REMEDIAL INVESTIGATION REPORT

MORRIS PARK YARD RICHMOND HILL, NEW YORK

Prepared For:

Long Island Rail Road Jamaica, New York

Prepared By:

TRC Engineers, Inc. 1430 Broadway New York, New York

TRC Project No. 107865-00010-0007 LIRR Contract No. 5662-9B-4, Releases A & C

March 2009

VOLUME I OF II TABLE OF CONTENTS

Sec	<u>tion</u>		Page
1.0		INTRODUCTION	1-1
2.0		SITE DESCRIPTION	2-1
	2.1	Site Location and Surrounding Land Use	
	2.2	Site History and Uses	
	2.3	Regional Geology and Hydrogeology	
	2.4	Water Supply Resources	2-3
3.0		PRIOR INVESTIGATIONS	3-1
	3.1	Site Investigations Related to the Closure of Hazardous Waste Manageme	ent Units 3-1
	3.2	1996/1997 Remedial Investigation	3-1
	3.3	LIRR Groundwater Sampling	
	3.4	Summary of Prior Investigations	3-2
4.0		REMEDIAL INVESTIGATION SCOPE AND METHODS	4-1
	4.1	Remedial Investigation Objectives and Scope	
	4.2	Soil Sampling	
	4.3	Groundwater Sampling	
	4.4	Soil Vapor Sampling	
	4.5	Characterization of Geology and Hydrogeology	
	4.6 4.7	Evaluation of Chlorinated Solvent Use in Surrounding Area Investigation Derived Waste	
5.0	1.,	RESULTS OF REMEDIAL INVESTIGATION	
	5.1	Soil Sampling Results	
	5.2	Groundwater Sampling Results	
	5.3	Soil Vapor Sampling Results	
	5.4	Site Geology and Hydrogeology	
	5.5	Evaluation of Chlorinated Solvent Use in Surrounding Area	
	5.6	Quality Assurance/Quality Control Data Evaluation	
6.0		QUALITATIVE EXPOSURE ASSESSMENT	6-1
7.0		UPDATED SITE CONCEPTUAL MODEL	7-1
8.0		CONCLUSIONS AND RECOMMENDATIONS	8-1
	8.1	Soil	8-1
	8.2	Groundwater	
	8.3	Soil Vapor	
	8.4	Conclusions/Recommendations	8-3
9.0		REFERENCES	9-1

LIST OF TABLES

	LIST OF TABLES									
Table 1 Table 2A Table 2B Table 3A Table 3B Table 4 Table 5 Table 6	Volatile Organic Compounds in Soil Volatile Organic Compounds in Groundwater Semi-Volatile Organic Compounds in Groundwater Comparison of Groundwater Sampling Results - VOCs in Shallow Wells Comparison of Groundwater Sampling Results - VOCs in Deep Wells Volatile Organic Compounds in Soil Vapor Top of Clay Elevations for Deep Borings and Wells Groundwater Surface Elevation Measurements									
LIST OF FIGURES										
Figure 1	Site Location Map									
Figure 2	Surrounding Land Uses with Sensitive Receptors									
Figure 3	Morris Park Yard Site with Historic AOCs									
Figure 4	Soil Sampling Locations with Refrigerants, PCE and TCE Results									
Figure 5	Groundwater Sampling Locations with Historic and Recent Refrigerants, PCE and TCE Results									
Figure 6	Total Refrigerant Concentrations for Shallow Wells									
Figure 7	Total Refrigerant Concentrations for Deep Wells									
Figure 8	Soil Vapor Sampling Locations with Results of Analysis for Refrigerants and Chlorinated Solvent-Related Compounds									
Figure 9	Geological Cross Section A-A' (North-South)									
Figure 10	Geological Cross Section B-B' (West-East)									
Figure 11	Gardiners Clay Surface Elevation Contour Map									
Figure 12	Groundwater Surface Elevation Contour Map for Shallow Wells Screened in the Unconsolidated Aquifer									
Figure 13	Groundwater Surface Elevation Contour Map for Deep Wells Screened in the Unconsolidated Aquifer									
Figure 14	Potential Sources of Chlorinated Solvents in Surrounding Area									
LIST OF APPENDICES										
Appendix A	DER-10 Fish and Wildlife Resources Impact Analysis Decision Key Form									
Appendix B	Soil Boring Logs, Monitoring Well Construction Logs, Soil Vapor Probe Logs and Groundwater Sampling Logs									
Appendix C	Laboratory Data Packages – Soil and Groundwater									
Appendix D	Laboratory Data Packages - Soil Vapor									
Appendix E	Regulatory Agency Database Reports and Historic Sanborn Fire Insurance Maps (Electronic Copies)									
Appendix F	Data Evaluation and Data Usability Summary Reports (DUSRs)									
Appendix G	Qualitative Human Health Exposure Assessment									

1.0 INTRODUCTION

A remedial investigation (RI) of the Long Island Rail Road Morris Park Yard in Richmond Hill, New York (the "Site") has been completed to delineate chlorofluorocarbons (CFCs) and the chlorinated solvents tetrachloroethene (PCE) and trichloroethene (TCE) in the unconsolidated upper aquifer. Sampling was performed in accordance with the New York State Department of Environmental Conservation (NYSDEC) and New York State Department of Health (NYSDOH) approved RI Work Plan (RIWP) dated February 2006, revised figures issued in August 2006, and the Supplemental RI Work Plan (Supplemental RIWP) dated January 18, 2008. This Remedial Investigation Report (RIR) presents the findings and results of investigations at the Site and offsite locations, and represents the basis for the evaluation of remedial alternatives for the Site, as warranted.

Based on the findings of previous studies (refer to Section 3.0), the principal contaminants of concern at the Site are CFCs, PCE, and TCE. With respect to CFCs, previous reports have identified the CFCs of concern to be trichlorofluoromethane (TCFM or Freon 11), chlorodifluoromethane (CDFM or Freon 22), dichlorofluoromethane (DCFM or Freon 21), and dichlorodifluoromethane (DCDFM or Freon 12).

The principal objectives of the RI were as follows:

- Investigate potential on-site sources areas for CFCs, PCE and TCE above and below the water table (refer to Section 3.4 for a list of the specific potential source areas),
- Delineate the extent of CFCs, PCE and TCE in groundwater, confirm groundwater flow direction, and determine the elevation of the bottom of the unconsolidated aquifer (i.e., top of Gardiners Clay unit),
- Determine concentrations of CFCs, PCE and TCE in soil-gas at on-site and off-site locations, and
- Generate sufficient data for completing a qualitative exposure assessment, in accordance with NYSDEC DER-10 guidance (December 2002), and as necessary identify and evaluate appropriate remedies for CFCs, PCE, and TCE in groundwater, soil and soil vapor, including monitored natural attenuation.

In response to the results of the initial RI, additional RI activities described in the Supplemental RIWP were performed to evaluate potential upgradient sources of CFCs, PCE and TCE in the groundwater and to further investigate volatile organic compounds (VOCs) in soil vapor at the Site and in the surrounding area.

2.0 SITE DESCRIPTION

2.1 Site Location and Surrounding Land Use

The Site encompasses approximately 23 acres in the Richmond Hill section of Queens, New York. The Site is bounded by the LIRR Richmond Hill Yard to the north, Atlantic Avenue to the south, 121st Street to the west, and the Van Wyck Expressway to the east. Figure 1 shows the project Site location.

The surrounding area consists of mixed residential, light industrial and commercial zones. Figure 2 shows the uses of properties in the surrounding area, and nearby sensitive receptors, such as hospitals and schools.

2.2 Site History and Uses

Review of historic Sanborn Maps from 1901 to 1996 and prior reports indicates that the Site has been utilized as a railroad yard for over 100 years. Historic Sanborn Maps show the surrounding area immediately to the northeast and hydraulically upgradient of the Site was used for industrial and commercial purposes.

According to the Remedial Investigation Report by STV dated 1998, the LIRR has utilized the Site primarily to overhaul and repair diesel locomotives and diesel and electric coach cars, and to rebuild major mechanical and electrical components of equipment transported to the Site from other LIRR facilities. Historic Site uses also include periodic and routine maintenance and fueling of diesel locomotives. Many of the facility operations ceased in the early 1990s, coinciding with the opening of the LIRR's Hillside Maintenance Complex ("Hillside"), and only routine maintenance and fueling of diesel locomotives are currently performed at the Site. In January 1997, Dvirka and Bartilucci Consulting Engineers (D&B) documented the closure of two hazardous waste management units (HWMUs) at the Site relating to former paint stripping and container storage. According to the D&B report, paint stripping operations for electric cars ceased in 1990.

Buildings and structures relating to former maintenance and repair activities at the Site have been demolished since the transfer of operations to Hillside, including the following:

- Electrical car and truck shops
- Paint and air conditioning (a/c) shops

- Component shop
- West and east transfer pits
- Boiler house
- Diesel wheel and maintenance shop

In connection with several of these former structures, investigations and remediation were performed in accordance with approved NYSDEC work plans. Figure 3 shows the locations of several historic areas of concern at the Site relevant to the Remedial Investigation, which is the subject of this report.

2.3 Regional Geology and Hydrogeology

The geology of Queens consists of unconsolidated glacial deposits overlying crystalline bedrock. Based on the findings of previous studies (refer to Section 3.0) and available literature (Buxton, Soren, Posner, and Shernoff, 1981), the subsurface geology in the area of the Site likely includes the following formations:

- Pleistocene upper glacial deposits (an aquifer),
- Pleistocene Gardiners Clay (a confining unit),
- Pleistocene Jameco Gravel (an aquifer),
- Possibly the Cretaceous Magothy Formation and Matwan Group (confining unit and aquifer),
- Cretaceous Raritan Formation (confining unit and aquifer), and
- Precambrian/Paleozoic metamorphic and igneous bedrock.

The upper glacial deposits at the Site consist of outwash gravels, sands and silty sands extending from land surface to the Gardiners Clay. Groundwater in the unconsolidated glacial deposits at the Site (the "Unconsolidated Upper Aquifer") is encountered at approximately 40 feet below ground surface (bgs), and groundwater flow direction is to the southwest, toward Jamaica Bay. According to the RI report by STV (STV, 1998), the hydraulic conductivity of the Unconsolidated Upper Aquifer has been estimated at 270 feet per day.

The Gardiners Clay underlying the Unconsolidated Upper Aquifer consists of greenish-gray clays and silts, with some interbedded sands, and represents a confining layer. The Gardiners Clay at the Site is generally encountered at about 140 to 160 feet bgs. The hydraulic conductivity of this geologic unit is very low.

Based on review of previous reports, borings have not been advanced into the Gardiners Clay at the Site. According to geological literature for the area, the Magothy Formation usually underlies the Gardiners Clay and consists of very fine to coarse sands and silty sands, and supports an aquifer. In western Long Island, these geological units have been eroded, and therefore may not be beneath the Site. The Raritan Formation lies beneath the Magothy Formation and Matawan Group or, if these are not present, beneath the Gardiners Clay, and consists of an upper clay unit and a lower sand unit, known as the Lloyd Sand Member, which represents the deepest potential aquifer below the Site.

2.4 Water Supply Resources

Presently, the Site and surrounding area properties do not receive water from the unconsolidated aquifer for domestic use; rather, the Site and most of Queens receive water from public reservoirs in Upstate New York that are part of the New York City reservoir system. The confined aquifers below the unconsolidated aquifer, such as the Magothy or Raritan, are used to provide drinking water to parts of Queens.

In the past, the unconsolidated aquifer in the area had been used to supply public water, from approximately 1904 to 1947, when overpumping of the aquifer resulted in saltwater intrusion (Buxton, Soren, Posner, and Shernoff, 1981). Two public water supply wells (New York City Department of Environmental Protection [NYCDEP] Well Nos. 31 and 45), screened in the upper unconsolidated aquifer, are located within one-mile of the Site. According to regulatory agency database reports prepared by Environmental Data Resources, Inc. (EDR), Well No. 31 is located adjacent to, northeast and upgradient of the Site. The NYCDEP lists Well No. 31 as "inactive" (http://www.nyc.gov/html/dep/pdf/gwsservice07.pdf). The regulatory agency database reports indicate that NYCDEP Well No. 45 is approximately 2,200 feet southwest and downgradient of the Site. The NYCDEP indicates that Well No. 45 was "not operated in 2007" (http://www.nyc.gov/html/dep/pdf/gwsservice07.pdf). The EDR regulatory agency database reports are provided in Appendix E.

3.0 PRIOR INVESTIGATIONS

A number of previous investigations by others have been completed at the Site, including: preliminary site investigations by STV and EPM (STV/EPM, 1994), testing associated with petroleum tank closures by STV and EPM (STV/EPM 1995 and STV/EPM 1998), testing associated with closures of HWMUs by D&B (D&B, 1997 and 2000), an RI of the Site by STV (STV, 1998), and groundwater sampling by LIRR of existing monitoring wells at the Site (LIRR, March, June and October 2005). The preliminary site investigation by STV and the testing associated with tank closures evaluated petroleum-related areas of concern (AOCs), and therefore do not relate to the contaminants of concern for this study. The other previous investigations are discussed further below.

3.1 Site Investigations Related to the Closure of Hazardous Waste Management Units

D&B documented the closure of two HWMUs (the Former Container Storage Area and the Former Paint Stripping Operations Area) at the Site in its initial closure report dated January 1997, and supplemental closure report dated November 2000. Groundwater sampling results indicated no detectable quantities of CFCs or TCE and only trace amounts of PCE (i.e., estimated values less than 10 parts per billion [ppb]) in the groundwater monitoring wells located downgradient of the hazardous waste management units.

3.2 1996/1997 Remedial Investigation

STV completed an RI of the Site between January 1996 and March 1997 in accordance with a NYSDEC-approved work plan, and documented the findings of the RI in a report dated May 1998. The RI by STV identified and delineated the approximate extent of CFCs in groundwater at the Site, identified CFCs in off-site wells, defined important aquifer properties (groundwater flow direction and velocity), and predicted contaminant migration rates for the CFCs. The RI did not indicate complete delineation of the extent of off-site groundwater contamination or identify on-site sources of CFCs in soil above and below the water table.

3.3 LIRR Groundwater Sampling

In 2005, LIRR performed four rounds of groundwater sampling of existing wells that could be located at the Site and off-site. Laboratory results for the 2005 groundwater sampling by LIRR showed noticeable improvements in groundwater quality with regard to CFC contamination

compared to the results of STV's 1997 study. The concentration of trichlorofluoromethane (TCFM) in off-site monitoring well MW-10-160, which previously exhibited the highest levels of TCFM, decreased from 680 micrograms per liter (µg/L) to non-detect. Groundwater samples collected from other wells also exhibited significant decreases in CFC concentrations, including samples collected from MW-1-60, MW-2-50R, MW-1-140, MW-2U-60, MW-2D-60, MW-9-60, MW-10-60, and MW-11-140.

3.4 Summary of Prior Investigations

Prior reports indicate that past use of the Site for maintenance of train cars involved the use of solvents and refrigerants. The prior investigations by D&B relating to the closure of the two former on-site HWMUs found no PCE or TCE in the soil above NYSDEC Technical and Administrative Guidance Memorandum (TAGM) 4046 guidance values and only trace concentrations of PCE in groundwater, slightly above the NYSDEC Class GA standard. For this reason, in the February 2006 RIWP the former HWMUs are not considered a potential chlorinated solvent source area. The 1998 RI Report by STV identified elevated levels of CFCs in the groundwater in monitoring wells MW-1-60 and MW-17-60¹, and a closed air conditioning shop that represented potential source areas of CFCs.

Based on review of available historic data (summarized above) and documentation regarding an abandoned sewer line, the NYSDEC-approved February 2006 RIWP identified the following areas of concern with respect to CFCs and/or chlorinated solvents.

Area of Concern	Nature of Concern
Air Conditioning Shop (closed)	Potential source area for CFCs in groundwater due to potential past Site use for maintenance of trains
Abandoned sewer line	Potential source area for CFCs and chlorinated solvents in groundwater due to potential past Site use for maintenance of trains
Area of former monitoring well MW-17-60	Potential CFCs source area based on historic CFC levels in groundwater
Area of monitoring well MW-1-60	Potential CFCs source area based on historic CFC levels in groundwater
Area of monitoring well MW-5-180	Potential chlorinated solvent source area based on historic levels of TCE and PCE in groundwater
Groundwater (on-site and off-site)	CFCs above Class GA groundwater standards and guidance values

¹ Monitoring well MW-17-60, which was sampled by STV in 1997, was reinstalled and renamed MW-17-50R.

4.0 REMEDIAL INVESTIGATION SCOPE AND METHODS

Following NYSDEC and NYSDOH approval of the RIWP in August 2006, TRC implemented the remedial investigation fieldwork between September and December 2006. Following NYSDEC and NYSDOH approval of the Supplemental RIWP in February 2008, TRC installed and sampled three additional upgradient monitoring wells to evaluate potential off-site sources of chlorinated solvents in groundwater and advanced and sampled 11 additional soil vapor probes to complete the characterization of volatile organic compounds (VOCs) in soil vapor on Site and in surrounding areas.

A Fish and Wildlife Resources Impact Analysis was not required, as indicated by the completed DER-10 Fish and Wildlife Resources Impact Analysis Decision Key Form (refer to Appendix A for a completed copy of this form).

4.1 Remedial Investigation Objectives and Scope

The principal objectives of the RI were as follows:

- Investigate potential on-site sources areas for CFCs, PCE and TCE above and below the water table (refer to Section 3.4 for a list of the specific potential source areas),
- Delineate the extent of CFCs, PCE and TCE in groundwater, confirm groundwater flow direction, and determine depth of the bottom of the unconsolidated aquifer (i.e., top of Gardiners Clay unit),
- Determine concentrations of CFCs, PCE and TCE in soil-gas at on-site and off-site locations, and
- Generate sufficient data for completing a qualitative exposure assessment, in accordance
 with NYSDEC DER-10 guidance, and as necessary identify and evaluate appropriate
 remedies for CFCs, PCE, and TCE in groundwater, soil and soil vapor, including
 monitored natural attenuation.

The initial scope of work for the RI included the following:

- Advancing four soil borings and selecting soil samples from the borings for laboratory analysis to evaluate potential source areas at the Site,
- Installing, developing, and sampling 16 groundwater monitoring wells (MW-17-50R, MW-2-160R, MW-21S, MW-21D, MW-22S, MW-23S, MW-23D, MW-24S, MW-25S, MW-25D, MW-26S, MW-27D, MW-28S, MW-28D, MW-29D, and MW-30D) screened in the unconsolidated aquifer to further delineate the extent of CFCs and chlorinated solvent contamination on-Site and off-Site,
- Additionally to further delineate the extent of CFCs and chlorinated solvents, repairing, as required, and collecting for analysis, groundwater samples from 17 existing wells (MW-1-60, MW-1-140, MW-2-50R, MW-2D-60, MW-3U-60, MW-3D-60, MW-3-160, MW-5-60, MW-5-180, MW-6-168, MW-8-60, MW-8-150, MW-9-60, MW-10-60, MW-10-160, MW-11-60, and MW-12-60) on-Site and off-Site,
- Advancing 14 on-Site and off-Site permanent probes (SG-1 through SG-14), and collecting soil vapor samples for laboratory analysis to determine the concentrations of CFCs and chlorinated solvents in soil gas, and
- Collecting geologic and hydrogeologic data.

Except for sampling of one proposed deep, off-site monitoring well, MW-24D, TRC implemented the scope of work proposed in the approved RIWP. Monitoring well MW-24D was damaged during well development and therefore was not utilized for groundwater sampling. As explained further in this report, sampling of nearby monitoring wells adequately delineated the off-site extent of CFCs and chlorinated solvent-related contamination in the groundwater. Consequently, there was no need to reinstall monitoring well MW-24D. Also a departure from the RIWP scope, TRC collected groundwater samples for laboratory analysis from nine additional existing monitoring wells: MW-2U-60, MW-PMW-5, MW-4-60, MW-6-60, MW-11-140, MW-15-60, MW-16-60, MW-19-60, and MW-20-50. Lastly, TRC installed three more soil borings than proposed in the RIWP: borings B-1, B-6 and B-7. Boring B-1 was advanced within the general vicinity of the abandoned sewer lines and the location of the former Air Conditioning Shop. Borings B-6 and B-7 coincided with groundwater monitoring wells MW-29D and MW-30, respectively.

After completing the initial scope of work, TRC prepared a Supplemental RIWP to further evaluate potential off-site upgradient sources of groundwater contamination and to complete the characterization of VOCs in soil vapor at on-site and off-site locations. To aid in the evaluation of potential off-site, upgradient sources of groundwater contamination, the scope of the Supplemental RIWP included a review of regulatory agency databases and Historic Sanborn Maps of the surrounding area.

Following NYSDEC and NYSDOH approval of the Supplemental RIWP, TRC installed and sampled an additional three permanent groundwater monitoring wells (MW-31D, MW-32D, and MW-33D) at upgradient locations and an additional 11 permanent soil vapor probes (SG-15 through SG-25).

The Site-specific sampling techniques in the Quality Assurance Project Plan (QAPP), which is part of the RIWP, were followed during implementation of the RI. Presented below are detailed descriptions of each phase of the remedial investigation.

4.2 Soil Sampling

The overall objective of this task was to investigate potential on-site sources of CFCs, PCE, and TCE. The areas of concern (AOC) were an abandoned sewer line that had served the east and west transfer pits, the location of the former Air Conditioning Shop, and the locations of monitoring wells MW-1-60, MW-17-60, and MW-5-180. As shown on Figure 4, TRC installed seven soil borings to evaluate these AOCs.

Soil borings were advanced to the water table utilizing a hollow stem auger drill rig. Refer to Figure 4 for soil boring locations. In the case of borings B-5, B-6, and B-7 that were converted to wells screened at the bottom of the unconsolidated aquifer (i.e., "deep wells"), soil borings were advanced to the top of the Gardiners Clay. Soil boring samples above the water table were continuously collected at 2-foot intervals and screened for VOCs utilizing a flame ionization detector (FID) and a photoionization detector (PID). Additionally, field observations (e.g., staining, odors, etc.) were recorded. Below the water table, soil boring samples were collected at 10-foot intervals and screened in the same manner as described above. Geologic descriptions of the soil, field screening results and observations were recorded in field logs. Appendix B contains soil boring logs.

Based on field measurements and observations, TRC selected 18 soil samples from the seven soil borings for laboratory analysis, exceeding the minimum sampling and analysis frequency of the RIWP (i.e., two soil samples per boring). Soil samples were analyzed for Target Compound List Volatile Organic Compounds (TCL VOCs) by United States Environmental Protection Agency (USEPA) Method 8260.

4.3 Groundwater Sampling

The overall objective of this task was to further delineate the extent of CFCs, PCE and TCE in the Unconsolidated Aquifer on-site and off-site. TRC collected groundwater samples from the 19 newly installed monitoring wells and 26 existing monitoring wells shown in Figure 5. Consistent with the previous study by STV, groundwater wells screened to intercept the top of the upper unconsolidated aquifer are referred to as "shallow wells" and those screened in the bottom 20 feet of the unconsolidated aquifer are referred to as "deep wells".

Groundwater was generally encountered between 30 to 40 feet bgs. The shallow groundwater monitoring wells were screened from approximately 6 feet above the water table to approximately 13 feet below the water table. The deep monitoring wells were screened in the lowermost 20 feet of the upper unconsolidated aquifer, above the top of the Gardiners Clay. The groundwater monitoring wells installed by TRC were constructed of threaded Schedule 40 polyvinyl chloride (PVC) well casing and 20-slot Schedule 40 PVC well screen. Well construction diagrams for the wells installed by TRC are in Appendix B.

Following installation, the groundwater monitoring wells were developed, using a submersible pump until the turbidity of the water was less than or equal to 50 nephelometric turbidity units (NTUs) or consecutive measurements of groundwater parameters (pH, conductivity, temperature, and dissolved oxygen) sufficiently stabilized. The groundwater wells were surged aggressively to remove disturbed fines from the formation and sand pack. The groundwater conditions were allowed to equilibrate for at least 7 days prior to sampling. The volumes of water removed, the well development times, and field instrument readings were recorded on a field log, and facsimiles of the logs are in Appendix B.

Groundwater monitoring wells were purged utilizing a low-flow, submersible stainless steel pump with dedicated polyethylene tubing connected to a flow-through cell for monitoring water quality parameters. The submersible pump was decontaminated prior to sampling utilizing a solution of deionized water and alconox. Low purging rates were used to minimize suspension

of particulate matter in the well. Field parameters including temperature, conductivity, pH, oxidation-reduction potential (ORP), turbidity and dissolved oxygen (DO) were recorded prior to and during sampling. Groundwater samples were collected after field parameters had stabilized for three consecutive readings within established ranges.

In 2006, groundwater samples collected from monitoring wells during implementation of the original RIWP were analyzed for TCL VOCs by USEPA Method 8260 and TCL semivolatile organic compounds (TCL SVOCs) by USEPA Method 8270. In 2008, groundwater samples collected from monitoring wells installed during implementation of the Supplemental RIWP were analyzed for TCL VOCs by EPA Method 8260.

4.4 Soil Vapor Sampling

The overall objective of this task was to obtain sufficient data to characterize levels of VOCs in soil vapor at the Site and in surrounding areas. As shown on Figure 8, TRC installed 25 permanent soil vapor probes, nine located near the perimeter of the Site and the remaining 16 located off-site in the sidewalks of public streets. A hollow stem auger drill rig was used to install two deep soil vapor probes (SG-23 and SG-24) to an approximate depth of 27 feet bgs. The permanent soil vapor probes were constructed in accordance with the relevant guidance in the NYSDOH document titled, *Guidance for Evaluating Soil Vapor Intrusion in the State of New York*, dated October 2006 ("NYSDOH Vapor Intrusion Guidance").

The soil vapor probes were not sampled until at least 48 hours after installation. Prior to sampling, one to three volumes of each soil vapor probe and sampling tube were purged. Soil vapor samples were collected in SUMMA canisters in accordance with the NYSDEC-approved work plan and analyzed by modified EPA TO-15 for volatile organic compounds, including CFCs, PCE, and TCE.

4.5 Characterization of Geology and Hydrogeology

As part of the remedial investigation, TRC studied the subsurface geology, groundwater flow direction and the depth to the top of the Gardiners Clay. TRC logged and classified subsurface conditions at each monitoring well location, determined groundwater flow directions using existing and new shallow and deep wells, and determined the depth to the top of the Gardiners Clay at the newly installed deep groundwater monitoring well locations. For the determination of groundwater flow directions, groundwater surface elevations were measured in monitoring wells, the locations and elevations of the top of the casings of new and existing groundwater

monitoring wells were established by a New York State licensed land surveyor, Munoz Engineering, P.C. ("Munoz"), the groundwater surface elevation measurements were mapped, and water table surface elevation contours were generated. Elevations of the tops of the casings of new and existing wells were surveyed to the Borough of Queens Topographical Bureau Datum (QTBD), which is 2.725 feet above mean sea level at Sandy Hook, New Jersey, 1929.

4.6 Evaluation of Chlorinated Solvent Use in Surrounding Area

As part of preparing the Supplemental RIWP, TRC reviewed regulatory agency database search reports and Historic Sanborn Maps to identify potential sites of chlorinated solvent use in the surrounding area. The regulatory agency database search reports were prepared by Environmental Data Resources, Inc. (EDR) of Milford, Connecticut. Due to the size of the Site, the evaluation of off-site surrounding properties required ordering two regulatory agency database search reports -- one targeting properties south of the Site (91-90 121st Street), and the other targeting properties north of the Site (127-90 89th Street). Historic Sanborn Maps for immediately surrounding properties were provided by EDR for the years 1901, 1911, 1925, 1942, 1951, 1963, 1967, 1981, 1991, and 1996.

In addition, TRC reviewed reports concerning an off-site property obtained by a Freedom of Information Act (FOIA) request made to the NYSDEC. The FOIA request was submitted to the NYSDEC for the property located at 129-09 Jamaica Avenue (a.k.a. "Uniforms for Industry").

4.7 Investigation Derived Waste

Investigation derived waste (IDW) generated during the RI included soil cuttings, and wastewater from well sampling, development and decontamination of sampling equipment. The IDW was placed in U.S. Department of Transportation (DOT) – approved drums and disposed of at an appropriate off-site disposal facility.

5.0 RESULTS OF REMEDIAL INVESTIGATION

A discussion of the results of the remedial investigation is presented in this section of the report. Soil boring logs, groundwater monitoring well construction logs, and groundwater sampling forms are in Appendix B. Laboratory analytical data packages (electronic copies) for soil and groundwater samples are in Appendix C. Laboratory analytical data packages for soil vapor samples are in Appendix D. Database search reports, Historic Sanborn Maps, and documentation regarding an off-site property obtained from a FOIA request (electronic copies) are in Appendix E. Data evaluation and data usability summary reports (DUSRs) are in Appendix F.

5.1 **Soil Sampling Results**

Soil samples were collected in September and October 2006 and analyzed by Chemtech Laboratories of Mountainside, New Jersey. Table 1 provides a summary of the soil sampling results and evaluation criteria.

As indicated on Figure 4, soil borings were advanced at the four locations (i.e., B-1 through B-4²) specified in the RIWP, plus three additional boring locations (i.e., B-5 through B-7). Borings B-2, B-5, B-6 and B-7 were converted into permanent groundwater monitoring wells MW-17-50R, MW-2-160R, MW-29D, and MW-30D, respectively. The boreholes for the three deep monitoring wells (B-5/MW-2-160R, B-6/MW-29D, and B-7/MW-30D) were used to evaluate soil conditions to the top of the Gardiners Clay.

Consistent with historical data, field observations during soil sampling revealed that the upper unconsolidated aquifer under the Site consists of glacial outwash gravels and medium to coarse sands, with minor fine sand and silt, particularly in the lower portion. Grossly contaminated soil, as defined in DER-10, was not encountered during soil sampling. With the exception of borings B-2 and B-7, odors or elevated FID and PID readings were not encountered during soil sampling. In boring B-2, a soil sample collected near the groundwater table, at a depth of 38 to 40 feet bgs, exhibited petroleum odors. In boring B-7, soil below the water table exhibited petroleum odors and elevated FID and PID readings at approximate depths of 50 to 67 feet bgs. The soil sample collected from boring B-7 at 145 to 147 feet bgs exhibited a chemical odor, but no elevated PID

² Groundwater monitoring well MW-GF-20 was later installed by LIRR at the location of B-4 in response to an unrelated request made by NYSDEC in connection with former gasoline USTs in the area.

or FID readings. Borings B-2 and B-7 were advanced near or within an area of the Site currently undergoing remediation for petroleum-related contamination.

In accordance with guidance provided by the NYSDEC, soil sampling results were evaluated by comparison to 6 NYCRR Part 375 Restricted Residential Soil Cleanup Objectives (SCOs) for Protection of Public Health. Significant results of the soil sampling are as follows:

- VOCs were not detected above the SCOs.
- Except for in soil collected from boring B-2, CFCs, PCE and TCE were not detected in soil samples collected above the water table, and there were no VOCs detected at concentrations above the SCOs in soil samples collected above the water table. (Note: there are no SCOs for the CFCs targeted as part of the RI). TCFM and PCE were both detected at 1,600 parts per billion (ppb) in the soil sample collected 24 to 26 feet bgs in boring B-2. Chlorodifluoromethane (CDFM) was also detected in this soil sample, at 241 ppb.
- Except for in soil samples collected from borings B-2, B-5 and B-7, CFCs, PCE and TCE were not detected in soil samples collected at and below the water table. TCFM was detected at 1,400 ppb, CDFM was detected at 190 ppb, and PCE was detected at 1,300 ppb in the soil sample collected 38 to 40 feet bgs in boring B-2. TCFM was detected at 72 ppb in the soil sample collected 170 to 172 feet bgs in boring B-5. TCE was detected at 970 ppb, which is less than the SCO for TCE of 10,000 ppb, in the soil sample collected 145 to 147 feet bgs from boring B-7.
- Acetone was found in soil samples collected from borings B-1, B-5 and B-7. Acetone is
 a common laboratory contaminant and was also detected in the field blank. Therefore,
 the presence of acetone in the soil samples most likely represents an artifact from
 laboratory contamination.

5.2 Groundwater Sampling Results

As part of the initial RI, groundwater samples were collected from 42 groundwater monitoring wells (23 on-site and 19 off-site locations) in November and December 2006 (refer to Figure 5). Groundwater samples from this initial round were analyzed for VOCs and SVOCs by Chemtech of Mountainside, New Jersey. As part of the Supplemental RIWP, groundwater samples were

collected from three newly installed upgradient offsite, deep groundwater monitoring wells in October 2008. Groundwater samples from this subsequent round were analyzed for VOCs by Con-Test Analytical Laboratory in East Longmeadow, MA. In total, the RI and Supplemental RI included the collection and analysis of 45 groundwater samples, plus an additional nine quality assurance/quality control samples (i.e., duplicates, field blanks, and trip blanks).

The groundwater sampling results are summarized in Tables 2A and 2B. Figure 5 shows the concentrations of CFCs, PCE and TCE detected in the groundwater monitoring wells and, if applicable, the concentrations of these VOCs detected in the groundwater monitoring wells during the most recent, prior sampling performed by STV in 1997 or LIRR in 2005. Tables 3A and 3B provide a comparison between the groundwater sampling results of the prior studies and those of the RI with respect to VOCs in shallow and deep wells. Figures 6 and 7 show inferred total CFCs concentration contours based on the results of the RI and Supplemental RI, in the shallow and deep wells, respectively, at the Site and in surrounding areas.

Except for deep monitoring wells located northwest of the turntable and at off-site, upgradient locations to the north, the groundwater sampling results generally revealed no significant impacts to groundwater conditions. TCE and PCE were not detected in shallow groundwater monitoring wells above NYSDEC Class GA groundwater quality standards or guidance values ("Class GA Values"). The concentrations of CFCs detected in most groundwater monitoring wells also were below Class GA Values. In the area northwest of the turntable, TCE and PCE were detected above Class GAValues in deep wells MW-5-180, MW-29D, and MW-30D. TCE was also detected above the Class GA Value in the deep groundwater monitoring well MW-3-160 located southwest of the turntable. TCE and PCE were also detected above Class GA Values in the four off-site upgradient deep monitoring wells MW-28D, MW-31D, MW-32D and MW-33D.

A detailed discussion of the results of the analyses of the groundwater samples collected in 2006 and 2008 is presented below:

• CFCs above Class GA Values were detected in 14 of 45 groundwater monitoring wells sampled by TRC, with levels of total CFCs in on-site wells decreasing significantly since the groundwater sampling event in January 1997 by STV. The decrease in concentrations of total CFCs in groundwater wells ranged from 15 to 100 percent. Exceptions to this overall decrease in CFC levels are with respect to monitoring well MW-2D-60 where the concentration of TCFM increased slightly from 46 ppb to 51 ppb, and monitoring well MW-6-168 where the concentration of TCFM increased from non-detect to 1.2 ppb.

Also, total CFCs increased slightly from 2 ppb in January 1997 to 24 ppb in December 2006 in monitoring well MW-5-180.

- TCE was detected above the Class GA Value in eight of the 45 groundwater monitoring wells, and these exceedances for TCE were found only in deep wells. Four of the TCE exceedances were detected in the off-site upgradient groundwater monitoring wells MW-28D, MW-31D, MW-32D, and MW-33D and three of the TCE exceedances were detected in groundwater monitoring wells MW-29D, MW-30D, and MW-5-180 located northwest of the turntable. On-site monitoring well MW-3-160, located south of the turntable, also exhibited a concentration of TCE above the Class GA Value.
- PCE was detected above the Class GA Value in seven of the 45 groundwater monitoring wells. Concentrations of PCE above the Class GA Value were detected only in the four off-site upgradient deep wells MW-28D, MW-31D, MW-32D and MW-33D and the three on-site monitoring wells MW-29D, MW-30D, and MW-5-180 located northwest of the turntable.
- SVOCs were detected above Class GA Values in four of the 42 groundwater monitoring wells. In the sample collected from monitoring well MW-6-60, naphthalene was detected at 68 ppb, which exceeds the Class GA Value of 10 ppb. In samples collected from three groundwater monitoring wells (MW-10-60, MW-25S, and MW-10-160), bis(2-ethylhexyl)phthalate was detected above the Class GA Value of 5 ppb. This compound is a common laboratory contaminant, and its presence in the groundwater samples most likely reflects an artifact arising from laboratory contamination.
- The off-site groundwater monitoring wells (MW-21S, MW-21D, MW-23S, MW-23D, MW-25S, MW-25D, MW-22S and MW-27D) delineated the approximate off-site extent of CFC-related groundwater contamination in the unconsolidated aquifer. As a result, proposed downgradient monitoring well MW-24D, which would have been located further southwest of the Site, was not installed.

5.3 Soil Vapor Sampling Results

As part of the scope of the initial RIWP, soil vapor samples were collected from six on-site and eight off-site permanent soil vapor probe locations in November 2006. As part of the Supplemental RIWP, soil vapor samples were collected from three additional on-site and eight

additional off-site permanent soil vapor probes in October 2008. Figure 8 shows the nine on-site and 16 off-site soil vapor probe locations. Soil vapor samples were analyzed by Air Toxics LTD of Folsom, California for VOCs.

The soil vapor sampling results are summarized in Table 4. Figure 8 shows the concentrations of CFCs, TCE, PCE, trans-1,2-dichloroethene, cis-1,2-dichloroethene, and vinyl chloride detected in the sample collected from each soil vapor probe. The laboratory analytical data packages for the soil vapor samples are in Appendix E.

The results of the analyses of the soil vapor samples are discussed below. Note that specific screening criteria were not applied to the evaluation of the soil gas sampling results, since there is no regulatory guidance for soil vapor in New York State.

- CFCs were detected in soil vapor probe samples, except the samples collected from probes SG-7 and SG-18. The highest concentration of CFCs (individual and total) was found in on-Site soil vapor probe SG-1 located in the south central part of the Site. In SG-1 TCFM and CDFM were detected at 3,000 micrograms per cubic meter ($\mu g/m^3$) and 2,000 $\mu g/m^3$, respectively.
- The highest concentration of PCE (3,600 μg/m³) was found in the on-Site deep soil vapor probe SG-23, located near the western Site boundary. Elevated concentrations of PCE were also found in on-Site shallow soil vapor probe SG-13 and off-site shallow soil vapor probe SG-6.
- Concentrations of TCE detected in soil vapor samples were significantly lower than the concentrations of PCE detected. The highest detected concentration of TCE (77 $\mu g/m^3$) was detected in on-Site, deep soil vapor probe SG-23.
- Except for SG-14, concentrations of degradation products of TCE and PCE, including cis- and trans-1,2-dichloroethene and vinyl chloride, when detected, were at less than 10 μg/m³. The highest concentrations of cis-1,2-dichloroethene (60 μg/m³) and vinyl chloride (220 μg/m³) were detected in shallow on-Site soil vapor probe SG-14.

5.4 Site Geology and Hydrogeology

Geological data obtained during the RI is consistent with the findings of the previous characterization of the site geology by STV. Unconsolidated glacial deposits are present beneath the Site, and consist of medium to coarse sands with cobbles, gravel and boulders. The sands with cobbles, gravel and boulders extend from the surface to approximately 30 feet bgs or and approximate elevation of 20 feet with respect to Queens Topographical Bureau Datum (QTBD), and are interpreted by TRC and STV to represent a glacial till. Under the glacial till are, light brown, medium to coarse sands that extend to the top of the Gardiners Clay.

The top of the Gardiners Clay generally slopes downward from northeast to southwest. Northeast of the Site, in the boreholes for off-site monitoring wells MW-31D and MW-32D, the top of the Gardiners Clay was encountered at an approximate elevation of -70 feet (QTBD). Southwest of the Site, in the borehole for off-site groundwater monitoring well MW-25D, the top of the Gardiners Clay was encountered at an approximate elevation of -115 feet (QTBD). Exceptions to this overall slope of the top of the Gardiners Clay were encountered in the boreholes for groundwater monitoring wells MW-2-160R, MW-11-140, and MW-1-140. In the location of groundwater monitoring well MW-2-160R, the top of the Gardiners Clay appears to drop to form a localized depression. In the vicinity of groundwater monitoring wells MW-11-140 and MW-1-140, the top of the Gardiners Clay rises to form a localized mound.

Figures 9 and 10 provide geological cross-sections of the Site and immediately surrounding area based on TRC's and STV's borings. Figure 11 is an elevation contour map of the top of the Gardiners Clay based on data obtained from deep borings converted to groundwater monitoring wells. Table 5 provides a summary of top of clay elevation data from deep borings and wells.

Groundwater was generally encountered between 35 and 39 feet bgs in the on-site and off-site wells. A New York State-licensed land surveyor surveyed most of the locations and elevations of tops of casings of existing and new groundwater monitoring wells except for monitoring well MW-29D, which could not be surveyed due to lack of access. After the wells were surveyed, TRC measured groundwater surface elevations in monitoring wells prior to groundwater sampling. Groundwater surface elevations and surveyed information are presented in Table 6. Groundwater surface elevation contour maps generated from measurements in shallow and deep wells are presented on Figures 12 and 13, respectively, and depict a groundwater flow direction of northeast to southwest for shallow wells and northeast to southwest for deep wells.

5.5 Evaluation of Chlorinated Solvent Use in Surrounding Area

The regulatory agency database search report identified nearby potential sources of chlorinated solvents in the surrounding area, including dry cleaners, RCRA generators of solvents, and a property being considered for the New York State Brownfield Cleanup Program (BCP). The potential BCP site is the Uniforms for Industry (UFI) property located at 129-01 Jamaica Avenue, which is upgradient and approximately 1,700 feet northeast of the Site.

According to documentation obtained from a FOIA request, the UFI property has caused on-site and off-site chlorinated solvent groundwater contamination and the direction of groundwater flow from the UFI property is to the southwest (i.e., toward the Site). The off-site investigation memorandum report by Roux Associates Inc. dated June 1, 2006 and a subsurface investigation report by G.C. Environmental Inc. dated March 29, 2006, document the presence of the following chlorinated solvents in groundwater at the UFI property: dichloroethene (DCE), vinyl chloride, PCE, and TCE. The concentrations of these chlorinated solvents in groundwater beneath the UFI property exceed the NYSDEC Class GA Values. Maps showing the concentrations of PCE and TCE in groundwater reveal off-site exceedances of Class GA Values south of the UFI property. The results of soil vapor sampling in connection with the UFI property in a report dated December 2008 reveal elevated concentrations of PCE (4,200,000 ug/m³) and TCE (220,000 ug/m³).

