

SUPPLEMENTAL SITE CHARACTERIZATION REPORT

Best-DDK Cleaners 38-68 13th Street, Long Island City, New York

Site Number 241126

Prepared For:

Mr. Jay Moon and Ms. Mary Moon 38-68 13th Street Long Island City, New York

Prepared By:

Genesis Engineering & Redevelopment, Inc. 169 Commack Road, Suite H146 Commack, New York 11725

March 14, 2014

Konrad Banaszak, Ph.D. Principal Scientist

Kenneth P. Wenz, Jr., CPG, PG, LEP Senior Project Manager

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	Report Organization	1
1.2	Field Investigation Objective	2
1.3	Background Information	2
1.3.	1 Site Description and History	.2
1.3.	2 Surrounding Area	.3
1.3.	 Historic Environmental Investigations	.4
2.0	SCOPE OF WORK	.5
2.0	SCOLE OF WORK	0
2.1	Pre-sampling Activities	7
2.2	Interior Soil Sampling	7
2.3	Exterior Soil Sampling	8
2.4	Groundwater Sampling	9
2.5	Air Sampling 1	0
2.6	Community Air Monitoring Plan 1	0
2.7	Sample Handling and Laboratory Analysis 1	1
2.8	Investigation-Derived Waste 1	3
2.9	Data Review and Reporting 1	3
3.0	FINDINGS 1	4
3.1	Geologic Characterization 1	4
3.2	Soil Sample Results 1	4
3.3	Groundwater Sample Results 1	5
3.4	Air Sample Results 1	5
4.0	DATA ANALYSIS AND RECOMMENDATIONS 1	6
4.1	Soil1	6
4.2	Groundwater 1	.7
4.3	Air 1	8
4.4	Recommendations1	8

TABLE OF CONTENTS (Continued)

FIGURES

- 1 Site Location Map
- 2 Site Vicinity Map
- 3 Historic Groundwater Sample Results
- 4 Groundwater Elevation Contour Map
- 5 2012 Soil Vapor Results Summary
- 6 2013 Sample Locations
- 7 Historic and Current Groundwater Sample Results

TABLES

- 1 Summary of Historic Groundwater Data
- 2 Interior Soil Sampling Summary
- 3 Sample Summary
- 4 Sampling Rationale
- 5 Soil Sample Analytical Results
- 6 Groundwater Sample Analytical Results
- 7 Air Sample Analytical Results

APPENDICES

- A Field Notes
- B Laboratory Data Sheets
- C Data Usability Summary Report

CERTIFICATION

I, Kenneth P. Wenz, Jr., certify that I am currently a Qualified Environmental Professional as defined in 6 NYCRR Part 375 and that this Site Characterization Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

Kenneth P. Wemp

Kenneth P. Wenz, Jr., CPG, PG, LEP

March 14, 2014 Date

1.0 INTRODUCTION

This Supplemental Site Characterization Report ("Supplemental SC Report") was prepared on behalf of Mr. Jay Moon and Ms. Mary Moon ("Owners") by Genesis Engineering and Redevelopment, Inc. ("GE&R"), to fulfill the requirements of the Order on Consent and Administrative Settlement for Site Number 241126, dated November 22, 2010 ("Order on Consent"), and in response to New York State Department of Environmental Conservation ("NYSDEC") comments on the March 2012 Site Characterization Report. The Order on Consent was executed between the Owners and the NYSDEC, regarding the property located at 38-68 13th Street, Queens, New York ("Site"). This Supplemental SC Report documents the results of a follow-up subsurface environmental investigation at the Site that was conducted in February 2013 to provide additional data to assess whether historic Site operations have impacted the quality of soil and groundwater beneath the Site. The field investigation was conducted in accordance with the Work Plan Addendum letter, which was approved by the NYSDEC in a letter dated February 7, 2013. The Site location is shown on Figures 1 and 2.

1.1 Report Organization

The Supplemental SC Report includes is divided into four sections:

- 1. Section 1.0 Introduction;
- 2. Section 2.0 Scope of Work A description of the sampling program that was implemented at the Site, including the sampling and analytical procedures that were used; and
- 3. Section 3.0 Findings The findings of the site characterization investigation program, including results of laboratory analyses; and
- 4. Section 4.0 Conclusions and Recommendations.

In addition, the following Appendices are included as a part of the Supplemental SC Report:

Appendix A – *Field Notes* – The field notes for the project;

Appendix B – *Laboratory Data Sheets* – The Form I sheets from the laboratory data package for the project (the complete Analytical Services Protocol Category B data packages have been submitted separately in electronic format);

Appendix C – Data Usability Summary Report – The results of the independent data validation process.

1.2 Field Investigation Objective

The objective of the field investigation was to provide data to determine whether the levels of volatile organic compounds ("VOC") that were previously detected in soil gas beneath the Site building and in groundwater immediately adjacent to the Site, are the result of Site operations. The approved scope of work that was implemented to meet this objective included collection and laboratory analysis of soil samples, groundwater samples, and air samples.

1.3 Background Information

The information in this section includes a summary of previous environmental activities at the Site, based on review of documents provided to GE&R, which are assumed to be complete and factual. However, no assessment of the completeness or accuracy of the information about activities for which GE&R was not involved, has been made.

1.3.1 Site Description and History

The Site is located at 38-68 13th Street in Long Island City, New York, and includes property identified on the Queens tax map as Block 472, Lot 683. The Site is a 0.12-acre industrial property containing a 5,053 square foot building that has been used as a dry cleaning business since approximately 1996 (and has always used closed-loop, fourth-generation dry cleaning machinery). Prior to this time, the building was reportedly used for sheet metal fabrication (since the 1950s), and prior to that the Site was residential (from the 1890s).

The Site building is currently utilized for wet laundry and dry cleaning operations, which at present uses three dry cleaning machines, all located in rear-central portion of the building. According to information provided by the building owner and the current building occupant, tetrachloroethene ("PCE") has never been stored at the Site, but has been brought to the Site and added to the dry cleaning machines by an outside vendor when needed. In addition, hazardous wastes generated by the dry cleaning process have always been removed from the Site by an outside vendor (Safety-Kleen from 1996 through 2004 and from 2008 through the present, and National Waste Clean, Inc. between 2004 and 2008). No floor drains were observed in the building during the April 20, 2011 Site inspection or the 2012 and 2013 field programs, but cracking of the floor slab was apparent on the main floor of the building.

According to the Phase I Environmental Site Assessment ("ESA") Report prepared in December 2004, the one-story building currently at the Site was built in 1953, and is constructed with brick or concrete block walls, a flat roof and a concrete slab. The building covers the entire property, with the exception of a very small strip along 13th Street. During the Site inspection on April 20, 2011, it was noted that this strip was less than one foot wide, concrete-covered, and adjacent to the sidewalk along 13th Street. This report notes that there is partial basement under the eastern portion of the building, which can only be accessed from the sidewalk, via a near-vertical stairway. The basement area has a concrete floor throughout and contains a gas-fired boiler and an air compressor, as well as utility services (water, natural gas, and sanitary sewer). The sanitary sewer discharge pipe connects to the municipal sanitary sewer system that runs along 13th Street.

The Site elevation is approximately 15 feet above sea level and is relatively flat, as is the surrounding area. No storm drains were observed at the Site, but storm sewers are present along 13th Street. The Site is served by public utilities and the East River is located approximately 1,800 feet west of the Site. According to a June 2009 subsurface investigation report (see Section 1.3.2), brick fragments and gravel are present below the sidewalk to a depth of two feet. This material is underlain by brown, fine to medium silty sand to a depth of four feet, then brown to dark brown, fine silty sand to ten feet below grade (the terminal depth of the borings). This geologic characterization is consistent with the materials identified during the 2012 and 2013 subsurface investigations at the Site.

According to the NYSDEC, bedrock outcrops are present in the Site vicinity, but bedrock was not observed during the April 20, 2011 Site inspection or during any subsequent Site visits. During the February 2012 field investigation, bedrock was encountered in boring GER-2 at a depth of approximately 26.8 feet below grade.

In 2009, groundwater at the Site was reported to be encountered at seven to eight feet below grade (in 2012, groundwater was identified in GER-1 and GER-2 at approximately 10.5 feet below grade and in 2013, groundwater was identified in GER-SEWER at approximately 8 feet below grade). Based on review of U.S. Geological Survey reports and the topography in the Site vicinity, groundwater flow was expected to be toward the East River (a westerly flow direction was confirmed during the February 2012 field investigation).

1.3.2 Surrounding Area

The area surrounding the Site is occupied by various commercial/industrial establishments. The Queensbridge Houses, a public housing complex, is located approximately 700 feet south of the Site (on the south side of 40th Avenue), a public school (PS 111) is located approximately 1,200 feet north of the Site (on 13th Street north of 38th Avenue), and a private

school (St. Rita's School) is located approximately 1,800 feet north of the Site (on 36th Avenue).

Immediately across 13th Street (upgradient) from the Site is a Pep Boys automobile repair facility. According to information from the facility manager (as reported by the Owner), the Pep Boys building was constructed in 1998 or 1999, on a previously-vacant lot where illegal dumping had frequently occurred. In addition, several other auto repair and/or auto body shops are located on 13th Street northeast of the Site, and along 21st Street, located southeast and east of the Site.

According to information received from the New York City Department of Environmental Protection, the sewer line in 13th Street is a 12-inch diameter, combined sewer main; however, as-built drawings for the sewer in the Site vicinity are not available.

1.3.3 Historic Environmental Investigations

According to a December 2010 draft site characterization work plan (that was prepared by others), three soil vapor samples were collected from beneath the building floor in July 2008. These samples reportedly contained PCE at concentrations ranging from 3,750 micrograms per cubic meter (" μ g/m³") to 8,270 μ g/m³ and trichloroethene ("TCE") at concentrations ranging from 11 μ g/m³ to 70.4 μ g/m³. Since the locations of these samples were not provided and no reference to these samples was found in any other document provided to GE&R, the validity of these data is questionable.

In June 2009, two soil probes were advanced through the sidewalk along 13th Street, in front of the Site (these locations, SB-1 and SB-2, are shown on Figure 3), and one groundwater sample was collected for laboratory analysis at each location. As shown in Table 1 and on Figure 3, PCE and cis-1,2-dichloroethene ("cis-1,2-DCE") were detected in both samples, and the sample from SB-2 also contained TCE. PCE has historically been used as a dry cleaning solvent, and TCE and cis-1,2-DCE are breakdown products of PCE. However, all three VOC are used as degreasing agents in industries other than dry cleaning. Both PCE concentrations and the cis-1,2-DCE concentration in the sample from SB-2 exceeded the New York State Class GA standards for these constituents.

Based on these results, the NYSDEC opened Spill Case Number 09-13336, even though a release from the Site has not been documented. Correspondence from the NYSDEC dated March 29, 2010 required that the Owners submit a work plan to determine the groundwater flow direction and delineate soil and groundwater impacts, as well as submit a Phase I ESA Report for the Site.

Sample	Sample Date	Location	РСЕ (µg/l)	ТСЕ (µg/l)	cis-1,2- DCE (µg/l)	Chloroform (µg/l)	Vinyl Chloride (µg/l)
SB-1	6/2/09	Upgradient	9.8	< 1.0	4.4	< 1.0	< 1.0
SB-2	6/2/09	Upgradient	25.6	3.1	62.7	< 1.0	< 1.0
GW-1	1/3/11	Downgradient	< 1.0	< 1.0	< 1.0	2.6	< 1.0
GW-2	1/3/11	Downgradient	< 1.0	< 1.0	5.3	2.6	1.7
GW-3	1/3/11	Downgradient	< 1.0	< 1.0	< 1.0	5.5	< 1.0
GER-1	2/8/12	Upgradient	3.25	0.79	6.5	0.54	1.1
GER-2	2/8/12	Upgradient	50	2.8	20	38	< 1.0
GER-3	2/8/12	Cross-gradient	1.2	< 0.50	< 0.50	0.62	< 1.0

Table 1. Summary of Historic Groundwater Data

Note: Only compounds of interest are reported.

In November 2010, the Order on Consent was executed, and a draft site characterization work plan was submitted to the NYSDEC on behalf of the Owners in December 2010. In correspondence dated January 18, 2011, the NYSDEC rejected that work plan and required submittal of a revised work plan within 60 days. GE&R was subsequently contracted by the Owners, and a Site Characterization Work Plan was submitted to the NYSDEC on April 22, 2011. Based on comments received from the NYSDEC, a revised work plan was submitted on October 28, 2011. Approval of the Work Plan was received from the NYSDEC in a letter dated December 22, 2011, and the sampling program was implemented in January and February 2012 (the results are presented below in Section 1.3.4).

In January 2011, three groundwater samples were collected at the property immediately northwest of the Site, as part of a property transaction investigation. As shown in Table 1 and on Figure 3, chloroform was detected in each of the samples, and cis-1,2-DCE and vinyl chloride were each detected in one sample.

1.3.4 GE&R 2012 Site Characterization Investigation

The Site characterization field program included drilling of two soil borings within the sidewalk immediately in front of the Site, to characterize Site geology, assess soil quality, and determine the depth to bedrock. A temporary monitoring well was constructed within each boring, as well as at a third location on 12^{th} Street, for determination of the groundwater flow direction and groundwater quality in the Site vicinity. After development, the top of

casing elevation for each temporary monitoring well was surveyed by a New York Statelicensed land surveyor, and groundwater elevation value was calculated for each well. As shown on Figure 4, these data indicated that the groundwater is flowing toward the west.

The results for the three groundwater sample collected during this program are summarized on Figure 3. As shown on this figure, PCE, TCE, and cis-1,2-DCE were detected in each of the samples that were collected immediately upgradient of the Site. PCE was also detected at a low concentration in the sampled from the temporary well on 12th Street, which was cross-gradient to the Site. Other, petroleum-related VOC were also detected in the groundwater samples, especially the southwestern-most sample, GER-1.

The 2012 Site characterization field program also included collection and laboratory analysis of five subslab soil gas samples and one outdoor ambient air sample. As shown on Figure 5, the soil gas samples collected beneath the building's ground floor contained PCE, along with low concentrations of other chlorinated and non-chlorinated VOC.

Based on the sample results, the Site Characterization Report concluded that there is a regional zone of impacted groundwater not related to Site operations, as the greatest concentrations of VOC were detected in the temporary wells located upgradient of the Site building, approximately 80 feet upgradient of Site's dry cleaning equipment (which has always consisted of fourth-generation, closed-loop machines), and at least ten feet from the sanitary sewer line from the Site building. Further, the presence of significant concentrations of VOC in the soil vapor samples other than PCE and its breakdown products indicates that there are many sources beyond dry cleaning that are contributing to the VOC detected in soil vapor.

2.0 SCOPE OF WORK

The NYSDEC approved scope of work for the Supplemental Site Characterization program included:

- 1. Soil sampling and laboratory analysis at four interior locations;
- 2. Soil sampling and laboratory analysis at one exterior location;
- 3. Collection and laboratory analysis of groundwater samples at two exterior locations;
- 4. Collection and laboratory analysis of one indoor air sample at each of the two adjacent properties on 13th Street; and
- 5. Collection and laboratory analysis of one outdoor air sample.

The sample locations utilized during the field investigation are shown on Figure 6. The specific procedures associated with each of these activities are described below.

2.1 Pre-sampling Activities

Prior to initiation of the sampling program, GE&R's drilling subcontractor (Eastern Environmental Solutions, Inc. ("Eastern"), of Manorville, New York) contacted the One Call Center to request that subsurface utilities in the Site vicinity be marked, and submitted a sidewalk use permit application to the New York City Department of Transportation.

On February 22, 2013, each of the interior and exterior subsurface sample locations was screened using a geophysical survey (magnetics and ground-penetrating radar) to identify any subsurface utilities or other obstructions that could impact the successful completion of the sampling program as proposed. These activities were conducted by NAEVA Geophysics of Congers, New York. Potential obstructions were only identified at one of the planned sample locations, the soil and groundwater sampling location planned along the sewer line leading from the Site building (identified as "GER-SEWER" on Figure 6). Because of the underground utilities in the area of the sewer line, this sample was relocated approximately four feet to the northeast of the original location, with NYSDEC concurrence.

2.2 Interior Soil Sampling

Soil samples were collected at locations GER-SS1, GER-SS2, GER-SS3, and GER-SS4 (see Figure 6) on February 24, 2013, using hand operated soil sampling equipment. At each location, an electric hammer drill was used to cut through the floor slab (found to be four to six inches thick), and the soil sampler was driven as deep as possible, using a slide hammer. The samples were collected into new, dedicated disposable acetate sleeves contained within the soil sampler, from immediately below the foundation to refusal.

Upon retrieval, each sleeve was opened and the soil within scanned for total VOC using a photoionization detector ("PID") and geologically described using the Unified Soil Classification System, including documentation of observations regarding potential contamination such as odors, staining, etc. All descriptions and observations were documented in a bound field notebook. Field notes are included in Appendix A.

Two soil samples from each boring were submitted for laboratory analysis of VOC. Since no field indications of contamination were identified in any of the interior soil samples, in accordance with the approved Work Plan Addendum, the samples from the shallowest and deepest 6-inch depth horizons of each boring were submitted for analysis. The boring depths, PID readings, and the samples submitted for analysis are summarized in Table 2.

Boring	Depth ¹	Background PID (parts per million)	Sample PID (parts per million)	Sent for Laboratory Analysis?
GER-SS1	6-12	1.7	1.8	Yes
GER-SS1	12-18	1.7	1.8	No
GER-SS1	18-24	1.7	1.4	No
GER-SS1	24-30	1.7	1.2	Yes
GER-SS2	6-12	3.5	3.5	Yes
GER-SS2	12-18	3.5	3.4	No
GER-SS2	18-24	3.5	3.5	Yes
GER-SS3	6-12	1.4	1.4	Yes
GER-SS3	12-18	1.4	1.5	No
GER-SS3	18-24	1.4	1.4	Yes
GER-SS4	6-12	2.2	Not measured (sample contained only concrete dust)	No
GER-SS4	12-18	2.2	1.8	Yes
GER-SS4	18-24	2.2	1.9	No
GER-SS4	24-30	2.2	2.1	Yes

Table 2. Interior Soil Sample Summary

¹ Inches below the top of the floor slab.

Samples for VOC analysis were collected using laboratory-supplied Encore[®] samplers (three per sample). The filled Encore[®] samplers were capped and placed in laboratory supplied envelopes. Each envelope was sealed and placed into an iced cooler for subsequent transport to Alpha Analytical of Mahwah, New Jersey under chain-of-custody procedures, for VOC analysis using USEPA Methods 5035 and 8260C. Following completion of sampling, each boring was backfilled with excess sample material and clean sand, and then capped with concrete.

2.3 Exterior Soil Sampling

The exterior soil sampling program included collection of two soil samples in the vicinity of the sewer line leading from the Site building, and was conducted on February 25, 2013 using direct push equipment. This sample location is identified as "GER-SEWER" on Figure 6. In accordance with the approved Work Plan Addendum, two soil samples collected at this

location were submitted for laboratory analysis, including one from the 6-inch interval immediately below the sewer line and one from the 6-inch interval immediately above groundwater. The sewer line in the basement of the Site building is located at six feet below ground surface ("bgs") and groundwater within the boring was encountered at approximately eight feet below grade. As a result, the samples from depths of 6 to 6.5 feet bgs and 7.5 to 8 feet bgs were submitted for VOC analysis.

Prior to sampling, the subsurface material was removed from grade to a depth of six feet bgs using a hand auger, to verify the absence of subsurface utilities. A new, dedicated Macro-Core acetate sampler was then driven to a depth of nine feet bgs. Upon retrieval, the sleeve was opened and the soil within scanned for total VOC using a PID and geologically described using the Unified Soil Classification System, including documentation of observations regarding potential contamination such as odors, staining, etc. All descriptions and observations were documented in a bound field notebook. Field notes are included in Appendix A.

Samples for VOC analysis were collected using laboratory-supplied Encore[®] samplers (three per sample). The filled Encore[®] samplers were capped and placed in laboratory supplied envelopes. Each envelope was sealed and placed into an iced cooler for subsequent transport to Alpha Analytical of Mahwah, New Jersey under chain-of-custody procedures, for VOC analysis using USEPA Methods 5035 and 80260C.

2.4 Groundwater Sampling

Two groundwater samples were collected as part of the 2013 sampling program. One sample was collected from the soil boring in the sidewalk in front of the Site near the sanitary line from the Site (identified as "GER-SEWER" on Figure 6) and the second was located on the opposite side of 13th Street, upgradient of the Site (identified as "GER-GW4" on Figure 6). Prior to sampling at GER-GW4, the subsurface material was removed from grade to a depth of six feet bgs using a hand auger, to verify the absence of subsurface utilities (this had been completed at GER-SEWER for the soil sampling at this location).

The groundwater samples were collected using direct push equipment and the Geoprobe[®] groundwater sampler. The sampler was driven to the target depth (12 feet bgs at each location), and the direct push rods were retracted, exposing approximately three feet of stainless steel screen. New, dedicated 3/8-inch inside diameter tubing with a stainless steel check valve was inserted into the direct push rods and agitated to purge approximately 2.5 gallons of groundwater prior to sampling. Following purging, the groundwater sample was collected directly from the tubing into laboratory-supplied 40-milliliter vials preserved with hydrochloric acid. The filled sample bottles were immediately placed into an iced cooler for

subsequent transport to Alpha Analytical of Mahwah, New Jersey under chain-of-custody procedures, for VOC analysis using USEPA Methods 5035 and 80260C. The purge water was collected for subsequent disposal.

Following completion of groundwater sampling at each location, the direct push equipment was removed and each probe hole was backfilled with excess soil cuttings and/or clean sand, and the sidewalk at GER-SEWER was restored with concrete. The sample location for GER-GW4 was within a dirt area around a tree in the sidewalk, so this location was restored at grade with soil.

2.5 Air Sampling

Indoor air sampling was conducted at the two properties adjacent to the Site on 13th Street (Stone Masters, Inc. at 38-66 13th Street and Fine Arts Furniture, Inc. at 38-72 13th Street). The sample locations are shown on Figure 6. Prior to sampling, a representative from each building occupant was interviewed by the NYSDEC and GE&R to confirm that chlorinated solvents are not used at the facility. According to these interviews, neither Stone Masters, Inc. nor Fine Arts Furniture, Inc. uses chlorinated solvents in their processes.

Each sample was collected using a passive badge-type sampling device that was placed in a room of each facility nearest the Site. A third badge was placed at an outdoor location at the Site. Each badge was placed at a height of approximately five feet above the floor or sidewalk (i.e., within the breathing zone).

The badges were placed on February 25, 2013 and each remained in place for slightly more than 24 hours. Upon retrieval on February 26, 2013, each badge was returned to its storage can, and the cans were sent via overnight courier to EMSL Analytical, Inc. of Cinnaminson, New Jersey for PCE analysis using NIOSH Method 1003.

2.6 Community Air Monitoring Plan

During outdoor intrusive activities associated with the field investigation (i.e., direct push soil and groundwater sampling), continuous monitoring for VOC was conducted at the work zone, using a PID. Background PID readings of 0.0 parts per million ("ppm") were measured at each location prior to initiation of intrusive activities, and no PID readings above this level were measured in ambient air at either of the exterior direct push locations. In accordance with the approved Work Plan, particulate monitoring was not conducted during this investigation because of the low potential for dust generation by the direct push sampling equipment.

2.7 Sample Handling and Laboratory Analysis

As described above, immediately after collection, each soil and groundwater sample was placed into an iced cooler for subsequent delivery to the laboratory under chain-of-custody procedures. The soil and groundwater samples were picked up by the Alpha Analytical courier on February 25, 2013. Alpha Analytical is approved under the New York State Department of Health Environmental Laboratory Approval Program ("ELAP") for the analyses performed. The air sample badges were packaged in accordance with laboratory and shipping requirements for overnight delivery to the laboratory under chain-of-custody procedures. The air sample badges were shipped to EMSL Analytical, Inc. on February 26, 2013 and were delivered on February 27, 2013.

Quality assurance/quality control ("QA/QC") samples for soil included one blind duplicate sample (identified as "DUPLICATE" and collected from GER-SS2, 18-24") and one matrix spike/matrix spike duplicate ("MS/MSD") sample set (collected from GER-SS2, 6-12"). QA/QC samples for groundwater included one blind duplicate sample (identified as "GW DUP" and collected from GER-GW4), one MS/MSD sample set (collected from GER-GW4), and one trip blank. Since dedicated equipment was utilized for sample collection, field blanks were not collected during this program. QA/QC samples for air were not collected.

As summarized in Table 3, the supplemental Site characterization sampling program included collection of ten soil samples (plus QA/QC samples), and two groundwater samples (plus QA/QC samples), for laboratory analysis of VOC, plus collection of two indoor air samples and one outdoor air sample for laboratory analysis of PCE. The rationale for collection of each of these samples is summarized in Table 4.

Each soil and groundwater sample was analyzed for VOC, using USEPA Methods 5035 and 8260C with a New York State Analytical Services Protocol ("ASP") Category B data package. The soil and groundwater sample analyses were conducted using the latest version of the ASP with a 14-day turnaround time. The air samples were analyzed using NIOSH Method 1003 (there is no ASP protocol for this method, so a Category B data package could not be provided)

Medium	Number of Samples	Analysis	Analytical Method	Container
Soil	13 *	VOC	5035/8260C	Е
Groundwater	6 **	VOC	8260C	40-milliliter glass
Indoor Air	2	VOC	NIOSH 1003	Air sample badge
Outdoor Air	1	VOC	NIOSH 1003	Air sample badge

Table 3. Sample Summary

* Includes ten soil samples, one blind duplicate sample, and one MS/MSD sample set.

^{**} Includes two groundwater samples, one blind duplicate sample, one MS/MSD sample set, and one trip blank.

Sample	Medium	Analysis/Method	Rationale
GER-SS1, 6-12"	Soil	VOC/8260C	Below building foundation
GER-SS1, 24-30"	Soil	VOC/8260C	Below building foundation
GER-SS2, 6-12"	Soil	VOC/8260C	Below building foundation
GER-SS2, 18-24"	Soil	VOC/8260C	Below building foundation
GER-SS3, 6-12"	Soil	VOC/8260C	Below building foundation
GER-SS3, 18-24"	Soil	VOC/8260C	Below building foundation
GER-SS4, 12-18"	Soil	VOC/8260C	Below building foundation
GER-SS4, 24-30"	Soil	VOC/8260C	Below building foundation
GER-SEWER, 6-6.5'	Soil	VOC/8260C	Vicinity of sewer line from building
GER-SEWER, 7.5-8'	Soil	VOC/8260C	Vicinity of sewer line from building
GER-SEWER GW	Groundwater	VOC/8260C	Vicinity of sewer line from building, upgradient of Site
GER-GW4	Groundwater	VOC/8260C	Upgradient of Site
FAF	Indoor Air	PCE/NIOSH1003	Adjacent property (Fine Arts Furniture, Inc.)
SMI	Indoor Air	PCE/NIOSH1003	Adjacent property (Stone Masters, Inc.)
OUTDOOR	Outdoor Air	PCE/NIOSH1003	Comparison to indoor air sample results

Table 4. Sampling Rationale

2.8 Investigation-Derived Waste

As described above, excess soil sample material was returned to the boring from which it was removed. The purge water generated during groundwater sampling (approximately five gallons) was contained in a drum and transported by Eastern to their facility for subsequent disposal as non-hazardous waste.

2.9 Data Review and Reporting

The ASP Category B data package for the soil and groundwater samples were validated by an independent data validation subconsultant (Data Validation Services of North Creek, New York, who have been approved by the NYSDEC for data validation). The laboratory data sheets for the soil and groundwater samples, and the air samples are included in Appendix B, and the Data Usability Summary Report ("DUSR") summarizing the results of the data validation process is included in Appendix C. The complete data packages have also been submitted to the NYSDEC Environmental Information Management System ("EIMS") in the standardized electronic data deliverable format. The analytical results, qualified as necessary by the data validation and DUSR, are provided in Section 3.0 (Findings), in comparison to background concentrations and/or applicable New York State criteria:

- Soil Remedial Program Soil Cleanup Objectives (as listed in 6NYCRR Part 375-6);
- Groundwater Class GA groundwater standards and guidance values for groundwater (as listed in Technical Operational and Guidance Series ("TOGS") 1.1.1); and
- 3. *Air* Outdoor air sample results and NYSDOH air guideline value for PCE of 100 micrograms per cubic meter (included in the October 2006 document titled "Guidance for Evaluating Soil Vapor Intrusion in the State of New York").

3.0 FINDINGS

3.1 Geologic Characterization

As noted in the field notes for GER-SEWER (Appendix A), the material encountered immediately below the sidewalk consisted of sand and silty sand to a depth of nine feet, which is consistent with the material described in this area in 2012. No staining or odors were observed in the collected soil sample from this location, and a PID reading of 0.9 ppm was measured for each 6-inch interval of the soil sample collected from six to nine feet bgs at this location (a background PID reading of 0.6 ppm was measured prior to initiation of soil sampling at this location). In accordance with the approved Work Plan Addendum, soil sampling was not conducted at location GER-GW4 on the opposite side of 13th Street.

The field notes for the four interior sample locations show that the building foundation ranges from approximately four to six inches in thickness. At all locations, the foundation was underlain by silt and fine to medium sand or silt with some fine to medium sand to the depth of refusal, which ranged from 24 to 30 inches below the floor. All soil samples were dry and no odors were detected in any of the samples. PID readings (summarized in Table 2) ranged from 0.4 ppm below background readings to 0.1 ppm above background readings.

Groundwater was encountered at a depth of approximately 8 feet bgs at GER-SEWER.

3.2 Soil Sample Results

Analytical results for the soil samples are summarized in Table 5. As shown in this table, PCE was detected in each of the eight interior samples, at concentrations ranging from 3.3 micrograms per kilogram (" μ g/kg") to 7,100 μ g/kg, and in both exterior samples, at concentrations of 220 μ g/kg (GER-SEWER, 6-6.5') and 2.3 μ g/kg (GER-SEWER, 7.5-8'). Neither TCE nor cis-1,2-DCE were detected in any of the subslab soil samples, and both were detected in the shallower exterior sample (GER-SEWER, 6-6.5'), at concentrations of 4.5 μ g/kg and 12 μ g/kg, respectively.

Six of the eight subslab soil samples contained other VOC. These samples were GER-SS1, 6-12" (bromomethane at 750 μ g/kg and naphthalene at 490 μ g/kg), GER-SS1, 24-30" (bromomethane at 260 μ g/kg and naphthalene at 1,900 μ g/kg), GER-SS2, 18-24" (4-methyl-2-pentanone at 7.2 μ g/kg), GER-SS3, 6-12" (1,4-diethylbenzene at 35 μ g/kg, ethylbenzene at 100 μ g/kg, m/p-xylene at 760 μ g/kg, o-xylene at 610 μ g/kg, and naphthalene at 2,500 μ g/kg), GER-SS3, 18-24" (4-methyl-2-pentanone at 16 μ g/kg and naphthalene at 5.0 μ g/kg), and GER-SS4, 24-30" (naphthalene at 18 μ g/kg).

As noted in Table 5, detected concentrations of PCE in three samples (GER-SS1, 6-12"; GER-SS1, 18-24"; and GER-SS3, 6-12") and the detected concentrations of m/p-xylene and o-xylene in GER-SS3, 6-12" exceed the New York State Remedial Program Soil Cleanup Objective ("RPSCO") for unrestricted site use of 1,300 μ g/kg for PCE and 260 μ g/kg for xylenes. However, each of these concentrations is well below the corresponding RPSCO values for restricted residential site use (19,000 μ g/kg for PCE and 100,000 μ g/kg for xylenes) or commercial site use (150,000 μ g/kg for PCE and 500,000 μ g/kg for xylenes). Commercial site use is consistent with the past, current, and planned future Site use, as well as the current Site zoning. The concentrations of PCE, TCE, and cis-1,2-DCE detected in the shallower exterior soil sample were all well below the unrestricted use RPSCO for each parameter.

3.3 Groundwater Sample Results

Analytical results for the groundwater samples are summarized in Table 6. As shown in this table, several VOC were detected at concentrations exceeding New York State Class GA groundwater standards or guidance values. These included PCE (2,300 micrograms per liter (" μ g/L")), TCE (170 μ g/L), and cis-1,2-DCE (230 μ g/L) in upgradient sample GER-GW4 (each of these also exceeded standards in the duplicate sample "GW DUP" collected at this location), and PCE (14 μ g/L), cis-1,2-DCE (6.5 μ g/L), and chloroform (29 μ g/L) in the sample from GER-SEWER GW, which also contained bromodichloromethane (3.4 μ g/L) and TCE (1.3 μ g/L) at concentrations below standards/guidance values. The groundwater data are also summarized on Figure 7.

3.4 Air Sample Results

Analytical results for the soil vapor and ambient air samples are summarized in Table 7. As shown in this table, PCE was not detected in either of the indoor air badge samples, nor was it detected in the outdoor badge sample.

Sample	Location	Detected PCE Concentration
FAF	Fine Arts Furniture, Inc. (interior)	< 0.082 parts per million
SMI	Stone Masters, Inc. (interior)	< 0.082 parts per million
OUTDOOR	Best-DDK Cleaners (exterior)	< 0.082 parts per million

Table 7	7. Air	Samp	le Anal	vtical	Results
I unit /	• • • • • •	Samp	ic i inui	Jucui	I C D D D D D D D D D D

4.0 DATA ANALYSIS AND RECOMMENDATIONS

This section presents interpretation of the results of the Supplemental Site Characterization field investigation conducted at the Site in February 2013 and recommendations.

4.1 Soil

- 1. Soil samples from beneath the Site building show minor impacts by PCE in the area around the dry cleaning equipment. PCE (three samples) and xylenes (one sample) were detected at concentrations above New York State unrestricted use RPSCOs, but all detected VOC concentrations were below the RPSCOs for restricted residential use and commercial use (which is consistent with past, present, and planned future site use and the current zoning).
- 2. While the PCE results from the three interior samples also exceed the protection of groundwater criterion of 1,300 μ g/kg (the xylene results are all below the protection of groundwater criterion), these samples are located beneath an existing building that will remain in place, and there are no water lines or sewer piping below the floor in the vicinity of these sample locations. As a result, there is no on-Site mechanism for causing the PCE in the shallow subsurface soil to migrate to groundwater.
- 3. The absence of PCE in groundwater samples collected in 2009 at the property immediately downgradient of the Site (as described in Section 1.3.3 and shown in Table 1) shows that groundwater has not been impacted by the detected PCE. We understand that the NYSDEC has refused to accept the 2009 sample results due to the absence of full QA/QC back-up. We note that the June 2009 sample results, which were used as justification for opening Spill Case Number 09-13336 for the Site, were also analyzed without a full QA/QC package.
- 4. PCE, TCE, and cis-1,2-DCE were detected in soil collected beneath the sidewalk in front of the Site building, but all concentrations were well below the unrestricted use RPSCOs.
- 5. Based on the factors described above, plus the presence of significant upgradient source(s) of VOC contamination to groundwater (see Section 4.2, below), it is apparent that the Site is not a source of VOC in groundwater and, in accordance with 6 NYCRR 375-6.5 and 6 NYCRR 375-1.8(d)(2), the protection of groundwater criteria should not apply.

4.2 Groundwater

- 1. Based on a westerly groundwater flow direction, as determined during the 2012 investigation, the two groundwater samples collected during this investigation are both upgradient of the Site building and dry cleaning operations, as are the groundwater samples collected along 13th Street during the 2009 and 2012 investigations, all of which contained significant VOC concentrations.
- 2. Both upgradient samples from this investigation (GER-GW4 and GER-SEWER GW) contained PCE and cis-1,2-DCE at concentrations above New York State Class GA standards/guidance values, and sample GER-GW4 also contained TCE at a concentration above its groundwater standard. The substantial concentrations detected in GER-GW4 and its associated duplicate sample (PCE more than 450 times its groundwater standard, TCE more than 30 times its standard, and cis-1,2-DCE more than 45 times its standard) clearly show that the VOC contamination in groundwater in the Site vicinity is the result of an upgradient source or sources, and not the Best-DDK Cleaners Site.
- 3. This conclusion is further supported by the low concentrations (below standards/ guidance values) of other, petroleum-related VOC (such as toluene, ethylbenzene, xylenes, naphthalene, and various substituted benzene compounds) that were detected in groundwater samples collected during the 2012 investigation (see Figure 3), which indicate a regional zone of impacted groundwater not related to Site operations, as these samples were located upgradient of the Site building, approximately 80 feet upgradient of Site's dry cleaning equipment (which has always consisted of fourth-generation, closed-loop machines), and at least ten feet from the sanitary sewer line from the Site building.
- 4. The presence of PCE breakdown products (TCE and cis-1,2-DCE) in the samples from this investigation, as well as in samples from the 2012 investigation (TCE and cis-1,2-DCE, and vinyl chloride), all of which were upgradient of the Site, provides additional support for a source of the groundwater impacts other than the Site, as these VOC are not used directly for dry cleaning operations and other potential sources of VOC are located upgradient of the Site. In addition, the presence of each of these PCE breakdown products indicates sufficient time from the release for the PCE to fully degrade to TCE, cis-1,2-DCE, and/or vinyl chloride.
- 5. Based on the westerly groundwater flow direction, temporary well GER-3 from the 2012 investigation was not directly downgradient of the Site (see Figures 3 and 4), yet the sample from this temporary well contained trace concentrations of PCE and chloroform. This information, in conjunction with the absence of PCE in any of the

groundwater samples collected at the property immediately northwest of the Site in January 2011 (see Section 1.3.3 and Figure 3), provides further evidence that the Site is not a contributor to the VOC identified in groundwater.

