

New York State Electric & Gas Corporation

Soil Vapor Intrusion Evaluation Work Plan

Newark Former Manufactured Gas Plant Site

Site No. 85-9-021

March 2008

Powlin, Scott

From:

Blazicek, Tracy [tlblazicek@nyseg.com]

Sent:

Friday, March 28, 2008 3:21 PM

To:

Charles Post; Mark Sergott

Cc:

Powlin, Scott

Subject:

RE: Former NYSEG Newark MGP (#859021) SVI Evaluation WorkPlan comments

Attachments: Revised Newark Reporting Limits.pdf

Charlie and Mark:

Attached with this message is the lab blank that was generated as part of the SVI sampling conducted a couple weeks ago at NYSEG's Goshen MGP site. The reporting limits show there are the same ones we will be getting for Newark. I believe they all meet your expectations. We will revise the table in the work plan to show these reporting limits.

Please see below in bold font my responses to your remaining comments. Assuming they satisfactorily address your comments, we will finalize the work plan and email you electronic copies and US Mail paper copies.

If this is not acceptable, please let me know ASAP.

Tracv

Tracy L. Blazicek, CHMM

Lead Environmental Analyst

Environmental Compliance, Team NY Site Investigation & Remediation

NYSEG 18 Link Drive

Binghamton, NY 13904

(607) 762-8839 direct

(607) 237-5325 cell (607) 762-8451 fax

tlblazicek@nyseg.com

This e-mail and any files transmitted with it are confidential to New York State Electric & Gas Corp. and are intended solely for the use of the individuals or entity to whom they are addressed. If you received this e-mail in error, please reply to this message and let the sender know.

P Please consider the environment before you print this e-mail.

----Original Message----

From: Charles Post [mailto:chpost@gw.dec.state.ny.us]

Sent: Friday, March 28, 2008 2:02 PM

To: Blazicek, Tracy

Subject: Fwd: Former NYSEG Newark MGP (#859021) SVI Evaluation WorkPlan comments

Tracy - I just received this... Please review and call me. Thanks, Charlie

>>> Mark S Sergott <mss04@health.state.ny.us> 3/28/2008 1:48 PM >>>

Charlie,

I have reviewed the attached Soil Vapor Intrusion Evaluation Work Plan for the Former NYSEG Newark Manufactured Gas Plant site (#859021) located in Newark, Wayne County and have the following comments:

- 1) Table 1 Please provide confirmation that the sample analyses performed by TestAmerica, Inc. can achieve an analytical reporting limit of 0.25 mcg/m3 or less for TCE and an analytical reporting limit of 1.0 mcg/m3 or less for all remaining compounds (for both indoor and outdoor air). For sub-slab vapor samples, it is recommended that an analytical reporting limit of 5 mcg/m3 or less for all compounds is achieved.
- 2) Attachment B, Sub-Slab Vapor Sampling SOP Sub-slab air that is purged and contained in Tedlar bags should be released outside the hotel and into the ambient environment. Agreed, all purged vapor will be discharged into the ambient environment outside the hotel.
- 3) Attachment C, Indoor Air Sampling SOP In addition to the outlined procedures of the initial building survey, please have NYSEG field-screen the sub-slab conduit area observed behind the ice machines located in the hallway near the gas holders that we observed during our 3/19/08 site visit. At NYSEG's discretion, additional field-screening conducted in areas where potential exposure pathways are identified is appreciated.

 NYSEG will use a ppbRAE to screen the area behind the ice machine, and any other areas of potential exposure that we identify.
- 4) Attachment E, Administering Tracer Gas SOP (page 2) I disagree with the rationale of reducing the number of locations where tracer gas sampling is utilized. I request that all six sub-slab vapor sampling locations be supported with tracer gas analyses (prior to and after sampling). It always was, and still is, to administer tracer gas on all six sub slab vapor sampling locations.

As we've discussed in recent communication, NYSEG should be advised that this scope of investigation does not necessarily indicate that the SVI evaluation is complete. Based on the findings of the eventual Remedial Investigation (RI), future sub-slab vapor/indoor air sampling of the hotel may be warranted. If the initial SVI evaluation indicates a course of action is necessary to protect public health, such action should be conducted in the near future and the commencement of the RI should be expedited. Please call me with any questions or comments. Thank you. Acknowledged.

- Mark

Mark S. Sergott
Public Health Specialist II
New York State Department of Health
Bureau of Environmental Exposure Investigation
547 River Street
Troy, NY 12180-2216
Phone: (518) 402-7860
Fax: (518) 402-7859
e-mail: mss04@health.state.ny.us

cc: G. Litwin / M. VanValkenburg / File

(See attached file: Newark_SVI Work Plan final draft.pdf)
IMPORTANT NOTICE: This e-mail and any attachments may contain confidential or sensitive information which is, or may be, legally privileged or otherwise protected by law from further disclosure. It is intended only for the addressee. If you received this in error or from someone who was not authorized to send it to you, please do not distribute, copy or use it or any attachments. Please notify the sender immediately by reply e-mail and delete this from your system. Thank you for your cooperation.

Keith A. White, C.P.G.
Principal Geologist

Soil Vapor Intrusion Evaluation Work Plan

Newark Former Manufactured Gas Plant Site

Prepared for:

New York State Electric & Gas Corporation

Prepared by: ARCADIS 6723 Towpath Road P.O. Box 66 Syracuse New York 13214-0066 Tel 315.446.9120 Fax 315.446.8053

Date:

March 2008

ARCADIS Table of Contents

Introduction		1
Proposed Samplin	g Program	1
Sampling Methodo	ology	1
Schedule and Rep	orting	3
Reference		3
Table		
Table 1	Proposed Analyte List and Reporting Limits	
Figure		
Figure 1	Proposed Sampling Locations	
Attachments		
Attachment A	NYSDOH Indoor Air Quality Questionnaire	
Attachment B	Standard Operating Procedure: Sub-Slab Soil Vapor Sampling and Analysis	
Attachment C	Standard Operating Procedure: Indoor Air Sampling and Analysis	
Attachment D	Standard Operating Procedure: Ambient Air Sampling and Analysis	
Attachment E	Standard Operating Procedure: Administering Tracer Gas	

Soil Vapor Intrusion Evaluation Work Plan

Newark Former Manufactured Gas Plant Site

Introduction

This document describes the work that will be performed to evaluate potential soil vapor intrusion (SVI) into the Quality Inn hotel located on North Main Street in Newark, New York. This building was built over a portion of a former manufactured gas plant (MGP). The building layout is shown on the attached figure. The SVI evaluation will entail sampling air inside the building, soil vapor beneath the building floor, and ambient air outside the building. The scope of work described herein is based on discussions held among NYSEG, the New York State Department of Environmental Conservation (NYSDEC), and the New York State Department of Health (NYSDOH).

