	6.6	<4	5.9
34-36	. <4	. <6	<4	<5
40-42	<3	<5	<4	<6
44-46	<3	<5	<4	<5
50-52	<3	<6	<4	<6
54-56	<3	<5	<4	< <u>5</u>
60-62	<4	<6	<4	<5
64-66	<6	<6	<4	<6
70-72	<4	<6	<4	<6

RECRA ENVIRONMENTAL, INC.

198

-

1519

ę,

5

•

TOTA	L NI	ICKEL
(ug/g	Dry	Weight)

۰.

SAMPLE	TB-1	778-2	ITORING WELL MW-2	L <u>MW-1</u>
DEPTH (ft)	DISTANCE 3 ft.	FROM CENTER 10 ft.	OF DP-2 18.5 ft.	BACKGROUND
0-2	5.1	21	15	12
4-6	<4	11	10	15
10-12	14	6.1	10	12
14-16	4.9	10	13	10
20-22	5.0	9.4	ш	17
24-26	4.8	<4	8.0	8.0
30-32	7.0	<4.	8.8	7.9
34-36	6.0	17	7.9	6.9
40-42	5.8	8.8	14	8.1
44-46	7.8	8.9	11	5.8
50-52	5.9	4.0	<4-	12
54-56	5.0	4.8	7.0	5.0
60-62	5.3	<5	6.9	5.8
64-66	5.5	4.1	7.7	<5
70-72	5.5	<6	6.8	7.1

[

l

L

L

L

L

l

L

TOTAL SELENIUM (ug/g Dry Weight)

	BORING/MONITORING WELL					
SAMPLE	TB-1	TB-2	<u>MW-2</u>	<u>MW-1</u>		
DEPTH (ft)	DISTANCE 3 ft.	FROM CENTER 10 ft.	OF DP-2 <u>18.5 ft.</u>	BACKGROUND		
0-2	<0.6	<0.6	<0.6	<0.6		
4-6	<0.5	<0.6	<0.5	<0.6		
10-12	<0.5	<0.6	<0.5	<0.5		
14-16	<0.5	<0.6	<0.5	<0.6		
20-22	<0.5	<0.6	<0.5	<0.6		
24-26	<0.5	<0.5	<0.5	<0.5		
30-32	<0.5	<0,5	<0.5	<0.5		
34-36	<0.5	. <0.6	<0.5	<0.5		
40-42	<0.5	<0.5	<0.5	<0.6		
44-46	<0.5	<0.5	<0.5	<0.5		
50-52	<0.5	<0.6	<0.5	<0.6		
54-56	<0.5	<0.5	<0'.6	<0.5		
60-62	<0.6	<0.6	<0.5	<0.5		
64-66	<0.6	<0.6	<0.6	<0.6		
70-72	<0.6	<0.6	<0.6	<0.6		

A state of the sta

-

RECRA ENVIRONMENTAL, INC.

٠

Rs

TOT	AL 3	LINC
(ug/g	Dry	Weight)

•

	TB-1	BORING/MONI TB-2	MW-2	L MW-1
SAMPLE DEPTH (ft)	DISTANCE 3 ft.	FROM CENTER 10 ft.	OF DP-2 , 18.5 ft.	BACKGROUND
0-2	32	360	150	130
4-6	8.9	35	18	20
10-12	19	21	13	30
14-16	8.1	17	30	11
20-22	7.0	22	19	11
24-26	7.2	17	14	29
30-32	12	21	18	34
34-36	13	17	20	14
40-42	12	29	18	30
44-46	11	24	34	.26
50-52	8.8	17	9.4	34
54-56	9.9	12	11	8.4
60-62	7.8	11	9.4	22
64-66	7.1	18	18	16
70-72	6.9	17	7.6	8.5

Ę.

Ş,

*

l

17

TA	BL	E	2-	1	2
----	----	---	----	---	---

LEACHABLE NITRATE (ug/g Dry Wt.)

SAMPLE	TB-1	BORING/MON TB-2	ITORING WEI MW-2	ی۔ MW-1
DEPTH (ft)		FROM CENTER 10 ft.		BACKGROUND
0-2	54	<3	9.6	3.7
10-12	16	<3	<3	2.0
20-22	<3	<3	5.3	<3
30-32	<3	<3	2.2	<3
40-42	2.3	<3	5.5 ·	3.1
50-52	<3	2.4	3.3	3.5
60-62	2.7	5.4	4.3	2.8
70-76	3.1	3.4	3.3	5.6

.

Ē 5 5 basta ۶., <u>ان</u> ٢., **___** in in ß RECRA ENVIRONMENTAL, INC.

LEACHABLE PHOSPHORUS (ug/g Dry Wt.)

SAMPLE	TB-1	BORING/MON TB-2	ITORING WEL MW-2	L MW-1
DEPTH (ft)	DISTANCE 3 ft.	FROM CENTER 10 ft.	OF DP-2 . 18.5 ft.	BACKGROUND
0-2	79	61	66	<0.9
10-12	400	39	41	<0.9
20-22	48	30	43	<0.9
30-32	22	18 .	11	<0.9
40-42	32	29	28	<0.9
50-52	17	16	13	<0.9
60-62	17	17	7.5	<0.9
70-72	2.1	6.1	15	<0.9

(in)

[

L

L

L

.

LEACHABLE SULFATE - (ug/g Dry Wt.)

SAMPLE	TB-1	TB-2	NITORING WEL MW-2	L MW-1
DEPTH (ft)	DISTANCE 3 ft.	FROM CENTE	R OF DP-2 18.5 ft.	BACKGROUND
0-2	69	120	78	58
10-12	<42	<42	<42	<41
20-22	<42	<42	<42	<41
30-32	<43	<42	<42	<42
40-42	<42	<42	110	<42
50-52	<42	<42	73	64
60-62	<45	<43	<46	<42
70-72	<46	<45	<48	<48

.

-

-

۲

PERCENT DRY WEIGHT

SAMPLE	1		ITORING WEI	
DEPTH	TB-1 DISTANCE	TB-2 FROM CENTER	MW-2	<u>MW-1</u>
(ft)	<u>3 ft.</u>	10 ft.	18.5 ft.	BACKGROUND
0-2	93.10	80.16	81.82	88.20
2-4	94.63			
4-6	96.50	89.63	95.67	95.30
6-8	89.06			
8-10	95.83			
10-12	96.00	96.75	97.01	97.51
12-14	96.30			•
14-16	96.58	96.67°	95.68	95.63
16-18	97.00	•		
18-20	96.57			
20-22	96.87	95.80	96.09	97.35
24-26	97.03	96.54	95.20	96.79
30-32	92.92	95.64	94.89	96.44
34-36	95.86	95.52	96.08	96.61
40-42	95.83	95.18	95.21	97.06
44-46	.95.94	95.01	-95.31	96.64
50-52	96.06	95.39	95.54	96.00
54-56	94.94	96.07	95.71	95.90
60-62	89.20	91.30	86.13	93.82
64-66	89.84	88.76	89.01	88.25
70-72	87.66	88.02	82.49	83.58

• .

ſ

1/T8028.6

TABLE 2-16

SUMMARY OF ANALYTICAL RESULTS FOR SOIL SAMPLES COLLECTED AT DISPOSAL AREAS 1 & 2

					þ	Total Metals (ug/g)	als				Inore	Leachable rganics	e (ug/g)
	Depth	Cd	Cr	Cr+6	3	Fe Se	ЪР Р	in i	Se	Zn	No.	N03 P04	504
		(BGK	(BGK	(BGK		(BGK	(BGK		(BGK		(86K	(BGK	(BGK
samp le	Sample	AAA 0 76 1	171			RAA 8 7101	1301			1 201	RAN A		
		10.0	1/7			10110	1001			1001	1.0.7	16.0	5
	8-10+	•	4 100	9,5	540	17,000	10,000	t	ł	840		8.0	150
	10-1244	1	1,700	0.28	120	14,000	2,800	I	I	230		40 6 60 6	47
	13-15	•	69		2	6,510	150	1	1	08		0	28
	15-17	I	63	0.59	5	6,710	150	•	ı	15			20 20
	17-19	I	34	0.81	5	7,810	110	ı	ı	11	6.2	6.1	< <u>2</u> 0
0P-1	19-21	1	13	0.13	12	4,020	55	I	1	9.2		5.7	<20
•	21-23	ı	35	0.29	25	13,600	73	I	1	23		3.6	<20
	23-25	1	8.1	<0.08	7.1	2,920	28	ı	1	8.7		3.7	<20
	25-27	I	8.7	0.10	9.6	5,080	37	ı	1	10		3.9	37
	•	t	12	<0.08	19	20,900	97	I	ı	12		5.4	58
	33-35	ı	18	0.11	14	4,570	39	ı	I	10		4.7	<20
	0-0		25,800	4,610	220	19,000	53,200	29	<0.6	200	ı	ł	t
	0-2		•	150	17	9,220	570	4.6	<0.6	20	I	1	ı
	4.0-4.5	°.	4,740	220	18	6,820		5.1	<0.6	19	1	. 1	1
DP-2	5-5			400	15	7,050		ć 2	<0.6	15	ı	1	ı
	0-5	Ş		110	10	6,230		\$ 2	<0.6	11	ı	ſ	I
	9-0			69	11	9,510		\$	<0.6	9.6	ı	I	1
	5-7	ô	•	130	11	4,350		2.8	<0.6	10	ı	ı	1
	0-7	ô	•	87	11	4,010		3.7	<0.6	10	1	ı	ſ
Noto.	RCD MAY is the maximu	the max	8	pulloup.	סוובע	found fo	background value found for each element in the soils from	lament	in the	coile	from		

BGR MAX is the maximum background value found for each element in the soils from MW-1, all values are in ug/g. Note:

* Composite sample was taken from the 8-9' and 9-10' sampling interval, listed on analytical results as Comp-1.

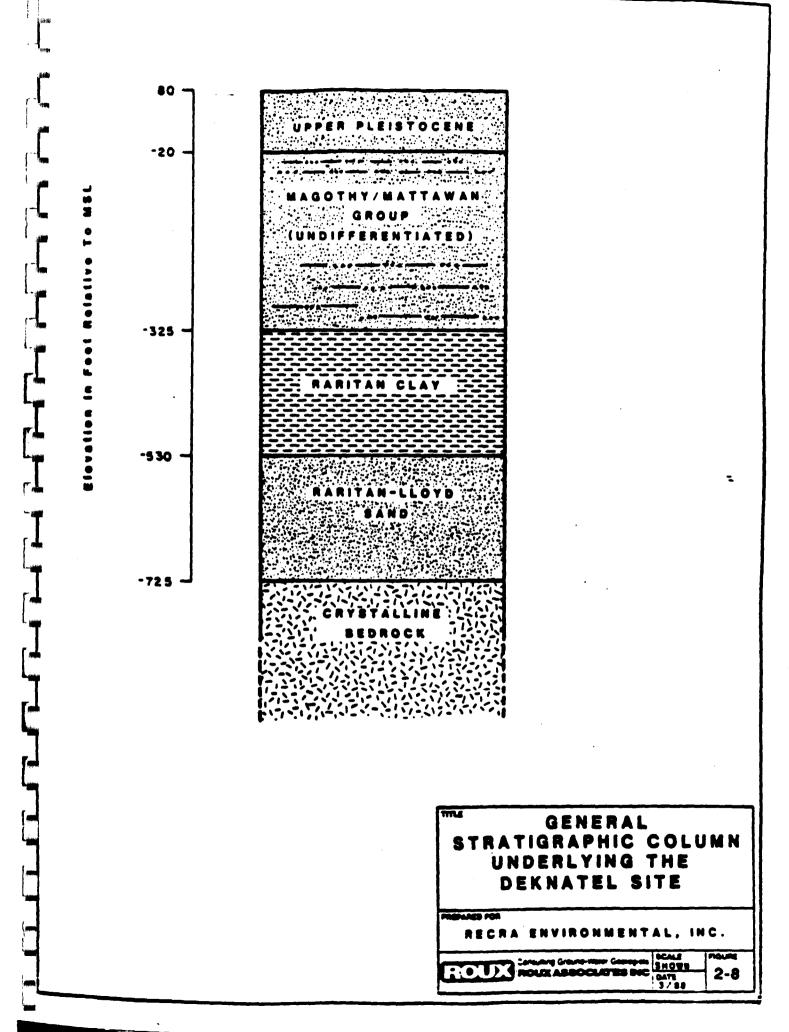
**Composite sample was taken from the 10-11', 11-11.5' and 11.5-12' sampling interval, listed
on analytical results as Comp-2 ,

- Not analyzed.

2.3 GEOLOGY AND HYDROLOGY

2.3.1 Introduction

The Deknatel site is located in the Atlantic Coastal Plain Physiographic Province. This province is characterized by southeasterly-dipping strata comprised of unconsolidated sand, silt, clay and gravel unconformably overlying crystalline bedrock. The borings for this investigation were relatively shallow compared to the thickness of the unconsolidated sediments at the site.


2.3.2 Hydrogeology of the Study Area

The study area is underlain by over seven hundred (700) feet of unconsolidated sediments (Figure 2-8). From oldest (deepest) to youngest (shallowest) these sediments have been divided into a series of geologic formations: the Raritan Formation; the Magothy Formation and Mattawan Group, undifferentiated; and Pleistocene deposits. The Raritan and Magothy/Mattawan rocks are Late Cretaceous in age and directly overlie crystalline bedrock. The Pleistocene-aged sediments were deposited on the erosional surface of the Magothy/Mattawan deposits. Each geologic formation contains water-bearing zones and intervals; where these zones are prevalent and interconnected they can be considered aquifers.

A brief description of the two geologic and hydrologic units nearest the surface which are of interest in this study follows:

- 38 -

Magothy Formation/Mattawan Group (Undifferentiated)

The Magothy/Mattawan deposits are also Late Cretaceous in age and unconformably overlie the clay member of the Raritan Formation (Figure 2-8). The Magothy/Mattawan deposits consist of layers and lenses of gravel, sand, silt, and clay. The thickness in the study area based on nearby well logs is between 200 and 300 feet.

The sandy and gravelly layers/lenses yield significant quantities of water to wells. However, less permeable silts and clays dominate certain horizons in the Magothy/Mattawan which causes variations in hydraulic conductivity both vertically and horizontally. These silt/clay layers shield most of the good waterbearing zones from surface contamination and locally cause confined (artesian) conditions.

Wells tapping the Magothy/Mattawan System in Queens have yielded as much as 1,800 gpm. Specific capacities have ranged from less than 15 gpm/ft to over 50 gpm/ft in the coarser, more permeable deposits. This aquifer has been extensively developed in Queens and Nassau Counties.

Pleistocene Deposits

Directly overlying the uneven surface of the Magothy/Mattawan aquifer system are Upper Pleistocene deposits consiting of sands and gravels with minor interbeds of silt and clay. These deposits are of glaciofluvial origin and are termed outwash. These were deposited from the meltwaters of a retreating glacier which sorted sediments previously carried and deposited by the ice. Therefore,

these deposits contain sediments having uniform grain sizes and are highly permeable. These outwash deposits comprise the Upper Glacial aquifer. The Upper Glacial aquifer is the aquifer of concern for this study, due to its hydraulic connection with the regionally important Magothy/Mattawan aquifer system.

In 1979, according to Buxton, et.al. <u>1981</u>, net pumpage from aquifers underlying Queens was approximately 62.5 mgd. Of this total. 16.6 mgd (27%) was pumped from the Upper Glacial; 37.3 mgd (60%) from the Magothy/Mattawan System; and 7 mgd (11%) from the Lloyd aquifer. A small percentage was pumped from the Jameco aquifer which does not underlie the Deknatel area.

Most of the pumpage described above involves the Jamaica Water Supply Company whose nearest wells are approximately half a mile west of the site. This company serves more than half a million people and over 7500 commercial and industrial establishments in southeast Queens. A large cone of depression exists where the Jamaica Water Supply well fields are located. Shallow groundwater under the Deknatel site flows westerly toward the Jamaica Water Supply cone of depression.

Other non-drinking water wells located between the Jamaica Water Supply well fields and the Deknatel site supply cooling water for air conditioning systems and other non-potable water users. After use, the water is generally returned to the aquifer via diffusion wells. These nonpotable, pumping wells are screened either in the Magothy/Mattawan system or Upper Glacial aquifer and will have little effect on shallow groundwater under the Deknatel site

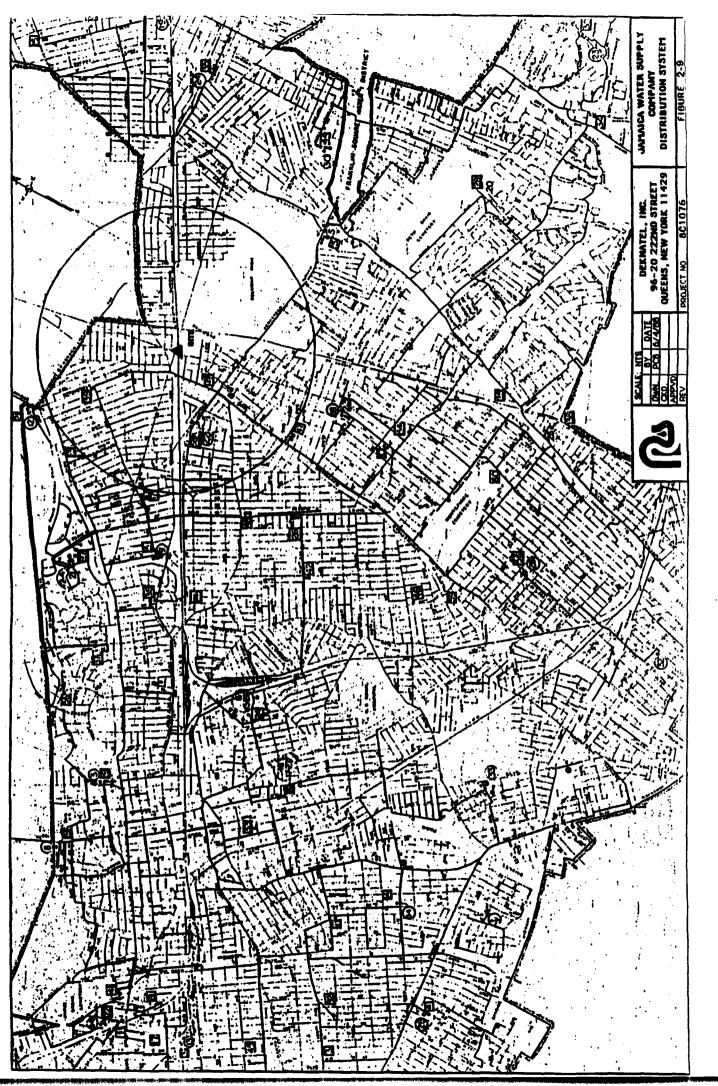
-40-

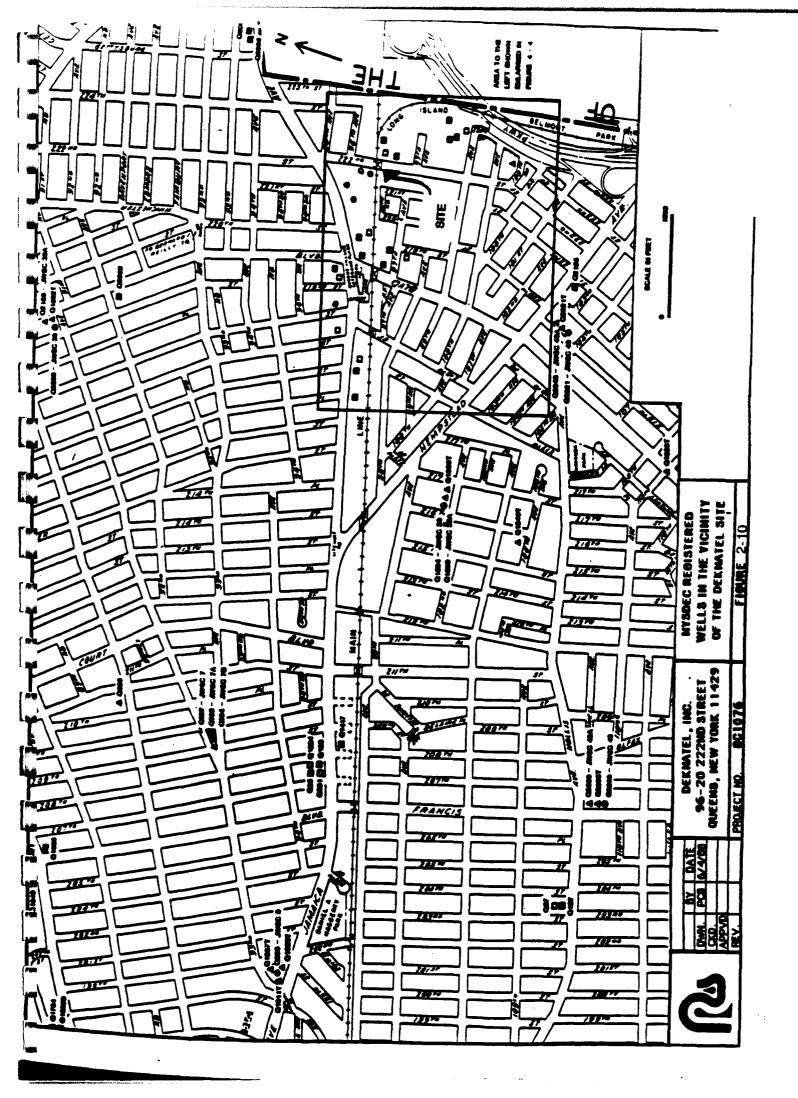
because of their location and seasonal usage.

2.3.3 Groundwater Flow Velocity and Direction

Based on a hydraulic conductivity of 480 gpd/ft2, a measured onsite gradient of 0.002 ft/ft and an assumed porosity of 0.35, the approximate groundwater flow velocity is 0.137 foot/day or 134 feet/year. This value is representative of the upper portion of the water table aquifer under the site and is consistent with values obtained for the Upper Glacial aquifer, in general. Groundwater flow velocities may vary somewhat throughout the thickness of the Upper Glacial aquifer under the site, depending upon the coarseness, sorting and packing of the individual sediment layers.

Figure B-5 in Appendix B shows the regional direction of groundwater flow near the site based on Jamaica Water Supply Company (JWSC) 1987 water levels. This figure reflects water level data consistent with measurements collected on three occasions at the site by Roux Associates during this investigation. The apparent direction of groundwater flow is towards the Jamaica Water Supply Company (JWSC) cone of depression near wells 27, 37 and 38. These wells are over 8500 feet west of the site. Screen settings place these wells in the lower portion of the Upper Glacial aquifer but some screens may also bridge the uppermost portion of the Magothy/Mattawan system. Though JWSC well 29 is the closest Upper Glacial supply well, groundwater from the site appears not to be flowing in that direction but towards the more extensive cone of


depression to the west. It is unlikely, that groundwater from the site would be drawn down into the deep well screen of JWSC well 29 (screened -10 to -30 feet MSL). More likely, groundwater would pass by the well at higher horizons in the aquifer and then would turn and flow towards the extensive water table lows (JWSC wells 27, 37 and 38, which are northwest of the site).


Buxton, et.al. 1981, presented a series of plates that show the water table configuration at various times from 1903 to the present. The 1903 data reflect the best estimate for predevelopment conditions and show flow to the west and southwest from the area of the site, away from a water table high in Nassau County. Water table maps compiled in 1936, 1943, and 1961 show extensive cones of depression in Brooklyn and near Woodhaven, Queens and groundwater flow from the area of the site is consistently westerly or southeasterly towards these areas. The data from 1974 and 1981 indicate pumpage has stopped in Brooklyn and the Woodhaven area but shows a pronounced water table low in the area of the Jamaica Water Supply Company (JWSC) well fields. Once again flow from the site is westerly during these periods and towards the JWSC cone of depression.

2.3.4 Nearby Aquifer Usage

Usage of the aquifers underlying the Deknatel site in the general vicinity of the site can be divided into three categories: public potable water supply, commercial and industrial uses, and private domestic uses.

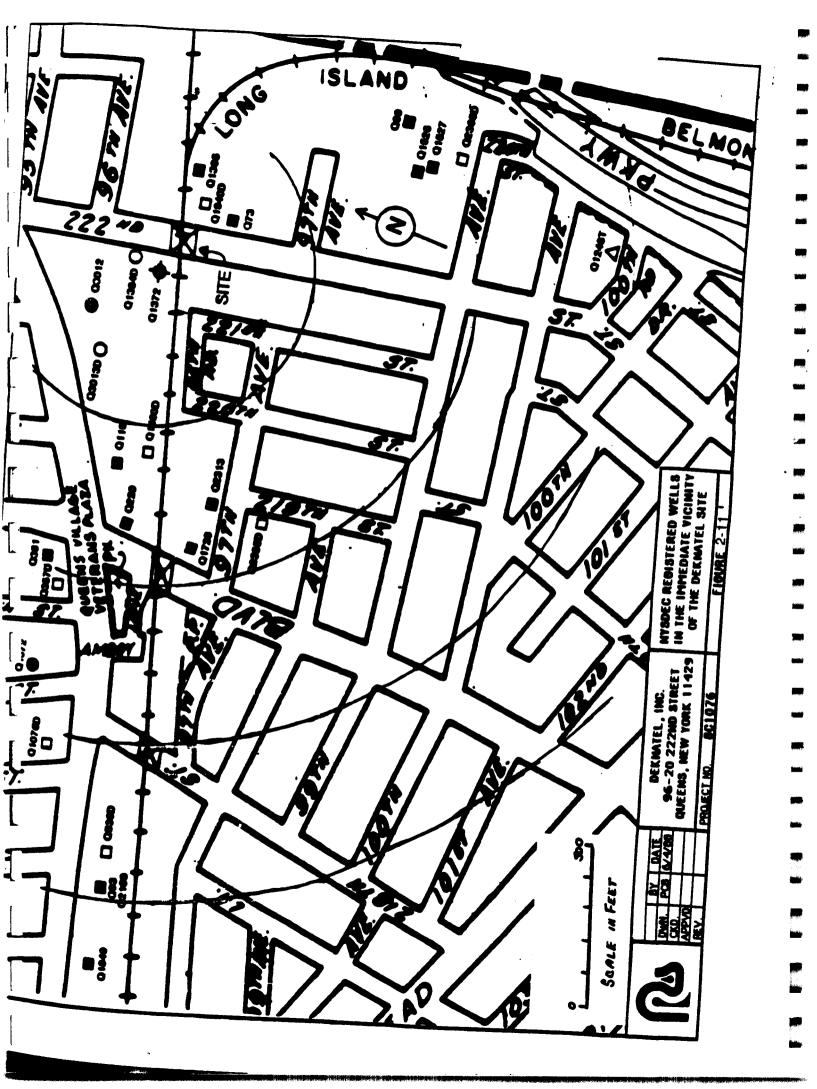
-42-

Public Supply Wells

The public supply wells in the vicinity are all owned and operated by the Jamaica Water Supply (JWSC) which maintains an active well field covering much of Queens County and portions of western Nassau County. A map of the JWSC distribution system showing the locations of these wells and of the Deknatel facility is included as Figure 2-9. Regional groundwater flow near the Deknatel site is generally westerly, approximately parallel to the Long Island Railroad right-of-way next to the Deknatel site.

As can be seen from this map and a more detailed map shown in Figure 2-10, a number of the JWSC wells lie in the general downgradient direction from the site. The closest wells, 49 and 49A are approximately 0.5 miles from the site, 29 and 29A are about 0.6 miles away, 7, 7A and 7B are about a mile distant, a number of others lie between 1 and 2 miles, and a few more lie between 2 and 3 miles away.

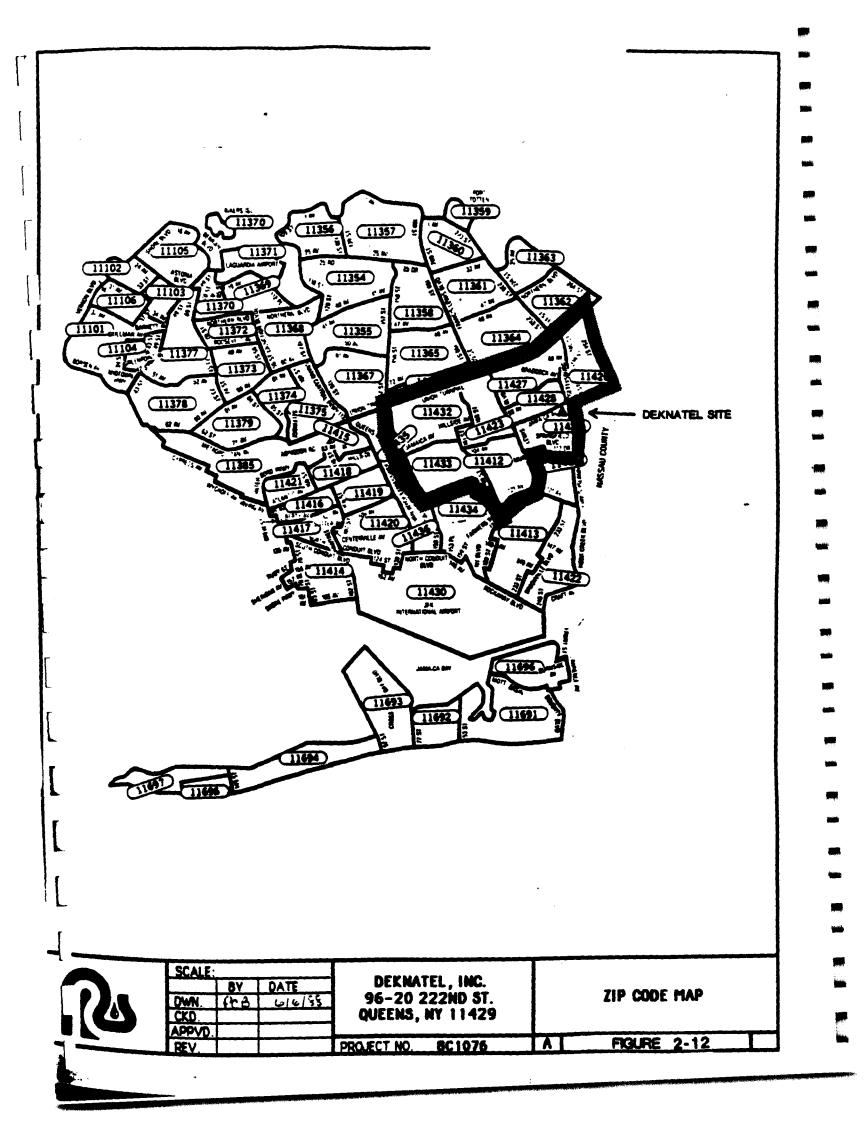
Of the approximately 60 Jamaica Water Supply Company wells that lie within 3 miles of the Deknatel site in any direction, about half are screened in the Upper Glacial (water table) aquifer, the other half are screened in the Magothy Formation and only one is screened in the Lloyd Formation. In 1987, the net pumpage of JWSC wells within 3 miles of the Deknatel site amounted to approximately 9 billion gallons, of which approximately 80% was from the Upper Glacial Formation, approximately 20% was from the Magothy, and less than 1% was from the Lloyd.


Non-Public Supply Commercial and Industrial Wells

About 125 non-public supply wells at least 4-1/2 inches in diameter, capable of producing at least 45 gallons per minute were identified from NYSDEC records in the area extending about 1 mile north and east (upgradient), 2 miles south and 2-1/2 miles west (downgradient) from the Deknatel site. These wells are predominantly used for commercial or industrial purposes. The majority of these are used for air conditioning or cooling purposes, a few are used for general industrial purposes, a number are test or observation wells and only two were identified as being for domestic use. Both of these latter two wells were located upgradient of the site.

Well completion reports were obtained and reviewed for 58 of these wells located within about 0.5 miles up or across gradient and up to 2 miles downgradient from the site. Of these wells, 22 were pumping wells (15 for air conditioning or cooling), 17 were recharge diffusion wells and 19 were test wells, many of which were exploratory wells for the Jamaica Water Supply Company. Of the 22 pumping wells, 19 are screened in the Upper Glacial (water table) aquifer and the 3 remaining wells are screened in the Magothy Formation. The maps presented in Figures 2-10 and 2-11 show the locations of the non-public supply wells recorded in the NYSDEC well completion files and located within about 1.5 miles downgradient from the site. In addition, a data base has been compiled, which can be found in Appendix E, that contains the locations, relative to the Deknatel site, of all 125 wells iden-

-44-


tified in the general vicinity of the site. It also contains information on the depth, production capacity, intended usage, the original owner and the street address of the wells for which completion reports were obtained.

Private Domestic Wells

Wells capable of producing less than 45 gallons per minute in New York City are regulated by the NYC Department of Health (NYCDOH) by means of permits that must be renewed annually. The NYCDOH does not maintain a reference map showing well locations however, a list of permits arranged by z1p code is maintained. The area in the vicinity of the Deknatel site falls in eight zip code zones. As of March 1988 there were 18 active NYCDOH well permits for wells in these zip code zones. Figure 2-12 shows a zip code map of Queens with the location of the Deknatel site indicated and the zip code zones of interest outlined. Table 2-17 lists the number of active NYCDOH well permits in each relevant zip code zone.

The NYCDOH permits these wells for non-potable water uses. Most of these wells are used for such purposes as watering lawns and washing cars, particularly when the use of public water supplies for these purposes is restricted, such as during periods of drought. While no specific information is available, it is likely that most, if not all, of these wells are screened near the top of the water table aquifer because of the size of these wells and the added expense of drilling deeper wells.

-45-

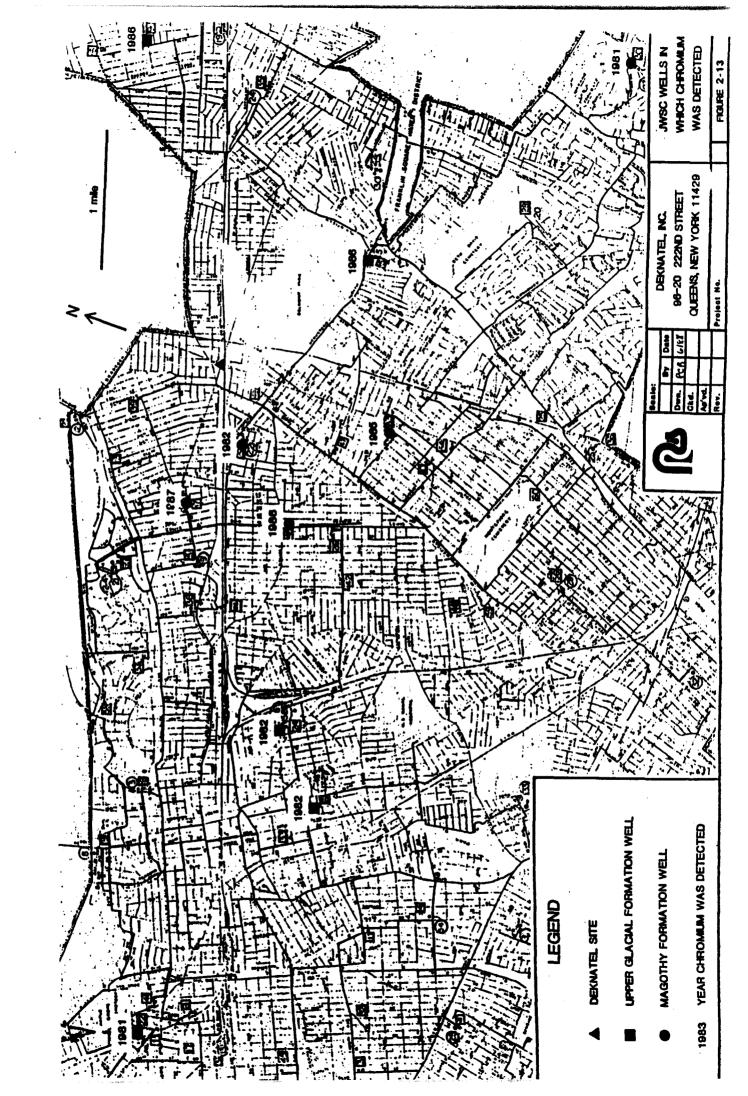
2.3.5 Available Groundwater Quality Information

There are two sources of information on the groundwater quality in the vicinity of the Deknatel site and a third source provides information on groundwater quality at locations somewhat further removed from the site. The first source is the data obtained from analyses of groundwater samples collected from the monitoring wells on the Deknatel site which was presented in Section 2.2.4 of this report. Briefly, that data indicated that concentrations of total and hexavalent chromium and phosphorus were elevated immediately downgradient from DP-2 in comparison to nearby background locations, but on average were within applicable drinking water standards.

The other source of information on nearby groundwater quality is the routine data compiled by the Jamaica Water Supply Company on the water pumped from its wells. Since these wells are used for public supply purposes, JWSC is required to develop and maintain water quality data on them. Every well in operable condition is sampled and analyzed at least once a year and most of the wells in regular service are sampled and analyzed several times a year. The Jamaica Water Supply Company has made the results of these analyses available to Recra Environmental. The analytical data from 1975 through 1987 for substances believed to have been constituents of the waste materials disposed at the Deknatel site has been compiled and is presented in data base form in Appendix E. Also included is information on the location, depth, pumpage and static water levels in the wells. JWSC began analyses for

-47-

metals in 1975, which are included in the data base where available; however, no data exists on metal concentrations before 1975. Since chromium and copper were the key parameters in this study and data on them did not become available until 1975, analytical data for earlier years was not compiled.


Chromium was apparently present in relatively high concentrations in the material disposed at Deknatel since 1956. Chromium was detected in only 7 out of 400 analyses of well water from JWSC wells within 3 miles of the site over the last 13 years. When detected, chromium was found at the minimum detectable concentration of 20 parts per billion (ppb) in 6 of the samples and at 40 ppb in the other one. The standard for chromium in drinking water established by both the United States Environmental Protection Agency (EPA) and New York State is 50 ppb. Therefore, the chromium concentration has not exceeded the drinking water standard in any of the well water samples examined over the last 13 years. The samples in which chromium was detected were from wells throughout the JWSC service area and occurred in 4 of the 13 years for which data was examined. Chromium was not detected more than once in any well during the years examined.

The map shown in Figure 2-13 shows the location of the wells in which chromium was detected, the geologic formation in which the well is screened and the year in which chromium was detected in each well.

Copper was apparently present in the Deknatel waste streams disposed of on site but at unknown concentrations. Copper is a

-48-

common trace consistuent in groundwater. About half of the JWSC well water samples from throughout the service area analyzed over the last 13 years had copper concentrations at or above the detection limit of 20 ppb. Copper was not detected in the other samples. Among the samples in which copper was detected, most of the copper concentrations fell between 20 and 100 ppb with a few values between 100 and 300 ppb. The EPA and New York State standard for copper in drinking water is 1 part per million (ppm) or 1,000 ppb. Therefore, none of the well water samples exceeded the permissible concentration.

Sulfate was apparently present as sulfuric acid in the waste streams Deknatel disposed on site from about 1925 until about 1960. Sulfate is commonly present in groundwater and was found in all of the JWSC well water samples analyzed over the last 13 years. The sulfate concentrations found, however, never exceeded the regulatory limit of 250 ppm established by the EPA and New York State in any of the samples.

Nitrate was present as nitric acid in the waste streams Deknatel apparently disposed on site from about 1925 until about 1956. Nitrate is also commonly found in groundwater and was found in most of the JWSC well water samples analyzed over the last 13 years. Concentrations ranged from the detection limit of 0.1 ppm up to and, in a few instances, above the EPA and New York State drinking water standard of 10 ppm (as nitrate nitrogen). Out of 800 to 900 JWSC well water samples analyzed for nitrate, only about 30 samples exceeded the drinking water standard and 16 of

-49-

those were from 2 wells about five miles from the Deknatel facility which exhibit chronically elevated nitrate levels. Four additonal wells within about 2 miles of the Deknatel facility and generally downgradient from it, account for 12 of the remaining 14 nitrate concentrations above drinkiing water standards. The remaining 2 concentrations above the drinking water standard, were about a mile cross gradient from the site. There are several sources of nitrate in groundwater other than industrial wastes. Two of the most prominent sources are sanitary sewage and septic system effluents, and fertilizer used on lawns and gardens and in agriculture. The Long Island area in general is known to have elevated groundwater nitrate concentrations due to these nitrate sources. The small number of elevated nitrate concentrations in the JWSC wells, therefore, is not unusual in this area and could have originated from any number of sources.

Phosphate was present as phosphoric acid in the waste materials disposed of at DP-2 on the Deknatel site over its period of use. Neither the EPA nor New York State regulates phosphate concentrations in groundwater, and the Jamaica Water Supply Company does not analyze its well water samples for phosphate. Phosphate and phosphoric acid, at moderate concentrations, are generally regarded as safe for human consumption and are found in many food products, including most soft drinks.

The Jamaica Water Supply Company well water quality data base is probably the best, most complete source of information on groundwater quality in the vicinity of and particularly downgradient

-50-

from the Deknatel site. Most, if not all, of the wells near the Deknatel site which are used to produce drinking water are believed to be part of the JWSC system and most of these wells are analyzed at least once a year. A review of the JWSC data base for the last 13 years indicates that chromium, copper and sulfate have never been found at concentrations above their respective drinking water quality standards. A small fraction of the samples, less than 4%, had nitrate concentrations above the water quality standard. These values may well reflect a general regional problem with high nitrate levels originating from fertilizer and sanitary sewage effluents rather than from any discharges at the Deknatel site.

A third source of information on groundwater quality in the general area is a study conducted in 1981 by the U.S. Geological Survey (USGS), however, very few of the well water samples analyzed in this study were from wells closer than about 4 miles to the Deknatel facility., The USGS data was generally similar to the JWSC data. Chromium was not detected in any of the samples from Queens County. The copper values, all less than prevailing drinking water standards, ranged from 10 ppb to 640 ppb. The well in which the 640 ppb concentration was found is located 3.5 miles cross gradient from the Deknatel facility. Sulfate ranged from 1.5 to 150 ppm except for one value of 1000 ppm from a well adjacent to an arm of Jamaíca Bay about 8 miles south of the Deknatel facility. Nitrate nitrogen ranged from 0.1 ppm to 25 ppm with 6 of the 27 values above the regulatory limit of 10 ppm. None of the wells with elevated nitrate levels were closer than 5 miles to

-51-

Deknatel.

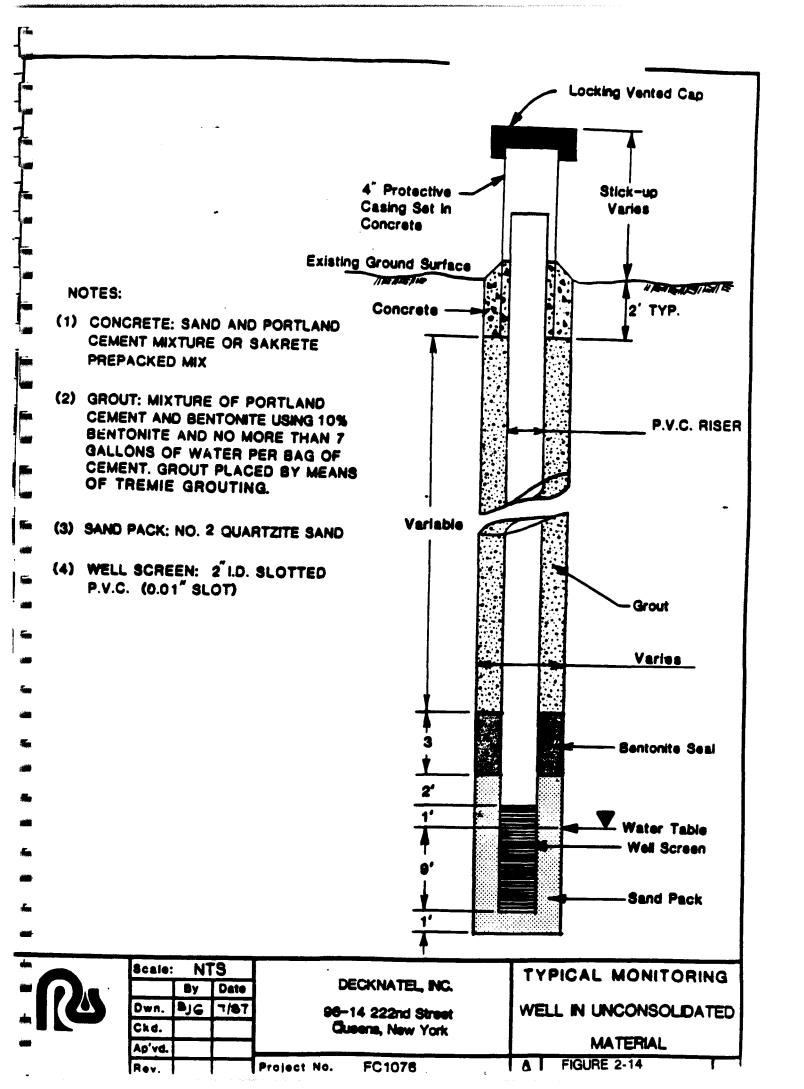
2.3.6 Field Studies

This section contains a summary of the geological/hydrogeological studies carried out and a brief description of the methodologies used. A more detailed description of these studies and methodologies can be found in Appendix B. Additional field work to better characterize the geology, hydrology and contaminant distribution is outlined is Section 3.1 of this workplan. A total of five test borings (including MW-3) was completed and three of the borings were converted to monitoring wells. Drilling activities were carried out under the supervision of a geologist from Roux Associates, Inc. A truck mounted hollow stem auger rig operated by Python Drilling of Bronx, New York, was used to advance all of the borings and to collect split spoon core barrel samples ahead of the advancing hollow stem auger flights. Split spoon samples were collected continuously from the ground surface to a depth of about 72 feet while advancing the borings at TB-1, TB-2, MW-1 and MW-2. Split spoon samples were collected every five feet from 20 to 70 feet subsurface while advancing the boring at MW-3, which was drilled as part of a separate study as presented in Section 3.1.1. above. The water table was encountered in all borings between 61 and 62 feet below ground surface.

The split spoon core barrel samples were collected in general accordance with ASTM Method D-1586 -84. The hammer blow count required to advance the core barrel sampler each 6 inches was counted by the driller and recorded by the supervising geologist.

-52-

The geologist also opened each core barrel and examined the recovered sample for specific soil characteristics and logged his observations. Detailed boring logs are presented in Appendix B.


The recovered soil sample was then transferred as completely as possible to a laboratory supplied precleaned sample jar with the assistance of a field service technician from Recra Environmental, who then took custody of the sample, labeled the sample jar, and prepared the chain of custody documents. Small portions of some of the samples were analyzed in an on site laboratory by a field chemist from Recra for key indicator paramaters, hexavalent chromium, and pH, in order to get a rapid indication of whether waste materials were present in the soils being recovered. The balance of the subsurface soil samples were transported by Recra personnel to Recra Environmental Laboratories in Tonawanda, New York, for further analysis.

The borings at MW-1, MW-2, and MW-3 were converted to monitoring wells by installation of PVC well casings as depicted schematically in Figure 2-14.

MW-1 and MW-2 were completed as 2-inch diameter I.D. wells and were screened from approximately 60 to 70 feet below ground surface. MW-3 was completed as a 4-inch diameter I.D. well and was screened from approximately 50 to 70 feet below ground surface. All of the wells were provided with protective casings at ground level and locking caps. Well completion diagrams for each well can be found in Appendix B. Wells MW-1 and MW-2 were developed by geologists from Roux Associates by purging them with a bailer

-53-

until a reasonable degree of clarity was achieved. MW-3 was similārly developed by Roux geologists using a submersible pump. Groundwater elevations in each of the wells have been recorded and groundwater samples collected, after suitably purging the wells, on a number of occasions. The groundwater samples were examined in the field by Roux geologists for appearance, conductivity, pH and temperature, and were forwarded to Recra Environmental Laboratories under chain of custody for laboratory analyses.

Since MW-3 had been completed as a 4-inch well to allow it to be pumped if necessary, it was decided to take advantage of this fact by conducting a short term specific capacity pumping testing using this well in order to investigate some of the characteristics of the water table aquifer at the Deknatel site. The test was conducted by Roux hydrogeologists using the procedure given in Appendix B. The results of the test can also be found in Appendix B as well as in the following section.

2.3.7 Hydrogeology at the Deknatel Site

The soil borings drilled for this study were all finished in the Pleistocene glacial outwash deposits which are estimated to be about 100 feet thick in the study area. The five borings completed at the site were advanced to a depth of about 70 feet into the outwash with the final 10 feet penetrating the water table or Upper Glacial aquifer. The geologic logs for these borings are included in Appendix B as Attachment B-1.

The glacial outwash deposits encountered at the site consist of

predominantly well-sorted, fine to medium sands with some coarser sand and gravel throughout. These sands are quartzose with less than 10% kaolinitic feldspars, mafic minerals and rock fragments. Due to the good sorting of grain sizes and lack of silt/clay, this unit has a high permeability both vertically and horizonially.

At MW-1 the upper 16 feet of this unit is a predominantly fine sand with some gravel mixed in. Below 16 feet the unit becomes more characteristic of the remainder of the site in that fine sediment grain sizes become predominantly fine to medium sand with some gravel.

There is a characteristic iron staining that occurs from between 30-40 feet below ground surface and continues downward to the water table. This iron staining is the result of the decline of the water table elevation over the past years due to extensive pumpage of the aquifer.

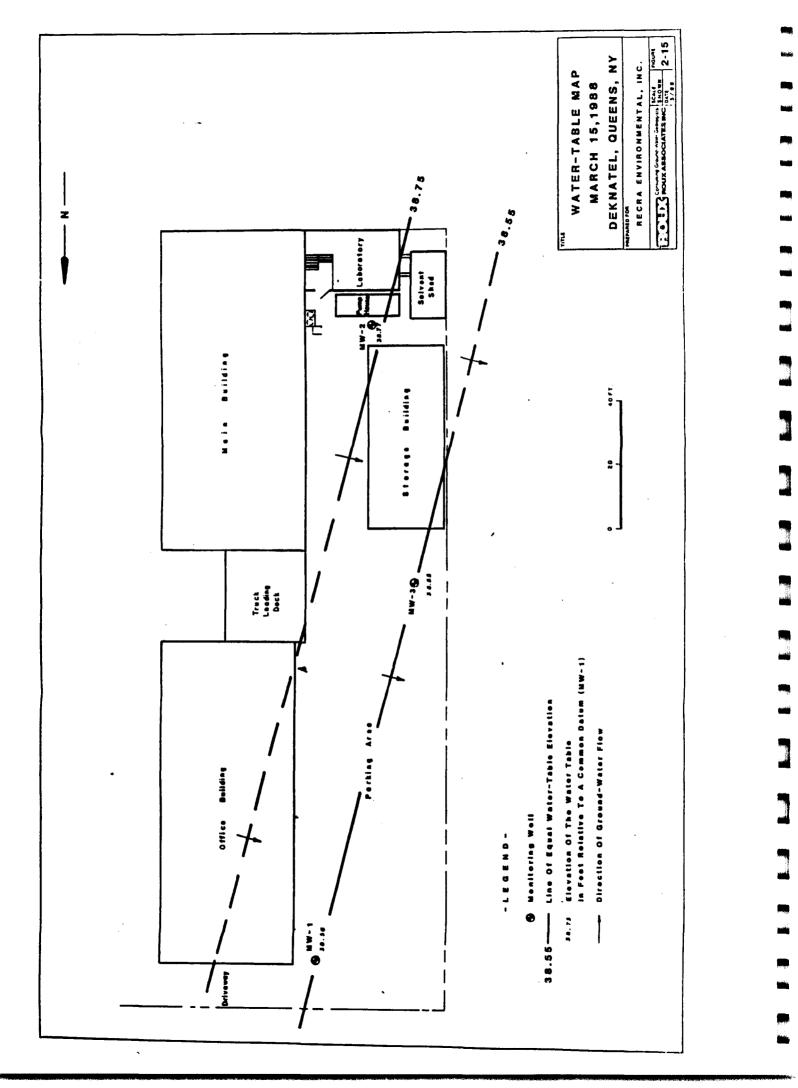
Water Table Location and Direction of Flow

The elevation of the water table in each of the three monitoring wells was measured on a number of occasions and the results have been compiled in Table 2-18.

A water table map, based on one of the data sets obtained, is presented in Figure 2-15 and shows that the groundwater flow direction at the water table surface at the site is generally westerly, roughly paralleling the Long Island Railroad right-of-way. Since the three monitoring wells are so closely spaced in the direction of groundwater flow, the hydraulic gradient at the site cannot be

reliably estimated from these data. Recent data from Jamaica Water Supply Company wells (see Figure B-5 in Appendix B) in the vicinity, however, suggests that the hydraulic gradient at the site is presently approximately 7.5 feet per mile (0.0015) and that the direction of flow is to the west.

-


TABLE 2-18

WATER TABLE ELEVATIONS* (FEET) AT THE DEKNATEL SITE

DATE	MW-1	MW-2	MW-3
02-11-88	38.33	38.50	38.52
3-15-88	38.56	38.77	38.55
03-25-88	39.09	. 39.00	38.83

*Relative to a common datum.

Hydrogeological Properties of the Water Table Aquiter

One short term specific capacity test was conducted at the site on the four inch diameter monitoring well MW-3. The results of the specific capacity test are given in Appendix B. The calculated transmissivity of the shallow aquifer is 9,000 gallons per day per foot (gpd/ft). Assuming the effective saturated thickness of the aquifer to be 18.75 feet at ME-3, the calculated hydraulic conductivity is 480 gpd/ft2. This value of saturated thickness is approximate since it is based on a saturated thickness estimated from the expected vertical effect from pumpage on the aquifer (water table surface to ten feet below the bottom of the screen zone).

Based on visual inspection of the sediment sizes and the degree of sorting, and using tables compiled by Freeze and Cherry (1979) and the U.S. Department of Interior (1977), the assigned hydraulic conductivity of this aquifer would range from 100 to 1000 gpd/ft2. Published estimates of the average permeability of the Upper Glacial aquifer in this area range from 800 gpd per ft2 to 1,300 gpd per ft2. The experimental value obtained is, therefore, in in reasonable agreement with these published values.

Using the specific conductivity experimentally determined at the site, the hydraulic gradient obtained from recent water level measurements from nearby Jamaica Water Supply Company wells screened in the Upper Glacial aquifer, and a porosity estimated based on the type of grain size distribution of the soil samples collected at the site, the approximate linear velocity of the

-58-

groundwater can be estimated using the following variation of Darcy's Law:

$$V = \frac{PI}{7.48p}$$

where

۷	=	velocity in feet per day
Ρ	Ξ	coefficient of permeability in gpd/ft2
I	2	hydraulic gradient in feet per foot
р	=	porosity (fractional volume)
7.4	8 =	gallons/cu. tt.

substituting,

 $V = \frac{(480)(0.002)}{(7.48)(0.35)} = 0.37 \text{ ft/day or } 134 \text{ ft/year.}$

2.3.8 Hydrogeological Results

The Deknatel facility at 96-14 222nd Street, Queens Village, New York, is located on a Pleistocene glacial outwash deposit composed predominantly of fine to medium grained sand, with some coarser sand and gravel throughout. Due to the sorting of the grain sizes and lack of silt and clay, the unit has a high permeability both vertically and horizontally.

The water table is presently located at about 61 feet below ground surface however, the presence of iron staining observed in the core samples indicated that the water table was as much as 20 to 30 feet higher in past years. The decline of the water table to

its present elevation was due to extensive pumpage of the aquifer.

A short term specific capacity pumping test indicated that the nydraulic conductivity of the Upper Glacial (water table) aquifer at the Deknatel site is approximately 480 gpd/ft2. This data, taken together with the estimated soil porosity and site specific and regional hydraulic gradient information, indicates that groundwater at the top of the Upper Glacial aquifer flows generally westerly at about 135 feet per year at the Deknatel site.

2.4 Impact Assessment

The ways in which the waste materials disposed at the Deknatel site could potentially affect human health and the environment include:

o direct contact with the waste materials at the Deknatel site,
o migration of constituents of the waste materials to the ground water and contact of potential receptors off-site with groundwater containing waste material constituents.

There appears to be little or no chance of adverse effects on human health from direct contact with any waste materials that have remained at the disposal points. Both disposal points are located on the Deknatel property, which is fenced and locked. Further, the brick cistern, DP-1, is covered by a manhole so even Deknatel employees could not accidentally come in contact with any materials that may have remained at that disposal point. The two sunken wooden barrels that comprise Disposal Point 2 are

-60-

kept covered by a lid that prevents accidental contact with waste materials that have remained in this area.

The only other way humans could be exposed to waste materials disposed at the Deknatel site would be if these materials migrated through the ground to wells, streams or other groundwater discharge points off-site. In order to assess this possibility, information has been gathered on the geology and hydrogeology of the area and the existence, usage and the quality of water from wells in the area, and has been presented in detail in the previous section.

Since the aquifer system underlying the Deknatel site is considered a sole source aquifer, the most serious concern for human exposure to waste material constituents in groundwater would be if these constituents reached and contaminated the water pumped from the public supply wells operated by the Jamaica Water Supply Company (JWSC) to a degree that jeopardized its use as a potable water source. Based on the hydrogeological and water quality information presented in the previous section, this does not appear to have happened to date nor is it likely to occur in the future for the following reasons.

Chromium was detected in the groundwater immediately downgradient from the source on the Deknatel site but only at concentrations that, on average, were within acceptable drinking water standards.

A solute introduced into the top of the water table at the Deknatel site would take approximately 15-20 years to reach the

JWSC cone of depression in the Upper Glacial aquifer, near JWSC Wells 27, 37 and 38. This is a most conservative number since it assumes the solute moves at the same rate as groundwater. The movement of a solute will be retarded and diluted due to adsorption onto aquifer materials and trasverse, and vertical dispersion (a mechanical mixing with "clean groundwater"). In addition, if it reaches a pumping well, further substantial dilution takes place as more "clean" water is drawn into the well supply from a11 other directions. vertically and horizontally.

Data collected by JWSC on a yearly basis from all Upper Glacial supply wells do not indicate the presence of chromium, the chemical of concern at the Deknatel site. It is even further unlikely that any solutes from the Deknatel site will reach the Magothy/ Mattawan Aquifer system particularly because groundwater from the site is strongly influenced and significantly diluted by shallow wells pumping from the Upper Glacial region. Jamaica Water Supply monitoring of nearby Magothy/Mattawan supply wells indicated the sporadic detection of chromium in two wells (29A and 48A) near the detection limit (0.002 ppm). These findings are below the drinking water standard and can, in no way, be directly attributed to the Deknatel site. There easily could be other sources of chromium in a highly urbanized area such as Queens County, New York.

The closest commercial/industrial wells to the Deknatel site are 600 to 1,000 feet downgradient. Water from these wells is predo-

-

-62-

minantly used for non-potable purposes such as air conditioning, cooling and other industrial uses that would not involve any direct human contact. In view of this fact and the very low chromium concentrations found in the groundwater right at the source, the waste materials disposed at the Deknatel site do not appear to have affected the suitability of the groundwater for these uses.

Based on the information obtained from the New York City Department of Health (NYCDOH), there are very few small private non-potable water wells, which are permitted by the department, active in the general vicinity of the site and none in the zip code zone which included the site. Water from these wells is used intermittently and then for purposes such as watering lawns and washing cars. In view of the nature and minimal level of groundwater use in this category, it is most unlikely that the disposal of the waste materials at the Deknatel site could have any effect on human receptors through this route of exposure.

In summary, it can be stated that since the waste materials remaining at the site are all in the subsurface and are inaccessible to human contact, their presence has not affected the suitability of the site for its present use nor would their presence be likely to affect any similar uses.

The waste materials remaining on site are also acting as a source for a small but continuing release of waste constituents, specifically total and hexavalent chromium, to the groundwater. This release has resulted in hexavalent chromium concentrations in the groundwater immediately downgradient from the source area that are

-63-

detectable but on average within the applicable water quality standards. While this release constitutes some potential for impact on the groundwater, an extensive investigation of the groundwater usage and quality downgradient from the site has failed to identify any present or plausible future adverse effects on the users of the groundwater who would be the potential receptors of this release.

3.0 REMEDIAL ACTIVITIES

3.1 Supplemental Remedial Investigation

The supplemental remedial investigation detailed within this document is being proposed in order to develop a more complete understanding of conditions at the Deknatel facility, specifically with regard to the extent of soil contamination by waste materials (operatively, total and hexavalent chromium) and to further assess groundwater quality downgradient of the facility, at the property line. Furthermore, this supplemental remedial investigaion will be used as an attempt to confirm the current belief that organic contamination of the groundwater is not being realized as a result of Deknatel's past disposal acti-Finally, the data from this supplemental remedial vities. investigation in concert with the volumes of information and previously completed Source data available from the Investigation Study will be used to develop the proposed Feasibility Study, which will delineate a remedial action plan can be cost effectively implemented to provide for a technically and environmentally sound resolution for the site.

-64-

3.1.1 Field Sampling Plan

The field sampling plan for the Deknatel site consists of the tollowing four tasks:

TASK I - Installation of Monitoring Wells

TASK II - Drilling of Soil Borings

TASK III - Collection of Groundwater Samples

TASK IV - Determination of Groundwater Flow

These tasks are designed to build upon hydrogeologic and water quality information previously developed at the site and described in the report "Source Investigation Study, Deknatel, Inc., Queens, New York", prepared by Recra Environmental, Inc., and Roux Associates, Inc., in September 1988.

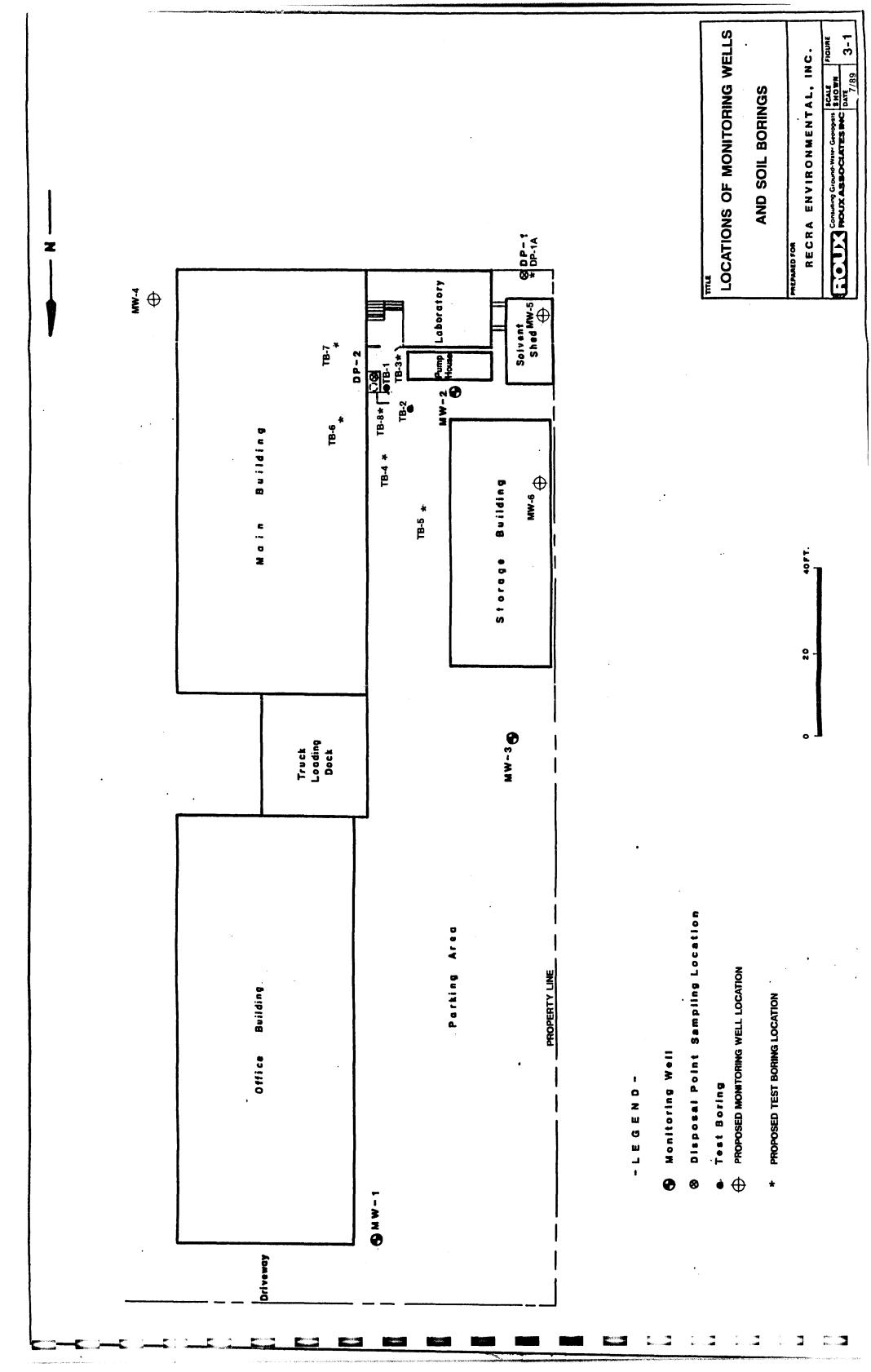
Task I - Installation of Monitoring Wells

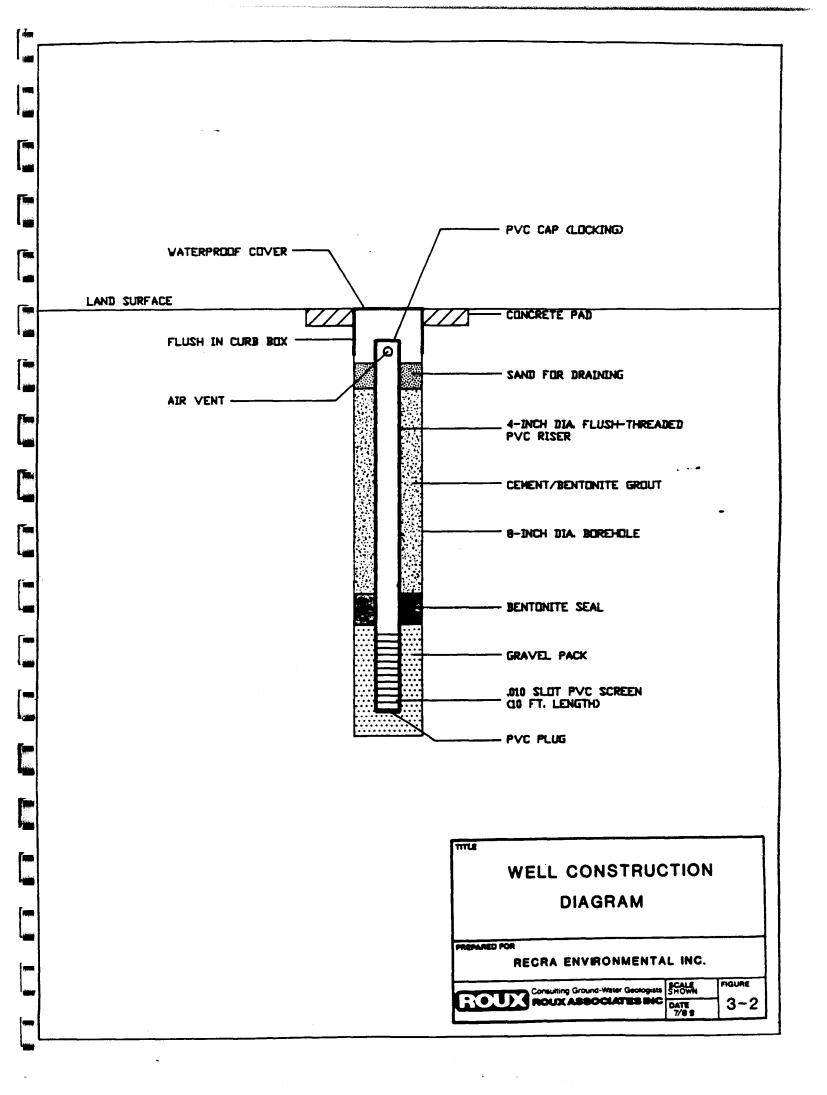
Three groundwater monitoring wells will be installed at the site at the locations shown on Figure 3-1. These wells are in addition to the three wells previously installed. The wells will be screened in the upper glacial aquifer at approximately 70 feet below ground surface. Well MW-4 is intended as an upgradient well for the site. Wells MW-5 and MW-6 are intended to complement MW-1, MW-2 and MW-3 as downgradient wells, and are specifically located directly downgradient of DP-1 and DP-2.

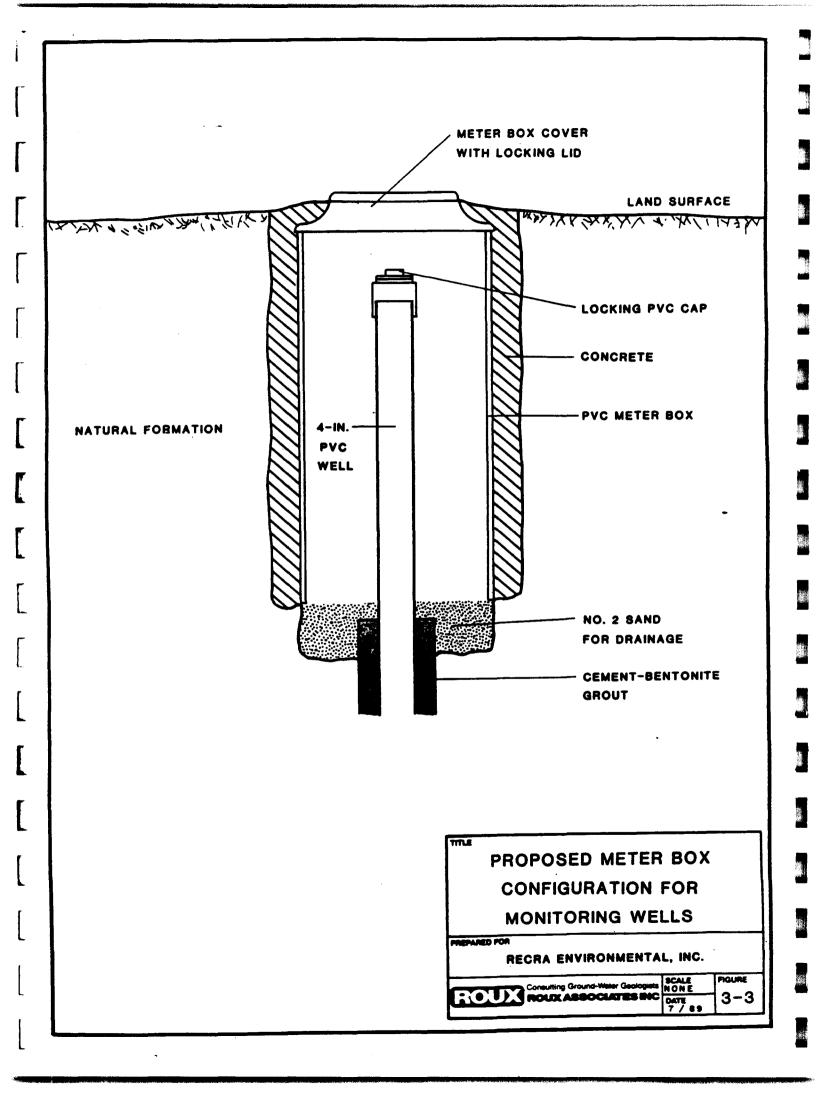
The boring/monitoring wells will be drilled using a truck-mounted, nollow-stem auger rig. Upon completion of the borehole, a 4-inch diameter schedule 40 PVC slot casing with a 10-foot long, 0.020

slot screen will be installed through the auger flights. Soil samples from MW-4, MW-5 and MW-6 borings will be collected at the surface and at 5' intervals. All soil samples will be maintained for chemical analysis and/or archiving and future analysis if warranted. The top of the screen will be set two to five feet above the water table to allow for seasonal water-level fluctuations. When the screen and casing are in place, a clean, graded silica sand will be used to pack the annular space around the screen.

Following the emplacement of the sand pack, two feet of bentonite pellets will be placed over the filter pack to seal the annular space. The remainder of the annular space will then be grouted with a cement/bentonite slurry to two feet below grade. Well construction details are shown on Figure 3-2. All wells will be finished flush with grade, have locking caps installed, and protective meter boxes cemented in place over each well (Figure 3-3). NYSDEC guidelines will be followed for all steps of well drilling and construction.


Upon completion, each well will be developed by surging and pumping to remove any fine sediment from around the screen zone and to establish a connection between the aquifer and well. Development will continue until the water is less than 50 nephelometric turbidity units, as required by NYSDEC and both pH and conductivity readings have stabilized.


The well elevations will be surveyed by a New York State Licensed Land Surveyor to the nearest 0.01 feet with a closure of \pm 0.05



-66-

feet for the site. The measuring point elevation will be marked on each well casing and all water level measurements will be referenced to this point. All elevations and depth, including well casings, will be referenced to a common datum.

Task II - Drilling of Soil Borings

Seven soil borings (TB-3 through TB-8 and DP-1A) will be drilled adjacent to the two possible contamination source areas labeled DP-1 and DP-2 on Figure 3-1. The boring locations are also shown on Figure 3-1. Illustrated locations for TB-3 through TB-8 are approximate and will ultimately be located in the field dependent upon field conditions and the needs of the program in order to delineate, to the greatest extent possible. the extent of contamination. Field conditions may warrant the installation of additional borings, but no fewer than the seven proposed soil borings will be completed without the approval of the NYSDEC. These borings are in addition to the four borings previously drilled at the site (TB-1, TB-2, DP-1) and DP-2. Two of the new borings (TB-6 and TB-7) will be drilled inside Drilling will be accomplished using a the main building. truck-mounted or skid-mounted hollow stem auger rig. Splitspoon soil samples will be collected continuously to a depth of 20' from land surface and at five-foot intervals thereafter to the bottom of the borings. All borings will extend to 10 feet below the water table. Boring DP-1A, however, will not be sampled for the first 35 feet since this interval has already been sampled as DP-1, completed during the source investigation program.

For the two borings inside the building, a skid mounted hollow stem auger will be used. Several doors and door frames will be removed and the auger will be skidded into the room where the

-71-

borings are to be drilled. Since the skid mounted rig 1s lower Than a truck mounted rig, there will be enough clearance to get the mast up inside the building. When the rig is set up, holes will be cut into the concrete floor and drilling and sampling will proceed the same as for the outside borings.

Prior to collection of each soil sample, all sampling equipment will be thoroughly pre-cleaned according to standard decontamination protocols (Appendix F).

Once the sample is collected it will be placed on a clean plastic sheet and logged in detail by the geologist. Using disposable vinyl gloves and pre-cleaned stainless steel spoons, the sample will be placed in the appropriate, laboratory supplied, pre-cleaned containers. The sample containers will then be labeled with the following information:

- a. Name of person(s) collecting soil sample
- b. Type of sample
- c. Sample location and depth
- d. Time and date of sample collection
- e. Sample designation

Samples will then be placed on ice to maintain a temperature of 4°C. A chain-of-custody form will be completed for each sample collected. At the end of each day, the samples will be shipped to the laboratory by overnight delivery for subsequent analysis.

Soil	samp	ling	proto	cols	are	given	in	Apper	ndix (G. S	ample	e selec-
tion	for	analy	ysis,	const	titue	ents t	.o be	e anal	lyzed	for,	and	methods
to be	e use	d are	disc	ussed	in	sectio	n 3.	1.2 0	f thi	s pla	in.	

To prevent cross contamination, the split spoon samples will be washed with soap and water and steam cleaned between each use. The auger flights will be steam cleaned between holes.

Task III - Collection of Groundwater Samples

Prior to sampling of the new installed wells, monitoring well development consistent with the procedures presented in Appendix H will be completed. After a minimum of one week after completion of well development activities, groundwater sampling will commence.

The wells will be purged of a minimum of three casing volumes of water prior to sampling. Purging will be done with a submersible pump for the 4-inch diameter wells and with a bailer for the 2-inch diameter wells. Prior to purging, a water-level measurement will be made to the nearest 0.01 ft. using a steel tape. The volume of water in the well is then calculated based on the measured depth to water and the depth of the well from the well construction data.

All purging equipment - bailer, pump, polypropylene rope, hose, wire and tripod or reel - are cleaned with municipal water in a clean, paved area away from the monitoring wells. All purging equipment will be mounted on tripods or reels to prevent equipment from contacting the ground. The inside of the pump and

-73-

hose are rinsed by pumping municipal water from a clean, 50 gallon plastic container for at least 2 minutes.

The purging equipment is then transferred to the well site in a manner that prevents the equipment from contacting any surface not cleaned and rinsed.

The pump is started and run at a known pumping rate (measured during purging of the first well) until 3 well casing volumes have been removed.

The pump is slowly raised while running until the pump breaks suction. This ensures that the entire water column is purged. Well purging protocols are given in Appendix I.

After purging, the well will be sampled with a pre-cleaned Teflon or stainless steel bailer and the sample placed in a laboratory supplied sample bottle. Prior to sampling, the well is identified and pertinent information is entered in the field notebook and on a sampling form. The top of the well is cleaned with a clean cloth and the cap or plug removed. The depth to water is measured using a pre-cleaned electric probe or steel tape.

The bottles are prepared for receiving their samples as follows: label the bottle with location number, other pertinent information and place on ice; record all information on the sampling data form (Appendix I).

A Teflon or stainless steel bailer is used to collect the

-74-

groundwater sample. The bailer will have been thoroughly precleaned following protocols in Appendix F. Prior to lowering the bailer in the well, it is rinsed three times with distilled water. In addition, the first three bailer volumes obtained from the well are discarded. Non-absorbent polyethylene cord is used to lower the bailer into the well. This cord is discarded after use in the well.

The bailer is lowered into the well and allowed to fill as it sinks through the water column. The sample is transferred from the bailer to the pre-labeled bottle, the bottle sealed and placed immediately on ice. The samples are kept in a secure area during the sampling program and forwarded to the laboratory within 24 hours, maintaining strict chain-of-custody.

After the sample is collected, the temperature, conductivity, pH, and the physical appearance of the water are measured and recorded. After sampling, the well cap and cover are replaced on the well and locked.

All the wells will be sampled immediately after being appropriately purged. All wells will be resampled approximately one month after the first sampling for confirmation of the first round findings for metals and as an initial element of ongoing monitoring activities.

Groundwater samples will be analyzed by Recra Environmental. Analytical parameters and methods are described in a subsequent section of this work plan.

-75-

Task IV - Determination of Groundwater Flow

This task consists of two parts: 1) measurement of water levels; and 2) measurement of hydraulic conductivity. As previously discussed, the elevations of all wells will be determined by a licensed surveyor. Water levels in the wells will be measured by Roux Associates on at least three separate occasions during well development. Water-level measurements will be made with a steel tape and chalk to the nearest 0.01 foot. All wells will be measured within one hour. Water-level elevations will be plotted on a base map and water-table contours will be developed to determine the horizontal direction of groundwater flow.

To determine hydraulic conductivity of the aquifer, short term specific capacity tests will be conducted in the three new wells. These tests provide semi-quantitative data which is adequate for flow velocity determination. Prior to running the test, the water levels in the pumping well and any nearby wells are measured before the pump is inserted in the well. After the pump is inserted in the well, a period of five minutes is allowed for the water level to equilibrate. The new water levels in the pumping well and other wells are then measured.

The pump is started and run for 30 minutes at a constant rate. The pumping rate selected will be based on estimates of well yield made during well development and purging. Water levels are recorded on a predetermined time schedule.

Throughout the test any changes pertinent to the test are noted. Such changes may include water color or turbidity; time and nature of any discharge fluctuations; time and length of any temporary pump shutdown; effects of any nearby pumping wells; and precipitation events.

At the end of the drawdown test, recovery levels are measured until water levels return as close as possible to pre-test levels. The drawdown schedule for water-level measurements will be followed during recovery. Protocols for the pumping test are given in Appendix J. Based on the hydraulic conductivity calculated from these tests and the water-table gradients calculated from the contour maps, the approximate rate of groundwater flow can be determined.

3.1.2 ANALYTICAL SAMPLING AND ANALYSIS PLAN

3.1.2.1 Sampling Plan

Previous sampling and analysis of subsurface soils and groundwaters have been conducted at the Deknatel site for a characterization of site conditions. Specifically, these include three monitoring wells (MW-1, 2, and 3) and borings TB-1, TB-2, DP-1, and DP-2 (Figure 3-1). A discussion of the sampling plan and analytical parameters used has been presented previously in this report (section 2.2.2).

The present supplemental remedial investigation will focus on expanding the existing data base and will consist of a sitespecific sampling plan accompanied by laboratory analyses for

-77-

total and hexavalent chromium. The location of the borings is filustrated on Figure 3-1. At the conclusion of the field investigation, a total of ten borings will have been advanced. Three of these (MW-4, 5 and 6) will be converted to groundwater monitoring wells. Based on the findings of previous hydrological studies, MW-4 will be advanced and later installed as an upgraaient monitoring well. Conversely, MW-5 and MW-6 will serve as downgradient wells.

Six test borings (TB-3 thru TB-8) will be installed in order to better define the contaminant distribution both horizontally and vertically. Test boring DP-1A will be a continuation of a previous boring (DP-1) that penetrated a disposal point and was terminated at approximately 35 feet below ground surface. The sampling protocol for the boring program is summarized in Table 3-1.

3.1.2.2 Analysis Plan

All samples will be analyzed at Recra's Laboratories in Tonawanda, New York. All soil samples as identified in Table 3-1 will be analyzed for total and hexavalent chromium. At the conclusion of the monitoring well installation program, the three previously installed wells plus monitoring wells MW-4, 5 and 6 will be sampled and analyzed. Laboratory analysis will consist of the Target Compound List (TCL) inorganics and organics by New York State Contract Laboratory Protocol (CLP) plus hexavalent chromium. This sampling program is designed to characterize the existing groundwater conditions at the site.

-78-

ì	/1	2	2	66	
- + ·	/ -		-	~~	

1

-

đ

e a

	Subsequ	ently,	the	S1X I	monitoring	wells	will be	e an	alyzed fo	r
-	total	and	hexava	alent	chromium,	total	lead,	and	phosphat	e
	phospho	rus on	a qua	arterly	basis for	a period	of one	(1)	year.	

TABLE 3-1

Sampling and Analysis of Soils

Analytical Interval	surface and every 10' there- after	surface and every 10' there- after 0' there- every 10' there- after 10' there- every 5' to 40' every 10' there- after 10' there-			
Analytical Parameters	Total and hexavalent chromium	Total and hexavalent chromium	Total and hexavalent chromium	Total and hexavalent chromium	
Sampling Protocol	every 5'	continuous to 20' 5' thereafter	every 5'	continuous to 20' 5' thereafter	
Split Spoon Interval	surface to 10' into water table	surface to 10' into water table	35' to 10' into water table	surface to 10' into water table	
e	Mu-5 Mu-5 Mu-6	TB-3 TB-6 TB-7 TB-8	DP-1A	TB-4 TB-5	

-80-

-

3.1.3 Quality Assurance/Quality Control Plan

The activities to be conducted as an element of the integrated RI/FS program will each require a measure of quality control and assurance. Elements of the plan yet to be submitted will include the project organization structure, liaisons with the NYSDEC and Deknatel, as well as the development of the mechanisms to insure appropriate quality assurance in field as well as laboratory activities. Many of the elements of the overall QA/QC plan are presented in the appended Manual of Quality Control and Quality Assurance which forms Recra Environmental, Inc.'s general policy in this regard. (Appendix C)

All samples will be collected, handled, and transported consistent with the protocols consistent with EPA 540/6-89/004 OSWER Directive 9355.3-01, October 1988. Samples will be delivered to the laboratories of Recra Environmental, Inc. for analysis and will be completed in compliance with US EPA methodologies and/or NYS 1987 Contract Laboratory Protocols.

3.1.4 Health and Safety Plan

A site-specific document will be submitted after NYSDEC approval of the supplemental RI/FS workplan document. This document/plan will address the following:

- o Hazard evaluation
- o Delineation of authorized personnel
- o Medical surveillance
- o Training

RECRA ENVIRONMENTAL, INC.

-81-

- o Personal protection
 - o Decontamination
 - o Safety monitoring procedures
 - o Emergency information
 - o' Contingency plan

This document will be made site-specific for use during this investigation at the Deknatel facility.

3.1.5 Community Relations Plan

Given the nature of the activities to be performed during the Supplemental Remedial Investigation/Feasibility Study, the community relations measures to be undertaken during this phase of work at the property are believed to be minimal. The NYSDEC and Deknatel will both play active roles in implementing community relations measures should such activities be required. Communications with the Jamaica Water Supply Company, the potable water supplier in the vicinity of the Deknatel property, will completion of the Supplemental continue throughout the Investigation/Feasibility Study.

3.2 FEASIBILITY STUDY

3.2.1 Remedial Action Objectives

The first section of the Feasibility Study (FS) will define and describe the portion of the site which is being addressed. This determination will be based in part, upon data provided in the Supplemental Remedial Investigation (SRI) Report. Utilizing

-82-

these data, site-specific objectives for remedial action will be developed. These remedial action objectives will address the human health risk, environmental impacts, and exposure pathways of concern.

3.2.2 Identification and Screening of Remedial Technologies

Following a description of the current situation and development of remedial action objectives, the FS will use a rational screening process that will lead to selection of appropriate remedial action(s) for the DP-1 and DP-2 areas of the site. Based upon the known site conditions, pathways of exposure, and remedial action objectives, the potentially feasible technologies will be identified. The first step in this process is to identify appropriate general response actions that present a coordinated remedy for the site. Table 3-2 presents a matrix of general response actions that may be considered. A final determination on those actions will be based upon data developed in the SRI regarding site conditions, waste characteristics and migration pathways.

Based upon the determination of the potentially applicable general response actions, the next step in the FS process will be to identify feasible technologies associated with each of these general response actions. Potential remedial technologies that may be associated with each of the applicable general response actions may include, but are not limited to, those listed on Table 3-3.

RECRA ENVIRONMENTAL, INC.

-83-

Next in the evaluation of remedial technologies will be the screening of the initial list of the technologies. The screening will eliminate those technologies that are clearly inapplicable or not feasible as a component for a remedy. This screening will be based on site conditions, waste characteristics and technical criteria for remediation. Characterization of site conditions will be based on SRI data, and groundwater and soil characteristics. Criteria will include effectiveness, implementability, and cost, and the status of the technical development of the remedial technologies.

To aid in the evaluation and selection of technologies for the remediation of soils and ground water, a limited scope of treatability studies may be conducted as part of the FS (See Section 3.2.5).

-84-

REMEDIAL RESPONSE ACTIONS SITES WITH SOIL AND/OR GROUNDWATER CONTAMINANTS

RESPONSE ACTIONS	SOIL	GROUNDWATER
No Action	X	×
Containment	x	×
Groundwater Recovery		x
In-Situ Treatment	x	
Partial Removal	X .	
Complete Removal	x	
On-Site Treatment	x	x
Off-Site Treatment	x	×
On-Site Disposal	x	X
Off-Site Disposal	x	x

, **1**

P

F

۴

۲

*

٣

T

Ľ

ť

۳.

-

Ľ

**

*

×.

Ľ

1

•

POSSIBLE REMEDIAL TECHNOLOGIES ASSOCIATED WITH GENERAL RESPONSE ACTIONS FOR THE SITE

- 1. No Action or Limited No Action
- 2. Containment
 - a. Capping
 - b. Barrier Walls
- 3. Groundwater Recovery
 - a. Pumping Wells
- 4. On-Site Treatment of Groundwater
 - a. Chemical Precipitation and Reinjection
- 5. Off-Site Treatment of Groundwater via Treatment by a Publicly-Owned Treatment Works (POTW)
- 6. In-Site Treatment of Soils
 - a. Stabilization/Solidification via Auger Mixing
 - b. Stabilization/Solidification via Injection Grouting
 - c. Contaminant Removal/Reduction via Flushing
 - d. Vitrification
- 7. Partial Soil Removal
 - a. Excavation with Full or Partial Building Demolition
 - b. Excavation with Foundation Underpinning
 - c. Excavation with No Foundation Effect
- 8. Complete Soil Removal (to Groundwater Table)
 - a. Excavation with Full Building Demolition
- 9. On-Site Treatment of Soils
 - a. Stabilization/Solidification
 - b. Contaminant Removal/Reduction via Flushing
- 10. Off-Site Treatment of Soils
 - a. Contaminant Removal/Reduction via Flushing b. Solidification/Stabilization
- 11. Off-Site Disposal of Soils
 - a. Direct Land Burial
 - b. Pretreatment and Disposal in a Landfill

1/12266

3.2.3 Development of Remedial Alternatives

Remedial technologies that have passed through the previous screening process will be combined, as necessary, into remedial alternatives. Therefore, combinations of different treatment technologies and combinations of treatment and containment technologies may be developed in this phase.

In the development of the remedial alternatives, the following types of alternatives will be developed to the extent practicable.

- A number of treatment alternatives ranging from one that would eliminate or minimize to the extent feasible the need for long-term management (including monitoring) at the site to one that would use treatment as a primary component of an alternative to address the principal threats at the site. Alternatives within this range typically will differ in the type and extent of treatment used and the management requirements of treatment residuals or untreated wastes.
- One or more alternatives that involve containment of waste with little or no treatment but protect human health and the environment by preventing potential exposure and/or reducing the mobility of contaminants.
- A no-action alternative or a limited no-action alternative,
 which may include some minimal actions such as fencing,
 using institutional controls, or monitoring, if no action
 at all is clearly not viable.

-87-

Based upon the data and information developed, as well as the preliminary technology screening, remedial alternatives will be developed for further evaluation. For the final evaluation of alternatives, remedial technologies for each of the various media requiring remediation will be combined so that all media identified to be addressed in this FS are evaluated in the detailed analysis phase. If no technologies can be identified which are feasible for remediating one of the types of media, the FS could conceivably result in the recommendation of an alternative which remediates most but not all of the media.

3.2.4 Screening of Remedial Alternatives

The phase will initially evaluate the remedial alternatives previously developed. This phase is an interim screening process prior to the detailed evaluation of the alterntives.

The screening to be performed during this phase will evaluate effectiveness in protecting human health and the environment, technical and administrative feasibility, and costs of the remedial alternatives.

The evaluation of effectiveness in protecting human health and the environment offered by each alternative will consider the protectiveness that the alternative will provide, and the reductions in toxicity, mobility or volume that the alternative will achieve. A qualitative assessment of protectiveness may be performed for each of the alternatives as part of this evaluation. Those alternatives which are unacceptable in providing effective

-88-

1/12266

protection of human health and the environment will be eliminated from further consideration.

Those alternatives that do satisfy the environmental objectives without causing unacceptable effects will then be evaluated with regard to their technical feasibility. This evaluation may rely upon the results of treatability testing, technology evaluation as reported in engineering and scientific literature, engineering calculations, past experience and other acceptable means. Those alternatives which rely upon a technology that is difficult to implement, or which have a probability of failure or which pose an unacceptable risk to human health and/or the environment, will be eliminated.

Only those alternatives that satisfy the environmental and technical criteria will be subjected to a cost analysis. The purpose of considering costs at this time will be to eliminate those alternatives whose costs are significantly higher than others, unless significant and necessary environmental, public health or reliability benefits are realized by this additional cost.

Preliminary cost estimates will be developed with an accuracy range of -30% to +50%. The cost estimates will be based upon block flow diagrams, treatment volumes or flow rates, and other appropriate information developed for each alternative. From this information, cost estimates that rely upon standard cost indices, cost estimates from similar projects, and other readily available information will be developed. Where such information

RECRA ENVIRONMENTAL, INC.

-89-

is not readily available for an alternative, as may be the case for an innovative technology, costs will be conservatively developed using best engineering judgment.

Estimates will be developed for capital and operating and maintenance costs of each alternative. These estimates will then be utilized to develop the present worth of the competing alternatives. The costs will then be compared. Alternatives that are significantly more expensive than their competing alternatives will be eliminated if they offer similar or fewer environmental, public health, or reliability benefits. Competing alternatives that are significantly more expensive but offer substantially greater and necessary environmental, public health, or reliability benefits will be eliminated.

Those alternative remedial actions which remain will then be subjected to a more comprehensive comparative analysis.

3.2.5 Treatability Studies

A number of information sources, including journal articles and vendor literature, will be used to evaluate remedial technologies. While sufficient information is available to evaluate a number of remediation technologies, there are certain technologies for which available information may not be adequate to complete their evaluation without treatability testing.

3.2.6 Detailed Analysis of Remedial Alternatives

Each remedial alternative that passes the initial screening will

-90-

be individually evaluated based upon:

- Short-term effectiveness
- Long-term effectiveness and permanence
- Reduction of toxicity, mobility, and volume
- Implementability
- Cost
- Compliance with ARARs
- Overall protection of human health and the environment
- Community Acceptance

The above evaluation criteria are defined in terms of specific factors and effects which allow for comparisons between alternatives and identify the relative strengths and weaknesses of each by comparison. The evaluation criteria are defined and presented below for this feasibility study.

3.2.6.1 Short-Term Effectiveness

Each alternative will be addressed in terms of the extent to which it can mitigate short-term exposures to on-site chemicals during remedial actions and until cleanup goals are achieved. This evaluation will focus on:

- the degree to which existing site risks are reduced; possible short-duration risks borne by the cleanup workers and the nearby community, or possible adverse effects on segments of the environment during implementation of a remedial alternative, including potential risks associated with excavation, transport, storage, and treatment/disposal

-91-

- _ of site media;
- the duration of the remedial action required to reduce site risks to human health and the environment to acceptable levels.

3.2.6.2 Long-Term Effectiveness and Permanence

Each alternative will be assessed on its effectiveness in minimizing or reducing long-term exposure to any residual material associated with the site. This evaluation will focus on:

- the magnitude of risk posed by residual material remaining after implementation and completion of a remedial action;
- the type and degree of long-term site management required, including monitoring, operation and maintenance, and site security;
- the long-term reliability of proposed technical and institutional controls on the movement and migration of waste residuals, on the potential for recontamination of remediated site media from off-site sources and phased cleanup efforts.
- 3.2.6.3 Reduction of Toxicity, Mobility and Volume

Each alternative will be evaluated to determine the extent to which it can reduce the volume or area, minimize or prevent migration, and reduce the toxicity of site materials. This evaluation will focus on:

-92-

- the treatment processes to be employed and the wastes/media that are to be treated;
- the degree of treatment provided in terms of amounts destroyed and/or permanently altered;
- the permanence of a treatment process, considering the potential for future mobility or toxicity effects of treated materials;
- the residuals remaining after treatment, considering their persistence, toxicity, mobility, volume and tendency to bioaccumulate.

3.2.6.4 Implementability

This evaluation will focus on the possibilities of off-site treatment/disposal, the constructability and installation of alternatives on-site, and the time required to remediate or complete the cleanup action. It will address issues concerning on-site/off-site placement, equipment availability and limitations, time to complete performance tests, construction duration, and time to operate. The following factors will be considered:

- degree of difficulty associated with constructing and/or installing/arranging the remedy;
- expected operational reliability and control of the remedy;
 - need to coordinate and obtain necessary regulatory appro-

RECRA ENVIRONMENTAL, INC.

-93-

- vals and permits to design, conduct/construct and operate a proposed remedy;
- availability of necessary facilities, equipment, chemicals
 and specialists for a particular treatment measure;
- the relative ease for undertaking additional remedial actions for achieving a cleanup objective;
- ability to monitor the effectiveness of a remedy in operation and the residual content following completion of remedial action.

3.2.6.5 Cost

The evaluation of costs for the alternatives will focus on the following:

- capital costs;
- operation and maintenance (O&M) costs;
- net present worth of capital and O&M costs; and
- potential future remedial action costs.

These estimates will have a target accuracy of -30 to +50 percent.

