

TYLL ENGINEERING & CONSULTING PC

November 20, 2023

Ms. Madeleine Babick New York State Department of Environmental Conservation 47-40 21st Street Long Island City, NY 11101-5401

Re: Periodic Review Report

October 23, 2022 to October 23, 2023

NYSDEC Site Number: 241128 127-13 Merrick Blvd., Jamaica, NY

Dear Ms. Babick:

Tyll Engineering and Consulting, PC hereby submits the Periodic Review Report for the Site located at 127-13 Merrick Blvd in Jamaica, New York on behalf of Merrick AA, LLC (Owner). This letter serves to inform the New York State Department of Environmental Conservation (NYSDEC) of the inspections, deficiencies and the corrective actions performed, if applicable for the period October 23, 2022 to October 23, 2023. The Annual Site-wide Inspection Form is attached in Attachment 1 and the EC/IC Certification Forms are included in Attachment 2.

INSPECTION EVENTS

Inspection of Engineering Controls on November 7, 2023

On November 7, 2023 TEC along with Mr. Punit Chhabra of Merrick AA, LLC completed an inspection of the Engineering Controls (ECs) at the property located from 127-01 to 127-23 Merrick Boulevard in Jamaica, Queens which included the Sub-slab depressurization System (SSDS) and the concrete cover system throughout the site (both the building and surrounding concrete cover (concrete sidewalk and alley).

The SSDS inspection involved the inspection of the two fans/blowers on the roof, the exposed piping in the basements, inspection and testing of the alarm light/siren in unit 127-03 and the control panel located in the basement of unit 127-03. The SSDS was operational at the time of the inspection, no alarms were reported by the Owner or tenants. The exposed pipes were intact, and no damage observed. The two Magnahelic gauges were observed to have similar readings as those noted at the previous annual inspection in November 2022.

The concrete cover system inspection consisted of observing the basement slabs, surrounding sidewalks along the streets, and the concrete covered alley at the rear of the building. We did not observe changes or deficiencies in the concrete slabs within the basements of the units. The cover system throughout the remainder of the site including the sidewalks and rear alley

were in good condition and no holes or gaps were observed. We were unable to enter Units 127-05 and 127-15 due to store not being occupied or the tenant not being on-site. The photographs from this inspection are included in Attachments 3 through 5.

The Owner has completed monthly inspections of the SSDS panel and have not found any alarm conditions. In addition, they have not received any reports of alarms from Unit 127-03.

ON-SITE SSDS EFFLUENT SAMPLING

On November 7, 2023, SSDS effluent sampling was completed by Tyll Engineering from the effluent pipe (not filtered) on the roof for screening purposes. One Tedlar Bag was filled from each of the two effluent pipes ("LEFT" and "RIGHT" looking from the front to the rear of the building) and submitted to Alpha Analytical Laboratory via courier for analysis for VOCs (TO-15).

RESULTS OF SSDS EFFLUENT SAMPLING

Results of the VOC analysis have shown that the concentrations of PERC were lower this year as compared with last year, 2022. Please see the table below for results from this and the past year's sampling events. The analytical report from Alpha Analytical can be found in Attachment 6. We will complete this air sampling at a frequency required by the NYSDEC.

		PERC Concentrations																						
	11/8/2018					11/4/	2019		11/12/2020				11/9/2021			11/9/2022				11/7/2023				
	ppb	٧.	μg/	m³	рр	bv	μg/	m³	рр	bv	μg/	m³	ppb	۷.	μg/ι	m³	рр	bv	μg/i	m³	рр	bv	μg/	m³
	Value	RL	Value	RL	Value	DL	Value	DL	Value	RL	Value	RL	Value	RL	Value	RL	Value	RL	Value	RL	Value	RL	Value	RL
Right																								
(EF-2)	ND	14	ND	95.7	7.35	0.408	49.8	2.77	14.1	0.415	95.6	2.81	3.07	0.2	20.8	1.36	9.12	0.447	61.8	3.03	8.98	0.2	60.9	1.36
Left															·									
(EF-2)	ND	14	ND	95.7	2.89	0.412	19.6	2.79	6.32	0.413	42.9	2.8	2.28	0.2	15.5	1.36	5.82	0.446	39.5	3.02	3.18	0.2	21.6	1.36

CERTIFICATION

For each institutional or engineering control identified for the site, I certify that all of the following statements are true:

- a. the institutional control and/or engineering control employed at this site is unchanged from the date the control was put in place, or last approved by DER;
- b. nothing has occurred that would impair the ability of such control to protect public health and the environment;
- c. nothing has occurred that would constitute a violation or failure to comply with any Site Management Plan for this control; and
- d. access to the site will continue to be provided to DER to evaluate the remedy, including access to evaluate the continued maintenance of this control.

Please let us know if you have any questions or require additional information.

Respectfully submitted,

TYLL ENGINEERING AND CONSULTING, PC

Karen G. Tyll, P.E.

Professional Engineer

Cc (digital): Mr. Punit Chhabra, Merrick AA, LLC

Ms. Jane O'Connell, NYSDEC

Mr. Jim DeMartinis, Seacliff Environmental Geology

Attachments

ATTACHMENT 1 ANNUAL SITE -WIDE INSPECTION FORMS

11/09/21

Annual Site-wide Inspection Form

127-1 to 23 Merrick Blvd, Jamaica, New York

Date: November 7, 2	2023							
Weather: Sunny								
Reason for Inspection:	☐ Routine	☑ other_Annual Site-wide Inspection and Certification						
Certification Period: 10/23/22 to 10/23/23								

Inspection Observations

Check one of the following: Y: Yes N: No NA: Not Applicable

	eck one of the following: F : fes N: NO NA: NOT	7.0	250	0000000	
		У	N	NA	Remarks
	Records				
1	Based on site records, when was the last inspection, maintenance, or repair event?				11/08/22
2	Based on site records, was the system not operating for any amount of time since the last inspection, maintenance, or repair event? For how long? Provide details.		х		
3	Has the site use changed to a type of use higher than the current commercial use (as allowed in environmental easement)?		х		
	Alarm System				
4	Do the alarm lights indicate that the system is operational?	X			TESTED ALARM/STROBE AND THYE WERE OPERATIONAL
	General System				
5	Is there any construction activity, or indication of any construction activity within the past certification year (including any tenant improvements), that included the breaching of the concrete basement floor slab or basement walls at the time of this inspection?		x		
6	Are there any cracks in the concrete slab or concrete basement walls?		х		NO NEW HOLES OR CRACKS WERE OBSERVED
7	If YES to number 6, is there documentation that the Soil Management Plan (SMP), HASP, and CAMP for the site was/is being followed?			х	
8	If YES to number 6, is there documentation that all breaches in the floor slab have been sealed?			х	

9	Does all visible SSDS piping appear intact and undamaged?	Х		
10	Have any intake points been constructed at the roof near (less than 10 feet) the SSDS blower discharge point?		x	
	Are the two SSDS blowers operational at the time of the inspection?	X		
	Is the SSDS System expelling Air from the exhaust on the roof of the building?	х		
13	Remove dust and debris from the area surrounding the blowers on the roof.	Х		No debris was observed near blowers on roof