4.3 Air

- 1. Neither of the air badge samples from the buildings adjacent to the Site contained a detectable concentration of PCE. As a result, it is concluded that Site operations have not impacted the indoor air quality at these adjacent properties.
- 2. According to the New York State Department of Health ("NYSDOH") during a conference call on March 20, 2013, the detection limits for the 2013 air samples were all below NYSDOH guidance for PCE in air.

4.4 Recommendations

The Site is located in a historically industrial area, and groundwater at the Site and in the Site vicinity is not utilized for potable purposes. All dry cleaning operations at the Site, since opening the facility in approximately 1996, have been with closed-loop, fourth-generation dry cleaning equipment and there has never been any on-Site storage of PCE. In addition, despite the open NYSDEC case associated with the Site, a release of dry cleaning chemicals from the Site has not been documented.

The analytical results from the sub-slab soil samples are all below New York State RPSCO values for restricted residential use, and the indoor air results from the two adjacent properties show that Site operations have not impacted indoor air quality at these properties. However, based on the soil vapor sample results from the 2012 Site investigation, installation and operation of a system to mitigate potential exposure pathways to surrounding properties is warranted.

The sample results from the exterior soil samples collected during this investigation were all below New York State unrestricted use criteria, and no further soil sampling in this area in warranted.

The groundwater flow direction determined during the 2012 investigation is toward the west, meaning that the groundwater samples from SB-1 and SB-2 in 2009, at GER-1 and GER-2 during the 2012 investigation, and GER-GW4 and GER-SEWER GW during the current investigation, are all upgradient of the Site building and dry cleaning operations. In addition, the greatest VOC concentrations were detected in the most upgradient sample (GER-GW4). As a result, it is apparent that the VOC detected in these groundwater samples are not the result of Site operations. Further confirmation of this is provided by the numerous VOC

detected in groundwater that are not utilized for dry cleaning, such as chloroform and petroleum-related compounds. In addition, the presence of PCE in the sample from GER-3, which is not directly downgradient of the Site, and the absence of PCE in any of the three groundwater samples collected at the adjacent property in January 2011 (which is downgradient of the Site) shows that Site operations have not impacted groundwater. Based on these factors, it is apparent that VOC-contaminated groundwater exists in the Site vicinity and is migrating beneath the Site from upgradient areas. Based on these factors, it is concluded that no further groundwater investigation for the Site is warranted.

FIGURES

GER-3 (2/8/12)				GER-2 (2/8/12)						
Chloroform	0.62		GER-3	Chloroform	3	3				
PCE	1.2			PCE	5	2				P
TCE	< 0.50	12th Street		TCE	2.8	3				
cis-1,2-DCE	< 0.50	GW-3 (1/3/11)		cis-1,2-DCE	2	2			C	
Vinyl Chloride	< 1.0	Chloroform 5	.5	Vinyl Chloride	< 1.0	<u></u>				
Toluene	< 0.75	cis-1,2-DCE <1	.0	Toluene	< 0.7	5				
Ethylbenzene	< 0.50	Vinyl Chloride <1	.0	Ethylbenzene	< 0.5	0				
Total Xylenes	< 2.0			Total Xylenes	< 2.	0				
Naphthalene	< 2.5	GW-1 (1/3/11) Building		Naphthalene	0.4	4				
1,2,4-Trimethylbenzene	< 2.5	Chloroform 2.6 Under		1,2,4-Trimethylbenzene	< 2.:	5				
1,3,5-Trimethylbenzene	< 2.5	cis-1,2-DCE <1.0 Construction		1,3,5-Trimethylbenzene	< 2.:	5		Legend:		
Bromodichloromethane	3.1	Vinyl Chloride <1.0 Gw-3		Bromodichloromethane	3.0)	•	Historic	Sample	Location
1,4-Diethylbenzene	< 2.0			1,4-Diethylbenzene	< 2.0	0	-	2012 Sa	nnle I c	ocation
4-Ethyltoluene	< 2.0	GW-2 (1/3/11)		4-Ethyltoluene	< 2.0	0	_	2012 54		
1,2,4,5-Tetramethylbenzene	< 2.0	Chloroform 2.6		1,2,4,5-Tetramethylbenzene	< 2.0	0		2015 Sai		cation
		cis-1,2-DCE 5.3 GW-2 GW-1						Groundy	vater Flo	ow
GER-1 (2/8/12)		Vinyl Chloride 1.7		GER-SEWER (2	2/25/13)			Direction	1	
Chloroform	0.54			PCE		<u>14</u> ľ	Note:	Only det	ected co	ompounds
PCE	3.25	SB-2 (6/2/09)		TCE		1.3		reported	•	
TCE	0.79	PCE 25.6		cis-1,2-DCE		6.5		Units are	e microg	grams per
cis-1.2-DCE	6.5	TCE 3.1		Chloroform		29		liter.		
Vinyl Chloride	1.1	cis-1,2-DCE 62.7		Stone Bromodichloromethane		3.4				
Toluene	0.91	$1e \operatorname{Arts runntuic, Inc.} \qquad Best-]$	DDK $ N$	Aasters						
Ethylbenzene	0.64	SB-1 (6/2/09) Clea	iners	Inc. GER-GV	<u>V4 (2/25/)</u>	13)				
Total Xylenes	7.6	PCE 9.8		PCE		2,:	300			
Naphthalene	19	TCE <1.0					170			
1,2,4-Trimethylbenzene	3.8	cis-1.2-DCE 4.4	asement Area Approximate	Chloroform			120			
1,3,5-Trimethylbenzene	1.4	SB-1	SB-2	Bromodichlorom	ethane		~25			
Bromodichloromethane	< 0.50						~23			
1,4-Diethylbenzene	0.60		GER-2	Sidewal	lK					
4-Ethyltoluene	1.4	GER-SEWE								
1,2,4,5-Tetramethylbenzene	0.19	13th Street	\sim							
· · · · ·			/							
		. 1					HIS	TORIC AND	CURREN	Т
	3	laewalk	GER-GW4	GEGO		GF	ROUNI	DWATER SAM	MPLE RE	SULTS
0 25 50	1	00		GEGR			38-68 13	th Street, Long Isl	and City, Ne	w York
Scale in Feet		3		GENESIS ENGINEERING & REDEVELOP	PMENT	esigned:	KW	Project Number :	153-C-3	Figure
				169 Commack Road, Suite H146 · Commack, New	York 11725	rawn:	DH	File :	155C3_10	7
				www.gercorp.com	a	necked:	KW	Revision :	xxxxx	Date: 03/19/13

TABLE 5

Soil Sample Analytical Results

Table 5 Soil Sample Analytical Results Samples Collected on February 24 and 25, 2013

Sample ID (Laboratory ID)	Methylene Chloride	1,1- Dichloroethane	Chloroform	Carbon Tetrachloride	1,2- Dichloropropane	Dibromochloro- methane	1,1,2- Trichloroethane	Tetrachloroethene	Chlorobenzene
GER-SS1, 6-12" (L1303178-04)	3,100 U	460 U	460 U	310 U	1,100 U	310 U	460 U	5,600	310 U
GER-SS1, 24-30" (L1303178-05)	1,600 U	240 U	240 U	160 U	560 U	160 U	240 U	7,100	160 U
GER-SS2, 6-12" (L1303178-01)	41 U	6.1 UJ*	6.1 UJ*	4.1 UJ*	14 UJ*	4.1 U	6.1 U	3.3 J	4.1 UJ*
GER-SS2, 18-24" (L1303178-02)	35 U	5.2 U	5.2 U	3.5 U	12 U	3.5 U	5.2 U	9.8	17 U
DUPLICATE (L1303178-03) *	47 U	7.0 U	7.0 U	4.7 U	16 U	4.7 U	7.0 U	15	4.7 U
GER-SS3, 6-12" (L1303178-06)	1,400 U	220 U	220 U	140 U	500 U	140 U	220 U	2,700	140 U
GER-SS3, 18-24" (L1303178-07)	33 U	5.0 U	5.0 U	3.3 U	12 U	3.3 U	5.0 U	140	3.3 U
GER-SS4, 12-18" (L1303178-08)	69 U	10 U	10 U	6.9 U	24 U	6.9 U	10 U	6.5	6.9 U
GER-SS4, 24-30" (L1303178-09)	25 U	3.8 U	3.8 U	2.5 U	8.8 U	2.5 U	3.8 U	54	2.5 U
GER-SEWER, 6-6.5' (L1303178-14)	45 U	6.7 U	6.7 U	4.5 U	16 U	4.5 U	6.7 U	220	4.5 U
GER-SEWER, 7.5-8' (L1303178-15)	21 U	3.2 U	3.2 U	2.1 U	7.4 U	2.1 U	3.2 U	2.3	2.1 U
Unrestricted Use RPSCO	50	270	370	760				1,300	1,100
Restricted Use RPSCO - Residential	51,000	19,000	10,000	1,400				5,500	100,000
Restricted Use RPSCO - Restricted Residential	100,000	26,000	4,900	2,400				19,000	100,000
Restricted Use RPSCO - Commercial	500,000	240,000	350,000	22,000				150,000	500,000

Units are micrograms per kilogram.

RPSCO: Remedial Program Soil Cleanup Objective (6 NYCRR Part 375-6).

Bold indicates compound detected.

Bold and outlined indicates exceedance of RPSCO.

--: Not established.

+: Applies to sum of isomers.

J: Estimated.

J*: Estimated due to data validation criteria.

U: Undetected at the detection limit shown.

U*: Undetected due to data validation criteria.

*: Duplicate of GER-SS2, 18-24".

Table 5 Soil Sample Analytical Results Samples Collected on February 24 and 25, 2013

Sample ID (Laboratory ID)	Trichlorofluor o-methane	1,2- Dichloroethane	1,1,1- Trichloroethane	Bromodichloro- methane	trans-1,3- Dichloropropene	cis-1,3- Dichloropropene	1,1- Dichloropropene	Bromoform	1,1,2,2- Tetrachloroethane
GER-SS1, 6-12" (L1303178-04)	1,500 U	310 U	310 U	310 U	310 U	310 U	1,500 U	1,200 U	310 U
GER-SS1, 24-30" (L1303178-05)	800 U	160 U	160 U	160 U	160 U	160 U	800 U	640 U	160 U
GER-SS2, 6-12" (L1303178-01)	20 UJ*	4.1 U	4.1 UJ*	4.1 U	4.1 UJ*	4.1 UJ*	4.1 UJ*	16 U	Rejected
GER-SS2, 18-24" (L1303178-02)	3.5 U	3.5 U	3.5 U	3.5 U	3.5 U	3. 5U	17 U	14 U	3.5 U
DUPLICATE (L1303178-03) *	23 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	23 U	19 U	4.7 U
GER-SS3, 6-12" (L1303178-06)	720 U	140 U	140 U	140 U	140 U	140 U	720 U	580 U	140 U
GER-SS3, 18-24" (L1303178-07)	17 U	3.3 U	3.3 U	3.3 U	3.3 U	3.3 U	17 U	13 U	3.3 U
GER-SS4, 12-18" (L1303178-08)	35 U	6.9 U	6.9 U	6.9 U	6.9 U	6.9 U	35 U	28 U	6.9 U
GER-SS4, 24-30" (L1303178-09)	13 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	13 U	10 U	2.5 U
GER-SEWER, 6-6.5' (L1303178-14)	22 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	22 U	18 U	4.5 U
GER-SEWER, 7.5-8' (L1303178-15)	10 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	10 U	8.4 U	2.1 U
Unrestricted Use RPSCO		20	680						
Restricted Use RPSCO - Residential		2,300	100,000						
Restricted Use RPSCO - Restricted Residential		3,100	100,000						
Restricted Use RPSCO - Commercial		30,000	500,000						

Units are micrograms per kilogram.

RPSCO: Remedial Program Soil Cleanup Objective (6 NYCRR Part 375-6).

Bold indicates compound detected.

Bold and outlined indicates exceedance of RPSCO.

--: Not established.

+: Applies to sum of isomers.

J: Estimated.

J*: Estimated due to data validation criteria.

U: Undetected at the detection limit shown.

U*: Undetected due to data validation criteria.

*: Duplicate of GER-SS2, 18-24".

Table 5 Soil Sample Analytical Results Samples Collected on February 24 and 25, 2013

Sample ID (Laboratory ID)	Benzene	Toluene	Ethylbenzene	Chloromethane	Bromomethane	Vinyl Chloride	Chloroethane	1,1- Dichloroethene	trans-1,2- Dichloroethene
GER-SS1, 6-12" (L1303178-04)	310 U	460 U	310 U	1,500 U	750	610 U	610 U	310 U	460 U
GER-SS1, 24-30" (L1303178-05)	160 U	240 U	160 U	800 U	260 J	320 U	320 U	160 U	240 U
GER-SS2, 6-12" (L1303178-01)	4.1 UJ*	6.1 UJ*	4.1 UJ*	20 U	8.2 UJ*	8.2 UJ*	8.2 U	4.1 UJ*	6.1 UJ*
GER-SS2, 18-24" (L1303178-02)	3.5 U	5.2 U	3.5 U	17 U	6.9 U	6.9 U	6.9 U	3.5 U	5.2 U
DUPLICATE (L1303178-03) *	4.7 U	7.0 U	4.7 U	23 U	9.4 U	9.4 U	9.4 U	4.7 U	7.0 U
GER-SS3, 6-12" (L1303178-06)	140 U	220 U	100	720 U	290 U	290 U	290 U	140 U	220 U
GER-SS3, 18-24" (L1303178-07)	3.3 U	5.0 U	3.3 U	17 U	6.7 U	6.7 U	6.7 U	3.3 U	5.0 U
GER-SS4, 12-18" (L1303178-08)	6.9 U	10 U	6.9 U	35 U	14 U	14 U	14 U	6.9 U	10 U
GER-SS4, 24-30" (L1303178-09)	2.5 U	3.8 U	2.5 U	13 U	5.0 U	5.0 U	5.0 U	2.5 U	3.8 U
GER-SEWER, 6-6.5' (L1303178-14)	4.5 U	6.7 U	4.5 U	22 U	8.9 U	8.9 U	8.9 U	4.5 U	6.7 U
GER-SEWER, 7.5-8' (L1303178-15)	2.1 U	3.2 U	2.1 U	10 U	4.2 U	4.2 U	4.2 U	2.1 U	3.2 U
Unrestricted Use RPSCO	60	700	1,000			20		330	190
Restricted Use RPSCO - Residential	2,900	100,000	30,000			210		100,000	100,000
Restricted Use RPSCO - Restricted Residential	4,800	100,000	41,000			900		100,000	100,000
Restricted Use RPSCO - Commercial	44,000	500,000	390,000			13,000		500,000	500,000

Units are micrograms per kilogram.

RPSCO: Remedial Program Soil Cleanup Objective (6 NYCRR Part 375-6).

Bold indicates compound detected.

Bold and outlined indicates exceedance of RPSCO.

--: Not established.

+: Applies to sum of isomers.

J: Estimated.

J*: Estimated due to data validation criteria.
U: Undetected at the detection limit shown.
U*: Undetected due to data validation criteria.
*: Duplicate of GER-SS2, 18-24".

Table 5 Soil Sample Analytical Results Samples Collected on February 24 and 25, 2013

Sample ID (Laboratory ID)	Trichloroethene	1,2- Dichlorobenzene	1,3- Dichlorobenzene	1,4- Dichlorobenzene	Methyl tert- Butyl Ether	m&p-Xylene	o-Xylene	cis-1,2- Dichloroethene	Dibromomethane
GER-SS1, 6-12" (L1303178-04)	310 U	1,500 U	1,500 U	1,500 U	610 U	610 U	610 U	310 U	3,100 U
GER-SS1, 24-30" (L1303178-05)	160 U	800 U	800 U	800 U	320 U	320 U	320 U	160 U	1,600 U
GER-SS2, 6-12" (L1303178-01)	4.1 U	20 UJ*	20 UJ*	20 UJ*	8.2 U	8.2 UJ*	8.2 UJ*	8.2 UJ*	8.2 UJ*
GER-SS2, 18-24" (L1303178-02)	3.5 U	17 U	17 U	17 U	6.9 U	6.9 U	6.9 U	3.5 U	35 U
DUPLICATE (L1303178-03) *	4.7 U	23 U	23 U	23 U	9.4 U	9.4 U	9.4 U	4.7 U	47 U
GER-SS3, 6-12" (L1303178-06)	140 U	720 U	720 U	720 U	290 U	760	610	140 U	1,400 U
GER-SS3, 18-24" (L1303178-07)	3.3 U	17 U	17 U	17 U	6.7 U	6.7 U	6.7 U	3.3 U	33 U
GER-SS4, 12-18" (L1303178-08)	6.9 U	35 U	35 U	35 U	14 U	14 U	14 U	6.9 U	69 U
GER-SS4, 24-30" (L1303178-09)	2.5 U	13 U	13 U	13 U	5.0 U	5.0 U	5.0 U	2.5 U	25 U
GER-SEWER, 6-6.5' (L1303178-14)	4.5	22 U	22 U	22 U	8.9 U	8.9 U	8.9 U	12	45 U
GER-SEWER, 7.5-8' (L1303178-15)	2.1 U	10 U	10 U	10 U	4.2 U	4.2 U	4.2 U	2.1 U	21 U
Unrestricted Use RPSCO	470	1,100	2,400	1,800	930	260 +	260 +	250	
Restricted Use RPSCO - Residential	10,000	100,000	17,000	9,800	62,000	100,000 +	100,000 +	59,000	
Restricted Use RPSCO - Restricted Residential	21,000	100,000	49,000	13,000	100,000	100,000 +	100,000 +	100,000	
Restricted Use RPSCO - Commercial	200,000	500,000	280,000	130,000	500,000	500,000 +	500,000 +	500,000	

Units are micrograms per kilogram.

RPSCO: Remedial Program Soil Cleanup Objective (6 NYCRR Part 375-6).

Bold indicates compound detected.

Bold and outlined indicates exceedance of RPSCO.

--: Not established.

+: Applies to sum of isomers.

J: Estimated.

J*: Estimated due to data validation criteria. U: Undetected at the detection limit shown. U*: Undetected due to data validation criteria. *: Duplicate of GER-SS2, 18-24".

Table 5 Soil Sample Analytical Results Samples Collected on February 24 and 25, 2013

Sample ID (Laboratory ID)	Styrene	Dichlorodifluoro- methane	Acetone	Carbon Disulfide	2-Butanone (Methyl-ethyl Ketone)	Vinyl Acetate	4-Methyl-2- Pentanone	1,2,3- Trichloropropane	2-Hexanone
GER-SS1, 6-12" (L1303178-04)	610 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U
GER-SS1, 24-30" (L1303178-05)	320 U	1,600 U	1,600 U	1,600 U	1,600 U	1,600 U	1,600 U	1,600 U	1,600 U
GER-SS2, 6-12" (L1303178-01)	8.2 UJ*	41 U	41 UJ*	41 UJ*	41 U	41 UJ*	41 U	41 UJ*	41 U
GER-SS2, 18-24" (L1303178-02)	6.9 U	35 U	U*	35 U	35 U	35 U	7.2 J	35 U	17 U
DUPLICATE (L1303178-03) *	9.4 U	47 U	47 U	47 U	47 U	47 U	47 U	47 U	47 U
GER-SS3, 6-12" (L1303178-06)	290 U	1,400 U	1,400 U	1,400 U	1,400 U	1,400 U	1,400 U	1,400 U	1,400 U
GER-SS3, 18-24" (L1303178-07)	6.7 U	33 U	33 U	33 U	33 U	33 U	16	33 U	33 U
GER-SS4, 12-18" (L1303178-08)	14 U	69 U	69 U	69 U	69 U	69 U	69 U	69 U	69 U
GER-SS4, 24-30" (L1303178-09)	5.0 U	25 U	U*	25 U	25 U	25 U	25 U	25 U	25 U
GER-SEWER, 6-6.5' (L1303178-14)	8.9 U	45 U	U*	45 U	45 U	45 U	45 U	45 U	45 U
GER-SEWER, 7.5-8' (L1303178-15)	4.2 U	21 U	21 U	21 U	21 U	21 U	21 U	21 U	21 U
Unrestricted Use RPSCO			50		120				
Restricted Use RPSCO - Residential			100,000		100,000				
Restricted Use RPSCO - Restricted Residential			100,000		100,000				
Restricted Use RPSCO - Commercial			500,000		500,000				

Units are micrograms per kilogram.

RPSCO: Remedial Program Soil Cleanup Objective (6 NYCRR Part 375-6).

Bold indicates compound detected.

Bold and outlined indicates exceedance of RPSCO.

--: Not established.

+: Applies to sum of isomers.

J: Estimated.

J*: Estimated due to data validation criteria. U: Undetected at the detection limit shown. U*: Undetected due to data validation criteria. *: Duplicate of GER-SS2, 18-24".

Table 5 Soil Sample Analytical Results Samples Collected on February 24 and 25, 2013

Sample ID (Laboratory ID)	Bromochloro- methane	2,2- Dichloropropane	1,2-Dibromo- methane	1,3- Dichloropropane	1,1,1,2- Tetrachloroethane	Bromobenzene	n-Butylbenzene	sec- Butylbenzene	tert- Butylbenzene
GER-SS1, 6-12" (L1303178-04)	1,500 U	1,500 U	1,200 U	1,500 U	310 U	1,500 U	310 U	310 U	1,500 U
GER-SS1, 24-30" (L1303178-05)	800 U	800 U	640 U	800 U	160 U	800 U	160 U	160 U	800 U
GER-SS2, 6-12" (L1303178-01)	20 U	20 UJ*	16 U	20 U	4.1 UJ*	20 UJ*	4.1 UJ*	4.1 UJ*	20 UJ*
GER-SS2, 18-24" (L1303178-02)	17 U	17 U	14 U	17 U	3.5 U	17 U	3.5 U	3.5 U	17 U
DUPLICATE (L1303178-03) *	23 U	23 U	19 U	23 U	4.7 U	23 U	4.7 U	4.7 U	23 U
GER-SS3, 6-12" (L1303178-06)	720 U	720 U	580 U	720 U	140 U	720 U	140 U	140 U	720 U
GER-SS3, 18-24" (L1303178-07)	17 U	17 U	13 U	17 U	3.3 U	17 U	3.3 U	3.3 U	17 U
GER-SS4, 12-18" (L1303178-08)	35 U	35 U	28 U	35 U	6.9 U	35 U	6.9 U	6.9 U	35 U
GER-SS4, 24-30" (L1303178-09)	13 U	13 U	10 U	13 U	2.5 U	13 U	2.5 U	2.5 U	13 U
GER-SEWER, 6-6.5' (L1303178-14)	22 U	22 U	18 U	22 U	4.5 U	22 U	4.5 U	4.5 U	22 U
GER-SEWER, 7.5-8' (L1303178-15)	10 U	10 U	8.4 U	10 U	2.1 U	10 U	2.1 U	2.1 U	10 U
Unrestricted Use RPSCO							12,000	11,000	5,900
Restricted Use RPSCO - Residential							100,000	100,000	100,000
Restricted Use RPSCO - Restricted Residential							100,000	100,000	100,000
Restricted Use RPSCO - Commercial							500,000	500,000	500,000

Units are micrograms per kilogram.

RPSCO: Remedial Program Soil Cleanup Objective (6 NYCRR Part 375-6).

Bold indicates compound detected.

Bold and outlined indicates exceedance of RPSCO.

--: Not established.

+: Applies to sum of isomers.

J: Estimated.

J*: Estimated due to data validation criteria.

U: Undetected at the detection limit shown.

U*: Undetected due to data validation criteria.

*: Duplicate of GER-SS2, 18-24".

Table 5 Soil Sample Analytical Results Samples Collected on February 24 and 25, 2013

Sample ID (Laboratory ID)	o-Chlorotoluene	p-Chlorotoluene	1,2-Dibromo-3- Chloropropane	Hexachloro- butadiene	Isopropylbenzene	p-Isopropyltoluene	Naphthalene	Acrylonitrile	n-Propylbenzene
GER-SS1, 6-12" (L1303178-04)	1,500 U	1,500 U	1,500 U	1,500 U	310 U	310 U	490 J	3,100 U	310 U
GER-SS1, 24-30" (L1303178-05)	800 U	800 U	800 U	800 U	160 U	160 U	1,900	1,600 U	160 U
GER-SS2, 6-12" (L1303178-01)	20 UJ*	20 UJ*	20 U	20 UJ*	4.1 UJ*	4.1 UJ*	20 UJ*	41 U	4.1 UJ*
GER-SS2, 18-24" (L1303178-02)	17 U	17 U	17 U	17 U	3.5 U	3.5 U	17 U	35 U	3.5 U
DUPLICATE (L1303178-03) *	23 U	23 U	23 U	23 U	4.7 U	4.7 U	23 U	47 U	4.7 U
GER-SS3, 6-12" (L1303178-06)	720 U	720 U	720 U	720 U	140 U	140 U	2,500	1,400 U	140 U
GER-SS3, 18-24" (L1303178-07)	17 U	17 U	17 U	17 U	3.3 U	3.3 U	5.0	33 U	3.3 U
GER-SS4, 12-18" (L1303178-08)	35 U	35 U	35 U	35 U	6.9 U	6.9 U	35 U	69 U	6.9 U
GER-SS4, 24-30" (L1303178-09)	13 U	13 U	13 U	13 U	2.5 U	2.5 U	18	25 U	2.5 U
GER-SEWER, 6-6.5' (L1303178-14)	22 U	22 U	22 U	22 U	4.5 U	4.5 U	22 U	45 U	4.5 U
GER-SEWER, 7.5-8' (L1303178-15)	10 U	10 U	10 U	10 U	10 U	2.1 U	2.1 U	21 U	2.1 U
Unrestricted Use RPSCO							12,000		3,900
Restricted Use RPSCO - Residential							100,000		100,000
Restricted Use RPSCO - Restricted Residential							100,000		100,000
Restricted Use RPSCO - Commercial							500,000		500,000

Units are micrograms per kilogram.

RPSCO: Remedial Program Soil Cleanup Objective (6 NYCRR Part 375-6).

Bold indicates compound detected.

Bold and outlined indicates exceedance of RPSCO.

--: Not established.

+: Applies to sum of isomers.

J: Estimated.

J*: Estimated due to data validation criteria.

U: Undetected at the detection limit shown.

U*: Undetected due to data validation criteria.

*: Duplicate of GER-SS2, 18-24".

Table 5 Soil Sample Analytical Results Samples Collected on February 24 and 25, 2013

Sample ID (Laboratory ID)	1,2,3- Trichlorobenzene	1,2,4- Trichlorobenzene	1,3,5- Trimethylbenzene	1,2,4- Trimethylbenzene	1,4- Diethylbenzene	4-Ethyltoluene	1,2,4,5- Tetramethyl- benzene	Ethyl Ether	trans-1,4- Dichloro-2- butene
GER-SS1, 6-12" (L1303178-04)	1,500 U	1,500 U	1,500 U	1,500 U	1,200 U	1,200 U	1,200 U	1,500 U	1,500 U
GER-SS1, 24-30" (L1303178-05)	800 U	800 U	800 U	800 U	640 U	640 U	640 U	800 U	800 U
GER-SS2, 6-12" (L1303178-01)	20 UJ*	20 UJ*	20 UJ*	20 UJ*	16 UJ*	16 UJ*	16 UJ*	20 U	20 UJ*
GER-SS2, 18-24" (L1303178-02)	17 U	17 U	17 U	17 U	14 U	14 U	14 U	17 U	17 U
DUPLICATE (L1303178-03) *	23 U	23 U	23 U	23 U	19 U	19 U	19 U	23 U	23 U
GER-SS3, 6-12" (L1303178-06)	720 U	720 U	720 U	720 U	35	580 U	580 U	720 U	720 U
GER-SS3, 18-24" (L1303178-07)	17 U	17 U	17 U	17 U	13 U	13 U	13 U	17 U	17 U
GER-SS4, 12-18" (L1303178-08)	35 U	35 U	35 U	35 U	28 U	28 U	28 U	35 U	35 U
GER-SS4, 24-30" (L1303178-09)	13 U	13 U	13 U	13 U	10 U	10 U	10 U	13 U	13 U
GER-SEWER, 6-6.5' (L1303178-14)	22 U	22 U	22 U	22 U	18 U	18 U	18 U	22 U	22 U
GER-SEWER, 7.5-8' (L1303178-15)	10 U	10 U	10 U	10 U	8.4 U	8.4 U	8.4 U	10 U	10 U
Unrestricted Use RPSCO			8,400	3,600					
Restricted Use RPSCO - Residential			47,000	47,000					
Restricted Use RPSCO - Restricted Residential			52,000	52,000					
Restricted Use RPSCO - Commercial			190,000	190,000					

Units are micrograms per kilogram.

RPSCO: Remedial Program Soil Cleanup Objective (6 NYCRR Part 375-6).

Bold indicates compound detected.

Bold and outlined indicates exceedance of RPSCO.

--: Not established.

+: Applies to sum of isomers.

J: Estimated.

J*: Estimated due to data validation criteria.

U: Undetected at the detection limit shown.

U*: Undetected due to data validation criteria.

*: Duplicate of GER-SS2, 18-24".

TABLE 6

Groundwater Sample Analytical Results

Sample ID (Laboratory ID)	Methylene Chloride	1,1- Dichloroethane	Chloroform	Carbon Tetrachloride	1,2-Dichloropropane	Dibromochloro- methane	1,1,2- Trichloroethane	Tetrachloroethene	Chlorobenzene
GER-4 (L1303178-11)	120 U	120 U	120 U	25 U	50 U	25 U	75 U	2,300 J*	120 U
GW DUP (L1303178-12) *	250 U	250 U	250 U	50 U	100 U	50 U	150 U	4,400 J*	250 U
GER-SEWER GW (L1303178-14)	2.5 U	2.5 U	29	0.50 U	1.0 U	0.50 U	1.5 U	14	2.5 U
Trip Blank (L1303178-10)	2.5 U	2.5 U	2.5 U	0.50 U	1.0 U	0.50 U	1.5 U	0.50 U	2.5 U
Class GA Groundwater Standard/ Guidance Value	5	5	7	5	1	50 GV	1	5	5

Sample ID	1,2,3- Trichloropropane	Acrylonitrile	Styrene	Dichlorodifluoro methane	Acetone	Carbon Disulfide	2-Butanone (Methyl-ethyl Ketone)	Vinyl Acetate	4-Methyl-2- Pentanone
GER-4 (L1303178-11)	120 UJ*	250 U	120 U	250 U	U*	250 U	250 U	250 U	250 U
GW DUP (L1303178-12) *	250 UJ*	500 U	250 U	500 U	U*	500 U	500 U	500 U	500 U
GER-SEWER GW (L1303178-14)	2.5 UJ*	5.0 U	2.5 U	5.0 U	U*	5.0 U	5.0 U	5.0 U	5.0 U
Trip Blank (L1303178-10)	2.5 UJ*	5.0 U	2.5 U	5.0 U	2.1 J	5.0 U	5.0 U	5.0 U	5.0 U
Class GA Groundwater Standard/ Guidance Value	0.04	5	50	5	50 GV	60 GV	50 GV		

Units are micrograms per liter

Bold indicates compound detection

Bold and outlined indicates exceedance of standard or guidance value

--: Not established

- +: Applies to sum of isomers
- *: Duplicate of GER-GW4

J: Estimated

J*: Estimated due to data validation criteria

U: Undetected at the detection limit shown

U*: Undetected due to data validation criteria

Sample ID (Laboratory ID)	Trichlorofluor o-methane	1,2- Dichloroethane	1,1,1- Trichloroethane	Bromodichloro- methane	trans-1,3- Dichloropropene	cis-1,3- Dichloropropene	1,1- Dichloropropene	Bromoform	1,1,2,2- Tetrachloroethane
GER-4 (L1303178-11)	120 U	25 U	120 U	25 U	25 U	25 U	120 U	100 U	25 U
GW DUP (L1303178-12) *	250 U	50 U	250 U	50 U	50 U	50 U	250 U	200 U	50 U
GER-SEWER GW (L1303178-14)	2.5 U	0.50 U	2.5 U	3.4	0.50 U	0.50 U	2.5 U	2.0 U	0.50 U
Trip Blank (L1303178-10)	2.5 U	0.50 U	2.5 U	0.50 U	0.50 U	0.50 U	2.5 U	2.0 U	0.50 U
Class GA Groundwater Standard/ Guidance Value	5	0.6	5	50 GV	0.4 +	0.4 +	5	50 GV	5

Sample ID	2-Hexanone	Bromochloro- methane	2,2- Dichloropropane	1,2-Dibromo- methane	1,3- Dichloropropane	1,1,1,2- Tetrachloroethane	Bromobenzene	n-Butylbenzene	sec-Butylbenzene
GER-4 (L1303178-11)	250 U	120 U	120 U	100 U	120 U	120 U	120 U	120 U	120 U
GW DUP (L1303178-12) *	500 U	250 U	250 U	200 U	250 U	250 U	250 U	250 U	250 U
GER-SEWER GW (L1303178-14)	5.0 U	2.5 U	2.5 U	2.0 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Trip Blank (L1303178-10)	5.0 U	2.5 U	2.5 U	2.0 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Class GA Groundwater Standard/ Guidance Value	50 GV	5	5	5	5	5	5	5	5

Units are micrograms per liter

Bold indicates compound detection

Bold and outlined indicates exceedance of standard or guidance value

--: Not established

- +: Applies to sum of isomers
- *: Duplicate of GER-GW4

J: Estimated

J*: Estimated due to data validation criteria

U: Undetected at the detection limit shown

U*: Undetected due to data validation criteria

Sample ID (Laboratory ID)	Benzene	Toluene	Ethylbenzene	Chloromethane	Bromomethane	Vinyl Chloride	Chloroethane	1,1- Dichloroethene	trans-1,2- Dichloroethene
GER-4 (L1303178-11)	25 U	120 U	120 U	120 U	120 UJ*	50 U	120 U	25 U	120 U
GW DUP (L1303178-12) *	50 U	250 U	250 U	250 U	250 UJ*	100 U	250 U	50 U	250 U
GER-SEWER GW (L1303178-14)	0.50 U	2.5 U	2.5 U	2.5 U	2.5 U	1.0 U	2.5 U	0.50 U	2.5 U
Trip Blank (L1303178-10)	0.50 U	2.5 U	2.5 U	2.5 U	2.5 U	1.0 U	2.5 U	0.50 U	2.5 U
Class GA Groundwater Standard/ Guidance Value	1	5	5	5	5	2	5	5	5

Sample ID	tert- Butylbenzene	o-Chlorotoluene	p-Chlorotoluene	1,2-Dibromo-3- Chloropropane	Hexachloro- butadiene	Isopropylbenzene	p-Isopropyltoluene	Naphthalene	n-Propylbenzene
GER-4 (L1303178-11)	120 U	120 U	120 U	120 U	120 U	120 U	120 U	120 U	120 U
GW DUP (L1303178-12) *	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U
GER-SEWER GW (L1303178-14)	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Trip Blank (L1303178-10)	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Class GA Groundwater Standard/ Guidance Value	5	5	5	0.04	0.5	5	5	10 GV	5

Units are micrograms per liter

Bold indicates compound detection

Bold and outlined indicates exceedance of standard or guidance value

--: Not established

- +: Applies to sum of isomers
- *: Duplicate of GER-GW4

J: Estimated

J*: Estimated due to data validation criteria U: Undetected at the detection limit shown U*: Undetected due to data validation criteria

Sample ID (Laboratory ID)	Trichloroethene	1,2- Dichlorobenzene	1,3- Dichlorobenzene	1,4- Dichlorobenzene	Methyl tert- Butyl Ether	m&p-Xylene	o-Xylene	cis-1,2- Dichloroethene	Dibromomethane
GER-4 (L1303178-11)	170	120 U	120 U	120 U	120 U	120 U	120 U	230	250 U
GW DUP (L1303178-12) *	190	250 U	250 U	250 U	250 U	250 U	250 U	250	500 U
GER-SEWER GW (L1303178-14)	1.3	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	6.5	5.0 U
Trip Blank (L1303178-10)	0.50 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	5.0 U
Class GA Groundwater Standard/ Guidance Value	5	3	3	3	10 GV	5	5	5	5

Sample ID	1,2,3- Trichlorobenzene	1,2,4- Trichlorobenzene	1,3,5- Trimethylbenzene	1,2,4- Trimethylbenzene	1,4- Diethylbenzene	4-Ethyltoluene	1,2,4,5-Tetramethyl- benzene	Ethyl Ether	trans-1,4-Dichloro- 2-butene
GER-4 (L1303178-11)	120 U	120 U	120 U	120 U	100 U	100 U	100 U	120 U	120 UJ*
GW DUP (L1303178-12) *	250 U	250 U	250 U	250 U	200 U	200 U	200 U	250 U	250 UJ*
GER-SEWER GW (L1303178-14)	2.5 U	2.5 U	2.5 U	2.5 U	2.0 U	2.0 U	2.0 U	2.5 U	2.5 UJ*
Trip Blank (L1303178-10)	2.5 U	2.5 U	2.5 U	2.5 U	2.0 U	2.0 U	2.0 U	2.5 U	2.5 UJ*
Class GA Groundwater Standard/ Guidance Value	5	5	5	5			5		5

Units are micrograms per liter

Bold indicates compound detection

Bold and outlined indicates exceedance of standard or guidance value

--: Not established

- +: Applies to sum of isomers
- *: Duplicate of GER-GW4

J: Estimated

J*: Estimated due to data validation criteria

U: Undetected at the detection limit shown

U*: Undetected due to data validation criteria

APPENDIX A

Field Notes

Inspected Fine Arts From time and necessary oblight for RE budge installation in work non adjucent to Best Cleance - REC oblayed leation. They but we chlomoted hereted Stone Masters and received day to be RE budge installation in other along wall shared with Best Clemon - Un Dec approved to cation. Selected exterior simple backing ding 2/12/13 BEST CLEANGRES KW on site 1355 1405 pet Some O'Connell & Harden Ahned of wis DEC; Suy Man annes 1410. ---- rillaiges Buts /2

(mc) allowed par sec 142 off site 1445 Amuth Intelle Repution upgacehout of Site (behind Rep baces) will be near No Renderics Laction mended with paint and Kis and Whi Man made 4 interior wand the quint and hubest SV DEC must have, so they could not select interior sample locutions with sign , the moeded (h) udjusted as needed due to national gas hive into Rep Buys - appared by Dec 2/12/13 BEST CLEAMERS (Ilmens - They sund to towns on overcles Patronard plus unknown line from light pole to blds, and clastic line and under line - all marked in prink you water time - all marked in prink 2 22/13 KW on-ite 0755 NACYA on site already me Okong some him from bldg is 25.5' belans blog floor (~6' belans grade.) server line, just NW of oil fill line. Bohmid Kep Boys, gon line and its Dossible writer line marked, 1355:50 Sumple, lowertins by mee and by sign Russ Debler BELT CLEARERS Clarby; Calm; 30°

(~1) anonalis son the (marked up tage) 00 Interior locations KW officite 1005 New touching under buble NW of Dec Equipment cleaned (cruck) Cleaned, as is current (under by NG and SC buther South. Best Cleanus 2/22/13 thin same; day; no REC 2" to odor 12-16" some: REC 3" "la day; no odor PID 3.5" "la 1 1 5 w 1/15 Lunis 2 20-0 9100 0975 18.24" Some RC 2" Oglo - concrete out won this 2/24/13 Seer open at voc Say Moon in 5, te 080 GET UP AT GER-SS2 KW onsite 0750-calibrate PD with 10 ppm isobutylene in our BEST CLISANCERS 2/24/18 DET CIMASS 37°, Clear 55 010 ser.