Consistent with conventional cost estimating practices, separate estimates will be prepared for capital, and operation and maintenance costs. Capital costs include direct costs associated with the following:

construction, labor, equipment and materials,

-94-

9 1
-
-
-

1/12266

RECRA ENVIRONMENTAL, INC.

- process equipment,
- site development,
- control building, utilities, and services,
- relocation/evacuation, and
- disposal of wastes, including transportation.

Capital costs also include indirect costs associated with the following:

- engineering expenses for administration, design, construction
 tion supervision, drafting, and testing of remedial
 alternatives;
- legal fees, licensing, and permit costs;
- start-up costs; and
- contingency allowances to account for unforeseen circumstances such as adverse weather conditions, labor problems, or new site information that affects the schedule for implementation.

Operation and maintenance costs are the costs that ensue after construction to carry out the remedial action. These costs include the following:

- operating labor costs, including wages, salaries, training,
 overhead and fringe benefits;
- maintenance materials, labor, and equipment;
- auxiliary materials and energy such as chemicals, fuel,
 water and sewer service, etc.;
- purchased services for sampling and analytical requirements

- and professional service;
- administrative costs;
- insurance, taxes, and licensing costs such as permit renewal and reporting costs;
- rehabilitation costs for maintenance equipment and/or structures; and
- other costs.

Cost information will be obtained from vendor estimates, from costs calculated for similar alternatives considered for other sites, from EPA costing documents, and from standard cost estimating guides such as the "Means Guide" and "Dodge Guide". Costs for innovative technologies will be based on best engineering judgement when other cost information is not available.

The present-worth analysis will be developed using the current EPA-based discount rate of 5 percent. The period of performance used in the analysis will depend on the individual remedial alternatives.

Where applicable, the necessity of replacing the selected remedial alternative will be evaluated.

3.2.6.6 Compliance with ARARs

An evaluation will be conducted to determine the potential for each alternative to attain legally applicable or relevant and appropriate requirements (ARARs) of Federal and State environmental and public health laws. The basis of the evaluation will include whether chemical-, location- or action-specific ARARs

-96-

1/12266

can be met or closely met by the alternative under consideration.

Although ARARs will be used as a goal for remediation of the site, consideration will be given to the circumstances in which ARARs may be waived. The waivers provided by CERCLA (121)(d)(4)(A) are:

- i. The remedial action selected is only part of a total remedial action that will attain such levels or standard of control when completed.
- ii. Compliance with such requirement at the facility will result in greater risk to human health and the environment than alternative options.
- iii. Compliance with such requirements is technically impracticable from an engineering perspective.
- iv. The remedial action selected will attain a standard of performance that is equivalent to that required under the otherwise applicable standard, requirement, criteria or limitation through use of another method or approach.
- v. With respect to a State standard, requirement, criteria or limitation, the State has not consistently applied (or demonstrated the intention to consistently apply) the standard requirement, criteria, or limitation in similar circumstances at other remedial actions.

-97-

3.2.6.7 Overall Protection of Human Health and the Environment

Alternatives for remediation of soils and ground water that have been retained through the screening process will be assessed as to whether they will provide adequate protection of human health and the environment. Exposure to remediated site soils as well as the potential for migration of residual contaminants from the remediated soils will be considered in this assessment.

3.2.6.8 Community Acceptance

The assessment will incorporate the anticipated acceptability to the general public into the analysis of alternatives.

3.2.7 Preliminary Report

A Preliminary FS Report that recommends appropriate remedial measure(s) will be provided to NYSDEC for review.

This report will be formatted as follows. Technologies to be evaluated for use at the site will each be evaluated individually against the requirements described in Section 3.2.2 of this Work Plan. An end-of-section summary indicating which technologies have been retained or discarded will be provided. Preliminary screening of alternatives and/or combinations of the alternatives derived from the retained technologies, will be performed using the criteria given in Section 3.2.4. An end-ofsummary for this evaluation will also be provided. An evaluation of the retained alternatives in combinations will be

1/12266

Section 3.2.6 of this Plan. A summary of this evaluation will be provided in a separate subsection following the detailed evaluation of alternatives. This summary would include tabulated results of the detailed evaluation and would also contain, if appropriate, a discussion of trade-offs among similar alternatives. This summary section will be organized to permit comparison of each alternative against others for all nine criteria described in Section 3.2.6.

3.2.8 Final Report

Upon receipt of written final NYSDEC comments on the Preliminary FS Report, the Report will be modified as may be appropriate to conform with such comments and submitted to NYSDEC for approval, and/or additional engineering evaluations as NYSDEC finds necessary may be initiated.

-نس ų, arant. يتشفنا orașe. فأنت . . 097 998 ÷. <u>i</u> <u>ک</u> ener. .

APPENDIX A

QUANTITATIVE WASTE MATERIAL DISPOSAL ESTIMATES

The Following Information is Included Herein:

Disposal Point #1

- Estimates for Nitric-Sulfuric Acid Baths Containing Copper Salts
- Estimates for Spent Chromium -Sulfuric
- Acid Baths Containing Copper Salts

- Disposal Point #2

- Estimates for Chromic-Phosphoric Acid Electropolishing Bath

1/A8028

1/A8028

APPENDIX A

QUANTITATIVE WASTE DISPOSAL ESTIMATES

1.0 DISPOSAL POINT 1 (DP-1)

Nitric-Sulfuric Acid Baths Containing Copper Salts disposed in DP-1 from about 1925 to about 1956. Because of the complete absence of any records or employee recollections going back to this time period, it has proven impossible to make a quantitative estimate of the amount of this material that may have been disposed.

Spent Chromic-Sulfuric Acid Baths Containing Copper Salts disposed in DP-1 from about 1956 to about 1960. The material disposed from about 1956 to about 1960 is believed to be the same material that is in use today for stripping the copper sheathing from the surgical needles after they have been formed. The material presently in use for this purpose is manufactured by Patchin Chemical Company, Inc. A material safety data sheet for this material is included in Attachment A-1.

Pertinent physical and chemical properties of this material are as follows:

Chemical Composition

Chromic Acid	31.5%
Sulfuric Acid	3.5%
Water	65.0%
Mater	100.0%

Density = 1.277 g/ml or 10.65 lbs/gal

No estimate of the typical copper concentration of this material at the

ECRA ENVIRONMENTAL, INC.

A-1

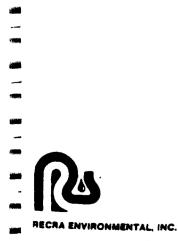
2/A8028

time of_disposal has been obtained.

The estimated quantity of chromium derived from this material which was disposed in DP-1 was calculated as follows:

Ibs chromium
Ib chromic acidIbs chromic acid
Ib solutionIbs solution
galIbs solution
galgallons used
yearxest. years of disposal

Substituting


 $\frac{0.552 \text{ lb}}{1 \text{ lb}} \times \frac{0.315 \text{ lb}}{1 \text{ lb}} \times \frac{10.65 \text{ lb}}{1 \text{ gal}} \times 120 \text{ gal/year} \times 4 \text{ years} =$

669 lbs chromium

A similar calculation for sulfuric acid gives

0.035 lbs <u>sulfuric acid</u> 10.65 lbs <u>lb solution</u> × <u>gal</u> × 120 gal/year × 4 years =

179 lbs sulfuric acid

A-2

2.0 DISPOSAL POINT 2 (DP-2)

<u>Spent Chromic-Phosphoric Acid Electropolishing Bath</u> disposed in DP-2 from about 1956 until about 1980. The material of this description which was disposed in DP-2 is also believed to be the same material that is in use today and which is currently disposed off-site as a hazardous waste. A material safety data sheet which describes this material as a raw material and a typical analysis of it when it is disposed today as a waste material are included in Attachment A-1. Pertinent physical and chemical properties of this material as both a raw material and as a waste material are as follows:

Raw MaterialWaste MaterialChromic Acid >15%ChromiumPhosphoric Acid >60%Proprietary Reagents

The estimated quantity of chromium derived from this material which was disposed in DP-2 was calculated as follows:

86.700 mg/1

Ibs chromium
Ib chromic acidIbs chromic acid
Ib solutionIbs solution
galest. gal. disposed
yearx est. years of disposal

RECRA ENVIRONMENTAL, INC.

2/A8028

- **30**. *#

7-

Substituting

 $\frac{0.441 \text{ lb}}{1 \text{ lb}} \times \frac{0.17 \text{ lb}}{1 \text{ lb}} \times \frac{14.80 \text{ lb}}{1 \text{ gal}} \times \frac{60 \text{ gal}}{\text{year}} \times 25 \text{ years} =$

1,664 lbs chromium

A similar calculation for phosphoric acid gives

0.60 lbs <u>phosphoric acid</u> $\frac{14.80 \text{ lbs}}{\text{gal}} \times \frac{60 \text{ gals}}{\text{day}} \times 25 \text{ years} =$

13,320 lbs phosphoric acid

Since phosphoric acid is 31.6% phosphorus, this quantity of phosphoric acid contains 4,213 lbs. phosphorus.

APPENDIX B

HYDROGEOLOGICAL STUDIES

METHODOLOGIES AND RESULTS

SOURCE INVESTIGATION STUDY DEKNATEL, INC. QUEENS, NEW YORK

GEOLOGICAL AND HYDROGEOLOGICAL STUDIES

Prepared for RECRA Environmental, Inc. 10 Hazelwood Drive, Suite 106 Amherst, New York 14150

April 1988

ROUX ASSOCIATES, INC. 11 Stewart Ave Huntington, New York 11725

CONTENTS

1.0	INTRODUCTIONB-1
2.0 2.1 2.2 2.3 2.4 2.5 2.6	METHODS OF INVESTIGATION
2.7 3.0 3.1 3.2 3.3 3.4 4.0	Ground-water Sampling

ATTACHMENTS

Attachment B-2	Geologic Logs Protocols For Specific Capacity Ground-water Sampling Protocols Completed Data Sheets	Test and	and	Results
----------------	--	-------------	-----	---------

FIGURES

Following Page

B-1	Location of On-Site Borings and Monitoring WellsB-1
B-2A	Well Construction Diagram, MW-1B-5 B-5
	Well Construction Diagram, MW-2B-5 Well Construction Diagram, MW-3B-5
B-2C B-3	Water-Table Map. March 15, 1988
B-4	Concretized Stratigraphic Column
B-5	Regional Ground-Water Flow Map, JWSC, 1987 Data (in pocket)

TABLES

	Be and the Be	5
B-1	Well Construction DetailsB-	.7
B-2	Water-Level Elevations	

1.0 INTRODUCTION

Roux Associates, Inc. of Huntington, New York was retained in December of 1987 by RECRA Environmental, Inc., Amherst, NY to conduct a test boring and monitoring well installation program at the Deknatel facility in Queens County, New York. The facility is located at 96-14 222nd St., Queens Village, NY between Hempstead Ave. and Jamaica Ave.

The objectives of the investigation were to assess the soil and ground-water conditions at the site to ultimately determine the horizontal and vertical extent of soil contamination, if present, and impacts on ground-water quality, if any.

This study included the drilling of four test borings and conversion of two of the borings to monitoring wells (Figure B-1). Split-spoon soil samples were collected continuously (every 2 feet) from land surface to 10 feet below the water table as the borings were advanced. These soil samples were screened in the field by RECRA chemists for the presence of hexavalent chromium and were then forwarded to the RECRA Environmental Laboratory, in Tonawanda, NY for formal analysis. Soil samples were also collected from one hole drilled with a portable tripod rig and one drilled with a hand auger at Disposal Points 1 and 2 respectively (Figure B-1), and these samples were also sent to the laboratory for analysis. The two monitoring wells installed for this investigation have been sampled on three separate

occasions and water-quality results are discussed in this report along with the findings of the soils analysis. As part of a separate investigation carried on simultaneously with the source investigation, one four-inch diameter monitoring well (MW-3) was also installed.

This report provides a description of the methods of drilling, soil sampling, and monitoring well installation; a summary of the regional geology and hydrogeology of the site; and a description of the site specific hydrogeology. **include**

2.0 METHODS OF INVESTIGATION

2.1 General Overview

A total of five soil borings were drilled, and three monitoring wells (including MW-3) installed in January, 1988 by Python Drilling, Inc. of the Bronx, New York. The drilling was done under the supervision of a hydrogeologist from Roux Associates. The locations of all monitoring wells and borings are shown on Figure B-1. Geologic logs are given in Attachment B-1.

The locations of the monitoring wells and borings were jointly selected by personnel from RECRA Environmental, Inc., Deknatel and Roux Associates, Inc. Prior to the start of the well drilling program the locations of the wells and test borings were finalized by a site visit by the above-mentioned personnel and NYSDEC.

A truck-mounted hollow stem auger rig was used to drill the borings and to collect split-spoon core barrel samples continuously from land surface to the bottom of the borings. The split-spoon samplers were driven two feet at a time ahead of the auger flights into undisturbed sediments by a standard 140 lb. hammer with a 30 inch fall. While the split-spoon samplers were being driven ahead of the auger flights, the number of blows by the hammer required to drive the sampler each six inches was

ROUX ASSOCIATES INC

B - 3

noted and logged in the field book. Once the sample was collected, the split-spoon sampler was opened by the hydrogeologist examined in detail, paying particular attention to the presence of contamination (odor, texture, staining, etc.) and logged. Once the sample was logged, it was placed in a clean sample jar and screened in an on-site laboratory by RECRA chemists for the key indicator parameters, hexavalent chromium and pH. The samples were then forwarded to RECRA Environmental Laboratories in Tonawanda, NY for formal analysis.

Ŵ

.

After three to five split-spoon samples were collected, the hole was advanced five or ten feet with power driven, eight-inch diameter, hollow stem auger flights and the next round of samples were collected. To prevent dilution of any contaminants that might be present, water was not used in the hole during drilling. Cross-contamination of sediments within a hole was minimized as samples were collected ahead of the auger flights.

To avoid cross contamination, all split-spoon samplers were cleaned thoroughly between each use by washing with soap and water and a final potable water rinse.

2.2 Monitoring Well Installation

Upon completion of the soil boring a 10 foot long, 2-inch diameter, schedule 40 PVC, slotted (.020 slot) screen and an appropriate length of blank PVC riser pipe were installed within

the hollow stem augers. A Number 2 uniformly graded silica sand was then tremied down the hole to pack the annular space around the screen zone and to at least 2-3 feet above it. Once the sand pack was in place, a two-foot thick, bentonite pellet seal was tremied in place on top of the sand pack and then hydrated. The remainder of the annular space was then grouted by tremie method with a cement/bentonite slurry ratio of 6:1 to two feet below land surface. The wells were completed at land surface by cementing in a 5-foot long, 4-inch diameter protective steel casing with locking cap. A curb box was cemented in over the steel casing. Well construction details are given on Table B-1 and Figures B-2A through B-2C are well completion diagrams for MW-1 through MW-3.

Borings in which monitoring wells were not installed were backfilled with a cement/bentonite slurry with a cement cap installed at land surface to seal off the borehole from potential surface- water runoff.

In addition to the soil borings drilled with the hollow stem auger rig, a portable tripod hole and a hand auger hole, one each, were advanced at Disposal Points 1 and 2 respectively (Figure B-1). These alternate subsurface sampling methods were used because it proved impossible to position an auger rig at these locations. The alternate methods were used to obtain as much information as possible on the subsurface conditions at these locations.

NOUX ASSOCIATES INC

B - 5

TABLE B-1

.

....

•

-

.

Well Construction Details

Deknatel Site

Well No.	Bottom of Boring(1)	Well <u>Diameter (in.)</u>	Bottom Well ()	
MW-1	72.0	2	69.60	59.50-69. 60
MW-2	72.0	2	69.55	59.45-69. 55
MW-3	72.0	4	69.82	49.90-69.82

Note

(1) In feet below land surface.

Study No. 102001 Date 3/16/88 Date 3/16/88 Delte/Time 01 Construction 1/15/88 Delte/Time 01 Construction 1/15/88 Delte/Time 01 Construction 1/15/88 Diffice Building[69:60] Drilling Method Hollow Stem Auger 6.5 West And Well Death Office Building[69:60] Brenchie Diam. 8" Cosing Length 59.5' Bereact Blet Bize .020" Screen Blet Bize .020" Screen Length 10.1' Bump Length	•	ELL NO. MW-1
Beid Beid Bileb-Up Of Weil Cosine Gree Construction 1/15/88 Drilling Method Hollow Stem Auger 6.5 West And Northwest Corner of Weil Destin 15 South Northwest Corner of Weil Destin Office Building[69.60' Berehole Diem. 8" Cosing Material FVC - 2" Diam. Cosing Material 59.5' Bereon Material FVC Bereon Material FVC Bereon Longth 10.1' Sand Pack Material No.2 Sereen Longth 0.1' South To Ground Water From Material 0.1' Sump Length		
Construction 1/15/88 Construction 1/15/88 Desta. Of Protoclive Cosing 2' Protoclive Cosing 50' Protoclive Cosing 61' Protoclive Cosing 65'-72' NOTE: Pormation Collapse 65'-72' NOTE: Pormation Collapse 65'-72' NOTE: All Messurements Are in Prot Selev Long Surface Prot Selev Long Surface Protoclive Cosing 61.44' Construction Details DekNatel, QUEENS, NY Protect Selev Long Cosing 10-1' Protoclive Cosing 61.44' Protoclive		Stick-Up Of Well Casing Grad
Construction 1/15/88 Drilling Method Hollow Stem Auger 6.5 West And Northwest Corner of Well Location 1.5 South Northwest Corner of Well Depth Office Building 69.60' Berehole Diam. 8" Casing Material PVC - 2" Diam. Casing Longth 59.5' Bereon Material PVC - 2" Diam. Casing Longth 59.5' Bereon Material PVC Bereon Siet Size .020" Sereon Longth 10.1' Sand Pack Material No.2 Sereon Longth 10.1' Sump Longth .5 Depth To Ground Water Prom Mark On Tap Of Well Casing 61.44' Development Method Bailer Development Method Bailer Development Time 40 Gallons The MONITORING WELL CONSTRUCTION DETAILS DEKNATEL, OUEENS, NY Method Material Inc. Construction Collapse 65'-72' MOTE: All Measurements Are in Feet Below Land Surface Development Time 40 Gallons	Date/Time Of	Coment Collar From 0.0'To 2
Briting Watter 100000 Utem Auget 6.5 West And Northwest Corner of Well Depth Office Building 69.60' Borehole Diem. 8" Cosing Material PVC - 2" Diam. Cosing Material PVC - 2" Diam. Cosing Langth 59.5' Screen Material PVC Screen Material PVC Screen Material PVC Screen Material PVC Screen Langth 10.1' Screen Langth 0.1' Screen Langth 10.1' Screen Langth 10.1' Screen Langth 10.1' Screen Langth 10.1' Scren Material Material 10.1' <		Depth.Or
Well Lecetion <u>1.5 South</u> Northwest Corner of Well Depin <u>Office Building 69.60'</u> Becktill From <u>2'</u> To <u>54'</u> Becktill From <u>2'</u> To <u>54'</u> Becktill From <u>2'</u> To <u>54'</u> Becktill From <u>54'</u> To <u>57'</u> Becktill Bize <u>.020''</u> Becktill Becktill Bize <u>.020''</u> Becktill Becktill Bize <u>.020''</u> Becktill Becktill Bize <u>.020''</u> Becktill Becktill From <u>54'</u> To <u>57'</u> Becktill Bize <u>.020''</u> Becktill Becktill Bize <u>.020''</u> Becktill Bize <u>.020''</u>		Protective Casing _2'
Berein Depin	Well Location <u>1.5 South</u> Northwest Corner of	
Casing Material <u>PVC - 2" Diam.</u> Casing Longth <u>59.5'</u> Screen Material <u>PVC</u> Screen Blot Bize <u>.020"</u> Screen Longth <u>10.1'</u> Sereen Longth <u>10.1'</u> Sereen Longth <u>10.1'</u> Sand Pack Material <u>No.2</u> Screen Longth <u>10.1'</u> Sand Pack Material <u>No.2</u> NOTE: Formation Collapse 65'-72' NOTE: Formation Collapse 65'-72' NOTE: Formation Collapse 65'-72' NOTE: All Measurements Are in Feet Belew Land Surface Development Method <u>Bailer</u> Development Time <u>40 Gallons</u> The MONITORING WELL CONSTRUCTION DETAILS DEKNATEL, QUEENS, NY MCCAMER MON		
Casing Longth <u>59.5'</u> Bereen Material <u>PVC</u> Bereen Blot Bize <u>.020"</u> Bereen Longth <u>10.1'</u> Sand Pack Material <u>No.2</u> Bend Pack Material <u>No.2</u> Sand Pack Material <u>No.2</u> Sand Pack Material <u>No.2</u> Sand Pack Material <u>No.2</u> NOTE: Formation Collapse 65'-72' NOTE: Formation Collapse 65'-72' MOTE: All Measurements Are in Fost Bolow Land Surface Development Method <u>Bailer</u> Development Time <u>40 Gallons</u>		
Bereen Material <u>PVC</u> Bereen Blot Size <u>.020"</u> Bereen Length <u>10.1'</u> Bump Length <u>.5</u> Depth To Ground Water Prom Mark On Top Of Well Casing <u>61.44'</u> Development Method <u>Bailer</u> Development Method <u>Bailer</u> Development Time <u>40 Gallons</u> MOTE: All Measurements Are in Feet Belew Land Surface MONITORING WELL CONSTRUCTION DETAILS DEKNATEL, QUEENS, NY MITAL, INC.		
Bereen Length 10.1' Sump Length 10.1' Sump Length 5 Depth To Ground Water From Mark On Top Of Well Casing 61.44' (Date) 3/15/88 Development Method Bailer Development Time 40 Gallons The MONITORING WELL CONSTRUCTION DETAILS DEKNATEL, QUEENS, NY MINITORING MENTAL, INC.		
Bump Longth .5 Depth To Ground Water From Mark On Top Of Well Casing 0.1.44' (Deto) 3/15/88 Development Mothod Bailer Development Time 40 Gallons The MONITORING WELL CONSTRUCTION DETAILS DEKNATEL, QUEENS, NY Mercander non RECRA ENVIRONMENTAL, INC.	Screen Slot Size020"	Band Pack Material <u>No.2</u>
Bump Longth Depth To Ground Water From Mark On Top Of Well Casing (Date) Development Method _Bailer Development Time 40 Gallons TIME MONITORING WELL CONSTRUCTION DETAILS DEKNATEL, QUEENS, NY MICHANGERON RECRA ENVIRONMENTAL, INC.	Screen Length	
From Mark On Tep Of Well Casing	Sump Length5	NOTE: Formation Collapse 65'-72'
Well Casing <u>61.44'</u> (Date) <u>3/15/88</u> Development Method <u>Bailer</u> MOTE: All Measurements Are in Feet Below Land Surface MONITORING WELL CONSTRUCTION DETAILS DEKNATEL, QUEENS, NY Merange non RECRA ENVIRONMENTAL, INC.		
(Date) <u>3/15/88</u> Development Method <u>Bailer</u> Development Time <u>40 Gallons</u> MONITORING WELL CONSTRUCTION DETAILS DEKNATEL, QUEENS, NY RECRA ENVIRONMENTAL, INC.		NOTE: All Mensuramente Are in
Development Time 40 Gallons MONITORING WELL CONSTRUCTION DETAILS DEKNATEL, QUEENS, NY M(FAMED FOR RECRA ENVIRONMENTAL, INC.		
Development Time 40 Gallons CONSTRUCTION DETAILS DEKNATEL, QUEENS, NY M(PARED FOR RECRA ENVIRONMENTAL, INC.		
RECRA ENVIRONMENTAL, INC.	Development Time 40 Gallons	
RECRA ENVIRONMENTAL, INC.		
Consuming Ground Georgens Beauty Reality Pount		
		Considing Grave-Water Gastapers BCALE POLICE

بر ا

بریا نظر

Ż

*

M

÷

الأطاق

-

W	ELL NO. <u>MW-</u> 2
-	
tudy No. <u>#09001</u>	Well Top Elevation99.68'
	Relative Te A Common Datum
ete	Below
	Stick-Up Of Well Casing Grade
	Coment Coller From $\frac{0.0'}{10}$ To $\frac{2.0'}{10}$
ete/Time Of enstruction <u>1/28/88</u>	
	Depth.Of 2.0'
rilling Method H <u>ollow Stem Auger</u>	Protective Casing
-	
3.0' North and	Bankanika (Crauk
From N-E Corner of	Backfill Type Bentonite/Grout
Pump House 69.55'	
	Backfill From 51.5' To 54'
orehole Diam8"	
esing Material PVC-2" Diam.	
	Pollets From <u>51.5'</u> To <u>54'</u>
esing Longth <u>59.54'</u>	
creen Material PVC	
	Sand Pack Material _No.2
Screen Slot Size020"	
Bereen Longth	Sand Pack From <u>54'</u> To <u>72'</u>
	NOTE: Formation Collapse 62'-72'
Sump Length48'	
Depth To Ground Water	
From Mark On Top Of	
Well Casing 60.91'	NOTE: All Measurements Are in
(Dete) 3/15/88	Feet Below Land Surface
Bailan	
Development Method <u>Bailer</u>	
40 Gallons	MONITORING WELL
Development Time40 Gallons	CONSTRUCTION DETAILS
	DEKNATEL, QUEENS, NY
	VERNAIEL, WVEEND, NT
	PREPARED FOR
	RECRA ENVIRONMENTAL, INC.

W E	ELL NO. <u>MW-3</u>
Study No. <u>\$0900</u> 2	
	Well Top Elevation99.79'
Data <u>3/16/88</u>	Relative To A Common Datum
	Below Stick-Up Of Well Casing Grade
	NI IN CAGE
Date/Time Of	Coment Collar From <u>O.O'</u> To <u>3'</u>
Construction <u>1/28/88</u>	Depth.Of
	Protective Casing 3.0'
Drilling Method Hollow-Stem Auger 18' North of Storage	
Building 10 Et Burk	
Well Location Fense	Beckfill Type Bentonite/Grout
Well Depth69.82'	
	Backfill From 30' To 43'
Borehole Diam. <u>8"</u>	
DVC 48 Dire	
Cosing MeterialPVC-4" Diam.	Bentenite
Casing Length	Pollets From <u>43'</u> To <u>45'</u>
Cooling Longth	
Screen Material	
	No. 2
Screen Slot Size020"	Sand Pack Material <u>No. 2</u>
19.92	
Screen Length	Sand Pack From <u>45'</u> To <u>72'</u>
Sump Longth	NOTE: Formation Collapse 70'-72'
Depth To Ground Water	
From Mark On Top Of Well Casing	NOTE: All Measurements Are in
(Dete) 3/15/88	Feet Below Land Surface
Development Method	TITLE
Development Time900 Gallons	MONITORING WELL
severopment time	CONSTRUCTION DETAILS
	DEKNATEL, QUEENS, NY
	RECRA ENVIRONMENTAL, INC.
	ROUX ABOOCLETES BIC DAT B-2C

The tripod boring at DP-1 was drilled by collecting continuous split-spoon samples to 35 feet below land surface where the hole collapsed and representative samples could no longer be collected. Soil samples were collected in the same manner as when using the hollow stem auger rig, and the split-spoon samplers were decontaminated between each use. At DP-2 a stainless-steel hand auger was used to bore down through the middle of the disposal point and collect soil samples for analysis. As the borehole was advanced each soil increment that was removed with the hand auger was carefully logged, noting specific soil characteristics, and was placed in a pre-cleaned laboratory supplied sample jar for later analysis.

To avoid cross contamination the hand auger and split spoons were decontaminated between each sample by a soap and water wash, potable water rinse, nitric acid wash, potable rinse, and final distilled water rinse.

After the samples were collected they were placed immediately on ice and shipped overnight to RECRA Environmental Inc. A Chain of Custody was maintained for each sample through receipt by the laboratory and subsequent analysis.

2.3 Well Development

After all monitoring wells were installed, MW+1 and MW-2 were

developed with a sand bailer. Development of these wells was continued until relatively sediment-free water was obtained from the bailer discharge. This ensured that a good hydraulic connection had been created between the aquifer and the well, and that fine sediments from around the screen zone were removed. MW-3 was developed by removing 900 gallons with a submersible pump.

2.4 Surveying

After the well installation had been completed at all locations, a designated measuring point on each of the monitoring wells were surveyed by Roux Associates, Inc. The relative elevations of these points were established to an accuracy of \pm 0.02 feet and the horizontal locations of all the wells and the borings were fixed with respect to existing landmarks near each location, using a 100-foot tape.

2.5 Water-Level Measurements

Water levels have been measured with an electronic water level detector on three occasions in the two monitoring wells installed for this study (NW-1 and 2) and also in MW-3 which was installed as part of a separate study. Table B-2 lists all the water-level monitoring results and Figure B-3 is a ground-water flow map compiled from these data.

TABLE B-2

WATER-LEVEL ELEVATIONS

Deknatel Site

ioni,

9 **2**9

<u>Well No.</u>	Date	Measuring Point (1)	Depth to <u>Water</u> (ft.)	Water-Table Elevation (1)
MW-1	2-11-88	100.00	61.67	38.33
MW-1	3-15-88	100.00	61.44	38.56
MW-1	3-25-88	100.00	60.91	39.09
MW-2	2-11-88	99.68	61.18	38.50
MW-2	3-15-88	99.68	60.91	38.77
MW-2	3-25-88	99.68	60.68	39.00
MW-3	2-11-88	99.79	61.27	38.52
MW-3	3-15-88	99.79	61.24	38.55
MW-3	3-25-88	99.79	60.96	38.83

(1) Elevation, in feet, Relative to Common Datum (MW-1)

2.6 Hydraulic Conductivity Testing

To determine the approximate ground-water flow rate and hydraulic conductivity of the aquifer at the site, a short-term specific capacity test was conducted on MW-3. MW-3 was pumped for 45 minutes using a submersible pump, and water levels were measured on a prescheduled basis. Protocols for the short-term pump test and for water-level measurement frequencies are given in Attachment B-2. In addition to monitoring water levels in the pumping well, wells MW-1 and MW-2 were also monitored to determine the influence of pumping beyond the immediate area of MW-3. All water-level measurements and pumping rates are given on the pump test forms in Attachment B-2. The results of the specific capacity test are discussed in Section 3.3 of this report.

2.7 Ground-Water Sampling

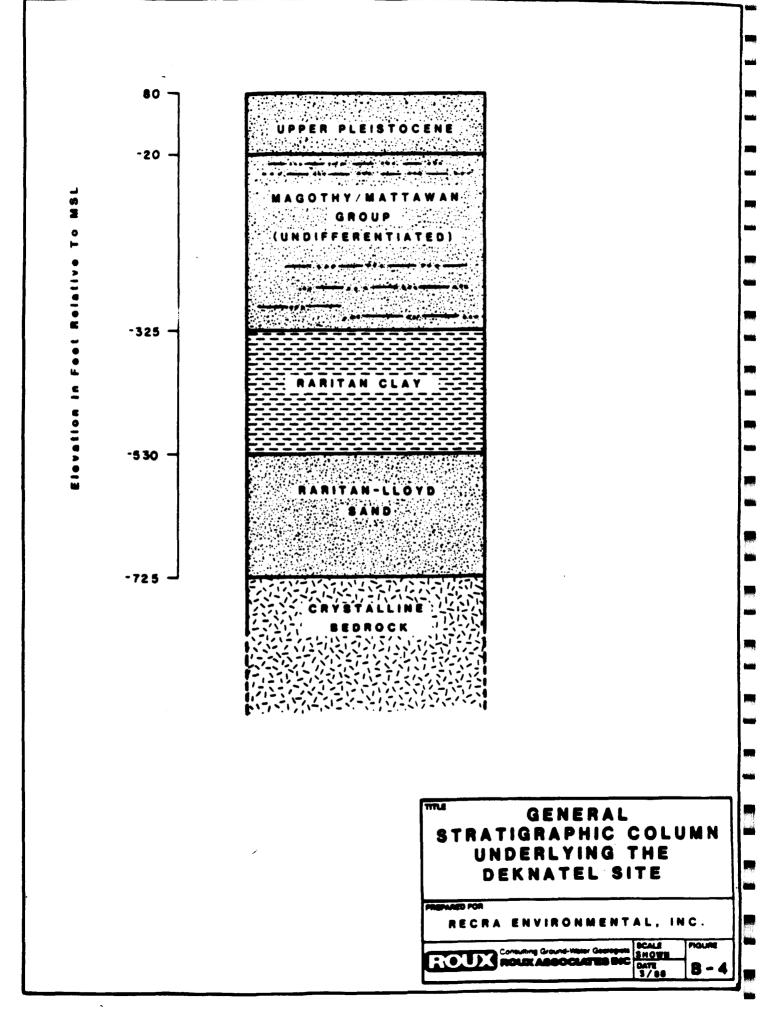
On 2/11/88, 3/15/88 and 3/21/88, monitoring wells MW-1 and MW-2 were sampled by Roux Associates, Inc. The wells were purged with a precleaned Teflon bailer to remove a minimum of three casing volumes. Detailed ground-water sampling protocols are given in Attachment B-3. Once the sample was collected it was placed in precleaned laboratory-supplied jars, packed on ice, and then shipped via overnight delivery to RECRA Environmental, Inc. Chain of Custody was maintained for each sample. All data gathered during the well sampling are given on the ground-water

ROUX ASSOCIATES INC

B - 8

As part of the QA/QC program, duplicates, bailer blanks, and field blanks were collected on all sampling events and delivered blind to the laboratory for analysis.

3.0 HYDROGEOLOGY


The Deknatel site is located in the Atlantic Coastal Plain Physiographic Province. This province is characterized by southeasterly-dipping strata comprised of unconsolidated sand, silt, clay and gravel unconformably overlying crystalline bedrock. The borings for this investigation were relatively shallow compared to the thickness of unconsolidated sediments at the site. The regional hydrogeology at the site will be presented first followed by the site-specific hydrogeology.

3.1 Hydrogeology Of The Study Area

The study area is underlain by over seven hundred feet of unconsolidated sediments (Figure B-4). From oldest (deepest) to youngest (shallowest) these sediments have been divided into a series of geologic formations: the Raritan Formation; the Magothy Formation and Mattawan Group, undifferentiated; and Pleistocene deposits. The Raritan and Nagothy/Mattawan Formations are Late Cretaceous in age and directly overlie crystalline bedrock. The Pleistocene-aged sediments were deposited on the erosional surface of the Magothy/Mattawan deposits. Each geologic formation contains water-bearing zones and intervals where these zones are prevalent and interconnected can be considered aquifers.

A brief description of each geologic' and hydrologic unit is

ROUX ASSOCIATES INC

B - 11

presented as follows:

Bedrock

Data from well logs near the Deknatel Site indicate the upper surface of the bedrock to be between -675 and -725 feet mean sea level. The bedrock has been identified as either granite or gneiss with an extensive weathered zone on the upper surface. These rock types are virtually impermeable except where fractures are abundant and interconnected. There is no evidence to suggest this is the case in this area of Queens.

The significance of the bedrock surface is that it acts as an impermeable barrier to ground-water movement and, therefore, is considered the bottom of the ground-water reservoir. No known wells are finished in bedrock in Queens or adjacent counties.

Raritan Formation

The Raritan Formation consists of unconsolidated sands, silts and clays of Late Cretaceous age that unconformably overlie bedrock. This formation has been divided into two members; the Lloyd sand and the clay member.

The Lloyd sand is the oldest member of the Raritan Formation and directly overlies bedrock in the Deknatel area. The Lloyd sand aquifer is artesian, being confined between the impermeable

ROUX ASSOCIATES INC

bedrock and the overlying clay member.

The clay member of the Raritan Formation, sometimes referred to as the Raritan clay, is an aquitard that restricts the downward movement of water from overlying aquifers to the underlying Lloyd sand. The clay member is estimated to be 200 feet thick in the area of the site and effectively confines the Lloyd sand.

Magothy Formation/Mattawan Group (undifferentiated)

The Magothy/Mattawan deposits are also Late Cretaceous in age and unconformably overlie the clay member of the Raritan Formation (Figure B-4). The Magothy/Mattawan deposits consist of layers and lenses of gravel, sand, silt and clay. The thickness in the study area based on nearby well logs is between 200 and 300 feet.

The sandy and gravelly layers/lenses yield significant quantities of water to wells. However, less permeable silts and clays dominate certain horizons in the Magothy/Mattawan which causes variations in hydraulic conductivity both vertically and horizontally. These silt/clay layers shield most of the good water-bearing zones from surface contamination and locally cause confined (artesian) conditions.

Wells tapping the Magothy/Mattawan System in Queens have yielded as much as 1,800 gpm. Specific capacities have ranged from less than 15 gpm/ft to over 50 gpm/ft in the coarser, more permeable

ROUX ASSOCIATES INC

deposits. This aquifer has been extensively developed in Queens and Nassau Counties.

Pleistocene Deposits

The Jameco Gravel of Illinoian (?) age unconformably overlies and fills in channels scoured into the upper surface of the Magothy/Mattawan deposits. The Jameco consists of coarse sand, granules, pebbles and cobbles (predominantly rock fragments) and has a high permeability. The Jameco is hydraulically connected to water-bearing sands of the Magothy in many parts of Brooklyn and Queens, however it does not appear to underly the Deknatel site.

The Gardiners Clay is an aquitard that hydraulically separates the Jameco/Magothy aquifer system from the Upper Glacial aquifer. The Gardiners Clay is not present in the Deknatel area.

Directly overlying the uneven surface of the Magothy/Mattawan aquifer system are Upper Pleistocene deposits consisting of sands and gravels with minor interbeds of silt and clay. These deposits are of glacio-fluvial origin and are termed outwash. These were deposited from the meltwaters of a retreating glacier which sorted sediments previously carried and deposited by the ice. Therefore, these deposits contain sediments having uniform grain sizes and are highly permeable. These outwash deposits comprise the Upper Glacial aquifer. The Upper Glacial aquifer is

ROUX ASSOCIATES INC

the aquifer of concern for this study, due to it's hydraulic connection with the regionally important Magothy/Mattawan aquifer system.

In 1980, according to Buxton, et al 1981, net pumpage from aquifers underlying Queens was approximately 62.5 Mgd. Of this total: 16.6 mgd (27%) was pumped from the Upper Glacial; 37.3 mgd (60%) from the Magothy/Mattawan System; and 7 mgd (11%) from the Lloyd aquifer. A small percentage was pumped from the Jameco aquifer which does not underly the Deknatel area.

Most of the pumpage described above involves the Jamaica Water Supply Company whose nearest wells are approximately half a mile west of the site. This company serves more than half a million people and over 7500 commercial and industrial establishments in southeast Queens. A large cone of depression exists where the Jamaica Water Supply well fields are located. Shallow ground water under the Deknatel Site flows toward the Jamaica Water Supply cone of depression.

Other wells located between the Jamaica Water Supply Well fields and the Deknatel Site supply cooling water for air conditioning systems. After use the water is returned to the aquifer via diffusion wells. These nonpotable, pumping wells are screened either in the Magothy/Mattawan system or Upper Glacial aquifer and will have little effect on shallow ground water under the Deknatel Site because of their location and seasonal usage.

ROUX ASSOCIATES INC

There are several industrial wells for car washing facilities and lawn watering downgradient of the site but these reflect nonpotable and intermittent usage.

3.2 Deknatel Site Hydrogeology

The soil borings drilled for this study were all finished in the Pleistocene outwash deposits. The outwash is estimated to be about 100 thick in the study area. At the site five borings were advanced as deep as 70 feet into the outwash or 10 feet into the water-table or Upper Glacial aquifer. The geologic logs for these borings are included in Appendix B-1.

The outwash encountered at the site consists of predominantly well-sorted, fine to medium sands with some coarser sand and gravel throughout. The sands are quartzose with less than 10% kaolinitized feldspars, mafic minerals and rock fragments. Due to the good sorting of grain sizes and lack of silt/clay, this unit has a high permeability both vertically and horizontally.

At MW-1 the upper 16 feet of the unsaturated zone is a predominantly fine sand with some gravel mixed in, below 16 feet the unit becomes more characteristic of the remainder of the site in that fine sediment grain sizes become predominantly fine to medium sand with some gravel.

There is a characteristic iron staining that occurs between 30-40

ROUX ASSOCIATES INC

feet below land surface and continues downwards to the water table. This iron staining is the result of the decline of the water-table elevation over the past years due to increased pumpage of the aquifer with time.

3.3 Hydraulic Conductivity Test Results

One short term specific capacity test was conducted at the site on the four-inch diameter monitoring well, MW-3. The results of the specific capacity test are given in Attachment B-4. The calculated transmissivity of the shallow aquifer near the water table is 9,000 gallons per day per foot (gpd/ft). This value was derived using the following formula from Walton (1970).

 $\frac{Q}{S} = \frac{T}{264 \log \left(\frac{Tt}{2,693 r_w^2 S}\right)} = 65.5$ Where Q = Specific capacity, gpm/ft (drawdown) Q = pumping rate, in gpm (discharge) S = drawdown, in feet T = coefficient of transmissivity in gpd/ft S = coefficient of storage. For water-table aquifer, assume S = 0.2 rw = nominal radius of well, in feet t = time after pumping started, in minutes $\frac{MW-3}{Pumping Rate (Q) = 7.2 gpm}$ Specific Capacity (Q) = 7.2 = 11.25 (S) .64

ROUX ASSOCIATES INC

Transmissivity = 9,000 gpd/ft

Assuming a pumping saturated thickness of the aquifer to be 20 feet at MW-3 the hydraulic conductivity is approximately 500 qpd/ft^2 .

The use of 20 feet as the saturated thickness is approximate since it is based on the expected vertical effect from pumpage of MW-3 (ten feet below the screen zone). This is worst case since half the screen length (10' out of 20') was above the water table at the time of pumping.

Based on visual inspection of the sediment sizes and degree of sorting and using tables compiled by Freeze and Cherry (1979) and the U.S. Department of Interior (1977), assigned hydraulic conductivity of this aquifer zone would range from 10^2 to 10^3 gpd/ft², which is consistent with the results of the specific capacity test.

Ground-water Flow Velocity and Direction

Based on a hydraulic conductivity of 500 gpd/ft², a measured onsite gradient of .005 ft/ft and an assumed porosity of 0.3, the approximate ground-water flow velocity is 1 foot/day or 365 feet/year. This value is representative of the upper portion of the water-table aquifer under the site and is consistent with values obtained for the Upper Glacial aquifer, in general. Ground-water flow velocities will vary throughout the thickness

ROUX ASSOCIATES INC

of the Upper Glacial aquifer under the site, depending upon the coarseness, sorting and packing of the individual sediment layers. Ground water will flow faster through gravelly portions of the aquifer and will be impeded by silt and clay deposits.

Figure B-5 shows the regional direction of ground-water flow near the site based on JWSC 1987 water levels. This figure reflects water-level data consistent with measurements collected on three occasions at the site during the Roux investigation. The apparent direction of ground-water flow is towards the Jamaica Water Supply Company cone of depression near wells 27, 37 and 38. These wells are over 8500 feet west of the site. These screen settings place these wells in the lower portion of the Upper Glacial aquifer but some screens may also bridge the uppermost portion of the Magothy/Mattawan system. Though JWSC 29 is the closest Upper Glacial supply well, ground water from the site appears not to be flowing in that direction but towards the more extensive cone of depression to the west. It is unlikely, anyway, that ground water from the site would be drawn down into the deep 29 (screened -10 to -30 feet MSL). More well screen of JWSC likely ground water would pass the well by at higher horizons in the aquifer and then would turn and flow towards the extensive water-table lows (JWSC 27, 37, and 38 which are northwest of the site).

Buxton, et al, 1981 present a series of plates that show the water-table configuration at various times from 1903 to the

present. The 1903 data reflect a best estimate for predevelopment conditions and show flow to the west and southwest from the area of the site, away from a water-table high (mound) in Nassau County. Water-table maps compiled in 1936, 1943 and 1961 show extensive comes of depression in Brooklyn and near Woodhaven, Queens and ground-water flow from the area of the site is consistently westerly or southwesterly towards these areas. The data from 1974 and 1981 indicate pumpage has stopped in Brooklyn and the Woodhaven area but shows a pronounced watertable low in the area of the Jamaica Water Supply Company (JWSC) well fields. Once again flow from the site is westerly during these periods and towards the JWSC cone of depression.

Assuming a solute was introduced into ground water at the Deknatel site, it would take approximately 15 - 20 years to reach the JWSC cone depression in the Upper Glacial aquifer, near JWSC Wells 27, 37 and 38. This is a worst case number since it assumes the solute moves at the same rate as ground water. The movement of a solute will be retarded due to transverse, longitudinal and vertical dispersion (a mechanical mixing with "clean" ground water) and sorption onto aquifer materials. In addition, if it reaches a pumping well, significant dilution takes place as more "clean" water is drawn into the supply well from all directions (vertically and horizontally).

Data collected by JWSC on a yearly basis from all Upper Glacial supply wells do not indicate the presence of chromium, the

ROUX ASSOCIATES INC

chemical of concern at the Deknatel site. It is even further unlikely that any solutes from the Deknatel site will reach the Magothy/Mattawan Aquifer system particularly because ground water from the site is strongly influenced and significantly diluted by shallow wells pumping from the Upper Glacial. Jamaica Water Supply monitoring of nearby Magothy/Mattawan supply wells indicated the sporadic detection of chromium in two wells (29A and 48A) near the detection limit (.02 ppm). These findings are below the drinking water standard and should not be attributed to the site. There easily could be other sources of chromium in a highly urbanized area such as Queens County, New York.

ROUX ASSOCIATES INC

B - 21

4.0 REFERENCES

Buxton, et al, 1981, Reconnaissance of the Ground-water Resources of Kings and Queens Counties, New York, USGS Open-File Report 81-1186.

Freeze, R.A., and Cherry, J.A., 1979, <u>Groundwater</u>, Prentice-Hall, Inc., Englewood Cliffs, N.J.

Ground-water Manual, U.S. Department of Interior, 1977

Walton, W.C., 1970, <u>Groundwater Resource Evaluation</u>, McGraw-Hill Company, New York

ROUX ASSOCIATES INC

ATTACHMENT B-1

Ċ,

Geologic Logs

HOUX ASSOCIATES INC

		-		W	ELL	DATA	GW	READINGS
Study N		1 D	ate	B_ Hole Diem.	(in)	8"	Date	DTW MP(2) Elev.W.
Project	Dek	natel		Final Depth	(ft.)	72'		
Client_	REC	RA Environm	ental	Casing Dian				
Page	1	01	5	Casing Len	gth (ft.)	71.0	_	
Logged	By	ohn Sheehan		Screen Sett	ing (ft.)	51.0'-71.	<u>o'</u>	
Weil No,	M	W-1		Screen Slot	& Type	·		
Loc		· · · · · · · · · · · · · · · · · · ·		Well Statu			<u></u>	
M.P. Elev				_ <u>sa</u>	MPLE	R	DEVE	LOPMENT
Drilling S	tarted _	<u>1/14/88</u> En	ded 1/15/88		<u>1t SDO</u> 140	on		
		non Drilling		Hammer Fail	30	10.		
Type Of R		low Stem Aux	jer	Fail		in		
Elev.		SAMPLE		Strata Change	Depth		PLE DES	CRIPTION
(1)		. Depth(ft.)		& Gen. Desc.	(ft.)			
	p. 1	'0'-2.0'	13,10,8,4		° -		risk: Black - A K Sand and Gra	
					_			me Gravel. Dry.
						No Staining,		
		2.0'-4.0'	B,4,7,4		2 -	Brown Fine S	Sand with Some	Gravel and Some
1	μ. υ	2.0 -0.0			-	Conce Sand.	Dry. No Odor	•
					-		•	
	ł				-			
	L.0'	4.'-6.0'	4,4,5,8		4 -	Brown Pine S	and and Grave	1. Dry.
1					-	4		•
					-	1		
ļ			ļ		-	1		
[1.2'	Б.0'-8.0'	13,18,24,20	[Sand and Gravel
			·.		-	(C-M-F) Dry.	No Odor.	•
				1	-			
1								he Den in Color
	.9'	B.0'-10.0'	2,22,28,27	1	8	fune sero ar	D Gravel. Lig	ht Brown in Color.
						4		
		10.0'-12.0'	2 2 2 7 7		10 -	Licke Server	to Brun Pin	e Sand and Medium
	17.6	10.0TT-0.	Ø,0,4,4		.		zavel. Dry. N	
			1		[-	4	- - -	
					•	4		
	1.4	12.0'-14.0			12 -			e Grained and Some
					·		Macium Gravel	Dry. No Odor.
					1 .	1		
					-	1		
	.9	14.0'-1	17,11,19,19					d Some Very Coorse
					1 .	Dry. No C	-	own in Color.
			1		.			
					1	1		
) in feet relat		<u> </u>	16	L		

(

1

1

R

WAR

-			OCIATI	TER GEOLOGIS		G	EULU	<u>GIC L</u>	.UG	
jeci	De	kn	atel	Dete <u>2/22/8</u>		(in)	-	G W Dote	READ	
	2		A Environ Of hn Sheeha	5	Casing Dia Casing Ler Screen Set	ath (ft.)	+			
. —	vation		·		Screen Sk Well Statu	t & Type			LOPMENT	
ler .	Ру	th	1/14/88 on Drilli ow Stem A			<u>it Spo</u> 140	on 1b.			
		_	SAMPLE			1				
•v.)	No. R	C.	Depth (ft.) Blows/6"	Strata Change 8 Gen. Desc.	Depth (ft.)	SAM	PLE DES	CRIPTION	
			16'-18'	18,23,27,29		70	Light brown i Dry. No cobr.		and. Trace of	(grave
	1.	.2'	18'-20'	28,33,26,32		18	Light Brown (gravel. Dry.		un send. Tra	ice of
	Ĩ.	.5'	20'-22'	13, 20,39,37		20 -			ne and medium el. Dry. No O	
	ī	.0'	22'-24'	38,52,45,53		2		nd madium sa 1. Dry. No o	nd. Some fine dor.	and
	1.	.71	24'-26'	30,80,60,82		24		fine send wi al. Dry. No o	th some cours dor.	e and
	1.	.4'	26'-28'	Switch from 140 lb.		26			ne send and f. dor. Poorly s	
		.4'	28'-30'	Hermer to 300 lb. 29,24,19,20 15,19,11,9		28	Light brown No cobr.	fine-medium :	send and grav	el. Dry
		.7'	30'-32'	Switched fro	l T	30			some fine gra fine sand and	
				to 140 lb. Henner 7,12,13,18		32	gravel. Dry.			

						ELL	DATA	<u> </u>		
Study	No. 🗸	2001	(Date2/22/8	B Hole Diam .	• • • –	-	Date	DTW MP(2)	Elev.W.
Projec	1 _	<u>)ekn</u>	<u>atel</u>		Final Depth	(f1.)	72'	4		
			A Environm		Casing Dian			4		
Page _		3	01	5	Casing Long	gth (11.)	<u>/1.0</u>			
Logge	d By	_ <u>Jo</u>	hn Sheehan				61.0'-71.0	-		
			-1		Screen Sion	•••		4		
					Well Status				0045117	
M.P. Ele				nded 1/15/88		it Spo	on	DEVE	LOPMENT	,
Oriller	argrit E	yth	on Drillin	g g	Hommer					
			w Stem Au		Fell					
-			SAMPLE							
Elev. (1)		Pac	Desthill	Blows/6"	Strata Change	Depth (fl.)	SAMF	PLE DES	CRIPTION	
			32'-34'	21,31,34,35		32	Brown Fine-Ma	dium Sand ar	d Medium and	Course
						-	Gravel. Very	Poorly Sorte	d. Dry. No Q	tr.
						-	1			
				1		34	1			
		1.7	34'-36'	10,19,30,28			Brown Fine-me			
					Į	-	Fine Gravel.	URY. NO COOR		cos tri
				1]		÷	
		1 7	36' - 38'	2222		36-	Light Brown-to	n Fina and M	antium Carri m)
	t t	1./	JD' - JJ'	32,37,35,37			Fine Gravel. 1			rans o
				1			[,			
							Į			
		4 6	38'-40'	28,35,38,39		38	Brown Pine-Max	tiun Sard. T	race of Machin	n Grav
		7.0				-	Iron staining			
						-	4			
						-	4			
		1.2	40'-42'	15,27,37,41]		Brown Pine-me			
		-				- 1	Iron Staining	Towards Tip	. Dry. No Odb	r .
						-	1			
						42-	1	•		
		1.6	42'-44'	40,42,39,46		-	Light Brown F			Grave
	['	Iron Staining	. Dry. No Co	br.	
						1]			
					1	4	1	· · · · ·		مر الم
		1.1'	44'-46'	20,30,35,53			Light Brown F and Coscase Gr			
							Staining. Dry			
						.				
	1					46	Brown Fine-me		aniti an Inne e	Where
	1	1.2	46'-48'	28,19,25,31		.	Brown Fine-me Tiron Stained.			N KL C
	1						No Otr. Iron			
	1					.	4	-		
	1				1	48	J			

فنفح

e de la comisión de l

×

		OCIATI	TER GEOLOGIS		G	EOLO	GIC L	.OG	
rojec lient ogged (ell No. oc, h.P. Ele rilling riller_	RECR 4 4 Min Min Min Started Pyth	A Environ OfOf Ohn Sheehan -1 1/14/88 e I/14/88 e	5	B Hole Diam. Final Depth Casing Dian Casing Lon Screen Set: Screen Stor Well State Type SDI Hommer	(in.) (f1.) n. (in.) , th (f1.) ing (f1.) the Type MPLE it Spoo 140	72' 2" 71.0 61.0'-71.0	1	PEADINGS	
		OW Stem A		Fell		in.			ومعتقلي
Elev. (1)		Depth(ft.) Blows/6"	Strata Change & Gen. Desc.	Depth (ft.)	SAMF	PLE DES	CRIPTION	
	_	48'-50' 50'-52'	30,33,35,42		48 50 50 51 52	gravel. Redd Dry. No color -	ish-brown, i h-brown fine	e sand. Same gravel	 ▶
		52'- 54' 54'-56'	27,25,35,35 32,25,28,32		5,4	iron stained No odbr. Brown fine-m	. Some fine- ndium serd. 1. Iron stai	Reddish-brown when medium gravel. Dry Trace of fine- ned. Reddish-brown v. No othr.	•
	۱.7'	561-581	12,18,29,32		56 - - - 	Brown fine-m	dium sand. 1. Iron stai	- Trace of fine- ning. Reddish-brow	n
	1.8'	58'-60'	33,30,28,33	- - -			g. Reddish-b	€ fine-medium grave rown where iron	리
	1.8'	60'-62'	18,17,10,11	Water Table	62	towards tip.	Bends of in n in color.	Lighter brown onish staining, Trace of gravel.	
	1.9'	62'-64'	13,3,3,3	Marcer, 19016	-	Brown and lie with some gra		ne and medium sand bodor.	
		1	l I	ł	64	1			

_	<u> </u>		OCIATE			W	ELL	DATA		G W	READ	INGS
Study (No	09001		Dete			(in.)	8"			DTW MP (2	
			atel		Final	Depth	(11.)	72'				1
Client		RECR	A Environm	ental		g Diam	. (in.) _	2"				
Page _		5	01	5	Casini	g Leng	th (ft.)	71.0				
Logged	By	Jo	hn Sheehan			n Setti	ing (ft.)	61.0'-7	71.0'			
Well No.		MW	-1		Scree	n Slot	& Type					
Loc										····		
M.P. Ele				2 /2 5 /00			MPLE			DEVE	LOPMEN'	r
Drilling	Star	led Put h	<u>1/14/88</u> E on Drillin	nded <u>1/15/88</u>	— Туре	1	40	1b.				
					Hamm)er	30	10. in.				
			ow Stem Au		Fell .							
	_		SAMPLE		Strate Che		Depth		AMPL	E DES	CRIPTIO	N
(1)	NO.		Depth(fi.) 64'-66'	Blows/6"	å Gen. D	esc.	(f1.) 64		The Di	na Madi, m	Sand with +	
		7.7	0400.	2,3,3,12			-			No Odor.		TIGDE
							-					
							-	{				
		±.9'	66' -68'	11,14,21,31		1	6 6 -				Madium San	
				ľ			-	No Orbor.		ace of Fin	e Gravel. W	et.
							-		•			
					2		-	1				
		1.8'	68'-70'	5,7,25,34			68 -		•	ium Sand.	Some Cours	e Sand
		1			Į		-	Wet. No	Oir.			
							-					
		20	70'-72'	2,2,2,2	4		20	Brown Ri	ne Meri	ium Sand.	Trace of Co	times Sami
		2.0		<i><i><i>Li<i>LiL<i>iLILiLILiLILLILILILILILILILILILIL<i></i></i></i></i></i></i>	1							
					1	l		ľ				
		{			l		72 -	B.O.B. =	72'			
		1					-					
		{					_	{				
							-	Į				
		1		[-	4				
					j –		-	1				
	1				Į		-	1				
	l	1			l		- 1	1				
	[1	1	[-	1				
					1		-	1				
		-		4	[-	1				
					Į		-	1				
		t]				
					1]]				
	[1					_	1				
	1	1	1	I	1			1				

			W	ELL	DATA	GW	READIN	GS(I)
udy No	0900/	2/23/88	Hole Diam.	(in)	8''	Date	DTW MP(2) E	
oject .	Deknatel		Final Depth	(ft.)	72'	_		
ient	RECRA Environ	mental	Casing Dian	n.(in.) _	2"	_		
	01		Casing Len				1	
gged E	y John Sheeha	an	5	-	_61.0-71.0	24		
	MW-2		_ Screen Sio	• •				
		<u> </u>	Well Statut	and the second				
	lion arted <u>1/26/88</u> E	1/27/88		MPLE		DEVE	LOPMENT	
illing Sta iller	Python Drillin	nged <u>"Aferias</u> 1g	Hammer					
oe Of Rid	Hollow Stem A	uger	Fall					
	SAMPLE							
10V. (1) Ni	O. Rec. Depth (ft.)	Blows/6"	Strata Change & Gen. Desc.	Depth (f1.)	SAN	PLE DES	CRIPTION	
				0	Тор 2": с			
	1.5 0.0-2.0'	1-1-1-1		-	10p 2": co			
				-		dark brown	fine sand	
		2-1-1-3		2	no odor. (dry		
	1.2 2.0-4.0'	2-1-1-5			Brown find	e sand. Ti	cace of grave	el.
				-	No odor s	ilty Dry		
				-	4			
	1.2 4.0-6.0'	8-15-20-		4 -	ł			_
	1.2 4.0-0.0	34		-			n sand. litt avel in tip :	
				-		taining dry		
				-		,		
	1.1 6.0-8.0'	30-33-28-		6 -	Barra fra	a ± madium	sand and gra	avo 1
		26				No stainin		AACT
				8 -	ł			
	1.0 8.0-10.0'	1 -			Lt. brown	fine + me	lium sand wi	th
		58		-		el. No ode		
				-	1			
	.7 10.0-12.0	4-7-9-12		10-				
				-			um sand litt	le
		ļ			gravel.	No odor.	Dry	
				12]			
	1.2 12.0-14.0	9-11-12-14					dium sand wi	
		1	l				No odor.	NÇ
				-	staining.	Dry		
				14.	Lt. Brown	fine + me		Some
l	1.2 14.0-16.0	11-12-12-		-	fine + me	dium grave	 No stain 	ing
		• •		-	No odor.	Dry		
				16	1			
		1		10	1			

			OCIATE			G	EOLO	GIC L	.OG	
					W	ELL	DATA	G W	READI	NGS
udy I	No		0	0010	Hole Diam.	(in)		Date	DTW MP (2)	
-						i (f t.)		4]	
•						m. (in.) _				
ae		2	01	5	Casing Len	gth (ft.)				
						ting (ft.)	<u></u>	1		
						t & Type		4		
c			. <u>.</u>		Well Statu	•				
P. Ele	vatio	n	<u></u>		_ \$4	MPLE	R	DEVE	LOPMENT	
illing	Star	ted	ε	n ded	Type					
						<u> </u>	10.			
pe Of	Rig .		<u></u>		Fall		in.			
iev.			SAMPLE		Strata Change	Depth	SAMI		CRIPTION	
(1)	No.			Blows/6"	& Gen. Desc.	(ft.)				
		1.4	16.0-18-0	5-7-8-10			Lt. brown-t			
					}		coarse sand Dry.	and rine	grave1. N	10 00
				1			Γ.,.			
						18				
		.3'	18.0-20.0	11-14-16-1	Þ		Brown fine			e o
		1			[1]	gravel. Di	y. No od	or.	
]			
		1				20				
		1.5	20.0-22.0	5-8-10-12			Lt. brown i			Som
							coarse sand	l and litt	le gravel.	No
	[{	1		[odor. Dry			
						22 -]			
		1.7	22.0-24.0	10-12-21-2	3	-	Lt. brown			
						-	gravel. So		sand. No	odo
			1			.	No staining	g. Dry		
	[24 0.26 0	21-16-20-3	3	24 -	Lt. brown	fine + med	ium sand.	Som
		11.2	24.0-20.0	21-10-20-2	ĩ		gravel and	coarse sa	nd. Finer	dk
			1			-	brown laye:	r .6' to 2	' from tip.	•
		1	1	1		-	1			
			26.0.00.0	15.20.25	1	26 -	Lt brown f	ine + medi	um sand wit	th
		1.1	20.0-28.0	15-30-35-2	a '		gravel. N	o odor. I)ry	
				1		-	۲			
		1			1	-	1			
	1				T	28.		fine + mer	ium sand wi	ith
		1.2	28.0-30.0	14-20-19-	P	-	SOME COATS	e sand.	Trace of gra	avel
	1	1					no odor.		-	
					1		4			
						30 -		fine +	dium sand t	Tace
		1.1	30.0-32.0	7-7-8-9		1 .	Lt. brown	and coarse	e sand. So	me
				1		-	iron stain	ing. No	odor dry.	
	[1				32				
				1			L			
			in feet rela							

					W	ELL	DATA	GV	READ	INGS
udv	No.		D	ate		_			DTW MP(2)	
-						(11)				
ient					Casing Dia	m. (in.) _				
•	-		01			•				
	•				1	-				
					Screen Slo Well Statu	•••				
						MPLE		DEVE	LOPMENT	<u> </u>
				ded						•
iller										
·					Fali		in.			
			SAMPLE		Strata Change	Depth	5/	AMPLE DES	CRIPTION	1
(1)			Depth (ft.)		& Gen. Desc.	(11.)	<u> </u>			
		1.2	32.0-34.0'	9-8-9-10		-		wn and brown Frace of grav		
								fron staining		
						34	1	wn and brown	fine + ==	d f
		1.9	34.0-36.0	10-12-13-1				wh and brown Little gravel		
						_	no odor.	. Dry		
						-				
		1.5	36.0-38.0'	8-9-12-13				ine + medium		
								No odor. I .3' fine dk.		
							BOTTOM	.) fine dk.	brown sand	1.
						38			•	
	l	1.5	38.0-40.0'	17-12-13-7		-	Brown I: of grave	ine + medium el. Some iro	sand - tra m staining	ice g.
	ł						No odor			-
						40				
		1.2	40.0-42.0'	7-8-7-9				ine and mediu		
							little ;	gravel. No c	odor. Dry	
						-	-			
						42 -				
	1	1.1	42.0-44.0'	7-8-9-12				ine + medium el. Some gre		
								. No odor.		
				11 12 7 0		44		wn and brown	fine + mea	dium
		$\mu.7$	44.0-46.0	11-12-7-9			sand so	me gravel. 🕻	[ron stain:	ing;
						.	rustic	brown in cold	or no odor	. Dry
						-	4			
		1.3	46.0-48.0	4-6-5-7	1	46 -	Brown f	ine + medium	sand. Li	ttle
					ļ	'	gravel. no odor	Iron stain:	ing through	nout
					l			. Dry		
						48				

ROU			OCIATE			· · · · · · · · · · · · · · · · · · ·	G	EU		AIC L	. O G	
						W	ELL	DATA	Ĺ	GW	READ	INGS
Study	No.		D	at e		Hole Diam.	(in)			Date	DTW MP(2)) Elev.W.
Projec	• _		·····			Final Depth	i (ft.) _			Į		1
						Casing Diar	n. (in.) .			ł	•	
Page		4	0 f	5		Casing Len	gth (ft.)					
						Screen Sett	ting (ft.)				
Well No						Screen Slo	t & Type					
Loc	<u> </u>		<u></u>			Well Statu						
							MPL			DEVE	LOPMENT	
Orilling	Sta	ted	En	ded		Туре						
Driller .		- <u> </u>				Hammer <u> </u>						
Type Of	Rig	<u> </u>				Fall		in				
Elev.			SAMPLE		Str	ata Change	Depth		SAMP	LE DES	CRIPTION	4
(1)	No	Rec.	Depth(ft.)	Blows/6"	٥	Gen. Desc.	(ft.)					
		1.6	48.0-50.0'	4-5-5-7			48	Brown	fine	+ medium	sand. Li	ttle
							1	grave	1. Ir	on staini	ing throug	
]				1	no od	or. D	ry		
		h 1	50.0-52.0'	4-7-6-9			50	Brown	+ 1+	hrown f	ine + medi	11777
		μ··	50.0-52.0								vel. Iron	
											(40%) dry	
		1					i i	no od	or.			
		h =	52.0-54.0'	7 6 7 7			52	┨ _₽ -	r 1+	huarm f	lne & medi	1
		μ.,	52.0-54.0	/-)-/-/							througho	
	ł) dry no		
]					4				
							54	┫ _{┓┓┓┓}	5 1 5	harm fo	Ine and me	
	1	μ.ο	54.0-56.0'	5-/-0-9							ravel. Ir	
										odor.		
								4				
							56	┥ _{┓┓┓}	5 1 5	human f	ine and me	d 1
		1.2	56.0-58.0')-/-8-/							g througho	
	ł		1	1	1						of gravel.	
				}			58	no od				
		p. 7	58.0-60.0'	6-9-9-10							ine + medi f gravel.	
								_ sand.			no odor.	
								1			/	
	[60	1				
		1 .2	60.0-62.0'	4-5-7-7			00	Brown	fine	+ medium	sand	20
							1				<mark>ron sta</mark> ini ip. No od	
		1		N	ł]	Buoar			
		ļ]				
		2.0	62.0-64.0'	5-6-6-8	Ì		62	BIOW			sand. Tr	
	ł						1		grave]	. Wet.	No odor no	stall
							i	ing.				
	1	1						7				
		1	1	1			64	1				

¢,

ŵ

			OCIATE			F	DATA	GV	V BEANI	NCC
	N4 -		_	• -						
-			O		1					<u></u>
•										
199 A 1		5	10	5						
			VI							
								1		
						AMPLE		DEVE	LOPMENT	
			En							
-					Hammer		1			
					Fall		1			
		_	SAMPLE			Depth	1			
(I)		-	Depth (ft.)	Blows /6"	Strata Change & Gen. Desc.		S S A	AMPLE DES	CRIPTION	
					1	64				
		2.0	64.0-66.0'	7-8-7-6		-		/m sand. Tr No odor. No		eī
						-				
						66	1			_
	{	2.0	66.0-68.0'	2-2-2-3		00 -		fine + medium		
					· ·	-		ravel. Some No odor	coarse land	1.
	1					-	1 """, "			
						4.0	1			
		1.9	68.0-70.0'	4-5-6-6		68 -		fine + medium		
						-		of gravel.		se
					Į	-	sand.	Wet no odor.		
	ĺ						1			
		1.9	70.0-72.0'	3-6-9-13		70 -		fine + medium		le
		l			4		coarse	sand. Wet n	o odor.	
						72 -				
							1			
					1	-	4			
						-	4			
	[-	ł			
	1					-	4			
						-	-			
						-	4			
						·	4			
						-	4			
			[-	1			
							4		×	
						•	4			
						•	1			
	1]		1			
						-	1			
					1	1	1			

	_		OCIAT		*	W	ELL	DATA	GW	READ	NGS
tudy (Ne	07	001		2/23/8		(in)	8"	Dete	DTW MP(2)	
raised		Dekn	atei			Final Dept	(11)_	/2			
lient		RECR	A Envir	onine	ental	Casing Dia	m. (in.) _	4"	4		
00e	1		01		•	Casing Ler	gth (ft.)	71'	4		
ogged	i By	d	hn Sheel	han				69 82- 49.96	4		
ell No.	·	MW-	.3	<u> </u>		Screen Sk					
oc		. —				- Well Stett				OBMENT	L
I.P. Ele	vatio	n	/1 /99		ied Same	- Type 50	MPLE	oon	UEVE	LOPMENT	•
rilling	51011	e Pyti	Hen Dril	lin	141 3	Hommer					
vas Of	Ria	Hol	llow Ste	m At	iger	Fell		in.			
			SAMPLE				Death				
Elev. (1)		-			Blows/6"	Strate Change & Gen. Desc.	(fL)	SAM	PLE DES	CRIPTION	
					5-9-7-11			Lt. brown 4			
								sand. Litt dry no odou		nd medium	grave
]	••		
1							22 _				
								4			
							-				
							-				
							-				
							1	1			_
		1.7	25.0-27	.0'	6-7-23-28		43 -	Lt. brown	fine and m	edium sand	· 🕘
								Some grave: dry. No odd		and Loward	LTD
							.	No staining			
					:		27	4			
		-					•	-			
							1 .	1			
			ł				·]			
							30]	.		
		1.0	30-32.0)'	7-8-13-14	1		Lt. brown : Some grave			•
						l	•	No stainin;			
								-			
	[{	32 -	1			
	ļ ·							1			
							1]			
	1	1			1]			
		Į						1			
		1.7	35.0-3	7.0'	6-9-11-14		35 .	Lt. brown some © gra	fine + med vel. Drv.	no odor.	וזני
			ļ					No stainin			
		1			1	1	ł	1			

e

		SOCIATE		W	ELL	DATA	GW	READING	GS
Y N	0	0	ate				Dete	DTW MP(2) EI	
-				Final Depth	(ft)		4		
							4		
		01			• • •		4		
	-						4		
					•••	- <u></u>			
				Well Statu	MPLE		DEVE	LOPMENT	
		En					06761	LOPMENT	
-		• •		- Hommer -					
				Fall		in.			
, L		SAMPLE		Strata Change	Depth	RAME		CRIPTION	
	No. Rec	. Depth(ft.)	Blows/6"	& Gen. Desc.	(11.)	JAMF			_
					37 _	1			
					-	1			
					-	4			
					-	4			
	ł				-				
		40.0-42.0'	3_7_0_14		40 -	Lt. brown f	ine and m	edium sand.	
	1	40.0-42.0	· J-/-J-14			Little grav			
						odor. Dry			
]]			
					42	4			
					-	4			
					-	4			
					-	1			
						1			
	1.	45.0-47.0	6-10-10-9		45			ium sand trad	:e
					.	of 🕂 gravel odor. Dry	. Iron s	taining. No	
					-	Duor. Dry			
					•	4			
]	47 -	1			
				[1			
ļ]			
						4			
				ļ	.	4			•
					50 .		metto hro	wn fine and	
	11.	7 50.0-52.0	16-8-7-10	ļ	j ·	medium sand	l. Trace	of Ogravel.	
				1	·	Iron staini	ng. Dry	no odor.	
					52]			
			1	1	1 ²² '	1			
	- I	1	i	1	1	1			

			OCIATE			G	EOL	OGICL	. O G	
					W	ELL	DATA	GV	READI	NGS
tudv	No.		0;	ate	Hole Diam.				DTW MP(2)	
-		_		-	Final Depth	(†1.)				
•					Casing Diam	n. (in.) _				
'age _		3	01	4	Casing Len	3th (11) .				
ogge	d By				Screen Sett	ing (ft.)			1	
Vell No			<u></u>		Screen Slot	& Type				
.oc					Well Status					
						MPLE		DEVE	LOPMENT	,
-			En		1					
					Hammer					
ype Of	Rig				Fell					
Elev.	1		SAMPLE		Strata Change	Depth (f1.)	5	AMPLE DES	CRIPTION	
(+)	NO.	Rec.	Depth(f1.)	BIOWS/5"	& Gen Desc.	(11)				
						-				
						-				
						-				
						55 -	h	own fine and t	nadium cand	I _
		1.0	55.0-57.0'	6-9-10-11				of gravel - T		
		ļ				-	iron st	aining - no	odor. dry	
		1				-	1	-		
		1				57 -	1			
	1	1	ł			'	1			
						-	1			
							1			
]			
						60 -				
		1.2	60.0-62.0	7-3-1-3			Brown	and reddish b	rown sand f	ine
						.	and me	dium sand Θ t	race of gra	lvel
						.		tained 75% of no odor.	agmbre. "	re L
						•	 			
						62 -	1			
						1 .	1			
						-	1			
]			1			
		1				']			
						65.	1			L
		1.8	8 65.0-67.0	1-1-2-3			Lt. br	own fine and oarse sand.	medium sand	a. ine
	1			}]		Some C	oarse sand. Wet no odor.	itare of t	
					1					
						. 67	4			
					1		-			
			1	4	1	1	1			
_		1								

e de la composición de

-

Weill Data G W READ opect	
Oject	
ient	Elev.W.
ge 4 0f 4 gged By	
gged By gged By uil No. c. c. c. c. P. Elevation Iling Started Ended Iling Started Ended Type Hammer Iling SAMPLE Strate Change Inter Inter </td <td></td>	
III No. Screen Slot & Type c. Well Status P. Elevation SAMPLER Illing Started Ended Iller Hammer Hev. SAMPLE No. Rec. Depth (ft.) Blows/6" & Gen. Desc. 1.8 70.0-72.0' 1-1-1-2 70 Lt. brown - tan fine and medium sand. Some coarse sand and ver fine gravel. Wet.	
Sample Sample P. Elevation Ended Illing Started Ended Iller Ended pe Of Rig Fall Illev. Sample Sample Depth Illow. Sample Illev. Strate Change Illev. Depth (ft.) Sites Change Depth Ill.8 70.0-72.0' Illev. 70 Illev. 1.8 To.0-72.0' 1-1-1-2 Illev. 70 Illev. 72	
P. Elevation SAMPLER DEVELOPMENT Illing Started Ended Type Ib. Iller Inter Ib. Ib. pe Of Rig SAMPLE Strata Change Depth Iller Inter Ib. Ib. Iller Fall Inter Ib. Iller SAMPLE Strata Change Depth Iller Inter Inter Inter Inter Iller Inter Inter Inter Inter Inter Inter I	
Illing Started Ended Type Iller Hammer pe Of Rig Fall Iev. SAMPLE Strate Change Depth III. Blowe/6" A Gen Desc. (ft.) I.8 70.0-72.0' I.9 72	
Iller Ider Ib. Fall ib. Fall ib. Ib. Source Change Depth SAMPLE Strate Change Depth It. NO. Rec. Depth (ft.) SAMPLE DESCRIPTION 11.8 70.0-72.0' 1-1-1-2 70 Lt. brown - tan fine and medium sand. Some coarse sand and verse fine gravel. Wet. No odor. 72 72 72 72	
SAMPLE Strate Change Depth SAMPLE DESCRIPTION (1) No. Rec. Depth(ft.) Blows/6" B Gen. Desc. 0 1.8 70.0-72.0' 1-1-1-2 70 Lt. brown - tan fine and medium sand. Some coarse sand and ver fine gravel. Wet. No odor.	
Sample Strate Change Depth Sample Description (1) No. Rec. Depth (ft.) Blows/6" B Gen. Desc. (ft.) SAMPLE DESCRIPTION 1.8 70.0-72.0' 1-1-1-2 70 Lt. brown - tan fine and medium sand. Some coarse sand and verifine gravel. Wet. No odor.	
No. Rec. Depth(ft.) Blows/6" & Gen. Desc. (ft.) 1.8 70.0-72.0' 1-1-1-2 70 Lt. brown - tan fine and medium sand. Some coarse sand and ver fine gravel. Vertical distribution 72	
1.8 70.0-72.0' 1-1-1-2 70 1.8 70.0-72.0' 1-1-1-2 70 1.8 70.0-72.0' 1-1-1-2 70 1.8 70.0-72.0' 1-1-1-2 70 1.8 70.0-72.0' 1-1-1-2 70 1.8 70.0-72.0' 1-1-1-2 70 1.8 70.0-72.0' 1-1-1-2 70 1.8 70.0-72.0' 1-1-1-2 70 1.8 70.0-72.0' 1-1-1-2 70 1.8 70.0-72.0' 1-1-1-2 70 1.8 70.0-72.0' 1-1-1-2 70 1.8 70.0-72.0' 1-1-1-2 70 1.8 70.0-72.0' 1-1-1-2 70 1.8 70.0-72.0' 1-1-1-2 70 1.8 70.0-72.0' 1-1-1-2 70 1.8 70.0-72.0' 1-1-1-2 70 1.8 70.0-72.0' 1-1-1-2 70 1.8 70.0-72.0' 1-1-1-2 70 1.8 70.0-72.0' 70 1.9 70.0-72.0' 70 1.9 70.0-72.0' 70	
1.8 70.0-72.0' 1-1-1-2 Lt. brown - tan fine and medium sand. Some coarse sand and ver fine gravel. Wet. No odor. 72	
sand. Some coarse sand and ver fine gravel. Wet. No odor. 72	
fine gravel. Wet. No odor.	
72	• 7
MARKS: (1) in feet rolotive to a common detum	
(2) from top of PVC casing	

			OCIATES		W	ELL	DATA		GW	READ	INGS
Study	Na	09001		ste			6*		Date		
Projec	•	DERN	TTT.				72'				
Client		RECRI	A ENVIRONMENDA	L	Casing Dia	m. (in.) _				[1
Page_		1	01	5	Casing Ler	gth (ft.)					
Logge	d By	<u> </u>	N SHEEHAN		Screen Set	ting (f1.)					
Weil No)	TP-1			Screen Sia	t & Type	_				
Loc					_ Well Stetu						
M.P. El	evatio)n	1 /22 /98	1/25/98	- 5/	MPLE	R		DEVE	LOPMENT	-
Drilling	Stor	ted	1/22/88 En	ded	Туре						
Driller		PTIM	N DRILLING		Hammer Fall	3 0	1b.				
Type Of			LOW STEM ALGER		Fell	<u>~</u>	!!!.				
Elev.	1		SAMPLE		Strata Change			AMPI	E DES	CRIPTION	t
())	NO.			Blows/6"	& Gen. Desc.	(11.)	Top .7'	0000	to		
		1.7	0.0'-2.0'	2,2,3,2		[°] -			., Pavenent		
						-	1.0-1.6	: Brow	fim sand.	Brown V. Fi	ine sand
							Bottom	1.5'. N	bodor. Dr	у.	
	┼	1.0	2.0'-4.0'	3,5,9,16			- 21	• D	W Sime -	and3 - Bo	
			2.00	21213120						megravel.(
						-	stainin	g. Blac	k staining	. Dry. Sligt	t abr.
						4	1				
	 	1.2	4.0'-6.0'	30,64, 18,26		1	Bran f		hum emod (Some gravel.	~~~~
				Change from		'				n staining.	
				140 lb.			oter. D	y.	•		
	ļ			Hanner to		6 -	·				
		1.2'	6.0'-8.0'	40,26,60/3			Top .2:	£/m	nd. Stained	slightly.	
		[Refulal		-	2-15-	lack s	tained con	gravel.Dry	_
						8 -	odor. S	ain gr	en in colo	r. Fuel oil	smell.
	<u> </u>					<u> ° -</u>	Musty g				
		.2'	8.0'-10.0'	50/2" Refum					. Musty sme	nd with some	gravel
							HNU read			511•	
		1			ſ	10	1	•	••		
	+	1.5	10.0'-12.0	36,48,50,57		┼┈─	Green fi	ne/med	ium sand. S	Some gravel.	
]		Extensiv	ve græe	n staining	thraghat.	
						12	Slight o	xix. D	ry.		
						14	ļ				
		1.0	12.0'-14.0'	52,77,82		.	Green fi	ne/med	ium sand. L	ittle gravel	•
		1		Refusal		.		-		overing tot	
			-		1	14	4				
					 	14	+				
		1.5'	14.0'-16.0'	3,9,13,14	1					sand, with s ung through	
		-		1		ŀ			sty snell.	ليقدي ودس	A.I. •
							1	•	-		
	1		1	1	1	16	1				

			OCIATE		W	ELL	DATA	GV	READI	NGS		
Study	No.	0900	D	ote	Hole Diem .	(in)	6"	Dete	DTW MP(2)			
Proiec	1	DEKN			Final Dept			4				
Clien		RECR	A ENVIRONMEND	<u>د</u>	-	Cesing Diem. (in.)						
			01	2	-	Casing Longth (11.) Screen Setting (11.)						
Logge Well Na	d By		N SHEEHAN			+		1				
			•		Screen ald			1				
	evetia					MPLE		DEVE	LOPMENT			
Drilling	Star	ted	1/22/88 En	ded 1/25/88	_ Type	T.IT ST						
Driller		PYIH	N DRILLING		Hemmer							
Type Of	fRig .	HOL	LOW STEM ALLEE	2	Fell	30	in.					
Elev.	ł		SAMPLE		Strate Change	Depth			CRIPTION			
		Rec.	Depth (ft.)	Blows/6"	& Gen. Desc.	(11.)						
		1.6'	16.0'-18.0'	17,18,16,17		16	Light green :		sand – some g oughout. Ligh			
						! _						
	_		10.01.00.01	14 10 16 10		18	Dara Bian ha	- 2	Provent 1 de marte			
		1.0'	18.0'-20.0'	14,13,15,18		-	staining at 1		Very light gr rv.	een		
						-			-1-			
						20-	1					
		1 51	20.0'-22.0'	9,9,11,9			Brown fine/m	dim and. 1	Little fine g			
		1.5	Δ	3/3/11/3		•			ing. Slight a			
						-	Dry. some in		•			
						2	•					
	Γ	1.6'	22.0'-24.0'	10,14,22,25			Light brain t	tine/medium s	and, little o	gravel,		
]					-			on staining.			
						24 -			g. Odr st ill			
			24.0'-26.0'	35,30,36,52			Burg p fing /p		some coarse ar			
		1.5.	<i>₫</i> ₩.0° <i>~2</i> 0.0°	30,30,30,32		-			n staining. S			
							adar. Dry.		-	-		
						26						
		1.8'	25.0'-28.0'	13,27,46,30					Little grave			
						-		some iron sta	aining. Slight	C		
				ļ		28 -	odor. Dry.					
	+-	1.5	28.0'-30.0'	3,3,1,2		+-	Down fine/m	adium Sand	Trace of grav			
		1.5	2 .0° -3 0.0°	0,0,4,4		-	Small anount		•			
						-						
		1				30	1					
·	\uparrow	1.6'	30.0'-32.0'	7,9,10,12			Brown fine/m	adium send. S	Same contrae se	and.		
									counds tip. N	vo.		
	1	ĺ	[•			staining. Dr	y. No cotor.				
		}			ļ	32	1					

			COCIATE			G	EOL	.00	AIC L	.OG	
					W	ELL	DATA	•	GV	READ	INGS
Study	No.	0900	10	ete	Hole Diem.				Dete	DTW MP (2)Elev.
Projec	:t _	DER	MIEL.		Finel Dept	h (11)	72'				
Client	1	RECR	A ENTROMEND	NL	Cesing Die	m. (in.) _					
Page_		3	01	5	Casing Lar	igth (11.)					
Locae	d 8.	, JH	N SHEEHIN		Screen Set	-					
Well No	»	TB-	1		Screen Slo	1 & Type					
				·	Well Statu						
M.P. EI	evatio	on				MPLE			DEVE	LOPMENT	•
Drilling	Star	ted	1/22/88 En	444 1/25/88	Type						-
Driller		PYIH	N DRILLING		Hemmer						
Type Of	Rig	HOL	LOW STEM ALCE	~~~~~~	Fell	30	in.				
			SAMPLE		Strate Change	Depth			E DES		4
(1)	No.	Rec.	Depth (ft.)	Blows/6"	& Gen. Desc.				-		-
	1	. ,	32.0'-34.0'	עידנידני		32	irro -	LINE/INE	d.sand.[. Dry.No (ittle gravel	. Same
								an n s		JUE.	
]				
	┡					34					
		1.4'	34.0'-36.0'	14,17,18,21		٤.				Trace of g	
										ng an 50% at	sample
							No còn	. LEY.			
" <u> </u>						36					
		1.7'	36.0'-38.0'	16,23,22,21			Retic	brown	fine/medium	n send with	little
							fine g	avel.	Iron staini	ing. Dry.	
		, v				38 -					
	ļ										
		1.4'	38.0'-40.0'	19,15,19,16		-				a send. Some	002.36
						-	send. i	ron st	aining. No	odor. Dry.	
						40					
		•9'	40.0'-42.0'	12,23,13,14						send, some	
i							No color		•	el. iron sta	aining
		1.4'	42.0'-44.0'	12,14,15,21			Rustic	brown	fine/medium	sand. Trace	e of
1						1	gravel.	Iron a	staining th	ragiat. G	
							gravel	.4'6	Dry. No	odor.	
						44					_
		1.5'	44.0'-46.0'	18,18,22						ine and medi	
]		ane ga	wel. iron a	staining. No	o adar.
							Dry.				
						46 -					
		1.5'	46.0'-48.0'	10,7,11,11						ine/medium s	and.
							Iron st	aining	No color.	Dry.	
						48					
	-	· · · · · ·	in feet reletiv								_