The review of Historic Sanborn Maps revealed significant industrial use north of the Site that potentially involved solvents, and included foundries, machine shops, laundries, a plastics manufacturer, and a knitting mill. The Historic Sanborn Map review also showed a historic dry cleaner (Unexcelled Laundry System) near the northwest corner of the intersection of 121st Street and Atlantic Avenue (immediately southwest of the Site, across 121st Street) and an ink manufacturer immediately adjacent to the western boundary of the Site.

Figure 14 shows the locations of the off-site sources of chlorinated solvents which have potentially impacted groundwater quality on the Site.

5.6 Quality Assurance/Quality Control Data Evaluation

A QA/QC program for the Remedial Investigation was instituted to confirm that the project objectives were met. The QA/QC program was consistent with the Quality Assurance Project Plan (QAPP), which was submitted with the RIWP and detailed the data quality objectives

(DQOs) for each analytical parameter for the entire investigation. During the program, the collection of QC samples was monitored by the TRC Project QA Officer to verify that the field QC samples were collected at the proper frequency. Finally, the QA/QC program included data validation for an appropriate percentage of the analytical data, as outlined in the QAPP.

For the RI, approximately 40 percent of the analytical data generated from groundwater sampling and 40 percent of the analytical data generated for the soil vapor sampling was subjected to data validation.

The results of the data validation are summarized in Data Usability Summary Reports (DUSRs). The DUSRs are in Appendix F and include a discussion on each qualified result, the potential bias and the effects on data usability. The groundwater data and soil vapor data were found to be valid and usable for decision-making purposes. Two potential issues described below, were noted, but in general, these issues do not adversely affect the decision-making process.

- The reporting limits for most VOCs in groundwater exceed those required in the QAPP; however, the reporting limits generally are below the project action levels in most cases. In all cases, the laboratory reported results below the reporting limits are qualified as estimated (J) values, if present. Therefore, the presence of these compounds at the project action levels could still be assessed. For these reasons, TRC has concluded that the data can be utilized for decision-making purposes.
- The laboratory inadvertently did not report results for CDFM (Freon 22) as required in the QAPP. In order to evaluate whether or not Freon 22 was present in the groundwater samples, the laboratory was requested to perform a calibration for this compound on each instrument used to determine the retention time and response factor of this compound. Sample data were then evaluated to determine if Freon 22 was present at the approximate retention time determined. All results for Freon 22 were therefore qualified as estimated since calibration was performed after sample analysis. However, these results are still usable for evaluating the presence or absence of this compound.

6.0 QUALITATIVE EXPOSURE ASSESSMENT

This subsection summarizes the Qualitative Exposure Assessment, which is presented in its entirety in Appendix G.

Based on the findings of the RI and prior investigations by others, the principal contaminants of potential concern (COPCs) associated with either off-site or on-site sources are chlorinated solvents, tetrachloroethene (PCE) and trichloroethene (TCE); petroleum-related compounds benzene, ethylbenzene, methyl tert-butyl ether (MTBE) naphthalene and isopropylbenzene; and chlorofluorocarbons (CFCs), trichlorofluoromethane (TCFM) or freon 11, and dichlorodifluoromethane (DCDFM) or freon 12.

The following COPCs were considered to originate from the Site ("Site-related"): CFCs in groundwater and soil vapor and benzene, ethylbenzene, isopropylbenzene and naphthalene in groundwater. The following COPCs were considered to originate primarily from off-site sources ("not Site related"): chlorinated solvents (PCE, TCE, 1,2-dichloroethene, and vinyl chloride) in deep groundwater and soil vapor, methylene chloride in groundwater, MTBE in groundwater, bis(2-ethylhexyl)phthalate in groundwater, and chloroform in soil vapor.

The qualitative exposure assessment evaluated the potential for exposure associated with Site-related chemicals identified in groundwater, soil and soil vapor. Non-Site-related chemicals were identified and also considered in this evaluation.

There are no potentially complete exposure pathways for current industrial workers, future construction workers and current and future off-site residents with respect to Site-related chemicals. The only potentially complete exposure pathway for Site-related COPCs is the vapor intrusion exposure pathway for future industrial workers. Benzene and naphthalene, two Site-related COPCs, were identified above vapor intusion screening criteria in shallow groundwater at monitoring well location MW-6, located in the track yard. The potential for exposure exists only if a building is constructed in this area. However, there are no plans for the construction of a building in the track yard; therefore, the potential for exposure by a future industrial worker is remote. In addition, concentrations of PCE and TCE in soil vapor on-Site, exclusive of sampling locations on the south property boundary near an apparent off-Site source, were below screening criteria and therefore do not pose a risk to Site receptors.

7.0 UPDATED SITE CONCEPTUAL MODEL

The updated conceptual model explains the nature and extent of the contaminants known to be present at the Site and in surrounding areas, the dominant fate and transport characteristics, potential exposure pathways, and potential impacts to receptors. In summary, the updated conceptual model for the Site consists of likely chlorinated solvent-related impacts to groundwater and soil vapor from off-site sources, and CFC-related impacts to soil vapor and groundwater from past use of CFCs at the Site. The chlorinated solvent-related groundwater contamination above Class GA Values was primarily found in deep groundwater wells located near the upgradient boundary of the Site and off-site, in upgradient locations north/northeast of the Site. Solvent-related groundwater contamination above Class GA Values was not found in shallow groundwater monitoring wells installed at the Site. CFC-related groundwater contamination above Class GA Values was found in some shallow groundwater wells in the downgradient portion of the Site and in deep groundwater wells downgradient of the Site. The groundwater contaminants at the Site presently pose no significant risk to receptors since groundwater is not utilized for consumption. The highest concentrations of PCE detected in soil vapor were in samples collected near off-site sources to the southwest and west.

According to Historic Sanborn Maps, the surrounding area northeast and upgradient of the Site has been occupied by various industries that very likely utilized chlorinated solvents, including foundries, machine shops, a plastics manufacturer, laundries, and a knitting mill. The regulatory agency database report also revealed past and current use of chlorinated solvents in nearby areas to the northeast, including the UFI Site and property proposed for entry into the Brownfield Cleanup Program (BCP) with documented solvent-related groundwater contamination.

The presence of solvent-related groundwater contamination in only deep groundwater monitoring wells is consistent with an off-site source. In a separate phase state, the chlorinated solvents are heavier than water and behave as a dense nonaqueous phase liquid (DNAPL), and can move downward through the saturated zone until reaching a low permeability hydrogeological unit, which, for the Site and surrounding area, could be the top of the Gardiners Clay. In the case of the Site, the Gardiners Clay is expected to control the movement of solvent-related groundwater contamination.

An ink manufacturer and a dry cleaner, industries that in the past commonly utilized chlorinated solvents, historically occupied nearby properties immediately west and southwest of the Site, respectively. Such past uses of nearby properties could have caused chlorinated solvent-related

impacts to soil vapor in these locations and in surroundings areas. Soil vapor sampling results support this hypothesis.

The Site has been utilized as a maintenance facility for steam and diesel locomotives and coaches for over 100 years. Maintenance activities have included rebuilding and routine service of major mechanical and electrical components, including air conditioning units for coaches. CFCs were introduced in the 1930s as a refrigerant, and their use was essentially unregulated until passage of amendments to the Clean Air Act in the early 1990s that banned intentional venting of CFC gases during maintenance and decommissioning of appliances. Therefore, the potential existed for releases of CFCs due to routine service work associated with air conditioning units for approximately 60 years at the Site.

CFCs typically exist as volatile liquids at most temperatures in the environment. In a liquid state, CFCs are more dense than water and therefore, when in a separate phase, act in a similar manner to chlorinated solvents. The Gardiners Clay also represents a barrier to downward migration of CFCs at the Site. Except for in soil collected from boring B-2, CFCs were not found in soil samples collected above the water table; therefore, soil sampling results indicate that downward migration of CFCs already has occurred at the Site. CFCs were found in soils samples collected below the water table, and their concentrations generally vary, showing no discernable contaminant trend with depth. This finding is likely consistent with releases that occurred long ago, in which adsorption and desorption of CFCs from the aquifer matrix and transport of dissolved CFCs within the unconsolidated aquifer have taken place. Groundwater sampling results reveal significant decreases in total CFCs in the unconsolidated aquifer since the STV RI. This finding shows that natural attenuation of CFC-related groundwater contamination is occurring at the Site.

A discussion of exposure pathways and potential impacts to receptors is presented above in Section 6.0.

8.0 CONCLUSIONS AND RECOMMENDATIONS

The results of the RI have established an off-site source or sources as being responsible for chlorinated solvent-related impacts to deep groundwater quality at the Site and to soil vapor quality at off-site locations. The RI delineated the approximate on-Site and off-site extent of elevated CFCs in groundwater, and generally has confirmed the trend of significantly decreasing levels of CFCs in groundwater established by LIRR groundwater sampling since the STV study. The RI results also have revealed no evidence of persisting on-site sources of CFCs, which is generally consistent with the decrease in levels of CFCs in groundwater over time. The RI results also revealed no on-site source (s) of chlorinated solvents, as indicated by the lack of Class GA Value exceedances in shallow groundwater wells at the Site.

Specific conclusions regarding soil, groundwater, and soil vapor conditions are presented below.

8.1 Soil

Soil sampling results revealed no sources of solvent-related compounds or CFCs at the Site. VOCs were not detected in soil samples above SCOs. PCE was detected at 1,600 ppb in the soil sample collected from 24 to 26 feet bgs in boring B-2, which slightly exceeds the protection of groundwater value for PCE of 1,300 ppb. Detectable concentrations of PCE, however, were not found in the sample collected from groundwater monitoring well MW-17-50R installed at this location.

8.2 Groundwater

As shown on Figure 5, groundwater sampling results revealed chlorinated solvent-related impacts in the deep unconsolidated aquifer from off-site upgradient source(s) to the northeast. The highest concentrations of TCE (1,810 ppb) and PCE (198 ppb) were found in upgradient, off-site deep groundwater monitoring well MW-33D. The highest concentrations of chlorinated solvent-related compounds in samples collected from on-Site wells were found in deep wells located near the upgradient boundary of the Site. PCE or TCE were not detected above Class GA Values in any of the on-site or off-site shallow wells. This finding is consistent with the downward movement of chlorinated solvent-related groundwater contamination from a distant off-site source. Additionally, information obtained from regulatory agency databases and Historic Sanborn Maps reveal the potential use of chlorinated solvents in the off-site and upgradient surrounding area to the northeast.

The qualitative exposure assessment indicated that the chlorinated solvent and CFC-related groundwater contamination at the Site and locations downgradient of the Site do not pose a significant risk to human receptors since groundwater is not utilized for consumption.

8.3 Soil Vapor

In the absence of guidance values for VOCs in soil gas, total concentrations in soil vapor were evaluated with respect to location and depth.

Soil vapor sampling results generally revealed higher concentrations of CFCs in soil vapor at on-Site than at off-site soil vapor sampling locations. This finding is consistent with the past use of the Site as the principal source of CFC contamination. At off-site, co-located shallow soil vapor probe SG-6 and deep soil vapor probe SG-24 (SG-6/SG-24), the concentrations of total CFCs detected are higher than other off-site locations. CFCs were detected at higher concentrations in the deep soil vapor probe, SG-24, than in the shallow probe, SG-6, indicating that CFCs in soil vapor increase with depth. However, CFCs were not detected above Class GA Values in groundwater monitoring well MW-10-60 located adjacent to the soil vapor sampling locations, indicating that groundwater may not be the source of CFCs in soil vapor.

Soil vapor sampling results revealed higher concentrations of PCE in soil vapor near the western boundary of the Site and at off-site locations to the west than in on-Site soil vapor sampling locations. A likely explanation for this distribution of PCE in soil vapor is the presence of historic off-site sources of solvents located immediately west of the Site. Specifically, the highest concentration of PCE in soil vapor (3,600 ug/m³) was detected in deep soil vapor probe SG-23, which was installed near the western property boundary, co-located with shallow probe SG-13. An elevated concentration (1,600 ug/m³) of PCE in soil vapor was also detected in soil vapor probe SG-13. As shown on Figure 8, SG-13 and SG-23 are located immediately adjacent to the site of an off-site historic ink manufacturer and engraver. The second highest concentration (2,700 ug/m³) of PCE in soil vapor was detected in shallow soil vapor probe SG-6. An elevated concentration (910 ug/m³) of PCE in soil vapor was also detected in the deep soil vapor probe SG-24. As shown on Figure 8, these soil vapor probe locations are immediately adjacent to a historic dry cleaner. Excluding the soil vapor probes (SG-3, SG-4, SG-13, SG-14, SG-22, and SG-23) near the west property boundary, which could be influenced by nearby offsite sources of chlorinated solvents (i.e., historic ink manufacturer and dry cleaner), similar concentrations of PCE were found in on-site and off-site soil vapors probes. For example, PCE

concentrations detected in samples collected from on–Site soil vapor probes SG-1, SG-2 and SG-21 range from 43 to 130 ug/m³. PCE concentrations detected in samples collected from off-site soil vapor probes SG-8, SG-11, SG-12, SG-15, SG-16, SG-17, SG-18, SG-19, and SG-25, which are not located near known potential chlorinated solvents sources, range from 12 to 230 ug/m³. Therefore, the concentrations of PCE found in the soil vapor on the Site may be representative of background conditions.

Soil vapor sampling results generally revealed no elevated concentrations of TCE or degradation products of PCE and TCE in soil gas.

8.4 Conclusions/Recommendations

Based on the findings of the RI, remedial action for the Site does not appear to be warranted. Chlorinated solvent-related contamination in deep groundwater and soil vapor at the Site is the result of off-site sources or can be attributed to background conditions. CFC-related contamination in groundwater and soil vapor can be attributed to past on-Site use; however, groundwater sampling results show a continuation of natural attenuation of CFCs in groundwater, and the on-Site conditions have been evaluated as part of the qualitative risk assessment. Therefore, no further action with respect to chlorinated solvents and CFCs is recommended on Site.

9.0 REFERENCES

- 1. Remedial Investigation Report for Morris Park Yard, Volumes I and II, STV Incorporated, May 1998.
- 2. Container Storage Area and Former Paint Stripping Operations Report, Dvirka and Bartilucci Consulting Engineers, January 1997
- 3. Reconnaissance of the Ground-Water Resources of Kings and Queens Counties, New York, Herbert Buxton, Julian Soren, Alex Posner, and Peter Shernoff, U.S. Geological Survey, Open File Report 81-1186, 1981.
- 4. New York City Department of Environmental Protection (NYCDEP), http://www.nyc.gov/html/groundwater.html
- 5. New York State Department of Environmental Conservation (NYSDEC), DRAFT DER-10, Technical Guidance for Site Investigation and Remediation, NYSDEC Division of Environmental Remediation. 12/25/02.
- 6. Closure Program Container Storage Area and Former Paint Stripping Operation, Long Island Rail Road Morris Park Repair Facility, D&B Environmental Services, January 1997.
- 7. Supplemental Closure Program Container Storage Area and Former Paint Stripping Operation, Morris Park Repair Facility, Dvirka and Bartilucci Consulting Engineers, November 2000.
- 8. Environmental Data Resources, Inc. (EDR) Regulatory Agency Database Search Report, 91-90 121st Street, Richmond Hill, New York, 12/21/07
- 9. Environmental Data Resources, Inc. (EDR) Regulatory Agency Database Search Report, 127-90 89th Street, Richmond Hill, New York, 12/21/07
- 10. Environmental Data Resources, Inc. (EDR) Sanborn Maps: 1901, 1911, 1925, 1942, 1951, 1963, 1967, 1981, 1991, 1996
- 11. Additional Subsurface Investigation of Uniforms for Industry, G.C. Environmental, Inc., March 29, 2006
- 12. Offsite Investigation Summary, Roux Memorandum, Roux Associates Inc., June 1, 2006
- 13. Interim Report of Soil Vapor Sampling Results, Environmental Liability Management, LLC, December 2008

TABLES

TABLE 1 Volatile Organic Compounds in Soil

Table 1 Volatile Organic Compounds in Soil Long Island Rail Road Morris Park Yard

SAMPLE NAME	NYSDEC Brownfield	B-1 (18-20)	B-1 (36-38)	B2-(24-26)	B2-(38-40)	B-3(23-25)	B-3(27-29)	B-3(37-39)	B-4(25-27)	B4-(39-41)	B5 (37-39)	B5 (170-172)	B6-(36-38)	B6-(48-50)	B6-(165-167)	B6-(165-167)	B7-(35-37)	B7-(57-59)
SAMI LE NAME	Residential Use	D-1 (10-20)	D-1 (30-36)	MW-17-50R	MW-17R	D-3(23-23)	B -3(21-29)	B -3(31-39)	B-4(23-21)	D4-(39-41)	(MW-2-160R)	(MW-2-160R)	MW-29D	MW-29D	MW-29D	MW-29D (Dup.)	MW-30D	MW-30D
LAB SAMPLE ID	Soil Cleanup	X4794-01	X4794-02	X4494-01	X4494-02	X4494-06	X4494-07	X4494-08	X4494-09	X4494-10	X4572-02	X4494-03	X4494-11	X4494-12	X4673-01	X4673-02	X4449-01	X4449-02
DATE SAMPLED	Objectives (1)	10/3/06	10/3/06	09/18/06	09/18/06	09/19/06	09/19/06	09/19/06	09/20/06	09/20/06	09/15/06	09/19/06	09/20/06	09/20/06	09/22/06	09/22/06	09/11/06	09/12/06
DEPTH INTERVAL	Objectives	18-20 foot	36-38 foot	24-26 foot	38-40 foot	23-25 foot	27-29 foot	37-39 foot	25-27 foot	39-41 foot	37-39 foot	170-172 foot	36-38 foot	48-50 foot	165-167 foot	165-167 foot	35-37 foot	57-59 foot
DILUTION FACTOR		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
DECHONIMETOR	(ug/Kg)	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Dichlorodifluoromethane (DCDFM)	NC	390 U	450 U	380 U	410 U	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
Chloromethane	NC	100 J	450 U	380 U	410 U	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
Vinyl Chloride	210	390 U	450 U	380 U	410 U	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
Bromomethane	NC	100 J	200 J	380 U	410 U	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
Chloroethane	NC	390 U	450 U	380 U	410 U	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
Trichlorofluoromethane (TCFM)	NC	390 U	450 U	1600	1400	450 U	420 U	380 U	380 U	2500 U	560 U	72 J	320 U	320 U	370 U	370 U	450 U	590 U
1,1,2-Trichlorotrifluoroethane	NC	390 U	450 U	380 U	410 U	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
1,1-Dichloroethene	100,000	390 U	450 U	380 U	410 U	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
Acetone	100,000	2000	2200	1900 U	2000 U	2200 U	2100 U	1900 U	1900 U	12000 U	840 J	510 J	1600 U	1600 U	1800 U	1900 U	470 J	2900 U
Carbon Disulfide	NC	390 U	450 U	380 U	410 U	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
Methyl Tert-Butyl Ether	62,000	390 U	450 U	380 U	410 U	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
Methyl Acetate	NC	390 U	450 U	130 J	210 J	130 J	140 J	110 J	120 J	430 J	560 U	350 U	85 J	100 J	370 U	370 U	450 U	590 U
Methylene Chloride	51,000	390 U	450 U	380 U	410 U	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
trans-1,2-Dichloroethene	100,000	390 U	450 U	380 U	410 U	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
1,1-Dichloroethane	19,000	390 U	450 U	380 U	410 U	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
Cyclohexane	NC 100,000	390 U	450 U	380 U	510	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
2-Butanone	100,000	1900 U	2200 U	550 J	660 J	770 J	690 J	600 J	540 J	2800 J	2800 U	1700 U	370 J	500 J	1800 U	1900 U	2200 U	2900 U
Carbon Tetrachloride	1,400	390 U 390 U	450 U	380 U	410 U	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
cis-1,2-Dichloroethene Chloroform	59,000 10,000	390 U	450 U	380 U	410 U	450 U	420 U	380 U 380 U	380 U	2500 U 2500 U	560 U	350 U	320 U 320 U	320 U	370 U	370 U 370 U	450 U 450 U	590 U
1,1,1-Trichloroethane	10,000	390 U	450 U 450 U	55 J 380 U	51 J 410 U	450 U 450 U	420 U 420 U	380 U	380 U 380 U	2500 U	560 U	350 U 350 U	320 U	320 U 320 U	370 U 370 U	370 U	450 U	590 U 590 U
Methylcyclohexane	NC	390 U	450 U	100 J	1200	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
Benzene	2,900	390 U	450 U	1500	1300	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
1.2-Dichloroethane	2,300	390 U	450 U	380 U	410 U	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
Trichloroethene (TCE)	10,000	390 U	450 U	380 U	410 U	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
1,2-Dichloropropane	NC	390 U	450 U	380 U	410 U	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
Bromodichloromethane	NC	390 U	450 U	380 U	410 U	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
4-Methyl-2-Pentanone	NC	1900 U	2200 U	380 U	2000 U	2200 U	2100 U	1900 U	1900 U	12000 U	2800 U	1700 U	1600 U	1600 U	1800 U	1900 U	2200 U	2900 U
Toluene	100,000	390 U	450 U	1600	1500	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	120 J	320 U	370 U	370 U	450 U	590 U
t-1,3-Dichloropropene	NC	390 U	450 U	380 U	410 U	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
cis-1,3-Dichloropropene	NC	390 U	450 U	380 U	410 U	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
1,1,2-Trichloroethane	NC	390 U	450 U	380 U	410 U	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
2-Hexanone	NC	1900 U	2200 U	1900 U	2000 U	2200 U	2100 U	1900 U	1900 U	12000 U	2800 U	1700 U	320 U	1600 U	1800 U	1900 U	2200 U	2900 U
Dibromochloromethane	NC	390 U	450 U	380 U	410 U	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
1,2-Dibromoethane	NC	390 U	450 U	380 U	410 U	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
Tetrachloroethene (PCE)	5,500	390 U	450 U	1600	1300	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
Chlorobenzene	100,000	390 U	450 U	380 U	410 U	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
Ethylbenzene	30,000	390 U	450 U	49 J	45 J	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
m/p-Xylenes	100,000 (2)	780 U	900 U	390 J	380 J	890 U	830 U	770 U	770 U	5000 U	1100 U	690 U	640 U	640 U	740 U	750 U	890 U	1200 U
o-Xylene	100,000 (2)	390 U	450 U	110 J	160 J	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
Styrene	NC	390 U	450 U	380 U	410 U	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
Bromoform	NC	390 U	450 U	380 U	410 U	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
Isopropylbenzene	NC	390 U	450 U	380 U	410 U	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
1,1,2,2-Tetrachloroethane	NC	390 U	450 U	380 U	410 U	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
1,3-Dichlorobenzene	17,000	390 U	450 U		410 U	450 U	420 U	380 U	380 U	2500 U		350 U	320 U	320 U	370 U		450 U	590 U
1,4-Dichlorobenzene	9,800	390 U	450 U	380 U	410 U	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
1,2-Dichlorobenzene	100,000	390 U	450 U	380 U	410 U	450 U	420 U	380 U	380 U	2500 U		350 U	320 U	320 U	370 U	370 U	450 U	590 U
1,2-Dibromo-3-Chloropropane	NC NG	390 U	450 U	380 U	410 U	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
1,2,4-Trichlorobenzene	NC NG	390 U	450 U	380 U	410 U	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
Chlorofluoromethane	NC NG	390 U	450 U	380 U	410 U	450 U	420 U	380 U	380 U	2500 U	560 U	350 U	320 U	320 U	370 U	370 U	450 U	590 U
Chlorodifluoromethane (CDFM)	NC NC	3900 U	4500 U	241 J	190 J	4500 U	4200 U	3800 U	3800 U	25000 U	5600 U	3500 U	3200 U	3200 UJ	3700 U	3700 U	4500 U	5900 U
Fluorodichloromethane (DCFM)	NC	5000 U	5000 U	3800 U	4100 U	4500 U	4200 U	3800 U	3800 U	25000 U	5000 U	3500 U	3200 U	3200 U	5000 U	5000 U	5000 U	5000 U

- NOTES:
 (1) Soil Cleanup Objective is Protection of Public Health for Residential Use (6NYCRR Subpart 3.75-6.8(b))
 (2) There is no Soil Cleanup Objective for m/p-xylenes or o-xylene.

- The Soil Cleanup Objective for total xylenes is 100,000 ug/kg.
- Bold shaded values exceed Soil Cleanup Objective B Analyte found in associated method blank NC No Soil Cleanup Objective

- U Not detected
 J Estimated value
 UJ Estimated nondetect

TRC ENGINEERS, INC. Page 1 of 2 2/6/2009

Table 1 Volatile Organic Compounds in Soil Long Island Rail Road Morris Park Yard

LAB SAMPLE ID	06 09/22/06 NA ug/L 0 U 5.0 0 U 5.0 0 U 5.0
DATE NAME Color	06 09/22/06 NA ug/L 0 U 5.0 0 U 5.0 0 U 5.0
DEPTI INTERVAL 10	NA ug/L 5.0 U 5.0 U 5.0 U 5.0 U 5.0
Dictional Column Dictional C	ug/L 0 U 5.0 0 U 5.0 0 U 5.0 0 U 5.0
Coloradian Col	5.0 0 U 5.0 0 U 5.0 0 U 5.0
Deblored Character CDFN SC \$70 U \$80 U \$50 U	5.0 0 U 5.0 0 U 5.0 0 U 5.0
Chlorenschane	0 U 5.0 0 U 5.0
Vigit Charles) U 5.0
Renomethane NC 570 U 580 U 5.0	
Chlorestane	
Tickbordsurounderstance (TCPA) NC 570 U 580 U 50	0 U 5.0 0 U 5.0
Li-2-Trichbrorethme	0 U 5.0
1.1. Delichorocheme	0 U 5.0
Carbon Disalization NC S70 U S80 U S.0 U) U 5.0
Methyl Actor Methyl Ether	5 U 25
Setty Acetate NC S70 U S80 U S.0 U S	0 U 5.0
Methylene Chloride	U 5.0
Lans-12-Dichloroschane	0 U 5.0
1.1-Dichlororchane	0 U 5.0
Cyclobrane	0 U 5.0
2-Butanone	0 U 5.0 0 U 5.0
Carbon Tetrachloride	5 U 25
September Sept	0 U 5.0
Chloroform	0 U 5.0
1,1-17richloroethane	0 U 5.0
Benzene 2,900) U 5.0
1.2-Dichloroethane	0 U 5.0
Trichloroethene (TCE) 10,000 570 U 970 5.0 U	0 U 5.0
1,2-Dichloropropane	0 U 5.0
Second color of the color of	0 U 5.0
A-Methyl-2-Pentanone	0 U 5.0
Toluene 100,000 570 U 580 U 5.0 U	0 U 5.0 5 U 25
t-1,3-Dichloropropene NC 570 U 580 U 5.0 U <td>0 U 5.0</td>	0 U 5.0
cis-1,3-Dichloropropene NC 570 U 580 U 5.0 U </th <td>0 U 5.0</td>	0 U 5.0
1,1,2-Trichloroethane	0 U 5.0
Dibromochloromethane NC 570 U 580 U 5.0 U	U 5.0
1,2-Dibromoethane NC 570 U 580 U 5.0 U	5 U 25
Tetrachloroethene (PCE) 5,500 570 U 580 U 5.0	U 5.0
Chlorobenzene 100,000 570 U 580 U 5.0 U	0 U 5.0
Ethylbenzene 30,000 570 U 580 U 5.0	0 U 5.0
	0 U 5.0
m/o_Xylenes 100 000 ⁽²⁾ 1100 II 1200 II 10 U	0 U 5.0 0 U 10
100,000 1100 10 10 10 9300 10 10 10 10 10 10 10 10 10 10 10 10 1	
0-1ytent 100,000 5/0 500 5.0 5.0 400 0	0 U 5.0
	0 U 5.0
	0 U 5.0 0 U 5.0
	0 U 5.0 0 U 5.0
	0 U 5.0
	0 U 5.0
	0 U 5.0
) U 5.0
) U 5.0
Fluorodichloromethane (DCFM) NC 5000 U 5000 U 500 U 50 U 50 U 50 U 50) U 50

- NOTES:
 (1) Soil Cleanup Objective is Protection of Public Health for Residential Use (6NYCRR Subpart 3.75-6.8(b))
 (2) There is no Soil Cleanup Objective for m/p-xylenes or o-xylene.

- The Soil Cleanup Objective for total xylenes is 100,000 ug/kg.
- Bold shaded values exceed Soil Cleanup Objective B Analyte found in associated method blank NC No Soil Cleanup Objective

- U Not detected
 J Estimated value
 UJ Estimated nondetect

TRC ENGINEERS, INC. Page 2 of 2 2/6/2009

TABLE 2A Volatile Organic Compounds in Groundwater

Table 2A Volatile Organic Compounds in Groundwater Long Island Rail Road Morris Park Yard

		Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow
SAMPLE NAME	Class GA Groundwater	MW-1-60	MW-2-50R	MW-2D-60	MW-2U-60	MW-3U-60	MW3D-60	MW-4-60	MW-5-60	MW-PMW-05	MW-6-60	MW-8-60	MW-9-60	MW-10-60	MW-11-60	MW-12-60	MW-15-60	MW-16-60	MW-17-50R	MW-19-60	MW-20-50	MW-21S	MW-22S
LAB SAMPLE ID	Standards ¹ /	X5892-04	X5892-14	X5669-13	X5892-13	X5831-10	X5669-12	X5831-11	X5831-14	X5892-12	X5831-05	X5892-08	X5669-07	X5669-09	X5669-10	X5831-13	X5831-01	X5831-04	X5892-16	X5831-12	X5892-10	X5831-07	X5669-03
DATE SAMPLED	Guidance Values ² (ppb)	12/13/06	12/14/06	12/01/06	12/14/06	12/07/06	11/30/06	12/07/06	12/07/06	12/14/06	12/06/06	12/14/06	11/30/06	11/30/06	11/30/06	12/07/06	12/06/06	12/06/06	12/15/06	12/07/06	12/14/06	12/06/06	11/28/06
Dichlorodifluoromethane (DCDFM)	5.001	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Chloromethane Vinyl Chloride	5.00 ¹ 2.00 ¹	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U 5.0 U	5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U	5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U 5.0 U	5.0 U	5.0 U
Bromomethane	5.00 ¹	5.0 U			5.0 U																		
Chloroethane	5.00 ¹	5.0 U 3.0 J	5.0 U	5.0 U 51 D	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U 5.0 U	5.0 U 3.4 J	5.0 U	5.0 U 5.0 U	5.0 U 2.6 J	5.0 U	5.0 U	5.0 U 5.0 U	5.0 U 3.4 J	5.0 U 5.0 U	5.0 U 1.3 J	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U
Trichlorofluoromethane (TCFM) 1,1,2-Trichlorotrifluoroethane	5.00 ¹	5.0 U			5.0 U		5.0 U	5.0 U	5.0 U														
1,1-Dichloroethene	5.001	5.0 U			5.0 U																		
Acetone Carbon Disulfide	50.00 ² 60.00 ²	25.0 U 5.0 U			14 J 5.0 U	25.0 U 5.0 U	25.0 U	25.0 U	25.0 U	25.0 U 5.0 U	25.0 U	25.0 U 5.0 U	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U 5.0 U		25.0 U 5.0 U	25.0 U	25.0 U
MTBE	10.00^2	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.5	5.0 U	2.4 J	5.0 U									
Methyl Acetate Methylene Chloride	N/L 5.00 ¹	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U 5.0 U	5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U	5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.3	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U
trans-1,2-Dichloroethene	5.00 ¹	5.0 U	5.0 U		5.0 U																		
1,1-Dichloroethane	5.00 ¹	5.0 U	5.0 U		5.0 U		5.0 U	5.0 U	5.0 U														
Cyclohexane 2-Butanone	N/L 50.00 ²	5.0 U 25.0 U	5.0 U 25.0 U	5.0 U 25.0 U	5.0 U 25.0 U	5.0 U 25.0 U	5.0 U 25.0 U	2.9 J 25.0 U	5.0 U 25.0 U	5.0 U 25.0 U	4.1 J 25.0 U	5.0 U 25.0 U											
Carbon Tetrachloride	5.00 ¹	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 L	5.0 U							
cis-1,2-Dichloroethene	5.00 ¹ 7.00 ¹	5.0 U 5.0 U	5.0 U 5.0 U		5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U	5.0 U 5.0 U	5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U	5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 1.5 J	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U
Chloroform 1,1,1-Trichloroethane	5.00 ¹	5.0 U	5.0 U		5.0 U 5.0 U	5.0 U	5.0 U	5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U	5.0 U 5.0 U	5.0 U	5.0 U	1.5 J 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U	5.0 U
Methylcyclohexane	N/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	4.5 J	5.0 U	5.0 U	6.4	5.0 U		5.0 U	5.0 U	5.0 U							
Benzene 1,2-Dichloroethane	0.600 ¹	5.0 U 5.0 U			5.0 U	9.0 5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	6.1 5.0 U	5.0 U	5.0 U 5.0 U		5.0 U	5.0 U	5.0 U					
Trichloroethene (TCE)	5.00 ¹	5.0 U	5.0 U		5.0 U																		
1,2-Dichloropropane	1.001	5.0 U	5.0 U		5.0 U																		
Bromodichloromethane 4-Methyl-2-Pentanone	50.00 ² N/L	5.0 U 25.0 U	5.0 U 25.0 U	5.0 U 25.0 U	5.0 U 6.3 J	5.0 U 25.0 U																	
Toluene	5.00 ¹	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
trans-1,3-Dichloropropene ³	0.40 ¹	5.0 U 5.0 U	5.0 U 5.0 U		5.0 U 5.0 U	5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U		5.0 U 5.0 U	5.0 U	5.0 U					
cis-1,3-Dichloropropene ⁵ 1,1,2-Trichloroethane	1.00 ¹	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
2-Hexanone	50.00 ²	25.0 U		25.0 U	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U		25.0 U	25.0 U	25.0 U
Dibromochloromethane 1,2-Dibromoethane	50.00 ² 0.006 ¹	5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U 5.0 U	5.0 U	5.0 U 5.0 U	5.0 U	5.0 U
Tetrachloroethene (PCE)	5.00 ¹	1.2 J	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	3.6 J	5.0 U	5.0 U	1.1 J	3.7 J	5.0 U		5.0 U	5.0 U	5.0 U				
Chlorobenzene Ethylbenzene	5.00 ¹	5.0 U 5.0 U	5.0 U 3.8 J	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U 5.0 U	5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U
m/p-Xylenes	5.00 ¹	10.0 U	2.6 J	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	1.6 J	10.0 U	10.0 U	10.0 U	10.0 U
o-Xylene	5.001	5.0 U	1.3 J	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Styrene Bromoform	5.00 ¹ 50.00 ²	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U 5.0 U	5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U	5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U
Isopropylbenzene	5.00 ¹	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.4 J	5.0 U	5.0 U	9.4	5.0 U	8.1	5.0 U	5.0 U	5.0 U	5.0 U						
1,1,2,2-Tetrachloroethane	5.00 ¹ 3.00 ¹	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5 U	5.0 U	5.0 U 5.0 U	5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U	5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U
1,3-Dichlorobenzene 1,4-Dichlorobenzene	3.00° 3.00°	5.0 U	5.0 U		5.0 U 5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U 5.0 U	5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U	5.0 U 5.0 U	5.0 U	5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U	5.0 U
1,2-Dichlorobenzene	3.00 ¹	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,2-Dibromo-3-Chloropropane 1,2,4-Trichlorobenzene	0.04 ¹ 5.00 ¹	5.0 U	5.0 U 5.0 U		5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U	5.0 U	5.0 U 5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U 5.0 U	0.0	5.0 U 5.0 U	0.0	5.0 U	5.0 U	5.0 U
Chlorofluoromethane	5.00 N/L	5.0 U			5.0 U	5.0 U		5.0 U	5.0 U	5.0 U	5.0 0	5.0 U	2.3 J	5.0 U	5.0 U	0.10	5.0 U	5.0 U	5.0 U				
Flurodichloromethane (DCFM)	5.00 ¹	5.0 U		85	5.0 U	5.0 U		5.0 U		5.0 U	17	5.0 U	5.0 U	5.0 U	5.0 U								
Chlorodifluoromethane (CDFM)	5.00 ¹	50 UJ 3.0 J		5.73 J 141.73 J	50 UJ ND	50 UJ 3.4 J	50 UJ ND	50 UJ ND	50 UJ 2.6 J	50 UJ	50 U.	50 UJ ND	6.54 J	50 UJ	50 UJ	50 UJ	50 UJ ND	50 UJ ND	50 U				

TRC ENGINEERS, INC. 1 of 3 2/6/2009

Table 2A Volatile Organic Compounds in Groundwater Long Island Rail Road Morris Park Yard

