LIMITED PHASE II SUBSURFACE INVESTIGATION REPORT

Subject Property Address

Vacant Mixed-use Property 38-59 12th St (38-57 12th St) Long Island City, NY 11101

PROJECT #104621-PII

Report Date:

January 18, 2011

Prepared for:

Mayflowers Enterprises 12 Birch Hill Road Lake Success, NY 11020

ENVIRONMENTAL RISK MANAGEMENT & CONSULTING

ODELPHI ENVIRONMENTAL, INC. 76 W RUBY AVE, UNIT A PALISADES PARK, NJ 07650 www.odelphi.com

(201) 943-5000, FAX (201) 943-5003

Environmental Risk Management & Consulting

January 18, 2011

Ms. Tiffany Luo Mayflowers Enterprises 12 Birch Hill Road Lake Success, NY 11020

Subject: Preliminary Phase II Subsurface Investigation Report

38-59 12th St (38-57 12th St), Long Island City, NY 11101

ODELPHI Project #104621-PII

Dear Ms. Luo:

Attached please find our *Phase II Subsurface Investigation Report*, (the *Report*) for the above-mentioned Subject Property. The *Report* was completed according to the terms and conditions authorized by you.

The purpose of this *Report* is to provide proper due diligence service for Mayflowers Enterprises on the Subject Property described herein.

Respectfully Submitted,

anch Oh

Casey Oh,

Project Manager

Ph. D., CRS, CEM

TABLE OF CONTENTS

EXECUTIVE SUMMARY	4
1.0 INTRODUCTION	5
2.0 SITE INFORMATION AND DESCRIPTION	6
2.1 PROJECT INFORMATION & PROPERTY LOCATION 2.2 SITE DESCRIPTION	6 6
3.0 TECHNICAL OVERVIEW	7
3.1 SOIL SAMPLING	7
4.0 FINDINGS AND CONCLUSIONS	8
4.1 FINDINGS4.2 CONCLUSIONS AND RECOMMENDATIONS	
5.0 LIMITATIONS	9
5.1 INDEPENDANT CONTRACTOR STATUS 5.2 PROFESSIONAL RESPONSIBILITY	
5.3 LIMITATION OF LIABILITY	

TABLE OF CONTENTS - CON'TD

APPENDIX A - SITE LOCATION MAP & PLOT PLAN

FIGURE 1 SITE LOCATION MAP

FIGURE 2 SITE PLOT PLAN SHOWING BORING LOCATIONS

APPENDIX B – SITE PHOTOGRAPHS

APPENDIX C - TABLE 1 - SUMMARY OF LABORATORY DATA

APPENDIX D - FIELD BORING LOG

APPENDIX E - CHAIN-OF-CUSTODY RECORDS OF SOIL SAMPLES

APPENDIX F – LABORATORY ANALYTICAL REPORT OF SOIL SAMPLES

THIS REPORT IS FOR THE SOLE USE OF THE CLIENT, AND ITS CONTENTS ARE CONSIDERED PRIVILEGED AND CONFIDENTIAL. ACCEPTANCE OF THIS REPORT CONSTITUTES AN AGREEMENT BY THE CLIENT TO ASSUME FULL LIABILITY FOR INFORMATION CONTAINED HERIN. THIS REPORT IS FOR THE SOLE USE AND INTERPRETATION OF THE CLIENT, AND IT IS NOT TO BE REPRODUCED OR DISTRIBUTED TO OUTSIDE PARTIES. THE INFORMATION IN THIS REPORT IS FURNISHED IN GOOD FAITH AND WAS OBTAINED FROM SOURCES AND DATABASES CONSIDERED RELIABLE. HOWEVER, THE ACCURACY OF THE INFORMATION CANNOT BE GUARANTEED. OUR LIABILITY IS LIMITED TO THE FEE CHARGED.

EXECUTIVE SUMMARY

Due to the potential for a past release of volatile organics (VOCs) from the adjacent property with known release of dry cleaning solvents, a limited subsurface site investigation was conducted at 38-59 12th St (38-57 12th St), Long Island City, NY 11101 by ODELPHI Environmental, Inc. (ODELPHI). The subject property is a residential site since the construction. The primary purpose of this investigation was to evaluate if potential release of VOCs from the adjacent property at the subject unit impacted soil and groundwater.

Three (3) soil borings (S1 - S3) were drilled adjacent to the abutting property to the subject building. Approximately 100 % of the property was improved with building and parking lot.

Soil types encountered at the site consisted predominantly clay had taken up most of the soil volume. Borings were advanced to a maximum depth of up to 8 feet. Groundwater was encountered during soil boring. Soil and groundwater samples from each soil boring were analyzed for VOCs (EPA Method 8260B).

At the time of subsurface investigation on January 3, 2011, ODELPHI did not observed stains and smelled any odors from the soil boring locations.

• No VOCs were detected at a concentration above the New York State Department of Environmental Conservation (NYS DEC) TAGM soil and groundwater criteria. This indicated that the subject property has minimal or no impact from historic dry cleaning operation from the adjacent site.

Based upon the results of this investigation, ODELPHI concludes that there has been minimal or no impact from historical dry cleaning operation from the adjacent site.

ODELPHI recommends no further subsurface investigation or characterization for contamination delineation for VOCs at the subject property based on the subsurface investigation.

1.0 INTRODUCTION

ODELPHI was retained by Ms. Tiffany Luo to perform a limited Phase II Subsurface Investigation of the property located at 38-59 12th St (38-57 12th St), Long Island City, NY 11101 (Refer to Figure 1, Site Location Map). The primary purpose of this limited Phase II Subsurface Investigation Report (the Report) is to explore the subsurface soil and groundwater conditions within the proposed area of the subject property, to assist Client, in its performing proper due diligence for the Subject Property.

To accomplish this objective, the following tasks were completed by ODELPHI pertaining to the subject property.

- 1. Pre-marked boring locations and notified the property owner of the proposed work schedule
- 2. Using a hand auger or geoprobe, samples were collected from the suspected past impact area on the subject property. All samples were submitted for laboratory chemical analysis of dry cleaning related products by EPA Method 8260B at a New York State Department of Health certified laboratory.
- 3. Evaluated data and prepared this report.

Ms. Tiffany Luo Mayflower Enterprises authorized our investigation. Site photographs are presented in Appendix B and Chain-of-Custody documentation and Laboratory Data Sheets are presented in Appendix E and F.

2.0 SITE INFORMATION AND DESCRIPTION

2.1 PROJECT INFORMATION & PROPERTY LOCATION

Item	Project Information
ODELPHI Project Number	104621-PII
Client Project Number	N/A
Subject Property Address	38-59 12th St (38-57 12th St), Long Island City, NY 11101
Subject Property Name	residential building
Property Inspection Date	January 3, 2011
Environmental Assessor's	Casey Oh, Certified Environmental Assessor
Name	Casey On, Certified Environmental Assessor
QAQC Reviewer's Name	Casey Oh, Certified Environmental Manager

2.2 SITE DESCRIPTION

The subject property is a rectangular shaped concrete block and cinder brick building on a concrete slab foundation on a down gradient to the South. Historical records indicate that the subject property has been a residential building. The subject property is situated in commercial/residential zone where properties were found to be mixed-use building. Currently the subject unit is vacant building on ground floor.