100

i i

أكتنا

		~~~~					DATA		READINGS	
Study J	No			ete	Hole Diem. (			Dete	DTW MP(2) Elev.	<b>W</b> . [•]
roject	'	DECRI	ENTROMENT	 M.	Final Depth			-1		
lient.	<b></b>	4	01	5				1		
'994 <u>—</u>		JTH	SHEEHAN			-		-		
						-	<u>سنب المتنبي</u>			
					Well Status					
N.P. Elev	vatio	n <u> </u>		1/06/00	- <u>SA</u>	MPLE		DEVE	LOPMENT	
)rilling (	Start		<u>/22/88</u> En	ded 1/25/88	Type					
)riller _		HTH	N DRILLING	2	Hemmer Fell3	<u></u>	10. ]			
	_	_				<u> </u>	in.			
Elev.			SAMPLE		Strata Change	Depth	SAM	PLE DES	CRIPTION	
<u> </u>	NO.	_	Depth (ft.)		<b>&amp; Gen.</b> Desc.				fine and medium se	
		1.9	48.0'50.0'	9,9,13,26		48 -		avel. No con		
						-				
				1		50				
		1.6'	50.0'-52.0'	9,10,11,18			Light brown	and rustic	brown fine/medium	
						[ ]	send. Trace	of conce g	ravel. Iron staini	
						1 ]	No cobr. Dr	у.		
						52				
		1.2'	52.0'-54.0'	14,12,7,11		[ ]			brown fine/ medium	n
ł						_	sand. Trace	of gravel.	No cobor. Dry.	
						54 -				
	<u> </u>	1 71	54.0'-56.0'	12 7 13.21	<b>├</b> ───┦	┢╾╾╾┛	Dansa and r		fine and medium se	
ľ		<b>.</b>	34.0 -30.0	منه <i>رندو ا انگلا</i>		1		aining. No o		
						]		-	-	
						56				
		1.5'	56.0'-58.0'	7,8,7,17	[	_			Trace of gravel.	
						_			send. Trace of	
[						58	graver. Itu	n stauwy. i	No odor. Dry.	
		1.5	58.0'-60.0'	8,9,8,10	} <b>/</b>		Light brown	fine/medium	sand.	
							- trace of	gravel. Iron		
							No cobr. Dr	¥•		
				L		60 -				
		1.1'	60.0'-62.0'	7,10,10,10					sand. Iron stainir	
							No cobr. us	ikser sena a	t tip. Wet at tip.	
					Water Table	62	ł			
							ł		·····	4
		2.0'	62.0'-64.0'	8,10,11,12					and. some course	
					[	-	sand. 1100	staining. No	odor. Wet.	
			ļ			-				
		1 1	1	4	1 1	64				

		OCIATE			G	EOL	00	AIC L	.OG	•
					WELL	DATA		GV	READ	INGS
tudy No.	0900	L D/			m. (in)			Dete		
-	DR	and the second s		Finel De	m (ft)	72'				
lient	RECR	A ENTRONEND	٤	Cesing t	Nem. (in.) _					
Page	5	01	5							1
		N SHEEPAN		Screen S	ietting (ft.)					
				Screen :	Slot & Type					
Loc				Well St	itus					
M.P. Elevati	on				BAMPLE			DEVE	LOPMENT	•
Drilling Star	ted	1/22/88 En	444	Type	STIT SC					-
Dellar	PYTH	N DRILLING		Hemmer	140					
Type Of Rig	HOL	LOW STEM AUGE	<u>}</u>	Fell	30	ia.				
Elev.		SAMPLE		Strate Chang				LE DES	CRIPTION	1
<u>(1) No</u>		Depth (ft.)		& Gen. Des						
	2.0'	64.0'-66.0'	8,9,12,21		64				dium send. S	
				1	-	No colo		arey color	in middle.	Net
	1									
				L	66	L				
	2.0'	66.0'-68.0'	7,7,7,10	J	-	Brown : No cobo	•		some concie	sand.
							Ge Male	•		
				1						
				L	68	Ļ				
	2.0'	68.0'-70.0'	6,7,6,7		-				Some cookse	sand a
				]	-	tine g	CEVEL.	No cobr. W	π.	
1				1		1				
		ļ		L	70	<b> </b>				
	2.0'	70.0'-72.0'	5,6,7,8		1 -				some coarse	sand
	1				-	and fi	ne grav	el. Wet. N	o contr.	
1				]	72-	ł				
	╄──			<b> </b>						
					-	B.O.B.	= /2'			
1	1					1				
1					-	1				
	+-	<b> </b>		<u> </u>		<u> </u>				
					-	1				
			ļ	ļ	•	1				
					1 1	]				
	1	1		1		<u> </u>				
						]				
				1		]				
		1	]	Į		]				
	+			<u>†</u>						
	1			1		]				
	}	1	ł	1		]				
			1			1				
			1	1	,					
	<u> </u>	in feet rolet		1			<u> </u>			

		ig gr	COUND WATE	ER GEOLOGIS	STS		G	EOL	00	AIC L	. <b>O</b> G	
								DATA		GW	READ	
tudy	Nø	0900	10	)ate		Hole Diem.				Dete	DTW MP(2)	Elev.W.
rojec	t	DER				Final Depth						
lient		RECR	A ENTRONEND	NL	_	Cesing Dian	n. (in.) _					:
oge		5	01	5	_	Casing Lan						
ogged	l By	JH	N SHEEHAN			Screen Sett	•					
rell No		<u>r</u> B-2				Screen Slo	t & Type					
				······		Well Status						
I.P. Ele	ivatio	)n	1 /20/28	1/21/98		<u></u>	MPLE	R		DEVE	LOPMENT	-
rilling	Star	ted		nded 1/21/88		Type						
riller .		HTT:	N DRILLING	R	-	Hammer Fall						
									L			
Elev.	The second value of the se		SAMPLE			ete Change	Depth	8		LE DES	CRIPTION	I
(1)			Depth (ft.)		le I	Gen Desc.						
		1.9'	64.0'-66.0'	6889			64	Brown	and go	yish brown	fine and me	oium
								No sta	inim.	or rine gr	avel. Wet.	No cobr
		ļ	ļ				66 -		+j •			
		<u> </u>	ļ	ļ	↓_		8					
		2.0'	66.0'-68.0'	8-9-7-10				Brown	fine/m	dium send.	Wet. No o	dar.
										Running s		
_		<b> </b>	<b> </b>	<u> </u>	┡		68		_			
		2.0'	68.0'-70.0'	5-5-8-11							Trace of g	
								No colo runnin			Wet. Proble	en with
									, 353 Li	•		
	<u> </u>	<b> </b>		<b></b>			70					
		2.0	70.0'-72.0'	9-10-10-10			╏┥				and trace of	gravel.
									C. NO	staining.	WEC.	
		l .					77					
		<u> </u>		<u> </u>	╋╼							
		I						B.O.B.	72'			
		1		1	Ť							
		1										
					L							
_					Γ							
		1										
		1										
		ļ						L				
							_					
		{			Į		_	ł				
					1		-	Į				
	1			1			ł					_
EMA	RKS		in least sales			101.0	<b>.</b>			· · · · · · · · · · · · · · · · · · ·		
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	from tep et (		<b>e</b> n (							

			OCIATE	R GEOLOGIS		G	EOLOC	iic l	. O G	
					W	ELL	DATA	G W	READ	INGS
Study (	No	09001	D	ote	Hole Diem .	(in)	6"	Dete		
Project		DE	and.		Final Depth					
Client		RECR	ENTRONEN	L	Cesing Dier	n. (in.) _				1:
Page		1	01	5						
		JH	N SHEEPPN							
Weil No.			TB-2			-				
ــــــــــــــــــــــــــــــــــــــ					Well Statu	•••			j .	
M.P. Ele	vatio	0				MPLE		DEVE	LOPMENT	L
Drilling	Star	ed	1/20/88 En	444 1/21/88		T.FT STO	N			•
Driller		PYTH	N DRILLING		Hemmer	40				
Type Of	Rig.	HEL	LON STEM AUGE	2	Fell	30	in.			
Elev.	~ ~		SAMPLE		Strata Change	Depth			CRIPTION	
(1)	No.		Depth (ft.)		& Gen. Desc.	(11)				
		1.6'	0.0'-2.0'	1,2,3,2		0	Top .4: Ct			
							.4-1.0: 9 Fill ^{1.0-1.6: 1}	avel 1111	fina (mai) and	~- <b>-</b>
						-	Fill Trace of a	zzwel. Slid	ght odor. Dry	
						2	]			
		•6'	2.0'-4.0'	4,4,5,15					with some a	
			:				send. Trace	of fine gr	avel. Obr.	No
							staining.			
						4				
		1.5	4.0'-6.0	23,52,47,70			Light brown-	grey silty	send. Trace	ϣ
							coarse grave	1. Obr.		
						]	1.0 from Tip	. Dry.		
						6				_
		.6	6.0'-8.0	72-57-46-40			Brown-green	fine sand w	ith some cos	rse
				Changed from		_	send. Tight		aining through	ghait.
				140 lb.			Slight odor.	Dry.		
						8	· · · · · · · · · · · · · · · · · · ·		<b></b>	
		.7	8.0'-10.0'	21-40-52-76		.	Brown-grey s	ilty fine s	and. Trace of	gravel
							Very dense.	No stainin	g. Dry. No d	dor.
	]					10 -	4			
	<b> </b>				<u> </u>	<b>1</b> 0			<u> </u>	
		.9				-			and. Some or	
	ĺ			Changed from 300 lb. hamma		-	Dry. No cob		ning.	
				to 140 lb.		12 -	1 ~		•	
		┣		hemmer	· · · ·	<b>↓</b> [™] →	<b> </b>			
i		.8	12.0'-14.0'	44-34-47-61		•		,	dium sand.	
		1				•	ot gravel.	NO SCALINING	. No cobor.	ury.
						14 -	1			
	┠	$\frac{1}{2}$	14.0.16.01			+		fine	din and and	
		.9	14.0-16.0'	41-35-36-42		•			dium and coar Poorly sorte	
		1		1		-	No color. N	-	-	
	1	1	l	1	ł	1 -			•	
						16				

Page _ Logge Well No Loc M.P. El Drilling Driller	d By b evation Star	DERN RECR 2 JOH 16-2 IG-2	A ENVIRONMENT O 1 N SHEEHAN	5 	Hole Diem . Final Depti Casing Die Casing Lan Screen Sat Screen Sto Well Statu	(in.) (ft.) m. (in.) gth (ft.) ting (ft.) t & Type s MPLE ELTT SEC 140	72'	Dete DTW MP(2)	
			SAMPLE	Blows/6"	Strata Change		5/	MPLE DESCRIPTION	
			1.6'-18.0			16 18	gravel.	rown fine madium sand. Trace Small amount of iron staining . Poorly sorted.	
		1.4'	18.0'-20.0'	26-31-32-41	•	7		rown fine medium send. Trace . No odor, no staining. Dry.	
		1.6'	20.0'-22.0'	20-29-39-52		-		rown fine   medium sand. Trace avel. No odbr. No staining.	
			22.0'-24.0'	<b>29-29-60-8</b> 0		24	gravel.	brown fine   medium send. Trace Very coarse gravel 2" from t . No staining. Dry.	
		1.6'	24.0'-25.0'	74-110 <del>-99-8</del> 3		26	gravel.	rown fine medium sand. Little No odor. Small layer of iro g. Dry. Poorly sorted.	
		1.5	26.0'-28.0'	22-44-91-153		20		own fine medium send. Some gr in tip. No odor. No staining	
		1.2	28.08'-20.0'	25-24-31-27 Changed from 140 lb. hamm to 300 lb.		30		n fine medium sand with some dium gravel. Little coarse gr	avel.
		.9'	30.0'-32.0'	15-25-9-9		-		rown fine medium sand - some f wrse grave. Dry. No odbr. No g.	

100	X /	155	OCIATE	3 INU			<u></u>	EOLO			
								DATA		N READ	
tudy	No	0.00	L 0	ote				<u>6"</u>	Date	DTW MP(2)	Elev.V
Projec	t	DER				Final Depth					
			A ENTRONEND	-		Cesing Dien					1
Page _		3	01	3		-					
Logge	d By		N SHEEHAN				•		-	1	1
Well Na											
				·	-	Well Stetu					<u> </u>
M.P. El	evatio	)n	1/20/88	1/20/88		Type SA			DEVE	LOPMENT	-
Drilling	Star	PYTH	N DRILLING			Hommer					
Uriller Tues Of		HIL	LOW STEM AUGE	R		feli	30	/0.   /0.			
		_					1				
Elev. (I)			SAMPLE	Blows/6"		ets Change	Depth (fl)	SAN	PLE DES	CRIPTION	Ì
		RUC.	Veptin (11.)		╇						
		1.4'	32.0'-34.0 '	9 <del>-9-</del> 10-10			32 -	Light brow	n fine/medium	n sand. Litt	le
							-		-	Small amount	: of
							34 -	iron stain	ing.		
					╋─						
		1.5'	34.0'-36.0'	9-9-25-36			-			ine/medium se sorted. Dry	
							-	color. No		Social. Di	/• NO
	1				Í						
	┢──	<u> </u>	<u> </u>	+	╋─		<u></u>				
		ր.4՝	36.0'-38.0'	12-16-13-21	1		•			ine and mediu	
							-	mane des	NET. NEA. N	o odor. No s	caunun
							<b>ا</b> _ *	1			
	<b>†</b>				1-		- <b></b> -				_
		1.5'	38.0'-40.0'	16-17-19-21						edium send. Iron staini	
									Layer .5 from		<b>1</b> 9.
							40				
		h 21	40.0'-42.0'	2-14-13-19	Г			Butic bro	an fine and m	edium send.	Little
		<b>r</b>		1-14-13-13						Iron staini	
							.		4		•
			-	l			42				
		1.6'	42.0'-44.0'	14-17-21-33			.			and. Trace o	
		ł		1			-	gravel. D	ry. No cobor.	No staining	•
		1					-	4		•	
	┣		<b></b>		┢		_ 44	<b> </b>			
		h.4'	44.0'-46.0'	20-24-23-19	ł		-			with some gra	
	1	1					•		ing from .7'-	.3' from Tip.	
	1	1			1		-	No order.			
	┨	<b> </b>			╋		46.	<b> </b>			
		N.R.	46.'-48.0'	15-15-23-16			·	N.R.			
		1		1			-	4			
	I						•	1			
							-				

-

<u>.</u>

<u>.</u>

			OCIATE		T	W	ELL	DATA	G W READINGS
	No	09001		ete		ble Diem .			
iec:	1	DEAN	TEL U					72'	
ent	·	RECRI	A ENJRONEND	NL	<u> </u>	casing Dia	m. (in.) _		
			01	-	_[	esing Lan	gth (ft.) .		
99 e (	d By	HL	N SHEEHAN		_ 1	icreen Set	ting (ft)		
II No	- <b>-</b>	TB-2	; • •		[٩	jareen Slo	1 & Type		
					-Ľ	Nell Statu			
! Eie	evation	<u>م</u>	1/20/98	1/21/88	-1.	5A [ype	MPLE		DEVELOPMENT
lling	Starte	id <u> </u>	N DRILLING	4.4	-[]	lammer			
ller . Na Of		HIL	LOW STEM AUGE	R		fell			
							Y		
●v. 1)		_	SAMPLE	Blows/6"		a Change	Depth (fL)	1	SAMPLE DESCRIPTION
						n. 0010.	48		
		N.R.	48.0'-50.0'	14-16-16-25				N.R.	
			1				4	1	
							50	1	
		1.5'	50.0'-52.0 '	8-9-11-7					brown fine and medium send. Trace o
			l I					fine g	gravel. Iron staining. Dry. No coo
			L		<u> </u>		52		
		1.4'	52.0'-54.0'	8-11-11-11	[				fine and madium send. 25% iron
								No orbo	ing. Dark brown silty sand at tip.
	1			l I	I		54		
	┢─┤			12 2 0 16	┨				
		T*0.	54.0'-56.0'	01-6-1-6-10	I		1		4': Dack brown silty send Bottom: fine/medium send with trace
]									avel. Iron staining. No othr. Dry.
							56		
		1.4'	56.0'-58.0'	6-9-11-15					brown fine/medium send. Trace of
				1					gravel. No cobr. 25" iron ing. Dry.
1							-		
	┠╌┯┥				┢──		- 58-	┣	
		1.2'	58.0'-60.0'	10-10-10-13			-		brown and rustic brown fine and
1			-	ł			4		m send trace of gravel. Rustic where iron stained. Dry. No odor.
							60		
		1.5'	60.0'-62.0'	14-10-10-11	T			Brown	fine/motium sand. Iron staining.
		1.5					]	4	br. Wet at 61 fest.
								1	
					╞──		62	L	
		1.8'	62.0'-64.0'	10-11-13-14	1				fine and medium sand. Iron staining
							<b> </b> - ²	No colo	of gravel. Coarse toward tip. Wet. or.
							-		
							64		

			OCIATE		WI	ELL	DATA GW READINGS
••••		010	<b>01</b>	ete 2/23/88			
					Final Depth		
Frojeci	_	RECE	RA Environm	ental	Casing Diam		
Been		1	01	2	_ Casing Long		
			John Sheeha	n	Screen Sett		
Well No.		USTI	B-1		_ Screen Slot	& Type	
					Well Status		
M.P. Ele	vatio					MPLE	
Drilling	Star	ied 1.	/19/88 En	ded	Type Se	lir Sp	
<b>A</b> -111		Pvtl	hon Drillin	g	Hemmer 14		
Type Of	Rig .	Hol	low Stem Au	iger	_ Fell	30'	in.
Elev.			SAMPLE		Strata Change	Depth	SAMPLE DESCRIPTION
(1)	No.	Rec.	Depth(ft.)	Blows/6"	Gen Desc.	(11.)	
			0.0-2.0'	21-10-5-6		<b>°</b> -	Dk gravel & pavement. No odor. No staining. Dry
	•						
						2 -	1
		N.R	2.0-4.0'	6-7-7-9		'	1
	1	1				-	]
							]
	1	1				4	]
			4.0-6.0'	10-14-28-			Brown fine and medium sand with
		·/ ·	4.0-0.0	32			some medium and coarse gravel. No
							odor dry.
		[				·	4
	1	110	6.0-8.0'	31-47-25-		6 .	Top4: brownish fine & medium
		1		42		· ·	sand, some coarse & medium gravel.
							Dry. No odor.
							.4 - tip: brownish grey silty sand
	1	ł				8	Brown fine & medium sand with coar
		1.	7 8.0-10.0	65-63-81 98	1	1	6 medium gravel. Dry no odor.
			-	70	ł		1
							]
						10	Brown fine and medium sand and
		1.	0 10.0-12.0	0 5-27-27-2	1		some coarse and medium grave.
							No odor. Dry
						12	Brown fine sand with little gravel
		1.	5 12.0-14.	0 29-25-24-2	9		No odor. Dry
							4
							4
						14	Brown fine and medium sand. Trace
		1.	.0 14.0-16.	0 4-10-22-23			of gravel. No odor dry.
1					1		·

Ż

-

(Circle)

						G	EOL	OGIC LOG			
udy ( oject	No		D	at e	Hole Diam. Final Depth	(in.) (ft.)		Date DTW MP(2) Elev.W.			
ogged	1 8 y	2	01	2	Casing Len Screen Set	Casing Diam. (in.) Casing Length (ft.) Screen Setting (ft.) Screen Slot & Type					
.P. Ele rilling riller _	vatia Stari	in ted	En	ded	Well Statu SA Type Hammer Fall	MPLE	IB.	DEVELOPMENT			
pe Of Rig					Strata Change	Depth					
	(1) No. Rec. Depth (ft.) Blows/6" 8					(ft.)		AMPLE DESCRIPTION			
			16.0-18.0'	26		18	some f: Brown : some co	fine and medium sand with ine gravel. No odor. Dry fine and medium sand with barse sand. Trace of coarse . Dry no odor.			
EMA	RKS		in feet relet from top of (		en datum	-					

ROU	X A	SS	OUND WATE	S INC		G	EUL	UG	IC L	UG	<b></b>
	_				W	ELL	DATA		<u> </u>	READ	INGS
Study	No(	0900	10	ate _3/24/88	Hole Diam.	(in.)	2"		Date	DTW MP(2	)Elev.W
Projec	•	RECR	A Environm	ental Inc.	Final Depth	(† 1.)	35'				
- Client	]	Dekn	atel		Casing Diam	), (in.) _					
		1	~	3	Casing Leng	th (ft.) .					
Logge	d By.		John Sheeh	າ	Screen Sett	ing (ft.)	<u> </u>				
Well No	)		DP-1		Screen Slot	& Type					
Loc											
M.P. El						MPLE	R		DEVE	LOPMENT	•
			/15/88 En	ded <u>3/22/88</u>	Type Soli	t soon	140 Ib.	r			
Driller											
Type Of	Rig	andAu	ner/Tripod Ri	<u>a</u>	Fall		in.	L			
Elev.		_	SAMPLE		Strata Change	Depth	2	AMPL	E DES	CRIPTION	V
(1)	No.	Rec.	Depth(ft.)	Blows/6"	& Gen. Desc.	(††.)					-
						0.0			•		
		ł									
						-			Vacant 8	21	-
		ĺ				-				•2*	
									1		
				i		_	ŀ		Soil Sr	face	
						8.0'-			<u> </u>		
						-	Gray ver	y fine	sand. Clay	ey like. Mo	ist. C
						_					
						-	1				
						9.0'-					
										ulticolored	
							Very tin Same air		ned clayey	like sand. !	bist.
						-		£.•			
			-			10.0-		and u	erv fine o	rained sand v	with er
									lik. Mois		
						-	ſ	••			
							1				
			-			Ц.04	aray fir	ne sand	and gravel	i. Moist. Od	or.
							]				
						11.5	Crav fir	ne send	ഷൻ നേദ്യല്	L. Moist. Od	or.
						12.0-					
					Discontrued		4				
					Hand Auger-	.	4				
					ing 12.0'	.	4				
			]		1	13.04	Ł	. <b></b>	· · · · ·		
		1.0'			13.0'	.				ne and medium nome irron sta	
					Sampled					e quartz gra	
					Using Tripod Rig	1	-3'4'				
		ł				15.0'					
	RKS		in feet relat								

ġ

a de la

		SOCIATE		W	ELL	DATA	G	W READ	INGSU			
a di sa	No. <u>09</u>	001	ate	Hole Diem .								
	RF	CRA Environm			Final Depth (f t.)							
		knatel			Cesing Diam. (in.)							
		013			Cesing Length (ft.)							
		01			• • •							
	-				•				1			
					MPLE	R	DEVI	ELOPMENT	•			
		En							-			
•				Hommer								
				Feil								
		SAMPLE			T							
(≬)		C. Depth (ft.)	Rieme /#*	Strata Change & Gen. Desc.	Depth (ft.)	8	AMPLE DE	SCRIPTION	1			
(17	NO. R	<u>c.</u> Depth(ff.) 15.0'-17.0'		ia ven vesc.		Brown an	d light brown f	ine and machin	a sand.			
					-		f fine gravel. N					
		ł			-	ł	-		-			
				1	-	4						
	1.2	17.0'-19.0'		l	17.0	Brown an	d light brown	fine and medi	un <del>san</del> i			
	<b></b>	1/.0 -19.0		1			wel. Iron stain					
				ŀ	-	1		-	•.			
					-	4						
						4						
	1.1'	19.0'-21.0'			19.0	Brown an	d light brown f	ine and mediu	m sand.			
					-	Some cost	rse sand. No co	or. Ury.				
				l	-	-						
				1	1 27-0-		d light brown f					
	1.0'	21.0'-23.0'					e and medium gr					
			·		1 -		No cobr.					
						4						
• <u></u> ·				1			com fine and me	chim card Ca	ma fire			
	1.2'	23.0'-25.0'			2.0		ayared at .5'					
					-	Dry.						
					•	1						
									-			
	1.3'	25.0'-27.0'			2.0		coun fine and me ium gravel. No c					
					-		usi yeaver in t					
					-	1						
	1.1'	27.0'-29.0'		1	27.0	Brown an	d light brown f	ine and mediu	m sand.			
				1	-	Some ga	avel. Dry. No c	dar.				
				ł	-	1						
		1			-	1						
	N.R.	29.0'-31.0'			39.0	1						
	14.16	20 -51.0	l ·	1	1	-						
					-	4						
						1						
	1		ł	1	31.0	1						

ROUX AS	SOCIATE	<u>s inc</u>		G	EOLOGIC LOG
Project Client Page 3 Logged By Well No Loc,	01	3	Hole Diam. Final Depth Casing Dian Casing Lan Screen Sett Screen Slot Weil Statu	(in.) (ft.) n. (in.) gth (ft.) ling (ft.) t & Type	
M.P. Elevation Drilling Started _ Driller	En	ded	Type Hemmer		10.
Type Of Rig Elev (1) No. Rec	SAMPLE	· · · · · ·	Strata Change & Gen. Desc.	Depth (ft.)	SAMPLE DESCRIPTION
.51	33.0'-35.0'			33.0	Brown and light brown fine and medium sand Some gravel. No odor. Dry. B.O.B. 35.0'

.

لأغل

نتأدم

in the second

<u>in a</u>

4

j.i.sie

ندر رز اندر رز

					STS	G	EOL	OG		OG	
					W	ELL	DATA		G V	READI	NGS(I)
Study P	No	09	<u>001</u> 0	ate 2/19/8					Date	DTW MP(2)	
			knatel		Final Dept	n (ft.) <u>9</u>	.5"				
lient.	_	RE	CRA Envir	onmental	Casing Dia	m.(in.) _				1	
			01		Casing Ler	ngth (ft.)					
			John Shee		Screen Set	ting (ft.)					
			DP-2		Screen Sla	t & Type					
.oc			· · · · · · · · · · · · · · · · · · ·		Well Statu						
A.P. Eie	vatia	)n				MPLE	R		DEVE	LOPMENT	
Drilling	Star	1ed	<u>2/19/88</u> En	ded <u>Same</u>	Type Sca	Initess S	Ceel				
Driller _					Hammer		Ib.				
Type Of I	Rig .		Hand Auge	<u>r</u>	Fall		in.			-	
Elev. L			SAMPLE		Strata Change	Depth		A M D1	-	CRIPTION	
	No.	Rec.	Depth(ft.)	Blows/6"	& Gen. Desc.	(11.)	3		. <u>e</u> vej		
						0					
					1	-	1				
						-					
						-					
					[						
						]	]				
						_					
						-					
						2					[
						-				nd with some w and other garb	
										g. Strong odor	
						-	[		,	,	
					1	-	4				
							1				
						3 -	1				
							1				
			_			-	1				
						-	1				
				- - -		-	1				
		1				4 -	1				1
		[				•	Bright o	reen fi	ine and ma	dium sand. Tr	ace of
						-	course s	and. S	Strong odd	r. Extensive	stain-
						-	ing. Dry				
		1				-	1				
		[				-	1				
						5	1				ļ
						-	1				l
							1				
		<u> </u>	L		<u> </u>	5.5	1				
EMAI	RKS		in feet relati		on datum						1
		(2)	from top of P	VC casing							

......

			OCIATES	R GEOLOGIS		GEOLOGIC LOG					
							DATA G W READINGS				
					88 Hole Diam.						
					- <u> </u>		9.5"				
Client		R	ECRA Envi	ronmental	Casing Dian		1 1 1				
				2		gth (ft.)					
Logged	l By	<u>J</u>	ohn Sheeh	an	Screen Sett	ing (ft.)					
Well No.	•				Screen Slot	Screen Slot & Type					
Loc					Well Statut						
						MPLE					
Drilling	Start	ed 🚄	2/19/88 En	ded <u>Same</u>	- 1 - <b>/</b> L.						
Driller .			<b>.</b> .		Hammer						
			and Auger		Fall		in.				
Elev.			SAMPLE		Strata Change	Depth	SAMPLE DESCRIPTION				
(1)			Depth(ft.)	Blows /6"	& Gen. Desc.	(††.)					
		[				_	1				
		[					J				
							]				
						6					
		ļ					Bright green and green fine and medium sa				
							with some coarse sand. Strong odor. Extensive staining. Dry.				
}							Concessive Stanting, LEY.				
							Bright green and green fine and medium sa				
							Trace of fine gravel. Strong odor.				
						7	Extensive staining. Dry.				
							Bright green fine and medium sand. Some				
						.	gravel. Strong odor. Extensive staining. [				
							4				
							4				
							4				
						8 -					
						.	Green fine and medium sand. Some coerse sa				
						.	and fine gravel. Odor. Extensive staining. Dry.				
					1	•	Green fine and medium sand. course sand ar				
			_				some gravel. Odor. Extensive staining. Dry				
					l	9 -	4				
						· · [	Green fine and medium sand. Some gravel.				
						•	Extensive staining. Odor. Dry.				
	]					· ·	4 .				
	1				<b></b>	<b>·</b>					
	1	1				·	B.O.B. = 9.5'				
						10	4 ·				
	1						4				
						· ·	4				
						· ·	4				
						· ·	4				

3

-

## ATTACHMENT B-2

. .

ينفله

# Protocols for Specific Capacity Test and Results

### Specific Capacity Test Procedure

- Enter all pertinent data concerning the pumping well and piezometers to be measured on the data sheets provided.
- 2. Check to make sure that all equipment is available and functioning: electric probes, data sheets, pencils, rain gauges (if necessary), stop watches, pump, generator, water quality meters (if necessary).
- 3. Record water level in pumping well and piezometers before pump is inserted in pumping well.
- Insert pump in well, allow five minutes for water level to equilibrate, record new water level in pumping well and piezometers.
- 5. Start the pump and run a short term (15-30 minute) drawdown-recovery test pumping at a constant rate. The pumping rate selected should be based on estimates of well yield from soil samples collected during drilling.
- 6. Record water levels on a predetermined time schedule.

- 7. If one of the first closely-spaced readings is missed, just catch the next one (do not attempt to alter data).
- 8. Throughout note any changes pertinent to the test such as: changes in water color or turbidity; time and nature of any discharge fluctuations; time and length of any temporary pump shutdown; effects of any nearby pumping wells; and precipitation events.
- 9. If there is a shutdown (even if it's brief) measure water levels in at least the pumping well.
- 10. At the end of the drawdown test, recovery levels should be measured until water levels return as close as possible to pre-test levels. The drawdown schedule for water level measurements should be followed during recovery.

TABLE	-	Pumping	Tests	-	Frequency	/ of	Readings
-------	---	---------	-------	---	-----------	------	----------

.

Elapsed Time (minutes)	Frequency of Measurements
0 - 5	Every 30 seconds
5 - 10	Every minute
10 - 30	Every 2 minutes
30 - 60	Every 5 minutes
60 - 120	Every 10 minutes
120 - 180	Every 20 minutes
180 - 360	Every 30 minutes
360	Every hour

	S PO	UX ASSC	N YORK 11747	INC						G TEST FOR	
91		EKNAT	EL	N 11	16-3		ON 18 FROM	STORME	Ref. 6 , 10.3	5 Mein Fore PAGE	innii (
D	ATE_2	-12-8	3	M.P		<u>РІС</u> нт.	ABOVE G.S.	00		EAS. WI M-SCOP	
r.	2″	PUN	IPING WEL	MW-	3 .	72(+FA		<u> </u>	WEAT	HER Cloudy R.	( 4/ مالله
	,	SCR	EEN _70-	50 29.					/	19 p.M	
		VN	_ RECOVER	ir _i		N SKETCH	TEST	END	2	HER <u>Cloudy</u> R. 19 A.M -04 P.A.	
TIME	•	HELD	WET	D.T.W.			MANO- METER	Q	WATER TEMP.	REMARKS	
1.19	C			6137	-						
	5		Ļ	(1.86.	<u>.7</u> 5		<b> </b>		<u> </u>	·	
	15		<u> </u>	61.90'			╉╼╶═══╼	<b> </b>	┢╾┄╸╌╾┥		
	20		<u> </u>	61.93			<u> </u>	<u>+</u>	┢╾━╴┅━┥		
	25			62 02						······································	
	30			62.02							
	35			62.01		┝╴╾━╇╸═╼	<b></b>		<b> </b>		
	7.6			6201		┝		╋╾╴╼─┈	┝╾╼╺┛┥		
	5.0			620,		┝───╆┈━━	┿	7.5G			<u> </u>
	60			62 02			<b>+</b>			•	7793
	7.0			62 08			<u> </u>	<u>+</u>			
	30			62 02							
	9.0			62 01							
	100		<b></b>	62 02				6.67	GPM		
	120		ļ	61 01'		<b></b>		0.00	1		
	14.0		<u> </u>	6:02			┼────	7.061	171		<b>T</b>
	180			62.01'			+	+			<b></b>
	200		<u>+</u>	6202				+		<u></u>	T
	220			620:	64			7.14	GFM		
	240			62.03	.65						
	26.0		-	6203	.6.5		1	<u> </u>	<b>_</b>		
ļ	230	<b> </b>	<b> </b>	6205'		<u>├</u>	l	<u> </u>	┝───┼		<b>İ</b> m
<u> </u>	300	<u> </u>	<b> </b>	61 65	65	<b>├</b> ── <b>├</b> ──	┝────	75	FM		
L	450			620-	64	<u>├</u> ─── <u></u>	<b>↓</b>		<b>*</b> +		
		<u> </u>	<u> </u>		<u> </u>		<b>↑</b> ·	<u> </u>			بريديني. فينبيو
			<u>†</u>	<b>+-</b>		tt					
•	- <b> </b>		<b></b>	<b>_</b>	ļ	<b> </b>	d		<b>├</b> ── <b>── →</b>		
		<b></b> _	<b> </b>	<b></b> -	┢━━	┝──┥-੶	<b>∔</b>	+	┝───┿		9776 6460
		<u> </u>	<u> </u>	+		┝╼╼┽╼╾╸	<u> </u>	┟╌╴╾╾	┝		
<u> </u>	+		<u> </u>	+	<u></u>	┟╾╺┝╼╸╴	+		┨╼┄╸┄═╾╋	<u></u>	
	+		<u> </u>	+	╋╸╴ <b>┈╺╶</b> ╍	╞╼╼┾╼┄╼	+	+	┝──────┤		<b>H</b>
	<u> </u>	L	L		1	L	L		<u> </u>		<del>_</del>

HOUD?	11 ST	EWART AVEN	UE V YORK 11743								NG TEST FO
PR	DJECT	DEKNA	ATEL	" WELL	Mu'-	3		ON 11 FROM	STERMA	<u>E BLOG, 1</u>	DEACH PAGE
DA	TE	2-12-1	77	N. P. 10 N. P. EL	r of	FYC	<u>—</u> нт. /	ABOVE G.S.	00	W.L. I MEAS	NEAS. W/
1_	_~	PUM	PING WEL	L	<u></u> (	)(		_ ORIFICI	·	WEA'	THER CLOUDY, R.
D#	RAWDOW	rn <u>-</u>	RECOVER	× ∠		DN SKI	ЕТСН	TEST	START_ END	2.0	P. P. M. P. P.M.
TIME	1	HELD	WET	D.T.W.	•			MANO- METER	Q	WATER TEMP.	REMARKS
2.04	6			6202						<u> </u>	
				61.34			<u> </u>				
	10			61.46		<b> </b>	<u> </u>	L	<b> </b>	┿	
	20			61.46			<u> </u>				
	2.5			61.45						<u> </u>	
	3.5			61.44	44						
						ļ	<b> </b>			ļ	
						<u> </u>	┠────		<u> </u>		
				<u> </u>	<u> </u>				<u> </u>		
					·		<u> </u>			<u> </u>	
				[							
				<b></b>			ļ		ļ		
			· · · ·	<u> </u>			<u> </u>				
				┢─── ──							
							<u> </u>				
					ļ						
		_					┣───		┣		
				<u> </u>	<u> </u>	ŀ	┝		<b> </b>	<u> </u>	
							† ——	h			
				ļ			ļ		ļ		
				<u> </u>			┝				
				<b> </b>			┢				
			<u> </u>	<u> </u>		<b> </b>	┣───				······································
				<u> </u>	<b></b>	<b> </b>			<b> </b>		
					<b></b>						
				ļ			<b>_</b>		<b></b> . 4		
		1		1							

## ATTACHMENT B-3

airin.

ż

-----

## Ground-Water Sampling Protocols and Completed Data Sheets

,

GROUND-WATER SAMPLING PROCEDURE - VOLATILE ORGANICS AND OTHER CONSTITUENTS

- 1. Identify the well and enter the number in the field notebook.
- 2. Cut a slit in one corner of a new plastic sheet and slip it over and around the well, creating a clean surface onto which the sampling equipment can be positioned. **Do not kick, transfer, drop or in any way let soil or other material fall ont this sheet unless it comes from inside the well. Do not place any meters, tools, equipment, etc. on the sheet unless they have been cleaned with a <u>clean</u> rag to remove any sediments.**
- 3. Clean the top of the well off with a clean rag and remove the cap or plug placing it on the plastic sheet.
- 4. Clean the first 10 feet of the steel tape with a clean rag, then wash with distilled water and measure the depth to water. Record this and compute the volume of water in the well.
- 5. Existing wells will be purged by the hydrogeologist on site. All monitoring wells will be pumped or bailed before sampling and a minimum of three to five casing volumes will be removed. Hand bailers, submersible pumps, etc. will be clean and sediment-free prior to use.
- 6. Record the physical appearance of the water (color, smell, turbidity, etc) as it is pumped or bailed.
- 7. Prepare the bottles for receiving their samples (labels, place on ice, etc.).
- 8. After the well has been purged and developed, a stainless steel/teflon bailer will be used to collect the ground-water sample. This bailer will have been thoroughly pre-cleaned. Immediately prior to lowering in the well, rinse three volumes of distilled water through the bailer. In addition, the first three bailer volumes obtained from the well should be discarded. Use non-absorbent polyethylene cord to lower the bailer into the well. This cord will be discarded after use in the well.
- 9. Appropriate pre-cleaned, VOA sample bottles supplied by the laboratory are required. Fill bottles to the top creating a convex surface with no air bubbles. Place the cap on tightly. Gently turn the bottle over and tap lightly on the soft surface to insure

that no bubbles are present. Seal the cap further by using vinyl electrical tape.

-

فعمط

1000

- 10. Fill the other containers provided by the laboratory according to directions.
- 11. Label the bottle with location number, date and other pertinent information. Record all information in field notebook. Cool the sample immediately on ice. Maintain the samples in a secured area, maintain chain of custody and deliver to the laboratory within twenty-four hours.
- 12. After the last sample is collected, measure and record the temperature, conductivity, pH, and the physical appearance of the water.
- 13. Replace the well cap and cover the well.
- 14. Decontaminate the bailer and/or pump.
- 15. Discard the cord, rags, gloves, and plastic sheeting in an appropriate manner.

## WELL SAMPLING DATA

	- 9	Surgia Exercise
Well Number: MW-2		Sampled By: SHETHIN SUCHACSK,
Time at Start: /2:00	Weather: FART	Y CLAUPT, 35 =
Tape Held At:	Wet Cut:	Depth to Water: 61.12
Depth to Well Bottom: 69.55	Length of Water	Column (LWC): P. 37'
Volume of Water in Well = LWC :	c = 1.34 gruns	
C = (for 1½" diam. wells) (for 4" diam. wells)	-	wells) 0.17;
Physical Appearance at Start:		
color: Brown	Odor: None	Turbidity: TUREID, SILTY
Remarks: BAILED S. GALLON	21	
Type of samples collected, pres COLLECTED 2 SAMPL AND A 1- QUART	es of water us	ING A TEPHLON BAKER
Conductivity: 550 m	•	
Physical Appearance After Samp	ling:	
color: Brown	Odor: None	Turbidity: TURRID VOC. SILTY
Remarks:		
Amount of Water Removed Before Did Well Go Dry?: No	Sampling: SigALL	צעת
Time at Finish: 1:20p		
Laboratory Name, Number and Lo	cation:	TRA ENVIRONMENTAL INC

III WALES AVE.

(716) 691-2600

TONAWANDA NY. 14150

Method of Sample Collection:

TEPHLON BAILER

Land for the state

## WELL SAMPLING DATA

	O I PR	En ana lendar e
Well Number: $M(\omega - l)$	Date: 2-//-80	Sampled By: SHEEHAN/ Suchurs
Time at Start: 12:00 p	Weather: PARTLY	CLOUDY, 35°
Tape Held At:	Wet Cut:	Depth to Water: 61.67
Depth to Well Bottom: 69.60'	Length of Water Co	olumn (LWC): 7,93'
Volume of Water in Well = LWC x C = ,	1. 3 yal	•
C = (for 1±" diam. wells) 0.07; (for 4" diam. wells) 0.64 =		11s) 0.17;
Physical Appearance at Start:		
Color: Brown	Odor: None	Turbidity: TUREID, SILTI
Remarks: BAILED 4 GALLONS		
Type of samples collected, preservation	ons and bottles use	d:
COLLECT 2 SAMPLES		
AND A 1-QUART TE	PHLON SEA	LED JAR.
Conductivity: Potn		-
Physical Appearance After Sampling:		-
Color: Brown	Odor: None	Turbidity: TURBID, SICTI
Remarks:		-
Amount of Water Removed Before Samplin	ng: 4 GALLON	- 5
Did Well Go Dryl: No		

Time at Finish: 1:00p

· · · · · · · ·

Laboratory Name, Number and Location:

Method of Sample Collection:

TEPHLON BAILER

RECEA ENVIRONMENTAL INC. 716-691-2600 111 WALES AUE TONAWANDA N.Y. 14

and a state of the

# WELL SAMPLING DATA

		/
Well Number: MW-/	Date: 3-15-88	Sampled By: SHEEHAN BEACON
Time at Start: 9:00 A	Weather: CLOV	er, cad
Tape Held At:	Wet Cut:	Depth to Water: $6!.44'$
Depth to Well Bottom: 69.60	Length of Water	Column (LWC): 8.16
Volume of Water in Well = LWC x	c = 1.387 gr	
C = (for 1½" diam. wells) (for 4" diam. wells)		ells) 0.17;
Physical Appearance at Start:		
color: BROWN	Odor: None	Turbidity: VERY TURBID
Remarks: BAILED 5 GALLON	2	
Type of samples collected, press COLLECTED A C USING A TEPHLO TEPHLON SEALED Conductivity: 800, PH-5. Physical Appearance After Sample	DHE QUART SAM DN BAILER AND JAR. 71, Temp 13°C	PLE OF WATER
color: BROWN	Odor: None	Turbidity: V. TURBIS
Remarks:		
Amount of Water Removed Before S	impling: 5 gallons	
Did Well Go Dry?: No	,	
Time at Finish: //:00A		
Laboratory Name, Number and Loca	KetRA	ENTIRONMENTAL INC LAIS (716)691-2602:
Method of Sample Collection:		

III WALES AVE.

TONAWANDA, N.Y. 14150

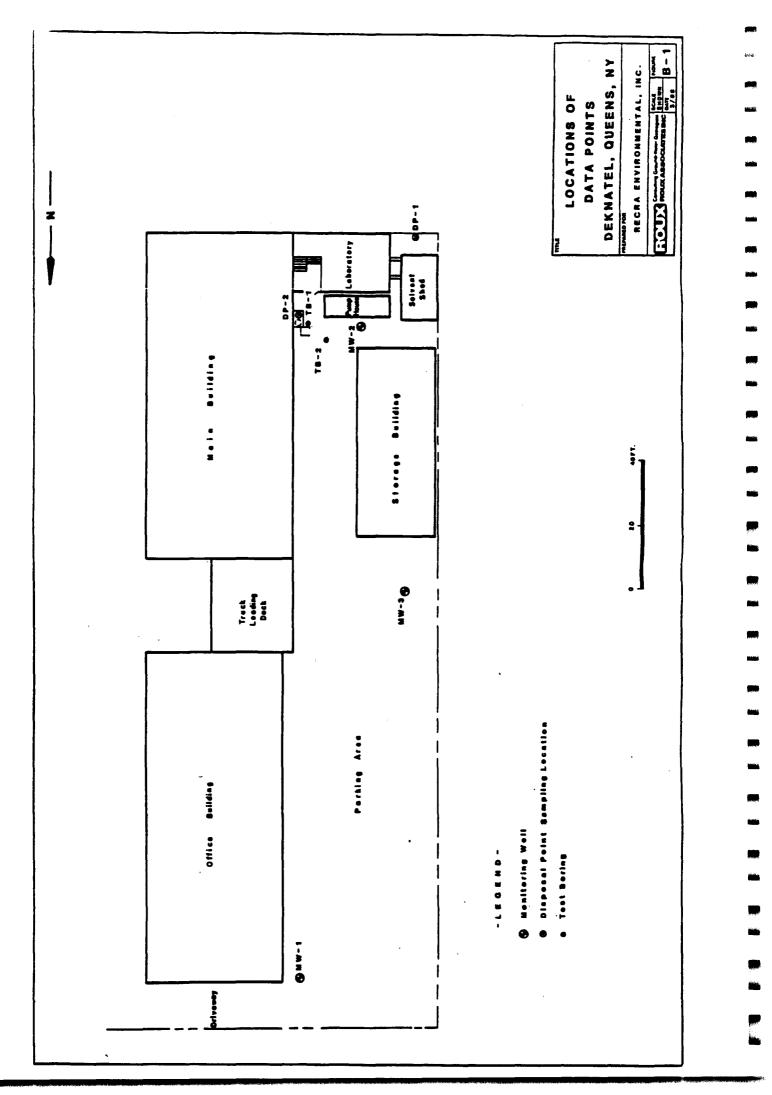
TEPHLON BAILER

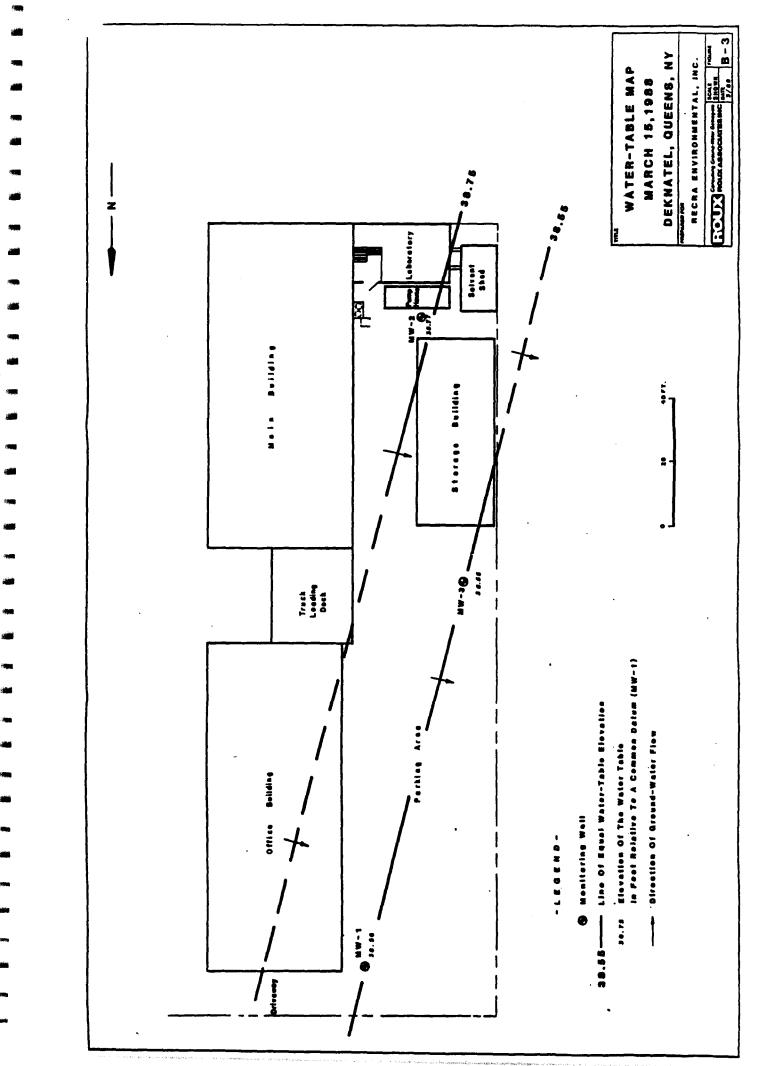
1 <b>1</b> 1	5	· · · · · · · · · · · · · · · · · · ·
	٦	 . لا برج مسليس

WELL SAMPLING DATA

Date: 3-15-88 Sampled By: SHEEHAN BEACON Well Number: MW-7 Weather: CLOUDY, COLD Time at Start: 9,00A Depth to Water: 60.91 Tape Held At: Wet Cut: Depth to Well Bottom: 69.55 Length of Water Column (LWC): 8.64 Volume of Water in Well = LWC x C = 1.47 C = (for 1!'' diam. wells) 0.07; (for 2'' diam. wells) 0.17;(for 4" diam. wells) 0.64 = gal. Physical Appearance at Start: Color: BROWN Odor: Nort Turbidity: VERT TURBID Remarks: BAILED 5 GALLONS Type of samples collected, preservations and bottles used: COLECTED 2 WATER SAMPLES USING TEPHLON BAILER AND A 1-QUART TEPALON SCALED JAR. Conductivity: 600m, pH-5.91, Temp 12°C Physical Appearance After Sampling: Odor: None Turbidity: VERY TURBID color: BROWN Remarks: Amount of Water Removed Before Sampling: J gallows Did Well Go Dry?: No Time at Finish: 11.15A RECRA ENVIRONMENTAL INC. Laboratory Name, Number and Location: (716)-691-2600 TONAWANDA NY. 14150 Method of Sample Collection: TEPHLON BAILER

والإيرج سيبوز ويرسين المراجر والمراجر والمراجر والم


WELL SAMPLING DATA


Date: 3-15-88 Sampled By: SHEEHAN BERCON Well Number: MW-3 Weather: CLOUDY, COLD Time at Start: 9:00A Depth to Water: 61.24 Tape Held At: Wet Cut: Depth to Well Bottom: 69.37' Length of Water Column (LWC): 8.13' Volume of Water in Well = LWC x C = 5.20pp( C = (for 1!'' diam. wells) 0.07; (for 2'' diam. wells) 0.17;(for 4" diam. wells) 0.64 = gal. Physical Appearance at Start: Odor: NONE Turbidity: VERY TURBID Color: BROWN Remarks: BAILED 18 GALLON'S Type of samples collected, preservations and bottles used: COLLECTED 3 WATER SAMPLES USING A TEPHLON BAILER AND A 1- QUART TEPHLON SEALED JAR. Conductivity: 700, pH - 5. 88, Temp 13°C Physical Appearance After Sampling: Odor: None Turbidity: Ver. TURBID color: Brown Remarks: Amount of Water Removed Before Sampling: 18 GALLENS Did Well Go Dryl: No Time at Finish: 11:30A RECRA ENVIRONMENTAL INC. Laboratory Name, Number and Location: (716)-691-2600

Method of Sample Collection:

TEPHLON GAILER

III WALES AVE. TONALJANDA NY 1415





# APPENDIX C

# **STANDARD OPERATING PROCEDURES**

.

. Maria

.

RECRA ENVIRONMENTAL, INC.

'/ST4

′∆

Chemical Waste Analysis, Prevention and Control

## STANDARD OPERATING PROCEDURES

**REVISED APRIL**, 1989

Arun K. Bhattacharya, Ph.D. Laboratory Director Senior Vice President Robert K. Wyeth Corporate QA/QC Officer Executive Vice President

# STANDARD OPERATING PROCEDURES REVISED APRIL 1989

ŝŝ.

2	1	c	T	٨
۷	/	ు	ı.	4

# TABLE OF CONTENTS

	Sect	ion #	Page #
	1.0	Introduction	1
	2.0	Organizational Structure	2
-	3.0	Sample Receipt	2
		<ul> <li>3.1 Sample Controller</li></ul>	3 4 5 8 10 10
-	4.0	Sample Preservation	11
		<ul> <li>4.1 Sample Container Cleaning Procedure</li> <li>4.2 Preservation Methods</li> <li>4.3 Sample Filtration</li> <li>4.3.1 Sample Filtration Procedure</li> <li>4.4 Sample Splitting and Preservation Procedures</li> </ul>	11 13 13 13 15
	5.0	Sample and Extract Storage	17
-		<ul> <li>5.1 General Storage</li> <li>5.2 EPA Contract Samples</li> <li>5.3 Extract Samples</li> <li>5.4 Security of Laboratory and Samples</li> </ul>	17 18 18 20
	6.0	Analytical Methodology	20
	7.0	Quality Assurance and Quality Control	21
		<ul> <li>7.1 Logbooks and Record Keeping 7.1.1 Separations Laboratory Data 7.1.2 Gas Chromatography Data 7.1.3 GC/MS Data 7.2.1 Standard Reference Materials (SRM's) 7.2.1 Standard Solutions 7.3 Laboratory Reagent Quality 7.4 Laboratory Water 7.5 Solvents 7.6 Gases 7.7 Laboratory Glassware 7.8 Specific Quality Control Procedures 7.8.1 Duplicates 7.8.2 Known Constituent Addition (Spikes) 7.8.3 Blanks 7.8.4 Statistical Reporting</li> <li>7.9 Performance and System Audits</li> </ul>	21 21 22 23 25 26 26 27 27 27 27 27 28 28 29 30 31 32 34
-	ß		

RECRA ENVIRONMENTAL, INC.

.

8.0	Sample Tracking and Reporting	35
9.0	Analytical/ CLP Document Control	39
10.0	Laboratory Safety	41
11.0	Description of Laboratory Space Allocated to CLP Analysis.	43
12.0	Laboratory Equipment List	44
13.0	Preventative Maintenance of Analytical Instruments	45
14.0	QA/QC Data Review	46
	14.1 Initial Review (Analyst, Supervisor)	46
	<ul> <li>14.2 Secondary Review (Department Manager, Analytical Project Manager</li></ul>	47
	Manager and/or the Corporate Quality Assurance	48
	14.4 Corrective Action 14.5 Quality Assurance Reports	51 52
DEEEI	RENCES	54

-

.

-

-

.

<u>نک</u>

فنعد

142

er Li

•

1/ST4

نى ئىرى

# ATTACHMENT I LIST OF TABLES

TABLE 1 P E	Preservation Techniques Employed at Recra Environmental, Inc. Laboratories
TABLE 2 C	Common Analytical Methodologies Employed on Aqueous Samples at Recra Environmental, Inc. Laboratories
TABLE 3 C	Common Analytical Methodologies Employed on Solid Samples at Recra Environmental, Inc. Laboratories
TABLE 4 L	_aboratory Equipment List of Instruments
TABLE 5	Sample Containers
TABLE 6 (	CRQL for CLP
REFERENCES	
	ATTACHMENT II LIST OF FIGURES
FIGURE 1	Recra Environmental, Inc. Standard Operating Procedures Flow Chart
FIGURE 2	Recra Environmental, Inc. General Organizational Structure
FIGURE 3	Organizational Chart - Recra Environmental, Inc. Laboratories
FIGURE 4	Recra Environmental, Inc. Chain of Custody Record
FIGURE 5	Analytical Services Request Form
FIGURE 6	Sample Inventory
FIGURE 7	Preprinted Sample Identification Labels
FIGURE 8	Organic Preparation Laboratory Raw Data Sheet
FIGURE 9	GC Log Book
FIGURE 10	Raw Data <u>-</u> Water - Specific Analysis Form
FIGURE 11	Raw Data - Sediment - Specific Analyses Form
FIGURE 12	Raw Data - CLP - Water
FIGURE 13	Raw Data - CLP - Soil
FIGURE 14	GC/MS Log Book

E RECRA ENVIRONMENTAL, INC.

## LIST OF FIGURES (continued)

- FIGURE 15 GC/MS Volatile Priority Pollutant Quantification Sheet
- FIGURE 16 GC/MS BN/AP Priority Pollutant Quantification Sheet
- FIGURE 17 GC/MS Volatiles Search Sheet
- FIGURE 18 GC/MS Extractables Search Sheet
- FIGURE 19 CLP Volatiles Hazardous Substance List
- FIGURE 20 HSL/CLP Extractables
- FIGURE 21 Precision Chart Total Chromium
- FIGURE 22 Water Quality Data Sheet
- FIGURE 23 Hazardous Waste Manifest

### APPENDICES

- I. Functional Description and Resumes of Key Personnel
- II. CLP Summary of Requirements
- III. CLP Reporting and Deliverables Requirements
- IV. Laboratory Audit Form
- V. Recra Environmental Health and Safety Manual



3/ST4

#### 1.0 INTRODUCTION

The purpose of this document is to present and describe the standard operational procedures which are employed at Recra Environmental, Inc. Laboratories are located at 111 Wales Avenue and 505 Fillmore Avenue in Tonawanda, New York and 10 Hazelwood Drive in Amherst, New York.

In order to insure that established policies are indeed carried out, this manual has been assembled to document exact procedures to be followed on a daily basis within the laboratory operation.

The contents of this manual are arranged in order of occurrence at the facilities once a sample has been received for analysis. A flow chart describing the sequence of procedures is presented in Figure 1.

The general categories to be addressed are as follows:

- Organizational Structure
- Sample Receipt
- Sample Preservation
- Sample Storage
- Analysis
- Quality Control
- Reporting
- Sample Disposal

The modern environmental laboratory of today is extremely information intensive in its operations. The simplest analytical test can require the involvement of several individuals and the gathering of significant amounts of information before the final product, an analytical report, can be issued. If any piece of needed information is unavailable for any

12....

-1-

reason, the quality of the final product can be jeopardized. In some cases, missing information may not allow a final product to be complete at all. In such cases, resampling and/or reanalysis may be required.

In order to assure that all required procedures are followed and that all needed information is gathered and maintained, these standard operating procedures (SOPs) have been created. They are intended to provide a firm structure within which laboratory operations are to be conducted in a consistent and defined manner.

### 2.0 ORGANIZATIONAL STRUCTURE

Recra Environmental, Inc., as a corporate entity has the singular responsibility of providing consulting and analytical services to our clients relative to the management of hazardous waste. Recra Environmental laboratories represents the avenue by which Recra Environmental, Inc. provides these analytical services. Figure 2 illustrates the position of Recra Environmental laboratories within the overall organizational structure of Recra Environmental, Inc. The management of Recra Environmental, Inc. rigidly adheres to accepted protocols and methodologies and is dedicated to a program that provides an analytical product of consistent quality. The organizational chart for Recra Environmental laboratories is shown in Figure 3.

#### 3.0 SAMPLE RECEIPT

A large number of details are required at the time of sample receipt to insure proper protocols are followed. The following paragraphs provide detail on each aspect of sample receipt.



3/ST4

-2-

3/ST4

## 3.1 Sample Controller

A full-time, permanent Sample Controller is assigned the responsibility of sample handling for the laboratory. It is the responsibility of the Sample Controller to receive all incoming samples at the laboratory. Once received, the Sample Controller insures that all samples are received in good condition (ie., unbroken, cooled, etc.). He insures that the associated paperwork, such as Chain of Custody sheets, are completed and is responsible for signing the Chain of Custody forms. The Sample Controller sees that the samples are subsampled if necessary and preserved properly for the specific parameters of interest. The Sample Controller is responsible for the final disposal of all samples once such disposal authorization is received from the Laboratory Operations Manager.

### 3.2 Chain of Custody

Recra's Chain of Custody procedures are based upon the NEIC policies and procedures (EPA-330/9-78-001-R).

Upon sample receipt the Sample Controller checks the Chain of Custody sheet (Figure 4) which is initiated by the sampler.

If samples are received after the full-time Sample Controller has finished his shift, either second or third shift personnel must inspect and take over possession of the samples and properly sign the Chain of Custody. The samples are then to be stored inside the inner cooler (chilled to  $4^{\circ}$ C).

Upon arriving the next business morning, the Sample Controller takes



-2000

-3-

possession of the samples and signs for them on the Chain of Custody.

The custody form is checked for the following items:

- 1. Project Name (optional)
- 2. Sampler's Signature
- 3. All samples are given a unique identification
- 4. All samples and bottles listed have been received
- 5. All appropriate signatures are in place
- 6. If all items are in order, controller signs that samples were received by laboratory
- 7. Date/time samples are recorded
- 8. Job # is filled in once job # is assigned

# 3.2.1 Additional Checks for EPA Samples

- 1. Presence or absence of airbills
- 2. Presence or absence of EPA traffic reports or SAS (Special Analytical Services) packing lists
- 3. Presence or absence of custody seals or shipping and/or sample containers and their condition
- 4. Presence or absence of sample tags
- 5. Sample tag ID numbers if not recorded on the Chain of Custody record(s) or packing list(s)
- 6. Condition of the shipping container
- 7. Condition of the sample bottles
- 8. Verification of agreement or non-agreement of information or receiving documents



-4-

- 3/ST4
- 9. Resolution of problems or discrepancies with the Sample Management Office
- 10. Ensure that discrepancies and their resolution with the Sample Management Office are documented

Once all checks have been made, the original Chain of Custody form is attached to the analytical services request form (Figure 5), which will be filed in the central job folder located at the Hazelwood Office Complex.

# 3.3 Analytical Services Request Form

Once samples are received by the Sample Controller, the Customer Service Representative is requested to complete an analytical services request form (ASRF), (Figure 5).

The analytical services request form provides necessary information such as tests to be performed, client address, telephone number, due date, safety precautions, etc.

The items to be completed are as follows:

- Project Number Each client is assigned a unique project number by the Accounting Department for billing purposes.
- 2. Initiator of Request Recra employee most familiar with this request.
- 3. Sales Contract Salesperson involved in project if any.

-5-

- 4. Date of Request Date when ASRF was filled out.
- 5. Requested Completion Date Self-explanatory.
- 6. Client Name and Address Self-explanatory.

- Carbon Copies Are carbon copies required and if so, who receives them.
- 8. Telephone Number Self-explanatory.
- 9. Chain of Custody Indicates whether samples were received under Chain of Custody.
- 10. Sample Date Sampling date is entered. If multiple samples have varying sample dates the box marked "See log for sample dates" is checked.
- 11. Sample I.D. If sample identifications are long or a large number of samples are involved, this box is checked to indicate that the full sample identifications can be found in the sample inventory log.
- 12. Preserved in Field The appropriate box is checked depending upon whether the samples were preserved in the field or in the laboratory.
- 13. Collected By self-explanatory.
- 14. Field Report This box is checked if a field report is to accompany the analytical report.
- 15. Sample Type Are samples soils, waters, etc. Each matrix type requires a separate ASRF to be filled out. For example, if soils and waters were sent in together, two (2) separate ASRF's would be filled out and separate job numbers would be assigned.
- 16. Expected Levels If expected contamination levels are known, one

(1) of the appropriate boxes is checked.

L = Low M = Medium H = High U = Unknown

-6-

17. Sample History - Any pertinent background on the samples is provided.



- 18. Anticipated Number of Samples if known The anticipated number of samples to come in for an entire project is listed.
- 19. Analytical Parameter Requested tests are listed under each appropriate category. For example:

TESTS	CATEGORY
Arsenic, Lead, Silver	Metals
BOD, Chloride, Sulfate	Water Quality (WQ)
Trihalomethanes, Pesticides	GC/LC
Volatiles - 624	GC/MS

- 20. Sample Identification The sample identifications are listed along with the actual number of samples for each area.
- 21. Volatile Samples The actual number of volatile samples are listed along with field blank information.
- 22. Specific Requirements Any special requirements such as those listed below are indicated in this space.
  - Special report content
  - Send report by special means
  - Special safety precautions all samples are considered potentially hazardous, however, if specific hazards are known they are indicated.
- 23. Job # Each ASRF is assigned a unique number such as 89-1000. The first two (2) digits indicate the year the samples were received. The next digits are assigned in chronological order as received. These numbers begin at one (1) each calendar year. For example, the first job of 1990 will be 90-001. Occasionally related samples will



-7-

be received over the course of several days or weeks. In these cases the job numbers also contain a letter designation (example: 89-1000A, 89-1000B, etc.) to indicate they are related samples for reporting purposes.

- 24. Job Date Date the job number was assigned.
- 25. Samples Received Date samples were received.
- 26. Quote # If known, quote number is listed to aid in pricing of job.A.S.D. indicates, analytical services department use only.
- 27. Customer Service Representative Signature Once the ASRF is checked for accuracy the Customer Service Representative signs the form to document the same.
- 28. Sample Controller Signature Once the ASRF is checked for accuracy the Sample Controller signs the form to document the same.

#### 3.4 Sample Inventory Log

The sample inventory log is filled out by the Sample Controller and is used to record information related to sample receipt. A blank page from the analytical sample inventory log is presented in Figure 6. The following items are entered or checked by the Sample Controller:

- 1. Date Received Self-explanatory.
- Project # Each client is assigned a unique project number by the Accounting Department for billing purposes.
- 3. Client Self-explanatory.
- 4. Job # Each ASRF is assigned a unique job number such as 89-1000.The first two (2) digits indicate the year the samples were



3/ST4

-8-

received. These numbers begin at one (1) each calendar year. For example, the first job of 1990 will be 90-001. Occasionally related samples will be received over the course of several days or weeks. In these cases the job numbers also contain a letter designation (example: 89-1000A, 89-1000B, etc.) to indicate they are related samples for reporting purposes.

- 5. Radiation Check All incoming samples are screened for radiation. This box is checked to indicate the screen has been performed.
- 6. Preservation The appropriate box is checked depending upon whether the samples were preserved in the field or will be preserved in the laboratory.
- 7. Delivery Indicates the method of delivery for the samples. "Field" indicates that Recra personnel delivered the samples.
- 8. Cool Indicates whether the samples were received in a cooled condition. Appropriate box is checked.
- 9. Sample I.D. The identification for each sample is listed in this location.
- 10. Sampling Date If provided, the date of sampling is recorded.
- 11. Bottle Description Comments This section records the number and type of bottles received for each sample. The abbreviations listed represent the following bottle types:



91.041

-9-

• نكث ŵ فأنتنا . in in রস্প 

FS = French Square (available only in glass)

P = Polyethylene

AG = Amber Glass

GW = Glass Wide-Mouth

VOA = Standard 40 ml Volatile Vial

The first blank is used for the number of bottles received of a particular type while the second blank indicates the size in ounces. For example, if four (4) sixteen (16) ounce french square bottles were received for a particular sample, the blanks would be filled in as follows:

```
(4 x 16 FS).
```

Any pertinent comments would also be listed under this heading. Any field blank received with samples is listed as a separate sample.

#### 3.5 Radiation Check

Due to the possible potential for low level radioactivity to be present in incoming samples, all samples are screened using a Geiger Counter at the time of sample receipt.

The radiation screen is performed by the Sample Controller and is documented in the sample inventory log (See Figure 6).

The procedure which is followed is presented below.

# 3.5.1 Radiation Screen

RECRA ENVIRONMENTAL, INC.

1. A Model E-120 Geiger Counter manufactured by the Eberline Instrument Company is used to conduct the radiation screen.

2. The speaker switch on the right hand side of the instrument is



placed in the "on" position.

- 3. The sensitivity switch is moved from the "off" position to the "BATT" position to check the battery. The needle must read in the Batt Ok range in order to proceed. If batteries are bad, see Lab Manager for replacements.
- 4. Once batteries have been determined to be OK, switch the range switch to the most sensitive position (X 0.1).
- 5. Remove the hand probe (sleeve closed) and take a background reading away from any samples. Average background reading is usually less than 0.04 mR/HR.
- 6. Hold the hand probe close to all sample containers and determine if readings appear higher than the background.
- 7. If readings are low (negative) (some counts are expected) process the samples and indicate the screen has been performed in the sample inventory log.
- 8. If readings are believed to be higher than background, the Sample Controller must notify his supervisor for appropriate action.
- 9. When screen is completed, be sure to turn both switches to the "off" position.

### 4.0 SAMPLE PRESERVATION

In order to generate reliable results many parameters must either be tested for immediately or preserved to prevent degradation. Whenever possible we encourage clients to preserve samples in the field; however, when this has not taken place the samples must be preserved upon receipt at the laboratory. The procedures which are employed are described in this section.



-11-

3/ST4

# 4.1 Sample Container Cleaning Procedure

All sample containers provided to clients or used by Recra field personnel are properly cleaned for the appropriate trace analysis. All sample bottles utilized for sample splitting are subjected to the same cleaning procedures listed below:

- All polyethylene bottles (for inorganic analysis) are:

- 1. soap washed
- 2. tap water rinsed
- 3. nitric acid washed 25% volume/volume nitric acid/deionized water
- 4. rinsed with copious quantities of deionized water (at least four (4) rinsings
- All glass bottles except volatile vials (for organic analysis) are:
- 1. soap washed
- 2. tap water rinsed
- 3. rinsed with acetone (pesticide grade)
- 4. rinsed with copious quantities of deionized water (at least six (6) rinsings and two (2) complete fillings of bottle to overflowing).

- All volatile vials are:

- 1. soap washed
- 2. rinsed with copious quantities of deionized water (at least six (6) rinsings)
- 3. thiosulfate added (two (2) drops of a 10% solution)
- 4. dried for one (1) hour in a 103 C° oven (without caps and septa)
- 5. cooled and capped with precleaned septa (soap washed and rinsed with deionized water, dried at 103°C for one (1) hour.)

RECRA ENVIRONMENTAL, INC.

-12-

#### 3/ST4

3/ST4

All sample containers are discarded after their initial use to eliminate the possibility of contaminating samples. Volatile field blanks are provided on a routine basis to check for sample contamination in the field and during sample storage. All volatile vials contain sodium thiosulfate for quenching of residual chlorine unless specified otherwise by the client. Clients are discouraged from providing their own sampling containers due to the possibility of sample contamination.

#### 4.2 Preservation Methods

Preservation of samples is performed according to recommendations presented in the EPA publication, <u>Methods for Chemical Analysis of Water and</u> Wastes, EPA-600/4-79-020, Revised March 1983 (Table 1).

For organic analyses, preservation is conducted according to the EPA publication, "Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act" 40 CFR Part 136, October 1984.

Table 1 also lists the sample volumes required for each parameter in order to obtain specified detection limits in the methods.

#### 4.3 Sample Filtration

Occasionally clients request that filtration of the sample be performed prior to conducting various analyses, such as soluble metals. The following procedure is utilized when incoming samples require such filtration.



-13-

# 4.3.1 Sample Filtration Procedure

Filtering flask and filtering funnel must be thoroughly cleaned before use utilizing the following steps:

A. Wash all items with soap, warm water and brush.

- B. Rinse items with large quantities of tap water.
- C. Rinse items with 25% Nitric Wash (Caution)
- D. Rinse items with copious quantities of deionized water.
- E. Assemble base of filtering apparatus to vacuum source, making sure that filter support is of plastic type and not metal.

<u>Note</u>: Samples high in organic material (oil or solvent) may require the use of the metal filter support since such samples can dissolve the plastic supports. If such a situation arises, the supervisor should be notified before filtration proceeds.

- F. Pre-wet the filter paper which is a 0.45 um membrane filter (Gelman GN-6) with a small amount of deionized water and center on filtration support. Turn on vacuum at this point.
- G. Place the filtration funnel over the filter making sure the filter remains centered.
- H. Pass approximately 200 ul of deionized water through filter and discard contents of collection flask.
- I. Pass a small amount of sample (25 ul minimum) through the filter and swirl to rinse collection flask and discard.

<u>Note</u>: Do not allow air to be drawn through filter for more than approximately thirty (30) seconds. Turn off vacuum pump to avoid drying of filter and collection of airborn dust.

en a

J. The vacuum at the pump should be set at least fifteen (15) in. of Hg vacuum with sample going through the filter. The pump cannot be accurately set with air being drawn through filter.

K. Thoroughly mix sample by shaking and place in filtration funnel. Turn on vacuum pump. Add small increments of sample so that you can anticipate when a filter is becoming clogged. Try to avoid large amounts of sample in funnel with a clogged filter situation. If filter becomes clogged, turn off vacuum, discard remaining sample in funnel, discard clogged filter being careful to avoid particulates getting on filter support. Place new filter on support using residual sample on support to wet filter and continue filtration procedure. Continue filtration until sufficient filtrate is collected for required tests.

<u>Note</u>: If filtration is very slow, various larger pore size prefilters may be employed before final 0.45 um filtration. See supervisors for specifics.

- L. Transfer collected filtrate into appropriate sample bottles which have been precleaned (see bottle cleaning section) and preserved as necessary (see preservation section).
- M. If more samples need filtration repeat procedure to step A.

## 4.4 Sample Splitting and Preservation Procedures

Occasionally samples are received which have not been preserved in the field for the various parameters which are to be determined. In such cases sample splitting (subsampling) and preservation is performed in the laboratory.



-15-

Since requested parameters vary with each sample or set of samples (job) each preservation scheme may be slightly different.

All solid or liquid samples requiring volatile analysis which have not been received in volatile vials are transferred to such vials upon sample receipt. Clients are discouraged from submitting volatile samples in containers other than VOA vials.

The preservation of all samples is accomplished according to the criteria presented in Table 1 taken from the E.P.A. publication, <u>Methods for</u> <u>Chemical Analysis of Water and Wastes</u>, EPA-600/4-79-020, Revised March 1983.

During all preservation operations the following procedures are followed:

- 1. All nitric acid used for preservation purposes is special metals grade acid, certified to be low in trace metal content.
- 2. In all cases where polyethylene or glass sample bottles are considered acceptable, polyethylene bottles are employed.
- 3. pH is checked by placing a drop of sample onto pH indicator paper. Indicator paper is never placed in the sample container due to the potential for sample contamination.
- 4. All cyanide samples are checked for residual chlorine and if positive, ascorbic acid is added according to the methodology.
- 5. All subsample bottles used are cleaned according to the same procedure employed for sample bottles (see Section 4.1).



-16-

- 6. Sample bottles are thoroughly mixed by shaking just before transfer to subsample bottles. Once the appropriate preservations are added the subsample bottle is labelled with the following information. A typical sample/subsample label is presented in Figure 7.
  - Job #

- Sample I.D.
- Parameters to be tested from the particular subsample bottles
- Preservation Code

The preservaton code is a four (4) digit code which indicates how the subsample has been processed. The coding system is as follows:

- The first digit indicates whether the subsample has been filtered. A zero (0) is entered for no filtration and a one (1') is entered if filtration was performed.
- 2. The second digit indicates whether the subsample requires refrigeration. A zero (0) if it doesn't, a one (1) if it does.
- The last two (2) digits indicate what reagents have been added if any.
  - 00 = none 01 = HNO₃ pH <2 02 = H₂SO₄ pH <2 03 = HCL pH <2 05 = NAOH pH >12 06 = 2ml zinc acetate/100 ml + NAOH >pH9

For example, a subsample for total metals analysis would be coded 0001, since it has not been filtered, does not require refrigeration and has nitric acid added.

-17-

# 5.0 SAMPLE AND EXTRACT STORAGE

#### 5.1 General Storage

Once sample splitting and preservation is completed as required, the Sample Controller transfers the samples to the following secure locations:

Cooler #1, known as the "interior cooler," is 4'X = 15'X = 9' and is maintained at  $4^{\circ}C + 2^{\circ}C$  with a separate cabinet for volatile samples located in the cooler.

Cooler #2, known as the "exterior cooler," is  $12'X \ 14'X \ 9'$  and is maintained at  $4^{\circ}C + 2^{\circ}C$ .

The walk-in coolers are maintained at  $4^{\circ}C \pm 2^{\circ}C$  and are checked daily and recorded. The coolers have special equipment to prevent a refrigerator malfunction.

Volatile samples are stored in the separate explosion-proof refrigerator located next to the Sample Custodian's office.

Metal samples are stored in a separate sample room. The metals sample room is at room temperature.

All other samples are stored in walk-in Cooler #1 or Cooler #2. All samples are stored based upon job number which is assigned when the samples are initially received. Older jobs are stored in Cooler #1 while more recent ones are stored in Cooler #2. Each cooler contains boxes which are labelled with the job numbers in that box. All job numbers are arranged in consecutive order. For example, samples from Job 89-500 will



-18-

be located after 89-499 and before 89-501.

### 5.2 EPA Contract Samples

Semi-volatile samples are given a job number and stored in a segregated section of Cooler #1.

Volatile samples are given a job number and stored in a segregated section of the volatile cabinet located in Cooler #1.

Metal samples are given a job number and stored in a segregated section of the metals sample room.

#### 5.3 Extract Samples

EPA extract samples are stored by job number in a segregated area of Refrigerator #1, which is maintained at  $4^{\circ}C + 2^{\circ}C$ .

All other extract samples are stored in Refrigerator #1 or #2 by job number.

Base Neutral Acid Phenolic extracts are transferred to the Hazelwood GC/MS laboratory via the following procedure:

- Samples to be transferred must be identified and properly labeled (based on NEIC policies and procedures: EPA33019-78-001-R).
- 2. Using the "Intra Company Chain of Custody" log located in the Sample Controller's room, the following items will be entered:
  - A) The job number(s)
  - B) Vial number(s)
  - C) Destination
  - D) Type of analysis



- E) Date and time
- F) Signature of transferee
- G) Signature of Sample Controller
- 3. The samples to be transferred will be placed into a lockable cooler on ice.
- 4. A copy of the corresponding preparation log will be prepared and transferred with the samples.
- 5. Upon arrival, a representative of the Receiving Department will sign the "Intra Company Chain of Custody" (ICOC) Log and place the samples into a dedicated refrigeration device for storage until analyses
- 6. The transferee will make a copy of the ICOC log for the Receiving Department and return the ICOC log to the Sample Controller.
- 7. All extracts are stored in a refrigerator maintained at  $4^{\circ}C+2^{\circ}C$ .

### 5.4 Security of Laboratory and Samples

The two (2) coolers, the VOA regrigerator, and the Metals Sample Room are locked at all times. The Sample Controller has the keys to each of the sample storage areas. The shift supervisors also have a key. A log book is maintained for each storage area and is located on the door front of, or immediately adjacent to, the storage area.

The building is secured and the security system is monitored by Wells Fargo Corporation.

The confidentiality of our client base and the necessity of sample integrity dictates that all visotors sign in and be escorted when viewing any area of Recra Environmental, Inc.

- Visitor(s) will enter their name(s), address, date (mo./day/yr.), time and company (in remarks column) upon entry.
- 2. The Recra employee who is conducting the tour of the facility will:
  - A) Initial the visitor's entry in the remarks column.
  - B) Issue safety glasses to visitors which require them.
  - C) Insure that visitors are aware of security requirements and remain with a Recra employee at all times during their tour.
  - D) Collect all safety glasses before leaving the facility.

## 6.0 ANALYTICAL METHODOLOGY

Recra Environmental, Inc. laboratories employs a large number of methodologies due to the wide variety of sample matrices experienced in environmental and hazardous waste analysis. Tables 2 and 3 list the common parameters performed on aqueous and solid samples, respectively, along with references and Recra method numbers. Environmental Protection Agency methodology is employed whenever applicable to the specific matrix These tables list the official regulatory method number (i.e., sample. of the E.P.A.) and the appropriate reference publication. A separate Recra method number is assigned to each of the methods for internal Any pertinent comments or deviations from the referenced purpose. methodologies listed. The analytical methods specific to the CLP program can be found in Appendix II.

#### 7.0 QUALITY ASSURANCE AND QUALITY CONTROL

This section deals with general QA/QC procedures. For specific procedures pertaining to CLP samples, see Appendix III.

-21-



3/ST4

# 7.1 Logbooks and Recordkeeping

# 7.1.1 Separations Laboratory Data

The sample processing for extractable organic analysis begins in the separations laboratory where a bound notebook is maintained for the purpose of recording all pertinent information regarding the extraction and clean-up (if required) for the samples. This logbook (see Figure #8) contains the following data:

- o analyst
- o extraction date
- o job #
- o sample I.D.
- o extracted volume or weight of sample
- o vial # (for extracts produced)
- o analysis type (BN, AP, Pest.)
- o glassware set

In addition:

- o initial and adjusted pH
- o emulsion level
- o method #
- o concentration date
- o clean-up date

The above information is required for either GC or GC/MS analyses. The addition of "glassware set" has proved most useful in Recra's experience. Within a laboratory such as Recra's, which is involved in the analysis of waste samples or contaminated aqueous samples, the glassware information

RECRA ENVIRONMENTAL, INC.

allows for identification of one (1) specific area in which potential quality control problems may be found.

## 7.1.2 Gas Chromatography Data

After samples have been prepared for analysis by the separations group, the GC Department uses a series of logs and reporting forms to maintain the necessary data. The first is the bound injection log which contains the following: (see Figure #9)

- o analyst
- o injection date
- o job #
- o sample I.D./vial #
- o instrument run number (auto #)
- o analysis (method #)
- o injection port

On the day that specific analyses are performed, a five (5) point standard curve is generated via both computer assisted raw data plotting and regression analyses, using the areas as integrated by the gas chromatograph. The integrations and the standard curves are reviewed by the analyst for consistency and accuracy, and if found acceptable (and approved by the supervisor) the sample concentrations are calculated and entered on the forms presented in Figure 10 for water, and Figure 11 for sediment. Special forms specific to CLP samples are used to record raw GC data. See Figure 12 for water and Figure 13 for soils. These forms will also contain information relative to field blanks, method blanks and solvent blanks associated with this analysis. Information/data required



for these calculations are acquired from both the separations and the injection logbooks. All chromatographs, standards information, QA/QC results, copies of separations and injection logbook pages and other project specific information are permanently maintained by job # and client in separate files.

#### 7.1.3 GC/MS Data

After samples have been prepared for analysis by the separations group the GC/MS Department uses a series of logs and reporting forms to maintain the necessary data.

The GC/MS Department records their initial sample information in a bound injection logbook (see Figure #14) which is maintained for each instrument. The log contains the following information:

- o date
- o time
- o analyst
- o file reference number FRN
- o cartridge reference number CRN
- o sample I.D.
- o vial #
- o job #
- o injection volume
- o extraction volume
- o final volume
- o G.C. prog.
- o EM voltage



-24-

o threshold o A/D (ratio of scan rate/mass range) o ul of internal standard Repeat for IS (Internal Standard) #2, 3 & 4 o IS #1 retention time o IS #1 area o IS #1 % recovery

- o sample search SS
- o hard copy HC

Once the GC/MS has met EPA tuning requirements then a three (3) point calibration curve is generated, except for CLP where a five (5) point calibration curve is required. The data is recorded on log sheets such as Figures #15 and #16. Samples are then injected into the GC/MS instruments and this data is also recorded on the same log sheets. All the compounds detected are recorded on GC/MS search sheets (see Figures #17 and #18) which are used to determine the comparisons to known spectra for positive qualitative identification. Special search sheets are utilized for CLP samples (see Figure #19 and #20).

These forms will also contain information relative to blanks associated with the analysis. Information and data required for the calculations are acquired from both the GC/MS data system and the injection logbooks. All spectra, chromatograms, standards information, QA/QC results and injection log pages and other project specific information are permanently maintained by job # and client in separate files.

-25-

# 7.2 Standard Reference Materials (SRM's)

Standard Reference Materials (SRM's) are used for all applicable analysis. Sources of SRM's include the U.S. Environmental Protection Agency, commercially available material from EPA and/or laboratory produced solutions. SRM's, when available and appropriate, are processed and analyzed on a frequency of one (1) per set of samples, regardless of the number of samples in a set.

#### 7.2.1 Standard Solutions

Stock and working standard solutions and separate spiking solutions are prepared from materials supplied by the U.S. EPA repository or purchased from commercially available sources. Standard curves are generated and/or verified daily for all organic procedures as opposed to simply verifying "working standard curve". Standard curves are produced once per working shift/day and/or are verified by re-analysis of mid-range standards at least every tenth sample. Standard curves are also reviewed for consistency to help identify problems that could be associated with the applicable instruments and/or the standard solutions.

# 7.3 Laboratory Reagent Quality

RECRA ENVIRONMENTAL, INC.

The quality of reagents used in conducting analytical determinations is continuously monitored by the laboratory staff.

All standards and reagents are prepared with chemicals that meet the American Chemical Society "Analytical Reagent Grade" standards. Special reagents are utilized for procedures which require purity beyond reagent grade. For example, nitric acid which is specially prepared to be low in

-26-

trace metals is utilized as a preservation reagent and for metals digestion.

All reagent solutions are labelled as to their contents, date prepared, and the analyst's initials. In addition to analyzing method blanks to check for reagent contamination, the reagents are continuously observed for signs of degradation, such as precipitation, change in color, or mold formation. Unstable reagents, such as various titrants, are standardized each day they are used.

### 7.4 Laboratory Water

The laboratory water used for making reagents and rinsing of glassware is constantly monitored by an in-line meter to meet and exceed the electrical conductivity requirements of TYPE I water described in the <u>EPA</u> Quality Control Handbook, March 1979.

#### 7.5 Solvents

All laboratory solvents utilized for sample extractions are pesticide grade. Solvents are checked for purity on a continuing basis for compounds which may interfere with the specific analysis being performed.

## 7.6 Gases

Gases used for chromatographic procedures are high purity or ultra high purity and are equipped with in-line scrubbers to remove trace constituents. These scrubbers take the form of oxygen traps, molecular sieves, and moisture traps. Each is useful for specific applications in gas chromatography. Various combinations of the above scrubbers are employed depending on the particular instrument requirements.



## 7.7 Laboratory Glassware

3/ST4

Whenever possible, disposable glassware is employed to reduce the possibility of cross-contamination of samples. Glassware used for metals analyses is cleaned according to the following procedure:

- 1. Glassware is rinsed with a 1:1 nitric acid-water mixture
- 2. Thorough rinsing with tap water
- 3. Final rinsing is accomplished with copious quantities of deionized water

Organic glassware is cleaned according to the following procedure:

- 1. Rinsed with last solvent used
- 2. Rinsed with reagent grade acetone
- 3. Tap water rinsed
- 4. Detergent washed
- 5. Tap water rinsed
- 6. Nitric acid rinsed (25% v/v)
- 7. Deionized water rinsed
- 8. Rinsed with reagent grade acetone
- 9. Rinsed with pesticide grade hexane

# 7.8 Specific Quality Control Procedures

The Quality Control Program in effect at Recra is based upon recommendations contained in the <u>EPA Handbook for Analytical Quality Control in</u> Water and Wastewater Laboratories.

## 7.8.1 Duplicates

A minimum of ten (10) percent of all samples analyzed by the laboratory are analyzed in duplicate. A duplicate analysis is performed for every set regardless of the number of samples in each set. The information from duplicate analyses is used to indicate the precision or reproducibility of the sample data generated and is recorded on a precision quality control chart (Figure 21). The precision chart presented is typical charts used to monitor laboratory precision and is developed based upon information presented in Section 6 of the <u>EPA Handbook of</u> <u>Analytical Quality Control in Water and Wastewater Laboratories</u>, (March 1979), 600/5-79-019. All precision charts are approved by the Corporate Quality Assurance Officer and are reviewed at least semi-annually.

For informational purposes, a detailed description of how the chart was developed follows. In order for this type of chart to be effective, a separate precision chart must be developed for various concentration levels. The chart presented in Figure 21 was developed for Total Chromium determinations in the range of 0-0.5 mg/l. A series of twenty-five (25) replicate Total Chromium determinations were employed to develop the chart. The range (R) represents the difference between two (2) replicate determinations.

The mean R value that was determined utilizing the data set was 0.006 (R = 0.006).

RECRA ENVIRONMENTAL, INC.

-29-

The Upper Control Limit (UCL) was calculated as follows:

UCL =  $D_4R$ 

3/ST4

RECRA ENVIRONMENTAL, INC.

= 3.27 (0.006)

= 0.0196

Where  $D_4$  = Shrewhart factor for ranges based upon duplicate analyses.

R = The mean range of multiple replicate determinations.

The critical R value  $R_C$  is the upper control limit rounded off to an operationally feasible number. Therefore, the  $R_C = 0.020$ .

This  $R_C$  or critical R value is the maximum allowable difference between replicate determinations on a single sample in the 0-0.5 mg/l concentration range. The R value is plotted every day analyses are performed and the points are reviewed for trends. If an R value exceeds the  $R_C$  value, the data is invalid and the cause for such performance is investigated and corrected before analyses are resumed.

# 7.8.2 Known Constituent Addition (Spikes)

A minimum of ten (10) percent of all samples analyzed by the laboratory are spiked with known amounts of the compounds being analyzed. The amount of the compound recovered from the sample compared to the amount added is expressed as percent recovery. The percent recovery of an analyte is an indication of the accuracy of an analysis. A spiked sample is determined on all sets of greater than five (5) samples.

Percent recovery is calculated as follows:

% Recovery = <u>Spiked Sample - Background</u> x 100% Known Value of Spike The standard deviation of the recoveries was calculated utilizing the formula presented in Section 7.8.4 entitled, "Statistical Reporting". The upper and lower warning limits are set at plus and minus two (2) standard deviations. The upper and lower control limits are set at plus and minus three (3) standard deviations.

The acceptance criteria for this chart as as follows:

The quality assurance value indicates acceptable analysis values when it falls between the lower warning limit (LWL) and the upper warning limit (UWL).

يفعن

If the quality control value falls between the control limit and warning limit (UCL and UWL or LCL and LWL), the analysis should be scrutinized as possibly out of control. The sample results are still acceptable at this point.

If the quality control value fails outside the control limits (UCL or LCL), this indicates an out-of-control situation. The analysis must be stopped until the reason for the problem has been identified and resolved. After it has been corrected, the problem must be documented in the procedure book, with its solution noted. As will be noted in later sections of this document, all corrective action activities are completed in concert with the Laboratory Operations Manager and the Corporate Quality Assurance Officer.

## 7.8.3 Blanks

An analyst must always be aware of the potential problems associated with contamination of glassware, reagents, solvents, etc. which are especially



-31-

critical during trace level analyses. The method used to monitor possible contamination problems is the analysis of blanks. There are generally three (3) types of blanks that are routinely analyzed. The first is the method blank which consists of analyzing deionized water in exactly the same fashion as a sample. This type of blank points out problems, such as contaminated glassware and reagents. A method blank is performed with each set of analyses in the laboratory regardless of the number of samples in the set.

A second type of blank is a reagent/solvent blank which is utilized to check the purity of the new batches or lots of reagents or solvents. This type of blank is performed as necessary.

A third blank is a field/trip blank. This provides information on possible contamination of samples in the field during collection or transport to or while in storage at the laboratory. Trip blanks are generally used for volatile organics analyses only.

# 7.8.4 Statistical Reporting

When quality control information is generated on a particular sample or set of samples, this information is reported in the final data report.

This precision is a result of replicate determination and is expressed as the percent coefficient of variation. The percent coefficient of variation is determined by the formula:

% C of V = 100S

X



-32-

Where S is the standard deviation of the replicate determinations and X is the mean of the obtained values.

The mean (X) and standard deviation (S) are calculated according to the formulas:

Mean: 
$$\overline{X} = \frac{\sum_{i=1}^{n} x_i}{\sum_{i=1}^{n} x_i}$$

S

Standard Deviation:

where  $X_i$  is a result of one (1) analysis (the i th) and N is the total number of replicate analyses.

 $(x_i - \overline{x})^2$ 

The accuracy data is generated from spiking of samples with selected compounds and is expressed as a percent recovery. The percent recovery is calculated by the formula:

% Recovery = 100 x <u>Observed-Background</u> Spike

Where observed equals the concentration of the sample after spiking, background is the concentration before spiking, and spike is the concentration of known material added to the sample.



# 7.9 Performance and System Audits

By NEIC definition, an audit is a systematic check to determine the quality of operation of some function or activity. Audits are further defined as being of two (2) basic types; performance and system audits.

A performance audit is one (1) in which quantitative or qualitative data are independently obtained for comparison with routinely obtained data from a measurement system. Performance audits are completed at Recra Environmental, Inc. via a number of mechanisms including the New York State Department of Health Laboratory Certification Program as well as the analysis of EPA check samples and EPA's quality assurance check sample program. The New York State Department of Health (NYSDOH) sample's are analyzed for all drinking water parameters on a semi-annual basis. Recra Environmental, Inc. is currently certified by the New York State Department of Health for the determination of metals and metalloids in potable water, the wet chemical examination of potable water, the determination of herbicides and pesticides in potable water and the determination of volatile organic halogens in potable water. In addition, the commercially available check samples and/or the EPA's check samples are processed through the laboratory on a frequency of at least monthly per department. The routine use of all available applicable SRM's also provides for a more or less continuous performance audit.

Systems audits, as opposed to performance audits, are strictly qualitative and consist of an on-site review of a laboratory's quality assurance system and physical facilities for calibration and measurement. System audits are routinely performed (approximately once per year) by the New York State Department of Conservation (NYSDEC), DOH and EPA as an

RECRA ENVIRONMENTAL, INC.

-34-

element of our participation in their certification programs. The New York State Department of Environmental Conservation has also audited our facility on numerous occasions relative to our analytical services contracts and our New York State Superfund contract. The New York State Department of Environmental Conservation personnel are also anticipated as being the initiators of additional audits as a part of their management of the Superfund program. Additionally, detailed internal audits are performed on a semi-annual basis by the Corporate Quality Assurance Officer. On an annual basis, or as required by contracts held by Recra, system audits of subcontractor laboratories are performed by the Corporate Quality Assurance Officer in order to assure quality data from the subcontractors whose data is ultimately reported with results obtained by the Recra laboratories. Health and Safety audits are also performed by the Corporation's Internal Environmental Health and Safety Officer. A copy of the Recra Environmental, Inc. audit form is attached as Appendix IV.

Internal, as well as subcontractor audit results, are maintained in a permanent file. The findings of these audits are submitted to the Laboratory Director or the subcontractor laboratory. Necessary corrective action based upon these audits are responded to in writing and are also maintained in a permanent file.

#### 8.0 SAMPLE TRACKING AND REPORTING

The sample tracking process begins once a sample or set of samples is received and an analytical service request form (ASRF) is completed by the Sample Controller.



Once completed, the original ASRF is transferred to the Sample Controller and the samples are logged into the sample inventory log. Once complete, the original ASRF is stapled to any Chain of Custody forms or paperwork that accompanied the samples. At this point several copies of the original ASRF are made and distributed to the following areas as appropriate:

- Laboratory Operations Manager
- Customer Service Representative
- Inorganic Manager
- Organic Manager

3/ST4

- GC/MS Supervisor
- GC Supervisor
- Metals Supervisor
- Laboratory Director
- Analytical Program Manager
- Waste Laboratory Supervisor
- Sample Controller
- Accounting
- Project Manager(s)
- Field Services Manager
- Central File

The original ASRF, sign-off form, and accompanying paperwork is placed in the job folder located in the Laboratory Operations Manager's Office. Regularly scheduled meetings are held between the Laboratory Operation's Manager, Area Supervisors, Analytical Program Manager, and the Customer Service Representative. The Laboratory Operations Manager sets priorities and defines completion schedules to the supervisors when conflicts occur while the Customer Service Representative provides any input and special requests from the client. Individual analysts review and initial the results of their work and submit these to the Department Supervisor/ Manager for review. Te individual department managers provide raw data to the Analytical Project Managers for calculation and subsequent review. The completion dates for tasks are entered into the laboratory computer on a daily basis. The computer allows the Laboratory Operations Manager and the Analytical Program Manager to monitor the progress of jobs in relation to the projected completion date.

As the work progresses in the laboratory, data is reviewed for quality by the analyst and/or supervisor and entered onto a data sheet. An example of such a data sheet utilized in the water quality area is presented in Figure 22.

The data sheet lists the following information:

- 1. Job #
- 2. Analysts Initials
- 3. Parameter Tested
- 4. Date Analysis Performed
- 5. Sample Data
- 6. Replicate Data/Parameter
- 7. Spike Data/Parameter
- 8. Blank Data/Parameter
- 9. SRM (Standard Reference Material Date/Parameter)



168

1393

ên**ş** 

ي. توادير Once all the raw data has been generated and approved by the appropriate Supervisor and Department Manager, the raw data is forwarded to the Report Writer/Analytical Project Manager. The Report Writer formats all required data and information into the report format and submits the report (or a portion of it) for typing.

Where necessary, the typed reports from the individual laboratory departments are collated into a final report. This collation will also include any raw data, Chain of Custody documents, field reports, and any appendices. The Analytical Program Managers, in concert with the Department Managers, are responsible for the final review of all analytical data and resolution of any and all suspect data with the Laboratory Operations Manager, the Laboratory Director, and the Corporate Quality Assurance Officer.

The final, typed report is approved by the Project Manager and submitted to the Laboratory Operations Manager and Laboratory Director for final approval and signature. Accompanying the final report is the job folder which contains all pertinent information regarding the job; i.e., chain of custody, raw data, etc. Final approval of the report results in the Laboratory Director's signature on the cover letter of the report. The job folder-with all pertinent information, signatures, and a copy of the final report is filed and maintained in permanent storage.

In order to facilitate communication with clients, the job number of the report is listed at the lower right hand corner of the cover letter. In addition, each data sheet has the job number listed in the lower left hand corner. If a client has a question concerning a particular report, providing the job number allows us to locate the proper report in a



matter of minutes.

## 9.0 ANALYTICAL/CLP DOCUMENT CONTROL

Essential to our business and clients is a systematic approach to our handling of the large amount of data we generate. The term "document control," as it applies to analytical and CLP data generated by Recra Environmental, Inc., refers to the system established to allow for rapid information recovery, access, confidentiality, security, data maintenance and storage of analytical and CLP data.

All analytical/CLP project files are maintained by the Document Control Clerk (DCC). All finalized documents are kept in the analytical/CLP project files which are located in locked, fireproof filing cabinets. Documents contained in the project files include, but are not limited to the following:

- o Finalized analytical and/or CLP report;
- o Chain-of-Custody records;
- o Analytical Services Request Form (ASRF);
- o Copies of associated cover letters and memoranda relative to the specific project and/or job; and
- o Copies of any Change Orders or other specific instructions relayed by the client concerning change of scope.

All analytical/CLP project files are legibly identified with the following information:



3/ST4

3/ST4

- 1941

13:9

o Client name;

o Project number; and

o Job number.

Analytical/CLP project files are purged on an annual basis and maintained in permanent storage by the DCC.

The DCC assures that analytical/CLP filing cabinets are locked at all times. Keys are maintained in a locked key box for which only two (2) keys exist. One (1) key is kept by the DCC and the other is maintained by the Manager of New York Testing.

At no time shall unauthorized individuals have access to the analytical/CLP project files. All files will be removed only by the DCC or an appropriate designate.

Should an employee require access to an analytical/CLP project file, the following steps are required:

- o Complete a Document Request Form (see Figure 1);
- o Indicate the client name, project number (if known) and job number (if known);
- Indicate requester's name and approximate amount of time file will be checked out; and
- o Give Document Request Form to DCC for file retrieval.
- NOTE: Once received, the individual checking out the file is responsible for the care and custody of the file until same is returned to the DCC.



Specific duties of the DCC include the following:

- Assures that all analytical/CLP project files are correctly labelled with appropriate information such as client name, project number and job number.
- o Files all analytical/CLP project files alphabetically by client name. Within the client file, specific projects and jobs are filed chronologically by date.
- o Responsible for assuring that project files are locked at all times.
- o Responsible for signing out files to authorized individuals and refiling them upon their return.
- o Maintains a Document Control Log (Attachment 3) of all outstanding files indicating the name of the individual signing out the file, date checked out and anticipated return date. The DCC also assures that checked out files are returned in a timely fashion by reviewing the log periodically and contacting individuals to determine the status of the checked out file.
- o Upon removing the requested file, the DCC is responsible for placing an "out" card (Attachment 4) in the project file indicating that a file is missing. The DCC also records the file name, requester's name and date on the "out" card prior to filing.

### 10.0 LABORATORY SAFETY

The Laboratory Safety Program in effect at Recra Environmental, Inc. laboratories is presented in detail in another document referred to as the Recra Environmental Health and Safety Manual. This section will describe the main points of the program; however, the safety manual should be consulted for those requiring greater detail. The main points

3/ST4

RECRA ENVIRONMENTAL, INC.

-41-

of the program are as follows:

- Medical Surveillance Program All employees receive a yearly physical which is quite extensive. Employees in high potential exposure situations such as the field crew, are examined every six (6) months. All employees are provided a pre-employment and post-employment medical exam.
- Safety meetings are held on a monthly basis. The purpose of these meetings is to provide safety awareness and training to all employees on a regular basis.
- 3. The laboratory is equipped with a professionally operated burglar and fire alarm system.
- 4. Fire extinguishers are located throughout the laboratories and their proper operation is monitored on a monthly basis.
- 5. Eyewashes and overhead safety showers are located in strategic areas and monitored monthly for proper performance.
- 6. Respiratory protection is provided throughout the laboratory.
- 7. One (1) self contained breathing unit is available for emergency rescue situations and its proper operation is monitored on a monthly basis.
- 8. Two (2) first aid kits are provided at strategic locations and supplies are monitored on a monthly basis.
- 9. Spill cleanup kits are available in the event of an emergency spill in the laboratory. Contents are verified each month.
- 10. Chipped or broken glassware is not to be used in the laboratory. A program of quick repair and/or replacement prevents the use of unsafe glassware.

RECRA ENVIRONMENTAL, INC.

-42-

3/ST4

14

- 11. Fume hood performance is monitored on a monthly basis and documented.
- 12. All incoming samples are screened for radioactivity upon receipt.
- 13. A make-up air system is operational which provides 6,000 ft³ of air per minute to the building. This provides a theoretical change of air in the building every ten minutes.
- 14. All laboratory waste is segregated and placed into special waste containers in the laboratory. Every day these containers are emptied into the appropriate waste drums for eventual disposal at an approved treatment/disposal facility.
- 15. Safety glasses are mandatory in all laboratories.
- 16. Lab coats and disposable gloves are provided for all laboratory personnel.
- 17. Acids and solvents are to be transported only in safety containers in the laboratory.
- 18. All compressed gas cylinders must be secured when in use and carts must be used during transport.

The <u>Recra</u> <u>Environmental</u> <u>Health</u> and <u>Safety</u> <u>Manual</u> should be consulted for more detailed information (see Appendix V).

# 11.0 DESCRIPTION OF LABORATORY SPACE ALLOCATED TO CLP ANALYSIS

# 11.1 Sample Receipt and Storage

The CLP samples are received and logged in, in a 9' X 10' room with a hood, table, and storage area. It is located on the west side of the Wales Avenue building. The 4° C cooler is located across the hall, six (6) feet away.



3/ST4

100

......

199

11.2 Organic Preparation Laboratory #4

The CLP samples are prepared in a  $10.5' \times 25'$  lab located on the north side of the Wales Avenue building.

### 11.3 GC Laboratory #3

The gas chromatographs dedicated to CLP analysis are located in a  $16^{\circ}$  X 19' GC lab located near the center of the Wales Avenue building north of GC/MS Lab #5.

### 11.4 GC/MS VOA Laboratory #5

The GC/MS's dedicated to VOA CLP analysis are located in the  $11' \times 31'$  GC/MS Lab located near the southeast corner of the Wales Avenue building.

# 11.5 GC/MS BNA Laboratory

The GC/MS's dedicated to BNA CLP analysis are located in the  $35' \times 24'$  GC/MS Lab located in the rear of the Hazelwood facility.

### 12.0 LABORATORY EQUIPMENT LIST

Descriptions of the Laboratory Equipment and Analytical Instrumentation presently being utilized at Recra Environmental, Inc. Laboratories are listed in Table 5. 3/ST4

### 13.0 PREVENTIVE MAINTENANCE OF ANALYTICAL INSTRUMENTS

Preventive maintenance is performed contractually on the following laboratory equipment:

#### Mettler Analytical Balances

These balances are under service agreements with the manufacturer to provide emergency service, preventive maintenance and calibration on an annual basis.

# Hewlett Packard Gas Chromatograph/Mass Spectrometers

These systems are under service agreements with Hewlett Packard Corporation which covers all repair parts, extended parts, labor and travel, and two (2) annual preventive maintenance service visits. These visits involve cleaning, adjusting, inspecting, and testing procedures designed to reduce product failure and/or extend useful product life. Between visits, routine operator maintenance and cleaning is performed according to manufacturer's specifications.

# Finnigan Gas Chromatograph/Mass Spectrometers

These systems are under a service agreement with Finnigan Corporation which covers all repair parts, extended parts, labor and travel, and three (3) preventive maintenance service visits per year. These visits involve cleaning, adjusting, inspecting, and testing procedures designed to reduce product failure and/or extend useful product life. Between visits, routine operator maintenance and cleaning is performed according to manufacturer's specifications.

-45-

### Perkin-Elmer Atomic Absorption Spectrophotometers

The twelve (12) month emergency maintenance plan with Perkin-Elmer covering this system includes replacement parts required during emergency maintenance and all emergency maintenance visits. Routine operator maintenance and cleaning is performed by an experienced analyst or chemist according to manufacturer's specifications.

#### Hewlett Packard Gas Chromatographs

The twelve (12) month emergency maintenance plan with Hewlett Packard covering these systems includes replacement parts required during emergency maintenance and all emergency maintenance visits. Routine operator maintenance and cleaning is performed by an experienced analyst or chemist according to manufacturer's specifications.

### 14.0 QA/QC DATA REVIEW

3/ST4

### 14.1 Initial Review (analyst, supervisor)

As has been previously described, the initial review of sample and QA/QC data is performed by the analysts and their immediate supervisor.

This initial review process begins with the standards; their response factors (either absorbance or area units), retention times (for GC, GC/MS), curve linearity, and both short and long-term consistency of the response factors. These considerations allow for the assessment of instrumental conditions as well as the integrity of the actual stock and/or working standard solutions. For the GC and/or GC/MS data, the next step in the assessment process is to review the retention time match between standard and sample chromatographs as well as the comparability of sample and standard/library mass spectra for GC/MS data. This step of

Sec

-46-

the process can also employ the review of peak geometry and peak integration techniques. Finally, within this initial review, the analyst will determine whether or not possible sample and/or background interference as a function of method, field and/or solvent blanks, exists within the analyses reported. Apparent deviations from established controls and/or warning limits are at least initially defined during this review phase.

# 14.2 Secondary Review (Department Manager, Analytical Project Manager)

The Department Manager and Analytical Project Manager further review the data relative to the above variables as required and continue the assessment process by reviewing the calculated values, duplicate results (relative to % C of V and the established control charts), percent relative and/or absolute recoveries (based upon established limits and control charts), SRM results when available relative to the actual recovered concentrations and the established control charts. It is during this process that a final assessment of completeness is also made. Completeness, by definition, is a measure of the amount of valid data obtained from a measurement system compared to the amount that would be expected to be obtained under correct normal conditions. As an example, the determination of volatile priority pollutants involves the addition of three (3) surrogate compounds to every sample undergoing analysis. The analysis would be considered valid in the completeness category if two (2) of the three (3) surrogates met the acceptance criteria.



3/ST4

-47 -

: 225

-wide

10.00

The Department Manager and Analytical Project Manager then decide as to the overall quality of the data. If necessary, because of the circumstances surrounding the particular analysis of a given sample or set of samples, the Laboratory Operations Manager, Laboratory Director, and Corporate Quality Assurance Officer will also participate in this decision process.

### 14.3 Final QA/QC Review and Evaluation/Decision Process (Laboratory Director, Laboratory Operations Manager and/or the Corporate Quality Assurance Officer)

The final step of evaluation and review includes examination of all QA/QC data and associated analytical results by the Laboratory Operations Manager and the Laboratory Director. The Corporate Quality Assurance Officer is also included in the review process, when necessary, to resolve QA/QC questions and issues. Routine QA/QC performance is evaluated by review of QA/QC exception reports as described in Section 13.5 of this document.

Assuming that the completeness test, where appropriate, is successful, a number of data quality scenarios can present themselves. These scenarios and Recra's decision processes relative to these situations are outlined below.

a.) If precision, accuracy and SRM (if available) data are all within the established warning limits; proceed with final issuance of data report including all QA/QC results.



b.) If precision, accuracy and SRM (if available) are within control limits but one (1) or all of these parameters exceed the warning limits, the source(s) of bias/error needs to be evaluated, but proceed with final issuance of data report including all QA/QC results, and the results of the evaluation of bias/error as part of the report.

Source of error/bias may be found in the following:

- o calculation errors
- o transcription errors
- o sample matrix (i.e., high suspended solids in water sample; oily sediment, etc.)
- o sample homogenity
- o level of contaminant measured (validity of the precision measurement is a factor of concentration)
- o analyst error (warning/control limits exceeded for one (1)
  analyst more frequently than another)
- o appropriateness of method(s) based upon sample type
  (wastewater as opposed to drinking water)
- c.) If precision, accuracy and/or SRM (if available) are out of control, one (1) of the following approaches to the problem will be used:



- 1.) SRM out-of-control whether or not precision or accuracy are controlled; method based errors are suggested and all data is suspect. If SRM is verified as out of control (i.e., standards are checked, etc.), all samples should be re-analyzed or data reported as out of control if no additional sample is available or cannot be obtained.
- 2.) SRM (if available) is in control but absolute recovery is out of control; method based error is suspected. If standards and spiking solutions are verified to be accurate as independent solutions, all data is suspect until reprocessing and reanalysis of absolute recovery sample is completed to prove only random error. If systematic error (constant out of control absolute recovery) is found, all samples require re-analysis after corrective action has been taken.
- 3.) SRM (if available), absolute recovery and precision are in control but relative recovery is out of control; matrix problem likely. Proceed to issue data report with appropriate qualifications as to possible matrix effects.
- 4.) SRM (if available), absolute recovery and relative recovery are in control but precision is out of control; matrix problem likely in the form of sample heterogenity. If sample appears homogeneous, re-analyze; if data is still out of control, issue data report with qualifications. If, on the other hand, data are in control, analyst error is suspected and all data in this sample set must be re-analyzed.



3/ST4

-50-

5.) SRM and absolute recovery are under control but both relative recovery and precision are out of control; matrix effects, sample homogenity problems and/or analyst error are suspected. If after re-analysis of a well-mixed homogeneous sample by different analyst(s) is still out of control, issue the data report and state data is out of control based upon sample matrix effects. If after re-analysis relative recovery is within control limits but precision is still uncontrolled, issue the data report and advise of potential errors relative to heterogenity of sample. If, in the last possible case, reanalysis indicates adequate precision but uncontrolled relative recovery, issue the final data report and again advise of possible sample matrix effects on this data.

### 14.4 Corrective Action

If a particular analysis is deemed "out of control" corrective action must be taken to insure continued data quality.

Precision limits are defined by a percent coefficient of variation which, when exceeded, indicates unacceptable analytical performance. Accuracy limits are expressed in percent recovery of spiked material. A recovery below or above the set criteria indicates a need for corrective action.

The following presents a number of corrective actions which may be employed, depending upon the particular situations.

a.) Calculations are rechecked.

b.) Sample handling; i.e., digestion, concentration, and/or extraction



3/ST4

3/ST4

- 55

logs are checked for discrepancies in sample handling.

- c.) Analyte concentration is reviewed to determine if it has severely influenced the reliability of the precision or recovery calculations.
- d.) Instrument and method peformance is verified by inspecting data on standard reference materials processed in the same data set.
- e.) Quality control data on the other samples in the data set, including surrogate recovery, internal standards, etc., are reviewed to determine if the problem is method related or sample related.
- f.) If original sample is available, the sample is assessed for homogenity.
- g.) If sample is unavailable and no explanation for poor quality control results can be determined, the client is notified and additional sample is obtained. If additional sample is unavailable, the results are issued with a qualification as to their accuracy.

The coordinator of each analytical section is responsible for initiating corrective action when necessary. The Laboratory Operation's Manager, Ms. D.J. Travis, is responsible for approving the appropriate corrective action.

### 14.5 Quality Assurance Reports

Quality assurance reports are a mechanism whereby management receives periodic information on the performance of the laboratory and subsequent data quality.



-52-

The internal program consists of laboratory supervisors and coordinators reporting on the QA/QC performance to the Laboratory QA/QC Manager on a per sampling event basis. The Laboratory Operations Manager, in turn, reports to the Laboratory Director/QC Officer on the same frequency.

Information which is contained in the Quality Assurance reports consists of the following:

- o assessment of measurement data accuracy, precision and completeness;
- o results of the performance and systems audits; and
- o report of significant QA problems and recommended/implemented solutions.



-53-

3/ST4

### REFERENCES

- 1. U.S. Environmental Protection Agency Manual, "Chemical Analysis of Water and Wastes", E.P.A.-600/4-79-020 Revised March 1983.
- 2. U.S. Environmental Protection Agency "Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act", 40 CFR Part 136, October 1984.
- 3. U.S. Environmental Protection Agency "Pesticide Residue Analysis in Water", E.P.A.-430/1-76-015, November 1976.
- 4. U.S. Environmental Protection Agency "Test Methods for Evaluating Solid Waste - Physical/Chemical Methods", SW-846, 2nd Edition, July 1982.
- 5. U.S. Environmental Protection Agency "Interim Methods for the Sampling and Analysis of Priority Pollutants in Sediment and Fish Tissue", E.P.A.-600/4-81-055, August 1977, Revised October 1980.
- 6. U.S. Environmental Protection Agency "Chemistry Laboratory Manual for Bottom Sediments and Elutriate Testing", PB-294 596, March 1979.
- 7. U.S. Environmental Protection Agency "Extraction and Analysis of Priority Pollutants in Sediment and Soil", PPS-10/83 Analytical Support Branch U.S. E.P.A., Athens, Georgia.



-54-

ATTACHMENT I

**1**994

. Ref. 16

1

i a

-

es 6

. Bird

# List of Tables



# PRESERVATION TECHNIQUES EMPLOYED AT

# RECRA ENVIRONMENTAL LABORATORIES

# (Taken from <u>Chemical Analysis of Water and Wastes</u> EPA-600/4-79-020 Revised March 1983) RECOMMENDATION FOR SAMPLING AND PRESERVATION OF SAMPLES ACCORDING TO MEASUREMENT"

Measurement	Vol. Req. ( <u>ml</u> )	Container ²	Preservative ^{3,4}	Holding Time ^s
100 Physical Properties				
Color	50	P,G	Cool. 4°C	48 Hrs.
Conductance	100	P,G	Cool, 4°C	28 Days
Hardness	100	P,G	HNO, to pH < 2	6 Mos.
Odor	200	G only	Cool. 4C	24 Hrs.
pH	25	P,G	None Req.	Analvze Immediately
Residue				
Filterable	100	P,G	Cool, 4°C	7 Days
Non- Füterable	100	P,G	Cool, 4°C	7 Days
Total	100	P,G	Cool, 4°C	7 Days
Volatile	100	P,G	Cool, 4°C	7 Days
Settleable Matter	1000	P,G	Cooi, 4°C	48 Hrs.
Temperature	1000	P,G	None Req.	Analyze Immediately
Turbidity	100	P,G	Cool, 4°C	48 Hrs.
200 Metals				
Dissolved	200	P.G	Filter on site HNO3 to pH < 2	6 Mos.
Suspended	200		Filter on site	6 Mos. **
Total	100	P,G	HNO, to pH < 2	f 6 Mas.

RECRA ENVIRONMENTAL, INC.

.

TABLE 1 (Cont'd.)

winter:

. Northern

-

22

siano.

**866** 

Measurement	Vol. Req. (ml)	Container ²	Preservative ^{3,4}	Holding Time ^s
Chromium* ⁴	200	P.G	Cool. 4°C	24 Hrs.
Mercury Dissolved	100	P,G	Filter HNO3 to pH < 2	28 Days
Total	100	<b>P,G</b>	HNO, to $pH < 2$	28 Days
J Inorganics, Non-Met	ullics			
Acidity	100	P,G	Cool. 4°C	14 Days
Alkalinity	100	P,G	Cool, Cool	14 Days
Bromide	100	<b>P,</b> G	None Req.	28 Days
Chloride	50	P,G	None Req.	28 Days
Chlorine	200	P,G	None Req.	Analvze Immediately
Cyanides	500	P,G	Cool. 4°C NaOH 10 pH >12 0.6g ascorbic acid ⁴	14 Days'
Fluoride	300	P,G	None Req.	28 Days
lodide	100	P,G	Cool, 4°C	24 Hrs.
Nitrogen		•		
Ammonia	400	P.G	Cool.4°C H3SO4 to pH < 2	28 Days
Kjeldahl, Total	500	P,G	Cooi, 4°C H ₂ SO, to pH < 2	28 Days
Nitrate plus Nitrite	100	. <b>P.G</b>	Cool. 4°C H2SO, to pH < 2	25 Days
Nitrate	100	P,G	Cool, «C	48 Hrs.
Nitrite	50	P,G	Cool, 4°C	48 Hrs.

1



TABLE 1 (Cont'd.)

Measurement	Vol. - Req. ( <u>mi</u> )	Container ²	Preservative ^{3,4}	Holding Time ⁵
Dissolved Oxygen Probe	300	G bottle and top	- None Req.	Analyze
Winkler	300	G bottle and top	Fix on site and store	Immediately 8 Hours
Phosphorus Ortho- phosphate,	50	P,G	in dark Filter on site	48 Hrs.
Dissolved			Cool, 4°C	
Hydrolyzable	50	P.G	Cool. 4°C HzSO, to pH<2	28 Days
Total	50	P,G	Cool. 4°C H ₂ SO, to pH < 2	28 Days
Total, Dissolved	50	P.G	Filter on site Cool, 4°C H ₂ SO, to pH < 2	24 Hrs.
Silica	50	P only	Cooi, 4°C -	28 Days
Sulfate	50	P,G	Cool, 4°C	28 Days
Sulfide	<b>500</b>	P,G	Cool. 4°C add 2 ml zinc acetate plus NaOH to pH >9	7 Days
Suifite	50	P,G	None Req.	Analyze Immediately
400 Organics				*************
BOD	1000	P,G	Cool, C	48 Hrs.
COD	⁻ 50	P,G	Cool. t°C H;SO, to pH < 2	28 Days
Oil & Gresse	1000	G only	Cool, 4°C H ₁ SO, to pH < 2	28 Days
Organic carbon	25	P,G	Cool. 4°C $_1$ H ₂ SO, or HCl to $pH < 2$	28 Days
Phenolics	500	G only	Cool. 4°C H,SO, 10 pH <2	28 Days



vient

ŧ

TABLE	1	(Cont'd.	)

Measurement	Vol. Req. (ml)	Container ^{2 -}	Preservative ^{3,4}	Holding Time ^s
MBAS	250	P.G	Cool, 4°C	48 Hrs.
NTA	50	P,G	Cool, 4°C	24 Hrs.

- 1. More specific instructions for preservation and sampling are found with each procedure as detailed in this manual. A general discussion on sampling water and industrial wastewater may be found in ASTM, Part 31, p. 72-82 (1976) Method D-3370.
- 2. Plastic (P) or Glass (G). For metals, polyethylene with a polypropylene cap (no liner) is preferred.
- 3. Sample preservation should be performed immediately upon sample collection. For composite samples each aliquot should be preserved at the time of collection. When use of an automated sampler makes it impossible to preserve each aliquot, then samples may be preserved by maintaining at 4°C until compositing and sample splitting is completed.
- 4. When any sample is to be shipped by common carrier or sent through the United States Mails. it must comply with the Department of Transportation Hazardous Materials Regulations (49 CFR Part 172). The person offering such material for transportation is responsible for ensuring such compliance. For the preservation requirements of Table 1, the Office of Hazardous Materials. Materials Transportation Bureau. Department of Transportation has determined that the Hazardous Materials Regulations do not apply to the following materials: Hydrochloric acid (HCl) in water solutions at concentrations of 0.04% by weight or less (pH about 1.96 or greater); Nitric acid (HNO₃) in water solutions at concentrations of 0.15% by weight or less (pH about 1.62 or greater); Sulfuric acid (H₃SO₄) in water solutions at concentrations of 0.35% by weight or less (pH about 1.15 or greater); Sodium hydroxide (NaOH) in water solutions at concentrations of 0.080% by weight or less (pH about 12.30 or less).
- 5. Samples should be analyzed as soon as possible after collection. The times listed are the maximum times that samples may be held before analysis and still considered valid. Samples may be held for longer periods only if the permittee, or monitoring laboratory, has data on file to show that the specific types of sample under study are stable for the longer time, and has received a variance from the Regional Administrator. Some samples may not be stable for the maximum time period given in the table. A permittee, or monitoring laboratory, is obligated to hold the sample for a shorter time if knowledge exists to show this is necessary to maintain sample stability.
- 6. Should only be used in the presence of residual chlorine.



# TABLE 1 (Cont'd.)

- 7. Maximum holding time is 24 hours when sulfide is present. Optionally, all samples may be tested with lead acetate paper before the pH adjustment in order to determine if sulfide is present. If suffide is present, it can be removed by the addition of cadmium nitrate powder until a negative spot test is obtained. The sample is filtered and then NaOH is added to pH 12.
- 8. Samples should be filtered immediately on-site before adding preservative for dissolved metals.
- 9. For samples from non-chlorinated drinking water supplies conc. H₂SO₄ should be added to lower sample pH to less than 2. The sample should be analyzed before 14 days.

Table ICOrganic Teels. ⁴ 13, 18-30, 22, 24-38, 34-37, 38-43, 45-47, 56, 66, 88, 88, 82-86, 87. Purgascie Halo- carbons.		Cool. 4"C. 0.008"s Na, 5, O	14 days.
6, 57, 80. Purgeable aromatic hydrocarbons		Cool. 4"C. 0.008% Na.S.C.".	<b>Ce</b> .
3, 4, Acroisin and acrylanistic	<b>do</b>	Cool, 4"C. 0.008% Na.S.C."	Ce.
23, 30, 44, 49, 53, 67, 70, 71, 83, 86, 98. Phenois ¹³ .	G. Telen- lined cap.	Cost, 4°C, 0.008% Na,8,0,1	7 days unit extraction. 40 days after extraction.
7. 38. Bereidines "			
14, 17, 48, 50-52. Philiplete esters "		Ceet, 4°C	7 days und extraction; 40 days after extraction.
72-74. Nirosemenes 14.14		Cool. 4"C. store in dark. 0.008% Na.8.0."	De.
76-82. PCBe ** acryteritrie		Cost «C	Do.
54, 55, 66, 69. Nilvoerometics and respherene ¹¹ .			Do.
1, 2, 5, 8-12, 32, 33, 58, 59, 64, 68, 84, 88, Polynuclear aromatic hydrocartions. ¹¹ .	·	·····	De.
15, 16, 21, 31, 75. Helseners"		Cool, 4"C, 0.008" Na,S.O	De.
29, 35-37, 80-89, 91. Charvaled hydrocer- bone 11.		Ceel. 4°C	De.
87. TCDD 11		Cool. 4"C. 0.008% Ne.8.C.	De.



٩

•

**19**58-1

**19**88

**19**86

ies 16

# COMMON ANALYTICAL METHODOLOGIES EMPLOYED ON AQUEOUS SAMPLES AT

# RECRA ENVIRONMENTAL LABORATORIES

# WATER QUALITY GROUP

PARAMETER/COMPOUND CLASS	REFERENCE METHOD #	REFERENCE	RECRA METHOD #	COMMENTS AND/OR DEVIATIONS
Acidity	305.1	1	100	-
Alkalinity	310.1	1	101	Endpoint pH 4.5
Color	110.2	1	102	
Specific Conductance	120.1	1	103	Samples adjusted to 25°C
Total Hardness	130.2	1	104	-
Odor	140.1	1	105	-
PH	150.1	. 1	106	Combination reference electrode
Total Residue (103°C)	160.3	1	107	employed
Filterable Residue (180°C) Non-Filterable Residue	160.1	1	108	-
(103°C)	160.2	1	109	-
Volatile Residue (550°C)	160.4	1	110	-
Settleable Solids	160.5	1	111	-
Turbidity	180.1	1	112	-
Ghloride	325.3	1	113	-
Total Cyanide	335.2	1	114	-
Amenable Cyanide	335.1	ī	115	-
Fluoride	340.2	ī	116	No distillation
Amonia	350.3	1	117	No distillation
Total Kjeldahl Nitrogen	351.4	1	118	-
Nitrate	352.1	ī	119	-
Nitrite	354.1	ī	120	-
Total Phosphorous	365.2	1	121	-
Organic Phosphorous	365.2	I	122	-
Sulfate	375.4	1	123	-
Sulfite	377.1	1	124	-
Sulfide	376.1	1	125	-
Biochemical Oxygen				Nitrification
Demand (Carbonacous)	405.1	1	126	inhibitor added
Chemical Oxygen Demend	410.1, .2 or .3	ī	127	Depends on level
Oil and Grease	413.1	1 I	128	-
Total Organic Carbon -	~~~	<b>x</b> -		Acidified and
Direct	415.1	. 1	129	purged
Total Organic Carbon -	~~~	•	• 4 7	r0
Difference ,	415.1	1	130	-
Total Recoverable Phenolics Manhylene Blue Active	420.1	1	131	-
S por ces	425.1	- 1	132	<b>-</b> .

人名英格兰人姓氏德德住所名称 法法理的 化合物的 网络拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉

RECRA ENVIRONMENTAL, INC.

. he was the first state and a state of the first state of the 
### COMMON ANALYTICAL METHODOLOGIES EMPLOYED ON AQUEOUS SAMPLES AT

### RECRA ENVIRONMENTAL LABORATORIES

### METALS GROUP

PARAMETER*	REFERENCE METHOD #	REFERENCE	RECRA	COMMENTS AND/OR DEVIATIONS
Aluminum	202.1	1	200	<b>'</b> •
Antisony	204.2	1	201	•
Arsenic	206.2	1	202	-
Bariu	208.1	1	203	-
Beryllium	210.1	1	204	-
Boron	-	See Method	205	-
Cadmium	213.1	1	206	-
Calcium	215.1	1	207	-
T-Chronium	218.1	1	208	-
Chromium (+6)	218.5	1	209	Determined by flame
Cobalt	219.1	1	210	-
Capper	220.1	1	211	-
Iron	236.1	1	212	-
Lead	239.2	1	213	-
Magnesium	242.1	1	214	-
Manganese	243.1	1	215	-
Mercury	245.1	1	216	-
Molybdenum	246.1	1	217	-
Nickel	249.2	Ĩ	218	-
Potassium	258.1	ī	219	-
Selenium	270.2	ĩ	220	-
Silver	272.1	ĩ	221	-
Sodium	273.1	ĩ	222	-
Stroatium	•	See Method	223	-
Thallium	. 279.2	1	224	-
Tia	282.1	ĩ	225	-
Titanium	283.1	ĩ	226	-
Vanadium	286.1	ī	227	-
Zinc	289.1	ĩ	228	-
Zirconius	•	See Method	229	-
Digestion	200.4.1.3	1	2000	-

*If total metals are required, digestion is performed according to Section 200, part 4.1.3 of EFA manual Chemical Analysis of Water and Wastes except that Erlenmeyer flasks are used in place of Griffin beakers. If soluble metals are requested, the sample is filtered through a 0.45 µm filter prior to acidification and analysis.

.



. 66

-

ाल्य - अल्ल

新传

# COMMON ANALYTICAL METHODOLOGIES EMPLOYED ON AQUEOUS SAMPLES AT

### RECRA ENVIRONMENTAL LABORATORIES

### CHROMATOGRAPHY GROUP

	REFERENCE		RECRA	
PARAMETER/COMPOUND CLASS	METHOD #	REFERENCE	METHOD #	COMMENTS AND/OR DEVIATIONS,
Purgeable Halocarbons	601	2	300	Coulson's detector employed
Purgeable Aromatics	602	2	301	Flame ionization detector employed
Acrolein & Acrylontrile	603	2	302	● 補少···
Phenols	604	2 2	303	-
Phthalates	606	2	304	-
Pesticides and PCB's	608	2	305	-
Polynuclear Aromatic				888 <u>7</u> 2
Hydrocarbons	610	2	306	UV-detector employed 🚃
Chlorinated Hydrocarbons	612	2	307	
Halogenated Organic				Electron capture detector
Scan - ECD	-	See Method	308	employed
Halogenated Organic				
Scan - Coulson's	-	See Method	309	Coulson's detector employmed
Volatile Halogenated		•••	••••	······································
Organic Scan	-	See Method	310	Coulson's detector employmed
Volatile Organic Scan -		000	•••	Flame ionization detecto
FID	-	See Method	311	employed
Organic Scan - FID	-	See Method	312	Flame ionization detector
organic Scan - Fib		Jee Method		employed
Herbicides - GC	-	3-See Method	313	- Mrt. ngt
Herbicides - LC	-	See Method	314	-
Trihalomethanes	501.1	-	315	Coulson's detector emplome

*Unless specifically requested, all analyses are performed utilizing single chromatographic column techniques.



# CONSIGN ANALYTICAL METEODOLOGIES EMPLOYED ON AQUEOUS SAMPLES AT

# RECRA ENVIRONMENTAL LABORATORIES

# GAS CERCHATOGRAPHY/MASS SPECTROMETRY GROUP

2	PARAMETER/COMPOUND CLASS	NETHOD #	REFERENCE	RECRA METROD #	CONSTENTS AND/OR DEVIATIONS
ł	Purgeables	624	2	400	-
.*	AP/BN Extractables	625	2	401	Capillary column employed (DB-5 fused silica)
à	Broad Spectrum Scan	-	-	402	Unknown peaks are library searched
4	2,3,7.8- TCDD	613	2	403	



0.0454

۱

1025

њан I

1

# COMMON ANALYTICAL METHODOLOGIES EMPLOYED ON SOLID SAMPLES AT

### RECRA ENVIRONMENTAL LABORATORIES

# WATER QUALITY GROUP

PARAMETER/COMPOUND CLASS	REFERENCE METHOD #	REFERENCE	RECRA METHOD #	COMMENTS AND/OR DEVIATIONS
рĦ	9040	4	S-106	-
Dry Weight (103°C)	HAN-3.1.2	5	S-107	
Total Cyanide	SCN-1 to SCN-3	5	S-114	ــــــــــــــــــــــــــــــــــــ
Ammonia	324; 350.3	6, 1	S-117	-
Total Kjeldahl Nitrogen	351.4	1	S-118	0.5 grams of main sample used
Nitrate	-	See Method	S-119	- Sector
Total Phosphorus	365.2	1	S-121	1.0 grams of sample used
Sulfide	376.1	See Method	S-125	Leaching (S-132) and Procedure used
Chemical Oxygen Demand	410.1, 2, 3	1	S-127	1.0 grams of me sample used
Oil and Grease	<b>#</b> 739	6	S-128	Leaching (S-132)
Total Organic Carbon - Direct	415.1	1	S-129	Procedure used
Total Recoverable Phenolics	SPE-1 to SPE-3	5	S-131	
Leaching Procedure prior to method S-125 & S-129	<b>.</b> .	See Method	S-132	- Vector -

- Children - State - Children - State 
متصفيته والمربوش



ni- , , , , , , iki in enderlander der bei der

# COMMON ANALYTICAL METHODOLOGIES EMPLOYED ON SOLID SAMPLES AT

### RECRA ENVIRONMENTAL LABORATORIES

# METALS GROUP

<b>A</b>	PARAMETER	REFERENCE METHOD #	REFERENCE	RECRA METHOD #	COMMENTS AND/OR DEVIATIONSA
<b></b>	Aluminum	202.1	1	S-200	
8 <b>9</b> 4	Antimony	7041	1	S-200 S-201	-
	Arsenic	7060	4	S-202	-
24 2	Barium	7080	<b>4</b>	S-202 S-203	-
	Beryllium	210.1	4	S-203 S-204	-
ð•b	Boron		See Method		-
si	Cadmium	7130	See Method	S-205	-
	Calcium	215.1	4	S-206	-
+2·	T-Chromium		1	S-207	-
		7190	4	S-208	
*å	Chromium (+6)	7191	4	S-209	Digestion 3060 employed
	Cobalt	219.1	1	S-210	-
	Copper	220.1	1	S-211	-
ŧ	Iron	236.1	1	S-212	-
	Lead	7421	4	S-213	-
•	Magnesium	242.1	1	S-214	-
	Manganese	243.1	1	S-215	-
1	Mercury	245.5	1	S-216	-
	Molybdenum	246.1	1	S-217	-
•	Nickel	7521	4	S-218	-
1	Potassium	258.1	1	· S-219	-
	Selenium	7740	4	S-220	-
	Silver	7760	4	S-221	-
	Sodium	273.1	1	S-222	-
	Strontium	-	See Method	S-223	-
	Thallium	279.2	1 -	S-224	-
	Tin	282.1	1	S-225	-
	Titanium	283.1	1	S-226	-
	Vanadium	286.1	1	S-227	-
	Zinc	289.1	1	S-228	-
	Zirconium	-	See Method	S-229	· 🕳
	Digestion	3050	4	S-200D	-

A Digestion #3050 from reference 4 is employed for all metals except where indicated otherwise. Solid samples are not dried at 60°C but rather digested as received.



- 1996

998 1946

15

iii

州村

-

39 6

. 1990

-Not

. 20g

-

3.40

Gene

### TABLE 3

**19**10

800%-

Sec.

**M**ICA

iona.

## COMMON ANALYTICAL METHODOLOGIES EMPLOYED ON SOLID SAMPLES AT

### RECRA ENVIRONMENTAL LABORATORIES

### CHROMATOGRAPHY GROUP

	REFERENCE		RECRA	
PARAMETER/COMPOUND CLASS	METHOD #	REFERENCE	METHOD #	COMMENTS AND/OR DEVIATION
Purgeable Halocarbons	8010	4	S-300	Coulson's detector employed
Non-Halogenated Volatile				 
Organics	8015	4	S-314	Coulson's detector employ
Non-Halogenated Aromatics	8020	4	S-301	Flame ionization detector ^{man} employed
Acrolein & Acrylontrile	8030	4	S-302	-
Phenols	8040	4	S-303	-
Phthalates	8060	4	s-304	-
Pesticides and PCB's	8080	4	s-305	-
Polynuclear Aromatic				
Hydrocarbons	8100	4	S-306	UV-detector employed 🛛 🚟
Chlorinated Hydrocarbons	8120	4	S-307	-
Halogenated Organic				Electron capture detector
Scan - ECD	-	See Method	S-308	employed
Halogenated Organic				
Scan - Coulson's	-	See Method	s-309	Coulson's detector employmmi
Volatile Halogenated				
Organic Scan	-	See Method	S-310	Coulson's detector employed
Volatile Organic Scan -				Flame ionization detector
FID	-	See Method	S-311	employed
Organic Scan - FID	-	See Method	S-312	Flame ionization detectorman employed
Herbicides - GC	8150	4	S-313	-
Nonhalogenated Volatile				
Organics	8015	4	S-314	₩K¢ (
Sediment Extraction -				-
Olin Project	-	See Method	S-315	Extraction procedure only

*Unless specifically requested, all analysis are performed utilizing single chromatographic column techniques.



-1 <b>-15</b>					
3 <b>44</b>					
- Langa					-
			TABLE 3		
સ્થ					
	COMMON ANA	LTTICAL METHO	DOLOGIES ENPLOYE	D ON SOLID S	APPLES AT
调		RECRA ENV	IRONMENTAL LABOR	LATORIES	
					-
- <b>* 19</b>	G	AS CEROMATOGR	APEY/MASS SPECTE	CHETRY GROUP	
	PARAMETER/COMPOUND CLASS	NETEOD #	REFERENCE	HETROD #	CONSCENTS AND/OR DEVIATIONS
2 <b>900</b>	Purgeables	PP5-10/83	See Method-7	5-400	Low Level-direct purge
- 198		5030	4	5-400A	High Level-methanol extraction
2 <b>46</b>	AP/BM Extractables	8270	See Method-7	<b>5-40</b> 1	Capillary column employed
-999 -999	Broad Spectrum Scan	-	See Method	5-402	

4

.

S-403

.

1

8280

-



100

PCDD's & PCDF's

### TABLE 4

RECRA ENVIRONMENTAL, INC.

### LABORATORY EQUIPMENT LIST

#### ITEM/DESCRIPTION

#### MANUFACTURER/MODEL NUMBER

Finnigan Model 5100 SP

(Assigned to CLP)

(3 Units)

Gas Chromatograph/Mass Spectrometer (GC/MS)

o Super INCOS data system 5.6
o Computer controlled gas chromatograph
o Heated electron ionization source (SP)
o Capillary/packed column injector
o Archival data storage
o Subambient GC oven temperature control
o Nine track magnetic tape drive
o High speed printer
o NBS/EPA Mass Spectral Library (42,000 compounds)

Gas Chromatograph/Mass Spectrometer (GC/MS)

Finnigan Model 3200

o Super INCOS data system
o Electron ionization source
o Capillary/packed column injector
o Purge and trap sampler
o Archival data storage
o Nine track magnetic tape storage
o High speed printer
o NBS/EPA Mass Spectral Library (42,000 compounds)

Gas Chromatograph/Mass Spectrometer (GC/MS)

Finnigan Model INCOS 50 (3 Units) (Assigned to CLP)

o Super INCOS data system
o Computer controlled gas chromatograph
o Heated electron ionization source
o Capillary/packed column injector
o Archival data storage
o Subambient GC oven temperature control
o Purge and trap sampler (2 units)
o Nine track magnetic tape drive
o High speed printer
o NIH/EPA Mass Spectral Library (42,000 compounds)



# TABLE 4 (continued)

### ITEM/DESCRIPTION

### MANUFACTURER/MODEL NUMBER

Gas Chromatograph/Mass Spectrometer (GC/MS)

Hewlett Packard Model 5993B (Assigned to CLP)

o Computerized data systems o Computer controlled gas chromatograph o Electron ionization source o Capillary/packed column injector o Purge and trap sampler o Archival data storage o Subambient GC oven temperature control o Nine track magnetic tape drive o High speed printer

o NIH/EPA MSDC Mass Spectral Library (31,000 compounds)

### Gas Chromatograph/Mass Spectrometer (GC/MS)

Hewlett Packard Model 5993C (Assigned to CLP)

- o Computerized data system
- o Computer controlled gas chromatograph
- o Electron ionization source
- o Capillary/packed column injector
- o Subambient GC oven temperature control
- o Purge and trap sampler
- o Archival data storage (nine track tape)
- o NIH/EPA MSDC Mass Spectral Library (31,000 compounds)

### High Performance Liquid Chromatograph (HPLC)

Waters Model 0 440/6000A

Hewlett Packard Model 5840A

- o HPLC with ultraviolet detector at 254 and 280 nonometers
- o Gradient programing
- o Micro processor data system

### Gas Chromatograph-(GC)

- o Capillary/packed column injector
- o Automatic liquid sampler
- o Electron capture (ECD) detector
- o Flame ionization (FID) detector computer integration of peaks



TABLE 4 (continued)	
ITEM/DESCRIPTION	MANUFACTURER/MODEL NUMBER
<u>Gas Chromatograph (GC)</u> o Capillary/packed column injector o Dual column capabilities o Dual column automatic liquid sampler o Electron capture (ECD) detector o Flame ionization (FID) detector o Computer integration of peaks o Basic programing capability	Hewlett Packard Model 5880# (Assigned to CLP)
<u>Gas Chromatograph (GC)</u> o Capillary/packed column injector o Dual column capabilities o Dual column automatic liquid sampler o Electron capture (ECD) detector o Flame ionization (FID) detector o Computer integration of peaks o Basic programing capability	Hewlett Packard Model 5880# (Assigned to CLP)
Gas Chromatograph (GC) o Capillary/packed column injector o Dual column capabilities o Dual column automatic liquid sampler o Electron capture (ECD) detector o Flame ionization (FID) detector o Computer integration of peaks o Basic programing capability	Hewlett Packard Model 5880
Gas Chromatograph (GC) o Packed column injector o Electron capture detector o Automatic integration of peaks o Automatic liquid sampler	Hewlett Packard Model 5890
Gas Chromatograph (GC) o Packed column injector o Automatic liquid samples o Dual electron capture detectors o Automatic integration of peaks	Hewlet Packard Model 5890 (Assigned to CLP)

the design of the second states of the second state

- North States M

1994

**646**-

halibu

lein.

in e

89

ia in

ales:-

bicki-

2

1/TST4.3

TABLE 4 (continued)

### ITEM/DESCRIPTION

#### MANUFACTURER/MODEL NUMBER

Perkin Elmer/Nelson Turbochrome (Assigned to CLP)

### Chromatography Data Management System

- o Automatic integration of peaks
- o Autoquantitation
- o Interfaces with Finnegan Formsmaster software
- o Production of diskette deliverables and EPA format hard copy

### Gas Chromatograph (GC)

- o Packed column injector
- o Electron capture detector
- o Automatic integration of peaks
- o Volatile headspace autosampler

### Gas Chromatograph (GC)

o Packed column injector

- o Electron capture detector
- o Automatic integration of peaks

#### Gas Chromatograph (GC)

o Packed column injector

- o Hall's detector
- o Photoionization (PID) detector
- o Flame ionization (FID) detector
- o Automatic purge and trap sampler
- o 10 Units ALS autosampler

#### Gas Chromatograph (GC)

- o Packed column injector
  o Electron capture detector (ECD)
  o Flame ionization detector (FID)
- o Automatic liquid sampler

### Hewlett Packard Model 5790

Hewlett Packard Model 5790

Perkin-Elmer Model 2000

Perkin-Elmer Model 2000



TABLE 4 (continued)

# MANUFACTURER/MODEL NUMBER ITEM/DESCRIPTION Gas Chromatograph (GC) Perkin-Elmer Model Sigma 1 o Packed column injector o Electron capture detector (ECD) o Flame ionization detector (FID) o Nitrogen-phosphorous detector (NPD) o Computer integration of peaks o Data console o Basic programing capability o Automatic purge and trap sampler Gas Chromatograph (GC) Perkin-Elmer Model Sigma 3 o Packed column injector o Coulson's electrolytic conductivity detector o Computer integration of peaks o Automatic purge and trap sampler Gas Chromatograph (GC) Gow-Mac Model 550 o Packed column injector o Thermal conductivity detector (TCD) Perkin-Elmer Model 5000 Atomic Absorption Spectrophotometer (AA) (2 units) o Six lamp turret for automatic determination of six elements per sample Perkin-Elmer Model-HGA-500 o Graphite furnace (2) Perkin-Elmer Model-AS-40 o Automatic sampler for graphite furnace (2) Perkin-Elmer Model-AS-50 o Automatic sampler for flame analyses o Deuterium and tungsten background correction o Electrodeless discharge lamps (EDL) power supply o Printer o Gas control box Perkin-Elmer Model 603 Atomic Absorption Spectrophotometer (AA) o Deuterium background correction o Graphite furnace o Flame analysis capability o Data handling systems o Gas control box

RECRA ENVIRONMENTAL, INC.

TABLE 4 (continued)

### ITEM/DESCRIPTION

#### MANUFACTURER/MODEL NUMBER

Inductively Coupled Argon Plasma Spectrometer (ICP) Perkin-Elmer Plasma 40

- o Czerny-Turner monochromator (160-800 nm with two gratings)o Grating selections controlled by
- microprocessor
- Automatic background correction
   RF generator 40 MHZ and nominal operating
- power at 1,000 watts
- o Automatic sample introduction (AS-51)
- o IEEE-488 computer interface
- o Epson Equity III and Computer 40 megabyte hard disk drive and 1.2 Mbyte floppy disk drive and other accessors

Word Processing System

o 2 disk drives o Letter quality printer

Muffle Furnace (2 Units)

Soxhlet Heating Banks (8 Units)

Centrifuge

Laboratory Ovens

Thermodyne Model 1500 Lindberg Model 51894

CPT Model 8525

Precision

Damon Model HNS Clay Adams Dynac II

Blue M Model 100A American Model DX-58 American Model H9620 GCA - Model 16EG American Model 18620 Blue M Model SW17TA Blue M Model SW17TA Blue M Model OV8A Blue M Model OV12A GCA Boekel



TABLE 4 (continued)

6985

**(1997)** 1993

ine.

Ìù.

1874

ITEM/DESCRIPTION	MANUFACTURER/MODEL NUM
U.V. Visible Spectrophotometer	Perkin-Elmer Model 200
o Dual cell for blank correction o Capable of automatic scan o Recorder and/or digital readout	
UV-Visible Spectrophotometer	Milton Roy Speckrontix
o Dual beam for blank correction o Micro processor memory o Printer and digital readout	
Spectrophotometer	Bausch and Lomb Model
Infrared Spectrophotometer	Perkin-Elmer Model 567
Carbon Analyzer	Beckman Model 915A
o Capable of determining total, inorganic or organic carbon on aqueous matrices	
Sonic Homogenizer (Polytron)	Brinkman Model PT 10/3
Oxygen Meter	Yellow Springs Model 5
Conductivity Bridge	Yellow Springs Model 3
Specific Ion/pH Meters	Orion Model 701
a Spacific ion alactuadas includa	Orion Model 901 Fisher Model 630
o Specific ion electrodes include chloride, fluoride, ammonia and cyanide	
	Accumet 925

and a subject of the second 
潮

Long.

28

TABLE 4 (continued)

#### ITEM/DESCRIPTION

Fume Removal Hoods

o Total or nine fume hoods o Several have make-up air

#### Computer System

o 128K of random access memory o 2 disk drives o Plotter o Dot matrix printer

### Aqua Tester

Water Baths

Kjeldahl Digestion Units

Bio-Oxidation Systems

o Includes bio-oxidation tanks and reactor vessels

Bomb Calorimeter (2 Units)

Autoclave

Water Systems

Vacuum Pumps



#### MANUFACTURER/MODEL NUMBER

- (4) Labconco Model 5900
- (2) Hemco
- (3) kewanee

Apple Model 2e

Hellige Model 611A

Blue M Model MW1130A Polytherm Model PY6 Tecam Model IIB

Labconco

Horizon

Parr Model 1341

Ashcroft

Barnstead Model 4 (Still) Penpure Millipore Model Milli Q

Vac Torr Model 20 Gast Model 0211

Burrell Model 75

TABLE 4 (continued)

**9**05

**振行** 

340

dan se

sia.e

ITEM/DESCRIPTION	MANUFACTURER/MODEL NUMBER
Melting Point Apparatus	Electrothermal
Refrigerator/Incubators	
o 5' x 15" walk-in cooler #1 o 12' x 11' walk-in cooler #2	(Assigned to CLP)
o Refrigerator-Flammable Storage	L <b>abline Model -</b> Frigid-Cab (5 units)
o General Storage Refrigerator (6 Units)	Labline
o Refrigerator o Incubator	GCA Model 815
o Freezer	Whirlpool
o Freezer	Admiral
o Freezer	Admiral
Pressure Filtration Apparatus	Millipore Model YT30 (2 units)
Manometric BOD Apparatus	Hach
<u>Closed Cup Flash Point Tester</u>	Pensky Martens (2 Units) Fisher Model - Tag
Open Cup Flash Point Tester	Fisher Model - Tag
N.A.C.E. Corrosion Testing Apparatus	
Rotary Evaporator	Brinkman
Hotplates	Thermolyne Model 2200 Lindberg (3 Units)
Vortex Mixer	American
Viscometer	Brookfield Model LVF
/IRONMENTAL, INC.	

268

24

TABLE 4 (continued)

#### ITEM/DESCRIPTION

#### Balance

o Toploading Balance o Toploading Balance o Toploading Balance o Analytical Balance o Analytical Balance o Analytical Balance

## TEP Extractor

o 10 Unit System

Sonic Disruptor

MANUFACTURER/MODEL NUMBER

Sartorius Model 1103 Mettler Model PC440 Fisher Model 7204 Mettler Model AE160 Mettler Model AE160 Mettler Model H31AR

Manufactured to EPA Specifications

Tekmar Model TM500 Heat Systems Model W375 (3 Units)

#### Laboratory Information Management System (LIMS)

o 1 Mb RAM
o 2 800 K floppy drive
o 1 Imagewriter printer
o 1 Plotter
o Misc. software

#### Prime 2755 Computer System

o 1 Mg RAM
o 496 Mg hard disk
o 1 Modem cabinet
o 2 Laser printers
o 1 Printax line printer
o Misc. software

#### IBM AT Personal Computer (512 K RAM)

o 30 Mb Hard disk and 1.2 Mb disk drive
o Genoa graphics card
o Amdek monitor
o FX 100 Epson printer
o Hayer modem
o Various software packages
o Froms/data master (Finnigan Matt Software)

## Apple (MacIntosh) S.E.

TABLE 4 (continued)

ITEM/DESCRIPTION MANUFACTURER/MODEL NUMB		
Apple IIe (3 Units)		
o 128K RAM o 2 - 5½ floppy disk drive o 1 - MX100 printer o 1 - Hays Modem o 1 - Apple monitor		
PT200 - Prime Terminal		
TEP Extractor o 10 unit system	Manufactured to EPA Specifications	
<u>Sonic Disruptor</u>	Tekmar Model - TM500 Heat Systems - Model W375 Heat Systems - Model W375 Heat Systems - Model W375	
Laboratory Information Management System (LIMS)	Prime 2755 Supermini Computer utilizing ESE's Chemical Laboratory Analysis and Scheduling System (CLASS) Software	

iis.

кi)

εżέ.



## SAMPLE CONTAINERS

	APPROX.	
BOTTLE	IN LITERS	DESCRIPTION
A	1	32 oz. Amber Glass
B	2	1/2 Gal. Plastic
С	.5	16 oz. Poly Boston Rd. (plastic)
D	.1	4 oz. Poly Modern Rd. (plastic)
E	.04	(2) 40 ml Vials w/Teflon Seal
F	.5	16 oz. Glass (Olive-Paragon)
G	.1	4 oz. French Square Glass
н	1	32 oz. Wide Mouth Glass
I	1	32 oz. French Square Glass
J	.5	16 oz. Wide Mouth Amber Glass
к	N/A	Cooler Chest Rental
L	.1	Disposable Sterile Plastic Bag
M	.3	8 oz. Amber Glass
-		Closure of various sizes for above bottles

Bottle orders and cooler chests are normally shipped via Federal Express, or other overnight courier.



24

 $G^{\dagger}$ 

- setti

448

61-8

## Organics - Contract Required Quantitation Limits Task IV

			Contract Required		
				tion Limits**	
Val	atiles	CAS Number	Water ug/L	JOIL JEGT EIC	
			~6/ 4	us/Ks	
1.	Chloromethane	74-87-3	10	10	
2.	Bromomethane	74-83-9	10	10	
3.	Vinyl Chloride	75-01-4	10	10	
4.	Chloroethane	7 <b>5-00-3</b>	10	10	
5.	Methylene Chloride	7 <b>5-09-2</b>	5	5	
6.	Acetone	67-64-1	10	10	
7.	Carbon Disulfide	75-15-0	5	5	
8.	1,1-Dichloroethene	75-35-4	5	5	
	1,1-Dichloroethane	75-34-3	Š	Š	
10.	1,2-Dichloroethene (total)	540-59-0	5	5	
11.	Chloroform	67-66-3	5	5	
	1,2-Dichloroethage	107-06-2	Š	Š	
	2-Butanone	78-93-3	10	10	
-	1,1,1-Trichloroethane	71-55-6	5	5	
	Carbon Tetrachloride	56-23-5	Š	5	
16.	Vinyl Acetate	108-05-4	10	10	
	Bromodichloromethane	75-27-4	5	5	
	1,1,2,2-Tetrachloroethane	79-34-5		5	
	1,2-Dichloropropene	78-87-5	5 5	5	
20.		10061-02-6	5	5	
21.	Trichloroethene	79-01-6	5	5	
22.		124-48-1		5	
	1,1,2-Trichlroethane	79-00-5	5 5	5	
24.	Benzene	71-43-2	5	5	
25.	cis-1,3-Dichloropropene	10061-01-5	5	5	
26.	Bronoform	75-25-2	5.	5	
27.	2-Sezanese	591-78-6	10	10	
28.	4-Hethyl-2-pentances	108-10-1	10	10	
29.	Tetrachleroethene	127-18-4	5	5	
30.	Toluege	108-88-3	5	5	
31.	Chlorobensene	108-90-7	5	Š	
32.	Ethyl Benzene	100-41-4	Š	5	
33.	Styrene	100-42-5	Š	5	
		133-02-7	5	5	
34.	Total Xylenes	133-04-1	J		



server Rech Rech Rech

**#**899

ee No

**a**tina di

in ....

**.** 

Page 2 of 10

.

Semi	-Volatiles	CAS Number	Low Water ug/L	Low Soil/Sediment ⁷ ug/Kg
35.	Phenol	108-95-2	10	330
36.	bis(2-Chloroethyl)ether	111-44-4	10	