Proposed Sampling Program

Based on discussions with the NYSDEC on March 27, 2008, the soil vapor investigation fieldwork will consist of collecting co-located sub-slab and indoor-air samples at six locations, as depicted on Figure 1. As shown on the figure, four of the samples will be collected in individual guest rooms (i.e. rooms 124, 140, 154 and 164). The fifth sample will be collected in the soda storage room adjacent to the Weighlock Room. The sixth sample will be located in the hotel kitchen. One ambient air sample will also be collected outside and upwind of the building. The location of the ambient air sample will be determined by field personnel the day of sampling based on the wind direction.

Sampling Methodology

The building's guest room heating system will be operating at least 24 hours prior to and during sampling. On the day of sampling, ARCADIS personnel will walk through the building to complete the NYSDOH Indoor Air Quality Questionnaire and Building Inventory form (Appendix B of the NYSDOH Guidance for Evaluating SVI), which is included as Attachment A to this letter. Given that the majority of the indoor air samples will be collected from individual hotel rooms, the building inventory will be limited to interviewing the building manager and or maids regarding the types of chemicals (e.g., cleaners) that are used in the rooms, and identifying whether any chemical storage areas exist near the selected sampling locations. In the case of the latter, such storage locations would also be inventoried.

Air samples will be collected in accordance with ARCADIS's standard operating procedures (SOPs), which are in general accordance with the NYSDOH "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" (NYSDOH, October 2006).

Soil Vapor Intrusion Evaluation Work Plan

Newark Former Manufactured Gas Plant Site

The SOPs for sub-slab, indoor air and ambient air sample collection are included as Attachments B, C and D, respectively. Helium will be used as a tracer gas during sub-slab sample collection in accordance with ARCADIS' SOP contained in Attachment E.

As detailed in the SOPs, each sample will be collected using a 6-liter SUMMA® canister with an attached, pre-set flow regulator. The laboratory will provide batch-certified-clean canisters with and initial vacuum of approximately 29 inches of mercury (in. of Hg) for sample collection. Flow regulators will be pre-set by the laboratory to provide uniform sample collection over an approximate 24-hour sampling period. The valve on the SUMMA® canisters will be closed when approximately 2 in. of Hg vacuum remains in the canister, leaving a vacuum in the canister as a means for the laboratory to verify that the canister does not leak while in transit.

Samples will be submitted for laboratory analysis in accordance with the United States Environmental Protection Agency (USEPA) Compendium Method TO-15, titled "Determination of VOCs in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS)". In addition to the TO-15 Target Analyte List, the samples will be submitted for analysis for the following constituents:

N-Alkanes:

n-ButaneNonanen-DecaneN-Octanen-DodecanePentanen-HeptaneN-Undecane

n-Hexane

Tentatively Identified Compounds:

Butylcyclohexane Indene

2,3-Dimethylheptane Tetramethylbenzene isomers

2,3-Dimethylpentane Thiopenes

Isopentane1,2,3-Trimethylbenzene2,2,4-Trimethylpentane1-MethylnaphthaleneIndane2-Methylnaphthalene

The proposed analyte list and reporting limits are presented in Table 1. The sample analyses will be performed by TestAmerica, Inc. (TA) located in Knoxville, Tennessee.

Soil Vapor Intrusion Evaluation Work Plan

Newark Former Manufactured Gas Plant Site

The proposed TA laboratory is certified in the State of New York to perform air analyses. The data report will be an Analytical Services Protocol Category B-equivalent package to allow completion of a Data Usability Summary Report (DUSR), if necessary.

Schedule and Reporting

NYSEG is prepared to implement this work plan during the week of March 31, 2008, pending NYSDEC's and NYSDOH's timely review and approval of this work plan. Sampling analytical results are expected to be available approximately four weeks after the samples are submitted to the laboratory.

Following receipt of the laboratory analytical results, NYSEG will prepare a summary letter report. The letter report will include:

- A summary of work performed and analytical results obtained for the sub-slab vapor, indoor air, and ambient air samples.
- A completed Indoor Air Quality Questionnaire and Building Inventory form (Appendix B of the NYSDOH Guidance for Evaluating SVI).
- Data table(s) presenting laboratory analytical results in ppbv and µg/m³.
- Figure showing the sampling locations.
- Photographs of sampling locations.
- Copy of the DUSR.

The summary letter report will be submitted to the NYSDEC and NYSDOH approximately one month after receipt of analytical results.

Reference

NYSDOH, 2006. Guidance for Evaluating Soil Vapor Intrusion in the State of New York. New York State Department of Health, Center for Environmental Health, Bureau of Environmental Exposure Investigation. October 2006.

TABLE

Table 1. Proposed Analyte List and Reporting Limits, Soil Vapor Intrusion Evaluation New York State Electric & Gas Corporation, Newark Former MGP Site

I. Target Analytes

	RL	RL		RL	RL
Compound	ppb (v/v)	(ug/m3)	Compound	ppb (v/v)	(ug/m3)
Benzene	0.080	0.26	1,1,2,2-Tetrachloroethane	0.080	0.55
Bromomethane	0.080	0.31	Tetrachloroethene	0.080	0.54
Carbon tetrachloride	0.080	0.50	Toluene	0.080	0.30
Chlorobenzene	0.080	0.37	1,2,4-Trichlorobenzene	0.400	3.0
Chloroethane	0.080	0.21	1,1,1-Trichloroethane	0.080	0.44
Chloroform	0.080	0.39	1,1,2-Trichloroethane	0.080	0.44
Chloromethane	0.20	0.41	Trichloroethene	0.040	0.21
1,2-Dibromoethane (EDB)	0.080	0.61	Trichlorofluoromethane	0.080	0.45
1,2-Dichlorobenzene	0.080	0.48	1,1,2-Trichloro-1,2,2-trifluoroethane	0.080	0.61
1,3-Dichlorobenzene	0.080	0.48	1,2,4-Trimethylbenzene	0.080	0.39
1,4-Dichlorobenzene	0.080	0.48	1,3,5-Trimethylbenzene	0.080	0.39
Dichlorodifluoromethane	0.080	0.40	Vinyl chloride	0.080	0.20
1,1-Dichloroethane	0.080	0.32	m-Xylene & p-Xylene	0.080	0.35
1,2-Dichloroethane	0.080	0.32	o-Xylene	0.080	0.35
1,1-Dichloroethene	0.080	0.32			
cis-1,2-Dichloroethene	0.080	0.32	Alkanes:		
1,2-Dichloropropane	0.080	0.37			
cis-1,3-Dichloropropene	0.080	0.36	n-Butane	0.16	0.38
trans-1,3-Dichloropropene	0.080	0.36	n-Decane	0.40	2.3
1,2-Dichloro-1,1,2,2-tetrafluoroethane	0.080	0.56	n-Dodecane	0.40	2.8
Ethylbenzene	0.080	0.35	n-Heptane	0.20	0.82
Hexachlorobutadiene	0.40	4.3	n-Hexane	0.20	0.70
Isopropylbenzene			Nonane	0.20	1.0
Methylene chloride	0.20	0.69	n-Octane	0.16	0.75
Methyl tert-butyl ether	0.40	1.4	Pentane	0.40	1.2
Naphthalene	0.20	1.0	n-Undecane	0.40	2.6
Styrene	0.080	0.34			