3.0 TECHNICAL OVERVIEW

On January 3, 2011, three (3) boring S1 - S3 for soil and ground water were advanced utilizing a concrete coring machine at the following locations:

S1- S3: Adjacent to the abutting building to the subject property

3.1 SOIL SAMPLING

S1-S3 borings were drilled up to the depth of 8 feet. A hand auger or geoprobe were advanced at the boring locations up to 8 feet of final dept bgs for S1-S3. Sample boring logs were obtained. The sample descriptions, depths, and the site conditions were recorded.

At each location, the soil was continuously samples to a maximum depth of 8 feet below grade using a decontaminated hand auger drill or geoprobe PE liner by grab sampling.

3.2 GROUNDWATER SAMPLING

Groundwater was encountered during soil boring and was samples for analysis.

3.3 LABORATORY ANALYSIS

Soil samples were delivered to Veritech Laboratories, Inc., Fairfield, New Jersey for chemical analysis. The person collecting the soil samples initiated Chain-of-Custody documentation. The samples were picked up by Veritech within 3 hrs and transferred using the chain-of-custody protocol. Three (3) soil and groundwater samples collected were analyzed by:

• VOCs (EPA Method 8260B)

Chain-of-Custody documentation and Laboratory Data Sheets are presented in Appendix E and F.

4.0 FINDINGS AND CONCLUSIONS

4.1 FINDINGS

- Older alluvial materials consisting mainly of clay from ground surface to an approximate depth of 8 feet below grade, the maximum depth explored.
- Groundwater was encountered at 4 feet below ground surfa ce. No surface water bodies or wetlands were noted on the subject property. At the time of this report, no regional groundwater flow information or perched water layer information was available.
- At the time of subsurface investigation on January 3, 2011, ODELPHI observed no free product from the soil boring locations.
- No VOCs were detected at a concentration above the New York State Department of Environmental Conservation (NYS DEC) TAGM soil and groundwater criteria. This indicated that the subject property has minimal or no impact from historic dry cleaning operation from the adjacent site.

4.2 CONCLUSIONS AND RECOMMENDATIONS

Based upon the results of this investigation, ODELPHI concludes that there has been minimal or no impact from historical dry cleaning operation from the adjacent site.

ODELPHI recommends no further subsurface investigation or characterization for contamination delineation for VOCs at the subject property based on the subsurface investigation.

5.0 LIMITATIONS

5.1 INDEPENDANT CONTRACTOR STATUS

In performing Services under the mutually agreed contractual agreement and verbal engagement, ODELPHI shall operate as, and have the status of, an independent contractor.

5.2 PROFESSIONAL RESPONSIBILITY

Subject to any limitations established by the Client as to the degree of care and amount of time and expenses to be incurred and any other limitations contained in the mutually agreed contractual agreement and verbal engagement, ODELPHI shall perform the Services consistent with that level of care and skill ordinarily exercised by other professional consultants under similar circumstances at the time the Services are performed. Client hereby acknowledges that whenever a Project involves hazardous or toxic materials there are certain inherent risk factors involved (such as limitations on laboratory analytical methods, variations in subsurface conditions, economic loss to Client or property owner, a potential obligation for disclosure to regulatory agencies, a potential for a decrease in market value of real property, and the like) that may adversely affect the results of the Project, even though the Services are performed with such skill and care. No other representation, warranty, or guarantee, express or implied, is included or intended by the mutually agreed contractual agreement and verbal engagement.

5.3 LIMITATION OF LIABILITY

Client agrees that the liability of ODELPHI and all officers, employees, agents, and subcontractors of ODELPHI (the "ODELPHI Parties") to Client for all claims, suits, arbitration, or other proceedings arising from the performance of the Services under the mutually agreed contractual agreement and verbal engagement, including, but not limited to, ODELPHI's professional negligence, errors and omissions, or other professional acts, shall be limited to the Fee amount. ODELPHI Parties are not liable for any indirect, incidental or consequential damages, lost profits, lost revenue, or loss of property value based on the Services provided as part of the mutually agreed contractual agreement and verbal engagement.

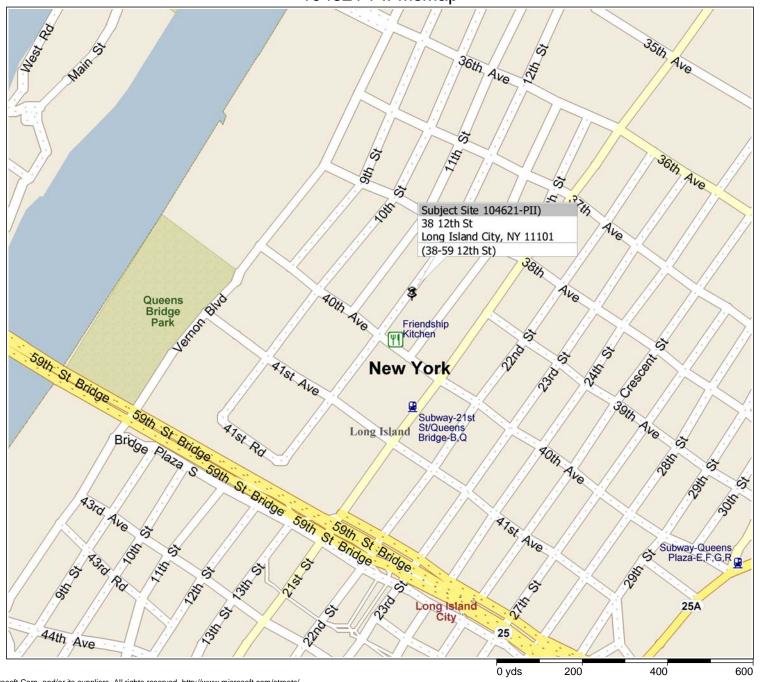
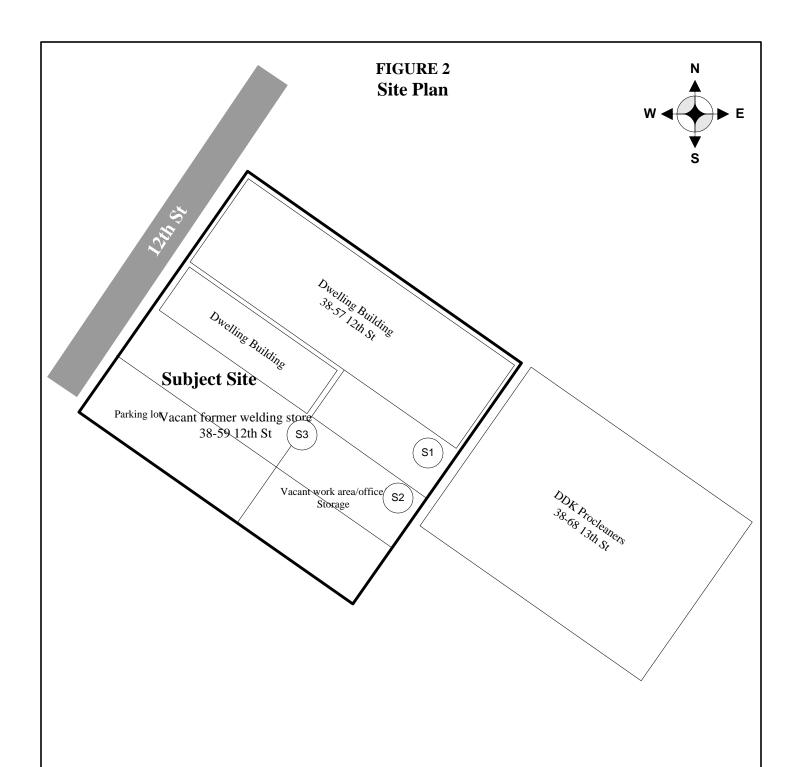