37.	2-Chlorophenol	95-57-8	10	330 330
			••	
38.	1,3-Dichlorobenzene	541-73-1	10	330
39.	1,4-Dichlorobenzene	106-46-7	10	330
40.	Benryl Alcohol	100-51-6	10	330
41.	l,2-Dichlorobenzene	* 95-50-1	10	330
42.	2-Methylphenol	95-48-7	10	330
43.	bis(2-Chloroisopropyl) ether	10 <b>8-06-</b> 1	10	330
	4-Methylphenol	106-44-5	10	330
	N-Mitroso-Dipropylamine	621-64-7	10	330
-	Hexachloroethane	67-72-1	10	330
	Nitrobenzene	98-95-3	10	- 330
	Isophorone	78-59-1	10	330
	2-Mitrophenol'	88-75-5	10	330
50.	2,4-Dimethylphenol	105-67-9	10	330
51.	Benzoic Acid	65-85-0	50	1600
52.	bis(2-Chloroethory)methane	111-91-1	10	330
53.	2,4-Dichlorophenol	120-83-2	10	330
	1,2,4-Trichlorobenzene	120-82-1	10	330
	Naphthalene	91-20-3	10	330
	4-Chlorosniline	106-47-8	10	330
	Herachlorobutadiene	87-68-3	10	330
58.	4-Chloro-3-asthylphenel			
39.	(para-chloro-meta-cresel)	59-50-7	10	330
59.	2-Methylasphthslese	91-57-6	10	330
	Hexachlorocyclopentadiene	77-47-4	10	330
	2,4,6-Trichlorophenol	88-06-2	10	330
		95-95-4	50	1600
	2,4,5-Trichlorophonol 2-Chlorocophthelene	91-58-7	10	330
	2-Mitroenilien	88-74-4	50	1600
			10	330
	Dimethyl Phthelate	131-11-3	10	330
	Aceaspithylese	208-86-8	50	1600
67.	3-Nitroaniline	99-09-2	20	
68.	Acessphthese	83-32-9	10	330
69.	2,4-Dinitrophenol	51-28-5	50	1600
70.	4-Nitrophenol	100-02-7	50	1600
	Dibenzofuran	132-64-9	10	330
72.	2,4-Dinitrotoluene	121-14-2	10	330

١

## Organics - Contract Required Quantitation Limits Task IV (Continued)

RECRA ENVIRONMENTAL, INC.

- 123 - 123

7**24** 

199

1

-

- 193 - 193

-

129

49

548 (

1.00

୍ବ ଅକ୍ଷ

قير ر

Page 3 of 10

**新林** 

**N**RK

19-5 C-

**نې** 

emi-Volatiles	CAS Number	Low Water ug/L	Low Soil/Sediment	
			us/Ks	
3. 2,6-Dimitrotoluene	606-20-2	10	330	
4. Diethylphthalate	84-66-2	10	330	
5. 4-Chlorophenyl Phenyl (	ther 7005-72-3	10	330	
6. Fluorene	86-73-7	10	330	
7. 4-Nitroaniline	100-01-6	50	1600	
. 4,6-Dinitro-2-methylphe	nol 534-52-1	50	1600	
N-mitrosodiphenylamine	86-30-6	10	330	
. 4-Bromophenyl Phenyl et	ther 101-55-3	10	330	
Hexachlorobenzene	118-74-1	10	330	
. Pentachlorophenol	87-86-5	50	1600	
. Phenanthrene	85-01-8	10	330	
Anthracene	120-12-7	10		
. Di-a-butylphthalate	84-74-2	10	330	
. Fluoranthese	206-44-0	10	330 330	
		74	ACC	
. Pyrene	129-00-0	10	330	
. Butyl Bensyl Phthalate	<b>85-64-</b> 7	10	~ 330	
. 3,3'-Dichlorobenzidine	91-94-1	20	660	
. Benzo(a)anthracene	56-55-3	10	330	
. bis(2-ethylheryl)phthal	ate 117-81-7	10	330	
. Chrysene	218-01-9	10	330	
. Di-m-octyl Phthelate	117-84-0	10	330	
Benzo(b)fluoranthene	205-99-2	10	330	
. Benzo(k)fluoranthene	207-08-9	10	330	
. Benzo(a)pyrene	50-32-8	10	330	
. Indeno(1,2,3-cd)pyrene	193-39-5	10	330	
. Dibens(s,h)anthracene	53-70-3	10	330	
. Benzo(g,h,i)perylene	191-24-2	10	330	
		(mant i t	natitation Limits**	
			Soil/Sediment	
sticides	CAS Number	Water ug/L	ug/Kg	
0. alpha-BBC	319-84-6	0.05	8.0	
1. beta-BHC	319-85-7	0.05	8.0	
2. delta-BEC	319-86-8	0.05	8.0	
3. gamme-BHC (Lindane)	58-89-9	0.05	8.0	
4. Heptachlor	76-44-8	0.05	8.0	
5. Aldrin	309-00-2	0.05	8.0	
6. Heptachlor Epoxide	1024-57-3	0.05	8.0	
		· · · · •		
•				

## Organics - Contract Required Quantitation Limits Task IV (Continued)

RECRA ENVIRONMENTAL, INC.

AND A CASES

Page 4 of 10

Pesticides	CAS Number	Low Water ug/L	Low Soil/Sediment ug/Kg
107. Endosulfan I	959-98-8	0.05	8.0
108. Dieldrin	60-57-1	0.10	16.0
109. 4,4'-DDE	72-55-9	0.10	16.0
110. Endrin	72-20-8	0.10	16.0
111. Endosulfan II	33213-65-9	0.10	16.0
112. 4,4'-DDD	72-54-8	0.10	16.0
113. Endosulfan Sulfate	1031-07-8	0.10	16.0
114. 4,4'-DDT	50-29-3	0.10	16.0
115. Endrin Ketone	53494-70-5	0.10	16.0
116. Methorychlor	72-43-5	0.5	80.0
117. Alpha-chlorodane	5301-71-9	0.5	80.0
118. Gama-chloradane	5301-74-2	0.5	80.0
119. Toxaphene	8001-35-2	1.0	160.0
120. AROCLOR-1016	12674-11-2	0.5	80.0
121. ABOCLOR-1221	11104-28-2	0.5	80.0
122. AROCLOR-1232	11141-16-5	0.5	80.0
123. ABOCLOR-1242	53469-21-9	0.5	80.0
124. ABOCLOR-1248	12672-29-6	0.5	<b>80</b> .0
125. AROCLOR-1254	11097-69-1	1.0	160.0
126. AROCLOR-1260	11096-82-5	1.0	160.0

## Organics - Contract Required Quantitation Limits Task IV (Continued)

- Medium Soil/Sediment Contract Required Quantitation Limits (CRQL) for Volatile TCL Compounds are 100 times the individual Low Soil/Sediment CRQL.
- b Quanitation limits listed for soil/sediment are based on wet weight. The quanitation limits calculated by the laboratory for soil/sediment, calculated on dry weight basis, as required by the contract, will be higher.
  - Medium Soil/Sediment Contract Required Quantitation Limits (CRQL) for Semi-Volatile TCL Compounds are 60 times the individual Low Soil/Sediment CRQL.
- d Medium Soil/Sediment Contract Required Quanitation Limits (CRQL) for Pesticide TCL compounds are 15 times the individual Low Soil/Sediment CRQL.
  - Specific quanitation limits are highly matrix dependent. The quanitation limits listed herein are provided for guidance and may not always be achievable.



a

C

**

Page 5 of 10

Element	Contract Required Detection Level *,H (ug/L)
Aluminum	200
Antimony	60
Arsenic	10
Barium	200
Beryllium	5
Cadmium	5
Calcium	5000
Chromium	10
Cobalt	50
Copper	25
Iroa	100
Lead	5
Magnesium	5000
langanese	15
lercury	0.2
fickel	40
Potassium	5000
Selezium	5
Silver	10
Sodium	5000
Challium	10
Vanadium	50
Ziac	20

## Metals - Contract Required Detection Levels Task IV

Any analytical method specified the current ITB document may be utilized as long as the documented instrument or method detection limits meet the Contract Required Detection Level (CRDL) requirements. Higher detection levels may only be used in the following circumstance:

If the sample concentration exceeds two times the detection limit of the instrument or method in use, the value may be reported even though the instrument or method detection limit may not equal the contract required detection level. This is illustrated in the example below:

Tor Leed: Method in use = ICP Instrument Detection Limit (IDL) = 40 Sample concentration = 85 Contract Required Detection Level (CRDL) = 5

The value of 85 may be reported even though instrument detection limit is greater than required detection level. The instrument or method detection limit must be documented as described in the current IFB document.

RECRA ENVIRONMENTAL THE

These CRDL are the instrument detection limits obtained in pure water that must be not using the procedure in the current IFB document. The detection limits for samples may be considerably higher depending on the sample

Page 6 of 10

Compound	Contract Required Detection Limit		
Total Cyanide	10 ug/L*		
Total Phenol			
2,3,7,8-TCDD	0.002 ug/L (aqueous)** *** (aoa-squeous		
Total polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans	Aqueous and Non-Aqueous TCDD/F 1.0 ppb PECDD/F 3.0 ppb HEXCDD/F 3.0 ppb HEPCDD/F 7.0 ppb OCTACDD/F 7.0 ppb		

Miscellaneous Compounds - Contract Required Detection Limits Task IV

This CRDL is the instrument detection limit obtained in pure water that must be met. The detection limits for samples may be considerably higher depending on the sample matrix.

If the sample concentration exceeds two times the detection limit of the instrument or method in use, the value may be reported even though the instrument or method detection limit may not equal the contract required detection level. The instrument or method detection limit must be documented.

The method detection must be submitted by each individual laboratory.

The detection limit is set by the laboratory but must be less than 1.0 ug/kg (1.0 ppb).

** Specific detection limits are highly matrix dependent. The detection limits specified berein are provided for guidance and may not always be achievable.



٠

.

+

**1** 

**

9833-3

ыжя

643

## Table 6

# Organics - Contract Required Detection Limits Tasks VI and VII

		Contract Required Detection Limits**	
		Uetectio: Veter	Soil/Sediment
Volatiles	CAS Number	ug/L	ug/Kg
Chloromethane	74-87-3	10	10
	74-83-9	10	10
Vinyl Chloride	75-01-4	10	10
Chloroethane	75-00-3	10	10
lethylene Chloride	75-09-2	5	5
, 1-Dichloroethese	75-35-4	5	5
, 1-Dichloroethane	75-34-3	5	5
rans-1,2-Dichloroethene	156-60-5	5	Š
hloroform	67-66-3	5	5
,2-Dichloroethane	107-06-2	Š	Š
,1,1-Trichloroethane	71-55-6	5	Š
arbon Tetrachloride	56-23-5	<u>Š</u> .	Ś
romodichloromethane	75-27-4	Š	5
,1,2,2-Tetrachloroethane	79-34-5	Š	Š
,2-Dichloropropane	78-87-5	Š	5
rans-1,3-Dichloropropene	10061-02-6	Š	Š
richloroethene	79-01-6	Š	Š
ibromochloromethane	124-48-1	Š	Š
.1.2-Trichlroethane	79-00-5	š	Š
	71-43-2	5	ŝ
	10061-01-5	5	5
is-1,3-Dichloropropene	110-75-8	10	10
-Chloroethyl Vinyl Ether	75-25-2	<b>K</b>	Š
romoform	127-18-4	5	5
etrachloroethene	108-88-3	ر ۲	5
oluene		. 5	5
Chlorobenzene	10 <b>8-90-</b> 7 10 <b>0-41-4</b>	5	5
Ethyl Benzene	700-47-4	3	•



Page 8 of 10

		Low Water	Low Soil/Sedimen
Semi-Volatiles	CAS Number	ug/L	ug/Kg
Phenol	108-95-2	10	330
bis(2-Chloroethyl)ether	111-44-4	10	330
2-Chlorophenol	9 <b>5-5</b> 7 <b>-8</b>	10	330
1,3-Dichlorobenzene	541-73-1	10	330
1,4-Dichlorobenzene	106-46-7 /	10	330
1,2-Dichlorobenzene	95-50-1	10	330
bis(2-Chloroisopropyl) ether	108-06-1	10	330
N-Nitroso-Dipropylamine	621-64-7	10	330
Hexachloroethane	67-72-1	10	330
Nitrobenzene	98-95-3	10	330
Isophorone	78-59-1	10	330
2-Nitrophenol	88-75-5	10	330
2,4-Dimethylphenol	105-67-9	10	330
bis(2-Chloroethoxy)methane	111-91-1	10	330
2,4-Dichlorophenol	120-83-2	10	330
1,2,4-Trichlorobenzene	120-82-1	10	330.
Naphthalene	91-20-3	10	330
Hexachlorobutadiene	87-68-3	10	330
4-Chloro-3-methylphenol	•/-••	74	224
(para-chloro-meta-cresol)	59-50-7	10	330
	77-47-4	10	
Hexachlorocyclopentadiene	88-06-2		330
2,4,6-Trichlorophenol		10	330
2-Chloronaphthalene	91-58-7	10	330
Dimethyl Phthelate	131-11-3	10	330
Acensphthylene	208-86-8	10	330
Aceaspathese	83-32-9	10	330
2,4-Dinitrophenol	51-28-5	50	1600
4-Nitrophenol	100-02-7	50	1600
2,4-Dinitrotoluene	121-14-2	10	330
2,6-Dinitrotolu <b>ene</b>	606-20-2	10	330
Diethylphthelate	84-66-2	10	330
1,2-Diphenylhydrazine	122-66-7	10	330
4-Chlorophenyl Phonyl ether	7005-72-3	10	330
Fluorene	86-73-7	10	330
N-aitrosodiasthylamias	62-75-9	10	330
4,6-Disitro-2-methylphenel	534-52-1	50	1600
N-sitrosodiphenylamine	86-30-6	10	330
4-Bromophenyl Phenyl ether	101-55-3	10	330
Hezachlorobenzene	118-74-1	10	3 <b>30</b>
Pentachlorophenol	87-86-5	50	1600
Phenanthrene	85-01-8	10	330
Anthracene	120-12-7	10	330
Di-a-butylphthelate	84-74-2	10	330
Fluoranthene	206-44-0	10	330
	129-00-0	10	330
Pyreae	123-00-0	14	

## Organics - Contract Required Detection Limits Tasks VI and VII (Continued)

RECRA ENVIRONMENTAL, INC.

193

, cr ani

<u>ب</u>ر بر

> 1999 1989

1.18 1.18

. 9**9** 

1

20**8** 

Page 9 of 10

**19**58

14

		. Low Water	Low Soil/Sec	ti⊐e™
Semi-Volatiles	CAS Number	ug/L	ug/Kg	
Butyl Benzyl Phthalate	85-68-7	10	330	
3,3'-Dichlorobenzidine	91-94-1	20	660	
Benzo(a)anthracene	56-55-3	10	330	His No.
bis(2-ethylhexyl)phthalate	117-81-7	10	330	
Chrysene	218-01-9	10	330	
Di-n-octyl Phthalate	117-84-0	10	330	
Benzo(b)fluoranthene	205-99-2	10	330	680+
Jenzo(k)fluoranthene	207-08-9	10	330	
lenzo(a)pyrene	50-32-8	10	330	
Indeno(1,2,3-cd)pyrene	193-39-5	10	330	iaen.
ibenz(a,h)anthracene	53-70-3	10	330	
lenzo(g,h,i)perylene	191-24-2	10	330	
		Detec	tion Limits**	interio
		Water	Soil/Sedimer	1t [°]
desticides	CAS Number	ug/L	ug/Kg	
lpha-SEC	319-84-6	0.05	8.0	
eta- <b>SEC</b>	319-85-7	0.05	8.0	
elta-BAC	319-86-8	0.05	8.0	idariesi.
amma-BEC (Lindane)	58-89-9	0.05	8.0	
eptachlor	76-44-8	0.05	8.0	
ldria	3 <b>09-00-2</b>	0.05	8.0	
eptachlor Epoxide	1024-57-3	0.05	8.0	<b>中</b> 位子1
ndosulfan I	959-98-8	0.05	8.0	
lieldrin	60-57-1	0.10	16.0	<b>6</b>
, 4' -DDE	72-55-9	0.10	16.0	<i>House</i>
ndrin	72-20-8	0.10	16.0	
indosulfan II	33213-65-9	0.10	16.0	
,4'-DDD	72-54-8	0.10	16.0	660.X
Indosulfan Sulfate	1031-07-8	0.10	16.0	
,4'-DDT	50-29-3	0.10	16.0	1
Indrin Aldebyde	7421-93-4	0.10	16.0	
lethoxychler	72-43-5	0.5	80.0	lain di
Chlordane	57-74-9	0.5	80.0	
lozaphene	8001-35-2	1.0	160.0	
ROCLOR-1016	12674-11-2	0.5	80.0	lies.
ROCLOR-1221	11104-28-2	0.5	80.0	
JOCLOR-1232	11141-16-5	0.5	80.0	100
NOCLOR-1242	53469-21-9	0.5	80.0	
ROCLOR-1248	12672-29-6	0.5	80.0	line
ROCLOR-1246	11097-69-1	1.0	160.0	
	L L V 7 / 3 9 7 7 L	4 + W	160.0	

## Organics - Contract Required Detection Limits Tasks VI and VII (Continued)

Detection limits listed for soil/sediment are based on wet weight. The detection limits calculated by the laboratory for soil/sediment, calculated on dry weight basis, as required by the contract, will be higher.

Specific detection limits are highly matrix dependent. The detection limits RECRA ENVIRONM Déalet. herein are provided for guidance and may not always be achievable.

Element	Contract Requirgd Detection Level (ug/L)
Antimony	60
Arsenic	10
Bariun	200
Beryllium	5
Cadmium	5
Chromium	10
Copper	25
Iron	100
Lead	5
Manganese	15
Mercury	0.2
Nickel	40
Selezium	5
Silver	10
Thallium	10
Zinc	. 20

### Metals - Contract Required Detection Levels Tasks VI and VII

+

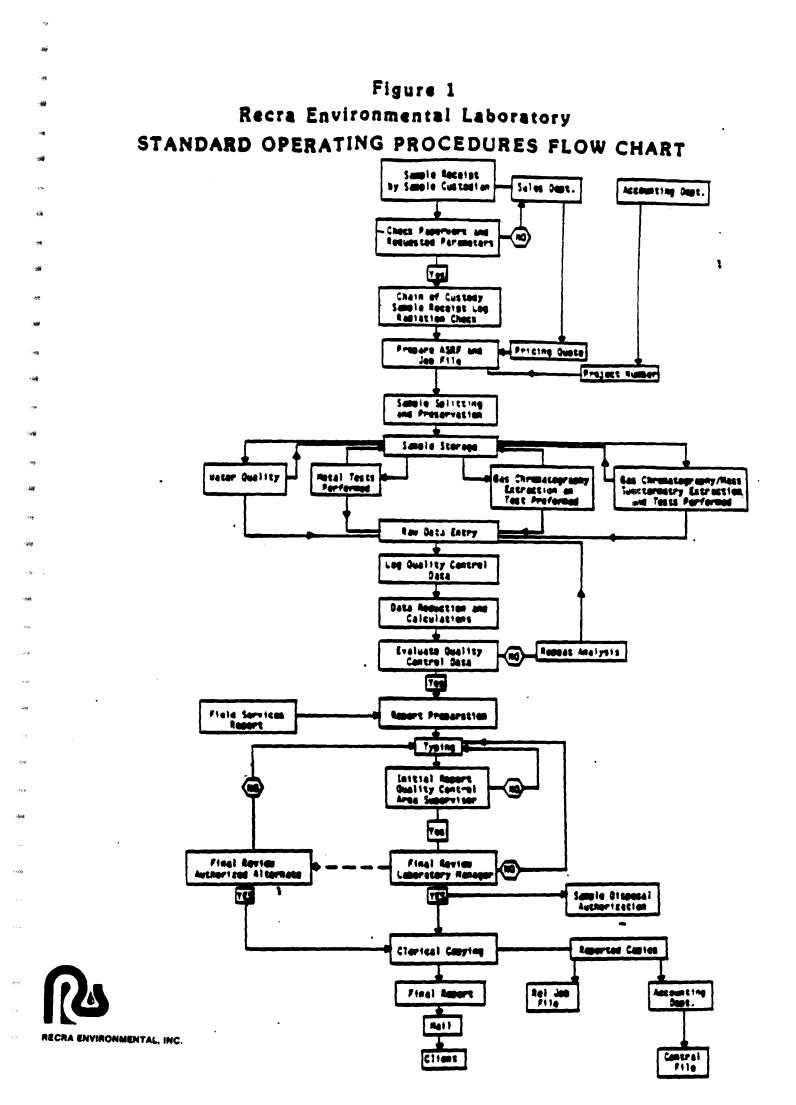
If the sample concentration exceed two times the detection limit of the instrument or method in use, the value may be reported even though the instrument or method detection limit may not equal the contract required detection level. This is illustrated in the example below:

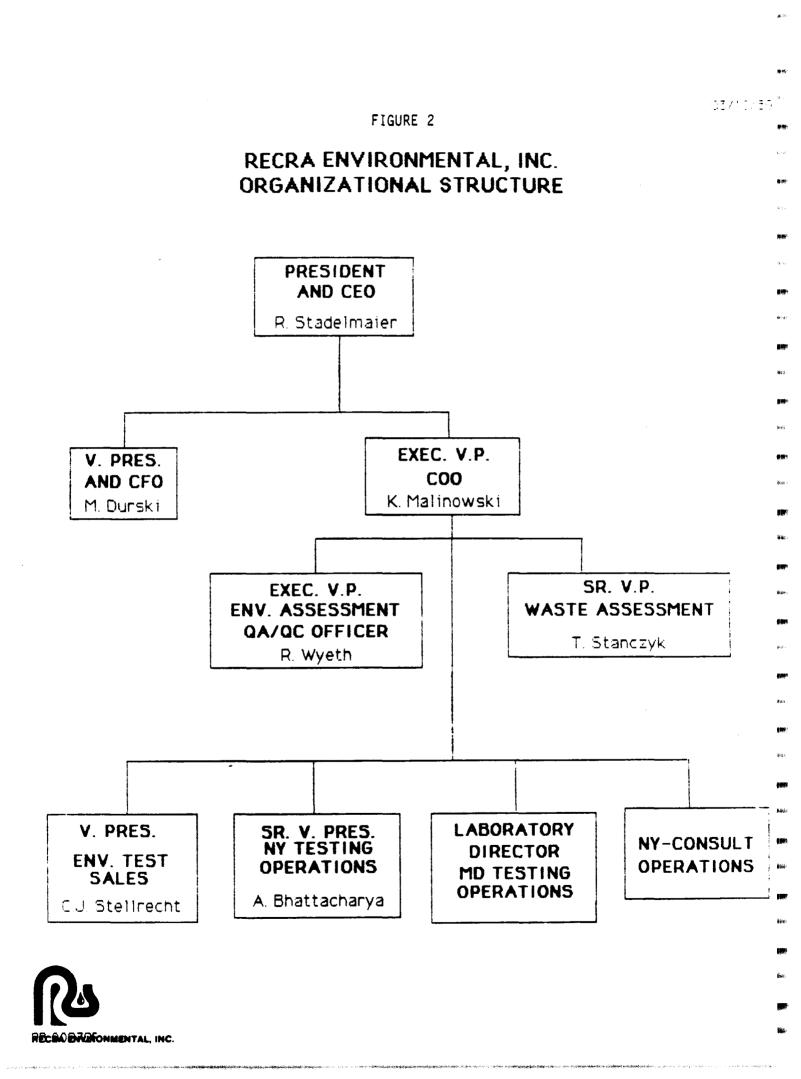
For lead: Method in use = ICP Instrument Detection Limit (IDL) = 40 Sample concentration = 85 Contract Required Detection Level (CRDL) = 5

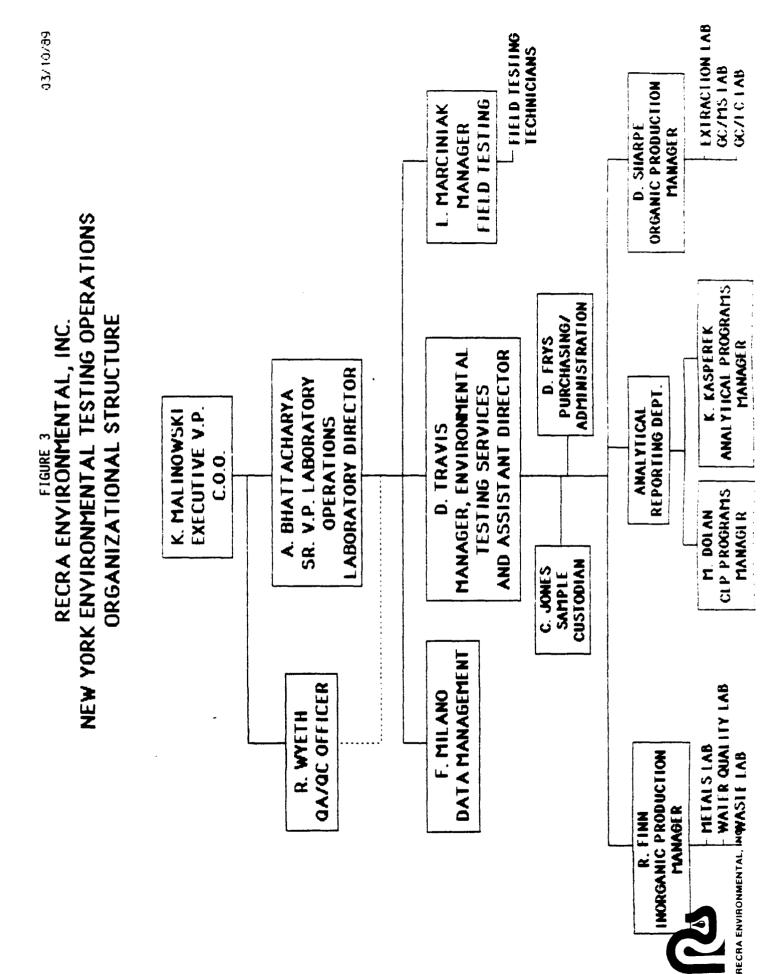
The value of 85 may be reported even though instrument detection limit is greater than required detection level. The instrument or method detection limit must be documented.

These CRDL are the instrument detection limits obtained in pure water that must be met. The detection limits for samples may be considerably higher depending on the sample matrix. ATTACHMENT II

48°M


10.0


. 1933 - 1938


**8**4

# List of Figures









મંદ્ર મુખ્યત્વે મિત્ર

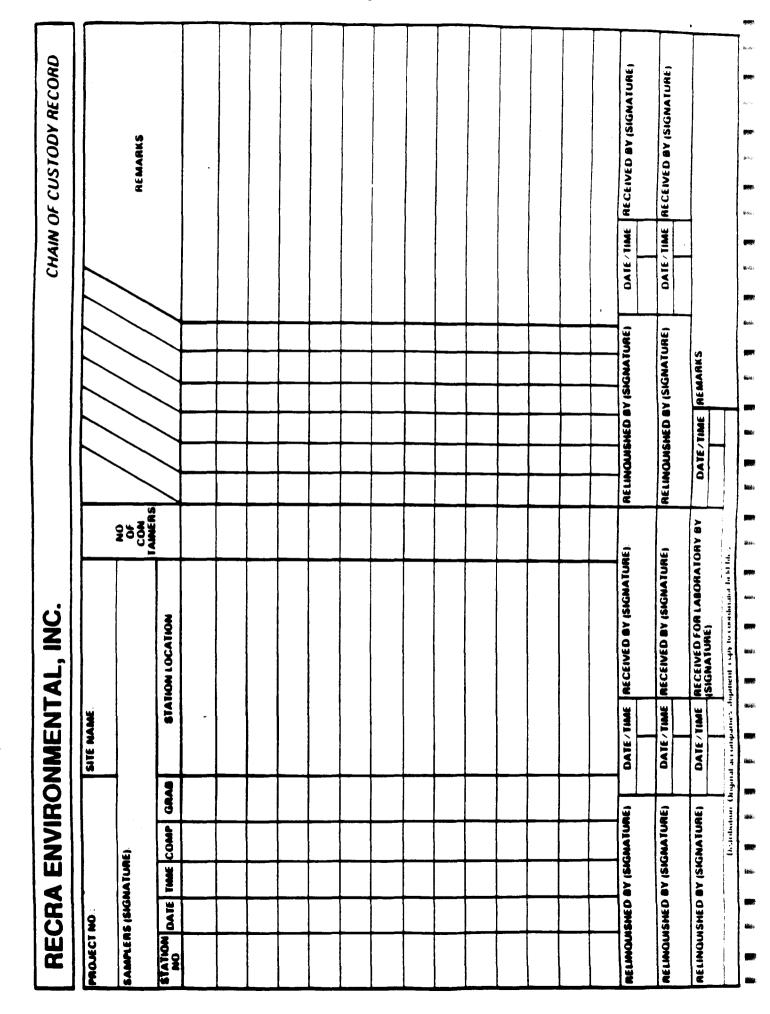



Figure 4

	<b></b> , <b></b> _, D,	5	.uck1 )		
		ANALYTICAL S		REQUEST FORM	
1.	Project #:				•
2.	Initiator of Req	uest:	23.	Job #:	
3.	Sales Contact:	tion Date:	24.	ASRF (Job) Date:	
•	Date of Request:		25.	Samples Received:	
•	eRequired Comple	tion Date:	26.	Quote #:	
	Client Name and	Address:		· · · · · · · · · · · · · · · · · · ·	
				R.E.	I. USE ONLY
			<u> </u>	Collected By	Peers Clicat
		······································	14.	Field Report	
_	ATTN:		15.	Sample Type S	oil Sludge
7.	Carbon Copy			W	ater Oil
8.	Telephone 🖡 (	)		0	ater Oil
).	Chain of Custody				
0.	Sample Date:		16.	Report Writer	
	See Log for	Sample Dates			
1.	See Log for 1	Ful <u>l Sample I.D.</u>		Waste Lab	\$
2.	Preserved in Fiel				
7.	Sample History				
			<u></u>		
•					
•					
3.	Anticipated # of	Samples			
	•	•			
). j		ANALYTICAL	PARAMET	ERS TOTAL \$	-
Į	WQ \$	Metals \$	G	C/LC \$	GC/MS BN/AP S
1					
[			1		1
1			1		
			1		
			1		1
ļ					
l				•	
0.	Sample I.D.:			C/MS VOL \$	21. VOA Scheme
	Sample I.D.	's apply to all param	eters .		Actual # vi
					<b>Field Bla</b>
					pts x V
1					
					In Duplicate
	-				Lab Composited
	-				Ten coshosree
	-				
	•				
					# Vials/Poi
2.	Specific Require	mats: ie. report co	patent, s	pecial handling, s	# Vials/Poi
2.	Specific Requires	ments: ie. report co filtered in f			# Vials/Poi
2.	Specific Requirem				# Vials/Poi
2.	Specific Require				# Vials/Poi
2.	Specific Require				# Vials/Poi
2.	Specific Requires				# Vials/Poi
2.	Specific Requirem			¢.	# Vials/Poi
			Signatu	C.	efety, preserved or
		filtered in f	Signatu	C.	efety, preserved or
29.		filtered in f	Signatu Service R	c. re epresentative) <u>All</u> Signature	# Vials/Poi
29.	P.O. #	filtered in f	Signatu Service R	c. re lepresentative) <u>All</u>	efety, preserved or
29.	P.O. #	filtered in f	Signatu Service R	c. re epresentative) <u>All</u> Signature sple Custodian)	efety, preserved or

		rs				LS				rs	ı			TS		SAM	PLI	E 1	ire [NVI	6 Ent(					S			S			s	<b>₩</b> ₩ • •
INVENTORY		BOTTLE DESCRIPTION - COMMENTS				BOTTLE DESCRIPTION - COMMENTS				BOTTLE DESCRIPTION - COMMENTS				BOTTLE DESCRIPTION - COMMENTS							STUMMUN - NOILTIN DESCRIPTION - COMMENTS	404 VOV			BOTTLE DESCRIPTION - COMMENTS			BOTTLE DESCRIPTION - COMMENTS			BOTTLE DESCRIPTION: - COMMENTS	
IVII 31.	SAMPLING	DATE			SAMPLING	DATE		•	<b>SAMPLING</b>	DATE			SAMPLING	DATE			SAMPLING	DATE			SAMPLING				SAMPLING		SAMPLING	DATE			SAMPLING	
ANALYTICAL		SAMPLE ID				SAMPLE ID				SAMPLE ID				SAMPLE ID				SAMPLE ID			SAMPLE IN	,			SAMPLE ID			SAMPLE ID			SAMPLE ID	
-	REC.	COOL	•	•	REC.	COOL	•	•	REC.	COOI.		•	REC.	Cool	•	•	REC.	COOL	•	•	REC.				REC.		REC.	C00L		•	REC. COOL	
		DELIVERY				DELIVERY		528 						DELIVERY				DELIVERY		€ <b>2</b> 8 	ATENI IN			<b>2</b> 2 1	V <b>g</b> avi iau			DELIVERY			Vgavi ian	
		PRES.		3		PRES.	ł	3		PRES.	1	3		PRES.	1	3		PRES.	1	3				5	5 <b>44</b> 4	3		PRES.	1	3	5 J D D	
		100	•	1		108	_	3		100	•	1		108	•	3		100	•	3.			1			1		A BOL	•	1		
	PROJ 1/	CLIENT			PROJ #/	CLIENT	•		PROJ #/	CLIENT	•	·	PROJ 1/	CLIENT	•		PROJ #/	CLIENT	•		11 LONG	CLLEN!			PROJ #/		PRO1 4/	CLIENT			PROJ //	
<b>Yenese</b> y, to a		REC.	- 1 .e.p.16	47	- 1	: REC.	(Ver ligh alt 1	inersetterzym i e	-776.545	REC.		. 2 %		2 REC.	nego genera	den dan dag		L REC.	ting to a	e e sua			L, 20.00.	an the state		统论论 部分的计论管	2016 / 19185			ar 1 4. 1.	1	

IES RA ROP TAL ORA ANALYTICAL OR INVENTO

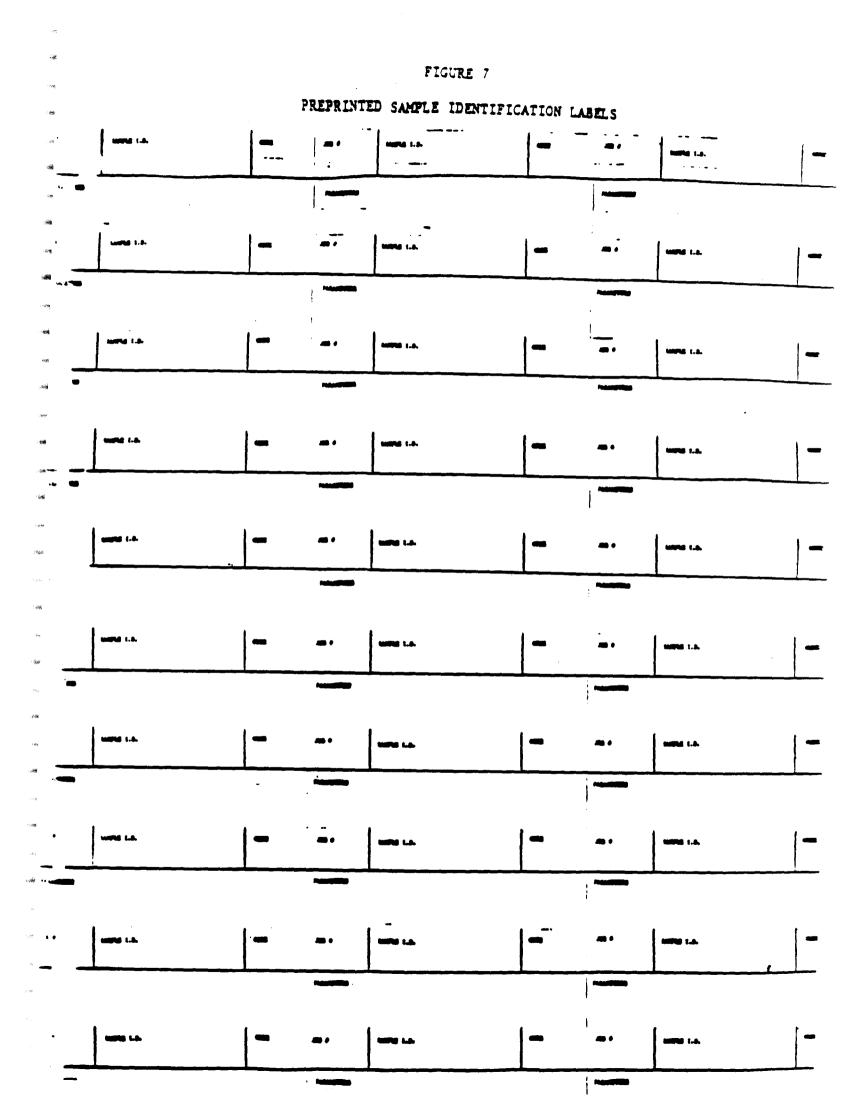



FIGURE 8

a an an the state of the second s

SAMPLE PREPARATION LOG FOR CLP WATERS - RECRA ENVIRONMENTAL, INC.

JOB # 89-	SAMPLE ID	V I AL NUMBER	TYPE OF ANALYSIS	ĽΣ	TINI PH	ADJ. PH	EMUL- SION *	EXTRACTION DATE & INT	CONC. DATE& INT	CLASS WARE SET	FINAL
		SW									
		SW-									
Spinolitane		SW-	-								
Programatica		SW-									
attice of the second		SW-				•					
4.0000000		SW									
		SW-									
		SM									
		SW-									
		SW-									
		SW-							-		
		-MS									
		-MS									
		-MS									
. •••••••											
* Fmul sion:	ion: f. = light:	M = medium	: II = heavy	2			Reviewed by:	.vd be	Date:		
	¥ 1		*	U		۔ د					
			9014 90-5		kani.				eri		en festi 

e-siq

4編 -64

FIGURE 8A

SAMPLE PREPARATION LOG FOR CLP BN/AP - RECRA ENVIRONMENTAL, INC.

JOB #	SAMPLE ID	V I AL NUMBER	TYPE OF ANALYSIS	SAMPLE VOLUME	'TINI Hq	ADJ. PH	EMUL- SION	EXTRACTION DATE & INT	CONC. DATES INT	GLASS WARE SFT	FINAL
		BN-									
		BN-									
		BN-	-								
		BN-									
		EN-									
		BN-									
		BN-									
		BN-									
		BN-									
		BN-									
		BN									
		BN-									
		BN-									
		BN-									
DMMENTIS:											1 1 1 1 1 1 1 1 1 1
* Emulsion: L	= light	; M = medium ; H	m ; H = heāvy	z 	allou =		Revie	Reviewed by:	Date:		

FIGURE 8B

RECRA ENVIRONMENTAL, INC.

	EXTF	EXTRACTION SUMMARY	UMMARY					X DRY WEIGHT	<b>MEIGHT</b>				CONCE	NTRATIO	N & CLE	CONCENTRATION & CLEANUP SUMMARY	RY	
JOB NUMBER	SAMPLE ID	V I AL NUMBER	EXTRACT DATE	ANALYST	NETHOD OF EXTRACT	SAMPLE (	GLASS- MARE SET	DISH MGT.	MET D + DISH D	DRY WET + MGT. DISH	T DRY T. MGT.	XDRY	TYPE OF Clean up	SPLITS ?	F I NAL VOLUME	DATE PREP FINISHED	CLEANUP INITIALS	TYPE OF ANALYSIS
							$\backslash$											
							$\setminus$											
							$\setminus$											
							$\setminus$											
							$\setminus$											
							$\setminus$											
																	No. 1. Andrewsky and a state of the state of	
							$\setminus$											
							$\setminus$											
						Y	$\overline{\ }$											
							$\setminus$											
							$\overline{\ }$											
MUTES:																		
															1			
														-		1   		
														•			-	
													i					
METHOD OF EXTRACT: SOXIET, SONICATION, OR STEAM DISTILLATION	KIRACT: S	UXIEL, SC	DNICALIUN,	OR SIFAM	I DISTILLA		1	l			REVIEMED BY		1	•	UAIL		•	
		linka e	istari		1944) 1944)	63-91		<b></b>					in an	<b>1998</b> 1990	5	<b></b>		<b></b>

	, <u>-</u>				CF/			JC 136 BOOK
•	INITIALS	JOB #	VIAL 0	AUTO A	DF	ANALYSIS	PORT	COMMENTS
20 20								Figure 9
<i>(</i> 9								
. 16's								
2 <b>4</b>								
- 180		]						
		1						
1938								<b>A</b>
dini dini								
- 50								
<b>3</b>								<u>, , , , , , , , , , , , , , , , , , , </u>
: ##1								
: <b>198</b>								- -
- 979								
	•							
3 <b>-68</b>								
-100								
- 24%	·							
str					· · ·			
	•**•							
æ		2	-					
्य					<u> </u>			
ويند.								
1988					<b> </b>	<u> </u>		
-4 <b>8</b>		<u> </u>						
9					<u> </u>			
**								
-1								
		<b> </b>		<b> </b>			+	
- 19		+						
		<u> </u>			<b> </b> -			

• •															Fig	jure.	
Dute of Calc:	Compound																
	1/31																
And yst:	ncan NE																i
	11														ĺ		
	КF																
ment:	unica Unics														-		
lust rument :	are Date																
11.1.4	1																
••!	111																
Analysis	Ŀ.		 	 	Ļ	 <u> </u>		<u> </u>									
			-														   
	2 7																
Project 1	Vol. Ext.																
Jub I:	Sample I dent if icat ion																

SPECIFIC ANALYSES HAW - ATAU WAN

			Compound														fa,	igut	e	. <u>-</u>
		et Cale:																		
		Nate	9/91																	
			10	Ī		1						<u> </u>							<u> </u>	
			STD RF.																	
,-		Analyst:	Calc Factor																	
IIAL			Area Inits					•												
		nt :	Sample RT														•			Ň
•		Instrument:	Date Inj.																	
II UL_			<u> </u>																	
			rıl. Inl.						-											}
RMI -		1a :	1.1															·		
		Analysis:	2 2																	
		1	Dry Helfht		T	·														
		<b>)</b> :	r Lu																	
		Project	He I Chc																	
	Evi. dale. :	10¦0  :																		

DATA - (:1,P - HATER		μF	مد بداد																						•				<u>-</u> g	1.	-
KAN DA	. [N]	UNL 3.1VD	R. F.																												
	NUL	COLUMN DA	ARLA UNITS																												
i.	ME	CUNF CU	R.T.																												
.11	HANTON TY																														
	4	* - * *	r Ray	·																											
		DF																													
110	VUL. EXT.		R.F.						·																						,
	DA	ſNI	ARE A 44175																												1
		DATE	R. T.												F						·					ſ					1
nihas surveyse <del>inter</del>	DATE I.	QUANT COLUMN	COMPOUND	· alplia - BHC	beta-BHC	delta - BHC	ça mine -BHC	liptachlor	Aldrin	Iteptachier Epoxide	Endosulfan I	Dieldrin	4,4'-00E	Eadrin	Endesultan I	Endrin Aldehyde	I integration Sulfate	4.4~-001	1.le thex ychler	Endrin Ketone	Tech. Chierdane	alpha-Chlordane#	gamma-Chlordanet	Texaphene	Arecler - 1016	Areclor - 1221	Arector - 1232	1		Aructor - 1254	

}											]		
DATE EXT.		GRAMS	IS EXT.		<b>14</b> 0	FINAL VOLUME	ME		VOL.	.[N]	DRY	Y W1.	
	DATE I	INJ.		DF			C0141	COMPLIANTION C	COL DATE	E INJ.		DF	
	R.T.	AREA		) X	9/9 <b>1</b>		R.T.	AREA UNITS		RG	אניין		
													]
Heptachier Epexide													
													1
													T
													<u> </u>
Endrin Aldehyde													
Endosulfan Sulfate													
													1
													1
Tech. Chierdane				-									
aipha-Chiordanet													,
gamma-Chlordane th													
1016													
1221													
1232													<del></del>
1242													
1248							•	-					<b>F</b>
1254													35.5
1260													ŧ.
טובט וזן נאנטנאואונ													-

- 194

.

20	
MA	
<u>्र</u>	1
-8	
-1	
	·
	· · · · · · · · · · · · · · · · · · ·
	4
<u>.a</u>	
Še l	
	ł
am	
3	
•	

CC/NG LOG BOOK

Figure .-

**6**65

ione:-

**1**0-12-1

. 1943 -

**1**11 . Kiloi

**89**5

ies:

ikosi -

**i**nterio

歌颂

10.00 6000

أنسما : 1966-----

		,		1		 1	 +	· <del> </del>		 	+	 				Ξ.	gure .
	•	dev vt.		/ 9n													
	lov. [nt	C		dry weight						Γ							
	ug/l - C / Inj.vol.	:		Ull. Factur			T										
	130	ug/kg dry	-	1uj. vol. (ml)													
1.331		131		36-1 3000 3000													
ATLUN S	- 1			Area 15 Aa													-
INN'I FIC	Ac . Ca Au . H		.E	nt is ou col Ca													\$
PRIVALITY PULLUTANT QUANTIFICATION SHEET	۲ ت	•	SANTLE	Compound area Ac					×								
nd XIJN				Meup. Factor R													
VULATILE				1 1 1 1 1 1													
	55		UTANUAL T														
				Compound area Ac													
SANPLE NO.	INSTRUMENT			CONFOUND	•								•	-			

-

- **3**9

100

> ing Gi<del>tt</del>

. 19 ۴

GC/MS

216

, se

den T

Figure .)

••



UAFE	23	dry-1.1 . 8 . d	fv laj (1) (mi) vol E. 11E/										<u> </u>
1.33		9/34	Area NG 15 uu col Au c										
GC/HS FULLUTANT QUANTIFICATION SHEET	. Ca	SMITLE	ng 15 en col Cu					•					
KS IT QUANTLE			Correct area Ac			•							
			Keap Factor K				•			•			
HI/AP PRIMITY													
841/AF	•	STAMARD	5=2		•								
	40 · Co 40 · Co		ar 'la par est										
					•		•						
FILE NAUE SAN'LE ND. INSIMMENT				•		•		•					

5		9		70	7 4	÷	٠	٠	-	0
5	٠	5	٠		5	4	•	-	2	2

FIGURE 17

ILE NAME	
SAMPLE ID	·
10B #	
WALYSIS DATE	
ANALYST	

SAMPLE VOLUME	
PURGEABLE A VOL	ikiy.
PURGEABLE B VOL	<b>pika</b> n.
PURGEABLE C VOL	- ندیکا
VOLUME IS USED	

COMPOUND NAME	SCAN #	LON AREA		CHARACTERISTC EI ION	NS T
Chlosepthese				(Rel. Int.)	insis-
Chloromethane C			50(100)	52(33)	
Bromomethane C Chloroethene C			94(100)	96(94)	
Chloroethene C Chloroethene C			62(100)	64(33)	
			64(100)	66(33)	
Methylene Chloride A			84(86)	51(33)	
Trichlorofluoromethane			49(100)		
1,1-Dichloroethylene A			101() 96(80)	103()	
				61(100) 98(53)	
Bromochloromethane (IS)			128(70) 494100)	130(88)	<b>1</b>
(10)			63(100)	<u> </u>	Nijeć
1,1-Dichloroethene A			85(8)		
Trans-1,2-Dichloroethylene B			96(90)	<u>98(7)</u> 100(4) 61(100) 98(57)	<b></b>
Chloroform A			83(100)	85(66)	<b>1</b> 11
· · · · · · · · · · · · · · · · · · ·			62(100)	64(33)	
1,2-Dichloroethane B			98(23)	100(15)	
			97(100)	99(66)	<u> </u>
1,1,1-Trichloroethane B			117(19)	119(16)	\$\$d ₁ ∞
Carbon Tetrachloride A			117(100)	<u>119(96)</u> 121(30)	
Bromodichloromethane B			83(100)	85(66)	
1,2-Dichloropropane A			63(100)	<b>65(33)</b> 11+(3)	1043
Trans-1, 3-Dichloropropene B			75(100)	77(33)	
			130(90)	97(66)	
Trichloroethylene A			95(100	132(85)	يهشرم
Benzene B			78(100)	77(19)	
Dibromochloromethane A			129(100)	208(13) 206(10)	
Cis-1,3-Dichloropropene			75(100)	77(33)	
			97(100)	85(60) 83(95)	
1,1,2-Trichloroethane A			99(63)	<u>132(9)</u> 134(8)	B
2-Chlorovinyl Ether			106(18)	<b>65(32)</b> 63(95)	
	1				19 J I
1,4-Difluorobensene (IS)			114()	<u>63()</u> 88(	)
	1		173(100)	171(50) 175(50)	
Bromoform			252(11)	254(11)	100 AU
• • • • • •			164(78)	131(62)	
Tetrachloroethylene A			129(64)	166(100)	<b>^#</b>
			83(100)	85(66) 131(	। सन्द्र
1,1,2,2-Tetrachloroethane B			133()	166()	
Chlorobenzene De (IS)			117()	<b>82(</b> ) 119(	
				91(100)	
Toluene B			92(78)	114(33)	
Chlorobenzene A Ethylbenzene B'			112(100)	91(100)	
Acrolein			106(33) 56(83)	55(64)	
Acrylonitrile			53(99)	<b>51(32)</b> 52(75)	
				$\frac{31(32)}{148(64)} \frac{32(73)}{113(12)}$	
1,3-Dichlorobenzene			146(100	$\frac{148(64)}{148(64)} = \frac{113(12)}{113(12)}$	
1,4-Dichlorobenzene			146(100)	$\frac{148(64)}{148(64)} = \frac{113(12)}{113(12)}$	
1,2-Dichlorobenzene			146(100)		

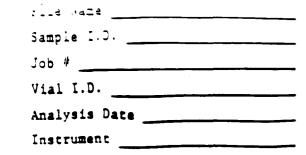

(b) , i.e. (b) , the constraint of the matrix of the matrix of the theorem (b) , (c) 


FIGURE 18

Final Volume Inicial Volume Injection Volume ng Internal STD Dry Weight _____

		ION		Characteristic	
COMPOUND	SCAN #	AREA	EII	ons (Rel. In	t.)
phenol		L	94(100),	65(21),	66(25)
2-chlorophenol			128(100),	64(54),	130(31)
Bis-(2-chloroethyl)ether			93(100),	63(99),	95(31)
1,3-dichlorobenzene			146(100),	148(64),	113(12)
1,4-dichlorobenzene			146(100),	148(64),	113(11)
1,2-dichlorobenzene			146(100),	148(64),	113(11)
Bis-(2-chloroisopropyl)ether			45(100),	77(19),	79(12)
hexachloroethane			117(100),	199(61),	201(99)
N-nitroso-Di-Propylamine			70(100),	42(63),	
	,		130(25),	101(12)	I
nitrobenzene			77(100),	123(50),	65(15)
Isophorone			82(100),	95(16),	138(18)
2-nitrophenol			139(100),	65(35),	109(8)
2,4-dimethylphenol			107(90),	122(100),	121(55)
Bis-(2-chloroethyoxy)methane			93(100),	95(32),	123(21)
2,4-dichlorophenol			162(100),	164(58),	98(61)
1,2,4-trichlorobenzene			180(100),	182(80),	145(52)
naphthalene			128(100),	127(10),	129(11)
hexachlorobutadiene			225(100),	223(63),	227(65)
4-chloro-3-methylphenol			107(80),	142(100),	144(32)
hexachlorocyclopentadiene			237(100),	235(63),	272(12)
2,4,6-trichlorophenol			196(100),	198(92),	200(26)
2-chloronaphthalene		<u> </u>	162(100),	164(32),	127(31)
acenaphthylene		<u> </u>	152(100),	153(16),	151(17)
dimethylphthalate			163(100),	164(10),	194(23)
2,6-dinitrotoluene			165(100),	63(72),	121(23)
acenaphthene		<u> </u>	153(86),	152(41),	154(100
2,4-dinitrophenol			184(100),	63(59),	154(53)
2,4-dinitrotoluene			165(100),	63(29),	182(10)
4-nitrophenol			109(31),	65(86),	139(100
fluorene			166(100),	165(80),	167(14)
4-chlorophenyl-phenyl ether			204(100),	206(62),	141(14)
diethylphthalate			149(100),	177(29),	150(13)
N-nitrosdiphenylamine			169(98),	168(100),	167(98)
4,6-dinitro-2-methylphenol			198(100),	182(35),	77(28)
4-bromophenyl-phenyl ether			248(100),	250(99),	141(45)
			284(100),	142(30),	249(24)
hexachlorobenzene		h	266(100),	264(62),	268(63)
pentachlorophenol			178(100),	179(16),	176(15)
phenanthrene	·		178(100),	179(16),	176(15)
anthracene	······································	ļ	149(100),	150(9),	104(3)
di-n-bucylphthalace			202(100),	101(23),	100(14)

# EXTRACTABLES

# FIGURE 18 (CONT'D.)

COMPOUND	SCAN #	ION AREA	Characteristic EI Ions (Rel. Int.)					
pyrene			202(100),	101(26),	100(17)			
bucyl benzylphthalate			149(100),	91(50)				
benzo(a)anthracene			228(100),	229(19),	226(19)			
chrysene			228(100),	229(19),	226(19)			
3,3'-dichlorobenzidine			252(100),	254(66),	126(16)	<b>, 19</b>		
bis(2-ethylhexyl)phthalate			149(100),	167(43),	279(18)	-		
di-n-octylphthalate			149(100),		ě.	Bilder -		
benzo(b) & benzo(k)fluorantheae			252(100),	253(23),	125(15)			
benzo(a) pyrene			252(100),	253(23),	125(21)			
indeno(1,2,3-cd)pyrene			276(100),	138(28),	277(27)	anger:		
dibenzo(a,h)anthracene			278(100),	139(24),	279(24)			
benzo(g,h,i)perylene			276(100),	138(37),	277(25)			
deuterated phenanthrene (d10) IS			188(100),	94(19),	80(18)			
o-fluorophenol			112,	64,	63,			
phenol-D6			99,	42,	71,	-		
decafluorobiphenyl			334,	335,				
2-fluorobiphenyl			172,		je j	ingje		

ANALYST

iinise.

Grage-

tere .

ie.s.

ίčλ.

Rife.

**1** 

liit;

	· · ·	VOLATILES	
8	FILE NAME		SAMPLE VOLUME
aj Na	SAMPLE ID	FIGURE 19	NG INTERNAL STANDARD
520	JOB #		NG SURROGATE
	ANALYSIS DATE		NG MATRIX SPIKE
	INSTRUMENT		ANALYST
1.50			

COMPOUND NAME	SCAN #	ION AREA	RF		CHARACTERISTIC EI
					(Rel. Int.)
Chloromethane SPCC C				50(100)	52(33)
Bromomethane C				94(100)	96(94)
Vinyl Chloride CCC C				62(100)	64(33)
Chloroethane C				64(100)	66(33)
				84(86)	51(33)
Methylene Chloride A				49(100)	86(55)
Acetone				43(	) 58( )
Carbon Disulfide				76(	) 78( )
1,1-Dichloroethene CCC A				96(80)	61(100) 98(53)
				128(70)	130(88)
Bromochloromethane (IS)				49(100)	51(33)
				63(100)	<u>65(33)</u> 83(13)
1,1-Dichloroethane SPCC A				85(8)	<b>98(7)</b> 100(4)
Trans-1, 2-Dichloroethene B				96(60)	
Chloroform CCC A				83(100)	
2-Butanone					85(66)
				72(	) 57( )
1,2-Dichloroethane D4 (SURR)				65(	) 102( )
				62(100)	64(33)
1,2-Dichloroethane B				98(23)	100(15)
				97(100)	99(66)
1,1,1-Trichloroethane B	l			117(19)	119(16)
Carbon Tetrachloride A				117(100)	<b>119(96)</b> 121(30)
Vinyl Acetate				43(	) 86( )
Bromodichloromethane B				83(100)	85(66)
1,2-Dichloropropane CCC A				63(100)	<b>65(33)</b> 114(3)
Trans-1, 3-Dichloropropene B				75(100)	77(33)
				130(90)	97(66)
Trichloroethene A				95(100)	132(85)
Benzene B				78(100)	77(19)
Dibromochloromethane A				129(100)	208(13) 206(10)
Cis-1, 3-Dichloropropene				75(100)	77(33)
				97(100)	85(60) 83(95)
1,1,2-trichloroethene A	•			99(63)	132(9) 134(8)
2-Chloroethylvinyl Ether A		<u> </u>		106(18)	<b>65(32)</b> 63(95)
1,4-Difluorobensene (IS)				114(	) 63( ) 88(
					<b>171(50)</b> 175(50)
Bassien SBCC				173(100)	
Bromoform SPCC B				252(11)	254(11) 250(
2-Hexanone				43(	) 58( )
				57(	) 100( )
	ſ			164(78)	131(62)
Tetrachloroethene A				129(64)	166(100)
1,1,2,2-				83(100)	85(66) 131(7)
[etrachloroethane SPCC B	1			133(7)	166(5)
Toluene D8 (SURR)				98( )	<b>70(</b> ) 100(
-Methy1-2-Pentanone				43()	<b>58(</b> ) 100(

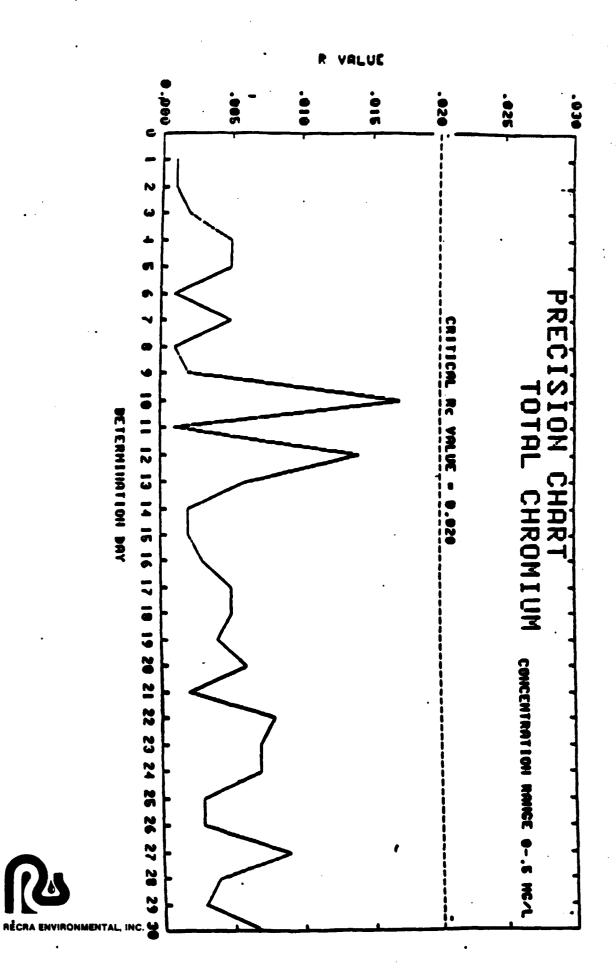
FIGURE 19 (CONT'D) HAZARDOUS SUBSTANCE LIST VOLATILES

COMPOUND NAME	SCAN	ION AREA	R <b>F</b>	CH	RACTERISTIC EI	Bijke:
					(Rel. Int.)	
Toluene CCC				92(78)	91(100)	
Chlorobenzene D4 (IS)				117() 82(	) 119(	inter a
Chlorobenzene SPCC				112(100)	114(33)	
Ethylbenzene CCC				106(33)	91(100)	
4-Bromofluorobenzene (SURR)				95() 174(		 Iww.
Styrene				104()	78()	
Ortho-Xylene				91()	106( )	
Meta & Para-Xylene				91()	106()	

	EKIRAUTABLES HSL	Final Volume
Sample I.D	CLP	Inicial Volume
Job #		Injection Volume
Vial I.D.	FIGURE 20	ng Internal Std
Instrument		ng Matrix Spike
Analysis Date		Dry Weight

COMPOUND NAME		SCAN #	ION AREA		Characteristi Lons (Rel. In	
Phenol	CCC			94(100)	65(21)	66(25)
Bis-(2-Chloroethyl)ether				93(100)	63(66)	95(32)
2-Chlorophenol				128(100)	64(52)	130(32)
1,3-Dichlorobenzene				146(100)	148(64)	113(12)
1,4-Dichlorobenzene	CCC			146(100)	148(64)	113(11)
Benzyl Alcohol				108(93)	79(100)	77(67)
1,2-Dichlorobenzene				146(100)	148(64)	113(12)
2-Methylphenol				108(100)	107(75)	
Bis-(2-Chloroisopropyl)ether				45(100)	77(4)	79(17)
4-Methylphenol				108(91)	107(100)	19(17)
N-Nitroso-Di-Propylamine	SPCC			70(100)	42(63)	
				101(12)	130(25)	
Hexachloroethane				117(76)	201(100)	199(61)
122222222222222222222222222222222222222	*******	22222222	1222223	22222222222	==================================	199(61)
Nitrobenzene	1			77(100)	123(42)	65(14)
Isophorone				82(100)	95(6)	138(47)
2-Nitrophenol	CCC			139(100)	65(36)	109(8)
2,4-Dimethylphenol				107(92)	121(54)	122(100)
Benzoic Acid				122(89)	105(100)	77(73)
Bis-(2-Chloroethyoxy)Methane				93(100)	95(32)	123(21)
2,4-Dichlorophenol	ccc			162(100)	164(63)	98(38)
1,2,4-Trichlorobenzene				180(100)	182(96)	145(30)
Naphthalene				128(100)	129(11)	127(10)
4-Chloroeniline				127(100)	129(34)	1 16/(10)
Hexachlorobutadiene	CCC			225(100)	223(63)	227(65)
4-Chloro-J-Methylphenol	CCC			107(80)	144(32)	142(100)
2-Methylnsphthalene				142(100)	141(79)	144(100)
		33223322	12222223	322222222222	=======================================	
Hexachlorocyclopentadiene	SPCC			237(100)	235(63)	272(12)
2,4,6-Trichlorophenol	CCC			196(100)	198(97)	200(31)
2,4,5-Trichlorophenol				196(100)	198(89)	200(31)
2-Chloronaphthalene				162(100)	164(32)	127(32)
2-Nitroaniline				65(100)	92(84)	138(11)
Dimethyl Phthalate				163(100)	194(12)	164(9)
Acenaphthylene				152(100)	151(20)	153(14)
3-Nitroaniline				138(90)	108(66)	92(96)
Acenaphthene	CCC			153(86)	152(41)	154(100)
2,4-Dinitrophenol	SPCC			184(100)	63(52)	154(83)
4-Nitrophenol	SPCC			109(31)	139(100)	65(86)
Dibenzofuran				168(100)	139(23)	
2,4-Dinitrotoluene	ł			165(100)	63(31)	182(11)
2,6-Dinitrotoluene				165(100)	89(48)	121(21)
Diethylphthalate				149(100)	177(28)	150(13)
4- Chlorophenyl-phenylether				204(100)	206(34)	141(29)
Fluorene				166(100)	165(80)	167(15)
4-Nitroaniline				138(100)	92(50)	108(33)

	43 43 <b>61</b>	SL				
	FIGURE 2		יח''			. :
	T	ION		Characterist		
COMPOUND NAME	SCAN #	AREA	EI	[][] [][]]	ie-	
4,6-Dinitro-2-Methylphenol			198(87)	182(4)	77(100)	
N-Nitrosodiphenylamine CCC	<u>'</u>		169(100)	168(69)	167(36)	
4-Bromophenyl-phenylether			248(100)	250(99)	141(45)	
Hexachlorobenzene	1		284(100)	142(30)	249(24)	
Pentachlorophenol CCC	:		266(100)	264(68)	268(70)	##
Phenanthrene	<u> </u>		178(100)	179(23)	176(25)	Kara
Anthracene			178(100)	179(16)	176(17)	
Di-N-Butylphthalate	T		149(100)	150(17)	104(17)	
Eluoranthene CCC			202(100)	101(14)	100(9)	
Pyrene	<b>P</b>	19999999	202(100)	101(21)	100(15)	:223
Jutylbenzylphthalate	++		149(100)	91(61)	206(27)	······
3,3'-Dichlorobenzidine	++	,	252(100)	254(66)	126(16)	
Senzo(a)Anthracene	++		228(100)	229(22)	226(22)	
Bis(2-ethylhexyl)Phthalate	++		149(100)	167(29)	279(7)	
hrysene			228(100)	226(21)	229(20)	
Di-N-Octyl Phthalate CCC	:	10	149(100)			,223 
Senzo(b) & Benzo(k)Fluoranthene	++		252(100)	253(23)	125(16)	
Senzo(a) Pyrene CCC	: <del>1+</del>	,	252(100)	253(21)	125(15)	
Indeno(1,2,3-cd)Pyrene	++	,	276(100)	138(28)	277(27)	
Dibens(a, h) anthracene	1	) /	278(100)	139(24)	279(24)	
Serzo(g,h,i)Perylene			276(100)	138(37)	277(26)	
Phenol-d <b>6</b> SURR (1)	<b>***</b> *****	<b>133333</b> 34	99(100)	42(25)	71(38)	/22:
L-Fluorophenol SURR (1)		,	112(100)	64(80)	+	
itrobensene-d5 SURR (2)			82(100)	128(46)	54(63)	 **
2-Fluorobiphenyl SURR (3)			172(100)	171(35)		
?,4,6-Tribromophenol SURR (3)			330(100)	332(98)	141(72)	
erphenyl-dl4 SURR (5)			244(100)	122(13)	212(6)	
.======================================	<b>***</b> *****	<b> \$32</b> 2333	152(58)	( <b>28</b> 3333333333)	115(40)	===
	÷+		136(100)	68(8)	1112(-0)	*
laphthalene-d8 IS .cenaphthene-d10 IS	<b>+</b> +		164(100)	162(82)	160(40)	
Phenanthrene-dlo IS	<b>+</b>		188(100)	94(74)	80(14)	
Chrysene-dl2 IS	++		240(100)	120(10)	236(20)	ī
erelene-dl2		,	264(100)	260(18)	265(23)	—


ANALYST

-

and the second 
**8**87

**i**tiin⇒.

ine Si i



С

1

						_	Fig	gure	22			 	 				
S.IATTALS	DATE					ĥ	JATER DATA	R QUA Shi	ALITY EET	2					-		¥1.9.
	DATE															,	
INITIALS	ANALYSIS DATE																
INITIALS	ANALYSIS DATE							-									
INITIALS	ANALYSIS DATE																
INITIALS	ANALYS IS DATE																
INITIALS	ANALYS IS DATE																
INITIAL.S	ANALYS IS DATE					•											***
INITIALS	ANALYSIS DATE		•														
INITIALS	ANALYSIS DATE																
INITIALS	ANALYSIS DATE																
ROJECT 1:	ATE:	ARAMETERS	INITS:	o. for view definitions	a <b>andre</b> and the	the substance	ty to a survey	<ul> <li>Non-Alt Walk</li> </ul>	entre - Red Start Fred	tan sawiyasan	• mar de door		y - tree on he file	C RESULTS NUPL. ICATE	PIKE MALYSIS	STANDARD (EFERENCE 14TERIAL	

.

Figure 22

**机**药

	14-1 (9/86)—7f	STATE OF NEW YORK DEPARTMENT OF ENVIRONMENTAL CON DIVISION OF SOLID AND HAZARDOU	SERVATION	FIGUR	23						
Ple	lese print or type.	P.O. Box 12820, Albany, New Yo	NIFEST	Form Accelluna		0038. Expires 9-3					
	UNIFORM HAZARDOUS WASTE MANIFEST	1. Generator's US EPA No.	Manifest Document No.	2. Page 1 of	Information	in the shaded ed by Federal					
	3. Generator's Name and Mailing Address			170	1:45						
	4. Generator's Phone ( )				n <b>F</b> , and S						
	5. Transporter 1 (Company Name)	0. US EPA ID Number									
	7. Transporter 2 (Company Name)	8. US EPA IO Number			Talant						
	9. Designated Facility Name and Site Addre	10. US EPA ID Number									
	11. US DOT Description (Including Proper Si	hipping Name, Hazard Class and ID Number)	12. Conta	T	3. 14. Hal Unit						
	e.				atity Mt/						
R A T	<b>b</b> .		╾┡┵┵┦	┵╀┶┶	<u> </u>						
		•			1 1	i E					
	e.										
	d.										
	L. Addition Development of Action in Action				And the Man	Han Listed Ab					
	15. Special Handling Instructions and Addition	onel information	- E 26 - 4 - 4, 1								
	_										
	16. GENERATOR'S CERTIFICATION: IN	lately designs that the coments of this consignment a	re hully and accura	why described at	www.by.proper s	Nipping name ar					
	classified, partial and labeled, and an in all respons in proper condition for transport by highway seconding to applicable international and national gaverni requisions and also take tageletions. If I am a large quantity gasetage, I cartly that I have program in place to reduce the volume and toutisty of waste generated to the degree I have determined to be scandim										
	presidential and that I have adjusted the presidential in the presidential the president of the advantage of the second s	mathest of president, startest, or dispatch surranity i	walable to the util	an minimizes (R	e present and h	uture (firest to "					
	memod that is available to me and that I dan allord. Printed/Typed Name	Signature				Mo. Qay					
I	17. Transporter 1 (Acknowledgement of Res	upt of Materiale)									
	Printed/Typed Name	Signature				Mo. Day					
	18. Transporter 2 (Acknowledgement or Real	nipt of Meteriala)									
	Printed/Types Name	Signature				Mo. Day					
Ă	19. Discrepancy indication Space			<u> </u>							
e 1											
Ĭ	20. Fecility Owner or Operator: Cartification	of receipt of hazardous materials covered by	this manifest e		d in item 19.						

 $e^{i \theta}$ 

+:48

- ,80

y ne

1124

- 1**8**8

ing Î

1 1

64

1

39

2.9

1

ATTACHMENT 3

**(11)** 

# ATTACHMENT 3

# NEW YORK TESTING OPERATIONS

DOCUMENT CONTROL REQUEST FORM

REQUESTER:	DATE:
CLIENT NAME:	
ANTICIPATED RETURN DATE:	
ENTIRE FILE: Yes	No
IF NO, STATE SPECIFIC INFORMATIO	ON REQUIRED:
SPECIAL INSTRUCTIONS, IF ANY:	
	Document Control Clerk Only:
Date Signed	Out:
File Drawer	No:

Document Control Log Entry No:

Signature of DCC: _____



35 E

 $\dot{n}\dot{a}$ 

3.53

1/ST4

ATTACHMENT 4

k d

See.

in:1

ATTACHMENT 4

ù.

# RECRA ENVIRONMENTAL, INC.

# DOCUMENT CONTROL LOG

Return Date					
Job Number					
Project Number					
Client File Name					
Requester's Name					
Anticipated Return Date					
Checkout Date					
Log Entry Number					

# **APPENDIX D**

# LABORATORY STUDIES; METHODOLOGIES AND RESULTS

# TABLE OF CONTENTS

		Page
1.0	SAMPLE COLLECTION	C-1
	1.1 Soil Samples 1.2 Water Samples	C-1 C-2
2.0	SAMPLE PRESERVATION	C-2
3.0	SAMPLE SHIPMENT	C-3
4.0	ANALYTICAL METHODS	C-3
5.0	ANALYTICAL REPORTS	C-5
	5.1 Soil Samples 5.2 Groundwater Samples	C-5 C-6



- Ner Ner .

# 1.0 SAMPLE COLLECTION

# 1.1 Soil Samples

Soil samples were collected continuously from Test Borings 1 and 2 and Monitoring Wells 1 and 2 using a split barrel sampling device. The manner in which this apparatus was employed is described in Appendix B. After the soil sample recovered in the split barrel was examined and logged by the field geologist on site, it was transferred as completely as possible to a pre-cleaned 32 ounce, glass, screw-cap bottle equipped with a Teflon cap liner. The bottle pre-cleaning procedure was as follows:

o soap washed;

- o tap water rinsed;
- o nitric acid washed 25% v/v nitric acid/deionized water:
- o rinsed with copious quantities of deionized water (at least four rinsings); and
- o air dried.

Between samples the split barrel sampling apparatus was cleaned as follows:

- o soap and water wash;
- o rinsed with a dilute (1:10,000) HCl solution;* and
- o rinsed with potable water.
- * Dilute hydrochloric acid was used rather than dilute nitric acid because nitrate was one of the parameters to be measured on the soil samples.



C-1

### 1.1 Groundwater Samples

Groundwater samples were collected from Monitoring Wells 1 and 2 using a PVC bailer as described in Appendix B. The bailer was cleaned prior to use and between wells as follows:

- o phosphate-free detergent wash;
- o tap water rinses;
- o dilute (1:10,000) HCl rinse,
- o deionized water rinses; and
- o air dried.

Groundwater samples were immediately transferred to pre-cleaned glass, screw-cap sample bottles equipped with Teflon cap liners which were cleaned as described in Section 1.1, above.

## 2.0 SAMPLE PRESERVATION

Soil samples were chilled and placed in picnic coolers while awaiting transportation to the laboratory for analysis. Upon arrival at the laboratory, the samples were stored at 4°C until they were analyzed.

Groundwater samples were chilled on collection, placed in picnic coolers with frozen "blue ice," and shipped overnight to the laboratory. The samples were subsampled and preserved in accordance with EPA recommendations upon arrival at the laboratory. Samples were analyzed in accordance with EPA holding time requirements. Sample preservation and holding time requirements along with analytical methods used for each parameter are summarized in Table C-1.



C-2

# 3.0 SAMPLE SHIPMENT

Soil samples were held in coolers on site in the custody of the Recra field crew while soil sampling activities were in progress and then were transported directly to the analytical laboratory at which time custody of the samples was transferred directly to the laboratory Sample Custodian.

Groundwater samples were shipped overnight to the laboratory in sealed picnic coolers with frozen "blue ice" accompanied by chain of custody documentation.

# 4.0 ANALYTICAL METHODS

Standard USEPA analytical methods appropriate for the parameters and sample matricies concerned were used throughout. The specific methods used are identified in Table C-1.



1/T8028.3

-34

1 (M)

100

1246

- 花樽

# TABLE C-1

# ANALYTICAL METHODS, SAMPLE PRESERVATION MEASURES, AND MAXIMUM HOLDING TIMES

			WATER SAMPLES	
	SOIL SAMPLES	EPA		MAXIMUM
PARAMETER	EPA METHOD NO.	METHOD NO.	PRESERVATION	HOLDING TIME
Metals				
Cadmium	7130			
Chromium	7190	218.1	HNO ₃ to pH <2	6 Months
(Total)			, s	
Chromium	3060/7191	218.5	Cool, 4°C	24 Hours
(Hexavalent)				
Copper	7210	220.1	HNO ₃ to pH <2	6 Months
Iron	7380			
Lead Nickel	7421 7521			
Selenium	7740			
Zinc	7950			
Inorganics				
Nitrate	Leachable 352.1	352.1	Cool, 4°C	48 Hours
Total Phosphorus	Leachable 365.2	365.2	Filter, Cool, 4°C	48 Hours
Sulfate	Leachable 375.4	375.4	Cool, 4°C	28 Days
Miscellaneous				
рН	9040	150.1	None	Analyze
Total Solids	160.2	20012		immediately
EP Toxicity	1310			



# 5.0 ANALYTICAL REPORTS

All analytical results, including quality assurance and quality control data, and chain of custody documentation, are presented in the two (2) following sections.

the state

5.1 Soil Samples

(see attached)



 $k 2^{\circ}$ 

: 補助

۰.

# 5.2 Groundwater Samples

(see attached)

-



, waw

# ANALYTICAL RESULTS

Prepared For

Deknatel

Prepared By

Recra Environmental, Inc. 10 Hazelwood Drive, Suite 106 Amherst, New York 14150

### METHODOLOGIES

The specific methodologies employed in obtaining the enclosed analytical results are indicated on the specific data table. The method numbers presented refer to one of the following U.S. Environmental Protection Agency references.

- O 40 CFR Part 136 "Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act" October 26, 1984 (Federal Register) U.S. Environmental Protection Agency.
- U.S. Environmental Protection Agency "Test Methods for Evaluating Solid Waste - Physical/Chemical Methods". Office of Solid Waste and Emergency Response. July 1982, SW-846, Second Edition.

### COMMENTS

Comments pertain to data on one or all pages of this report.

The values reported as "less than" (<) indicate the working detection limit for the particular sample and/or parameter.

Results of the analysis of soils are corrected for moisture content and reported on a dry weight basis.



1/7913.2

縅

-

- 959 1

192 3

1 1

-

1998 1

> 8.16 . 1918

79-**9**2

::::: 20. A

PARAMETER			SAMPLE IDENTIFICATION		
(Units of Measure =	METHOD	ANALYSIS	MW-1/	MW-1/	MW-1/
µg/g dry)	NUMBER	DATE	0-2'	4-6'	10-12'
Total Cadmium	7130	2/5/88	0.76	<0.6	<0.5
Total Chromium	7190	2/5/88	17	11	7.0
Hexavalent Chromium	7195	2/17/88	<0.09	<0.09	<0.09
Total Copper	7210	2/5/88	97	9.6	7.0
Total Iron	7380	2/5/88	8,710	7,840	4,350
Total Lead	7420	2/5/88	130	15	<5
Total Nickel	7520	2/5/88	12	15	12
Total Selenium	7740	2/5/88	<0.6	<0.6	<0.5
Total Zinc	7950	2/5/88	130	20	30

# SOIL MATRIX METALS

# SOIL MATRIX METALS

PARAMETER			SAMPLE IDENTIFICATION			
(Units of Measure =	METHOD	ANALYSIS	MW-1/	MW-1/	MW-1/	
g/g dry)	NUMBER	DATE	14-16'	20-22'	24-26'	
Total Cadmium	7130	2/5/88	<0.6	<0.6	<0.5	
Total Chromium	7190	2/5/88	5.5	6.9	6.5	
Hexavalent Chromium	7195	2/17/88	<0.09	<0.09	<0.09	
Total Copper	7210	2/5/88	7.4	5.9	9.6	
Total Iron	7380	2/5/88	5,960	3,890	6,360	
Total Lead	7420	2/5/88	6.2	<6	<5	
Total Nickel	7520	2/5/88	10	17	8.0	
Total Selenium	7740	2/5/88	<0.6	<0.6	<0.5	
Total Zinc	7950	2/5/88	11	11	29	



.110

I.D. #88-128

PARAMETER			SAMPL	E IDENTIFICA	TION
(Units of Measure =	METHOD	ANALYSIS	MW-1/	MW-17	MW-1/
ug/g dry)	NUMBER	DATE	30-32'	34-36'	40-42'
Total Cadmium	7130	2/5/88	<0.5	<0.5	<0.6
Total Chromium	7190	2/5/88	6.2	4.8	8.6
Hexavalent Chromium	7195	2/5/88	<0.09	<0.09	<0.09
Total Copper	7210	2/5/88	9.1	6.9	6.8
Total Iron	7380	2/5/88	7,180	6,380	7,410
Total Lead	7420	2/5/88	5.9	<5	<6
Total Nickel	7520	2/5/88	7.9	6.9	8.1
Total Selenium	7740	2/5/88	<0.5	<0.5	<0.6
Total Zinc	7950	2/5/88	34	14	30

# SOIL MATRIX METALS

ain.

sci.

lesi-

**un** 

1000

init:

**lin**ia 5

. .

**....** 

......

# SOIL MATRIX METALS

PARAMETER			SAMPLE IDENTIFICATION		
(Units of Measure =	METHOD	ANALYSIS	MW-1/	MW-1/	MW-1/
µg/g dry)	NUMBER	DATE	44-46'	50-52'	54-56'
Total Cadmium	7130	2/5/88	<0.5	<0.6	<0.5
Total Chromium	7190	2/5/88	9.2	8.2	5.4
Hexavalent Chromium	7195	2/5/88	<0.09	<0.09	<0.09
Total Copper	7210	2/5/88	8.6	7.9	3.8
Total Iron	7380	2/5/88	7,440	6,320	5,530
Total Lead	7420	2/5/88	<5	<6	<5
Total Nickel	7520	2/5/88	5.8	12	5.0
Total Selenium	7740	2/5/88	<0.5	<0.6	<0.5
Total Zinc	7950	2/5/88	26	34	8.4



I.D. #88-128

1/7913.4

194

100

20. 20.

34

-416

PARAMETER			SAMPLE IDENTIFICATION		
(Units of Measure = µg/g dry)	METHOD NUMBER	ANALYSIS DATE	MW-1/ 60-62'	MW-1/ 64-66'	MW-1/ 70-72'
Total Cadmium Total Chromium Hexavalent Chromium Total Copper Total Iron Total Lead Total Nickel Total Selenium Total Zinc	7130 7190 7195 7210 7380 7420 7520 7520 7740 7950	2/5/88 2/5/88 2/17/88 2/5/88 2/5/88 2/5/88 2/5/88 2/5/88 2/5/88	<0.5 7.8 0.32 5.9 8,000 <5 5.8 <0.5 22	<0.6 9.2 0.44 4.5 4,960 <6 <5 <0.6 16	<0.6 5.4 0.28 3.3 3,460 <6 7.1 <0.6 8.5

# SOIL MATRIX METALS

PARAMETER			SAMPLE IDENTIFICATION		
(Units of Measure =	METHOD	ANALYSIS	TB-2/	TB-2/	TB-2/
µg/g dry)	NUMBER	DATE	0-2'	4-6'	10-12'
Total Cadmium	7130	2/5/88	1.4	<0.6	<0.6
Total Chromium	7190	2/5/88	260	3,580	340
Hexavalent Chromium	7195	2/17/88	4.3	29	2.0
Total Copper	7210	2/5/88	120	14	5.4
Total Iron	7380	2/5/88	12,700	18,900	5,560
Total Lead	7420	2/5/88	480	71	5.1
Total Nickel	7520	2/5/88	21	11	6.1
Total Selenium	7740	2/5/88	<0.6	<0.6	<0.6
Total Zinc	7950	2/5/88	360	35	21



PARAMETER			SAMPLE IDENTIFICATION		
(Units of Measure =	METHOD	ANALYSIS	TB-2/	TB-2/	TB-2/
µg/g dry)	NUMBER	DATE	14-16'	20-22'	24-26'
Total Cadmium	7130	2/5/88	<0.6	<0.6	<0.5
Total Chromium	7190	2/5/88	210	410	380
Hexavalent Chromium	7195	2/5/88	2.3	2.4	0.53
Total Copper	7210	2/5/88	5.9	7.6	5.9
Total Iron	7380	2/5/88	4,080	6,810	5,360
Total Lead	7420	2/5/88	<6	<6	6.0
Total Nickel	7520	2/5/88	10	9.4	<4
Total Selenium	7740	2/5/88	<0.6	<0.6	<0.5
Total Zinc	7950	2/5/88	17	22	17

# SOIL MATRIX METALS

**5**8%

**600** 

開作

開始 No.

**e**si.

**New Constant** 

hter.

ikie.

**8**46.

ii....

and.

a initia

PARAMETER			SAMPLE IDENTIFICATION		
(Units of Measure = µg/g dry)	METHOD NUMBER	ANALYSIS DATE	TB-2/ 30-32'	TB-2/ 34-36'	TB-2/ 40-42'
Total Cadmium Total Chromium Hexavalent Chromium Total Copper Total Iron Total Lead Total Nickel Total Selenium Total Zinc	7130 7190 7195 7210 7380 7420 7520 7740 7950	2/5/88 2/5/88 2/17/88 2/5/88 2/5/88 2/5/88 2/5/88 2/5/88 2/5/88 2/5/88	<0.5 200 4.7 10 8,110 6.6 <4 <0.5 21	<0.6 130 6.2 18 8,650 <6 17 <0.6 17	<0.5 100 6.8 8.8 10,700 <5 8.8 <0.5 29



-24

્ય છે.

.sk

1.12

3,259

PARAMETER			SAMPLE IDENTIFICATION		
(Units of Measure =	METHOD	ANALYSIS	TB-2/	TB-2/	TB-2/
µg/g dry)	NUMBER	DATE	44-46'	50-52'	54-56'
Total Cadmium	7130	2/5/88	<0.5	<0.6	<0.5
Total Chromium	7190	2/5/88	100	51	18
Hexavalent Chromium	7195	2/5/88	3.0	1.7	0.32
Total Copper	7210	2/5/88	12	5.9	4.3
Total Iron	7380	2/5/88	10,800	5,540	4,410
Total Lead	7420	2/5/88	<5	<6	<5
Total Nickel	7520	2/5/88	8.9	4.0	4.8
Total Selenium	7740	2/5/88	<0.5	<0.6	<0.5
Total Zinc	7950	2/5/88	24	17	12

# SOIL MATRIX METALS

PARAMETER			SAMPLE IDENTIFICATION		
(Units of Measure = µg/g dry)	METHOD NUMBER	ANALYSIS DATE	TB-2/ 60-62'	TB-2/ 64-66'	TB-2/ 70-72'
Total Cadmium Total Chromium Hexavalent Chromium Total Copper Total Iron Total Lead Total Nickel Total Selenium Total Zinc	7130 7190 7195 7210 7380 7420 7520 7740 7950	2/5/88 2/5/88 2/5/88 2/5/88 2/5/88 2/5/88 2/5/88 2/5/88 2/5/88	<0.6 28 0.19 6.3 4,940 <6 <5 <0.6 11	<0.6 27 0.19 7.1 5,210 <6 4.1 <0.6 18	<0.6 13 0.17 6.7 3,580 <6 <6 <6 <0.6 17



PARAMETER			SAMPL	SAMPLE IDENTIFICATION		
(Units of Measure = µg/g dry)	METHOD NUMBER	ANALYSIS DATE	MW-2/ 0-2'	MW-2/ 4-6'	MW-2/ 10-12'	
Total Cadmium Total Chromium Hexavalent Chromium Total Copper Total Iron Total Lead Total Nickel Total Selenium Total Zinc	7130 7190 7195 7210 7380 7420 7520 7740 7950	2/9/88 2/10/88 2/25/88 2/9/88 2/10/88 2/9/88 2/9/88 2/9/88 2/8/88 2/10/88	1.0 790 11 120 13,400 590 15 <0.6 150	<0.5 200 0.46 8.3 8,420 4.0 10 <0.5 18	<0.5 86 0.095 5.5 4,470 <4 10 <0.5 13	

# SOIL MATRIX METALS

# SOIL MATRIX METALS

657

PARAMETER					TION
(Units of Measure = µg/g dry)	METHOD NUMBER	ANALYSIS DATE	MW-2/ 14-16'	MW-2/ 20-22'	MW-2/ 24-26'
Total Cadmium Total Chromium Hexavalent Chromium Total Copper Total Iron Total Lead Total Nickel Total Selenium Total Zinc	7130 7190 7195 7210 7380 7420 7520 7740 7950	2/9/88 2/10/88 2/25/88 2/9/88 2/10/88 2/9/88 2/9/88 2/9/88 2/8/88 2/10/88	<0.5 71 0.14 14 7,510 <4 13 <0.5 30	<0.5 36 0.31 21 7,610 <4 11 <0.5 19	<0.5 30 0.22 17 5,110 <4 8.0 <0.5 14



14

3eÅ

. 64

roji he

PARAMETER	1		SAMPL	LE IDENTIFICATION		
(Units of Measure = µg/g dry)	METHOD NUMBER	ANALYSIS DATE	MW-2/ 30-32'	MW-2/ 34-36'	MW-2/ 40-42'	
Total Cadmium Total Chromium Hexavalent Chromium Total Copper Total Iron Total Lead Total Nickel Total Selenium Total Zinc	7130 7190 7195 7210 7380 7420 7520 7740 7950	2/9/88 2/10/88 2/25/88 2/9/88 2/10/88 2/9/88 2/9/88 2/9/88 2/8/88 2/10/88	<0.5 21 0.15 7.9 6,560 <4 8.8 <0.5 18	<0.5 28 0.10 11 7,910 <4 7.9 <0.5 20	<0.5 21 0.17 10 9,000 <4 14 <0.5 18	

.

# SOIL MATRIX METALS

# SOIL MATRIX METALS

,

PARAMETER	T		SAMPLE IDENTIFICATION			
(Units of Measure = µg/g dry)	METHOD NUMBER	ANALYSIS DATE	MW-2/ 44-46'	MW-2/ 50-52'	MW-2/ 54-56'	
Total Cadmium Total Chromium Hexavalent Chromium Total Copper Total Iron Total Lead Total Nickel Total Selenium Total Zinc	7130 7190 7195 7210 7380 7420 7520 7740 7950	2/9/88 2/10/88 2/25/88 2/9/88 2/10/88 2/9/88 2/9/88 2/9/88 2/8/88 2/10/88	<0.5 17 0.10 12 12,200 <4 11 <0.5 34	<0.5 6.5 <0.09 4.0 4,940 <4 <4 <0.5 9.4	<0.6 12 0.12 5.1 5,850 <4 7.0 <0.6 11	



	PARAMETER		SAMPLE IDENTIFICATION		
(Units of Measure = µg/g dry)	METHOD NUMBER	ANALYSIS DATE	MW-2/ 60-62'	MW-2/ 64-66'	MW-2/ 70-72'
Total Cadmium Total Chromium Hexavalent Chromium Total Copper Total Iron Total Lead Total Nickel Total Selenium Total Zinc	7130 7190 7195 7210 7380 7420 7520 7740 7950	2/9/88 2/10/88 2/25/88 2/9/88 2/10/88 2/9/88 2/9/88 2/9/88 2/8/88 2/10/88	<0.6 7.8 <0.09 4.5 5,220 <4 6.9 <0.6 9.4	<0.6 5.6 <0.09 3.6 4,440 <4 7.7 <0.6 18	<0.6 7.3 0.17 4.2 3,930 <4 6.8 <0.6 7.6

-

ыe,

683 C

њя.

inine:

يفغ

# SOIL MATRIX METALS

PARAMETER					SAMPLE IDENTIFICATION		
(Units of Measure = µg/g dry)	METHOD NUMBER	ANALYSIS DATE	TB-1/ 0-2'	TB-1/ 4-6'	TB-1/ 10-12'		
Total Cadmium Total Chromium Hexavalent Chromium Total Copper Total Iron Total Lead Total Nickel Total Selenium Total Zinc	7130 7190 7195 7210 7380 7420 7520 7520 7740 - 7950	2/9/88 2/10/88 2/25/88 2/9/88 2/10/88 2/9/88 2/9/88 2/9/88 2/8/88 2/10/88	<0.6 900 8.2 12 6,140 380 5.1 <0.6 32	<0.5 1,220 16 7.2 6,600 110 <4 <0.5 8.9	<0.5 1,760 19 8.8 12,600 11 14 <0.5 19		



٠

-

669 699

10,98

PARAMETER				E IDENTIFICA	TION
(Units of Measure = ug/g dry)	METHOD NUMBER	ANALYSIS DATE	TB-1/ 14-16'	TB-1/ 20-22'	TB-1/ 24-26'
Total Cadmium Total Chromium Hexavalent Chromium Total Copper Total Iron Total Lead Total Nickel Total Selenium Total Zinc	7130 7190 7195 7210 7380 7420 7520 7740 7950	2/9/88 2/10/88 2/25/88 2/9/88 2/10/88 2/9/88 2/9/88 2/9/88 2/8/88 2/10/88	<0.5 1,680 18 7.1 9,050 31 4.9 <0.5 8.1	<0.5 500 7.9 5.8 5,860 5.0 5.0 <0.5 7.0	<0.5 440 9.2 5.2 4,720 <3 4.8 <0.5 7.2

# SOIL MATRIX METALS

PARAMETER			SAMPLE IDENTIFICATION		
(Units of Measure = µg/g dry)	METHOD NUMBER	ANALYSIS DATE	TB-1/ 30-32'	TB-1/ 34-36'	TB-1/ 40-42'
Total Cadmium	7130	2/9/88	<0.5	<0.5	<0.5
Total Chromium	7190	2/10/88	370	380	380
Hexavalent Chromium	7195	2/25/88	7.0	13	9.6
Total Copper	7210	2/9/88	12	10	6.7
Total Iron	7380	2/10/88	8,790	9,140	10,400
Total Lead	7420	2/9/88	<3	<4	<3
Total Nickel	7520	2/9/88	7.0	6.0	5.8
Total Selenium	7740	2/8/88	<0.5	<0.5	<0.5
Total Zinc	7950	2/10/88	12	13	12



PARAMETER			SAMPL		TION
(Units of Measure = ug/g dry)	METHOD NUMBER	ANALYSIS DATE	TB-1/ 44-46'	TB-1/ 50-52'	TB-1/ 54-56'
Total Cadmium Total Chromium Hexavalent Chromium Total Copper Total Iron Total Lead Total Nickel Total Selenium Total Zinc	7130 7190 7195 7210 7380 7420 7520 7740 7950	2/9/88 2/10/88 2/25/88 2/9/88 2/10/88 2/9/88 2/9/88 2/9/88 2/8/88 2/10/88	<0.5 300 7.3 7.6 9,090 <3 7.8 <0.5 11	<0.5 98 3.1 4.9 4,340 <3 5.9 <0.5 8.8	<0.5 110 3.2 6.2 6,380 <3 5.0 <0.5 9.9

# SOIL MATRIX METALS

# SOIL MATRIX METALS

ées:

. €ena

PARAMETER			SAMPLE IDENTIFICATION		
(Units of Measure = µg/g dry)	METHOD NUMBER	ANALYSIS DATE	TB-1/ 60-62'	TB-1/ 64-66'	TB-1/ 70-72'
Total Cadmium Total Chromium Hexavalent Chromium Total Copper Total Iron Total Lead Total Nickel Total Selenium - Total Zinc	7130 7190 7195 7210 7380 7420 7520 7740 7950	2/9/88 2/10/88 2/25/88 2/9/88 2/10/88 2/9/88 2/9/88 2/9/88 2/8/88 2/10/88	<0.6 59 2.8 5.7 3,930 <4 5.3 <0.6 7.8	<0.6 26 0.26 4.4 3,090 <6 5.5 <0.6 7.1	<0.6 15 0.32 4.2 2,810 <4 5.5 <0.6 6.9



- 24

136

# SOIL MATRIX METALS

PARAMETER			SAMPL	E IDENTIFICA	TION
(Units of Measure = ug/g dry)	METHOD NUMBER	ANALYSIS DATE	TB-1/ 2-4'	TB-1/ 6-8'	TB-1/ 8-10'
Total Chromium	7190	2/10/88	2,010	1,770	1,440

# SOIL MATRIX METALS

PARAMETER			SAMPL	E IDENTIFICA	TION
(Units of Measure = µg/g dry)	METHOD NUMBER	ANALYSIS DATE	TB-1/ 12-14'	TB-1/ 16-18'	TB-1/ 18-20'
Total Chromium	7190	2/10/88	3,050	1,240	710

.

8



1/7913.13

	PARAMETER (UNITS OF MEASURE)		
SAMPLE IDENTIFICATION	LEACHABLE NITRATE (µg/g dry)	LEACHABLE PHOSPHOROUS (µg/g dry)	LEACHABLE SULFATE (µg/g dry)
MW-1/0-2' MW-1/10-12' MW-1/20-22' MW-1/30-32' MW-1/40-42' MW-1/50-52' MW-1/60-62' MW-1/70-72' TB-2/0-2' TB-2/10-12' TB-2/20-22' TB-2/30-32' TB-2/30-32' TB-2/40-42' TB-2/50-52' TB-2/60-62' TB-2/70-72'	3.7 2.0 <3 <3 3.1 3.5 2.8 5.6 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3	<0.9 <0.9 <0.9 <0.9 <0.9 <0.9 <0.9 <0.9	58 <41 <42 <42 <42 <42 <42 <42 <42 <42 <42 <42
Analysis Date	2/16/88	2/20/88	2/23/88
Method Number	9200	365.2	9038

800. T

ŝ.

SOIL MATRIX



PARAMETER (UNITS OF MEASURE) LEACHABLE LEACHABLE LEACHABLE NITRATE PHOSPHOROUS SAMPLE SULFATE IDENTIFICATION (µg/g dry) (µg/g dry) (µg/g dry) 9.6 MW-2/0-2' 66 78 MW-2/10-12' <3 41 <42 5.3 43 MW-2/20-22' <42 11 MW-2/30-32' 2.2 <42 MW-2/40-42' 5.5 28 110 13 MW-2/50-52' 3.3 73 7.5 4.3 <46 MW-2/60-62' 3.3 15 <48 MW-2/70-72' 79 TB-1/0-2' 54 69 16 400 <42 TB-1/10-12' TB-1/20-22' 48 <42 <3 22 TB-1/30-32' <3 <43 32 TB-1/40-42' 2.3 <42 17 <42 TB-1/50-52' <3 2.7 17 <45 TB-1/60-62' 2.1 <46 TB-1/70-72' 3.1 2/20/88 2/23/88 2/16/88 Analysis Date 365.2 9038 9200 Method Number





S0	IL	MATR	IX

ii a i

	PARAMETER (UNITS OF MEASURE)
SAMPLE	DRY WEIGHT (103°C)
IDENTIFICATION	(%)
MW-1/0-2'	88.2
MW-1/4-6'	95.3
MW-1/10-12'	97.5
MW-1/14-16'	95.6
MW-1/20-22'	97.4
MW-1/24-26'	96.8
MW-1/30-32'	96.4
MW-1/34-36'	96.6
MW-1/40-42'	97.1
MW-1/44-46'	96.6
MW-1/50-52'	96.0
MW-1/54-56'	95.9
MW-1/60-62'	93.8
MW-1/64-66'	88.3
MW-1/70-72'	83.6
TB-2/0-2'	80.2
TB-2/4-6'	89.6
TB-2/10-12'	96.8
TB-2/14-16"	96.7
	95.8
TB-2/20-22'	
TB-2/24-26'	96.5
TB-2/30-32	95.6
TB-2/34-36'	95.5
TB-2/40-42'	95.2
TB-2/44-46'	95.0
TB-2/50-52'	95.4
TB-2/54-56'	96.1
TB-2/60-62'	91.3
TB-2/64-66'	88.8
TB-2/70-72'	88.0



5¢

.48

36

SOIL MATRIX

	PARAMETER (UNITS OF MEASURE)
SAMPLE	DRY WEIGHT (103°C)
IDENTIFICATION	(%)
MI 2/0 21	
MW-2/0-2'	81.8
MW-2/4-6'	95.7
MW-2/10-12'	97.0
MW-2/14-16'	95.7
MW-2/20-22'	96.1
MW-2/24-26'	95.2
MW-2/30-32'	94.9
MW-2/34-36'	96.1
MW-2/40-42'	95.2
MW-2/44-46'	95.3
MW-2/50-52'	95.5
MW-2/54-56' MW-2/60-62'	95.7
MW-2/64-66'	86.1
MW-2/70-72'	89.0 82.5
TB-1/0-2'	93.1
TB-1/2-4'	93.1
TB-1/4-6'	94.0
TB-1/6-8'	89.1
TB-1/8-10'	95.8
TB-1/10-12'	96.0
TB-1/12-14'	96.3
TB-1/14-16'	96.6
TB-1/16-18'	97.0
TB-1/18-20'	96.5
TB-1/20-22'	96.9
TB-1/24-26'	97.0
TB-1/30-32'	92.9
TB-1/34-36'	95.9
TB-1/40-42'	95.8
TB-1/44-46'	95.9
TB-1/50-52'	96.1
TB-1/54-56'	94.9
TB-1/60-62'	89.2
TB-1/64-66'	89.8
TB-1/70-72'	87.7



QUALITY CONTROL INFORMATION - PRECISION SOIL MATRIX METALS

Total Cadmium7130MW-1/44-46'Total Chromium7190MW-1/44-46'Total Chromium71957195Total Copper72107210Total Iron73807420Total Lead7520740Total Selenium7520	SAMPLE VALUE DENTIFICATION 1	VALUE 2	MEAN	STANDARD DEVIATION
7190 7195 7380 7420 7740	<0.5	<0.5	<0.5	ı
	8.6	9.8	9.2	0.85
	<0.0>	<0.09	<0.09	I
	7.9	9.2	8.6	0.92
	6,830	8,050	7,440	860
	<5	<5	<5	ı
	4.9	6.7	5.8	1.3
_	<0.5	<0.5	<0.5	1
	26	26	26	0

QUALITY CONTROL INFORMATION - ACCURACY SOIL MATRIX METALS

			MICROGRAMS	
	METHOD	SAMPLE	5	PERCENT
PARAME TER	NUMBER	I DENTIFICATION	SPIKE	RECOVERY
Total Cadmium	7130	MW-1/44-46'	500	101
Total Chromium	7190	•	500	101
Hexavalent	7195		500	97
Chromium				
<b>Total Copper</b>	7210		500	103
Total Iron	7380		500	100
Total Lead	7420		200	106
Total Nickel	7520		500	103
Total Selenium	7740		50	98
Total Zinc	7950		500	66

1.0. #88-128

iiii

sist-



RJ

QUALITY CONTROL INFORMATION - PRECISION SOIL MATRIX METALS

-588

PARAMETER (Units of Measure = µg/g dry)	ME THOD NUMBER	SAMPLE IDENTIFICATION	VALUE 1	VALUE 2	MEAN	STANDARD DEVIATION
Total Cadmium	7130	TB-2/20-22'	<0.6	<0.6	<0.6	ı
Total Chromium	7190		410	410	410	0
Hexavalent Chromium	7195		1.9	2.8	2.4	0.64
Total Copper	7210		8.3	6.9	7.6	0.99
Total Iron	7380		8,190	5,430	6,810	2,000
Total Lead	7420		<b>6</b>	<b>9</b> >	<b>9</b> >	
Total Nickel	7520		10	8.8	9.4	0.85
Total Selenium	7740		<0.6	<0.6	<0.6	ŀ
Total Zinc	7950		27	17	22	7.1

QUALITY CONTROL INFORMATION - ACCURACY SOIL MATRIX METALS

			MI CROGRAMS	
	METHOD	SAMPLE	Ъ	PERCENT
PARAMETER	NUMBER	I DENTIFICATION	SPIKE	RECOVERY
Total Cadmium	7130	TB-2/20-22'	500	105
Total Chromium	7190		500	115
Hexavalent	7195		500	104
Chromium				
Total Copper	7210		500	101
Total Iron	7380		500	66
Total Lead	7420		500	105
Total Nickel	7520		500	102
Total Selenium	7740		50	98
Total Zinc	7950		500	82

I.D. #88-128

RECRA ENVIRONMENTAL, INC.

QUALITY CONTROL INFORMATION - PRECISION SOIL MATRIX METALS

PARAMETER (Units of Measure = µg/g dry)	ME THOD NUMBER	SAMPLE IDENTIFICATION	VALUE 1	VALUE 2	MEAN	STANDARD DEVIATION
Total Cadmium	7130	TB-2/70-72'	<0.6	<0.6	<0.6	ı
Total Chromium	7190		12	14	13	1.4
Hexavalent Chromium	7195		0.21	0.12	0.17	0.064
Total Copper	7210		6.7	6.7	6.7	0
Total Iron	7380		3,390	3,770	3,580	270
Total Lead	7420		9>	<6 _	<6	1
Total Nickel	7520		<6 6	<6	<6 <6	I
Total Selenium	7740		<0.6	<0.6	<0.6	ł
Total Zinc	7950		18	16	17	1.4

QUALITY CONTROL INFORMATION - ACCURACY SOIL MATRIX METALS

			MI CROGRAMS	
	<b>METHOD</b>	SAMPLE	OF	PERCENT
PARAMETER	NUMBER	<b>IDENTIFICATION</b>	SPIKE	RECOVERY
•			( ( 1	
lotal Cadmium	/130	18-2//0-/2	200	103
Total Chromium	7190		500	97
Hexavalent	7195		500	97
Chromium				
Total Copper	7210		500	98
Total Iron	7380		200	101
Total Lead	7420		500	101
Total Nickel	7520		500	98
Total Selenium	7740		50	96
Total Zinc	7950		500	83

I.D. #88-128

666

RECRA ENVIRONMENTAL. INC.

Rs

QUALITY CONTROL INFORMATION - PRECISION SOIL MATRIX METALS

PARAMETER (Units of Measure = µg/g dry)	METHOD NUMBER	SAMPLE IDENTIFICATION	VALUE 1	VALUE 2	MEAN	STANDARD DEVIATION
Total Cadmium Total Chromium Hexavalent Chromium	7130 7190 7195	MW-2/0-2' .	1.1 790 12	0.98 780 9.7	1.0 790 11	$\begin{array}{c} 0.085 \\ 7.1 \\ 1.6 \end{array}$
Total Copper	7210		93	140	120	33
Total Iron	7380		13,400	13,400	13 <b>,4</b> 00	0
Total Lead	7420		540	630	590	64
Total Nickel	7520		14	15	15	0.71
Total Selenium	7740		<0.6	<0.6	<0.6	-
Total Zinc	7950		140	160	150	14

QUALITY CONTROL INFORMATION - ACCURACY SOIL MATRIX METALS

			MICROGRAMS	
	METHOD	SAMPLE	5	PERCENT
PARAME TER	NUMBER	IDENTIFICATION	SPIKE	RECOVERY
Total Cadmium	0617	<b>1</b> 4 2 /0 2	000	101
Incal Caulinal		. 7-0/7-MM	nnc	103
Total Chromium	7190		500	66
Hexava lent	7195		500	86
Chromium				
Total Copper	7210		500	100
Total Iron	7380		500	102
Total Lead	7420		500	95
Total Nickel	7520		500	66
Total Selenium	7740		50	96
Total Zinc	7950		500	103

I.D. #88-128

RECRA ENVIRONMENTAL, INC.

ß

Rs

RECRA ENVIRONMENTAL, INC.

QUALITY CONTROL INFORMATION - PRECISION SOIL MATRIX METALS

PARAMETER (Units of Measure = µg/g dry)	METHOD NUMBER	SAMPLE IDENTIFICATION	VALUE 1	VALUE 2	MEAN	STANDARD DEVIATION
Total Chromium	7190	18-1/18-20	720	700	710	14

# QUALITY CONTROL INFORMATION - ACCURACY SOIL MATRIX METALS

			MICROGRAMS	
	METHOD	SAMPLE	OF	PERCENT
PARAMETER	NUMBER	<b>IDENTIFICATION</b>	SPIKE	RECOVERY
Total Chromium	7190	TB-1/18-20'	500	105

I.D. #88-128

.

**6** 

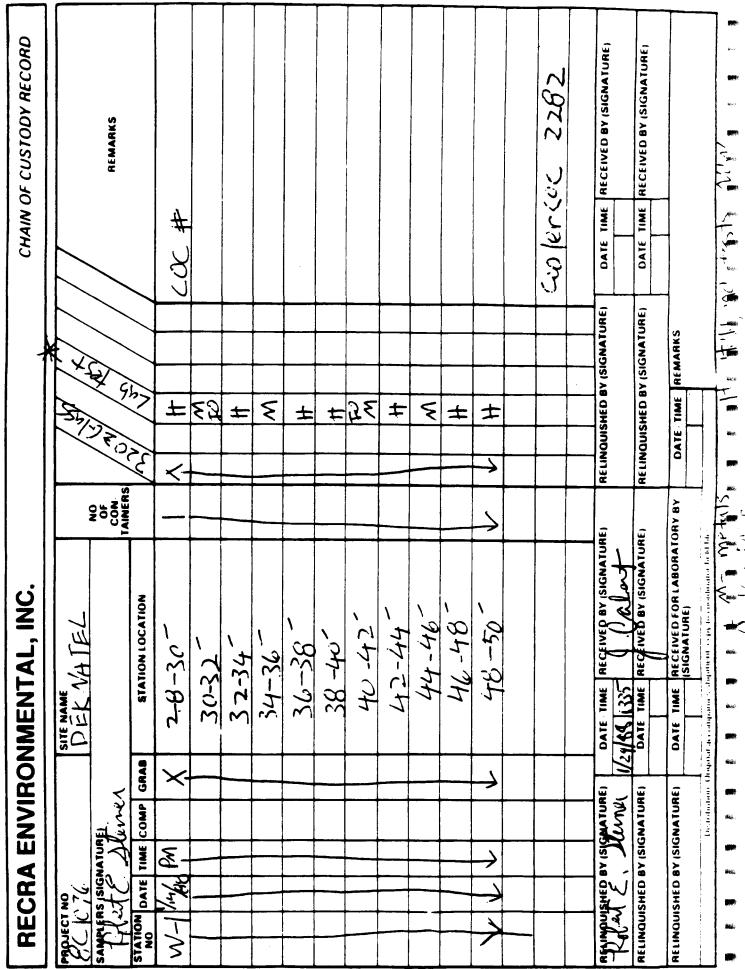
ाल्ले

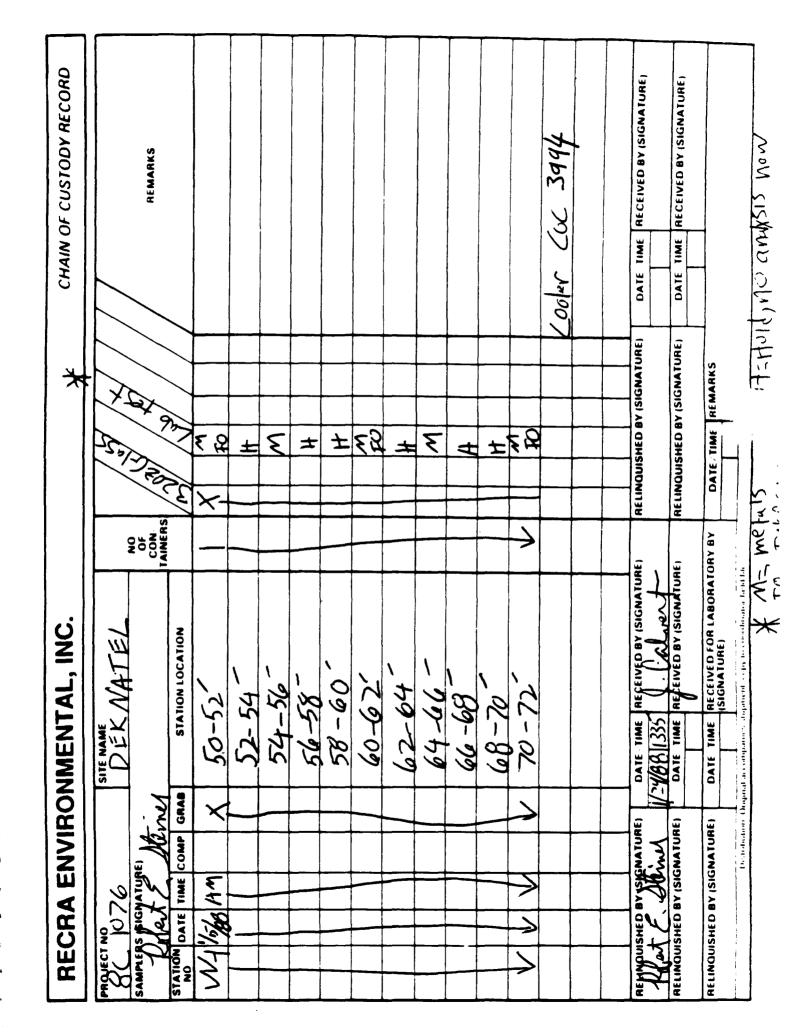
PARAMETER	UNITS OF MEASURE	SAMPLE IDENTIFICATION	VALUE	VALUE 2	MEAN	STANDARD DEVIATION
Leachable	µg∕g dry	MW-1/40-42'	3.9	2.2	3.1	1.2
Nitrate		TB-2/20-22'	<3	<3	<3	-
		TB-1/20-22'	<3	<3	<3	-
Leachable	µg∕g dry	MW-1/40-42'	<0.9	<0.9	<0 <b>.9</b>	-
Phosphorous		MW-2/20-22'	53	33	43	14
		TB-1/20-22'	46	49	48	2.1
Leachable	µg∕g dry	MW-1/40-42'	<42	<42	<42	-
Sulfate		MW-2/20-22'	<42	<42	<42	-
		TB-1/20-22'	<42	<42	<42	-

## QUALITY CONTROL INFORMATION - PRECISION SOIL MATRIX



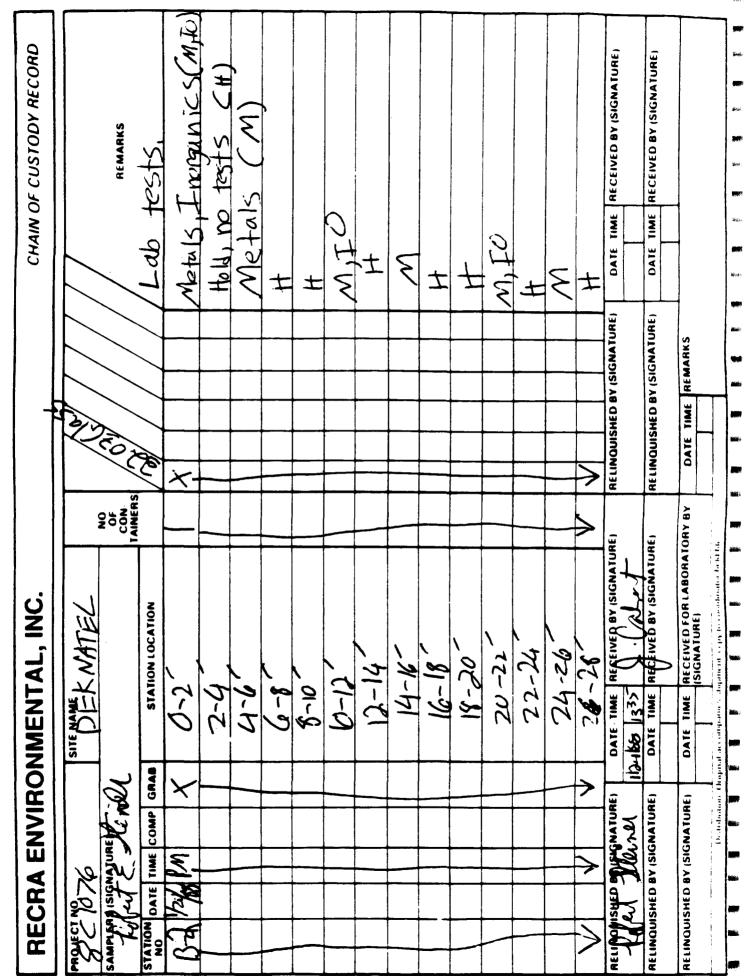
-


PARAMETER	SAMPLE IDENTIFICATION	µg OF SPIKE	% RECOVERY
Leachable	MW-1/40-42'	5.0	106
Nitrate	MW-2/20-22'	5.0	116
	TB-1/20-22'	5.0	106
Leachable	MW-1/40-42'	50	102
Phosphorous	MW-2/20-22'	50	67
	TB-1/20-22'	50	87
Leachable Sulfate	MW-1/40-42'	20	103
Suitace	MW-2/20-22'	20	102
	TB-1/20-22'	20	105


iii.

## QUALITY CONTROL INFORMATION - ACCURACY SOIL MATRIX




CHAIN OF CUSTODY RECORD RECEIVED BY (SIGNATURE) DATE TIME RECEIVED BY (SIGNATURE) REMARKS 3998 3997 3945 3995 3996 # 455 DATE TIME ر. رز RELINQUISHED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) DATE/TIME REMARKS XS-J 572 513 ξ ٤3 F&3 ٢ t ٤ ŧ ± ± Ŧ ± t * M= MERNS  $\times$  $\overline{+}$ NO OF CON DATE TIME RECEIVED FOR LABORATORY BY DATE TIME REFERED BY (SIGNATURE) RECEIVED BY (SIGNATURE) Deletation (highed accomparies diputent) cap to coordinated field th 24-26 20-22 16-18-22-24 12-14 6-8-18-20' 3-4-16 2-4, (1- <u>0</u> 0 -0 8-10-8 4-6' **RECRA ENVIRONMENTAL, INC.** STATION LOCATION SITE NAME DI LËKNHTEL -7 DATE sampers (signature) Lined STATION DATE TIME COMP GRAD × RELINQUISHED BY (SIGNATURE) RELINDUISHED BY SIGNATURE RELINQUISHED BY (SIGNATURE) mr 1/1/1-M <u>E</u> S S PROJECT NO



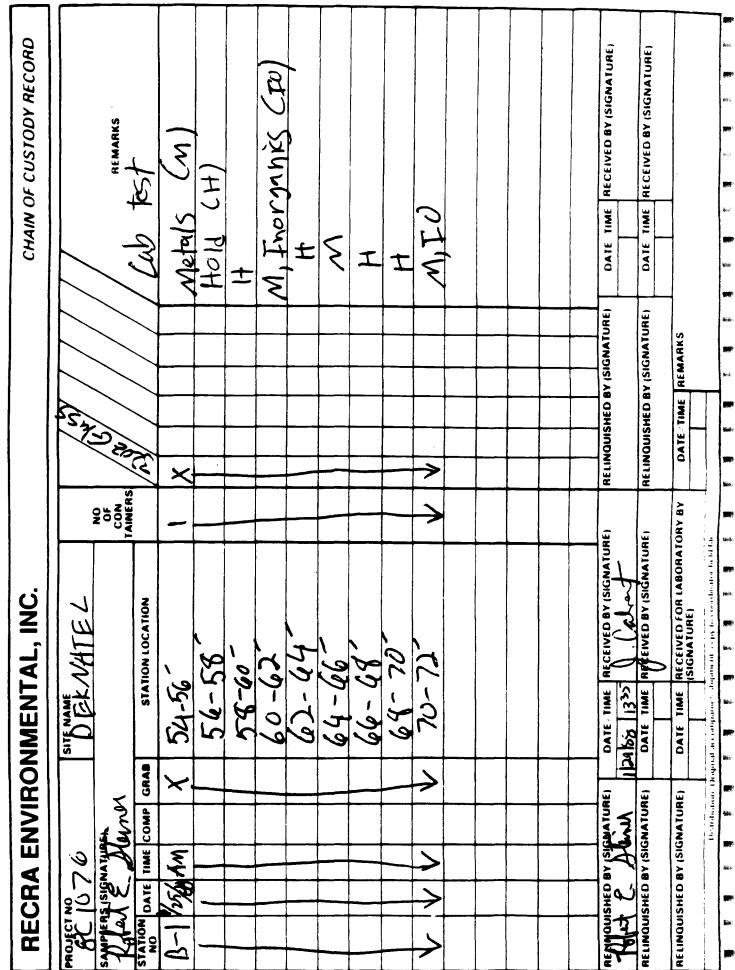


9.00 1.000 2.05

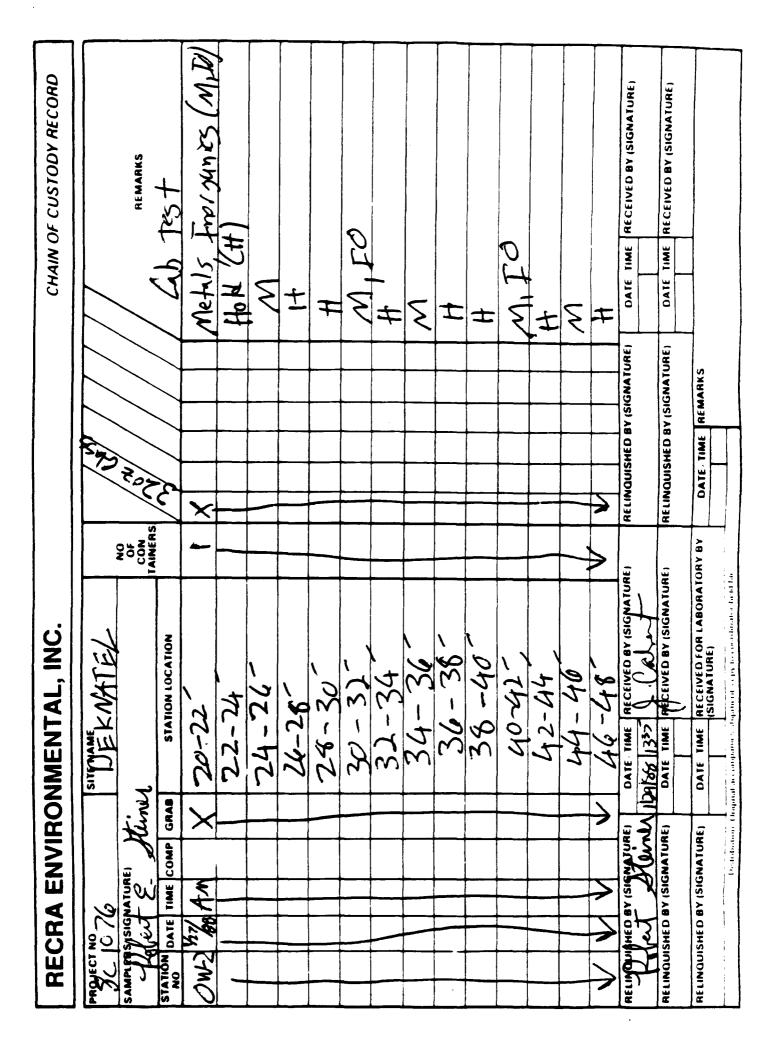
- 448 - 225 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248 - 248



несна		<b>DE</b>	HECHA ENVIRONMENIAL, INC.			CLAIN	LAAIN UP LUSIUUT AELUAU
PROJECT NO RC 1076			DEK NAT EL	<u> </u>			
samples isignature	the ne			NO OF CON			REMARKS
DATE	TIME COMP	GRAB	STATIONLOCATION		////	/ Lib best	+
RA Ky PM		${ imes}$	44-46	X j		Meters	(と)
			46-46			AD REDUCTY	very
			46-50			NO Rece	ט עבר א
			50-51			M. The	, Enersing (TO)
			52-54			+	
			54-56			5	
			56-58			±	
			- 78-60-			+	
			60-09			Mto	
			, 67 - 64			A	
			64-66			Z	
			<u> 99 - 99</u>			t	
			e - 87			T	
$\gamma \rightarrow \gamma$	/	$\mathbf{i}$	<i>_l2 − 2</i>	$\rightarrow$ $\rightarrow$		M,TO	
RELINQUISHED BY IS	ISIGNATURE!		DATE TIME RECEIVED BY ISIGNATURE)		RELINQUISHED BY (SIGNATURE)	DATE TIME	RECEIVED BY (SIGNATURE)
RELINQUISHED BY (SIGNATURE)	SIGNATU	HE HE	DATE TIME REFERED BY SIGNATURE		RELINQUISHED BY (SIGNATURE)	DATE TIME	RECEIVED BY (SIGNATURE)
RELINQUISHED BY (SIGNATURE)	SIGNATUF	<u>.</u>	AE RECEIVED FOR (SIGNATURE)	RY BY DATE TIME	REMARKS		
	Dependent	un Orgina	Destribution. Original accompanies, Jupatri OCC py test markinated for Mile				

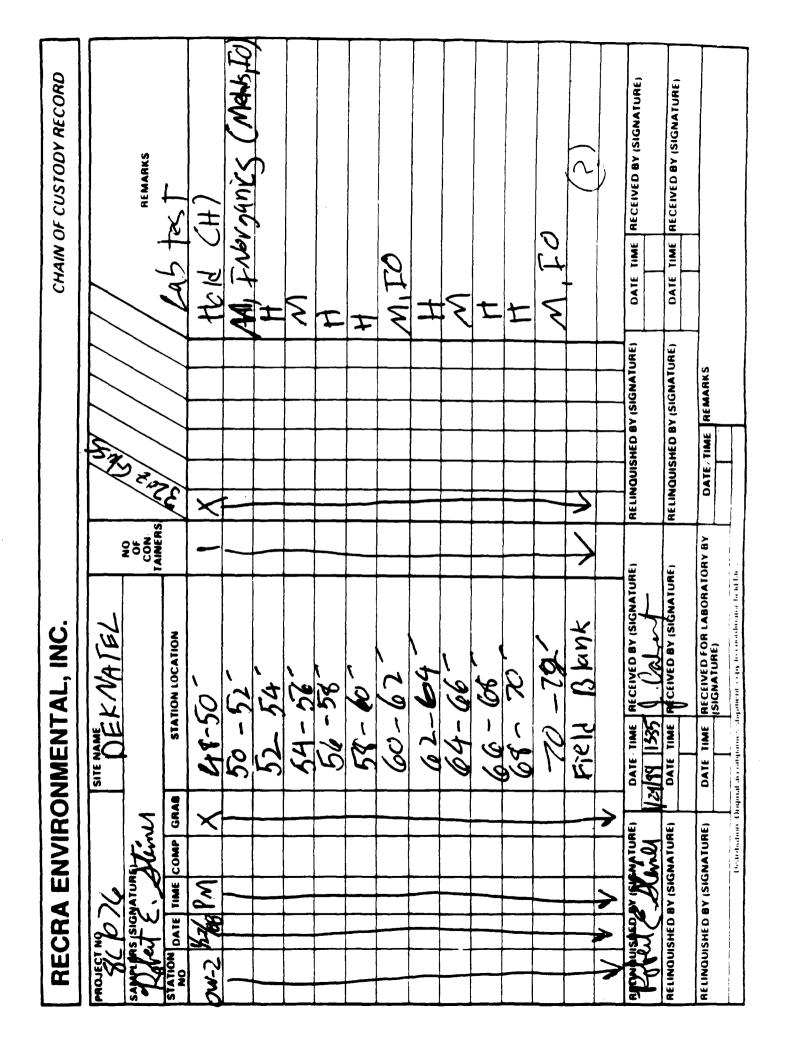

PROJECT NO BC 10'76	<b>—</b>	SIDEK NATEL			
sampring (signature) It.			TAINERS		REMARKS
STATION DATE TIME COMP G	GRAB	STATION LOCATION	$\sim$	1///Lub tests	
B-1 1228 AM	X	0-2	X	Metals Inoradi	NCC (M. Ic)
		3-4-		1++++++ CNON	the Chance
		4-6		V	
		6-8-		ļ	Lit. Chrowne
		- <i>a</i> - <i>b</i>			Children C
		_(1-0!		01	1
		12-14			it. Chame
		14-16		W	
		16-18-		* Tot <	Che me
		18-20-			C FOM
		20-22		10	
		22-24-		±	
		24-26		<i>ک</i> ر	
	5		$\rightarrow$	+	
REMUNISHED DY (SIGNATURE)		DATE TIME RECEIVED BY (SIGNATURE)	RELINQUISHED BY (SIGNATURE)	DATE TIME	RECEIVED BY (SIGNATURE)
RELINQUISHED BY (SIGNATURE)			RELINQUISHED BY (SIGNATURE)	DATE TIME	RECEIVED BY (SIGNATURE)
RELINQUISHED BY (SIGNATURE)		DATE TIME RECEIVED FOR LABORATORY BY (SIGNATURE)	Y BY DATE/TIME REMARKS	REMARKS	
loandana (	(Juquud	locardination. Diagraph are comparised straphyrine copy to consultation for 61 they			

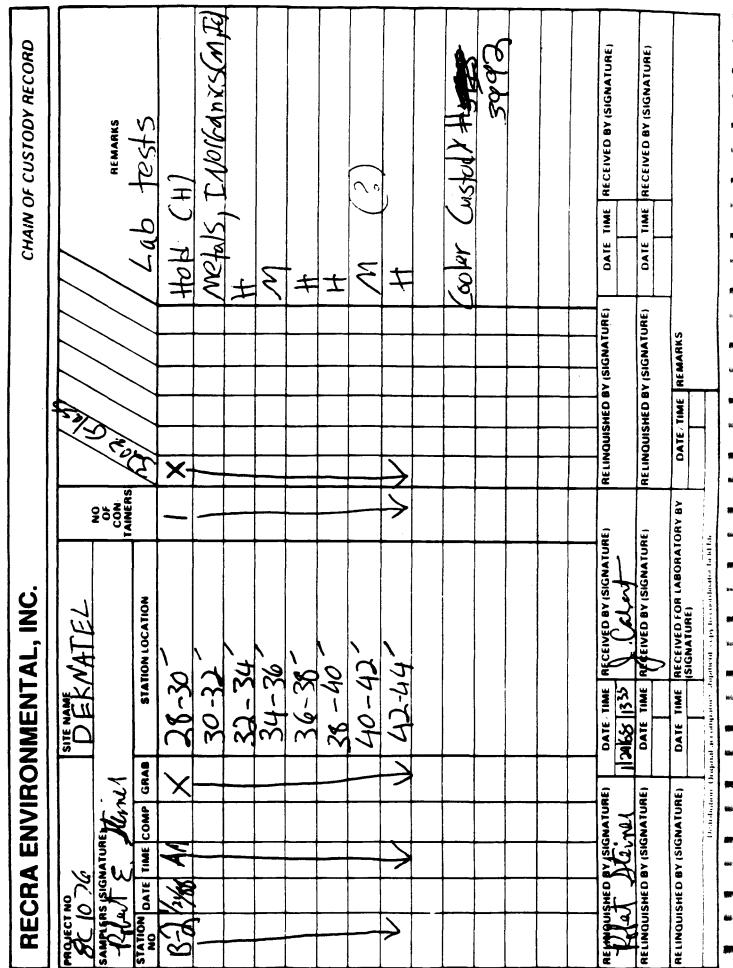
a contra contra contra contra contra de la 
RE(	N.	Ē		ROI	RECRA ENVIRONMENTAL, INC.				CHAIN C	CHAIN OF CUSTODY RECORD
PROJECT NO	26				SITE NAME DEK, NATEL		69			
a la	E ISIGN	PE ISIGNATUREL	Henry	ja		NO OF CON	Jen 1	///		REMARKS
STATION	DATE	TIME COMP	4	GRAD	STATION LOCATION		KY / /		1 Lilb	test
8-1	80	My Sty		X	28-301		X		HON CH)	(H)
					30-32'				Netuls, I	Notuls, Incours (M, D)
					32-34~				Ŧ	
					34-36				R	
					36-38				Ŧ	
					38-40				Ħ	
					40-43				A, IO	
					42-44				Ĥ	
					44-46				W	
					46-48				#	
					46-50				H	
					50-52				M, FO	
⇒		$\rightarrow$		>⊺	52-54	$\rightarrow$	<b>→</b>		Ŧ	
					r					
REPARTICE BY ISIGNATURE!		Ste	NATUR				RELINQUISHED BY (SIGNATURE)	(SIGNATURE)	DATE TIME	RECEIVED BY (SIGNATURE)
RELINQUISHED BY (SIGNATURE)	SHED B	IV (SIG	NATUR		DATE TIME OF CEIVED BY ISIGNATURE		RELINQUISHED BY (SIGNATURE)	(SIGNATURE)	DATE TIME	RECEIVED BY (SIGNATURE)
RELINQUISHED BY (SIGNATURE)	SHED B	IV (SIG	NATUR	<u> </u>	1 🛛 1	AY BY	DATE, TIME	REMARKS		
			Traducto	an Ouqui	Detrolocion: Orquial accompana y alignment copy to conducated facility					


~4 *** *** •

ای بی بی بی بی

.





÷...



-May I

2.5





U 18

ANALYTICAL RESULTS

Prepared For

Deknatel

Prepared By

Recra Environmental, Inc. 10 Hazelwood Drive, Suite 106 Amherst, New York 14150

COMMENTS

-

.

Comments pertain to data on one or all pages of this report.

The values reported as "less than" (<) indicate the working detection limit for the particular sample and/or parameter.

Methods used for the EP Toxicity Test procedure as well as the analysis of the resulting extract are presented in U.S. Environmental Protection Agency publication, "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods". July 1982, SW-846, Second Edition.



#### EP TOXICITY TEST EXTRACT - METALS

i.

**6**84

.

			SAMPLE IDE	NTIFICATION
PARAMETER (Units of Measure = mg/l)	ANALYSIS DATE	EPA MAX. CONC.	COMP. 1	COMP. 2
Total Arsenic Total Barium Total Cadmium Total Chromium Total Lead Total Mercury Total Selenium Total Silver	3/9/88 3/18/88 3/17/88 3/17/88 3/17/88 3/17/88 3/4/88 3/9/88 3/19/88	5.0 100.0 1.0 5.0 5.0 0.2 1.0 5.0	<0.005 <0.02 <0.006 <0.006 <0.02 <0.0005 <0.005 <0.005	<0.005 <0.02 <0.006 <0.006 <0.02 <0.0005 <0.005 <0.005

X Standard Addition Non-Standard Addition

### EP TOXICITY TEST EXTRACT - METALS

			SAMPLE IDE	NTIFICATION
PARAMETER (Units of Measure = mg/l)	ANALYSIS DATE	EPA MAX. CONC.	COMP. 3	COMP. 4
Total Arsenic Total Barium Total Cadmium Total Chromium Total Lead Total Mercury Total Selenium Total Silver	3/9/88 3/18/88 3/17/88 3/17/88 3/17/88 3/17/88 3/17/88 3/4/88 3/9/88 3/19/88	5.0 100.0 1.0 5.0 5.0 0.2 1.0 5.0	<0.005 <0.02 <0.006 0.041 <0.02 <0.0005 <0.005 <0.005	<0.005 0.22 <0.006 0.009 <0.02 <0.0005 <0.005 <0.005

X Standard Addition



-559

42.0

EP TOXICITY TEST EXTRACT	-	METALS
--------------------------	---	--------

	ANAL VETC		SAMPLE IDE	NTIFICATION
PARAMETER (Units of Measure = mg/l)	ANALYSIS DATE	EPA MAX. CONC.	COMP. 5	TB1:12-14'
Total Arsenic	3/9/88	5.0	<0.005	<0.005
Total Barium	3/18/88	100.0	<0.05	<0.02
Total Cadmium	3/17/88	1.0	<0.006	<0.006
Total Chromium	3/17/88	5.0	0.023	0.064
Total Lead	3/17/88	5.0	<0.02	<0.02
Total Mercury	3/4/88	0.2	<0.0005	<0.0005
Total Selenium	3/9/88	1.0	<0.005	<0.005
Total Silver	3/19/88	5.0	<0.005	<0.005

X Standard Addition

		SAMPLE IDENTIFICATION
ANALYSIS DATE	EPA MAX. CONC.	TB2:4-6'
3/9/88	5.0	<0.005
3/18/88	100.0	<0.02
3/17/88	1.0	<0.006
3/17/88	5.0	<0.005
3/17/88	5.0	<0.02
3/4/88	0.2	<0.0005
3/9/88	1.0	<0.005
3/19/88	5.0	<0.005
	DATE 3/9/88 3/18/88 3/17/88 3/17/88 3/17/88 3/17/88 3/4/88 3/9/88	3/9/88       5.0         3/18/88       100.0         3/17/88       1.0         3/17/88       5.0         3/17/88       5.0         3/17/88       5.0         3/17/88       5.0         3/17/88       1.0         3/4/88       0.2         3/9/88       1.0

X Standard Addition Non-Standard Addition



#### QUALITY CONTROL INFORMATION - PRECISION EP TOXICITY TEST EXTRACT - METALS

SAMPLE IDENTIFICATION _____ COMP. 5

PARAMETER (Units of Measur	VALUE	VALUE 2	MEAN	STANDARD DEVIATION
Total Arsenic Total Barium Total Cadmium Total Chromium Total Lead Total Mercury Total Selenium Total Silver	<0.005 <0.05 <0.006 0.022 <0.02 <0.005 <0.005 <0.005	<0.005 <0.05 <0.006 0.023 <0.02 <0.0005 <0.005 <0.005	<0.005 <0.05 <0.006 0.023 <0.02 <0.0005 <0.005 <0.005	- 0.00071 - -

**B**est

•

<u>X</u> Standard Addition Non-Standard Addition



计表示 化最优的最优的 化化合金化化合金化合金化合金化

 $z_{i} x_{i}$ 

ક**ે**લે

- 16

磞

-

40. 10

àù

54<del>3</del>4

1.00

99. - 11995

#### QUALITY CONTROL INFORMATION - ACCURACY EP TOXICITY TEST EXTRACT - METALS

SAMPLE IDENTIFICATION _____ COMP. 1

PARAMETER	µg OF SPIKE	% RECOVERY
Total Arsenic	25 50	104 98
Total Barium	2,500 5,000	98 98
Total Cadmium	250 500	102 100
Total Chromium	250 500	106 103
Total Lead	2,500 5,000	99 98
Total Mercury	0.2 0.4	114 105
Total Selenium	25 50	92 94
Total Silver	250 500	97 94



.

## QUALITY CONTROL INFORMATION - ACCURACY EP TOXICITY TEST EXTRACT - METALS

SAMPLE IDENTIFICATION COMP. 2

PARAMETER	µg OF SPIKE	% RECOVERY
Total Arsenic	25 50	100 9 <b>4</b>
Total Barium	2,500 5,000	98 99
Total Cadmium	250 500	104 102
Total Chromium	250 500	10 <b>6</b> 104
Total Lead	2,500 5,000	98 95
Total Mercury	0.2 0.4	115 114
Total Selenium	25 50	92 88
Total Silver	250 500	92 93

I.D. #88-236

# QUALITY CONTROL INFORMATION - ACCURACY EP TOXICITY TEST EXTRACT - METALS

SAMPLE IDENTIFICATION COMP. 3

PARAMETER	µg OF SPIKE	% RECOVERY
Total Arsenic	25 50	96 94
Total Barium	2,500 5,000	94 97
Total Cadmium	250 500	103 100
Total Chromium	250 500	103 100
Total Lead	2,500 5,000	100 98
Total Mercury	0.2 0.4	104 107
Total Selenium	25 50	92 92
Total Silver	250 500	92 92



# QUALITY CONTROL INFORMATION - ACCURACY EP TOXICITY TEST EXTRACT - METALS

SAMPLE IDENTIFICATION _____ COMP. 4

PARAMETER	µg OF SPIKE	* RECOVERY
Total Arsenic	25 50	96 96
Total Barium	2,500 5,000	96 98
Total Cadmium	250 500	104 102
Total Chromium	250 500	101 100
Total Lead	2,500 5,000	99 95
Total Mercury	0.2 0.4	117 116
Total Selenium	25 50	92 92
Total Silver	250 500	94 93



I.D. #88-236

ъĝ

. :00

: 7**96** 

-18

3.16

- init

1.1

# QUALITY CONTROL INFORMATION - ACCURACY EP TOXICITY TEST EXTRACT - METALS

SAMPLE IDENTIFICATION _____ COMP. 5

PARAMETER	µg OF SPIKE	% RECOVERY
Total Arsenic	25 50	104 93
Total Barium	2,500 5,000	95 94
Total Cadmium	250 500	102 101
Total Chromium	250 500	104 101
Total Lead	2,500 5,000	97 97
Total Mercury	0.2 0.4	93 99
Total Selenium	25 50	96 92
Total Silver	250 500	94 91

ECRA ENVIRONMENTAL, INC.

# QUALITY CONTROL INFORMATION - ACCURACY EP TOXICITY TEST EXTRACT - METALS

PARAMETER	µg OF SPIKE	% RECOVERY
Total Arsenic	25 50	92 90
Total Barium	2,500 5,000	94 99
Total Cadmium	250 500	105 103
Total Chromium	250 500	10 <b>4</b> 103
Total Lead	2,500 5,000	100 100
Total Mercury	0.2 0.4	102 111
Total Selenium	25 50	96 94
Total Silver	250 500	96 97

I.D. #88-236

# QUALITY CONTROL INFORMATION - ACCURACY EP TOXICITY TEST EXTRACT - METALS

SAMPLE IDENTIFICATION ______TB2:4-6'

PARAMETER	µg OF SPIKE	% RECOVERY
Total Arsenic	25 50	92 92
Total Barium	2,500 5,000	98 9 <b>6</b>
Total Cadmium	250 500	103 96
Total Chromium	250 500	103 97
Total Lead	2,500 5,000	101 101
Total Mercury	0.2 0.4	96 99
Total Selenium	25 50	92 92
Total Silver	250 500	92 94

RECRA ENVIRONMENTAL, INC.

1/3034.1

ANALYTICAL RESULTS

Prepared For

Deknatel

Prepared By

Recra Environmental, Inc. 10 Hazelwood Drive, Suite 106 Amherst, New York 14150

# METHODOLOGIES

The specific methodologies employed in obtaining the enclosed analytical results are indicated on the specific data table. The method numbers presented refer to the following U.S. Environmental Protection Agency reference.

 U.S. Environmental Protection Agency "Test Methods for Evaluating Solid Waste - Physical/Chemical Methods". Office of Solid Waste and Emergency Response. July 1982, SW-846, Second Edition. inter -

#### COMMENTS

Comments pertain to data on one or all pages of this report.

The values reported as "less than" (<) indicate the working detection limit for the particular sample and/or parameter.

Results of the analysis of soils are corrected for moisture content and reported on a dry weight basis.



1/8034.2

-16

-

-M

Side

- -4

PARAMETER			SAMPLE IDENTI	ICATION (DATE)
(Units of Measure = µg/g dry)	METHOD NUMBER	ANALYSIS DATE	DP-2 (0-0.5') (2/19/88)	DP-2 (2.0-2.5') (2/19/88)
Total Cadmium Total Chromium Hexavalent Chromium Total Copper Total Iron Total Lead Total Nickel Total Selenium Total Zinc	7130 7190 7195 7210 7380 7420 7520 7740 7950	3/22/88 3/22/88 3/12/88 3/22/88 3/15/88 3/15/88 3/17/88 3/18/88 3/4/88 3/22/88	1.1 25,800 4,610 220 19,000 53,200 29 <0.6 200	<0.6 4,570 150 17 9,220 570 4.6 <0.6 20

# SOIL MATRIX METALS

# SOIL MATRIX METALS

PARAMETER	1	[	SAMPLE IDENTIF	ICATION (DATE)
(Units of Measure =	METHOD	ANALYSIS	DP-2 (4.0-4.5')	DP-2 (4.5-5.0')
µg/g dry)	NUMBER	DATE	(2/19/88)	(2/19/88)
Total Cadmium	7130	3/22/88	<0.6	<0.6
Total Chromium	7190	3/22/88	4,740	3,650
Hexavalent Chromium	7195	3/12/88	220	400
Total Copper	7210	3/22/88	18	15
Total Iron	7380	3/15/88	6,820	7,050
Total Lead	7420	3/17/88	1,600	7,050
Total Nickel	7520	3/18/88	5.1	<2
Total Selenium	7740	3/4/88	<0.6	<0.6
Total Zinc	7950	3/22/88	19	15
			[	



1/8034.3

		MELALS		
PARAMETER			SAMPLE IDENTIF	ICATION (DATE)
(Units of Measure ≠	METHOD	ANALYSIS	DP-2 (5.0-5.5')	DP-2 (6.0-6.5')
µg/g dry)	NUMBER	DATE	(2/19/88)	(2/19/88)
Total Cadmium	7130	3/22/88	<0.6	<0.6
Total Chromium	7190	3/22/88	3,350	3,050
Hexavalent Chromium	7195		110	69
Total Copper	7210	3/22/88	10	11
Total Iron		3/15/88	6,230	9,510
Total Lead	7420	3/17/88	830	750
Total Nickel	7520	3/18/88	<2	<2
Total Selenium	7740	3/4/88	<0.6	<0.6
Total Zinc		3/22/88	11	9.9
	<u> </u>			

# SOIL MATRIX METALS

# SOIL MATRIX METALS

PARAMETER (Units of Measure ≠ µg/g dry)	METHOD NUMBER	ANALYSIS DATE	SAMPLE IDENTIF DP-2 (6.5-7.0') (2/19/88)	ICATION (DATE) DP-2 (7.0-7.5') (2/19/88)
Total Cadmium Total Chromium Hexavalent Chromium Total Copper Total Iron Total Lead Total Nickel Total Selenium Total Zinc	7130 7190 7195 7210 7380 7420 7520 7740 7950	3/22/88 3/12/88 3/12/88 3/22/88 3/15/88 3/15/88 3/17/88 3/18/88 3/18/88 3/4/88 3/22/88	<0.6 3,200 130 11 4,350 5,690 2.8 <0.6 10	<0.6 3,110 87 11 4,010 800 3.7 <0.6 10



We. ista ind. . Silisi irie.

1 line:

acida.

-البنوي

1/8034.4

ية م

SOIL MATRIX

		PARAMETER (UNITS OF MEASURE)
SAMPLE IDENTIFICATION	ANALYSIS DATE	DRY WEIGHT (103°C) (%)
DP-2 (0-0.5')	3/5/88	89.0
DP-2 (2.0-2.5')	3/5/88	96.1
DP-2 (4.0-4.5')	3/5/88	96.7
DP-2 (4.5-5.0')	3/5/88	95.6
DP-2 (5.0-5.5')	3/5/88	96.0
DP-2 (6.0-6.5')	3/5/88	
		96.4
DP-2 (6.5-7.0')	3/5/88	95.7
DP-2 (7.0-7.5')	3/5/88	95.4



.

1/8034.5

Z

وفرقونا والم

CRA ENVIRONMENTAL, INC.

QUALITY CONTROL INFORMATION - PRECISION SOIL MATRIX METALS

PARAMETER (Units of Measure = µg/g dry)	ME THOD NUMBER	SAMPLE IDENTIFICATION	VAL UE 1	VALUE 2	MEAN	STANDARD DEVIATION
Total Cadmium Total Chromium	7130	ĎP-2 (0-0.5')	0.97 24,300	1.2 27,300	1.1	0.16 2,100
Hexavalent Chromium Total Copper Total Iron	0127 7380		210 210 17,600	4,430 220 20,300	<b>4,61</b> 0 220 19,000	1,1 1,900
Total Lead Total Nickel	7420 7520 7740		48,800 25 <0.6	57,600 32 40.6	53,200 29 40.6	6,200 4.9
Total Zinc	7950		200	200	200	0

# QUALITY CONTROL INFORMATION - ACCURACY SOIL MATRIX METALS

			MI CROGRAMS	
	METHOD	SAMPLE	5	PERCENT
<b>PARAMETER</b>	NUMBER	IDENTIFICATION	SPIKE	RECOVERY
Total Cadmium	7130	()-2 (()-() 2.1)	500	100
Total Chromium	0612		200	103
Hexavalent	7195		500	107
Chromium				
Total Copper	7210		500	<u>98</u>
Total Iron	7380		500	98
Total Lead	7420		500	66
Total Nickel	7520		500	101
<b>Jotal Selenium</b>	7740		50	80
Total Zinc	7950		500	100
_				

I.D. #88-254

ROUX ASSOCIATES

	CHAIN	OF CUS	TODY R	ECORD	
	ct No. 09001	-			
Proje	et Title RECRA	Enn	'C:√, ''E	and - Dere	NATE 2
Samp	le Source	Cic	2.7	11/126	
Colle	ctors NameOAP	1, 5, m	CENT	i Grain -	hu ha
		print		^ signature	
	information od Of Shipping	ener.	- ri L	ÉNEX'EL	
	juished By:		Rece	ived By:	
-			sigi	K.E. Kage	reck
_	/Time		for Det	•/Time/88	(1330)
Sample Designation			Time	Analyte	No. Of Containers
D1-2	DF-2(0-5) DF2(20-25)	R/19/	1 3:45	116774L S	/
r;2	DF 2 (2.0'- 2.5')	2-19-55	5 45	NIC THIC S	/
1),'-2	DP-2 (4.0'- 4.5')	2-14.00	345	METHLY	í
nn 2	np. (5 0 - 5.5')	2-14-15	345	11167.461	1
0.0-2	08.2 (4.5'-5.0)	2-17-05	545	1216 77/2)	1
<u> </u>	01-2 (6.0' 6.5')	2-14-58	345		
<i>D</i> , <b>`-</b> Z	12 12 (2.5 - 7.0 '	2-17-15	541	de Alch	
7,22	· ?? (70'- 7,+')	2-1-1-15	3 Yt	, 21 8 746 3	

Comments:

, 4)4 r . .

DP-2 DISPOSAL POINTE)

1/9337.1

#### ANALYTICAL RESULTS

Prepared For

Deknatel

Prepared By

#### Recra Environmental, Inc. 10 Hazelwood Drive, Suite 106 Amherst, New York 14150

#### METHODOLOGIES

The specific methodologies employed in obtaining the enclosed analytical results are indicated on the specific data table. The method numbers presented refer to one of the following U.S. Environmental Protection Agency references.

- o 40 CFR Part 136 "Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act" October 26, 1984 (Federal Register) U.S. Environmental Protection Agency.
- U.S. Environmental Protection Agency "Test Methods for Evaluating Solid Waste - Physical/Chemical Methods". Office of Solid Waste and Emergency Response. July 1982, SW-846, Second Edition.

#### COMMENTS

Comments pertain to data on one or all pages of this report.

The values reported as "less than" (<) indicate the working detection limit for the particular sample and/or parameter.

Results of the analysis of soils are corrected for moisture content and reported on a dry weight basis.



1/8337.2

- 196

-

 $\sim i$ 

not.

w.d

्य ्य

1.48

#### SOIL MATRIX METALS

PARAMETER			SAMPLE IDENTI	FICATION (DATE)
(Units of Measure = µg/g dry)	METHOD NUMBER	ANALYSIS DATE	DP-1/13-15' (3/22/88)	OP-1/15-17' (3/22/88)
Total Chromium Hexavalent Chromium Total Copper Total Iron Total Lead Total Zinc	7190 7195 7210 7380 7420 7950	4/23/88 4/28/88 4/13/88 4/23/88 4/15/88 4/15/88 4/27/88	69 1.3 31 6,510 150 30	62 0.59 21 6,710 150 15

SOIL MATRIX METALS

PARAMETER			SAMPLE IDENTI	FICATION (DATE)
(Units of Measure ≠ µg/g dry)	METHOD NUMBER	ANALYSIS DATE	DP-1/17-19' (3/22/88)	DP-1/19-21' (3/22/88)
Total Chromium Hexavalent Chromium Total Copper Total Iron Total Lead Total Zinc	7190 7195 7210 7380 7420 7950	4/23/88 4/28/88 4/13/88 4/23/88 4/23/88 4/15/88 4/27/88	34 0.81 21 7,810 110 17	13 0.13 12 4,020 55 9.2

.



1/8337.3

# SOIL MATRIX METALS

ása.

酚油

Sala F.

iteria.

site.

**\$**£157

interio :

1849-1

in the s

**.** 

PARAMETER			SAMPLE IDENTI	FICATION (DATE)
(Units of Measure =	METHOD	ANALYSIS	DP-1/21-23'	DP-1/23-25'
µg/g dry)	NUMBER	DATE	(3/22/88)	(3/22/88)
Total Chromium	7190	4/23/88	35	8.1
Hexavalent Chromium	7195	4/28/88	0.29	<0.08
Total Copper	7210	4/13/88	25	7.1
Total Iron	7380	4/23/88	13,600	2,920
Total Lead	7420	4/15/88	73	28
Total Zinc	7950	4/27/88	23	8.7

# SOIL MATRIX METALS

PARAMETER			SAMPLE IDENTI	ICATION (DATE)
(Units of <b>Measure =</b>	METHOD	ANALYSIS	DP-1/25-27'	DP-1/27-29'
_µg/g dry)	NUMBER	DATE	(3/22/88)	(3/22/88)
Total Chromium	7190	4/23/88	8.7	12
Hexavalent Chromium	7195	4/28/88	0.10	<0.08
Total Copper	7210	4/13/88	9.6	19
Total Iron	7380	4/23/88	5,080	20,900
Total Lead	7420	4/15/88	37	97
Total Zinc	7950	4/27/88	10	12



1/8337.4

 $\phi \phi$ 

49

140

уŵ

# SOIL MATRIX METALS

PARAMETER (Units of Measure =	METHOD	ANALYSIS	SAMPLE IDENTIFICATION (DATE) DP-1/33-35'
µg/g dry)	NUMBER	DATE	(3/22/88)
Total Chromium	7190	4/23/88	18
Hexavalent Chromium	7195	4/28/88	0.11
Total Copper	7210	4/13/88	14
Total Iron	7380	4/23/88	4,570
Total Lead	7420	4/15/88	39
Total Zinc	7950	4/27/88	10



I.D. #88-455

•

-

GEORA ENVIRONMENTAL INC.

1/8337.5

		PARAMETER (UNITS OF MEASURE)
SAMPLE	ANALYSIS	LEACHABLE NITRATE
IDENTIFICATION	DATE	(µg/g dry)
DP-1/13-15'	4/15/88	1.3
DP-1/15-17'	4/15/88	1.7
DP-1/17-19'	4/15/88	6.2
DP-1/19-21'	4/15/88	3.7
DP-1/21-23'	4/15/88	3.2
DP-1/23-25	4/15/88	1.7
DP-1/25-27'	4/15/88	1.9
DP-1/27-29'	4/15/88	1.4
DP-1/33-35'	4/15/88	1.6

#### SOIL MATRIX METHOD 9200

### SOIL MATRIX METHOD 365.2

SAMPLE IDENTIFICATION	ANALYSIS DATE	PARAMETER (UNITS OF MEASURE) LEACHABLE PHOSPHOROUS (µg/g dry)
DP-1/13-15'	4/16/88	9.1
DP-1/15-17'	4/16/88	7.7
DP-1/17-19'	4/16/88	6.1
DP-1/19-21'	4/16/88	5.7
DP-1/21-23'	4/16/88	3.6
DP-1/23-25'	4/16/88	3.7
DP-1/25-27'	4/16/88	3.9
DP-1/27-29'	4/16/88	5.4
DP-1/33-35'	4/16/88	4.7



See as do no

I.D. #88-455

-

**新祝** 

1/8337.6

-iq

්රම්

93

196

		PARAMETER (UNITS OF MEASURE)
SAMPLE	ANALYSIS	LEACHABLE SULFATE
IDENTIFICATION	DATE	(µg/g dry)
DP-1/13-15'	4/22/88	28
DP-1/15-17'	4/22/88	<20
DP-1/17-19'	4/22/88	<20
DP-1/19-21'	4/22/88	<20
DP-1/21-23'	4/22/88	<20
DP-1/23-25'	4/22/88	<20
DP-1/25-27'	4/22/88	37
DP-1/27-29'	4/22/88	58
DP-1/33-35'	4/22/88	<20

SOIL MATRIX METHOD 9038

SOIL MATRIX

		PARAMETER (UNITS OF MEASURE)
SAMPLE	ANALYSIS	DRY WEIGHT (103°C)
IDENTIFICATION	DATE	(%)
DP-1/13-15'	4/27/88	93.7
DP-1/15-17'	4/27/88	92.4
DP-1/17-19'	4/27/88	93.5
DP-1/19-21'	4/27/88	94.4
DP-1/21-23'	4/27/88	95.7
DP-1/23-25'	4/27/88	95.0
DP-1/25-27'	4/27/88	. 96.5
DP-1/27-29'	4/27/88	96.0
DP-1/33-35'	4/27/88	96.3



1/8337.7

R

QUALITY CONTROL INFORMATION - PRECISION SOIL MATRIX METALS

		•	VALUE 2	MEAN	STANDARD DEVIATION
Total Copper7210Total Iron7380Total Lead7420Total Zinc7950	3-25'	9.1 4.008 7.0 31 7.3	7.1 <0.08 7.1 3,130 24 10	8.1 <0.08 7.1 2.920 28 8.7	1.4 0.071 300 1.9

# QUALITY CONTROL INFORMATION - ACCURACY Soil Matrix Metals

			MI CROGRAMS	
	METHOD	SAMPLE	6	PERCENT
PARAMETER	NUMBER	IDENTIFICATION	SPIKE	RECOVERY
Total Chromium	7190	0P-1/23-25'	200	92
Hexavalent	7195	•	500	16
Chromium				
Total Copper	7210		500	98
Total Iron	7380		500	98
Total Lead	7420		500	102
Total Zinc	7950		500	66

I.D. #88-455

1/8337.8

PARAMETER	UNITS OF MEASURE	SAMPLE IDENTIFICATION	VALUE 1	VALUE	MEAN	STANDARD DEVIATION
Leachable Nitrate	µg∕g dry	DP-1/33-35'	1.6	1.6	1.6	0
Leachable Phosphorous	µg∕g dry		4.7	4.7	4.7	0
Leachable Sulfate	µg∕g dry		<20	<20	<20	-

#### QUALITY CONTROL INFORMATION - PRECISION SOIL MATRIX

#### QUALITY CONTROL INFORMATION - ACCURACY SOIL MATRIX

PARAMETER	SAMPLE IDENTIFICATION	µg OF SPIKE	X RECOVERY
Leachable Nitrate	DP-1/33-35'	4.0	108
Leachable		20	97
Phosphorous Leachable Sulfate		20	103



RECRA ENVIRONMENTAL. INC.

ROUX ASSOCIATES

	CHAIN	OF CUS	TODY RE	CORD	
Proje	ct No	_			
Proje	t Title RECRA	ENVIRO	NNIENTA	L INC	
Samp	le Source5	0,2 .5	AMPLE		
	tors Name			Jrén (' She signature	
Field	Information				
Metho	od Of Shipping	DERAL	ETPRE	لر لہ=	л +
	uished By:			ved By:	II 1
sign	John C Check		sign	J. Cahert	
for _	Fine Appreciate /Time 3-22-88 / 4	:20+	_ for _	1 ferr Environ 171me 3123188	930pm "
				/Time	<b>//</b>
Sample Designation	Sample Location	Date	Time	Analyte	No. Of Containers
DP-1	0,2-1 (13-15)	3-22-18P		METELS	/ *
02-1	bP-1 (15-17)	+ 1		11	/
DP-1	JP-1 ( 17-15)	11		ł.	/
DF-1	DP-1 (19-2.)	11	,	Į (	/ 10
D12-1	OP-1 (21-23)	11		( c	<i>y</i>
<del>Dr 1</del>	APT Correct	- 47			
0.21	DE-1 (-25-21)	<u> </u>			

TOTAL T

Comments:

HUUX ASSOCIATES

189

24

澜朝

-,56

476

· ,854

rið,

. Section in the section of the sect

	CHAIN	OF CUS	TODY R	ECORD	
Proje	ct No. 09001	-			
Proje	ct Title <u>REERA</u>	ENVIR.	on mer	THE IN S.	
		Soit			
Colle	ctors Name John S	print	/_	John ". Sha signature	
	Information				
Metho	od Of Shipping	FEDERAL	EXA	reis	
	uished By:			lved By:	
sign for	John C. Sherle Rance Association ITIMO <u>3-22-00</u> /	-	_ sigr	J. Cabert J. Cabert Engine	nmatel
Dete	/Time <u>3-22-88</u> /	4:300	Det	e/Time 583188	9 ³ hr
Sample Designation	Sample Location	Dete	Time	Analyte	No. Of Containers
DP-1	01-1 (23-25)	3-22-58		Mettel	)
0P-1	Dr-1 (25-27)	11		L ç	1
OP-1	DP-1 (27-27)	1 (		61	1
DP-1	01-1 ( 33-35)	L C		٤į	(
~					
····					
~***					
iye wak					

TOTAL 4

Comments:

1/8170

# ANALYTICAL RESULTS

Prepared For

Deknate1

# Prepared By

Recra Environmental, Inc. 10 Hazelwood Drive, Suite 106 Amherst, New York 14150

# METHODOLOGIES

The specific methodology employed in obtaining the enclosed analytical results is indicated on the specific data table. The method number presented refers to the following U.S. Environmental Protection Agency reference.

 U.S. Environmental Protection Agency "Test Methods for Evaluating Solid Waste - Physical/Chemical Methods". Office of Solid Waste and Emergency Response. July 1982, SW-846, Second Edition.

#### COMMENTS

Comments pertain to data on one or all pages of this report.

The values reported as "less than" (<) indicate the working detection limit for the particular sample and/or parameter.



1/3170.2

315

-8

油拔

- 194

574

i: 19

-558

19-4