WELL TYPE		Shallow	Shallow	Shallow	Shallow	Shallow	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep
SAMPLE NAME	Class GA Groundwater	MW-23S	MW-24S	MW-25S	MW-26S	MW-28S	MW-1-140	MW-2-160R	MW-3-160	MW-5-180	MW-6-168	MW-8-150	MW-10-160	MW-11-140	MW-21D	MW-23D	MW-25D	MW-27D	MW-28D	MW-29D	MW-30D	MW-31D N	MW-32D
LAB SAMPLE ID	Standards ¹ /	X5669-04	X5669-06	X5669-01	X5831-16	X5892-03	X5892-05	X5892-11	X5831-03	X5831-15	X5831-02	X5892-09	X5669-08	X5669-11	X5831-08	X5669-05	X5669-02	X5892-18	X5892-02	X5892-06	X5892-07	08B41926 0	08B41928
DATE SAMPLED	Guidance Values ² (ppb)	11/29/06	11/29/06	11/28/06	12/08/06	12/13/06	12/13/06	12/14/06	12/06/06	12/07/06	12/06/06	12/14/06	11/30/06	11/30/06	12/06/06	11/29/06	11/28/06	12/15/06	12/13/06	12/14/06	12/14/06	10/14/2008 10	0/14/2008
Dichlorodifluoromethane (DCDFM)	5.001	5.0 U	5.0 U	5.0 U	5.0 U		J 5.0 U	5.0 U	5.0 U	24	5.0 U	5.0 U	J 5.0 U	5.0 U	4.6 J	5.0 U	5.0 U	5.1	5.0 U	5.0 U	5.0 U	1.11 J	10.4 J
Chloromethane Vinyl Chloride	5.00 ¹ 2.00 ¹	5.0 U	5.0 U	5.0 U	5.0 U		5.0 U 5.0 U	5.0 U	5.0 U 5.0 U	5.0 U	5.0 U 5.0 U	5.0 U	5.0 U	5.0 U 5.0 U	1.7 J 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	2.0 U	2.0 U
Bromomethane	5.00 ¹	5.0 U	5.0 U	5.0 U	5.0 U			5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	2.0 UJ	2.0 UJ
Chloroethane	5.00 ¹	5.0 U	5.0 U	5.0 U	5.0 U		5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	2.0 U	2.0 U
Trichlorofluoromethane (TCFM) 1,1,2-Trichlorotrifluoroethane	5.00 ¹ 5.00 ¹	5.0 U 5.0 U	5.0 U	5.0 U	5.0 U		7.7 3	5.0 U	1.7 J 5.0 U	5.0 U 5.0 U	1.2 J 5.0 U	5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	14 5.0 U	69 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	2.0 U	2.0 U
1,1-Dichloroethene	5.001	5.0 U	5.0 U	5.0 U	5.0 U		3.0 0	5.0 U	3.8 J	4.2 J	1.8 J	1.1	2.6 J	5.0 U	5.0 U	5.0 U	5.0 U	2.2 J	5.0 U	3.7 J	2.6 J	1.0 U	0.71 J
Acetone Carbon Disulfide	50.00^2 60.00^2	25.0 U	25.0 U	25.0 U	25.0 U		25.0 U 5.0 U	25.0 U	25.0 U	25.0 U	25.0 U	25 U	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U 5.0 U	25.0 U	25.0 U	25.0 U 5.0 U	25.0 U 5.0 U	50.0 U	50.0 U
MTBE	10.00 ²	5.0 U	5.0 U	5.0 U	5.0 U		5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0	5.0 U	2.1 J	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	15.8 J	11.9
Methyl Acetate	N/L	5.0 U	5.0 U	5.0 U	5.0 U		5.0 0	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.0 UJ	1.0 UJ
Methylene Chloride trans-1,2-Dichloroethene	5.00 ¹	5.0 U 5.0 U	5.0 U	5.0 U	5.0 U		5.0 U 5.0 U	5.0 U	5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U 5.0 U	5.0 U	5.0 U	5.0 U	5.0 U 5.0 U	5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U 0.23 J
1,1-Dichloroethane	5.00 ¹	5.0 U	5.0 U	5.0 U	5.0 UJ		5.0 U	5.0 U	5.0 U	2.4 J	5.0 U	5.0 U	J 5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	0.3 J	0.59 J
Cyclohexane	N/L	5.0 U	5.0 U	5.0 U	5.0 U		5.0 U	5.0 U 25.0 U	5.0 U 25.0 U	5.0 U 25.0 U	5.0 U 25.0 U	5.0 L	5.0 U	5.0 U 25.0 U	5.0 U	5.0 U	5.0 U 25.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.4
2-Butanone Carbon Tetrachloride	50.00 ² 5.00 ¹	25.0 U 5.0 U	25.0 U	25.0 U	25.0 U		25.0 0	5.0 U	25.0 U	25.0 U	5.0 U	25.0 U	U 25.0 U 5.0 U	5.0 U	25.0 U	25.0 U 5.0 U	5.0 U	25.0 U	25.0 U 5.0 U	25.0 U 5.0 U	25.0 U 5.0 U	20.0 U 1.0 U	20.0 U
cis-1,2-Dichloroethene	5.001	5.0 U	5.0 U	5.0 U	5.0 U		J 5.0 U	5.0 U	1.5 J	11	5.0 U	5.0 U	J 5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	2.9 J	11	7.8	4.1 J	2.4
Chloroform	7.00 ¹ 5.00 ¹	5.0 U 5.0 U	5.0 U	5.0 U	5.0 U		J.0 C	5.0 U	1.6 J 2.8 J	5.0 U 5.0 U	5.0 U 3.8 J	5.0 U	J 1.5 J J 3.1 J	5.0 U 5.0 U	5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	2.5 J	4.0 J 5.0 U	3.8 J 5.0 U	5.0 U 5.0 U	0.42 J 0.17 J	2.6 1.0 U
1,1,1-Trichloroethane Methylcyclohexane	3.00 N/L	5.0 U	5.0 U	5.0 U	5.0 U		3.0 0	5.0 U	2.8 J 5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.0 U	0.32 J
Benzene	1.001	5.0 U	5.0 U	5.0 U	5.0 U		J 5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	J 5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.0 J	0.09 J	0.33 J
1,2-Dichloroethane Trichloroethene (TCE)	0.600 ¹ 5.00 ¹	5.0 U 5.0 U	5.0 U	5.0 U	5.0 U	2.0	5.0 U 5.0 U	5.0 U	5.0 U	5.0 U	5.0 U 1.0 J	5.0 U	5.0 U 3.9 J	5.0 U	5.0 U	5.0 U	5.0 U 5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.0 U	0.57 J
1,2-Dichloropropane	1.00 ¹	5.0 U	5.0 U	5.0 U	5.0 U		3.0 0	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.9 J	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.0 U	1.0 U
Bromodichloromethane	50.00 ²	5.0 U	5.0 U	5.0 U	5.0 U		3.0 0	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	J 5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.0 U	0.17 J
4-Methyl-2-Pentanone Toluene	N/L 5.00 ¹	25.0 U 5.0 U	25.0 U	25.0 U	25.0 U		J 25.0 U J 5.0 U	25.0 U	25.0 U	25.0 U 5.0 U	25.0 U 5.0 U	25.0 U	25.0 U 5.0 U	25.0 U 5.0 U	25.0 U	25.0 U	25.0 U 5.0 U	25.0 U	25.0 U 5.0 U	25.0 U 5.0 U	25.0 U 1.4 J	10.0 U	10.0 U 0.54 J
trans-1,3-Dichloropropene ³	0.401	5.0 U	5.0 U	5.0 U	5.0 U			5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene³	0.401	5.0 U	5.0 U		5.0 U		3.0 0	5.0 U	5.0 U	5.0 U	5.0 U	5.0 L	J 5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane 2-Hexanone	1.00^{1} 50.00^{2}	5.0 U 25.0 U	5.0 U 25.0 U	5.0 U	5.0 U		5.0 U J 25.0 U	5.0 U 25.0 U	5.0 U 25.0 U	5.0 U 25.0 U	5.0 U 25.0 U	5.0 U	5.0 U J 25.0 U	5.0 U 25.0 U	5.0 U 25.0 U	5.0 U 25.0 U	5.0 U 25.0 U	5.0 U 25.0 U	5.0 U 25.0 U	5.0 U 25.0 U	5.0 U 25.0 U	1.0 U 10.0 U	1.0 U 10.0 U
Dibromochloromethane	50.00 ²	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	0.5 U	0.5 U
1,2-Dibromoethane	0.006 ¹ 5.00 ¹	5.0 U	5.0 U	5.0 U	5.0 U		5.0 U 5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U 5.0 U	5.0 U	5.0 U	5.0 U 5.0 U	5.0 U	5.0 U 8.2	5.0 U	5.0 U	0.5 U	0.5 U
Tetrachloroethene (PCE) Chlorobenzene	5.00 ¹	5.0 U	5.0 U	5.0 U	5.0 U	2.0	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.0 U	1.0 U
Ethylbenzene	5.001	5.0 U	5.0 U	5.0 U	5.0 U		5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.0 U	0.4 J
m/p-Xylenes o-Xylene	5.00 ¹ 5.00 ¹	10.0 U 5.0 U	10.0 U	10.0 U	10.0 U		J 10.0 U J 5.0 U	10.0 U	10.0 U 5.0 U	10.0 U 5.0 U	10.0 U 5.0 U	10.0 U	10.0 U 1 5.0 U	10.0 U 5.0 U	10.0 U	10.0 U 5.0 U	10.0 U 5.0 U	10.0 U	10.0 U	10.0 U 5.0 U	10.0 U 5.0 U	2.0 U	0.31 J 0.58 J
Styrene	5.00 ¹	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.0 U	1.0 U
Bromoform	50.00 ² 5.00 ¹	5.0 U	5.0 U	5.0 U	5.0 U		5.0 U 5.0 U	5.0 U	5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U 5.0 U	5.0 U	5.0 U	5.0 U	5.0 U 5.0 U	5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	1.0 U	1.0 U
Isopropylbenzene 1,1,2,2-Tetrachloroethane	5.00 ¹	5.0 U	5.0 U		5.0 U		5.0	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	0.5 U	0.5 U
1,3-Dichlorobenzene	3.00 ¹	5.0 U	5.0 U	5.0 U	5.0 U		J 5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	J 5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene 1,2-Dichlorobenzene	3.00 ¹ 3.00 ¹	5.0 U	5.0 U	5.0 U	5.0 U		5.0 U 5.0 U	5.0 U	5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	5.0 U	5.0 U 5.0 U	5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	1.0 U	1.0 U
1,2-Dibromo-3-Chloropropane	0.04	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 UJ	5.0 UJ
1,2,4-Trichlorobenzene	5.00 ¹	5.0 U	5.0 U	5.0 U	5.0 U	2.0	3.0 0	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	J 5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.0 U	1.0 U
Chlorofluoromethane Flurodichloromethane (DCFM)	N/L 5.00 ¹	5.0 U	5.0 U		5.0 U		J.0 C	5.0 U	5.0 U 5.0 U	5.0 U	5.0 U	5.0 U	5.0 U 5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5 U	5.0 U	5.0 U 5.0 U	5.0 U	1.0 U	NA 1.0 U
Chlorodifluoromethane (CDFM)	5.00 ¹	50 UJ	50 UJ		50 UJ			50 UJ		50 UJ	50 UJ	50 U.	50 UJ	6.6 J	11.9 J	180 J	45 J	50 UJ	50 UJ	50 UJ	50 UJ	1 UJ	1 UJ
TOTAL CFCs ⁴ NOTES:		ND	ND	ND	ND	ND	40.3 J	48.8	1.7 J	24	1.2 J	ND	ND	6.6 J	16.5 J	194 J	177 J	5.1	ND	ND	ND	1.11 J	10.4
All results in micrograms per liter (ug/L) or parts per bi Bold shaded values exceed Class GA Values.	llion (ppb)																						
New York State Ambient Water Quality Standard.																							
² - New York State Ambient Water Quality Guidance V ³ - 0.4 ug/l applies to the sum of cis- and trans-1,3-dichl																							
 Total CFCs = the sum of dichlorodifluoromethane, trichlorofluoromethane, flurodichloromethane, and chlorodichloromethane, 																							
N/L= No Class GA Value																							
U = Not detected J = Approximate value																							
D = Sample was diluted UJ = Estimated nondetect																							
ND = Not detected NA = Not analyzed																							
Shallow = refers to wells screened to intercept top of unconsolidated aquifer																							
Deep = refers to wells screened from 20 to 40 feet above bottom of unconsolidated aquifer	e to																						

TRC ENGINEERS, INC. 2 of 3 2/6/2009

Table 2A Volatile Organic Compounds in Groundwater Long Island Rail Road Morris Park Yard

WELL TYPE	Cl CA	Deep	QA/QC	QA/QC	QA/QC	QA/QC	QA/QC	QA/QC	QA/QC	Shallow	Shallow
SAMPLE NAME	Class GA Groundwater	MW-33D	FIELDBLANK	TRIPBLANK	TRIPBLANK	FIELDBLANK	DUP 1	FB 1	ТВ	MW6-60(DUP)	MW17-60R(DUP)
LAB SAMPLE ID	Standards ¹ /	08B41929	X5892-15	X5892-01	X5892-19	X5831-09	08B41927	08B41930	08B41931	X5831-06	X5892-17
DATE SAMPLED	Guidance Values ² (ppb)	10/14/2008	12/06/06	12/11/06	12/11/06	12/11/2006	10/14/2008	10/14/2008	10/14/2008	12/06/06	12/6/2006
Dichlorodifluoromethane (DCDFM)	5.00 ¹	40.8	5.0 U	5.0 U	5.0 U	5.0 U	0.85 J	2.0 U	2.0 U	5.0 U	5.0
Chloromethane	5.00 ¹	0.32 J	5.0 U	5.0 U	5.0 U	5.0 U	2.0 UJ	2.0 U	2.0 U	5.0 U	5.0
Vinyl Chloride	2.00 ¹	2.0 U		5.0 U	5.0 U	5.0 U	10.1	2.0 U	2.0 U	5.0 U	5.0
Bromomethane	5.001	2.0 UJ		5.0 U	5.0 U	5.0 U	2.0 UJ	2.0 UJ	2.0 UJ	5.0 U	5.0
Chloroethane Friehlaroflyaromathana (TCFM)	5.00 ¹ 5.00 ¹	2.0 U 2.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	2.0 U 2.0 U	2.0 U 2.0 U	2.0 U 2.0 U	5.0 U 5.0 U	5.0 1.0
Frichlorofluoromethane (TCFM) 1,1,2-Trichlorotrifluoroethane	5.00 ¹	0.08 J	5.0 U	5.0 U	5.0 U	5.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0
,1-Dichloroethene	5.00 ¹	3.3	5.0 U	5.0 U	5.0 U	5.0 U	0.11 J	1.0 U	1.0 U	5.0 U	5.0
Acetone	50.00 ²	50.0 U	25.0 U	25.0 U	25.0 U	25.0 U	50.0 U	1.49 J	0.66 J	25.0 U	25.0
Carbon Disulfide	60.00 ²	3.0 U	5.0 U	5.0 U	5.0 U	5.0 U	3.0 U	3.0 U	3.0 U	5.0 U	5.0
MTBE	10.00 ²	45.8	5.0 U	5.0 U	5.0 U	5.0 U	11.2 J	1.0 U	1.0 U	5.8	5.0
Methyl Acetate	N/L 5.00 ¹	1.0 UJ 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	1.0 UJ 5.0 U	1.0 UJ 5.0 U	1.0 UJ 5.0 U	5.0 U 5.0 U	5.0 4.8
Methylene Chloride rans-1,2-Dichloroethene	5.00 ¹	0.66 J	5.0 U	5.0 U	5.0 U	5.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0
,1-Dichloroethane	5.00 ¹	1.1	5.0 U	5.0 U	5.0 U	5.0 U	0.26 J	1.0 U	1.0 U	5.0 U	5.0
Cyclohexane	N/L	5.0 U	5.0 U	5.0 U	4.3 J	5.0					
2-Butanone	50.00 ²	20.0 U	25.0 U	25 U	25.0 U	25.0 U	20.0 U	20.0 U	20.0 U	25.0 U	25.0
Carbon Tetrachloride	5.001	1.1	5.0 U	5.0 U	5.0 U	5.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0
ris-1,2-Dichloroethene	5.00 ¹	27.7	5.0 U	5.0 U	5.0 U	5.0 U	6.6	2.0 U	2.0 U	5.0 U	5.0
Chloroform 1,1,1-Trichloroethane	7.00 ¹ 5.00 ¹	1.3 J 0.72 J	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	3.8 J 0.16 J	2.0 U 1.0 U	2.0 U 1.0 U	5.0 U 5.0 U	1.4 5.0
Methylcyclohexane	N/L	1.0 U		5.0 U	5.0 U	5.0 U		1.0 U	1.0 U	6.4	5.0
Benzene	1.001	0.09 J	5.0 U	5.0 U	5.0 U	5.0 U	0.1 J	1.0 U	1.0 U	9.0	5.0
,2-Dichloroethane	0.6001	0.32 J	5.0 U	5.0 U	5.0 U	5.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0
Trichloroethene (TCE)	5.001	1810	5.0 U	5.0 U	5.0 U	5.0 U	22.1	1.0 U	1.0 U	5.0 U	5.0
,2-Dichloropropane	1.001	1.0 U		5.0 U	5.0 U	5.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0
Bromodichloromethane	50.00 ²	1.0 U 10.0 U	5.0 U 25.0 U	5.0 U 25.0 U	5.0 U 25.0 U	5.0 U 25.0 U	0.33 J 10.0 U	1.0 U 10.0 U	1.0 U 10.0 U	5.0 U 25.0 U	5.0 25.0
4-Methyl-2-Pentanone Γoluene	N/L 5.00 ¹	1.0 U	5.0 U	25.0 U	25.0 U	25.0 U	1.0 U	10.0 U	10.0 U	25.0 U	5.0
rans-1,3-Dichloropropene3	0.40 ¹	1.0 U		5.0 U	5.0 U	5.0 U		1.0 U	1.0 U	5.0 U	5.0
cis-1,3-Dichloropropene3	0.401	1.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0
1,1,2-Trichloroethane	1.00 ¹	0.62 J	5.0 U	5.0 U	5.0 U	5.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0
2-Hexanone	50.00 ²	10.0 U	25.0 U	25.0 U	25.0 U	25.0 U	10.0 U	10.0 U	10.0 U	25.0 U	25.0
Dibromochloromethane	50.00 ²	0.5 U	2.0	5.0 U	5.0 U	5.0 U	0.5 U	0.5 U	0.5 U	5.0 U	5.0
1,2-Dibromoethane Fetrachloroethene (PCE)	0.006 ¹ 5.00 ¹	0.5 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	0.5 U	0.5 U 1.0 U	0.5 U 1.0 U	5.0 U 5.0 U	5.0
Chlorobenzene	5.00 ¹	1.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0
Ethylbenzene	5.00 ¹	1.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.0 U	1.0 U	1.0 U	16	7.1
n/p-Xylenes	5.00 ¹	2.0 U	10.0 U	10.0 U	10.0 U	10.0 U	2.0 U	2.0 U	2.0 U	1.3 J	1.8
o-Xylene	5.001	1.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0
Styrene	5.00 ¹ 50.00 ²	1.0 U	5.0 U	5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	1.0 U	1.0 U 1.0 U	1.0 U	5.0 U 5.0 U	5.0
Sromoform sopropylbenzene	50.00 5.00 ¹	1.0 U 1.0 U	5.0 0	5.0 U 5.0 U	5.0 U	5.0 U 5.0 U	1.0 U 1.0 U	1.0 U	1.0 U	9.9	5.0 7.8
1,1,2,2-Tetrachloroethane	5.00 ¹	0.5 U	5.0 U	5.0 U	5.0 U	5.0 U	0.5 U	0.5 U	0.5 U	5.0 U	5.0
1,3-Dichlorobenzene	3.00^{1}	1.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0
,4-Dichlorobenzene	3.00^{1}	1.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0
1,2-Dichlorobenzene	3.001	1.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.0 U	1.0 U	1.0 U	5.0 U	5.0
,2-Dibromo-3-Chloropropane	0.04	5.0 UJ		5.0 U	5.0 U	5.0 U	5.0 UJ	5.0 UJ	5.0 UJ		5.0
1,2,4-Trichlorobenzene	5.00 ¹ N/L	1.0 U NA	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U	1.0 U NA	1.0 U NA	1.0 U NA	5.0 U 5.5	5.0 5.0
Flurodichloromethane (DCFM)	5.00 ¹	1.0 U		5.0 U	5.0 U	5.0 U		1.0 U	1.0 U	5.0 U	3.0
Chlorodifluoromethane (CDFM)	5.00 ¹	1 UJ		50 UJ	50 UJ	50 UJ	1 UJ	1 UJ	1 UJ	50 UJ	50
		40.8	ND	ND	ND	ND	0.85 J	ND	ND	ND	12

TRC ENGINEERS, INC. 3 of 3 2/6/2009

TABLE 2B Semi-Volatile Organic Compounds in Groundwater

Table 2B Semi-Volatile Organic Compounds in Groundwater Long Island Rail Road Morris Park Yard

WELL TYPE		Shallow	Shallow	Shallow	Shallow	Shallow	Shallow Shallo	w Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow S	Shallow	Shallow							
SAMPLE NAME		MW-1-60	MW-2-50R	MW-2D-60		MW-3D-60	MW-3U-60	MW-4-60	MW-PMW-05	MW-5-60									MW-19-60		MW-21S				MW-25S
LAB SAMPLE ID	Class GA	X5892-04	X5892-14	X5669-13	X5892-13	X5669-12	X5831-10	X5831-11	X5892-12	X5831-14		X5892-08	X5669-07	X5669-09 X5669-		X5831-01	X5831-04	X5892-16	X5831-12	X5892-10	X5831-07	X5669-03			X5669-01
DATE SAMPLED	Groundwater Standards 1/	12/13/06	12/14/06	12/01/06	12/14/06	11/30/06	12/07/06	12/07/06	12/14/06	12/07/06		12/14/06	11/30/06	11/30/06 11/30/		12/06/06	12/06/06	12/15/06	12/07/06	12/14/06	12/06/06	11/28/06		11/29/06	11/28/06
Semi-Volatile Organic Compound	Guidance Values ² (ppb)	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L							
bis(2-Chloroethyl)ether	1'	11 U	10 U	10 U	U 10 1	U 10 U	10 U	10 U 11	U 11 U	10 U	10 U	10 U	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U						
1,2-Dichlorobenzene	3'	11 U	10 U	10 U	10 0	10 U	1.6 J	10 U	10 U	10 (U 10 I	U 10 U			U 11 U	10 U	10 U	10 U	10 U	J 11 U		10 U	10 U	10 U	11 U
1,3-Dichlorobenzene	3'	11 U	10 U		U 10 1	0 10 0			U 11 U	10 U	10 U	10 U	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U						
1,4-Dichlorobenzene	31	11 U	10 U	10 U	U 10 I	U 10 U	10 0	10 U 11	U 11 U	10 U	10 U	10 U	10 U	J 11 U	J 11 U	10 U	10 U	10 U	11 U						
2,2-oxybis(1-Chloropropane)	51	11 U	10 U	10 U	U 10 I	U 10 U			U 11 U	10 U	10 U	10 U	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U						
N-Nitroso-di-n-propylamine	N/L	11 U	10 U		U 10 1				U 11 U	10 U	10 U	10 U	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U						
Hexachloroethane	51	11 U	10 U	10 U	U 10 I	U 10 U			U 11 U	10 U	10 U	10 U	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U						
Nitrobenzene	0.41	11 U	10 U	10 U	U 10 I	U 10 U	10 U	10 U 11	U 11 U	10 U	10 U	10 U	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U						
Isophorone	50 ²	11 U	10 U	10 U	U 10 1	U 10 U	10 U	10 U 11	U 11 U	10 U	10 U	10 U	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U						
bis(2-Chloroethoxy)methane	5 ²	11 U	10 U	10 U	10 0	10 U	10 U	10 U	10 U		U 10 I	0 10 0			U 11 U	10 U	10 0		10 U	J 11 U	11 U	10 U	10 U	10 U	11 U
1,2,4-Trichlorobenzene	51	11 U	10 U	10 U	U 10 I	10 0			U 11 U	10 U	10 U	10 U	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U						
Naphthalene	10 ¹	11 U	2 J	10 U	10 U	U 68	10 U	10 U		U 11 U	10 U	10 U	7.1 J	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U					
4-Chloroaniline	51	11 U	10 U	10 U	U 10 I	U 10 U	10 U		U 11 U	10 U	10 U	10 U	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U						
Hexachlorobutadiene	0.51	11 U	10 U	10 U	U 10 I	U 10 U	10 U	10 U 11	U 11 U	10 U	10 U	10 U	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U						
2-Methylnaphthalene	N/L	11 U	1.1 J	10 U	10 U	U 300 D	5) 10 U	10 U	10 U 11	U 11 U	10 U	1.4 J	200 D ⁽¹⁰⁾	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U					
Hexachlorocyclopentadiene	5 ¹	11 U	10 U	10 U	U 10 1	U 10 U	10 U	10 U 11	U 11 U	10 U	10 U	10 U	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U						
2-Chloronaphthalene	10^{2}	11 U	10 U	10 U	U 10 I	U 10 U	10 U	10 U 11	U 11 U	10 U	10 U	10 U	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U						
2-Nitroaniline	5 ¹	11 U	10 U	10 U	U 10 I	U 10 U	10 U	10 U 11	U 11 U	10 U	10 U	10 U	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U						
Dimethyl phthalate	50 ²	11 U	10 U	10 U	U 10 I	U 10 U	10 U	10 U 11	U 11 U	10 U	10 U	10 U	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U						
Acenaphthylene	N/L	11 U	10 U	10 U	U 10 I	U 10 U	10 U	10 U 11	U 11 U	10 U	10 U	2.4 J	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U						
2,6-Dinitrotoluene	5 ¹	11 U	10 U	10 U	U 10 I	U 10 U	10 U	10 U 11	U 11 U	10 U	10 U	10 U	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U						
3-Nitroaniline	5 ¹	11 U	10 U	10 U	U 10 I	U 10 U	10 U	10 U 11	U 11 U	10 U	10 U	10 U	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U						
Acenaphthene	20^{2}	11 U	10 U	10 U	U 13	10 U	10 U	10 U 11	U 11 U	10 U	10 U	5.6 J	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U						
Dibenzofuran	N/L	11 U	10 U	10 U	10 U	10 U	1.4 J	10 U	10 U	10 U	U 10 I	U 10 U	10 U	10 U 11	U 11 U	10 U	10 U	8.3 J	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U
2,4-Dinitrotoluene	5 ²	11 U	10 U	10 U	U 10 1	U 10 U	10 U	10 U 11	U 11 U	10 U	10 U	10 U	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U						
Diethyl phthalate	50 ²	11 U	10 U	10 U	U 10 1	U 10 U			U 11 U	10 U	10 U	10 U	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U						
4-Chlorophenyl phenyl ether	N/L	11 U	10 U		10 U	10 U	U 10 I	U 10 U			U 11 U	10 U	10 U	10 U	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U				
Fluorene	50 ²	11 U	10 U	1.7 J	10 U	10 U	U 27	10 U			U 11 U	10 U	10 U	11	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U				
4-Nitroaniline	5 ¹	11 U	10 U	10 U	U 10 I	U 10 U			U 11 U	10 U	10 U	10 U	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U						
N-Nitrosodiphenylamine	50 ²	11 U	10 U	10 U	U 10 I	U 10 U	10 0		U 11 U	10 U	10 U	12	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U						
4-Bromophenyl phenyl ether	N/L	11 U	10 U		U 10 I	U 10 U			U 11 U	10 U	10 U	10 U	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U						
Hexachlorobenzene	0.041	11 U	10 U		U 10 I	U 10 U			U 11 U	10 U	10 U	10 U	10 U	J 11 U	J 11 U	10 U	10 U	10 U	11 U						
Phenanthrene	50 ²	11 U	10 U	10 U	U 37	10 U		10 U 11	U 11 U	J 10 U	10 U	18	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U						
Anthracene	50 ²	11 U	10 U	10 U	U 10 1	U 10 U	10 U	10 U 11	U 11 U	10 U	10 U	3.6 J	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U						
Carbazole	N/L	11 U	10 U	10 U	10 U	10 U	2.6 J	10 U	10 U	10 U	U 11	10 U	10 U	10 U 11	U 11 U	10 U	10 U	10 U	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U
Di-n-butyl phthalate	50 ¹	11 U	10 U	10 U	U 10 I	U 10 U	10 U	10 U 11	U 11 U	10 U	10 U	10 U	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U						
Fluoranthene	50 ²	11 U	10 U	10 U	U 10 1	U 10 U	10 U		U 11 U	10 U	10 U	10 U	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U						
Pyrene	50 ²	11 U	10 U	10 U	U 10 I	0 10 0			U 11 U	10 U	10 U	10 U	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U						
Butyl benzyl phthalate	50 ²	11 U	10 U	10 U	U 10 I	U 10 U	10 U		U 11 U	10 U	10 U	10 U	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U						
3,3'-Dichlorobenzidine	5 ¹	22 U	20 U	20 U	U 20 I	U 20 U	10 U	20 U 22	U 22 U	20 U	20 U	20 U	20 U	J 22 U	22 U	10 U	10 U	10 U	11 U						
Benzo(a)anthracene	0.002^2	11 U	10 U	10 U	U 10 I	U 10 U			U 11 U	10 U	10 U	10 U	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U						
Chrysene	0.002^2	11 U	10 U	10 U		10 U	10 U		10 U	10 U	U 10 I	U 10 U			U 11 U	10 U	10 U	10 U	10 U	J 11 L	11 U	10 U	10 U	10 U	11 U
bis(2-Ethylhexyl)phthalate	5 ¹	11 U	10 U	2.4 JB	3.7 J	3.5 JB	10 U			10 U	U 10 I	U 10 U			JB 11 U	10 U	10 U	3.7 J	10 U	J 11 U	J 3.9 J	2.5 JB	2.1 JB	3.2 JB	5.6 JB
Di-n-octyl phthalate	50 ²	11 U	10 U			10 U				10 U 11	U 11 U	10 U	10 U	10 U	10 U	J 11 L	11 U	10 U	10 U	10 U	11 U				
Benzo(b)fluoranthene	0.002^2	11 U	10 U			10 U	U 10 I	U 10 U	10 U	10 U 11	U 11 U	10 U	10 U	10 U	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U				
Benzo(k)fluoranthene	0.002^{2}	11 U	10 U	10 U	U 10 I	U 10 U	10 U	10 U 11	U 11 U	10 U	10 U	10 U	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U						
Benzo(a)pyrene	ND	11 U	10 U	10 U	U 10 1	U 10 U	10 U	10 U 11	U 11 U	10 U	10 U	10 U	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U						
Indeno(1,2,3-cd)pyrene	0.002^2	11 U	10 U			10 U	U 10 I	U 10 U	10 U		U 11 U	10 U	10 U	10 U	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U				
Dibenzo(a,h)anthracene	N/L	11 U	10 U								U 11 U	10 U	10 U	10 U	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U				
Benzo(g,h,i)perylene	N/L	11 U	10 U	10 U	U 10 I	U 10 U	10 U	10 U 11	U 11 U	10 U	10 U	10 U	10 U	J 11 U	11 U	10 U	10 U	10 U	11 U						
NOTES:																									

NOTES:

All results in micrograms per liter (ug/L) or parts per billion (ppb)

¹ = New York State Ambient Water Quality Standard.

 2 = New York State Ambient Water Quality Guidance Value.

N/L = No Class GA Value

Bold shaded values exceede Class GA Values.

U - Not detected

J - Approximate value
D - Sample diluted by factor indicated

D - Sample diluted by factor indicated

UJ = Estimated nondetect
JB - Approximate value, analyte found in associated method
blank
Shallow = refers to wells screened to intercept top
of unconsolidated aquifer
Deep = refers to wells screened from 20 to 40
feet above to bottom of unconsolidated aquifer

Table 2B Semi-Volatile Organic Compounds in Groundwater Long Island Rail Road Morris Park Yard

WELL WANDE		GI II	G1 11	GI II	I cu n	D	D			D			ъ.	ъ.	_ n	D		_ n		D		0.1/0.0	0.1.10.0
WELL TYPE		Shallow	Shallow	Shallow MW-17-	Shallow MW-6-60	Deep	Deep	Deep)	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	Deep	QA/QC	QA/QC
				50R(DUP)	(DUP)																		
SAMPLE NAME		MW-26S			(D^1)	MW-1-140	MW-2-160F			W-5-180	MW-6-168	MW-8-150	MW-10-160	MW-11-140		MW-23D					MW-30D	FIELDBLANK	FIELDBLANK
LAB SAMPLE ID DATE SAMPLED	Class GA	X5831-16 12/08/06	X5892-0. 12/13/06		X5831-06 12/06/06	X5892-05	X5892-11 12/14/06	X5831- 12/06/0		5831-15	X5831-02 12/06/06	X5892-09	X5669-08 11/30/06	X5669-11	X5831-08 12/06/06	X5669-05	X5669-02 11/28/06	X5892-18 12/15/06		X5892-06	X5892-07 12/14/06	X5831-09 12/06/06	X5892-15
Semi-Volatile Organic Compound	Groundwater Standards ¹ / Guidance Values ² (ppb)	ug/L	ug/L	ug/L	ug/L	12/13/06 ug/L	12/14/06 ug/L	12/06/0 ug/L		2/07/06 ug/L	ug/L	12/14/06 ug/L	ug/L	11/30/06 ug/L	ug/L	11/29/06 ug/L	ug/L	ug/L	ug/L	12/14/06 ug/L	ug/L	12/06/06 ug/L	12/15/06 ug/L
bis(2-Chloroethyl)ether	1 ¹	10 U	11	U 10 U	10 U	11 U	10	U 11	U	10 U	10 U	10 U	11 U	11 U	10 U	11 U	J 10 U	10 U	J 11 U	11 U	11 U	11 U	10 U
1,2-Dichlorobenzene	31	10 U	11	+ +	J 10 U	11 U	10	U 11	U	10 U	10 U	10 U	11 U	11 U	10 U	11 U	J 10 U		J 11 U		11 U	11 U	10 U
1,3-Dichlorobenzene	3 ¹	10 U	11	U 10 U	J 10 U	11 U	10	U 11	U	10 U	10 U	10 U	11 U	11 U	10 U	11 U	J 10 U	10 U	J 11 U	11 U	11 U	11 U	10 U
1,4-Dichlorobenzene	31	10 U	11	U 10 U	J 10 U	11 U	10	U 11	U	10 U	10 U	10 U	11 U	11 U	10 U	11 U	J 10 U	10 U	J 11 U	11 U	11 U	11 U	10 U
2,2-oxybis(1-Chloropropane)	5 ¹	10 U	11	U 10 U	10 U	11 U	10	U 11	U	10 U	10 U	10 U	11 U	11 U	10 U	11 U	J 10 U	10 U	11 U	11 U	11 U	11 U	10 U
N-Nitroso-di-n-propylamine	N/L	10 U	11	U 10 U	10 U	11 U	10	U 11	U	10 U	10 U	10 U	11 U	11 U	10 U	11 U	J 10 U	10 U	11 U	11 U	11 U	11 U	10 U
Hexachloroethane	5 ¹	10 U	11	U 10 U	J 10 U	11 U	10	U 11	U	10 U	10 U	10 U	11 U	11 U	10 U	11 U	J 10 U	10 U	11 U		11 U	11 U	10 U
Nitrobenzene	0.41	10 U	11	U 10 U	J 10 U	11 U	10	U 11	U	10 U	10 U	10 U	11 U	11 U	10 U	11 U	J 10 U	10 U	J 11 U		11 U	11 U	10 U
Isophorone	50 ²	10 U	11		J 10 U	11 U	10	U 11	U	10 U	10 U	10 U	11 U	11 U	10 U	11 U	J 10 U	10 U	J 11 U	11 U	11 U	11 U	10 U
bis(2-Chloroethoxy)methane	5 ²	10 U	11		J 10 U	11 U	10	U 11	U	10 U		10 U	11 U	11 U	10 0	11 U			J 11 U		11 U	11 U	10 U
1,2,4-Trichlorobenzene	51	10 U	11		10 U	11 U	10	U 11	U	10 U	10 0	10 U	11 U	11 U		11 U			J 11 U		11 U	11 U	10 U
Naphthalene	101	10 U	11		54	11 U	10	U 11	U	10 U	10 U	10 U		11 U	10 U	11 U		10 U	J 11 U		11 U	11 U	10 U
4-Chloroaniline	51	10 U	11	U 10 U	10 U	11 U	10	U 11	U	10 U	10 U	10 U	11 U	11 U	10 U	11 U	7 10 0	10 U	J 11 U	11 U	11 U	11 U	10 U
Hexachlorobutadiene	0.5 ¹	10 U	11	U 10 U	10 U	11 U	10	U 11	U	10 U	10 U	10 U	11 U	11 U	10 U	11 U	J 10 U	10 U	J 11 U		11 U	11 U	10 U
2-Methylnaphthalene	N/L 5 ¹	10 U	11	U 170 D ⁽¹⁰	230 D ⁽⁵⁾	11 U	10	U 11	U	10 U	10 U	10 U	11 U	11 U	10 U	11 U	J 10 U	1.4 J	J 11 U	11 U	11 U	11 U	10 U
Hexachlorocyclopentadiene	10 ²	10 U	11 1		J 10 U	11 U	10	U 11	U	10 U	10 U	10 U	11 U	11 U		11 U	+ + + -	10 U	J 11 U	+ +	11 U	11 U	10 U
2-Chloronaphthalene 2-Nitroaniline	5 ¹	10 U 10 U	11	U 10 U	10 U	11 U	10	U 11	U	10 U	10 U	10 U	11 U	11 U	10 U	11 U	J 10 U	10 U	J 11 U	11 U	11 U	11 U 11 U	10 U
Dimethyl phthalate	50 ²	10 U	11 1	+ +	10 U	11 U	10	U 11	II.	10 U	10 U	10 U	11 U	11 U	10 U	11 U	I 10 U	10 U	J 11 U	11 U	11 U	11 U	10 U
Acenaphthylene	N/L	10 U	11		I 10 U	11 U	10	U 11	U	10 U	10 U	10 U	11 U	11 U	10 U	11 U	J 10 U	10 U	J 11 U	11 U	11 U	11 U	10 U
2,6-Dinitrotoluene	5 ¹	10 U	11		10 U	11 U	10	U 11	U	10 U	10 U	10 U	11 U	11 U	10 U	11 U		10 U	J 11 U	11 U	11 U	11 U	10 U
3-Nitroaniline	5 ¹	10 U	11	U 10 U	J 10 U	11 U	10	U 11	U	10 U	10 U	10 U	11 U	11 U	10 U	11 U	J 10 U	10 U	J 11 U	+ +	11 U	11 U	10 U
Acenaphthene	20^{2}	10 U	11	U 4.9 .	J 7.4 J	11 U	10	U 11	U	10 U	10 U	10 U	11 U	11 U	10 U	11 U	J 10 U	10 U	J 11 U		11 U	11 U	10 U
Dibenzofuran	N/L	10 U	11	U 6.7 .	J 7.1 J	11 U	10	U 11	U	10 U	10 U	10 U	11 U	11 U	10 U	11 U	J 10 U	10 U	11 U	11 U	11 U	11 U	10 U
2,4-Dinitrotoluene	5 ²	10 U	11	U 10 U	10 U	11 U	10	U 11	U	10 U	10 U	10 U	11 U	11 U	10 U	11 U	J 10 U	10 U	11 U	11 U	11 U	11 U	10 U
Diethyl phthalate	50 ²	10 U	11	U 10 U	10 U	11 U	10	U 11	U	10 U	10 U	10 U	11 U	11 U	10 U	11 U	J 10 U	10 U	J 11 U	11 U	11 U	11 U	6 J
4-Chlorophenyl phenyl ether	N/L	10 U	11		J 10 U	11 U	10	U 11	U	10 U	10 U	10 U	11 U	11 U	10 U	11 U		10 U	J 11 U		11 U	11 U	10 U
Fluorene	50 ²	10 U	11		J 14	11 U	10	U 11	U	10 U	10 U	10 U	11 U	11 U	10 U	11 U		10 U	J 11 U	11 U	11 U	11 U	10 U
4-Nitroaniline	51	10 U	11	U 10 U	J 10 U	11 U	10	U 11	U	10 U	10 U	10 U	11 U	11 U	10 U	11 U	7 10 0	10 U	J 11 U		11 U	11 U	10 U
N-Nitrosodiphenylamine	50 ²	10 U	11		J 10 U	11 U	10	U 11	U	10 U	10 U	10 U	0	11 U	10 U	11 U	J 10 U	10 U	J 11 U	11 U	11 U	11 U	10 U
4-Bromophenyl phenyl ether	N/L 0.04 ¹	10 U	11		10 U	11 U	10	U 11	U	10 U	10 0	10 U	11 U	11 U	10 U	11 U	J 10 U	10 U	J 11 U	11 U	11 U	11 U	10 U
Hexachlorobenzene Phenanthrene	50 ²	10 U 10 U	11	+ +	10 0	11 U	10	U 11	U	10 U	10 U	10 U	11 U	11 U	10 U	11 U	J 10 U	10 U	J 11 U	11 U	11 U	11 U 11 U	10 U
	50 ²	10 U	11 1	U 10 I	14 I 10 II	11 U	10	U 11	II.	10 U	10 U	10 U	11 U	11 U	10 U	11 U	I 10 U	10 U	J 11 U	+	11 U	11 U	10 U
Anthracene Carbazole	N/L	10 U	11 1	U 10 U	J 13	11 U	10	U 11	U	10 U	10 U	10 U	11 U	11 U	10 U	11 U	10 0	10 U	J 11 U		11 U	11 U	10 U
Di-n-butyl phthalate	50 ¹	10 U	11		J 10 U	11 U	10	U 11	U	10 U	10 U	10 U	11 U	11 U	10 U	11 U	J 10 U	10 U	J 11 U		11 U	11 U	1.4 J
Fluoranthene	50 ²	10 U	11		10 U	11 U	10	U 11	U	10 U	10 U	10 U	11 U	11 U	10 U	11 U	J 10 U		J 11 U	11 U	11 U	11 U	10 U
Pyrene	50 ²	10 U	11		J 10 U	11 U	10	U 11	U	10 U	10 U	10 U	11 U	11 U		11 U	J 10 U	+	1 1	-	11 U	11 U	10 U
Butyl benzyl phthalate	50 ²	10 U	11	U 10 U	10 U	11 U	10	U 11	U	10 U	10 U	10 U	11 U	11 U	10 U	11 U	J 10 U	10 U	J 11 U	11 U	11 U	11 U	10 U
3,3'-Dichlorobenzidine	5 ¹	20 U	22 1	U 21 U	J 20 U	21 U	21	U 22	U	20 U	21 U	20 U	22 U	21 U	20 U	11 U	J 10 U	20 U	J 22 U	22 U	22 U	22 U	20 U
Benzo(a)anthracene	0.002^2	10 U	11	U 10 U	10 U	11 U	10	U 11	U	10 U	10 U	10 U	11 U	11 U	10 U	11 U	J 10 U	10 U	11 U	11 U	11 U	11 U	10 U
Chrysene	0.002^2	10 U	11	U 10 U	10 U	11 U	10	U 11	U	10 U	10 U	10 U	11 U	11 U	10 U	11 U		10 U	J 11 U		11 U	11 U	10 U
bis(2-Ethylhexyl)phthalate	5 ¹	10 U	11	U 3.0 .	J 10 U	11 U	10	U 11	U	10 U	10 U	10 U	8.1 JB	11 U		2.3 JB	3 2.9 JB						10 U
Di-n-octyl phthalate	50 ²	10 U	11		J 10 U	11 U	10	U 11	U	10 U	 	 		.		11 U	+						10 U
Benzo(b)fluoranthene	0.0022	10 U	11		10 0	11 U	10	U 11	U	10 U	 			11 U		11 U		+ +					10 U
Benzo(k)fluoranthene	0.0022	10 U	11		7 10 0	11 U	10	U 11	U	10 U				11 U		11 U					11 U		10 U
Benzo(a)pyrene	ND	10 U	11		+	11 U	10	U 11	U	10 U				11 U		11 U	+				11 U		10 U
Indeno(1,2,3-cd)pyrene	0.002 ² N/L	10 U	11 1		7 10 0	11 U	10	U 11	U	10 U				11 U		11 U					11 U		10 U
Dibenzo(a,h)anthracene	N/L N/L	10 U 10 U	11 1			11 U 11 U	10 10	U 11 U 11	U	10 U 10 U						11 U					11 U		10 U 10 U
Benzo(g,h,i)perylene NOTES:		10 0	11	U 10 C	10 U	11 U	10	0 11	U	10 0	10 0	10 0	11 U	111 0	10 0	11 U	- 10 U	10[0	1110	1110	1110	11 U	10 0

NOTES:

All results in micrograms per liter (ug/L) or parts per billion (ppb)

¹ = New York State Ambient Water Quality Standard.

 2 = New York State Ambient Water Quality Guidance Value.

N/L = No Class GA Value

Bold shaded values exceede Class GA Values.