APPENDIX A SITE LOCATION MAP & PLOT PLAN

FIGURE 1 SITE LOCATION MAP

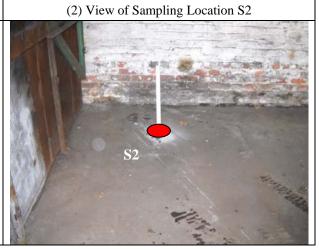

FIGURE 2 SITE PLOT PLAN SHOWING BORING LOCATIONS

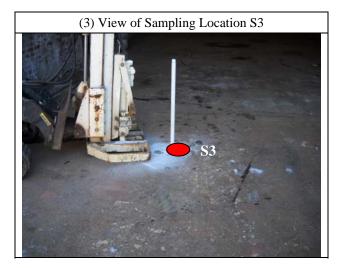
104621-PII-MsMap

Copyright © 1988-2005 Microsoft Corp. and/or its suppliers. All rights reserved. http://www.microsoft.com/streets/ © 2004 NAVTEQ. All rights reserved. This data includes information taken with permission from Canadian authorities © Her Majesty the Queen in Right of Canada. © Copyright 2004 by TeleAtlas North America, Inc. All rights reserve P????

S1-S3 : Soil Boring Location in Basement

Limited Phase II Subsurface Investigation								
Address	38-59 12th St, Long Island City, NY 11101							
Date	Janua	ary 2, 2011						
Project ID	104621-PII Not to scale							




76A W Ruby Ave, Palisades Park, NJ 07650 (201) 943-5000, FAX (201) 943-5003 www.odelphi.com

APPENDIX B SITE PHOTOGRAPHS

(1) View of Sampling Location S1

APPENDIX C TABLE 1 – SUMMARY OF LABORATORY DATA

Table 1 Soil Sample Analytical Results 38-59 12th St (38-57 12th St), Long Island City, NY 11101

		S	ample ID)	NY Soil	
	Sampleing Location	S1	S2	S3	TAGM Criteria	
	Unit	Soil	Results ir	n ppm (n	ng/kg)	
	Sample Depth (ft)	4'	4'	4'		
Test Method	VOCs		-	-		
Test Method	Volatiles					
VO10-8260	:TotalVolatileTic	ND	ND	ND	NA	
VO10-8260	1,1,1-Trichloroethane	ND	ND	ND	0.8	
VO10-8260	1,1,2,2-Tetrachloroethane	ND	ND	ND	0.6	
VO10-8260	1,1,2-Trichloro-1,2,2-trifluoroethane	ND	ND	ND	6	
VO10-8260	1,1,2-Trichloroethane	ND	ND	ND	NA NA	
VO10-8260	1,1-Dichloroethane	ND	ND	ND	0.2	
VO10-8260	1,1-Dichloroethene	ND	ND	ND	0.4	
VO10-8260	1,2,3-Trichloropropane	ND	ND	ND	NA	
VO10-8260	' '	ND ND	ND ND	ND ND	NA NA	
	1,2,4-Trimethylbenzene 1,2-Dichlorobenzene				7.9	
VO10-8260	<i>'</i>	ND	ND	ND	_	
VO10-8260	1,2-Dichloroethane	ND	ND	ND	0.1	
VO10-8260	1,2-Dichloropropane	ND	ND	ND	NA	
VO10-8260	1,3,5-Trimethylbenzene	ND	ND	ND	NA	
VO10-8260	1,3-Dichlorobenzene	ND	ND	ND	1.6	
VO10-8260	1,3-Dichloropropane	ND	ND	ND	NA	
VO10-8260	1,4-Dichlorobenzene	ND	ND	ND	8.5	
VO10-8260	1,4-Dioxane	ND	ND	ND	NA	
VO10-8260	2-Butanone	ND	ND	ND	0.3	
VO10-8260	2-Chloroethylvinylether	ND	ND	ND	NA	
VO10-8260	2-Hexanone	ND	ND	ND	NA	
VO10-8260	4-Isopropyltoluene	ND	ND	ND	NA	
VO10-8260	4-Methyl-2-pentanone	ND	ND	ND	1	
VO10-8260	Acetone	ND	ND	ND	0.2	
VO10-8260	Acrolein	ND	ND	ND	NA	
VO10-8260	Acrylonitrile	ND	ND	ND	NA	
VO10-8260	Benzene	ND	ND	ND	0.06	
VO10-8260	Bromodichloromethane	ND	ND	ND	NA	
VO10-8260	Bromoform	ND	ND	ND	NA	
VO10-8260	Bromomethane	ND	ND	ND	NA	
VO10-8260	Carbon disulfide	ND	ND	ND	2.7	
VO10-8260	Carbon tetrachloride	ND	ND	ND	0.6	
VO10-8260	Chlorobenzene	ND	ND	ND	1.7	
VO10-8260	Chloroethane	ND	ND	ND	1.9	
VO10-8260	Chloroform	ND	ND	ND	0.3	
VO10-8260	Chloromethane	ND	ND	ND	NA	
VO10-8260	cis-1,2-Dichloroethene	ND	ND	ND	NA	
VO10-8260	cis-1,3-Dichloropropene	ND	ND	ND	NA	
VO10-8260	Dibromochloromethane	ND	ND	ND	NA	
VO10-8260	Dichlorodifluoromethane	ND	ND	ND	NA	
VO10-8260	Ethylbenzene	ND	ND	ND	5.5	
VO10-8260	Isopropylbenzene	ND	ND	ND	NA	
VO10-8260	m&p-Xylenes	ND	ND	ND	1.2	

Table 1
Soil Sample Analytical Results
38-59 12th St (38-57 12th St), Long Island City, NY 11101

1	1				1
VO10-8260	Methylene chloride	ND	ND	0.0044	0.1
VO10-8260	Methyl-t-butyl ether	ND	ND	ND	NA
VO10-8260	n-Butylbenzene	ND	ND	ND	NA
VO10-8260	n-Propylbenzene	ND	ND	ND	NA
VO10-8260	o-Xylene	ND	ND	ND	1.2
VO10-8260	sec-Butylbenzene	ND	ND	ND	NA
VO10-8260	Styrene	ND	ND	ND	NA
VO10-8260	t-Butyl Alcohol	ND	ND	ND	NA
VO10-8260	t-Butylbenzene	ND	ND	ND	NA
VO10-8260	Tetrachloroethene	ND	ND	ND	1.4
VO10-8260	Toluene	ND	ND	ND	1.5
VO10-8260	Trans-1,2-dichloroethene	ND	ND	ND	0.3
VO10-8260	Trans-1,3-dichloropropene	ND	ND	ND	NA
VO10-8260	Trichloroethene	ND	ND	ND	0.7
VO10-8260	Trichlorofluoromethane	ND	ND	ND	NA
VO10-8260	Vinyl chloride	ND	ND	ND	0.2
VO10-8260	Xylenes (Total)	ND	ND	ND	NA
	Wet Chemistry				
%SOLIDS	% Solids	75	78	77	NA

Footnotes

NY Soil Criteria in PPM unless otherwise noted

NY Water criteria in ug/L (PPB) unless otherwise noted

Values are based upon TAGM 4046 dated 1/24/94. Gasoline and Fuel Oil recommended soil cleanup objectives may be different based upon the 12/20/00 memo. PCB's 1.0ppm for surface, 10ppm for subsurfaceTotal Vo<10ppm. See regulation for soil organic content guidance.<10ppm, Total SemiVo><500ppm, Individual SemiVo Compound>M= concentration listed or MDL

Background levels for Lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 PPM.