II. Tentatively Identified Compounds (TICs)

Branched Alkanes:	Other:
-------------------	--------

Butylcyclohexane 2,3-Dimethylheptane

2,3-Dimethylpentane Isopentane

2,2,4-Trimethylpentane

Indane Indene

Tetramethylbenzene isomers

Thiopenes

1,2,3-trimethylbenzene

1-Methylnaphthalene

2-Methylnaphthalene

Notes:

- 1. Analyses to be performed by TestAmerica, Inc. (TA) of Knoxville, TN using United States Environmental Protection Agency (USEPA) Method TO-15 for volatile organic compounds (VOCs).
- 2. RL = proposed reporting limit.
- 3. ppb (v/v) = parts per billion volumetric basis.
- 4. ug/m3 = micrograms per cubic meter.

FIGURE

Property Layout BALLROOM KITCHEN MAIN EXIT LOBBY ENTRANCE FRONT DESK 143 164 RESTAURANT COURT YARD 141 162 LOUNGE GARDEN COURT 139 160 RESTAURANT (SEASONAL) LADIES ROOM 137 158 STAIRS 135 156 GROUND 133 154 KEUKA 131 **FLOOR** 152 POOL ATRIUM 129 102 127 148 103 105 125 146 106 Alkis 107 108 144 110 ROOM 142 112 140 114 VENDING 116 138 BOILER ROOM 118 136 STAIRS APPROXIMATE GAS HOLDER LOCATIONS WATER STREET -

LEGEND

ROOM WHERE SUB-SLAB/INDOOR AIR SAMPLE WILL BE COLLECTED

125 Main Street Newark, New York 14513 (315) 331-9500 • Fax (315) 331-5264

NOTE: FIGURE, INCLUDING HANDWRITTEN ANNOTATIONS, PROVIDED BY NYSEG.

ATTACHMENTS

Attachment A

NYSDOH Indoor Air Quality Questionnaire

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name		Date/Time Prepared	
Preparer's Affiliation		Phone No	
Purpose of Investigation_			
1. OCCUPANT:			
Interviewed: Y/N			
Last Name:		First Name:	
Address:			
County:			
Home Phone:	Offic	ce Phone:	
Number of Occupants/per	rsons at this locatio	n Age of Occupants	
2. OWNER OR LANDL	ORD: (Check if s	ame as occupant)	
Interviewed: Y/N			
Last Name:	F	irst Name:	
Address:			
County:			
Home Phone:	Offi	ce Phone:	
3. BUILDING CHARAG	CTERISTICS		
Type of Building: (Circle	e appropriate respo	nse)	
Residential Industrial	School Church	Commercial/Multi-use Other:	

If the property is residentia	. l, type? (Circle app	propriate respon	ase)	
Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment Hou Log Home	ise Townl		
If multiple units, how many		O III OI .		
If the property is commercial				
Business Type(s)				
Does it include residence	es (1.e., multi-use)?	Y / N	If yes, how many?	
Other characteristics:				
Number of floors		Building age_		
Is the building insulated?	? Y / N	How air tight?	Tight / Average / Not	Tight
4. AIRFLOW				
Use air current tubes or tra	acer smoke to eval	uate airflow pa	atterns and qualitativel	y describe:
Airflow between floors				
A : G				
Airflow near source				
Outdoor air infiltration				
			·	
Infiltration into air ducts				

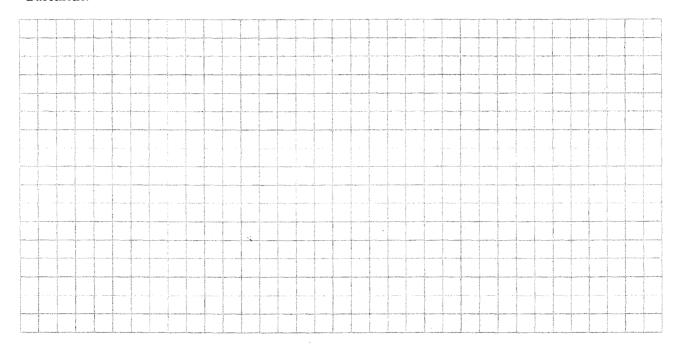
3	
5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)	

a. Above grade constructi	on: wood	frame cond	crete stone	e t	prick
b. Basement type:	full	crav	vlspace slab	(other
c. Basement floor:	concr	ete dirt	stone	e c	other
d. Basement floor:	uncov	vered cove	ered cove	red with	
e. Concrete floor:	unsea	led seal	ed seale	ed with	
f. Foundation walls:	poure	d bloc	k stone	е (other
g. Foundation walls:	unsea	led seal	ed seale	ed with	
h. The basement is:	wet	dam	p dry	1	noldy
i. The basement is:	finish	ed unfi	nished parti	ally finished	
j. Sump present?	Y/N				
k. Water in sump?	Y/N/not ap	plicable			
Basement/Lowest level depth	below grade:	(feet)			
•					
6. HEATING, VENTING a	nd AIR COND	ITIONING (C	Circle all that app	ly)	
Type of heating system(s) use	ed in this build	ing: (circle all	that apply – not	e primary)	
Hot air circulation Space Heaters Electric baseboard	Strea	pump m radiation d stove	Hot water ba Radiant floo Outdoor woo	r	Other
The primary type of fuel used	d is:				
Natural Gas Electric Wood	Fuel Propa Coal		Kerosene Solar		
Domestic hot water tank fuel	ed by:				•
Boiler/furnace located in:	Basement	Outdoors	Main Floor		Other