U - Not detected

J - Approximate value

D - Sample diluted by factor indicated

UJ = Estimated nondetect
JB - Approximate value, analyte found in associated method blank

blank
Shallow = refers to wells screened to intercept top
of unconsolidated aquifer
Deep = refers to wells screened from 20 to 40
feet above to bottom of unconsolidated aquifer

TABLE 3A

Comparison of Groundwater Sampling Results - VOCs in Shallow Wells

Table 3A Comparison of Groundwater Sampling Results - VOCs in Shallow Wells Long Island Rail Road Morris Park Yard

			MW-1-60			MW-2-50R			MW-2U-60			MW	/-2D-60			MW-3D-60			MW-3U-60			MW-4-60	
Volatile Organic Compound	Class GA Groundwater Standards ¹ /		N1W-1-00			WW-2-30K			W1W-2U-00			WIV	-2D-00			WW-3D-00			WW-30-00			N1 W-4-00	
romine organic compound	Guidance Value ² (ppb)	1/23/97-STV	12/28/2005- LIRR	2006 TRC	1/27/1997- STV	12/28/2005- LIRR	2006 TRC	1/27/97 - STV	12/28/2005- LIRR	2006 TRC	1/23/97 -STV	10/3/2005-LIRR	12/28/2005- LIRR	2006 TRC	1/28/97 -STV	12/28/2005- LIRR	2006 TRC	1/30/97 -STV	3/15/2005- LIRR	2006 TRC	1/25/96 - STV	12/28/2005- LIRR	2006 TRC
Dichlorodifluoromethane (DCDFM)	5.00 ¹	NA	ND	ND ND	NA NA	ND	ND ND	NA NA	ND	ND	NA	ND	NS	ND	NA	ND	ND ND	NA	ND	ND ND	NA	ND	ND ND
Chloromethane	5.001	NA	ND	ND	NA	ND	ND	NA	ND	ND	NA	ND	NS	ND	NA	ND	ND	NA	ND	ND	NA	ND	ND
Vinyl chloride	2.00 ¹ 5.00 ¹	ND NA	ND ND	ND ND	ND NA	ND ND	ND ND	ND NA	ND ND	ND ND	ND NA	ND ND	NS NS	ND ND	ND NA	ND ND	ND ND	ND NA	ND ND	ND ND	ND NA	ND ND	ND ND
Bromomethane Chloroethane	5.00 ¹	NA NA	ND	ND	NA NA	ND	ND ND	NA NA	ND	ND	NA NA	ND	NS NS	ND	NA NA	ND ND	ND	NA NA	ND	ND	NA NA	ND	ND
Trichlorofluoromethane (TCFM)	5.00 ¹	580 D	ND	3.0 J	52	ND	10	40	18	ND	46	37	NS	51 D	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichlorotrifluoroethane	5.001	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND
1,1-Dichloroethene Acetone	5.00 ¹ 50.00 ²	ND NA	ND NA	ND ND	ND NA	ND NA	ND ND	ND NA	ND NA	ND 14 J	ND NA	ND NA	ND NA	ND ND	ND NA	ND NA	ND ND	ND NA	ND NA	ND ND	ND NA	ND NA	ND ND
Carbon Disulfide	60.00 ²	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND
MTBE	10.00 ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	13	ND	ND	ND	4	ND	ND	ND	ND
Methyl Acetate Methylene chloride	N/L 5.00 ¹	NA ND	NA ND	ND ND	NA ND	NA ND	ND ND	NA ND	NA ND	ND ND	NA ND	NA ND	NA ND	ND ND	NA ND	NA ND	ND ND	NA ND	NA ND	ND ND	NA ND	NA ND	ND ND
trans-1,2-Dichloroethene	5.00 ¹	NA	NA NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	NA	ND	NA	NA NA	ND	NA	NA	ND	NA	NA	ND
1,1-Dichloroethane	5.00 ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2	ND	ND	ND	ND
Cyclohexane 2-Butanone	N/L 50.00 ²	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	2.9 J ND
Carbon Tetrachloride	5.00 ¹	NA NA	ND	ND	NA	ND	ND	NA	ND	ND	NA NA	ND	NS	ND	NA NA	ND	ND	NA NA	ND	ND	NA	ND	ND
1,2-Dichloroethene (Total)	N/L	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND	ND	NA	NA	ND	NA	NA	2	NA	NA	ND	NA
cis-1,2-Dichloroethene Chloroform	5.00 ¹ 7.00 ¹	NA 1 I	NA ND	ND ND	NA ND	NA ND	ND ND	NA 2 I	NA ND	ND ND	NA ND	NA ND	NA ND	ND ND	NA ND	NA ND	ND ND	NA ND	NA ND	ND ND	NA ND	NA ND	ND ND
1,1,1-Trichloroethane	5.00 ¹	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS NS	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND
Methylcyclohexane	N/L	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	4.5 J
Benzene 1.2 Diahlaroathana	1.00 ¹ 0.600 ¹	ND NA	ND ND	ND ND	ND NA	ND ND	ND ND	ND NA	ND ND	ND ND	ND NA	ND ND	ND ND	ND ND	ND NA	ND ND	ND ND	ND NA	1 ND	ND ND	ND NA	ND ND	ND ND
1,2-Dichloroethane Trichloroethene (TCE)	5.00 ¹	NA ND	ND ND	ND ND	2 J	ND ND	ND ND	NA ND	ND ND	ND ND	NA ND	ND ND	NS NS	ND	NA ND	ND ND	ND ND	NA 4 J	ND 17	ND	NA ND	ND ND	ND
1,2-Dichloropropane	1.001	NA	ND	ND	NA	ND	ND	NA	ND	ND	NA	ND	ND	ND	NA	ND	ND	NA	ND	ND	NA	ND	ND
Bromodichloromethane 4-Methyl-2-Pentanone	50.00 ² N/L	ND NA	ND NA	ND ND	ND NA	ND NA	ND ND	ND NA	ND NA	ND 6.3 J	ND NA	ND NA	ND NA	ND ND	ND NA	ND NA	ND ND	ND NA	ND NA	ND ND	ND NA	ND NA	ND ND
Toluene	5.00 ¹	NA NA	ND	ND	NA NA	ND	ND	NA NA	ND	ND ND	NA NA	ND	NS	ND	NA NA	ND	ND	NA NA	ND	ND	NA NA	ND	ND
trans-1,3-Dichloropropene3	0.401	NA	ND	ND	NA	ND	ND	NA	ND	ND	NA	ND	NS	ND	NA	ND	ND	NA	ND	ND	NA	ND	ND
cis-1,3-Dichloropropene ³ 1,1,2-Trichloroethane	0.40 ¹ 1.00 ¹	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	NS ND	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND
2-Hexanone	50.00 ²	NA NA	NA NA	ND	NA NA	NA NA	ND	NA NA	NA NA	ND	NA NA	NA NA	NA NA	ND	NA NA	NA NA	ND	NA NA	NA NA	ND	NA NA	NA NA	ND
Dibromochloromethane	50.00 ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane Tetrachloroethene (PCE)	0.006 ¹ 5.00 ¹	NA e	ND 9.8	ND 1.2 I	NA	ND ND	ND ND	NA .	ND ND	ND ND	NA .	ND ND	ND NS	ND ND	NA .	ND ND	ND ND	NA 11	ND ND	ND ND	NA 2	ND ND	ND ND
Chlorobenzene	5.00 ¹	NA	ND	ND ND	NA NA	ND ND	ND	NA NA	ND	ND	NA NA	ND ND	NS NS	ND	NA NA	ND ND	ND	NA NA	ND ND	ND	NA	ND	ND
Ethylbenzene	5.001	ND	ND	ND	6	ND	3.8 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m/p-Xylenes o-Xylene	5.00 ¹ 5.00 ¹	NA NA	ND ND	ND ND	NA NA	ND ND	2.6 J 1.3 J	NA NA	ND ND	ND ND	NA NA	ND ND	NS NS	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND
Total Xylenes	N/L	ND	NA NA	NA NA	7	NA NA	NA NA	ND	NA	NA NA	ND	NA	NS	NA	ND	NA NA	NA	ND	NA NA	NA	ND	NA	NA
Styrene	5.00 ¹	NA	ND	ND	NA	ND	ND	NA	ND	ND	NA	ND	NS	ND	NA	ND	ND	NA	ND	ND	NA	ND	ND
Bromoform Isopropylbenzene	50.00 ² 5.00 ¹	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND 1.4 J
1,1,2,2-Tetrachloroethane	5.00 ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
1,3-Dichlorobenzene	3.001	NA	ND	ND	NA	ND	ND	NA	ND	ND	NA	ND	ND	ND	NA	ND	ND	NA	ND	ND	NA	ND	ND
1,4-Dichlorobenzene 1,2-Dichlorobenzene	3.00 ¹ 3.00 ¹	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND
1,2-Dibromo-3-chloropropane	0.041	NA NA	ND	ND	NA	ND	ND	NA	ND	ND	NA	ND	ND	ND	NA NA	ND	ND	NA NA	ND	ND	NA NA	ND	ND
1,2,4-Trichlorobenzene	5.001	NA	ND	ND	NA	ND	ND	NA	ND	ND	NA	ND	ND	ND	NA	ND	ND	NA	ND	ND	NA	ND	ND
Chlorofluoromethane (CFM) Flurodichloromethane (DCFM)	N/L 5.00 ¹	NA ND	NA NA	ND ND	NA 660 D	NA NA	ND 4.81 J	NA ND	NA NA	ND ND	NA 14	NA NA	NA NA	ND 85	NA ND	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND
1,1,1,2-Tetrachloroethane	5.00 ¹	NA NA	NA ND	NA NA	NA	NA ND	4.81 J NA	NA NA	ND ND	NA NA	NA	NA ND	ND ND	NA	NA NA	ND ND	NA NA	NA NA	NA ND	NA NA	NA NA	NA ND	NA NA
1,1-Dichloropropene	5.001	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA
1,2,3-Trichlorobenzene	5.00 ¹ 0.04 ¹	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA
1,2,3-Trichloropropane 1,2,3-Trimethylbenzene	5.00 ¹	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND	NA NA
1,2,4-Trimethylbenzene	5.00 ¹	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA
1,3,5-Trimethylbenzene	5.00 ¹	NA NA	ND ND	NA ND	NA NA	ND ND	NA ND	NA NA	ND ND	NA ND	NA NA	ND ND	ND ND	NA ND	NA NA	ND ND	NA ND	NA NA	ND ND	NA ND	NA NA	ND ND	NA ND
1,3-Dichloropropane 1-Chlorohexane	5.00 N/L	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA
2,2-Dichloropropane	5.00 ¹	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA
2-Chlorotoluene 4-Chlorotoluene	5.00 ¹ 5.00 ¹	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA
4-Chiorotoluene Bromobenzene	5.00 ¹	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA
Bromochloromethane	5.00 ¹	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA
Chlorodifluoromethane (CDFM)	5.00 ¹ 5.00 ¹	170	ND ND	ND NA	32	ND ND	ND	23	ND ND	ND NA	9	NA ND	NS NS	5.73 J	ND NA	ND ND	ND	ND	NA ND	ND NA	NA NA	ND	ND NA
Dibromomethane Hexachlorobutadiene	5.00° 0.50 ²	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NS NS	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA
Naphthalene	10.00 ²	NA	ND	NA NA	NA NA	ND	NA NA	NA NA	ND	NA NA	NA NA	ND	NS	NA NA	NA NA	ND	NA	NA NA	ND	NA	NA NA	9.9	NA
n-Butylbenzene	5.001	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND	NS	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA
n-Propylbenzene p-Isopropyltoluene	5.00 ¹ 5.00 ¹	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NS NS	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA
sec-Butylbenzene	5.00 ¹	NA	ND ND	NA NA	NA NA	ND	NA NA	NA	ND	NA NA	NA NA	ND ND	NS NS	NA NA	NA NA	ND ND	NA	NA NA	2	NA	NA NA	NA NA	NA
tert-Butylbenzene	5.00 ¹	NA 750	ND	NA	NA	ND	NA TABLE Y	NA (2)	ND	NA ND	NA CO	ND	NS	NA NA	NA	ND	NA	NA NA	ND	NA	NA NB	ND	NA
Total CFCs ⁴ % Total Contaminant Reduction ⁵		750	ND 99.6	3.0 J % DECREASE	744	ND 98	14.81 J % DECREASE	63	18	ND % DECREASE	69	37	NS 105.4	141.73 J % INCREASE	ND	ND N/A	ND	ND	ND N/A	ND	ND	ND N/A	ND
		•	7510		•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•	100		•				•			•					

NOTES:

NOTES:

All results in micrograms per liter (ug/L) or partis per billion (ppb)

1. New York State Ambient Water Quality Standard.
2. New York State Ambient Water Quality Standard.
2. New York State Ambient Water Quality Guidance Value.
3. O.4 ug/l applies to the sum of cis- and trans-1,3-dichloropropene.
4. Total CPCs = the sum of dichlorodrillucromethane, trichloroflucomethane, fluoromethane, fluoromethane, fluoromethane, fluoromethane per complex per sum of the properties of the prop

Table 3A Comparison of Groundwater Sampling Results - VOCs in Shallow Wells Long Island Rail Road Morris Park Yard

	Class GA		MW-5-60		MW-F	PMW-5	MW-	8-60		MW-9-60			MW-10-60			MW-11-60			MW-12-60	
Volatile Organic Compound	Groundwater Standards ¹ / Guidance Value ² (ppb)	1/28/97-STV	12/28/2005- LIRR	2006 TRC	12/28/2005- LIRR	2006 TRC	1/23/97 -STV	2006 TRC	1/21/97 -STV	12/28/2005- LIRR	2006 TRC	1/21/97 -STV	12/28/2005- LIRR	2006 TRC	1/21/97 -STV	12/28/2005- LIRR	2006 TRC	1/30/97 -STV	12/28/2005- LIRR	2006 TRC
Dichlorodifluoromethane (DCDFM)	5.001	NA	ND	ND	ND	ND	NA	ND	NA	ND	ND	NA	ND	ND	NA	ND	ND	NA	ND	ND
Chloromethane Vinyl chloride	5.00 ¹ 2.00 ¹	NA ND	ND ND	ND ND	ND ND	ND ND	NA ND	ND ND	NA ND	ND ND	ND ND	NA ND	ND ND	ND ND	NA ND	ND ND	ND ND	NA ND	ND ND	ND ND
Bromomethane	5.00 ¹	NA NA	ND	ND	ND	ND	NA NA	ND	NA NA	ND	ND	NA NA	ND ND	ND	NA NA	ND ND	ND	NA NA	ND	ND
Chloroethane	5.00 ¹	NA	ND	ND	ND	ND	NA	ND	NA	ND	ND	NA	ND	ND	NA	ND	ND	NA	ND	ND
Trichlorofluoromethane (TCFM)	5.001	ND	ND	ND	ND	3.4 J	120	ND	200	ND	2.6 J	520 D	ND	ND	2 J	ND	ND	ND	ND	ND
1,1,2-Trichlorotrifluoroethane 1,1-Dichloroethene	5.00 ¹ 5.00 ¹	NA ND	NA ND	ND ND	NA ND	ND ND	NA ND	ND ND	NA ND	NA ND	ND ND	NA ND	NA ND	ND ND	NA ND	NA ND	ND ND	NA ND	NA ND	ND ND
Acetone	50.00 ²	NA NA	NA	ND	NA NA	ND	NA NA	ND	NA	NA	ND	NA NA	NA NA	ND	NA NA	NA NA	ND	NA NA	NA NA	ND
Carbon Disulfide	60.00 ²	NA	NA	ND	NA	ND	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND
MTBE	10.00 ²	ND	ND	ND	ND	ND	ND NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl Acetate Methylene chloride	N/L 5.00 ¹	NA ND	NA ND	ND ND	NA ND	ND ND	NA ND	ND ND	NA ND	NA ND	ND ND	NA ND	NA ND	ND ND	NA ND	NA ND	ND ND	NA ND	NA ND	ND ND
trans-1,2-Dichloroethene	5.001	NA	NA	ND	NA	ND	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND
1,1-Dichloroethane	5.00 ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane 2-Butanone	N/L 50.00 ²	NA NA	NA NA	ND ND	NA NA	ND ND	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND
Carbon Tetrachloride	5.00¹	NA NA	ND	ND	ND	ND	NA NA	ND	NA NA	ND	ND	NA NA	ND ND	ND	NA NA	ND ND	ND	NA NA	ND	ND
1,2-Dichloroethene (Total)	N/L	NA	NA	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA
cis-1,2-Dichloroethene	5.00 ¹	NA ND	ND	ND	NA	ND	NA ND	ND	NA	NA	ND	NA .	NA ND	ND	NA ND	NA NB	ND	NA ND	NA NB	ND
Chloroform 1,1,1-Trichloroethane	7.00 ¹ 5.00 ¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND NA	ND ND	ND ND	2 J ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Methylcyclohexane	N/L	NA NA	NA NA	ND	NA NA	ND	NA NA	ND	NA NA	NA NA	ND	NA NA	NA NA	ND	NA NA	NA NA	ND	NA NA	NA NA	ND
Benzene	1.001	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.600 ¹	NA I	ND ND	ND ND	ND ND	ND ND	NA ND	ND ND	NA ND	ND ND	ND ND	NA ND	ND ND	ND ND	NA ND	ND ND	ND ND	NA 1 I	ND ND	ND ND
Trichloroethene (TCE) 1,2-Dichloropropane	5.00 ¹ 1.00 ¹	2 J NA	ND ND	ND ND	ND ND	ND ND	ND NA	ND ND	ND NA	ND ND	ND ND	ND NA	ND ND	ND ND	ND NA	ND ND	ND ND	l J NA	ND ND	ND ND
Bromodichloromethane	50.00 ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone	N/L	NA	NA	ND	NA	ND	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND
Toluene trans-1,3-Dichloropropene ³	5.00 ¹ 0.40 ¹	NA NA	ND ND	ND ND	ND ND	ND ND	ND NA	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND
cis-1,3-Dichloropropene ³	0.40 ¹	NA NA	ND	ND	ND	ND	NA NA	ND	NA NA	ND	ND	NA NA	ND ND	ND	NA NA	ND ND	ND	NA NA	ND	ND
1,1,2-Trichloroethane	1.001	NA	ND	ND	ND	ND	NA	ND	NA	ND	ND	NA	ND	ND	NA	ND	ND	NA	ND	ND
2-Hexanone	50.00 ²	NA	NA	ND	NA	ND	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND
Dibromochloromethane 1,2-Dibromoethane	50.00 ² 0.006 ¹	ND NA	ND ND	ND ND	ND ND	ND ND	ND NA	ND ND	ND NA	ND ND	ND ND	ND NA	ND ND	ND ND	ND NA	ND ND	ND ND	ND NA	ND ND	ND ND
Tetrachloroethene (PCE)	5.00 ¹	ND	ND	ND	8.1	3.6 J	ND	ND	ND	ND	1.1 J	4 J	ND	3.7 J	ND	ND	ND	2 J	ND	ND
Chlorobenzene	5.001	NA	ND	ND	ND	ND	NA	ND	NA	ND	ND	NA	ND	ND	NA	ND	ND	NA	ND	ND
Ethylbenzene m/n Vulence	5.00 ¹ 5.00 ¹	ND NA	ND ND	ND ND	ND ND	ND ND	ND NA	ND ND	ND NA	ND ND	ND ND	ND NA	ND ND	ND ND	ND NA	ND ND	ND ND	ND NA	ND ND	ND ND
m/p-Xylenes o-Xylene	5.00 ¹	NA NA	ND	ND	ND	ND	NA NA	ND	NA NA	ND	ND	NA NA	ND ND	ND	NA NA	ND ND	ND	NA NA	ND	ND
Total Xylenes	N/L	ND	NA	NA	NA	NA	ND	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA
Styrene	5.00 ¹	NA	ND	ND	ND	ND	NA NA	ND	NA	ND	ND	NA	ND	ND	NA	ND	ND	NA NA	ND	ND
Bromoform Isopropylbenzene	50.00 ² 5.00 ¹	NA NA	ND ND	ND ND	ND ND	ND ND	NA NA	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND
1,1,2,2-Tetrachloroethane	5.00 ¹	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	3.001	NA	ND	ND	ND	ND	NA	ND	NA	ND	ND	NA	ND	ND	NA	ND	ND	NA	ND	ND
1,4-Dichlorobenzene 1,2-Dichlorobenzene	3.00 ¹ 3.00 ¹	NA NA	ND ND	ND ND	ND ND	ND ND	NA NA	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND
1,2-Dibromo-3-chloropropane	0.04 ¹	NA NA	ND	ND	ND	ND	NA NA	ND	NA NA	ND	ND	NA NA	ND ND	ND	NA NA	ND ND	ND	NA NA	ND	ND
1,2,4-Trichlorobenzene	5.00 ¹	NA	ND	ND	ND	ND	NA	ND	NA	ND	ND	NA	ND	ND	NA	ND	ND	NA	ND	ND
Chlorofluoromethane (CFM)	N/L 5.00 ¹	NA ND	NA NA	ND ND	NA NA	ND ND	NA ND	ND ND	NA ND	NA NA	ND ND	NA ND	NA NA	ND ND	NA ND	NA NA	ND	NA ND	NA NA	ND ND
Flurodichloromethane (DCFM) 1,1,1,2-Tetrachloroethane	5.00 ¹ 5.00 ¹	ND NA	NA ND	ND NA	NA ND	ND NA	ND NA	ND NA	ND NA	NA ND	ND NA	ND NA	NA ND	ND NA	ND NA	NA ND	ND NA	ND NA	NA ND	ND NA
1,1-Dichloropropene	5.00 ¹	NA	ND	NA	ND	NA	NA	NA	NA	ND	NA	NA NA	ND	NA	NA	ND	NA	NA	ND	NA
1,2,3-Trichlorobenzene	5.001	NA	ND	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA
1,2,3-Trichloropropane 1,2,3-Trimethylbenzene	0.04 ¹ 5.00 ¹	NA NA	ND ND	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA
1,2,4-Trimethylbenzene	5.00 ¹	NA NA	ND	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA
1,3,5-Trimethylbenzene	5.00 ¹	NA	ND	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA
1,3-Dichloropropane	5.00 ¹	NA NA	ND ND	ND NA	ND ND	NA NA	NA NA	ND NA	NA NA	ND ND	ND NA	NA NA	ND ND	ND NA	NA NA	ND ND	ND NA	NA NA	ND ND	ND NA
1-Chlorohexane 2,2-Dichloropropane	N/L 5.00 ¹	NA NA	ND ND	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA
2-Chlorotoluene	5.00 ¹	NA	ND	NA	ND	NA	NA	NA	NA NA	ND	NA	NA NA	ND	NA	NA NA	ND	NA	NA NA	ND	NA
4-Chlorotoluene	5.00¹	NA	ND	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA
Bromochloromethane	5.00 ¹ 5.00 ¹	NA NA	ND ND	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA
Bromochloromethane Chlorodifluoromethane (CDFM)	5.00°	NA ND	ND ND	NA ND	ND ND	NA ND	NA 25	NA ND	NA 110	ND ND	NA ND	NA 200	ND ND	NA ND	NA ND	ND ND	NA ND	NA ND	ND ND	NA ND
Dibromomethane	5.00 ¹	NA	ND	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND ND	NA	NA	ND	NA	NA NA	ND	NA
Hexachlorobutadiene	0.50 ²	NA	ND	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA
Naphthalene n-Butylbenzene	10.00 ² 5.00 ¹	NA NA	ND ND	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA
n-Butylbenzene n-Propylbenzene	5.00°	NA NA	ND ND	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA
p-Isopropyltoluene	5.00 ¹	NA	ND	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA
sec-Butylbenzene	5.00¹	NA	ND	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA
tert-Butylbenzene Total CFCs ⁴	5.00 ¹	NA ND	ND ND	NA ND	ND ND	NA 3.4 J	NA 145	NA ND	NA 310	ND ND	NA 2.6 J	NA 720	ND ND	NA ND	NA 2 J	ND ND	NA ND	NA ND	ND ND	NA ND
% Total Contaminant Reduction ⁵		ND	N/A	ND		/A		% DECREASE	310		% DECREASE	/40		% DECREASE	J		%DECREASE	MD	N/A	ΝИ
		•										•								

- NOTES:

 NOTES:

 All results in micrograms per liter (ug/L) or partts per billion (ppb)

 1. New York State Ambient Water Quality Standard.
 2. New York State Ambient Water Quality Guidance Value.
 3. O4 ug/l applies to the sum of cis- and trans-1,3-dichloropropene
 4. Total CFCx = the sum of dichlorodifuloromethane, trichloroflucomethane, fluoromethane, fluoromethane, fluoromethane, fluoromethane Part of the Contential Reduction = percent change between STV 1997 results and TRC 2006 results

 6. Monitoring well MW-17-60, which was sampled by STV in 1997, was reinstalled and renamed MW-17-50R.

 N/L= Not Lass GAV Value
 N/L= Not applicable
 N/L= Not applicable
 Not detected = Not detected above laboratory reporting limits
 Sold shaded values exceede Class GA Values.
 NS = Not sampled
 D Sample diluted

 J = Approximate value

Page 2 of 3

			MW-15-60			MW-16-60		MW	17-50R ⁶		MW-19-60		MW-20	0.50
Volatile Organic Compound	Class GA Groundwater Standards 1/		MW-15-60			MW-10-00		MIW-	17-50K		MW-19-00		MW-20	1-30
	Guidance Value ² (ppb)	1/29/97- STV	12/28/2005- LIRR	2006 TRC	1/29/1997- STV	12/28/2005- LIRR	2006 TRC	1/27/1997- STV	2006 TRC	1/30/1997- STV	12/28/2005- LIRR	2006 TRC	12/28/2005- LIRR	2006 TRC
Dichlorodifluoromethane (DCDFM)	5.00 ¹	NA	ND	ND	NA	ND	ND	NA	ND	NA	ND	ND	ND	ND
Chloromethane	5.001	NA	ND	ND	NA	ND	ND	NA	ND	NA	ND	ND	ND	ND
Vinyl chloride	2.001	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	5.00 ¹ 5.00 ¹	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	NA NA	ND ND	ND ND	ND ND	ND ND
Chloroethane Trichlorofluoromethane (TCFM)	5.00 ¹	NA ND	5.3	3.4 J	NA ND	ND ND	ND	1500 D	1.3 J	NA ND	ND ND	ND	ND ND	ND ND
1,1,2-Trichlorotrifluoroethane	5.00 ¹	NA NA	NA NA	ND ND	NA	NA NA	ND	NA	ND	NA NA	NA NA	ND	NA NA	ND
1,1-Dichloroethene	5.00 ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50.00 ²	NA	NA	ND	NA	NA	ND	NA	ND	NA	NA	ND	NA	ND
Carbon Disulfide	60.00 ²	NA	NA	ND	NA	NA	ND	NA	ND	NA	NA	ND	NA	ND
MTBE	10.00 ²	ND	1.0	2.4 J ND	ND NA	ND	ND ND	ND NA	ND ND	ND NA	ND	ND ND	ND	ND ND
Methyl Acetate Methylene chloride	N/L 5.00 ¹	NA ND	NA ND	ND	NA ND	NA ND	ND	NA ND	53	NA ND	NA ND	ND	NA ND	ND
trans-1,2-Dichloroethene	5.00 ¹	NA NA	NA NA	ND	NA	NA NA	ND	NA	ND	NA	NA NA	ND	NA NA	ND
1,1-Dichloroethane	5.00 ¹	ND	ND	ND	ND	ND	ND	2 J	ND	ND	ND	ND	ND	ND
Cyclohexane	N/L	NA	NA	ND	NA	NA	ND	NA	ND	NA	NA	ND	NA	ND
2-Butanone	50.00 ²	NA	NA	ND	NA	NA	ND	NA	ND	NA	NA	ND	NA	ND
Carbon Tetrachloride 1,2-Dichloroethene (Total)	5.00 ¹ N/L	NA NA	ND ND	ND NA	NA NA	ND ND	ND NA	NA NA	ND NA	NA NA	ND ND	ND NA	ND ND	ND NA
cis-1,2-Dichloroethene	5.00 ¹	NA NA	NA NA	ND ND	NA NA	NA NA	ND	NA NA	ND ND	NA NA	NA NA	NA ND	NA NA	NA ND
Chloroform	7.00 ¹	ND	ND ND	ND	ND	ND ND	ND	ND	1.5 J	ND	ND ND	ND	ND	ND
1,1,1-Trichloroethane	5.00 ¹	ND	ND	ND	ND	ND	ND	21	ND	ND	ND	ND	ND	ND
Methylcyclohexane	N/L	NA	NA	ND	NA	NA	ND	NA	ND	NA	NA	ND	NA	ND
Benzene	1.001	ND	NA	6.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.600 ¹	NA ND	ND ND	ND ND	NA ND	ND ND	ND ND	NA	ND ND	NA ND	ND	ND ND	ND ND	ND ND
Trichloroethene (TCE) 1,2-Dichloropropane	5.00 ¹ 1.00 ¹	ND NA	ND ND	ND	NA NA	ND ND	ND	NA NA	ND ND	NA NA	ND ND	ND	ND ND	ND ND
Bromodichloromethane	50.00 ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone	N/L	NA	NA	ND	NA	NA	ND	NA	ND	NA	NA	ND	NA	ND
Toluene	5.00 ¹	NA	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene ³	0.401	NA	ND	ND	NA	ND	ND	NA	ND	NA	ND	ND	ND	ND
cis-1,3-Dichloropropene ³	0.40 ¹ 1.00 ¹	NA	ND	ND	NA	ND	ND	NA NA	ND	NA NA	ND	ND	ND	ND
1,1,2-Trichloroethane 2-Hexanone	50.00 ²	NA NA	ND NA	ND ND	NA NA	ND NA	ND ND	NA NA	ND ND	NA NA	ND NA	ND ND	ND NA	ND ND
Dibromochloromethane	50.00 ²	ND	ND	ND	NA	ND	ND	ND	ND	NA NA	ND	ND	ND	ND
1,2-Dibromoethane	0.006 ¹	NA	ND	ND	NA	ND	ND	NA	ND	NA	ND	ND	ND	ND
Tetrachloroethene (PCE)	5.00 ¹	ND	ND	ND	ND	ND	ND	2 J	ND	3 J	ND	ND	ND	ND
Chlorobenzene	5.001	NA	ND	ND	NA	ND	ND	NA	ND	NA	ND	ND	ND	ND
Ethylbenzene	5.00 ¹ 5.00 ¹	ND	ND	ND	ND	ND	ND	ND	7.4	ND	ND	ND	ND	ND
m/p-Xylenes o-Xylene	5.00 ¹	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND	NA NA	1.6 J ND	NA NA	ND ND	ND ND	ND ND	ND ND
Total Xylenes	N/L	ND	NA NA	NA	ND	NA NA	NA	ND	NA	ND	NA NA	NA	NA NA	NA
Styrene	5.00 ¹	NA	ND	ND	NA	ND	ND	NA	ND	NA	ND	ND	ND	ND
Bromoform	50.00 ²	NA	ND	ND	NA	ND	ND	NA	ND	NA	ND	ND	ND	ND
Isopropylbenzene	5.00 ¹	NA	ND	ND	NA	ND	ND	NA	8.1	NA	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane 1,3-Dichlorobenzene	5.00 ¹ 3.00 ¹	ND NA	ND ND	ND ND	ND NA	ND ND	ND ND	ND NA	ND ND	ND NA	ND ND	ND ND	ND ND	ND ND
1,4-Dichlorobenzene	3.00 ¹	NA NA	ND	ND	NA NA	ND ND	ND	NA NA	ND	NA NA	ND	ND	ND	ND
1,2-Dichlorobenzene	3.00 ¹	NA	ND	ND	NA	ND	ND	NA	ND	NA	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	0.041	NA	ND	ND	NA	ND	ND	NA	ND	NA	ND	ND	ND	ND
1,2,4-Trichlorobenzene	5.00 ¹	NA	ND	ND	NA	ND	ND	NA	ND	NA	ND	ND	ND	ND
Chlorofluoromethane (CFM)	N/L	NA NB	NA NA	2.3 J	NA ND	NA NA	ND	NA 45	ND	NA ND	NA	ND	NA NA	ND
Flurodichloromethane (DCFM) 1,1,1,2-Tetrachloroethane	5.00 ¹ 5.00 ¹	ND NA	NA ND	ND NA	ND NA	NA ND	ND NA	NA	NA	ND NA	NA ND	ND NA	NA ND	ND NA
1,1-Dichloropropene	5.00 ¹	NA NA	ND	NA NA	NA NA	ND	NA NA	NA NA	NA NA	NA NA	ND	NA NA	ND	NA NA
1,2,3-Trichlorobenzene	5.00 ¹	NA	ND	NA	NA	ND	NA	NA	NA	NA	ND	NA	ND	NA
1,2,3-Trichloropropane	0.041	NA	ND	NA	NA	ND	NA	NA	NA	NA	ND	NA	ND	NA
1,2,3-Trimethylbenzene	5.001	NA	ND	NA	NA	ND	NA	NA	NA	NA	ND	NA	ND	NA
1,2,4-Trimethylbenzene	5.00 ¹	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	ND	NA NA	ND ND	NA NA
1,3,5-Trimethylbenzene 1,3-Dichloropropane	5.00 ¹ 5.00 ¹	NA NA	ND ND	NA ND	NA NA	ND ND	NA ND	NA NA	NA ND	NA NA	ND ND	NA ND	ND ND	NA ND
1-Chlorohexane	N/L	NA NA	ND	NA	NA	ND	NA	NA	NA NA	NA NA	ND	NA	ND	NA NA
2,2-Dichloropropane	5.00 ¹	NA	ND	NA	NA	ND	NA	NA	NA	NA	ND	NA	ND	NA
2-Chlorotoluene	5.00 ¹	NA	ND	NA	NA	ND	NA	NA	NA	NA	ND	NA	ND	NA
4-Chlorotoluene	5.001	NA	ND	NA	NA	ND	NA	NA	NA	NA	ND	NA	ND	NA
Bromobenzene	5.00 ¹	NA	ND	NA	NA	ND	NA	NA	NA	NA	ND	NA	ND	NA
Bromochloromethane Chlorodifluoromethane (CDEM)	5.00 ¹	NA ND	ND ND	NA 6.54 J	NA ND	ND ND	NA ND	NA 4 J	NA ND	NA ND	ND ND	NA ND	ND ND	NA ND
Chlorodifluoromethane (CDFM) Dibromomethane	5.00 ¹ 5.00 ¹	ND NA	ND ND	6.54 J NA	ND NA	ND ND	ND NA	4 J NA	ND NA	ND NA	ND ND	ND NA	ND ND	ND NA
Hexachlorobutadiene	0.50 ²	NA NA	ND	NA NA	NA NA	ND	NA NA	NA NA	NA NA	NA NA	ND	NA NA	ND	NA NA
Naphthalene	10.00 ²	NA	ND	NA	NA	ND	NA	NA	NA	NA	ND	NA	ND	NA
n-Butylbenzene	5.00 ¹	NA	ND	NA	NA	ND	NA	NA	NA	NA	ND	NA	ND	NA
n-Propylbenzene	5.001	NA	ND	NA	NA	ND	NA	NA	NA	NA	ND	NA	ND	NA
p-Isopropyltoluene	5.00 ¹	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	ND	NA NA	ND ND	NA NA
sec-Butylbenzene tert-Butylbenzene	5.00 ¹ 5.00 ¹	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	ND ND	NA NA
Total CFCs ⁴	2.00	ND NA	5.3	9.94 J	ND ND	ND ND	ND	1,549 J	18.3 J	ND ND	ND ND	ND	ND ND	ND ND
% Total Contaminant Reduction ⁵			100			N/A		98.8			N/A		N/A	

NOTES:

NOTES:

All results in micrograms per liter (ug/L) or partis per billion (ppb)

1. New York State Ambient Water Quality Standard.
2. New York State Ambient Water Quality Standard.
2. New York State Ambient Water Quality Guidance Value.
3. O.4 ug/l applies to the sum of cis- and trans-1,3-dichloropropene.
4. Total CFCs = the sum of dichlorodrillucromethane, trichloroflucomethane, fluoromethane, fluoromethane, fluoromethane, fluoromethane per complex per sum of the properties of the prop

Page 3 of 3

TABLE 3B

Comparison of Groundwater Sampling Results - VOCs in Deep Wells

Table 3B Comparison of Groundwater Sampling Results - VOCs in Deep Wells Long Island Rail Road Morris Park Yard

	Class GA		MW-1-140		MW-	-2-160R	MW	-3-160		MW-5-180			MW-6-168	1	MW-	8-150		MW-10-160			MW-11-140	
Volatile Organic Compound	Groundwater Standards ¹ / Guidance																					
	Values ² (ppb)	1/23/97 -STV	12/28/2005- LIRR	2006 TRC	1/27/97- STV	2006 TRC	1/27/97- STV	2006 TRC	1/28/97 -STV	12/28/2005- LIRR	2006 TRC	1/29/97 -STV	12/28/2005- LIRR	2006 TRC	1/23/97 -STV	2006 TRC	1/21/97 -STV	12/28/2005- LIRE	TRC 2006	1/23/97 -ST	V 12/28/2005- LIRE	R 2006 TRC
orodifluoromethane (DCDFM)	5.00 ¹	NA	ND	ND	NA	ND	NA	ND	NA	ND	24	NA NA	ND	ND	NA	ND	NA	ND	ND	NA NA	ND	ND
omethane Chloride	5.00 ¹ 2.00 ¹	NA ND	ND ND	ND ND	NA ND	ND ND	NA ND	ND ND	NA ND	ND ND	ND ND	NA ND	ND ND	ND ND	NA ND	ND ND	NA ND	ND ND	ND ND	NA ND	ND ND	ND ND
omethane	5.001	NA	ND	ND	NA	ND	NA	ND	NA	ND	ND	NA	ND	ND	NA	ND	NA	ND	ND	NA	ND	ND
oethane orofluoromethane (TCFM)	5.00 ¹ 5.00 ¹	NA 660 D	ND ND	ND 4.4 J	NA 200 D	ND 42	NA ND	ND 1.7 J	NA 2 J	ND ND	ND ND	NA ND	ND ND	ND 1.2 J	NA ND	ND ND	680 D	ND ND	ND ND	NA 420	D ND	ND ND
Trichlorotrifluoroethane	5.00 ¹	NA	NA	ND	NA	ND	NA	ND	NA	NA	ND	NA	NA	ND	NA	ND	NA	NA	ND	NA	NA	ND
chloroethene ne	5.00 ¹ 50.00 ²	ND NA	ND NA	ND ND	ND NA	ND ND	ND NA	3.8 J ND	ND NA	ND NA	4.2 J ND	ND NA	ND NA	1.8 J ND	ND NA	1.1 J ND	ND NA	ND NA	2.6 ND	J 2 NA	J ND NA	ND ND
n Disulfide	60.00 ²	NA NA	NA NA	ND	NA NA	ND	NA NA	ND	NA NA	NA NA	ND	NA NA	NA NA	ND	NA	ND	NA	NA NA	ND	NA NA	NA NA	ND
1 Acetate	10.00 ² N/L	ND NA	ND NA	ND ND	ND NA	ND ND	ND ND	ND ND	ND NA	ND NA	ND ND	ND NA	ND NA	ND ND	ND NA	5.0 J ND	ND NA	ND NA	ND ND	ND NA	ND NA	2.1 ND
lene chloride	5.00 ¹	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene	5.00 ¹	NA NE	NA NE	ND	NA ND	ND	NA ND	ND	NA	NA NE	ND	NA	NA NE	ND	NA	ND	NA	NA ND	ND	NA 21	NA ND	ND
chloroethane hexane	5.00 ¹ N/L	ND NA	ND NA	ND ND	ND NA	ND ND	ND NA	ND ND	ND NA	ND NA	2.4 J ND	ND NA	ND NA	ND ND	ND NA	ND ND	ND NA	ND NA	ND ND	2J NA	ND NA	ND ND
nnone	50.00 ²	NA	NA	ND	NA	ND	NA	ND	NA	NA	ND	NA	NA	ND	NA	ND	NA	NA	ND	NA	NA	ND
n Tetrachloride chloroethene (Total)	5.00 ¹ N/L	NA NA	ND ND	ND NA	NA NA	ND NA	NA NA	DN NA	NA NA	ND ND	ND NA	NA NA	ND ND	ND NA	NA NA	ND NA	NA NA	ND ND	ND NA	NA NA	ND ND	ND NA
2-Dichloroethene	5.00 ¹	NA	NA	ND	NA	ND	NA	1.5 J	NA	NA	11	NA	NA	ND	NA	ND	NA	NA	ND	NA	NA	ND
oform Frichloroethane	7.00 ¹ 5.00 ¹	ND ND	ND ND	ND ND	14 ND	ND ND	ND ND	1.6 J 2.8 J	6 ND	ND ND	ND ND	l J ND	ND ND	ND 3.8 J	ND ND	ND 1.1 J	ND ND	ND ND	1.5	J 10 I 2	J ND	ND ND
lcyclohexane	N/L	NA	NA NA	ND	NA	ND	NA NA	ND ND	NA NA	NA NA	ND	NA	NA	ND ND	NA	ND ND	NA	NA	ND ND	NA NA	NA NA	ND
ne chloroethane	1.00 ¹ 0.600 ¹	ND NA	ND ND	ND ND	ND NA	ND ND	ND NA	ND ND	ND NA	ND ND	ND ND	ND NA	ND ND	ND ND	ND NA	ND ND	ND NA	ND ND	ND ND	ND NA	ND ND	ND ND
chloroethane oroethene (TCE)	0.600 5.00 ¹	NA ND	7.7	ND ND	NA ND	ND ND	NA ND	160 J	NA ND	630	1400 D	NA ND	ND ND	1.0 J	NA ND	ND 4.9 J	NA ND	ND ND	3.9	J 2	J ND	ND ND
chloropropane	1.001	NA ND	ND ND	ND	NA .	ND	NA ND	ND ND	NA ND	ND ND	ND ND	NA ND	ND ND	ND ND	NA ND	ND	NA ND	ND ND	ND ND	NA	ND L ND	ND ND
hyl-2-Pentanone	50.00 ² N/L	ND NA	ND NA	ND ND	2 J NA	ND ND	ND NA	ND ND	ND NA	ND NA	ND ND	ND NA	ND NA	ND ND	ND NA	ND ND	ND NA	ND NA	ND ND	NA	J ND NA	ND ND
ne	5.00 ¹	NA	ND	ND	NA	ND	NA	ND	NA	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	NA	ND	ND
1,3-Dichloropropene ³ 3-Dichloropropene ³	0.40 ¹ 0.40 ¹	NA NA	ND ND	ND ND	NA NA	ND ND	NA NA	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND
Trichloroethane	1.001	NA	ND	ND	NA	ND	NA	ND	NA	ND	ND	NA	ND	ND	NA	ND	NA	ND	ND	NA	ND	ND
anone mochloromethane	50.00 ² 50.00 ²	NA ND	NA ND	ND ND	NA NA	ND ND	NA NA	ND ND	NA ND	NA ND	ND ND	NA ND	NA ND	ND ND	NA NA	ND ND	NA ND	NA ND	ND ND	NA ND	NA ND	ND ND
bromoethane	0.006^2	NA NA	ND ND	ND	NA NA	ND	NA NA	ND	NA NA	ND	ND	NA NA	ND	ND ND	NA NA	ND	NA NA	ND	ND	NA NA	ND	ND
hloroethene (PCE)	5.00 ¹ 5.00 ¹	ND	ND	ND	ND	ND	ND	ND	ND	6.4	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
obenzene oenzene	5.00 ¹	NA ND	ND ND	ND ND	NA ND	ND ND	NA ND	ND ND	NA ND	ND ND	ND ND	NA ND	ND ND	ND ND	NA ND	ND ND	NA ND	ND ND	ND ND	NA ND	ND ND	ND ND
ylenes	5.001	NA	ND	ND	NA	ND	NA	ND	NA	ND	ND	NA	ND	ND	NA	ND	NA	ND	ND	NA	ND	ND
ene Xylenes	5.00 ¹ N/L	NA ND	ND NA	ND NA	NA ND	ND NA	NA ND	ND NA	NA ND	ND NA	ND NA	NA NA	ND NA	ND NA	NA ND	ND NA	NA ND	ND NA	ND NA	NA ND	ND NA	ND NA
e	5.00 ¹	NA	ND	ND	NA	ND	NA	ND	NA	ND	ND	NA	ND	ND	NA	ND	NA	ND	ND	NA	ND	ND
pylbenzene	50.00 ² 5.00 ¹	NA NA	ND ND	ND ND	NA NA	ND ND	NA NA	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND
2-Tetrachloroethane	5.00¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND
chlorobenzene chlorobenzene	3.00 ¹ 3.00 ¹	NA NA	ND ND	ND ND	NA NA	ND ND	NA NA	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND
chlorobenzene	3.00¹	NA NA	ND	ND	NA NA	ND	NA NA	ND	NA NA	ND	ND	NA NA	ND	ND	NA	ND	NA	ND	ND	NA NA	ND	ND
bromo-3-chloropropane Frichlorobenzene	0.04 ¹ 5.00 ¹	NA NA	ND ND	ND ND	NA NA	ND ND	NA NA	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	NA NA	ND ND	ND ND	NA NA	ND ND	ND ND
ofluoromethane (CFM)	N/L	NA NA	NA NA	ND ND	NA NA	ND	NA NA	ND	NA NA	NA NA	ND	NA NA	NA NA	ND ND	NA NA	ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND
lichloromethane (DCFM)	5.00 ¹	27	NA NE	2.8 J	67	6.8	2 J	ND	NA	ND	ND	ND	NA NE	ND	ND	ND	63	NA ND	ND	49	NA ND	ND
2-Tetrachloroethane chloropropene	5.00 ¹ 5.00 ¹	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA
Trichlorobenzene	5.001	NA	ND	NA	NA	NA	NA	NA	NA	ND	NA	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	NA
Frichloropropane Frimethylbenzene	0.04 ¹ 5.00 ¹	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA
Trimethylbenzene	5.001	NA	ND	NA	NA	NA	NA	NA	NA	ND	NA	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	NA
Frimethylbenzene chloropropane	5.00 ¹ 5.00 ¹	NA NA	ND ND	NA ND	NA NA	NA ND	NA NA	NA ND	NA NA	ND ND	NA ND	NA NA	ND ND	NA ND	NA NA	NA ND	NA NA	ND ND	NA ND	NA NA	ND ND	NA ND
orohexane	N/L	NA	ND	NA	NA	NA	NA	NA	NA	ND	NA	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	NA
chloropropane	5.00 ¹ 5.00 ¹	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA
orotoluene	5.00¹	NA	ND	NA	NA	NA	NA	NA	NA	ND	NA	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	NA
obenzene ochloromethane	5.00 ¹ 5.00 ¹	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA
odifluoromethane (CDFM)	5.00¹	270 D	ND	33.1 J	29	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	830 D	ND	ND ND	140	ND	6.6
momethane hlorobutadiene	5.00^{1} 0.50^{2}	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA
hlorobutadiene halene	0.50° 10.00°	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA
lbenzene	5.00 ¹	NA	ND	NA	NA	NA	NA	NA	NA	ND	NA	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND ND	NA
ropyltoluene	5.00 ¹ 5.00 ¹	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA
ıtylbenzene	5.00 ¹	NA	ND	NA	NA	NA	NA	NA	NA	ND	NA	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	NA
utylbenzene CFCs ⁴	5.001	NA 957	ND ND	NA 40.3 J	NA 296	NA 48.8	NA 2 J	1.7 J	NA 2 J	ND ND	NA 24	NA ND	ND ND	NA 1.2 J	NA ND	NA ND	NA 1573	ND ND	NA ND	NA 609	ND ND	NA 6.6
al Contaminant Reduction ⁵				% DECREASE		% DECREASE		% DECREASE			% INCREASE			% INCREASE	N				0 % DECREASE			3.9 % DECREA
2S: uults in micrograms per liter (ug/L) or pæ w York State Ambient Water Quality St w York State Ambient Water Quality Gu ug/l applies to the sum of cis- and trans- al CFCs = the sum of dichlorodifluorometh rotal Contaminant Reduction = percent esults No listed Class GA Value Not analyzed Not applicable tetected = Not detected above laboratory haded values exceede Class GA Values	indard. idance Value. 1,3-dichloropropene ethane, trichlorofluoromethane, ane ane hange between STV 1997 results and TRC																					