 $Average\ background\ levels\ in\ metropolitan\ or\ suburban\ areas\ or\ near\ highways\ are\ much\ higher\ and\ typically\ range\ from\ 200-500\ PPM.$

For Be, When Hardnes is less than or equal to 75 PPM, 1,100 ug/L when hardness is greater than 75 ppm.

HC-V assumes no legal responsibility for the accuracy of the regulatory values or subsequent updates of values.

^{*}NEW YORK (TAGM) -- as per Department of Environmental Conservation.

^{*}SCC -- Based upon NYSDEC 6 NYCRR Subpart 375-6 Remedial Program Soil Clean-up Objectives, December 14, 2006, Unrestricted Use

^{*}TOGS -- Based upon June 1998 Division of Water Technical & Operational Guidance Series (1.1.1): Ambient Water Quality Standards & Guidance Values and Groundwater Effluent limitations: GA Limits

^{*}Disclaimer: Regulatory values are based upon information published by the New York DEC.

Table 1 Groundwater Sample Analytical Results 38-59 12th St (38-57 12th St), Long Island City, NY 11101

		S	Sample II	D	NY
	Sampleing	GW1	GW2	GW3	GW TAGM
	Location	0,112	0,1,2	3110	Criteria
	Unit	Soil	Results i	n ppm (n	ng/kg)
	Sample Depth (ft)	4'	4'	4'	-6,6)
Test Method	VOCs	+ -	Т	Т.	
Test Method					
1/040 0000	Volatiles	ND	ND	ND	210
VO10-8260	:TotalVolatileTic	ND	ND	ND	NA
VO10-8260	1,1,1-Trichloroethane	ND	ND	ND	5
VO10-8260	1,1,2,2-Tetrachloroethane	ND	ND	ND	5
VO10-8260	1,1,2-Trichloro-1,2,2-trifluoroethane	ND	ND	ND	5
VO10-8260	1,1,2-Trichloroethane	ND	ND	ND	NA
VO10-8260	1,1-Dichloroethane	ND	ND	ND	5
VO10-8260	1,1-Dichloroethene	ND	ND	ND	5
VO10-8260	1,2,3-Trichloropropane	ND	ND	ND	NA
VO10-8260	1,2,4-Trimethylbenzene	ND	ND	ND	NA
VO10-8260	1,2-Dichlorobenzene	ND	ND	ND	4.7
VO10-8260	1,2-Dichloroethane	ND	ND	ND	5
VO10-8260	1,2-Dichloropropane	ND	ND	ND	NA
VO10-8260	1,3,5-Trimethylbenzene	ND	ND	ND	NA
VO10-8260	1,3-Dichlorobenzene	ND	ND	ND	5
VO10-8260	1,3-Dichloropropane	ND	ND	ND	NA
VO10-8260	1,4-Dichlorobenzene	ND	ND	ND	5
VO10-8260	1,4-Dioxane	ND	ND	ND	NA
VO10-8260	2-Butanone	ND	ND	ND	50
VO10-8260	2-Chloroethylvinylether	ND	ND	ND	NA
VO10-8260	2-Hexanone	ND	ND	ND	NA
VO10-8260	4-Isopropyltoluene	ND	ND	ND	NA NA
VO10-8260	4-Methyl-2-pentanone	ND	ND	ND	50
VO10-8260	Acetone	ND	ND	ND	50
VO10-8260	Acrolein	ND ND	ND ND	ND ND	NA
VO10-8260	Acrylonitrile	ND ND	ND ND	ND ND	NA NA
VO10-8260	Benzene	ND	ND	ND	0.7
VO10-8260	Bromodichloromethane	ND	ND	ND	NA NA
VO10-8260	Bromoform	ND	ND	ND	NA
VO10-8260	Bromomethane	ND	ND	ND	NA To
VO10-8260	Carbon disulfide	ND	ND	ND	50
VO10-8260	Carbon tetrachloride	ND	ND	ND	5
VO10-8260	Chlorobenzene	ND	ND	ND	5
VO10-8260	Chloroethane	ND	ND	ND	50
VO10-8260	Chloroform	2.6	2.6	5.5	7
VO10-8260	Chloromethane	ND	ND	ND	NA
VO10-8260	cis-1,2-Dichloroethene	ND	5.3	ND	NA
VO10-8260	cis-1,3-Dichloropropene	ND	ND	ND	NA
VO10-8260	Dibromochloromethane	ND	ND	ND	50
VO10-8260	Dichlorodifluoromethane	ND	ND	ND	NA
VO10-8260	Ethylbenzene	ND	ND	ND	5
VO10-8260	Isopropylbenzene	ND	ND	ND	NA