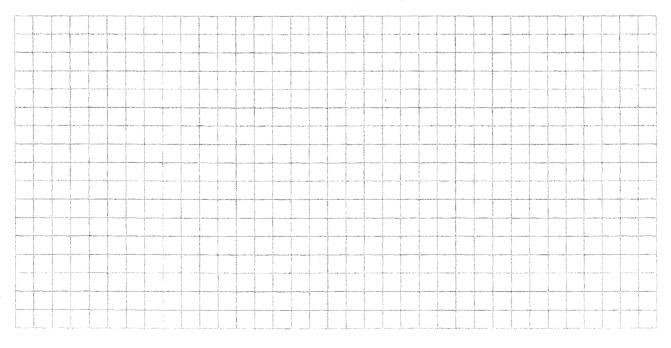
Air condition	ing:	Central Air	Window units	Open V	Vindows	None
			4			•
Are there air	distribution du	cts present?	Y/N			
						ble, including whether s on the floor plan
				·		
7. OCCUPA	ANCY					
Is basement/l	owest level occu	pied? Full-t	ime Occasi	onally	Seldom	Almost Never
Level	General Use	of Each Floor (e.g., familyroon	n, bedro	om, laund	ry, workshop, storage)
Basement						
1 st Floor						
2 nd Floor						
3 rd Floor						
4 th Floor				-		**************************************
			<u></u>			
8. FACTORS	S THAT MAY I	INFLUENCE II	NDOOR AIR QI	JALITY		
a. Is there	an attached gar	age?			Y/N	
b. Does the	garage have a	separate heating	g unit?		Y/N/N	A
	oleum-powered the garage (e.g				Y/N/N Please sp	A ecify
d. Has the	building ever ha	nd a fire?			Y/N V	Vhen?
e. Is a kero	sene or unvente	d gas space hea	ter present?		Y/N V	Vhere?
f. Is there a	n workshop or h	obby/craft area	?	Y/N	Where &	Type?
g. Is there	smoking in the l	ouilding?		Y/N	How freq	uently?
h Have cle	aning products	heen used reco	ntlv?	V/N	When &	Tyne?

i. Have cosmetic p	roducts been use	d recently?	Y / N	When & Typ	e?
		5			
j. Has painting/sta	ining been done	in the last 6 mo	nths? Y/N	Where & Wi	nen?
k. Is there new can	rpet, drapes or ot	her textiles?	Y/N	Where & Wh	nen?
l. Have air fresher	iers been used re	cently?	Y/N	When & Typ	pe?
m. Is there a kitch	en exhaust fan?		Y/N	If yes, where	vented?
n. Is there a bath	room exhaust fan	Y/N	If yes, where	vented?	
o. Is there a clothe	es dryer?		Y/N	If yes, is it ve	ented outside? Y / N
p. Has there been	a pesticide applic	cation?	Y/N	When & Typ	pe?
Are there odors in If yes, please desc			Y/N		
Do any of the building (e.g., chemical manufaboiler mechanic, pest	acturing or labora icide application,	tory, auto mecha cosmetologist	anic or auto body		
If yes, what types of					
If yes, are their clo	tnes washed at wo	rk?	Y/N		
Do any of the building response)	ng occupants reg	ularly use or wo	ork at a dry-cle	aning service?	(Circle appropriate
Yes, use dry-	cleaning regularly cleaning infrequent a dry-cleaning ser	ntly (monthly or	less)	No Unknown	
Is there a radon mit Is the system active		r the building/s Active/Passive		Date of Insta	ıllation:
9. WATER AND SE	WAGE				
Water Supply:	Public Water	Drilled Well	Driven Well	Dug Well	Other:
Sewage Disposal:	Public Sewer	Septic Tank	Leach Field	Dry Well	Other:
10. RELOCATION	INFORMATION	N (for oil spill re	sidential emerg	gency)	
a. Provide reaso	ns why relocation	n is recommend	ed:		·
b. Residents cho	ose to: remain in	home reloca	te to friends/fam	nily reloc	cate to hotel/motel

- c. Responsibility for costs associated with reimbursement explained? Y/N
- d. Relocation package provided and explained to residents?

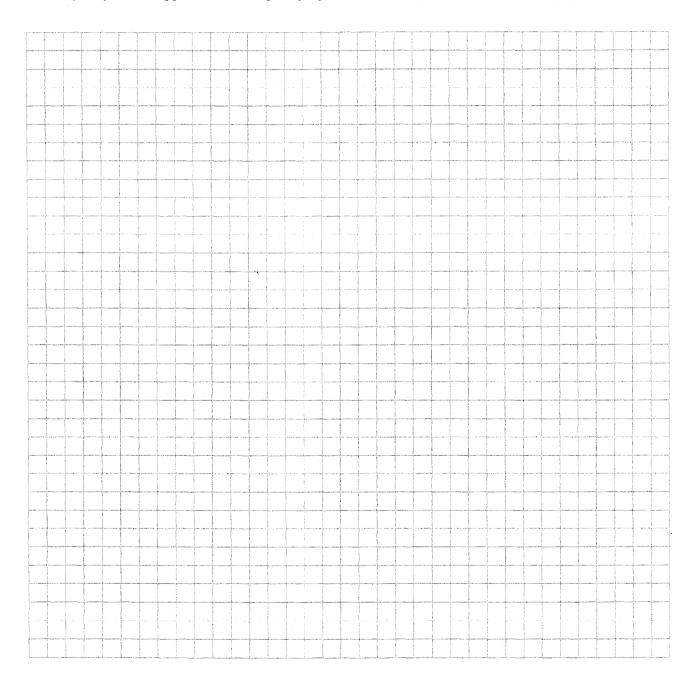

Y/N

6


11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:


First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13	PROL	HCT	INVEN	VAOTI	FORM

Make & Model of field instrument used:
List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N
		4				
		-				

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Attachment B

Standard Operating Procedure: Sub-Slab Soil Vapor Sampling and Analysis

Rev. #: 2

Rev. Date: February 2007

Standard Operating Procedure: Sub-Slab Vapor Sampling and Analysis Using USEPA Method TO-15

I. Scope and Application

This document describes the procedures to install a sub-slab sampling port and collect sub-slab vapor samples for the analysis of volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method TO-15 (TO-15). The TO-15 method uses a 6-liter SUMMA® passivated stainless steel canister. An evacuated SUMMA canister (less than 28 inches of mercury [Hg]) will provide a recoverable whole-gas sample of approximately 5.5 liters when allowed to fill to a vacuum of 2 inches of Hg. The whole-air sample is then analyzed for VOCs using a quadrupole or ion-trap gas chromatograph/mass spectrometer (GS/MS) system to provide compound detection limits of 0.5 parts per billion volume (ppbv).

The following sections list the necessary equipment and detailed instructions for installing sub-slab vapor probes and collecting samples for VOC analysis.

II. Personnel Qualifications

ARCADIS BBL field sampling personnel will have current health and safety training, including 40-hour HAZWOPER training, site supervisor training, site-specific training, first-aid, and cardiopulmonary resuscitation (CPR), as needed. ARCADIS BBL field sampling personnel will be well versed in the relevant standard operating procedures (SOPs) and possess the required skills and experience necessary to successfully complete the desired field work. ARCADIS BBL personnel responsible for leading sub-slab vapor sample collection activities must have previous sub-slab vapor sampling experience.