Performed by:	Karen G. Tyll, PE	Kantzer
· —	Printed Name	Signature

Professional Engineer Tyll Engineering and Consulting, PC
Title Company

Date: _____11/20/23

SSDS Monthly Log Sheet for 127-13 Merrick Blvd. Queens, New York	11/9/22	12/8/22	1/19/23	2/17/23	3/22/23	4/12/23	5/10/23	6/14/23	7/17/23	8/16/23	9/13/23	10/11/23	11/7/23
Inspector	Karen Tyll	Punit Chhabra	Karen Tyll										
Are the two SSDS blowers operational at the time of the inspection?	Y	Y	Y	Υ	Y	Y	Y	Y	Υ	Υ	Y	Y	Υ
Is the SSDS System expelling Air from the exhaust on the roof of the building?	Y	Υ	Y	Y	Y	Y	Υ	Υ	Υ	Y	Y	Y	Υ
Based on site records, was the system not operating for any amount of time since the last inspection, maintenance, or repair event? For how long? Provide details.	N	N	N	N	N	N	N	N	N	N	N	N	N
4. Do the alarm lights on the panel indicate that the system is operational?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Υ
5. Do the Magnehelic gauges show air flow?	Y	Y	Υ	Y	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Y	Υ
Was there any construction activity, or indication of any construction activity within the past certification year (including any tenant improvements), that included the breaching of the concrete basement floor slab or basement walls at the time of this inspection?	N	N	N	N	N	N	N	N	N	N	N	N	N
7. Are there any new cracks in the concrete slab or concrete basement walls?	N	N	N	N	N	N	N	N	N	N	N	N	N
a. If YES, is there documentation that the Soil Management Plan (SMP), HASP, and CAMP for the site was/is being followed?	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
b. If YES, is there documentation that all breaches in the floor slab have been sealed?	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Does all the visible SSDS piping appear intact and undamaged?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Υ
Have any intake points been constructed at the roof less than 10 feet the SSDS blower discharge point?	N	N	N	N	N	N	N	N	N	N	N	N	N
10. Please ensure that dust and debris has been removed from the area surrounding the blowers on the roof.	N	N	N	N	N	N	N	N	N	N	N	N	N
Notes	Annual Site Inspection												Annual Site Inspection
Signature Line	fan rege	thathe	talle	Tuff	thathe	fan zele							

ATTACHMENT 2
EC/IC CERTIFICATION PAGES

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site Details Box 1 Site No. 241128 Site Name 127-13 Merrick Boulevard Site Address: 127-13 Merrick Boulevard Zip Code: 11434 City/Town: Jamaica County: Queens Site Acreage: 0.340 Reporting Period: October 23, 2022 to October 23, 2023 YES NO 1. Is the information above correct? Χ If NO, include handwritten above or on a separate sheet. 2. Has some or all of the site property been sold, subdivided, merged, or undergone a Χ tax map amendment during this Reporting Period? 3. Has there been any change of use at the site during this Reporting Period Χ (see 6NYCRR 375-1.11(d))? 4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period? Χ If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form. Χ 5. Is the site currently undergoing development? Box 2 YES NO 6. Is the current site use consistent with the use(s) listed below? Χ Commercial and Industrial 7. Are all ICs in place and functioning as designed? Χ IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues. N/A Signature of Owner, Remedial Party or Designated Representative Date

SITE NO. 241128 Box 3

Description of Institutional Controls

Parcel Owner Institutional Control

12488-01 Ekta Realty Inc. and Merrick AA LLC

Ground Water Use Restriction Soil Management Plan Landuse Restriction Site Management Plan

O&M Plan IC/EC Plan

An environmental easement has been recorded, limiting the site to commercial or industrial use as described in 6 NYCRR Part 375-1.8(g)(2)(iv); prohibiting the use of groundwater; requiring operation, maintenance, and inspection of the engineering controls in accordance with the site management plan (SMP); and requiring compliance with all other protocol in the SMP.

Box 4

Description of Engineering Controls

<u>Parcel</u> <u>Engineering Control</u>

12488-01

Vapor Mitigation Cover System

The engineering controls are a sub-slab depressurization system, and a cover system consisting of the existing building slab, which must be maintained.

		Box 5
	Periodic Review Report (PRR) Certification Statements	
1.	I certify by checking "YES" below that:	
	a) the Periodic Review report and all attachments were prepared under the direction of, reviewed by, the party making the Engineering Control certification;	and
	 b) to the best of my knowledge and belief, the work and conclusions described in this care in accordance with the requirements of the site remedial program, and generally accending practices; and the information presented is accurate and compete. 	
	YES	NO
	X	
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:	
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Departmen	t;
	(b) nothing has occurred that would impair the ability of such Control, to protect public has environment;	ealth and
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;	
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and	
	(e) if a financial assurance mechanism is required by the oversight document for the sit mechanism remains valid and sufficient for its intended purpose established in the document	
	YES	NO
	X	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	
	A Corrective Measures Work Plan must be submitted along with this form to address these iss	sues.

Date

N/A

Signature of Owner, Remedial Party or Designated Representative

IC CERTIFICATIONS SITE NO. 241128

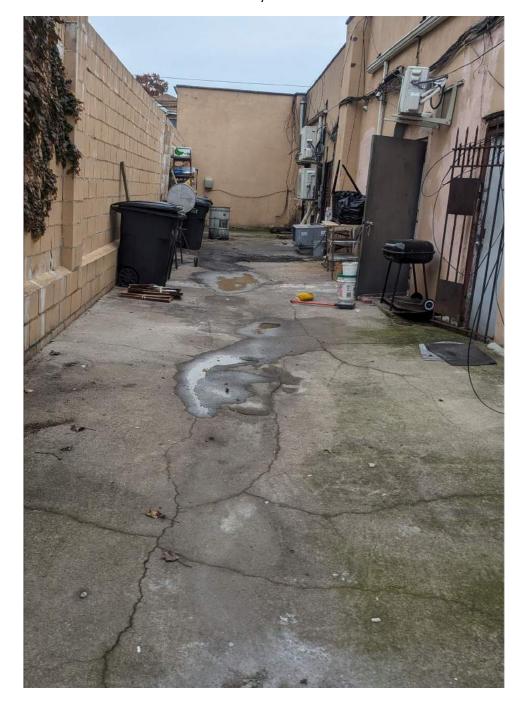
Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Punit Chhabi	ra	13 at	32 East 43rd St., #412 New York, NY 10017
	print name		print business address
am certifying as Party)	Owner		(Owner or Remedial
for the Site named in	the Site Details	Section of this form.	11-17-2023
Signature of Owner,	•	or Designated Repre	resentative Date

EC CERTIFICATIONS

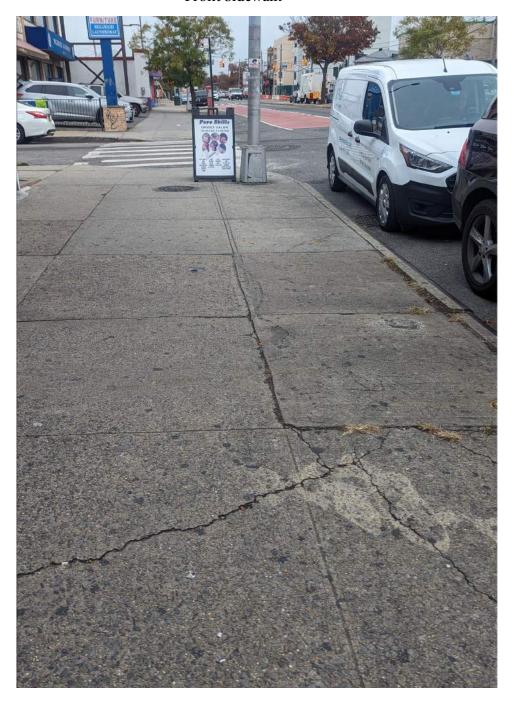

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

	Tyll Engineering and Consulting, PC 169 Commack Road, Suite H173, Commack, NY 11731
print name	print business address
am certifying as a Professional Engineer for	theOwner
Kandyer	OF NEW GA 11/20/23
Signature of Professional Engineer, for the Remedial Party, Rendering Certification	Owner or Stamp Date (Required for PE)