Table 1 Groundwater Sample Analytical Results 38-59 12th St (38-57 12th St), Long Island City, NY 11101

	```	0	• • • • • • • • • • • • • • • • • • • •		i	1
VO10-8260	m&p-Xylenes	ND	ND	ND	5	
VO10-8260	Methylene chloride	ND	ND	ND	5	
VO10-8260	Methyl-t-butyl ether	ND	ND	ND	NA	
VO10-8260	n-Butylbenzene	ND	ND	ND	NA	
VO10-8260	n-Propylbenzene	ND	ND	ND	NA	
VO10-8260	o-Xylene	ND	ND	ND	5	
VO10-8260	sec-Butylbenzene	ND	ND	ND	NA	
VO10-8260	Styrene	ND	ND	ND	NA	
VO10-8260	t-Butyl Alcohol	ND	ND	ND	NA	
VO10-8260	t-Butylbenzene	ND	ND	ND	NA	
VO10-8260	Tetrachloroethene	ND	ND	ND	5	
VO10-8260	Toluene	ND	ND	ND	5	
VO10-8260	Trans-1,2-dichloroethene	ND	ND	ND	5	
VO10-8260	Trans-1,3-dichloropropene	ND	ND	ND	NA	
VO10-8260	Trichloroethene	ND	ND	ND	5	
VO10-8260	Trichlorofluoromethane	ND	ND	ND	NA	
VO10-8260	Vinyl chloride	ND	1.7	ND	2	
VO10-8260	Xylenes (Total)	ND	ND	ND	NA	

#### Footnotes

NY Soil Criteria in PPM unless otherwise noted

NY Water criteria in ug/L (PPB) unless otherwise noted

Values are based upon TAGM 4046 dated 1/24/94. Gasoline and Fuel Oil recommended soil cleanup objectives may be different based upon the 12/20/00 memo. PCB's 1.0ppm for surface, 10ppm for subsurfaceTotal Vo<10ppm. See regulation for soil organic content guidance.<10ppm, Total SemiVo><500ppm, Individual SemiVo Compound>M= concentration listed or MDL

Background levels for Lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 PPM.

Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 PPM.

For Be, When Hardnes is less than or equal to 75 PPM, 1,100 ug/L when hardness is greater than 75 ppm.

HC-V assumes no legal responsibility for the accuracy of the regulatory values or subsequent updates of values.

^{*}NEW YORK (TAGM) -- as per Department of Environmental Conservation.

^{*}SCC -- Based upon NYSDEC 6 NYCRR Subpart 375-6 Remedial Program Soil Clean-up Objectives, December 14, 2006, Unrestricted Use

^{*}TOGS -- Based upon June 1998 Division of Water Technical & Operational Guidance Series (1.1.1): Ambient Water Quality Standards & Guidance Values and Groundwater Effluent limitations: GA Limits

^{*}Disclaimer: Regulatory values are based upon information published by the New York DEC.

#### APPENDIX D FIELD BORING LOG



	_				1				ORA	TORY BORING		
	Loggoring S					Casey Oh 9:00/9:15				Sample Method:  Depth to Water:	Grou	Grab andwater not encountered
	lling C					Env	viroprobe D			Total Depth:	Giot	8'
Drillin				nent:			rete coring			Boring Diameter:		2"
	nole L					Conc	S1	macinic		Appendix:		
										Tr		
Rem	ark:											
Depth(f		Sample #	Sample Interval	Recovery	OVA (ppm)	Blows	USGS	Symbol	(soil c	Lithologic Description assification, color, mositure, size/plasticity, other)		Well Construction
	0									Concrete		
1										Cl. 1 1	<b>~</b>	
1 -							SW			Clay, brown, dry, f	ine	
			$\bigvee$					S1,				
	5		$\sim$					GW1		<b>≪</b> − GW		
_			$\times$							Clay, dark, wet, fi	ine	
_												
1	10											
-												
			$\times$									
-	1											
	5											
			$\triangle$									
	2											
	0											
	,											
	2 5											
	3											
	0											
	3 _											
	5											
100					l			Ruby Ave,		Log of R	orehole #S1	(Sheet 1 of 3)
AC.	34	O	delp	hi			(201) 94	es Park, NJ ( 3-5000	)7650			nd City, NY 11101
		Er	ıvir	onn	iental	, Inc.	Fax (201)	3-5000, 1) 943-5003	ŀ			
					Fax (201) 943-5003 www.odelphi.com			Date: January	3, 2011	104621-PII		

_				1				DRAT	ORY BORING	1	0.1
	Logged				Casey Oh				Sample Method:	Corre	Grab
	ing Star				En	9:15/9:20 viroprobe D			Depth to Water:  Total Depth:	Grou	ndwater not encountered 8'
Drilling			ment:			rete coring			Boring Diameter:		2"
	ole Loca				Conc	S2	macmine		Appendix:		2
									. Ippendim		
Remar			1		T						
Depth(ft)	San	Sample Interval	Recovery	OVA (ppm)	Blows	USGS	Symbol	(soil cla	Lithologic Description ssification, color, mositure, de size/plasticity, other)	nsity, grain	Well Construction
0	) [								Concrete		
						SW			Clay, brown, dry, fin	e	
			,				S2,				
5	, L		1				GW2		<b>⋖</b> − GW		
							26202				
_											
_		$\times$	1						Clay, dark, wet, fine		
_											
10	0										
_											
_		$\succeq$	4								
1											
5			,								
2											
0	)										
_											
l ⊢											
$\begin{bmatrix} 2 \\ 5 \end{bmatrix}$		$\dashv$									
$\mid \;\; \dashv \;\;$											
3	3										
0											
3											
_ 5	·										
		ı	1				Ruby Ave,		Log of Ro	ehole #S2	(Sheet 2 of 3)
AC		Odel	phi			Palisades Park, NJ 07650 (201) 943-5000, Inc. Fax (201) 943-5003					d City, NY 11101
The state of		Envi	ronn	iental	, Inc.						
						elphi.com		Date: January 3	, 2011	104621-PII	

					1				DRAT	ORY BORING	T	
		ged By					Casey Oh			Sample Method:	0	Grab
Boring Start/End:  Drilling Contractor: Env							9:20/9:25 viroprobe I			Depth to Water:  Total Depth:	Grou	ndwater not encountered 8'
		thod/E		nent:			rete coring			Boring Diameter:		2"
		ocatio				Conc	S3	macinic		Appendix:		2
			101101							- Appendin		
Ren	nark:				ı	1 1						