TABLE 4 Volatile Organic Compounds in Soil Vapor

Table 4 Volatile Organic Compounds in Soil Vapor Long Island Rail Road Morris Park Yard

SAMPLE NAME LAB SAMPLE ID	SG-1 0611215-13A	SG-2 0611215-12	SG-3 A 0611215-11A	SG-4 0611215-09A	SG-5 0611215-04A	SG-6 0611215-10A	SG-6 (Dup.) 0611215-10AA	SG-7 0611215-02	SG-8 A 0611215-05A	SG-9 0611215-01A	SG-10 0611215-06A	SG-11 0611215-08A	SG-12 0611215-07A	SG-13 0611215-03A	SG-14 A 0611552-01	SG-15 A 0810062-03A	SG-16 0810062-04A	SG-17 0810082-01A	SG-18 0810082-02A	SG-19 0810082-06A	SG-20 0810082-05A	SG-21 0810082-04A
DATE RECEIVED BY LAB	11/8/2006	11/8/2006	11/8/2006	11/7/2006	11/7/2006	11/8/2006	11/8/2006	11/6/2006		11/6/2006	11/7/2006	11/7/2006	11/7/2006	11/6/2006	11/22/2006	10/14/2008	10/14/2008	10/1/2008	10/1/2008	10/2/2008	10/2/2008	10/2/2008
DILUTION FACTOR	3.10	1.61	1.52	1.55	1.58	3.28	3.28	38.7	1.61	1.75	1.52	1.49	1.55	1.95	1.75	1.71	1.44	1.68	22.4	1.68	1.64	1.68
DEPTH INTERVAL	7 feet	7 feet	7 feet	7 feet	7 feet	7 feet	7 feet	7 feet	7 feet	7 feet	7 feet	7 feet	7 feet	7 feet	7 feet	7 feet	7 feet	7 feet	7 feet	7 feet	7 feet	7 feet
Compound	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m³	ug/m³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m³
Diclorodifluoromethane Freon 12 (DCDFM)	44	15	18	6	3.8 J	180	170	96	U 2.7 J	2.7 J	3.5 J	4	3.5 J	5.9	7.2	2.5 J	2.8 J	14	55 U	2.3 J	2.4 J	2.5 J
1,2-Dichlorotetrafluoroethane Freon 114	11 U	5.6	U 5.3 U	J 5.4 U	5.5 U	11 U	5.7 U	140	U 5.6 U	J 6.1 U	J 5.3 U	5.2 U	5.4 U	6.8	U 6.1	U 6 U	J 5 U	J 5.9 U	78 U	5.9 U	5.7 U	5.9 U
Chloromethane	NA T	NA NA	NA I	NA II	NA II	NA II	NA	NA 40	NA NA	NA I	NA I I I I I I I I I I I I I I I I I I I	NA II	NA	NA 2.5	NA VI 220	7.1 U	J 5.9 U	J 6.9 U	92 U	6.9 U	6.8 U	6.9 U
Vinyl Chloride 1,3-Butadiene	4 U NA	2.0 NA	U 1.9 U NA	J 2.0 U NA	2.0 U NA	4.2 U NA	2.1 U NA	49 NA	U 2.0 U NA	J 2.2 U NA	J 1.9 U NA	1.9 U NA	2.0 U NA	2.5 NA	U 220 NA	2.2 U	J 1.8 U	J 2.1 U	U 29 U 25 U	2.1 U 1.8 U	2.1 U	2.1 U
Bromomethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.3 U	J 2.8 U	J 3.3 U	43 U	3.3 U	3.2 U	3.3 U
Chloroethane	NA 2000	NA	NA 200	NA 170	NA	NA 460	NA 140	NA	NA NA	NA I	NA NA	NA .	NA	NA 170	NA 27	2.2 U	J 1.9 U	J 2.2 U	30 U	2.2 U	2.2 U	2.2 U
Trichlorofluoromethane Freon 11 (TCFM) Ethanol	3000 NA	440 NA	280 NA	170 NA	53 NA	460 NA	440 NA	110 NA	U 2.3 J NA	1 4.9 U NA	J 4.6 NA	54 NA	2.3 J NA	170 NA	27 NA	3.3 J 6.4 U	J 1.7 J J 5.4 U	J 4.9 J	63 U 84 U	1.2 J 5.0 J	1.2 J 6.2 U	26 1.2 J
1,1,2-Trichhloro- 1,2,2-Trifluoroethane Freon 113	12 U	6.2	U 5.8 U	J 5.9 U	6.0 U	12 U	6.3 U	150	U 6.2 U	J 6.7 U	J 5.8 U	5.7 U	5.9 U	7.5	U 6.7	U 6.6 U	J 5.5 U	J 6.4 U	U 86 U	6.4 U	6.3 U	6.4 U
1,1-Dichloroethene	6.1 U	3.2	J 3.0 U	J 3.1 U	3.1 U	6.5 U	1.8 J	77	U 3.2 U	J 3.5 U	J 3.0 U	3.0 U	3.1 U	3.9	U 3.4	J 3.4 U	J 2.8 U	J 3.3 U	1 44 U	3.3 U	3.2 U	3.3 U
Acetone 2-Propanol	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	27 8.4 U	74 J 0.61 J	33 J	110 U 110 U	31 1.4 J	12 8.1 U	8.2 U
Carbon Disulfide	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.0	66	95	23 J	8.2	2.6 U	110
3-Chloropropene Methylana Chlorida	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	11 U	J 9 U	J 10 U J 2.9 U	140 U	10 U 2.9 U	10 U	10 U
Methylene Chloride Methyl Tert-Butyl Ether	NA 5.6 U	NA 2.9	NA U 2.7 U	NA J 1.2 J	NA 3.4	NA 5.9 U	NA U	NA 70	NA U 2.9 U	NA J 3.2 U	NA J 2.7 U	NA 2.5 J	NA 2.8 U	NA J 3.5	NA U 3.2	U 3.1 U	J 2.5 U	J 2.9 L	39 U 40 U	3 [1]	2.8 U	2.9 U
trans-1,2-Dichloroethene	6.1 U	3.2	J 3.0 U	J 3.1 U	3.1 U	6.5 U	3.2 U	77	U 3.2 U	J 3.5 U	J 3.0 U	3.0 U	3.1 U	3.9	U 4.7	3.4 U	J 2.8 U	J 3.3 U	J 44 U	3.3 U	3.2 U	3.3 U
Hexane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	3 U 3.5 U	J 2.5 U	J 0.44 J	130 U 45 U	0.39 J 3.4 U	0.27 J 3.3 U	0.30 J 3.4 U
1,1-Dichloroethane 2-Butanone (Methyl Ethyl Ketone)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	2.5 U	J 3 L	J 3.4 U 3.8	33 U	5.4 U	2.4 U	3.4 U
cis-1,2-Dichloroethene	6.1 U	3.2	J 3.0 U	J 3.1 U	3.1 U	6.5 U	3.2 U	77	U 3.2 U	J 3.5 U	J 3.0 U	3.0 U	3.1 U	2.3	J 60	3.4 U	J 2.8 U	J 3.3 U	U 44 U	3.3 U	3.2 U	3.3 U
Tetrahydrofuran Chloroform	NA 13	NA 2.4	NA J 8.4	NA 9.9	NA 42	NA 42	NA 44	NA 94	NA U 2.3 J	NA 1 9.9	NA 4.9	NA 7.2	NA 140	NA 2.3	NA J 4.3	2.5 U U 4.3	J 2.1 U	J 2.5 U	33 U 55 U	2.5 U 0.67 J	2.4 U 0.41 J	2.5 U 4.5
1,1,1-Trichloroethane	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	4.3 4.7 U	J 1.1 J	2.4 J	61 U	4.6 U	0.41 J	
Cyclohexane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.9 t	J 0.41 J	1 2.9 U	400	2.9 U	0.59 J	2.9 U
Carbon Tetrachloride 2,2,4-Trimethylpentane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	5.4 U 0.23 J	J 4.5 U	J 0.49 J J 3.9 U	70 U J 52 U	5.3 U 3.9 U	5.2 U	1.1 J 3.9 U
Benzene	2.7 J	1.1	J 0.88 J	4.9	2.7	5.2 U	1.9 J	57	J 1.2 J	1.3 J	2.2 J	1.8 J	0.95 J	4.1	22	2.7 U	J 0.66 J	2.7 L	160	0.33 J	0.38 J	0.78 J
1,2-Dichloroethane	6.3 U	3.2	J 3.1 U	J 3.1 U	3.2 U	6.6 U	3.3 U	78	U 3.2 U	J 3.5 U	J 3.1 U	3.0 U	3.1 U	3.9	U 3.5	U 3.5 U	J 0.49 J	3.4 U	U 45 U	3.4 U	3.3 U	3.4 U
Heptane Trichloroethene (TCE)	NA 9.6	NA 7.2	7.1	NA 4.2 U	NA 4.2 U	NA 28	NA 28	NA 100	NA U 4.3 U	NA J 4.7 U	NA J 10	NA 7.5	NA 10	NA 23	NA 20	3.5 U	J 3 U	J 3.4 U	85 60 U	3.4 U 4.5 U	3.4 U 0.83 J	3.4 U 4.3 J
1,2-Dichloropropane	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	4 U	J 3.3 U	J 3.9 U	52 U	3.9 U	3.8 U	3.9 U
1,4-Dioxane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	12 U	J 10 U	J 12 U	160 U	12 U	12 U	12 U
Bromodichloromethane cis-1,3-Dichloropropene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	5.7 U	J 1.2 J J 3.3 U	J 1.2 J J 3.8 U	75 U	5.6 U	5.5 U	5.6 U 3.8 U
4-Methyl-2-pentanone	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.5 U	J 2.9 U	J 3.4 U	U 46 U	3.4 U	3.4 U	3.4 U
Toluene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.7 J	1 1.7 J	1.2 J	31 J	1.7	1.6 J	1.5 J
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	3.9 U 4.7 U	J 3.3 U J 3.9 U	J 3.8 U J 4.6 U	51 U 61 U	3.8 U 4.6 U	3.7 U 4.5 U	3.8 U 4.6 U
Tertachloroethene (PCE)	130	43	250	240	260	2700	2600 E	220	47	100	79	230	79	1600	84	77	99	95	99	15	98	91
2-Hexanone Dibromochloromethane	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	14 U	J 12 U	J 14 U J 7.2 U	180 U 1 95 U	0.89 J 7.2 U	13 U	14 U 7.2 U
Dibromochloromethane 1,2-Dibromoethane (EDB)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	6.6 U	J 5.5 U	J 6.4 U	95 U		6.3 U	6.4 U
Chlorobenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.9 U	3.5	J 3.9 U	52 U	3.9 U	3.8 U	3.9 U
Ethylbenzene m,p-Xylene	4.8 J 17	5.1 25	6 31	9.2 42	9.8	12 45	10 47	34 57		4.6	8.1 34	9.4 38	4.6 23	3.3 16	J 28 140	0.99 J	0.64 J 2.4 J	0.0	12 J 54	0.50 J 1.9 J	0.91 J 3.7	0.41 J 1.7 J
o-Xylene	5.6 J	8.3	10	15	12	15	16		U 9.7	7.5	12	13	8.3	5.2	110	4.0	1.0 J		22 J		2.5 J	
Styrene	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	3.6 U	J 3.1 U		48 U		3.5 U	3.6 U
Bromoform Cumene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	8.8 U	J 7.4 U	J 8.7 U	120 U 10 J	8.7 U 4.1 U	8.5 U 0.37 J	8.7 U 4.1 U
1,1,2,2-Tetrachloroethane	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	5.9 U	J 4.9 U	J 5.8 U	77 U	5.8 U	5.6 U	5.8 U
Propylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	4.2 U	J 0.53 J	4.1 U	55 U	4.1 U	1.3 J	4.1 U
4-Ethyltoluene 1,3,5-Trimethylbenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	2.0 J	J 2.0 J J 1.4 J	1.3 J 0.72 J	6.6 J 9.9 J		5.2 7.9	0.91 J 0.42 J
1,2,4-Trimethylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.3	4.1	2.1 J	11 J	2.0 J	15	1.2 J
1,3-Dichlorobenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	5.1 U	J 4.3 U		67 U		4.9 U	5 U
1,4-Dichlorobenzene alpha-Chlorotoluene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	19 J 4.4 U	J 22 J J 3.7 U	J 4.3 U	67 U 58 U		14 4.2 U	8.4 U 4.3 U
1,2-Dichlorobenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.1 U	J 4.3 U	J 5 U	0 67 U	5 U	4.9 U	5 U
1,2,4-Trichlorobenzene	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	25 U	IJ 21 U	IJ 25 U	330 U	25 U	24 U	25 U
Hexachlorobutadiene Chlorodifluoromethane Freon 22 (CDFM)	NA 2000	NA 740	NA 380	NA 97	NA 11 U	NA 44	NA 28	NA 270	NA U 11 U	NA J 12 U	NA J 14	NA 24	NA 11 U	NA 1 120	NA 12	36 U U 12 U	J 31 U J 10 U	J 36 U J 12 U	480 U 160 U	36 U	35 U 12 U	36 U 12 U
Dichlorofluoromethane Freon 21 (DCFM)	26 U	14	J 13 U	J 13 U	13 U	28 U	14 U	320	U 14 U	J 15 U	J 13 U	12 U		-	U 15	U 14 U	J 12 U	J 14 U	190 U		14 U	14 U
NOTES:																						

NOTES:

ug/m³ - micrograms per cubic meter

J - Estimated value

U - Not detected

UJ - Estimated nondetect

NA - Not analyzed

TRC ENGINEERS, INC. 1 of 2

Table 4 Volatile Organic Compounds in Soil Vapor Long Island Rail Road Morris Park Yard

SAMPLE NAME LAB SAMPLE ID DATE RECEIVED BY LAB DILUTION FACTOR DEPTH INTERVAL	SG-22 0810062-02 10/14/200 1.68 7 feet		SG-23 0810062-01 10/14/200 4.56 27 feet		SG-23 Lab Du 0810062-01A 10/14/2008 4.56 27 feet	•	SG-24 0810082-03 10/2/2008 1.68 27 feet		SG-25 0810082-07 10/2/2008 1.68 7 feet		Trip Blan 0810082-08 10/2/2008 1.00	3A	Lab Blan 0810082-0 10/2/2003 1.00	9A	Lab Bland 0810082-05 10/14/2008 1.00	5A
Compound	ug/m ³		ug/m ³		ug/m ³		ug/m ³		ug/m ³		ug/m ³		ug/m ³		ug/m ³	
Diclorodifluoromethane Freon 12 (DCDFM)	7.4		11	J	11	J	340		2.5	J	2.5	U	2.5	U	2.5	U
1,2-Dichlorotetrafluoroethane Freon 114	5.9	U	16	U	16	U	5.9	U	5.9	U	3.5	U	3.5	U	3.5	U
Chloromethane	6.9	U	19	U	19	U	6.9	U	6.9	U	4.1	U	4.1	U	4.1	U
Vinyl Chloride 1,3-Butadiene	2.1	U	5.8	U	5.8	U	2.1 0.33	U J	2.1	U	1.3	U		U	1.3	U
Bromomethane	3.3	U	8.8	U	8.8	U	3.3	U	3.3	U	1.1	U		U	1.1	U
Chloroethane	2.2	U	6	U	6	U	2.2	U	2.2	U	1.3	Ü	1.3	U	1.3	U
Trichlorofluoromethane Freon 11 (TCFM)	630		1200		1100		1000		1.5	J	2.8	U	2.8	U	2.8	U
Ethanol	6.3	U	17	U	17	U	1.8	J	6.3	U	3.8	U	3.8	U	3.8	U
1,1,2-Trichhloro- 1,2,2-Trifluoroethane Freon 113 1,1-Dichloroethene	6.4 3.3	U	17 9	U	17 9	U	6.4 3.3	U	6.4 3.3	U	3.8	U	3.8	U	3.8	U
Acetone	32		14	J	16	J	18	Ü	15	U	4.8	U		J	4.8	U
2-Propanol	0.72	J	22	U	22	U	0.84	J	8.2	U	4.9	U	4.9	U	4.9	U
Carbon Disulfide	17		32	<u> </u>	30	ĻĪ	56		9.5		1.6	U	0.20	J	1.6	U
3-Chloropropene Methylana Chlorida	2.9	U	28 7.9	U	28 7.9	U	10 2.9	U	10 2.9	U	6.3	U	6.3 0.45	U J	6.3 0.38	U J
Methylene Chloride Methyl Tert-Butyl Ether	3	UJ	8.2	UJ	7.9 8.2	U	3	U	3	U	1.7	U	1.8	U	1.8	U
trans-1,2-Dichloroethene	3.3	U	9	U	9	U	3.3	U	3.3	U	2	U	0.95	J	2	U
Hexane	3	U	8	U	2.2	J	1.5	J	0.60	J	1.8	U	1.8	U	1.8	U
1,1-Dichloroethane	3.4	U	9.2	U	9.2	U	4.5		3.4	U	2	U	2	U	2	U
2-Butanone (Methyl Ethyl Ketone)	3	U	6.7	U J	6.7	U	2.8	T 7	1.4	J	1.5	U		U	0.70	J
cis-1,2-Dichloroethene Tetrahydrofuran	3.3 2.5	U	5.8 6.7	U	5.4 6.7	J U	3.3 2.5	U	3.3 2.5	U	1.5	U	2 1.5	U	1.5	U
Chloroform	2.0	J	5.6	J	5.6	J	40	U	5.4	U	2.4	U	2.4	U	2.4	U
1,1,1-Trichloroethane	1.0	J	5.7	J	5.4	J	49		4.6	U	2.7	U	2.7	U	2.7	U
Cyclohexane	2.9	U	1.2	J	1.3	J	1.8	J	1.0	J	1.7	U	1.7	U	1.7	U
Carbon Tetrachloride	5.3	U	14	U	14	U	1.2	J	5.3	U	3.1	U	3.1	U	3.1	U
2,2,4-Trimethylpentane	3.9 0.64	U J	1.3	J	1.2	J	0.98	J	3.9	U J	2.3	U	2.3	U	2.3	U
Benzene 1,2-Dichloroethane	3.4	U	2.4 9.2	U	2.3 9.2	U	0.59 3.4	U	0.85 3.4	U	1.6	U	1.6 0.20	J	1.6	U
Heptane	3.4	U	2.8	J	9.3	U	2.0	J	3.4	U	2	U		U	2	U
Trichloroethene (TCE)	26		77		79		17		4.5	U	2.7	U	2.7	U	2.7	U
1,2-Dichloropropane	3.9	U	10	U	10	U	1.5	J	3.9	U	2.3	U		U	2.3	U
1,4-Dioxane	12	U	33	U	33	U	12	U	12	U	7.2	U	7.2	U	7.2	U
Bromodichloromethane cis-1,3-Dichloropropene	5.6 3.8	U	15 10	U	15 10	U	0.60 3.8	J U	5.6 3.8	U	3.4 2.3	U	3.4 2.3	U	3.4 2.3	U
4-Methyl-2-pentanone	0.38	J	9.3	U	9.3	U	3.4	U	3.4	U	2.3	U	2.3	U	2.3	U
Toluene	3.0	J	13		14		15		1.4	J	1.9	U	1.9	U	1.9	U
trans-1,3-Dichloropropene	3.8	U	10	U	10	U	3.8	U	3.8	U	2.3	U	0.56	J	2.3	U
1,1,2-Trichloroethane	4.6	U	12	U	12	U	4.6	U	4.6	U	2.7	U	2.7	U	2.7	U
Tertachloroethene (PCE) 2-Hexanone	340 14	U	3600 37	U	3400 37	U	910 2.0	J	12 14	U	3.4 8.2	U	3.4 8.2	U	3.4 8.2	U
Dibromochloromethane	7.2	U	19	U	19	U	7.2	U	7.2	U	4.2	U		U	4.2	U
1,2-Dibromoethane (EDB)	6.4	U		U	18	U	6.4	U		U	3.8	U		J	3.8	U
Chlorobenzene	3.9	U	10	U	10	U	3.9	U	3.9	U	2.3	U		J	2.3	U
Ethylbenzene	1.6	J	2.6	J	3.0	J	3.7		1.0	J	2.2	U	2.2	U	2.2	U
m,p-Xylene o-Xylene	5.4 1.8	J	8.1 4.1	J	7.2 4.3	J	14 8.2	H	4.2 1.9	J	2.2	U		U	2.2	U
Styrene	0.53	J	9.7	U	9.7	U	3.6	U	3.6	U	2.1	U		J	2.1	U
Bromoform	8.7	U	24	U	24	U	8.7	U	8.7	U	5.2	U		U	5.2	U
Cumene	4.1	U	1.2	J	11	U	1.9	J	0.81	J	2.4	U		U	2.4	U
1,1,2,2-Tetrachloroethane	5.8	U	16	U	16	U	5.8	U	5.8	U	3.4	U	3.4	U	3.4	U
Propylbenzene 4-Ethyltoluene	0.58 2.6	J	1.5 4.4	J	11 3.9	U J	5.5 18		4.1 1.5	U J	2.4	U		U	2.4	U
4-Etnyltoluene 1,3,5-Trimethylbenzene	1.7	J	4.4	J	3.9	J	30		1.5	J	2.4	U		U	2.4	U
1,2,4-Trimethylbenzene	5.4	Ť	8.4	J	8.5	J	44		2.6	J	2.4	U		U	2.4	U
1,3-Dichlorobenzene	5	U	14	U	14	U	5	U	5	U	3	U		J	3	U
1,4-Dichlorobenzene	22	J	14	J	12	J	14		12	L	3	U		J	3	U
alpha-Chlorotoluene	4.3	U	12	U	12	U	4.3	U	4.3	U	2.6	U	0.72	J	2.6	U
1,2-Dichlorobenzene 1,2,4-Trichlorobenzene	5 25	U UJ	14 68	U UJ	14 68	U	5 25	U	5 25	U	3 15	U	0.71 2.1	J	3 15	U
Hexachlorobutadiene	36	UJ		UJ	97	U	36	U	36	U	21	U		U	21	U
Chlorodifluoromethane Freon 22 (CDFM)	240	J	420	J	410	J	43	Ĺ	12	U	7.1	U		U	7.1	UJ
Dichlorofluoromethane Freon 21 (DCFM)	14	U	38	U	38	U	14	U	14	U	8.4	U	8.4	U	8.4	J

NOTES

ug/m³ - micrograms per cubic meter

J - Estimated value

U - Not detected

UJ - Estimated nondetect

NA - Not analyzed

TRC ENGINEERS, INC. 2 of 2

TABLE 5 Top of Clay Elevations for Deep Borings and Wells

Table 5
Top of Clay Elevations for Deep Borings and Wells
Long Island Rail Road Morris Park Yard

BORING/ WELL NUMBER	DATE COMPLETED	GROUND ELEVATION (FEET)	DEPTH TO CLAY (FEET BGS)	TOP OF CLAY ELEVATION (FEET QTBD)
STV Wells (Source: STV RI	Report dated May 1998)			
DB-1/MW-1-140	4/1/1996	57.63	141.5	-83.87
DB-2/MW-2-180 See Note 1	4/26/1996	56.86	182	-125.14
DB-3/MW-3-160	4/18/1996	57.37	159	-101.63
DB-6/MW-6-180	4/22/1996	56.71	170	-113.29
MW-7-178 See Note 1	12/6/1996	53.08	179	-125.92
DB-11/MW-11-140	4/10/1996	57.57	140	-82.43
TB-13/MW-13-171 See Note 1	12/18/1996	53.53	172	-118.47
P-1-147 See Note 1	10/17/1996	57.3	150	-92.7
P-2-158 See Note 1	10/21/1996	57.03	160	-102.97
TW-1-150 See Note 1	10/25/1996	56.76	152	-95.24
TRC Wells (Source: TRC RI	()			
B5/MW-2-160R	9/19/2006	56.9	180	-123.1
B7/MW-30D	9/14/2006	56.67	168	-111.33
MW-21D	9/2/2006	57.45	155	-97.55
MW-23D	10/19/2006	58.35	165	-106.65
MW-25D	10/12/2006	55.48	170	-114.52
MW-27D	10/23/2006	56.72	150	-93.28
MW-28D	10/25/2006	55.22	133	-77.78
MW-31D	9/23/2008	67.56	135	-67.44
MW-32D	9/29/2008	58.05	130	-71.95
MW-33D	9/24-25/2008	55.23	135	-79.77

Notes:

Note 1: Wells could not be located and surveyed and were excluded from figure showing top of clay elevation

QTBD: Borough of Queens Topographical Bureau Datum

TABLE 6 Groundwater Surface Elevation Measurements

Table 6 Groundwater Table Surface Elevation Measurements Long Island Rail Road Morris Park Yard

Well	Diameter	Depth of Well	Surveyed Top of Casing	Depth to Water	Water Table Surface
vvcii		•		^	Elevation
	(INCHES)	(FT BGS)	(FT QBTD)	(FT BTOC)	(FT QBTD)
SHALLOW WELLS					
MW-1-60	4	60	57.56	39.41	18.15
MW-2-50R	4	60	57.70	39.40	18.30
MW-2U-60	4	60	56.55	37.68	18.87
MW-2D-60	4	60	55.57	37.40	18.17
MW-3U-60	4	63	55.79	36.95	18.84
MW-3D-60	4	60	52.31	33.85	18.46
MW-4-60	4	60	49.79	36.25	13.54
MW-PMW-5	2	56.5	57.18	39.05	18.13
MW-5-60	4	57.5	56.48	37.35	19.13
MW-6-60	4	60	56.12	37.5	18.62
MW-8-60	4	60	55.99	37.42	18.57
MW-9-60	4	60	57.63	40.00	17.63
MW-10-60	4	60	57.32	39.50	17.82
MW-11-60	4	60	57.36	39.52	17.84
MW-12-60	4	60	55.14	35.91	19.23
MW-15-60	4	60	56.71	38.85	17.86
MW-16-60	4	60	56.07	37.09	18.98
MW-17-50R	2	50	56.77	38.35	18.42
MW-19-60	4	60	54.75	35.60	19.15
MW-20-50	2	50	56.59	38.14	18.45
MW-21S	2	50	57.20	38.95	18.25
MW-22S	2	50	55.89	38.55	17.34
MW-23S	2	50	57.90	40.25	17.65
MW-24S	2	50	57.62	40.35	17.27
MW-25S	2	50	54.65	37.62	17.03
MW-26S	2	50	54.65	36.93	17.72
MW-28S	2	50	55.00	35.20	19.80
DEEP WELLS					
MW-1-140	2	140	57.28	39.08	18.20
MW-2-160R	2	180	56.68	38.02	18.66
MW-3-160	2	160	57.22	38.62	18.60
MW-5-180	2	180	56.45	37.35	19.10
MW-6-168	2	168	57.18	38.25	18.93
MW-8-150	2	150	56.02	37.15	18.87
MW-10-160	2	160	57.21	39.58	17.63
MW-11-140	2	140	57.42	39.54	17.88
MW-21D	2	155	57.06	38.8	18.26
MW-23D	2	165	58.20	40.8	17.40
MW-25D	2	170	55.00	37.94	17.06
MW-27D	2	150	56.24	38.19	18.05
MW-28D	2	133	54.88	35.15	19.73
MW-29D	2	190	NA	37.08	NA
MW-30D	2	170	56.44	37.37	19.07
MW-31D	2	135	66.91	48.18	18.73
MW-32D	2	130	57.74	37.91	19.83
MW-33D	2	135	54.99	35.52	19.47

NOTES

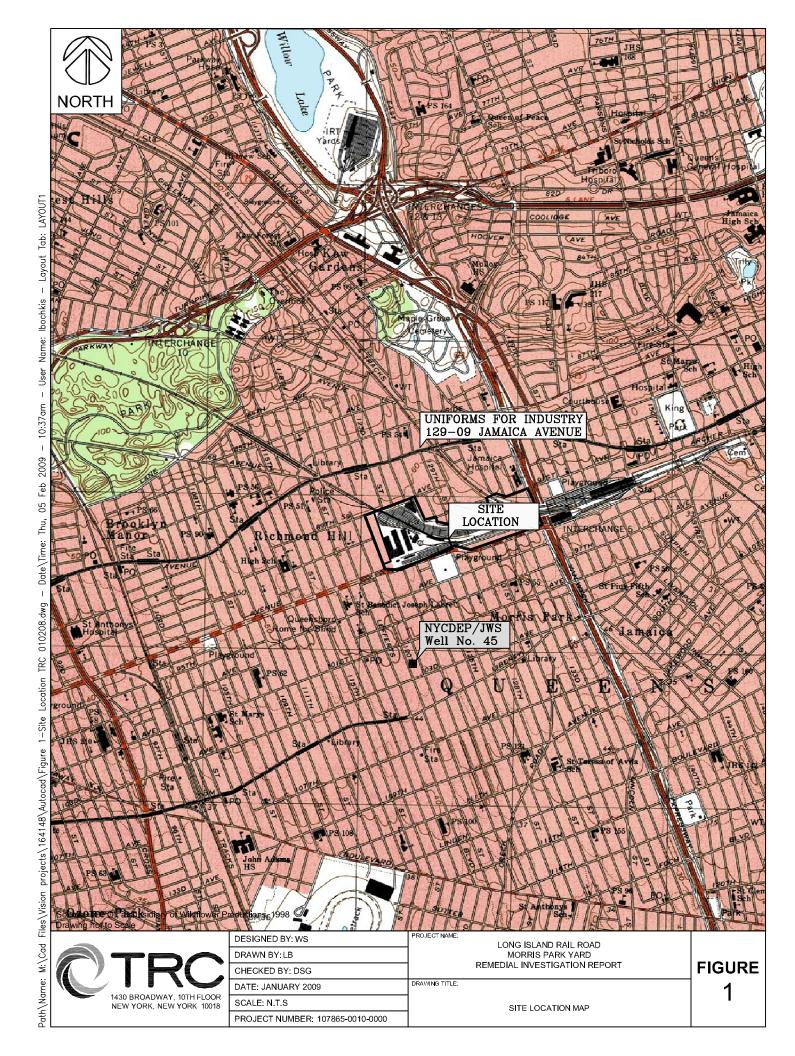
BGS - Below ground surface

BTOC - Below top of casing

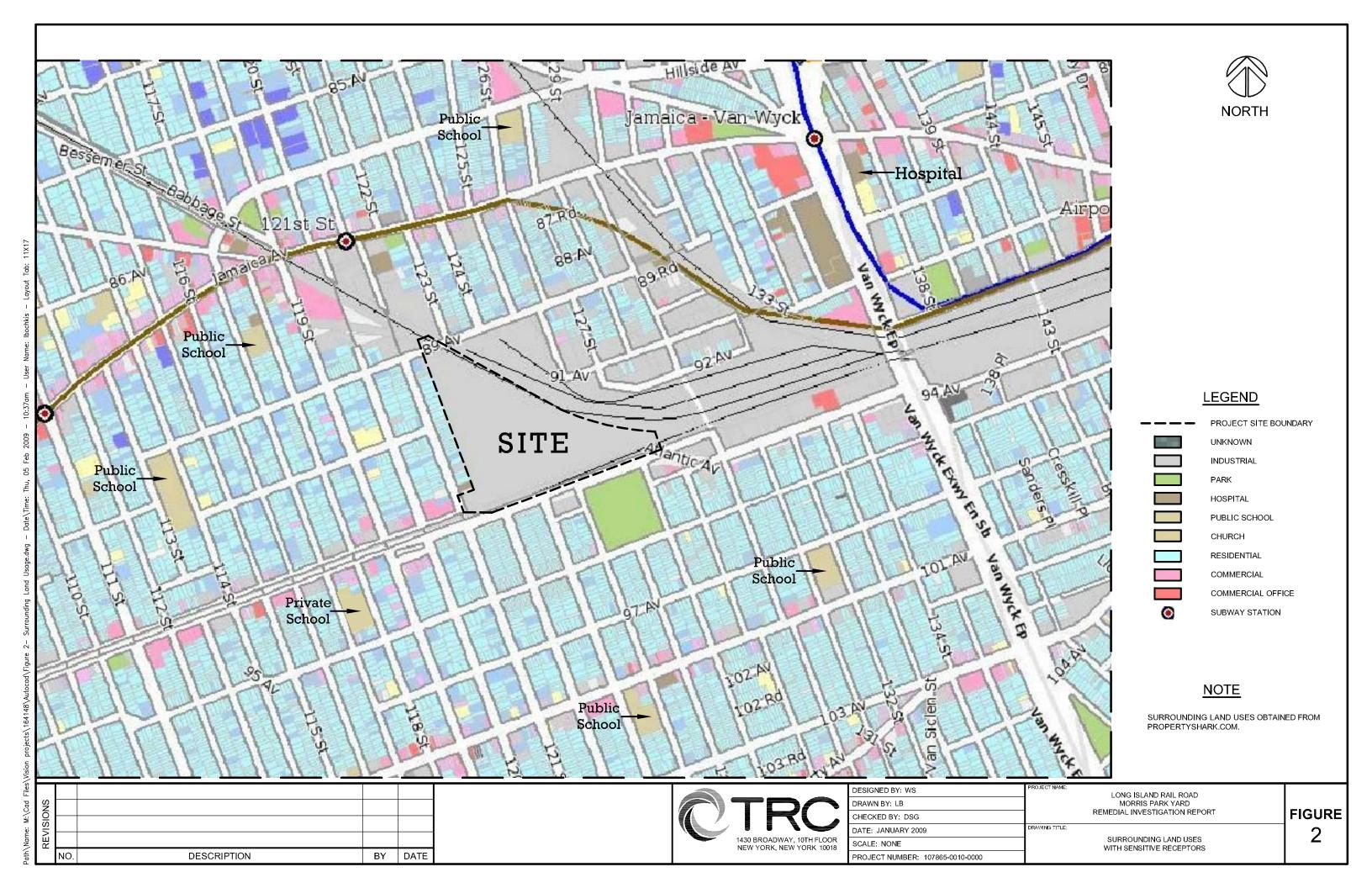
^{1.} Elevations refer to the Queens Borough Topographical Bureau Datum (QBTD) which is 2.725 feet above mean sea level datum at Sandy Hook, New Jersey 1929.

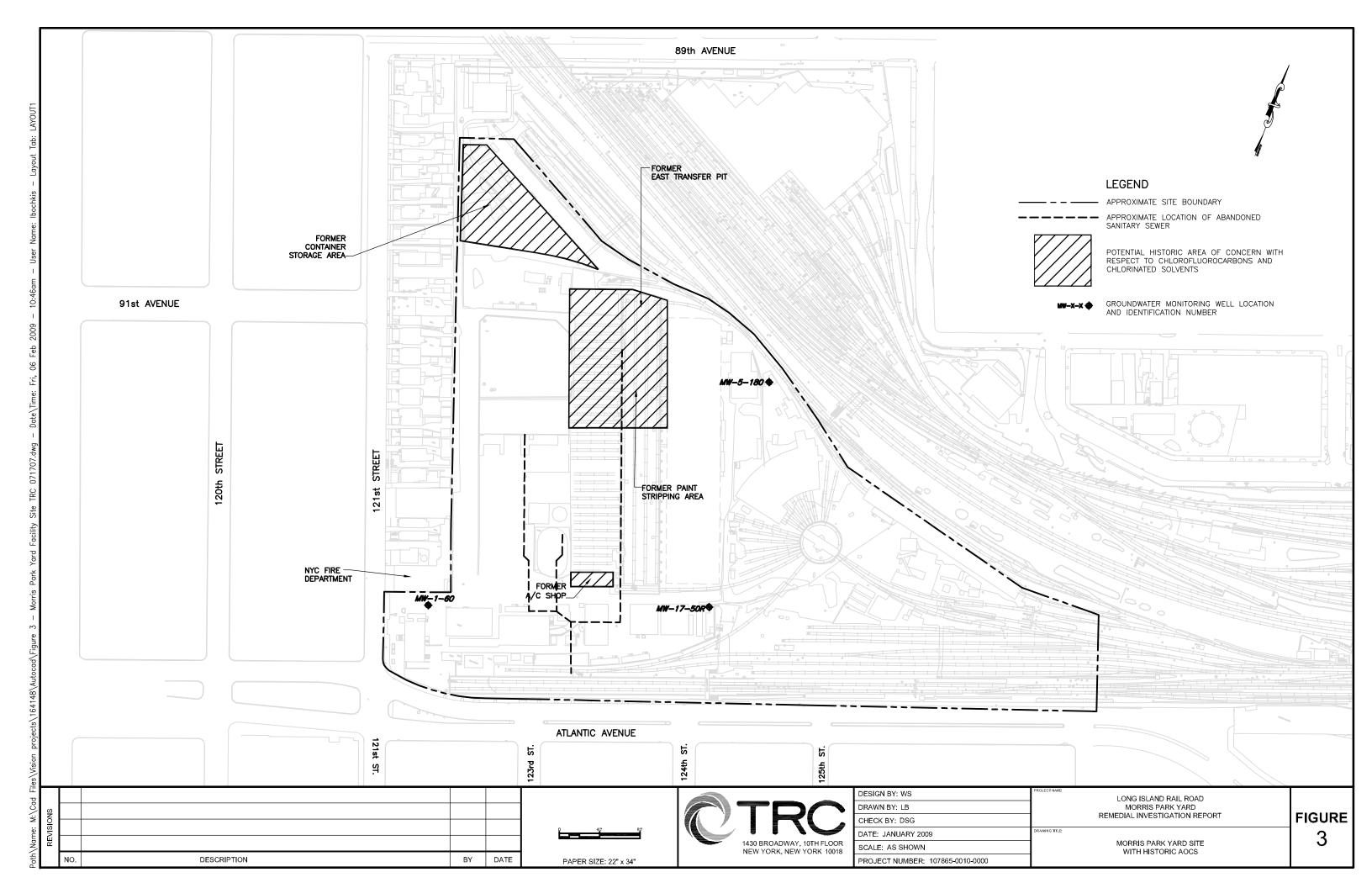
^{2.} MW-29D inaccessible during surveying

^{3.} All water table elevations measured in December 2006, except elevations in wells MW-31D, MW-


 $^{32\}mathrm{D},$ and MW-33D which were measured in October 2008.