0920 Elver Juilles at GER-554 0940 Fleve dulles at GER-553 0950 Floor duilles at GER-55\$ CAER-552 15 71/2' from side wall and 21' from rear wall on side of blog by overhead Simples immediately placed into bent slightly relayed lad Sumples from 6-12" and 18-24" "Durlicate" (labola 054) from 18-24" adur, But clertuers thelis 10301.2.2. Some Rec 2.5" 1035 2.2.5 Sume by REC 2.5" 2.5.3 No odor PID 1.2 2.5.3 No odor PID 1.2 1030 1. 5-2 any nu oder PID 1.8 (2) 672" SV location when to any; No oder PEGT CLEMERS RAST CUERNERS 2/29/13

(162554 slab 245" thick FIRES (A) O-6"-12" concode boot 2.2 H1012-18" brown silt and fm H1012-18" brown silt and fm Sumb joce & gland RE2 6" bry i ho oder PID 1.8 1115 18-24" Some; by; R 1120 24-30" Some; bid R 1120 24-30" Some; bid R 1125 30 30 " REMASA Samples from Cr.S.1 and 2-2:5' sont bo analysis Jabeled as 612" and 24'30" on Sumples and CUC (30) SET CLEANERS 2/24/13 R& 5" PID 1.9 PID 1.9 - 11/30 m - 16-Jun mil 22%" from well by Free forts GOR 554 (water to from yelly will Jump lig from 12-18" and 24-30" Sent to lab REST CLEANERS 2/24/13 RG745122 PID 1.4 Stand John in Rit 3" PRT CLEANSOS la Bers

- KW off- 510 1955 Son Million alloite 123 well and The From Wall w/ Carch hole filled with cuttings and Samely and angled with cuncrete. Each Simple is 3 Encres plus me Small bottle (plastic) for moisture Samuth Why B (32) BOST CLEANCERS 3/24/13 Sangles from 612" and 1824" Gastern equipment Geoprobe 661001 Set up at GER-GLUH (behind Rep Bys) hand cleanal to sile; in open men by tree recovert No Pinking sign. - PID calibrated whing 100 ppm issunthene KW on-site 0735. Caston already 2/25/13 in ain - Ana (reading 100:1 Pour - Conducted health & surety briefing of Constean 0825 beging dinne probe sumpler Plan to Invie Genabe gus samples to BEST CLEANERS Sunny 340, 10-5 MAR Commun

(2)) (34) 3651 CLEANERS Sample, M5 (M5D Collected into 40-md In als with HOL at UB45. Water very Annabic with ho oder or steen. Dup I cute no oder or steen. Dup I cute DUN GW collected None also (three 0700) Say Muon on the OPIO 0905 KW call to Hassin Atimed. He should answe at site in about 15 Anged 2.5 yellow warny 3/0" 10 In bury and stanters steel check. Victore Burns abandored with sound topped With Sul, minutes - on site 0/20 Dera hion wa 2/25/13 Eastern begins cutting sidewalk at 0930, hand cleans to ~1 them agrees to somples from 6-6.5 and 6" store Gul KW and Horam Ahmed and Say Moon, - Kho and them Ahmed and Ing Mora 1000 set PUE budge at fine Arts Frumbre backge # GZ \$174 (10 "Mr"), Schere har Con Col on-site 0938 - gas markent not yet done so stop work until they annie (~1 ham) work until aque on licentin for GER SCHUER 1025 set "OUTPOOR" budge at window of Bost Clamers - budge # 525103 1950 get RCE hube at Stone Masters. Anc. (10 "SMI) Badge # GZ ST68, in Rear of other at as above Mar . tour sample locitions from yesterday 138-35 CLUMNERS 2/25/13

1050 silt and to black; REC 2.4" 1050 silt and fe sund; AND 0.9 10 octor, the most the 0.9 10 octor, the most the 0.9 10 octor, the most the 0.9 (36) BEST CLEANGERS 2/25/13 Constern compolition how claiming to 6' Sumplus from 6-6.5 and 7.5.4 sent to lab (3 Graces and 1 anull plustic join for mostrine) Completed 1025 Olir his. P10 36 0.6 Ght Smalle GER-SEMER GW Cullected ofter physics 2.5 gellens uning 3/2" to thong and check value. 3 vale time 1115 3 vale of HCI collected, Water very turbic, no abor or sheen AW offsite 1255 Alpha Analy head Connier Collect's samples Jay Moon offsite 1130 Custon off-site 1150 Boring filled with sind and capped with concrete. BEST CUCANNERS 2/25/13 Stimutof. Willing

KW on site 1005 Ulandy 40° Wheets budge from SMI at 1075 collects budge from Fine Asts Fundauc at 1020 collects outler budge at 1030 2/26/13 And Dave his. KW offinite for fed Ex at 1040 Him to Ulun ? BEST CLEANERS

APPENDIX B

Laboratory Data Sheets

 Lab Number:
 L1303178

 Report Date:
 03/01/13

Project Name:	BEST CLEANERS
Project Number:	155

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1303178-01	GER-SS2 6-12"	LIC, NY	02/24/13 09:15
L1303178-02	GER-SS2 18-24"	LIC, NY	02/24/13 09:25
L1303178-03	DUPLICATE	LIC, NY	02/24/13 09:40
L1303178-04	GER-SS1 6-12"	LIC, NY	02/24/13 10:20
L1303178-05	GER-SS1 24-30"	LIC, NY	02/24/13 10:35
L1303178-06	GER-SS3 6-12"	LIC, NY	02/24/13 11:45
L1303178-07	GER-SS3 18-24"	LIC, NY	02/24/13 11:55
L1303178-08	GER-SS4 12-18"	LIC, NY	02/24/13 11:10
L1303178-09	GER-SS4 24-30"	LIC, NY	02/24/13 11:20
L1303178-10	TRIP BLANK	LIC, NY	02/24/13 00:00
L1303178-11	GER-GW4	LIC, NY	02/25/13 08:45
L1303178-12	GW DUP	LIC, NY	02/25/13 09:00
L1303178-13	GER-SEWER GW	LIC, NY	02/25/13 11:15
L1303178-14	GER-SEWER 6-6.5'	LIC, NY	02/25/13 10:50
L1303178-15	GER-SEWER 7.5-8'	LIC, NY	02/25/13 10:50

			Serial_No	:03011314:32
Project Name:	BEST CLEANERS		Lab Number:	L1303178
Project Number:	155		Report Date:	03/01/13
		SAMPLE RESULTS		
Lab ID:	L1303178-01		Date Collected:	02/24/13 09:15
Client ID:	GER-SS2 6-12"		Date Received:	02/25/13
Sample Location:	LIC, NY		Field Prep:	Not Specified
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	02/26/13 18:36			
Analyst:	JC			
Percent Solids:	94%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - We	stborough Lab					
Methylene chloride	ND		ug/kg	41	8.2	1
1,1-Dichloroethane	ND		ug/kg	6.1	1.2	1
Chloroform	ND		ug/kg	6.1	1.3	1
Carbon tetrachloride	ND		ug/kg	4.1	0.86	1
1,2-Dichloropropane	ND		ug/kg	14	1.0	1
Dibromochloromethane	ND		ug/kg	4.1	1.2	1
1,1,2-Trichloroethane	ND		ug/kg	6.1	1.6	1
Tetrachloroethene	3.3	J	ug/kg	4.1	1.2	1
Chlorobenzene	ND		ug/kg	4.1	0.76	1
Trichlorofluoromethane	ND		ug/kg	20	1.6	1
1,2-Dichloroethane	ND		ug/kg	4.1	0.93	1
1,1,1-Trichloroethane	ND		ug/kg	4.1	1.1	1
Bromodichloromethane	ND		ug/kg	4.1	1.6	1
trans-1,3-Dichloropropene	ND		ug/kg	4.1	1.2	1
cis-1,3-Dichloropropene	ND		ug/kg	4.1	1.1	1
1,1-Dichloropropene	ND		ug/kg	20	1.9	1
Bromoform	ND		ug/kg	16	2.0	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	4.1	0.98	1
Benzene	ND		ug/kg	4.1	1.2	1
Toluene	ND		ug/kg	6.1	0.99	1
Ethylbenzene	ND		ug/kg	4.1	0.90	1
Chloromethane	ND		ug/kg	20	3.2	1
Bromomethane	ND		ug/kg	8.2	2.6	1
Vinyl chloride	ND		ug/kg	8.2	3.1	1
Chloroethane	ND		ug/kg	8.2	1.8	1
1,1-Dichloroethene	ND		ug/kg	4.1	1.1	1
trans-1,2-Dichloroethene	ND		ug/kg	6.1	1.6	1
Trichloroethene	ND		ug/kg	4.1	0.92	1
1,2-Dichlorobenzene	ND		ug/kg	20	1.5	1
1,3-Dichlorobenzene	ND		ug/kg	20	1.6	1
1,4-Dichlorobenzene	ND		ug/kg	20	1.7	1

					Serial_N	0:030113	14:32
Project Name:	BEST CLEANERS			La	b Number:	L13	03178
Project Number:	155			Re	port Date:	03/0	01/13
		SAMPLE R	ESULTS				
Lab ID:	L1303178-01			Date	Collected:	02/24	4/13 09:15
Client ID:	GER-SS2 6-12"			Date	Received:	02/25	5/13
Sample Location:	LIC, NY			Field	Prep:	Not S	Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	y 8260/5035 - Westborou	gh Lab					
					0.0	2.0	4
		ND		ug/kg	0.2	2.0	1
		ND		ug/kg	0.2	1.0	1
cis 1.2 Dichloroothono		ND		ug/kg	0.2	1.7	1
Dibromomethane		ND		ug/kg	4.1	1.2	1
Styrepe		ND		ug/kg	8.2	3.0	1
Dichlorodifluoromethane		ND		ug/kg	/1	1.6	1
		ND		ug/kg	41	13	1
Carbon disulfide		ND		ug/kg	41	8.2	1
2-Butanone		ND		ug/kg	41	16	1
Vinvl acetate		ND		ug/kg	41	3.1	1
4-Methyl-2-pentanone		ND		ua/ka	41	3.3	1
1.2.3-Trichloropropane		ND		ua/ka	41	1.6	1
2-Hexanone		ND		ua/ka	41	1.6	1
Bromochloromethane		ND		ug/kg	20	1.2	1
2,2-Dichloropropane		ND		ug/kg	20	3.2	1
1,2-Dibromoethane		ND		ug/kg	16	1.7	1
1,3-Dichloropropane		ND		ug/kg	20	2.3	1
1,1,1,2-Tetrachloroethar	ie	ND		ug/kg	4.1	1.3	1
Bromobenzene		ND		ug/kg	20	0.90	1
n-Butylbenzene		ND		ug/kg	4.1	1.3	1
sec-Butylbenzene		ND		ug/kg	4.1	1.1	1
tert-Butylbenzene		ND		ug/kg	20	2.5	1
o-Chlorotoluene		ND		ug/kg	20	1.3	1
p-Chlorotoluene		ND		ug/kg	20	1.5	1
1,2-Dibromo-3-chloropro	pane	ND		ug/kg	20	3.4	1
Hexachlorobutadiene		ND		ug/kg	20	1.9	1
Isopropylbenzene		ND		ug/kg	4.1	0.72	1
p-Isopropyltoluene		ND		ug/kg	4.1	1.1	1
Naphthalene		ND		ug/kg	20	3.1	1
Acrylonitrile		ND		ug/kg	41	1.5	1
n-Propylbenzene		ND		ug/kg	4.1	1.2	1
1,2,3-Trichlorobenzene		ND		ug/kg	20	1.6	1
1,2,4-Trichlorobenzene		ND		ug/kg	20	3.2	1
1,3,5-Trimethylbenzene		ND		ug/kg	20	2.5	1
1,2,4-Trimethylbenzene		ND		ug/kg	20	2.3	1
1,4-Dioxane		ND		ug/kg	410	71.	1
1,4-Diethylbenzene		ND		ug/kg	16	0.82	1
4-Ethyltoluene		ND		ug/kg	16	0.40	1

					Serial_N	o:03011	314:32
Project Name:	BEST CLEANERS			Lab	Number:	L1:	303178
Project Number:	155			Rep	ort Date:	03,	/01/13
		SAMPLE R	ESULTS				
Lab ID:	L1303178-01			Date C	Collected:	02/2	24/13 09:15
Client ID:	GER-SS2 6-12"			Date F	Received:	02/2	25/13
Sample Location:	LIC, NY			Field F	Prep:	Not	Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y 8260/5035 - Westborou	igh Lab					
1,2,4,5-Tetramethylben	zene	ND		ug/kg	16	0.74	1
Ethyl ether		ND		ug/kg	20	1.6	1
trans-1,4-Dichloro-2-bu	tene	ND		ug/kg	20	6.0	1
Surrog	ate	% Recovery	Qualifier	Acceptance Criteria			
1,2-Dich	nloroethane-d4	92		70-130			

70-130

70-130

98

106

88

Toluene-d8

4-Bromofluorobenzene

Dibromofluoromethane

			Serial_No	03011314:32
Project Name:	BEST CLEANERS		Lab Number:	L1303178
Project Number:	155		Report Date:	03/01/13
		SAMPLE RESULTS		
Lab ID:	L1303178-02		Date Collected:	02/24/13 09:25
Client ID:	GER-SS2 18-24"		Date Received:	02/25/13
Sample Location:	LIC, NY		Field Prep:	Not Specified
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	02/26/13 20:55			
Analyst:	JC			
Percent Solids:	90%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by 8260/5035 - Westborough Lab										
Methylene chloride	ND		ug/kg	35	6.9	1				
1,1-Dichloroethane	ND		ug/kg	5.2	1.0	1				
Chloroform	ND		ug/kg	5.2	1.1	1				
Carbon tetrachloride	ND		ug/kg	3.5	0.73	1				
1,2-Dichloropropane	ND		ug/kg	12	0.88	1				
Dibromochloromethane	ND		ug/kg	3.5	1.1	1				
1,1,2-Trichloroethane	ND		ug/kg	5.2	1.4	1				
Tetrachloroethene	9.8		ug/kg	3.5	1.1	1				
Chlorobenzene	ND		ug/kg	3.5	0.65	1				
Trichlorofluoromethane	ND		ug/kg	17	1.4	1				
1,2-Dichloroethane	ND		ug/kg	3.5	0.79	1				
1,1,1-Trichloroethane	ND		ug/kg	3.5	0.94	1				
Bromodichloromethane	ND		ug/kg	3.5	1.3	1				
trans-1,3-Dichloropropene	ND		ug/kg	3.5	1.0	1				
cis-1,3-Dichloropropene	ND		ug/kg	3.5	0.93	1				
1,1-Dichloropropene	ND		ug/kg	17	1.6	1				
Bromoform	ND		ug/kg	14	1.7	1				
1,1,2,2-Tetrachloroethane	ND		ug/kg	3.5	0.83	1				
Benzene	ND		ug/kg	3.5	1.0	1				
Toluene	ND		ug/kg	5.2	0.84	1				
Ethylbenzene	ND		ug/kg	3.5	0.77	1				
Chloromethane	ND		ug/kg	17	2.7	1				
Bromomethane	ND		ug/kg	6.9	2.2	1				
Vinyl chloride	ND		ug/kg	6.9	2.6	1				
Chloroethane	ND		ug/kg	6.9	1.5	1				
1,1-Dichloroethene	ND		ug/kg	3.5	0.90	1				
trans-1,2-Dichloroethene	ND		ug/kg	5.2	1.4	1				
Trichloroethene	ND		ug/kg	3.5	0.78	1				
1,2-Dichlorobenzene	ND		ug/kg	17	1.3	1				
1,3-Dichlorobenzene	ND		ug/kg	17	1.4	1				
1,4-Dichlorobenzene	ND		ug/kg	17	1.4	1				

					Serial_N	lo:030113	314:32
Project Name:	BEST CLEANERS			La	b Number:	L13	803178
Project Number:	155			Re	port Date:	03/	01/13
		SAMPLE F	RESULTS				
Lab ID:	L1303178-02			Date	Collected:	02/24	4/13 09:25
Client ID:	GER-SS2 18-24"			Date	Received:	02/2	5/13
Sample Location:	LIC, NY			Field	Prep:	Not S	Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y 8260/5035 - Westboroug	gh Lab					
Methyl tert butyl ether		ND		ua/ka	69	17	1
n/m-Xylene		ND		ug/kg	6.9	1.7	1
o-Xvlene		ND		ug/kg	6.9	1.0	1
cis-1 2-Dichloroethene		ND		ug/kg	3.5	1.4	1
Dibromomethane		ND		ug/kg	35	1.5	1
Styrene		ND		ug/kg	6.9	2.5	1
Dichlorodifluoromethane	2	ND		ua/ka	35	1.4	1
Acetone	·	17	J	ua/ka	35	11.	1
Carbon disulfide		ND		ua/ka	35	6.9	1
2-Butanone		ND		ua/ka	35	13.	1
Vinyl acetate		ND		ug/kg	35	2.6	1
4-Methyl-2-pentanone		7.2	J	ug/kg	35	2.8	1
1,2,3-Trichloropropane		ND		ug/kg	35	1.3	1
2-Hexanone		ND		ug/kg	35	1.4	1
Bromochloromethane		ND		ug/kg	17	1.0	1
2,2-Dichloropropane		ND		ug/kg	17	2.8	1
1,2-Dibromoethane		ND		ug/kg	14	1.4	1
1,3-Dichloropropane		ND		ug/kg	17	2.0	1
1,1,1,2-Tetrachloroetha	ne	ND		ug/kg	3.5	1.1	1
Bromobenzene		ND		ug/kg	17	0.76	1
n-Butylbenzene		ND		ug/kg	3.5	1.1	1
sec-Butylbenzene		ND		ug/kg	3.5	0.96	1
tert-Butylbenzene		ND		ug/kg	17	2.1	1
o-Chlorotoluene		ND		ug/kg	17	1.1	1
p-Chlorotoluene		ND		ug/kg	17	1.2	1
1,2-Dibromo-3-chloropro	opane	ND		ug/kg	17	2.9	1
Hexachlorobutadiene		ND		ug/kg	17	1.6	1
Isopropylbenzene		ND		ug/kg	3.5	0.61	1
p-Isopropyltoluene		ND		ug/kg	3.5	0.95	1
Naphthalene		ND		ug/kg	17	2.7	1
Acrylonitrile		ND		ug/kg	35	1.3	1
n-Propylbenzene		ND		ug/kg	3.5	0.99	1
1,2,3-Trichlorobenzene		ND		ug/kg	17	1.4	1
1,2,4-Trichlorobenzene		ND		ug/kg	17	2.7	1
1,3,5-Trimethylbenzene		ND		ug/kg	17	2.1	1
1,2,4-Trimethylbenzene		ND		ug/kg	17	2.0	1
1,4-Dioxane		ND		ug/kg	350	60.	1
1,4-Diethylbenzene		ND		ug/kg	14	0.69	1
4-Ethyltoluene		ND		ug/kg	14	0.34	1

				Serial_No:03011314:32			
Project Name:	BEST CLEANERS			Lat	Number:	L1:	303178
Project Number:	155			Rej	port Date:	03/	/01/13
		SAMPLE R	ESULTS				
Lab ID: Client ID: Sample Location:	L1303178-02 GER-SS2 18-24" LIC, NY			Date Date Field	Collected: Received: Prep:	02/2 02/2 Not	24/13 09:25 25/13 Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y 8260/5035 - Westborou	gh Lab					
1,2,4,5-Tetramethylben	zene	ND		ug/kg	14	0.63	1
Ethyl ether		ND		ug/kg	17	1.3	1
trans-1,4-Dichloro-2-but	tene	ND		ug/kg	17	5.1	1
Surroga	ate	% Recovery	Qualifier	Acceptance Criteria)		
1,2-Dich	nloroethane-d4	100		70-130			

70-130

70-130

98

104

79

Toluene-d8

4-Bromofluorobenzene

Dibromofluoromethane

			Serial_No	:03011314:32
Project Name:	BEST CLEANERS		Lab Number:	L1303178
Project Number:	155		Report Date:	03/01/13
		SAMPLE RESULTS		
Lab ID:	L1303178-03		Date Collected:	02/24/13 09:40
Client ID:	DUPLICATE		Date Received:	02/25/13
Sample Location:	LIC, NY		Field Prep:	Not Specified
Matrix:	Soil			-
Analytical Method:	1,8260C			
Analytical Date:	02/26/13 21:23			
Analyst:	JC			
Percent Solids:	89%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
/olatile Organics by 8260/5035 - Westborough Lab										
Methylene chloride	ND		ug/kg	47	9.4	1				
1,1-Dichloroethane	ND		ug/kg	7.0	1.4	1				
Chloroform	ND		ug/kg	7.0	1.5	1				
Carbon tetrachloride	ND		ug/kg	4.7	0.99	1				
1,2-Dichloropropane	ND		ug/kg	16	1.2	1				
Dibromochloromethane	ND		ug/kg	4.7	1.4	1				
1,1,2-Trichloroethane	ND		ug/kg	7.0	1.8	1				
Tetrachloroethene	15		ug/kg	4.7	1.4	1				
Chlorobenzene	ND		ug/kg	4.7	0.87	1				
Trichlorofluoromethane	ND		ug/kg	23	1.8	1				
1,2-Dichloroethane	ND		ug/kg	4.7	1.1	1				
1,1,1-Trichloroethane	ND		ug/kg	4.7	1.3	1				
Bromodichloromethane	ND		ug/kg	4.7	1.8	1				
trans-1,3-Dichloropropene	ND		ug/kg	4.7	1.4	1				
cis-1,3-Dichloropropene	ND		ug/kg	4.7	1.2	1				
1,1-Dichloropropene	ND		ug/kg	23	2.1	1				
Bromoform	ND		ug/kg	19	2.3	1				
1,1,2,2-Tetrachloroethane	ND		ug/kg	4.7	1.1	1				
Benzene	ND		ug/kg	4.7	1.4	1				
Toluene	ND		ug/kg	7.0	1.1	1				
Ethylbenzene	ND		ug/kg	4.7	1.0	1				
Chloromethane	ND		ug/kg	23	3.7	1				
Bromomethane	ND		ug/kg	9.4	3.0	1				
Vinyl chloride	ND		ug/kg	9.4	3.5	1				
Chloroethane	ND		ug/kg	9.4	2.0	1				
1,1-Dichloroethene	ND		ug/kg	4.7	1.2	1				
trans-1,2-Dichloroethene	ND		ug/kg	7.0	1.8	1				
Trichloroethene	ND		ug/kg	4.7	1.0	1				
1,2-Dichlorobenzene	ND		ug/kg	23	1.7	1				
1,3-Dichlorobenzene	ND		ug/kg	23	1.9	1				
1,4-Dichlorobenzene	ND		ug/kg	23	2.0	1				

					Serial_N	lo:030113	314:32
Project Name:	BEST CLEANERS			La	b Number:	L13	03178
Project Number:	155			Re	port Date:	03/0	01/13
		SAMPLE F	RESULTS				
Lab ID:	L1303178-03			Date	Collected:	02/24	4/13 09:40
Client ID:	DUPLICATE			Date	Received:	02/2	5/13
Sample Location:	LIC, NY			Field	Prep:	Not S	Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y 8260/5035 - Westborou	gh Lab					
Methyl tert butyl ether		ND		ua/ka	9.4	23	1
p/m-Xylene		ND		ua/ka	9.4	2.0	1
o-Xvlene		ND		ua/ka	9.4	2.0	1
cis-1.2-Dichloroethene		ND		ua/ka	4.7	1.4	1
Dibromomethane		ND		ua/ka	47	2.0	1
Styrene		ND		ua/ka	9.4	3.4	1
Dichlorodifluoromethane	9	ND		ug/kg	47	1.8	1
Acetone		ND		ug/kg	47	15.	1
Carbon disulfide		ND		ug/kg	47	9.4	1
2-Butanone		ND		ug/kg	47	18.	1
Vinyl acetate		ND		ug/kg	47	3.5	1
4-Methyl-2-pentanone		ND		ug/kg	47	3.8	1
1,2,3-Trichloropropane		ND		ug/kg	47	1.8	1
2-Hexanone		ND		ug/kg	47	1.8	1
Bromochloromethane		ND		ug/kg	23	1.4	1
2,2-Dichloropropane		ND		ug/kg	23	3.7	1
1,2-Dibromoethane		ND		ug/kg	19	1.9	1
1,3-Dichloropropane		ND		ug/kg	23	2.6	1
1,1,1,2-Tetrachloroetha	ne	ND		ug/kg	4.7	1.5	1
Bromobenzene		ND		ug/kg	23	1.0	1
n-Butylbenzene		ND		ug/kg	4.7	1.5	1
sec-Butylbenzene		ND		ug/kg	4.7	1.3	1
tert-Butylbenzene		ND		ug/kg	23	2.8	1
o-Chlorotoluene		ND		ug/kg	23	1.5	1
p-Chlorotoluene		ND		ug/kg	23	1.7	1
1,2-Dibromo-3-chloropro	opane	ND		ug/kg	23	3.9	1
Hexachlorobutadiene		ND		ug/kg	23	2.1	1
Isopropylbenzene		ND		ug/kg	4.7	0.83	1
p-Isopropyltoluene		ND		ug/kg	4.7	1.3	1
Naphthalene		ND		ug/kg	23	3.6	1
Acrylonitrile		ND		ug/kg	47	1.8	1
n-Propylbenzene		ND		ug/kg	4.7	1.3	1
1,2,3-Trichlorobenzene		ND		ug/kg	23	1.9	1
1,2,4-Trichlorobenzene		ND		ug/kg	23	3.7	1
1,3,5-Trimethylbenzene		ND		ug/kg	23	2.8	1
1,2,4-Trimethylbenzene		ND		ug/kg	23	2.7	1
1,4-Dioxane		ND		ug/kg	470	81.	1
1,4-Diethylbenzene		ND		ug/kg	19	0.94	1
4-Ethyltoluene		ND		ug/kg	19	0.45	1

				Serial_No:03011314:32				
Project Name:	BEST CLEANERS			Lab Number: L1303			303178	
Project Number:	155			Rep	ort Date:	03	/01/13	
		SAMPLE R	ESULTS					
Lab ID:	L1303178-03			Date C	collected:	02/2	24/13 09:40	
Client ID:	DUPLICATE			Date Received:		02/25/13		
Sample Location:	LIC, NY			Field F	rep:	Not	Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y 8260/5035 - Westboro	ugh Lab						
1,2,4,5-Tetramethylben	zene	ND		ug/kg	19	0.85	1	
Ethyl ether		ND		ug/kg	23	1.8	1	
trans-1,4-Dichloro-2-bu	tene	ND		ug/kg	23	6.9	1	
Surrog	ate	% Recovery	Qualifier	Acceptance Criteria				
1,2-Dicl	nloroethane-d4	101		70-130				
Toluene	e-d8	98		70-130				

104

80

70-130

70-130

4-Bromofluorobenzene

Dibromofluoromethane

			Serial_No	03011314:32
Project Name:	BEST CLEANERS		Lab Number:	L1303178
Project Number:	155		Report Date:	03/01/13
		SAMPLE RESULTS		
Lab ID:	L1303178-04		Date Collected:	02/24/13 10:20
Client ID:	GER-SS1 6-12"		Date Received:	02/25/13
Sample Location:	LIC, NY		Field Prep:	Not Specified
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	02/26/13 18:08			
Analyst:	JC			
Percent Solids:	92%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor					
Volatile Organics by 8260/5035 - Westborough Lab											
Methylene chloride	ND		ug/kg	3100	610	1					
1,1-Dichloroethane	ND		ug/kg	460	90.	1					
Chloroform	ND		ug/kg	460	99.	1					
Carbon tetrachloride	ND		ug/kg	310	65.	1					
1,2-Dichloropropane	ND		ug/kg	1100	78.	1					
Dibromochloromethane	ND		ug/kg	310	94.	1					
1,1,2-Trichloroethane	ND		ug/kg	460	120	1					
Tetrachloroethene	5600		ug/kg	310	94.	1					
Chlorobenzene	ND		ug/kg	310	57.	1					
Trichlorofluoromethane	ND		ug/kg	1500	120	1					
1,2-Dichloroethane	ND		ug/kg	310	70.	1					
1,1,1-Trichloroethane	ND		ug/kg	310	83.	1					
Bromodichloromethane	ND		ug/kg	310	120	1					
trans-1,3-Dichloropropene	ND		ug/kg	310	92.	1					
cis-1,3-Dichloropropene	ND		ug/kg	310	82.	1					
1,1-Dichloropropene	ND		ug/kg	1500	140	1					
Bromoform	ND		ug/kg	1200	150	1					
1,1,2,2-Tetrachloroethane	ND		ug/kg	310	74.	1					
Benzene	ND		ug/kg	310	91.	1					
Toluene	ND		ug/kg	460	74.	1					
Ethylbenzene	ND		ug/kg	310	68.	1					
Chloromethane	ND		ug/kg	1500	240	1					
Bromomethane	750		ug/kg	610	200	1					
Vinyl chloride	ND		ug/kg	610	230	1					
Chloroethane	ND		ug/kg	610	130	1					
1,1-Dichloroethene	ND		ug/kg	310	80.	1					
trans-1,2-Dichloroethene	ND		ug/kg	460	120	1					
Trichloroethene	ND		ug/kg	310	69.	1					
1,2-Dichlorobenzene	ND		ug/kg	1500	110	1					
1,3-Dichlorobenzene	ND		ug/kg	1500	120	1					
1,4-Dichlorobenzene	ND		ug/kg	1500	130	1					

					Serial_N	0:030113	314:32
Project Name:	BEST CLEANERS			La	b Number:	L13	03178
Project Number:	155			Re	port Date:	03/0	01/13
		SAMPLE F	RESULTS				
Lab ID:	L1303178-04			Date	e Collected:	02/24	4/13 10:20
Client ID:	GER-SS1 6-12"			Date	Received:	02/2	5/13
Sample Location:	LIC, NY			Field	l Prep:	Not S	Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y 8260/5035 - Westborou	gh Lab					
Mashed south bushed ash an		ND			64.0	450	4
		ND		ug/kg	610	150	1
		ND		ug/kg	610	130	1
cis 1.2 Dichloroothono				ug/kg	210	130	1
Dibromomethane		ND		ug/kg	3100	130	1
Styrene		ND		ug/kg	610	220	1
Dichlorodifluoromethan	2	ND		ug/kg	3100	120	1
Acetone	,	ND		ug/kg	3100	990	1
Carbon disulfide		ND		ug/kg	3100	610	1
2-Butanone		ND		ua/ka	3100	1200	1
Vinvl acetate		ND		ua/ka	3100	230	1
4-Methyl-2-pentanone		ND		ug/kg	3100	250	1
1,2,3-Trichloropropane		ND		ug/kg	3100	120	1
2-Hexanone		ND		ug/kg	3100	120	1
Bromochloromethane		ND		ug/kg	1500	92.	1
2,2-Dichloropropane		ND		ug/kg	1500	240	1
1,2-Dibromoethane		ND		ug/kg	1200	120	1
1,3-Dichloropropane		ND		ug/kg	1500	170	1
1,1,1,2-Tetrachloroetha	ne	ND		ug/kg	310	100	1
Bromobenzene		ND		ug/kg	1500	67.	1
n-Butylbenzene		ND		ug/kg	310	96.	1
sec-Butylbenzene		ND		ug/kg	310	84.	1
tert-Butylbenzene		ND		ug/kg	1500	180	1
o-Chlorotoluene		ND		ug/kg	1500	96.	1
p-Chlorotoluene		ND		ug/kg	1500	110	1
1,2-Dibromo-3-chloropro	opane	ND		ug/kg	1500	260	1
Hexachlorobutadiene		ND		ug/kg	1500	140	1
Isopropylbenzene		ND		ug/kg	310	54.	1
p-Isopropyltoluene		ND		ug/kg	310	84.	1
Naphthalene		490	J	ug/kg	1500	240	1
Acrylonitrile		ND		ug/kg	3100	120	1
n-Propylbenzene		ND		ug/kg	310	87.	1
1,2,3-Trichlorobenzene		ND		ug/kg	1500	120	1
1,2,4-Trichlorobenzene		ND		ug/kg	1500	240	1
1,3,5-Trimethylbenzene		ND		ug/kg	1500	180	1
1,2,4-Trimethylbenzene		ND		ug/kg	1500	180	1
1,4-Dioxane		ND		ug/kg	31000	5300	1
1,4-Diethylbenzene		ND		ug/kg	1200	61.	1
4-Ethyltoluene		ND		ug/kg	1200	30.	1

				Serial_No:03011314:32			
Project Name:	BEST CLEANERS			Lab	Number:	L1:	303178
Project Number:	155			Repo	ort Date:	03/	/01/13
		SAMPLE R	ESULTS				
Lab ID:	L1303178-04			Date C	collected:	02/2	24/13 10:20
Client ID:	GER-SS1 6-12"			Date Received:		02/25/13	
Sample Location:	LIC, NY			Field P	rep:	Not	Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y 8260/5035 - Westborou	igh Lab					
1,2,4,5-Tetramethylben:	zene	ND		ug/kg	1200	55.	1
Ethyl ether		ND		ug/kg	1500	120	1
trans-1,4-Dichloro-2-but	ene	ND		ug/kg	1500	450	1
Surroga	ate	% Recovery	Qualifier	Acceptance Criteria		_	

70-130

70-130

70-130

99

97

102

96

1,2-Dichloroethane-d4

4-Bromofluorobenzene

Dibromofluoromethane

Toluene-d8

			Serial_No	0:03011314:32
Project Name:	BEST CLEANERS		Lab Number:	L1303178
Project Number:	155		Report Date:	03/01/13
		SAMPLE RESULTS		
Lab ID:	L1303178-05		Date Collected:	02/24/13 10:35
Client ID:	GER-SS1 24-30"		Date Received:	02/25/13
Sample Location:	LIC, NY		Field Prep:	Not Specified
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	02/26/13 20:00			
Analyst:	JC			
Percent Solids:	90%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor					
Volatile Organics by 8260/5035 - Westborough Lab											
Methylene chloride	ND		ug/kg	1600	320	1					
1,1-Dichloroethane	ND		ug/kg	240	47.	1					
Chloroform	ND		ug/kg	240	52.	1					
Carbon tetrachloride	ND		ug/kg	160	34.	1					
1,2-Dichloropropane	ND		ug/kg	560	41.	1					
Dibromochloromethane	ND		ug/kg	160	49.	1					
1,1,2-Trichloroethane	ND		ug/kg	240	63.	1					
Tetrachloroethene	7100		ug/kg	160	49.	1					
Chlorobenzene	ND		ug/kg	160	30.	1					
Trichlorofluoromethane	ND		ug/kg	800	62.	1					
1,2-Dichloroethane	ND		ug/kg	160	36.	1					
1,1,1-Trichloroethane	ND		ug/kg	160	43.	1					
Bromodichloromethane	ND		ug/kg	160	62.	1					
trans-1,3-Dichloropropene	ND		ug/kg	160	48.	1					
cis-1,3-Dichloropropene	ND		ug/kg	160	43.	1					
1,1-Dichloropropene	ND		ug/kg	800	73.	1					
Bromoform	ND		ug/kg	640	79.	1					
1,1,2,2-Tetrachloroethane	ND		ug/kg	160	38.	1					
Benzene	ND		ug/kg	160	48.	1					
Toluene	ND		ug/kg	240	39.	1					
Ethylbenzene	ND		ug/kg	160	35.	1					
Chloromethane	ND		ug/kg	800	120	1					
Bromomethane	260	J	ug/kg	320	100	1					
Vinyl chloride	ND		ug/kg	320	120	1					
Chloroethane	ND		ug/kg	320	70.	1					
1,1-Dichloroethene	ND		ug/kg	160	42.	1					
trans-1,2-Dichloroethene	ND		ug/kg	240	63.	1					
Trichloroethene	ND		ug/kg	160	36.	1					
1,2-Dichlorobenzene	ND		ug/kg	800	58.	1					
1,3-Dichlorobenzene	ND		ug/kg	800	64.	1					
1,4-Dichlorobenzene	ND		ug/kg	800	67.	1					

