Welcome

Bridge Cleaners
39-26 30th Street
Long Island City, Queens
Site No. 241127

Proposed Remedial Action Plan Public Meeting 3/8/2022

Introductions

Project Managers:

Ruth Curley, P.E. New York State Dept. of Environmental Conservation

Eamonn O'Neill New York State Department of Health

Public Participation Specialist:

Tom Panzone New York State Dept. of Environmental Conservation

Agenda

- Overview of the Investigation Process
- Summarize the Investigation and Results
- Discuss Interim Remedial Measures Taken
- Present No Further Action/Site Monitoring Option
- Question and Answer Period

Investigation Process

- Identify a Site
- Investigate
 - Sampling of soil, groundwater, soil vapor
- Determine Actions needed
 - Options to address contamination are proposed & evaluated
 OR
 - Immediate Actions (interim remedial measures (IRM)) may be taken to quickly address contaminants.

Investigation Process

- A Proposed Remedial Action Plan
 - Public meeting & comment period
- Possible modification of remedy based on public comments
- A Record of Decision finalizes the remedy
- Remedy is Implemented

The Proposed Remedial Action Plan

- ➤ Calls for No Further Action with Site Management
- Describes how IRMs have already addressed contamination
- > Describes the continuing elements of the on-site remedy
 - ➤ Operation of the Air Sparge/Soil Vapor Extraction System
 - >A Site Management Plan and Environmental Easement
 - Site Cover System (existing building slab)
- ➤ Describes actions taken to ensure any off-site impacts were addressed

Site History & Investigation Summary

Site Location

39-26 30th Street

Site History

- Building previously used as a warehouse/distribution point.
- Beginning in late 1990's, various dry-cleaning businesses occupied the structure.
- Current owner purchased the site in 2012.
- Recent use: fabric cutting/commercial laundry.

On-site Investigation Summary

- Soil
- Groundwater
- Soil Vapor
- PCE, a dry-cleaning chemical, was present in all these media on-site.
- TCE, a degradation product, was also present on-site in soil vapor.

PCE Contamination Summary

Soil Range: 1.8-9.6 ppm Limit: 1.3 ppm

Groundwater Range: 165-340 ppb Limit: 5 ppb

Soil Vapor Up to 665,000 ug/m3

DOH recommends mitigation above 1000 ug/m3

An IRM was the best option to address the contamination

Role of the NYS Department of Health

- Work with NYSDEC to identify nature and extent of contamination to evaluate potential exposures
- Evaluate data and make recommendations to address any potential exposure and evaluate the need for additional information
- Ensure that remedy selected is protective of public health

What is exposure?

- Physical contact with a chemical or substance
 - Inhalation (breathing)
 - Direct contact (touching)
 - Ingestion (eating/drinking)
- One or more of these physical contacts <u>must</u> occur before a chemical has the *potential* to cause a health problem
- Exposure does not necessarily mean that health effects will occur

Soil vapor intrusion is the process by which volatile chemicals move from a subsurface source into the indoor air of overlying buildings

Potential Exposure Pathways

Inhalation

Direct Contact

Ingestion

IRM – Air Sparge / Soil Vapor Extraction

- Air sparge pushes air into the groundwater, releasing the contaminants
- Soil vapor extraction removes the air from beneath the building and discharges it to the atmosphere.
- Comprised of 3 air sparge and 2 SVE points

IRM – Air Sparge / Soil Vapor Extraction

Figure 15 SVE Radius of Influence

IRM – Air Sparge & SVE System

IRM – Groundwater Results

GW Standard is 5 ppb

2 wells are below 5 ppb3 wells exceed 5 ppb

	GW-2 (μg/L)							
	TechSolutions		Integral		EECC			
ANALYTE	2/8/2014	09/09/16	11/18/18	05/17/19	06/15/20	01/25/21	04/28/21	09/29/21
PCE	165	200	240	210	300	18	0.4	0.29J
TCE	2.4	14	5.6	4.1	11	ND	ND	ND
	GW-4 (μg/L)							
	TechSolutions		Integral			EE	CC	
ANALYTE	TechSolutions 2/8/2014	09/09/16	Integral 11/18/18	05/17/19	06/15/20	01/25/21	CC 04/28/21	09/29/21
ANALYTE PCE				05/17/19	06/15/20 3.2			09/29/21 0.18J

IRM – Groundwater Results

These wells still exceed 5 ppb for PCE.