Depth(		Sample #	Sample Interval	Recovery	OVA (ppm)	Blows	USGS	Symbol	(soil cl	Lithologic Description assification, color, mositure, des size/plasticity, other)	nsity, grain	Well Construction
	0									Concrete		
								00000		Cl. l		
							SW	00000		Clay, brown, dry, fin	e	
			$\searrow$					S3,				
	5							GW3		<b>d</b> GW		
								20000				
_			$\times$							Clay, dark, wet, fine	<b>;</b>	
_												
	10											
_												
			$\succeq$									
	1											
	5		$\overline{\ }$									
			$\triangle$									
	2											
_	0											
_												
	2											
	5		1									
	3											
	0											
-	2											
	3 _		1									
1	301							Ruby Ave,	7650	Log of Bor	ehole #S3	(Sheet 3 of 3)
H	J.A.	O	delp	ohi			(201) 94	es Park, NJ 0 3-5000,	7030			d City, NY 11101
The same	A)	E	nvir	onn	iental	, Inc.	Fax (201	1) 943-5003	ŀ	Date: January 3,		104621-PII
						www.odelphi.com			Date. January 3,	, 2011	10 <del>4</del> 021-PH	

# APPENDIX E CHAIN-OF-CUSTODY RECORDS OF SOIL SAMPLES



٠.

## APPENDIX F LABORATORY ANALYTICAL REPORTS OF SOIL SAMPLES



# **HCV Report Of Analysis DRAFT**

Client: Odelphi Environmental HCV Project #: 1010403

**Project:** 104621-PII

Sample ID: S1 Collection Date: 1/3/2011

Lab#: AC56607-001 Receipt Date: 1/4/2011

% Solids SM2540G
A a l 4 a

Matrix: Soil

Analyte	DF	Units	RL	Result
%Solids	1	percent		75
tile Organics + 10 (8260)				DRAFT
Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	0.99	mg/kg	0.0013 0.0013	ND ND
1,1,2,2-Tetrachloroethane	0.99	mg/kg		
1,1,2-Trichloro-1,2,2-trifluoroethane	0.99	mg/kg	0.0013	ND
1,1,2-Trichloroethane	0.99	mg/kg	0.0013	ND
1,1-Dichloroethane	0.99	mg/kg	0.0013	ND
1,1-Dichloroethene	0.99	mg/kg	0.0013	ND ND
1,2,3-Trichloropropane	0.99	mg/kg	0.0013	
1,2,4-Trimethylbenzene	0.99	mg/kg	0.0013	ND
1,2-Dichlorobenzene	0.99	mg/kg	0.0013	ND
1,2-Dichloroethane	0.99	mg/kg	0.0013	ND
1,2-Dichloropropane	0.99	mg/kg	0.0013	ND
1,3,5-Trimethylbenzene	0.99	mg/kg	0.0013	ND
1,3-Dichlorobenzene	0.99	mg/kg	0.0013	ND
1,3-Dichloropropane	0.99	mg/kg	0.0013	ND
1,4-Dichlorobenzene	0.99	mg/kg	0.0013	ND
1,4-Dioxane	0.99	mg/kg	0.13	ND
2-Butanone	0.99	mg/kg	0.0066	ND
2-Chloroethylvinylether	0.99	mg/kg	0.0026	ND
2-Hexanone	0.99	mg/kg	0.0066	ND
4-Isopropyltoluene	0.99	mg/kg	0.0013	ND
4-Methyl-2-pentanone	0.99	mg/kg	0.0066	ND
Acetone	0.99	mg/kg	0.0066	ND
Acrolein	0.99	mg/kg	0.0066	ND
Acrylonitrile	0.99	mg/kg	0.0066	ND
Benzene	0.99	mg/kg	0.0013	ND
Bromodichloromethane	0.99	mg/kg	0.0013	ND
Bromoform	0.99	mg/kg	0.0013	ND
Bromomethane	0.99	mg/kg	0.0013	ND
Carbon disulfide	0.99	mg/kg	0.0013	ND
Carbon tetrachloride	0.99	mg/kg	0.0013	ND
Chlorobenzene	0.99	mg/kg	0.0013	ND
Chloroethane	0.99	mg/kg	0.0013	ND
Chloroform	0.99	mg/kg	0.0013	ND
Chloromethane	0.99	mg/kg	0.0013	ND
cis-1,2-Dichloroethene	0.99	mg/kg	0.0013	ND
cis-1,3-Dichloropropene	0.99	mg/kg	0.0013	ND
Dibromochloromethane	0.99	mg/kg	0.0013	ND
Dichlorodifluoromethane	0.99	mg/kg	0.0013	ND
Ethylbenzene	0.99	mg/kg	0.0013	ND
Isopropylbenzene	0.99	mg/kg	0.0013	ND
m&p-Xylenes	0.99	mg/kg	0.0013	ND
Methylene chloride	0.99	mg/kg	0.0013	ND
Methyl-t-butyl ether	0.99	mg/kg	0.0013	ND
n-Butylbenzene	0.99	mg/kg	0.0013	ND
n-Propylbenzene	0.99	mg/kg	0.0013	ND
o-Xylene	0.99	mg/kg	0.0013	ND
sec-Butylbenzene	0.99	mg/kg	0.0013	ND
Styrene	0.99	mg/kg	0.0013	ND
t-Butyl Alcohol	0.99	mg/kg	0.033	ND
t-Butylbenzene	0.99	mg/kg	0.0013	ND
Tetrachloroethene	0.99	mg/kg	0.0013	ND ND
Toluene	0.99	mg/kg	0.0013	ND ND
Trans-1,2-dichloroethene Trans-1,3-dichloropropene	0.99 0.99	mg/kg mg/kg	0.0013 0.0013	ND ND

NOTE: Soil Results are reported to Dry Weight

Project #: 1010403

DRAFT

Sample ID:	S1			Collection	Date: 1/3/2011	
Lab#:	AC56607-001			Receipt	Date: 1/4/2011	
Matrix:	Soil					
	Trichloroethene	0.99	mg/kg	0.0013	ND	
	Trichlorofluoromethane	0.99	mg/kg	0.0013	ND	
	Vinyl chloride	0.99	mg/kg	0.0013	ND	
_	Xylenes (Total)	0.99	mg/kg	0.0013	ND	
V	/olatile Organics + 10 (8260) Library Searches				DRAFT	
_	Analyte	DF	Units	RT	Result	
	No Unknown Compounds Detected	0.99	mg/kg	0	ND	
	TotalVolatileTic	0.99	mg/kg	NA	ND	

Sample ID: S2

Lab#

Matrix

Collection Date: 1/3/2011

ds SM2540G				DRAFT
Analyte	DF	Units	RL	Result
% Solids	1	percent		78
e Organics + 10 (8260)				DRAFT
Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	0.994	mg/kg	0.0013	ND
1,1,2,2-Tetrachloroethane	0.994	mg/kg	0.0013	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	0.994	mg/kg	0.0013	ND
1,1,2-Trichloroethane	0.994	mg/kg	0.0013	ND
1,1-Dichloroethane	0.994	mg/kg	0.0013	ND
1,1-Dichloroethene	0.994	mg/kg	0.0013	ND
1,2,3-Trichloropropane	0.994	mg/kg	0.0013	ND
1,2,4-Trimethylbenzene	0.994	mg/kg	0.0013	ND
1,2-Dichlorobenzene	0.994	mg/kg	0.0013	ND
1,2-Dichloroethane	0.994	mg/kg	0.0013	ND
1,2-Dichloropropane	0.994	mg/kg	0.0013	ND ND
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	0.994	mg/kg	0.0013 0.0013	ND ND
,3-Dichloropropane	0.994	mg/kg mg/kg	0.0013	ND ND
1,4-Dichlorobenzene	0.994	mg/kg	0.0013	ND
1,4-Dioxane	0.994	mg/kg	0.0013	ND
2-Butanone	0.994	mg/kg	0.0064	ND
2-Chloroethylvinylether	0.994	mg/kg	0.0025	ND
2-Hexanone	0.994	mg/kg	0.0064	ND
1-Isopropyltoluene	0.994	mg/kg	0.0013	ND
-Methyl-2-pentanone	0.994	mg/kg	0.0064	ND
cetone	0.994	mg/kg	0.0064	ND