~~~

SOIL MATRIX METHOD 8240 - VOLATILES AND ADDITIONAL COMPOUNDS

| | SAMPLE IDENTIFICATION | | | | | |
|---------------------------------------|-----------------------|--------------|--------------|--|--|--|
| COMPOUND
(Units of Measure = µg/g) | COMP. III | 13-21' COMP. | 21-29' COMP. | | | |
| Acrolein | <40 | <40 | <40 | | | |
| Acrylonitrile | <40 | <40 | 40 | | | |
| Benzene | <0.5 | <0.5 | <0.5 | | | |
| Bromodichloromethane | <0.3 | <0.3 | <0.3 | | | |
| Bromoform | <0.5 | <0.5 | <0.5 | | | |
| Bromomethane | <1 | <1 | <1 | | | |
| Carbon tetrachloride | <0.3 | <0.3 | <0.3 | | | |
| Chlorobenzene | <0.7 | <0.7 | <0.7 | | | |
| Chloroethane | <1 | <1 | <1 | | | |
| 2-Chloroethylvinyl ether | <1 | <1 | <1 | | | |
| Chloroform | <0.2 | <0.2 | <0.2 | | | |
| Chloromethane | <1 | <1 | <1 | | | |
| Dibromochloromethane | <0.4 | <0.4 | <0.4 | | | |
| 1,2-Dichlorobenzene | <0.3 | <0.3 | <0.3 | | | |
| 1,3-Dichlorobenzene | <0.3 | <0.3 | <0.3 | | | |
| 1,4-Dichlorobenzene | <0.3 | <0.3 | <0.3 | | | |
| 1,1-Dichloroethane | <0.5 | <0.5 | <0.5 | | | |
| 1,2-Dichloroethane | <0.3 | <0.3 | <0.3 | | | |
| 1,1-Dichloroethylene | <0.3 | <0.3 | <0.3 | | | |
| trans-1,2-Dichloroethylene | <0.2 | <0.2 | <0.2 | | | |
| 1,2-Dichloropropane | <0.6 | <0.6 | <0.6 | | | |
| cis-1,3-Dichloropropene | <0.5 | <0.5 | <0.5 | | | |
| trans-1,3-Dichloropropene | <0.5 | <0.5 | <0.5 | | | |
| Ethylbenzene | 24 | <0.8 | <0.8 | | | |
| Methylene chloride | 0.43 | 0.43 | 0.37 | | | |
| 1,1,2,2-Tetrachloroethane | <0.7 | <0.7 | <0.7 | | | |
| Tetrachloroethylene | 1.6 | <0.5 | <0.5 | | | |
| Toluene | 7.9 | <0.7 | <0.7 | | | |
| 1,1,1-Trichloroethane | <0.4 | <0.4 | <0.4 | | | |
| 1,1,2-Trichloroethane | <0.6 | <0.6 | <0.6 | | | |
| Trichloroethylene | <0.2 | <0.2 | <0.2 | | | |
| Vinyl chloride | <1 | <1 | <1 | | | |

(continued)

. .

| | SAMPLE IDENTIFICATION | | | | | |
|--|-----------------------|-----------------|-----------------|--|--|--|
| | COMP. III | 13-21' COMP. | 21-29' COMP. | | | |
| Additional Compounds
Acetone | <1.0 | <1.0 | 4.1 | | | |
| Analysis Date
Internal Standards
Level Added = 0.05 µg/g | 4/1/88 | 4/1/88 | 4/1/88 | | | |
| (% Recovery)
Bromochloromethane
1,4-Difluorobenzene
Chlorobenzene-D5 | 82
84
91 | 91
94
98 | 38
89
92 | | | |
| Surrogates
Level Added = 0.05 µg/g
(% Recovery)
4-Bromofluorobenzene
1,2-Dichloroethane-D4
Toluene-D8 | 68
75
74 | 87
108
89 | 95
115
79 | | | |

SOIL MATRIX METHOD 8240 - VOLATILES AND ADDITIONAL COMPOUNDS

ngen i meretakter og i som en at samet av det som i
哪些

纖彩

ieras.

ANALYTICAL RESULTS

Prepared For

Deknatel

Prepared By

Recra Environmental, Inc. 10 Hazelwood Drive, Suite 106 Amherst, New York 14150

METHODOLOGIES

The specific methodologies employed in obtaining the enclosed analytical results are indicated on the specific data table. The method numbers presented refer to one of the following U.S. Environmental Protection Agency references unless noted otherwise in this report.

- o 40 CFR Part 136 "Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act" October 26, 1984 (Federal Register) U.S. Environmental Protection Agency.
- U.S. Environmental Protection Agency "Test Methods for Evaluating Solid Waste - Physical/Chemical Methods". Office of Solid Waste and Emergency Response. July 1982, SW-846, Second Edition.

COMMENTS

Comments pertain to data on one or all pages of this report.

The values reported as "less than" (<) indicate the working detection limit for the particular sample and/or parameter.

Petroleum products analysis is performed according to NYS DOH Method 310-13.

Results of the analysis of petroleum products are based on the matching of retention times between the sample and standards on a single gas chromatographic column:

Chromatograms of this analysis are included in this report.

The standards analyzed for comparison include: regular gasoline, white kerosene, fuel oil #2, fuel oil #6, S.A.E. 10, S.A.E. 20, S.A.E. 30 and S.A.E. 40.

Compounds reported as ND are "not detected".

Results of the analysis of soils are corrected for moisture content and reported on a dry weight basis.

The dry weights (103°C) are as follows:

1/8329.2

AQUEOUS MATRIX DOH METHOD 310-13

MAR.

wise-

(iiia):

Neria:

御徒

御命

MBEN

| SAMPLE
IDENTIFICATION | EXTRACTION | | PARAMETER |
|--------------------------|------------|------------------|--------------------|
| (DATE) | DATE | ANALYSIS
DATE | PETROLEUM PRODUCTS |
| MW-3
(3/15/88) | 3/21/88 | 3/22/88 | ND |

I.D. #88-397

1/8329.3

ಾತ

AQUEOUS MATRIX METALS

| | | | SAMPLE IDENTI | FICATION (DATE) |
|---------------------------|--------|----------|---------------|-----------------|
| PARAMETER | METHOD | ANALYSIS | MW-1 | MW-2 |
| (Units of Measure = mg/l) | NUMBER | DATE | (3/15/88) | (3/15/88) |
| Total Chromium | 7190 | 4/7/88 | 0.097 | 0.10 |
| Hexavalent Chromium | 7195 | 3/16/88 | <0.003 | 0.090 |
| Total Copper | 7210 | 4/8/88 | 0.096 | 0.11 |

AQUEOUS MATRIX METALS

| | | | SAMPLE IDENTIFICATION (DA | | |
|---------------------------|--------|----------|---------------------------|-----------|--|
| PARAMETER | METHOD | ANALYSIS | MW-10 | MW-11 | |
| (Units of Measure = mg/l) | NUMBER | DATE | (3/15/88) | (3/15/88) | |
| Total Chromium | 7190 | 4/7/88 | <0.005 | <0.005 | |
| Hexavalent Chromium | 7195 | 3/16/88 | <0.003 | <0.003 | |
| Total Copper | 7210 | 4/8/88 | <0.005 | <0.005 | |

SOIL MATRIX METALS

| PARAMETER | | | SAMPLE IDENTIFICATION (DA | | |
|----------------------------|--------|----------|---------------------------|-----------|--|
| (Units of Measure = | METHOD | ANALYSIS | COMP-1 | COMP-2 | |
| µg/g dry) | NUMBER | DATE | (3/15/88) | (3/15/88) | |
| Total Chromium | 7190 | 4/8/88 | 4,100 | 1,700 | |
| Hexavalent Chromium | 7195 | 4/9/88 | 9.5 | 0.28 | |
| Total Copper | 7210 | 4/7/88 | 540 | 120 | |
| Total Iron | 7380 | 4/12/88 | 17,000 | 14,000 | |
| Total Lead | 7420 | 4/9/88 | 10,000 | 2,800 | |
| Total Zinc | 7950 | 4/7/88 | 840 | 230 | |

AQUEOUS MATRIX WATER QUALITY TESTING

| | | | | SAMPLE IDENTIFICATION (DATE) | | |
|-------------------|--------|------------|----------|------------------------------|-----------|--|
| PARAMETER | METHOD | UNITS OF | ANALYSIS | MW-I | MW-2 | |
| | NUMBER | MEASURE | DATE | (3/15/88) | (3/15/88) | |
| Nitrate | 9200 | mg NO3-N/L | 3/17/88 | 8.7 | 7.5 | |
| Total Phosphorous | 365.2 | mg P/1 | 4/16/88 | 0.12 | <0.02 | |
| Sulfate | 9038 | mg/1 | 4/6/88 | 67 | 42 | |

AQUEOUS MATRIX WATER QUALITY TESTING

| PARAMETER | | | | SAMPLE IDENTIFICATION (DAT | | |
|---|-----------------------|------------------------------|------------------------------|----------------------------|---------------------------|--|
| | . METHOD
NUMBER | UNITS OF
MEASURE | ANALYSIS
DATE | MW-10
(3/15/88) | MW-11
(3/15/38) | |
| Nitrate
Total Phosphorous
Sulfate | 9200
365.2
9038 | mg NO3-N/L
mg P/1
mg/1 | 3/17/88
4/16/88
4/6/88 | 0.22
<0.02
<1 | 0.065
<0.02
<1 | |

1/8329.5

1940

. 10.1

346

SOIL MATRIX METHOD 9200

| SAMPLE
IDENTIFICATION
(DATE) | ANALYSIS
DATE | PARAMETER (UNITS OF MEASURE)
LEACHABLE NITRATE
(µg/g dry) |
|------------------------------------|------------------|---|
| COMP-1
(3/15/88) | 4/15/88 | 9.8 |
| COMP-2
(3/15/88) | 4/15/88 | 1.8 |

SOIL MATRIX METHOD 365.2

| SAMPLE | | PARAMETER (UNITS OF MEASURE) |
|--------------------------|------------------|-------------------------------------|
| IDENTIFICATION
(DATE) | ANALYSIS
DATE | LEACHABLE PHOSPHOROUS
(µg/g dry) |
| COMP-1
(3/15/88) | 4/16/88 | 8.0 |
| COMP-2
(3/15/88) | 4/16/88 | <0.6 |

SOIL MATRIX METHOD 9038

| SAMPLE | | PARAMETER (UNITS OF MEASURE) |
|--------------------------|------------------|---------------------------------|
| IDENTIFICATION
(DATE) | ANALYSIS
DATE | LEACHABLE SULFATE
(µg/g dry) |
| COMP-1
(3/15/88) | 4/22/88 | 150 |
| COMP-2
(3/15/88) | 4/22/88 | 47 |

I.D. #88-397

1/8329.6

| - PRECISION | | |
|-----------------------------|----------------|--------|
| QUALITY CONTROL INFORMATION | AQUEOUS MATRIX | METALS |
| CONTROL | AQUE | |
| QUAL I TY | | |

| PARAMETER | METHOD | SAMPLE | VAL UE | VALUE | MEAN | STANDARD |
|---|----------------------|----------------|--|--------------------------|--|-----------|
| (Units of Measure = mg/l) | NUMBER | IDENTIFICATION | 1 | 2 | | DEVIATION |
| Total Chromium
Hexavalent Chromium
Total Copper | 7190
7195
7210 | Mu-11 | <pre><0.005 <0.003 <0.005 <0.005</pre> | <0.005<0.003<0.003<0.005 | <pre><0.005 <0.003 <0.003 <0.005</pre> | |

QUALITY CONTROL INFORMATION - ACCURACY AQUEOUS MATRIX METALS

| | | | MICROGRAMS | |
|------------------|--------|-----------------------|------------|----------|
| | METHOD | SAMPLE | Ъ. | PERCENT |
| PARAMETER | NUMBER | IDENTIFICATION | SPIKE | RECOVERY |
| Total Chromium | | | ĘŲŲ | 00 |
| Hovavalent | 1195 | | | or
Ye |
| Chromium | | | 200 | 2 |
| Total Copper | 7210 | | 500 | 66 |
| | | | | |

I.D. #88-397

.

. È.

QUALITY CONTROL INFORMATION - PRECISION SOIL MATRIX METALS

្លះផ្ល

| PARAMETER
(Units of Measure =
µg/g dry) | ME THOD
NUMBE R | SAMPLE
IDENTIFICATION | VALUE
1 | VAL UE
2 | MEAN | STANDARD
DEVIATION |
|---|--------------------------------------|--------------------------|--------------------------------------|---|--|---------------------------------------|
| Total Chromium
Hexavalent Chromium
Total Copper
Total Iron
Total Lead
Total Zinc | 7190
7195
7210
7420
7950 | COMP-2 | 1,600
0.24
110
2,500
200 | 1,700
0.32
130
3,000
3,000
250 | 1,700
0.28
120
14,000
2,800
230 | 71
0.057
14
710
350
35 |

QUALITY CONTROL INFORMATION - ACCURACY SOIL MATRIX METALS

| | | | MICROGRAMS | |
|------------------|--------|----------------|------------|----------|
| | METHOD | SAMPLE | 5 | PERCENT |
| PARAMETER | NUMBER | IDENTIFICATION | SPIKE | RECOVERY |
| | | | | ,
, |
| lotal Unromium | 1190 | 2-4M00 | 000 | 100 |
| Hexavalent | 7195 | | 200 | 66 |
| Chromium | | | | |
| Total Copper | 7210 | | 500 | 98 |
| Total Iron | 7380 | | 500 | 100 |
| Total Lead | 7420 | | 500 | 93 |
| Total Zinc | 7950 | | 500 | 101 |
| | | | | |

1.0. #88-397

1/8329.7 HECRA ENVIRONMENTAL, INC.

1/8329.8

<u>n</u>s

AECRA ENVIRONMENTAL, INC.

QUALITY CONTROL INFORMATION - PRECISION AQUEOUS MATRIX WATER QUALITY TESTING

| PARAMETER | METHOD
NUMBER | UNITS OF
MEASURE | SAMPLE
IDENTIFICATION | VAL UE
1 | VALUE
2 | MEAN | STANDARD
DEVIATION |
|-------------------|------------------|-------------------------|--------------------------|-------------|------------|------|-----------------------|
| Nitrate | 9200 | mg N0 <sub>3</sub> -N/L | * | 1.7 | 1.8 | 1.8 | 0.071 |
| Total Phosphorous | 365.2 | mg P/l | | 0.11 | 0.11 | 0.11 | 0 |
| Sulfate | 9038 | l/gm | | 47 | 4 6 | 47 | 0.71 |

QUALITY CONTROL INFORMATION - ACCURACY AQUEOUS MATRIX WATER QUALITY TESTING

| PARAMETER | ME THOD
NUMBER | SAMPLE
I DENTIFICATION | MICROGRAMS
OF
SPIKE | PERCENT
RECOVERY |
|-------------------|-------------------|---------------------------|---------------------------|---------------------|
| Nitrate | 9200 | * | 4 | 96 |
| Total Phosphorous | 365.2 | | 20 | 97 |
| Sulfate | 9038 | | 20 | 109 |

\*Quality control results were generated from a sample of similar matrix at the time of analysis.

I.D. #88-397

1/8329.9

| PARAMETER | UNITS OF
MEASURE | SAMPLE
IDENTIFICATION | VALUE | VALUE
2 | MEAN | STANDARD
DEVIATION |
|--------------------------|---------------------|--------------------------|-------|------------|------|-----------------------|
| Leachable
Nitrate | µg/g dry | * | 1.6 | 1.6 | 1.6 | 0 |
| Leachable
Phosphorous | µg/g dry | | 4.5 | 4.5 | 4.5 | 0 |
| Leachable
Sulfate | µg∕g dry | | <20 | <20 | <20 | - |

QUALITY CONTROL INFORMATION - PRECISION SOIL MATRIX

QUALITY CONTROL INFORMATION - ACCURACY SOIL MATRIX

| PARAMETER | SAMPLE
IDENTIFICATION | µg OF
SPIKE | RECOVERY |
|--------------------------|--------------------------|----------------|----------|
| Leachable Nitrate | * | 8 | 108 |
| Leachable
Phosphorous | | 20 | 97 |
| Leachable Sulfate | | 20 | 103 |

\*Quality control results were generated from a sample of similar matrix at the time of analysis.

1/7166

SAMPLE CHROMATOGRAMS

80)

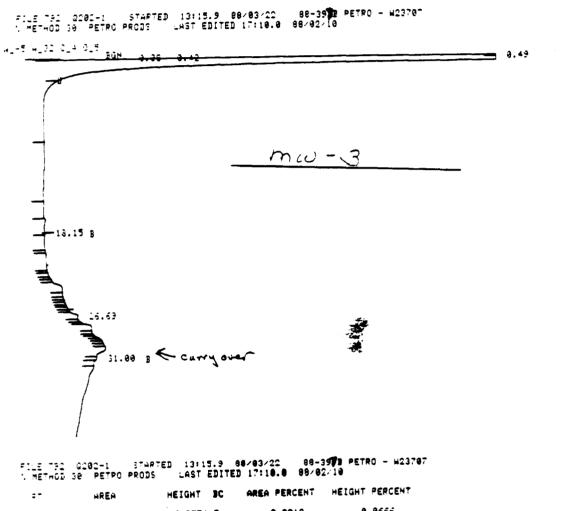
ica (

iiiin

Die.

e.

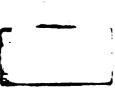
843 :


ciu

ier.

ie a

ويغرها


.

| 0.00
0.41
0.45
0.45
0.45
0.45
0.45
0.45
0.45
0.45 | 45886
20246
10749096
192520369
2603
54838
14127 | 16.9774 T
11.2041 T
12911.0001 T
12534.0117
0.6551
2.7496 T
0.7935 | 0.0218
0.0113
6.6610
93.2716
0.0013
0.0262
0.0068 | 0.0666
0.0440
50.6765
49.1965
0.0026
0.0198
0.0031 |
|--|---|--|---|--|
| | FEHRS APEA PE
FEHRS HEIGHT | | | |

1.4

ښ.

2.16

1/7166

STANDARD CHROMATOGRAMS

1

....

anii Waxa

Ser-4

89-0

efer:

Sec.

ini na

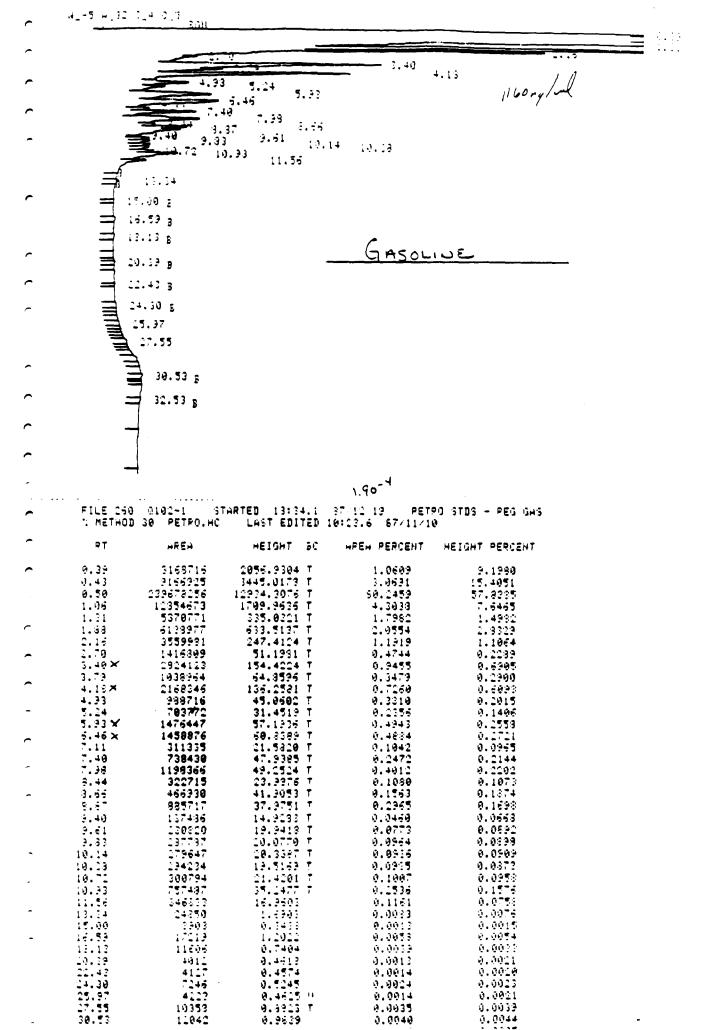
йж.

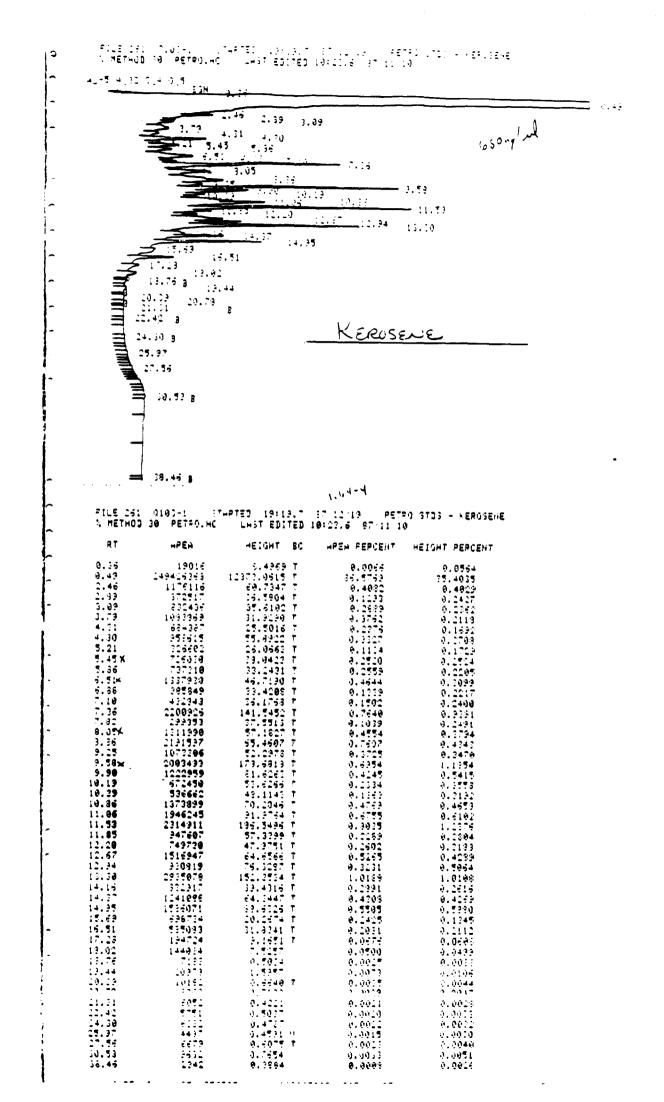
<u>i</u>ike,

a de la

1. Site

100 100


- the support of the



۰.

19486

| 1.13 1.13 1.13 1.14 1.13 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 | | 4.32° 0.4 0.4 | ан <sub>2,3</sub> = | | | J. 9. |
|--|---------|--|--|---|---|-------|
| 13.01 14.13 14.13 17.12 19.01 14.13 17.12 19.01 KCEOSENCE 17.14 19.01 KCEOSENCE 17.15 19.01 KCEOSENCE 17.15 19.01 KCEOSENCE 17.15 19.01 KCEOSENCE 17.15 19.02 KCEOSENCE 17.15 19.03 1114.3 18.73 19.03 1114.3 19.73 19.04 1114.3 19.73 19.05 1114.7 19.74 10.03 1114.7 19.75 10.03 1114.7 19.75 10.03 1114.7 19.77 10.03 10.03 19.77 10.03 10.03 19.77 10.03 10.03 19.77 1114.7 10.03 19.77 10.03 10.03 19.77 10.03 10.03 19.77 10.03 10.03 19.77 10.03 10.03 10.03 10.03 10.03 10.03 | | | 5.52
5.59
6.59
9.22
3.35
11
7.35
11
7.35 | 9.55 | 340 mg | |
| Image: State of the state | | 17.21 g | 4 14.39 14.39
15.45
19.91 | 13.24 | SER E | _ |
| FILE 7:3 CJ01-1 STUPTED 11:14.3 13:03-10 PETRO 3TD3 - *EPOSENE * METHOD 38 PETRO PPODS LAST EDITED 17:10.0 0:02/10 -*EPOSENE PT **PEA HEIGHT BC APEA PERCENT HEIGHT PEPCENT 0:02/40 0:17 ?*C11 4.7241 7 0:02/30 0:02/40 0:21 ?*C11 4.7241 7 0:02/30 0:02/40 0:37 ?*C11 4.7241 7 0:02/30 0:02/40 0:37 ?*C11 4.7241 7 0:02/40 0:02/40 0:32 ?21/35/32 12/315.07 7 0:02/40 0:02/40 1:40 1:40.07 0:02/40 0:02/40 0:02/40 1:41 1:47.147 0:02/40 0:02/40 0:02/40 1:42 1:43/20 1:41.170 0:103/20 0:103/20 1:41 1:41.20 1:42/21 0:103/20 0:103/20 0:103/20 1:41 1:42 1:42/21 0:103/20 0:103/20 0:103/20 1:42 1:42/42 1:42/20 <td></td> <td>24.09 g
25.31 g
30.29 g</td> <td></td> <td></td> <td></td> <td></td> | | 24.09 g
25.31 g
30.29 g | | | | |
| APEA HEIGHT BC APEA HEIGHT BC APEA PERCENT HEIGHT PERCENT HEIGHT PERCENT 0.27 9611 4.7241 0.0840 0.0240 2.79 12195731 12915.2070 91.7270 92.7462 2.79 125939 11.3160 0.0240 0.0240 2.79 125939 15.511 0.0994 0.0240 2.79 129393 15.2170 0.1113 0.1097 1.10 1.113 0.1097 0.1097 0.1097 2.79 1.113 0.1097 0.1097 0.1097 1.117 1.113 0.1097 0.1097 1.117 1.113 0.1097 0.1097 1.117 1.113 0.1097 0.1097 1.117 1.113 0.1097 0.1097 1.117 1.113 0.1097 0.1097 1.117 1.113 0.1634 0.1468 1.31 0.1135 0.1171 0.1634 1.33 0.1217 0.1513 0.1627 1.33 <td>FILE 79</td> <td></td> <td></td> <td>.</td> <td></td> <td></td> | FILE 79 | | | . | | |
| 0.37 9611 4.7241 T 0.0440 0.0240 0.350 221945532 12315.0070 T 21.7270 9.0240 0.450 1.42543 31.3160 T 0.0293 0.0240 0.259 1.23593 15.5511 T 0.0293 0.0240 0.259 1.23593 15.5511 T 0.0293 0.0240 1.250 1.4.7245 T 0.1170 0.1092 1.252 1.23519 1.4.7245 T 0.1170 0.1092 5.52 1.23519 21.4432 T 0.1292 0.1634 5.53 41412 22.6422 T 0.1299 0.1634 1.35 321739 22.7422 T 0.1299 0.1637 1.35 321739 22.7422 T 0.1513 0.2691 1.35 321739 22.7427 T 0.1513 0.2627 2.22 223949 22.9737 0.1513 0.2627 3.34 129921 23.9753 T 0.1515 0.1722 9.322 63327 32.0095 T 0.2633 0.2536 9.334 129929 2.63569 T 0.263 | RT | | CODS LAST EDITE | ED 17:10.0 88/0 | 2/10 | |
| | 9 | 221365632
1425548
2239203
269203
259203
551145
551145
479519
401489
576739
321739
321739
321739
321739
214412
1492026
203049 | 12315.2070 T
21.3160 T
15.5511 T
15.2170 T
14.7245 T
20.4472 T
20.4472 T
22.7482 T
22.7482 T
22.6632 T
23.9733 T
37.4695 T
32.8069 T | 31.7270
0.5293
0.0946
0.1113
0.1170
0.1332
0.1332
0.1332
0.1359
0.1359
0.1359
0.1239
0.1553
0.1553
0.1553
0.1239 | 0.0240
92.7462
0.2249
0.1117
0.1097
0.1097
0.1699
0.1699
0.1699
0.1699
0.1699
0.1699
0.1699
0.1627
0.4693
0.2091
0.1722
0.2091
0.2096 | |

. 99

| 43 H_12 | 0_4 0_5
3 <u>0</u> 8 | | | | |
|--|---|--|---|--|---|
| ſ | 70 | | | | |
| | 6.82 8 6.5
7.27 7.34 | 5 6.23 | Fu | EL OIL # 2 | - |
| - | 3.36 9.8 | 4 19.01 | | | |
| | | 11.54 | | | |
| | | 7.44 <u>7.35</u> 15. | .43
.44.33 | | |
| | | 19.21 19 | 92
9.43
20.08 | | |
| | | 21.20 21.43 | | | |
| | 3 1 1 1 1 1 1 1 1 1 1 | 3.90 24.27 | , 3 • * * | | |
| | 27.35 g
23.30 | | | | |
| | 30.30 B | | | | |
| 7 | | | | | |
| | | | | | |
| | | ٢ | | | |
| I | | , , , , , , ` ` | | | |
| FILE 75
% NETHO | 1 0101-1 3
30 PETPO PRI | ر، م- م
1. APTED 03:54.0
205 LAST EDITED | 3/03 07 - 35-32
 17:1 8.0 - 86 /02/ | 34 PETRO - FUEL OIL#3
10 | 2 |
| FILE 75
Netho
Rt | 1 0102-1 3
D 30 PETPO PR
HREH | TAPTED 93:54.0 9 | 17:10.0 98-02/ | 34 PETRO - FUEL DIL#2
10
Height Percent | 2 |
| % NETHO
RT
0.07
9.59 | D 30 PETPO PR
HREH
5941
55620112 | THPTED 03:54.0 9
ODS LAST EDITED
HEIGHT BC
2.0252 T
12907.9551 T | 17:10.0 82-02-
HREN PERCENT
0.0024
34.4303 | 10
HEIGHT PERCENT
0.0105
43.5051 | 2 |
| NETHO
RT
0.07
0.50
0.72
5.02
5.02 | D 30 PETPO PR
HREM
55520112
130724896
34029
2955 | THPTED 03:54.0 3
ODS LAST EDITED
HEIGHT BC
2.8052 T
12397.9551 T
12515.6406
1.5183
0.3345 U | 0 17:10.0 86:02/
AREA PERCENT
0.0024
04.4308
55.7951
0.0137
0.0137 | 10
Height Percent
43.531
45.8376
9.9957
0.9014 | 2 |
| RT
0.07
0.57
0.59
0.72
5.02
5.55
7.27
7.27
3.23 | D 30 PETPO PR
HREA
55620112
130724896
34029
2055
20430
52934 | THPTED 03:54.0 3
ODS LAST EDITED
HEIGHT BC
1.2307.9551 T
12515.6406
1.5133
0.3345 U
1.5314 T
0.7664 T
2.5529 U | 0 17:10.0 86.02/
HREN PERCENT
0.0024
04.4308
55.7951
0.0137
0.0127
0.0122
0.0122
0.0241 | 10
HEIGHT PEPCENT
43.6051
45.8276
9.0057
0.0014
0.0051
0.0095 | 2 |
| RT
0.07
0.50
0.72
5.82
5.55
7.71
3.23
9.36
3.34
10.01 | D 30 PETPO PRO
HREA
55520112
130724096
34027
2975
20430
7075
3934
7055
39359
136349 | THPTED 03:54.0 9
ODS LAST EDITED
HEIGHT BC
2.8052 T
12907.9551 T
12515.6406
1.5139
0.3345 U
1.5314 T
0.7067 T
2.5629 U
0.7267 U
3.9241 T
5.1200 U | 0 17:10.0 86:02/
AREA PERCENT
0.0024
34.4308
75.7951
0.0137
0.0122
0.0241
0.0241
0.0235
0.0243 | 10
HEIGHT PERCENT
43.6051
45.6051
45.8276
0.0014
0.0051
0.0051
0.0035
0.0035
0.0037
0.0330
0.0330
0.0304 | 2 |
| RT
0.07
0.50
0.72
5.02
6.55
7.72
3.23
9.36
9.36
9.34
10.01
11.11
11.64
12.29 | D 30 PETPO PRO
HREW
55520112
130724026
34027
20430
Foro:
59334
7058
34359
136349
136349
136249
136249
136249
13621952
121333 | THPTED 03:54.0 3
ODS LAST EDITED
HEIGHT BC
2.8052 T
12937.9551 T
12515.6406
1.5133
0.3345 U
1.5314 T
0.7096 T
2.5629 U
0.7097 U
3.9241 T
8.1200 U
10.1003
16.7794 T
7.5338 T | 17:10.0 86:02/
WREW PERCENT
0.0024
04.4308
55.7951
0.0137
0.0010
0.0122
0.0122
0.0122
0.0122
0.0123
0.0235
0.0235
0.0235
0.0235
0.02430 | 10
HEIGHT PERCENT
43.6051
46.8376
9.0057
0.0014
0.00361
9.0036
9.0027
0.0330
0.0330
0.0359
0.0525
0.0525
0.0236 | 2 |
| RT
0.07
0.50
0.72
5.02
5.55
7.27
3.23
9.36
9.34
10.01
11.11 | D 30 PETPO PRO
HREM
55520112
130724026
34027
29430
7255
29430
7255
29430
7255
29430
7255
29430
7255
29430
7255
29430
7259
39359
136349
156217
321952 | THPTED 93:54.0 3
ODS LAST EDITED
HEIGHT BC
2.8052 T
12397.9551 T
12515.6406
1.5183
0.3345 U
1.5314 T
0.7067 U
3.9241 T
8.1200 U
10.1003
16.7794 T
7.5338 T
32.5648 T
70.1400 T
6.0980 T | 17:10.0 86.02/
AREA PERCENT
0.0024
14.4308
15.7951
0.0137
0.0137
0.0112
0.0241
0.0241
0.0241
0.0241
0.0241
0.0243
0.0385
0.0385
0.0343
0.1235
0.0430
0.1235
0.0430
0.1235
0.0430
0.1235
0.0430
0.1235
0.0430
0.1235
0.0430
0.1235
0.0430
0.1235
0.0430
0.1235
0.0430
0.1235
0.0430
0.1235
0.0430
0.1235
0.0430
0.1235
0.0430
0.1235
0.0430
0.1235
0.0430
0.1235
0.0430
0.1235
0.0430
0.1235
0.0430
0.1235
0.0430
0.1245
0.0430
0.125
0.0440
0.125
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.0440
0.04400
0.04400
0.04400
0. | 10
HEIGHT PERCENT
45.6051
45.8276
0.0014
0.0014
0.0095
0.0027
0.0330
0.0204
0.0373
0.0294
0.0373
0.0296
0.0296
0.1219
0.2474 | 2 |
| RT
0.07
0.50
0.72
0.55
7.77
3.23
9.36
3.34
10.01
11.11
11.64
12.39
13.29
14.32
14.32
15.44 | D 30 PETPO PRO
HREA
55520112
130724096
34023
29430
70430
70430
70430
70430
70430
70430
70430
70430
70430
7059
39359
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136249
136259
136259
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
136269
126277
12639
126277
12699
126277
12699
12699
12699
12699
12699
12699
12699
12699
12699
12699
12699
12699
12699
12699
12699
12699
12699
12699
12699
126999
126999
1269991 | THPTED 93:54.0 3
ODS LAST EDITED
HEIGHT BC
1.2337.3551 T
12515.6406
1.5133
0.3345 U
1.5314 T
1.5523 U
0.7267 U
3.9241 T
5.1200 U
10.1203
16.7794 T
7.5333 T
32.5648 T
70.1400 T
66.0390 T
109.5761 T
35.7498 T | 17:10.0 86:02/
AREA PERCENT
0.0024
34:4308
55:7351
0.0137
0.0137
0.0122
0.0241
0.0241
0.0241
0.0245
0.0235
0.0245
0.0243
0.0243
0.0243
0.0243
0.0243
0.0243
0.0243
0.0243
0.0243
0.0255
0.0430
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.0357
0.03570
0.035770
0.035770
0.035770
0.035770
0.035770
0.03577000000000000000000000000000000000 | 10
HEIGHT PERCENT
45.6351
45.8376
9.0057
0.0014
3.0061
9.0101
0.0035
0.0027
0.0530
0.0530
0.0536
0.0256
0.1519
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2525
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.25550
0.25550000000000 | 2 |
| x NETHO
RT
0.07
0.50
0.72
0.32
0.55
0.72
0.32
0.32
0.34
10.01
11.11
11.64
12.33
12.90
13.29
14.32
14.39
14.32
14.39
14.32
14.39
14.32
15.44
15.92
16.43
17.18 | D 30 PETPO PRO
HREW
55520112
130724096
34023
2955
20430
F1001
59334
7359
136349
136349
136249
136249
136249
136249
1362192
121933
626163
1590501
2124602
1759054
595316
1437933
1919903
1592512 | THPTED 93:54.0 3
ODS LAST EDITED
HEIGHT BC
2.8052 T
12397.9551 T
12515.6406
1.5183
0.3345 U
1.5314 T
0.7087 U
3.9241 T
8.1200 U
10.7093
16.7794 T
7.6338 T
32.5648 T
70.1400 T
109.5761 T
35.7498 T
44.3436 T
99.6226 T
55.2128 T | 17:10.0 86.02/
AREA PERCENT
0.0024
34.4308
55.7951
0.0137
0.0012
0.0122
0.0241
0.0241
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0235
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0335
0.0355
0.0355
0.0355
0.0355
0.0355
0.0355
0.0355
0.0355
0.0355
0.0355
0.0355
0.0355
0.0355
0.0355
0.0355
0.0355
0.0355
0.0355
0.0355
0.0355
0.0355
0.0355
0.0355
0.0355
0.0355
0.0 | 10
HEIGHT PERCENT
45.6051
46.8376
0.0057
0.0014
0.0095
0.0027
0.0530
0.0204
0.0373
0.0204
0.0373
0.0204
0.0375
0.0204
0.0375
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0205
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255 | 2 |
| <pre>% NETHO
RT
0.07
0.57
0.55
7.27
1.03
0.72
0.55
7.27
1.03
0.72
0.55
7.27
1.03
0.72
0.72
0.72
0.72
0.72
0.72
0.72
0.72</pre> | D 30 PETPO PRO
HREM
55520112
130724896
34029
2955
20430
7225
20430
7255
20430
7255
20430
7255
20430
7255
20430
7255
20430
7255
20531
2124582
1759050
1592512
2252365
1193493
193493
193909 | THPTED 93:54.0 3
ODS LAST EDITED
HEIGHT BC
2.8052 T
12397.9551 T
12515.6406
1.5133
0.3345 U
1.6314 T
0.7267 U
3.9241 T
5.1200 U
10.1203
10.1203
10.1209 U
10.1203
10.1209 T
10.1209 T
10.1200 T | 17:10.0 86.02/
AREA PERCENT
0.0024
0.4308
15.7361
0.0137
0.0117
0.0112
0.0241
0.0241
0.0241
0.0241
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0247
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0255
0.0430
0.0255
0.0436
0.0255
0.0436
0.0255
0.0436
0.05732
0.05732
0.0479
0.25732
0.0479
0.25732
0.0479
0.25732
0.0245
0.0245
0.0258
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02732
0.02742
0.02752
0.027572
0.027572
0.027572
0.027572
0. | 10
HEIGHT PERCENT
45.6051
45.8276
9.0057
0.0014
0.0095
0.0027
0.0330
0.0294
0.0373
0.0294
0.0373
0.0294
0.025
0.025
0.025
0.025
0.025
0.1215
0.2474
0.1659
0.2440
0.3651
0.2440
0.3651
0.2440
0.3651
0.2415 | 2 |
| RT
0.57
0.57
0.50
0.72
0.55
7
7
1.02
0.72
0.55
7
7
1.02
0.72
0.55
7
7
1.02
0.72
0.72
0.72
0.72
0.72
0.72
0.72
0 | D 30 PETPO PRO
HREW
55520112
130724096
34023
24955
20430
7255
20430
7255
34023
24956
34023
73934
75934
75934
755217
321952
12333
626163
1590501
2124682
1759050
191903
1592512
2252365
1193493
803909
850724
475610
583242 | THPTED 93:54.0 3
ODS LAST EDITED
HEIGHT BC
1.2037.9551 T
12317.9551 T
12515.6406
1.5133
0.3345 U
1.5314 T
0.7067 U
3.9241 T
5.1200 U
10.1203
16.7794 T
7.5338 T
32.5648 T
70.1400 T
66.0980 T
109.5761 T
35.7498 T
44.3436 T
97.6133 T
37.7083 T
75.2241 T
79.4058 F
22.6964 T
23.9911 T | 17:10.0 86.02/
AREA PERCENT
0.0024
0.4.4308
55.7361
0.0137
0.0112
0.0241
0.0241
0.0241
0.0241
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0245
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.0255
0.02555
0.02555
0.02555
0.02555
0.0255 | 10
HEIGHT PERCENT
0.0106
45.6051
46.8376
0.0057
0.0014
0.0036
0.0036
0.0027
0.0330
0.0530
0.0530
0.0536
0.0536
0.0536
0.1519
0.2625
0.2625
0.26474
0.26474
0.2651
0.26475
0.26475
0.26474
0.26474
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26476
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26475
0.26575
0.26575
0.26575
0.2657500000000000000000000000000000000000 | 2 |
| RT
0.07
9.50
0.72
9.30
0.72
9.32
9.36
9.34
10.01
11.11
11.64
12.29
13.29
14.39
14.39
15.44
15.92
16.43
17.92
16.43
17.92
19.31
19.43
19.88
29.98
20.63
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20
21.20 | D 30 PETPO PRO
HREM
55620112
130724096
34023
34023
34023
34023
34023
34023
34023
34023
34023
34023
34023
34023
34023
34023
156217
32345
156217
32345
159054
595316
1437933
1592512
2252365
1193493
859724
475610
683242
1310199
300379 | THPTED 93:54.0 3
ODS LAST EDITED
HEIGHT BC
2.8052 T
12397.9551 T
12515.6406
1.5133
0.3345 U
1.6314 T
0.3345 U
1.6314 T
0.7067 U
3.9241 T
8.1200 U
10.1003
10.1003 T
32.5648 T
70.1400 T
6.0980 T
109.5761 T
35.7498 T
109.5761 T
35.7498 T
44.9436 T
97.6133 T
37.7083 T
75.2241 T
79.4058 F
22.6064 T
22.9911 T
65.5082 T
22.4359 F | 17:10.0 86.02/
AREA PERCENT
0.0024
24.4308
75.7951
0.0137
0.0012
0.0241
0.0241
0.0241
0.0241
0.0241
0.0243
0.0243
0.0335
0.0335
0.0430
0.0523
0.0430
0.0523
0.0430
0.0525
0.0430
0.0535
0.0430
0.0535
0.0430
0.0535
0.0430
0.0535
0.0430
0.0535
0.0430
0.0535
0.0430
0.0535
0.0430
0.0535
0.0430
0.0535
0.0430
0.0535
0.0430
0.0535
0.0430
0.0555
0.0430
0.0555
0.0430
0.05721
0.5740
0.5750
0.1205
0.1205
0.1205
0.1205
0.1205
0.1205
0.1205
0.1205
0.1205
0.0244
0.0555
0.0430
0.0555
0.0430
0.0555
0.0430
0.0555
0.0430
0.0555
0.0430
0.0555
0.0430
0.0555
0.0430
0.0555
0.0430
0.0555
0.0430
0.0555
0.0430
0.0555
0.0430
0.0555
0.0430
0.0555
0.0430
0.0555
0.0430
0.0555
0.0430
0.0555
0.0430
0.0555
0.0430
0.0555
0.0430
0.0555
0.0430
0.05751
0.0555
0.0430
0.05751
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.0575
0.05755
0.05755
0.05755
0.05755
0.05 | 10
HEIGHT PERCENT
0.0106
43.6051
46.8176
0.0014
0.0036
0.0036
0.0037
0.0036
0.0037
0.0330
0.0330
0.0373
0.0524
0.0373
0.0525
0.0236
0.1219
0.2474
0.2474
0.1659
0.2474
0.1459
0.2651
0.2435
0.1411
0.2635
0.1411
0.2635
0.1474
0.2635
0.1474
0.2635
0.2452
0.2452
0.2452
0.2452 | 2 |
| <pre>% NETHO
RT
0.07
0.59
0.72
0.55
7.27
1.03
0.72
0.55
7.27
1.03
0.72
0.72
0.72
0.72
0.72
0.72
0.72
0.72</pre> | D 30 PETPO PRO
HREM
55520112
130724896
34029
2955
20430
53334
7259
35359
136349
155217
321952
121952
121952
12295316
2124682
17590501
2124682
17590501
2124682
17590501
2124682
17590501
2124682
17590501
2252365
1193493
893909
850724
47561
683242
1310199
300379
435255
1055754
270365 | THPTED 93:54.0 3
ODS LAST EDITED
HEIGHT BC
1.8052 T
12337.9551 T
12515.6406
1.5133
0.3345 U
1.5314 T
0.7267 U
3.9241 T
5.1200 U
10.1203
16.7794 T
7.5338 T
32.5648 T
70.1400 T
66.0390 T
109.5761 T
35.7498 T
109.5761 T
35.7498 T
75.2241 T
79.4050 T
22.6964 T
22.6964 T
22.6964 T
22.695 T
22.5145 T
43.9203 T
13.3214 T | 17:10.0 86:02/
AREA PERCENT
0.0024
14.4308
15.7301
0.0137
0.0112
0.0121
0.0241
0.0241
0.0241
0.0241
0.0241
0.0241
0.0241
0.0241
0.0241
0.0241
0.0241
0.0241
0.0241
0.0241
0.0243
0.0430
0.0430
0.0430
0.0430
0.0430
0.0430
0.05732
0.0430
0.5732
0.5732
0.5732
0.5732
0.5732
0.5732
0.5732
0.5732
0.5732
0.5732
0.5732
0.5733
0.2441
0.5733
0.2441
0.5735
0.2441
0.5735
0.2441
0.5735
0.2441
0.5735
0.2441
0.5735
0.2441
0.5735
0.2441
0.5735
0.2441
0.5735
0.2441
0.5735
0.2441
0.5735
0.2441
0.5735
0.2441
0.5735
0.2441
0.5735
0.2441
0.5732
0.5735
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.2555
0.25555
0.25555
0.25555
0.25555
0.255555
0.25555
0.25555555555 | 10
HEIGHT PERCENT
4.5.6051
4.5.6057
0.0014
0.0014
0.0035
0.0027
0.0330
0.0236
0.0236
0.1659
0.1659
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.141
0.2455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455
0.1455 | 2 |
| <pre>% NETHO
RT
0.07
0.57
0.57
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.55
7.7
0.36
10.01
11.1
0.4
12.29
14.32
7.4
15.42
7.1
15.42
7.1
15.42
7.1
15.42
17.9
20
14.32
7.5
15.42
17.9
20
14.32
7.5
7.5
15.42
17.9
20
14.32
7.5
15.42
17.9
20
14.32
7.5
15.42
17.9
20
14.32
7.5
15.42
17.9
20
14.32
7.5
15.42
17.9
20
14.32
7.5
15.42
17.9
20
14.32
7.5
15.42
17.9
20
14.32
7.5
15.42
17.9
20
14.32
7.5
15.42
17.9
20
1.2
0
1.2
0
1.2
0
1.2
0
1.2
0
1.2
0
1.2
0
1.2
0
1.2
0
1.2
0
1.2
0
1.2
0
1.2
0
1.2
0
1.2
0
1.2
0
1.2
0
1.2
0
1.2
0
1.2
0
1.2
0
1.2
0
1.2
0
1.2
0
1.2
0
1.2
0
1.2
0
1.2
0
1.2
0
1.2
0
1.2
0
1.2
2
0.65
7
1.2
0
2
1.42
2
2.42
2.2
.67
2.2
1.20
2.2
2.42
2.2
2.42
2.2
2.42
2.2
2.42
2.2
2.</pre> | D 30 PETPO PRO
HREW
55620112
130724096
34023
2955
20430
F1001
59334
7055
29430
F1001
59336
136245
136245
136245
136245
136245
1390901
2124682
1739094
595316
1437933
1919903
1532512
2252365
1193493
80399
803242
1310199
300373
435285
1053764
270365
2139093
200371
200371
200371
200371 | THPTED 93:54.0 3
ODS LAST EDITED
HEIGHT BC
1.8052 T
12337.9551 T
12515.6406
1.5133
0.3345 U
1.5144 T
0.7067 U
3.9241 T
5.1200 U
10.1203
16.7794 T
7.5333 T
32.5648 T
70.1400 T
66.0990 T
109.5761 T
35.7496 T
45.2128 T
97.6133 T
75.2241 T
79.4058 F
22.6064 T
22.9254 T
13.3214 T
13.3214 T
13.3214 T
13.3214 T
13.3214 T
13.5240 T | 17:10.0 86:02/
AREA PERCENT
0.0024
14:4308
0.0137
0.0137
0.0012
0.0122
0.0241
0.0241
0.0241
0.0241
0.0241
0.0241
0.0243
0.0243
0.0243
0.0243
0.0243
0.0243
0.0243
0.0243
0.0243
0.0243
0.0258
0.0439
0.0335
0.0439
0.0335
0.0439
0.05732
0.5732
0.5732
0.5732
0.5732
0.5732
0.5732
0.5732
0.5732
0.5732
0.5732
0.5732
0.5732
0.5732
0.5732
0.5732
0.5732
0.5732
0.5732
0.5732
0.5732
0.5732
0.5732
0.5732
0.5759
0.1298
0.1298
0.12760
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.12750
0.127500
0.127500
0.127500
0.1275000000000000000000000000000000000000 | 10
HEIGHT PERCENT
0.0106
45.6371
46.8376
0.0057
0.0014
0.0036
0.0036
0.0027
0.0330
0.0204
0.0330
0.0204
0.0373
0.0526
0.1219
0.1219
0.1259
0.1259
0.1259
0.1259
0.1411
0.1358
0.1459
0.1459
0.1451
0.2440
0.1355
0.1451
0.2452
0.1251
0.1251
0.1251
0.1251
0.1251
0.1253
0.1253
0.1253
0.1251
0.2452
0.0253
0.1253
0.1253
0.1251
0.2452
0.0253
0.1253
0.1253
0.1251
0.2452
0.0253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1253
0.1254
0.1254
0.1254
0.1254 0.1254
0.1254
0.1254 0.1254
0.1254
0.1254 0.1254
0.1254
0.1254 0.1254
0.1254
0.1254
0.1254 0.1254
0.1254
0.1254
0.1254 0.1254
0.1254
0.1254
0.1254
0.1254
0.1254 0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254
0.1254 | 2 |
| <pre>% NETHO
RT
0.57
0.59
0.72
0.55
0.72
0.55
0.72
0.55
0.72
0.55
0.72
0.55
0.72
0.55
0.72
0.72
0.72
0.72
0.72
0.72
0.72
0.72</pre> | D 30 PETPO PRO
HREW
5941
55620112
130724096
34023
2955
29430
7055
29430
7055
29335
136249
136249
136249
156217
321952
121933
626163
159054
595316
1437993
803909
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
80399
8039
803 | THPTED 93:54.0 3
ODS LAST EDITED
HEIGHT BC
1.2037.9551 T
12317.9551 T
12515.6406
1.5133
0.3345 U
1.5134 T
0.7094 T
2.5529 U
0.7097 U
3.9241 T
5.1200 U
10.1003
16.7794 T
7.6333 T
70.1400 T
66.0300 T
109.5751 T
35.7490 T
44.3436 T
93.6226 T
65.2128 T
75.2241 T
75.2241 T
75.4058 F
22.4058 F
23.5455 T
23.5455 T
23.5208 T
13.3214 T
13.3214 T
13.5200 T
13.5214 T
13.5214 T
13.5214 T
13.5214 T
13.5214 T
13.5214 T
13.5214 T | 17:10.0 86.02/
AREA PERCENT
0.0024
24.4308
55.7951
0.0137
0.0137
0.0012
0.0241
0.0241
0.0243
0.0243
0.0243
0.0243
0.0543
0.0543
0.0543
0.0543
0.0543
0.0543
0.0543
0.0543
0.0543
0.0543
0.0543
0.0543
0.0543
0.0543
0.0543
0.0543
0.0543
0.0555
0.0430
0.05732
0.7721
0.5404
0.05732
0.2421
0.1295
0.2421
0.1295
0.2421
0.1295
0.2421
0.1295
0.2421
0.1295
0.2421
0.1295
0.2421
0.1295
0.1299
0.2555
0.1299
0.1299
0.1299
0.1299
0.1299
0.1299
0.1299
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0.0331
0 | 10
HEIGHT PERCENT
0.0106
43.6051
46.8376
0.0057
0.0014
0.0036
0.0037
0.0036
0.0037
0.0330
0.0330
0.0330
0.0336
0.0373
0.0525
0.0373
0.0525
0.0236
0.1219
0.2455
0.1255
0.1411
0.2635
0.1459
0.2635
0.1411
0.2635
0.1411
0.2635
0.1474
0.2635
0.1474
0.2635
0.1474
0.2635
0.1474
0.2635
0.1474
0.2635
0.1674
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.0626
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.0666
0.0666
0.0666
0.0666
0.0666
0.0666
0.06 | 2 |

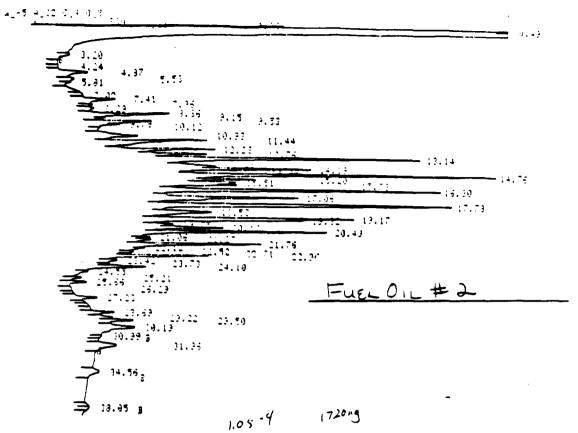
rile all second and religion in the control to the addition of the religion of the religion of the religion of the control to
•

^

1

~

588


1

i

1

· 374 - 1

-a-

FILE 929 0491-1 374PTED 13:41.5 39/03/23 PETRO 3TD/3 - FUEL OIL#2 N METHOD 30 PETRO PRODS LAST EDITED 17:10.0 88/02/19

| RT | HPEA | HEIGHT | EC | AREA PERCENT | HEIGHT PEPCEN | т |
|------------|----------------------------|-------------------------------|----------|--|----------------------|---------|
| 9.36 | 349825 | 159.4260 | Ŧ | 0.1252 | 0.2405 | |
| 9.44 | 4-1) - | 13.9792 | | 9.0155 | 0.0632 | |
| 9.49 | 12550255 | 12657.8516 | | | 4 | |
| 9.79 | 199399575 | 12931.3013 | | 4.5000
71.0145 | 42.7575 | |
| 3.20 | 214197 | 9.7556 | | 8.8757 | 0.0:0: | |
| 4.24 | 4143 | | | 0.0612 | 0.0015 | |
| 4 | 233994 | 9.4323
12.0353
7.5504 | + | 0.1196 | 0.0015 | |
| 5.53 | 131335 | 7.5504 | ÷ | V:1:7V
a a.72 | 0.00173 | |
| 5.81 | 4614Q | | | 9.9476
9.8227 | 0.0153 | |
| 7.92 | 21212 | 2.4008 | | 9.0112 | 0.0092 | |
| 7.41 | 421305 | 11.5457 | ÷. | 0.1510 | 0.002 | |
| 7.35 | 112322 | 9.3244 | ÷ | 0.9492 | | |
| 9.29 | | | | 0.0747 | 0.0301 | |
| 3.26 | 209776
340527 | 53.9559 | - | 0.2009 | 0.0029
9.2008 | |
| 2.15 | 275864 | 17.2842 | -
- | 0.0938 | | |
| 2.53 | 500509 | 46.4533 | - | 0.0758 | 0.0500
0.1535 | |
| 9.79 | 278737 | 27.3367 | + | 0.1376 | 0.1555 | |
| 19.12 | 324740 | 14.7241 | + | 0.1133 | 0.0495 | |
| 10.33 | 1177527 | 39.1415 | ÷ | 0.4219 | 0.1325 | |
| 11.44 | 1534644 | 23.7313 | | 0066 | 0.1359 | |
| 11.28 | 1270561 | 89.4052 | Ť | 0.5622 | 0.2051 | |
| 12.75 | 1556270 | 14. 1723 | T | 0.5929 | 0.2279 | |
| 13.14 | 4551383 | 222.4679 | Ť | 1.6197 | 9.1 | |
| 17.98 | 2071937 | .9. 771 | Ť | 9.7417 | 0.3037 | |
| 14.19 | 2413438 | 152.0156 | T | 0.8639 | 0.1197 | |
| 14.19 | 535523 | 77.1053 | 7 | 9.1217 | 9.1153 | |
| 14.76% | 4380028 | 272.6921 | T | 1.5679 | 0.9304 | |
| 15.20 | 1779544
1798685 | 114.3492 | 1 | 9.5370 | 0.1922 | |
| 15.51 | 1798685 | 104.0091 | | 0.6419 | 0.3549 | |
| 15.78 | 1719408
4302946 | 104.7041 | ٢ | 9.5155 | 0.1573 | |
| 11.30 🗙 | 4383946 | 227.0921 | 7 | 1.5407 | 0.3030 | |
| 17.06 | 4212573 | 145,1735 | 7 | 1.5105 | 0.495? | |
| :7.72× | 1403145 | 244,8429 | T | 1.9342 | 0.8354 | |
| 13.53 | 2725362 | 23. 1449 | | 1.0003 | 9. 049 | |
| 19.17× | 2228262 | 191.9176 | T | 0.7966 | 0.2204 | |
| 19.32 | 1311417 | 149.3730 | ۲ | 3.5438 | 0. 1 070 | |
| 13.75 | 891078 | 64,6325 | Ť | 0.2191 | 0.1105 | |
| 20.12 | 010505B | 27, 4474 | 7 | 0.7736 | 0.0125 | |
| 20.45 | | | T | 1.0612 | | |
| 11.05 | | 19.44.19 | 7 | 3.2432 | · · · · · · | |
| | 978158 | 51.1171 | • | 6,14 <sup>-1</sup> 1 | € * ∔ | |
| | | 10,449
11,1272
11,1272 | Г | 1.0010
0.1402
0.1477
0.2052
0.1277
0.1271
0.1271 | +1 | |
| | 141111 | 47,5544 | | 0.1123 | Q | 6312356 |
| 22.52 | 517171 | 40°5444 | T | 0.18 5 1 | | |
| | | 19-9244
90-5449
91-22-4 | ٣ | | | |
| 22.34 | 1327170
17645
191102 | 65.7333 | T | 6.4334 | 0.1019 | |
| 22.42 | 1.7644 | 10.0117 | T | 0.1972 | 0014 | |
| | 101192 | 46,3173 | Ξ | 9.1135 | 0.0001 | |
| 24.10 | 211771 | 48.9179 | - | 0.1514 | ₩.1462 | |
| 24.55 | | 11.0007 | Ξ | 0.0361 | 0.0194 | |
| - F | 342-4 | | - | a atwin | a constant and the s | |
| | | | | | | |

FILE 151 1104-1 STHPTED 10105.0 ST 12 (3 PETE 1 METHOD 30 PETPOLHC - LHET EDITED 10110.0 ST/11/10 FILE 191 (104-1 PETFO 3709 - F.E. 01.45 н**\_-5** н.32 б\_н 0\_5 \_\_\_<u>50н</u> 2492 mg Jul 3.74 g 4.43 4.33 5.17 5.50 5.09 6.61 g -.14 8.06 3.91 3.31 9.99 10.17 10.41 :0.39 11.14 11.53 11.14 12.72 12.90 13.11 ۰. 14.57 14.34 15.24 16.93 16.43 :5. 17.45 17.55 17.97 FUEL OIL#6 3.45 20.03 10.70 45 21.34 11.97 > 23.13 <u>, 35</u> 5. 72 24.23 15.05 25,43 25,43 27.30 29.42 29.41 30.41 3 19.10 2 31.74 5 03.16 g 8.43-4 STWRTED 20:05.3 37 12-13 PETP NC LWST EDITED 10:23.6 37/11/10 FILE 282 0104-1 37 11 METHOD 30 PETFO.HC PETPO STOS - FUEL OIL#6 HPEH PERCENT HEIGHT PEPCENT HEIGHT BC RT HPEA 10.1624 T 13.7673 T 12925.8242 T 0.0005 0.0637 1175 0.27 0.0911 0.0039 9.44 19344 0.0099 90.4531 0.0227 0.0273 0.0252 0.0252 0.0275 88.6655 246695964 0.50 :.3446 103153 Teest Tale5 0.0572 0.0773 9.62 1 T 9,90 5.6505 5.575 8.5771 T 0.0415 0.0452 10.41 101168 T 45.3539 33.0960 27.0040 19.30 0.3222 0.2276 0.2367 T 11.14 11.55 11.90 12.25 12.72 434849 0.1595 T 359793 176136 Ť 9.1252 9.1319 11.0125 T 0.044 9.5296 T 33.7141 T 53.2963 T 73.4493 T 129121 0.0441 0.0654 0.1767 0.1319 0.2796 481824 522938 0.2299 12.30 0.3650 824285 12.11 0.5008 13.30C 13.68 14.39 14.57 44.4097 0.2320 0.1214 244251 513294 19.1607 T 19.1607 T 27.3541 T 35.2506 T 75.4519 T 0.0596 0.2249 0.1776 0.3521 0.1311 484402 0.2467 0.5145 14.94 259253 23.1413 384840 1 0.1405 A. 1999 15.47 328950 T 0.1295 0.1722 0.1533 1.1946 469600 30.3020 Ť 0.2112 16.03 513437 31.6139 T 16.49 1188296 0.4350 0.1576 0.4179 0.2259 0.2597 0.2207 69.3299 32.9942 T 17.9631 T 12.1690 T 457930 1010-0.1271 9.1477 402325 1182529 1176323 1671639 141907 17.97× 22.1270 T E2.9710 T T3.2135 T E2.61575 T 13.6157 T 96.5714 T 45.3765 F 0.4338 0.4182 19.45 9.4315 0.2651 0.4314 0.4110 0.1254 0.2251 0.2251 0.1751 0.1751 0.4071 0.4071 19.32 19.77 0.4566 0.2032 0.6514 9.1174 20.09 20.36 20.70× 1401199 611024 960916 471997 68.2660 10.0337 11.3115 T 0.4683 21.11 21.44 21.34 21.34 21.34 0.1040 0.1699 1110145 . • 4 4 0.1100 0.1254 .0791 17.0791 T 10.3455 T 41.7175 T 12.4129 T 12.5462 T 6.1027 T 6.1047 T 0.1173 0.0714 0.1737 0.1 001 1031692 0.1330 24.33 0.0541 0.115 0.02 0.02 0.0910 50:35e 9.94(3 0.0425 -----15.3451 T

ł

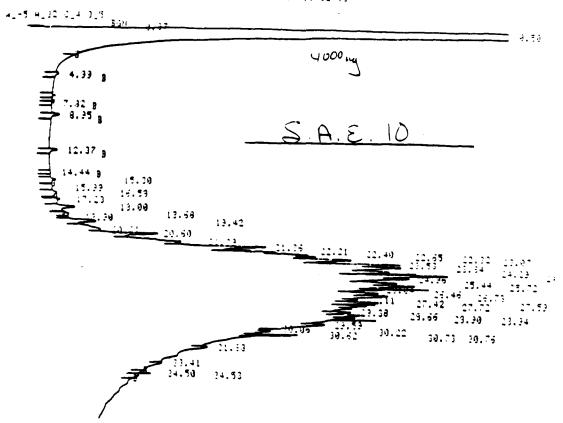
si d

32

ç

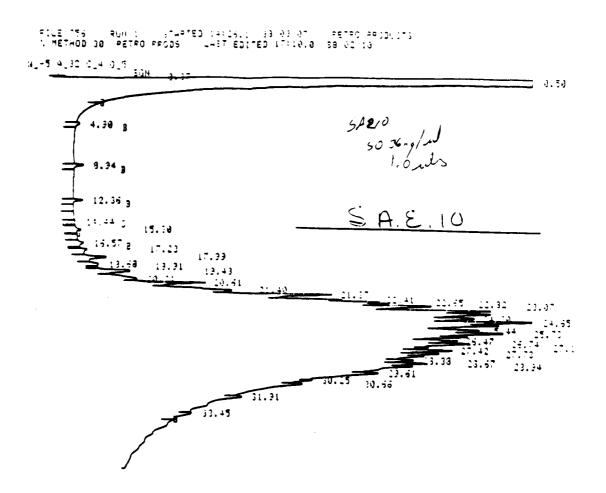
~

-

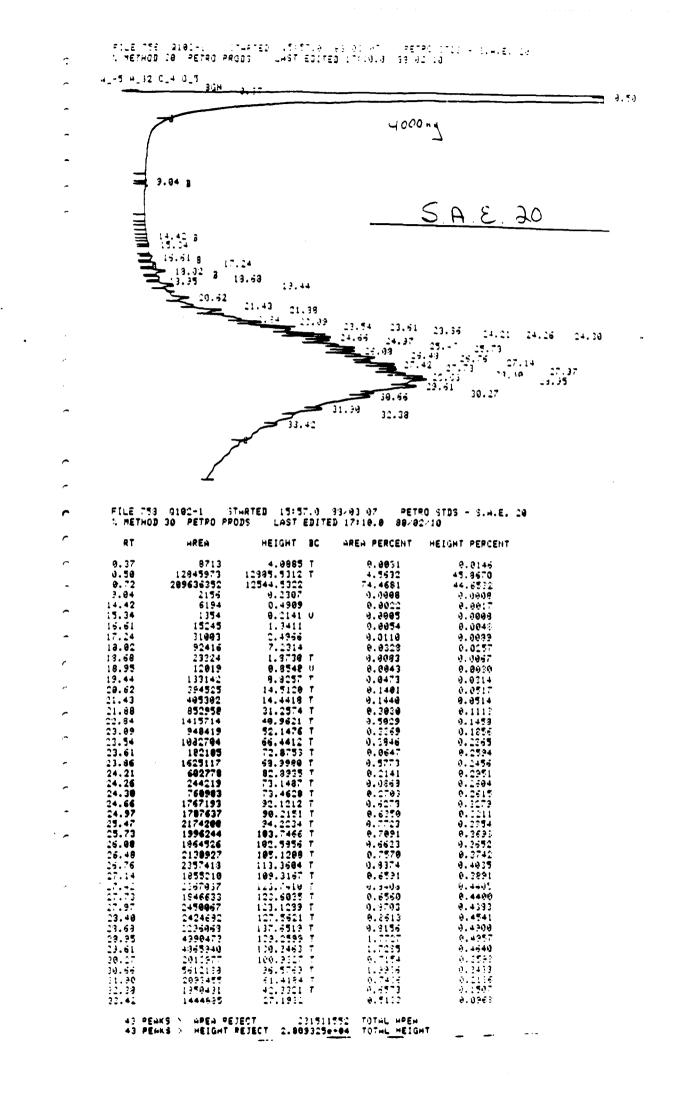

~

r

~


0

•


FILE 757 0101-1 3748760 15:11.5 38 03 07 PETRO 3705 - 3.0.E. 10 % Method 30 Petro Ppode Last Edited 17:10.0 88/02/10

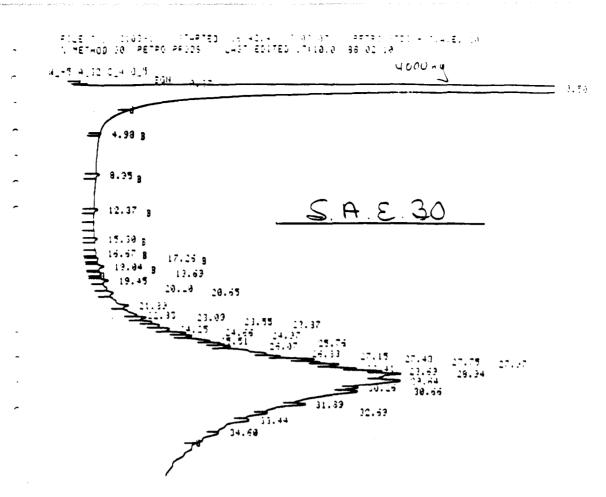
| HEIGHT | 6C | HPEH PERCENT | nélünt perve |
|------------|----------|--------------|--------------------------|
| 2.3692 | T | 0.8895 | 0.0135 |
| 12912.3145 | | 79.1335 | 70.3698 |
| 2,1527 | U | 0.0143 | 0.0179 |
| 10.5235 | | 0.0449 | 0.0533 |
| 4,0623 | † | 0.0155 | 0.0002 |
| 2. 5343 | 7 | 9.0113 | 0.0153 |
| 19.0413 | | 0.1125 | 0.1047 |
| 12.2693 | | 9.1792 | 9.1053 |
| 55,1097 | | 0.3741 | 0.2025 |
| | T | 9.5319 | 0.0712 |
| 120.7005 | | 1.0996 | 0.6616 |
| 23.1669 | | 0.0723 | 0.5112 |
| 125.1700 | | 0.5139 | 0.6870 |
| 145.0773 | | 0.5155 | 0.7943 |
| 143.9509 | | 0.5906 | 0.223 |
| 172,1492 | ÷ | 1.2339 | 0.3449 |
| 202.7245 | + | 1.1130 | 1.1127 |
| 282.1419 | ÷ | 1.4973 | 1.1935 |
| 192.3307 | Ť | 1.0267 | 1.0734 |
| 229.6498 | | 1.2576 | 1.2504 |
| 203.7005 | ÷. | 1.3219 | 1.1191 |
| 194.0133 | + | 1.2271 | 1.0643 |
| 204.7692 | | 1.2655 | 1.1223 |
| 212,6334 | + | 9. 1311 | 1.1573 |
| 193.7720 | | 0.2203 | 1.0096 |
| 179.5515 | | 1.0974 | 9.3398 |
| 183,6075 | | 1.2658 | 1.0077 |
| 162.5553 | | 9.7834 | 9.3922 |
| 175.2933 | | 1.0233 | 0.9621 |
| 172.1302 | | 9.0477 | 0.5470 |
| | Ť | | |
| 155.6422 | Ť | 0.7301 | 0.9146 |
| 156.3507 | | 9.3759 | 0.3591 |
| 154.0679 | 1 | 0.9501 | 0.5455 |
| 153.3593 | | 0.1502 |].?**6 |
| 152.1155 | | 0.2530 | 0.8143 |
| 154.7367 | T | 1.1393 | 0.5494 |
| 172.8927 | T | 1.1276 | 0.7234 |
| 33.0322 | Г | 9.1317 | 0.5321 |
| 95. fair | | 0.5903 | 0.5149 |
| 591206 | | 9.3725 | 0. • ₹ 1 7 |
| 24.3245 | | 0.9451 | 9.45.1 |
| 92.0203 | | 1.1154 | 3.4719 |
| 43.1705 | 7 | 0.905 | 0.1710 |
| 13.0115 | | 0.1275 | 0.0514 |
| 7.3114 | U. | 4.0000 | (1. (14. 11 |
| 1), 3443 | | 9.9199 | 9.0045 |
| ETERT 5 | - 0.221 | | |
| | | | . 7 |
| | EZECT 2 | ETECT 22066 | |

FILE 755- PUN 1 STHRTED 14:25.1 33 03/07 PETPO PRODUCTS % METHOD 30 PETPO PRODS LAST EDITED 17:10.0 86/02/10

| RT | apea | HEIGHT | BC | HREA PERCENT | HEIGHT PEPCEN |
|-------|---------------|------------|----------------|------------------|----------------|
| 0.37 | | 3.4019 | Ť | 0.0022 | 0.0137 |
| 0.50 | 220104192 | 12995.8945 | | 55.4775 | 71.5917 |
| 4.90 | 26936 | 2.0974 | | 0.0061 | 0.0115 |
| 3.94 | 52263 | 5.3726 | | 9.0133 | 0.0724 |
| 11.36 | 59191 | 5.8924 | | 0.0179 | 0.0025 |
| 4.44 | 5222 | 0.5203 | | 9.0913 | 0.0019 |
| 15.39 | 46249 | 3.4810 | | 0.0140 | 0.0192 |
| | | 3.4349 | | 9.9177 | 0.0193 |
| 16.57 | 51103 | | | | 0.0121 |
| 17.12 | 56760 | 4.0035 | | 0.0171
9.0602 | 0.0754 |
| 17.99 | 199192 | 13.6793 | | | |
| 13.68 | 102019 | 6.2691 | | 0.0108 | 0.0345 |
| 13.91 | 57993 | 4.3538 | | 9.0209 | 9.92-8 |
| 19.43 | 524555 | 24.2627 | Ţ | 0.1584 | 0.1337 |
| 20.21 | 755042 | 25.3133 | | 0.2290 | 0.1225 |
| 20.61 | 1465413 | 63.1929 | | 8.4425 | e.3757 |
| 21.40 | 2490707 | 82.2745 | 7 | 9.7523 | 0.4532 |
| 21.87 | 4203394 | 144.9585 | T | 1.2697 | 0.7995 |
| 22.41 | 2299742 | 149.6026 | . T | 0.6571 | 0.3241 |
| 22.65 | 2249808 | 173.2900 | 1 | 0.7095 | 0.9546 |
| 22.82 | 2291547 | 173.4953 | | 0.5391 | 0.9833 |
| 23.97 | 4717272 | 205.2015 | | 1.4.47 | 1.1204 |
| 23.54 | 4263729 | 242.0291 | | 1.2396 | 1.3222 |
| 23.95 | 5785263 | 240.954 | | 1.7473 | 1.1174 |
| 24.30 | 4975835 | 229.0448 | T | 1.5015 | 1.2513 |
| 24.65 | 5286130 | 272.2714 | - | 1.5244 | 1.5004 |
| | | | | 1.5103 | 1.2253 |
| 24.96 | 5000022 | 242.4039 | | | 1.1773 |
| 25.44 | 4876194 | 208.0076 | - | 1.4727 | |
| 25.73 | 4997199 | 242,940 | Ţ | 1.4311 | 1.0051 |
| 26.07 | 3398511 | 218.1723 | P T | 1.1775 | 1.1019 |
| 26.47 | 4140513 | 210.6434 | T | 1.2506 | 1.1404 |
| 16.74 | 4796799 | 216.8312 | | 1.4487 | 1.1945 |
| 27.12 | 2916751 | 133.2109 | | 9.3303 | 1.0423 |
| 27.42 | 2887185 | 293.4773 | 1 | 1.1740 | 1.1209 |
| 27.73 | 3053406 | 123.9434 | 1 | 9.2022 | 1.0478 |
| 27.97 | 3829496 | 182.2303 | * * | 1,1563 | 1.0094 |
| 23.38 | 2944311 | 175.1646 | 1 | 0.5823 | 9.3649 |
| 28.67 | 3072124 | 190.231 | 1 | 0.9297 | 0.5917 |
| 29.94 | e | 172.314 | | | 0.2432 |
| 29.61 | | 147.911 | 4 | 1.6117 | 0.3149 |
| 39.25 | 1919413 | 192.549 | . . | 0.5393 | 0.5-54 |
| 10.46 | 5191664 | 35.017 | T | 1.5701 | 0.5114 |
| 31.91 | 117145 | 11.463 | | 0.3710 | 0.114
0.115 |
| 33.45 | 358259 | 13,954 | | 0.1083 | 0.0761 |
| | | | - | | •••• |
| | ars > afem fe | | 3310750 | | |
| | HKS > HEIGHT | | | 04 TOTHL HEIG | |

÷

İ


298

i

ŧ

\*\*

18 A

FILE 759 2102-1 - 3THPTED 13:42.4 - 39 03/07 - PETPO STDS - 3.H.E. 30 ": METHOD 30 - PETRO PRODS - LAST EDITED 17:10.0 - 88/02/10