Γ		GW-1 (μg/L)										
l		TechSolutions		S	Integral			EECC]
L	ANALYTE		2/8/2014	\Box	09/09/16	11/18/18	05/17/19	06/15/20	01/25/21	04/28/21	09/29/21	
P	CE		280	\Box	140	74	7.8	15	19	9.1	12	
Т	CE	5.4 1.6 1.4 0.34 J 0.65 1.1 0.59				0.59	0.83					
	•			_			GW-3 (μ	μg/L)				
1		TechSolutions		ns	s Integral			EECC				1
	ANALYTE	Γ	2/8/2014		09/09/16	11/18/18	05/17/19	06/15/20	01/25/21	04/28/21	09/29/21	
	PCE	Ι	175		44		10	25	23	23	29	
ŀ	TCE	\prod	2		1.2]	0.87	1.1	0.87	0.77	0.81	

			GW-5 (μg/L)								
]	Tech Solutions			Integral			EECC				
ANALYTE	2/8/2014		09/09/16	11/18/18	05/17/19	06/15/20	01/25/21	04/28/21	(09/29/21	
PCE	Ц	340		95	87	48	50	67	72		62
TCE		6.9		2.8	3.7	1.9	1.9	2	2.5		2.8

Reductions in On-Site Soil Vapor

PCE in Sub-Slab Vapor							
ug/m3							
	2014	2018	2022				
SP-1	31700	233	23.3				
SP-2	30400		79.3				
SP-3	170000		71.9				
SP-4	<mark>668000</mark>	1660	<mark>412</mark>				
SP-5	21400	1590	41.6				
SP-6	<mark>246000</mark>	1890	<mark>186</mark>				
SP-7	44000	675	<mark>685</mark>				

TCE in Sub-Slab Vapor							
ug/m3							
	2014	2018	2022				
SP-1	623	10	3.1				
SP-2	871		3.5				
SP-3	554		ND				
SP-4	<mark>2140</mark>	7.2	<mark>3.0</mark>				
SP-5	919	72	8.8				
SP-6	<mark>1930</mark>	16	<mark>10.7</mark>				
SP-7	575	5.6	7.9				

Results

Red – dashed - higher sub-slab concentrations

Blue – dashed – groundwater above 5 ppb

Red –solid – lower sub-slab #'s Blue- solid- groundwater below 5 ppb standard

Conclusions

Significant reductions in site groundwater and soil vapor have occurred.

The Site Management Plan requires continued system operation until NYSDEC and NYSDOH agree that goals have been achieved.

OU2 - Off-Site Area

Work performed in Fall 2016

Groundwater & Soil Vapor Sampled in Vicinity of Site

OU2 - Off-Site Area

Off-Site Sample Locations

Groundwater Max: 369 ppb PCE

272 ppb TCE

Soil Vapor: Max: 2,400 ug/m3 PCE

4,400 ug/m3 TCE

OU2 - Off-Site Area

Offered to perform sampling in adjacent structures

Six buildings sampled

One vapor mitigation system installed

OU2 - Off-Site Actions

- Adjacent Site SVE system in 2016 to address possible source material below the building.
- System operated until 2019. (building demolished)
- After excavation, soil was sampled to ensure no source material remained.

Summary

- On-Site
 - Contamination is being addressed by a treatment system,
 - Significantly reduced groundwater and soil vapor contamination
 - Cover System, Site Management Plan & Env. Easement
- The system will remain in place and in operation.

No Further Actions necessary. Existing system will continue in operation.

Summary

- Off-Site
 - No remaining sources of contamination
 - The on-site GW is undergoing treatment
 - Adjacent site treated & removed soil
 - The off-site groundwater contamination reduced to near standards
 - Installed sub-slab depressurization system in 1 building

No Further Actions are necessary. Existing system will continue in operation

Project Contacts

Written comments may be sent via mail or email Comment Period ends 3/19/2022

Comments / Technical Information:

Ruth Curley, P.E.

NYSDEC

625 Broadway

Albany, New York 12233-7016

(518) 402-9767

ruth.curley@dec.ny.gov

Health-Related Information:

Eamonn O'Neill

NYSDOH

Corning Tower, Room 1787

Albany, NY 12237

518-402-7877

BEEI@health.ny.gov

End of presentation