ATTACHMENT 3 PHOTOGRAPHS FROM 11/7/2023 OF EXTERIOR CONCRETE COVER SYSTEM



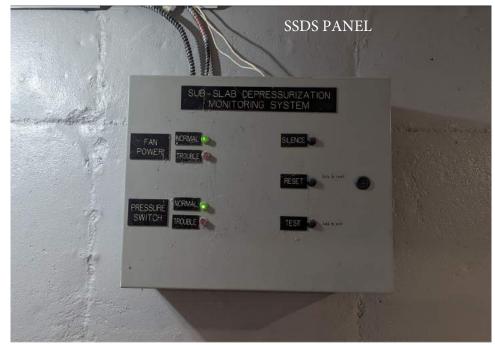
Front Sidewalk Front Sidewalk

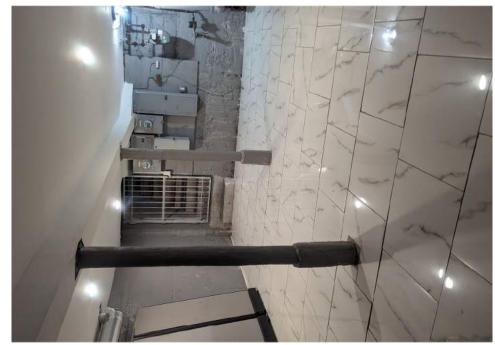
Front Sidewalk

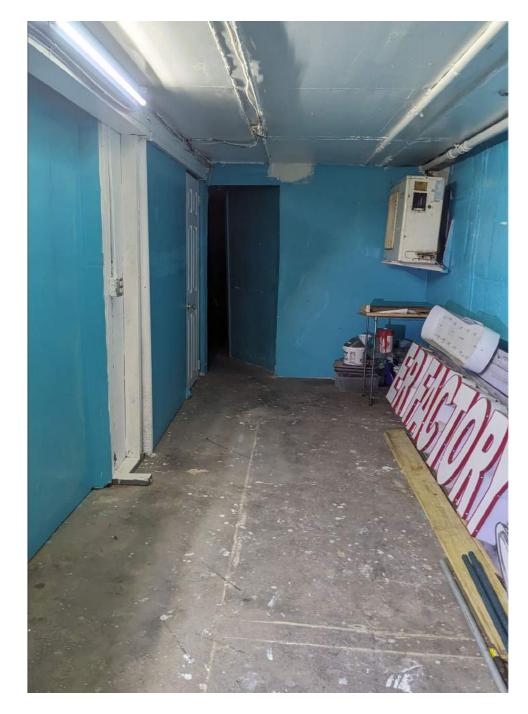
ATTACHMENT 4

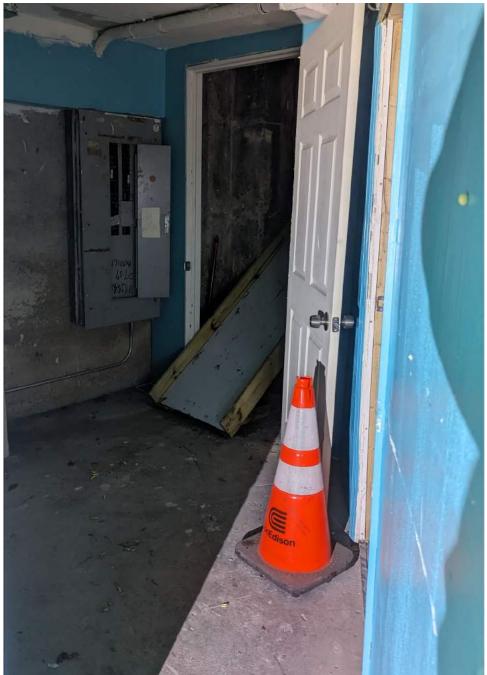
PHOTOGRAPHS OF BASEMENT SLABS

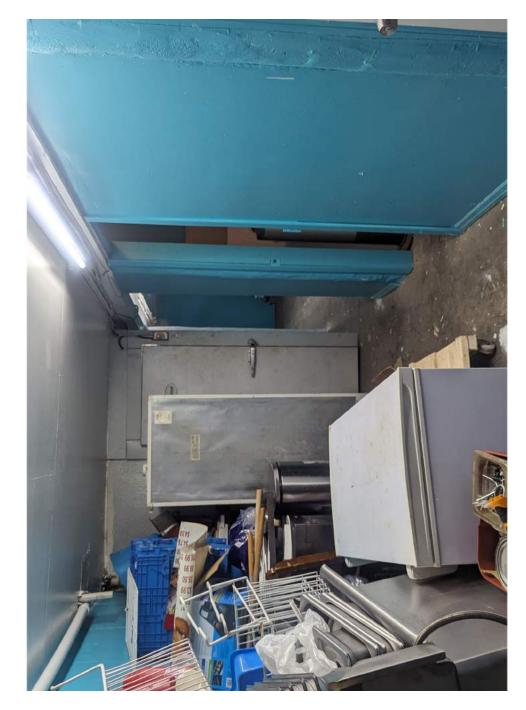
11/7/2023



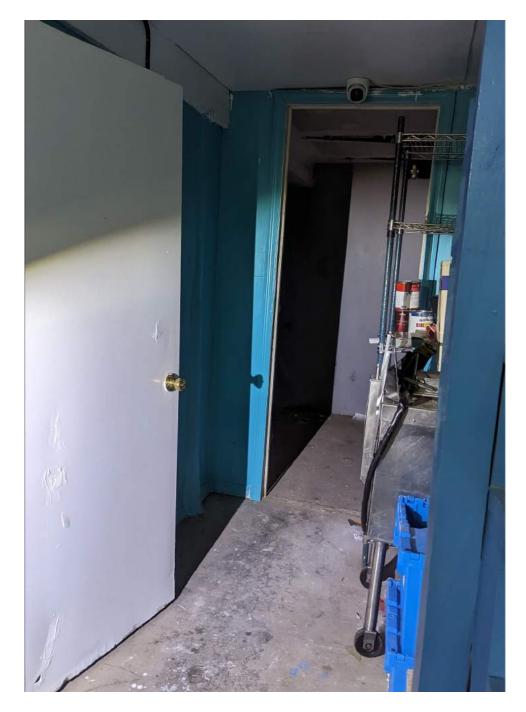