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | ENT |
|--|-----|
| 4, 96 $4, 971$ $0, 4409$ $0, 0015$ $3, 95$ 24193 2.1353 0.0097 0.0143 $12, 97$ 27873 2.6312 0.0097 0.0143 $12, 97$ 27873 2.6312 0.00971 0.0143 $15, 30$ 13744 1.5222 0.00711 0.0123 $15, 57$ 11409 0.6762 0.0041 0.0041 $17, 25$ 15322 1.2368 0.3055 0.0023 $18, 64$ 77925 3.39322 0.0210 0.0271 $13, 69$ 3463 0.7273 0.0034 0.0044 $19, 45$ 49041 4.47930 0.0177 0.026 $20, 20$ 2975 1.10457 0.0035 0.0077 $20, 65$ 43749 3.46947 0.01539 0.0257 $21, 89$ 175237 3.469277 0.0639 0.0577 $21, 89$ 175237 3.469277 0.1025 0.0577 $22, 83$ 337216 19.433077 0.1025 0.1037 $22, 55$ $29,999$ 17.542677 0.11277 0.1025 $21, 67$ $29,999$ 17.542677 0.11277 0.1127 $22, 55$ $29,999$ 17.542677 0.11277 0.1127 $21, 67$ $29,1999$ 17.542677 0.11277 0.1127 $21, 67$ $29,1999$ 17.542677 0.11277 0.11277 | |
| 3.95 24193 2.1353 9.0087 9.0143 12.07 27673 2.6312 0.0101 0.0131 15.30 13744 1.3222 0.0971 9.0143 15.37 11409 0.6762 0.0971 9.0143 15.37 11409 0.6762 0.0971 9.0143 15.57 11409 0.6762 0.0971 9.0121 15.57 11302 1.2368 0.0975 9.0031 17.25 15332 1.2368 0.0975 9.0031 18.04 27925 3.3932 9.0014 9.0044 19.45 49041 4.4793 9.0035 9.0044 19.45 49041 4.4793 9.0035 9.0044 19.45 49041 4.4793 9.0035 9.0044 19.45 49041 4.4793 9.0035 9.0044 20.20 24755 1.1945 9.0035 9.0035 20.28 43749 3.4692 7 9.0035 9.0257 21.89 175237 3.4692 7 9.0638 | |
| 12.57 27673 2.6312 0.0191 0.0181 15.30 13744 1.5222 0.0971 0.0121 15.67 11409 0.6762 0.0941 0.0121 15.67 11409 0.6762 0.0941 0.0041 17.25 15332 1.2368 0.0956 0.0931 18.04 77925 2.3932 0.0210 0.0210 19.45 49041 4.4793 0.0034 0.0041 19.45 49041 4.4793 0.00177 0.024 20.20 24775 1.1945 0.0177 0.023 20.45 43749 3.4692 0.0159 0.027 20.45 43749 3.4692 0.0159 0.027 21.89 175237 3.4692 0.0259 0.025 21.89 175237 3.4692 0.1025 0.0257 22.93 2337216 19.4330 0.1025 0.1032 23.09 233779 17.5426 0.1025 0.1025 < | |
| 15.30 13744 1.3222 0.0971 0.0121 15.37 11409 0.6762 0.0941 0.0041 17.25 15332 1.2368 0.0956 0.0041 17.25 15332 1.2368 0.0056 0.0041 17.25 15332 1.2368 0.0056 0.0041 17.25 15332 0.6210 0.0210 0.0041 18.04 77925 3.3932 0.0035 0.0041 19.45 45041 4.4793 0.0035 0.0041 19.45 45041 4.4793 0.0035 0.007 20.20 2675 1.1945 0.0035 0.007 20.20 2675 1.0457 0.025 0.027 20.45 43745 3.4694 0.0159 0.027 21.89 175237 3.4692 0.0159 0.075 22.83 337216 10.4330 0.1221 0.075 23.09 233079 15.3236 0.1025 0.1025 23.07 23 | |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | |
| 17.25 1532 1.2368 0.0075 0.003 17.25 1532 1.2368 0.0075 0.003 18.04 77925 3.3932 0.0210 0.027 13.59 3453 0.7273 9.0034 0.007 19.45 49041 4.4793 0.0177 0.020 20.20 3475 1.1045 0 0.0177 0.024 20.20 3475 1.1045 0 0.0075 0.027 20.20 3475 1.1045 0 0.0075 0.027 20.20 3475 1.1045 0 0.0075 0.027 20.20 3475 1.1045 0 0.0075 0.027 20.20 3475 1.0459 7 0.0075 0.027 21.89 175237 3.4692 7 0.0055 0.057 21.09 232079 15.3258 7 0.1025 0.103 22.55 291999 17.5426 7 0.1027 0.112 22.55 291999 20.3834 7 0.1330 < | |
| 15.04 27925 3.3932 0.0210 0.0271 13.59 3463 0.7273 9.0934 0.004 19.45 49041 4.4793 0.0035 0.007 20.20 2675 1.1945 0.0035 0.007 20.45 43749 3.4694 0.0153 0.027 21.89 175237 3.4692 0.0638 0.057 21.83 357315 10.4330 0.1221 0.057 21.09 232079 15.3258 0.1025 0.1037 22.55 291999 17.5426 0.1057 0.1127 23.67 359195 20.3834 0.1390 0.142 | |
| 13.69 3468 0.7273 9.0034 0.0044 19.45 45041 4.4793 0.0177 0.029 20.20 3675 1.1945 0.0035 0.007 20.45 43749 3.4694 7 0.0159 0.029 20.45 43749 3.4692 7 0.0159 0.027 20.45 43749 3.4692 7 0.0159 0.027 21.89 175237 3.4692 7 0.0159 0.057 21.89 175237 3.4692 7 0.0153 0.057 21.89 175237 3.4692 7 0.0253 0.057 21.89 175237 10.4330 7 0.1221 0.057 21.09 233079 15.3238 7 0.1025 0.1037 22.55 291999 17.5426 7 0.1057 0.112 23.67 29199 29.3834 9.1309 0.142 | |
| 19.45 49041 4.4793 0 0.0177 0.020 20.20 2675 1.1945 9.0035 0.007 20.65 43749 3.4694 7 0.0173 0.027 21.89 175237 3.4694 7 0.0153 0.027 21.83 175237 3.4692 7 0.0153 0.057 21.83 357216 10.4330 7 0.1221 0.077 23.09 232079 15.3258 7 0.1025 0.103 21.63 29.999 17.5426 7 0.1057 0.112 23.09 232079 15.3258 7 0.1057 0.103 21.67 29.199 17.5426 7 0.1257 0.112 23.67 39105 20.3834 7 0.1390 0.142 | |
| 20.20 2675 1.1945 9.0035 0.0075 20.65 43745 3.4694 0.0153 0.025 21.89 175237 3.4694 0.0153 0.025 21.89 175237 3.4694 0.0153 0.025 21.83 357215 10.4330 T 0.1221 0.077 22.83 357215 10.4330 T 0.1221 0.077 23.09 232079 15.3258 T 0.1025 0.1037 23.05 29.999 17.5426 T 0.1257 0.112 23.37 359195 29.3834 T 9.1309 0.142 | |
| 20.55 43749 3.4694 T 0.0159 0.022 21.89 175237 3.4692 T 0.0659 0.057 21.89 175237 3.4692 T 0.0659 0.057 21.83 337216 10.4330 T 0.1021 0.077 21.09 232079 15.3258 T 0.1025 0.1032 21.65 29.999 17.5426 T 0.1027 0.112 22.55 29.999 17.5426 T 0.1230 0.142 21.37 359195 20.3834 T 0.1300 0.142 | |
| 21.89 175237 3.4692 T 9.0638 9.027 22.83 337215 10.4330 T 0.1221 0.070 21.09 232079 13.3230 T 0.1025 0.1035 22.55 231079 17.5426 T 0.1057 0.1125 22.55 231099 17.5426 T 0.1037 0.1125 21.67 353105 20.3834 T 0.1300 0.142 | |
| 11.0 13.7715 10.4330 T 0.1221 0.070 21.09 230079 15.3258 T 0.1025 0.103 22.55 291999 17.5426 T 0.1057 0.112 21.07 359195 29.3834 T 0.1300 0.142 | |
| 13.09 13.079 13.3258 0.1025 0.103 22.55 29.999 17.5426 0.1057 0.112 23.07 359195 29.3834 0.1390 0.142 | |
| 22.55 291999 17.5426 T 0.1057 0.119
23.87 359195 20.3834 T 0.1399 0.142 | |
| 23.a7 353105 29.3834 T 9.1300 0.142 | |
| | |
| | |
| | |
| | 7 |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| 34.60 781139 18.7395 0.25L 0.1L | |
| 19 REAKS - HREN RETECT - 278237472 - 70746 HREN | |
| 19 REAKS - AREA RETECT - 274237472 TOTAL AREA
29 REAKS - HEIGHT REJECT - 1.4767620+04 TOTAL HEIGHT | |

| File 7.45 1.03 1.12 11.41 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.43 11.44 11.43 11.43 11.43 11.44 11.44 11.43 11.43 11.43 11.44 11.44 11.43 11.43 11.43 11.44 11.44 11.43 11.44 11.43 11.44 11.44 11.43 11.44 11.44 | | 20H 3.37 | | |
|--|--|---|--|---|
| 9.31 5.64 1.01 1.01 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.04 1.03 1.04 1.03 1.04 1.03 1.04 1.04 1.04 1.05 1.05 1.04 1.04 1.05 1.04 1.04 1.04 1.05 1.04 1.04 1.04 1.05 1.04 1.04 1.04 1.05 1.04 1.04 1.04 1.04 1.04 1.05 1.04 1.04 1.04 1.05 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 | C | X | | yoocng |
| 7.46 3.03 2.57 10.13 Contemination 11.01 11.15 11.15 11.15 11.15 11.15 11.141 11.34 11.34 11.35 11.35 11.35 11.141 11.34 11.34 11.35 11.35 11.35 11.341 11.34 11.34 11.35 11.35 11.35 11.341 11.34 11.34 11.35 11.35 11.35 11.341 11.34 11.34 11.35 11.35 11.35 11.341 11.34 11.34 11.35 11.35 11.35 11.341 11.34 11.34 11.35 11.35 11.35 11.441 11.34 11.34 11.35 11.35 11.35 11.45 11.45 11.45 11.35 11.35 11.45 11.45 11.45 11.45 11.35 11.35 11.35 11.45 11.45 11.45 11.35 11.35 11.35 11.45 11.45 11.45 11.45 11.45 11.45 | | | | |
| 2.24
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03
12.03 | - | - 10 | | |
| 11.11.10 11.10 Contem::==t:or 11.11.10 11.30 11.30 11.30 11.11.10 11.30 11.30 11.30 11.11.10 11.30 11.30 11.30 11.11.10 11.30 11.30 11.30 11.11.10 11.30 11.30 11.30 11.11.10 11.30 11.30 11.30 11.11.10 11.30 11.30 11.30 11.11.10 11.30 11.30 11.30 11.11.10 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.31 11.30 <t< td=""><td></td><td>2,34</td><td>3.97</td><td></td></t<> | | 2,34 | 3.97 | |
| 11.12 12.63 12.36 12.13 11.13 14.30 14.30 14.30 11.14 13.66 12.31 5.4.51 12.43 13.66 12.31 5.4.51 13.43 13.66 14.37 13.43 12.21 13.42 13.08 12.37 13.42 13.43 13.42 13.08 12.37 13.43 13.43 13.43 13.43 12.63 13.43 12.43 13.43 13.43 12.63 13.43 12.43 13.43 13.43 13.43 12.63 13.44 13.43 13.43 13.43 12.63 14.64 13.43 13.43 13.43 12.63 14.64 13.43 13.43 13.43 12.63 14.64 13.43 13.43 13.45 12.63 14.64 13.43 13.43 14.74 14.74 14.74 13.43 13.45 14.75 14.74 14.74 13.43 13.45 14.75 14.75 14.75 | | :1.01 | 19.12 | |
| FILE T60 0104-1 ST.PFED 17:13 21:43 21:43 12:43 20:13 21:43 21:43 21:43 13:45 14:43 21:43 21:43 21:43 13:45 14:43 21:43 21:43 21:43 13:45 14:45 14:43 21:43 21:43 13:45 14:45 14:43 21:43 21:43 13:45 14:45 14:43 21:43 21:43 13:45 14:45 10:45 10:45 10:45 13:45 14:47 10:45 10:45 10:45 13:45 11:43 12:43 11:44 11:44 13:45 11:450 17:10.6 80:42:16 10:45 14:41 13:310 11:310 10:422 10:45 14:43 13:310 11:310 10:402 10:422 10:46 14:43 13:310 11:310 10:402 10:422 10:422 10:422 14:43 13:310 11:310 10:422 10:422 10:422 10:422 10:422 10:422 <td></td> <td></td> <td>1 2 2 2</td> <td></td> | | | 1 2 2 2 | |
| FILE 760 0104-1 STMPTED 17:17.3 S. G. E. LUO 12:43 12:43 12:43 12:43 12:43 12:43 12:43 12:43 12:43 12:43 12:43 12:43 13:43 12:43 12:43 12:43 13:43 12:43 12:43 12:43 13:43 12:43 12:43 12:43 13:43 12:43 12:43 12:43 13:43 12:43 12:43 12:44 13:43 12:43 12:43 12:44 13:43 12:43 12:43 12:44 13:43 12:43 12:43 12:44 13:43 12:43 12:43 12:44 13:43 13:45 17:10:0 38:42:10 13:43 13:45 17:10:0 38:42:10 14:41 13:43 13:43 12:43 15:50 12:43 13:43 12:43 10:48 12:43 13:43 12:43 10:48 12:43 13:43 12:43 10:48 12:428 <td< td=""><td></td><td></td><td>14.30</td><td></td></td<> | | | 14.30 | |
| 13.43 13.43 21.21 20.62 20.13 21.41 21.33 21.47 20.62 21.41 21.33 21.47 21.37 20.62 21.41 21.33 21.47 21.37 20.62 21.41 21.37 21.47 21.37 20.62 21.41 21.42 21.37 21.44 20.42 21.42 21.37 21.44 21.44 20.42 21.42 21.42 21.43 21.44 21.42 22.63 21.44 21.44 21.44 31.43 21.42 22.63 21.44 21.44 31.43 21.42 22.63 21.44 21.44 31.43 21.425 0.667 9.0215 21.44 31.43 21.425 0.667 9.0215 21.44 3.50 12.4551 7.3.023 21.463 21.425 3.50 12.4551 7.3.023 21.44 20.457 21.425 3.50 12.4551 7.4251 0.6627 9.0215 21.44 3.50 | ~ | 15.45 | | |
| 21.41 21.43 22.21 21.43 21.43 21.43 23.73 24.65 24.65 24.65 23.73 24.65 24.65 24.65 24.65 24.65 24.65 24.65 24.65 24.65 24.65 24.65 24.65 24.65 24.65 24.65 24.65 24.65 24.65 24.65 24.65 24.65 24.65 24.65 24.65 24.65 24.65 24.65 24.65 24.65 24.67 24.67 24.67 24.65 24.675 23.60 24.67 24.67 24.675 23.66 24.67 25.51 25.617 24.675 20.623 25.6315 26.57 6902 4.4278 7.9.0623 52.6315 26.57 25.51 23.64 25.651 23.651 27.655 23.625 24.677 6.0217 6.0215 26.57 25.751 23.623 25.631 7.9.0423 6.0257 27.41 73.9451 </td <td></td> <td>19.43</td> <td></td> <td>S.A.E. 40</td> | | 19.43 | | S.A.E. 40 |
| FILE 760 0104-1 STMPTED 17:27.3 25:03 27.43 90.25 31.43 32.63 32.63 32.63 91.25 30.66 32.63 32.63 91.25 30.66 32.63 32.63 91.25 30.66 32.63 32.63 91.25 30.66 32.63 32.63 91.10 30 90.75 10.66 91.10 30 90.75 10.66 91.10 30 90.75 10.66 91.10 10.44 10.71 88.42/10 91.10 10.11 10.48 88.42/10 91.10 10.11 10.48 88.42/10 91.10 10.11 10.48 88.42/10 91.10 10.11 10.40 88.42/10 91.10 10.11 10.010 90.015 91.10 10.11 10.010 90.015 91.10 10.110 90.010 90.010 91.10 10.011 90.010 90.010 91.10 10.021 90.010 90.010 | | | | |
| #15.51 15.09 13.73 13.41 10.23 13.42 13.45 10.66 11.33 11.33 12.63 11.41 11.13 12.63 11.41 11.13 12.63 11.41 11.13 12.63 11.41 11.13 12.63 11.41 11.13 12.63 11.41 11.11 11.11 11.41 11.11 11.11 11.41 11.11 11.11 11.41 11.11 11.11 11.41 11.11 11.11 11.41 11.11 11.11 11.41 11.11 11.11 11.41 11.11 11.11 11.11 11.41 11.11 11.11 11.11 11.11 11.41 11.11 11.11 11.11 11.11 11.41 11.11 11.11 11.11 11.11 11.41 11.11 11.11 11.11 11.11 11.41 11.11 11.11 11.11 11.11 11.41 <t< td=""><td>~</td><td></td><td></td><td></td></t<> | ~ | | | |
| FILE 7-60 0104-1 STMPTED 17:27.3 23.42 33.45 30.66 31.43 32.43 32.63 32.63 32.63 FILE 7-60 0104-1 STMPTED 17:27.3 23.03.07 PETRO STDS - 5.4.E. 40 State State State 32.63 32.63 RT METHOD 30 PETRO PRODS LHST EDITED 17:10.0 88.02/10 RT MEEA HEIGHT BC MEEA PERCENT HEIGHT PEPCENT 0.351 6902 4.4278 T 0.0027 9.0215 13.43 13310 3.1281 U 0.0027 9.0215 13.43 13310 3.1281 U 0.0027 9.0215 13.43 13310 3.1281 U 0.0322 0.0162 13.43 13310 3.1281 U 0.0322 0.0244 20.168 2597 7.4523 U 0.0322 0.0162 21.41 73045 1.0450 U 0.0321 0.0444 20.168 2597 7.352 U 0.0324 0.0262 21.41 73045 1.0450 U 0.0324 0.0262 2 | <u>^</u> | | | |
| 31.43 10.53 10.53 10.54 31.43 31.43 32.63 10.56 31.41 32.63 10.56 31.45 32.63 10.56 31.45 32.63 10.56 31.45 10.56 10.56 31.45 10.56 10.56 31.45 10.56 10.56 31.45 10.56 10.56 31.45 10.56 10.56 31.45 10.57 10.56 10.57 10.56 10.57 11.57450175 1231.1650 71.0023 12.41 10.7450175 1231.1650 13.43 13310 1281.1650 13.43 13310 1281.1650 13.43 13310 1281.1650 13.43 13310 1281.1650 13.43 13310 10.661 13.43 13310 10.651 13.43 13310 10.651 13.45 10.651 0.0215 14.1 7365 10.651 15.23 10.651 0.0 | | | 13.00
Al 34 | L |
| 70.23 30.33 30.33 71.33 32.63 71.33 32.63 71.33 32.63 71.33 32.63 71.33 32.63 71.34.71 32.63 71.35 32.63 71.35 32.63 71.35 32.63 71.35 32.63 71.35 32.63 71.35 32.63 71.35 32.63 71.35 32.63 71.35 32.63 71.35 32.63 71.35 32.63 71.35 32.63 71.35 7.30 71.35 7.30 71.35 7.30 71.35 7.30 71.35 7.30 71.35 7.30 71.35 7.30 71.35 7.30 71.35 7.30 71.35 7.30 71.35 7.30 71.35 7.30 71.35 7.30 71.35 7.31 | ~ | | | |
| FILE 750 0104-1 STMPTED 17:27.3 23.43 32.63 FILE 750 0104-1 STMPTED 17:27.3 23.03.07 PETRO STDS - S.A.E. 40 . METHOD 30 PETRO PPODS LAST EDITED 17:10.0 38:02:10 RT MEEA HEIGHT BC MFEA PERCENT HEIGHT PEPCENT 0.37 6902 4.4278 73.0023 52.6315 1.50 137456175 12331.6530 73.0023 52.6315 1.4007 73.0023 52.6315 6.0117 6.0108 1.50 137456175 12331.6530 73.0023 52.6315 1.41 13310 7.12310 0.0322 0.0215 2.41 7395 1.0210 0.0322 0.0279 2.41 7395 1.0250 0.0322 0.0279 2.1.31 30675 5.1428 0.0314 0.0327 2.1.33 30675 5.1428 0.0314 0.0299 2.1.33 30676 5.12420 0.0209 0.0160 2.2.308 60427 7.3737 0.0314 0.0259 2.4.41 73964 <t< td=""><td></td><td></td><td></td><td>30.55</td></t<> | | | | 30.55 |
| FILE 7-0 0.004-1 STMPTED 17:27.3 29 03.07 PETRO STUS - S.A.E. 40 1 METHOD 30 PETRO PPDDS LAST EDITED 17:10.0 38-02/10 RT MEA HEIGHT BC MPEA PETRO 9.0215 0.37 6902 4.4278 0.0027 0.0215 0.50 187456175 12331.1650 7.3.0023 52.6315 10.403 133010 12.216 0.0217 0.0215 10.403 133010 12.216 0.0211 0.0444 20.18 82597 7.4523 0.0322 0.0225 21.41 73065 1.0950 0.0342 0.0373 22.41 73065 4.1764 0.0144 0.0327 22.41 73065 1.0950 0.0342 0.0269 22.43 30556 6.1430 0.0206 0.0160 22.44 53267 0.0206 0.0269 0.0269 24.52 25740 7.3738 0.0206 0.0269 24.52 25740 | <u>^</u> | المحجر | | |
| PILE 750 0104-1 STMPTED 17:27.3 23 03.07 PETRO STDS - 3.4.E. 40 . METHOD 30 PETRO PRODS LAST EDITED 17:10.0 88782/10 RT MEEA HEIGHT BC HPEA PERCENT HEIGHT PEPCENT 0.37 6902 4.4278 T 0.0027 0.0215 0.30 13745076 12331.1650 T 73.0023 52.6815 13.43 133310 3.128 U 0.0322 0.0157 13.43 133310 3.128 U 0.0322 0.0162 20.18 82557 7.4523 U 0.0322 0.0162 21.41 7365 1.0250 U 0.0342 0.0162 21.33 30556 6.1426 T 0.0144 0.0375 21.41 7365 1.0250 U 0.0342 0.0557 22.03 51229 3.2780 T 0.0342 0.0557 22.04 53362 T 0.0345 0.0355 0.0563 24.56 15904 1.5713 T 0.0596 0.0563 24.51 139763 12.6211 T 0.0935 0.0563 24.55 1239763 10.6257 0.0555 <td>ſ</td> <td>34.71</td> <td></td> <td></td> | ſ | 34.71 | | |
| FILE 7:0 0104-1 STMPTED 17:17.9 23 03 07 PETRO STDS - 5.A.E. 40 . METHOD 30 PETRO PPODS LAST EDITED 17:10.0 38:02/10 RT MREA MEIGHT BC MPEA PERCENT HEIGHT PEPCENT 0.37 6302 4.4275 T 0.00027 0.0215 0.350 137:45176 1331.0550 T 73.0023 52.6315 0.450 137:45176 1331.0 9.1281 0.0215 13.43 133910 5.1281 U 0.0521 0.0444 00.18 82587 7.4523 U 0.0322 0.0262 13.43 133910 5.1281 U 0.0314 0.0337 21.41 73045 1.0950 U 0.0423 0.0263 21.38 30056 6.1438 T 0.0314 0.0337 22.01 38016 4.1764 T 0.0440 0.0263 23.08 60072 7.3337 T 0.0200 0.0355 23.08 60072 7.3337 T 0.0200 0.0253 24.22 23740 1.3513 T 0.0235 0.04513 23.08 <td><u>^</u></td> <td><u>_</u></td> <td></td> <td></td> | <u>^</u> | <u>_</u> | | |
| FILE 7:0 0104-1 STMPTED 17:17.9 23 03 07 PETRO STDS - 5.A.E. 40 . METHOD 30 PETRO PPODS LAST EDITED 17:10.0 38:02/10 RT MREA MEIGHT BC MPEA PERCENT HEIGHT PEPCENT 0.37 6302 4.4275 T 0.00027 0.0215 0.350 137:45176 1331.0550 T 73.0023 52.6315 0.450 137:45176 1331.0 9.1281 0.0215 13.43 133910 5.1281 U 0.0521 0.0444 00.18 82587 7.4523 U 0.0322 0.0262 13.43 133910 5.1281 U 0.0314 0.0337 21.41 73045 1.0950 U 0.0423 0.0263 21.38 30056 6.1438 T 0.0314 0.0337 22.01 38016 4.1764 T 0.0440 0.0263 23.08 60072 7.3337 T 0.0200 0.0355 23.08 60072 7.3337 T 0.0200 0.0253 24.22 23740 1.3513 T 0.0235 0.04513 23.08 <td></td> <td></td> <td></td> <td></td> | | | | |
| NETHOD 30 PETRO PROB LAST EDITED 17:10.0 38/02/10 RT HEA HEIGHT BC HFEA PERCENT HEIGHT PEPCENT 0.37 6902 4.4278 T 0.0027 0.0215 0.50 137456176 12331.1650 T 73.0023 52.6815 0.50 137456176 12331.1650 T 73.0023 52.6815 0.50 137456176 12331.0 0.0322 0.0169 13.43 133910 3.1281 U 0.0322 0.0262 20.18 82587 7.4523 U 0.0322 0.0262 21.41 73065 6.1438 T 0.0314 0.0397 21.41 73065 6.1438 T 0.0314 0.0397 21.33 30656 6.1438 T 0.0209 0.0160 23.06 80672 7.3130 T 0.0209 0.0160 23.54 62424 5.3382 T 0.0209 0.0563 24.52 257400 7.3138 T 0.0937 0.0553 24.55 | | | | |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 50 0104-1 STHPTED 17 | :27.3 33 03 07 PE | TRO STOS - S.A.E. 40 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | C FILE 7 | 20 0104-1 STHPTED 17
30 30 PETRO PRODS LAS | T EDITED 17:10.0 38/ | 92/19 |
| $\begin{array}{c c} \begin{array}{c} \begin{array}{c} 1 \\ 13,43 \end{array} \\ \hline 13,43 \end{array} \\ \begin{array}{c} 13,43 \end{array} \\ \begin{array}{c} 13,43 \end{array} \\ \begin{array}{c} 13,43 \end{array} \\ \begin{array}{c} 13,43 \end{array} \\ \begin{array}{c} 13,43 \end{array} \\ \begin{array}{c} 13,43 \end{array} \\ \begin{array}{c} 13,43 \end{array} \\ \begin{array}{c} 13,43 \end{array} \\ \begin{array}{c} 13,43 \end{array} \\ \begin{array}{c} 13,43 \end{array} \\ \begin{array}{c} 13,43 \end{array} \\ \begin{array}{c} 13,43 \end{array} \\ \begin{array}{c} 13,43 \end{array} \\ \begin{array}{c} 13,43 \end{array} \\ \begin{array}{c} 13,43 \end{array} \\ \begin{array}{c} 13,43 \end{array} \\ \begin{array}{c} 13,43 \end{array} \\ \begin{array}{c} 13,43 \end{array} \\ \begin{array}{c} 13,2310 \end{array} \\ \begin{array}{c} 9,1281 \end{array} \\ \begin{array}{c} 0 \end{array} \\ \begin{array}{c} 0 \end{array} \\ \begin{array}{c} 0,622 \end{array} \\ \begin{array}{c} 37,814 \end{array} \\ \begin{array}{c} 7,7825 \end{array} \\ \begin{array}{c} 0 \end{array} \\ \begin{array}{c} 0,0622 \end{array} \\ \begin{array}{c} 0,0622 \end{array} \\ \begin{array}{c} 0,0652 \end{array} \\ \begin{array}{c} 0,0265 \end{array} \\ \begin{array}{c} 0,0255 \end{array} \\ \begin{array}{c} 0,0255 \end{array} \\ \begin{array}{c} 0,0255 \end{array} \\ \begin{array}{c} 0,0555 \end{array} \\ \end{array} \\ \begin{array}{c} 0,0555 \end{array} \\ \begin{array}{c} 0,0555 \end{array} \\ \begin{array}{c} 0,0555 \end{array} \\ \begin{array}{c} 0,0555 \end{array} \\ \begin{array}{c} 0,0555 \end{array} \\ \begin{array}{c} 0,0555 \end{array} \\ \end{array} \\ \begin{array}{c} 0,0555 \end{array} \\ \end{array} \\ \begin{array}{c} 0,0555 \end{array} \\ \begin{array}{c} 0,0555 \end{array} \\ \end{array} \\ \begin{array}{c} 0,0555 \end{array} \end{array} \\ \begin{array}{c} 0,0555 \end{array} \\ \end{array} \\ \begin{array}{c} 0,0555 \end{array} \end{array} \\ \end{array} \end{array} $ \\ \begin{array}{c} 0,0555 \end{array} \end{array} \\ \begin{array}{c} 0,0555 \end{array} \end{array} \end{array} \\ \begin{array}{c} 0,0555 \end{array} \end{array} \end{array} \\ \begin{array}{c} 0,0555 \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} 0,0555 \end{array} \end{array} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} 0,0555 \end{array} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} 0,0555 \end{array} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} 0,0555 \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} 0,0555 \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} 0,0555 \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} 0,0555 \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} 0,0555 \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} | FILE 7 | DD 30 PETRO PRODS LAS
Area Heigh | T EDITED 17:10.0 38/
T BC AFEA PERCENT | 02/10
Height Percent |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | C
FILE TH
METHO
RT
C 0.37 | 30 30 PETRO PRODS LAS
Area Heigh
6302 4.42
137455176 12331.16 | T EDITED 17:10.0 38/
T BC AFEA PERCENT
78 T 0.0027
50 T 73.0023 | 02/10
Height Percent
0.0215
52.6815 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | C FILE 7-
. HETHO
RT
0.37
0.50
 | DD 30 PETRO PRODS LAS
AREA HEIGH
6902 4.42
137456176 12331.16
2572565 5195.29 | T EDITED 17:10.0 38/
T BC AFEA PERCENT
78 T 0.0027
50 T 73.0023
40 12.27 | 02/10
Height Percent
0.0215
52.6315
6.6315
0.0108 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | C FILE 74
1. METHO
RT
0.37
0.50
12.05
13.43
20.18 | DD 30 PETRO PRODS LAS
AREA HEIGH
6902 4.42
137456176 12331.16
27729495 2106.20
133910 9.120
82587 7.45 | T EDITED 17:10.0 38/
T BC AFEA PERCENT
78 T 0.0027
50 T 73.0023
40 0.0117
81 U 0.0521
23 U 0.0321 | 02/10
HEIGHT PERCENT
9.0215
52.6315
6.0108
9.0444
9.0362 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | FILE 7-
. METHO
RT
0.37
0.50
13.43
20.18
20.52
21.41 | D 30 PETRO PRODS LAS
AREA HEIGH
6902 4.42
137456176 12331.16
7572505 2196 49
133910 9.126
82587 7.45
37914 7.130
7306 1.099 | T EDITED 17:10.0 38/
T BC AFEA PERCENT
78 T 0.0027
50 T 73.0023
76 0.0117
81 0 0.0521
23 0 0.0322
25 0 0.0322
55 0 0.0322
55 0 0.0322 | 02/10
HEIGHT PERCENT
52.6815
53.6815
0.0108
0.0444
0.0262
0.0279
0.0279
0.0052 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | C FILE 74
. METHO
RT
0.37
0.50
13.43
20.18
20.41
21.41
21.38
22.21 | 30 9 ETRO PRODS LAS HREA HEIGH 6902 4.42 137456176 12331.16 2573505 2106 133910 9.120 82587 7.45 37914 7.732 7305 1.094 30656 6.14 38016 4.176 | T EDITED 17:10.0 38/ T BC AFEA PERCENT 75 T 0.0027 50 T 75 T 73.0023 0.0117 0.0117 81 U 0.0521 0.0322 0.0342 95 U 0.0342 0.0342 96 T 0.0314 0.0314 96 T 0.0314 0.0140 | 02/10
HEIGHT PERCENT
52.6015
52.6015
0.0444
0.0444
0.0262
0.0379
0.0052
0.0292 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | C FILE 7-
. METHO
RT
0.37
0.50
1.3.43
20.18
20.18
20.52
21.41
- 21.38
22.21
22.21
22.63
C 23.08 | D 30 PETRO PRODS LAS
WREA HEIGH
6902 4.42
137456176 12331.16
25725106 116410
133310 9.12
82587 7.45
37914 7.732
7206 1.094
30656 6.14
38016 4.17
51229 3.27
80872 7.31 | T EDITED 17:10.0 38/ T BC AFEA PERCENT 75 T 0.0027 50 T 73.0023 6 0.0117 81 0 0.0521 23 0 0.0322 25 0 0.0342 25 0 0.0342 26 7 0.0314 26 T 0.0314 26 T 0.0209 26 T 0.0209 27 0.0214 0.0209 | 02/10
HEIGHT PERCENT
9.0215
52.6315
9.0444
0.0262
9.0379
0.0052
0.0202
9.0150
0.0202
9.0150
0.0255 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | C FILE 7-
. METHO
C RT
0.37
0.50
13.43
20.18
20.52
21.41
20.52
21.41
20.52
21.41
20.52
21.41
20.52
21.41
20.53
21.43
20.52
21.41
20.53
21.63
23.54
23.54
24.22 | 30 PETRO PRODS LAS MREA HEIGH 6902 4.42 137456176 12331.16 7773485 4195.12 133910 9.12 82567 7.45 7306 1.09 30656 6.14 30656 4.17 51228 3.278 60872 7.21 62424 5.38 257408 7.37 | T EDITED 17:10.0 38/ T BC AFEA PERCENT 75 T 0.0027 50 T 750 T 73.0023 0.0117 81.07 81 0 0.0521 23.00322 75 0.0322 75 0 0.0322 25 0.0342 0.0342 94 7 0.0342 0.0342 0.0342 95 0 0.0342 0.0342 0.0342 96 T 0.0314 0.0428 0.0209 96 T 0.0209 0.0315 0.0241 96 T 0.0241 0.0241 0.0241 96 T 0.0241 0.0241 0.0241 96 T 0.0241 0.0241 0.0241 | 02/10
HEIGHT PERCENT
9.0215
52.6815
73.717,
0.0108
9.0444
0.0262
9.0379
9.0262
9.0397
0.0202
9.0160
0.0253
0.0253
0.0253 |
| 26.85 719006 21.6011 T 0.2800 0.1051 27.41 1143901 38.5254 T 0.4474 0.1375 27.97 1246249 44.2663 T 0.4553 0.2444 23.42 339475 50.2247 T 0.3655 0.2444 28.95 2266720 68.9432 T 0.8927 0.3350 23.13 322953 59.3922 T 0.3594 0.2914 29.64 2498915 65.6301 T 0.9732 0.3196 30.25 323273 44.3930 T 0.3515 0.2139 30.66 1334025 33.0397 0.5423 0.1983 30.66 1334025 33.0397 0.5423 0.1983 31.89 17117 3.2070 T 0.3646 0.0443 32.69 56059 2.5369 U 0.0172 | FILE 74 METHO RT 0.37 0.50 13.43 20.18 20.62 21.41 21.38 22.21 23.54 23.54 24.56 24.56 24.97 | 30 PETRO PRODS LHS HREA HEIGH 6902 4.42 137456176 12331.16 38310 3.121 133310 3.121 82587 7.452 37914 7.305 38916 4.170 51225 3.275 80872 7.314 62424 5.326 257488 7.371 153084 11.571 167191 10.433 | T EDITED 17:10.0 38/ T BC AFEA PERCENT 75 T 0.0027 50 T 73.0023 6 0.0117 81 0.0521 23 0 0.0521 23 0 0.0322 55 0 0.0322 55 0 0.0322 55 0 0.0324 56 T 0.0208 96 T 0.0208 96 T 0.0214 54 T 0.0209 42 T 0.0214 54 T 0.0240 53 T 0.1002 53 T 0.0240 53 T 0.09536 51 T 0.0651 | 02/10
HEIGHT PERCENT
0.0215
52.6315
0.0444
0.0262
0.0279
0.0262
0.0279
0.0262
0.0253
0.0253
0.0253
0.0253
0.0253
0.0258 |
| 27.97 1246249 44.2663 T 0.4553 0.2154 23.42 339475 50.2247 T 0.3655 0.2444 28.95 2266720 68.9432 T 0.8957 0.3350 23.19 922953 59.3922 T 0.3594 0.2914 29.64 2498915 65.6301 T 0.9732 0.3196 30.25 923273 44.3920 T 0.3515 0.2139 30.25 923273 44.3920 T 0.3515 0.1983 30.25 923273 44.3920 T 0.3515 0.2139 30.25 923273 43.3920 T 0.3515 0.1983 30.25 923273 44.3920 T 0.3515 0.2139 30.25 923273 43.3920 T 0.3515 0.2139 30.25 923273 92.079 T 0.3515 0.1983 31.85 1334025 93.099 T 0.5423 0.0443 31.85 171117 9.2070 T 0.0566 0.0443 32.69 56059 2.5369 U 0.0218 0.0172 | C FILE 74
. METHO
RT
0.37
0.50
13.43
20.18
20.18
20.62
21.41
- 21.38
22.01
22.03
C 23.08
13.54
24.56
C 4.97
25.51
25.75 | 30 9 PETRO PRODS LHS HREA HEIGH 6902 4.42 137456176 12331.16 2197.331.65 2197.331.65 33910 9.120 2197.45 1.33910 9.120 82587 7.453 37914 7.792 7.345 33916 4.170 390556 6.144 390556 3.276 38016 4.170 51225 3.276 80872 7.214 51225 3.276 80872 7.214 5.36 257408 7.375 153084 11.571 10.433 239763 12.621 239763 12.621 283742 13.695 12.621 283742 13.695 13.695 | T EDITED 17:10.0 38/ T BC AFEA PERCENT 75 T 0.0027 50 T 73.0023 6 0.0117 31 0 0.0521 23 0 0.0322 25 0 0.0324 26 7 0.0314 26 7 0.0209 25 0 0.0228 26 T 0.0214 26 T 0.0214 26 T 0.0209 42 T 0.0214 26 T 0.0209 42 T 0.0214 26 T 0.0229 27 0.0241 0.0315 28 T 0.0241 28 T 0.0241 28 T 0.0241 28 T 0.0934 29 T 0.0934 20 T 0.0934 20 T 0.1095 <td>02/10
HEIGHT PEPCENT
9.0215
52.6315
6.0108
9.0444
0.0262
9.0373
9.0262
9.0262
9.0160
9.0253
9.0253
9.0253
9.0253
9.0553
9.0554
9.0514
9.0916</td> | 02/10
HEIGHT PEPCENT
9.0215
52.6315
6.0108
9.0444
0.0262
9.0373
9.0262
9.0262
9.0160
9.0253
9.0253
9.0253
9.0253
9.0553
9.0554
9.0514
9.0916 |
| 28.95 2266720 68.9432 T 8.8827 9.3350 23.13 322953 59.9922 T 0.3594 0.2914 29.64 2498915 65.6301 T 0.9732 0.3196 30.25 323273 44.3930 T 0.3515 0.2139 30.66 1394025 33.0997 0.5423 0.1903 31.35 171117 3.2070 T 0.3666 0.0443 32.69 56059 2.5369 U 0.0213 0.0172 | FILE THOMETHON FILE THOMETHON RT 0.37 0.37 0.37 0.37 0.37 0.37 13.443 20.18 20.42 21.41 20.62 21.41 20.62 21.41 21.38 22.03 0.23.54 24.56 24.56 25.51 25.75 6.85 | 30 PETRO PRODS LHS HREA HEIGH 6902 4.42 137456176 12331.16 2773465 11231.16 2773465 11231.16 2773465 11231.16 2773465 11231.16 2773465 1124 133910 9.124 82587 7.451 72065 1.094 30656 6.143 30656 6.143 30656 6.143 30656 7.214 51228 3.276 80872 7.214 62424 5.38 257408 7.375 153094 11.571 167191 10.433 239763 12.621 240527 14.657 240527 14.657 719006 21.601 | T EDITED 17:10.0 38/ T BC HFEA PERCENT 75 T 0.0027 50 T 73.0023 44 0.0117 51 0.021 53 0.0322 54 0.0322 55 0.0342 56 0.0342 56 0.0314 56 0.0314 56 0.028 56 0.021 57 0.0314 58 0.0314 59 0.0209 50 0.029 51 0.029 52 0.0315 53 0.0240 53 0.0934 50 0.0934 50 0.0934 53 0.03937 53 0.02937 | 02/10
HEIGHT PEPCENT
0.0215
52.6815
0.0444
0.0262
0.0379
0.0265
0.0377
0.0202
0.0160
0.0253
0.0253
0.0253
0.0553
0.0553
0.0553
0.0514
0.0516
0.0713
0.1051 |
| 13 322353 53.8922 T 0.3594 0.2914 19.64 1498915 65.6301 T 0.9732 0.3196 30.25 323273 44.3920 T 0.3615 0.2139 30.66 1394025 33.0997 0.5423 0.1903 31.85 171117 3.2070 T 0.3666 0.0443 32.69 56059 2.5369 U 0.0213 0.0172 | C FILE THO
FILE THO
METHO
RT
0.37
0.37
0.50
13.43
20.52
13.43
20.52
13.43
20.52
13.43
20.52
13.43
20.52
13.43
20.52
13.43
20.52
13.43
20.52
13.43
20.52
13.43
20.52
13.43
20.52
13.43
20.52
13.54
20.55
13.54
20.55
21.41
20.55
21.41
20.55
21.41
20.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55
21.55 | 30 PETRO PRODS LHS HREA HEIGH 6902 4.42 137456176 12331.16 7773485 414.21 133910 9.126 82587 7.45 37914 7.306 73065 1.095 30656 6.143 30656 6.144 30656 7.17 51228 3.278 80872 7.21 62424 538 257408 7.373 153084 11.571 167191 10.433 239763 12.621 239763 12.621 240527 14.657 719006 21.601 143901 33.525 1246249 44.260 | T EDITED 17:10.0 38/ T BC AFEA PERCENT 75 T 0.0027 50 T 73.0023 76 0.0117 81 0.0521 23 0.0322 25 0.0322 25 0.0322 25 0.0322 25 0.0314 26 0.0314 27 0.0314 28 0.0314 29 T 0.0209 20 0.0315 102 23 T 0.0209 24 T 0.02315 25 T 0.0209 20 T 0.0209 21 T 0.0209 22 T 0.0209 23 T 0.0209 24 T 0.0237 23 T 0.0237 24 T 0.4474 25 T 0.4474 25 T 0.4453 <td>02/10
HEIGHT PEPCENT
0.0215
52.6815
0.0444
0.0262
0.0379
0.0262
0.0397
0.0202
0.0160
0.0255
0.0255
0.0255
0.0255
0.0553
0.0554
0.0514
0.0916
0.0514
0.1875
0.2154</td> | 02/10
HEIGHT PEPCENT
0.0215
52.6815
0.0444
0.0262
0.0379
0.0262
0.0397
0.0202
0.0160
0.0255
0.0255
0.0255
0.0255
0.0553
0.0554
0.0514
0.0916
0.0514
0.1875
0.2154 |
| 00.25 923273 44.9930 T 0.3515 0.2139
20.65 1394025 39.0997 0.5429 0.1903
21.89 171117 9.2070 T 0.0666 0.0443
22.69 56059 2.5369 U 0.0218 0.0172 | FILE THE INTERNOTI | 30 9 PETRO PRODS LHS HREA HEIGH 6902 4.42 137456176 12331.16 7 79935 114 133910 9.126 82587 7.45 37914 7.306 72065 1.094 30656 9.14 30656 9.14 30656 9.14 30656 9.14 30656 9.14 30656 9.14 30656 9.14 30656 9.14 30656 9.14 30656 9.14 30656 9.14 30656 9.14 30672 7.21 62424 5.32 23748 7.37 153084 11.571 167191 10.43 239763 12.62 240527 14.657 719006 21.601 1143901 33.522 12462-9 | T EDITED 17:10.0 38/ T BC AFEA PERCENT 75 T 0.0027 50 T 73.0023 6 0.0117 81 0.0521 23 0.0322 55 0.0322 55 0.0322 55 0.0322 55 0.0314 56 0.0314 57 0.0314 58 T 0.0209 59 0.0315 0.0240 50 T 0.0209 50 T 0.0209 50 T 0.0209 50 T 0.0209 51 T 0.0209 52 T 0.0209 53 T 0.0209 53 T 0.0203 53 T 0.0203 53 T 0.02315 53 T 0.0233 54 T 0.02315 53 T 0.02337 54 T < | 02/10
HEIGHT PEPCENT
0.0215
52.6315
73.7177
0.0109
0.0444
0.0262
0.0273
0.0262
0.0273
0.0262
0.0253
0.0253
0.0253
0.0253
0.0253
0.0253
0.0253
0.0253
0.0253
0.0253
0.0253
0.0253
0.0253
0.0253
0.0253
0.0253
0.0253
0.0563
0.0514
0.0515
0.154
0.2444
0.2444 |
| 21.29 171117 9.2070 F 0.04443
22.69 56059 2.5369 0 0.0218 0.0172 | C FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE THO
S FILE | 30 PETRO PRODS LHS HREA HEIGH 6902 4.42 137456176 12331.16 7579985 4142 137456176 12331.16 7579985 4142 133310 9.126 82587 7.453 37914 7.393 7205 1.094 30556 6.143 38016 4.17 51229 3.275 80872 7.314 52424 5.38 257408 7.371 153094 11.571 167191 10.433 239763 12.621 239763 12.621 240527 14.657 719006 21.601 1143901 33.525 1246249 44.266 339475 50.204 2266720 68.942 320475 50.204 322373 53.935 | T EDITED 17:10.0 38/ T BC AFEA PERCENT 75 T 0.0027 50 T 73.0023 6 0.0117 51 0.0521 23 0.0322 55 0.0322 55 0.0322 55 0.0322 55 0.0314 54 T 0.0322 55 0.0314 54 T 0.0314 54 T 0.0209 50 T 0.021 53 T 0.0209 54 T 0.0240 53 T 0.0240 54 T 0.0240 53 T 0.02651 1 T 0.02637 54 T 0.4553 57 T 0.2655 52 T <td>02/10
HEIGHT PEPCENT
0.0215
52.6315
73.777
0.0108
0.0444
0.0262
0.0379
0.0262
0.0337
0.0202
0.0160
0.0355
0.0253
0.0253
0.0253
0.0253
0.0253
0.0253
0.0253
0.0253
0.0253
0.0253
0.0253
0.0253
0.0253
0.0253
0.0253
0.0254
0.0514
0.1375
0.2154
0.2154
0.2350
0.2914</td> | 02/10
HEIGHT PEPCENT
0.0215
52.6315
73.777
0.0108
0.0444
0.0262
0.0379
0.0262
0.0337
0.0202
0.0160
0.0355
0.0253
0.0253
0.0253
0.0253
0.0253
0.0253
0.0253
0.0253
0.0253
0.0253
0.0253
0.0253
0.0253
0.0253
0.0253
0.0254
0.0514
0.1375
0.2154
0.2154
0.2350
0.2914 |
| | C FILE THO
NETHO
RT
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.35
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3 | 30 90 PETRO PRODS LAS MREA HEIGH 6902 4.42 137456176 12331.16 12331.16 272505 112.311.0 9.121 133910 9.121 133910 282587 7.451 37914 7.732 37914 7.732 73065 1.421 390556 9.143 390556 9.143 390556 9.143 390556 9.143 390556 9.143 3.275 9.232 257408 7.371 62424 5.328 257408 7.371 10.433 2.39763 12.621 239763 12.621 13.691 14.33 12.621 240527 14.657 719006 21.601 14.3901 33.522 1246249 44.266 329475 50.224 2266720 68.942 322353 53.932 3498915 55.633 32.3273 44.393 | T EDITED 17:10.0 38/ T BC HFEA PERCENT 75 T 0.0027 50 T 73.0023 44 0.0117 51 0.021 53 0.0322 54 0.0322 55 0.0342 54 0.0342 55 0.0342 54 0.0342 55 0.0342 56 0.0342 57 0.0342 58 0.0314 59 0.0314 59 0.0314 59 0.0314 59 0.0314 59 0.0314 50 0.0209 51 0.021 52 0.0315 51 0.0293 52 0.0293 53 0.0293 53 0.0293 53 0.0293 53 0.0293 53 0.0455 53 0.0455 53 0.0455 < | 02/10
HEIGHT PEPCENT
0.0215
52.6815
73.615
74.6168
0.0444
0.0262
0.0379
0.0265
0.0379
0.0265
0.0269
0.0269
0.0269
0.0269
0.0563
0.0563
0.0564
0.0568
0.0514
0.0516
0.0713
0.1051
0.1875
0.2154
0.2444
0.2444
0.2444
0.2444
0.2444
0.2444
0.2444
0.2444
0.2444
0.2444
0.2444
0.2444
0.2444
0.2444 |
| 33.45 49743 4.5200 U 0.0194 0.0223
34.71 96698 3.5717 0.0377 0.0198 | FILE THE METHOD RT 0.37 0.38 0.425 0.25 | 30 30 PETRO PRODS LAS MREA HEIGH 6902 4.42 137456176 12331.16 7 7 137310 9.121 133310 9.121 133310 9.121 133310 9.121 133310 9.121 133310 9.121 133310 9.121 133310 9.121 133310 9.121 19.23 1.21 133310 9.121 1.923 3.212 37914 7.352 3.212 3.212 390556 6.142 3.212 3.212 390556 9.142 3.212 3.212 390556 9.142 3.212 3.212 257408 7.373 10.433 12.511 239763 12.621 10.433 12.621 239763 12.621 13.625 12.601 143901 33.525 12.601 14.3351 1246249 44.266 339475 50.224 <t< td=""><td>T EDITED 17:10.0 38/ T BC AFEA PERCENT 75 T 0.0027 50 T 73.0023 76 0.0117 51 0.0521 23 0.0322 25 0.0322 25 0.0322 25 0.0322 25 0.0314 24 0.0322 25 0.0314 26 0.0314 27 0.0314 28 0.0314 29 T 20 0.0315 20 T 21 0.023 22 0.0314 24 0.0315 20 T 20 T 20 T 20 T 20 T 20 T 21 T 22 T 23 T 24 T 25 T 26 T 27</td><td>02/10
HEIGHT PEPCENT
9.0215
52.6815
73.717,
9.0109
9.0444
0.0262
9.0379
9.0262
9.0150
9.0253
9.0253
9.0253
9.0253
9.0253
9.0253
9.0553
9.0553
9.0554
9.0554
9.0554
9.0514
9.1375
9.2154
0.2444
9.3250
9.2514
9.2514
9.2514
9.2514
9.2514
9.2514
9.2514
9.2514
9.2514
9.2514
9.2514</td></t<> | T EDITED 17:10.0 38/ T BC AFEA PERCENT 75 T 0.0027 50 T 73.0023 76 0.0117 51 0.0521 23 0.0322 25 0.0322 25 0.0322 25 0.0322 25 0.0314 24 0.0322 25 0.0314 26 0.0314 27 0.0314 28 0.0314 29 T 20 0.0315 20 T 21 0.023 22 0.0314 24 0.0315 20 T 20 T 20 T 20 T 20 T 20 T 21 T 22 T 23 T 24 T 25 T 26 T 27 | 02/10
HEIGHT PEPCENT
9.0215
52.6815
73.717,
9.0109
9.0444
0.0262
9.0379
9.0262
9.0150
9.0253
9.0253
9.0253
9.0253
9.0253
9.0253
9.0553
9.0553
9.0554
9.0554
9.0554
9.0514
9.1375
9.2154
0.2444
9.3250
9.2514
9.2514
9.2514
9.2514
9.2514
9.2514
9.2514
9.2514
9.2514
9.2514
9.2514 |

• •

FILE 764 0102-1 STHETED 03:46.1 88.03 09 PETPO STDS - MIN SIRITS N METHOD 30 PETRO PRODS - LAST EDITED 17:10.0 88/02/10

| $\frac{12}{1.34} \frac{2.59}{5.75} \frac{2.52}{5.75} \frac{3.04}{5.75}$ $\frac{10.05}{5.44} \frac{5.24}{7.26} \frac{5.07}{5.75} \frac{4.57}{5.75}$ $\frac{10.05}{5.9} \frac{10.05}{5.75} \frac{5.07}{5.75}$ $\frac{10.05}{5.75} \frac{10.05}{5.75} \frac{10.05}{5.75}$ $\frac{10.05}{5.75} \frac{10.05}{5.75} \frac{10.05}{5.75}$ $\frac{10.05}{5.75} \frac{10.05}{5.75} \frac{10.05}{5.75} \frac{10.05}{5.75} \frac{10.05}{5.75}$ $\frac{10.05}{5.75} \frac{10.05}{5.75} 1$ | | | | | | | |
|--|-----------------------|--|--|--|---|--|--|
| $\frac{1.00}{5.34} = 5.75$ $5.74 = 5.74$ $5.74 = 5.75$ $507 m_{3}$ $10.03 g$ $10.03 g$ $11.03 g$ 1 | | | | .:5 | |]4 | |
| $\begin{array}{c} 5.44 \\ 5.44 \\ 7.35 \\ 507 m_{3} \\ \hline \\ 507 m_{3} \\ \hline \\ 10.03 g \\ \hline \\ 10.03 g \\ \hline \\ 15.39 g \\ 15.39 g \\ 15.39 g \\ 22.24 g \\ 23.75 g \\ 24.07 g \\ 30.95 g \\ 10.95 g $ | | | | 4.95 | | | |
| $\begin{array}{c} 507 \text{ mg} \\ \hline 507 \text{ mg} \\ \hline 10.03 \text{ g} \\ \hline 10.03 \text{ g} \\ \hline 15.20 \text{ g} \\ \hline 17.93 \text{ g} \\ \hline 20.20 \text{ g} \\ \hline 22.24 \text{ g} \\ \hline 24.07 \text{ g} \\ \hline 25.73 \text{ g} \\ \hline 27.34 \\ \hline \end{array}$ $\begin{array}{c} \text{File 7.54 0192-1 STAPTED 0.9145.1 33.403.409 PETRO STDS - MIN SIRITS} \\ \hline \text{METHOD 30 PETRO PRODS LAST EDITED 1.7110.0 86.402.10} \\ \hline \text{RT} & \text{MPEA} & \text{HEIGHT BC MPEA PERCENT HEIGHT PERCENT} \\ \hline 0.27 & 9639 & 4.4512 \text{ T} & 0.0041 & 0.0167 \\ \hline 0.29 & 12571235 & 12937.3436 \text{ T} & 5.3351 & 47.3374 \\ \hline 0.31 & 198341104 & 12577.7991 \text{ T} & 84.1727 & 46.8446 \\ \hline 1.69 & 1715359 \text{ Stores T} & 0.2510 & 0.2372 \\ \hline 2.06 & 591496 & 53.5959 \text{ T} & 0.2510 & 0.2572 \\ \hline 2.145 & 1695353 & 22.6377 \text{ T} & 0.3233 & 0.2573 \\ \hline 2.445 & 1695353 & 22.6377 \text{ T} & 0.2329 \\ \hline \end{array}$ | | | | | 5.34 5.75 | | |
| SOT ng 10.03 g (10.03 g) (10.03 g | | | | | | | |
| $\begin{array}{c} 10.03 \text{ g} \\ \hline 10.03 \text{ g} \\ \hline 15.39 \text{ g} \\ 17.39 \text{ g} \\ 20.20 \text{ g} \\ 22.24 \text{ g} \\ 24.07 \text{ g} \\ 25.73 \text{ g} \\ 27.34 \end{array}$ $\begin{array}{c} 1.72^{-7} \\ \hline FILE 754 0102-1 & STAPTED 09:46.1 & 33.03.09 & PETRO STDS - MIN SIRITS \\ 1 & \text{METHOD 30 PETRO PRODS LAST EDITED 17:10.0 $88.02.10 \\ \hline RT & APEA & HEIGHT BC & APEA PERCENT HEIGHT PERCENT \\ 0.27 & 9639 & 4.4512 \text{ T} & 0.0041 & 0.0167 \\ 0.59 & 12571235 & 12937.3436 \text{ T} & 5.3351 & 47.3874 \\ 0.71 & 19834104 & 12577.791 \text{ T} & 84.1737 & 46.2446 \\ 1.63 & 1715379 & 20.3633 \text{ T} & 0.7232 & 0.3233 \\ 2.06 & 591496 & 53.5959 \text{ T} & 0.2510 & 0.2572 \\ 2.10 & 736641 & 71.1084 \text{ T} & 0.3333 & 0.2575 \\ 2.46 & 168533 & 22.0837 \text{ T} & 0.7152 & 0.94553 \\ \hline \end{array}$ | | -;, - | | | 507 nu | | |
| $\frac{15.30}{117.93} = \frac{117.93}{117.93} = 117$ | | · · · | | | - | 7 | |
| $\begin{array}{c} 13.30 \text{ g} \\ 17.33 \text{ g} \\ 20.20 \text{ g} \\ 22.24 \text{ g} \\ 24.07 \text{ g} \\ 25.73 \text{ g} \\ 27.34 \end{array}$ FILE 754 0102-1 STAPTED 09:45.1 39.03.09 PETRO STDS - MIN SIRITS
The method 30 PETRO PRODS Last EDITED 17:10.0 98.02.10 RT AREA HEIGHT BC APEA PERCENT HEIGHT PERCENT
0.37 9639 4.4512 T 0.0041 0.0167
0.59 12571236 12937.3436 T 5.3351 47.3374
0.71 196341104 1257.7991 T 64.1737 46.2446
1.60 1715359 90.9683 T 0.7282 0.3233
2.06 591466 53.5959 T 0.2510 0.2572
2.10 736641 71.1084 T 0.0216 | | 7 19 | 1.03 g | | | | |
| $\begin{array}{c} 13.30 \text{ g} \\ 17.33 \text{ g} \\ 20.20 \text{ g} \\ 22.24 \text{ g} \\ 24.07 \text{ g} \\ 25.73 \text{ g} \\ 27.34 \end{array}$ FILE 754 0102-1 STAPTED 09:45.1 39.03.09 PETRO STDS - MIN SIRITS
The method 30 PETRO PRODS Last EDITED 17:10.0 98.02.10 RT AREA HEIGHT BC APEA PERCENT HEIGHT PERCENT
0.37 9639 4.4512 T 0.0041 0.0167
0.59 12571236 12937.3436 T 5.3351 47.3374
0.71 196341104 1257.7991 T 64.1737 46.2446
1.60 1715359 90.9683 T 0.7282 0.3233
2.06 591466 53.5959 T 0.2510 0.2572
2.10 736641 71.1084 T 0.0216 | | / | | | | | |
| $\begin{array}{c} 13.30 \text{ g} \\ 17.33 \text{ g} \\ 20.20 \text{ g} \\ 22.24 \text{ g} \\ 24.07 \text{ g} \\ 25.73 \text{ g} \\ 27.34 \end{array}$ FILE 754 0102-1 STAPTED 09:45.1 39.03.09 PETRO STDS - MIN SIRITS
The method 30 PETRO PRODS Last EDITED 17:10.0 98.02.10 RT AREA HEIGHT BC APEA PERCENT HEIGHT PERCENT
0.37 9639 4.4512 T 0.0041 0.0167
0.59 12571236 12937.3436 T 5.3351 47.3374
0.71 196341104 1257.7991 T 64.1737 46.2446
1.60 1715359 90.9683 T 0.7282 0.3233
2.06 591466 53.5959 T 0.2510 0.2572
2.10 736641 71.1084 T 0.0216 | | 1 | | \mathbf{a} | | ì | |
| $\begin{array}{c} 13.30 \text{ g} \\ 17.33 \text{ g} \\ 20.20 \text{ g} \\ 22.24 \text{ g} \\ 24.07 \text{ g} \\ 25.73 \text{ g} \\ 27.34 \end{array}$ FILE 754 0102-1 STAPTED 09:45.1 39.03.09 PETRO STDS - MIN SIRITS
The method 30 PETRO PRODS Last EDITED 17:10.0 98.02.10 RT AREA HEIGHT BC APEA PERCENT HEIGHT PERCENT
0.37 9639 4.4512 T 0.0041 0.0167
0.59 12571236 12937.3436 T 5.3351 47.3374
0.71 196341104 1257.7991 T 64.1737 46.2446
1.60 1715359 90.9683 T 0.7282 0.3233
2.06 591466 53.5959 T 0.2510 0.2572
2.10 736641 71.1084 T 0.0216 | | | - | $1 \mathcal{N}$ | neral Sc | nrits | |
| $\begin{array}{c} 10.20 \text{ g} \\ 12.14 \text{ g} \\ 24.07 \text{ g} \\ 25.73 \text{ g} \\ 27.34 \end{array}$ $FILE 754 0102-1 \text{ STAPTED } 09:46.1 33/03/09 \text{ PETRO STDS - MIN SIRITS} \\ 1 \text{ METHOD 30 PETRO PRODS } LAST EDITED 17:10.0 88/02/10 \\ \hline \\ RT \qquad HREA \qquad HEIGHT BC \qquad HPEA PERCENT \qquad HEIGHT PERCENT \\ 0.37 \qquad 9629 \qquad 4.4610 \text{ T} \qquad 0.0041 \qquad 0.0167 \\ 0.59 \qquad 12571236 \qquad 12937.3436 \text{ T} \qquad 5.3351 \qquad 47.3374 \\ 0.71 \qquad 198341104 \qquad 12557.7991 \text{ T} \qquad 84.1737 \qquad 46.8446 \\ 1.69 \qquad 1715359 \qquad 90.9683 \text{ T} \qquad 0.2702 \qquad 0.3333 \\ 2.06 \qquad 591486 \qquad 63.5959 \text{ T} \qquad 0.2510 \qquad 0.2572 \\ 2.46 \qquad 1685353 \qquad 92.8357 \text{ T} \qquad 0.7152 \qquad 0.3483 \\ \hline \end{array}$ | | – – – – – – – – – – | 93. | | V | | |
| $\begin{array}{c} 10.20 \text{ g} \\ 12.14 \text{ g} \\ 12.14 \text{ g} \\ 12.14 \text{ g} \\ 12.14 \text{ g} \\ 12.7.34 \end{array}$ $\begin{array}{c} 1.72^{-7} \\ F_{1LE} 754 0102-1 & \text{STAPTED} & 09:45.1 & 33.03.09 & \text{PETRO} \text{ STDS} - MIN \text{ SIRITS} \\ 10.72^{-7} \\ F_{1LE} 754 0102-1 & \text{STAPTED} & 09:45.1 & 33.03.09 & \text{PETRO} \text{ STDS} - MIN \text{ SIRITS} \\ 10.72^{-7} \\ F_{1LE} 754 0102-1 & \text{STAPTED} & 09:45.1 & 33.03.09 & \text{PETRO} \text{ STDS} - MIN \text{ SIRITS} \\ 10.72^{-7} \\ 10.72^{-7} \\ RT & HREA & HEIGHT BC & HPEA PERCENT & HEIGHT PERCENT \\ 0.37 & 9639 & 4.4512 \text{ T} & 0.00041 & 0.0167 \\ 0.59 & 12571236 & 12937.3436 \text{ T} & 5.3351 & 47.3374 \\ 0.71 & 198341104 & 12577.7991 \text{ T} & 84.1737 & 46.2446 \\ 1.69 & 1715359 & 90.9683 \text{ T} & 0.7282 & 0.3333 \\ 2.06 & 591486 & 63.5959 \text{ T} & 0.2510 & 0.2572 \\ 2.46 & 1605353 & 92.0357 \text{ T} & 0.7152 & 0.3483 \\ 2.46 & 1605353 & 92.0357 \text{ T} & 0.7152 & 0.3483 \\ \end{array}$ | | | - | | | | |
| $\begin{array}{c} 122.24 \\ 324.07 \\ 24.07 \\ 325.73 \\ 25.73 \\ 27.34 \\ \\ 1.72^{-7} \\ \end{array}$ FILE 754 0102-1 STAPTED 03:445.1 33.03.03 PETRO STDS - MIN SIRITS
V. METHOD 30 PETRO PRODS LAST EDITED 17:10.0 88.02.10 \\ \hline \\ RT APEA HEIGHT BC APEA PERCENT HEIGHT PERCENT \\ 0.37 9639 4.4512 T 0.0041 0.0167 \\ 0.50 12571236 12937.3436 T 5.3351 47.3374 \\ 0.71 198341104 12557.7891 T 84.1737 46.2446 \\ 1.60 1715359 90.9683 T 0.7282 0.3393 \\ 2.06 591486 63.5959 T 0.2510 8.2572 \\ 1.20 736541 71.1084 T 0.3333 0.2553 \\ 2.46 1665353 92.6357 T 0.7152 0.3463 \\ \hline \end{array} | | = 17.9 | 3 B | | | | |
| $\begin{array}{c} 122.24 \\ 324.07 \\ 24.07 \\ 325.73 \\ 25.73 \\ 27.34 \\ \\ 1.72^{-7} \\ \end{array}$ FILE 754 0102-1 STAPTED 03:445.1 33.03.03 PETRO STDS - MIN SIRITS
V. METHOD 30 PETRO PRODS LAST EDITED 17:10.0 88.02.10 \\ \hline \\ RT APEA HEIGHT BC APEA PERCENT HEIGHT PERCENT \\ 0.37 9639 4.4512 T 0.0041 0.0167 \\ 0.50 12571236 12937.3436 T 5.3351 47.3374 \\ 0.71 198341104 12557.7891 T 84.1737 46.2446 \\ 1.60 1715359 90.9683 T 0.7282 0.3393 \\ 2.06 591486 63.5959 T 0.2510 8.2572 \\ 1.20 736541 71.1084 T 0.3333 0.2553 \\ 2.46 1665353 92.6357 T 0.7152 0.3463 \\ \hline \end{array} | | | 0.0 | | | | |
| $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $ | | | 0 8 | | | | |
| LITA FILE 764 0102-1 STAPTED 09:46.1 33/03/09 PETRO STDS - MIN SIRITS 1: METHOD 30 PETRO PRODS LHST EDITED 17:10.0 88/02/10 RT HREA HEIGHT BC HPEA PERCENT HEIGHT PERCENT 0.27 9699 4.4612 T 0.0041 0.0167 0.50 12571236 12937.3436 T 5.3351 47.3374 0.71 198341104 12577.7891 T 84.1737 46.2446 1.60 1715359 30.3633 T 0.7282 0.3333 2.06 591486 63.5959 T 0.2510 0.2372 2.10 736641 71.1084 T 0.3333 0.2653 2.46 1685353 92.8357 T 0.7152 0.3463 | | ⇒ | 4 3 | | | | |
| LITA FILE 764 0102-1 STAPTED 09:46.1 33/03/09 PETRO STDS - MIN SIRITS NETHOD 30 PETRO PRODS LHST EDITED 17:10.0 88/02/10 RT HREA HEIGHT BC HPEA PERCENT 0.37 9699 4.4512 T 0.0041 0.0167 0.50 12571236 12937.3436 T 5.3351 47.3374 0.71 198341104 12557.7891 T 84.1737 46.2446 1.60 1715359 30.3583 T 0.7282 0.3333 2.06 591486 63.5959 T 0.2510 0.2372 2.10 736641 71.1084 T 0.3333 0.2653 2.46 1685353 92.8357 T 0.7152 0.3463 | | | | | | | |
| LITA FILE 764 0102-1 STAPTED 09:46.1 33/03/09 PETRO STDS - MIN SIRITS 1: METHOD 30 PETRO PRODS LHST EDITED 17:10.0 88/02/10 RT HREA HEIGHT BC HPEA PERCENT HEIGHT PERCENT 0.27 9699 4.4612 T 0.0041 0.0167 0.50 12571236 12937.3436 T 5.3351 47.3374 0.71 198341104 12577.7891 T 84.1737 46.2446 1.60 1715359 30.3633 T 0.7282 0.3333 2.06 591486 63.5959 T 0.2510 0.2372 2.10 736641 71.1084 T 0.3333 0.2653 2.46 1685353 92.8357 T 0.7152 0.3463 | | 3 | - | | | | |
| LITA FILE 764 0102-1 STAPTED 09:46.1 33/03/09 PETRO STDS - MIN SIRITS 1: METHOD 30 PETRO PRODS LHST EDITED 17:10.0 88/02/10 RT HREA HEIGHT BC HPEA PERCENT HEIGHT PERCENT 0.27 9699 4.4612 T 0.0041 0.0167 0.50 12571236 12937.3436 T 5.3351 47.3374 0.71 198341104 12577.7891 T 84.1737 46.2446 1.60 1715359 30.3633 T 0.7282 0.3333 2.06 591486 63.5959 T 0.2510 0.2372 2.10 736641 71.1084 T 0.3333 0.2653 2.46 1685353 92.8357 T 0.7152 0.3463 | | 25.3 | 76 3 | | | | |
| FILE 754 0102-1 STAPTED 03:45.1 33/03/03 PETRO STDS - MIN SIRITS
1 METHOD 30 PETRO PRODS LAST EDITED 17:10.0 88/02/10
RT AREA HEIGHT BC APEA PERCENT HEIGHT PERCENT
0.37 9639 4.4512 T 0.0041 0.0167
0.50 12571236 12937.3436 T 5.3351 47.3374
0.71 198341104 12557.7891 T 84.1737 46.2446
1.60 1715359 30.3633 T 0.7282 0.3333
2.06 591406 63.5959 T 0.2510 0.2372
2.10 736641 71.1084 T 0.3333 0.2553
2.46 1685353 92.8357 T 0.7152 0.3463 | | | .34 | | | | |
| FILE 764 0102-1 STAPTED 09:46.1 33/03/09 PETRO STDS - MIN SIRITS N METHOD 30 PETRO PRODS LHST EDITED 17:10.0 88/02/10 RT HREA HEIGHT BC HPEA PERCENT HEIGHT PERCENT 0.37 9699 4.4512 T 0.0041 0.0167 0.50 12571236 12937.3436 T 5.3351 47.3374 0.71 198341104 12577.7891 T 84.1737 46.2446 1.60 1715359 30.9683 T 0.7282 0.3393 2.06 591486 63.5959 T 0.2510 0.2372 2.10 736641 71.1084 T 0.3333 0.2553 2.46 1685353 92.8357 T 0.7152 0.3463 | | | | 1 71 | • >* | | |
| NETHOD 30 PETRO PRODS LHST EDITED 17:10.0 98/02/10 RT AREA HEIGHT BC HPEA PERCENT HEIGHT PERCENT 0.27 9639 4.4512 T 0.0041 0.0167 0.50 12571236 12937.3436 T 5.3351 47.3374 0.71 198341104 12557.7891 T 84.1737 46.2446 1.60 1715359 30.9643 T 0.7282 0.3333 2.06 591486 63.5959 T 0.2510 0.2372 2.10 736641 71.1084 T 0.3333 0.2653 2.46 1685353 92.8357 T 0.7152 0.3463 | | | _ | | | | |
| RT HREA HEIGHT BC HPEA PERCENT HEIGHT PERCENT 0.37 9639 4.4512 T 0.0041 0.0167 0.50 12571236 12937.3436 T 5.3351 47.3374 0.71 198341104 12577.7891 T 84.1737 46.2446 1.60 1715359 30.9633 T 0.7282 0.3393 2.06 591486 63.5959 T 0.2510 0.2372 2.10 736641 71.1084 T 0.3333 0.2653 2.46 1685353 92.8357 T 0.7152 0.3463 | | 김 김 기독 이 이 아이 아이에 | | | | | |
| 0.27 9629 4.4512 T 0.0041 0.0157 0.50 12571236 12937.3436 T 5.3351 47.3374 0.71 196341104 12577.7991 T 84.1737 46.2446 1.60 1715359 20.9683 T 0.7282 0.3323 2.06 591406 63.5959 T 0.2510 0.2572 2.10 736641 71.1084 T 0.3333 0.2553 2.46 1685353 92.8357 T 0.7152 0.3463 | | | | しいう ビビント ビルオト | En 11.10.0 20.0 | 4/ 1V | |
| 0.50 12571236 12937.3436 T 5.3351 47.3374
0.71 198341104 12557.7891 T 84.1737 46.2446
1.60 1715359 90.9683 T 0.7282 0.3333
2.06 591486 63.5969 T 0.2510 0.2572
2.20 736641 71.1084 T 0.3333 0.2653
2.46 1685353 92.8357 T 0.7152 0.3463 | | | U PEIKU PK | | | | |
| 0.50 12571236 12937.3436 T 5.3351 47.3374
0.71 198341104 12557.7891 T 84.1737 46.2446
1.60 1715359 90.9683 T 0.7282 0.3333
2.06 591486 63.5969 T 0.2510 0.2572
2.20 736641 71.1084 T 0.3338 0.2653
2.46 1685353 92.8357 T 0.7152 0.3468 | | METHOD 30 | | | HPEN PERCENT | HEIGHT PERCENT | |
| 0.71 198341104 12577.7891 T 84.1737 46.8446
1.60 1715359 90.9683 T 0.7282 0.3393
2.06 591486 63.5969 T 0.2510 0.2372
2.10 796641 71.1084 T 0.3333 0.2653
2.46 1685353 92.8357 T 0.7152 0.3463 | • | RT | HPEA | HEIGHT BC | | | |
| 1.60 1715359 90.9683 T 0.7282 0.3393
2.06 591486 63.5959 T 0.2510 0.2372
2.20 795641 71.1084 T 0.3333 0.2553
2.46 1685353 92.8357 T 0.7152 0.3463 | | RT | HREA | HEIGHT BC | 0.0041 | 0.0167 | |
| 2.06 591486 63.5959 T 0.2510 0.2372
2.20 795641 71.1084 T 0.3338 0.2553
2.46 1685353 92.8357 T 0.7152 0.3463 | 0
0 | RT
.37
.50 | AREA | HEIGHT BC
4.4512 T
12937.3436 T | 0.0041
5.3351 | 0.0167
47.3374 | |
| 1.10 736641 71.1084 7 0.3338 0.2553
2.46 1685353 92.8357 7 0.7152 0.3463 | 6
13
13 | RT
.37
.50
.71 | HREA
9639
12571236
196341104 | HEIGHT BC
4,4512 T
12937.3496 T
12557.7991 T | 0.0041
5.3351
84.1737 | 0.0157
47.3374
45.2445 | |
| 2.46 1685353 92.8357 T 0.7152 0.3468 | 9
9
9
1 | RT
.37
.59
.59
.59 | HREA
9639
12571235
198341104
1715359 | HEIGHT BC
4,4512 T
12937.3436 T
12557.7891 T
20.3583 T | 0.0041
5.3351
84.1737
0.7292 | 0.0157
47.3374
45.2445
0.3333 | |
| | 9
9
9
1
2 | RT
.37
.59
.71
.59
.59
.59
.59 | HPEA
9639
12571235
198341104
1715359
591486 | HEIGHT BC
4.4612 T
12937.3436 T
12557.7891 T
90.9683 T
63.5959 T
71.1084 T | 0.0041
5.3351
84.1737
0.7282
0.2510
0.3339 | 0.0167
47.3374
46.2446
0.3393
0.2572
0.2553 | |
| |
000-10101 | RT
8.37
50
57
50
57
50
57
50
50
50
50
50
50
50
50
50
50
50
50
50 | HREA
9639
12571236
198341104
1715359
591486
735641 | HEIGHT BC
4.4612 T
12937.3436 T
12557.7891 T
90.9683 T
63.5959 T
71.1084 T | 0.0041
5.3351
84.1737
0.7282
0.2510
0.3339 | 0.0167
47.3374
46.2446
0.3393
0.2572
0.2553 | |

| RT | HKEH | HEIGHI SI | APEN FERGENI | ACTORI - ERACHI |
|----------------|-------------|---------------|-------------------|-----------------|
| 0.37 | 9639 | 4.4512 T | 0.0041 | 0.0167 |
| 0.50 | 12571235 | 12937.3436 T | 5.3351 | 47.3374 |
| 0.71 | 198341104 | 12557.7891 T | 84.1737 | 46.2445 |
| 1.59 | 1715359 | 90.9583 T | 0.7282 | 0.3333 |
| 2.06 | 591486 | -3.5959 T | 0.2510 | 0.2372 |
| 2.20 | 736641 | 71.1084 T | 0.3339 | 0.2553 |
| 2.46 | 1685353 | 92.8357 T | 0.7152 | 0.3463 |
| 2.35 | 314215 | 79.2973 T | 0.3455 | 0.2953 |
| 3.04× | 2101280 | 93.7327 T | 0.8918 | 8.3497 |
| 2.50 | 539669 | 64.7363 T | 0.2464 | 0.2415 |
| 0.72× | 2233321 | 110.8096 T | 0.3478 | 0.4134 |
| 4.03 | 1331582 | 79.5566 T | 0.5651 | 0.2971 |
| 4.67 | 4140110 | 219.6835 T | 1.7570 | 0.8195 |
| 5.12 | 1987538 | 79.8124 T | 9.4276 | 0.2977 |
| | 2335681 | 120.8193 T | 0.9912 | 0,4507 |
| 5.34 | 1110362 | 64,7555 T | 9,4712 | 0 2491 |
| | 480984 | 41.9453 T | 0.2041 | 0.1565 |
| 6.17 | | 56.1973 T | 0.9609 | 9.2096 |
| 6.4 4 K | 2254122 | 72.3953 | 0.6185 | 0.2701 |
| 7.35 | 1457319 | 1.0509 | 0.0070 | 0.0039 |
| 19.09 | 16571 | | 0.0022 | 0.0016 |
| 15.30 | 5120 | 0.4392 | 0.0022 | 0.0029 |
| 17.93 | 3083 | 0.7735 | 0.0043 | 0.0033 |
| 20.20 | 10069 | 0.8718 | 9.0945 | 0.0023 |
| 22.24 | 10593 | 9.7468 | | 0.0021 |
| 24.07 | 5158 | 0.5549 | 0.0022 | 9.0923 |
| 25.79 | 7546 | 0.6267 | 0.0032 | 0.0019 |
| 27.34 | 10530 | 0.7726 9 | 0.0045 | 0.0047 |
| | | | 633136 TOTHL AREA | 4 |
| 27 PEH | | | | |
| 27 PEA | K5 > HEIGHT | REJECT 2.6807 | 206-04 INIME HET | |

8.20

1

60.0

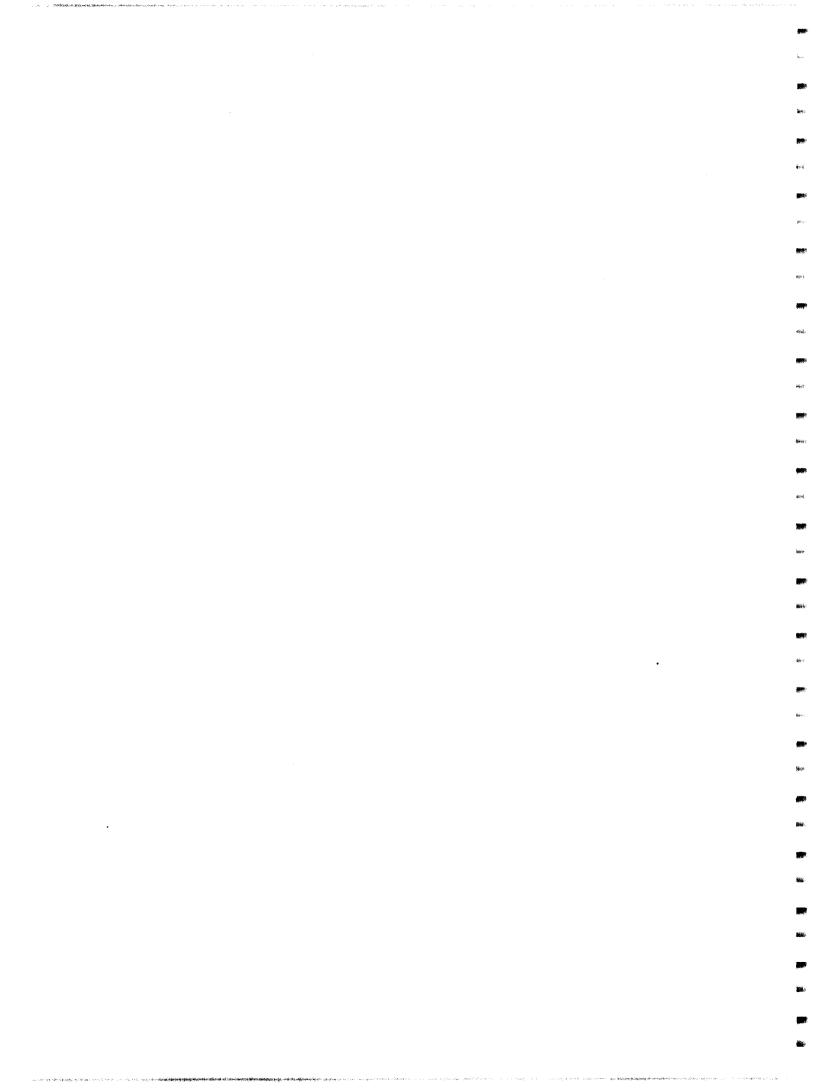
ik ji

| | CHAIN | OF CUS | STODY R | ECORD | |
|-----------------------|--------------------------|---------------|-------------|-------------------------|---------------------------------------|
| | ct No | - | | | |
| Proje | ct TitleREC.R.H | ENVI | CONME | NTAL, INC | · |
| Samo | le Source | SOIL | SAM, | PLE | |
| Colle | ctors Name JOHN | SHEE
print | HAN 1 | John C' Sh
signature | uh |
| | information | | | | <u> </u> |
| Metho | od Of Shipping Fc | DEXAL | EXP | KESS | |
| | uished By: | - | | lived By: | |
| sign
for _ | Fine associates | in | sigi
tor | J. Calat- | muntal |
| | /Time <u>3-15-88 / 2</u> | | | •/TIMe Stilles | · · · · · · · · · · · · · · · · · · · |
| Sample
Designation | Sample Location | Date | Time | Analyte | No. Of
Containers |
| DP-1 | PP-1(3.0'-9.0') | 3-15-38 | 2'45 | METAL S | 1 |
| DP-1 | DP-1 (9.0'-10.0') | 3-15-18 | 2:55 | METALS | 1 |
| DP.1 | 02.1 (10.0'-11.0') | 3-15-18 | 300 | INETAL S | / |
| 02-1 | DP-1 (1100'- 115') | 3-15-18 | 3:05 | METAL J | / |
| 01-1 | . DRI (115- 12.0') | 3-15-88 | 3:20 | METAL- | / |
| | | | | | |
| | · | | | | |
| | | } | | | |

TOTAL 5'

Comments:

⊷a


| | CHAI | N OF CUS | STODY R | ECORD | |
|----------|------------------------------|-------------------|------------|--------------------------------|----------------------|
| Project | t No09001 | | | | |
| Project | TINIO RECRA | ENVI | RONIN | ENTAL, INC | |
| Sample | • Source | crin (1 | l.VA1 | ER | |
| Collect | Source
ors NameOHN | Print | HAN | signature | hul |
| Field In | of ormation | <u> </u> | | | |
| Relinqu | ished By: | | Rece | ived By: | |
| for | Row associ
Time _ B-15-88 | atis m
1 x 4 2 | for. | (1 bera Err
)/Time 3/14/88/ | good |
| Sample | Sample Location | Date |
 Time | Analyte | No. Of
Containers |
| mw-1 | MW-1 | 3-15-58 | 11.00 | METALS | 1 |
| nw-2 | MW-2 | 3-15-85 | 11:15 | ILLETAL S | 2 |
| 110-10 | n1W-10 | 3-15-18 | 10.45 | METTY | 1 |
| 115-11 | MW-11 | 3-15-88 | 10.55 | METALS | / |
| | | | | | |
| | <u></u> | | | | |
| omments | : | | L1 | Te | tat 5 |

inter.

| | CHAIN | I OF CUS | TODY R | ECORD | |
|-----------------------|----------------------------|----------|-------------|------------------|---------------------------------------|
| Projec | st No09002 | _ | | | |
| Projec | t Title Richa | Criev | Arinen | tat inc | |
| Sampl | • Source(7 | Rornel | 1.J.z | $\overline{C^2}$ | |
| Collec | tors Name JOHN | Shee | chan / | John Shin | ۲ |
| Field I | nformation | | | | |
| Metho | d Of Shipping | EDER | K E | APRES S | |
| Reling | uished By: | C | Rece | lved By: | |
| sign .
for _ | John C. Sh
Roux associa | ty - | sigi
for | Pecra Enin | montal |
| Date | /Time <u>3-15-83/</u> | 4.700 | | •/TIM 3/16/88 / | 700 km |
| Sample
Designation | Semple Location | Dete | Time | Analyte | No. Of
Containers |
| 1712-3 | MW-3 | B-15-12 | 11:30 | hijthecar jons | 2 |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | · · · · · · · · · · · · · · · · · · · |
| | | | | | |
| | | | | | |

total 2

Comments:

1/7875.1

ANALYTICAL RESULTS

Prepared For

Deknatel

Prepared By

Recra Environmental, Inc. 10 Hazelwood Drive, Suite 106 Amherst, New York 14150

METHODOLOGIES

The specific methodologies employed in obtaining the enclosed analytical results are indicated on the specific data table. The method numbers presented refer to the following U.S. Environmental Protection Agency reference.

 o 40 CFR Part 136 "Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act" October 26, 1984 (Federal Register) U.S. Environmental Protection Agency.

COMMENTS

Comments pertain to data on one or all pages of this report.

The values reported as "less than" (<) indicate the working detection limit for the particular sample and/or parameter.

1/7375.2

AQUEOUS MATRIX METALS

| | | | SAMPLE IDENT | FICATION (DATE) |
|---------------------------|--------|----------|--------------|-----------------|
| PARAMETER | METHOD | ANALYSIS | MW-1 | MW-2 |
| (Units of Measure = mg/l) | NUMBER | DATE | (2/11/88) | (2/11/98) |
| Total Chromium | 218.1 | 3/1/88 | 0.006 | 0.091 |
| Hexavalent Chromium | 218.5 | 2/12/88 | <0.005 | 0.029 |
| Total Copper | 220.1 | 3/1/88 | <0.005 | 0.041 |

AQUEOUS MATRIX -METALS

| | | | SAMPLE IDENT | FICATION (DATE) |
|---------------------------|--------|----------|--------------|-----------------|
| PARAMETER | METHOD | ANALYSIS | MW-10 | MW-11 |
| (Units of Measure = mg/l) | NUMBER | DATE | (2/11/88) | (2/11/88) |
| Total Chromium | 218.1 | 3/1/88 | 0.006 | 0.005 |
| Hexavalent Chromium | 218.5 | 2/12/88 | 0.007 | 0.005 |
| Total Copper | 220.1 | 3/1/88 | <0.005 | <0.005 |

- 14

7.19

-79A

 $\{w\}$

1008 .

....

| | | | | SAMPLE IDENTI | FICATION (DATE) I |
|-------------------|----------------|--|--------------------|---------------|-------------------|
| PARAMETER | METHOD | UNITS OF | ANALYSIS | MW-1 | MW-2 |
| | NUMBER | MEASURE | DATE | (2/11/88) | (2/11/38) |
| Nitrate
pH | 352.1
150.1 | mg NO <sub>3</sub> -N/L
Standard
Units | 2/11/88
2/12/88 | 1.8
6.23 | 7.1
6.79 |
| Total Phosphorous | 365.2 | mg P/1 | 2/17/88 | <0.02 | 4.4 |
| Sulfate | 375.4 | mg/1 | 3/1/88 | 53 | 56 |

AQUEOUS MATRIX WATER QUALITY TESTING

AQUEOUS MATRIX WATER QUALITY TESTING

| | | | | SAMPLE IDENTI | FICATION (DATE) |
|-------------------|----------------|--|--------------------|---------------|-----------------|
| PARAMETER | METHOD | UNITS OF | ANALYSIS | MW-10 | MW-11 |
| | NUMBER | MEASURE | DATE | (2/11/88) | (2/11/38) |
| Nitrate
oH | 352.1
150.1 | mg NO <sub>3</sub> -N/L
Standard
Units | 2/11/88
2/12/88 | <0.05
5.54 | <0.05
5.48 |
| Total Phosphorous | 365.2 | mg P/1 | 2/17/88 | <0.02 | <0.02 |
| Sulfate | 375.4 | mg/1 | 3/1/88 | <1 | <1 |

. •

1/7875.4

Rs

RECRA ENVIRONMENTAL, INC.

QUALITY CONTROL INFORMATION - PRECISION AQUEOUS MATRIX METALS

| PARAMETER | METHOD | SAMPLE | VALUE | VALUE | MEAN | STANDARD |
|---------------------------|--------|----------------|-------|-------|-------|-----------|
| (Units of Measure = mg/l) | NUMBER | IDENTIFICATION | 1 | 2 | | DEVIATION |
| Total Chromium | 218.1 | Mu -2 | 0.090 | 0.092 | 0.091 | 0.0014 |
| Hexavalent Chromium | 218.5 | | 0.030 | 0.027 | 0.029 | 0.0021 |
| Total Copper | 220.1 | | 0.039 | 0.042 | 0.041 | 0.0021 |

QUALITY CONTROL INFORMATION - ACCURACY AQUEOUS MATRIX METALS

| PARAMETER | METHOD
NUMBER | SAMPLE
IDENTIFICATION | MICROGRAMS
OF
SPIKE | PERCENT
RECOVERY |
|--|------------------|--------------------------|---------------------------|---------------------|
| Total Chromium
Hexavalent
Chromium | 218.1
218.5 | Mu-2 | 500
500 | 105
96 |
| Total Copper | 220.1 | | 500 | 68 |

I.D. #88-208

1/7875.5

QUALITY CONTROL INFORMATION - PRECISION AQUEOUS MATRIX WATER QUALITY TESTING

| PARAME TER | ME THOD
NUMBER | UNITS OF
MEASURE | SAMPLE
IDENTIFICATION | VALUE
1 | VALUE
2 | MEAN | STANDARD
DEVIATION |
|------------------------------|-------------------|---|--------------------------|-------------------|-------------------|-------------|-----------------------|
| Nitrate
pH | 352.1
150.1 | 352.1 mg N0 <sub>3</sub> -N/L
150.1 Standard | MM-2 | 7.3
6.66 | 6.9
6.92 | 7.1
6.79 | 0.28
0.18 |
| Total Phosphorous
Sulfate | 365.2
375.4 | untes
mg P/l
mg/l | | 4. 3
56 | 4 .5
55 | 4.4
56 | 0.14
0.71 |

QUALITY CONTROL INFORMATION - ACCURACY Aqueous Matrix Water Quality testing

| DAQAMETED | METHOD | SAMPLE | MICROGRAMS
OF
SDIKE | PERCENI |
|-------------------|--------|--------------|---------------------------|---------|
| Nitrate | 352.1 | M-1 | 5.0 | 87 |
| Total Phosphorous | 365.2 | 44 | 50 | 66 |
| Sulfate | 4.c/f | 2- 14 | 1,000 | 85 |

\*Quality control results were generated from a sample of similar matrix at the time of analysis.

I.D. #88-208

| CHAIN | OF | CUS | TODY | RE | CORD |
|-------|----|-----|------|----|------|
|-------|----|-----|------|----|------|

| Projec | t No. 09001 | | | | |
|-----------------------|--|---------------|--------------|-------------------------|--|
| Projec | t TILLO <u>Kecra</u> | ENIA | KNERTA | | |
| | <u>^</u> | fin In i | 1 - +=]? | | ······································ |
| Collec | tors Name | DITE
print | ttm | John Star.
signature | <u> </u> |
| | nformation | | | | |
| Metho | d Of Shipping $-Fe$ | DE RHL | Exri | îes: | |
| | uished By: | | | Ved By:
1. Calent | |
| sign_
for | Both Shuchen
Korx Accordants | | sign
for_ | Recra Envi | month |
| Date | | - | | TIMe 212158 | /900m |
| Sample
Designation | Sample Location | Date | Time | Analyte | No. Of
Containers |
| new-i | r111 | 2-11-55 | 1:50 P.M. | METALS | ~ |
| 11111-2 | mh-2 | 2-11-85 | 1:20FM | () | |
| Milu-in | M111-10 | 2-11-53 | 12: COPM | ¢ i | / |
| 1111-11 | MW-11 | 2-11-77 | 12:2.40 | 13 | / |
| | | | | | |
| | ······································ | | | | I |
| | | | | | |
| | | | | | |

Comments: Due MOT MEHSCHE ME.

-

ANALYTICAL RESULTS

Prepared For

Deknatel

Prepared By

Recra Environmental, Inc. 10 Hazelwood Drive, Suite 106 Amherst, New York 14150

METHODOLOGIES

144

- 1- 14B

6.4

The specific methodologies employed in obtaining the enclosed analytical results are indicated on the specific data table. The method numbers presented refer to one of the following U.S. Environmental Protection Agency references.

- 40 CFR Part 136 "Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act" October 26, 1984 (Federal Register) U.S. Environmental Protection Agency.
- U.S. Environmental Protection Agency "Test Methods for Evaluating Solid Waste - Physical/Chemical Methods". Office of Solid Waste and Emergency Response. July 1982, SW-846, Second Edition.

COMMENTS

Comments pertain to data on one or all pages of this report.

The values reported as "less than" (<) indicate the working detection limit for the particular sample and/or parameter.

1/8269.2

AQUEOUS MATRIX METALS

| 040446750 | | | SAMPLE | DENTIFICATI | ON (DATE) |
|---------------------------|--------|----------|-----------|-------------|-----------|
| PARAMETER | METHOD | ANALYSIS | MW-1 | MW-2 | MW-2DUP |
| (Units of Measure = mg/l) | NUMBER | DATE | (3/21/88) | (3/21/88) | (3/21/88) |
| Total Chromium | 7190 | 4/14/88 | 0.027 | 0.15 | 0.15 |
| Hexavalent Chromium | 7195 | 3/22/88 | <0.005 | 0.023 | 0.022 |
| Total Copper | 7210 | 4/13/88 | 0.083 | 0.070 | 0.079 |

AQUEOUS MATRIX METALS

| | | | | DENTIFICATI | ON (DATE) |
|---------------------------|--------|----------|-----------|-------------|-----------|
| PARAMETER | METHOD | ANALYSIS | MW-3 | MW-10 | MW-11 |
| (Units of Measure = mg/l) | NUMBER | DATE | (3/21/88) | (3/21/88) | (3/21/88) |
| Total Chromium | 7190 | 4/14/88 | 0.012 | 0.008 | 0.005 |
| Hexavalent Chromium | 7195 | 3/22/88 | <0.005 | <0.005 | <0.005 |
| Total Copper | 7210 | 4/13/88 | 0.061 | <0.005 | 0.015 |

Bro : átria. 6. the is a

ininis.

199

AQUEOUS MATRIX WATER QUALITY TESTING

| | | | | SAMPLE IDENT | IFICATION (DATE) |
|-------------------|--------|----------|----------|--------------|------------------|
| PARAMETER | METHOD | UNITS OF | ANALYSIS | MW-1 | MW-2 |
| | NUMBER | MEASURE | DATE | (3/21/88) | (3/21/88) |
| Nitrate | 352.1 | | 3/23/88 | 8.1 | 6.2 |
| Total Phosphorous | 365.2 | | 4/16/88 | 3.6 | 6.2 |
| Sulfate | 375.4 | | 4/6/88 | 55 | 36 |

AQUEOUS MATRIX WATER QUALITY TESTING

| | | | | SAMPLE IDENTI | FICATION (DATE) |
|-------------------|--------|------------|----------|---------------|-----------------|
| PARAMETER | METHOD | UNITS OF | ANALYSIS | MW-2DUP | MW-3 |
| | NUMBER | MEASURE | DATE | (3/21/88) | (3/21/88) |
| Nitrate | 352.1 | mg NO3-N/L | 3/23/88 | 3.2 | 19 |
| Total Phosphorous | 365.2 | mg P/1 | 4/16/88 | 7.4 | 1.6 |
| Sulfate | 375.4 | mg/1 | 4/6/88 | 35 | 37 |

AQUEOUS MATRIX WATER QUALITY TESTING

| | | | | | FICATION (DATE) |
|---------------------------|--------|-------------------------|----------|-----------|-----------------|
| PARAMETER | METHOD | UNITS OF | ANALYSIS | MW-10 | MW-11 |
| | NUMBER | MEASURE | DATE | (3/21/88) | (3/21/88) |
| Nitrate | 352.1 | mg NO <sub>3</sub> -N/L | 3/23/88 | 0.10 | <0.05 |
| Total Pho sphorous | 365.2 | mg P/1 | 4/16/88 | <0.02 | <0.02 |
| Sulf ate | 375.4 | mg/1 | 4/6/88 | 35 | <1 |

1/8269.4

R

RECRA ENVIRONMENTAL, INC.

QUALITY CONTROL INFORMATION - PRECISION AQUEOUS MATRIX METALS

| PARAMETER | ME THOD | SAMPLE | VALUE | VALUE | MEAN | STANDARD |
|---------------------------|---------|----------------|--------|--------|--------|-----------|
| (Units of Measure = mg/l) | NUMBER | IDENTIFICATION | 1 | 2 | | DEVIATION |
| Total Chromium | 7190 | MW-10 | 0.008 | 0.007 | 0.008 | 0.00071 |
| Hexavalent Chromium | 7195 | | <0.005 | <0.005 | <0.005 | - |
| Total Copper | 7210 | | <0.005 | <0.005 | <0.005 | - |

QUALITY CONTROL INFORMATION - ACCURACY AQUEOUS MATRIX METALS

| | | | MICROGRAMS | |
|-----------------|--------|-----------------------|------------|----------|
| Ξ | IETHOD | SAMPLE | 5 | PERCENT |
| PARAMETER | NUMBER | IDENTIFICATION | SPIKE | RECOVERY |
| Tatal Phases | 0015 | | 600 | 60 |
| I OLAT CATOMIUM | 241 | | nnc | 20 |
| Hexavalent | /195 | | 200 | 85 |
| Chromium | | | | |
| Total Copper | 7210 | | 500 | 100 |
| | | | | |

1.D. #88-444

٠

1/8269.5

2

| PARAMETER | ME THOD
NUMBER | UNITS OF
MEASURE | SAMPLE
IDENTIFICATION | VAL UE
1 | VALUE
2 | MEAN | STANDARD
DEVIATION |
|-------------------|-------------------|---------------------|--------------------------|-------------|------------|------|-----------------------|
| Total Phosphorous | 365.2 | mg P/l | * | 0.11 | 0.11 | 0.11 | 00 |
| Sulfate | 375.4 | mg/l | Mu-3 | 37 | 37 | 37 | |

QUALITY CONTROL INFORMATION - ACCURACY AQUEOUS MATRIX WATER QUALITY TESTING

| PARAMETER | ME THOD
NUMBER | SAMPLE
IDENTIFICATION | MI CROGRAMS
OF
SPIKE | PERCENT
RECOVERY |
|-------------------|-------------------|--------------------------|----------------------------|---------------------|
| Nitrate | 352.1 | | 40 | 126 |
| Total Phosphorous | 365.2 | | 20 | 97 |
| Sulfate | 375.4 | | 20 | 102 |

\*Quality control results were generated from a sample of similar matrix at the time of analysis.

I.D. #88-444

RA ENVIRONMENTAL, INC.

| | CHAI | N OF CUS | STODY F | ECORD | |
|-----------------------|--|----------|---------|--------------|----------------------|
| Proje | ct No0900 / | | | | |
| Proje | ct TitleRECRA | ENVIR | ONMER | THE INC | |
| Samp | Ie Source(| Rours | WAT | | |
| Collec | stors Name | SHERT, | tr | John C. J | he L |
| Field | Information | EDERAL | | | |
| Reling | Hend By:
John C. Shu
have distored
/Time <u>3.21-P8 /</u> | | Rece | lived By: | anthe
930pm |
| Sample
Designation | | Date | | Analyte | No. Of
Containers |
| | Mu-2 | 3-21-88 | 2:300 | METHE S | 2 |
| 144-3 | mm-3 | 3-21-51 | 3400 | hydo carbons | 2 |
| 171/-11 | 146 - 11 | 3-21-24 | 1:150 | METALS | 1 |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |

Comments:

| | CHAI | OF CUS | TODY R | ECORD | |
|-----------------------|-----------------------------|-----------------|----------------|------------------------|----------------------|
| Projec | t No. 09002 | _ | | | |
| Projec | t Title RECRA | ENVILO | ANCH | AL INC. | |
| | e Source | GROUP | | | |
| Collec | tors Name _ John | Sheely
print | <u> </u> | Signature | heil |
| Field (| Information | | | | |
| Metho | d Of Shipping | DERAL | EXPRES | 5 | |
| | ulshed By: | | | hived By: | : |
| sign . | John C. Shah
love accor. | | sigi | J. Culat
Jeona Enin | an hel |
| | /Time 3.11-88 / | | _ for
_ Det | •/TIMe 3124188 | |
| Sample
Designation | Sample Location | Date | Time | Analyte | No. Of
Containers |
| Mul-1 | MW-1 | 3-21-18 | 1.000 | METALS | 2 |
| MW-10 | MW-10 | l i | 1:15p | /1 | 1 |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |

Comments:

APPENDIX E

AQUIFER USE INFORMATION

APPENDIX E

INTRODUCTION

-с-й

્રક્ષ

This appendix contains information on public supply and non public supply wells producing at least 45 gpm in the general vicinity of the Deknatel site. The information was compiled from the following sources:

o NYSDEC well completion reports

- o Jamaica Water Supply Company:
 - well construction drawings
 - static water level records
 - pumpage records
 - water quality analysis records.

The data base is divided into two sections, the first contains information on the public supply wells and the second on the non public supply wells. The public supply wells listed are all owned and operated by the Jamaica Water Supply Company.

The data base is generally self explanatory, however, the following notes may help clarify some points for the reader.