III. Equipment List

The equipment required to <u>install a permanent sub-slab vapor probe</u> is presented below:

- Electric impact drill
- 5/8-inch and 1-inch-diameter concrete drill bits for impact drill

Rev. #: 2

Rev. Date: February 2007

- Stainless steel vapor probe (typically 3/8-inch outside diameter [OD], 2- to 2.5-inch long [length will ultimately depend on slab thickness], 1/8-inch inside diameter [ID] pipe, stainless steel pipe nipples with 0.5-inch OD stainless steel coupling, and recessed stainless steel plugs per DiGiulio et. al., 2003)
- Photoionization detector (PID)
- Polyethylene tubing
- · Quick-setting hydraulic cement powder

The equipment required to <u>install a temporary sub-slab vapor probe</u> is presented below:

- Electric impact drill
- 5/8-inch-diameter concrete drill bit for impact drill
- 3/8-inch tubing (Teflon[®], polyethylene, or similar)
- PID
- · Hydrated bentonite
- Teflon® tape

The equipment required for vapor <u>sample collection</u> is presented below:

- Stainless steel SUMMA® canisters (order at least one extra, if feasible)
- Flow controllers with in-line particulate filters and vacuum gauges; flow
 controllers are pre-calibrated to specified sample duration (e.g., 30 minutes, 8
 hours, 24 hours) or flow rate (e.g., 200 milliliters per minute [mL/min]); confirm
 with the laboratory that the flow controller comes with an in-line particulate filter
 and pressure gauge (order at least one extra, if feasible)
- 1/4-inch ID tubing (Teflon®, polyethylene, or similar)
- Twist-to-lock fittings

Rev. #: 2

Rev. Date: February 2007

- Stainless steel "T" fitting (if collecting duplicate [i.e., split] samples)
- Portable vacuum pump capable of producing very low flow rates (e.g., 100 to 200 mL/min)
- Rotameter or an electric flow sensor if vacuum pump does not have a flow gauge
- Tracer gas source (e.g., helium)
- PID
- Appropriate-sized open-end wrench (typically 9/16-inch)
- Chain-of-custody (COC) form
- Sample collection log (attached)
- Field notebook

IV. Cautions

Sampling personnel should not handle hazardous substances (such as gasoline), permanent marking pens, wear/apply fragrances, or smoke cigarettes/cigars before and/or during the sampling event.

Care should also be taken to ensure that the flow controller is pre-calibrated to the proper sample collection time (confirm with laboratory). Sample integrity is maintained if the sampling event is shorter than the target duration, but sample integrity can be compromised if the event is extended to the point that the canister reaches atmospheric pressure.

Care must be taken to properly seal around the vapor probe at slab surface to prevent leakage of atmosphere into the soil vapor probe during purging and sampling. Temporary points are fit snug into the pre-drilled hole using Teflon[®] tape and a hydrated bentonite seal at the surface. Permanent points are fit snug using quick-setting hydraulic cement powder.

Rev. #: 2

Rev. Date: February 2007

V. Health and Safety Considerations

Field sampling equipment must be carefully handled to minimize the potential for injury and the spread of hazardous substances. For sub-slab vapor probe installation, drilling with an electric concrete impact drill should be done only by personnel with prior experience using such a piece of equipment.

VI. Procedures

Temporary Vapor Probe Installation

Temporary sub-slab soil vapor probes are installed using an electric drill and manual placement of tubing. The drill will be advanced to approximately 2 inches beneath the bottom of the slab. A 3/8-inch ID hole is installed through the slab. The tubing, wrapped in Teflon[®] tape, is inserted into the hole. The tubing is purged prior to collection of a vapor sample. Probe locations are resealed after sampling is complete.

- 1. Remove, only to the extent necessary, any covering on top of the slab (e.g., carpet).
- 2. Drill a 3/8-inch-diameter hole through the concrete slab using the electric drill.
- 3. Advance the drill bit approximately 2 inches into the sub-slab material to create an open cavity.
- 4. Wrap the tubing with Teflon[®] tape, to the extent necessary, for a snug fit of tubing and hole.
- 5. Insert the tubing approximately 1.5 inches into the sub-slab material.
- 6. Prepare a hydrated bentonite mixture and apply bentonite at slab surface around the tubing.
- 7. Purge the soil vapor probe and tubing with a portable sampling pump prior to collecting the vapor sample (see sample collection section below).
- 8. Proceed to vapor sample collection.

Rev. #: 2

Rev. Date: February 2007

 When the sub-slab vapor sampling is complete, remove the tubing and grout the hole in the slab with quick-setting hydraulic cement powder or other material similar to the slab.

Sub-Slab Vapor Sample Collection

Preparation of SUMMA®-Type Canister and Collection of Sample

- 1. Record the following information in the field notebook, if appropriate (contact the local airport or other suitable information source [e.g., site-specific measurements, weatherunderground.com] to obtain the information):
 - a. wind speed and direction
 - b. ambient temperature
 - c. barometric pressure
 - d. relative humidity
- Connect a portable vacuum pump to the sample tubing. Purge 1 to 2 (target 1.5) volumes of air from the vapor probe and sampling line using a portable pump [purge volume = 1.5 Pi r²h] at a rate of approximately 100 mL/min. Measure organic vapor levels with the PID.
- 3. If necessary, check the seal established around the soil vapor probe by using a tracer gas (e.g., helium) or other method established in the state guidance documents. [Note: Some states (e.g., New York) may not require use of a tracer gas in connection with sub-slab sampling. Refer to the Administering Tracer Gas SOP, adapted from NYSDOH 2006, for how to use a tracer gas.]
- 4. Remove the brass plug from the SUMMA[®] canister and connect the flow controller with in-line particulate filter and vacuum gauge to the SUMMA[®] canister. Do not open the valve on the SUMMA[®] canister. Record in the field notebook and on the COC form the flow controller number with the appropriate SUMMA[®] canister number.

Rev. #: 2

Rev. Date: February 2007

- 5. Connect the polyethylene sample collection tubing to the flow controller and the SUMMA[®] canister valve. Record in the field notebook the time sampling began and the canister pressure.
- 6. Open the SUMMA[®] canister valves. Record in the field notebook the time sampling began and the canister pressure.
- 7. Take a photograph of the SUMMA® canister and surrounding area.

Termination of Sample Collection

- 1. Arrive at the SUMMA[®] canister location at least 10 to 15 minutes prior to the end of the required sampling interval.
- 2. Record the final vacuum pressure. Stop collecting the sample by closing the SUMMA® canister valves. The canister should have a minimum amount of vacuum (approximately 2 inches of Hg or slightly greater).
- 3. Record the date and local time (24-hour basis) of valve closing in the field notebook, sample collection log (attached), and COC form.
- 4. Remove the particulate filter and flow controller from the SUMMA[®] canister, reinstall the brass plug on the canister fitting, and tighten with the appropriate wrench.
- 5. Package the canister and flow controller in the shipping container supplied by the laboratory for return shipment to the laboratory. The SUMMA® canister does not require preservation with ice or refrigeration during shipment.
- 6. Complete the appropriate forms and sample labels as directed by the laboratory (e.g., affix card with a string).
- 7. Complete the COC form and place the requisite copies in a shipping container. Close the shipping container and affix a custody seal to the container closure. Ship the container to the laboratory via overnight carrier (e.g., Federal Express) for analysis.