					Serial_N	lo:030113	314:32
Project Name:	BEST CLEANERS			La	b Number:	L13	803178
Project Number:	155			Re	eport Date:	03/	01/13
		SAMPLE F	RESULTS				
Lab ID:	L1303178-05			Date	e Collected:	02/2	4/13 10:35
Client ID:	GER-SS1 24-30"			Date	e Received:	02/2	5/13
Sample Location:	LIC, NY			Field	d Prep:	Not \$	Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y 8260/5035 - Westboroug	gh Lab					
Methyl tert butyl ether		ND		ua/ka	320	78.	1
p/m-Xvlene		ND		ua/ka	320	69.	1
o-Xvlene		ND		ua/ka	320	67.	1
cis-1.2-Dichloroethene		ND		ua/ka	160	48.	1
Dibromomethane		ND		ua/ka	1600	70.	1
Styrene		ND		ua/ka	320	120	1
Dichlorodifluoromethane	9	ND		ug/kg	1600	62.	1
Acetone		ND		ug/kg	1600	520	1
Carbon disulfide		ND		ug/kg	1600	320	1
2-Butanone		ND		ug/kg	1600	620	1
Vinyl acetate		ND		ug/kg	1600	120	1
4-Methyl-2-pentanone		ND		ug/kg	1600	130	1
1,2,3-Trichloropropane		ND		ug/kg	1600	62.	1
2-Hexanone		ND		ug/kg	1600	63.	1
Bromochloromethane		ND		ug/kg	800	48.	1
2,2-Dichloropropane		ND		ug/kg	800	130	1
1,2-Dibromoethane		ND		ug/kg	640	65.	1
1,3-Dichloropropane		ND		ug/kg	800	90.	1
1,1,1,2-Tetrachloroetha	ne	ND		ug/kg	160	52.	1
Bromobenzene		ND		ug/kg	800	35.	1
n-Butylbenzene		ND		ug/kg	160	50.	1
sec-Butylbenzene		ND		ug/kg	160	44.	1
tert-Butylbenzene		ND		ug/kg	800	96.	1
o-Chlorotoluene		ND		ug/kg	800	50.	1
p-Chlorotoluene		ND		ug/kg	800	58.	1
1,2-Dibromo-3-chloropro	opane	ND		ug/kg	800	130	1
Hexachlorobutadiene		ND		ug/kg	800	73.	1
Isopropylbenzene		ND		ug/kg	160	28.	1
p-Isopropyltoluene		ND		ug/kg	160	44.	1
Naphthalene		1900		ug/kg	800	120	1
Acrylonitrile		ND		ug/kg	1600	60.	1
n-Propylbenzene		ND		ug/kg	160	45.	1
1,2,3-Trichlorobenzene		ND		ug/kg	800	64.	1
1,2,4-Trichlorobenzene		ND		ug/kg	800	130	1
1,3,5-Trimethylbenzene		ND		ug/kg	800	96.	1
1,2,4-Trimethylbenzene		ND		ug/kg	800	92.	1
1,4-Dioxane		ND		ug/kg	16000	2800	1
1,4-Diethylbenzene		ND		ug/kg	640	32.	1
4-Ethyltoluene		ND		ug/kg	640	16.	1

				Serial_No:03011314:32			
Project Name:	BEST CLEANERS			Lab	Number:	L1:	303178
Project Number:	155			Repo	ort Date:	03/	/01/13
		SAMPLE R	ESULTS				
Lab ID:	L1303178-05			Date C	ollected:	02/2	4/13 10:35
Client ID:	GER-SS1 24-30"			Date R	eceived:	02/2	5/13
Sample Location:	LIC, NY			Field Prep:		Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	y 8260/5035 - Westboroug	gh Lab					
1,2,4,5-Tetramethylbenz	zene	ND		ug/kg	640	29.	1
Ethyl ether		ND		ug/kg	800	61.	1
trans-1,4-Dichloro-2-bute	ene	ND		ug/kg	800	240	1
Surroga	te	% Recovery	Qualifier	Acceptance Criteria		_	

70-130

70-130

70-130

98

97

100

98

1,2-Dichloroethane-d4

4-Bromofluorobenzene

Dibromofluoromethane

Toluene-d8
		Serial_No:03011314:32		
Project Name:	BEST CLEANERS		Lab Number:	L1303178
Project Number:	155		Report Date:	03/01/13
		SAMPLE RESULTS		
Lab ID:	L1303178-06		Date Collected:	02/24/13 11:45
Client ID:	GER-SS3 6-12"		Date Received:	02/25/13
Sample Location:	LIC, NY		Field Prep:	Not Specified
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	02/26/13 20:27			
Analyst:	JC			
Percent Solids:	87%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - We	stborough Lab					
Methylene chloride	ND		ug/kg	1400	290	1
1,1-Dichloroethane	ND		ug/kg	220	42.	1
Chloroform	ND		ug/kg	220	47.	1
Carbon tetrachloride	ND		ug/kg	140	30.	1
1,2-Dichloropropane	ND		ug/kg	500	37.	1
Dibromochloromethane	ND		ug/kg	140	44.	1
1,1,2-Trichloroethane	ND		ug/kg	220	57.	1
Tetrachloroethene	2700		ug/kg	140	44.	1
Chlorobenzene	ND		ug/kg	140	27.	1
Trichlorofluoromethane	ND		ug/kg	720	56.	1
1,2-Dichloroethane	ND		ug/kg	140	33.	1
1,1,1-Trichloroethane	ND		ug/kg	140	39.	1
Bromodichloromethane	ND		ug/kg	140	56.	1
trans-1,3-Dichloropropene	ND		ug/kg	140	43.	1
cis-1,3-Dichloropropene	ND		ug/kg	140	38.	1
1,1-Dichloropropene	ND		ug/kg	720	66.	1
Bromoform	ND		ug/kg	580	71.	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	140	35.	1
Benzene	ND		ug/kg	140	43.	1
Toluene	ND		ug/kg	220	35.	1
Ethylbenzene	100	J	ug/kg	140	32.	1
Chloromethane	ND		ug/kg	720	110	1
Bromomethane	ND		ug/kg	290	93.	1
Vinyl chloride	ND		ug/kg	290	110	1
Chloroethane	ND		ug/kg	290	63.	1
1,1-Dichloroethene	ND		ug/kg	140	37.	1
trans-1,2-Dichloroethene	ND		ug/kg	220	56.	1
Trichloroethene	ND		ug/kg	140	32.	1
1,2-Dichlorobenzene	ND		ug/kg	720	52.	1
1,3-Dichlorobenzene	ND		ug/kg	720	58.	1
1,4-Dichlorobenzene	ND		ug/kg	720	60.	1

				Serial_No:03011314:32			
Project Name:	BEST CLEANERS			La	b Number:	L13	803178
Project Number:	155			Re	eport Date:	03/	01/13
		SAMPLE F	RESULTS				
Lab ID:	L1303178-06			Date	e Collected:	02/2	4/13 11:45
Client ID:	GER-SS3 6-12"			Date	e Received:	02/2	5/13
Sample Location:	LIC, NY			Field	d Prep:	Not S	Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y 8260/5035 - Westborou	gh Lab					
Methyl tert butyl ether		ND		ug/kg	290	70.	1
p/m-Xylene		760		ug/kg	290	62.	1
o-Xylene		610		ug/kg	290	60.	1
cis-1,2-Dichloroethene		ND		ug/kg	140	43.	1
Dibromomethane		ND		ug/kg	1400	63.	1
Styrene		ND		ug/kg	290	100	1
Dichlorodifluoromethan	е	ND		ug/kg	1400	56.	1
Acetone		ND		ug/kg	1400	470	1
Carbon disulfide		ND		ug/kg	1400	290	1
2-Butanone		ND		ug/kg	1400	560	1
Vinyl acetate		ND		ug/kg	1400	110	1
4-Methyl-2-pentanone		ND		ug/kg	1400	120	1
1,2,3-Trichloropropane		ND		ug/kg	1400	56.	1
2-Hexanone		ND		ug/kg	1400	57.	1
Bromochloromethane		ND		ug/kg	720	44.	1
2,2-Dichloropropane		ND		ug/kg	720	110	1
1,2-Dibromoethane		ND		ug/kg	580	59.	1
1,3-Dichloropropane		ND		ug/kg	720	82.	1
1,1,1,2-Tetrachloroetha	ne	ND		ug/kg	140	47.	1
Bromobenzene		ND		ug/kg	720	32.	1
n-Butylbenzene		ND		ug/kg	140	45.	1
sec-Butylbenzene		ND		ug/kg	140	40.	1
tert-Butylbenzene		ND		ug/kg	720	87.	1
o-Chlorotoluene		ND		ug/kg	720	45.	1
p-Chlorotoluene		ND		ug/kg	720	52.	1
1,2-Dibromo-3-chloropro	opane	ND		ug/kg	720	120	1
Hexachlorobutadiene		ND		ug/kg	720	66.	1
Isopropylbenzene		ND		ug/kg	140	26.	1
p-Isopropyltoluene		ND		ug/kg	140	39.	1
Naphthalene		2500		ug/kg	720	110	1
Acrylonitrile		ND		ug/kg	1400	54.	1
n-Propylbenzene		ND		ug/kg	140	41.	1
1,2,3-Trichlorobenzene		ND		ug/kg	720	58.	1
1,2,4-Trichlorobenzene		ND		ug/kg	720	110	1
1,3,5-Trimethylbenzene)	ND		ug/kg	720	87.	1
1,2,4-Trimethylbenzene)	ND		ug/kg	720	83.	1
1,4-Dioxane		ND		ug/kg	14000	2500	1
1,4-Diethylbenzene		35	J	ug/kg	580	29.	1
4-Ethyltoluene		ND		ug/kg	580	14.	1

		Serial_N			lo:03011314:32			
Project Name:	BEST CLEANERS			Lab	Number:	L1	303178	
Project Number:	155			Repo	ort Date:	03	/01/13	
		SAMPLE R	ESULTS					
Lab ID:	L1303178-06			Date C	ollected:	02/2	24/13 11:45	
Client ID:	GER-SS3 6-12"			Date Received:		02/2	02/25/13	
Sample Location:	LIC, NY			Field Prep:		Not Specified		
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y 8260/5035 - Westborou	igh Lab						
1,2,4,5-Tetramethylbena	zene	ND		ug/kg	580	26.	1	
Ethyl ether		ND		ug/kg	720	55.	1	
trans-1,4-Dichloro-2-but	ene	ND		ug/kg	720	210	1	
Surroga	ite	% Recovery	Qualifier	Acceptance Criteria				

Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	99		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	97		70-130	

			Serial_No:03011314:32		
Project Name:	BEST CLEANERS		Lab Number:	L1303178	
Project Number:	155		Report Date:	03/01/13	
		SAMPLE RESULTS			
Lab ID:	L1303178-07		Date Collected:	02/24/13 11:55	
Client ID:	GER-SS3 18-24"		Date Received:	02/25/13	
Sample Location:	LIC, NY		Field Prep:	Not Specified	
Matrix:	Soil				
Analytical Method:	1,8260C				
Analytical Date:	02/26/13 21:51				
Analyst:	JC				
Percent Solids:	88%				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - Wes	stborough Lab					
Methylene chloride	ND		ug/kg	33	6.7	1
1,1-Dichloroethane	ND		ug/kg	5.0	0.99	1
Chloroform	ND		ug/kg	5.0	1.1	1
Carbon tetrachloride	ND		ug/kg	3.3	0.70	1
1,2-Dichloropropane	ND		ug/kg	12	0.85	1
Dibromochloromethane	ND		ug/kg	3.3	1.0	1
1,1,2-Trichloroethane	ND		ug/kg	5.0	1.3	1
Tetrachloroethene	140		ug/kg	3.3	1.0	1
Chlorobenzene	ND		ug/kg	3.3	0.62	1
Trichlorofluoromethane	ND		ug/kg	17	1.3	1
1,2-Dichloroethane	ND		ug/kg	3.3	0.76	1
1,1,1-Trichloroethane	ND		ug/kg	3.3	0.90	1
Bromodichloromethane	ND		ug/kg	3.3	1.3	1
trans-1,3-Dichloropropene	ND		ug/kg	3.3	1.0	1
cis-1,3-Dichloropropene	ND		ug/kg	3.3	0.89	1
1,1-Dichloropropene	ND		ug/kg	17	1.5	1
Bromoform	ND		ug/kg	13	1.6	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	3.3	0.80	1
Benzene	ND		ug/kg	3.3	0.99	1
Toluene	ND		ug/kg	5.0	0.81	1
Ethylbenzene	ND		ug/kg	3.3	0.74	1
Chloromethane	ND		ug/kg	17	2.6	1
Bromomethane	ND		ug/kg	6.7	2.2	1
Vinyl chloride	ND		ug/kg	6.7	2.5	1
Chloroethane	ND		ug/kg	6.7	1.5	1
1,1-Dichloroethene	ND		ug/kg	3.3	0.87	1
trans-1,2-Dichloroethene	ND		ug/kg	5.0	1.3	1
Trichloroethene	ND		ug/kg	3.3	0.75	1
1,2-Dichlorobenzene	ND		ug/kg	17	1.2	1
1,3-Dichlorobenzene	ND		ug/kg	17	1.3	1
1,4-Dichlorobenzene	ND		ug/kg	17	1.4	1

				Serial_No:03011314:32			
Project Name:	BEST CLEANERS			La	b Number:	L13	03178
Project Number:	155			Re	port Date:	03/0	01/13
		SAMPLE F	RESULTS				
Lab ID:	L1303178-07			Date	Collected:	02/24	4/13 11:55
Client ID:	GER-SS3 18-24"			Date	Received:	02/2	5/13
Sample Location:	LIC, NY			Field	Prep:	Not S	Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y 8260/5035 - Westboroug	gh Lab					
Mothul tort butul other		ND			67	1.6	1
		ND		ug/kg	6.7	1.6	1
		ND		ug/kg	6.7	1.4	1
cis 1.2 Dichloroothono		ND		ug/kg	2.2	1.4	1
Dibromomethane		ND		ug/kg	33	1.0	1
Styrene				ug/kg	67	2.4	1
Dichlorodifluoromethan	2	ND		ug/kg	33	13	1
Acetone	5	ND		ug/kg	33	11	1
Carbon disulfide		ND		ug/kg	33	67	1
2-Butanone		ND		ug/kg	33	13	1
Vinvl acetate		ND		ug/kg	33	2.5	1
4-Methyl-2-pentanone		16	J	ua/ka	33	2.7	1
1,2,3-Trichloropropane		ND		ug/kg	33	1.3	1
2-Hexanone		ND		ug/kg	33	1.3	1
Bromochloromethane		ND		ug/kg	17	1.0	1
2,2-Dichloropropane		ND		ug/kg	17	2.6	1
1,2-Dibromoethane		ND		ug/kg	13	1.4	1
1,3-Dichloropropane		ND		ug/kg	17	1.9	1
1,1,1,2-Tetrachloroetha	ne	ND		ug/kg	3.3	1.1	1
Bromobenzene		ND		ug/kg	17	0.74	1
n-Butylbenzene		ND		ug/kg	3.3	1.0	1
sec-Butylbenzene		ND		ug/kg	3.3	0.92	1
tert-Butylbenzene		ND		ug/kg	17	2.0	1
o-Chlorotoluene		ND		ug/kg	17	1.0	1
p-Chlorotoluene		ND		ug/kg	17	1.2	1
1,2-Dibromo-3-chloropro	opane	ND		ug/kg	17	2.8	1
Hexachlorobutadiene		ND		ug/kg	17	1.5	1
Isopropylbenzene		ND		ug/kg	3.3	0.59	1
p-Isopropyltoluene		ND		ug/kg	3.3	0.91	1
Naphthalene		5.0	J	ug/kg	17	2.6	1
Acrylonitrile		ND		ug/kg	33	1.2	1
n-Propylbenzene		ND		ug/kg	3.3	0.95	1
1,2,3-Trichlorobenzene		ND		ug/kg	17	1.3	1
1,2,4-Trichlorobenzene		ND		ug/kg	17	2.6	1
1,3,5-Trimethylbenzene		ND		ug/kg	17	2.0	1
1,2,4-Trimethylbenzene		ND		ug/kg	17	1.9	1
1,4-Dioxane		ND		ug/kg	330	58.	1
1,4-Diethylbenzene		ND		ug/kg	13	0.67	1
4-Ethyltoluene		ND		ug/kg	13	0.32	1

				Serial_No:03011314:32			314:32	
Project Name:	BEST CLEANERS			Lab	Number:	L1:	303178	
Project Number:	155			Rep	ort Date:	03/	/01/13	
		SAMPLE R	ESULTS					
Lab ID:	L1303178-07			Date (Collected:	02/2	24/13 11:55	
Client ID:	GER-SS3 18-24"			Date Received:		02/2	02/25/13	
Sample Location:	LIC, NY			Field Prep:		Not Specified		
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y 8260/5035 - Westborou	gh Lab						
1,2,4,5-Tetramethylben	zene	ND		ug/kg	13	0.60	1	
Ethyl ether		ND		ug/kg	17	1.3	1	
trans-1,4-Dichloro-2-bu	tene	ND		ug/kg	17	4.9	1	
Surrog	ate	% Recovery	Qualifier	Acceptance Criteria				
1,2-Dich	nloroethane-d4	102		70-130				

70-130

70-130

97

104

100

Toluene-d8

4-Bromofluorobenzene

		Serial_No:03011314:32			
Project Name:	BEST CLEANERS		Lab Number:	L1303178	
Project Number:	155		Report Date:	03/01/13	
		SAMPLE RESULTS			
Lab ID:	L1303178-08		Date Collected:	02/24/13 11:10	
Client ID:	GER-SS4 12-18"		Date Received:	02/25/13	
Sample Location:	LIC, NY		Field Prep:	Not Specified	
Matrix:	Soil				
Analytical Method:	1,8260C				
Analytical Date:	02/26/13 22:19				
Analyst:	JC				
Percent Solids:	90%				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - West	oorough Lab					
Methylene chloride	ND		ug/kg	69	14.	1
1,1-Dichloroethane	ND		ug/kg	10	2.0	1
Chloroform	ND		ug/kg	10	2.2	1
Carbon tetrachloride	ND		ug/kg	6.9	1.5	1
1,2-Dichloropropane	ND		ug/kg	24	1.8	1
Dibromochloromethane	ND		ug/kg	6.9	2.1	1
1,1,2-Trichloroethane	ND		ug/kg	10	2.7	1
Tetrachloroethene	6.5	J	ug/kg	6.9	2.1	1
Chlorobenzene	ND		ug/kg	6.9	1.3	1
Trichlorofluoromethane	ND		ug/kg	35	2.7	1
1,2-Dichloroethane	ND		ug/kg	6.9	1.6	1
1,1,1-Trichloroethane	ND		ug/kg	6.9	1.9	1
Bromodichloromethane	ND		ug/kg	6.9	2.7	1
trans-1,3-Dichloropropene	ND		ug/kg	6.9	2.1	1
cis-1,3-Dichloropropene	ND		ug/kg	6.9	1.8	1
1,1-Dichloropropene	ND		ug/kg	35	3.2	1
Bromoform	ND		ug/kg	28	3.4	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	6.9	1.7	1
Benzene	ND		ug/kg	6.9	2.1	1
Toluene	ND		ug/kg	10	1.7	1
Ethylbenzene	ND		ug/kg	6.9	1.5	1
Chloromethane	ND		ug/kg	35	5.4	1
Bromomethane	ND		ug/kg	14	4.5	1
Vinyl chloride	ND		ug/kg	14	5.2	1
Chloroethane	ND		ug/kg	14	3.0	1
1,1-Dichloroethene	ND		ug/kg	6.9	1.8	1
trans-1,2-Dichloroethene	ND		ug/kg	10	2.7	1
Trichloroethene	ND		ug/kg	6.9	1.6	1
1,2-Dichlorobenzene	ND		ug/kg	35	2.5	1
1,3-Dichlorobenzene	ND		ug/kg	35	2.8	1
1,4-Dichlorobenzene	ND		ug/kg	35	2.9	1

				Serial_No:03011314:32			
Project Name:	BEST CLEANERS			La	b Number:	L13	803178
Project Number:	155			Re	port Date:	03/	01/13
		SAMPLE F	RESULTS				
Lab ID:	L1303178-08			Date	Collected:	02/24	4/13 11:10
Client ID:	GER-SS4 12-18"			Date	Received:	02/2	5/13
Sample Location:	LIC, NY			Field	Prep:	Not S	Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	y 8260/5035 - Westboroug	jh Lab					
Methyl tert butyl ether		ND		ua/ka	14	3.4	1
p/m-Xvlene		ND		ua/ka	14	3.0	1
o-Xylene		ND		ug/kg	14	2.9	1
cis-1,2-Dichloroethene		ND		ug/kg	6.9	2.1	1
Dibromomethane		ND		ug/kg	69	3.0	1
Styrene		ND		ug/kg	14	5.0	1
Dichlorodifluoromethane	9	ND		ug/kg	69	2.7	1
Acetone		ND		ug/kg	69	22.	1
Carbon disulfide		ND		ug/kg	69	14.	1
2-Butanone		ND		ug/kg	69	27.	1
Vinyl acetate		ND		ug/kg	69	5.2	1
4-Methyl-2-pentanone		ND		ug/kg	69	5.7	1
1,2,3-Trichloropropane		ND		ug/kg	69	2.7	1
2-Hexanone		ND		ug/kg	69	2.8	1
Bromochloromethane		ND		ug/kg	35	2.1	1
2,2-Dichloropropane		ND		ug/kg	35	5.5	1
1,2-Dibromoethane		ND		ug/kg	28	2.8	1
1,3-Dichloropropane		ND		ug/kg	35	3.9	1
1,1,1,2-Tetrachloroethar	ne	ND		ug/kg	6.9	2.3	1
Bromobenzene		ND		ug/kg	35	1.5	1
n-Butylbenzene		ND		ug/kg	6.9	2.2	1
sec-Butylbenzene		ND		ug/kg	6.9	1.9	1
tert-Butylbenzene		ND		ug/kg	35	4.2	1
o-Chlorotoluene		ND		ug/kg	35	2.2	1
p-Chlorotoluene		ND		ug/kg	35	2.5	1
1,2-Dibromo-3-chloropro	opane	ND		ug/kg	35	5.8	1
Hexachlorobutadiene		ND		ug/kg	35	3.2	1
Isopropylbenzene		ND		ug/kg	6.9	1.2	1
p-Isopropyltoluene		ND		ug/kg	6.9	1.9	1
Naphthalene		ND		ug/kg	35	5.3	1
Acrylonitrile		ND		ug/kg	69	2.6	1
n-Propylbenzene		ND		ug/kg	6.9	2.0	1
1,2,3-Trichlorobenzene		ND		ug/kg	35	2.8	1
1,2,4-Trichlorobenzene		ND		ug/kg	35	5.5	1
1,3,5-Trimethylbenzene		ND		ug/kg	35	4.2	1
1,2,4-Trimethylbenzene		ND		ug/kg	35	4.0	1
1,4-Dioxane		ND		ug/kg	690	120	1
1,4-Diethylbenzene		ND		ug/kg	28	1.4	1
4-Ethyltoluene		ND		ug/kg	28	0.67	1

					Serial_N	o:03011	314:32
Project Name:	BEST CLEANERS			Lab	Number:	L1:	303178
Project Number:	155			Rep	ort Date:	03/	/01/13
		SAMPLE R	ESULTS				
Lab ID:	L1303178-08			Date C	collected:	02/2	24/13 11:10
Client ID:	GER-SS4 12-18"			Date R	Received:	02/2	25/13
Sample Location:	LIC, NY			Field F	rep:	Not	Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y 8260/5035 - Westboroug	gh Lab					
1,2,4,5-Tetramethylben	zene	ND		ug/kg	28	1.2	1
Ethyl ether		ND		ug/kg	35	2.6	1
trans-1,4-Dichloro-2-but	tene	ND		ug/kg	35	10.	1
Surroga	ate	% Recovery	Qualifier	Acceptance Criteria			
1.2-Dich	nloroethane-d4	102		70-130			

70-130

70-130

98

103

100

Toluene-d8

4-Bromofluorobenzene

			Serial_No	:03011314:32
Project Name:	BEST CLEANERS		Lab Number:	L1303178
Project Number:	155		Report Date:	03/01/13
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1303178-09 GER-SS4 24-30" LIC, NY Soil 1,8260C 02/26/13 22:47 JC		Date Collected: Date Received: Field Prep:	02/24/13 11:20 02/25/13 Not Specified
Percent Solids:	90%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - W	estborough Lab					
Methylene chloride	ND		ug/kg	25	5.0	1
1,1-Dichloroethane	ND		ug/kg	3.8	0.74	1
Chloroform	ND		ug/kg	3.8	0.82	1
Carbon tetrachloride	ND		ug/kg	2.5	0.53	1
1,2-Dichloropropane	ND		ug/kg	8.8	0.64	1
Dibromochloromethane	ND		ug/kg	2.5	0.78	1
1,1,2-Trichloroethane	ND		ug/kg	3.8	0.99	1
Tetrachloroethene	54		ug/kg	2.5	0.77	1
Chlorobenzene	ND		ug/kg	2.5	0.47	1
Trichlorofluoromethane	ND		ug/kg	13	0.99	1
1,2-Dichloroethane	ND		ug/kg	2.5	0.57	1
1,1,1-Trichloroethane	ND		ug/kg	2.5	0.68	1
Bromodichloromethane	ND		ug/kg	2.5	0.97	1
trans-1,3-Dichloropropene	ND		ug/kg	2.5	0.76	1
cis-1,3-Dichloropropene	ND		ug/kg	2.5	0.67	1
1,1-Dichloropropene	ND		ug/kg	13	1.2	1
Bromoform	ND		ug/kg	10	1.2	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	2.5	0.61	1
Benzene	ND		ug/kg	2.5	0.75	1
Toluene	ND		ug/kg	3.8	0.61	1
Ethylbenzene	ND		ug/kg	2.5	0.56	1
Chloromethane	ND		ug/kg	13	2.0	1
Bromomethane	ND		ug/kg	5.0	1.6	1
Vinyl chloride	ND		ug/kg	5.0	1.9	1
Chloroethane	ND		ug/kg	5.0	1.1	1
1,1-Dichloroethene	ND		ug/kg	2.5	0.66	1
trans-1,2-Dichloroethene	ND		ug/kg	3.8	0.99	1
Trichloroethene	ND		ug/kg	2.5	0.56	1
1,2-Dichlorobenzene	ND		ug/kg	13	0.92	1
1,3-Dichlorobenzene	ND		ug/kg	13	1.0	1
1,4-Dichlorobenzene	ND		ug/kg	13	1.1	1

					Serial_N	0:030113	14:32
Project Name:	BEST CLEANERS			La	b Number:	L13	03178
Project Number:	155			Re	port Date:	03/0	01/13
		SAMPLE F	RESULTS				
Lab ID:	L1303178-09			Date	Collected:	02/24	4/13 11:20
Client ID:	GER-SS4 24-30"			Date	Received:	02/25	5/13
Sample Location:	LIC, NY			Field	Prep:	Not S	Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	y 8260/5035 - Westboroug	h Lab					
		ND			5.0	1.0	
Methyl tert butyl ether		ND		ug/kg	5.0	1.2	1
p/m-Xylene		ND		ug/kg	5.0	1.1	1
o-Xylene		ND		ug/kg	5.0	1.0	1
Dibromomothono		ND		ug/kg	2.0	0.76	1
Sturene		ND		ug/kg	20	1.1	1
Disblorediflueremethene		ND		ug/kg	5.0	0.09	1
		10		ug/kg	20	0.90	1
Corbon digulfido		ND	J	ug/kg	20	0.Z	1
		ND		ug/kg	25	0.0	1
		ND		ug/kg	25	9.0	1
4 Mothyl 2 pontanono		ND		ug/kg	25	2.1	1
1 2 3-Trichloropropage		ND		ug/kg	25	0.98	1
2-Hexanone		ND		ug/kg	25	1.0	1
Bromochloromethane		ND		ug/kg	13	0.76	1
2 2-Dichloropropage		ND		ug/kg	13	2.0	1
1 2-Dibromoethane		ND		ug/kg	10	1.0	1
1 3-Dichloropropage		ND		ug/kg	13	1.0	1
1.1.1.2-Tetrachloroethar)e	ND		ug/kg	2.5	0.83	1
Bromobenzene		ND		ua/ka	13	0.56	1
n-Butylbenzene		ND		ua/ka	2.5	0.79	1
sec-Butvlbenzene		ND		ua/ka	2.5	0.70	1
tert-Butvlbenzene		ND		ua/ka	13	1.5	1
o-Chlorotoluene		ND		ua/ka	13	0.79	1
p-Chlorotoluene		ND		ua/ka	13	0.91	1
1,2-Dibromo-3-chloropro	pane	ND		ug/kg	13	2.1	1
Hexachlorobutadiene	•	ND		ug/kg	13	1.2	1
Isopropylbenzene		ND		ug/kg	2.5	0.45	1
p-lsopropyltoluene		ND		ug/kg	2.5	0.69	1
Naphthalene		18		ug/kg	13	1.9	1
Acrylonitrile		ND		ug/kg	25	0.95	1
n-Propylbenzene		ND		ug/kg	2.5	0.72	1
1,2,3-Trichlorobenzene		ND		ug/kg	13	1.0	1
1,2,4-Trichlorobenzene		ND		ug/kg	13	2.0	1
1,3,5-Trimethylbenzene		ND		ug/kg	13	1.5	1
1,2,4-Trimethylbenzene		ND		ug/kg	13	1.4	1
1,4-Dioxane		ND		ug/kg	250	44.	1
1,4-Diethylbenzene		ND		ug/kg	10	0.50	1
4-Ethyltoluene		ND		ug/kg	10	0.24	1

					Serial_N	o:03011	314:32
Project Name:	BEST CLEANERS			Lab	Number:	L1:	303178
Project Number:	155	SAMPLE R	ESULTS	Repo	ort Date:	03/	/01/13
Lab ID: Client ID: Sample Location:	L1303178-09 GER-SS4 24-30" LIC, NY			Date C Date R Field P	collected: eceived: Prep:	02/2 02/2 Not	24/13 11:20 25/13 Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y 8260/5035 - Westborou	gh Lab					
1,2,4,5-Tetramethylben	zene	ND		ug/kg	10	0.46	1
Ethyl ether		ND		ug/kg	13	0.96	1
trans-1,4-Dichloro-2-but	tene	ND		ug/kg	13	3.7	1
Surroga	ate	% Recovery	Qualifier	Acceptance Criteria			
1 0 D'-I	- I - main the sub-sub-sub-sub-sub-sub-sub-sub-sub-sub-	405		70.400			

1,2-Dichloroethane-d4	105	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	103	70-130
Dibromofluoromethane	97	70-130

			Serial_No	:03011314:32
Project Name:	BEST CLEANERS		Lab Number:	L1303178
Project Number:	155		Report Date:	03/01/13
		SAMPLE RESULTS		
Lab ID:	L1303178-10		Date Collected:	02/24/13 00:00
Client ID:	TRIP BLANK		Date Received:	02/25/13
Sample Location:	LIC, NY		Field Prep:	Not Specified
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	02/26/13 12:23			
Analyst:	PD			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.16	1
1,2-Dichloropropane	ND		ug/l	1.0	0.30	1
Dibromochloromethane	ND		ug/l	0.50	0.19	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.16	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.19	1
Benzene	ND		ug/l	0.50	0.19	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.33	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.18	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.17	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

					Serial_N	o:0301131	4:32
Project Name:	BEST CLEANERS			La	b Number:	L130	3178
Project Number:	155			Re	eport Date:	$03/0^{-1}$	1/13
•		SAMPLE R	ESULTS		•	00,0	.,
Lab ID: Client ID: Sample Location:	L1303178-10 TRIP BLANK LIC, NY			Date Date Field	e Collected: e Received: d Prep:	02/24/ 02/25/ Not Sj	/13 00:00 /13 pecified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	/ GC/MS - Westborough L	ab					
					0.5	0.70	
		ND		ug/i	2.5	0.70	1
p/m-Xylene		ND		ug/i	2.5	0.70	1
o-Xylene				ug/i	2.5	0.70	1
Dibromomothono				ug/i	2.5	0.70	1
		ND		ug/i	5.0	1.0	1
		ND		ug/i	2.5	0.70	1
Acryionitrile		ND		ug/i	5.0	1.5	1
Bishlaradifluoromethene				ug/i	2.5	0.70	1
				ug/i	5.0	1.0	1
Acetone		2.1	J	ug/i	5.0	1.0	1
		ND		ug/l	5.0	1.0	1
				ug/i	5.0	1.0	1
				ug/i	5.0	1.0	1
				ug/l	5.0	1.0	1
2-nexanone				ug/i	5.0	0.70	1
		ND		ug/i	2.5	0.70	1
2,2-Dichloropropane				ug/i	2.5	0.70	1
1,2-Diblomoethane				ug/l	2.0	0.00	1
1,3-Dichlorophopane	•	ND		ug/l	2.5	0.70	1
Remehenzene		ND		ug/i	2.5	0.70	1
n Butylbonzono				ug/l	2.5	0.70	1
		ND		ug/l	2.5	0.70	1
tort Butylbonzono		ND		ug/l	2.5	0.70	1
		ND		ug/l	2.5	0.70	1
p-Chlorotoluene		ND		ug/l	2.5	0.70	1
1 2-Dibromo-3-chloropro	nane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	pano	ND		ug/l	2.5	0.70	1
Isopropylbenzene		ND		ug/l	2.5	0.70	1
n-Isopropyltoluene		ND		ug/l	2.5	0.70	1
Nanhthalene		ND		ug/l	2.5	0.70	1
n-Propylbenzene		ND		ug/l	2.5	0.70	1
1.2.3-Trichlorobenzene		ND		ua/l	2.5	0.70	1
1.2.4-Trichlorobenzene		ND		ug/l	2.5	0.70	. 1
1.3.5-Trimethylbenzene		ND		ua/l	2.5	0.70	. 1
1 2 4-Trimethylbenzene		ND		ua/l	2.5	0.70	1
1.4-Dioxane		ND		un/l	2.0	76	1
1.4-Diethvlbenzene		ND		ua/l	2.0	0.70	1
4-Ethyltoluene		ND		ug/l	2.0	0.70	. 1

				Serial_No:03011314:32			
Project Name:	BEST CLEANERS			Lab	Number:	L1:	303178
Project Number:	155			Rep	ort Date:	03/	/01/13
		SAMPLE R	ESULTS				
Lab ID:	L1303178-10			Date C	collected:	02/2	24/13 00:00
Client ID: Sample Location:	TRIP BLANK LIC, NY			Date R Field F	leceived: Prep:	02/2 Not	25/13 Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough	n Lab					
1,2,4,5-Tetramethylben	zene	ND		ug/l	2.0	0.65	1
Ethyl ether		ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-bu	tene	ND		ug/l	2.5	0.70	1
Surrog	ate	% Recovery	Qualifier	Acceptance Criteria			
1,2-Dich	nloroethane-d4	89		70-130			

70-130

70-130

90

91

103

Toluene-d8

4-Bromofluorobenzene

			Serial_No	0:03011314:32
Project Name:	BEST CLEANERS		Lab Number:	L1303178
Project Number:	155		Report Date:	03/01/13
		SAMPLE RESULTS		
Lab ID:	L1303178-11	D	Date Collected:	02/25/13 08:45
Client ID:	GER-GW4		Date Received:	02/25/13
Sample Location:	LIC, NY		Field Prep:	Not Specified
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	02/27/13 19:02			

PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
Methylene chloride	ND		ug/l	120	35.	50
1,1-Dichloroethane	ND		ug/l	120	35.	50
Chloroform	ND		ug/l	120	35.	50
Carbon tetrachloride	ND		ug/l	25	8.3	50
1,2-Dichloropropane	ND		ug/l	50	15.	50
Dibromochloromethane	ND		ug/l	25	9.5	50
1,1,2-Trichloroethane	ND		ug/l	75	25.	50
Tetrachloroethene	2300		ug/l	25	9.1	50
Chlorobenzene	ND		ug/l	120	35.	50
Trichlorofluoromethane	ND		ug/l	120	35.	50
1,2-Dichloroethane	ND		ug/l	25	8.0	50
1,1,1-Trichloroethane	ND		ug/l	120	35.	50
Bromodichloromethane	ND		ug/l	25	9.6	50
trans-1,3-Dichloropropene	ND		ug/l	25	8.2	50
cis-1,3-Dichloropropene	ND		ug/l	25	7.2	50
1,1-Dichloropropene	ND		ug/l	120	35.	50
Bromoform	ND		ug/l	100	32.	50
1,1,2,2-Tetrachloroethane	ND		ug/l	25	9.6	50
Benzene	ND		ug/l	25	9.7	50
Toluene	ND		ug/l	120	35.	50
Ethylbenzene	ND		ug/l	120	35.	50
Chloromethane	ND		ug/l	120	35.	50
Bromomethane	ND		ug/l	120	35.	50
Vinyl chloride	ND		ug/l	50	16.	50
Chloroethane	ND		ug/l	120	35.	50
1,1-Dichloroethene	ND		ug/l	25	9.0	50
trans-1,2-Dichloroethene	ND		ug/l	120	35.	50
Trichloroethene	170		ug/l	25	8.7	50
1,2-Dichlorobenzene	ND		ug/l	120	35.	50
1,3-Dichlorobenzene	ND		ug/l	120	35.	50
1,4-Dichlorobenzene	ND		ug/l	120	35.	50

Analyst:

Serial_No:03011314:32					14:32		
Project Name:	BEST CLEANERS			La	b Number:	L130	03178
Project Number:	155			Re	eport Date:	03/0	1/13
-		SAMPLE F	RESULTS		-		
Lab ID:	L1303178-11	D		Date	e Collected:	02/25	/13 08:45
Client ID:	GER-GW4			Date	e Received:	02/25	5/13
Sample Location:	LIC, NY			Field	d Prep:	Not S	pecified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westboroug	h Lab					
Mothyl tort butyl othor		ND		ug/l	120	25	50
n/m-Xylene		ND		ug/l	120	35	50
o-Xvlene		ND		ug/l	120	35	50
cis-1.2-Dichloroethene		230		ug/l	120	35.	50
Dibromomethane		ND		ua/l	250	50.	50
1,2,3-Trichloropropane		ND		ug/l	120	35.	50
Acrylonitrile		ND		ug/l	250	75.	50
Styrene		ND		ug/l	120	35.	50
Dichlorodifluoromethane	Э	ND		ug/l	250	50.	50
Acetone		51	J	ug/l	250	50.	50
Carbon disulfide		ND		ug/l	250	50.	50
2-Butanone		ND		ug/l	250	50.	50
Vinyl acetate		ND		ug/l	250	50.	50
4-Methyl-2-pentanone		ND		ug/l	250	50.	50
2-Hexanone		ND		ug/l	250	50.	50
Bromochloromethane		ND		ug/l	120	35.	50
2,2-Dichloropropane		ND		ug/l	120	35.	50
1,2-Dibromoethane		ND		ug/l	100	32.	50
1,3-Dichloropropane		ND		ug/l	120	35.	50
1,1,1,2-Tetrachloroetha	ne	ND		ug/l	120	35.	50
Bromobenzene		ND		ug/l	120	35.	50
n-Butylbenzene		ND		ug/l	120	35.	50
sec-Butylbenzene		ND		ug/l	120	35.	50
tert-Butylbenzene		ND		ug/l	120	35.	50
o-Chlorotoluene		ND		ug/l	120	35.	50
p-Chlorotoluene		ND		ug/l	120	35.	50
1,2-Dibromo-3-chloropro	opane	ND		ug/l	120	35.	50
Hexachlorobutadiene		ND		ug/l	120	35.	50
Isopropylbenzene		ND		ug/l	120	35.	50
p-Isopropyltoluene		ND		ug/l	120	35.	50
Naphthalene		ND		ug/l	120	35.	50
n-Propyidenzene		ND		ug/I	120	35.	50
1,2,3-111CNIOFODENZENE				ug/i	120	35. 25	50
1.2.5 Trimothylbonses				ug/i	120	აე. ენ	50
1.2.4-Trimethylbonzone				ug/i	120	ა ე .	50
				ug/i	120	3200	50
1 4-Diethvlhenzene				ug/i	100	35	50
4-Ethvltoluene		ND		ua/l	100	35.	50

				Serial_No:03011314:32			
Project Name:	BEST CLEANERS			Lab	Number:	L1:	303178
Project Number:	155			Rep	ort Date:	03/	/01/13
		SAMPLE R	ESULTS				
Lab ID: Client ID: Sample Location:	L1303178-11 GER-GW4 LIC, NY	D		Date (Date I Field	Collected: Received: Prep:	02/2 02/2 Not	25/13 08:45 25/13 Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westboroug	gh Lab					
1,2,4,5-Tetramethylben	zene	ND		ug/l	100	32.	50
Ethyl ether		ND		ug/l	120	35.	50
trans-1,4-Dichloro-2-but	tene	ND		ug/l	120	35.	50
Surroga	ate	% Recovery	Qualifier	Acceptance Criteria			
1,2-Dich	nloroethane-d4	91		70-130			

70-130

70-130

87

89

103

Toluene-d8

4-Bromofluorobenzene

			Serial_No:03011314:32			
Project Name:	BEST CLEANERS		Lab Number:	L1303178		
Project Number:	155		Report Date:	03/01/13		
		SAMPLE RESULTS				
Lab ID:	L1303178-12	D	Date Collected:	02/25/13 09:00		
Client ID:	GW DUP		Date Received:	02/25/13		
Sample Location:	LIC, NY		Field Prep:	Not Specified		
Matrix:	Water					
Analytical Method:	1,8260C					
Analytical Date:	02/27/13 18:36					

PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	250	70.	100
1,1-Dichloroethane	ND		ug/l	250	70.	100
Chloroform	ND		ug/l	250	70.	100
Carbon tetrachloride	ND		ug/l	50	16.	100
1,2-Dichloropropane	ND		ug/l	100	30.	100
Dibromochloromethane	ND		ug/l	50	19.	100
1,1,2-Trichloroethane	ND		ug/l	150	50.	100
Tetrachloroethene	4400		ug/l	50	18.	100
Chlorobenzene	ND		ug/l	250	70.	100
Trichlorofluoromethane	ND		ug/l	250	70.	100
1,2-Dichloroethane	ND		ug/l	50	16.	100
1,1,1-Trichloroethane	ND		ug/l	250	70.	100
Bromodichloromethane	ND		ug/l	50	19.	100
trans-1,3-Dichloropropene	ND		ug/l	50	16.	100
cis-1,3-Dichloropropene	ND		ug/l	50	14.	100
1,1-Dichloropropene	ND		ug/l	250	70.	100
Bromoform	ND		ug/l	200	65.	100
1,1,2,2-Tetrachloroethane	ND		ug/l	50	19.	100
Benzene	ND		ug/l	50	19.	100
Toluene	ND		ug/l	250	70.	100
Ethylbenzene	ND		ug/l	250	70.	100
Chloromethane	ND		ug/l	250	70.	100
Bromomethane	ND		ug/l	250	70.	100
Vinyl chloride	ND		ug/l	100	33.	100
Chloroethane	ND		ug/l	250	70.	100
1,1-Dichloroethene	ND		ug/l	50	18.	100
trans-1,2-Dichloroethene	ND		ug/l	250	70.	100
Trichloroethene	190		ug/l	50	17.	100
1,2-Dichlorobenzene	ND		ug/l	250	70.	100
1,3-Dichlorobenzene	ND		ug/l	250	70.	100
1,4-Dichlorobenzene	ND		ug/l	250	70.	100

Analyst:

Serial_No:03011314:32					14:32		
Project Name:	BEST CLEANERS			La	b Number:	L13	03178
Project Number:	155			Re	eport Date:	03/0)1/13
-		SAMPLE R	ESULTS		-		
Lab ID:	L1303178-12	D		Date	e Collected:	02/25	5/13 09:00
Client ID:	GW DUP			Date	e Received:	02/25	5/13
Sample Location:	LIC, NY			Field	d Prep:	Not S	Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboroug	lh Lab					
Methyl tert butyl ether		ND		ua/l	250	70	100
n/m-Xylene		ND		ug/l	250	70	100
o-Xvlene		ND		ug/l	250	70	100
cis-1.2-Dichloroethene		250		ug/l	250	70.	100
Dibromomethane		ND		ug/l	500	100	100
1.2.3-Trichloropropane		ND		ug/l	250	70.	100
Acrylonitrile		ND		ug/l	500	150	100
Styrene		ND		ug/l	250	70.	100
Dichlorodifluoromethan	e	ND		ug/l	500	100	100
Acetone		ND		ug/l	500	100	100
Carbon disulfide		ND		ug/l	500	100	100
2-Butanone		ND		ug/l	500	100	100
Vinyl acetate		ND		ug/l	500	100	100
4-Methyl-2-pentanone		ND		ug/l	500	100	100
2-Hexanone		ND		ug/l	500	100	100
Bromochloromethane		ND		ug/l	250	70.	100
2,2-Dichloropropane		ND		ug/l	250	70.	100
1,2-Dibromoethane		ND		ug/l	200	65.	100
1,3-Dichloropropane		ND		ug/l	250	70.	100
1,1,1,2-Tetrachloroetha	ine	ND		ug/l	250	70.	100
Bromobenzene		ND		ug/l	250	70.	100
n-Butylbenzene		ND		ug/l	250	70.	100
sec-Butylbenzene		ND		ug/l	250	70.	100
tert-Butylbenzene		ND		ug/l	250	70.	100
o-Chlorotoluene		ND		ug/l	250	70.	100
p-Chlorotoluene		ND		ug/l	250	70.	100
1,2-Dibromo-3-chloropr	opane	ND		ug/l	250	70.	100
Hexachlorobutadiene		ND		ug/l	250	70.	100
Isopropylbenzene		ND		ug/l	250	70.	100
p-Isopropyltoluene		ND		ug/l	250	70.	100
Naphthalene		ND		ug/l	250	70.	100
n-Propylbenzene		ND		ug/l	250	70.	100
1,2,3-Trichlorobenzene		ND		ug/l	250	70.	100
1,2,4-Irichlorobenzene		ND		ug/l	250	70.	100
1,3,5-I rimethylbenzene	9	ND		ug/l	250	70.	100
1,2,4-I rimethylbenzene	9	ND		ug/l	250	70.	100
		ND		ug/i	25000	7600	100
				ug/i	200	70.	100
		שמ		uu/I	200	70.	100

				Serial_No:03011314:32			
Project Name:	BEST CLEANERS			Lal	b Number:	L1	303178
Project Number:	155			Re	port Date:	03	/01/13
		SAMPLE R	ESULTS				
Lab ID: Client ID: Sample Location:	L1303178-12 GW DUP LIC, NY	D		Date Date Field	Collected: Received: Prep:	02/2 02/2 Not	25/13 09:00 25/13 Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westboroug	gh Lab					
1,2,4,5-Tetramethylben	zene	ND		ug/l	200	65.	100
Ethyl ether		ND		ug/l	250	70.	100
trans-1,4-Dichloro-2-but	tene	ND		ug/l	250	70.	100
Surroga	ate	% Recovery	Qualifier	Acceptance Criteria	9		
1,2-Dich	nloroethane-d4	92		70-130			

70-130

70-130

87

90

105

Toluene-d8

4-Bromofluorobenzene

			Serial_No:03011314:32		
Project Name:	BEST CLEANERS		Lab Number:	L1303178	
Project Number:	155		Report Date:	03/01/13	
		SAMPLE RESULTS			
Lab ID:	L1303178-13		Date Collected:	02/25/13 11:15	
Client ID:	GER-SEWER GW		Date Received:	02/25/13	
Sample Location:	LIC, NY		Field Prep:	Not Specified	
Matrix:	Water				
Analytical Method:	1,8260C				
Analytical Date:	02/27/13 18:11				
Analyst:	PD				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westbor	Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	2.5	0.70	1			
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1			
Chloroform	29		ug/l	2.5	0.70	1			
Carbon tetrachloride	ND		ug/l	0.50	0.16	1			
1,2-Dichloropropane	ND		ug/l	1.0	0.30	1			
Dibromochloromethane	ND		ug/l	0.50	0.19	1			
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1			
Tetrachloroethene	14		ug/l	0.50	0.18	1			
Chlorobenzene	ND		ug/l	2.5	0.70	1			
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1			
1,2-Dichloroethane	ND		ug/l	0.50	0.16	1			
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1			
Bromodichloromethane	3.4		ug/l	0.50	0.19	1			
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1			
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1			
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1			
Bromoform	ND		ug/l	2.0	0.65	1			
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.19	1			
Benzene	ND		ug/l	0.50	0.19	1			
Toluene	ND		ug/l	2.5	0.70	1			
Ethylbenzene	ND		ug/l	2.5	0.70	1			
Chloromethane	ND		ug/l	2.5	0.70	1			
Bromomethane	ND		ug/l	2.5	0.70	1			
Vinyl chloride	ND		ug/l	1.0	0.33	1			
Chloroethane	ND		ug/l	2.5	0.70	1			
1,1-Dichloroethene	ND		ug/l	0.50	0.18	1			
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1			
Trichloroethene	1.3		ug/l	0.50	0.17	1			
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
1.4-Dichlorobenzene	ND		ua/l	2.5	0.70	1			

				Serial_No:03011314:32				
Project Name:	BEST CLEANERS			La	b Number:	L13	303178	
Project Number:	155			Re	port Date:	03/	03/01/13	
		SAMPLE F	RESULTS					
Lab ID:	L1303178-13			Date	e Collected:	02/2	5/13 11:15	
Client ID:	GER-SEWER GW			Date	Received:	02/2	5/13	
Sample Location:	LIC, NY			Field	l Prep:	Not	Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough La	ab						
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		6.5		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethan	e	ND		ug/l	5.0	1.0	1	
Acetone		2.6	J	ug/l	5.0	1.0	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.0	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/i	2.5	0.70	1	
1,1,1,2-Tetrachioroetha	ne			ug/i	2.5	0.70	1	
n Butylbonzono				ug/I	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene				ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1.2-Dibromo-3-chloropr	opane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-lsopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		ND		ug/l	2.5	0.70	1	
n-Propylbenzene		ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	9	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	9	ND		ug/l	2.5	0.70	1	
1,4-Dioxane		ND		ug/l	250	76.	1	
1,4-Diethylbenzene		ND		ug/l	2.0	0.70	1	
4-Ethyltoluene		ND		ug/l	2.0	0.70	1	

					Serial_N	o:03011	314:32
Project Name:	BEST CLEANERS			Lab	Number:	L1:	303178
Project Number:	155			Repo	ort Date:	03/	/01/13
		SAMPLE R	ESULTS				
Lab ID:	L1303178-13			Date C	ollected:	02/2	25/13 11:15
Client ID:	GER-SEWER GW			Date R	eceived:	02/2	25/13
Sample Location:	LIC, NY			Field P	rep:	Not	Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough I	_ab					
1,2,4,5-Tetramethylben	zene	ND		ug/l	2.0	0.65	1
Ethyl ether		ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-but	tene	ND		ug/l	2.5	0.70	1
Surrog	ate	% Recovery	Qualifier	Acceptance Criteria			

Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	92		70-130	
Toluene-d8	87		70-130	
4-Bromofluorobenzene	88		70-130	
Dibromofluoromethane	105		70-130	

			Serial_No	:03011314:32
Project Name:	BEST CLEANERS		Lab Number:	L1303178
Project Number:	155		Report Date:	03/01/13
		SAMPLE RESULTS		
Lab ID:	L1303178-14		Date Collected:	02/25/13 10:50
Client ID:	GER-SEWER 6-6.5'		Date Received:	02/25/13
Sample Location:	LIC, NY		Field Prep:	Not Specified
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	02/26/13 23:14			
Analyst:	JC			
Percent Solids:	86%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - We	stborough Lab					
Methylene chloride	ND		ug/kg	45	8.9	1
1,1-Dichloroethane	ND		ug/kg	6.7	1.3	1
Chloroform	ND		ug/kg	6.7	1.4	1
Carbon tetrachloride	ND		ug/kg	4.5	0.94	1
1,2-Dichloropropane	ND		ug/kg	16	1.1	1
Dibromochloromethane	ND		ug/kg	4.5	1.4	1
1,1,2-Trichloroethane	ND		ug/kg	6.7	1.8	1
Tetrachloroethene	220		ug/kg	4.5	1.4	1
Chlorobenzene	ND		ug/kg	4.5	0.83	1
Trichlorofluoromethane	ND		ug/kg	22	1.8	1
1,2-Dichloroethane	ND		ug/kg	4.5	1.0	1
1,1,1-Trichloroethane	ND		ug/kg	4.5	1.2	1
Bromodichloromethane	ND		ug/kg	4.5	1.7	1
trans-1,3-Dichloropropene	ND		ug/kg	4.5	1.3	1
cis-1,3-Dichloropropene	ND		ug/kg	4.5	1.2	1
1,1-Dichloropropene	ND		ug/kg	22	2.0	1
Bromoform	ND		ug/kg	18	2.2	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	4.5	1.1	1
Benzene	ND		ug/kg	4.5	1.3	1
Toluene	ND		ug/kg	6.7	1.1	1
Ethylbenzene	ND		ug/kg	4.5	0.99	1
Chloromethane	ND		ug/kg	22	3.5	1
Bromomethane	ND		ug/kg	8.9	2.9	1
Vinyl chloride	ND		ug/kg	8.9	3.4	1
Chloroethane	ND		ug/kg	8.9	2.0	1
1,1-Dichloroethene	ND		ug/kg	4.5	1.2	1
trans-1,2-Dichloroethene	ND		ug/kg	6.7	1.8	1
Trichloroethene	4.5		ug/kg	4.5	1.0	1
1,2-Dichlorobenzene	ND		ug/kg	22	1.6	1
1,3-Dichlorobenzene	ND		ug/kg	22	1.8	1
1,4-Dichlorobenzene	ND		ug/kg	22	1.9	1

				Serial_N	0:030113	314:32	
Project Name:	BEST CLEANERS			La	b Number:	L13	03178
Project Number:	155			Re	port Date:	03/0	01/13
		SAMPLE R	ESULTS				
Lab ID:	L1303178-14			Date	Collected:	02/2	5/13 10:50
Client ID:	GER-SEWER 6-6.5'			Date	Received:	02/2	5/13
Sample Location:	LIC, NY			Field	Prep:	Not S	Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y 8260/5035 - Westborough	Lab					
Mothul tort butul other		ND			8.0	2.2	1
		ND		ug/kg	8.9	2.2	1
				ug/kg	0.9	1.9	1
cis 1.2 Dichloroothono		12		ug/kg	0.9	1.9	1
Dibromomethane		ND		ug/kg	4.5	1.0	1
Styrepe				ug/kg	4J 8 Q	3.2	1
Dichlorodifluoromethan	2			ug/kg	45	1.7	1
	5	22		ug/kg	45	1.7	1
Carbon disulfide		ND		ug/kg	45	89	1
2-Butanone		ND		ug/kg	45	17	1
Vinvl acetate		ND		ug/kg	45	3.4	1
4-Methyl-2-pentanone		ND		ug/kg	45	3.6	1
1.2.3-Trichloropropane		ND		ua/ka	45	1.7	1
2-Hexanone		ND		ua/ka	45	1.8	1
Bromochloromethane		ND		ug/kg	22	1.4	1
2,2-Dichloropropane		ND		ug/kg	22	3.6	1
1,2-Dibromoethane		ND		ug/kg	18	1.8	1
1,3-Dichloropropane		ND		ug/kg	22	2.5	1
1,1,1,2-Tetrachloroetha	ne	ND		ug/kg	4.5	1.5	1
Bromobenzene		ND		ug/kg	22	0.98	1
n-Butylbenzene		ND		ug/kg	4.5	1.4	1
sec-Butylbenzene		ND		ug/kg	4.5	1.2	1
tert-Butylbenzene		ND		ug/kg	22	2.7	1
o-Chlorotoluene		ND		ug/kg	22	1.4	1
p-Chlorotoluene		ND		ug/kg	22	1.6	1
1,2-Dibromo-3-chloropro	opane	ND		ug/kg	22	3.7	1
Hexachlorobutadiene		ND		ug/kg	22	2.0	1
Isopropylbenzene		ND		ug/kg	4.5	0.79	1
p-Isopropyltoluene		ND		ug/kg	4.5	1.2	1
Naphthalene		ND		ug/kg	22	3.4	1
Acrylonitrile		ND		ug/kg	45	1.7	1
n-Propylbenzene		ND		ug/kg	4.5	1.3	1
1,2,3-Trichlorobenzene		ND		ug/kg	22	1.8	1
1,2,4-Trichlorobenzene		ND		ug/kg	22	3.5	1
1,3,5-Trimethylbenzene		ND		ug/kg	22	2.7	1
1,2,4-Trimethylbenzene		ND		ug/kg	22	2.6	1
1,4-Dioxane		ND		ug/kg	450	78.	1
1,4-Diethylbenzene		ND		ug/kg	18	0.89	1
4-Ethyltoluene		ND		ug/kg	18	0.43	1

				Serial_No:03011314:32			
Project Name:	BEST CLEANERS			Lal	o Number:	L1:	303178
Project Number:	155			Re	port Date:	03/	/01/13
		SAMPLE R	ESULTS				
Lab ID:	L1303178-14			Date	Collected:	02/2	25/13 10:50
Client ID:	GER-SEWER 6-6.5'			Date	Received:	02/2	25/13
Sample Location:	LIC, NY			Field Prep:		Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y 8260/5035 - Westboroug	n Lab					
1,2,4,5-Tetramethylben	zene	ND		ug/kg	18	0.81	1
Ethyl ether		ND		ug/kg	22	1.7	1
trans-1,4-Dichloro-2-but	tene	ND		ug/kg	22	6.6	1
Surroga	ate	% Recovery	Qualifier	Acceptance Criteria)		
1,2-Dich	nloroethane-d4	102		70-130			

70-130

70-130

98

104

99

Toluene-d8

4-Bromofluorobenzene

			Serial_No	:03011314:32
Project Name:	BEST CLEANERS		Lab Number:	L1303178
Project Number:	155		Report Date:	03/01/13
		SAMPLE RESULTS		
Lab ID:	L1303178-15		Date Collected:	02/25/13 10:50
Client ID:	GER-SEWER 7.5-8'		Date Received:	02/25/13
Sample Location:	LIC, NY		Field Prep:	Not Specified
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	02/26/13 23:42			
Analyst:	JC			
Percent Solids:	91%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - We	estborough Lab					
Methylene chloride	ND		ug/kg	21	4.2	1
1,1-Dichloroethane	ND		ug/kg	3.2	0.62	1
Chloroform	ND		ug/kg	3.2	0.68	1
Carbon tetrachloride	ND		ug/kg	2.1	0.45	1
1,2-Dichloropropane	ND		ug/kg	7.4	0.54	1
Dibromochloromethane	ND		ug/kg	2.1	0.65	1
1,1,2-Trichloroethane	ND		ug/kg	3.2	0.83	1
Tetrachloroethene	2.3		ug/kg	2.1	0.65	1
Chlorobenzene	ND		ug/kg	2.1	0.39	1
Trichlorofluoromethane	ND		ug/kg	10	0.83	1
1,2-Dichloroethane	ND		ug/kg	2.1	0.48	1
1,1,1-Trichloroethane	ND		ug/kg	2.1	0.57	1
Bromodichloromethane	ND		ug/kg	2.1	0.81	1
trans-1,3-Dichloropropene	ND		ug/kg	2.1	0.64	1
cis-1,3-Dichloropropene	ND		ug/kg	2.1	0.56	1
1,1-Dichloropropene	ND		ug/kg	10	0.96	1
Bromoform	ND		ug/kg	8.4	1.0	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	2.1	0.51	1
Benzene	ND		ug/kg	2.1	0.63	1
Toluene	ND		ug/kg	3.2	0.51	1
Ethylbenzene	ND		ug/kg	2.1	0.47	1
Chloromethane	ND		ug/kg	10	1.6	1
Bromomethane	ND		ug/kg	4.2	1.4	1
Vinyl chloride	ND		ug/kg	4.2	1.6	1
Chloroethane	ND		ug/kg	4.2	0.93	1
1,1-Dichloroethene	ND		ug/kg	2.1	0.55	1
trans-1,2-Dichloroethene	ND		ug/kg	3.2	0.83	1
Trichloroethene	ND		ug/kg	2.1	0.47	1
1,2-Dichlorobenzene	ND		ug/kg	10	0.77	1
1,3-Dichlorobenzene	ND		ug/kg	10	0.84	1
1,4-Dichlorobenzene	ND		ug/kg	10	0.89	1

					Serial_No:03011314:32			
Project Name:	BEST CLEANERS			La	b Number:	L13	303178	
Project Number:	155			Re	port Date:	03/	01/13	
		SAMPLE R	ESULTS					
Lab ID:	L1303178-15			Date	Collected:	02/2	5/13 10:50	
Client ID:	GER-SEWER 7.5-8'			Date	Received:	02/2	5/13	
Sample Location:	LIC, NY			Field	Prep:	Not \$	Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by	y 8260/5035 - Westborough	Lab						
Methyl tert butyl ether		ND		ug/kg	4.2	1.0	1	
p/m-Xylene		ND		ug/kg	4.2	0.91	1	
o-Xylene		ND		ug/kg	4.2	0.88	1	
cis-1,2-Dichloroethene		ND		ug/kg	2.1	0.64	1	
Dibromomethane		ND		ug/kg	21	0.92	1	
Styrene		ND		ug/kg	4.2	1.5	1	
Dichlorodifluoromethane	•	ND		ug/kg	21	0.82	1	
Acetone		ND		ug/kg	21	6.8	1	
Carbon disulfide		ND		ug/kg	21	4.2	1	
2-Butanone		ND		ug/kg	21	8.2	1	
Vinyl acetate		ND		ug/kg	21	1.6	1	
4-Methyl-2-pentanone		ND		ug/kg	21	1.7	1	
1,2,3-Trichloropropane		ND		ug/kg	21	0.82	1	
2-Hexanone		ND		ug/kg	21	0.84	1	
Bromochloromethane		ND		ug/kg	10	0.64	1	
2,2-Dichloropropane		ND		ug/kg	10	1.7	1	
1,2-Dibromoethane		ND		ug/kg	8.4	0.86	1	
1,3-Dichloropropane		ND		ug/kg	10	1.2	1	
1,1,1,2-Tetrachloroethar	ne	ND		ug/kg	2.1	0.69	1	
Bromobenzene		ND		ug/kg	10	0.46	1	
n-Butylbenzene		ND		ug/kg	2.1	0.66	1	
sec-Butylbenzene		ND		ug/kg	2.1	0.58	1	
tert-Butylbenzene		ND		ug/kg	10	1.3	1	
o-Chlorotoluene		ND		ug/kg	10	0.66	1	
p-Chlorotoluene		ND		ug/kg	10	0.76	1	
1,2-Dibromo-3-chloropro	ppane	ND		ug/kg	10	1.8	1	
Hexachlorobutadiene		ND		ug/kg	10	0.97	1	
Isopropylbenzene		ND		ug/kg	2.1	0.37	1	
p-Isopropyltoluene		ND		ug/kg	2.1	0.58	1	
Naphthalene		ND		ug/kg	10	1.6	1	
Acrylonitrile		ND		ug/kg	21	0.79	1	
n-Propylbenzene		ND		ug/kg	2.1	0.60	1	
1,2,3-Trichlorobenzene		ND		ug/kg	10	0.85	1	
1,2,4-Trichlorobenzene		ND		ug/kg	10	1.7	1	
1,3,5-Trimethylbenzene		ND		ug/kg	10	1.3	1	
1,2,4-Trimethylbenzene		ND		ug/kg	10	1.2	1	
1,4-Dioxane		ND		ug/kg	210	37.	1	
1,4-Diethylbenzene		ND		ug/kg	8.4	0.42	1	
4-Ethyltoluene		ND		ug/kg	8.4	0.20	1	

				Serial_No:03011314			314:32
Project Name:	BEST CLEANERS			Lab	Number:	L1:	303178
Project Number:	155			Repo	ort Date:	03,	/01/13
		SAMPLE R	ESULTS				
Lab ID:	L1303178-15			Date C	collected:	02/2	25/13 10:50
Client ID:	GER-SEWER 7.5-8'			Date R	leceived:	02/2	25/13
Sample Location:	LIC, NY			Field F	rep:	Not	Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y 8260/5035 - Westboroug	h Lab					
1,2,4,5-Tetramethylben	zene	ND		ug/kg	8.4	0.38	1
Ethyl ether		ND		ug/kg	10	0.80	1
trans-1,4-Dichloro-2-but	tene	ND		ug/kg	10	3.1	1
Surroga	ate	% Recovery	Qualifier	Acceptance Criteria			
1,2-Dich	nloroethane-d4	103		70-130			

70-130

70-130

97

103

100

Toluene-d8

4-Bromofluorobenzene

Order ID: 281300233

Attn:	Ken Wenz	Customer ID:
	Genesis Engineering & Redevelopment	Customer PO:
	69-49 185 th Street Suite 1A	Date Received:
	Fresh Meadows, NY 11365	
Phone:	(631) 742-0638	EMSL Order:
Project:	Best Cleaners	EMSL Project 1
Report Date:	3/13/13	Date of Analysi

EMSL Order: 281300233 EMSL Project ID: Date of Analysis: 3/12/13

+28GER

2/27/13

Test Report – Chrlorinated Hydrocarbons by GC/FID of 3M Diff. Samplers via modified NIOSH 1003, Issue 3, 3/15/03

Sample ID	Identification	Component	Time Sampled (min)	Rpt. Limit (ug)	Rpt. Limit (PPM)	Sample Amount (ug)	Sample Amount (PPM)
281300233-0001	FAF	Perchloroethylene	1475	24	0.082	ND	ND
281300233-0002	SMI	Perchloroethylene	1460	24	0.083	ND	ND
281300233-0003	OUTDOOR	Perchloroethylene	1465	24	0.083	ND	ND
Desorption Blank		Perchloroethylene	0	24	NA	ND	NA

Notes:

- 1. Samples were received in acceptable condition unless otherwise noted.
- 2. These results relate only to the samples tested.
- 3. Sample results are not blank corrected.
- 4. Discernable field blank(s) not submitted with samples.
- 5. ND denotes not detected

Scott VanEtten, CIH- Lab Manager Or other approved signatory

ALN/SV Analyst

APPENDIX C

Data Usability Summary Report

Data Validation Services

120 Cobble Creek Road P.O. Box 208 North Creek, NY 12853

> Phone 518-251-4429 harry@frontiernet.net

March 13, 2012

Kenneth Wenz GE&R 69-49 185th St. Suite 1A Fresh Meadows, NY 11365

RE: Best –DDK Cleaners Analytical Data Data Usability Summary Report (DUSR) Alpha Analytical SDG No. L1303178

Dear Mr. Wenz:

Review has been completed for the data packages generated by Alpha Analytical that pertains to collected on 02/25/13 at the Best DDK Cleaners site. Ten soil samples, one soil field duplicate, two aqueous samples and an aqueous field duplicate were analyzed for a full list of volatile analytes using USEPA SW846 method 8260B.

The data packages submitted contained full deliverables for validation, but this usability report is generated from review of the summary form information, with review of sample raw data, and limited review of associated QC raw data. Full validation has not been performed. However, the reported summary forms have been reviewed for application of validation qualifiers, per the USEPA Region 2 validation SOPs and the USEPA National Functional Guidelines for Organic Data Review, as affects the usability of the sample data. The following items were reviewed:

- * Data Completeness
- * Case Narrative
- * Custody Documentation
- * Holding Times
- * Surrogate Recoveries
- * Matrix Spike Recoveries and Duplicate Correlations
- * Blind Field Duplicate Correlations
- * Internal Standard Recoveries
- * Method Blanks
- * Laboratory Control Samples (LCSs)
- * Instrumental Tunes
- * Initial and Continuing Calibration Standards
- * Method Compliance
- * Sample Result Verification

Those items showing deficiencies are discussed in the following sections of this report. All others were found to be acceptable as outlined in the above-mentioned validation procedures, and as applicable for the methodology. Unless noted specifically in the following text, reported results are substantiated by the raw data, and generated in compliance with project requirements.

In summary, sample processing was primarily conducted in compliance with analytical project requirements. Sample results are usable, with the exception of those for 1,4-dioxane in all samples and 1,1,2,2-tetrachloroethane in one sample. Outlying accuracy and precision values were observed for the soils.

Copies of the laboratory case narratives are attached to this text, and should be reviewed in conjunction with this report. Also attached are the laboratory sample result forms edited to reflect the validation qualifiers noted within this report.

TCL Volatile Analyses by USEPA Method 8260B

The matrix spikes of GER-GW4 show acceptable accuracy and precision, with the exception of one of the recoveries for trans-1,4-dichloro-2-butene, which was slightly low. No qualification is made. Tetrachloroethene shows outlying recoveries, but the evaluation is not applicable due to the relatively elevated concentration of that analyte in the parent sample.

The soil matrix spikes of GER-SS2 6-12" show numerous outlying recoveries, with low recoveries for about 70% of the full list of analytes. However, there is an observed inconsistency between the recoveries of toluene in the matrix spikes (49% and 55%) and those of surrogate standard d8-toluene in those spikes (98% and 98%). The surrogate and spike standards are to be added at the same time, and should behave identically. Therefore a laboratory spike error is suspected. The specific analytes and recovery values are outlined in the attached laboratory case narrative. The results for those analytes that show outlying recoveries in both of the matrix spikes have been qualified as estimated. 1,1,2,2-Tetrachloroethane showed no recovery in those soil spikes, likely due to a matrix effect, and the result for that compound in the parent sample has therefore been rejected.

The field duplicate correlations of GER-SS2 18-24" and GER-GW4 show acceptable correlations, with the exception of that for tetrachloroethene (63%RPD) in the aqueous sample. The result for that compound in the parent sample GER-GW4 and its duplicate have been qualified as estimated in value.

The LCSs show acceptable recoveries. Five aqueous field duplicate correlations were elevated, but sample reported results are unaffected.

Due to presence in the associated method blank, the detected results for acetone in the samples are considered external contamination, and have been edited to reflect non-detection.

Due to very poor instrument responses (RRFs below 0.01) that are inherent with the methodology, the results for 1,4-dioxane are rejected and not usable. Other calibrations standards showed responses within analytical protocol and validation guidelines, with the following exceptions, the results for which are qualified as estimated in value in the indicated samples:

- acetone (RRF below 0.05), and 1,2,3-trichloropropane and trans-1,4-dichloro-2-butene (26%D to 35%D) in the aqueous field samples and trip blank
- o bromomethane (23%D) in the aqueous field samples

Holding times were met. Surrogate and internal standard responses are within the utilized ranges. However, the laboratory is using a set range of 70% to 130% for all surrogates and most of the matrix spike/LCS analytes. The laboratory is required to generate and use in-house acceptance ranges. No qualification is made, but the non-compliance should be corrected.

Method Detection Limits are from 2010 and 2011, are outdated, and should be regenerated.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,

Judy Harry

VALIDATION DATA QUALIFIER DEFINITIONS

U	The analyte was analyzed for, but was not detected above the level of the associated reported quantitation limit.
J	The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.
UJ	The analyte was not detected. The associated reported quantitation limit is an estimate and may be inaccurate or imprecise.
NJ	The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive and/or elevated quantitative value.
R	The data are unusable. The analyte may or may not be present.

EMPC The results do not meet all criteria for a confirmed identification. The quantitative value represents the Estimated Maximum Possible Concentration of the analyte in the sample.
CLIENT and LABORATORY SAMPLE IDs and LABORATORY CASE NARRATIVE

Project Name:BEST CLEANERSProject Number:155

Lab Number: L1303178 Report Date: 03/01/13

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1303178-01	GER-SS2 6-12"	LIC, NY	02/24/13 09:15
L1303178-02	GER-SS2 18-24"	LIC, NY	02/24/13 09:25
L1303178-03	DUPLICATE	LIC, NY	02/24/13 09:40
L1303178-04	GER-SS1 6-12"	LIC, NY	02/24/13 10:20
L1303178-05	GER-SS1 24-30"	LIC, NY	02/24/13 10:35
L1303178-06	GER-SS3 6-12"	LIC, NY	02/24/13 11:45
L1303178-07	GER-SS3 18-24"	LIC, NY	02/24/13 11:55
L1303178-08	GER-SS4 12-18"	LIC, NY	02/24/13 11:10
L1303178-09	GER-SS4 24-30"	LIC, NY	02/24/13 11:20
L1303178-10	TRIP BLANK	LIC, NY	02/24/13 00:00
L1303178-11	GER-GW4	LIC, NY	02/25/13 08:45
L1303178-12	GW DUP	LIC, NY	02/25/13 09:00
L1303178-13	GER-SEWER GW	LIC, NY	02/25/13 11:15
L1303178-14	GER-SEWER 6-6.5'	LIC, NY	02/25/13 10:50
L1303178-15	GER-SEWER 7.5-8'	LIC, NY	02/25/13 10:50

Project Name: BEST CLEANERS Project Number: 155

Lab Number: L1303178 Report Date: 03/01/13

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Performance criteria for CAM and RCP methods allow for some LCS compound failures to occur and still be within method compliance. In these instances, the specific failures are not narrated but are noted in the associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples free of charge for 30 days from the date the project is completed. After 30 days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:BEST CLEANERSProject Number:155

 Lab Number:
 L1303178

 Report Date:
 03/01/13

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L1303178-10: The Trip Blank has a result for Acetone present below the reporting limit. The sample vial was verified as being labeled correctly by the laboratory and the previous analysis showed there was no potential for carry over.

The WG592169-4/-5 MS/MSD recoveries, performed on L1303178-01, were outside the acceptance criteria for Methylene chloride (MS at 66%), 1,1-Dichloroethane (54%/61%), Chloroform (59%/64%), Carbon tetrachloride (38%/49%), 1,2-Dichloropropane (MS at 66%), Tetrachloroethene (45%/55%), Chlorobenzene (53%/56%), Trichlorofluoromethane (36%/48%), 1,1,1-Trichloroethane (44%/52%), Bromodichloromethane (MS at 69%), trans-1,3-Dichloropropene (68%/67%), cis-1,3-Dichloropropene (67%/68%), 1,1-Dichloropropene (38%/48%), 1,1,2,2-Tetrachloroethane (MS at 3%), Benzene (53%/60%), Toluene (49%/55%), Ethylbenzene (46%/52%), Chloromethane (MS at 51%), Vinyl chloride (36%/46%), Chloroethane (MS at 47%), 1,1-Dichloroethene (39%/50%), trans-1.2-Dichloroethene (45%/53%), 1,2-Dichlorobenzene (53%/52%), 1,3-Dichlorobenzene (47%/47%), 1,4-Dichlorobenzene (46%/47%), p/m-Xylene (46%/52%), o-Xylene (52%/56%), cis-1,2-Dichloroethene (57%/62%), Styrene (53%/54%), Acetone (154%/165%), Carbon disulfide (40%/48%), Vinyl acetate (14%/15%), 2,2-Dichloropropane (42%/51%), 1,1,1,2-Tetrachloroethane (63%/67%), Bromobenzene (57%/57%), n-Butylbenzene (33%/29%), sec-Butylbenzene (36%/43%), tert-Butylbenzene (41%/47%), o-Chlorotoluene (47%/51%), p-Chlorotoluene (46%/50%), Hexachlorobutadiene (26%/31%), Isopropylbenzene (42%/49%), p-Isopropyltoluene (37%/43%), Naphthalene (60%/54%), n-Propylbenzene (40%/46%), 1,2,3-Trichlorobenzene (42%/39%), 1,2,4-Trichlorobenzene (37%/50%), 1,3,5-Trimethylbenzene (45%/50%), 1,2,4-Trimethylbenzene (47%/50%), 1,4-Diethylbenzene (35%/41%), 4-Ethyltoluene (42%/48%), and 1,2,4,5-Tetramethylbenzene (42%/44%).