The asmith and distance values are the geographic coordinates of the wells using the Deknatel site and specifically Deknatel's pumping well, Q1372, as the origin. Both the asmith and distance values were measured on reference maps. The values for the public supply wells were measured on a mylar copy of the Jamaica Water Supply Company (JWSC) Distribution System Map dated 1972 which was supplied by the JWSC. The non public supply well locations were

E-1

1.08028

measured on a copy of the well location reference map maintained by the NYSDEC in the Stony Brook, New York office. It was necessary to photo copy this map in sections and then piece the sections together. The accuracy of the measured locations for the non public wells is therefore limited by this fact. The north arrow indicated on the JWSC distribution system map deviated by about 10 degrees east from the longitude lines on the base map used by the NYSDEC, which was Section 18 of the New York City mapped streets map. The lines of longitude seemed to be the more reliable datum therefore a true north-south line based on the lines of longitude was transcribed onto the JWSC map and used for asmith measurements of the public supply wells.

The JWSC well construction drawings indicate the elevation of the well base plates with respect to mean sea level (MSL) allowing the screen elevation of these wells to be given with respect to MSL. The non public supply well completion reports seldom gave any indication of the ground elevation therefore the screen elevation of these wells could only be given with respect to the local ground surface.

Several of the JWSC wells (5, 7, 13, 35A and 36) were redrilled and deepened during the time interval covered by this data base, most often between 1984 and 1985. When this was done, neither the NYSDEC or JWSC well numbers changed in the official records, however the screen elevation did change, usually by at least 100 feet. Therefore, after redrilling, these wells were screened in a different strata than before which would result in discontinuities in the static water level and analytical data from before to after the redrill. In order to avoid such discontinuities in the data base, these wells, after redrilling, were entered as separate wells using the original

E-2

1

ंख

well number with a suffix of R or RD to indicate that the well had been redrilled and the screen elevation was changed to reflect its new elevation.

Data entries were left blank when the corresponding information from JWSC records or the NYSDEC well completion reports was missing or unavailable.

VELL AND GROUND WATER INFORMATION FOR PUBLIC WATER SUPPLY VELLS IN THE GENERAL VACINITY OF THE DEKMATEL SITE

| STATIC WATER | LEVEL (FT MSL) | -11.50 | -9.80 | 01 21- | -9.80 | 06.9- | -11.80 | -12 50 | -12.50 | -9.00 | -12.80 | -13.20 | -14 20 | -15.10 | -14.30 | -14.50 | -12, 10 | -14.60 | -6.40 | -7.80 | -17.40 | -23.10 | 09 06- | -28 10 | -16.50 | -16 50 | 0.10 | -6.00 | -5 , 70 | 09 6- | 06 - 2 - | -2.00 | -4 30 | -2.60 | -2 60 | -2 80 |
|-------------------|----------------|---------------|-------|--------|-------|-------|--------|--------|--------|-------|--------|---------------|------------|--------|--------|--------|-------------|--------|-------------|-------|--------|--------|--------|--------|---------------|--------------|-------|---------------|--------------|-------|----------|-------|-------|-------|-------|-------|
| PUMPAGE | (1) | | 13.7 | | | | | | | 22.3 | | 8 66 | 6 66
66 | 1.00 | 6.66 | 87.8 | 1 00 | ° 88 | 6.66 | 0 66 | 6.66 | 48.3 | 35 1 | 1.2 | 25 7 | 45 1 | 01 | 27.2 | 46.1 | 53.0 | 48.7 | | 34.7 | 20.1 | 7 Q | 25 3 |
| COPPER | (HG/L) | | <0.02 | | | | | | | | | | <0.02 | | <0.02 | 0 05 | 0.03 | 0 03 | 10 0 | <0.02 | 0.04 | 90 0 | 0.02 | 0.11 | \$0 05 | 90.0 | <0.03 | | 10 .0 | | 20 0 | | 0.08 | 0,11 | 0.09 | 11.0 |
| CHROMIUM | (W6/L) | | <0.03 | | | | | | | | | | <0.002 | | <0 02 | <0.02 | <0.02 | <0 02 | <0 02 | •0°0• | <0.0≿ | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | | <0.003 | | | | <0.02 | <0.02 | <0.02 | <0 02 |
| NITRATE | (WG/L) | | 8.25 | | | | | | | | | 4.91 | 5.07 | | 5.40 | 01 5 | 5.23 | 02 ° S | 5.30 | 5.40 | 5.50 | 5.80 | 4. BO | 5.90 | 6.70 | 6 .00 | 7.57 | 8.16 | 8.07 | | | | 9.50 | 07.6 | 8.00 | 08.01 |
| SULFATE | (WG/L) | | 54.0 | | | | | | | | | 36.0 | 36.0 | | 36.0 | 37.0 | 37.0 | 37 0 | 38.0 | 37.0 | 41.0 | 32.0 | 28.0 | 43.6 | 43.0 | 47.0 | 47.0 | 0.08 | 59.0 | | 54.0 | | 51.0 | 67.0 | 50.0 | 0.94 |
| YEAR | | 1975 | 1976 | 1977 | 8791 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1985 | 1986 | 1981 | 1975 | 1976 | 1977 | 8791 | 1979 | 1980 | 1981 | 1982 | 1983 |
| USE | | PUBLIC SUPPLY | | | | | | | | | | PUBLIC SUPPLY | | | | | | | | | | | | | PUBLIC SUPPLY | | | PUBLIC SUPPLY | | | | | | | | |
| CAPACITY | (679) | 90X | | | | | | | | | | 1.700 | | | | | | | | | | | | | 1, 205 | | | 1,200 | | | | | | | | |
| | | NSL | | | | | | | | | | HSL | | | | | | | | | | | | | MSL | | | NSL | | | | | | | | |
| SCREENED INTERVAL | BOTH | ۰.
۲ | | | | | | | | | | -226 | | | | | | | | | | | | | -215 | | | -26 | | | | | | | | |
| REENED | | 5 | | | | | | | | | | 5 | | | | | | | | | | | | | 0 | | | 0 | | | | | | | | |
| : S | 601 | r | | | | | | | | | | -171- | | | | | | | | | | | | | - 165 | | | - 16 | | | | | | | | |
| DISTANCE | (1) | 7,640 | | | | | | | | | | 7,640 | | | | | | | | | | | | | 7.640 | | | 5.380 | | | | | | | | |
| ASMITH | (DEGREES) | 258.5 | | | | | | | | | | 258.5 | | | | | | | | | | | | | 258.5 | | | 266.0 | | | | | | | | |
| JUSC | WELL NO | 6 | | | | | | | | | | 05A | | | | | | | | | | | | | OSRD | | | 07 | | | | | | | | |
| | MELL MO | 00305 | | | | | | | | | | Q1957 | | | | | | | | | | | | | 00305R | | | 0307 | | | | | | | | |

bir:

1

ani.

.....

hale:

1994 - S

Sec.

1

-1 00

0

1984

VÉLL AND GROUMD VATER INFORMATION FOR PUBLIC VATER SUPPLY VELLS IN THE GENERAL VACINITY OF THE DEKNATEL SITE

STATIC MATER LEVEL (FT MSL) 22 88 8 8 8 8 8 8 8 8 8 8 9 9 $\tilde{\nabla}_{i} \stackrel{e}{\leftarrow} \tilde{\nabla}_{i} \stackrel{e}{\leftarrow} \tilde{\nabla}$ 2 2 م م \*\*\*\*\*\*\*\*\*\* PUNPAGE (X) 80.5 38.2 33.2 COPPER (NG/L) 28882 0.02 0.02 0.02 0.02 0.02 0.02 6 8 0 00000 ő CHROM I UM (MG/L) õ 88888 888888 ĝ 888888 85555555 99999 8 6 8 6 8 6 9 9 9 9 9 9 9 \ominus \ominus \ominus \ominus \ominus \ominus \ominus \ominus \ominus ô Ő NITRATE (MG/L) 88 ~ ~ ~ ~ ~ ~ 23 352838 2.00
3.00
4.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00</l 3 2 3 8 8 8 8 8 9 9 4 10 \* \* \* \* v 0 \*~ \* \* \* \* \* SULFATE (MG/L) 52.0 54.0 25.0 25.0 28.0 31.0 33.0 33.0 00,000000 8 5 2 8 8 8 5 8 8 8 8 8 8 855 \* 3 5 8 5 YEAR PUBLIC SUPPLY SUPPLY PUBLIC SUPPLY SUPPLY . USE PUBLIC PUBLIC CAPACITY (GPM) <u>8</u> 1,200 1, 180 REF MSL **H**SL MSL MSL -- SCREENED INTERVAL TOP BOTM. -222 -234 ş 4 . 2 2 2 2 3 -172 -183 5 DISTANCE (FT) ŝ 200 5.380 8 ŝ 5 ASMITH (DEGREES) 0 0 0 ŝ 8 80 58 8 JUSC JUSC 07RD ٥٧ 078 8 NYSDEC VELL NO 00307R 00563 00564 1001

.

.

.

.

. संस्थ - 195 - 1

-iet

-8

WELL AND GROUND VATER INFORMATION FOR PUBLIC WATER SUPPLY WELLS IN THE GENERAL VACINITY OF THE DEKMATEL SITE

| ASMLTH
(DEGREES) | DISTANCE
(FT) | SCREENED
TOP | | INTERVAL -
BOTN. R | REF. CA | CAPACITY
(GPM) | USE | YEAR | SULFATE
(NG/L) | NITRATE
(MG/L) | CHROM [UN
(MG/L) | COPPER
(MG/L) | PUMPAGE
(X) | STATIC WATER
LEVEL (FT MSL) |
|---------------------|------------------|-----------------|---------|-----------------------|---------|-------------------|---------------|------|-------------------|-------------------|---------------------|------------------|----------------|--------------------------------|
| | | | | | | | | 1986 | 0.84 | 5.00 | 0.02 | 0.02 | ه 1
۱ | 36.40 |
| | | | | | | | | 1987 | 41.0 | 6.10 | <0.02 | 0.05 | 13 5 | |
| | 8,730 | -13 | 10 | -59 # | NSL 1 | 1,200 | PUBLIC SUPPLY | 5761 | 42.0 | 5.43 | | | 4 7 | |
| | | | | | | | | 1976 | 32.0 | | | | 4 6 | -1.30 |
| | | | | | | | | 1977 | | | | | 96 | -6 10 |
| | | | | | | | | 1978 | 35.0 | 6.20 | <0.02 | 0 12 | 6 11 | -3.30 |
| | | | | | | | | 1979 | 39.0 | 9,90 | <0.01 | <0 0> | 7.4 | -4.50 |
| | | | | | | | | 1980 | | | <0.02 | 0.03 | 10 8 | -2.30 |
| | | | | | | | | 1961 | 0.48 | 6.40 | \$0.0\$ | 0 02 | 36.0 | -4.70 |
| | | | | | | | | 1982 | 47.0 | 00.7 | <0.02 | <0.02 | 52.4 | 90.4- |
| | | | | | | | | 1963 | 39.0 | 6.70 | <0.02 | <0.02 | 82.4 | -8.00 |
| | | | | | | | | 1984 | 34.0 | 07.0 | \$0.0¢ | 0.02 | 22.1 | -7.60 |
| | | | | | | | | 1985 | | | | | | -7.80 |
| | | | | | | | | 1986 | 36.0 | 3.40 | \$0 <sup>.</sup> 02 | 0.03 | 17 6 | -11.30 |
| | | | | | | | | 1967 | 30.5 | 2.90 | <0.02 | 0 13 | 0 | |
| | 8,730 ~ | -336 | -
01 | - 388 M | MSL 1 | 1.800 | PUBLIC SUPPLY | 1975 | 12.0 | 99.0 | | | 9194 | 87 |
| | | | | | | | | 1976 | 8.0 | 09.0 | 00.0 | 40.02 | 57.6 | -3.30 |
| | | | | | | | | 1977 | | | | | 28 6 | 90.4- |
| | | | | | | | | 1978 | 12.0 | 0.50 | <0.02 | 60.02 | 7 62 | -1.10 |
| | | | | | | | | 1979 | 15.0 | 80 | <0.02 | 0.05 | 1.17 | -5.60 |
| | | | | | | | | 1980 | 17.6 | 0*0 | <0.02 | ≤0 .02 | 58.7 | 07.7- |
| | | | | | | | | 1961 | 22.0 | 01.0 | <0.02 | 0.02 | 2 00 | -13.60 |
| | | | | | | | | 1982 | 26 0 | 0.40 | <0 02 | 0.02 | 9 66 | -2 10 |
| | | | | | | | | 1983 | 0.62 | 0,40 | <0.02 | <0.02 | 8 | -10 90 |
| | | | | | | | | 1964 | 31.0 | 07:0 | <0.02 | 0.02 | 92.4 | - <sup>6</sup> 00 |
| | | | | | | | | 1965 | 0,48 | 0.30 | <0.02 | 0.02 | 86.9 | -1.00 |
| | | | | | | | | 1986 | 33.0 | 0.50 | <0.02 | 0 10 | 90.4 | -2.80 |
| | | | | | | | | 1967 | 18.0 | 0,40 | \$0.0\$ | 60.02 | 48.0 | |
| | 5.280 | 23 | 10 | -12 MS | NSL 1 | 1,200 F | PUBLIC SUPPLY | 1975 | 69 0 | 6.0r | | | 18 7 | -2.00 |
| | | | | | | | | 1976 | 0.07 | 7.15 | <0.003 | 40.02 | 18.6 | -1.80 |
| | | | | | | | | 1977 | | | | | 24.4 | |
| | | | | | | | | 1978 | | | | | 0 | |
| | | | | | | | | 1979 | | | | | 0 | |
| | | | | | | | | 1980 | 57.0 | 6.75 | <0.02 | 1 0 0 | 25.4 | -1.30 |
| | | | | | | | | 1961 | | | | | 0 | |
| | | | | | | | | 1982 | | | | | 0 | |

1

йń.

ingia '

ШŚ.

VELL AND GROUND WATER INFORMATION FOR PUBLIC WATER SUPPLY VELLS IN THE GENERAL VACINITY OF THE DEKNATEL SITE

-08

1.50

·於讀

-15:34

网络

2010

| JWSC | ASMI TH | DISTANCE | SCI | | INTERVAL | ! | CAPACITY | USE | YEAR | SULFATE | NITRATE | CHROMIUM | COPPER | PUMPAGE | STATIC WATER | |
|--|----------------|---|--|--|--|--|---|--|--------------------------------------|--|--|-------------------------------------|--|--|---|---|
| WELL NO | (DEGREES) | (FT) | 100 | | BOTH | REF | (BM) | | | (NG/L) | (NG/L) | (W6/L) | (HG/L) | (x) | LEVEL (FT MSL) | |
| | | | | | | | | | 1983 | 64 0 | 1.70 | 40.02 | 0.01 | 1.78 | 0/ 1- | |
| | | | | | | * | | | 1984 | 63.0 | 5.80 | <0.02 | 0.11 | 22.6 | -1.30 | |
| 13A | 296.0 | 5, 280 | -175 | 0 | -195 | MSL | 1,200 | PUBLIC SUPPLY | 1975 | 0 62 | 3.76 | | | 85.4 | -4.20 | |
| | | | | | | | | | 1976 | 28.0 | 3.74 | <0.003 | <0.02 | 6 66 | -3,70 | |
| | | | | | | | | | 1977 | | | | | 100.0 | -2 90 | |
| | | | | | | | | | 1978 | 31.0 | 4.30 | <0.02 | <0 02 | 8 | -1.20 | |
| | | | | | | | | | 1979 | 32.0 | 4.60 | ¢0.02 | <0.02 | 1.66 | -1.70 | |
| | | | | | | | | | 1980 | 34.0 | 4.43 | ¢0.02 | 0.02 | 100.0 | -1 70 | |
| | | | | | | | | | 1961 | 36.0 | DX * | <0.02 | 0 03 | 8.9 | -5.60 | |
| | | | | | | | | | 1982 | 35.0 | 6 SO | <0.02 | 0.02 | 6.66 | -1.70 | |
| | | | | | | | | | 1983 | 0.98 | 4.56 | <0.02 | 0.03 | 80 é | 8.1 | |
| | | | | | | | | | 1984 | 38.0 | 92.4 | \$0°.0 | 0.02 | ° 8 | 3.00 | |
| | | | | | | | | | 1985 | 38.0 | 6.70 | <0.02 | 1 0.0 | 1.11 | 13.70 | |
| | | | | | | | | | 1986 | 38.0 | 8 7 | <0.02 | <0.02 | 37.0 | 02 11- | |
| | | | | | | | | | 1987 | 36.0 | 8 | <0.02 | <0.02 | 10.6 | | |
| 13RD | 296.0 | 5,280 | -172 | 20 | -197 | NSL | 1,261 | PUBLIC SUPPLY | 1985 | 39 0 | 8.5 | <0 02 | <0.02 | • | | |
| | | | | | | | | | 1986 | 38.0 | 01.4 | <0.02 | 0.02 | 57 3 | | |
| | | | | | | | | | 1987 | 34 0 | 09.9 | <0.02 | <0.02 | 3.4 | | |
| 15A | 127.0 | 7.620 | -334 | 0 | -374 | MSI. | 1,000 | PUBLIC SUPPLY | 1975 | 16.0 | 7.23 | | | 8 | 8.90 | |
| | | | | | | | | | 1976 | 39.0 | 7.80 | | | 37.9 | | |
| | | | | | | | | | 1977 | | | | | 127 | | |
| | | | | | | | | | 1978 | 20.02 | 08 9 | | | 100 0 | | |
| | | | | | | | | | 1979 | 26.0 | 6.40 | <0.02 | 9 0 0 | 6.99 | | |
| | | | | | | | | | 1980 | | | | | 100.0 | | |
| | | | | | | | | | 1981 | 32.0 | 6.10 | <0.02 | 90.0 | 72.1 | 3.10 | |
| | | | | | | | | | 1982 | 32.0 | 6.00 | <0.02 | 0.03 | 8.3 | 06 .9- | |
| | | | | | | | | | 1983 | 33.0 | 5.80 | ¢0.02 | 0 03 | 6 86 | 7.70 | |
| | | | | | | | | | 1984 | 36.0 | 5.80 | <0.02 | 0.05 | 0.06 | 1 80 | |
| | | | | | | | | | 1985 | 36.0 | 6.00 | \$0 05 | 0 °05 | 55.2 | 02 2 | |
| | | | | | | | | | 1986 | 26.0 | 9.20 | <0.02 | <0.02 | 8.5 | 10.90 | |
| | | | | | | | | | 1987 | | | | | 7.2 | | |
| 158 | 132 0 | 7.860 | -320 | 2 | -369 | MSL | 1,600 | PUBLIC SUPPLY | 1975 | 12.0 | 2.11 | | | 787 | 7 90 | |
| | | | | | | | | | 1976 | | | | | 48 1 | 10 80 | |
| | | | | | | | | | 1977 | | | | | 1 01 | 2 00 | |
| | | | | | | | | | 8/61 | 8.0 | 90
7 | 40 02 | <0 02 | 505 | -12 90 | |
| | | | | | | | | | 1979 | 18 0 | 3 80 | <0.02 | <0.02 | 51 6 | 11 60 | |
| MYSDEC
WELL MO
01600
0012
0012 | | Jusc
VELL MO
13A
15A
15A
15A | JUSC ASM LH DISTANCE VELL NO (DEGREES) (F1) 13A 296.0 5.280 13BD 296.0 5.280 15A 296.0 5.280 15A 13.0 296.0 5.280 15A 13.0 2.0 2.280 15A 127.0 7.620 15B 132.0 7.620 | JUSC ASMTH DISTANCE
VELL NO (DEGREES) (F1)
13A 296.0 5.280 -1
13ND 296.0 5.280 -1
15A 127.0 7.620 -1
15B 132.0 7.620 -1 | JUSC ASM Hist DISTANCE | JUSC ASM Hist DISTANCE | JASC AMITH DISTANCE SCREENED INTERNAL INTERNAL VELL NO (066AEES) (F1) 70° 00'N RE 13A 206.0 5.280 -175 70 -195 MS 13B 206.0 5.280 -172 70 -197 MS 13B 206.0 5.280 -172 70 -197 MS 13B 206.0 5.280 -172 70 -197 MS 13B 27.0 7.620 -334 70 -34 MS 15 127.0 7.620 -334 70 74 MS 15 122.0 7.620 -334 70 70 MS | JUSC ASM11.h D15.TAMCE SCREEMED INTERVAL CAPACITY VELL NO (0EGMEES) (F1) 10P B011 RF (PN) 13A 296.0 5.280 -175 10 -197 NL 1.200 13B0 296.0 5.280 -172 10 -197 NL 1.201 15A 122.0 5.280 -334 10 -374 ML 1.000 15A 122.0 7.620 -334 10 -374 MS 1.000 15B 132.0 7.860 -326 10 -364 MS 1.000 | JUSC ASM LH DISTANCE | JASC AMITH DISTAME SCREENED INTERNAL CARCITY USE
UELLIND (GEOREES) (71) TOP DOTIN RET (GPM)
206.0 3,280 -173 TO -193 MSL 1,200 PUBLIC SUPPLY
13m 226.0 5,280 -172 TO -197 MSL 1,200 PUBLIC SUPPLY
13m 127 0 7,620 -334 TO -374 MSL 1,000 PUBLIC SUPPLY
15A 122 0 7,620 -334 TO -374 MSL 1,000 PUBLIC SUPPLY | JUSC AMILIN OLISIMANCI | MCL ASM11A DISTANCE | Mot. April Mot. Distance | Mot. Antific Mot. Control Mot. Mot.< | MCC AMIN DISTANCE - SOFTIMED INTENT | Mct. Offinition Officient in the contract of the contte contract of the contract of t |

.

WELL AND GROWND VATER INFORMATION FOR PUBLIC VATER SUPPLY WELLS IN THE GENERAL VACINITY OF THE DEKMATEL SITE

STATIC WATER LEVEL (FT MSL) 9,90 12,70 12,70 8,60 11,20 11.60 8 9 888 82 8 88 2 9 **~~**~ న న Ö 1 8 PUMPAGE (X) 30 6 43 6 37.0 56.1 27.7 27.7 75 8 75 8 75 8 0 ~ @ ~ 5 8 0 COPPER (MG/L) ô 02 0 02 0 0 0 02 888888 88 888888 8 8 8 8 $\mathbf{o} \ \mathbf{o} \$ ô, ô, 000000 0000 CHRONIUN (NG/L) 0.0 0.0 0.0 0.0 0.0 0.0 20 888888 88 888888 0000000 ê ê ê \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ 0 9 9 9 9 NITRATE (MG/L) 5.10 2.20 3.00 2.10 1.55 2 888888 10.05 9.15 82 888888 5 5 3 5 8 -o 4 ō. . 00~00 SULFATE (MG/L) 00000 0 000 00 61.0 67.0 53.0 \$6.0 \$2.0 \$1.0 \$1.0 \$8.0 \$8.0 8.0 10.0 10.0 13.0 \*\*\*\* 20 8.5.8 <u>9</u> 2 YEAR PUBLIC SUPPLY PUBLIC SUPPLY PUBLIC SUPPLY PUBLIC SUPPLY USE CAPACETY (GPM) 1, 387 1.736 1,200 1,200 REF HSL MSL MSL MSL -- SCREENED INTERVAL BOTH **1** -614 -5 2 2 2 2 2 -338 ð 2 -342 3 DISTANCE (FT) 8,070 6.850 8,070 12,470 ASMLTH (DEGREES) 0 50.0 0 0 ž 134. 127 15CR0 JUSC VELL NO 150 156 16 NYSDEC VELL NO M10206 N10207 M0693 N0015

WELL AND GROUND WATER INFORMATION FOR PUBLIC WATER SUPPLY WELLS IN THE GENERAL VACINITY OF THE DEKNATEL SITE

| STATIC WATER
LEVEL (FT MSL) | 37 70 | 34 60 | 35_30 | 35.30 | 41.20 | 35 90 | 37.70 | 33 00 | 8 0 % | 36.80 | 34.60 | | | | | | | | | | | | | | 3.80 | 5.50 | 5 20 | 3.00 | 1 80 | 02 7 | 5 30 | 1.60 | | | 7.60 | 4 70 |
|--------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|--------------|-------|-------|------------------|--------|------|-------|------------|-------|-------|-------|-------|-------|-------|-------|------|---------------|------|------|-------|-------|------|-------|-------|------|--------------|-------|------------|
| PUNPAGE
(X) | 5.0 | 52 | 5.5 | • | | | | | | | | 83 5 | 79.5 | 83.2 | 67.8 | 6.98
9 | 62.0 | 57.5 | 7.66 | 89.4 | 6.06 | 8, 48 | 60.5 | 7.3 | 25.3 | 28.1 | 24.3 | 28.3 | 16.4 | 23.6 | 28.3 | 0.95 | | 1.62 | 98 5 | 93.1 |
| COPPER
(NG/L) | | | 0.11 | 0.18 | | | | | | | | | 90 O | | <0 02 | <0.02 | 0.02 | 0.04 | 0.02 | 0.02 | 90.0 | 10°0 | 0.03 | | | | | 0.03 | 0.02 | | 0.03 | <0.02 | | <0.02 | <0.02 | <0.02 |
| CHRON I UN
(MG/L) | | | <0.02 | <0.02 | | | | | | | | | <0.003 | | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0 02 | <0.02 | | | | | <0.02 | <0.02 | | <0.02 | <0.02 | | <0.02 | <0.02 | <0 02 |
| NITRATE
(MG/L) | 7.02 | | 5.50 | 6.80 | | | | | | | | 6 0.0 | 0.12 | | €0.1 | ¢0.1 | <0.1 | <0.1 | ¢0.1 | ¢0.1 | 0.10 | 0.20 | 0.10 | | 3.30 | 3.61 | | 3.90 | 6.80 | | 3.90 | 3.80 | | 8 . 7 | 13.00 | 5 0 |
| SULFATE
(MG/L) | 63.0 | | 46.0 | 51.0 | | | | | | | | 14.0 | 13.0 | | 5.0 | 0 9 | 6.0 | 7.0 | 5.0 | 6.0 | 8.0 | 7.0 | 10.0 | | 0.12 | 75.0 | | 58.0 | 58.0 | | 62.0 | 61.0 | | 0.04 | 37.0 | 34.0 |
| YEAR | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1964 | 1985 | 1986 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1961 | 1982 | 1983 | 1984 | 1965 | 1986 | 1987 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1961 | 1982 | 1983 | 1984 | 1985 | 1986 |
| USE | | | | | | | | | | | | PUBLIC SUPPLY | | | | | | | | | | | | | PUBLIC SUPPLY | | | | | | | | | | | |
| CAPACTTY
(GPN) | | | | | | | | | | | | 1,200 | | | | | | | | | | | | | 1,200 F | | | | | | | | | | | |
| REF | | | | | | | | | | | | HSL | | | | | | | | | | | | | NSL | | | | | | | | | | | |
| INTERVAL
BOTM . | | | | | | | | | | | | -616 | | | | | | | | | | | | | -196 | | | | | | | | | | | |
| SCREENED
TOP | | | | | | | | | | | | 2 | | | | | | | | | | | | | 0 | | | | | | | | | | | |
| - SC
106 | | | | | | | | | | | | -555 | | | | | | | | | | | | | -148 | | | | | | | | | | | |
| DISTANCE
(FT) | | | | | | | | | | | | 12,470 | | | | | | | | | | | | | 6,060 | | | | | | | | | | | |
| ASM1TH
(DEGREES) | | | | | | | | | | | | 50.0 | | | | | | | | | | | | | 319.0 | | | | | | | | | | | |
| JNSC
MELL NO | | | | | | | | | | | | 164 | | | | | | | | | | | | | 21 | | | | | | | | | | | |
| NYSDEC
WELL NO | • | | | | | | | | | | | N1958 | | | | | | | | | | | | | 00321 | | | | | | | | | | | |

•

.

े अर्थन राज्य

\*\*

• • •

WELL AND GROUMD WITER INFORMATION FOR PUBLIC WATER SUMPLY WELLS IN THE GENERAL VACINITY OF THE DEKMATEL SITE

| STATIC WATER
LEVEL (FT MSL) | 060 | 5.40 | 5.30 | 5.40 | 5.20 | 5 80 | 5.80 | 5 30 | 3.50 | 4 10 | 1 40 | 07.4 | 3.50 | 00.0 | 1
1 | -1.80 | -2.10 | 1.10 | | 2.40 | 8 70 | -1 30 | -4.20 | 07:0 | 02.4 | -1.60 | | 8.1 | 09'- | -1 80 | 09.0 | -2.20 | -2 20 | -3 40 | -5.30 | -4 80 |
|--------------------------------|------|---------------|------|------|-------|-------------|------|-------|-------|-------|-------|--------------|-------|------|------------------|-------|-------|-------|--------------|-------|--------------|--------------|--------|-------|-------|-------|-------|---------------|------|-------|-------|-------|-------|-------|---------|-------|
| PUMPAGE
(X) | 0.86 | 6.86 | 87.2 | 95.2 | 85.9 | 95 8 | 8.8 | 0.86 | 1.14 | 20.5 | 79.3 | 80.1 | 26.7 | 26.9 | 4.3 | 13.6 | 4.0 | 0.9 | 11 | 3.5 | 3.9 | 24 6 | 1.02 | 12.4 | 5.1 | 1.2 | 242 | 47.4 | 54.4 | 67.3 | 63.3 | 60.7 | 5 89 | 36 0 | 84 7 | 1 01 |
| COPPER
(MG/L) | | | | | <0.02 | 0.03 | | 0 02 | 0.02 | 0.02 | <0.02 | 1 0.0 | 0.02 | 00 0 | | | | 0.15 | 0.36 | 0.20 | 6 0 0 | 0.15 | \$0 05 | 90:0 | 0.07 | | 0,11 | | | | <0.02 | ¢0.02 | <0 02 | ¢0.02 | <0.02 | 20 U2 |
| CHROM [UM
(NG/L) | | | | | <0.02 | <0.02 | | <0.02 | <0.02 | <0.02 | <0 02 | <0.02 | <0.02 | 00.0 | | | | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | \$0.05 | <0.0> | <0.0> | ¢0 02 | <0.02 | | | | <0.02 | <0.02 | <0 02 | <0.02 | <0 02 | (U U) |
| NI FRATE
(MG/L) | | 4.22 | 4.01 | | 4.50 | 98.4 | | 4.50 | 4.10 | 4 40 | 8 | 4.10 | 3 80 | 00.0 | 6.0 8 | | | 5.90 | 9 0.4 | | 6.80 | 6 .00 | 5.90 | 5.60 | 5.70 | 8.30 | 07.4 | 3.12 | 3.82 | | 8.4 | 8 | 4.85 | 5.50 | s
00 | 5 |
| SULFATE
(MG/L) | | 0.04 | 41.0 | | 41.0 | 0.04 | | 0.04 | 60.04 | 38.0 | 0.04 | 42.0 | 42.0 | 0.0 | 36.0 | | | | 28.0 | | 36.0 | 38 0 | 38.0 | 36 0 | 35 0 | 31.0 | 32.0 | 27.0 | 27.0 | | 25.0 | 27.0 | 27.0 | 22 0 | 31 0 | |
| YEAR | 1987 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1963 | 1984 | 1985 | 1986 | 1987 | 5791 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1962 | 1983 | 1984 | 1985 | 1986 | 1987 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1001 |
| USE | | PUBLIC SUPPLY | | | | | | | | | | | | | PUBLIC SUPPLY | | | | | | | | | | | | | PUBLIC SUPPLY | | | | | | | | |
| CAPACITY
(GPM) | | 1,200 | | | | | | | | | | | | | 1,200 | | | | | | | | | | | | | 1, 500 | | | | | | | | |
| REF | | MSL | | | | | | | | | | | | | NSL | | | | | | | | | | | | | MSL | | | | | | | | |
| INTERVAL
BOTM. | | -189 | | | | | | | | | | | | | -39 | | | | | | | | | | | | | -304 | | | | | | | | |
| | | 01 | | | | | | | | | | | | | 2 | | | | | | | | | | | | | 10 | | | | | | | | |
| SCREENED
Top | | -149 | | | | | | | | | | | | | -17 | | | | | | | | | | | | | -243 | | | | | | | | |
| DISTANCE
(FT) | | 5.970 | | | | | | | | | | | | | 6.970 | | | | | | | | | | | | | 6.970 | | | | | | | | |
| ASMITH
(DEGREES) | | 321.0 | | | | | | | | | | | | | 183 5 | | | | | | | | | | | | | 183.5 | | | | | | | | |
| JUSC
WELL NO | | 21A | | | | | | | | | | | | | 23 | | | | | | | | | | | | | , 23A | | | | | | | | |
| NYSDEC
VELL NO | | 02435 | | | | | | | | | | | | | 00323 | | | | | | | | | | | | | 00568 | | | | | | | | |

5.6

. Note

116 63

. Ферз

. Second

9644

žeži

616.

Ш.

ěю,

-

865

> -

Ċ. **8**8.

UELL AND GROUND WATER INFORMATION FOR PUBLIC WATER SUPPLY UELLS IN THE GENERAL VACINITY OF THE DEKMATEL SITE

.

999

.- se

3.49

| | JUSC | ASMITH | DISTANCE | 50 | SCREENED | INTERVAL. | ;; | CAPACITY | USE | YEAR | SULFATE | NITRATE | CHROMIUN | COPPER | PUMPAGE | STALLC WATER |
|---------|------|-----------|----------|------------|----------|-----------|------------|----------|---------------|------|---------|---------|--------------------------|--------|---------|-----------------|
| MELL NO | - | (DEGREES) | (FT) | 0 0 | | BOTH | REF | ((GPM) | | | (NG/L) | (NG/L) | (WG/L) | (NG/L) | (2) | LEVEL (FT MSL) |
| | | | | | | | | | | 1984 | 32 0 | 5.70 | 4 0 | 0.02 | 59 8 | -2 20 |
| | | | | | | | | | | 1985 | 33 0 | 6 50 | 0 02 | <0 02 | 58.1 | -1 90 |
| | | | | | | | | | | 1986 | 33.0 | 7.30 | <0 02 | 0 03 | 6 87 | -2.60 |
| | | | | | | | | | | 1987 | | 6.50 | <0.01 | 0.03 | 20.6 | |
| 00324 | 54 | 244.5 | 13, 780 | -25 | 2 | -35 | NSL | 2400 | PUBLIC SUPPLY | 1975 | 0.08 | 2.16 | | | 31 5 | 07 |
| | | | | | | | | (3 WE | | | | | | | | |
| | | | | | | | | (SJJ | | | | | | | | |
| | | | | | | | | | | 1976 | 80.0 | 2.16 | | | 0 | -1.70 |
| | | | | | | | | | | 1977 | | | | | | -1.70 |
| | | | | | | | | | | 1978 | | | | | | , 10
, |
| | | | | | | | | | | 1979 | | | | | | 0, 30 |
| | | | | | | | | | | 1980 | | | | | | 01 <sup>-</sup> |
| | | | | | | | | | | 1981 | | | | | 0.3 | 07 7- |
| | | | | | | | | | | 1982 | | | | | | 00 2- |
| | | | | | | | | | | 1983 | | | | | | 1 70 |
| | | | | | | | | | | 1984 | | | | | | 2 40 |
| | | | | | | | | | | 1985 | | | | | | 0.30 |
| | | | | | | | | | | 1986 | | | | | | 3.00 |
| | | | | | | | | | | 1987 | | | | | | 4. 10 |
| 00569 | 24.4 | 246.0 | 13, 170 | -11 | 2 | -26 | NSL | 2,400 | PUBLIC SUPPLY | 1975 | 91.0 | 4.70 | | | 31.5 | 0.10 |
| | | | | | | | | (3 4 | | | | | | | | |
| | | | | | | | | | | 1976 | 0 % | 4.95 | | | 11 0 | 50 |
| | | | | | | | | | | 1977 | | | | | 57 6 | -1 80 |
| | | | | | | | | | | 1978 | 0 00 | 5.70 | <0.02 | 0.03 | 33.8 | 0 50 |
| | | | | | | | | | | 1979 | 0.06 | 5.20 | <0.02 | <0.02 | 39.9 | 1.50 |
| | | | | | | | | | | 1980 | | | | | 22 5 | 1 10 |
| | | | | | | | | | | 1961 | 72.0 | 6.40 | <0.02 | 0.03 | 15 2 | 0.80 |
| | | | | | | | | | | 1982 | 84 0 | 8.8 | \$ 0. 0 \$ | 0.02 | 0, 10 | 2.10 |
| | | | | | | | | | | 1983 | | | | | | 1.50 |
| | | | | | | | | | | 1984 | | | | | | 1.90 |
| | | | | | | | | | | 1985 | | | | | | 1.50 |
| | | | | | | | | | | 1986 | | | | | | 1.50 |
| 002500 | 24B | 243 0 | 13.950 | -14 | 10 | -34 | MSŁ | 1, 200 | PUBLIC SUPPLY | 1975 | 103 0 | 1.96 | | | 12 8 | -4, 70 |
| | | | | | | | | | | 1976 | 86.0 | 2 28 | | | 26 2 | 0* - |
| | | | | | | | | | | 1977 | | | | | 19 9 | -2 00 |

.

.

VELL AND GROUMD WATER INFORMATION FOR PUBLIC WATER SUPPLY WELLS IN THE GENERAL VACINITY OF THE DEKNATEL SITE

| | | | | | | | | 0 3.30 | | | | | 0 20 | | | | | | | | | | | | | | | | | | | | 4 50 | | | 7 30 |
|---------------------|---------|-------|-------|------|-------|------|------|--------|------|------|---------------|------|------|-------|------|------|-------|-------|------|------|------|------|------|---------------|------|------|-------|-------|------|-------|-------|-------|-------|-------|-------|------|
| (x) | 16.0 | 10.5 | 22.6 | 21.2 | 515 | Ū | 0 | U | Ų | | 0 | 8.04 | 0 | 30.4 | 0 | 37.9 | 31.9 | 63.7 | • | 0 | 0 | 0 | | 5.0 | Ř | 23 0 | 8 | 25.6 | 26.3 | 8 | 12.9 | 27.7 | 13.7 | | 414 | |
| (NG/L) | 90
0 | 0.03 | | 0 02 | <0.02 | | | | | | | | | 0.17 | | | 0.02 | 0 02 | | | | | | | | | <0.02 | ¢0.02 | | <0 0> | <0.02 | 0.02 | <0 02 | <0.02 | <0.02 | |
| (MG/L.) | <0 02 | <0 01 | <0 02 | 0.02 | | | | | | | | | | <0.02 | | | <0 02 | <0 05 | | | | | | | | | <0.02 | <0.02 | | <0.02 | <0.02 | <0.02 | <0.02 | <0 02 | <0 02 | |
| (NG/L) | 3 90 | 3.40 | | 90 7 | | | | | | | | 3.14 | | 1.80 | | | 2.20 | 1.40 | | | | | | 2.18 | 3.15 | | 5.50 | 5.40 | | 3 00 | 5 60 | 8 | 4 80 | 8.8 | 0, 1 | |
| SULFATE
(MG/L) | 92.0 | 101.0 | | 81.0 | 089 | | | | | | | 86.0 | | 0.06 | | | 116.0 | 85.0 | | | | | | 37.0 | 0.11 | | 53 0 | 54.0 | | 0.44 | 0.94 | 42.0 | 0.74 | 44.0 | 0 13 | |
| YEAR | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1961 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 |
| USE | | | | | | | | | | | PUBLIC SUPPLY | | | | | | | | | | | | | PUBLIC SUPPLY | | | | | | | | | | | | |
| (GPM) (GPM) | | | | | | | | | | | 1.078 | | | | | | | | | | | | | 1, 200 | | | | | | | | | | | | |
| REF. | | | | | | | | | | | NSI. | | | | | | | | | | | | | MSL | | | | | | | | | | | | |
| INTERVAL
BOTM. | | | | | | | | | | | -33 | | | | | | | | | | | | | -51 | | | | | | | | | | | | |
| ra SCREENED
TOP | | | | | | | | | | | 2 | | | | | | | | | | | | | 2 | | | | | | | | | | | | |
| | | | | | | | | | | | 5 | | | | | | | | | | | | | ÷. | | | | | | | | | | | | |
| DISTANCE
(FT) | | | | | | | | | | | 13.220 | | | | | | | | | | | | | 12,710 | | | | | | | | | | | | |
| ASNITH
(DEGREES) | | | | | | | | | | | 240.0 | | | | | | | | | | | | | 168 5 | | | | | | | | | | | | |
| ¥ | | | | | | | | | | | 240 | | | | | | | | | | | | | 52 | | | | | | | | | | | | |
| JUSC
MELL NO | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

Щ.

16)

-

\*\*\*

##

\$10

1980. 1943

...

...

89

\*\*\*

8

.

10.

WELL AND GROUND WATER INFORMATION FOR PUBLIC WATER SUPPLY WELLS IN THE GENERAL VACINITY OF THE DEKNATEL SITE

| PUMPAGE STATIC WATER
(2) LEVEL (FT MSL) | 01 1 10 | 100 0 2.60 | | 65.9 0.50 | 85.9 2.40 | 99.5 -1.50 | 40.7 -6.10 | 37 4 -13.60 | 76.6 -3.60 | 98.7 -1.50 | 06:9- 9:56 | 6.6 .6 | 73 2 | 01'1- 6.6 | 17 6 -7 40 | 16 4 -11 20 | | | | | • | 95.3 -8.90 | 99.9 =7.80 | | | 53.4 | 96.3 -10.80 | 01 01 - 6 66 | 96.7 -11.60 | | 83.9 -8 6U | 09.6 - 6.00 | | | |
|--|---------------|--------------|------|-----------|-----------|------------|------------|-------------|------------|------------|------------|---------------|------|---------------|------------|-------------|--------------------|-------|--------|-------|-------|------------|------------|--------|------|-------|---------------|--------------|-------------|---------|------------|-------------|---------------|-----------------------------|-------------------------------|
| COPPER
(MG/L) | | | | <0.02 | 0.03 | | 0.02 | 0 03 | 0.02 | <0.02 | <0.02 | <0.02 | | | | | <0 <sup>.</sup> 02 | 0 02 | \$0.02 | <0 02 | 0.02 | 0.03 | <0.02 | 10.0 | | 0.05 | | <0.02 | | \$0.0\$ | | 11 0 | - 0
0
0 | 0 0 0
2 9 0
2 2 | 0 11
0 0 0
0 02
0 02 |
| CHROMIUM
(NG/L) | | | | <0.02 | <0.02 | | <0.02 | ¢0.02 | <0.02 | <0.02 | <0 02 | <0.02 | | | | | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0 02 | <0.02 | \$0.05 | | <0.02 | | €00.003 | | <0.02 | | ¢0.02 | 0°0°
20°0 | 6 02
6 02
6 02 | 0 0
0 0 0
0 0
0 0 |
| NLTRATE
(MG/L) | 0 08 | 6 0 0 | | €0.1 | £0.1 | | £0.1 | 0.20 | ¢0.1 | 6.1 | 0 10 | 0.10 | | 4.03 | 4.26 | | 0, 1 | 4.80 | 4.80 | 6.00 | 7.10 | 6.90 | 7.50 | 8.60 | 5.90 | 5.86 | 3 24 | 2.71 | | 2.40 | | 2.50 | 2.50
2.33 | 2.50
2.33
2.40 | 2.50
2.33
2.70
2.70 |
| SULFATE
(MG/L) | 24 0 | | | 20.02 | 23.0 | | 26.0 | 27.0 | 27.0 | 30.0 | 0 00 | 0.65 | | 67.0 | 65.0 | | 65.0 | 0, 46 | 68.0 | 63 0 | 0.46 | 0.08 | 58.0 | 0 69 | 54.0 | 44.3 | 0.94 | 47 0 | 45.0 | 0 01 | | 0.94 | 46.0
45.3 | 46.0
45.3
47.0 | 46.0
43.3
47.0
49.0 |
| YEAR | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1961 | 1982 | 1983 | 1984 | 1985 | 1986 | 1961 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 5261 | 1976 | 1977 | 1978 | | 1979 | 1979
1980 | 1979
1980
1981 | 979
0891
1981 |
| USE | PUBLIC SUPPLY | | | | | | | | | | | | | PUBLIC SUPPLY | | | | | | | | | | | | | PUBLIC SUPPLY | | | | | | | | |
| CAPACITY
(GPM) | 1,800 | | | | | | | | | | | | | 1.000 | | | | | | | | | | | | | 1.600 | | | | | | | | |
| REF | MSL | | | | | | | | | | | | | NSI | | | | | | | | | | | | | HSL 1 | | | | | | | | |
| INTERVAL
BOTM. | -403 | | | | | | | | | | | | | -57 | | | | | | | | | | | | | -224 | | | | | | | | |
| SCREENED | 20 | | | | | | | | | | | | | 10 | | | | | | | | | | | | | 10 | | | | | | | | |
| SCI
106 | -363 | | | | | | | | | | | | | -37 | | | | | | | | | | | | | -184 | | | | | | | | |
| DISTANCE
(FT) | 12,710 | | | | | | | | | | | | | 7.660 | | | | | | | | | | | | | 7.660 | | | | | | | | |
| ASMITH
(DEGREES) | 168 5 | | | | | | | | | | | | | 216.5 | | | | | | | | | | | | | 216.5 | | | | | | | | |
| NYSDEC JUSC
VELL NO VELL NO | 25A | | | | | | | | | | | | | 26 | | | | | | | | | | | | | 264 | | | | | | | | |
| NY SDEC
WELL NO | N7482 | | | | | | | | | | | | | 01450 | | | | | | | | | | | | | 01815 | | | | | | | | |

٠

.

ist.

./ **4**

WELL AND GROUND WATER INFORMATION FOR PUBLIC WATER SUPPLY WELLS IN THE GENERAL VACINITY OF THE DEKNATEL SITE

| YEAR SULFATE NITRATE CHRONIUM COPPER PUNPAGE STATIC WATER
(MG/L) (MG/L) (MG/L) (MG/L) (Z) LEVEL (FT MSL) | 42.0 3.60 <0.02 0.06 | 46.0 3.40 <0.02 0.03 64.4
tso 5.03 /0.02 1.03 135 | | | | 38.0 1.70 <0.02 <0.02 99.9 | 37.0 3.10 <0.02 0.32 | 6.98 | 42 0 3.50 <0.02 <0 02 | 45 0 2.90 < 0.02 < 0.02 99 9 | 43.0 3.40 <0.02 0.02 | 47.0 3.70 <0.02 0.02 100.0 -8 | 47.0 4.00 <0.02 <0.02 99.8 | 48 0 4.00 <0.02 0 03 69 3 -7 | | 40.0 3.80 12.4 | 41.0 4.02 12.5 | | 39 0 5.80 <0.02 <0.02 36 6 | 33.0 3.00 <0.02 <0.02 5.9 | 14.7 | 41.0 6.20 <0.02 0.02 8.8 | 36.0 4.80 <0.02 <0.02 | 33.0 4.10 <0.02 <0.02 20.0 | 40.0 4 30 <0.02 0 03 1 2 | 50 0 3.30 <0.02 0.06 0 6 | 39.0 4.60 <0.02 <0.02 5.9 | - + 0 | 18.0 0.06 99.2 7. | 26.0 0.06 99.9 | 915 5 | | <0.1 <0.02 <0.02 55.0 | 22 0 <0.1 <0.02 <0.02 55 0 -1
22 0 <0.01 <0.02 0.06 64 9 |
|---|-------------------------------------|--|-------|-------|---|----------------------------|----------------------|------|-----------------------|------------------------------|----------------------|-------------------------------|----------------------------|------------------------------|------|----------------|----------------|------|----------------------------|---------------------------|------|--------------------------|-----------------------|----------------------------|--------------------------|--------------------------|---------------------------|-------|-------------------|----------------|-------|------|-----------------------|---|
| 1985 42.0
1986 46.0
1987 35.0
1975 35.0 | 1986 46.0
1987 35.0
1975 35.0 | 1975 35 0 | | 0.6% | 2 | 38.0 | 37.0 | 1980 | | | | | | | 1967 | 1975 40.0 | | 1977 | | 33.0 | 1980 | 41.0 | 36.0 | 33.0 | 0.04 | 50 0 | 39.0 | 1987 | 0.81 2791 | | | 22 0 | | 22 0 |
| | | | | | | | | | | | | | | | | PUBLIC SUPPLY | | | | | | | | | | | | | PUBLIC SUPPLY | | | | | |
| | | | . 200 | | | | | | | | | | | | | 1,200 | | | | | | | | | | | | | 800 | | | | | |
| | | | | | | | | | | | | | | | | MSL | | | | | | | | | | | | | NSL | | | | | |
| | | | 97 | 5 | | | | | | | | | | | | -34 | | | | | | | | | | | | | -455 | | | | | |
| | | | £ | | | | • | | | | | | | | | 10 | | | | | | | | | | | | | 10 | | | | | |
| | | | 47- | Ŧ | | | | | | | | | | | | - 16 | | | | | | | | | | | | | \$23 | | | | | |
| | | | U77 8 | | | | | | | | | | | | | 13,530 | | | | | | | | | | | | | 13,530 | | | | | |
| (DEGREES) | | | | 0.007 | | | | | | | | | | | | 142.5 | | | | | | | | | | | | | 142.5 | | | | | |
| VELL NO | | | 27 | 5 | | | | | | | | | | | | 28 | | | | | | | | | | | , | | 28A | | | | | |
| NELL NO | | | 21747 | | | | | | | | | | | | | N2414 | | | | | | | | | | | | | N2413 | | | | | |

ions:

.

ener Mar

副作 Ma

¥е)

然

.....

\*\*\*

688

64:

÷.

WELL AND GROWND WATER INFORMATION FOR PUBLIC WATER SUPPLY WELLS IN THE GEMERAL VACINITY OF THE DEKMATEL SITE

STATIC WATER LEVEL (FT MSL) -9.30 -2.10 -5.50 8.60 09.4 00.2 7.7 PUMPAGE (X) 85.6 91.6 85.2 85.4 12.0 17.5 17.5 0 0 0 COPPER (NG/L) 888 88 18 20 2 2 2 2 2 2 0 0 0 0 0 0 ÔÔ ő $\phi \circ \phi \phi \phi \phi$ CHROM I UM (HG/L) 888 88 8 8 2 2 2 2 2 2 **8 8 8** ô. ô. ô ϕ ϕ ϕ ϕ ϕ ϕ ő NITRATE (MG/L) 0, 0 0, 0 1, 0 1, 0 1, 0 1, 0 8. Y 6. 60 09. 7 09. 7 09. 7 09. 7 09. 7 09. 7 355 = = ଟ୍ଟ ଟ୍ 8 0 9 Q . 0 0 ġ SULFATE (MG/L) 24 0 24 0 24 0 24 0 31 0 35.0 38.0 0,0 0.0 0 58. 2 2 2 \*\*\*\*\*\* YEAR PUBLIC SUPPLY PUBLIC SUPPLY PUBLIC SUPPLY USE CAPACITY (GPM) 1,000 1,200 1,60 SCREENED INTERVAL AND TOP BOTH, REF MSL. ТŞ MSL -145 -208 Ŗ 2 2 2 -10 -168 384 DISTANCE (FT) 13, 530 3.250 3, 250 ASMETH (DEGREES) 237.0 ŝ 0 3 237 WYSDEC JUSC WELL NO WELL NO **588** 29A \$ N10211 Q1534 01629

3

ô

20

ô,

20

•

0

<u>e</u>

.

•

-49 2.4 · ; ģr

. da

VELL AND GROUMD WATER INFORMATION FOR PUBLIC WATER SUPPLY WELLS IN THE GENERAL VACINITY OF THE DEKMATEL SITE

| NYSDEC | JUSC
WELL NO | ASMI TH
(DEGREES) | DISTANCE
(FT) | | SCREENED
TOP | INTERVAL
BOTM. | REF. | CAPACITY
(GPH) | USE | YEAR | SULFATE
(MG/L) | NITRATE
(MG/L) | CHRON1UM
(MG/L) | COPPER
(NG/L) | PUMPAGE
(%) | STATIC HATER
LEVEL (FT MSL) |
|--------|-----------------|----------------------|------------------|------|-----------------|-------------------|------|-------------------|---------------|------|-------------------|---------------------------|--------------------|------------------|----------------|--------------------------------|
| N4077 | 35 | 81.5 | 10,620 | 2 | 2 | sp
' | NSL | 1.400 | PUBLIC SUPPLY | 1975 | 12.0 | 0.58 | | | 8.2 | |
| | | | | | | | | | | 1976 | 12.0 | 0.35 | | | 13.3 | 31 30 |
| | | | | | | | | | | 1977 | | | | | 16.9 | 28 80 |
| | | | | | | | | | | 1978 | 7.0 | 1.40 | <0.02 | 0.03 | 16.2 | 28 10 |
| | | | | | | | | | | 1979 | 12.0 | 0.0 | <0.02 | 0.04 | 10.9 | 30 50 |
| | | | | | | | | | | 1980 | 11.0 | 1.40 | <0.02 | 0.03 | 20.2 | 3.25 |
| | | | | | | | | | | 1961 | 12.0 | 2.60 | ≤0 .02 | 0 20 | 24.7 | 28.10 |
| | | | | | • | | | | | 1982 | 18.0 | 6.40 | 40.02 | 60.0 | 13.5 | 28.40 |
| | | | | | | | | | | 1983 | 24.0 | 3.70 | <0.02 | 0.14 | 39.9 | 24 80 |
| | | | | | | | | | | 1984 | 12.0 | 1.80 | 40 .02 | 10.0 | 54.9 | 24.00 |
| | | | | | | | | | | 1985 | 11.5 | 2.10 | <0.02 | 0.03 | 39.8 | 29.80 |
| | | | | | | | | | | 1986 | 35.0 | 2.60 | <0.02 | 0.03 | 35.9 | 26.40 |
| | | | | | | | | | | 1987 | 27.0 | 3.10 | <0.02 | <0:0> | 5.7 | 26 10 |
| N4,298 | 35ARD | 81.5 | 10.620 | -275 | 01 | -321 | MSL | 1.500 | PUBLIC SUPPLY | 1975 | 27.0 | 06.4 | | | | 23 30 |
| | | | | | | | | | | 1976 | 25.0 | 4.37 | <0.003 | <0.02 | 616 | 26.70 |
| | | | | | | | | | | 1977 | | | | | 82 3 | D6 72 |
| | | | | | | | | | | 1978 | 22.0 | 06 '' ' | <0.02 | 0.03 | 81 4 | 25 30 |
| | | | | | | | | | | 6261 | 22.0 | 08.4 | <0.0> | 0.02 | 1.25 | 23 80 |
| | | | | | | | | | | 1980 | 24.0 | 07.7 | <0.02 | 0.02 | 67.6 | 19.60 |
| | | | | | | | | | | 1981 | 24.0 | 4.70 | €0.02 | 0.02 | 53.9 | 21.90 |
| | | | | | | | | | | 1982 | 24.0 | 6.30 | <0.02 | <0.02 | 11.0 | 22.00 |
| | | | | | | | | | | 1983 | 25 0 | Q2 7 | <0.02 | <0 02 | 82.8 | 20 20 |
| | | | | | | | | | | 1984 | 15.0 | 2.80 | <0.02 | <0.02 | 36.2 | 23 30 |
| | | | | | | | | | | 1985 | 23.0 | 8.4 | <0.02 | 0.02 | 36.2 | 21.10 |
| | | | | | | | | | | 1986 | 24.0 | 4.20 | <0.02 | <0.02 | 26.4 | 24.10 |
| | | | | | | | | | | 1987 | 13.5 | 2.90 | <0.02 | 0.07 | 84.8 | |
| 02026 | \$ | 174.0 | 14.634 | 0 | | 0 | NSL | 0 | PUBLIC SUPPLY | 1975 | 0.62 | 0.05 | | | 45.9 | -5 40 |
| | | | | | | | | | | 1976 | 33.0 | 0.08 | | | 34.6 | -2.40 |
| | | | | | | | | | | 1977 | | | | | 59.1 | -3.50 |
| | | | | | | | | | | 1978 | 38.0 | 0,40 | <0.02 | 0.05 | 61.4 | 8 .9 |
| | | | | | | | | | | 1979 | 35.0 | 6.10 | <0.02 | 0.0 | 51.2 | 99.7 |
| | | | | | | | | | | 1980 | | | | | 55.6 | -1.80 |
| | | | | | | | | | | 1961 | 52.0 | <0.10 | €0.02 | 10.0 | 75.8 | |
| | | | | | | | | | | 1982 | 39 0 | <0.10 | <0.02 | 0.0 | 80.5 | |
| | | | | | | | | | | 1983 | 37 0 | <0.10 | <0.02 | 90:0 | 55.7 | -2 20 |
| | | | | | | | | | | 1984 | 39.0 | <0.10
10 | <0 0\$ | 0.06 | 78.1 | |

÷.

81414

.

6.

1

-

ú.

1

WELL AND GROUND WATER INFORMATION FOR PUBLIC WATER SUPPLY (IN THE GENERAL VACINITY OF THE DEKNATEL SITE

STATIC WATER LEVEL (FT MSL) 88889223 400 i mm PUMPAGE (X) いっかがおみがい酸品がやい酸酸酸酸酸酸酸酸酸酸酸素酸素酸酸酸素酸化合きのでもないです。 (MG/L) 888888 88 88 8 8 2 2 8 0 0 00 $\phi \circ \phi \phi \phi \circ \phi$ ô ō 0000 CHROMIUM (NG/L) 2 2 88 888888 60 õ 8888 êê ô ô Θ Θ Θ Θ Θ Θ Θ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ 0000 ő ø NI TRATE (MG/L) 9 5 8 0 1 1 0 1 8 0 8 1 0 1 8 8 8 8 8 n 2 8 88 28 8888 . . 0 0 00 44 ~~~ 0 SURFATE (MG/L) 0 0 00 00 5 3 \$ 5 3 8 88 99 99 rEAR PUBLIC SUPPLY PUBLIC SUPPLY PUBLIC SUPPLY USE CAPACITY (GPN) 1, 183 1,400 1,490 REF Ш **M**SL ١ SCREEMED INTERVAL BOTH ş -53 Ŕ 2 2 2 ş 9 0 -33 ł DISTANCE (FT) 050 3,450 3 N ¢. ASMLTH (DEGREES) 0 ŝ 0 8 259 22 £ JUSC 37 NELL 38 ŝ NYSDEC VELL NO a2000 10010 0200

•

NELLS

. 46 -34 646 -2019 . 44

я

WELL AND GROUND WATER INFORMATION FOR PUBLIC WATER SUPPLY WELLS IN THE GENERAL VACINITY OF THE DEKNATEL SITE

| STATIC WATER
LEVEL (FT MSL) | | 00 ~ · | | | | | | | | 1.30 | | | | | | | | | | | | | 1- | | | | | | | | -2.20 | | | -1 | - 10 | | -10 |
|--------------------------------|------------|--------|-------|-------|-------|-------|--------------|---------------|---------|------|-----------|---------------------|----------|-------|-------|---------------|--------|-------|-------|--------|---------------|---------------|------|-------|--------------|-------|-------|-------|-------|-------|-------|------|-------|---------------|--------|------|-------|
| PUMPAGE
(| | 6.66 | 84.9 | 90.2 | 2.4 | 11.0 | 2.4 | 8.66 | 8 | 75.4 | 6°.
66 | 2 . 6 | <u>0</u> | 8.66 | 8 | 78.4 | 6
6 | 2 86 | 73.0 | | 8.6 | 18.2 | 10 6 | 9.5 | 5.3 | 16.7 | 35.5 | 38 0 | 5.8 | 8 | 71.8 | 0 | | 5°86 | 9.6 | | 78.4 |
| COPPER
(MG/L) | | 0.07 | 0.0 | 0.02 | 0.02 | 0.03 | 6 .02 | | \$0.0\$ | | 0.02 | 0.06 | 0 02 | 0.02 | 0.05 | 90 0 | 0 02 | 0.03 | <0 02 | \$0.05 | | 0 02 | | 0.05 | 9 0 0 | 0.03 | 0.0 | 0 07 | 0.03 | 0.02 | 0.03 | | <0.02 | | 0.04 | | 0.02 |
| CHROM LUM
(MG/L) | | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | | <0.003 | | <0.02 | <0.02 | <0.02 | <0.02 | <0 0> | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | | <0.003 | | <0 02 | 40.0× | <0.02 | <0.02 | <0 02 | <0.02 | <0.02 | <0.02 | | <0.02 | | <0.003 | | (U U) |
| NITRATE
(MG/L) | | 7.50 | 8.20 | 7.60 | 6.70 | 7.00 | 4.53 | 6.05 | 6.23 | | 6 20
9 | 00 / | 6.53 | 7.50 | 6.50 | 9 . 60 | 6.20 | 6.80 | 6 BU | 7.90 | 9.11 | 8.50 | | 12 10 | 11.80 | 13.60 | 12.10 | 9.60 | 09.6 | 8 70 | 9.30 | | 9.30 | 12 0 | 0.67 | | 07.0 |
| SULFATE
(MG/L) | | 52.0 | 50.0 | 54.0 | 0 87 | 47 0 | 33.0 | 0.62 | 30.0 | | | 29.0 | 203 | 30.0 | 0.62 | 0.65 | 32.0 | 31.0 | 30.0 | 49.0 | 0.08 | 9 0.08 | | 52.0 | 0.08 | 53.0 | 2 0 | 56.0 | 53.0 | 55.0 | 61.0 | | £0.5 | 42 0 | 0.74 | 0.04 | |
| YEAR | | 1982 | 1983 | 1984 | 1985 | 1986 | 1961 | 1975 | 1976 | 1771 | 8/61 | 1979 | 1980 | 1961 | 1982 | 1983 | 1984 | 1965 | 1986 | 1987 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1961 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1975 | 1976 | 1977 | 97.04 |
| USE | | | | | | | | PUBLIC SUPPLY | | | | | | | | | | | | | PUBLIC SUPPLY | | | | | | | | | | | | | PUBLIC SUPPLY | | | |
| CAPACITY
(GPM) | | | | | | | | 1,600 | | | | | | | | | | | | | 0 3 | | | | | | | | | | | | | 1, 700 | | | |
| REF. | | | | | | | | NSL | | | | | | | | | | | | | MSL | | | | | | | | | | | | | MSL | | | |
| INTERVAL
BOTM. | | | | | | | | -182 | | | | | | | | | | | | | -37 | | | | | | | | | | | | | -232 | | | |
| SCREENED
TOP | | | | | | | | 2 | | | | | | | | | | | | | 0 | | | | | | | | | | | | | 10 | | | |
| SC | 5 | | | | | | | -141 | | | | | | | | | | | | | -27 | | | | | | | | | | | | | - 192 | | | |
| DISTANCE
(FT) | | | | | | | | 3,450 | | | | | | | | | | | | | 9.710 | | | | | | | | | | | | | 9,710 | | | |
| ASMLTH
(DEGREES) | (DEALE 3) | | | | | | | 320.0 | | | | | | | | | | | | | 222.0 | | | | | | | | | | | | | 222.0 | | | |
| JUSC
VELL NO | | | | | | | | 39.4 | | | | | | | | | | | | | 42 | , | | | | | | | | | | | | 424 | | | |
| NYSDEC
VELL NO | 2 | | | | | | | 02188 | | | | | | | | | | | | | 92027 | | | | | | | | | | | | | 92028 | | | |

ari

....

in.

-

WELL AND GROUND WATER INFORMATION FOR PUBLIC WATER SUPPLY WELLS IN THE GENERAL VACINITY OF THE DEKMATEL SITE

LEVEL (FT MSL) STATIC WATER 9 9 9 <u>9 9 9 9 9 9</u> 8 20 00740801 2 PUMPAGE 3 (MG/L) 8 2 228888 8 8 38238 000000 00 o o 00000 CHROMIUM (HG/L)
 0.02

 0.02

 0.02

 0.02

 0.02

 0.02

 0.02

 0.02

 0.02

 0.02

 0.02

 0.02

 0.02

 0.02

 0.02

 0.03

 0.04

 0.05

 0.05

 0.02

 0.03

 0.04

 0.05

 0.05

 0.05

 0.05

 0.05

 0.05

 0.05

 0.05

 0.05

 0.05

 0.05

 0.05

 0.05

 0.05

 0.05

 0.05

 0.05

 0.05

 0.05

 0.05

 0.05

 0.05

 0.05

 0.05

 0.05

 0.05

 0.05

 0.05
 88 88888 2 3 888888 ô ô 0000000 ê ô 0000000 NITRATE (MG/L) 8 2 888888 83 8 8 ŝ n n NN NN ~~~~ ÷ SULFATE (MG/L) 0 0 17 0 24 0 26 0 28 0 28 0 0 0 00 0 \$ \$ \*\*\*\*\* 2 2 2 2 3 YEAR PUBLIC SUPPLY PUBLIC SUPPLY PUBLIC SUPPLY USE CAPACITY (6PN) 1.200 1.000 1,600 REF NSL MSL MSL -- SCREENED INTERVAL BOTH -260 -15 77--2 2 2 2 ۴ -226 -12 DISTANCE (FT) 9.320 9.360 067.6 ASMITH (DEGREES) 0 0 0 118 119 120. NELL NO JUSC 448 444 \$ NYSDEC MELL NO NS 155 N5156 N6744

ine Ne

6.8

\*\*\*

Sint

WELL AND GROUMD WATER INFORMATION FOR PUBLIC WATER SUMPLY WELLS IN THE GENERAL VACINITY OF THE DEKMATEL SITE

| (X) LEVEL (FT MSL) | | 17.2 17.10 | 12.5 18.70 | | | | 5.0 20.00 | | | 18.8 19.00 | 12.9 20.00 | 13.5 | 69 5 14.80 | | 74 6 11.00 | 62.6 10.90 | | | | 23 1 18.00 | | | 33.0 13.10 | 52.4 19.20 | 35.3 | | | 14.6 6.40 | | | 17.8 9.30 | | | | |
|---------------------|------|------------|------------|-------|------|---------|-----------|---------|---------|------------|------------|------|---------------|------|------------|------------|-------|------|--------------|------------|---------|--------|------------|------------|------|---------------|------------------|-----------|-------|-------|-----------|-------|-------|-------|-------|
| COPPER
(MG/L) | | | 0 07 | 0.06 | | 0.04 | 90.0 | \$0:0\$ | <0.0> | 0 02 | 0.05 | | | | | 0 05 | 0.0 | | 0.03 | 0.05 | 0.03 | 8
0 | 0.05 | 0.08 | | | | | <0.0> | <0.02 | | <0.02 | <0.02 | ¢0 05 | <0.02 |
| (HROM IUN | | | \$0.0\$ | <0.02 | | \$0.0\$ | <0.02 | <0.02 | \$0.0\$ | \$0.05 | <0.02 | | | | | \$0 05 | <0.02 | | <u>\$0.0</u> | \$0 05 | \$0. 05 | <0.02 | <0.02 | <0.02 | | | | | <0.0≥ | <0.0≥ | | ¢0.02 | ¢0 05 | <0.02 | <0 02 |
| NI TRA TE
(MG/L) | 6.51 | | 5.50 | | | 6.9 | 3.20 | 6.40 | 4.20 | 5 00 | 3.80 | | 3.02 | 2.84 | | 3.20 | 3.50 | | 3.30 | 3.00 | 3.60 | 3.10 | 3.10 | 2.90 | | 7.80 | 8.60 | | 8.70 | | | 9.60 | 6.90 | 5.60 | 10.40 |
| SULFATE
(MG/L) | 55.0 | | 0.04 | 43.0 | | 0.04 | 0.65 | 38 0 | 36.0 | 35.0 | 35.0 | | 35.0 | 28.0 | | 25.0 | 26.0 | | 25.0 | 26.0 | 24.0 | 24.0 | 26 0 | 27.0 | | 65.0 | 6 <sup>.</sup> 0 | | 54.0 | | | 55.0 | 52.0 | 39.0 | 42.0 |
| YEAR | 1976 | 1977 | 1978 | 1979 | 1980 | 1961 | 1982 | 1963 | 1984 | 1985 | 1986 | 1967 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 |
| USE | | | | | | | | | | | | | PUBLIC SUPPLY | | | | | | | | | | | | | PUBLIC SUPPLY | | | | | | | | | |
| CAPACITY
(GPN) | | | | | | | | | | | | | 1,600 | | | | | | | | | | | | | • | | | | | | | | | |
| HEF. | | | | | | | | | | | | | NSL | | | | | | | | | | | | | | | | | | | | | | |
| INTERVAL
BOTH. | | | | | | | | | | | | | -273 | | | | | | | | | | | | | 0 | | | | | | | | | |
| SCREENED
FOP | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | | | | | | | | | |
| SC
100 | | | | | | | | | | | | | -233 | | | | | | | | | | | | | • | | | | | | | | | |
| DISTANCE
(FT) | | | | | | | | | | | | | 9.530 | | | | | | | | | | | | | 12,880 | | | | | | | | | |
| ASMITH
(DEGREES) | | | | | | | | | | | | | 121.0 | | | | | | | | | | | | | 209 0 | | | | | | | | | |
| UNSC NO | | | | | | | | | | | | | 140 | | | | | | | | | | | | | 46 | | | | | | | | | |
| NYSDEC
WELL NO | | | | | | | | | | | | | N6745 | | | | | | | | | | | | | 02243 | | | | | | | | | |

na

Wiss

199

1211

-

WELL AMD GROUND WATER INFORMATION FOR PUBLIC WATER SUPPLY WELLS IN THE GEMERAL VACINITY OF THE DEKMATEL SITE

3

ыę

PUMPAGE STATIC WATER (2) LEVEL (FT MSL) -2.30 -2.10 -6.60 -1.20 -1.10 -7 60 -1.60 -2.70 -1.20 -5 30 -3 60 -5 160 -5 2 8 2 **8 8** 2 2 **8** 3 8 -13 2282222 0 1 4 8 113 0 6 1 6 1 6 1 22 1 22 1 22 1 22 1 0 1 (X) 0 0 COPPER (MG/L) 0.05 0.00 0 06 0 12 8 8 2 8 2 8 ð ô ö 00000 CHROM JUN (NG/L) 88 8 <0.003 88888 ô ô 8 8 8 8 8 8 8 8 8 8 **8** 8 8 8 8 ŝ NLTRATE (MG/L) 8.00 3.60 9.50 7.20 7.80 \* 2 6.60 5.90 4.14 3.82 88888 so so 9999\* SULFATE (MG/L) 59.0 55.0 51.0 51.0 52.0 52.0 52.0

 33
 0
 1
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 YEAR PUBLIC SUPPLY PUBLIC SUPPLY PUBLIC SUPPLY USE CAPACITY (GPM) 1,500 1,600 1,438 -- SCREENED INTERVAL ---TOP BOTM. REF. HSL. MSL WSL. 583 \$ -59 -2 2 2 -249 \$ ŝ DISTANCE (FT) 5.440 5.440 200 ÷ ASMLTH (DEGREES) 0 0 \$ 8 8 228 NELL NO JUSC ¥14 13 8 NYSDEC WELL NO 02275 02276 05200

.

WELL AND GROUND WATER INFORMATION FOR PUBLIC WATER SUPPLY WELLS IN THE GENERAL VACINITY OF THE DEKMATEL SITE

LEVEL (FT MSL) STATIC WATER 8 8 8 8 8 8 8 8 8 8 8 8 8 9 8 9 9 28238388888 882222 20 11 12 12 8 0 8 8 4 0 1 X X 0 1 0 1 7 7 8 N 5 9 <u>5</u> 7 $\mathbf{v}_{1}^{\prime} \leftarrow \mathbf{v}_{2}^{\prime} \leftarrow \mathbf{v}_{2}^{\prime}$ PUMPAGE 3 \* 0 0 0 0 \* \* \* \* \* \* (WG/L) 0 07 0 02 COPPER 0.03 <0.02 0.08 0.02 0.0 0 07 6 8 0 ô CHROM I UN (MG/L) 0.02 0.02 0.02 0.02 0.02 0.02 20 88 8 88 8888 8 õ 2 2 ô ô ô 0.0 \diamond \diamond \diamond \diamond \diamond \diamond ô ô ô â â (HG/L) MITRATE 10 00 9.50 9.98 7.55 7.35 7.80 7.70 7.46 8.20 7.80 8.70 8.13 7.15 7.40 88838 8 5 3 23 NNNON ÷ . • 0 SULFATE (MG/L) 0 0 \*\*\*\* 5 21 EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01
EB01</l YEAR PUBLIC SUPPLY PUBLIC SUPPLY PUBLIC SUPPLY USE CAPACITY 1,600 1,800 1,400 (GPH) -- SCREENED INTERVAL ---TOP BOTM. REF. HSL MSL MSL -219 -162 -63 2 2 2 -179 -122 -DISTANCE (f T) 6, 560 2.480 2,480 ASMITH (DEGREES) 228.5 0 0 18 8 NELL NO 484 JUSC ¥69 \$ NYSDEC VELL NO 05300 02343 Q2 321

. Militari

100

艜

新い

200

Meri

1000

-

秘格

in a

WELL AND GROUND WATER INFORMATION FOR PUBLIC WATER SUPPLY WELLS IN THE GEMERAL VACINITY OF THE DEKMATEL SITE

STATIC WATER LEVEL (FT MSL) 88888 $\dot{\boldsymbol{\rho}} = \dot{\boldsymbol{\rho}} \circ \dot{\boldsymbol{\rho}} + \dot{\boldsymbol{\rho}} \circ \dot{\boldsymbol{\rho}} \circ \dot{\boldsymbol{\rho}} + \dot{\boldsymbol{\rho}} \circ \dot{\boldsymbol{\rho}} \circ \dot{\boldsymbol{\rho}} + \dot{\boldsymbol{\rho}} \circ \dot{\boldsymbol{\rho}} \circ \dot{\boldsymbol{\rho}} + \dot{\boldsymbol{\rho}} \circ \dot{\boldsymbol{\rho}} \circ \dot{\boldsymbol{\rho}} + \dot{\boldsymbol{\rho}} \circ \dot{\boldsymbol{\rho}} \circ \dot{\boldsymbol{\rho}} + \dot{\boldsymbol{\rho}} \circ \dot{\boldsymbol{\rho}} \circ \dot{\boldsymbol{\rho}} + \dot{\boldsymbol{\rho}} \circ \dot{\boldsymbol{\rho}} \circ \dot{\boldsymbol{\rho}} \circ \dot{\boldsymbol{\rho}} + \dot{\boldsymbol{\rho}} \circ \dot{\boldsymbol{\rho}} \circ \dot{\boldsymbol{\rho}} \circ \dot{\boldsymbol{\rho}} \circ \dot{\boldsymbol{\rho}} + \dot{\boldsymbol{\rho}} \circ \dot{\boldsymbol{$ i i i en -----PUMPAGE 80 8 37 5 51 7 0 0 26 7 13 1 13 1 14 5 14 5 2 1 16 5 2 1 17 2 0 7 0 0 0 (2) COPPER (MG/L) 8688 0.05 0.0 0.0 0.03 0.03 0.02 0.02 0.05 0.05 8888888 **6** 6 8 0 0 0 0 0000000 0 0 ő CHROMIUM (NG/L) 8 8 8 8 8 88888 88 8888888 **8** 8 03 $\hat{\Theta}$ $\hat{\Theta}$ $\hat{\Theta}$ $\hat{\Theta}$ ô 0000000 ê ê 8 6 8 8 8 8 8 8 ê ê ő NITRATE (MG/L) 5928 4.80 4.35 0.27 0.16 8 ~ ~ ~ ~ ~ ~ 88 0,02,02 0 2 0 Q 0 0 - 0 0 0 SULFATE (MG/L) 25.0 0000 55.0 56.0 00000 0 0 0 0 0000000 0 ~ 0 0 \*\*\*\* 8 3 8 3 5 8 8 8 8 **ガ え だ え れ れ れ** 8 2 3 9 YEAR PUBLIC SUPPLY PUBLIC SUPPLY SUPPLY USE PUBLIC CAPACITY (GPH) 1.200 1.225 1.200 REF ŝ ŝ MSL SCREEMED INTERVAL BOTM. -30 224 69-2 2 2 1 2 ŝ -267 - 184 DISTANCE (FT) 200 9, 380 0%6 0 æ ASNITH (DEGREES) 5 \$ \$ 181 250. 181 NELL NO JUSC 544 3 3 NYSDEC WELL NO 21120 02443 a3034

•

WELL AND GROUND WATER INFORMATION FOR PUBLIC WATER SUPPLY WELLS IN THE GENERAL VACINITY OF THE DERMATEL SITE

LEVEL (FT MSL) STATIC WATER N 0 -8 3 3 Y T T Y R S 8 \*\*\*\*\*\*\* PUMPAGE રે COPPER (NG/L) 323335 0.0 88 ô ô CHROM I UN (MG/L) 88 88888 8 88888888 ô ô 0000000 ô NI TRATE (MG/L) 8 2 2 8 2 8 3 3 3 2 2 2 ₽ ₽ 22222 ጽ ጽ ô ô 000000 nr 0 N 8 0 8 M 4 N SULFATE (NG/L) 38 0 42 0 42 0 48 0 48 0 49 0 49 0 46 0 17 0 0 0 43.0 28.0 28.0 27.0 32.0 2 8 rEAR PUBLIC SUPPLY PUBLIC SUPPLY USE CAPACITY (GPN) 1,400 1,200 SCREENED INTERVAL ----REF **H**SL MSL BOTM. 8 -107 2 2 90 -380 ł -67 DISTANCE (FT) 0 12.510 ASMITH (DEGREES) 0.0 72 0 NELL NO JUSC 20 52 NYSDEC VELL NO 02955 0797N

.....

NÚ

÷.

-

18.67

翻訳

.

-

.

輸送

6187

(jac)

688

. Maisi

1

. Béi

in.

WELL AND GROUMD WATER INFORMATION FOR PUBLIC WATER SUPPLY MELLS IN THE GENERAL VACINITY OF THE DEKNATEL SITE

. -#

| STATIC WATER
LEVEL (FT MSL) | | 38.50 | 1 20 | 37.20 | 36.00 | 57 . 70 | 37 20 | 35 40 | 32 70 | 24.20 | 33 00 | 54.2D | 32.20 | 30 . 10 | | | | | | | -12,70 | -14.60 | -16.10 | -14 . 40 | -16.10 | -18 00 | -24 00 | -18,10 | | | | | | -14 . 40 | -18.90 | - 18.00 | -21 40 |
|--------------------------------|---|-------|---------------|--------|-------|--------------|-----------------|-------|---------------|-------|-------|---------------------|-------|---------|-------|---------------|------|------|-------|-------|--------|--------|--------|----------|---------|--------------|--------------|--------|---------------|------|------|--------|-------|----------|--------|---------|-----------|
| PUMPAGE
(X) | | 26.9 | 69 0 | 85.5 | 7.57 | 84.1 | 70 4 | 88.6 | 7.76 | 72.9 | 86.3 | 53 6 | 55 9 | 91 3 | 127 | 8.0 | 6 66 | * 8 | ° & | 95 3 | 8 66 | 6 66 | 88 5 | / 66 | 6
66 | 98.86 | 55.7 | 65.8 | 13.9 | 97 4 | 1.8 | 6
8 | 8.00 | 95.5 | 2 06 | | ~ 86 |
| COPPER
(NG/L) | | 0.03 | | <0.02 | | 0.02 | 0 02 | 0.02 | 0 02 | 0.03 | <0.02 | 0.02 | <0.02 | 0 02 | 0.03 | | | | <0.02 | 0 25 | | 0 02 | 10.0 | 90.0 | 0.02 | €0.02 | 0.03 | | | | | <0.02 | <0.02 | | 0.02 | 0 03 | <0.02 |
| CHRONTUN
(MG/L) | | <0.01 | | <0.003 | | €0:02 | <0 02 | 20 02 | €0 0 2 | ¢0.02 | <0.02 | ¢0.02 | <0.02 | <0.02 | <0.02 | | | | <0.02 | <0.02 | | <0.02 | \$0 05 | <0.02 | <0 02 | <0.02 | <0 02 | | | | | <0 02 | <0.02 | | <0 02 | <0.02 | <0 02 |
| NI TRATE
(MG/L) | | 08.7 | 97.E | 3.82 | | R2 - 4 | 90 7 | 0£ 3 | 4.20 | 5.20 | 99.9 | P 2 4 | 06.4 | 5.00 | 4.80 | 0.28 | 0.35 | | 0.06 | 0.60 | | 0.96 | 1.00 | 1.20 | 1.10 | 0.93 | <u>م</u> . ک | | 0.70 | 0.35 | | 0.20 | 1.20 | | 01 O> | 0 10 | 0 10
0 |
| SULFATE
(MG/L) | | 24.5 | 0.6 | 8.0 | | 2.0 | 0.67 | 5 0 | 0.4 | 6.0 | 6.0 | 8.0 | 55.0 | 8.0 | 7.5 | 19.0 | 22.0 | | 35.0 | 39.0 | | 0.84 | 50.0 | 50 0 | 56.0 | 52.0 | 53.0 | | 10.0 | 15.0 | | 15.0 | 11.0 | | 15 0 | 16.0 | 17 0 |
| YEAR | | 1987 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1961 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1961 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |
| USE | | | PUBLIC SUPPLY | | | | | | | | | | | | | PUBLIC SUPPLY | | | | | | | | | | | | | PUBLIC SUPPLY | | | | | | | | |
| CAPACITY
(GPH) | | | 1.200 | | | | | | | | | | | | | 1,000 | | | | | | | | | | | | | 1,200 | | | | | | | | |
| REF. | | | MSL | | | | | | | | | | | | | MSL | | | | | | | | | | | | | MSL | | | | | | | | |
| INTERVAL
BOTM. | | | -342 | | | | | | | | | | | | | -219 | | | | | | | | | | | | | - 395 | | | | | | | | |
| SCREENED
TOP | | | 2 | | | | | | | | | | | | | 10 | | | | | | | | | | | | | 10 | | | | | | | | |
| SCI
10P | į | | -302 | | | | | | | | | | | | | - 168 | | | | | | | | | | | | | -345 | | | | | | | | |
| DISTANCE
(FT) | | | 12,510 | | | | | | | | | | | | | 13, 560 | | | | | | | | | | | | | 13,900 | | | | | | | | |
| ASMITH
(DEGREES) | | | 72.0 | | | | | | | | | | | | | 272.0 | | | | | | | | | | | | | 202.0 | | | | | | | | |
| UNSC
JUSC | | | 57A | | | | | | | | | | | | | 58 | | | | | | | | | | | | | . 59 | | | | | | | | |
| NYSDEC
WELL NO | | | N7650 | | | | | | | | | | | | | 93014 | | | | | | | | | | | | | a3062 | | | | | | | | |

•

•

WELL AND GROWND WATER INFORMATION FOR PUBLIC WATER SUPPLY WELLS IN THE GENERAL VACINITY OF THE DEKMATEL SITE

| PUMPAGE STATIC WATER
(2) LEVEL (FT MSL) | 00 0 20 00 | | | | 43.7 | 1.9 42.30 | | | | | | 0.80 |
|--|-------------------|------|--------|------|----------------|-----------|-------|-------|------|--------|-------|------|
| | | | | -11 | 43 | | | | | | | |
| UM COPPER
) (NG/L) | 20.02 | | 2 0.04 | | | | 0.02 | | • | | | |
| ΰŤ | <0.02 | | <0.02 | | | <0.02 | - | - | · | | • | |
| Z | <0.10 | | <0.10 | | | <0.10 | 01 O> | <0.10 | | <010> | ¢0,10 | |
| SULFATE
(MG/L) | 20.0 | | 21.0 | | | 0 87 | 52.0 | 54.0 | | . 72.0 | 68.0 | |
| YEAR | 1984 | 1985 | 1986 | 1987 | 1980 | 1961 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 |
| USE | | | | | PUBLIC SUPPLY | | | | | | | |
| CAPACITY
(GPM) | | | | | 1,400 | | | | | | | |
| REF. | | | | | NSL | | | | | | | |
| INTERVAL
BOTN, REF. | | | | | | | | | | | | |
| <u>e</u> | | | | | -310 | | | | | | | |
| SCREENED | | | | | 10 | | | | | | | |
| SCREENED
TOP | | | | | -262 10 | | | - | | | | |
| DISTANCE SCREENED
(FT) TOP | | | | | 10 | | | | | | | |
| ASNITH DISTANCE SCREENED
(DEGREES) (FT) TOP | | | | | -262 10 | | | - | | | | |
| | | | | | 13.365 -262 10 | | | - | | | | |

67 records 1 isted

i kož

ika:

÷.,

8

.

APPENDIX F

194

DECONTAMINATION OF EQUIPMENT

-

1.0 Applicability

This SOP describes methods used for decontamination of all field equipment exposed to potential contamination during sampling. This includes bailers, split spoon, trowels, hand augers, and other equipment used to collect samples.

Decontamination of equipment is a necessity for quality assurance of work performed in the field. The prevention of cross contamination between samples collected, the spreading of potential contamination throughout a site is achieved by cleaning equipment. This procedure also reduces the health risk of personnel at a site exposed to contamination.

2.0 Responsibilities

The project manager is responsible for securing an area to be designated for decontamination, that all site specific guidelines for cleaning equipment are followed, all waste materials from decontamination are properly disposed of and that all field personnel are fully aware of the protocols and procedures in this SOP in accordance with health and safety regulations. 3.0 General Sampling Decontamination Procedure

The method of decontamination varies with the quantity and type of known contaminants. Also the methods used is subject to state regulations. The following is a general decontamination procedure any variations to the procedure will be noted.

- 3.1 Wash with non-phosphate detergent solution.
- 3.2 Rinse with potable water.
- 3.3 Rinse with distilled water.
- 3.4 Rinse with a 10% nitric acid solution (if metals are to be analyzed).
- 3.5 Rinse with distilled water.
- 3.6 Rinse with acetone (pesticide grade).
- 3.7 Air dry.
- 3.8 Rinse with distilled water.
- 3.9 Wrap equipment with aluminum foil or suitable material.

4.0 Submersible Pump

For the purpose of ground-water-sampling in deep wells a submersible pump is used to purge a specific volume before

sampling. No samples are collected using a submersible pump, therefore, decontamination of submersible pump will involve a purging of the pump using potable water and cleaning the outside of the pump with hot pressure washer or hot soapy water.

5.0 Quality Assurance/Quality Control

For the purpose of quality assurance, a field blank will be collected during the sampling process. Distilled water will be poured through decontaminated equipment, collected and analyzed for the same parameters as other samples collected.

APPENDIX G

COLLECTION OF SOIL SAMPLES FOR

LABORATORY ANALYSES

1.0 Applicability

This Standard Operating Procedure (SOP) is concerned with the collection of valid soil samples to be analyzed by a laboratory.

2.0 Responsibilities

The project hydrogeologist is responsible for the collection of valid and representative soil samples. Also, to ensure that all field personnel are fully aware of the protocols and procedures in this SOP in accordance with project specifications.

3.0 Materials

- split spoon/hand auger
- plastic sheeting
- stainless steel spatula
- disposable vinyl/rubber gloves
- laboratory clean sample containers
- cooler

- distilled water
- acetone
- brushes

4.0 Procedure

- 4.1 Split-spoon core samplers or stainless steel bucket type hand augers are used to collect sediment samples.
- 4.2 Prior to collection of the soil sample, all sampling equipment is thoroughly pre-cleaned according to standard decontamination protocols.
- 4.3 Once the sample is collected it is placed on a clean plastic sheet and logged in detail by the geologist as quickly as possible to reduce the potential for the loss of volatile organics.
- 4.4 Using disposable vinyl gloves and pre-cleaned stainless steel spoons the sample is then placed in appropriate (EPAapproved) laboratory supplied, pre-cleaned containers.

The sample containers are then labeled with the following 4.5 information: Name of person(s) collecting soil sample a. b. Sample location c. Time and date of sample collection d. Sample designation 4.6 Samples are then placed immediately on ice to maintain a temperature of 4° C. -4.7 A chain-of-custody form is completed for each sample collected. Wille-4.8 At the end of each day samples are delivered or shipped to the laboratory for analysis.

APPENDIX H

PROTOCOL FOR DEVELOPMENT OF MONITORING WELLS

-

1.0 WELL DEVELOPMENT

Before a newly constructed well can be used for water-quality sampling, it will be developed. Well development refers to the procedure used to clear the well of fine-grained materials (sands, silts, and clays) produced during drilling. Well development continues until the well responds to water-level changes in the formation (i.e., a good hydraulic connection is established between the well and formation and the well produces clear, sediment-free water to the extent possible.

Depending on the drilling technique used, composition of the formation screened, and well diameter and construction materials, well development may include one or more of the following techniques.

- a. Bailing.
- b. Pumping (centrifugal, submersible, or air).
- c. Backwashing.
- d. Surging (mechanical).
- e. Jetting.
- f. A combination of the above.

A one-pint sample of the last meter removed during development will be obtained and inspected by the field hydrogeologist for relative clarity to determine whether development is complete. Well development procedures will be recorded appropriately.

Dispersing agents, acids disinfectants, or other additives will not be used during development nor will they be introduced into the well at any other time. During development, water will be removed from the entire column of water standing in the well (i.e., by periodically lowering and raising the pump intake). Well development will include the rinsing of the interior well casing above the water column in the well using only water from that well.

APPENDIX I

GROUND-WATER SAMPLING PROCEDURES FOR MONITORING WELLS

A2380.3

1.0 Applicability

This Standard Operating Procedure (SOP) defines and describes the protocols and procedures to be used for sampling monitoring wells.

2.0 Responsibilities

The project hydrogeologist and/or his designate will be responsible for ensuring that all groundwater sampling is performed in accordance with this SOP and all project-specific sampling protocols.

3.0 Materials/Equipment

See Attachment A, Well Sampling Checklist.

4.0 General procedure for groundwater sampling of monitoring wells.

- 4.1 Identify the well and enter pre-sampling information in the field notebook and sampling form.
- 4.2 Inspect protective casing and note any items of concern such as lock missing or casing bent, fill out well inspection form Attachment B.
- 4.3 Clean the top of the well off with a clean rag and remove the cap or plug.
- 4.4 Measure the depth to water using a precleaned electric probe or steel tape. Measure the depth of the well. Record and compute the volume of water in the well.
- 4.5 Existing wells will be pumped or bailed and a minimum of three casing volumes will be removed (if the recharge rate is adequate to accomplish this within a reasonable amount of time) prior to sampling. Teflon or stainless-steel bailers or submersible peristaltic or centrifugal pumps will be cleaned prior to use.

- 4.6 Record the physical appearance of the water on the field data form (color, odor, turbidity, etc.) as it is pumped or bailed.
- 4.7 Prepare the bottles for receiving their samples: label the bottle with location number, other pertinent information and place on ice, record all information on the sampling data form Attachment C.
- 4.8 After the well has been purged, a teflon or stainless steel bailer will be used to collect the groundwater sample. This bailer will have been thoroughly precleaned. Prior to lowering the bailer in the well, rinse three volumes of distilled water through the bailer. In addition, the first three bailer volumes obtained from the well should be discarded. Use non-absorbent polyethylene cord to lower the bailer into the well. This cord will be discarded after use in the well.
- 4.9 Lower the bailer into the well at the depth appropriate to the density of the constituents sampled for. Samples to be

analyzed for dissolved metals will be filtered in the field before being placed in sample containers.

- 4.10 Place the sample immediately on ice. Maintain the samples in a secure area and forward to the laboratory within 24 hours, maintaining strict chain-of-custody, Attachment D.
- 4.11 After the sample is collected, measure and record the temperature, conductivity, pH, and the physical appearance of the water.
- 4.12 Replace the well cap and cover the well, locking the protective cap.
- 4.13 Bailers, hoses and pumps shall be deconned following Roux protocol with site-specific variations, if any.
- 4.14 Discard the cord, rags, gloves, etc. in an appropriate manner.
- 4.15 Complete sampling data form.

- 5.0 Groundwater Inspection Procedure Floating Free Product Determination
- 5.1 Slowly lower acrylic or teflon bailer into well until bottom of bailer contacts fluid surface.
- 5.2 Using a reference point on the bailer line, slowly lower bailer into fluid a distance less than the bailer length so that at its deepest point the top of the bailer remains above the air/fluid contact.
- 5.3 Slowly raise the bailer out of the well.
- 5.4 In field book note the approximate thickness of floating free product.
- 5.5 Replace locking and/or protective caps.
- 5.6 Clean bailer with a non-phosphate detergent prior to rinsing with distilled water.

ATTACHMENT A

Date

bie-

iline.

\*\*

\*

| | Well Sampling Checklist Project | |
|-----|---|--|
| 1) | Appropriate bailer(s) for constituents to be analyzed for | |
| 2) | Non-absorbent cord (Polypropylene) | |
| 3) | Pre-measured plastic bucket(s) | |
| • | | |
| 4) | 4' x 4' plastic sheets | |
| 5) | M-Scope - battery check | |
| 6) | Tape measure (steel - tenth of a foot) | |
| 7) | Pen knife | |
| 8) | Field book | |
| 9) | Well location map | |
| 10) | Cleaning agents (detergent distilled water, tap water) | |
| 11) | Pump (if required for purging) | |
| | A. Teflon tap | |
| | B. Polyethylene tubing if using peristaltic pump | |
| 12) | Water well handbook | |
| 13) | Calculator | |
| 14) | Rubber or plastic gloves | |
| 15) | Hard hat (if required on location) | |
| 16) | pH meter | |
| 17) | Conductivity meter | |
| 18) | Thermometer | |
| 19) | paper towels, rags | |
| 20) | Pen & pencil | |
| | | |

a de tanta en a

- 21) Ice
- 22) Sample jars & codes
- 23) Electrical tape
- 24) Pipe wrench
- 25) Screwdriver, hammer
- 26) Cooler
- 27) Water jugs
- 28) Disposable polyvinyl gloves
- 29) Well keys
- 30) Masking tape for labeling
- 31) Indullible markers
- 32) Field sampling form(s)
- 33) Chain-of-custody form
- 34) Relevant well sampling data

A. Bottom of well

35) Distilled water

ATTACHMENT C

12

tik.

\*

16. 1

646-

1

inst-

i de la com

1880).

WELL SAMPLING DATA FORM

| Well Number: | Date: | Sampled By: |
|-------------------------------|-----------------|-------------------|
| Time at Start: | Weather: | |
| - | Depth to Water: | Water Column (WC) |
| Wet Cut: | | |
| Depth to Well Bottom: | | |
| Volume of Water in Well: WC | хC | |
| C - 0.07 (for 1 1/4" diam. we | ells) | |
| C = 0.17 (for 2" diam. wells) |) | |
| C = 0.65 (for 4" diam. wells) |) | |
| Volume of water to remove be: | fore sampling: | |
| Physical appearance at start | : | |
| Color: | Odor: | Turbidity: |
| Conductivity: | pH: | |
| Physical appearance after pu | rging: | |

eta contributiva processo e

alife classic lessons a classes

Color:Odor:Turbidity:Did well go dry:'Volume of water removed)Time at finish:Types of samples collected, preservations and bottles used:

Laboratory name, number and location: Method of sample collection. Remarks:

APPENDIX J

SPECIFIC CAPACITY TEST PROCEDURE

Specific Capacity Test Procedure

- Enter all pertinent data concerning the pumping well and piezometers to be measured on the data sheets provided.
- 2. Check to make sure that all equipment is available and functioning: electric probes, data sheets, pencils, rain gauges (if necessary), stop watches, pump, generator, water quality meters (if necessary).
- 3. Record water level in pumping well and piezometers before pump is inserted in pumping well.
- 4. Insert pump in well, allow five minutes for water level to equilibrate, record new water level in pumping well and piezometers.
- 5. Start the pump and run a short term (15-30 minute) drawdown-recovery test pumping at a constant rate. The pumping rate selected should be based on estimates of well yield from soil samples collected during drilling.
- 6. Record water levels on a predetermined time schedule.

- 7. If one of the first closely-spaced readings is missed, record the next one (do not attempt to alter data).
- 8. Throughout note any changes pertinent to the test such as: changes in water color or turbidity; time and nature of any discharge fluctuations; time and length of any temporary pump shutdown; effects of any nearby pumping wells; and precipitation events.
- 9. If there is a shutdown (even if it's brief) measure water levels in at least the pumping well.
- 10. At the end of the drawdown test, recovery levels should be measured until water levels return as close as possible to pre-test levels. The drawdown schedule for water level measurements should be followed during recovery.