Rev. #: 2

Rev. Date: February 2007

Vapor Monitoring Point Abandonment

Once the vapor samples have been collected, a temporary vapor monitoring point will be abandoned by removing the sampling materials and filling the resulting hole with concrete. Replace the surface covering (e.g., carpet) to the extent practicable.

VII. Waste Management

No specific waste management procedures are required.

VIII. Data Recording and Management

Measurements will be recorded in the field notebook at the time of measurement with notations of the project name, sample date, sample start and finish time, sample location (e.g., GPS coordinates, distance from permanent structure [e.g., two walls, corner of room]), canister serial number, flow controller serial number, initial vacuum reading, and final pressure reading. Field sampling logs and COC records will be transmitted to the Project Manager.

IX. Quality Assurance

Vapor sample analysis will be performed using USEPA TO-15 methodology. This method uses a quadrupole or ion-trap GC/MS with a capillary column to provide optimum detection limits. The GC/MS system requires a 1-liter gas sample (which can easily be recovered from a 6-liter canister) to provide a 0.5-ppbv detection limit. The 6-liter canister also provides several additional 1-liter samples in case subsequent re-analyses or dilutions are required. This system also offers the advantage of the GC/MS detector, which confirms the identity of detected compounds by evaluating their mass spectra in either the SCAN or SIM mode.

X. References

DiGiulio et. al. 2003. Draft Standard Operating Procedure (SOP) for Installation of Sub-Slab Vapor Probes and Sampling Using EPA TO-15 to Support Vapor Intrusion Investigations. http://www.cdphe.state.co.us/hm/indoorair.pdf (Attachment C).

New York State Department of Health (NYSDOH). 2006. "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" October 2006.

Attachment C

Standard Operating Procedure: Indoor Air Sampling and Analysis

Rev. #: 2

Rev. Date: February 2007

Standard Operating Procedure: Indoor Air Sampling and Analysis Using USEPA Method TO-15

I. Scope and Application

This standard operating procedure (SOP) describes the procedures to collect indoor air samples for the analysis of volatile organic compounds (VOCs) using United States Environmental Protection Agency (USEPA) Method TO-15 (TO-15). The TO-15 method uses a 6-liter SUMMA® passivated stainless steel canister. An evacuated SUMMA® canister (<28 inches of mercury [Hg]) will provide a recoverable whole-gas sample of approximately 5.5 liters when allowed to fill to a vacuum of 2 inches of Hg. The whole-air sample is then analyzed for VOCs using a quadrupole or ion-trap gas chromatograph/mass spectrometer (GS/MS) system to provide compound detection limits of 0.5 parts per billion volume (ppbv).

The following sections list the necessary equipment and provide detailed instructions for placing the sampling device and collecting indoor air samples for VOC analysis.

II. Personnel Qualifications

ARCADIS BBL field sampling personnel will have current health and safety training, including 40-hour HAZWOPER training, site supervisor training, site-specific training, first aid, and cardiopulmonary resuscitation (CPR), as needed. ARCADIS BBL field sampling personnel will be well versed in the relevant SOPs and possess the required skills and experience necessary to successfully complete the desired field work. ARCADIS BBL personnel responsible for leading indoor air sample collection activities must have previous indoor air sampling experience.

III. Equipment List

The equipment required for indoor air sample collection is presented below:

- Photoionization detector (PID) with VOC detection limit capabilities in the ppb range
- 6-liter, stainless steel SUMMA® canisters (order at least one extra, if feasible)
- Flow controllers with in-line particulate filters and vacuum gauges (flow controllers are pre-calibrated by the laboratory to a specified sample duration [e.g., 8-hour, 24-hour]). Confirm with lab that flow controller comes with in-line

Rev. #: 2

Rev. Date: February 2007

particulate filter and pressure gauge (order an extra set for each extra SUMMA® canister, if feasible)

- Stainless steel "T" fitting (for connection to SUMMA[®] canisters and Teflon[®] tubing to collect split [i.e., duplicate] samples)
- Appropriate-sized open-end wrench (typically 9/16-inch)
- Chain-of-custody (COC) form
- Building survey and product inventory form
- Sample collection log
- Field notebook
- Camera
- Lock and chain
- Ladder or similar to hold canister above the ground surface

IV. Cautions

Care must be taken to minimize the potential for introducing interferences during the sampling event. As such, care must be taken to keep the canister away from heavy pedestrian traffic areas (e.g., main entranceways, walkways). If the canister is not to be overseen for the entire sample duration, precautions should be taken to maintain the security of the sample (e.g., do not place in areas regularly accessed by the public, fasten the sampling device to a secure object using lock and chain, label the canister to indicate it is part of a scientific project, place the canister in secure housing that does not disrupt the integrity/validity of the sampling event). Sampling personnel should not handle hazardous substances (such as gasoline), permanent marking pens, wear/apply fragrances, or smoke cigarettes before and/or during the sampling event.

Care should also be taken to ensure that the flow controller is pre-calibrated to the proper sample collection time (confirm with laboratory). Sample integrity is maintained if the sampling event is shorter than the target duration, but sample

Rev. #: 2

Rev. Date: February 2007

integrity can be compromised if the event is extended to the point that the canister reaches atmospheric pressure.

V. Health and Safety Considerations

Field sampling equipment must be carefully handled to minimize the potential for injury and the spread of hazardous substances.

VI. Procedures

Initial Building Survey

- Complete the appropriate building survey form and product inventory form (e.g., state-specific form or ARCADIS BBL form) at least 48 hours in advance of sample collection.
- Survey the area for the apparent presence of items or materials that may
 potentially produce or emit constituents of concern and interfere with analytical
 laboratory analysis of the collected sample. Record relevant information on
 survey form and document with photographs.
- Using the PID, screen indoor air in the location intended for sampling and the vicinity of potential VOC sources to preliminarily assess for the potential gross presence of VOCs.
- 4. Record date, time, location, and PID readings in the field notebook.
- Items or materials that contain constituents of concern and/or exhibit elevated PID readings shall be considered probable sources of VOCs. Request approval of the owner or occupant to have these items removed at least 48 hours prior to sampling.
- 6. Set a time with the owner or occupant to return for placement of SUMMA[®] canisters.