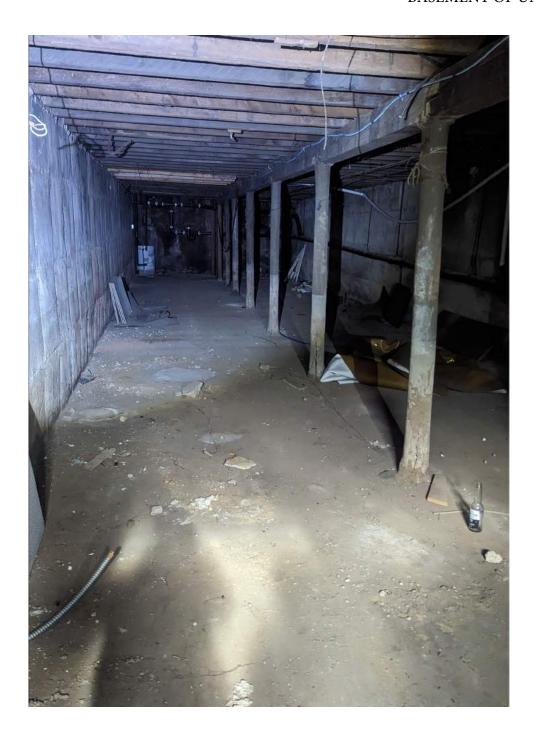


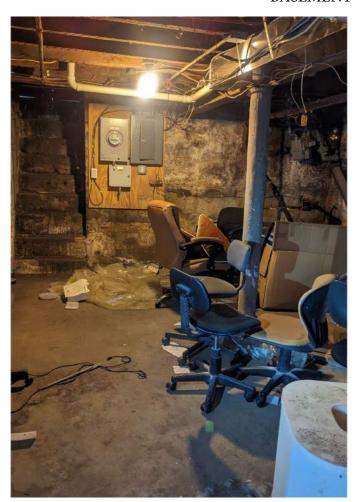


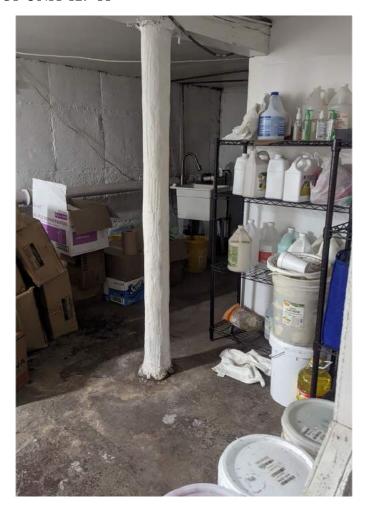


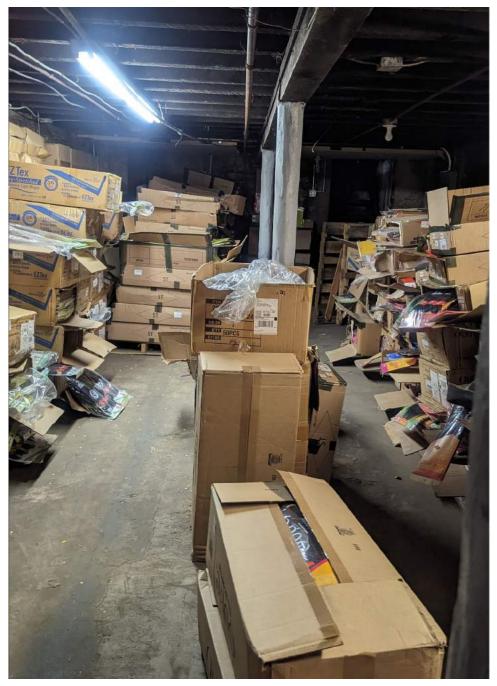

WE WERE UNABLE TO OBTAIN ACCESS TO UNIT 127-05





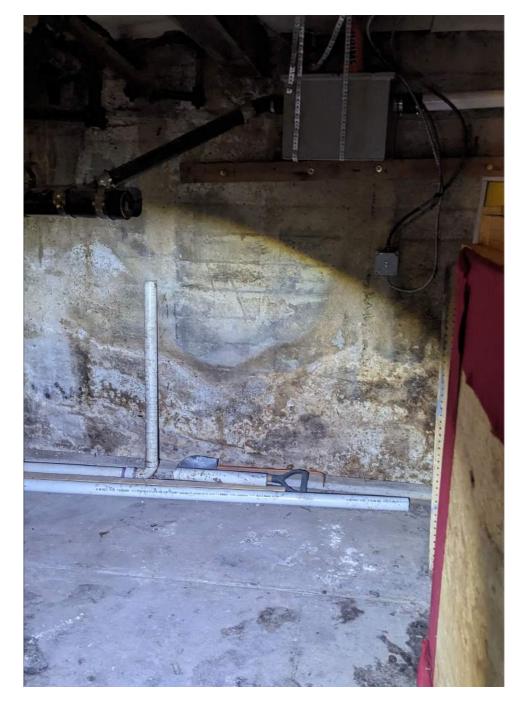


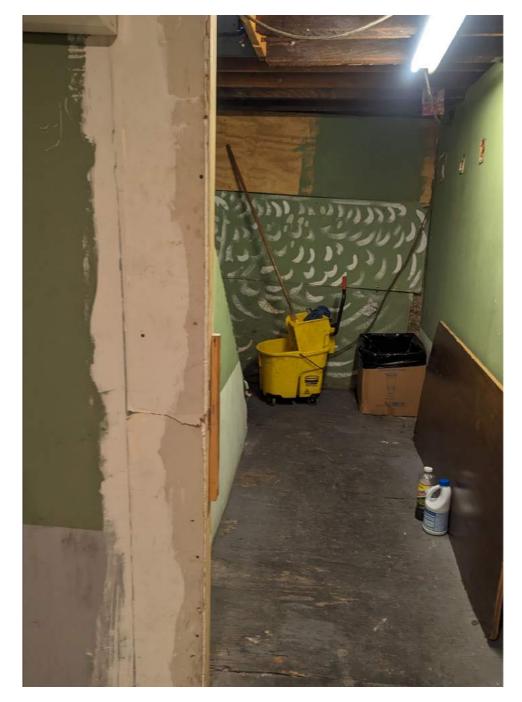




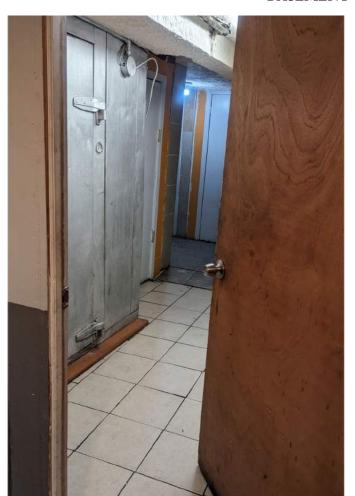


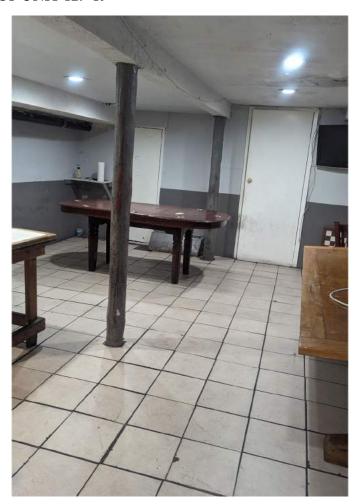
BASEMENT OF UNIT 127-13 PIPING WAS IN GOOD CONDITION