crolein	0.994	mg/kg	0.0064	ND
crylonitrile	0.994	mg/kg	0.0064	ND
enzene	0.994	mg/kg	0.0013	ND
romodichloromethane	0.994	mg/kg	0.0013	ND
romoform	0.994	mg/kg	0.0013	ND
romomethane	0.994	mg/kg	0.0013	ND
Carbon disulfide	0.994	mg/kg	0.0013	ND
Carbon tetrachloride	0.994	mg/kg	0.0013	ND ND
hlorobenzene hloroethane	0.994	mg/kg mg/kg	0.0013	ND ND
hloroform	0.994	mg/kg	0.0013	ND ND
nlorororm	0.994	mg/kg mg/kg	0.0013	ND ND
s-1,2-Dichloroethene	0.994	mg/kg	0.0013	ND ND
s-1,3-Dichloropropene	0.994	mg/kg	0.0013	ND
bromochloromethane	0.994	mg/kg	0.0013	ND
chlorodifluoromethane	0.994	mg/kg	0.0013	ND
thylbenzene	0.994	mg/kg	0.0013	ND
opropylbenzene	0.994	mg/kg	0.0013	ND
&p-Xylenes	0.994	mg/kg	0.0013	ND
ethylene chloride	0.994	mg/kg	0.0013	ND
ethyl-t-butyl ether	0.994	mg/kg	0.0013	ND
Butylbenzene	0.994	mg/kg	0.0013	ND
Propylbenzene	0.994	mg/kg	0.0013	ND
-Xylene	0.994	mg/kg	0.0013	ND
ec-Butylbenzene	0.994	mg/kg	0.0013	ND
tyrene	0.994	mg/kg	0.0013	ND
Butyl Alcohol	0.994	mg/kg	0.032	ND
Butylbenzene	0.994	mg/kg	0.0013	ND ND
etrachloroethene	0.994 0.994	mg/kg	0.0013	ND ND
Trans 1.2 dichloroothono		mg/kg	0.0013	ND ND
Frans-1,2-dichloroethene Frans-1,3-dichloropropene	0.994 0.994	mg/kg mg/kg	0.0013 0.0013	ND ND
rans-1,3-dicnioropropene Trichloroethene	0.994	mg/kg mg/kg	0.0013	ND ND
Trichlorofluoromethane	0.994	mg/kg	0.0013	ND
Vinyl chloride	0.994	mg/kg	0.0013	ND
(ylenes (Total)	0.994	mg/kg	0.0013	ND
	3.304	9""9	2.0010	
Organics + 10 (8260) Library Searches				DRAFT
nalyte	DF	Units	RT	Result

No Unknown Compounds Detected 0.994 0 ND mg/kg Project #: 1010403

Sample ID: S2 Collection Date: 1/3/2011

Lab#: AC56607-002 Receipt Date: 1/4/2011

Matrix: Soil

TotalVolatileTic 0.994 mg/kg NA ND

NOTE: Soil Results are reported to Dry Weight

Project #: 1010403

Sample ID: S3

Lab#: AC56607-003

Matrix: Soil

Collection Date: 1/3/2011 Receipt Date: 1/4/2011

Solids SM2540G				DRAFT
Analyte	DF	Units	RL	Result
% Solids	1	percent		77
atile Organics + 10 (8260)				DDAFT

e Organics + 10 (8260)				DRAFT
Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	0.929	mg/kg	0.0012	ND
1,1,2,2-Tetrachloroethane	0.929	mg/kg	0.0012	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	0.929	mg/kg	0.0012	ND
1,1,2-Trichloroethane	0.929	mg/kg	0.0012	ND
1,1-Dichloroethane	0.929	mg/kg	0.0012	ND
1,1-Dichloroethene	0.929	mg/kg	0.0012	ND
1,2,3-Trichloropropane	0.929	mg/kg	0.0012	ND
1,2,4-Trimethylbenzene	0.929	mg/kg	0.0012	ND
1,2-Dichlorobenzene	0.929	mg/kg	0.0012	ND
1,2-Dichloroethane	0.929	mg/kg	0.0012	ND
1,2-Dichloropropane	0.929	mg/kg	0.0012	ND
1,3,5-Trimethylbenzene	0.929	mg/kg	0.0012	ND
1,3-Dichlorobenzene	0.929	mg/kg	0.0012	ND
1,3-Dichloropropane	0.929	mg/kg	0.0012	ND
1,4-Dichlorobenzene	0.929	mg/kg	0.0012	ND
1,4-Dioxane	0.929	mg/kg	0.12	ND
2-Butanone	0.929	mg/kg	0.0060	ND
2-Chloroethylvinylether	0.929	mg/kg	0.0024	ND
2-Hexanone	0.929	mg/kg	0.0060	ND
4-Isopropyltoluene	0.929	mg/kg	0.0012	ND
4-Methyl-2-pentanone	0.929	mg/kg	0.0060	ND
Acetone	0.929	mg/kg	0.0060	ND
Acrolein	0.929	mg/kg	0.0060	ND
Acrylonitrile	0.929	mg/kg	0.0060	ND
Benzene	0.929	mg/kg	0.0012	ND
Bromodichloromethane	0.929	mg/kg	0.0012	ND
Bromoform	0.929	mg/kg	0.0012	ND
Bromomethane	0.929	mg/kg	0.0012	ND
Carbon disulfide	0.929	mg/kg	0.0012	ND
Carbon tetrachloride	0.929	mg/kg	0.0012	ND
Chlorobenzene	0.929	mg/kg	0.0012	ND
Chloroethane	0.929	mg/kg	0.0012	ND
Chloroform	0.929	mg/kg	0.0012	ND
Chloromethane	0.929	mg/kg	0.0012	ND
cis-1,2-Dichloroethene	0.929	mg/kg	0.0012	ND
cis-1,3-Dichloropropene	0.929	mg/kg	0.0012	ND
Dibromochloromethane	0.929	mg/kg	0.0012	ND
Dichlorodifluoromethane	0.929	mg/kg	0.0012	ND
Ethylbenzene	0.929	mg/kg	0.0012	ND
Isopropylbenzene	0.929	mg/kg	0.0012	ND
m&p-Xylenes	0.929		0.0012	ND ND
• •	0.929	mg/kg	0.0012	0.0044
Methylene chloride Methyl-t-butyl ether	0.929	<b>mg/kg</b> mg/kg	0.0012	0.0044 ND
n-Butylbenzene	0.929		0.0012	ND ND
n-Propylbenzene	0.929	mg/kg	0.0012	ND ND
		mg/kg		
o-Xylene	0.929	mg/kg	0.0012	ND
sec-Butylbenzene	0.929	mg/kg	0.0012	ND
Styrene	0.929	mg/kg	0.0012	ND
t-Butyl Alcohol	0.929	mg/kg	0.030	ND
t-Butylbenzene	0.929	mg/kg	0.0012	ND
Tetrachloroethene	0.929	mg/kg	0.0012	ND
Toluene	0.929	mg/kg	0.0012	ND
Trans-1,2-dichloroethene	0.929	mg/kg	0.0012	ND
Trans-1,3-dichloropropene	0.929	mg/kg	0.0012	ND
Trichloroethene	0.929	mg/kg	0.0012	ND
Trichlorofluoromethane	0.929	mg/kg	0.0012	ND
Vinyl chloride	0.929	mg/kg	0.0012	ND
Xylenes (Total)	0.929	mg/kg	0.0012	ND

#### Volatile Organics + 10 (8260) Library Searches

ati	le Organics + 10 (8260) Library Searches				DRAFT
	Analyte	DF	Units	RT	Result
	No Unknown Compounds Detected	0.929	mg/kg	0	ND

NOTE: Soil Results are reported to Dry Weight

Project #: 1010403

Sample ID: S3 Collection Date: 1/3/2011

Lab#: AC56607-003 Receipt Date: 1/4/2011

Matrix: Soil

TotalVolatileTic 0.929 mg/kg NA ND

NOTE: Soil Results are reported to Dry Weight

 Sample ID: GW1
 Collection Date: 1/3/2011

 Lab#: AC56607-004
 Receipt Date: 1/4/2011

Matrix: Aqueous

e Organics + 10 (8260)				DRAFT
Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
	1	-	1.0	ND
1,1-Dichloroethene		ug/l		
1,2,3-Trichloropropane	1	ug/l	1.0	ND