FIGURES


FIGURE 1 Site Location Map


FIGURE 2 Surrounding Land Uses with Sensitive Receptors

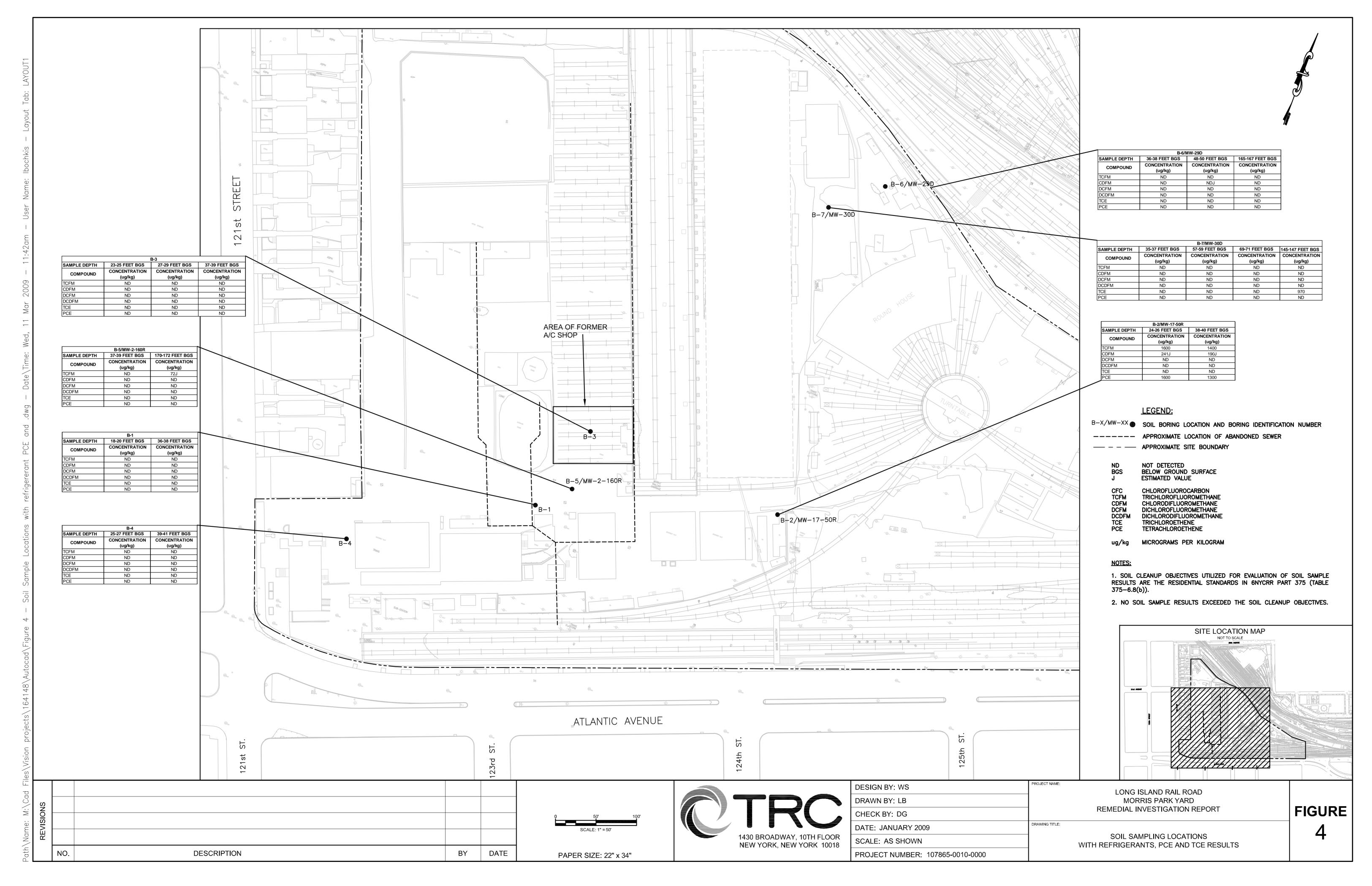

FIGURE 3 Morris Park Yard Facility Site with Historic AOCs

FIGURE 4 Soil Sampling Locations with Refrigerants, PCE and TCE Results

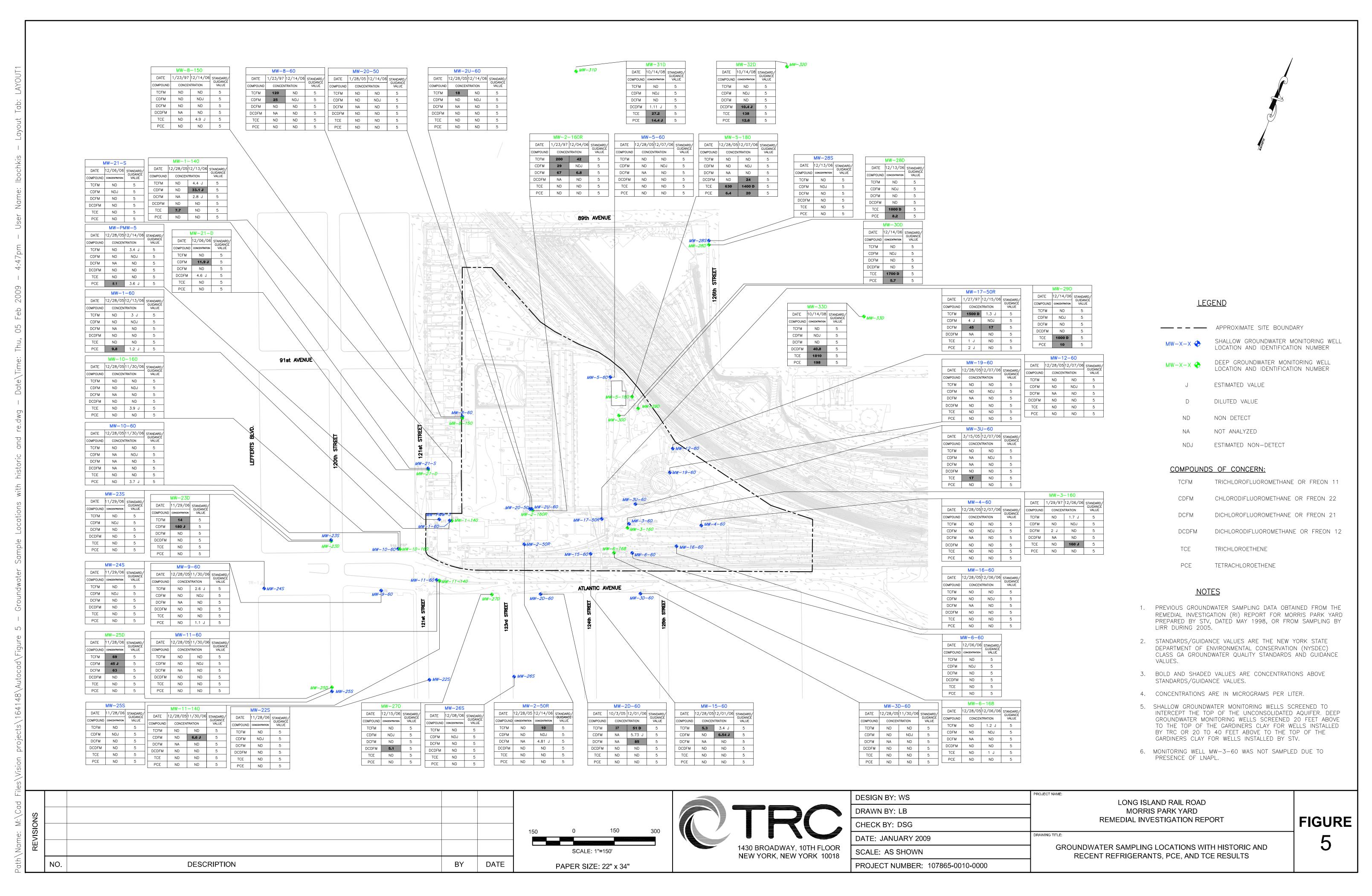
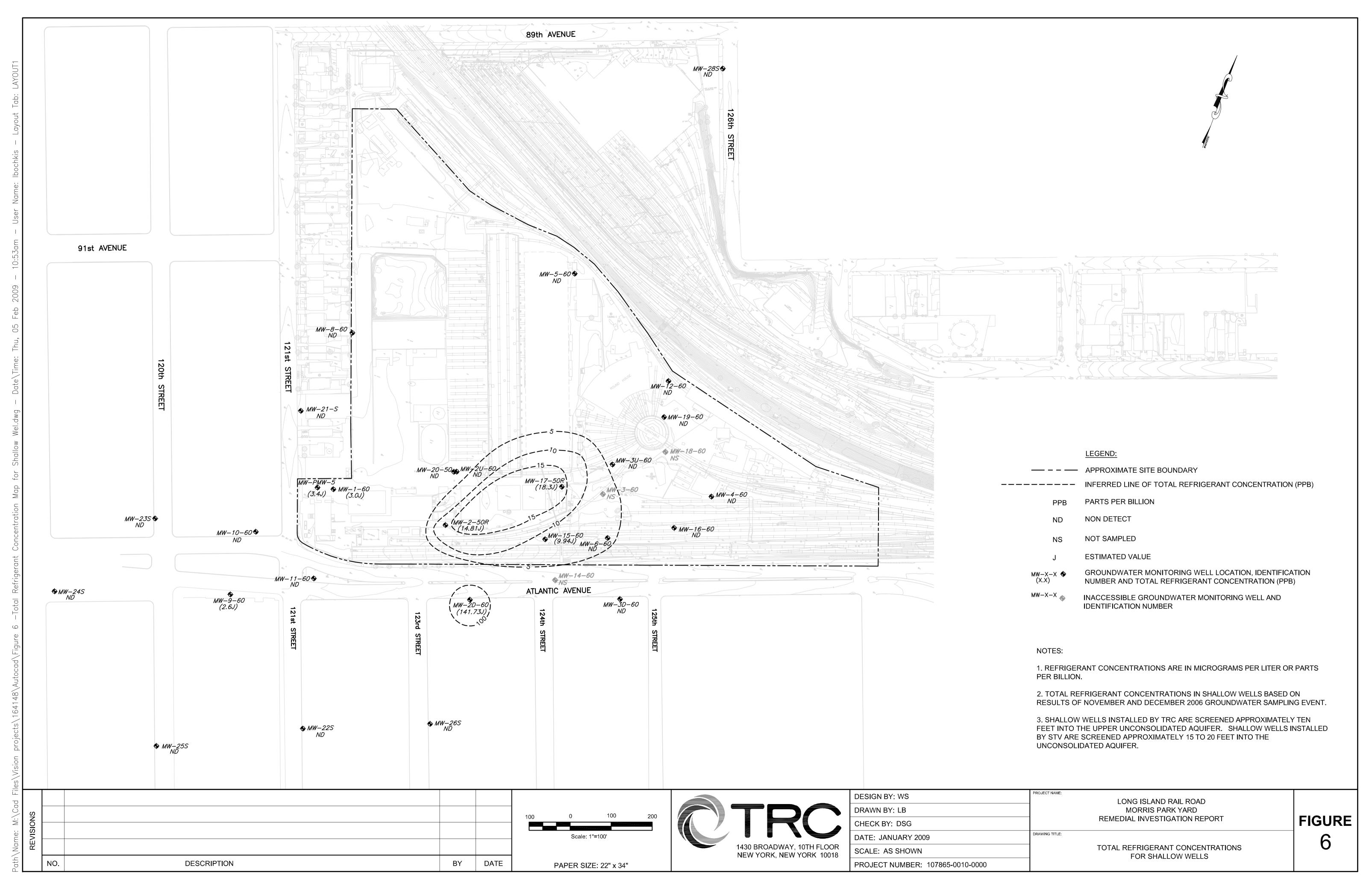


FIGURE 5


Groundwater Sampling Locations with Historic and Recent Refrigerants, PCE and TCE Results

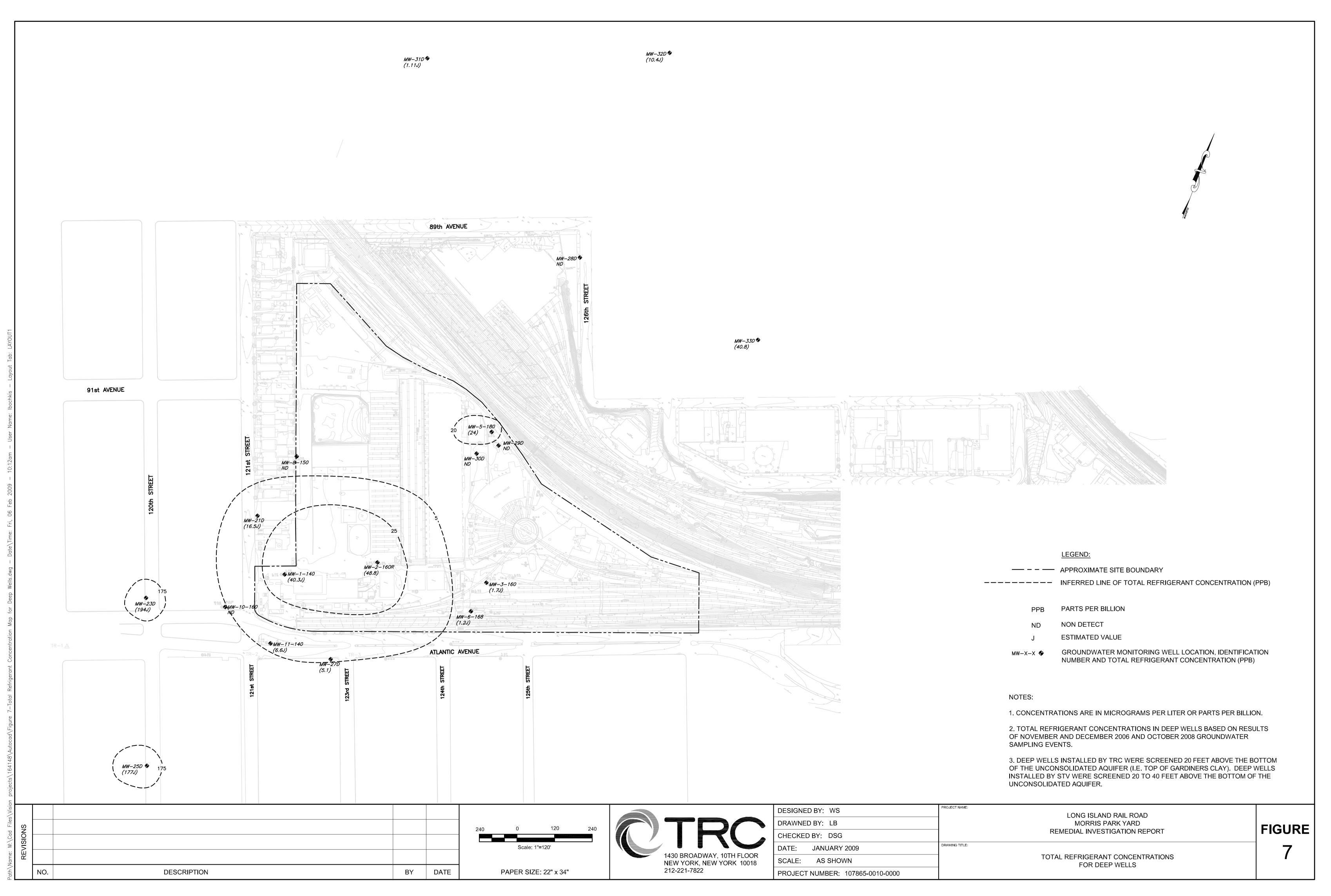

FIGURE 6 Total Refrigerant Concentrations for Shallow Wells

FIGURE 7 Total Refrigerant Concentrations for Deep Wells

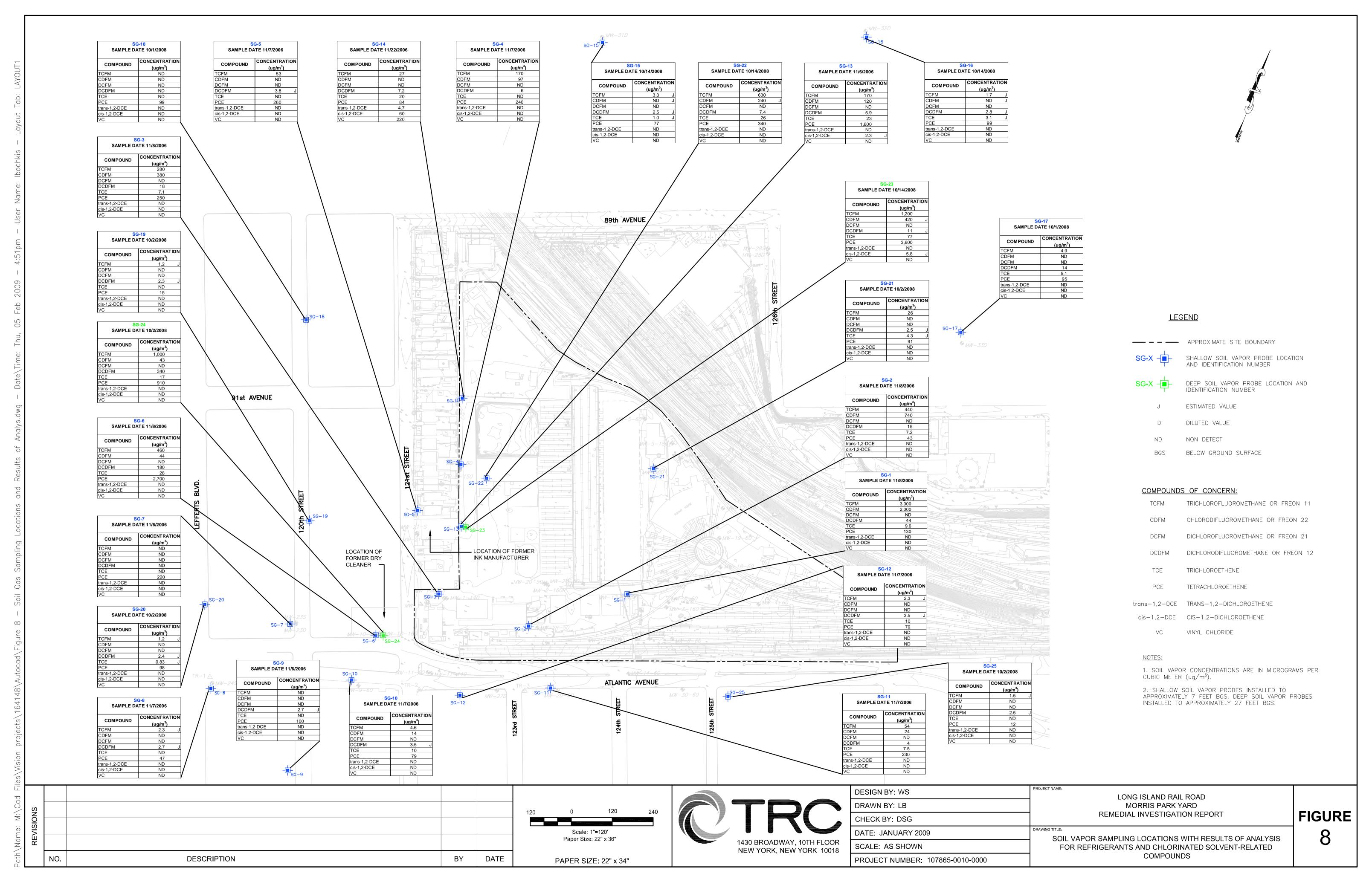
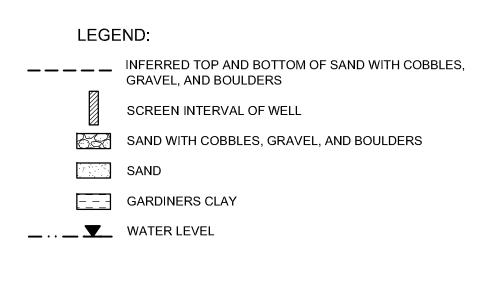
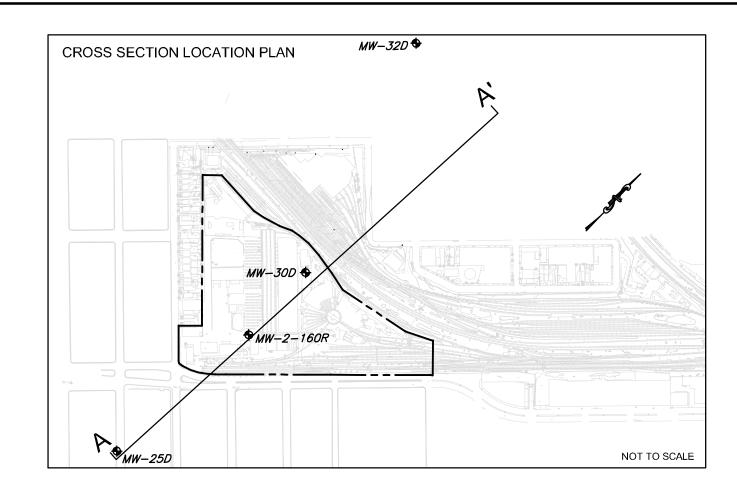
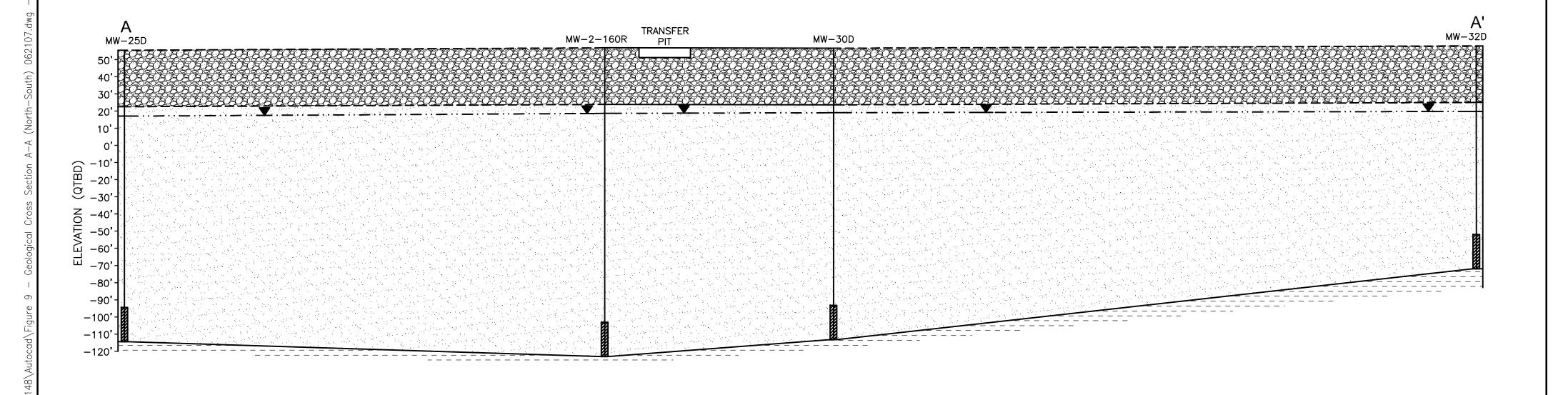
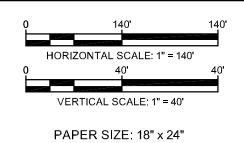


FIGURE 8


Soil Vapor Sampling Locations with Results of Analysis for Refrigerants and Chlorinated Solvent-Related Compounds

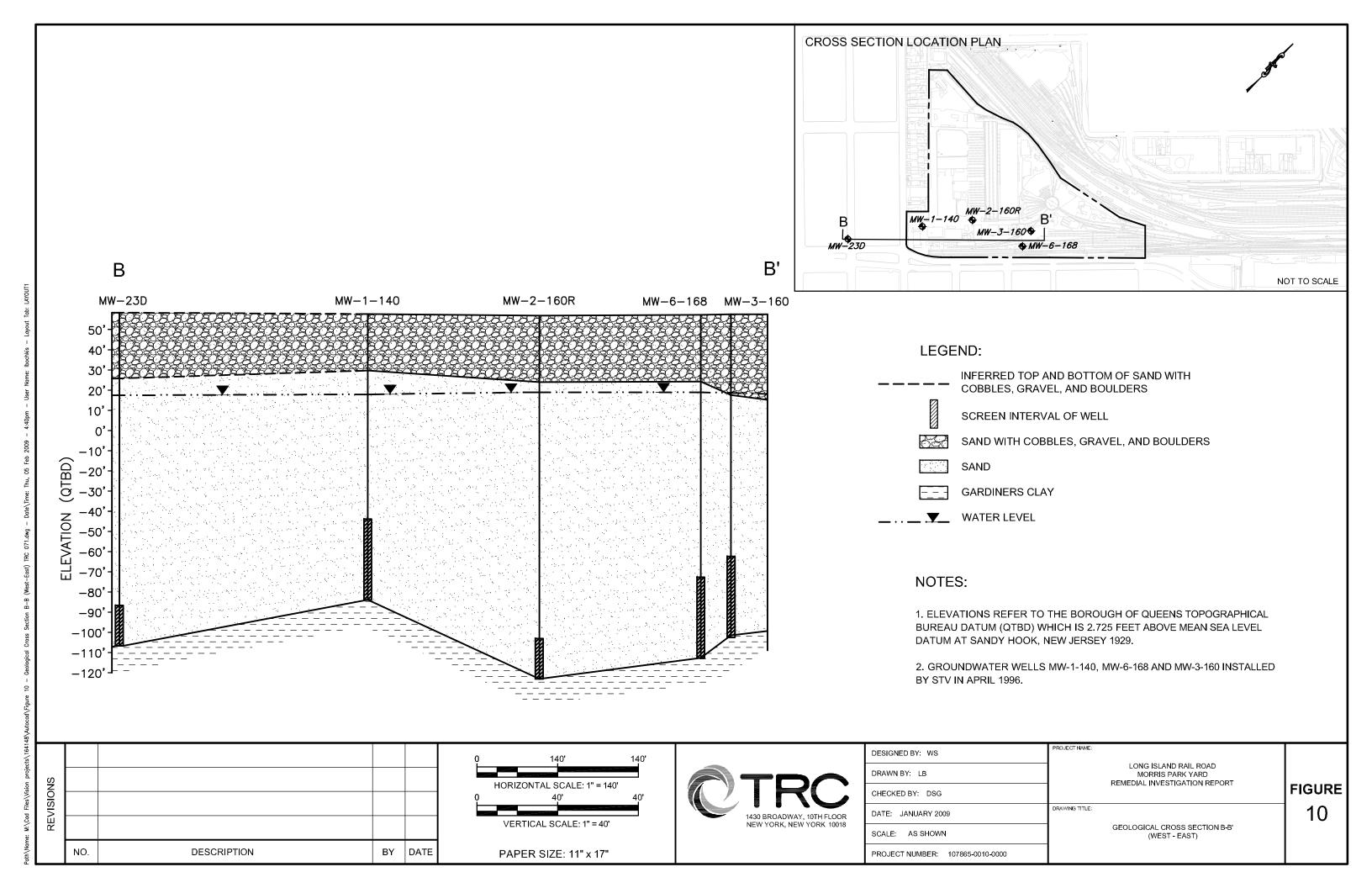

FIGURE 9 Geological Cross Section A-A' (North-South)




NOTES:

1. ELEVATIONS REFER TO THE BOROUGH OF QUEENS TOPOGRAPHICAL BUREAU DATUM (QTBD) WHICH IS 2.725 FEET ABOVE MEAN SEA LEVEL DATUM AT SANDY HOOK, NEW JERSEY 1929.

. SZ					
VISIONS					
RE					
	NO.	DESCRIPTION	BY	DATE	



DESIGN BY: WS	PROJECT NAME: LONG ISLAND RAIL ROA	AD
DRAWN BY: LB	MORRIS PARK YARD	
CHECK BY: DSG	REMEDIAL INVESTIGATION R	FIGURE
DATE: JANUARY 2009	DRAWING TITLE:	9
SCALE: AS SHOWN	GEOLOGICAL CROSS SEC	TION A-A
PROJECT NUMBER: 107865-0010-0000	(NORTH - SOUTH)

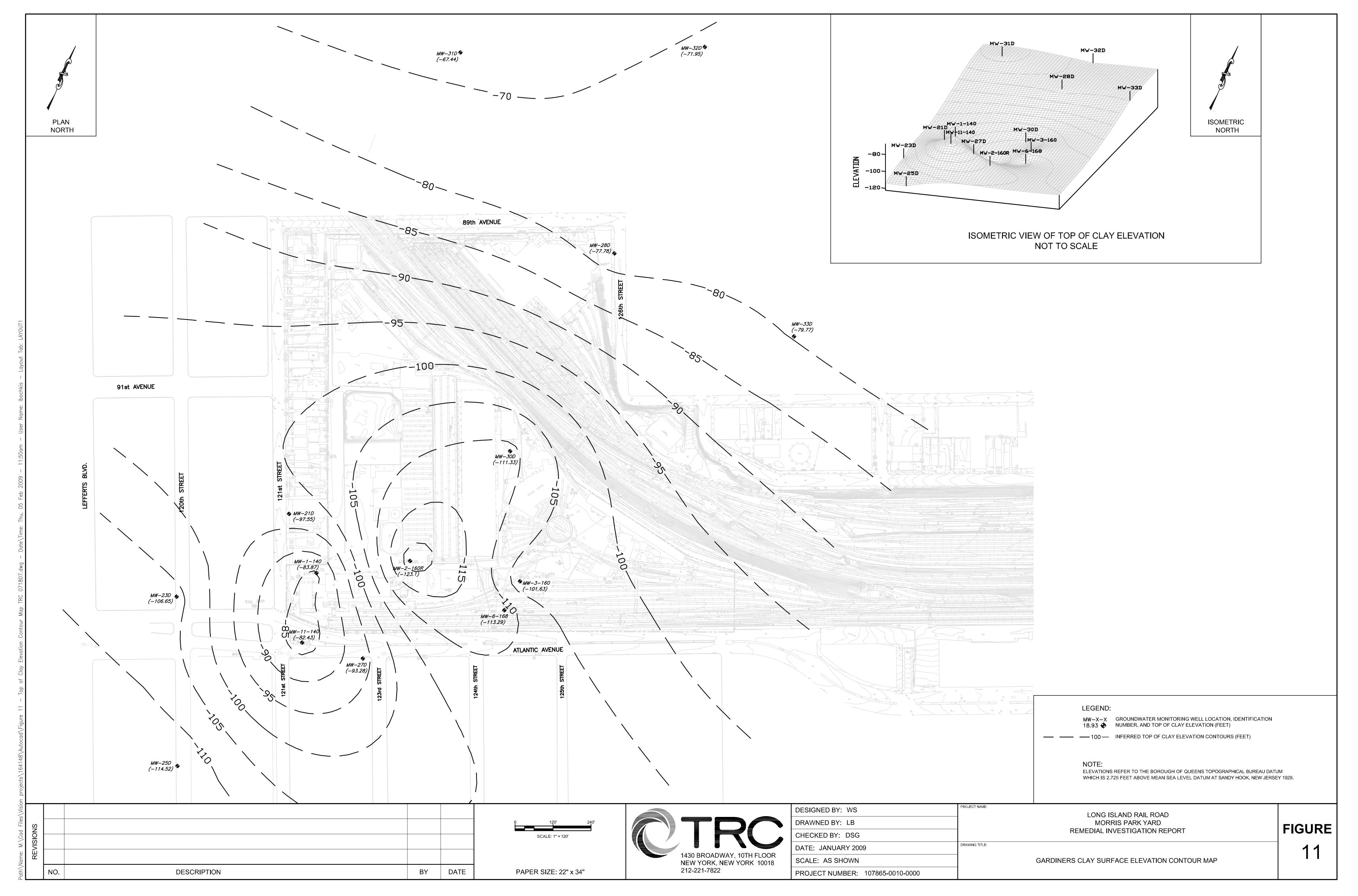

FIGURE 10 Geological Cross Section B-B' (West-East)

FIGURE 11 Gardiners Clay Surface Elevation Contour Map

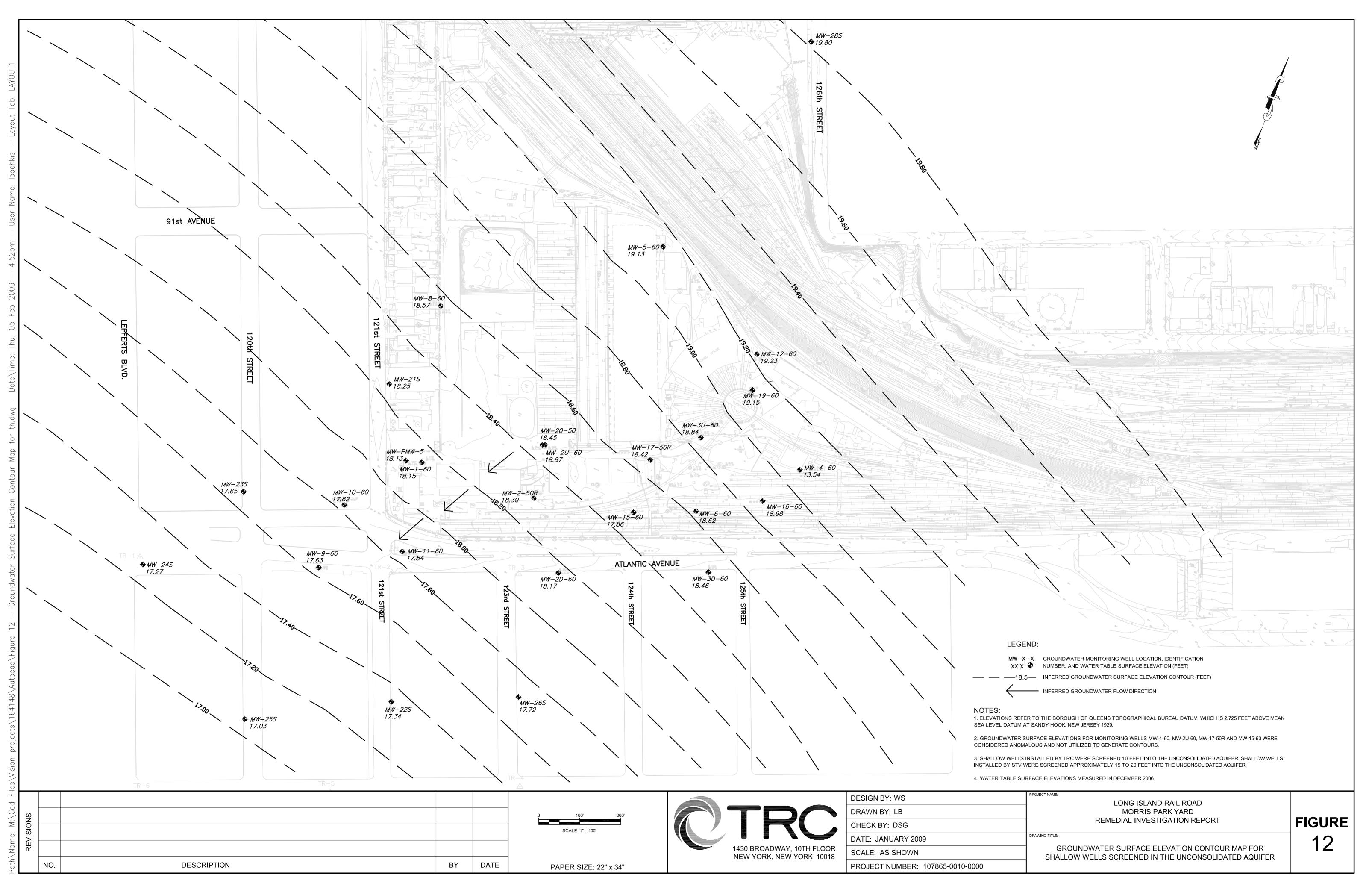


FIGURE 12

Groundwater Surface Elevation Contour Map for Shallow Wells Screened in the Unconsolidated Aquifer

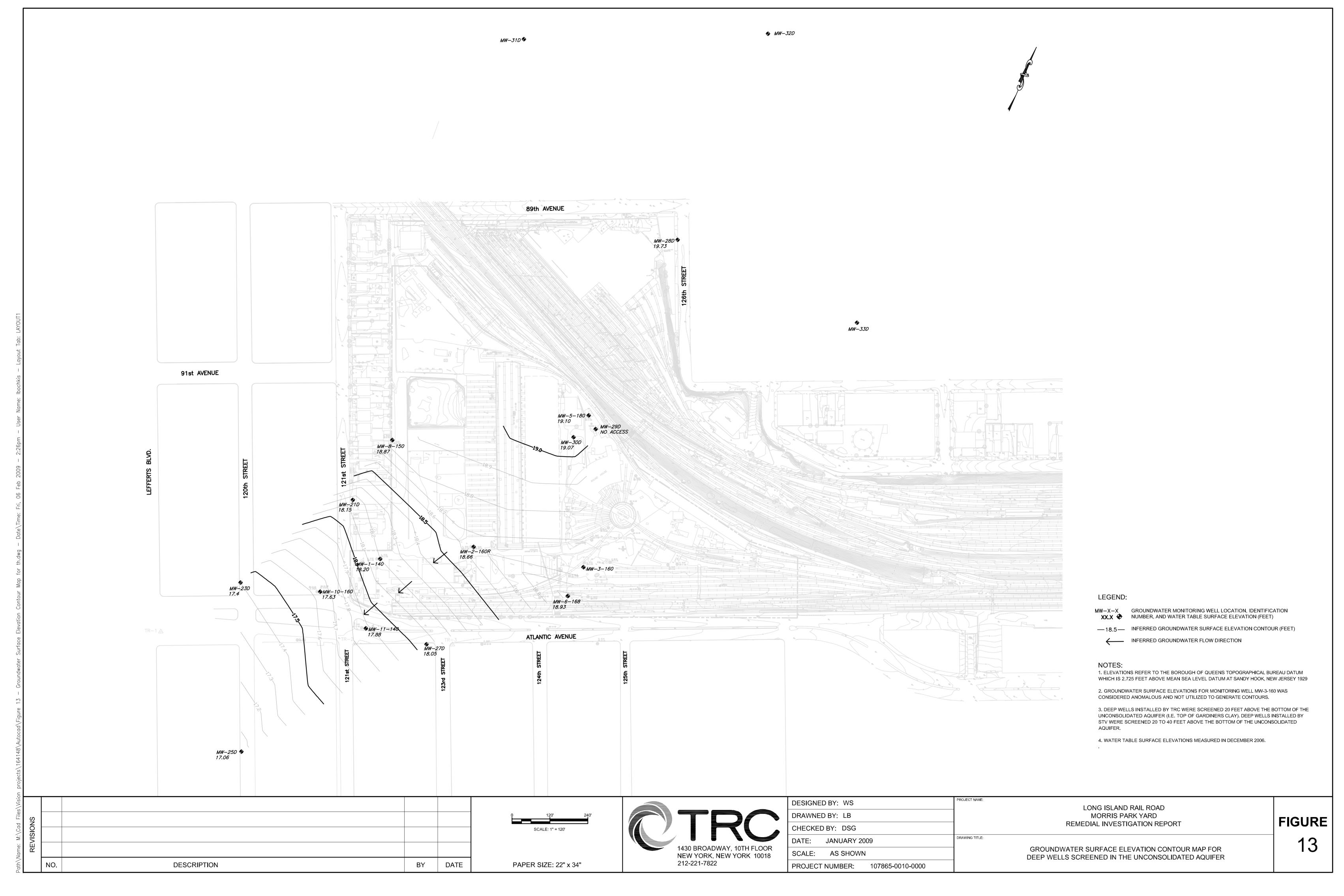


FIGURE 13

Groundwater Surface Elevation Contour Map for Deep Wells Screened in the Unconsolidated Aquifer

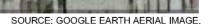


FIGURE 14

Potential Sources of Chlorinated Solvents in Surrounding Area

LEGEND

SITE NO.	FACILITY NAME (S)	FACILITY ADDRESS	REASON FOR LISTING	SOURCE
1	Richmond Hill Foundry	7-25 91st Avenue	Potential Historic Solvent Use	Historic Sanborn Maps (1911, 1925, 1942, 1951)
2	Knitting & Worsten Mill	129-17 to 129-23 91st Avenue	Potential Historic Solvent Use	Historic Sanborn Maps (1963, 1967)
3	Ernst Ruettgers Nail Manufacturer	127-53 92nd Avenue		Historic Sanborn Map (1925)
	Richmond Hill Laundry Miller Plastics Inc. replacing Richmond Hill Laundry	127-55 92Hd Avenue	Potential Historic Solvent Use	Historic Sanborn Maps (1942, 1951) Historic Sanborn Map (1963)
4	W ^M . H. Nicholls Co. Inc. Machine Shop Leib Iron Works (replacing W ^M . H. Nicholls Co. Inc.)	89-51 126th Street	Potential Historic Solvent Use	Historic Sanborn Maps (1942, 1951) Historic Sanborn Maps (1963, 1968, 1981, 1991, 1996)
5	Laundry Plant Plastic Quilting Company replacing laundry plant	19-39 to 19-51 127th Street	Potential Historic Solvent Use	Historic Sanborn Maps (1951) Historic Sanborn Maps (1963, 1968, 1981, 1991, 1996)
6	Carpet Cleaning Company	89-11 to 89-44 129th Street	Potential Historic Solvent Use	Historic Sanborn Map (1942)
7	Machine Shop Unexcelled Laundry System replacing Machine Shop	9-162 121st Street (NW corner of Atlantic Ave and 121st Street)	Potential Historic Solvent Use	Historic Sanborn Map (1925) Historic Sanborn Maps (1951, 1963, 1967)
8	Auto Repair Shop	91-61 Lefferts Blvd (NE corner of Atlantic Ave and Lefferts Blvd)	Potential Historic Solvent Use	Historic Sanborn Map (1951, 1963)
9	Ink Manufacturer	91-31 121st Street	Potential Historic Solvent Use	Historic Sanborn Map (1963)
	Engraver		Potential Historic Solvent Use	Historic Sanborn Map (1967)
10	Auto Repair Shop	91-62 120th Street	Potential Historic Solvent Use	Historic Sanborn Map (1981)
11	Uniforms For Industry	129-01 Jamaica Avenue	VCP Site, with documented solvent- related groundwater contamination	Database Report
12	Axel Electronics Inc.	134-20 Jamaica Avenue	RCRA-SQG of Solvent Waste	Database Report
13	Raymac Cabinet Company	87-49 130th Street	RCRA-SQG of Solvent Waste	Database Report
14	Automax Manufacturing Company	130-50 92nd Avenue	RCRA-SQG of Solvent Waste	Database Report
15	NYCTA - 129th Street Yard	129th Street and Jamaica Avenue	RCRA-LQG of Solvent Waste	Database Report
16	Demetri Auto Body Inc.	89-25 130th Street	RCRA-SQG of Solvent Waste	Database Report
17	Diehl & Sons, Inc.	129-01 Atlantic Avenue	RCRA-SQG of Solvent Waste	Database Report
18	Machine Auto Body	89-19 126th Street	RCRA-SQG of Solvent Waste	Database Report

RCRA-SQG: Resource Conservation and Recovery Act (RCRA) Small Quantity Generator of Hazardous Waste RCRA-LQG: RCRA Large Quantity Generator of Hazardous Waste

APPROXIMATE SITE BOUNDARY

APPROXIMATE SITE LOCATION AND SITE NUMBER AS REFERENCED IN TABLE ABOVE

-	SN					
:	NOISI					
	RE					
;		NO.	DESCRIPTION	BY	DATE	

PAPER SIZE: 18" x 24"

DESIGN BY: WS	PROJECT							
DRAWN BY: LB								
CHECK BY: DSG								
DATE: JANUARY 2009	DRAWING							
SCALE: NOT TO SCALE								
PROJECT NUMBER: 107865-0010-0000								

LONG ISLAND RAIL ROAD MORRIS PARK YARD REMEDIAL INVESTIGATION REPORT

POTENTIAL SOURCES OF CHLORINATED SOLVENTS IN SURROUNDING AREA

FIGURE 14

APPENDICES

APPENDIX A

DER-10 Fish and Wildlife Resources Impact Analysis Decision Key Form

APPENDIX 3C

Fish and Wildlife Resources Impact Analysis Decision Key

		If YES Go to:	If NO Go to:
1.	Is the site or area of concern a discharge or spill event?	13.	2.)
2.	Is the site or area of concern a point source of contamination to the groundwater which will be prevented from discharging to surface water? Soil contamination is not widespread, or if widespread, is confined under buildings and paved areas.	13.	3
3.	Is the site and all adjacent property a developed area with buildings, paved surfaces and little or no vegetation?	4.)	9
4.	Does the site contain habitat of an endangered, threatened or special concern species?	Section 3.10.1	5.
5.	Has the contamination gone off site?	6.	14.
6.1	Is there any discharge or erosion of contamination to surface water or the potential for discharge or erosion of contamination?	7.	14.)
7.	Are the site contaminants PCBs, pesticides or other persistent, bioaccumulable substances?	Section 3.10.1	8.
8.	Does contamination exist at concentrations that could exceed SCGs or be toxic to aquatic life if discharged to surface water?	Section 3.10.1	14.
9.	Does the site or any adjacent or downgradient property contain any of the following resources? a. Any endangered, threatened or special concern species or rare plants or their habitat b. Any NYSDEC designated significant habitats or rare NYS Ecological Communities c. Tidal or freshwater wetlands d. Stream, creek or river e. Pond, lake, lagoon f. Drainage ditch or channel g. Other surface water feature h. Other marine or freshwater habitat i. Forest j. Grassland or grassy field k. Parkland or woodland l. Shrubby area		
	m. Urban wildlife habitat n. Other terrestrial habitat	11.	10.
10.	Is the lack of resources due to the contamination?	Section 3.10.1	14.
11.	Is the contamination a localized source which has not migrated and will not migrate from the source to impact any on-site or off-site resources?	14.	12.
12.	Does the site have widespread soil contamination that is not confined under and around buildings or paved areas?	Section 3.10.1	13.
13.	Does the contamination at the site or area of concern have the potential to migrate to, erode into or otherwise impact any on-site or off-site habitat of endangered, threatened or special concern species or other fish and wildlife resource? (See #9 for list of potential resources. Contact NYSDEC for information regarding endangered species.)	Section 3.10.1	14.
14.	No Fish and Wildlife Resources Impact Analysis needed.		