The WG592169-4/-5 MS/MSD RPDs, performed on L1303178-01, are above the acceptance criteria for 1,1,2-Trichloroethane (33%), 1,2-Dichloroethane (31%), trans-1,3-Dichloropropene (32%), 1,2-Dichlorobenzene(32%), Methyl tert butyl ether (31%), Dibromomethane (34%), 1,2,3-Trichloropropane (34%),

Project Name: BEST CLEANERS Project Number: 155

Lab Number: L1303178 Report Date: 03/01/13

Case Narrative (continued)

2-Hexanone (33%), 1,2-Dibromoethane (34%), 1,3-Dichloropropane (32%), Bromobenzene (31%), 1,2-Dibromo-3-chloropropane (37%), Naphthalene (41%), Acrylonitrile (33%), 1,2,3-Trichlorobenzene (38%), 1,2,4-Trichlorobenzene (31%), 1,4-Dioxane (33%), and trans-1,4-Dichloro-2-butene (37%).
The WG592169-5 MSD recovery, performed on L1303178-01, is below the acceptance criteria for 1,1,2,2-Tetrachloroethane (0%) due to the concentration of this compound falling below the reported detection limit.
The WG592426-4 MS recovery, performed on L1303178-11, is outside the acceptance criteria for Tetrachloroethene (53%). The unacceptable percent recovery is attributed to the elevated concentrations of target compounds present in the sample utilized for the MS/MSD.
The WG592426-5 MSD recovery, performed on L1303178-11, was below the acceptance criteria for trans-

1,4-Dichloro-2-butene (68%); however, the associated LCS/LCSD recoveries were within criteria. The results of the sample utilized for the MS/MSD are considered to have a potentially low bias for this compound.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Cypetting Mi Chen Cynthia McQueen

Authorized Signature:

Title: Technical Director/Representative

Date: 03/01/13

QUALIFIED SAMPLE RESULTS FORMS

Client	: Genesis Engineering & Redevelopment	Lab Number	: L1303178
Project Name	BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-01	Date Collected	: 02/24/13 09:15
Client ID	: GER-SS2 6-12"	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 18:36
Sample Matrix	: SOIL	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: JC
Lab File ID	: 0226A08	Instrument ID	: CHARLIE.I
Sample Amount	: 1.3 g	GC Column	: RTX-VMS
Level	: LOW	%Solids	: 94
Extract Volume (MeOH): N/A	Injection Volume	: N/A

			u g /Kg		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	41	8.2	U
75-34-3	1 1-Dichlomethane	ND	61	12	UUT
67-66-3	Chloroform	ND	61	13	
56 22 5			4 1	0.86	
79 97 5		ND	- 14	1.0	υ Υ
			, - 	1.0	
70.00.5		ND	- 61	1.6	
197.19.4		33		1.0	
127-18-4	Chlorobonzono	5.5 ND	 A 1	0.76	
75 60 4			20	1.6	
/5-69-4		ND	-	0.03	° 4.3
107-06-2			4.1	0.95	
/1-55-6			4.1	1.1	
75-27-4	Bromodichloromethane	ND	4.1	1.6	
10061-02-6	trans-1,3-Dichloropropene	ND	4.1	1.2	
10061-01-5	cis-1,3-Dichloropropene	ND	4.1	1.1	U
563-58-6	1,1-Dichloropropene	ND	20	1.9	UV
75-25-2	Bromoform	ND	16	2.0	U
79-34-5	1,1,2,2-Tetrachloroethane	.ND-	4.1	0 :98 -	4 R
71-43-2	Benzene	ND	4.1	1.2	U UJ
108-88-3	Toluene	ND	6.1	0.99	U
100-41-4	Ethylbenzene	ND	4.1	0.90	u 🏑
74-87-3	Chloromethane	ND	20	3.2	U
74-83-9	Bromomethane	ND	8.2	2.6	UUJ
75-01-4	Vinyl chloride	ND	8.2	3.1	U UJ
75-00-3	Chloroethane	ND	8.2	1.8	U
75-35-4	1,1-Dichloroethene	ND	4.1	1.1	UUJ
156-60-5	trans-1,2-Dichloroethene	ND	6.1	1.6	UUJ

Client	: Genesis Engineering & Redevelopment	t Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-01	Date Collected	: 02/24/13 09:15
Client ID	: GER-SS2 6-12"	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 18:36
Sample Matrix	: SOIL	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: JC
Lab File ID	: 0226A08	Instrument ID	: CHARLIE.I
Sample Amount	: 1.3 g	GC Column	: RTX-VMS
Level	: LOŴ	%Solids	: 94
Extract Volume (MeOH)	: N/A	Injection Volume	: N/A

			ug/Kg		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
70-01-6	Trichloraethene	ND	4 1	0.92	ш
05 50 4				0.52	
95-50-1	1,2-Dichlorobenzene	ND	20	1.5	
541-73-1	1,3-Dichlorobenzene	ND	20	1.6	U
106-46-7	1,4-Dichlorobenzene	ND	20	1.7	U V
1634-04-4	Methyl tert butyl ether	ND	8.2	2.0	U
179601-23-1	p/m-Xylene	ND	8.2	1.8	" UJ
95-47-6	o-Xylene	ND	8.2	1.7	U
156-59-2	cis-1,2-Dichloroethene	ND	4.1	1.2	U
74-95-3	Dibromomethane	ND	41	1.8	U
100-42-5	Styrene	ND	8.2	3.0	U V
75-71-8	Dichlorodifluoromethane	ND	41	1.6	U
67-64-1	Acetone	ND	41	13.	UUJ
75-15-0	Carbon disulfide	ND	41	8.2	U UJ
78-93-3	2-Butanone	ND	41	16.	U
108-05-4	Vinyl acetate	ND	41	3.1	u uj
108-10-1	4-Methyl-2-pentanone	ND	41	3.3	U
96-18- 4	1,2,3-Trichloropropane	ND	41	1.6	U UI
591-78-6	2-Нехапопе	ND	41	1.6	U
74-97-5	Bromochloromethane	ND	20	1.2	U
594-20-7	2,2-Dichloropropane	ND	20	3.2	UUJ
106-93-4	1,2-Dibromoethane	ND	16	1.7	U
142-28-9	1,3-Dichloropropane	ND	20	2.3	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	4,1	1.3	U U J
108-86-1	Bromobenzene	ND	20	0.90	U
104-51-8	n-Butylbenzene	ND	4.1	1.3	U
135-98-8	sec-Butylbenzene	ND	4.1	1.1	U
98-06-6	tert-Butylbenzene	ND	20	2.5	$ u \forall$

Client	: Genesis Engineering & Redevelopmen	t Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-01	Date Collected	: 02/24/13 09:15
Client ID	: GER-SS2 6-12"	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 18:36
Sample Matrix	: SOIL	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: JC
Lab File ID	: 0226A08	Instrument ID	: CHARLIE.I
Sample Amount	: 1.3 g	GC Column	: RTX-VMS
Level	: LOW	%Solids	: 94
Extract Volume (MeOH)) : N/A	Injection Volume	: N/A

			ug/Kg		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
95-49-8	o-Chlorotoluene	ND	20	1.3	UUJ
106-43-4	p-Chlorotoluene	ND	20	1.5	U UJ
96-12-8	1,2-Dibromo-3-chloropropane	ND	20	3.4	U
87-68-3	Hexachlorobutadiene	ND	20	1.9	U UJ
98-82-8	Isopropylbenzene	ND	4.1	0.72	U
99-87-6	p-Isopropyltoluene	ND	4.1	1.1	U
91-20-3	Naphthalene	ND	20	3.1	UV
107-13-1	Acrylonitrile	ND	41	1.5	U
103-65-1	n-Propylbenzene	ND	4.1	1.2	U UJ
87-61-6	1,2,3-Trichlorobenzene	ND	20	1.6	U
120-82-1	1,2,4-Trichlorobenzene	ND	20	3.2	U
108-67-8	1,3,5-Trimethylbenzene	ND	20	2.5	U
95-63-6	1,2,4-Trimethylbenzene	ND	20	2.3	UV
123-91-1	1,4-Dioxane	ND	410	- 7 1.	+ R
105-05-5	1,4-Diethylbenzene	ND	16	0.82	" UT
622-96-8	4-Ethyltoluene	ND	16	0.40	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	16	0.74	U 🗸
60-29-7	Ethyl ether	ND	20	1.6	U
110-57-6	trans-1,4-Dichloro-2-butene	ND	20	6.0	U UJ

Client	: Genesis Engineering & Redevelopment	t Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-02	Date Collected	: 02/24/13 09:25
Client ID	: GER-SS2 18-24"	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 20:55
Sample Matrix	: SOIL	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: JC
Lab File ID	: 0226A13	Instrument ID	: CHARLIE.I
Sample Amount	: 1.6 g	GC Column	: RTX-VMS
Level	: LOW	%Solids	: 90
Extract Volume (MeOH): N/A	Injection Volume	: N/A

			ug/Kg			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75.09.2	Mothylana chlarida		25	6.0		
75-08-2		ND		0.9		
75-34-3	1,1-Dichloroethane	ND	5.2	1.0	U	
67-66-3	Chloroform	ND	5.2	1.1	U .	
56-23-5	Carbon tetrachlonde	ND	3.5	0.73	U	
78-87-5	1,2-Dichloropropane	ND	12	0.88	U	
124-48-1	Dibromochloromethane	ND	3.5	1.1	U	
79-00-5	1,1,2-Trichloroethane	ND	5.2	1.4	U	
127-18-4	Tetrachloroethene	9.8	3.5	1.1		
108-90-7	Chlorobenzene	ND	3.5	0.65	U	
75-69-4	Trichlorofluoromethane	ND	17	1.4	U	
107-06-2	1,2-Dichloroethane	ND	3.5	0.79	U	
71-55-6	1,1,1-Trichloroethane	ND	3.5	0.94	U	
75-27-4	Bromodichloromethane	ND	3.5	1.3	U	
10061-02-6	trans-1,3-Dichloropropene	ND	3.5	1.0	U	
10061-01-5	cis-1,3-Dichloropropene	ND	3.5	0.93	U	
563-58-6	1,1-Dichloropropene	ND	17	1.6	U	
75-25-2	Bromoform	ND	14	1.7	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	3.5	0.83	U	
71-43-2	Benzene	ND	3.5	1.0	U	
108-88-3	Toluene	ND	5.2	0.84	U	1 1
100-41-4	Ethylbenzene	ND	3.5	0.77	U	
74-87-3	Chloromethane	ND	17	2.7	U	
74-83-9	Bromomethane	ND	6.9	2.2	U	
75-01-4	Vinyl chloride	ND	6.9	2.6	U	
75-00-3	Chloroethane	ND	6.9	1.5	U	
75-35-4	1,1-Dichloroethene	ND	3.5	0.90	U	
156-60-5	trans-1,2-Dichloroethene	ND	5.2	1.4	U	

Client	: Genesis Engineering & Redevelopment	Lab Number	: L1303178
Project Name	BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-02	Date Collected	: 02/24/13 09:25
Client ID	: GER-SS2 18-24"	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 20:55
Sample Matrix	: SOIL	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: JC
Lab File ID	: 0226A13	Instrument ID	: CHARLIE.I
Sample Amount	: 1.6 g	GC Column	: RTX-VMS
Level	: LOW	%Solids	: 90
Extract Volume (MeOH)	: N/A	Injection Volume	: N/A

.

			ug/Kg			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
79-01-6	Trichloroethene	ND	3.5	0.78	U	
95-50-1	1 2-Dichlorobenzene	ND	17	1.3	U I	
541-73-1		ND	17	14		
106_46_7		ND	.' 17	14		
1634 04 4		ND	69	17		
170601 22 1		ND	- - 60	1.7		
05 47 0		ND		1.0		
95-47-6	o-Aylene	ND	0.9	1.4		
156-59-2	cis-1,2-Dichloroethene		5.5	1.0	U U	
74-95-3	Dibromomethane	ND	35	1.5	U	
100-42-5	Styrene	ND	6.9 ″	2.5	U	
75-71-8	Dichlorodifluoromethane	ND	35	1.4	U	
67-64-1	Acetone	ND #7-	35	11.	+ U	
75-15-0	Carbon disulfide	ND	35	6.9	U	
78-93-3	2-Butanone	ND	35	13.	U	
108-05- 4	Vinyl acetate	ND	35	2.6	U	
108-10-1	4-Methyl-2-pentanone	7.2	35	2.8	J	
96-18-4	1,2,3-Trichloropropane	ND	35	1.3	U	
591-78-6	2-Нехаполе	ND	35	1.4	U	
74-97-5	Bromochloromethane	ND	17	1.0	U	
594-20-7	2,2-Dichloropropane	ND	17	2.8	U	
106-93-4	1,2-Dibromoethane	ND	14	1.4	U	
142-28-9	1,3-Dichloropropane	ND	17	2.0	U	· · · · · · · · · · · · · · · · · · ·
630-20-6	1,1,1,2-Tetrachloroethane	ND	3.5	1.1	U	
108-86-1	Bromobenzene	ND	17	0.76	U	
104-51-8	n-Butylbenzene	ND	3.5	1.1	U	
135-98-8	sec-Butylbenzene	ND	3.5	0.96	U	
98-06-6	tert-Butylbenzene	ND	17	2.1	U	

Client	: Genesis Engineering & Redevelopment	Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-02	Date Collected	: 02/24/13 09:25
Client ID	: GER-SS2 18-24"	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 20:55
Sample Matrix	: SOIL	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: JC
Lab File ID	: 0226A13	Instrument ID	: CHARLIE.I
Sample Amount	: 1.6 g	GC Column	: RTX-VMS
Level	: LOW	%Solids	: 90
Extract Volume (MeOH): N/A	Injection Volume	: N/A

			ug/Kg			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
95-49-8	o-Chlorotoluene	ND	17	1.1	U	
106-43-4	p-Chlorotoluene	ND	17	1.2	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	17	2.9	U	
87-68-3	Hexachlorobutadiene	ND	17	1.6	U	
98-82-8	isopropylbenzene	ND	3.5	0.61	U	
99-87-6	p-Isopropyltoluene	ND	3.5	0.95	U	
91-20-3	Naphthalene	ND	17	2.7	U	
107-13-1	Acrylonitrile	ND	35	1.3	U	
103-65-1	n-Propylbenzene	ND	3.5	0.99	U	
87-61-6	1,2,3-Trichlorobenzene	ND	17	1.4	U	
120-82-1	1,2,4-Trichlorobenzene	ND	17	2.7	U	
108-67-8	1,3,5-Trimethylbenzene	ND	17	2.1	U	
95-63-6	1,2,4-Trimethylbenzene	ND	17	2.0	U	
123-91-1	1,4-Dioxane	ND-	350-	- -60	-H-R	
105-05-5	1,4-Diethylbenzene	ND	14	0.69	U	
622-96-8	4-Ethyltoluene	ND	14	0.34	U	
95-93-2	1,2,4,5-Tetramethylbenzene	ND	14	0.63	U	
60-29-7	Ethyl ether	ND	17	1.3	U	
110-57-6	trans-1,4-Dichloro-2-butene	ND	17	5.1	U	
			-			

Client	: Genesis Engineering & Redevelopment	Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-03	Date Collected	: 02/24/13 09:40
Client ID	: DUPLICATE	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 21:23
Sample Matrix	: SOIL	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: JC
Lab File ID	: 0226A14	Instrument ID	: CHARLIE.I
Sample Amount	: 1.2 g	GC Column	: RTX-VMS
Level	: LOW	%Solids	: 89
Extract Volume (MeOH)): N/A	Injection Volume	: N/A

			ug/Kg			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-09-2	Methylene chloride	ND	4 7	9.4	U	
75-34-3	1 1-Dichloroethane	ND	7.0	1.4	U	
67-66-3	Chloroform	ND	7.0	1.5	U	
56-23-5		ND	47	0.99	. • · · · · · ·	
78-87-5		ND	16	1.2	U U	
124-48-1	Dibromochloromethane	ND	4.7	1.4	····· · · · · · · · · · · · · · · · ·	
79-00-5	1 1 2-Trichloroethane	ND	7.0	1.8	U	
127-18-4	Tetrachioroethene	15	4.7	1.4		
108-90-7	Chlorobenzene	ND	4.7	0.87	U	
75-69-4	Trichlorofluoromethane	ND	23	1.8	U N	
107-06-2	1,2-Dichloroethane	ND	4.7	1.1	U	
71-55-6	1,1,1-Trichloroethane	ND	4 .7	1.3	U	
75-27-4	Bromodichloromethane	ND	- 4.7	1.8	U	
10061-02-6	trans-1,3-Dichloropropene	ND	4.7	1.4	U	
10061-01-5	cis-1,3-Dichloropropene	ND	4.7	1.2	U	
563-58-6	1,1-Dichloropropene	ND	23	2.1	U	
75-25-2	Bromoform	ND	19	2.3	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	4.7	1.1	U	
71-43-2	Benzene	ND	4.7	1.4	U	
108-88-3	Toluene	ND	7.0	1.1	U	
100-41-4	Ethylbenzene	ND	4.7	1.0	U	
74-87-3	Chioromethane	ND	23	3.7	U	
74-83-9	Bromomethane	ND	9.4	3.0	U	
75-01-4	Vinyl chloride	ND	9.4	3.5	U	
75-00-3	Chloroethane	ND	9.4	2.0	U	
75-35-4	1,1-Dichloroethene	ND	4.7	1.2	U	
156-60-5	trans-1,2-Dichloroethene	ND	7.0	1.8	U	

Client	: Genesis Engineering & Redevelopmen	t Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-03	Date Collected	: 02/24/13 09:40
Client ID	: DUPLICATE	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 21:23
Sample Matrix	: SOIL	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: JC
Lab File ID	: 0226A14	Instrument ID	: CHARLIE.I
Sample Amount	: 1.2 g	GC Column	: RTX-VMS
Level	: LOW	%Solids	: 89
Extract Volume (MeOH)	: N/A	Injection Volume	: N/A

			ug/Kg			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
79-01-6	Trichloroethene	ND	4.7	1.0	U	
95-50-1	1,2-Dichlorobenzene	ND	23	1.7	U	
541-73-1	1,3-Dichlorobenzene	ND	23	1.9	U	
106-46-7	1,4-Dichlorobenzene	ND	23	2.0	U	
1634-04-4	Methyl tert butyl ether	ND	9.4	2.3	U	
179601-23-1	p/m-Xylene	ND	9.4	2.0	U	
95-47-6	o-Xylene	ND	9.4	2.0	U	
156-59-2	cis-1,2-Dichloroethene	ND	4.7	1.4	U	
74-95-3	Dibromomethane	ND	47	2.0	U	
100-42-5	Styrene	ND	9.4	3.4	U	
75-71-8	Dichlorodifluoromethane	ND	47	1.8	U	
67-64-1	Acetone	ND	47	15.	U	
75-15-0	Carbon disulfide	ND	47	9.4	U	
78-93-3	2-Butanone	ND	47	18.	U	
108-05-4	Vinyl acetate	ND	47	3.5	U	
108-10-1	4-Methyl-2-pentanone	ND	47	3.8	U	
96-18- 4	1,2,3-Trichloropropane	ND	47	1.8	U	
591-78-6	2-Hexanone	ND	47	1.8	U	
74-97-5	Bromochloromethane	ND	23	1.4	U	
594-20-7	2,2-Dichloropropane	ND	23	3.7	U	
106-93- 4	1,2-Dibromoethane	ND	19	1.9	U	1 1 at 11 1 at 11 1 1 1 1 1 1 1 1 1 1 1
142-28-9	1,3-Dichloropropane	ND	23	2.6	U	
630-20-6	1,1,1,2-Tetrachloroethane	ND	4.7	1.5	U	
108-86-1	Bromobenzene	ND	23	1.0	U	
104-51-8	n-Butylbenzene	ND	4.7	1.5	U	
135-98-8	sec-Butylbenzene	ND	4.7	1.3	U	
98-06-6	tert-Butylbenzene	ND	23	2.8	U	

Client	: Genesis Engineering & Redevelopment	Lab Number	: L1303178
Project Name	BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-03	Date Collected	: 02/24/13 09:40
Client ID	: DUPLICATE	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 21:23
Sample Matrix	: SOIL	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: JC
Lab File ID	: 0226A14	Instrument ID	: CHARLIE.I
Sample Amount	: 1.2 g	GC Column	: RTX-VMS
Level	: LOW	%Solids	: 89
Extract Volume (MeOH)	: N/A	Injection Volume	: N/A

			ug/Kg		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
95-49-8	o-Chlorotoluene	ND	23	1.5	U
106-43-4	p-Chlorotoluene	ND	23	1.7	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	23	3.9	U
87-68-3	Hexachlorobutadiene	ND	23	2.1	U
98-82-8	Isopropylbenzene	ND	4.7	0.83	U
99-87-6	p-Isopropyltoluene	ND	4.7	1.3	U
91-20-3	Naphthalene	ND	23	3.6	U
107-13-1	Acrylonitrile	ND	47	1.8	U
103-65-1	n-Propylbenzene	ND	4.7	1.3	U
87-61-6	1,2,3-Trichlorobenzene	ND	23	1.9	U
120-82-1	1,2,4-Trichlorobenzene	ND	23	3.7	U
108-67-8	1,3,5-Trimethylbenzene	ND	23	2.8	U
95-63-6	1,2,4-Trimethylbenzene	ND	23	2.7	U
123-91-1	1,4-Dioxane	A ND ∽	470	- - 81.	+ R
105-05-5	1,4-Diethylbenzene	ND	19	0.94	U
622-96-8	4-Ethyltoluene	ND	19	0.45	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	19	0.85	U
60-29-7	Ethyl ether	ND	23	1.8	U
110-57-6	trans-1,4-Dichloro-2-butene	ND	23	6.9	U
					(a) A set of the se

Client	: Genesis Engineering & Redevelopment	Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-0 4	Date Collected	: 02/24/13 10:20
Client ID	: GER-SS1 6-12"	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 18:08
Sample Matrix	: SOIL	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: JC
Lab File ID	: 0226A07	Instrument ID	: CHARLIE.I
Sample Amount	: 0.9 g	GC Column	: RTX-VMS
Level	: HIGH	%Solids	: 92
Extract Volume (MeOH)	: 5	Injection Volume	: 0.1 ml

			ug/Kg			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-09-2	Methylene chloride	ND	3100	610	U	
75-34-3	1 1-Dichloroethane		460	90		
07.00.0	Chlassform	ND				
07-00-3		ND	400	99.		
56-23-5	Carbon tetrachionde		310	65.	U	
78-87-5	1,2-Dichloropropane	ND	1100	78.	U	
124-48-1	Dibromochloromethane	ND	310	94.	U	
79-00-5	1,1,2-Trichloroethane	ND	460	120	U	
127-18-4	Tetrachloroethene	5600	310	94.		
108-90-7	Chlorobenzene	ND	310	57.	U	
75-69-4	Trichlorofluoromethane	ND	1500	120	U	
107-06-2	1,2-Dichloroethane	ND	310	70.	U	
71-55-6	1,1,1-Trichloroethane	ND	310	83.	U	
75-27-4	Bromodichloromethane	ND	310	120	U	
10061-02-6	trans-1,3-Dichloropropene	ND	310	92 .	U	
10061-01-5	cis-1,3-Dichloropropene	ND	310	82.	U	
563-58-6	1,1-Dichloropropene	ND	1500	140	U	
75-25-2	Bromoform	ND	1200	150	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	310	74.	U	
71-43-2	Benzene	ND	310	91.	U	
108-88-3	Toluene	ND	460	74.	U	
100-41-4	Ethylbenzene	ND	310	68.	U	
74-87-3	Chloromethane	ND	1500	240	U	
74-83-9	Bromomethane	750	610	200		
75-01-4	Vinyl chloride	ND	610	230	U	
75-00-3	Chloroethane	ND	610	130	U	
75-35-4	1,1-Dichloroethene	ND	310	80.	U	
156-60-5	trans-1,2-Dichloroethene	ND	460	120	U	

Client	: Genesis Engineering & Redevelopment	Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-04	Date Collected	: 02/24/13 10:20
Client ID	: GER-SS1 6-12"	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 18:08
Sample Matrix	: SOIL	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: JC
Lab File ID	: 0226A07	Instrument ID	: CHARLIE.I
Sample Amount	: 0.9 g	GC Column	: RTX-VMS
Level	: HIGH	%Solids	: 92
Extract Volume (MeOH)	: 5	Injection Volume	: 0.1 ml

			ug/Kg			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
				20		
79-01-6	Trichloroethene	ND	310	69.	U	
95-50-1	1,2-Dichlorobenzene	ND	1500	110	U	
541-73-1	1,3-Dichlorobenzene	ND	1500	120	U	
106-46-7	1,4-Dichlorobenzene	ND	1500	130	U	
1634-04- 4	Methyl tert butyl ether	ND ·	6 10	150	U	
179601-23-1	p/m-Xylene	ND	610	130	U	
95-47-6	o-Xylene	ND	610	130	U	
156-59-2	cis-1,2-Dichloroethene	ND	310	92.	U	
74-95-3	Dibromomethane	ND	3100	130	U	
100-42-5	Styrene	ND	610	220	U	
75-71-8	Dichlorodifluoromethane	ND	3100	120	U	
67-64-1	Acetone	ND	3100	990	U	
75-15-0	Carbon disulfide	ND	3100	610	U	
78-93-3	2-Butanone	ND	3100	1200	U	
108-05-4	Vinyl acetate	ND	3100	230	U	
108-10-1	4-Methyl-2-pentanone	ND	3100	250	U	
96-18-4	1,2,3-Trichloropropane	ND	3100	120	U	
591-78-6	2-Hexanone	ND	3100	120	U	
74-97-5	Bromochloromethane	ND	1500	92.	U	
594-20-7	2,2-Dichloropropane	ND	1500	240	U	
106-93-4	1,2-Dibromoethane	ND	1200	120	U	
142-28-9	1,3-Dichloropropane	ND	1500	170	U	
630-20-6	1,1,1,2-Tetrachloroethane	ND	310	100	U	
108-86-1	Bromobenzene	ND	1500	67	U	
104-51-8	n-Butylbenzene	ND	310	96.	U	
135-98-8	sec-Butylbenzene	ND	310	84.	U	
98-06-6	tert-Butylbenzene	ND	1500	180	U	

Client	: Genesis Engineering & Redevelopment	Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-04	Date Collected	: 02/24/13 10:20
Client ID	: GER-SS1 6-12"	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 18:08
Sample Matrix	: SOIL	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: JC
Lab File ID	: 0226A07	Instrument ID	: CHARLIE.I
Sample Amount	: 0.9 g	GC Column	: RTX-VMS
Level	: HIGH	%Solids	: 92
Extract Volume (MeOH)	: 5	Injection Volume	: 0.1 ml

			ug/Kg			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
95-49-8	o-Chlorotoluene	ND	1500	96.	U	
106-43-4	p-Chlorotoluene	ND	1500	110	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	1500	260	U	
87-68-3	Hexachlorobutadiene	ND	1500	140	U	
98-82-8	Isopropylbenzene	ND	310	54.	U	
99-87-6	p-Isopropyitoluene	ND	310	84.	U	
91-20-3	Naphthalene	490	1500	240	J	
107-13-1	Acrylonitrile	ND	3100	120	U	
103-65-1	n-Propylbenzene	ND	310	87.	U	
87-61-6	1,2,3-Trichlorobenzene	ND	1500	120	U	
120-82-1	1,2,4-Trichlorobenzene	ND	1500	240	U	
108-67-8	1,3,5-Trimethylbenzene	ND	1500	180	U	
95-63-6	1,2,4-Trimethylbenzene	ND	1500	180	U	
123-91-1	1,4-Dioxane	ND	31000	5300	- the R	
105-05-5	1,4-Diethylbenzene	ND	1200	61.	U	
622-96-8	4-Ethyltoluene	ND	1200	30.	U	
95-93-2	1,2,4,5-Tetramethylbenzene	ND	1200	55.	U	
60-29-7	Ethyl ether	ND	1500	120	U	
110-57-6	trans-1,4-Dichloro-2-butene	ND	1500	450	U	

Client	: Genesis Engineering & Redevelopment	Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-05	Date Collected	: 02/24/13 10:35
Client ID	: GER-SS1 24-30"	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 20:00
Sample Matrix	: SOIL	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: JC
Lab File ID	: 0226A11	Instrument ID	: CHARLIE.I
Sample Amount	: 1.8 g	GC Column	: RTX-VMS
Level	: HIGH	%Solids	: 90
Extract Volume (MeOH)	: 5	Injection Volume	: 0.1 ml

			ug/Kg			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-09-2	Methylene chloride	ND	1600	320	U	
75-34-3	1,1-Dichloroethane	ND	240	47.	U	
67-66-3	Chloroform	ND	240	52.	U	
56-23-5	Carbon tetrachloride	ND	160	34 .	U	
78-87-5	1,2-Dichloropropane	ND	5 60	41.	U	
124-48-1	Dibromochloromethane	ND	160	49.	U	
79-00-5	1,1,2-Trichloroethane	ND	240	63.	U	
127-18-4	Tetrachloroethene	7100	160	49.		
108-90-7	Chlorobenzene	ND	160	30.	U	
75-69-4	Trichlorofluoromethane	ND	800	62.	U	
107-06-2	1,2-Dichloroethane	ND	160	36.	U	
71-55-6	1,1,1-Trichloroethane	ND	160	43.	U	
75-27-4	Bromodichloromethane	ND	160	62.	U	
10061-02-6	trans-1,3-Dichloropropene	ND	160	48.	U	
10061-01-5	cis-1,3-Dichloropropene	ND	160	43.	U	
563-58-6	1,1-Dichloropropene	ND	800	73.	U	
75-25-2	Bromoform	ND	640	79.	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	160	38.	U	
71-43-2	Benzene	ND	160	48.	U	
108-88-3	Toluene	ND	240	39.	U	
100-41-4	Ethylbenzene	ND	160	35.	U	
74-87-3	Chloromethane	ND	800	120	U	
74-83-9	Bromomethane	260	320	100	J	
75-01-4	Vinyl chloride	ND	320	120	U	
75-00-3	Chloroethane	ND	320	70.	U	
75-35-4	1,1-Dichloroethene	ND	160	42.	U	
156-60-5	trans-1,2-Dichloroethene	ND	240	63.	U	

Client	: Genesis Engineering & Redevelopment	Lab Number	: L1303178
Project Name	BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-05	Date Collected	: 02/24/13 10:35
Client ID	: GER-SS1 24-30"	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 20:00
Sample Matrix	: SOIL	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: JC
Lab File ID	: 0226A11	Instrument ID	: CHARLIE.I
Sample Amount	: 1.8 g	GC Column	: RTX-VMS
Level	: HIGH	%Solids	: 90
Extract Volume (MeOH)	: 5	Injection Volume	: 0.1 mi

			ug/Kg			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
79-01-6	Trichloroethene	ND	160	36.	U	
95-50-1	1.2-Dichlorobenzene	ND	800	58.	U	
541-73-1	1.3-Dichlorobenzene	ND	800	64.	- U	
106-46-7	1 4-Dichlorobenzene	ND	800	67	U	
1634-04-4	Methyl tert butyl ether		320	78	П	
179601-23-1	n/m-Xviene	ND	320	69	U	
95-47-6	o-Xvlene		320	67		
156-59-2	cis-1 2-Dichloroethene		160	48		
74-95-3	Dibromomethane	ND	1600	70.		
100-42-5	Styrene		320	120	 	
75-71-8			1600	62	U U	
67-64-1	Acetone	ND	1600	520	ŭ	
75-15-0			1600	320		
78-03-3	2-Butanone	ND	1600	620	U	
108.05.4	Vinyl acetate		1600	120	·····	
108-10-1	4-Methyl-2-pentanone		1600	130		
06 18 4	1 2 3 Trichloropropage	ND	1600	62		
501 78 6		ND	1600	63		
391-78-0 74 07 E	Promochlaramethana	ND		49	· · ·	
74-97-0 F04 20 7		ND	800	40.	U	
594-20-7		ND	- - -	65		
142.28.0		ND	900	00.		
142-20-9		ND .	160	50.		
030-20-0		ND	100			
108-86-1	Bromobenzene		- 400	35.	U	
104-51-8	n-Butyibenzene	ND	160	50.	U	
135-98-8	sec-Butylbenzene	ND	160	44.	U 	
98-06-6	tert-Butylbenzene	ND	800	96.	U	

Client	: Genesis Engineering & Redevelopment	Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-05	Date Collected	: 02/24/13 10:35
Client ID	: GER-SS1 24-30"	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 20:00
Sample Matrix	: SOIL	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: JC
Lab File ID	: 0226A11	Instrument ID	: CHARLIE.I
Sample Amount	: 1.8 g	GC Column	: RTX-VMS
Level	: HIGH	%Solids	: 90
Extract Volume (MeOH)	: 5	Injection Volume	: 0.1 ml

			ug/Kg			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
95-49-8	o-Chlorotoluene	ND	800	50.	U	
106-43-4	p-Chlorotoluene	ND	800	58.	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	800	130	U	
87-68-3	Hexachlorobutadiene	ND	800	73.	U	
98-82-8	Isopropylbenzene	ND	160	28.	U	
99-87-6	p-Isopropyltoluene	ND	160	44.	U	
91-20-3	Naphthalene	1900	800	120		
107-13-1	Acrylonitrile	ND	1600	60.	U	
103-65-1	n-Propylbenzene	ND	160	45.	U	
87-61-6	1,2,3-Trichlorobenzene	ND	800	64.	U	
120-82-1	1,2,4-Trichlorobenzene	ND	800	130	U	
108-67-8	1,3,5-Trimethylbenzene	ND	800	96.	U	
95-63-6	1,2,4-Trimethylbenzene	ND	800	92.	U	
123-91-1	1,4-Dioxane	-ND	_16000-	-2800	+ R	
105-05-5	1,4-Diethylbenzene	ND	640	32.	U	
622-96-8	4-Ethyltoluene	ND	640	16.	U	
95-93-2	1,2,4,5-Tetramethylbenzene	ND	640	29.	U	
60-29-7	Ethyl ether	ND	800	61.	U	
110-57-6	trans-1,4-Dichloro-2-butene	ND	800	240	U	

Client	: Genesis Engineering & Redevelopment	Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-06	Date Collected	: 02/24/13 11:45
Client ID	: GER-SS3 6-12"	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 20:27
Sample Matrix	: SOIL	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: JC
Lab File ID	: 0226A12	Instrument ID	: CHARLIE.I
Sample Amount	: 2.1 g	GC Column	: RTX-VMS
Level	: HIGH	%Solids	: 87
Extract Volume (MeOH)	: 5	Injection Volume	: 0.1 ml

			ug/Kg			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-09-2	Methylene chloride	ND	1400	290	U	
75-34-3	1,1-Dichloroethane	ND	220	42.	U	
67-66-3	Chloroform	ND	220	47.	U	
56-23-5	Carbon tetrachloride	ND	140	30.	U	
78-87-5	1,2-Dichloropropane	ND	500	37.	U	
124-48-1	Dibromochloromethane	ND	140	44.	U	
7 9 -00-5	1,1,2-Trichloroethane	ND	220	57.	U	
127-18-4	Tetrachloroethene	2700	140	44.		
108-90-7	Chlorobenzene	ND	140	27.	U	
75-69-4	Trichlorofluoromethane	ND	720	56.	U	
107-06-2	1,2-Dichloroethane	ND	140	33.	U	
71-55-6	1,1,1-Trichloroethane	ND	140	39.	U	
75-27-4	Bromodichloromethane	ND	140	56.	U	
10061-02-6	trans-1,3-Dichloropropene	ND	140	43.	U	
10061-01-5	cis-1,3-Dichloropropene	ND	140	38.	U	
563-58-6	1,1-Dichloropropene	ND	720	66.	U	
75-25-2	Bromoform	ND	580	71.	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	140	35 .	U	
71-43-2	Benzene	ND	140	43.	U	
108-88-3	Toluene	ND	220	35.	U	
100-41-4	Ethylbenzene	100	140	32 .	J	
74-87-3	Chloromethane	ND	720	110	U	
74-83-9	Bromomethane	ND	290	93.	U	
75-01-4	Vinyl chloride	ND	290	110	U	
75-00-3	Chloroethane	ND	290	63.	U	
75-35-4	1,1-Dichloroethene	ND	140	37.	U	
156-60-5	trans-1,2-Dichloroethene	ND	220	56.	U	