1,2,4-Trimethylbenzene	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3,5-Trimethylbenzene	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,3-Dichloropropane	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
2-Chloroethylvinylether	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Isopropyltoluene	1	ug/l	1.0	ND
	1			ND ND
4-Methyl-2-pentanone		ug/l	1.0	
Acetone	1	ug/l	5.0	ND
Acrolein	1	ug/l	5.0	ND
Acrylonitrile	1	ug/l	2.0	ND
Benzene	1	ug/l	0.50	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	1	ug/l	1.0	ND
Chloroethane	1	ug/l	1.0	ND
Chloroform	1	ug/l	1.0	2.6
Chloromethane	1	ug/l	1.0	ND
cis-1,2-Dichloroethene	1	-	1.0	ND
		ug/l		
cis-1,3-Dichloropropene	1	ug/l	1.0	ND
Dibromochloromethane	1	ug/l	1.0	ND
Dichlorodifluoromethane	1	ug/l	1.0	ND
Ethylbenzene	1	ug/l	1.0	ND
Isopropylbenzene	1	ug/l	1.0	ND
m&p-Xylenes	1	ug/l	1.0	ND
Methylene chloride	1	ug/l	1.0	ND
Methyl-t-butyl ether	1	ug/l	0.50	ND
n-Butylbenzene	1	ug/l	1.0	ND
n-Propylbenzene	1	ug/l	1.0	ND
p-Xylene	1	ug/l	1.0	ND
sec-Butylbenzene	1	ug/l	1.0	ND
Styrene	1		1.0	ND
	1	ug/l		
t-Butyl Alcohol		ug/l	5.0	ND
t-Butylbenzene	1	ug/l	1.0	ND
Tetrachloroethene	1	ug/l	1.0	ND
Toluene	1	ug/l	1.0	ND
Trans-1,2-dichloroethene	1	ug/l	1.0	ND
Trans-1,3-dichloropropene	1	ug/l	1.0	ND
Trichloroethene	1	ug/l	1.0	ND
Trichlorofluoromethane	1	ug/l	1.0	ND
Vinyl chloride	1	ug/l	1.0	ND
Xylenes (Total)	1	ug/l	1.0	ND
e Organics + 10 (8260) Library Searches	•	~9··		DRAFT
Analyte	DF	Units	RT	Result
<u>-</u>				
No Unknown Compounds Detected	1	ug/l	0	ND
TotalVolatileTic	1	ug/l	NA	ND

Sample ID: GW2 Collection Date: 1/3/2011 Lab#: AC56607-005 Receipt Date: 1/4/2011

Matrix: Aqueous

Anglyto	DF	Units	RL	DRAFT Result
Analyte	DF	Units	KL	
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichloropropane	1	ug/l	1.0	ND
1,2,4-Trimethylbenzene	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3,5-Trimethylbenzene	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,3-Dichloropropane	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1		1.0	ND ND
		ug/l		
2-Chloroethylvinylether	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Isopropyltoluene	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/l	5.0	ND
Acrolein	1	ug/l	5.0	ND
Acrylonitrile	1	ug/l	2.0	ND
Benzene	1	ug/l	0.50	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	1	ug/l	1.0	ND
Chloroethane	1	ug/l	1.0	ND
Chloroform	1	ug/l	1.0	2.6
Chloromethane	1	ug/l	1.0	ND
cis-1,2-Dichloroethene	1	ug/l	1.0	5.3
cis-1,3-Dichloropropene	1	ug/l	1.0	ND
Dibromochloromethane	1	ug/l	1.0	ND
Dichlorodifluoromethane	1	ug/l	1.0	ND
Ethylbenzene	1		1.0	ND
•		ug/l		
Isopropylbenzene	<u>1</u> 1	ug/l	1.0	ND
m&p-Xylenes		ug/l	1.0	ND
Methylene chloride	1	ug/l	1.0	ND
Methyl-t-butyl ether	1	ug/l	0.50	ND
n-Butylbenzene	1	ug/l	1.0	ND
n-Propylbenzene	1	ug/l	1.0	ND
o-Xylene	1	ug/l	1.0	ND
sec-Butylbenzene	1	ug/l	1.0	ND
Styrene	1	ug/l	1.0	ND
t-Butyl Alcohol	1	ug/l	5.0	ND
t-Butylbenzene	1	ug/l	1.0	ND
Tetrachloroethene	1	ug/l	1.0	ND
Toluene	1	ug/l	1.0	ND
Trans-1,2-dichloroethene	1	ug/l	1.0	ND
Trans-1,3-dichloropropene	1	ug/l	1.0	ND
Trichloroethene	1	ug/l	1.0	ND
Trichlorofluoromethane	1	ug/l	1.0	ND
Vilone (Tetal)	1	ug/l	1.0	1.7 ND
Xylenes (Total)  le Organics + 10 (8260) Library Searches	1	ug/l	1.0	ND
Analyte	DF	Units	RT	DRAFT Result
<u> </u>				
No Unknown Compounds Detected	1	ug/l	0	ND
TotalVolatileTic	1	ug/l	NA	ND

Sample ID: GW3 Collection Date: 1/3/2011 Lab#: AC56607-006 Receipt Date: 1/4/2011

Matrix: Aqueous

Analyse	DE .	Halte	רי	DRAFT
Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichloropropane	1	ug/l	1.0	ND
1,2,4-Trimethylbenzene	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3,5-Trimethylbenzene	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,3-Dichloropropane	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
2-Chloroethylvinylether	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Isopropyltoluene	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/l	5.0	ND
Acrolein	1	ug/l	5.0	ND
Acrylonitrile	1	ug/l	2.0	ND
Benzene	1	ug/l	0.50	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	1	ug/l	1.0	ND
Chloroethane	1	ug/l	1.0	ND
Chloroform	1	ug/l	1.0	5.5
Chloromethane	1	ug/l	1.0	ND
cis-1,2-Dichloroethene	1	ug/l	1.0	ND
cis-1,3-Dichloropropene	1	ug/l	1.0	ND
Dibromochloromethane	1	ug/l	1.0	ND
Dichlorodifluoromethane	1	ug/l	1.0	ND
Ethylbenzene	1	ug/l	1.0	ND
Isopropylbenzene	1	ug/l	1.0	ND
m&p-Xylenes	1	ug/l	1.0	ND
Methylene chloride	1	ug/l	1.0	ND
Methyl-t-butyl ether	1	ug/l	0.50	ND
n-Butylbenzene	1	ug/l	1.0	ND
n-Propylbenzene	1	ug/l	1.0	ND
o-Xylene	1	ug/l	1.0	ND
sec-Butylbenzene	1	ug/l	1.0	ND
Styrene	1	ug/l	1.0	ND
t-Butyl Alcohol	1	ug/l	5.0	ND
t-Butylbenzene	1	ug/l	1.0	ND
Tetrachloroethene	1	ug/l	1.0	ND
Toluene	1	ug/l	1.0	ND
Trans-1,2-dichloroethene	1	ug/l	1.0	ND
Trans-1,3-dichloropropene	1	ug/l	1.0	ND
Trichloroethene	1	ug/l	1.0	ND
Trichlorofluoromethane	1	ug/l	1.0	ND
Vinyl chloride	1	ug/l	1.0	ND
Xylenes (Total)	1	ug/l	1.0	ND
le Organics + 10 (8260) Library Searches				DRAFT
Analyte	DF	Units	RT	Result
No Unknown Compounds Detected	1	ug/l	0	ND
	-	- <del>3</del> - ·	-	· ·-

NOTE: Soil Results are reported to Dry Weight

Project #: 1010403