APPENDIX B

Soil Boring Logs, Monitoring Well Construction Logs, Soil Vapor Probe Logs and Groundwater Sampling Logs

Soil Boring Logs

DOMING EGG								SHEET TOT T
JOB NAME/ CLIENT PROJECT NO.						PROJECT NO.		
RI Investig	gation	LIRR				107865-0010-0007		
ADDRES Morris Par		d Facil	lity, Richmo	ond Hill, I	New	York	ELEVATION/DATUM NA	
DRILLIN Aquifer Dr						DRILLER Tony and Chris	INSPECTOR S. Monte	
DRILLIN Track Rig	IG RI	G				TYPE/SIZE BIT 4" H S A	START DATE 10/3/2006	END DATE 10/3/2006
SAMPLE Split Spoor		PE				HAMMER WEIGHT/DROP 60#	TOTAL DEPTH 39 Ft.	WATER LEVEL 38 Ft. +/-
	5	SAM	PLES			DESCR	IPTION OF SOILS	REMARKS
	Ж	ERY IES			_	(SA	AA = Same As Above)	(PID, STAINING, ODORS, ETC.)
	NUMBER	RECOVERY IN INCHES	BLOWS PER 6"	DEPTH	WATER		m - medium c - coarse c - dark tr - trace ltl - little	N/S = No Staining N/O = No odors
	1		Grab			0-6' Dark to Lt. Brown M C Sand, some Hand Cleared	e cobbles, dry	FID=0.0
				– 6 –	•	6-8' Hollow stem auger		
	2	16"	7,9	- 8 -	•	8-10' Brown F-M Sand, F cobble, dry		FID=0.0
	3	12"	10,11 8,9	- 10 -	•	10-12' Brown F-M Sand, F M cobble, dr	у	FID=0.0
	4	10"	9,10	— 12 —	ł	12-14' Lt. Brown - Brown F C Sand, F c	obble, dry	FID=0.0
	5	12"	12,12 10,10	– 14 –	1	14-16' SAA		FID=0.0
	6	12"	12,15 10,14	– 16 –	•	16-18' Lt. Brown - Brown F C Sand, dry		FID=0.0
	7	18"	13,14 10,12	_ 18 _	ł	18-20' Lt. Brown - Brown M C Sand, dr	y	FID=0.0 Sample Collected 18-20'
	8	12"	15,16 12,15	_ 20 _	•	20-22' Brown M C Sand, dry		FID=0.0
	9	12"	16,17 8,8	_ 22 _	•	22-24' SAA		FID=0.0
	10	12"	10,7 5,6	_ 24 _	•	24-26' Lt. Brown F-M Sand, F cobble, dry		FID=0.0
	12	12"	6,5 10,10	– 26 –	ł	26-28' SAA		FID=0.0
	13	10"	8,6 9,7 7,10	- 28 - - 30 -		28-30' SAA		FID=0.0
	14	12"	NA NA 7,8	_ 32 _	-	32-34' Lt. Brown F M sand		FID=0.0
	15	12"	10,7	- 34 -	1	34-36' SAA		
	16		11,11 9,7 7,7	- 36 -		36-38' SAA wet at 38 ft		FID=0.0 Sample Collected 36-38'
				_ 38 _	1			
			_			EOB @ 38 Ft.		

BORIN	BORING LOG SHEET 1 OF 1								SHEET 1 OF 1
JOB NAME/ CLIENT PROJECT NO.									
RI Investigat	ion/L	IRR				107865-0010-0007			
ADDRESS Morris Park	Morris Park Yard Facility, Richmond Hill, New York Surface 57.27/TOC 56.77 Feet Queens Borough Datum								
DRILLING CONTRACTOR DRILLER INSPECTOR Aquifer Drilling and Testing Tony and Chis Z. R. Strauss									
DRILLING F-10						TYPE/SIZE BIT H S A – 4"	START DATE 9/18/2006		END DATE 9/18/2006
SAMPLER Split Spoon	TYP	E				HAMMER WEIGHT/DROP 60#	TOTAL DEPTH 50 ft		WATER LEVEL 38 +/- Ft.
Split Spoon	S	AM	PLES				RIPTION OF SOILS		REMARKS
							(SAA = Same As Above)		(PID, STAINING, ODORS, ETC.)
	NUMBER	RECOVERY IN INCHES	BLOWS	DEPTH	WATER	f - fii	ne m - medium c - coarse		N/S = No Staining
	Z	2 4	PER 6"	Q	Λ	lt - light	dk - dark tr - trace ltl - litt		N/O = No odors
	1		Grab			0-5' Dark Brown to black Sand, Brick, Gra Hand cleared to 5 ft.	avel, large and small cobbles, garbage		FID=0.0
		ļ	3,4	– 5 –		5-7" Lt. Brown to black M C Sand, tr grave	el, tr cobbles, dry to moist		FID=0.0
	2	11"	5,12	- 7 -					
	3	9"	10,9 10,9			7-9'Lt. brown to black M C Sand, tr, grave	I, tr. Cobbles, dry to moist		FID=0.0
		Ì	9,7	9 -		9-11' Dark Brown to black m c to f Sand,	cobble at tip		FID=0.0
	4	6"	10,13 50/3"	_ 11 _		11-13' Rock /Cobble			
		İ	50/3"	13		11 15 1664/6566			
	5	0	NA			13-15 to 18 ' Cobble or boulder in way pus	sh 18 ft13 to		FID=0.0
		ŀ	NA NA NA			Cobble or boulder in way push 13 to 18 ft			
			NA NA	– 18 –					
	6	6"	10,12 13,15			18-20' Lt. brown to black M C Sand, tr, gra	avel, tr. Cobbles,some brick fragments moist to dry		FID=0.0
	7	2"	10,15	20		20-22' Black to dark brown m c Sand and g	gravel, moist to dry		FID=0.0
	8	6"	18,23 12,11	_ 22 _		22-24' Lt. Brown M C Sand, some cobbles	, dry		FID=0.0
	9	2"	15,13 15,16	– 24 –		24-26' Lt. Brown M C Sand, some Cobbles	s		FID=0.0 Sample Collected 24-26'
	10	2"	18,20 11,12	_ 26 _		26-28' Lt. Brown to black M C Sand			FID=0.0
	11	8"	15,18	_ 28 _		28-30' Lt. Brown M C sand mottled with d	ark bands tr. Gravel		FID=0.0
	12	8"	22,28 18,22	— 30 —		30-32' Lt. Brown to Dark Brown mottled b	oands M C Sand tr gravel, dry to moist		FID=0.0
	13	11"	10,12	_ 32 _		32-34' Lt. Brown M C to F Sand , dry			FID=0.0
	14	14"	7,19	— 34 —		34-36' Lt. Brown M C to F Sand, dry			FID=0.0
	15	2"	10,9 25, 50/2"	— 36 —		36-38' Rock frag., Lt. Brown M C Sand, N	Moist		FID=0.0
	16	6"	19,25	38		38-40' Lt. Brown M C Sand Moist to wet,	petroleum odors		FID=0.0 Sample Collected 38-40'
		•	22,18	40		40-42 taken to confirm wet soil and GWT			

DUKING LUG							SHEET TOF T
JOB NAME/ CLIENT PROJECT N					PROJECT NO.		
RI Investigation/LIRR 107865-0010-0007							
ADDRESS Morris Park Ya	rd Faci	lity, Richmo	ond Hill, N	ew Y	⁄ork	ELEVATION/DATUM NA	
DRILLING C					ORILLER 'Ony and Chris	INSPECTOR Z. R. Strauss	
ORILLING R	IG				TYPE/SIZE BIT " H S A	START DATE 9/19/2006	END DATE 9/19/2006
SAMPLER TYPE Split Spoon				HAMMER WEIGHT/DROP 0#	TOTAL DEPTH 39 Ft.	WATER LEVEL 38 Ft. +/-	
	SAM	PLES			DESCR	IPTION OF SOILS	REMARKS
	RY				(S.	AA = Same As Above)	(PID, STAINING, ODORS, ETC.)
NUMBER	RECOVERY IN INCHES	BLOWS PER 6"	DEPTH	WATER		m - medium - c - coarse lk - dark - tr - trace - ltl - little	N/S = No Staining N/O = No odors
1		Grab		0-	-5' Dark to Lt. Brown M C Sand, some	e cobbles, dry	FID=0.0
2	8"	50/1"	- 5 -	5-	-7' Lt. Brown M C to F Sand, some col	bbles, dry	FID=0.0
3	0	NA NA	– 7 –	7	-9' Blow through large cobble or bould	der	
4	2"	NA 9,8 7,11	_ 9 _	9.	-11' Lt. Brown M C to f Sand,tr. Grave	el, dry	FID=0.2
5	7"	9,9	- 11 -	1	11-13' Lt. Brown M C Sand, Gravel, Small Cobbles, dry		FID=0.0
6	18"	7,6	— 13 —	1	3-15' Lt. Brown M C Sand, some grav	rel, dry	FID=0.5
7	11"	11,7 8,8	_ 15 _	1:	5-17' Lt. Brown M C Sand, tr. Gravel,	tr. Cobbles, dry	FID=0.2
8	12"	8,9 9,9	— 17 —	1	7-19' Lt. Brown M C Sand, Tr. Grave	el, tr. Cobbles, dry	FID=0.3
9	10"	7,7	— 19 —	1	9-21' Lt. Brown M C to C Sand, Tr. G	ravel, tr. Cobbles, dry	FID=0.2
10	17"	9,11 10,10 13,9	_ 21 _	2	1-23' Lt. Brown M C to C Sand, tr. Gr	ravel, dry	FID=0.5
11	10"	9,9	_ 23 _	2	3-25' Lt. Brown M C to F Sand, dry		FID=0.2 sample Collected 23'-25'
12	2"	8,8	_ 25 _	2.	5-27' Lt. Brown M C to C Sand, dry		FID=0.8
13	15"	7,10 8,8 10,11	_ 27 _	2	7-29' Lt. Brown M C Sand tr. Gravel,	dry	FID=1.1 Sample Collected 27'-29'
14	12"	8,8	- 29 -	2	9-31' Lt. Brown M C Sand, dry		FID=0.6
15	10"	7,9 8,7 7,6	_ 31 _	3	1-33' Lt. Brown M C Sand, tr. Gravel,	dry	FID=0.8
16	15"	11,9	— 33 —	3	33-35' Lt. Brown M C Sand, dry		FID=0.0
17	9"	8,17 9,8 11,9	35 -	3:	5-37' Lt. Brown M C to F Sand, dry	FID=0.0	
18	24"	5,9 9,8	37 -	3	7-39' Lt. Brown M C to f Sand, wet		FID=0.1 Sample Collected 37-39'
			_ 39 _	F	OB @ 39 Ft.		

ROKI	16	L)G					SHEET 1 OF 1
JOB NAM	E/ C	LIEN	Т			PROJECT NO.		
RI Investiga	ation/	LIRR				107865-0010-0007		
ADDRESS Morris Park		d Faci	lity, Richmo	nd Hill, Ì	New	York	ELEVATION/DATUM NA	
DRILLIN (Aquifer Dril						DRILLER Tony and Chris	INSPECTOR Z. R. Strauss	
DRILLING	G RI		F-10			TYPE/SIZE BIT 4" H S A	START DATE 9/20/2006	END DATE 9/20/2006
SAMPLER	R TY		Spoon			HAMMER WEIGHT/DROP 20#	TOTAL DEPTH 41 Ft.	WATER LEVEL 39 Ft. +/-
	S	SAM	PLES			DESCR	IPTION OF SOILS	REMARKS
		S. S.				(SAA = Same As Above)		(PID, STAINING, ODORS, ETC.)
	NUMBER	RECOVERY IN INCHES	BLOWS PER 6"	рертн	WATER		m - medium - c - coarse k - dark - tr - trace - ltl - little	N/S = No Staining N/O = No odors
	1		Grab			0-5' Dark to Lt. Brown M C Sand, some	cobbles, dry	FID=0.0
	2	5"	27, 50/2"	- 5 -	ł	7' Large boulder, Lt. Brown M C to F Sand, gravel, dry		FID=0.1
	3	0	NA NA	- 7 -	ł	7-9' Blow through large cobble or bould	ler	
	4	8"	NA 5,5	- 9 -		9-11' Lt. Brown M C Sand,tr. Gravel, dr	у	FID=0.2
	5	8"	6,4 15,9			FID=0.1		
	6	8"	9,10 6,6	- 13 -	1	13-15' Lt. Brown M C to F Sand, tr. gra	vel, dry	FID=0.1
	7	8"	5,8 8,8	- 15 -	1	15-17' Lt. Brown M C Sand, tr. Gravel,	dry	FID=0.0
	8	14"	7,9 10,10	17 -	ł	17-19' Lt. Brown M C Sand, Tr. Gravel	l, , dry	FID=0.0
	9	10"	9,8 7,7 9,11	- 19 -	1	19-21' Lt. Brown M C to C Sand, Tr. G	ravel, tr. Pebbles, dry	FID=0.0
	10	11"	9,11 9,9 10,12	– 21 –	1	21-23' Lt. Brown M C to F Sand, tr. Gra	evel, pebbles, dry	FID=0.0
	11	10"	7,7	- 23 -	1	23-25' Lt. Brown M C to C Sand, tr. Gra	vel, pebbles dry	FID=0.0
	12	12"	7,7 9,11	25	l	25-27' Lt. Brown M C to C Sand, tr. Gra	avel dry	FID=0.0 Sample Collected 25'-27'
	13	13"	12,15	- 27 -	•	27-29' Lt. Brown M C to C Sand tr. Gra	avel, dry	FID=0.0
	14	17"	2,12	- 29 -	1	29-31' Lt. Brown M C to F Sand, stiff,	dry	FID=0.0
	15	15"	19,10 13,16	- 31 -	1	31-33' Lt. Brown M C to F Sand, dry		FID=0.0
	16	24"	12,9 14,12	- 33 -	1	33-35' Lt. Brown M C to F Sand, dry		FID=0.0
	17	24"	15,16 34,23	- 35 -	1	35-37' Lt. Brown M C to F Sand, dry		FID=0.0
	18	24"	16,20 11,12	- 37 -	1	37-39' Lt. Brown M C to F Sand, wet		FID=0.0
		23"	10,10 7,8 10,10	- 39 - 41	1	39-41' Lt. Brown M C to F Sand, Wet EOB @ 41 Ft.		FID=0.0 Sample Collected 39'-41'
			10,10	71	_	LOD © TIII.		

BORING LOG SHEET 1 OF						SHEET 1 OF 5			
JOB NAMI	E/ CI	LIENT				PROJECT NO.			
						107865-0010-0007			
ADDRESS Morris Park	ADDRESS ELEVATION/DATUM Morris Park Yard Facility, Richmond Hill, New York Surface 56.90/TOC 56.68 feet Queens Borough Datum								h Datum
DRILLING CONTRACTOR DRILLER INSPECTOR Aquifer Drilling and Testinş Brian and Enrique Sam Monte									
DRILLING			Stills			TYPE/SIZE BIT	START DATE		END DATE
CME-75						4" Mud Rotary	9/15/2006		9/19/2006
SAMPLER Split Spoon						HAMMER WEIGHT/DROP 60#	TOTAL DEPTH 180Ft.		WATER LEVEL 37.37 FT.
	Š	SAM	PLES			DESCR	IPTION OF SOILS		REMARKS
	×	ERY IES				(S	AA = Same As Above)		(PID, STAINING, ODORS, ETC.)
	NUMBER	RECOVERY IN INCHES	BLOWS	DEPTH	WATER	F - fine	M - medium C- coarse		N/S = No Staining
	N	RE IN	PER 6"	ā	W		dk - dark tr - trace ltl - litt		N/O = No odors
	1					0-5 ' Brown F C Sand, F C Cobble			Hand Cleared to 5 Ft.
			Grab			0-5 Blown C Sand, C Cooole			Think Cleared to 5 T t.
				_ 5 _					
	2	16"	9,14			5-7' Grey Brown F C Sand, cobble and grave	el		FID=0.0
	3	10"	22,20	7 -		7-9' Brown F C Sand, F cobble			FID=0.0
	3	10	15,14 20,17			7-9 Blowii F C Saild, F cooble			N/O, N/S
	4	2"	13,14	9 -		9-11' F Cobbles only			FID=0.0
			17,17	11 -					
	5	8"	14,17			11-13' Brown F C Sand, M cobble			FID=0.0
	6	8"	19,20 8,7	— 13 —		13-15' Brown M C Sand, F gravel and cobbl	Α.		FID=0.0
	0	°	7,9	1.5		13-13 Blown W.C. Sand, F. graver and coobs	·		115-0.0
	7	6"	5,5	15		15-17' Brown F C Sand , F gravel and cobbl	e		FID=0.0
			6,7	17 -					
	8	6"	9,11			17-19' Brown C Sand, M C Cobble			FID=0.0
	9	4"	9,11 8,10	19 -		19-21' F Cobble			FID=0.0
			10,7	21 -					
	10	2"	9,10			21-23' SAA			FID=0.0
			10,7	_ 23 _					
	11	6"	9,10 11,12			23-25' Brown M C Sand, C cobble			FID=0.0
	12	8"	10,12	25 -		25-27' Brown M C Sand, F cobble			FID=0.0
			12,10	27 -					
	13	0	NA			27-29' No Recovery			FID=0.0
		0"	NA 12.12	_ 29 _		20 21 Proven M.C. Sond. C. Cobble			
	14	8"	13,13 16,12			29-31' Brown M C Sand, C Cobble			
	15	10"	6,7	31 -		31-33' SAA, No odor			FID=0.0
			6,9	33 -					
	16	12"	10,10	ļ		33-35' Brown F- M C Sand, no odor			FID=0.0
	17	5"	11,9 17,14	35 —		35-37' Lt. Brown- Brown F- M C Sand, no	odor		FID=0.0
	1/		17,14			55-57 E.C. DIOWIF DIOWII F- WI C SHIII, IIO	Odo:		112-0.0
	18	5"	10,12	37 -		37-39' Brown F- M C Sand, no odor			FID=0.0 Sample Collected 37-39'
			15,17	39 _		1			
	19	6"				1			

BORING LOG SHEE								SHEET 2 OF 5	
JOB NAMI	E/ CI	IENT	•			PROJECT NO.			
RI Investigat		IRR				107865-0010-0007			
ADDRESS Morris Park	Yard	Facilit	y, Richmon	d Hill, Nev	w Yo	ork	ELEVATION/DATUM Surface 56.90/TOC 56.68	feet Queens Borough	n Datum
DRILLING Aquifer Dril						DRILLER Brian and Enrique	INSPECTOR Sam Monte		
DRILLING CME-75						TYPE/SIZE BIT 4" Mud Rotary	START DATE 9/15/2006		END DATE 9/19/2006
SAMPLER	TYF	E				HAMMER WEIGHT/DROP	TOTAL DEPTH		WATER LEVEL
Split Spoon		AM	PLES			60#	IPTION OF SOILS		37.37 FT. REMARKS
			LES	•					
	BER	OVER		DEPTH WATER			AA = Same As Above)		(PID, STAINING, ODORS, ETC.)
	NUM	RECOVERY IN INCHES	BLOWS PER 6"	рертн	WA	f - fine lt - light	m - medium c - coarse dk - dark tr - trace ltl - litt		N/S = No Staining N/O = No odors
		ŀ	NA	41		1			
		ŀ	NA NA			1			
		ı	NA	43		1			
			NA	45		1			
			NA			1			
		12"	NA 10,14	— 47 —		47-49' SAA			FID=0.0
			15,9	— 49 —					No Odor
			NA	49 -					
		ŀ	NA	51					
		ŀ	NA NA						
			NA	53					
			NA	55					
			NA			1			
		ŀ	NA NA	57					
	20	8"	14,15	59		58-60' Brown M C Sand, F gravel			FID=0.0
			18,19						No Odor
		ŀ	NA	61					
		ŀ	NA NA			1			
			NA	63					
			NA	65					
		ŀ	NA NA			1			
		ŀ	NA NA	67		1			
			NA	69		1			
			NA			1			
	21	6"	15,20 22,22	71		68-70' Brown F M Sand			FID=0.0 No Odor
		ŀ	NA						No Oddi
		j	NA	73		1			
			NA	75		1			
		}	NA NA			1			
		ŀ	NA NA	77		1			
	22	6"	15,11	79		78-80' SAA			FID=0.0
			12,14						No Odor

BORIN	BORING LOG							SHEET 3 OF 5		
JOB NAMI	E/ CL	IENT				PROJECT NO.				
RI Investigat		IRR				107865-0010-0007				
ADDRESS Morris Park	Yard 1	Facility	, Richmond	Hill, New	Yorl		ELEVATION/DATUM Surface 56.90/TOC 56.68 fee	et Queens Borough I	Datum	
DRILLING Aquifer Drill	CON	NTRA	CTOR			DRILLER Brian and Enrique	INSPECTOR Sam Monte			
DRILLING						TYPE/SIZE BIT	START DATE		END DATE	
CME-75 SAMPLER	TYP	E				4" Mud Rotary HAMMER WEIGHT/DROP	9/15/2006 TOTAL DEPTH		9/19/2006 WATER LEVEL	
Split Spoon			D. D .	1	60#		180Ft.		37.37 FT.	
			PLES			DESC	CRIPTION OF SOILS		REMARKS	
	ER	VERY HES		=	:R		(SAA = Same As Above)		(PID, STAINING, ODORS, ETC.)	
	NUMBER	RECOVERY IN INCHES	BLOWS PER 6"	DEPTH	WATER		ine m - medium c - coarse dk - dark tr - trace ltl - litt		N/S = No Staining N/O = No odors	
	2	F. I	NA NA	79		ıı - ııgııı	uk-dark ir-trace iii-iiu		14/O = 140 000FS	
ı			NA	19						
			NA	81						
			NA NA							
			NA	83						
			NA	85						
			NA	ļ						
			NA NA	87						
	23	6"	15,17	89		88-90' SAA			FID = 0.0	
			17,20						No Odor	
			NA	91						
			NA NA							
			NA	93						
			NA	95						
			NA							
			NA NA	97						
	24	6"	10,15	99		98-100' SAA			FID = 0.0	
			17,20	L -					No Odor	
			NA NA	101						
			NA	102						
			NA	103						
			NA	105						
			NA NA							
			NA	107						
			NA	109						
			NA	ļ						
			NA NA	111						
			NA	113						
			NA	113						
			NA	115						
			NA NA							
			NA	117						

BORIN	IG	LO	G					SHEET 4 OF 5		
JOB NAM	E/ CI	LIENT	7			PROJECT NO.				
RI Investiga		LIRR				107865-0010-0007	THE TAXABLE PARTY OF			
ADDRESS Morris Park	Yard	Facili	ty, Richmon	nd Hill, Ne	w Y	ork	ELEVATION/DATUM Surface 56.90/TOC 56.68 feet	Queens Borough	Datum	
DRILLING Aquifer Dril	G CO ling a	NTRA and Te	CTOR stins			DRILLER Brian and Enrique	INSPECTOR Sam Monte			
DRILLING CME-75						TYPE/SIZE BIT 4" Mud Rotary	START DATE 9/15/2006		END DATE 9/19/2006	
SAMPLER	R TYI	PE			HAMMER WEIGHT/DROP		TOTAL DEPTH		WATER LEVEL	
Split Spoon		SAM	PLES		1	60#	DESCRIPTION OF SOILS		37.37 FT. REMARKS	
			LLES	Ì						
	BER	VER		E	ER	(S	SAA = Same As Above)		(PID, STAINING, ODORS, ETC.)	
	NUMBER	RECOVERY IN INCHES	BLOWS PER 6"	рертн	WATER		e m - medium c - coarse dk - dark tr - trace ltl - litt		N/S = No Staining N/O = No odors	
			NA	117						
			NA							
			NA NA	119						
	25	6"	19,23	121		120-122' Brown F C Sand			No Odor	
			13,15	L					FID = 0.0	
			NA NA	123						
			NA NA	125						
			NA	125						
			NA	127						
			NA NA							
			NA	129						
			NA	131						
			NA							
			NA NA	133						
			NA	135						
			NA							
			NA NA	137						
			NA	139						
			NA	139						
	26	6"	17,18	141		140-142' SAA			FID=0.0 No Odor	
			23,20 NA	+	1				NO Odor	
			NA	143						
			NA	145						
			NA NA							
			NA	147						
			NA	149						
			NA	-						
			NA NA	151						
			NA	153						
			NA							
			NA NA	155						
			NA	<u> </u>	<u> </u>					

BORING LOG							SHEET 5 OF 5		
OB NAMI	E/ CI	LIENT				PROJECT NO.			
Investigat		LIRR				107865-0010-0007			
	Yard		ty, Richmon	d Hill, Ne	w Y	ork	ELEVATION/DATUM Surface 56.90/TOC 56.68 feet Q	Queens Borough Datum	
RILLING quifer Dril	GCO	NTRA	CTOR stins			DRILLER Brian and Enrique	INSPECTOR Sam Monte		
RILLING ME-75				TYPE/SIZE BIT		TYPE/SIZE BIT	START DATE	END DATE	
MPLER	TY	PE		HAMMER WEIGHT/DROP		4" Mud Rotary HAMMER WEIGHT/DROP	9/15/2006 TOTAL DEPTH	9/19/2006 WATER LEVEL	
lit Spoon	_	1434	DI EC	ı	_	60#	180Ft.	37.37 FT.	
			PLES			DESCI	RIPTION OF SOILS	REMARKS	
	SER	VERY		Ħ	ER	((SAA = Same As Above)		ГC.)
	NOM	RECOVERY IN INCHES	BLOWS PER 6"	DEPTH	WATER		e m - medium c - coarse dk - dark tr - trace ltl - litt	N/S = No Staining N/O = No odors	
			NA	157					
			NA						
			NA NA	159					
	27	8"	20,9			160-162' Gray F C Sand		FID=0.0	
			16,18	161				No Odor	
			NA	163					
			NA NA						
			NA	165					
			NA	167					
			NA	ļ					
			NA NA	169					
	28	8"	15,15	171		170-172' Gray Brown F M Sand		FID=0.0 Sample Collected 170-172'	
			17,18	_ ''' _				No Odor	
			NA NA	173					
			NA NA						
			NA	175					
			NA	177					
			NA NA						
			NA NA	179					
				181		180' Clay layer encountered			
						EOB at 180FT. Well Set at 180FT.			
				l					
				1					
					1				

BORIN	IG	LO	G				SHEET 1 OF 5		
JOB NAMI	E/ CI	IENT	•			PROJECT NO.			
RI Investigat		IRR				107865-0010-0007			
ADDRESS Morris Park	Yard	Facili	ty, Richmon	d Hill, Ne	w Y	ork ELEVATION/DATUM N/A (no access to well)			
DRILLING Aquifer Drill	GCO ling a	NTRA	CTOR stins			DRILLER INSPECTOR Brian and Enrique Sam Monte			
DRILLING						TYPE/SIZE BIT START DATE	END DATE		
CME-75 SAMPLER	TYI	PE				4" Mud Rotary 9/20/2006 HAMMER WEIGHT/DROP TOTAL DEPTH	9/25/2006 WATER LEVEL		
Split Spoon					_	60# 190Ft.	38 FT.		
			PLES			DESCRIPTION OF SOILS	REMARKS		
	ER	VERY		H	3.R	(SAA = Same As Above)	(PID, STAINING, ODORS, ETC.)		
	NUMBER	RECOVERY IN INCHES	BLOWS PER 6"	DEPTH	WATER	f - fine m - medium c - coarse lt - light dk - dark tr - trace ltl - litt	N/S = No Staining N/O = No odors		
	Į.		TENU			n agai un uma u truce in an	100-100 0000		
	1					0-6 ' Brown F Sandy Silt with Cobbles	Hand Cleared to 6 Ft.		
			Grab						
	2	6"	25,29	- 6 -		6-8' Brown F M Sand, F gravel	FID=0.0		
			30,37	_ 8 _	1				
	3	0	35,37			8-10' No Recovery			
	4	6"	42,37 39,42	_ 10 _	1	10-12' Brown M C Sand, F M cobble	FID=0.0		
			43,45	— 12 —					
	5	12"	39,42			12-14' Brown M C Sand, F C cobble	FID=0.0		
	6	8"	43,45 11,12	14	-	14-16' Brown M C Sand, F M cobble	FID=0.0		
	0	0	17,20	16		14-10 Blown M C Sand, F M Cobble	110-0.0		
	7	8"	11,15	— 16 –		16-18' SAA	FID=0.0		
			19,20	_ 18 _	-				
	8	6"	10,15 15,20			18-20' Brown M C Sand, M C cobble	FID=0.0		
	9	8"	15,17	_ 20 _		20-22' SAA	FID=0.0		
			20,22	_ 22 _	1				
	10	6"	22,24 24,27			22-24' SAA	FID=0.0		
	11	6"	23,27	_ 24 _	1	24-26' SAA	FID=0.0		
			27,29	_ 26 _					
	12	6"	24,25			26-28' Brown M C Sand	FID=0.0		
	13	8"	27,30 24,27	_ 28 _		28-30' Lt. Brown M C sand, M cobble	FID=0.0		
	15	Ü	30,33	_ 30 _		20 Oct. Bloth in Cosmic, in coole			
	14	6"	10,12	_ 30 _		30-32' SAA	FID=0.0		
	15	C	12,15	— 32 —	1	22 24 No Pagariami	EID-0.0		
	15	0	12,15 14,17	2.1	1	32-34' No Recovery	FID=0.0		
	16	0	10,12	34	1	34-36' No Recovery	FID=0.0		
			15,10	_ 36 _	1				
	17	2"	9,8		1	36-38' Black Brown M C Sand	FID=0.0 Sample Collected 36-38'		
	18	0	7,12 9,10	— 38 —	1	38-40' No Recovery	FID=0.0		
			13,15	_ 40 _					
					1				

BORIN	ORING LOG							SHEET 2 OF 5
JOB NAM	E/ CI	LIENT				PROJECT NO.		
RI Investiga		LIRR				107865-0010-0007	ELEVATION/DATUM	
ADDRESS Morris Park	Yard	Facili	ty, Richmon	d Hill, Ne	w Yo	ork	ELEVATION/DATUM N/A (no access to well)	
DRILLING Aquifer Dril	G CO lling a	NTRA ind Te	CTOR sting			DRILLER Brian and Enrique	INSPECTOR Sam Monte	
DRILLING CME-75	G RIC	j				TYPE/SIZE BIT 4" Mud Rotary	START DATE 9/20/2006	END DATE 9/25/2006
SAMPLER		PE				HAMMER WEIGHT/DROP	TOTAL DEPTH	WATER LEVEL
Split Spoon	_	3 4 3 4	DI EC	1	1	60#	190Ft. RIPTION OF SOILS	38 FT.
1			PLES			DESC	KIPTION OF SOILS	REMARKS
	BER	VERY CHES		Ħ	ER		(SAA = Same As Above)	(PID, STAINING, ODORS, ETC.)
1	NUMBER	RECOVERY IN INCHES	BLOWS PER 6"	DEPTH	WATER		ne m - medium c - coarse dk - dark tr - trace ltl - litt	N/S = No Staining N/O = No odors
			NA	42				
1			NA					
			NA NA	44				
			NA	46				
			NA	40				
			NA	48 -	-			
	19	8"	10,11	1		48-50' Brown F M Sand		FID=0.0 Sample Collected 48-50'
			NA	— 50 —				
			NA	52				
			NA NA					
			NA NA	54				
			NA	56				
			NA					
			NA NA	58				
			NA	60				
			NA	00				
			NA	62				
			NA NA					
			NA	64				
			NA	66				
			NA NA					
			NA	68				
			NA	70 -				
	20	12"	10,10 12,15			Dk. Brown - Lt. Brown F M Sand		FID=0.0 N/O
			NA	— 72 —				IVO
			NA	74				
			NA					
			NA NA	76				
			NA NA	78				
			NA	/8				
			NA	80				
			NA					

NA

SHEET 3 OF 5 JOB NAME/ CLIENT PROJECT NO. RI Investigation/LIRR 107865-0010-0007 ELEVATION/DATUM N/A (no access to well) ADDRESS Morris Park Yard Facility, Richmond Hill, New York TYPE/SIZE BIT 4" Mud Rotary DRILLING RIG CME-75 START DATE 9/20/2006 END DATE 9/25/2006 WATER LEVEL 38 FT. SAMPLER TYPE HAMMER WEIGHT/DROP TOTAL DEPTH Split Spoon SAMPLES DESCRIPTION OF SOILS REMARKS RECOVERY IN INCHES (SAA = Same As Above) (PID, STAINING, ODORS, ETC.)DEPTH f - fine m - medium c - coarse lt - light dk - dark tr - trace ltl - little N/S = No Staining N/O = No odors BLOWS PER 6" NA 82 NA 84 NA NA NA NA 88 NA 90 12" 15,17 90-92' Brown F Sand FID=0.0 N/O 17,19 92 NA NA 94 NA 96 NA NA 98 NA NA NA 102 NA NA 104 NA 106 NA NA NA NA 110 8" 17,20 110-112' Brown F M Sand FID=0.0 22 N/O 20,25 112 NA NA 114 NA NA 116 NA 118 NA NA 120

	RING LOG								SHEET 4 OF 5
JOB NAM	IE/ C	LIEN	Т			PROJECT NO.			
RI Investiga		LIRR				107865-0010-0007			
ADDRESS Morris Park		l Facil	ity, Richmo	nd Hill, N	ew	York	ELEVATION/DATUM N/A (no access to well)		
DRILLING CME-75	G RI	G				TYPE/SIZE BIT 4" Mud Rotary	START DATE 9/20/2006		END DATE 9/25/2006
SAMPLEI Split Spoon		PE				HAMMER WEIGHT/DROP 60#	TOTAL DEPTH 190Ft.		WATER LEVEL 38 FT.
			PLES			DESCRIP	TION OF SOILS		REMARKS
	ER	RECOVERY IN INCHES		н.	×	(SAA =	ame As Above) sedium - c - coarse c - tr - trace - ltl - little		(PID, STAINING, ODORS, ETC.)
	NUMBER	ECO' N INC	BLOWS PER 6"	рертн	WATER				N/S = No Staining N/O = No odors
	2	H H	NA			n-ngm uk-u	ark tr-trace tr-intie		TVO = IVO OUDIS
			NA	122					
			NA	124					
			NA	ļ					
			NA NA	126					
			NA						
			NA	128					
			NA	130 -					
	23	6"	12,13	ļ		130-132' Brown F Sand			FID=0.0
			17,15 NA	132 -	ł				N/O
			NA						
			NA	134					
			NA	136					
			NA	ļ					
			NA NA	138					
			NA						
			NA	140					
			NA	142					
			NA						
			NA NA	144					
			NA	146					
			NA	146					
			NA	148					
			NA						
	24	10"	NA 15,16	— 150 —	ł	150-152' Brown orange F Sand			FID=0.0
			19,22	– 152 –					N/O
			NA	132					
			NA	154					
			NA NA						
			NA NA	156					
			NA	150					
			NA	158					
			NA	160					
			NA						

BORIN	BORING LOG							SHEET 5 OF 5
JOB NAM	E/ CI	LIENT	7			PROJECT NO.		
RI Investiga		JIRR				107865-0010-0007		
ADDRESS Morris Park	Yard	Facili	ty, Richmon	d Hill, Ne	w Y	ork	ELEVATION/DATUM N/A (no access to well)	
DRILLING Aquifer Dril	GCO ling a	NTRA	CTOR sting			DRILLER Brian and Enrique	INSPECTOR Sam Monte	
DRILLING CME-75	3 RIC	÷				TYPE/SIZE BIT 4" Mud Rotary START DATE 9/20/2006		END DATE 9/25/2006
SAMPLER Split Spoon	TYI	PE		-			TOTAL DEPTH	WATER LEVEL 38 FT.
Spirt Spoon	9	SAM	PLES			DESCRIPTION		REMARKS
					(S)		ne As Above)	(PID, STAINING, ODORS, ETC.)
	MBE	RECOVERY IN INCHES	BLOWS	DEPTH	WATER	f-fine m-me	edium c - coarse	N/S = No Staining
	ž	RF IN	PER 6" NA	ā	M	lt - light dk - dark	tr - trace ltl - litt	N/O = No odors
			NA NA	162				
			NA	164				
		10"	NA	├ -	ł	ICC ICCID EMG LEGILI		FID 0.05 1.5 II . 1155 157
	25	10"	16,17 20,22	166		165-167' Brown F M Sand, F Cobble		FID=0.0 Sample Collected 165-167' N/O
			NA	168				
			NA					
			NA NA	170				
			NA	172				
			NA	172				
			NA NA	174				
			NA NA	176				
			NA	170				
			NA	178				
			NA NA	100				
			NA	180				
			NA	182				
			NA NA	ł				
			NA	184				
			NA	186				
			NA NA	ł				
			NA	188 -	1	188-190' Gray Clay (Garners Clay)		
			NA	190 -	ł	Boring Complete at 190 Ft		
				ł				
				ł				
				1				
				ł				
				1				

BORIN	ORING LOG							SHEET 1 OF 5	
JOB NAM	E/ CI	LIENT	•			PROJECT NO.			
RI Investiga		LIRR				107865-0010-0007			
ADDRESS Morris Park		Facilit	y, Richmon	nd Hill, Nev	w Y	rk ELEVATION/DATUM Surface 56.67/TOC 56.44	Feet Queens Borough	n Datum	
DRILLING Aquifer Dril						DRILLER INSPECTOR Brian and Enrique Sam Monte			
DRILLING CME-75	G RIC	j				TYPE/SIZE BIT START DATE 4" Mud Rotary 9/11/2006	END DATE 9/14/2006		
SAMPLER	R TYI	PE				HAMMER WEIGHT/DROP TOTAL DEPTH		WATER LEVEL	
Split Spoon		SAM	DI EC		1	60# 170Ft.		37.37 FT.	
			PLES			DESCRIPTION OF SOILS		REMARKS	
	BER	RECOVERY IN INCHES		E	TER	(SAA = Same As Above)		(PID, STAINING, ODORS, ETC.)	
	NUMBER	REC ININ	BLOWS PER 6"	DEPTH	WATER	f - fine m - medium c - coarse lt - light dk - dark tr - trace ltl - litt		N/S = No Staining N/O = No odors	
	1		Grab			0-5 ' Brown F Sandy Silt with Cobbles		Hand Cleared to 5 Ft.	
	2	18"	11,30 34,22	5 -		5-7' Grey Brown Silty Sand F-mg, wood, dry		FID=0.0	
	3	18"	14,14	7 -		7-9' Brown Sand M C, wood, dry		FID=0.0	
	4	12"	14,13 21,13	11 -		9-11' Brown Sand F- M C		FID=0.0	
	5	12"	19,24 28,36	13 —		11-13' Brown -Black F- M C Sand , Lg boulder , broken cobble,no odor		FID=0.0	
	7	6"	24,20	15		13-15' Multi-colored M C Sand, Lg. Gravel and Cobbles, no odor		FID=0.0	
	8	12"	29,22 22,20 18,19	17 —		15-17' Brown -Black M C Sand , M C gravel,no odor 17-19' Brown M C Sand, Lg. Cobbles, no odor		FID=0.0	
	9	14"	20,22	19 —		19-21' Lt. Brown-Tan M C Sand, F-M cobbles, brown, no odor		FID=0.0	
	10	12"	9,27 8,9	21 —		21-23' Brown -Black M C- C Sand ,some M Gravel,no odor		FID=0.0	
	11	12"	9,12	23 —		23-25' SAA, No odor		FID=0.0	
	12	0	16,10 12,6 7,7	25 —		25-27' No Recovery		FID=0.0	
	13	0	20,20	27 -		27-29' 1-1" x 1" cobble blocking shoe – No Recovery		FID=0.0	
	14		NA NA	29 —		29-31' No Recovery			
	15	4"	8,8 9,11	33		31-33' SAA, no odor		FID=0.0	
	16 17	5" 5"	31,31 33,28	35 —	-	33-35' Brown F- M C Sand, no odor 35-37' Lt. Brown- Brown F- M C Sand, no odor		FID=0.0 FID=0.0: Sample collected 35-37'	
	18	5"	16,11 16,11 8,8	37 —		37-39' Brown F- M C Sand, no odor		FID=0.0: Sample collected 35-37	
	19	6"	7,6 4,4	39 _	-	39-41' Brown F - C (Ig) Sand, no odor		FID=0.0	
			6,4	41					