Client	: Genesis Engineering & Redevelopment	Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-06	Date Collected	: 02/24/13 11:45
Client ID	: GER-SS3 6-12"	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 20:27
Sample Matrix	: SOIL	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: JC
Lab File ID	: 0226A12	Instrument ID	: CHARLIE.I
Sample Amount	: 2.1 g	GC Column	: RTX-VMS
Level	: HIGH .	%Solids	: 87
Extract Volume (MeOH)	: 5	Injection Volume	: 0.1 ml

			ug/Kg			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
79-01-6	Trichloroethene	ND	140	32.	U	
95-50-1	1,2-Dichlorobenzene	ND	720	52.	U KA	
541-73-1	1,3-Dichlorobenzene	ND	720	58.	 U	
106-46-7	1,4-Dichlorobenzene	ND	720	60.	U	
1634-04-4	Methyl tert butyl ether	ND	290	70.	U	
179601-23-1	p/m-Xylene	760	290	62.		
95-47-6	o-Xylene	610	290	60.		
156-59-2	cis-1,2-Dichloroethene	ND	140	43.	U	
74-95-3	Dibromomethane	ND	1400	63.	U	
100-42-5	Styrene	ND	290	100	U	
75-71-8	Dichlorodifluoromethane	ND	1400	56.	U	
67-64-1	Acetone	ND	1400	470	U	
75-15-0	Carbon disulfide	ND	1400	290	U	
78-93-3	2-Butanone	ND	1400	560	U	
108-05-4	Vinyl acetate	ND	1400	110	U	
108-10-1	4-Methyl-2-pentanone	ND	1400	120	U	
96-18- 4	1,2,3-Trichloropropane	ND	1400	56.	U	
591-78- 6	2-Hexanone	ND	1400	57.	U	
74-97-5	Bromochloromethane	ND	720	44.	U	
594-20-7	2,2-Dichloropropane	ND	720	110	U	
106-93-4	1,2-Dibromoethane	ND	580	59.	U	
142-28-9	1,3-Dichloropropane	ND	720	82.	U	
630-20-6	1,1,1,2-Tetrachloroethane	ND	140	47.	U	
108-86-1	Bromobenzene	ND	720	32.	U	
104-51-8	n-Butylbenzene	ND	140	45.	U	
135-98-8	sec-Butylbenzene	ND	140	40.	U	
98-06-6	tert-Butylbenzene	ND	720	87.	U	

Client	: Genesis Engineering & Redevelopment	Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-06	Date Collected	: 02/24/13 11:45
Client ID	: GER-SS3 6-12"	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 20:27
Sample Matrix	: SOIL	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: JC
Lab File ID	: 0226A12	Instrument ID	: CHARLIE.I
Sample Amount	: 2.1 g	GC Column	: RTX-VMS
Level	: HIGH	%Solids	: 87
Extract Volume (MeOH)	: 5	Injection Volume	: 0.1 ml

	ug/Kg				
Parameter	Results	RL	MDL	Qualifier	
o-Chlorotoluene	ND	720	45.	U	
p-Chlorotoluene	ND	720	52.	U	
1,2-Dibromo-3-chloropropane	ND	720	120	U	
Hexachlorobutadiene	ND	720	66.	U	
Isopropylbenzene	ND	140	26.	U	
p-Isopropyltoluene	ND	140	39.	U	
Naphthalene	2500	720	110	· · · · · · · · · · · · · · · · · · ·	
Acrylonitrile	ND	1400	54.	U	
n-Propylbenzene	ND	140	41.	U	
1,2,3-Trichlorobenzene	ND	720	58	U	
1,2,4-Trichlorobenzene	ND	720	110	U	
1,3,5-Trimethylbenzene	ND	720	87.	U	
1,2,4-Trimethylbenzene	ND	720	83.	U	
1,4-Dioxane	₩Ð-	_14000	— -2500 -	- + R	
1,4-Diethylbenzene	35	580	29.	J	
4-Ethyltoluene	ND	580	14.	U	
1,2,4,5-Tetramethylbenzene	ND	580	26.	U	
Ethyl ether	ND	720	55.	U	
trans-1,4-Dichloro-2-butene	ND	720	210	U	
	Parametero-Chiorotoluenep-Chiorotoluene1,2-Dibromo-3-chioropropaneHexachiorobutadieneIsopropylbenzenep-IsopropyltolueneNaphthaleneAcryionitrilen-Propylbenzene1,2,3-Trichlorobenzene1,2,4-Trinchlorobenzene1,3,5-Trimethylbenzene1,2,4-Trimethylbenzene1,4-Dioxane1,4-Diethylbenzene1,2,4,5-TetramethylbenzeneEthyl ethertrans-1,4-Dichloro-2-butene	ParameterResultso-ChlorotolueneNDp-ChlorotolueneND1,2-Dibromo-3-chloropropaneND1,2-Dibromo-3-chloropropaneNDHexachlorobutadieneNDIsopropylbenzeneNDp-lsopropyltolueneNDNaphthalene2500AcrylonitrileNDn-PropylbenzeneND1,2,3-TrichlorobenzeneND1,2,4-TrichlorobenzeneND1,3,5-TrimethylbenzeneND1,2,4-TrimethylbenzeneND1,4-DioxaneND1,2,4,5-TetramethylbenzeneND1,2,4,5-TetramethylbenzeneND1,2,4,5-TetramethylbenzeneND1,2,4,5-TetramethylbenzeneNDEthyl etherNDKans-1,4-Dichloro-2-buteneNDNDKans-1,4-Dichloro-2-buteneND	ug/KgParameterResultsRLo-ChiorotolueneND720p-ChiorotolueneND7201,2-Dibromo-3-chioropropaneND720HexachlorobutadieneND720IsopropylbenzeneND140p-IsopropylbenzeneND140naphthalene2500720AcryionitrileND1400n-PropylbenzeneND1400n-PropylbenzeneND14001,2,3-TrichlorobenzeneND7201,2,4-TrichlorobenzeneND7201,2,4-TrichlorobenzeneND7201,4-DioxaneND7201,4-DiethylbenzeneND5801,2,4,5-TetramethylbenzeneND5801,2,4,5-TetramethylbenzeneND580Ethyl etherND720trans-1,4-Dichloro-2-buteneND720trans-1,4-Dichloro-2-buteneND720	Parameter Results RL MDL o-Chlorotoluene ND 720 45. p-Chlorotoluene ND 720 52. 1,2-Dibromo-3-chloropropane ND 720 66. Isopropylbenzene ND 140 26. p-lsopropylbenzene ND 140 39. Naphthalene 2500 720 110 Acrylonitrile ND 1400 54. n-Propylbenzene ND 1400 54. n-Propylbenzene ND 720 68. 1,2,4-Trichlorobenzene ND 720 58. 1,2,4-Trichlorobenzene ND 720 58. 1,4-Dicxane ND 720 83. 1,4-Diethylbenzene 35 580 29. 1,4-Diethylbenzene ND 580 14. 1,2,4,5-Tetramethylbenzene ND 580 14. 1,2,4,5-Tetramethylbenzene ND 580 14. 1,2,4,5-Tetramethylbenzene	

Client	: Genesis Engineering & Redevelopment	Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-07	Date Collected	: 02/24/13 11:55
Client ID	: GER-SS3 18-24"	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 21:51
Sample Matrix	: SOIL	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: JC
Lab File ID	: 0226A15	Instrument ID	: CHARLIE.I
Sample Amount	: 1.7 g	GC Column	: RTX-VMS
Level	: LOW	%Solids	: 88
Extract Volume (MeOH)	: N/A	Injection Volume	: N/A

			ug/Kg			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-09-2	Methylene chloride	ND	33	6.7	U	
75-34-3	1,1-Dichloroethane	ND	5.0	0.99	U	
67-66-3	Chloroform	ND	5.0	1.1	U	
56-23-5	Carbon tetrachloride	ND	3.3	0.70	υ	
78-87-5	1,2-Dichloropropane	ND	12	0.85	U	
124-48-1	Dibromochloromethane	ND	3.3	1.0	U	
79-00-5	1,1,2-Trichloroethane	ND	5.0	1.3	U	
127-18-4	Tetrachloroethene	140	3.3	1.0		
108-90-7	Chlorobenzene	ND	3.3	0.62	U	
75-69-4	Trichlorofluoromethane	ND	17	1.3	U	
107-06-2	1,2-Dichloroethane	ND	3.3	0.76	U	
71-55-6	1,1,1-Trichloroethane	ND	3.3	0.90	U	
75-27-4	Bromodichloromethane	ND	3.3	1.3	U	
10061-02-6	trans-1,3-Dichloropropene	ND	3.3	1.0	U	
10061-01-5	cis-1,3-Dichloropropene	ND	3.3	0.89	U	
563-58-6	1,1-Dichloropropene	ND	17	1.5	U	
75-25-2	Bromoform	ND	13	1.6	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	3.3	0.80	U	
71-43-2	Benzene	ND	3.3	0.99	U	
108-88-3	Toluene	ND	5.0	0.81	U	
100-41-4	Ethylbenzene	ND	3.3	0.74	U	
74-87-3	Chloromethane	ND	17	2.6	U	
74-83-9	Bromomethane	ND	6.7	2.2	U	
75-01-4	Vinyl chloride	ND	6.7	2.5	U	
75-00-3	Chloroethane	ND	6.7	1.5	U	
75-35-4	1,1-Dichloroethene	ND	3.3	0.87	U	
156-60-5	trans-1,2-Dichloroethene	ND	5.0	1.3	U	

Client	: Genesis Engineering & Redevelopment	: Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-07	Date Collected	: 02/24/13 11:55
Client ID	: GER-SS3 18-24"	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 21:51
Sample Matrix	: SOIL	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: JC
Lab File ID	: 0226A15	Instrument ID	: CHARLIE.I
Sample Amount	: 1.7 g	GC Column	: RTX-VMS
Level	: LOW	%Solids	: 88
Extract Volume (MeOH)	: N/A	Injection Volume	: N/A

		ug/Kg			
Parameter	Results	RL	MDL	Qualifier	
Trichloroethone		22	0.75		
		3.3	0.75		
1,2-Dichlorobenzene	ND	17	1.2	U	
1,3-Dichlorobenzene	ND	17	1.3	U	
1,4-Dichlorobenzene	ND	17	1.4	U	
Methyl tert butyl ether	ND	6.7	1.6	U	
p/m-Xylene	ND	6.7	1.4	U	
o-Xylene	ND	6.7	1.4	U	
cis-1,2-Dichloroethene	ND	3.3	1.0	U	
Dibromomethane	ND	33	1.4	U	
Styrene	ND	6.7	2.4	U	
Dichlorodifluoromethane	ND	33	1.3	U	
Acetone	ND	33	11.	U	
Carbon disulfide	ND	33	6.7	U	
2-Butanone	ND	33	13.	U	
Vinyl acetate	ND	33	2.5	U	
4-Methyl-2-pentanone	16	33	2.7	J	
1,2,3-Trichloroproparie	ND	33	1.3	U	
2-Hexanone	ND	33	1.3	U	
Bromochloromethane	ND	17	1.0	U	
2,2-Dichloropropane	ND	17	2.6	U	
1,2-Dibromoethane	ND	13	1.4	U	
1,3-Dichloroproparie	ND	17	1.9	U	an an ann a chuinn a' tha ann Ann A
1,1,1,2-Tetrachloroethane	ND	3.3	1.1	U	
Bromobenzene	ND	17	0.74	U	
n-Butylbenzene	ND	3.3	1.0	U	
sec-Butylbenzene	ND	3.3	0.92	U	
tert-Butylbenzene	ND	17	2.0	U	
	ParameterTrichloroethene1,2-Dichlorobenzene1,3-Dichlorobenzene1,4-DichlorobenzeneMethyl tert butyl etherp/m-Xyleneo-Xylenecis-1,2-DichloroetheneDibromomethaneStyreneDichlorodifluoromethaneAcetoneCarbon disulfide2-ButanoneVinyl acetate4-Methyl-2-pentanone1,2,3-Trichloropropane2HexanoneBromochloromethane2,2-Dichloropropane1,2-Dibromoethane1,3-Dichloropropane1,2-Dibromoethanen-Butylbenzenesec-Butylbenzenesec-Butylbenzenetert-Butylbenzene	ParameterResultsTrichloroetheneND1,2-DichlorobenzeneND1,3-DichlorobenzeneND1,4-DichlorobenzeneND1,4-DichlorobenzeneNDp/m-XyleneNDo-XyleneNDcis-1,2-DichloroetheneNDDibromomethaneNDStyreneNDCarbon disulfideND2-ButanoneNDVinyl acetateND1,2,3-TrichloropropaneND2,2-DichloropthaneND2,2-DichloropthaneND1,2-DibromoethaneND1,2,3-TrichloropropaneND1,2-DibromoethaneND1,2-DibromoethaneND2,2-DichloropropaneND1,2-DibromoethaneND1,3-DichloropropaneND1,1,1,2-TetrachloroethaneND1,1,1,2-TetrachloroethaneNDBromobenzeneNDr-ButylbenzeneNDr-ButylbenzeneNDtert-ButylbenzeneNDtert-ButylbenzeneNDtert-ButylbenzeneNDtert-ButylbenzeneNDtert-ButylbenzeneNDtert-ButylbenzeneNDtert-ButylbenzeneNDtert-ButylbenzeneNDtert-ButylbenzeneNDtert-ButylbenzeneNDtert-ButylbenzeneNDtert-ButylbenzeneNDtert-ButylbenzeneNDtert-ButylbenzeneNDtert-ButylbenzeneNDtert-Butylbenzene<	Parameterug/KgTrichloroetheneND3.31,2-DichlorobenzeneND171,3-DichlorobenzeneND171,4-DichlorobenzeneND6.7p/m-XyleneND6.7o-XyleneND6.7cis-1,2-DichloroetheneND3.3DibromomethaneND3.3StyreneND6.7DichlorodifluoromethaneND3.3Carbon disulfideND3.3Z-ButanoneND3.3Vinyl acetateND3.3J-HexanoneND3.3Z-HexanoneND3.3BromochloropropaneND171,2-DichloropthaneND3.3J-HexanoneND3.3J-HexanoneND3.3BromochloropropaneND171,2-DichloropropaneND171,1,1,2-TetrachloroethaneND3.3BromobenzeneND3.3BromobenzeneND3.3BromobenzeneND3.3BromobenzeneND3.3BromobenzeneND3.3BromobenzeneND3.3BromobenzeneND3.3BromobenzeneND3.3BromobenzeneND3.3BromobenzeneND3.3BromobenzeneND3.3BromobenzeneND3.3BromobenzeneND3.3BromobenzeneND3.3Bromobenzene	Parameter Results RL MDL Trichloroethene ND 3.3 0.75 1,2-Dichlorobenzene ND 17 1.2 1,3-Dichlorobenzene ND 17 1.3 1,4-Dichlorobenzene ND 17 1.4 Methyl tert butyl ether ND 6.7 1.6 p/m-Xylene ND 6.7 1.4 o-Xylene ND 6.7 1.4 dis-1,2-Dichloroethene ND 6.7 1.4 o-Xylene ND 6.7 2.4 Dichlorodifluoromethane ND 3.3 1.3 Acetone ND 33 1.3 Vinyl acet	Parameter Image: Results RL MDC Qualifier Trichloroethene ND 3.3 0.75 U 1,2-Dichlorobenzene ND 17 1.2 U 1,3-Dichlorobenzene ND 17 1.2 U 1,4-Dichlorobenzene ND 6.7 1.4 U Methyl terb butyl ether ND 6.7 1.4 U p/m-Xylene ND 6.7 1.4 U c-Xylene ND 3.3 1.0 U Dichloroethene ND 3.3 1.0 U Dichloroofthuoromethane ND 3.3 1.1 U Carbon disulfide ND 3.3 1.3 U L2-Bitanone <td< td=""></td<>

Client	: Genesis Engineering & Redevelopment	Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-07	Date Collected	: 02/24/13 11:55
Client ID	: GER-SS3 18-24"	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 21:51
Sample Matrix	: SOIL	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: JC
Lab File ID	: 0226A15	Instrument ID	: CHARLIE.I
Sample Amount	: 1.7 g	GC Column	: RTX-VMS
Level	: LOW	%Solids	: 88
Extract Volume (MeOH)	: N/A	Injection Volume	: N/A

		ug/Kg				
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
95-49-8	o-Chiorotoluene	ND	17	1.0	U	
106-43-4	p-Chlorotoluene	ND	17	1.2	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	17	2.8	U	
87-68-3	Hexachlorobutadiene	ND	17	1.5	U	
98-82-8	Isopropylbenzene	ND	3.3	0.59	U	
99-87-6	p-IsopropyItoluene	ND	3.3	0.91	U	
91-20-3	Naphthalene	5.0	17	2.6	J	
107-13-1	Acrylonitrile	ND	33	1.2	U	
103-65-1	n-Propylbenzene	ND	3.3	0.95	U	
87-61-6	1,2,3-Trichlorobenzene	ND	17	1.3	U	
120-82-1	1,2,4-Trichlorobenzene	ND	17	2.6	U	
108-67-8	1,3,5-Trimethylbenzene	ND	17	2.0	U	
95-63-6	1,2,4-Trimethylbenzene	ND	17	1.9	U	
123-91-1	1,4-Dioxane	ND	-330	-58	+ R	
105-05-5	1,4-Diethylbenzene	ND	13	0.67	U	
622-96-8	4-Ethyltoluene	ND	13	0.32	U	
95-93-2	1,2,4,5-Tetramethylbenzene	ND	13	0.60	U	
60-29-7	Ethyl ether	ND	17	1.3	U	
110-57-6	trans-1,4-Dichloro-2-butene	ND	17	4.9	U	

Client	: Genesis Engineering & Redevelopment	Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-08	Date Collected	: 02/24/13 11:10
Client ID	: GER-SS4 12-18"	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 22:19
Sample Matrix	: SOIL	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: JC
Lab File ID	: 0226A16	Instrument ID	: CHARLIE.I
Sample Amount	: 0.8 g	GC Column	: RTX-VMS
Level	: LOW	%Solids	: 90
Extract Volume (MeOH)	: N/A	Injection Volume	: N/A

		ug/Kg			
Parameter	Results	RL	MDL	Qualifier	
Methvlene chloride	ND	69	14.	U	
1 1-Dichloroethane	ND	10	2.0		
Chloroform	ND	- 10	2.0	U	
	ND	60	1.2	U U	
	ND	0.9	1.0	U	
	ND	24	1.0	0	
Dipromocniorometnane		0.9	2.1	U	
1,1,2-Trichloroethane	ND	10	2.7	U	
Tetrachloroethene	6.5	6.9	2.1	J	
Chlorobenzene	ND	6.9	1.3	U , .	
Trichlorofluoromethane	ND	35	2.7	U .	
1,2-Dichloroethane	ND	6.9	1.6	U	
1,1,1-Trichloroethane	ND	6.9	1.9	U	
Bromodichloromethane	ND	6.9	2.7	U	
trans-1,3-Dichloropropene	ND	6.9	2.1	U	
cis-1,3-Dichloropropene	ND	6.9	1.8	U	
1,1-Dichloropropene	ND	35	3.2	U	
Bromoform	ND	28	3.4	U	
1,1,2,2-Tetrachloroethane	ND	6.9	1.7	U	
Вепzепе	ND	6.9	2.1	U	
Toluene	ND	10	1.7	U	
Ethylbenzene	ND	6.9	1.5	U	
Chloromethane	ND	35	5.4	U	
Bromomethane	ND	14	4.5	U	
Vinyl chloride	ND	14	5.2	U	
Chloroethane	ND	14	3.0	U	
1,1-Dichloroethene	ND	6.9	1.8	U	
trans-1,2-Dichloroethene	ND	10	2.7	U	
	ParameterMethylene chloride1,1-DichloroethaneChloroformCarbon tetrachloride1,2-DichloropropaneDibromochloromethane1,1,2-TrichloroethaneChlorobenzeneTrichlorofluoromethane1,2-Dichloroethane1,2-Dichloroethane1,2-Dichloroethane1,2-Dichloroethane1,2-Dichloroethane1,1-Trichloroethane1,1-Trichloroethane1,1,1-Trichloroethanetrans-1,3-Dichloropropenecis-1,3-Dichloropropenecis-1,3-Dichloropropene1,1-DichloropropeneBromoform1,1,2,2-TetrachloroethaneBenzeneTolueneEthylbenzeneChloromethaneVinyl chlorideChloromethaneYinyl chlorideChloroethane1,1-Dichloroethenetrans-1,2-Dichloroethene	ParameterResultsMethylene chlorideND1,1-DichloroethaneNDChloroformNDCarbon tetrachlorideND1,2-DichloropropaneNDDibromochloromethaneND1,1,2-TrichloroethaneNDTetrachloroethaneND1,1,2-TrichloroethaneND1,1,2-TrichloroethaneNDTrichloroftuoromethaneND1,1,2-TrichloroethaneND1,2-DichloroethaneND1,1,1-TrichloroethaneND1,1,1-TrichloroethaneND1,1,1-TrichloroethaneND1,1,1-TrichloroethaneNDtrans-1,3-DichloropropeneNDcis-1,3-DichloropropeneND1,1-DichloropropeneND1,1,2,2-TetrachloroethaneNDBenzeneNDChloroethaneNDEthylbenzeneNDChloromethaneNDEthylbenzeneNDChloromethaneNDChloroethaneNDChloroethaneNDChloroethaneNDChloroethaneNDChloroethaneNDChloroethaneNDChloroethaneNDChloroethaneNDChloroethaneNDChloroethaneNDChloroethaneNDI,1-DichloroetheneNDI,1-DichloroetheneNDT,1-DichloroetheneNDT,1-DichloroetheneNDT,1-DichloroetheneNDT,1-Dichloroethene	Parameterug/KgMethylene chlorideND691,1-DichloroethaneND10ChloroformND10Carbon tetrachlorideND6.91,2-DichloropropaneND6.91,2-DichloropropaneND6.91,1,2-TrichloroethaneND6.91,1,2-TrichloroethaneND6.9ChlorobenzeneND6.9ChlorobenzeneND6.91,1,1-TrichloroethaneND6.91,1,1-TrichloroethaneND6.91,1,1-TrichloroethaneND6.91,1,1-TrichloroethaneND6.91,1,1-TrichloroethaneND6.91,1,1-TrichloroethaneND6.91,1,2-ZietharobropropeneND6.91,1-DichloropropeneND6.91,1-DichloropropeneND6.91,1,2,2-TetrachloroethaneND6.91,1,2,2-TetrachloroethaneND6.91,1,2,2-TetrachloroethaneND6.91,1,2,2-TetrachloroethaneND6.91,1,2,2-TetrachloroethaneND6.91,1,2,2-TetrachloroethaneND6.91,1,2,2-TetrachloroethaneND6.91,1,2,2-TetrachloroethaneND6.91,1,2,2-TetrachloroethaneND6.91,1,2,2-TetrachloroethaneND6.91,1,2,2-TetrachloroethaneND6.91,1,2,2-TetrachloroethaneND6.91,1,2,2-TetrachloroethaneND6.9 <tr< td=""><td>Parameter Results RL MDL Methylene chloride ND 69 14. 1.1-Dichloroethane ND 10 2.0 Chloroform ND 10 2.2 Carbon tetrachloride ND 6.9 1.5 1,2-Dichloropropane ND 6.9 2.1 Dibromochloromethane ND 6.9 2.1 1,1,2-Trichloroethane ND 6.9 2.1 Chlorobenzene ND 6.9 2.1 Chlorobenzene ND 6.9 1.3 Trichloroethane ND 6.9 1.6 1,1,1-Trichloroethane ND 6.9 2.1 Chlorobenzene ND 6.9 2.1 Gramodichloromethane ND 6.9 1.6 1,1,1-Trichloroethane ND 6.9 2.1 Icis-1,3-Dichloropropene ND 6.9 2.1 Icis-1,3-Dichloropropene ND 6.9 1.1 I,1-Dichloropropene ND<</td><td>Parameter Results RL MUD Qualifier Methylene chloride ND 69 14. U 1.1-Dichloroethane ND 10 2.0 U Chloroform ND 10 2.2 U Catoon tetrachloride ND 6.9 1.5 U 1.2-Dichloropropane ND 6.9 2.1 U Dibromochloromethane ND 6.9 2.1 U 1.1.2-Trichloroethane ND 6.9 2.1 U Trichloroethane ND 6.9 1.3 U Trichloroethane ND 6.9 1.6 U 1.1.1-Trichloroethane ND 6.9 1.6 U <</td></tr<>	Parameter Results RL MDL Methylene chloride ND 69 14. 1.1-Dichloroethane ND 10 2.0 Chloroform ND 10 2.2 Carbon tetrachloride ND 6.9 1.5 1,2-Dichloropropane ND 6.9 2.1 Dibromochloromethane ND 6.9 2.1 1,1,2-Trichloroethane ND 6.9 2.1 Chlorobenzene ND 6.9 2.1 Chlorobenzene ND 6.9 1.3 Trichloroethane ND 6.9 1.6 1,1,1-Trichloroethane ND 6.9 2.1 Chlorobenzene ND 6.9 2.1 Gramodichloromethane ND 6.9 1.6 1,1,1-Trichloroethane ND 6.9 2.1 Icis-1,3-Dichloropropene ND 6.9 2.1 Icis-1,3-Dichloropropene ND 6.9 1.1 I,1-Dichloropropene ND<	Parameter Results RL MUD Qualifier Methylene chloride ND 69 14. U 1.1-Dichloroethane ND 10 2.0 U Chloroform ND 10 2.2 U Catoon tetrachloride ND 6.9 1.5 U 1.2-Dichloropropane ND 6.9 2.1 U Dibromochloromethane ND 6.9 2.1 U 1.1.2-Trichloroethane ND 6.9 2.1 U Trichloroethane ND 6.9 1.3 U Trichloroethane ND 6.9 1.6 U 1.1.1-Trichloroethane ND 6.9 1.6 U <

Client	: Genesis Engineering & Redevelopment	Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-08	Date Collected	: 02/24/13 11:10
Client ID	: GER-SS4 12-18"	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 22:19
Sample Matrix	: SOIL	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: JC
Lab File ID	: 0226A16	Instrument ID	: CHARLIE.I
Sample Amount	: 0.8 g	GC Column	: RTX-VMS
Level	: LOW	%Solids	: 90
Extract Volume (MeOH)) : N/A	Injection Volume	: N/A

		ug/Kg				
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
70.01.6	Triphonotheon	ND	6.0	1.6		
/9-01-6	Inchioroethene		0.9	1.0	U	
95-50-1	1,2-Dichlorobenzene	ND	35	2.5	U	
541-73-1	1,3-Dichlorobenzene	ND	35	2.8	U	
106-46-7	1,4-Dichlorobenzene	ND	35	2.9	U	
1634-04-4	Methyl tert butyl ether	ND	14	3.4	U	
179601-23-1	p/m-Xylene	ND	14	3.0	U	
95-47-6	o-Xylene	ND	14	2.9	U	
156-59-2	cis-1,2-Dichloroethene	ND	6.9	2.1	U	
74-95-3	Dibromomethane	ND	69	3.0	U	
100-42-5	Styrene	ND	14	5.0	U	
75-71-8	Dichlorodifluoromethane	ND	69	2.7	U	
67-64-1	Acetone	ND	69	22.	U	
75-15-0	Carbon disulfide	ND	69	14.	U	
78-93-3	2-Butanone	ND	69	27.	U	
108-05-4	Vinyl acetate	ND	69	5.2	U	
108-10-1	4-Methyl-2-pentanone	ND	69	5.7	U	
96-18-4	1,2,3-Trichloropropane	ND	69	2.7	U	
591-78-6	2-Hexanone	ND	69	2.8	U	
74-97-5	Bromochloromethane	ND	35	2.1	U	
594-20-7	2,2-Dichloropropane	ND	35	5.5	U	
106-93-4	1,2-Dibromoethane	ND	28	2.8	U	
142-28- 9	1,3-Dichloropropane	ND	35	3.9	U	
630-20-6	1,1,1,2-Tetrachloroethane	ND	6.9	2.3	U	
108-86-1	Bromobenzene	ND	35	1.5	U	
104-51-8	n-Butylbenzene	ND	6.9	2.2	U	
135-98-8	sec-Butylbenzene	ND	6.9	1.9	U	
98-06-6	tert-Butylbenzene	ND	35	4.2	U	

Client	: Genesis Engineering & Redevelopmen	t Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-08	Date Collected	: 02/24/13 11:10
Client ID	: GER-SS4 12-18"	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 22:19
Sample Matrix	: SOIL	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: JC
Lab File ID	: 0226A16	Instrument ID	: CHARLIE.I
Sample Amount	: 0.8 g	GC Column	: RTX-VMS
Level	: LOW	%Solids	: 90
Extract Volume (MeOH)	: N/A	Injection Volume	: N/A

		ug/Kg			
CAS NO.	Parameter	Results	RL	MDL	Qualifier
95-49-8	o-Chlorotoluene	ND	35	2.2	U
106-43-4	p-Chlorotoluene	ND	35	2.5	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	35	5.8	U
87-68-3	Hexachlorobutadiene	ND	35	3.2	U
98-82-8	Isopropylbenzene	ND	6.9	1.2	U
99-87-6	p-Isopropyltoluene	ND	6.9	1.9	U
91-20-3	Naphthalene	ND	35	5.3	U
107-13-1	Acrylonitrile	ND	69	2.6	U
103-65-1	n-Propylbenzene	ND	6.9	2.0	U
87-61-6	1,2,3-Trichlorobenzene	ND	35	2.8	U
120-82-1	1,2,4-Trichlorobenzene	ND	35	5.5	U
108-67-8	1,3,5-Trimethylbenzene	ND	35	4.2	U
95-63-6	1,2,4-Trimethylbenzene	ND	35	4.0	U
123-91-1	1,4-Dioxane	-HĐ-	- 890	120	-R
105-05-5	1,4-Diethylbenzene	ND	28	1.4	U
622-96-8	4-Ethyltoluene	ND	28	0.67	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	28	1.2	U
60-29-7	Ethyl ether	ND	35	2.6	U
110-57-6	trans-1,4-Dichloro-2-butene	ND	35	10.	U
			-		

Client	: Genesis Engineering & Redevelopment	Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-09	Date Collected	: 02/24/13 11:20
Client ID	: GER-SS4 24-30"	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 22:47
Sample Matrix	: SOIL	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: JC
Lab File ID	: 0226A17	Instrument ID	: CHARLIE.I
Sample Amount	:2.2 g	GC Column	: RTX-VMS
Level	: LOW	%Solids	: 90
Extract Volume (MeOH)	: N/A	Injection Volume	: N/A

			ug/Kg			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-09-2	Methylene chloride	ND	25	5.0	U	
75-34-3	1,1-Dichloroethane	ND	3.8	0.74	U	
67-66-3	Chloroform	ND	3.8	0.82	U	
56-23-5	Carbon tetrachloride	ND	2.5	0.53	U	
78-87-5	1,2-Dichloropropane	ND	8.8	0.64	U	
124-48-1	Dibromochloromethane	ND	2.5	0.78	U	
79-00-5	1,1,2-Trichloroethane	ND	3.8	0.99	U	
127-18-4	Tetrachloroethene	54	2.5	0.77		
108-90-7	Chlorobenzene	ND	2.5	0.47	U	
75-69-4	Trichlorofluoromethane	ND	13	0.99	U	
107-06-2	1,2-Dichloroethane	ND	2.5	0.57	U	
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.68	U	
75-27-4	Bromodichloromethane	ND	2.5	0.97	U	
10061-02-6	trans-1,3-Dichloropropene	ND	2.5	0.76	U	
10061-01-5	cis-1,3-Dichloropropene	ND	2.5	0.67	U	
563-58-6	1,1-Dichloropropene	ND	13	1.2	U	
75-25-2	Bromoform	ND	10	1.2	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.5	0.61	U	
71-43-2	Benzene	ND	2.5	0.75	U	
108-88-3	Toluene	ND	3.8	0.61	U	
100-41-4	Ethylbenzene	ND	2.5	0.56	U	
74-87-3	Chloromethane	ND	13	2.0	U	
74-83-9	Bromomethane	ND	5.0	1.6	U	
75-01-4	Vinyl chloride	ND	5.0	1.9	U	
75-00-3	Chloroethane	ND	5.0	1.1	U	
75-35-4	1,1-Dichloroethene	ND	2.5	0.66	U	
156-60-5	trans-1,2-Dichloroethene	ND	3.8	0.99	U	

Client	: Genesis Engineering & Redevelopmen	t Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-09	Date Collected	: 02/24/13 11:20
Client ID	: GER-SS4 24-30"	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 22:47
Sample Matrix	: SOIL	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: JC
Lab File ID	: 0226A17	Instrument ID	: CHARLIE.I
Sample Amount	: 2.2 g	GC Column	: RTX-VMS
Level	: LOW	%Solids	: 90
Extract Volume (MeOH)) : N/A	Injection Volume	: N/A

			ug/Kg		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
79-01-6	Trichloroethene	ND	2.5	0.56	U
95-50-1	1,2-Dichlorobenzene	ND	- 13	0.92	U
541-73-1	1,3-Dichlorobenzene	ND	13	1.0	U U
106-46-7	1,4-Dichlorobenzene	ND	- 13	1.1	U
1634-04-4	Methyl tert butyl ether	ND	5.0	1.2	U
179601-23-1	p/m-Xylene	ND	5.0	1.1	U
95-47-6	o-Xylene	ND	5.0	1.0	U
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.76	U
74-95-3	Dibromomethane	ND	25	1.1	U
100-42-5	Styrene	ND	5.0	1.8	U
75-71-8	Dichlorodifluoromethane	ND	25	0.98	U
67-64-1	Acetone MD	10	`25	8.2	+ K
75-15-0	Carbon disulfide	ND	25	5.0	U
78-93-3	2-Butanone	ND	25	9.8	U
108-05-4	Vinyl acetate	ND	25	1.9	U
108-10-1	4-Methyl-2-pentanone	ND	25	2.1	U
96-18- 4	1,2,3-Trichloropropane	ND	25	0.98	U
591-78-6	2-Hexanone	ND	25	1.0	U
74-97-5	Bromochloromethane	ND	13	0.76	U
594-20-7	2,2-Dichloropropane	ND	13	2.0	U
106-93-4	1,2-Dibromoethane	ND	10	1.0	U
142-28-9	1,3-Dichloropropane	ND	13	1.4	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.83	U
108-86-1	Bromobenzene	ND	13	0.56	U
104-51-8	n-Butylbenzene	ND	2.5	0.79	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	13	1.5	U

Client	: Genesis Engineering & Redevelopment	Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-09	Date Collected	: 02/24/13 11:20
Client ID	: GER-SS4 24-30"	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 22:47
Sample Matrix	: SOIL	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: JC
Lab File ID	: 0226A17	Instrument ID	: CHARLIE.I
Sample Amount	: 2.2 g	GC Column	: RTX-VMS
Level	: LOW	%Solids	: 90
Extract Volume (MeOH)	: N/A	Injection Volume	: N/A

			ug/Kg			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
95-49-8	o-Chlorotoluene	ND	13	0.79	U	
106-43-4	p-Chlorotoluene	ND	13	0.91	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	13	2.1	U	
87-68-3	Hexachlorobutadiene	ND	13	1.2	U	
98-82-8	Isopropylbenzene	ND	2.5	0.45	U	
99-87-6	p-isopropyltoluene	ND	2.5	0.69	U	
91-20-3	Naphthalene	18	13	1.9		
107-13-1	Acrylonitrile	ND	25	0.95	U	
103-65-1	n-Propylbenzene	ND	2.5	0.72	U	
87-61-6	1,2,3-Trichlorobenzene	ND	13	1.0	U	
120-82-1	1,2,4-Trichlorobenzene	ND	13	2.0	U	
108-67-8	1,3,5-Trimethylbenzene	ND	13	1.5	U	
95-63-6	1,2,4-Trimethylbenzene	ND	13	1.4	U	
123-91-1	1,4-Dioxane	ND	250		- u -R	
105-05-5	1,4-Diethylbenzene	ND	10	0.50	U	
622-96-8	4-Ethyltoluene	ND	10	0.24	U	
95-93-2	1,2,4,5-Tetramethylbenzene	ND	10	0.46	U	
60-29-7	Ethyl ether	ND	13	0.96	U	
110-57-6	trans-1,4-Dichloro-2-butene	ND	13	3.7	U	
			-			

Client	: Genesis Engineering & Redevelopment	t Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-10	Date Collected	: 02/24/13 00:00
Client ID	: TRIP BLANK	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 12:23
Sample Matrix	: WATER	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: PD
Lab File ID	: 0226A07	Instrument ID	: VOA101.I
Sample Amount	: 10 ml	GC Column	: RTX-502.2
Level	: LOW	%Solids	: N/A
Extract Volume (MeOH)): N/A	Injection Volume	: N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-09-2	Methylene chloride	ND	25	0 70	U	
75-34-3	1 1-Dichloroethane	ND	25	0.70		
67-66-3	Chloroform	ND	2.0	0.70	0	
56-23-5		ND	2.5	0.70	U	
79 97 5		ND	0.50	0.10	U	
104 49 1			1.0	0.30	U	
124-48-1	Dibromocniorometnane	NU	0.50	0.19	U	• • • • • • • • • • • • • • • • • • • •
79-00-5	1,1,2-1 nchloroethane	ND	1.5	0.50	U	
127-18-4	letrachloroethene	NÐ	0.50	0.18	U	
108-90-7	Chlorobenzene	ND	2.5	0.70	U	
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U	
107-06-2	1,2-Dichloroethane	ND	0.50	0.16	U	
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U	
75-27-4	Bromodichloromethane	ND	0.50	0.19	U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U	
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U	
75-25-2	Bromoform	ND	2.0	0.65	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.19	U	
71-43-2	Benzene	ND	0.50	0.19	U	
108-88-3	Toluene	ND	2.5	0.70	U	
100-41-4	Ethylbenzene	ND	2.5	0.70	U	
74-87-3	Chloromethane	ND	2.5	0.70	U	
74-83-9	Bromomethane	ND	2.5	0.70	U	
75-01-4	Vinyl chloride	ND	1.0	0.33	U	
75-00-3	Chloroethane	ND	2.5	0.70	U	
75-35-4	1,1-Dichloroethene	ND	0.50	0.18	U	
156-60-5	trans-1,2-Dichloroetherie	ND	2.5	0.70	U	