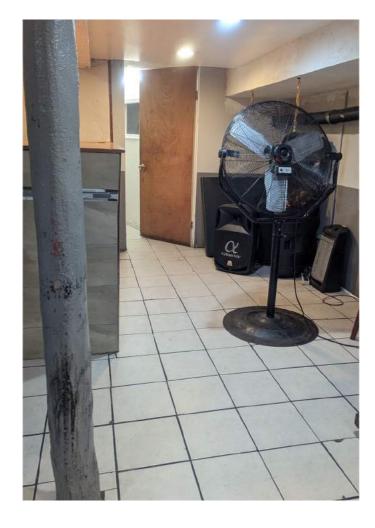


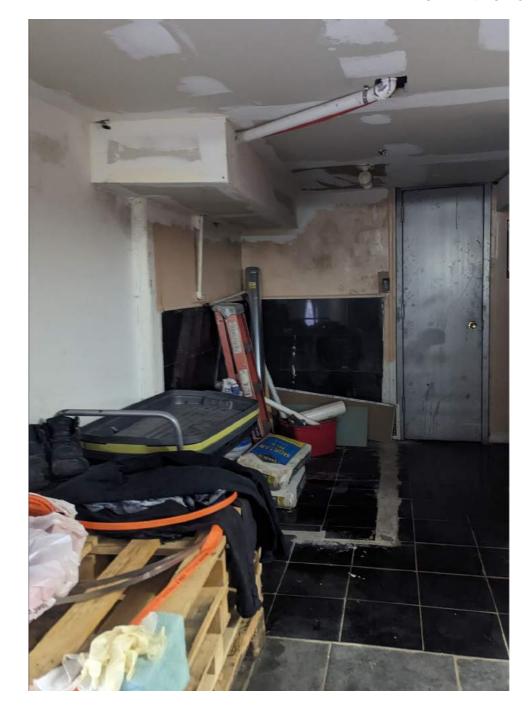

WE WERE UNABLE TO OBTAIN ACCESS TO UNIT 127-15

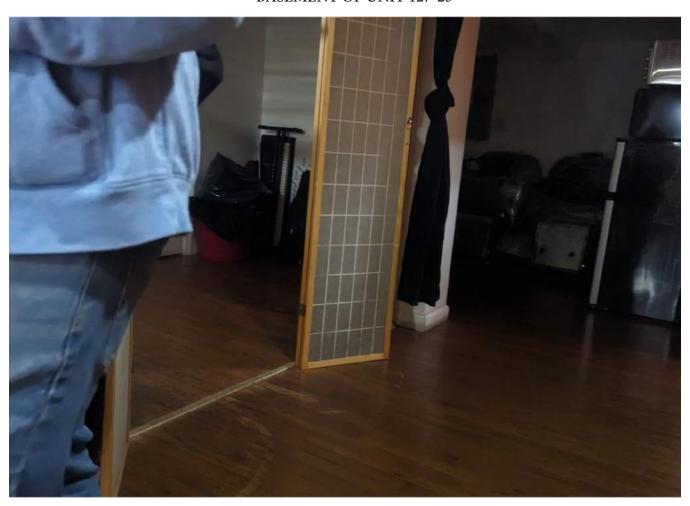


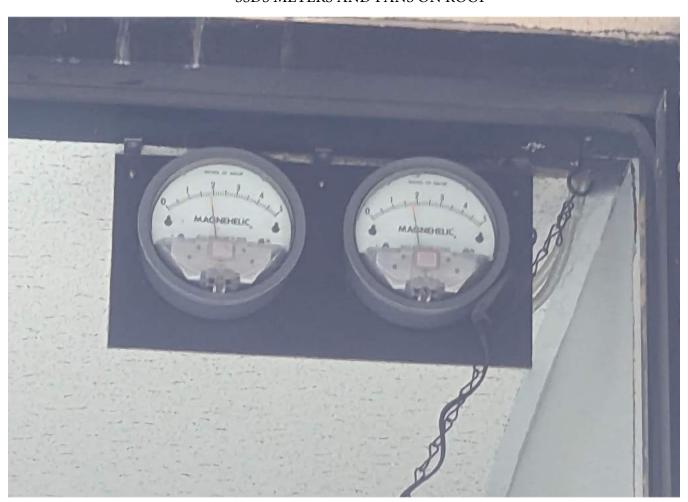










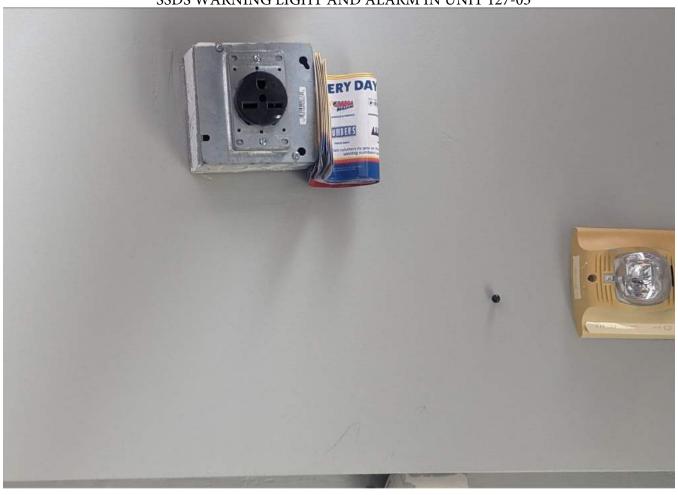


ATTACHMENT 5

PHOTOGRAPHS
OF SSDS SYSTEM

11/7/2023

SSDS METERS AND FANS ON ROOF



SSDS CONTROL PANEL IN BASEMENT OF UNIT 127-03

SSDS WARNING LIGHT AND ALARM IN UNIT 127-03

ATTACHMENT 6

ANALYTICAL RESULTS FROM SSDS EFFLUENT SAMPLING

11/7/2023

ANALYTICAL REPORT

Lab Number: L2366073

Client: Tyll Engineering and Consulting PC

169 Commack Road

Suite H173

Commack, NY 11725

ATTN: Karen Tyll Phone: (631) 664-6477

Project Name: 127-13 MB
Project Number: Not Specified

Report Date: 11/16/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0825), DoD (L2474), FL (E87814), IL (200081), IN (C-MA-04), KY (KY98046), LA (85084), ME (MA00030), MD (350), MI (99110), NJ (MA015), NY (11627), NC (685), OH (CL106), OR (MA-0262), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #525-23-107-88708), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: 127-13 MB
Project Number: Not Specified

Lab Number: L2366073 **Report Date:** 11/16/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2366073-01	LEFT	SOIL_VAPOR	127-13 MERRICK BLVD, JAMAICA	11/07/23 13:15	11/07/23
L2366073-02	RIGHT	SOIL VAPOR	127-13 MERRICK BLVD, JAMAICA	11/07/23 13:15	11/07/23

Project Name:127-13 MBLab Number:L2366073Project Number:Not SpecifiedReport Date:11/16/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:127-13 MBLab Number:L2366073Project Number:Not SpecifiedReport Date:11/16/23

Case Narrative (continued)

Volatile Organics in Air

L2366073-01-02: Samples were transferred from a Tedlar bag into a fused silica lined canister upon receipt in order to extend the holding time for analysis.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 11/16/23

Christopher J. Anderson

ALPHA

AIR

Project Number: Not Specified Report Date: 11/16/23

SAMPLE RESULTS

Lab ID: Date Collected: 11/07/23 13:15

Client ID: LEFT Date Received: 11/07/23

Sample Location: 127-13 MERRICK BLVD, JAMAICA Field Prep: Not Specified

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 11/16/23 02:05

Analyst: JMB

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.499	0.200		2.47	0.989			1
Chloromethane	0.369	0.200		0.762	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	8.21	5.00		15.5	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	69.0	1.00		164	2.38			1
Trichlorofluoromethane	0.261	0.200		1.47	1.12			1
Isopropanol	4.98	0.500		12.2	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1

Project Name: Lab Number: 127-13 MB L2366073 Project Number:

Report Date: Not Specified 11/16/23

SAMPLE RESULTS

Lab ID: L2366073-01

Client ID: **LEFT**

Sample Location: 127-13 MERRICK BLVD, JAMAICA Date Collected: 11/07/23 13:15

Date Received: 11/07/23 Field Prep: Not Specified

Sample Depth:

	ppbV			ug/m3			Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
l Lab							
1.89	0.500		6.81	1.80			1
3.87	0.200		18.9	0.977			1
ND	0.500		ND	1.47			1
ND	0.200		ND	0.809			1
ND	0.200		ND	0.705			1
ND	0.200		ND	1.09			1
ND	0.200		ND	0.639			1
ND	0.200		ND	1.26			1
ND	0.200		ND	0.688			1
ND	0.200		ND	0.924			1
ND	0.200		ND	1.34			1
ND	0.200		ND	0.721			1
ND	0.200		ND	1.07			1
ND	0.200		ND	0.934			1
ND	0.200		ND	0.820			1
ND	0.200		ND	0.908			1
ND	0.500		ND	2.05			1
ND	0.200		ND	0.908			1
ND	0.200		ND	1.09			1
0.375	0.200		1.41	0.754			1
ND	0.200		ND	0.820			1
ND	0.200		ND	1.70			1
ND	0.200		ND	1.54			1
3.18	0.200		21.6	1.36			1
ND	0.200		ND	0.921			1
ND	0.200		ND	0.869			1
	1.89 3.87 ND	Results RL 1 Lab 1.89 0.500 3.87 0.200 ND 0.500 ND 0.200 ND 0.500 ND 0.200 ND	Results RL MDL 1 Lab 1.89 0.500 3.87 0.200 ND 0.500 ND 0.200 ND 0.200	Results RL MDL Results I Lab 1.89 0.500 6.81 3.87 0.200 18.9 ND 0.500 ND ND 0.200 ND ND 0.200 <	Results RL MDL Results RL I Lab 1.89 0.500 6.81 1.80 3.87 0.200 18.9 0.977 ND 0.500 ND 1.47 ND 0.200 ND 0.809 ND 0.200 ND 0.705 ND 0.200 ND 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.721 ND 0.200 ND 0.934	Results RL MDL Results RL MDL I Lab 1.89 0.500 6.81 1.80 3.87 0.200 18.9 0.977 ND 0.500 ND 1.47 ND 0.200 ND 0.809 ND 0.200 ND 0.809 ND 0.200 ND 0.809 ND 0.200 ND 0.705 ND 0.200 ND 1.09 ND 0.200 ND 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.	Results RL MDL Results RL MDL Qualifier I Lab 1.89 0.500 6.81 1.80

11/07/23 13:15

Date Collected:

Project Name: Lab Number: 127-13 MB L2366073

Project Number: Report Date: Not Specified 11/16/23

SAMPLE RESULTS

Lab ID: L2366073-01

Client ID: **LEFT** Date Received: 11/07/23

Sample Location: 127-13 MERRICK BLVD, JAMAICA Field Prep: Not Specified

Sample Depth:

острю ворит.		ppbV	ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	5.47	0.200		32.9	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	98		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	98		60-140

Project Number: Not Specified Report Date: 11/16/23

SAMPLE RESULTS

Lab ID: Date Collected: 11/07/23 13:15

Client ID: RIGHT Date Received: 11/07/23

Sample Location: 127-13 MERRICK BLVD, JAMAICA Field Prep: Not Specified

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 11/16/23 02:44

Analyst: JMB

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	nsfield Lab							
Dichlorodifluoromethane	0.495	0.200		2.45	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	5.00	5.00		9.42	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	32.4	1.00		77.0	2.38			1
Trichlorofluoromethane	0.271	0.200		1.52	1.12			1
Isopropanol	3.72	0.500		9.14	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1

Project Number: Not Specified Report Date: 11/16/23

SAMPLE RESULTS

Lab ID: L2366073-02 Date Collected: 11/07/23 13:15

Client ID: RIGHT Date Received: 11/07/23
Sample Location: 127-13 MERRICK BLVD, JAMAICA Field Prep: Not Specified

Sample Depth:

Campio Dopuii		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
Ethyl Acetate	1.29	0.500		4.65	1.80			1
Chloroform	2.03	0.200		9.91	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.214	0.200		0.806	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	8.98	0.200		60.9	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1

Project Number: Not Specified Report Date: 11/16/23

SAMPLE RESULTS

Lab ID: L2366073-02 Date Collected: 11/07/23 13:15

Client ID: RIGHT Date Received: 11/07/23

Sample Location: 127-13 MERRICK BLVD, JAMAICA Field Prep: Not Specified

Sample Depth:

odinpio Dopin.		ppbV	ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	field Lab							
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	1.67	0.200		10.0	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	98		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	97		60-140