Rev. #: 2

Rev. Date: February 2007

Preparation of SUMMA®-Type Canister and Collection of Sample

- Record the following information in the field notebook (contact the local airport or other suitable information source [e.g., weatherunderground.com] to obtain the following information):
 - a. ambient temperature
 - b. barometric pressure
 - c. relative humidity
- 2. Choose the sample location in accordance with the sampling plan. Place the canister on a ladder, tripod, or other similar stand to locate the canister orifice 3 to 5 feet above ground or floor surface. If the canister will not be overseen for the entire sampling period, secure the canister as appropriate (e.g., lock and chain). Canister may be affixed to wall/ceiling support with nylon rope or placed on a stable surface. In general, areas near windows, doors, air supply vents, and/or other potential sources of "drafts" shall be avoided.
- 3. Record SUMMA[®] canister serial number and flow controller number in the field notebook and COC form. Assign sample identification on canister ID tag, and record in the field notebook, sample collection log, and COC form.
- 4. Remove the brass dust cap from the SUMMA® canister. Attach the flow controller with in-line particulate filter and vacuum gauge (leave swage-lock cap on the vacuum gauge during this procedure) to the SUMMA® canister with the appropriate-sized wrench. Tighten with fingers first, then gently with the wrench.
- 5. Open the SUMMA® canister valve to initiate sample collection. Record the date and local time (24-hour basis) of valve opening in the field notebook, sample collection log, and COC form. Collection of duplicate/split samples will include attaching a stainless steel "T" to split the indoor air stream to two SUMMA® canisters, one for the original investigative sample and one for the duplicate/split sample.
- 6. Record the initial vacuum pressure in the SUMMA[®] canister in the field notebook and COC form. If the initial vacuum pressure does not register less

Rev. #: 2

Rev. Date: February 2007

than -28 inches of Hg, then the SUMMA[®] canister is not appropriate for use and another canister should be used.

7. Take a photograph of the SUMMA® canister and surrounding area.

Termination of Sample Collection

- 1. Arrive at the SUMMA[®] canister location at least 10 to 15 minutes prior to the end of the sampling interval (e.g., 8-hour).
- Stop collecting the sample when the canister vacuum reaches approximately 2
 inches of Hg (leaving some vacuum in the canister provides a way to verify if
 the canister leaks before it reaches the laboratory) or when the desired sample
 time has elapsed.
- 3. Record the final vacuum pressure. Stop collecting the sample by closing the SUMMA® canister valve. Record the date, local time (24-hour basis) of valve closing in the field notebook, sample collection log, and COC form.
- 4. Remove the particulate filter and flow controller from the SUMMA[®] canister, reinstall brass plug on canister fitting, and tighten with wrench.
- 5. Package the canister and flow controller in the shipping container supplied by the laboratory for return shipment to the laboratory. The SUMMA® canister does not require preservation with ice or refrigeration during shipment.
- Complete the appropriate forms and sample labels as directed by the laboratory (e.g., affix card with string).
- 7. Complete COC form and place requisite copies in shipping container. Close shipping container and affix custody seal to container closure. Ship to laboratory via overnight carrier (e.g., Federal Express) for analysis.

VII. Waste Management

No specific waste management procedures are required.

Rev. #: 2

Rev. Date: February 2007

VIII. Data Recording and Management

PID measurements taken during the initial building survey will be recorded in the field notebook, with notations of project name, sample date, sample time, and sample location (e.g., description and GPS coordinates if available). A building survey form and product inventory form will also be completed for each building within the facility being sampled during each sampling event.

Measurements will be recorded in the field notebook at the time of measurement, with notations of project name, sample date, sample start and finish times, sample location (e.g., description and GPS coordinates if available), canister serial number, flow controller number, initial vacuum reading, and final vacuum reading. Field notebooks and COC records will be transmitted to the Project Manager.

IX. Quality Assurance

Indoor air sample analysis will be performed using USEPA Method TO-15. This method uses a quadrupole or ion-trap GC/MS with a capillary column to provide optimum detection limits. The GC/MS system requires a 1-liter gas sample (which can easily be recovered from a 6-liter canister) to provide a 0.5 ppbv detection limit. The 6-liter canister also provides several additional 1-liter samples in case subsequent re-analyses or dilutions are required. This system also offers the advantage of the GC/MS detector, which confirms the identity of detected compounds by evaluating their mass spectra in either the SCAN or SIM mode.

Attachment D

Standard Operating Procedure: Ambient Air Sampling and Analysis

Rev. #: 2

Rev. Date: February 2007

Standard Operating Procedure: Ambient Air Sampling and Analysis Using USEPA Method TO-15

I. Scope and Application

This standard operating procedure (SOP) describes the procedures to collect ambient air samples for the analysis of volatile organic compounds (VOCs) using United States Environmental Protection Agency (USEPA) Method TO-15 (TO-15). The TO-15 method uses a 6-liter SUMMA® passivated stainless steel canister. An evacuated SUMMA® canister (<28 inches of mercury [Hg]) will provide a recoverable whole-gas sample of approximately 5.5 liters when allowed to fill to a vacuum of 2 inches of Hg. The whole-air sample is then analyzed for VOCs using a quadrupole or ion-trap gas chromatograph/mass spectrometer (GS/MS) system to provide compound detection limits of 0.5 parts per billion volume (ppbv).

The following sections list the necessary equipment and provide detailed instructions for placing the sampling device and collecting ambient air samples for VOC analysis.

II. Personnel Qualifications

ARCADIS BBL field sampling personnel will have current health and safety training, including 40-hour HAZWOPER training, site supervisor training, site-specific training, first aid, and cardiopulmonary resuscitation (CPR), as needed. ARCADIS BBL field sampling personnel will be well versed in the relevant SOPs and possess the required skills and experience necessary to successfully complete the desired field work. ARCADIS BBL personnel responsible for leading ambient air sample collection activities must have previous ambient air sampling experience.

III. Equipment List

The equipment required for ambient air sample collection is presented below:

- 6-liter, stainless steel SUMMA[®] canisters (order at least one extra, if feasible)
- Flow controllers with in-line particulate filters and vacuum gauges (flow controllers are pre-calibrated by the laboratory to a specified sample duration [e.g., 8-hour, 24-hour]). Confirm with lab that flow controller comes with in-line particulate filter and pressure gauge (order an extra set for each extra SUMMA® canister, if feasible)
- Appropriate-sized open-end wrench (typically 9/16-inch)

Rev. #: 2

Rev. Date: February 2007

- Chain-of-custody (COC) form
- Sample collection log
- Field notebook
- Camera
- Lock and chain
- Ladder or similar to hold canister above the ground surface

IV. Cautions

Care must be taken to minimize the potential for introducing interferences during the sampling event. As such, care must be taken to keep the canister away from heavy pedestrian traffic areas (e.g., main entranceways, walkways). If the canister is not to be overseen for the entire sample duration, precautions should be taken to maintain the security of the sample (e.g., do not place in areas regularly accessed by the public, fasten the sampling device to a secure object using lock and chain, label the canister to indicate it is part of a scientific project, place the canister in secure housing that does not disrupt the integrity/validity of the sampling event). Sampling personnel should not handle hazardous substances (such as gasoline), permanent marking pens, wear/apply fragrances, or smoke cigarettes before and/or during the sampling event.