Client	: Genesis Engineering & Redevelopment	Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-10	Date Collected	: 02/24/13 00:00
Client ID	: TRIP BLANK	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 12:23
Sample Matrix	: WATER	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: PD
Lab File ID	: 0226A07	Instrument ID	: VOA101.I
Sample Amount	: 10 ml	GC Column	: RTX-502.2
Level	: LOW	%Solids	: N/A
Extract Volume (MeOH)	: N/A	Injection Volume	: N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
79-01-6	Trichloroethene	ND	0.50	0 17	П	
95-50-1	1 2-Dichlorobenzene		2.5	0.70		
541.73.1		ND	2.5	0.70	U .	
106 46 7		ND	2.0	0.70		
1634.04.4		ND	2.5	0.70	U U	
170601 23 1			2.5	0.70	U	
05.47.6			2.5	0.70	U	
95-47-6	o-xylene		2.5	0.70		
100-09-2	cis-1,2-Dichloroethene		2.5	0.70	U	
74-95-3	Dibromomethane	ND	5.0	1.0	U	
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U U J	
107-13-1	Acrylonitrile	ND	5.0	1.5	U	
100-42-5	Styrene	ND	2.5	0.70	U	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U	
67-64-1	Acetone	2.1	5.0	1.0	JJ	
75-15-0	Carbon disulfide	ND	5.0	1.0	U	
78-93-3	2-Butanone	ND	5.0	1.0	U	
108-05-4	Vinyl acetate	ND	5.0	1.0	U	
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	
591-78-6	2-Hexanone	ND	5.0	1.0	U	
74-97-5	Bromochloromethane	ND	2.5	0.70	U	
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	U	
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U	
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U	
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U	
108-86-1	Bromobenzene	ND	2.5	0.70	U	
104-51-8	n-Butylbenzene	ND	2.5	0.70	U	
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U	

Client	: Genesis Engineering & Redevelopment	Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-10	Date Collected	: 02/24/13 00:00
Client ID	: TRIP BLANK	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 12:23
Sample Matrix	: WATER	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: PD
Lab File ID	: 0226A07	Instrument ID	: VOA101.I
Sample Amount	: 10 ml	GC Column	: RTX-502.2
Level	: LOW	%Solids	: N/A
Extract Volume (MeOH)	: N/A	Injection Volume	: N/A

CAS NO.	Parameter	ug/L				
		Results	RL	MDL	Qualifier	
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U	
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U	
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	
87-68-3	Hexachlorobutadiene	ND	2.5	0.70	U	
98-82-8	Isopropylbenzene	ND	2.5	0.70	U	
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U	
91-20-3	Naphthalene	ND	2.5	0.70	U	
103-65-1	n-Propylbenzene	ND	2.5	0.70	U	
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
123-91-1	1,4-Dioxane		250	-76:-	R	
105-05-5	1,4-Diethylbenzene	ND	2.0	0.70	U	
622-96-8	4-Ethyltoluene	ND	2.0	0.70	U	
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.65	U	
60-29-7	Ethyl ether	ND	2.5	0.70	U	
110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.70	U UJ	

Client	: Genesis Engineering & Redevelopment	Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-11D	Date Collected	: 02/25/13 08:45
Client ID	: GER-GW4	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/27/13 19:02
Sample Matrix	: WATER	Dilution Factor	: 50
Analytical Method	: 1,8260C	Analyst	: PD
Lab File ID	: 0227A26	Instrument ID	: VOA101.I
Sample Amount	: 0.2 ml	GC Column	: RTX-502.2
Level	: LOW	%Solids	: N/A
Extract Volume (MeOH): N/A	Injection Volume	: N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-09-2	Methviene chloride	ND	120	35	U	
75-34-3	1 1-Dichloroethane	ND	120	35		
67-66-3	Chloroform	ND	120	35	U	
56-23-5	Carbon tetrachloride	ND	25	90. 8 3		
78-87-5	1 2-Dichloronronane	ND	50	15	U .	
124_48_1		ND	25	٦J. ٩.5	U	
79.00.5	1 1 2 Trichloroothana	ND	. 75	25		
107 19 4		2300	75	2J.		
127-10-4		2300		3.1		
108-90-7		ND	120	35.	U	
107.00.0		ND		35.	U	
107-06-2		ND	20	8.0		
71-55-6	1,1,1-Trichloroethane	ND	120	35.	U	
75-27-4	Bromodichloromethane	ND	25	9.6	U	
10061-02-6	trans-1,3-Dichloropropene	ND	25	8.2	U	
10061-01-5	cis-1,3-Dichloropropene	ND	25	7.2	U	
563-58-6	1,1-Dichloropropene	ND	120	35.	U	
75-25-2	Bromoform	ND	100	32.	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	25	9.6	U	
71-43-2	Benzene	ND	25	9.7	U	
108-88-3	Toluene	ND	120	35.	U	
100-41-4	Ethylbenzene	ND	120	35.	U	
74-87-3	Chloromethane	ND	120	35.	U	
74-83-9	Bromomethane	ND	120	35.	u UJ	
75-01-4	Vinyl chloride	ND	50	16.	U	
75-00-3	Chloroethane	ND	120	35.	U	
75-35-4	1,1-Dichloroethene	ND	25	9.0	U	
156-60-5	trans-1,2-Dichloroethene	ND	120	35.	U	

Client	: Genesis Engineering & Redevelopment	Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-11D	Date Collected	: 02/25/13 08:45
Client ID	: GER-GW4	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/27/13 19:02
Sample Matrix	: WATER	Dilution Factor	: 50
Analytical Method	: 1,8260C	Analyst	: PD
Lab File ID	: 0227A26	Instrument ID	: VOA101.I
Sample Amount	: 0.2 ml	GC Column	: RTX-502.2
Level	: LOW	%Solids	: N/A
Extract Volume (MeOH)	: N/A	Injection Volume	: N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
79-01-6	Trichloroethene	170	25	8.7		
95-50-1	1.2-Dichlorobenzene	ND	120	35.	 U	
541-73-1	1 3-Dichlorobenzene	ND	120	35	U U	
106-46-7			120	35	Ű	
1634-04-4	Methyl tert butyl ether		120	35	Ŭ .	
179601-23-1	n/m-Xvlene	ND	120	35		
95-47-6			120	35		
156-59-2	cis-1 2-Dichloroethene	230	120	35		
74.05.2		230	250	50.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
14-90-0 06 19 4		ND	120	30.	U 11 T	
107 12 1		ND	250			
107-13-1	Act you in the	ND	. 120	25		
75 74 9	Dishlaradifluaramethona	ND		50.	U	
()-()-8			200	50.		
75 45 0			250	50.	J (L)	
70-10-0			250	50.		
78-93-3	2-Butanone	ND	250	50.		
108-05-4		ND	250	50.	U	
108-10-1	4-Methyl-2-pentanone	ND	250	50.	U	
591-78-6	2-Hexanone	ND	250	50.	U	
74-97-5	Bromochloromethane	ND	120	35.	U	
594-20-7	2,2-Dichloropropane	ND	120	35.	U	
106-93-4	1,2-Dibromoethane	ND	100	32.	U	
142-28-9	1,3-Dichloropropane	ND	120	35.	U	
630-20-6	1,1,1,2-Tetrachloroethane	ND	120	35.	U	
108-86-1	Bromobenzene	ND	120	35.	U	
104-51-8	n-Butylbenzene	ND	120	35.	U	
135-98-8	sec-Butylbenzene	ND	120	35.	U	

Client	: Genesis Engineering & Redevelopment	t Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-11D	Date Collected	: 02/25/13 08:45
Client ID	: GER-GW4	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/27/13 19:02
Sample Matrix	: WATER	Dilution Factor	: 50
Analytical Method	: 1,8260C	Analyst	: PD
Lab File ID	: 0227A26	Instrument ID	: VOA101.I
Sample Amount	: 0.2 ml	GC Column	: RTX-502.2
Level	: LOW	%Solids	: N/A
Extract Volume (MeOH)	: N/A	Injection Volume	: N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
98-06-6	tert-Butylbenzene	ND	120	35.	U	
95-49-8	o-Chlorotoluene	ND	120	35.	U	
106-43-4	p-Chiorotoluene	ND	120	35.	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	120	35.	U	
87-68-3	Hexachlorobutadiene	ND	120	35.	U	
98-82-8	Isopropylbenzene	ND	120	35.	U	
99-87-6	p-Isopropyltoluene	ND	120	35.	U	
91-20-3	Naphthalene	ND	120	35.	U	
103-65-1	n-Propylbenzene	ND	120	35.	U	
87-61-6	1,2,3-Trichlorobenzene	ND	120	35.	U	
120-82-1	1,2,4-Trichlorobenzene	ND	120	35.	U	
108-67-8	1,3,5-Trimethylbenzene	ND	120	35.	U	
95-63-6	1,2,4-Trimethylbenzene	ND	120	35.	U	
123-91-1	1,4-Dioxane	-NÐ-	- 12000	3800	-+ R	
105-05-5	1,4-Diethylbenzene	ND	100	35.	U	
622-96-8	4-Ethyltoluene	ND	100	35.	U	
95-93-2	1,2,4,5-Tetramethylbenzene	ND	100	32.	U	
60-29-7	Ethyl ether	ND	120	35.	U	
110-57-6	trans-1,4-Dichloro-2-butene	ND	120	35.	U UJ	
and the second						

Client	: Genesis Engineering & Redevelopment	Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-12D	Date Collected	: 02/25/13 09:00
Client ID	: GW DUP	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/27/13 18:36
Sample Matrix	: WATER	Dilution Factor	: 100
Analytical Method	: 1,8260C	Analyst	: PD
Lab File ID	: 0227A25	Instrument ID	: VOA101.I
Sample Amount	: 0.1 ml	GC Column	: RTX-502.2
Level	: LOW	%Solids	: N/A
Extract Volume (MeOH)) : N/A	Injection Volume	: N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-09-2	Methylene chloride	ND	250	70.	U	
75-34-3	1,1-Dichloroethane	ND	250	70.	U	
67-66-3	Chloroform	ND	250	70.	U	
56-23-5	Carbon tetrachloride	ND	50	16.	U	
78-87-5	1,2-Dichloropropane	ND	100	30.	U	
124-48-1	Dibromochloromethane	ND	50	19.	U	
79-00-5	1,1,2-Trichloroethane	. ND	150	50.	U	
127-18-4	Tetrachloroethene	4400	50	18.	J	
108-90-7	Chlorobenzene	ND	250	70.	U	
75-69-4	Trichlorofluoromethane	ND	250	70.	U	
107-06-2	1,2-Dichloroethane	ND	50	16.	U	
71-55-6	1,1,1-Trichloroethane	ND	250	70.	U	
75-27-4	Bromodichloromethane	ND	50	19.	U	
10061-02-6	trans-1,3-Dichloropropene	ND	50	16.	U	
10061-01-5	cis-1,3-Dichloropropene	ND	50	14.	U	
563-58-6	1,1-Dichloropropene	ND	250	70.	U	
75-25-2	Bromoform	ND	200	65.	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	50	19.	U	
71-43-2	Benzene	ND	50	19.	U	
108-88-3	Toluene	ND	250	70.	U	
100-41-4	Ethylbenzene	ND	250	70.	U	
74-87-3	Chloromethane	ND	250	70.	U	
74-83-9	Bromomethane	ND	250	70.	U UJ	
75-01-4	Vinyl chloride	ND	100	33.	U	
75-00-3	Chloroethane	ND	250	70 .	U	
75-35-4	1,1-Dichloroethene	ND	50	18.	U	
156-60-5	trans-1,2-Dichloroethene	ND	250	70.	U	

Client	: Genesis Engineering & Redevelopment	t Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-12D	Date Collected	: 02/25/13 09:00
Client ID	: GW DUP	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/27/13 18:36
Sample Matrix	: WATER	Dilution Factor	: 100
Analytical Method	: 1,8260C	Analyst	: PD
Lab File ID	: 0227A25	Instrument ID	: VOA101.I
Sample Amount	: 0.1 ml	GC Column	: RTX-502.2
Level	: LOW	%Solids	: N/A
Extract Volume (MeOH)): N/A	Injection Volume	: N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
79-01-6	Trichloroethene	190	50	17.	
95-50-1	1,2-Dichlorobenzene	ND	250	70.	
541-73-1	1,3-Dichlorobenzene	ND	250	70.	U
106-46-7	1,4-Dichlorobenzene	ND	250	70.	U
1634-04-4	Methyl tert butyl ether	ND	250	70.	 U
179601-23-1	p/m-Xylene	ND	250	70.	U
95-47-6	o-Xylene	ND	250	70.	U
156-59-2	cis-1,2-Dichloroethene	250	250	70.	
74-95-3	Dibromomethane	ND	500	100	U
96-18-4	1,2,3-Trichloropropane	ND	250	70.	U US
107-13-1	Acrylonitrile	ND	500	150	U
100-42-5	Styrene	ND	250	70.	U
75-71-8	Dichlorodifluoromethane	ND	500	100	U
67-64-1	Acetone	ND	500	100	U ULT
75-15-0	Carbon disulfide	ND	500	100	U
78-93-3	2-Butanone	ND	500	100	U
108-05-4	Vinyl acetate	ND	500	100	U
108-10-1	4-Methyl-2-pentanone	ND	500	100	U
591-78-6	2-Hexanone	ND	500	100	U
74-97-5	Bromochloromethane	ND	250	70.	U
594-20-7	2,2-Dichloropropane	ND	250	70.	U
106-93-4	1,2-Dibromoethane	ND	200	65.	U
142-28-9	1,3-Dichloropropane	ND	250	70.	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	250	70.	U
108-86-1	Bromobenzene	ND	250	70.	U
104-51-8	n-Butylbenzene	ND	250	70.	U
135-98-8	sec-Butylbenzene	ND	250	70.	U

Client	: Genesis Engineering & Redevelopment	Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-12D	Date Collected	: 02/25/13 09:00
Client ID	: GW DUP	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/27/13 18:36
Sample Matrix	: WATER	Dilution Factor	: 100
Analytical Method	: 1,8260C	Analyst	: PD
Lab File ID	: 0227A25	Instrument ID	: VOA101.I
Sample Amount	: 0.1 ml	GC Column	: RTX-502.2
Level	: LOW	%Solids	: N/A
Extract Volume (MeOH)	: N/A	Injection Volume	: N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
98-06-6	tert-Butylbenzene	ND	250	70.	U	
95-49-8	o-Chlorotoluene	ND	250	70.	U	
106-43-4	p-Chlorotoluene	ND	250	70 .	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	250	70.	U	
87-68-3	Hexachlorobutadiene	ND	250	70.	U	
98-82-8	lsopropylbenzene	ND	250	70.	U	
99-87-6	p-Isopropyltoluene	ND	250	70.	U	
91-20-3	Naphthalene	ND	250	70.	U	
103-65-1	n-Propylbenzene	ND	250	70.	U	
87-61-6	1,2,3-Trichlorobenzene	ND	250	70.	U	
120-82-1	1,2,4-Trichlorobenzene	ND	250	70.	U	
108-67-8	1,3,5-Trimethylbenzene	ND	250	70.	U	
95-63-6	1,2,4-Trimethylbenzene	ND	250	70.	U	
123-91-1	1,4-Dioxane	~ ND	- 250 00	7 600	- U-R	
105-05-5	1,4-Diethylbenzene	ND	200	70.	U	
622-96-8	4-Ethyltoluene	ND	200	70.	U	
95-93-2	1,2,4,5-Tetramethylbenzene	ND	200	65.	U	
60-29-7	Ethyl ether	ND	250	70.	U	
110-57-6	trans-1,4-Dichloro-2-butene	ND	250	70.	U LI	

١

Client	: Genesis Engineering & Redevelopmen	t Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-13	Date Collected	: 02/25/13 11:15
Client ID	: GER-SEWER GW	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/27/13 18:11
Sample Matrix	: WATER	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: PD
Lab File ID	: 0227A24	Instrument ID	: VOA101.I
Sample Amount	: 10 ml	GC Column	: RTX-502.2
Level	: LOW	%Solids	: N/A
Extract Volume (MeOH): N/A	Injection Volume	: N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-09-2	Methylene chloride	ND	2.5	0.70	U	
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U	
67-66-3	Chloroform	29	2.5	0.70		
56-23-5	Carbon tetrachloride	ND	0.50	0.16	U	
78-87-5	1,2-Dichloropropane	ND	1.0	0.30	U	
124-48-1	Dibromochloromethane	ND	0.50	0.19	U	
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U	
127-18-4	Tetrachloroethene	14	0.50	0.18		
108-90-7	Chlorobenzene	ND	2.5	0.70	U	
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U	
107-06-2	1,2-Dichloroethane	ND	0.50	0.16	U	
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U	
75-27-4	Bromodichlorometharie	3.4	0.50	0.19		
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U	
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	U	
75-25-2	Bromoform	ND	2.0	0.65	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.19	U	
71-43-2	Benzene	ND	0.50	0.19	U	
108-88-3	Toluene	ND	2.5	0.70	U	
100-41-4	Ethylbenzene	ND	2.5	0.70	U	
74-87-3	Chloromethane	ND	2.5	0.70	U	
74-83-9	Bromomethane	ND	2.5	0.70	υU	J
75-01-4	Vinyl chloride	ND	1.0	0.33	U	
75-00-3	Chloroethane	ND	2.5	0.70	U	
75-35-4	1,1-Dichloroethene	ND	0.50	0.18	U	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U	

Client	: Genesis Engineering & Redevelopment	Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-13	Date Collected	: 02/25/13 11:15
Client ID	: GER-SEWER GW	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/27/13 18:11
Sample Matrix	: WATER	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: PD
Lab File ID	: 0227A24	Instrument ID	: VOA101.I
Sample Amount	: 10 ml	GC Column	: RTX-502.2
Level	: LOW	%Solids	: N/A
Extract Volume (MeOH)	: N/A	Injection Volume	: N/A

		ug/L			
Parameter	Results	RL	MDL	Qualifier	
Tricklassetter	4.0	0.50	0.47		
Inchioroethene	1.3	0.50	0.17		
1,2-Dichlorobenzene	ND	2.5	0.70	U	
1,3-Dichlorobenzene	ND	2.5	0.70	U	
1,4-Dichlorobenzene	ND	2.5	0.70	U	
Methyl tert butyl ether	ND	2.5	0.70	U	
p/m-Xylene	ND	2.5	0.70	U	
o-Xylene	ND	2.5	0.70	U	
cis-1,2-Dichloroethene	6.5	2.5	0.70		
Dibromomethane	ND	5.0	1.0	U	
1,2,3-Trichloropropane	ND	2.5	0.70	U UJ	
Acrylonitrile	ND	5.0	1.5	U	
Styrene	ND	2.5	0.70	U	
Dichlorodifluoromethane	ND	5.0	1.0	U	
Acetone	ND 2.0-	5.0	1.0	+ UJ	
Carbon disulfide	ND	5.0	1.0	U	
2-Butanone	ND	5.0	1.0	U	
Vinyl acetate	ND	5.0	1.0	U	
4-Methyl-2-pentanone	ND	5.0	1.0	U	
2-Hexanone	ND	5.0	1.0	U	
Bromochloromethane	ND	2.5	0.70	U	
2,2-Dichloropropane	ND	2.5	0.70	U	
1,2-Dibromoethane	ND	2.0	0.65	U	
1,3-Dichloropropane	ND	2.5	0.70	U	
1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U	
Bromobenzene	ND	2.5	0.70	U	
n-Butylbenzene	ND	2.5	0.70	U	
sec-Butylbenzene	ND	2.5	0.70	U	
	ParameterTrichloroethene1,2-Dichlorobenzene1,3-Dichlorobenzene1,4-DichlorobenzeneMethyl tert butyl etherp/m-Xyleneo-Xylenecis-1,2-DichloroetheneDibromomethane1,2,3-TrichloropropaneAcrylonitrileStyreneDichlorodifluoromethaneAcetoneCarbon disulfide2-ButanoneVinyl acetate4-Methyl-2-pentanone2,2-Dichloropropane1,2-Dibromoethane2,2-Dichloropropane1,3-Dichloropropane1,1,1,2-TetrachloroethaneBromobenzenen-Butylbenzenesec-Butylbenzene	Parameter Results Trichloroethene 1.3 1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND Methyl tert butyl ether ND p/m-Xylene ND o-Xylene ND cis-1,2-Dichloroethene 6.5 Dibromomethane ND 1,2,3-Trichloropropane ND Acrylonitrile ND Styrene ND Dichlorodifluoromethane ND Acetone ND Vinyl acetate ND Vinyl acetate ND 1,2-Dichloropropane ND 2.4Hexanone ND Vinyl acetate ND 1,2-Dibromoethane ND 2,2-Dichloropropane ND 1,2-Dibromoethane ND 1,2-Dibromoethane ND 1,3-Dichloropropane ND 1,2-Dibromoethane ND 1,3-Dichloropropane ND 1,3-Dichloropropane ND 1,2-Dibromoethane ND Bromobenze	Parameter ug/L Trichloroethene 1.3 0.50 1,2-Dichlorobenzene ND 2.5 1,3-Dichlorobenzene ND 2.5 1,4-Dichlorobenzene ND 2.5 1,4-Dichlorobenzene ND 2.5 Methyl tert butyl ether ND 2.5 p/m-Xylene ND 2.5 cis-1,2-Dichloroethene 6.5 2.5 Dibromomethane ND 2.5 Dibromomethane ND 2.5 Acrylonitrile ND 2.5 Dichlorodifluoromethane ND 2.5 Dichlorodifluoromethane ND 5.0 Acetone ND 2.5 Qualated ND 5.0 Vinyl acetate ND 5.0 Vinyl acetate ND 5.0 1,2-Dibromoethane ND 5.0 2-Hexanone ND 5.0 Vinyl acetate ND 5.0 1,2-Dibromoethane ND 2.5	Parameter Results RL MDL Trichloroethene 1.3 0.50 0.17 1.2-Dichlorobenzene ND 2.5 0.70 1.3-Dichlorobenzene ND 2.5 0.70 1.4-Dichlorobenzene ND 2.5 0.70 1.4-Dichlorobenzene ND 2.5 0.70 Methyl tert butyl ether ND 2.5 0.70 p/m-Xylene ND 2.5 0.70 cis-1,2-Dichloroethene 6.5 2.5 0.70 cis-1,2-Dichloroethene 6.5 2.5 0.70 Dibromomethane ND 5.0 1.0 1,2,3-Trichloropropane ND 5.0 1.0 Acrylonitrile ND 5.0 1.0 Dichlorodfiluoromethane ND 5.0 1.0 Acetone ND 5.0 1.0 Questione ND 5.0 1.0 Vinyl acetate ND 5.0 1.0 Vinyl acetate ND	Parameter ug/L Result RL MDL Qualifier Trichloroethene 1.3 0.50 0.17 1.2-Dichlorobenzene ND 2.5 0.70 U 1.2-Dichlorobenzene ND 2.5 0.70 U 1.4-Dichlorobenzene ND 2.5 0.70 U 1.4-Dichlorobenzene ND 2.5 0.70 U Methyl terl burlyl ether ND 2.5 0.70 U o-Xylene ND 2.5 0.70 U o-Xylene ND 2.5 0.70 U 12.3-Trichloropropane ND 5.0 1.0 U Acrylonitrile ND 5.0 1.0 U Styrene ND 5.0 1.0 U Acetone ND 5.0 1.0 U 2-Butanone ND 5.0 1.0 U 2-Butanone ND 5.0 1.0 U 2-Butanone ND

Client	: Genesis Engineering & Redevelopment	Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-13	Date Collected	: 02/25/13 11:15
Client ID	: GER-SEWER GW	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/27/13 18:11
Sample Matrix	: WATER	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: PD
Lab File ID	: 0227A24	Instrument ID	: VOA101.I
Sample Amount	: 10 ml	GC Column	: RTX-502.2
Level	: LOW	%Solids	: N/A
Extract Volume (MeOH): N/A	Injection Volume	: N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U	
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U	
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	
87-68-3	Hexachlorobutadiene	ND	2.5	0.70	U	
98-82-8	Isopropylbenzene	ND	2.5	0.70	U	
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U	
91-20-3	Naphthalene	ND	2.5	0.70	U	
103-65-1	n-Propylbenzene	ND	2.5	0.70	U	
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
123-91-1	1,4-Dioxane	ND	2 50	76	- P	
105-05-5	1,4-Diethylbenzene	ND	2.0	0.70	U	
622-96-8	4-Ethyltoluene	ND	2.0	0.70	Ų	
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.65	U	
60-29-7	Ethyl ether	ND	2.5	0.70	U	
110-57-6	trans-1,4-Dichloro-2-butene	ND	2.5	0.70	U UI	

Client	: Genesis Engineering & Redevelopment	Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-14	Date Collected	: 02/25/13 10:50
Client ID	: GER-SEWER 6-6.5'	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 23:14
Sample Matrix	: SOIL	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: JC
Lab File ID	: 0226A18	Instrument ID	: CHARLIE.I
Sample Amount	: 1.3 g	GC Column	: RTX-VMS
Level	: LOW	%Solids	: 86
Extract Volume (MeOH)	: N/A	Injection Volume	: N/A

			ug/Kg			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-09-2	Methviene chloride	ND	45	89	11	
75-34-3	1 1-Dichloroethane	ND	67	13		
67-66-3	Chloroform		67	1.0	0	
56-23 5		ND	4.5	0.04		
70.07.5		ND	4.0	0.94	U	
104 40 4			10	1.1	U	
124-48-1	Dibromocnioromethane	ND	4.5	1.4	U .	
79-00-5	1,1,2-1 richloroethane	ND	6.7	1.8	U	
127-18-4	Tetrachloroethene	220	4.5	1.4		
108-90-7	Chlorobenzene	ND	4.5	0.83	U	
75-69-4	Trichlorofluoromethane	ND	.22	1.8	U	
107-06-2	1,2-Dichloroethane	ND	4.5	1.0	U	
71-55-6	1,1,1-Trichloroethane	ND	4.5	1.2	U	
75-27-4	Bromodichloromethane	ND	4.5	1.7	U	
10061-02-6	trans-1,3-Dichloropropene	ND	4.5	1.3	U	
10061-01-5	cis-1,3-Dichloropropene	ND	4.5	1.2	U	
563-58-6	1,1-Dichloropropene	ND	22	2.0	U	
75-25-2	Bromoform	ND	18	2.2	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	4.5	1.1	U	
71-43-2	Benzene	ND	4.5	1.3	U	
108-88-3	Toluene	ND	6.7	1.1	U	
100-41-4	Ethylbenzene	ND	4.5	0.99	U	
74-87-3	Chloromethane	ND	22	3.5	U	
74-83-9	Bromomethane	ND	8.9	2.9	U	
75-01-4	Vinyl chloride	ND	8.9	3.4	U	
75-00-3	Chloroethane	ND	8.9	2.0	U	
75-35-4	1,1-Dichloroethene	ND	4.5	1.2	U	
156-60-5	trans-1,2-Dichloroethene	ND	6.7	1.8	U	
			- ·			

Client	: Genesis Engineering & Redevelopmen	t Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-14	Date Collected	: 02/25/13 10:50
Client ID	: GER-SEWER 6-6.5'	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 23:14
Sample Matrix	: SOIL	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: JC
Lab File ID	: 0226A18	Instrument ID	: CHARLIE.I
Sample Amount	: 1.3 g	GC Column	: RTX-VMS
Level	: LOW	%Solids	: 86
Extract Volume (MeOH)	: N/A	Injection Volume	: N/A

			ug/Kg			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
70.04.0	-					
79-01-6	Inchioroethene	4.5	4.5	1.0		
95-50-1	1,2-Dichlorobenzene	ND	22	1.6	U	
541-73-1	1,3-Dichlorobenzerie	ND	22	1.8	U	
106-46-7	1,4-Dichlorobenzene	ND	22	1.9	U	
1634-04-4	Methyl tert butyl ether	ND	8.9	2.2	U	
179601-23-1	p/m-Xylene	ND	8.9	1.9	U	
95-47-6	o-Xylene	ND	8.9	1.9	U	
156-59-2	cis-1,2-Dichloroethene	12	4.5	1.3	- in it is in the second se	
74-95-3	Dibromomethane	ND	45	1.9	U	
100-42-5	Styrene	ND	8.9	3.2	U	
75-71-8	Dichlorodifluoromethane	ND	45	1.7	U	
67-64-1	Acetone	ND 22	45	14.	J U	
75-15-0	Carbon disulfide	ND	45	8.9	U	
78-93-3	2-Butanone	ND	45	17.	U	
108-05 -4	Vinyl acetate	ND	45	3.4	U	
108-10-1	4-Methyl-2-pentanone	ND	45	3.6	U	
96-18-4	1,2,3-Trichloropropane	ND	45	1.7	U	
591-78-6	2-Hexanone	ND	45	1.8	U	
74-97-5	Bromochloromethane	ND	22	1. 4	U	
594-20-7	2,2-Dichloropropane	ND	22	3.6	U	
106-93-4	1,2-Dibromoetharie	ND	18	1.8	U	
142-28-9	1,3-Dichloropropane	ND	22	2.5	U	
630-20-6	1,1,1,2-Tetrachloroethane	ND	4.5	1.5	U	
108-86-1	Bromobenzene	ND	22	0.98	U	
104-51-8	n-Butylbenzene	ND	4.5	1.4	U	
135-98-8	sec-Butylbenzene	ND	4.5	1.2	U	
98-06-6	tert-Butylbenzene	ND	22	2.7	U	

Client	: Genesis Engineering & Redevelopment	Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-14	Date Collected	: 02/25/13 10:50
Client ID	: GER-SEWER 6-6.5'	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 23:14
Sample Matrix	: SOIL	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: JC
Lab File ID	: 0226A18	Instrument ID	: CHARLIE.I
Sample Amount	: 1.3 g	GC Column	: RTX-VMS
Level	: LOW	%Solids	: 86
Extract Volume (MeOH)	: N/A	Injection Volume	: N/A

			ug/Kg			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
95-49-8	o-Chlorotoluene	ND	22	1.4	U	
106-43-4	p-Chlorotoluene	ND	22	1.6	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	22	3.7	U	
87-68-3	Hexachlorobutadiene	ND	22	2.0	U	
98-82-8	Isopropyibenzene	ND	4.5	0.79	U	
99-87-6	p-Isopropyltoluene	ND	4.5	1.2	U	
91-20-3	Naphthalene	ND	22	3.4	U	
107-13-1	Acrylonitrile	ND	45	1.7	U	
103-65-1	n-Propylbenzene	ND	4.5	1.3	U	
87-61-6	1,2,3-Trichlorobenzene	ND	22	1.8	U	*
120-82-1	1,2,4-Trichlorobenzene	ND	22	3.5	U	
108-67-8	1,3,5-Trimethylbenzene	ND	22	2.7	U	
95-63-6	1,2,4-Trimethylbenzene	ND	22	2.6	U	
123-91-1	1,4-Dioxane	ND	450	- 78 .	-u-R	
105-05-5	1,4-Diethylbenzene	ND	18	0.89	U	
622-96-8	4-Ethyltoluene	ND	18	0.43	U	
95-93-2	1,2,4,5-Tetramethylbenzene	ND	18	0.81	U	
60-29-7	Ethyl ether	ND	22	1.7	U	
110-57-6	trans-1,4-Dichloro-2-butene	ND	22	6.6	U	
			• ·			

Client	: Genesis Engineering & Redevelopment	t Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-15	Date Collected	: 02/25/13 10:50
Client ID	: GER-SEWER 7.5-8'	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 23:42
Sample Matrix	: SOIL	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: JC
Lab File ID	: 0226A19	Instrument ID	: CHARLIE.I
Sample Amount	: 2.6 g	GC Column	: RTX-VMS
Level	: LOW	%Solids	: 91
Extract Volume (MeOH)): N/A	Injection Volume	: N/A

			ug/Kg			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-09-2	Methylene chloride	ND	21	4.2	U	
75-34-3	1,1-Dichloroethane	ND	3.2	0.62	U	
67-66-3	Chloroform	ND	3.2	0.68	U	
56-23-5	Carbon tetrachloride	ND	2.1	0.45	U	
78-87-5	1,2-Dichloropropane	ND	7.4	0.54	U	
124-48-1	Dibromochloromethane	ND	2.1	0.65	U	
79-00-5	1,1,2-Trichloroethane	ND	3.2	0.83	U	
127-18-4	Tetrachloroethene	2.3	2.1	0.65		
108-90-7	Chlorobenzene	ND	2.1	0.39	U	
75-69-4	Trichlorofluoromethane	ND	10	0.83	U	
107-06-2	1,2-Dichloroethane	ND	2.1	0.48	U	
71-55-6	1,1,1-Trichloroethane	ND	2.1	0.57	U	
75-27-4	Bromodichloromethane	ND	2.1	0.81	U	
10061-02-6	trans-1,3-Dichloropropene	ND	2.1	0.64	U	
10061-01-5	cis-1,3-Dichloropropene	ND	2.1	0.56	U	
563-58-6	1,1-Dichloropropene	ND	10	0.96	U	
75-25-2	Bromoform	ND	8.4	1.0	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.1	0.51	U	
71-43-2	Benzene	ND	2.1	0.63	U	
108-88-3	Toluene	ND	3.2	0.51	U	
100-41-4	Ethylbenzene	ND	2.1	0.47	U	
74-87-3	Chloromethane	ND	10	1.6	U	
74-83-9	Bromomethane	ND	4.2	1.4	U	
75-01-4	Vinyl chloride	ND	4.2	1.6	U	
75-00-3	Chloroethane	ND	4.2	0.93	U	· ·
75-35-4	1,1-Dichloroethene	ND	2.1	0.55	U	
156-60-5	trans-1,2-Dichloroethene	ND	3.2	0.83	U	

Client	: Genesis Engineering & Redevelopment	Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-15	Date Collected	: 02/25/13 10:50
Client ID	: GER-SEWER 7.5-8'	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 23:42
Sample Matrix	: SOIL	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: JC
Lab File ID	: 0226A19	Instrument ID	: CHARLIE.I
Sample Amount	: 2.6 g	GC Column	: RTX-VMS
Level	: LOW	%Solids	: 91
Extract Volume (MeOH)	: N/A	Injection Volume	: N/A

	Parameter		ug/Kg			
CAS NO.		Results	RL	MDL	Qualifier	
70.04.0	T :			o (7		
79-01-6	Inchloroethene	ND	2.1	0.47	U	
95-50-1	1,2-Dichlorobenzene	ND	.10	0.77	U .	
541-73-1	1,3-Dichlorobenzene	ND	10	0.84	U A A A A	
106-46-7	1,4-Dichlorobenzene	ND	10	0.89	U	
1634-04-4	Methyl tert butyl ether	ND	4.2	1.0	U	
179601-23-1	p/m-Xylene	ND	4.2	0.91	U	
95-47-6	o-Xylene	ND	4.2	0.88	U	
156-59-2	cis-1,2-Dichloroethene	ND	2.1	0.64	U	
74-95-3	Dibromomethane	ND	21	0.92	U	
100-42-5	Styrene	ND	4.2	1.5	U	
75-71-8	Dichlorodifluoromethane	ND	21	0.82	U	
67-64-1	Acetone	ND	21	6.8	U	
75-15-0	Carbon disulfide	ND	21	4.2	U	
78-93-3	2-Butanone	ND	21	8.2	U	
108-05-4	Vinyl acetate	ND	21	1.6	U	
108-10-1	4-Methyl-2-pentanone	ND	21	1.7	U	
96-18-4	1,2,3-Trichloropropane	ND	21	0.82	U	
591-78-6	2-Hexanone	ND	21	0.84	U	
74-97-5	Bromochloromethane	ND	10	0.64	U	
594-20-7	2,2-Dichloropropane	ND	10	1.7	U	
106-93- 4	1,2-Dibromoethane	ND	8.4	0.86	U	
142-28-9	1,3-Dichloropropane	ND	10	1.2	U	
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.1	0.69	U	
108-86-1	Bromobenzene	ND	10	0.46	U	
104-51-8	n-Butylbenzene	ND	2.1	0.66	U	
135-98-8	sec-Butylbenzene	ND	2.1	0.58	U	
98-06-6	tert-Butylbenzene	ND	10	1.3	U	

Client	: Genesis Engineering & Redevelopment	Lab Number	: L1303178
Project Name	: BEST CLEANERS	Project Number	: 155
Lab ID	: L1303178-15	Date Collected	: 02/25/13 10:50
Client ID	: GER-SEWER 7.5-8'	Date Received	: 02/25/13
Sample Location	: LIC, NY	Date Analyzed	: 02/26/13 23:42
Sample Matrix	: SOIL	Dilution Factor	: 1
Analytical Method	: 1,8260C	Analyst	: JC
Lab File ID	: 0226A19	Instrument ID	: CHARLIE.I
Sample Amount	: 2.6 g	GC Column	: RTX-VMS
Level	: LOW	%Solids	: 91
Extract Volume (MeOH)	: N/A	Injection Volume	: N/A

			ug/Kg				
CAS NO.	Parameter	Results	RL	MDL	Qualifier		
95-49-8	o-Chlorotoluene	ND	10	0.66	U		
106-43-4	p-Chlorotoluene	ND	10	0.76	U		
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	1.8	U		
87-68-3	Hexachlorobutadiene	ND	10	0.97	U		
98-82-8	Isopropylbenzene	ND	2.1	0.37	U		
99-87-6	p-lsopropyltoluene	ND	2.1	0.58	U		
91-20-3	Naphthalene	ND	10	1.6	U		
107-13-1	Acrylonitrile	ND	21	0.79	U		
103-65-1	n-Propylbenzene	ND	2.1	0.60	U		
87-61-6	1,2,3-Trichlorobenzene	ND	10	0.85	U		
120-82-1	1,2,4-Trichlorobenzene	ND	10	1.7	U		
108-67-8	1,3,5-Trimethylbenzene	ND	10	1.3	U		
95-63-6	1,2,4-Trimethylbenzene	ND	10	1.2	U		
123-91-1	1,4-Dioxane	ND	_ 210	37.	-U-R		
105-05-5	1,4-Diethylbenzene	ND	8.4	0.42	U		
622-96-8	4-Ethyltoluene	ND	8.4	0.20	U		
95-93-2	1,2,4,5-Tetramethylbenzene	ND	8.4	0.38	U		
60-29-7	Ethyl ether	ND	10	0.80	U		
110-57-6	trans-1,4-Dichloro-2-butene	ND	10	3.1	U		