Project Name: Lab Number: 127-13 MB L2366073 Project Number: Not Specified

Report Date: 11/16/23

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 11/15/23 17:34

Parameter Results RL MDL Results RL MDL Qualifier Volatile Organics in Air - Mansfield Lab for samples is in Air - Mans	Dilution
Dichlorodifluoromethane ND 0.200 ND 0.989 Chloromethane ND 0.200 ND 0.413 Freon-114 ND 0.200 ND 1.40 Vinyl chloride ND 0.200 ND 0.511 1,3-Butadiene ND 0.200 ND 0.442 Bromomethane ND 0.200 ND 0.777 Chloroethane ND 0.200 ND 0.528 Ethanol ND 5.00 ND 0.528 Ethanol ND 0.200 ND 0.874 Vinyl bromide ND 0.200 ND 0.874 Acetone ND 0.200 ND 0.874 Trichloroffuoromethane ND 0.500 <td< th=""><th>Factor</th></td<>	Factor
Chloromethane ND 0.200 ND 0.413 Freon-114 ND 0.200 ND 1.40 Vinyl chloride ND 0.200 ND 0.511 1,3-Butadiene ND 0.200 ND 0.442 Bromomethane ND 0.200 ND 0.777 Chloroethane ND 0.200 ND 0.528 Ethanol ND 5.00 ND 0.528 Ethanol ND 0.200 ND 0.874 Ethanol ND 0.200 ND 0.874 Ethanol ND 0.200 ND 0.874 Acetone ND 1.00 ND 0.874 Trichlorofluoromethane ND 0.200 ND 1.	
Freon-114 ND 0.200 ND 1.40 Vinyl chloride ND 0.200 ND 0.511 1,3-Butadiene ND 0.200 ND 0.442 Bromomethane ND 0.200 ND 0.777 Chloroethane ND 0.200 ND 0.528 Ethanol ND 5.00 ND 9.42 Vinyl bromide ND 0.200 ND 0.874 Ethanol ND 0.200 ND 0.874 Ethanol ND 0.200 ND 0.874 Ethanol ND 0.200 ND 0.874 Acetone ND 0.200 ND 1.12 Trichlorofluoroemethane ND 0.500 ND 0.	1
Vinyl chloride ND 0.200 ND 0.511 1,3-Butadiene ND 0.200 ND 0.442 Bromomethane ND 0.200 ND 0.777 Chloroethane ND 0.200 ND 0.528 Ethanol ND 5.00 ND 9.42 Vinyl bromide ND 0.200 ND 0.874 Vinyl bromide ND 0.200 ND 0.874 Vinyl bromide ND 0.200 ND 0.874 Acetone ND 1.00 ND 0.874 Acetone ND 1.00 ND 1.12 Trichloroethane ND 0.500 ND 1.12 Terliary butyl Alcohol ND 0.500 ND	1
1,3-Butadiene ND 0.200 ND 0.442 Bromomethane ND 0.200 ND 0.777 Chloroethane ND 0.200 ND 0.528 Ethanol ND 5.00 ND 9.42 Vinyl bromide ND 0.200 ND 0.874 Acetone ND 1.00 ND 2.38 Trichlorofluoromethane ND 0.200 ND 1.12 Isopropanol ND 0.500 ND 1.23 1,1-Dichloroethene ND 0.500 ND 0.793 Tertiary butyl Alcohol ND 0.500 ND 1.52 Methylene chloride ND 0.500 ND 1.74 3-Chloropropene ND 0.200 ND 0.626 Carbon disulfide ND 0.200	1
Bromomethane ND 0.200 ND 0.777	1
Chloroethane ND 0.200 ND 0.528 Ethanol ND 5.00 ND 9.42 Vinyl bromide ND 0.200 ND 0.874 Acetone ND 1.00 ND 2.38 Trichlorofluoromethane ND 0.200 ND 1.12 Isopropanol ND 0.500 ND 1.23 1,1-Dichloroethene ND 0.200 ND 0.793 Tertiary butyl Alcohol ND 0.500 ND 1.52 Methylene chloride ND 0.500 ND 1.74 3-Chloropropene ND 0.200 ND 0.626 Carbon disulfide ND 0.200 ND 0.623 Freon-113 ND 0.200	1
Ethanol ND 5.00 ND 9.42 Vinyl bromide ND 0.200 ND 0.874 Acetone ND 1.00 ND 2.38 Trichlorofluoromethane ND 0.200 ND 1.12 Isopropanol ND 0.500 ND 1.23 1,1-Dichloroethene ND 0.200 ND 0.793 Tertiary butyl Alcohol ND 0.500 ND 1.52 Methylene chloride ND 0.500 ND 1.74 3-Chloropropene ND 0.200 ND 0.626 Carbon disulfide ND 0.200 ND 0.623 Freon-113 ND 0.200 ND 0.793 1,1-Dichloroethane ND 0.200 -	1
Vinyl bromide ND 0.200 ND 0.874 Acetone ND 1.00 ND 2.38 Trichlorofluoromethane ND 0.200 ND 1.12 Isopropanol ND 0.500 ND 1.23 1,1-Dichloroethene ND 0.200 ND 0.793 Tertiary butyl Alcohol ND 0.500 ND 1.52 Methylene chloride ND 0.500 ND 1.74 3-Chloropropene ND 0.200 ND 0.626 Carbon disulfide ND 0.200 ND 0.623 Freon-113 ND 0.200 ND 0.793 1,1-Dichloroethane ND 0.200 ND 0.809	1
Acetone ND 1.00 ND 2.38 Trichlorofluoromethane ND 0.200 ND 1.12 Isopropanol ND 0.500 ND 1.23 1,1-Dichloroethene ND 0.200 ND 0.793 Tertiary butyl Alcohol ND 0.500 ND 1.52 Methylene chloride ND 0.500 ND 1.74 3-Chloropropene ND 0.200 ND 0.626 Carbon disulfide ND 0.200 ND 0.623 Freon-113 ND 0.200 ND 0.793 trans-1,2-Dichloroethene ND 0.200 ND 0.809 1,1-Dichloroethane ND 0.200 ND 0.809	1
Trichlorofluoromethane ND 0.200 ND 1.12 Isopropanol ND 0.500 ND 1.23 1,1-Dichloroethene ND 0.200 ND 0.793 Tertiary butyl Alcohol ND 0.500 ND 1.52 Methylene chloride ND 0.500 ND 1.74 3-Chloropropene ND 0.200 ND 0.626 Carbon disulfide ND 0.200 ND 0.623 Freon-113 ND 0.200 ND 0.793 trans-1,2-Dichloroethene ND 0.200 ND 0.809 1,1-Dichloroethane ND 0.200 ND 0.809	1
Isopropanol ND 0.500 ND 1.23 1,1-Dichloroethene ND 0.200 ND 0.793 Tertiary butyl Alcohol ND 0.500 ND 1.52	1
1,1-Dichloroethene ND 0.200 ND 0.793 Tertiary butyl Alcohol ND 0.500 ND 1.52 Methylene chloride ND 0.500 ND 1.74 3-Chloropropene ND 0.200 ND 0.626 Carbon disulfide ND 0.200 ND 0.623 Freon-113 ND 0.200 ND 1.53 trans-1,2-Dichloroethene ND 0.200 ND 0.793 1,1-Dichloroethane ND 0.200 ND 0.809	1
Tertiary butyl Alcohol ND 0.500 ND 1.52 Methylene chloride ND 0.500 ND 1.74 3-Chloropropene ND 0.200 ND 0.626 Carbon disulfide ND 0.200 ND 0.623 Freon-113 ND 0.200 ND 1.53 trans-1,2-Dichloroethene ND 0.200 ND 0.793 1,1-Dichloroethane ND 0.200 ND 0.809	1
Methylene chloride ND 0.500 ND 1.74 3-Chloropropene ND 0.200 ND 0.626 Carbon disulfide ND 0.200 ND 0.623 Freon-113 ND 0.200 ND 1.53 trans-1,2-Dichloroethene ND 0.200 ND 0.793 1,1-Dichloroethane ND 0.200 ND 0.809	1
3-Chloropropene ND 0.200 ND 0.626 Carbon disulfide ND 0.200 ND 0.623 ND 0.623 Treon-113 ND 0.200 ND 1.53 Trans-1,2-Dichloroethene ND 0.200 ND 0.793 1,1-Dichloroethane ND 0.200 ND 0.809	1
Carbon disulfide ND 0.200 ND 0.623 Freon-113 ND 0.200 ND 1.53 trans-1,2-Dichloroethene ND 0.200 ND 0.793 1,1-Dichloroethane ND 0.200 ND 0.809	1
Freon-113	1
trans-1,2-Dichloroethene ND 0.200 ND 0.793 1,1-Dichloroethane ND 0.200 ND 0.809	1
1,1-Dichloroethane ND 0.200 ND 0.809	1
110 0.200	1
Methyl tert butyl ether ND 0.200 ND 0.721	1
	1
2-Butanone ND 0.500 ND 1.47	1
cis-1,2-Dichloroethene ND 0.200 ND 0.793	1
Ethyl Acetate ND 0.500 ND 1.80	1
Chloroform ND 0.200 ND 0.977	1

Project Name: Lab Number: 127-13 MB L2366073 Project Number: Not Specified

Report Date: 11/16/23

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 11/15/23 17:34

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	ield Lab for samp	ole(s): 01-	-02 Batch	: WG18527	'19-4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1

Project Name: Lab Number: 127-13 MB L2366073 Project Number: Not Specified

Report Date: 11/16/23

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 11/15/23 17:34

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	_ab for samp	ole(s): 01-	-02 Batc	h: WG18527	19-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Lab Control Sample Analysis Batch Quality Control

Project Name: 127-13 MB
Project Number: Not Specified

Lab Number:

L2366073

Report Date:

11/16/23

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab As	ssociated sample(s):	01-02	Batch: WG185271	9-3				
Dichlorodifluoromethane	93		-		70-130	-		
Chloromethane	95		-		70-130	-		
Freon-114	99		-		70-130	-		
Vinyl chloride	89		-		70-130	-		
1,3-Butadiene	91		-		70-130	-		
Bromomethane	90		-		70-130	-		
Chloroethane	92		-		70-130	-		
Ethanol	86		-		40-160	-		
Vinyl bromide	95		-		70-130	-		
Acetone	117		-		40-160	-		
Trichlorofluoromethane	103		-		70-130	-		
Isopropanol	102		-		40-160	-		
1,1-Dichloroethene	98		-		70-130	-		
Tertiary butyl Alcohol	88		-		70-130	-		
Methylene chloride	94		-		70-130	-		
3-Chloropropene	120		-		70-130	-		
Carbon disulfide	99		-		70-130	-		
Freon-113	109		-		70-130	-		
trans-1,2-Dichloroethene	107		-		70-130	-		
1,1-Dichloroethane	109		-		70-130	-		
Methyl tert butyl ether	97		-		70-130	-		
2-Butanone	113		-		70-130	-		
cis-1,2-Dichloroethene	108		-		70-130	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: 127-13 MB
Project Number: Not Specified

Lab Number: L2366073

Report Date: 11/16/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-02	Batch: WG185271	9-3				
Ethyl Acetate	110		-		70-130	-		
Chloroform	98		-		70-130	-		
Tetrahydrofuran	113		-		70-130	-		
1,2-Dichloroethane	104		-		70-130	-		
n-Hexane	92		-		70-130	-		
1,1,1-Trichloroethane	102		-		70-130	-		
Benzene	82		-		70-130	-		
Carbon tetrachloride	102		-		70-130	-		
Cyclohexane	93		-		70-130	-		
1,2-Dichloropropane	101		-		70-130	-		
Bromodichloromethane	104		-		70-130	-		
1,4-Dioxane	97		-		70-130	-		
Trichloroethene	95		-		70-130	-		
2,2,4-Trimethylpentane	95		-		70-130	-		
Heptane	105		-		70-130	-		
cis-1,3-Dichloropropene	90		-		70-130	-		
4-Methyl-2-pentanone	108		-		70-130	-		
trans-1,3-Dichloropropene	87		-		70-130	-		
1,1,2-Trichloroethane	100		-		70-130	-		
Toluene	97		-		70-130	-		
2-Hexanone	104		-		70-130	-		
Dibromochloromethane	122		-		70-130	-		
1,2-Dibromoethane	94		-		70-130	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: 127-13 MB
Project Number: Not Specified

Lab Number:

L2366073

Report Date:

11/16/23

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-02	Batch: WG185271	19-3				
Tetrachloroethene	92		-		70-130	-		
Chlorobenzene	89		-		70-130	-		
Ethylbenzene	99		-		70-130	-		
p/m-Xylene	100		-		70-130	-		
Bromoform	130		-		70-130	-		
Styrene	91		-		70-130	-		
1,1,2,2-Tetrachloroethane	96		-		70-130	-		
o-Xylene	101		-		70-130	-		
4-Ethyltoluene	94		-		70-130	-		
1,3,5-Trimethylbenzene	92		-		70-130	-		
1,2,4-Trimethylbenzene	93		-		70-130	-		
Benzyl chloride	81		-		70-130	-		
1,3-Dichlorobenzene	95		-		70-130	-		
1,4-Dichlorobenzene	94		-		70-130	-		
1,2-Dichlorobenzene	93		-		70-130	-		
1,2,4-Trichlorobenzene	82		-		70-130	-		
Hexachlorobutadiene	81		-		70-130	-		

Lab Number: L2366073

Report Date: 11/16/23

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Project Name:

Cooler Custody Seal

127-13 MB

NA Absent

Project Number: Not Specified

Container Info	ormation		Initial	Final	Temp		Frozen			
Container ID	Container Type	Cooler	pН	рН	deg C Pres	Seal	Date/Time	Analysis(*)		
L2366073-01A	Tedlar Bag 1 liter-Polypropylene Fitting	NA	NA		Υ	Absent		TO15-LL(30)		
L2366073-01X	Tedlar Bag 1 liter-Polypropylene Fitting	NA	NA		Υ	Absent		TO15-LL(30)		
L2366073-02A	Tedlar Bag 1 liter-Polypropylene Fitting	NA	NA		Υ	Absent		TO15-LL(30)		
L2366073-02X	Tedlar Bag 1 liter-Polypropylene Fitting	NA	NA		Υ	Absent		TO15-LL(30)		

Project Name:127-13 MBLab Number:L2366073Project Number:Not SpecifiedReport Date:11/16/23

GLOSSARY

Acronyms

EDL

LCSD

LOD

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

Laboratory Control Sample Duplicate: Refer to LCS.

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:127-13 MBLab Number:L2366073Project Number:Not SpecifiedReport Date:11/16/23

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- ${\bf J} \qquad \hbox{-Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs)}.$
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

Report Format: Data Usability Report

Project Name:127-13 MBLab Number:L2366073Project Number:Not SpecifiedReport Date:11/16/23

Data Qualifiers

- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name:127-13 MBLab Number:L2366073Project Number:Not SpecifiedReport Date:11/16/23

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 20

Published Date: 6/16/2023 4:52:28 PM Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 4-Ethyltoluene, Az

EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

M	AIR ANALYSIS PAGE OF						OF	Date Rec'd in Lab: 11/8/23 ALPHA Job #: 442, 95							ALPHA Job#: 442 952						
Ana	PHA	CHAIN O	F CUST	ODY	Project Information Project Name: 127-13 MB							port/Data Deliverables Information						CONTRACTOR OF THE PROPERTY OF THE PARTY OF T			
320 Forbes BI TEL: 508-822-	lvd, Mansfield, MA 9300 FAX: 508				Proje	ct Locatio	on: 127-13	Merrick Blv	d, Jama	aica		⊠ A	DEx			□ A	dd'i Dei	iverable	95		
Client Info	-	022-5260		1	Proje	ct #:						Regulatory Requirements/Report Li					s/Rep	ort Lir	mits		
	ngineering and C	onsulting PC			Proje	ect Manager: Karen Tyll						State/Fed				Program			Residential/Commercial		
THE PARTY OF THE P	Commack Road	Company of the Company					#: 24918					NYSI	DEC	REM							
Commack, N					1000	O INCHES	nd-Time			M											
Phone: 6316:	295373				100000	Standard	Care (7.7)	tush (only	confirme	ed if pre-	-approved)		alvei			_					
Fax:												All	alysi	5							
Email: Karen	@tyllengineering	com			Date	Due:		Time:													
☐ These sa	amples have been	Previously an	alyzed by	Alpha								-									
Alpha		All	,	s Below			ed Out	Sampler	Can	ID	ID Flow	TO-15	TO-15 SIM	APH Subtract non-petroleum	FIXED GASES	Sulfides & Mercaptans by TO-15			Sample Specific Comments (i.e. PID)		
Lab Use Only	Sample ID	End Date	Start Time	End Time	Initial Vac	Final Vac	Matrix*	Initials	Size	Can	Controller	۲	P	¥	正	જ			(33.73.57		
660BX	LEFT	11/7/23	GRAB	1150	1	-	sv	кт			TEDLAR		⊠								
-62	RIGHT	11/7/23	GRAB	1150	-	-	SV	KT			TEDLAR		⊠								
		_																			
						-			-	+	_										
			v																Service and the service and th		
*SAMPLE N	MATRIX CODE	S:	r -							Co	ntainer Type			•	-		-		Please print clearly & legibly and completely		
AA = Ambie SV = Soil V	ent Air (Indoor/o /apor/Landfill G ease Specify	Outdoor)	,		F	- Co	h	Relinquis For Tyle	X.	a G	w	Date/1	- ime : 182		10	. Re	ceived I	By: 4			