Care should also be taken to ensure that the flow controller is pre-calibrated to the proper sample collection time (confirm with laboratory). Sample integrity is maintained if the sampling event is shorter than the target duration, but sample integrity can be compromised if the event is extended to the point that the canister reaches atmospheric pressure.

V. Health and Safety Considerations

Field sampling equipment must be carefully handled to minimize the potential for injury and the spread of hazardous substances.

Rev. #: 2

Rev. Date: February 2007

VI. Procedures

Preparation of SUMMA®-Type Canister and Collection of Sample

- 1. Record the following information in the field notebook (contact the local airport or other suitable information source [e.g., weatherunderground.com] to obtain the following information):
 - a. ambient temperature
 - b. barometric pressure
 - c. relative humidity
- Choose the sample location in accordance with the sampling plan. Place the
 canister on a ladder, tripod, or other similar stand to locate the canister orifice 3
 to 5 feet above ground or floor surface. If the canister will not be overseen for
 the entire sampling period, secure the canister as appropriate (e.g., lock and
 chain).
- 3. Record SUMMA[®] canister serial number and flow controller number in the field notebook and COC form. Assign sample identification on canister ID tag, and record in the field notebook, sample collection log, and COC form.
- 4. Remove the brass dust cap from the SUMMA[®] canister. Attach the flow controller with in-line particulate filter and vacuum gauge (leave swage-lock cap on the vacuum gauge during this procedure) to the SUMMA[®] canister with the appropriate-sized wrench. Tighten with fingers first, then gently with the wrench.
- Open the SUMMA[®] canister valve to initiate sample collection. Record the date and local time (24-hour basis) of valve opening in the field notebook, sample collection log, and COC form.
- 6. Record the initial vacuum pressure in the SUMMA® canister in the field notebook and COC form. If the initial vacuum pressure does not register less than -28 inches of Hg, then the SUMMA® canister is not appropriate for use and another canister should be used.
- 7. Take a photograph of the SUMMA® canister and surrounding area.

Rev. #: 2

Rev. Date: February 2007

Termination of Sample Collection

- 1. Arrive at the SUMMA[®] canister location at least 10 to 15 minutes prior to the end of the sampling interval (e.g., 8-hour).
- Stop collecting the sample when the canister vacuum reaches approximately 2
 inches of Hg (leaving some vacuum in the canister provides a way to verify if
 the canister leaks before it reaches the laboratory) or when the desired sample
 time has elapsed.
- 3. Record the final vacuum pressure. Stop collecting the sample by closing the SUMMA® canister valve. Record the date, local time (24-hour basis) of valve closing in the field notebook, sample collection log, and COC form.
- 4. Remove the particulate filter and flow controller from the SUMMA[®] canister, reinstall brass plug on canister fitting, and tighten with wrench.
- 5. Package the canister and flow controller in the shipping container supplied by the laboratory for return shipment to the laboratory. The SUMMA® canister does not require preservation with ice or refrigeration during shipment.
- 6. Complete the appropriate forms and sample labels as directed by the laboratory (e.g., affix card with string).
- 7. Complete COC form and place requisite copies in shipping container. Close shipping container and affix custody seal to container closure. Ship to laboratory via overnight carrier (e.g., Federal Express) for analysis.

VII. Waste Management

No specific waste management procedures are required.

VIII. Data Recording and Management

Measurements will be recorded in the field notebook at the time of measurement, with notations of project name, sample date, sample start and finish times, sample location (e.g., description and GPS coordinates if available), canister serial number, flow controller number, initial vacuum reading, and final vacuum reading. Field notebooks and COC records will be transmitted to the Project Manager.

Rev. #: 2

Rev. Date: February 2007

IX. Quality Assurance

Ambient air sample analysis will be performed using USEPA Method TO-15. This method uses a quadrupole or ion-trap GC/MS with a capillary column to provide optimum detection limits. The GC/MS system requires a 1-liter gas sample (which can easily be recovered from a 6-liter canister) to provide a 0.5 ppbv detection limit. The 6-liter canister also provides several additional 1-liter samples in case subsequent re-analyses or dilutions are required. This system also offers the advantage of the GC/MS detector, which confirms the identity of detected compounds by evaluating their mass spectra in either the SCAN or SIM mode.

Attachment E

Standard Operating Procedure: Administering Tracer Gas

SOP: Administering Tracer Gas

Rev. #: 2

Rev. Date: February 2007

Standard Operating Procedure: Administering Tracer Gas

When collecting subsurface vapor samples as part of a vapor intrusion evaluation, a tracer gas serves as a quality assurance/quality control device to verify the integrity of the vapor probe seal. Without the use of a tracer, verification that a soil vapor sample has not been diluted by surface air is difficult.

Depending on the nature of the contaminants of concern, a number of different compounds can be used as a tracer. Typically, sulfur hexafluoride (SF_6) or helium are used as tracers because they are readily available, have low toxicity, and can be monitored with portable measurement devices. Butane and propane (or other gases) could also be used as a tracer in some situations. Helium is the preferred tracer gas and will generally be used unless site conditions require use of an alternate tracer gas.

The protocol for using a tracer gas is straightforward: simply enrich the atmosphere in the immediate vicinity of the area where the probe intersects the surface with the tracer gas and measure a vapor sample from the probe for the presence of high concentrations (> 10%) of the tracer. A cardboard box, plastic pail, or even a plastic bag can serve to keep the tracer gas in contact with the probe during the testing.

There are two basic approaches to testing for the tracer gas:

- 1. Include the tracer gas in the list of target analytes reported by the laboratory; or
- Use a portable monitoring device to analyze a sample of soil vapor for the tracer prior to and after sampling for the compounds of concern. (Note that tracer gas samples can be collected via syringe, Tedlar bag, etc. They need not be collected in SUMMA[®] canisters or minicans.)

The advantage of the second approach is that the real-time tracer sampling results can be used to confirm the integrity of the probe seals prior to formal sample collection.

Because minor leakage around the probe seal should not materially affect the usability of the soil vapor sampling results, the mere presence of the tracer gas in the sample should not be a cause for alarm. Consequently, portable field monitoring devices with detection limits in the low ppm range are more than adequate for screening samples for the tracer. If high concentrations (> 10%) of tracer gas are observed in a sample, the probe seal should be enhanced to reduce the infiltration of ambient air.

SOP: Administering Tracer Gas

Rev. #: 2

Rev. Date: February 2007

During the initial stages of a subsurface vapor sampling program, tracer gas samples should be collected at each of the sampling probes. If the results of the initial samples indicate that the probe seals are adequate, the Project Manager can consider reducing the number of locations at which tracer gas samples are used. At a minimum, at least 10% of the subsequent samples should be supported with tracer gas analyses. When using permanent soil vapor probes as part of a long-term monitoring program, annual testing of the probe integrity is recommended.