BORING LOG JOB NAME/ CLIENT			G					SHEET 2 OF 5
JOB NAMI	E/ CI	LIENT	7			PROJECT NO.		
RI Investigat		LIRR				107865-0010-0007	A TYON TO A TYPE	
ADDRESS Morris Park		Facili	ty, Richmon	d Hill, Ne	w Y	rk Surface	ATION/DATUM 56.67/TOC 56.44 Feet Queens Borough Da	atum
DRILLING Aquifer Drill	GCO ling a	NTRA	CTOR sting			DRILLER INSPE Brian and Enrique Sam Mo	CCTOR onte	
DRILLING	RIC	j					T DATE	END DATE
CME-75 SAMPLER	TYF	PE		HAMMER WEIGHT/DROP			L DEPTH	9/14/2006 WATER LEVEL
Split Spoon			DY EG	1		60# 170Ft.	T GOW G	37.37 FT.
			PLES	ł		DESCRIPTION O	OF SOILS	REMARKS
	ER	VERY		p p	ER	(SAA = Same As A	bove)	(PID, STAINING, ODORS, ETC.)
	NUMBER	RECOVERY IN INCHES	BLOWS PER 6"	DEPTH	WATER	f - fine m - medium lt - light dk - dark tr - t		N/S = No Staining N/O = No odors
				41		8		
	19	8"	10,11	ļ		41-43' Brown F- M C Sand, no odor		FID=0.0
	20	14"	12,12 8,7	43 -	ł	13-45' SAA		FID=0.0
	20	14	7,9	45				110-0.0
	21	14"	8,7	— 45 —		45-47' SAA		FID=0.0
			7,8	47 -	-			
	22	12"	8,11 15,9	l		17-49' SAA		FID=0.0
	23	16"	12,10	49 -		49-51' Top 8" Brown F-M C Sand, no odor, Bottom 8" Gray F	-M C Sand, No odor	
			11.12	- 51 -		No FID reading but Slight odor		
	24	18"	10,10	ł		51-53' Gray F C-M C Sand,odor- petroleum		FID=20.1
	25	20"	10,10 12,11	53	ł	53-55' SAA, Odor, No Sheen		FID=45.6
			13,10	— 55 —				
	26	20"	23,20			55-57' Gray M C-C Sand,odor, sm. Gravel		FID=54.6
	27	18"	36,35 21,21	_ 57 _		57-59' Grey F – M C Sand, odor		FID=75.9 Sample collected 57-59'
	27	10	19,33	59 _		or-sy dicy! - M e Said, odd		115=75.7 Sample concerca 37-37
	28	18"	10,12			59-61' Brown F- M C Sand, odor		FID=45.1
	20	100	35,23	61 -	-	rical a Maga III. a		FID 54.7
	29	18"	13,15 11,10			61-63' Gray M C-C Sand,odor, sm. Gravel		FID=54.7
	30	8"	7,9	- 63 -	1	53-65' SAA, Odor		FID=93.8
			9,7	65 -				
	31	12"	3,8 10,10			55-67' SAA, Odor		FID=35.3
	32	8"	7,8	- 67 -	1	67-69' Brown F- M C Sand, no odor		FID=2.2
			8,7	- 69 -				
	33	12"	15,14	ļ		59-71' SAA		FID=0.0 Sample collected 69-71'
	34	8"	14,17 12,19	— 71 —	1	71-73' SAA, no odor		FID=0.0
			22,18	73				
	35	10"	10,8			73-75' SAA		FID=0.0
	24	o,,,	13,12	– 75 –	1	75 77' SAA		FID=0.0
	36	8"	12,7 14,15			75-77' SAA		FID-0.0
	37		7,12	— 77 –	1			
			9,15	- 79 -	1	77-79' SAA		FID=0.0
			11,13	<u> </u>	<u> </u>			l

BORIN	BORING LOG JOB NAME/ CLIENT								SHEET 3 OF 5
JOB NAMI	E/ CI	JENT	7			PROJECT NO.			
RI Investigat	tion/L	IRR				107865-0010-0007			
ADDRESS Morris Park	Yard	Facili	ty, Richmon	d Hill, Ne	w Y	ork	ELEVATION/DATUM Surface 56.67/TOC 56.44 Feet	Queens Boroug	h Datum
DRILLING Aquifer Dril						DRILLER Brian and Enrique	INSPECTOR Sam Monte		
DRILLING						TYPE/SIZE BIT	START DATE		END DATE
CME-75 SAMPLER	TYF	PΕ				4" Mud Rotary HAMMER WEIGHT/DROP	9/11/2006 TOTAL DEPTH		9/14/2006 WATER LEVEL
Split Spoon			DY EG		_	60#	170Ft.		37.37 FT.
			PLES			DESCR	IPTION OF SOILS		REMARKS
	ER	VERY HES		=	æ	(S	AA = Same As Above)		(PID, STAINING, ODORS, ETC.)
	NUMBER	RECOVERY IN INCHES	BLOWS PER 6"	DEPTH	WATER		m - medium c - coarse dk - dark tr - trace ltl - litt		N/S = No Staining N/O = No odors
	_	F	FER		ŕ	n - ngm	uk - dark ir - trace iti - nu		IV/O = NO odors
	38	8"	10,8	— 79 —		79-81' Lt. Brown F-M C Sand, No Odor			FID=0.0
			15,11	81 -	-				
	39	14"	9,9 8,9			81-83' SAA			FID=0.0
	40	12"	12,18	83 -	1	83-85' Lt. Brown F Sand, No Odor			FID=0.0
			19,17	85 -					
	41	12"	19,18	ļ		85-87' SAA			FID=0.0
	42	12'	15,19 18,19	— 87 —	-	87-89' SAA			FID=0.0
			19,12	89 -					
	43	8"	16,16	- 69 -		89-91' SAA			FID=0.0
			15,16	91 -	-				
	44	8"	9,12 13,10	l		91-93' SAA			FID=0.0
	45	12"	9,10	93 -		93-95' Brown F- M C Sand			FID=0.0
			10,12	95 -	-				
	46	8"	10,9 9,10	ł		95-97' SAA			FID=0.6
	47	12"	12,13	97 -	1	97-99' SAA			FID=0.0
			15,13	99 _					
	48	18"	13,8			99-101' Brown F- M C Sand, No Odor			FID=0.0
	49	12"	18,17 12,15	101 -	-	101-103' Brown F- C Sand, F Gravel, No O	dor		FID=0.0
			15,14	103]	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
	50	8"	11,17	.03	1	103-105' Brown F- C Sand, No Odor			FID=0.0
	51	18"	15,17 10,17	105	1	105-107' Brown F- M C Sand, No Odor			FID=0.0
	31	10	17,10			103-107 Blown F- M C Sand, No Odol			F1D=0.0
	52	10"	15,17	— 107 —		107-109' SAA			FID=0.0
			17,12	109	4				
	53	12"	12,16 14,10		1	109-111' SAA			FID=0.0
	54	10"	10,15	111	1	111-113' SAA			FID=0.0
			17,17	— 113 —]				
	55	12"	9,15		1	113-115' Brown-Red Brown F- MC Sand, N	Io Odor		FID=0.0
	56	18"	14,11 8,16	— 115 —	1	115-117' Lt. Brown F- C Sand, Some Grave	l. No Odor		FID=0.0
			19,12	117]		,		
				- 11/					

BO	BORING LOG OB NAME/ CLIENT								SHEET 4 OF 5
JOB 1	NAMI	E/ CI	LIENT				PROJECT NO.		
RI Inv			JIRR				107865-0010-0007		
	RESS s Park		Facili	ty, Richmon	d Hill, Ne	w Y		FION/DATUM 6.67/TOC 56.44 Feet Queens Boroug	h Datum
DRII Aquife				CTOR stins			DRILLER INSPEC Brian and Enrique Sam Mon		
DRIL	LING						TYPE/SIZE BIT START	DATE	END DATE
CME-	75 PLER	TYI	PE				4" Mud Rotary 9/11/2006 HAMMER WEIGHT/DROP TOTAL		9/14/2006 WATER LEVEL
Split S						_	60# 170Ft.		37.37 FT.
	ION	-	SAM	PLES			DESCRIPTION OF S	SOILS	REMARKS
	RUCI	J.	TERY		_	×	(SAA = Same As Above)	(PID, STAINING, ODORS, ETC.)
WELL	CONSTRUCTION	NUMBER	RECOVERY IN INCHES	BLOWS	DEPTH	WATER	f-fine m-medium c-c		N/S = No Staining
_	T	Z	R	PER 6"		Α	lt - light dk - dark tr - trace	ltl - litt	N/O = No odors
		57	8"	25,20	117	1	117-119' Brown M C – C Sand, SM. Gravel, no Odor		FID=0.0
				21,20	119 -				
		58	12"	23,20			119-121' SAA		FID=0.0
		59	10"	19,23 13,15	121 -	ł	121-123' Brown F- M C Sand, No Odor		FID=0.0
		37	10	17,10			121-125 Blown 1- M C Saild, No Oddi		115=0.0
		60	12"	13,16,	123	1	123-125' Brown F- M C Sand, No Odor		FID=0.0
				13,17	125	ļ			
		61	16"	15,16			125-127' Brown F- M C Sand, No Odor		FID=0.0
		62	10"	17,8 25,46	127 -		127-129' SAA		FID=0.0
				21,24	129				
		63	12"	22,24	127		129-131' SAA		FID=0.0
				20,19	131 -	ŀ			
		64	12"	19,21 17,20			131-133' SAA		FID=0.0
		65	12"	25,28	133 -	•	133-135' Brown F- M C Sand, No Odor		FID=0.0
				20,19	135 -				
		66	8"	24,25			135-137' SAA		FID=0.0
		67	12"	25,26 20,21	137	ł	137-139' SAA		FID=0.0
		67	12	8,17			157-139 SAA		F1D=0.0
		68	16"	19,20	— 139 —		139-141' SAA		FID=0.0
				17,18	— 141 —	ļ			
		69	10"	23,20			141-143' Gray Brown F-M C Sand, No Odor		FID=0.0
		70	14"	20,18 17,16	143	ł	143-145' SAA, Driller noticed Odor, No FID or PID		
				18,16	— 145 —				
		71	10"	17,16	143		145-147' SAA, Slight Odor still present, collected VOC Sample,	No FID/PID reading,	Sample Collected 145-147'
				16,16	— 147 —	ł	Sm. Gravel		
		72	12"	10,15 17,15	1		147-149' Gray Brown F-M C Sand, No Odor		FID=0.0
				11,12	149	1	150-152' Gray F- M C Sand , No Odor; Brown F- M C Sand Sea	ams	FID=0.0
		73	12"	12,15	— 151 —				
				15,11					
					— 153 —	ł			
		74	10"	13,15					FID=0.0
				15,10	155 —	1	155-157' SAA		

BORIN	IG	LO	G					SHEET 5 OF 5			
JOB NAMI	E/ CI	IENT				PROJECT NO.					
RI Investigat		IRR				107865-0010-0007					
ADDRESS Morris Park	Yard	Facili	ty, Richmon	d Hill, Ne	w Y	ELEVATION/DATUM ork Surface 56.67/TOC 56.44 Feet Queens Borough Datum					
DRILLING CONTRACTOR Aquifer Drilling and Testing						DRILLER INSPECTOR Sam Monte					
DRILLING						TYPE/SIZE BIT START DA		END DATE			
CME-75 SAMPLER	TYF	E				4" Mud Rotary 9/11/2006 HAMMER WEIGHT/DROP TOTAL D	ЕРТН	9/14/2006 WATER LEVEL			
Split Spoon						60# 170Ft.		37.37 FT.			
			PLES			DESCRIPTION OF SO	DILS	REMARKS			
	ER	VERY HES		=	×	(SAA = Same As Above)		(PID, STAINING, ODORS, ETC.)			
	NUMBER	RECOVERY IN INCHES	BLOWS PER 6"	DEPTH	WATER	f - fine m - medium c - coa lt - light dk - dark tr - trace	rse	N/S = No Staining N/O = No odors			
		I	TERU			it-ngiit uk-uark it-trace	u - nu	14/0 = 140 00015			
	75	8"	25,22	165		165-167' SAA		FID=0.0			
			23,19	167 -				N/O			
	76	12"	10,10	├ -	1	168-170' Gray Green Clay, No Odor		FID=0.0			
	,,		9,8	169		100 170 Gilly Green City, 100 Gills		N/O			
						EOB @ 170FT. Well Set at 170FT.					
				l							

Monitoring Well Logs

MW-21S JOB NAME: Remedial Investigation WELL NUMBER: ADDRESS: Morris Park Yard Facility DRILLING METHOD: 4.25" ID/ 6.25" OD HSA INSTALLATION DATE: 9/26/06 DRILLER: ADT DEVELOPMENT DATE: 11/7/06 GAUGING DATE: 12/6/06
DEPTH TO WATER: 38.95 Feet Below TOC HEIGHT OF STICK-UP: Flush Mount ELEVATION DATUM: Queens Borough DEPTH TO PRODUCT: NA Depth from Ground Elevation Surface (feet) (feet MSL) 0.00 57.45 Manhole Cover, Ground Surface -0.25 57.20 Top of Casing (TOC) 2" PVC Top of Concrete Collar -26.00 31.45 Top of Bentonite Slurry/Bottom of Concrete Collar -28.00 29.45 Top of No. 1 Sand Pack/ Bottom of Bentonite Slurry -30.00 27.45 Top of Well Screen -39.2 18.25 Depth to Water

TRC

Depth to Bottom of Screen

-50.00

MW-22S JOB NAME: Remedial Investigation WELL NUMBER: ADDRESS: Morris Park Yard Facility DRILLING METHOD: 4.25" ID/ 6.25" OD HSA INSTALLATION DATE: 9/29/06 DRILLER: ADT DEVELOPMENT DATE: 11/7/06 GAUGING DATE: 12/6/07
DEPTH TO WATER: 38.55 Feet Below TOC HEIGHT OF STICK-UP: Flush Mount ELEVATION DATUM: Queens Borough DEPTH TO PRODUCT: NA Depth from Ground Elevation Surface (feet) (feet MSL) 0.00 56.25 Manhole Cover, Ground Surface -0.36 55.89 Top of Casing (TOC) 2" PVC Top of Concrete Collar -29.00 27.25 Top of Bentonite Slurry/Bottom of Concrete Collar -31.00 25.25 Top of No. 1 Sand Pack/ Bottom of Bentonite Slurry -33.00 23.25 Top of Well Screen -38.91 17.34 Depth to Water

TRC

Depth to Bottom of Screen

-50.00

MW-23S JOB NAME: Remedial Investigation WELL NUMBER: ADDRESS: Morris Park Yard Facility DRILLING METHOD: 4.25" ID/ 6.25" OD HSA INSTALLATION DATE: 9/19/06 DRILLER: ADT DEVELOPMENT DATE: 11/9/06 GAUGING DATE: 11/29/06
DEPTH TO WATER: 40.25 Feet Below TOC HEIGHT OF STICK-UP: Flush Mount ELEVATION DATUM: Queens Borough DEPTH TO PRODUCT: NA Depth from Ground Elevation Surface (feet) (feet MSL) 0.00 58.38 Manhole Cover, Ground Surface -0.48 57.90 Top of Casing (TOC) 2" PVC Top of Concrete Collar -26.00 32.38 Top of Bentonite Slurry/Bottom of Concrete Collar -28.00 30.38 Top of No. 1 Sand Pack/ Bottom of Bentonite Slurry -30.00 28.38 Top of Well Screen -40.73 17.65 Depth to Water

TRC

Depth to Bottom of Screen


-50.00

MW-24S JOB NAME: Remedial Investigation WELL NUMBER: ADDRESS: Morris Park Yard Facility DRILLING METHOD: 4.25" ID/ 6.25" OD HSA INSTALLATION DATE: 10/6/06 DRILLER: ADT DEVELOPMENT DATE: 11/7/06 GAUGING DATE: 11/29/06
DEPTH TO WATER: 40.35 Feet Below TOC HEIGHT OF STICK-UP: Flush Mount ELEVATION DATUM: Queens Borough DEPTH TO PRODUCT: NA Depth from Ground Elevation Surface (feet) (feet MSL) 0.00 57.90 Manhole Cover, Ground Surface -0.28 57.62 Top of Casing (TOC) 2" PVC Top of Concrete Collar -31.00 26.90 Top of Bentonite Slurry/Bottom of Concrete Collar -33.00 24.90 Top of No. 1 Sand Pack/ Bottom of Bentonite Slurry -35.00 22.90 Top of Well Screen -40.63 17.27 Depth to Water

TRC

Depth to Bottom of Screen

-50.00

TRC

MW-26S JOB NAME: Remedial Investigation WELL NUMBER: ADDRESS: Morris Park Yard Facility DRILLING METHOD: 4.25" ID/ 6.25" OD HSA INSTALLATION DATE: 10/3/06 DRILLER: ADT DEVELOPMENT DATE: 11/7/06 GAUGING DATE: 12/8/06
DEPTH TO WATER: 36.93 Below TOC HEIGHT OF STICK-UP: Flush Mount ELEVATION DATUM: Queens Borough DEPTH TO PRODUCT: NA Depth from Ground Elevation Surface (feet) (feet MSL) 0.00 54.96 Manhole Cover, Ground Surface -0.31 54.65 Top of Casing (TOC) 2" PVC Top of Concrete Collar -29.00 25.96 Top of Bentonite Slurry/Bottom of Concrete Collar -32.00 22.96 Top of No. 1 Sand Pack/ Bottom of Bentonite Slurry -34.00 20.96 Top of Well Screen -37.24 17.72 Depth to Water -50.00 4.96

MW-28S JOB NAME: Remedial Investigation WELL NUMBER: ADDRESS: Morris Park Yard Facility DRILLING METHOD: 4.25" ID/ 6.25" OD HSA INSTALLATION DATE: 10/10/06 DRILLER: ADT DEVELOPMENT DATE: 11/9/06 GAUGING DATE: 12/13/06
DEPTH TO WATER: 35.20 Below TOC HEIGHT OF STICK-UP: Flush Mount ELEVATION DATUM: Queens Borough DEPTH TO PRODUCT: NA Depth from Ground Elevation Surface (feet) (feet MSL) 0.00 55.13 Manhole Cover, Ground Surface -0.13 55.00 Top of Casing (TOC) 2" PVC Top of Concrete Collar -26.00 29.13 Top of Bentonite Slurry/Bottom of Concrete Collar -28.00 27.13 Top of No. 1 Sand Pack/ Bottom of Bentonite Slurry -30.00 25.13 Top of Well Screen -35.33 19.80 Depth to Water

TRC

Depth to Bottom of Screen

-50.00

MW-17-50R JOB NAME: Remedial Investigation WELL NUMBER: ADDRESS: Morris Park Yard Facility DRILLING METHOD: 4.25" ID/ 6.25" OD HSA INSTALLATION DATE: 9/19/06 DRILLER: ADT DEVELOPMENT DATE: 11/7/06 GAUGING DATE: 12/15/06
DEPTH TO WATER: 38.35 Below TOC HEIGHT OF STICK-UP: Flush Mount ELEVATION DATUM: Queens Borough DEPTH TO PRODUCT: NA Depth from Ground Elevation Surface (feet) (feet MSL) 0.00 57.27 Manhole Cover, Ground Surface -0.50 56.77 Top of Casing (TOC) 2" PVC Top of Concrete Collar -26.00 31.27 Top of Bentonite Slurry/Bottom of Concrete Collar -28.00 29.27 Top of No. 1 Sand Pack/ Bottom of Bentonite Slurry -38.85 18.42 Top of Well Screen -38.60 18.67 Depth to Water

TRC

Depth to Bottom of Screen

-50.00

MW-21D JOB NAME: RI for CFCs WELL NUMBER: ADDRESS: Morris Park Yard Facility DRILLING METHOD: 4.25" ID/ 6.25" OD HSA INSTALLATION DATE: 9/28/06 DRILLER: ADT GAUGING DATE: 12/6/06
DEPTH TO WATER: 38.80 Below TOC DEVELOPMENT DATE: 11/9/06 HEIGHT OF STICK-UP: Flush Mount ELEVATION DATUM: Queens Borough DEPTH TO PRODUCT: NA Depth from Ground Elevation Surface (feet) (feet MSL) 57.45 0.00 Manhole Cover, Ground Surface -0.39 57.06 Top of Casing (TOC) 2" PVC Top of Concrete Collar Depth to Water -39.19 18.26 -73.55 -131.00 Top of Bentonite Slurry/Bottom of Concrete Collar -133.00 -75.55 Top of No. 1 Sand Pack/ Bottom of Bentonite Slurry -135.00 -77.55 Top of Well Screen

TRC

Depth to Bottom of Screen

-155.00

-97.55

MW-23D JOB NAME: RI for CFCs WELL NUMBER: ADDRESS: Morris Park Yard Facility DRILLING METHOD: 4.25" ID/ 6.25" OD HSA INSTALLATION DATE: 10/19/06 DRILLER: ADT DEVELOPMENT DATE: 11/9/06 GAUGING DATE: 11/29/06
DEPTH TO WATER: 40.80 Below TOC HEIGHT OF STICK-UP: Flush Mount ELEVATION DATUM: Queens Borough DEPTH TO PRODUCT: NA Depth from Ground Elevation Surface (feet) (feet MSL) 0.00 58.35 Manhole Cover, Ground Surface -0.15 58.20 Top of Casing (TOC) 2" PVC Top of Concrete Collar Depth to Water -40.95 17.40 -141.00 -82.65 Top of Bentonite Slurry/Bottom of Concrete Collar -143.00 -84.65 Top of No. 1 Sand Pack/ Bottom of Bentonite Slurry -145.00 -86.65 Top of Well Screen

TRC

Depth to Bottom of Screen

-165.00

-106.65

MW-25D JOB NAME: RI for CFCs WELL NUMBER: ADDRESS: Morris Park Yard Facility DRILLING METHOD: 4.25" ID/ 6.25" OD HSA INSTALLATION DATE: 10/12/06 DRILLER: ADT DEVELOPMENT DATE: 11/8/06 GAUGING DATE: 11/28/06 HEIGHT OF STICK-UP: Flush Mount DEPTH TO WATER: 37.94 Below TOC ELEVATION DATUM: Queens Borough DEPTH TO PRODUCT: NA Depth from Ground Elevation Surface (feet) (feet MSL) 55.48 0.00 Manhole Cover, Ground Surface -0.48 55.00 Top of Casing (TOC) 2" PVC Top of Concrete Collar Depth to Water -38.42 17.06 -144.00 -88.52 Top of Bentonite Slurry/Bottom of Concrete Collar -146.00 -90.52 Top of No. 1 Sand Pack/ Bottom of Bentonite Slurry -150.00 -94.52 Top of Well Screen

TRC

Depth to Bottom of Screen

-170.00

-114.52

MW-27D JOB NAME: RI for CFCs WELL NUMBER: ADDRESS: Morris Park Yard Facility DRILLING METHOD: 4.25" ID/ 6.25" OD HSA INSTALLATION DATE: 10/23/06 DRILLER: ADT DEVELOPMENT DATE: 11/8/06 GAUGING DATE: 12/15/06
DEPTH TO WATER: 38.19 Below TOC HEIGHT OF STICK-UP: Flush Mount ELEVATION DATUM: Queens Borough DEPTH TO PRODUCT: NA Depth from Ground Elevation Surface (feet) (feet MSL) 0.00 56.72 Manhole Cover, Ground Surface -0.48 56.24 Top of Casing (TOC) 2" PVC Top of Concrete Collar Depth to Water -38.67 18.05 -126.00 -69.28 Top of Bentonite Slurry/Bottom of Concrete Collar -128.00 -71.28 Top of No. 1 Sand Pack/ Bottom of Bentonite Slurry -130.00 -73.28 Top of Well Screen

TRC

Depth to Bottom of Screen

-150.00

-93.28

MW-28D JOB NAME: RI for CFCs WELL NUMBER: ADDRESS: Morris Park Yard Facility DRILLING METHOD: 4.25" ID/ 6.25" OD HSA INSTALLATION DATE: 10/25/06 DRILLER: ADT DEVELOPMENT DATE: 11/90/6 GAUGING DATE: 12/13/06
DEPTH TO WATER: 35.15 Below TOC HEIGHT OF STICK-UP: Flush Mount ELEVATION DATUM: Queens Borough DEPTH TO PRODUCT: NA Depth from Ground Elevation Surface (feet) (feet MSL) 0.00 55.22 Manhole Cover, Ground Surface -0.34 54.88 Top of Casing (TOC) 2" PVC Top of Concrete Collar Depth to Water -35.49 19.73 -109.00 -53.78 Top of Bentonite Slurry/Bottom of Concrete Collar -111.00 -55.78 - Top of No. 1 Sand Pack/ Bottom of Bentonite Slurry -113.00 -57.78 Top of Well Screen -133.00 -77.78

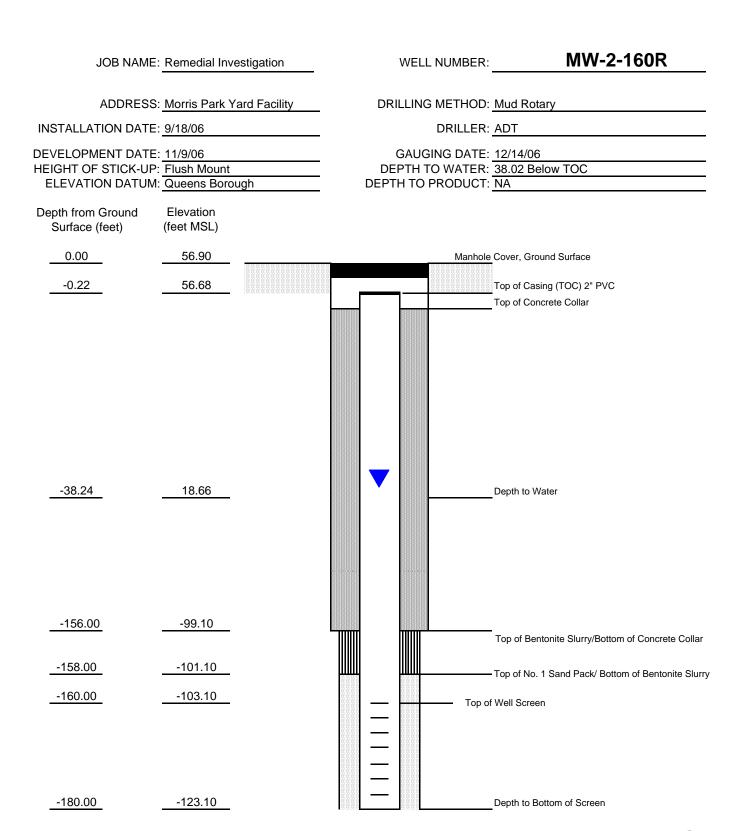
MW-29D JOB NAME: Remedial Investigation WELL NUMBER: ADDRESS: Morris Park Yard Facility DRILLING METHOD: Mud Rotary INSTALLATION DATE: 9/25/06 DRILLER: ADT DEVELOPMENT DATE: 11/9/06 GAUGING DATE: 12/14/06 HEIGHT OF STICK-UP: Flush Mount DEPTH TO WATER: -37.58 feet bgs ELEVATION DATUM: Not Surveyed DEPTH TO PRODUCT: NA Depth from Ground Elevation Surface (feet) (feet MSL) 0.00 Not Surveyed Manhole Cover, Ground Surface -0.50 Not Surveyed Top of Casing (TOC) 2" PVC Top of Concrete Collar -37.58 Not Surveyed Depth to Water -166.00 Not Surveyed Top of Bentonite Slurry/Bottom of Concrete Collar -168.00 Not Surveyed Top of No. 1 Sand Pack/ Bottom of Bentonite Slurry -170.00 Not Surveyed Top of Well Screen

TRC

Depth to Bottom of Screen

-190.00

Not Surveyed


MW-30D JOB NAME: Remedial Investigation WELL NUMBER: ADDRESS: Morris Park Yard Facility DRILLING METHOD: 4.25" ID/ 6.25" OD HSA INSTALLATION DATE: 9/11/06 DRILLER: ADT GAUGING DATE: 12/14/06
DEPTH TO WATER: 37.37 Below TOC DEVELOPMENT DATE: 11/9/06 HEIGHT OF STICK-UP: Flush Mount ELEVATION DATUM: Queens Borough DEPTH TO PRODUCT: NA Depth from Ground Elevation Surface (feet) (feet MSL) 0.00 56.67 Manhole Cover, Ground Surface -0.23 56.44 Top of Casing (TOC) 2" PVC Top of Concrete Collar Depth to Water -37.60 19.07 -146.00 -89.33 Top of Bentonite Slurry/Bottom of Concrete Collar -148.00 -91.33 - Top of No. 1 Sand Pack/ Bottom of Bentonite Slurry -150.00 -93.33 Top of Well Screen

TRC

Depth to Bottom of Screen

-170.00

-113.33

TRC

MW-31D JOB NAME: Remedial Investigation WELL NUMBER: ADDRESS: Morris Park Yard Facility DRILLING METHOD: 4.25" ID/ 6.25" OD HSA INSTALLATION DATE: 9/23/08 DRILLER: ADT GAUGING DATE: 10/14/2008
DEPTH TO WATER: 48.18 feet below TOC
DEPTH TO PRODUCT: NA DEVELOPMENT DATE: 9/30/08
HEIGHT OF STICK-UP: Flush Mount ELEVATION DATUM: Queens Borough Depth from Ground Elevation (feet Surface (feet) MSL) 67.56 0.00 Manhole Cover, Ground Surface -0.65 66.91 Top of Casing (TOC) 2" PVC Top of Concrete Collar -48.83 18.73 Depth to Water -111.00 -43.44 Top of Bentonite Slurry/Bottom of Concrete Collar -45.44 -113.00 -Top of No. 1 Sand Pack/ Bottom of Bentonite Slurry -115.00 -47.44 Top of Well Screen

-135.00

-67.44

TRC

MW-32D JOB NAME: Remedial Investigation WELL NUMBER: ADDRESS: Morris Park Yard Facility DRILLING METHOD: 4.25" ID/ 6.25" OD HSA INSTALLATION DATE: 9/29/08 DRILLER: ADT GAUGING DATE: 10/14/2008
DEPTH TO WATER: 37.91 feet Below TOC
DEPTH TO PRODUCT: NA DEVELOPMENT DATE: 9/30/08
HEIGHT OF STICK-UP: Flush Mount ELEVATION DATUM: Queens Borough Depth from Ground Elevation (feet Surface (feet) MSL) 58.05 0.00 Manhole Cover, Ground Surface -0.31 57.74 Top of Casing (TOC) 2" PVC Top of Concrete Collar -38.22 19.83 Depth to Water -106.00 -47.95 Top of Bentonite Slurry/Bottom of Concrete Collar -108.00 -49.95 -Top of No. 1 Sand Pack/ Bottom of Bentonite Slurry -110.00 -51.95 Top of Well Screen

-130.00

-71.95

TRC

MW-33D JOB NAME: Remedial Investigation WELL NUMBER: ADDRESS: Morris Park Yard Facility DRILLING METHOD: 4.25" ID/ 6.25" OD HSA INSTALLATION DATE: <u>9/24/ and</u> 9/25/2008 DRILLER: ADT GAUGING DATE: 10/14/2008
DEPTH TO WATER: 35.52 feet Below TOC
DEPTH TO PRODUCT: NA DEVELOPMENT DATE: 9/30/08
HEIGHT OF STICK-UP: Flush Mount ELEVATION DATUM: Queens Borough Depth from Ground Elevation (feet Surface (feet) MSL) 55.23 0.00 Manhole Cover, Ground Surface -0.24 54.99 Top of Casing (TOC) 2" PVC Top of Concrete Collar -35.76 19.47 Depth to Water -111.00 -55.77 Top of Bentonite Slurry/Bottom of Concrete Collar -57.77 -113.00 -Top of No. 1 Sand Pack/ Bottom of Bentonite Slurry -115.00 -59.77 Top of Well Screen

-135.00

-79.77

TRC

Historic Monitoring Well Construction Logs

TABLE 1

MORRIS PARK YARD RI: BORINGS AND WELLS

LONG ISLAND RAIL ROAD - MORRIS PARK YARD, RICHMOND HILL, NY

Well	Boring	Date	Boring	Depth to	Well	Ground	TOC
Number	Number	Completed	Depth	Clay	Depth	Elevation	Elevation
			(ft BG)	(ft BG)	(ft BG)	(feet AQVD)	(ft AQVD)
MW-1-60		2/1/94	62	NA	60	57.67	57.49
MW-1-140	DB-1	4/2/96	142	141.50	140	57.63	57.22
MW-2-60		2/3/94	60	NA	60	57.23	56.97
MW-2-180	DB-2	4/26/96	182	182	180	56.86	56.49
MW-2U-60	B-46	2/14/96	62	NA	60	56.80	56.52
MW-2D-60	B-54	2/28/96	62	NA	60 ·	55.97	55.54
MW-3-60		2/1/94	62	NA	60	57.51	57.25
MW-3-160	DB-3	4/18/96	162	159	160	57.37	57.16
MW-3U-63	B-50	2/20/96	67	NA	63	55.29	54.86
MW-3D-60	B-53	2/27/96	62	NA	60	53.15	52.26
MW-4-60		2/2/94	62	NA	60	56.30	55.40
MW-4-160	D8-4	4/15/96	162	NA	160	55.64	55.37
MW-5-60		2/4/94	61	NA	60	57.22	56.46
MW-5-180	DB-5	4/24/96	182	NA	180	56.97	56.59
	TB-5	11/20/96	197	195.5	NA	56.67	NA
MW-6-60		2/8/94	61	NA	60	56.51	56.09
MW-6-168	DB-6	4/22/96	172	170	168	56.71	56.22
MW-7-110		12/12/96	110	NA	110	52.92	52.56
	TB-7	11/22/96	180	179	NA	NA	NA
MW-7-178		12/6/96	182	179	178	53.08	52.80
MW-8-60	B-45	2/13/96	60	NA	60	56.38	55.91
MW-8-150	DB-8	4/3/96	150	NA	150	56.38	55.96
MW-9-60	B-44	2/27/96	62	NA	60	58.23	57.59
MW-10-60	8-56	2/26/96	62	NA	60	57.61	57.28
MW-10-159.5	DB-10	4/9/96	162	NA	159.50	57.44	57.16
MW-11-60	B-55	2/26/96	62	NA	60	57.63	57.31
MW-11-140	DB-11	4/10/96	144	140	140	57.57	57.38
MW-12-60	B-51	_ 2/15/96	62	NA	60.	55.83	55.11
MW-13-110		12/7/96	110	NA	110	53.41	53.02
MW-13-171	TB-13	12/18/96	175	172	171	53.53	53.12
MW-14-60		11/15/96	62	NA	60	54.53	54.12
MW-15-60		11/14/96	62	NA	60	57.33	57.16
MW-16-60		11/14/96	62	NA	60	56.35	56.05
	TB-17A-62	11/11/96	62	NA	NA	56.60	N/A
	TB-17B-44	11/13/96	44	NA	NA	NA	N/A
MW-17-60	TB-17C-62	11/18/96	62	NA	NA	56.78	55.8
	TB-18A-41	11/8/96	41	NA	NA	NA	N/A
	TB-18B-44	11/8/96	44	NA	NA	56.17	N/A
	TB-18C-41	11/11/96	41	NA	NA	NA	N/A
MW-18-60		11/12/96	62	NA	60	55.15	54.57
MW-19-60		11/7/96	62	NA	60	55.16	54.71

TABLE 1

MORRIS PARK YARD RI: BORINGS AND WELLS

LONG ISLAND RAIL ROAD - MORRIS PARK YARD, RICHMOND HILL, NY

Well	Boring	Date	Boring	Depth to	Well	Ground	тос
Number	Number	Completed	Depth	Clay	Depth	Elevation	Elevation
			(ft BG)	(ft BG)	(ft BG)	(feet AQVD)	(ft AQVD)
P-1-147		10/17/96	150	150	147	57.30	56.87
P-2-158		10/21/96	160	160	158	57.03	56.57
TW-1-150		10/25/96	150	152	150	56.76	56.35
SVE-1-40	B-47	2/20/96	44	NA	40	56.07	55.76
SVE-2-40	B-48	2/16/96	44	NA	40_	56.10	55.60
SVE-3-40	B-49	2/22/96	42	NA	40	58.18	57.92
	B-52	. 2/15/96	45	NA	NA	NA	NA

Notes

BG = below grade

AQVD = above Queens Borough vertical datum (+2.725 feet above sea level)

NA = Not available

TOC = top of casing

SOIL BORING LOG/WELL CONSTRUCTION FORM BORING/WELL NO. DB-1AWV-1-140 Project Name & Location Project Number Date Started **Date Completed** REMEDIAL INVESTIGATION/MORRIS PARK YARD 7624-01 4/1/96 4/1/96 Drilling Company Drilling Equipment Sampler(s) Hammer SOIL TESTING INC. Diedrich D-120 EPM JH/SH 135 Hammer, 300# 30" Geologist/Engineer Sampling Device Depth to Water Completion Depth Location STV CV/PK SPLIT SPOON 41' 140 feet NE corner of Administration Building Depth SAMPLES (Ft. Baico No. Chemical Recover Consi SOIL LOG Grade) (inches) tency **Parameters** USC WELL CONSTRUCTION GRAPHICS 6 in (PPM) Visual Description Code Ground Surface Asphalt (0-4") 5 Dark grey SILT, some fine to coarse gravel ML (4"-3'6") 10 dry 0.7 Brown F-C SAND 15 20 0.2 Sm. fine-coarse GRAVEL, sand, tr. SW sit (3*6*-8*) 2º I.D. same: some cobbles inner cesting 0.4 Bm. fine to coarse SAND 0.5 Bm, F-C SAND some F-C gravel 41' **V** SW 50 0.5 **Portland** Bentonite Grout 60 1 18 38-60 6.1 8010 Br. F-C SAND, trace M-F gravel SW 108-6 8021 + MTBE 8270 70 2 24 16-16 wet 7.4 8010 Brown fine SAND lit. sitt, trace F-M gravel SW 14-18 Brown fine SAND, lit. sit 3 6 21-30 7.1 8010 29-30 SW Grey-brown F-M SAND, tr. sitt 90 6 12-20 8010 4.8 SW 20-21 LL brown F-M SAND, tr. sit **Sentonite** 100 5 5 22-**25** 4.0 8010 SW 33-36 100 110 6 20 19-16 2.1 8010 LL brown F-M SAND, tr. sitt SW 19-19 2" I.D. Screen Brown fine to medium SAND, tr. coarse 120 21 20-25 1.4 8010 send, tr. siit SW 27-24 #2 Slice 130 8 20 24-34 wet 1.2 8010 Brown fine to medium SAND, tr. silt SW Sand 37-35 8010 9 140 24 9- 15 wet 1.7 Grey fine SAND and SILT, tr. clay (140'-141') SM 20-16 dense Grey CLAY (141-142') CL 150 E.O.B. = 142'0" 160 170 WELL CONSTRUCTION DETAILS: WELL CASING LENGTH: 100 feet WELL SCREEN TYPE: Schedule 40 PVC WELL CASING DIAMETER: 2 inches SLOT SIZE: 0.020 inches CASING TYPE: Schedule 40 PVC DRILLING MUD TYPE: Wyoming Bentonite Portland-Bentontite WELL SCREEN LENGTH: 40 feet GROUT TYPE: WELL SCREEN DIAMETER: 2 inches BENTONITE SEAL:

5 feet

SOIL BORING LOG/WELL CONSTRUCTION FORM BORING/WELL NO. DB-2/MW-2-180 Project Name & Location Project Number Date Started **Date Completed** REMEDIAL INVESTIGATION/MORRIS PARK YARD 7624-01 4/25/96 4/26/96 **Drilling Company** Drilling Equipment Drop SOIL TESTING INC Diedrich D-120 EPM JHVSH 135 Hammer, 300# 30 Geologist/Engines Sampling Device Depth to Water Completion Depth Location STV CV/PK SPLIT SPOON 180 ft Next to MW-2U-60 SAMPLES Depth Recover SOIL LOG (inches) Reeding **Parameters** WELL CONSTRUCTION GRAPHICS tency USC (PPM) 6 in. Visual Description Code Ground Surface Asphalt (0-4") 5 SW Concrete 10 0.6 Stained brown fine to coerse SAND, lit. fine 15 coerse gravel, tr. sit 20 0.1 4" I.D. outer casing SAME 30 0.1 40 0.4 41' ▼ 50 0.1 60 18 14-21 0.2 8010 Brown fine to medium SAND, lit. fine SW **Portland** 8021 + MTBE 18-20 dense gravel, tr. sitt Bentonite 8270 Grout 14 16-19 0.1 8010 SAME 80 3 20 16-26 0.1 8010 Brown fine to medium SAND, am silt, tr. SW 32-34 coarse sand, tr. fine gravei 90 20 24-34 ٥ 8010 Brown fine to medium SAND, sm. silt, tr. SW 90 44-46 course sand, traces of fine gravel 18 100 5 21-23 wet 8010 Brown fine to medium SAND, traces of SW 14-23 dense coarse sand, sm. silt 2" I.D. inner casing 110 17 29-34 8010 SAME 30-33 dense 120 14 30-42 8010 Brown/red-brown fine to medium SAND and SM SILT 127 18 8010 Brown fine to medium SAND, sm. sitt, Bentonite 64-68 traces of coarse sand, traces of fine gravel 135 140 9 16 8010 SAME 140 150 10 16 36-39 wet 8010 Grey fine SAND and SILT SM 2" I.D. 43-42 v-dense 160 18 11 41-41 wet 8010 SAME 47-48 #2 Silica Sand 170 Grey/brown CLAY and SILT SM 180 24 9-6 8010 wet 13-15 v-stiff E.O.B. = 182 WELL CONSTRUCTION DETAILS: WELL CASING LENGTH: 90'(outer); 140' (inner) WELL SCREEN TYPE: Schedule 40 PVC WELL CASING DIAMETER: 4"(outer); 2"(inner) SLOT SIZE: 0.020 inches CASING TYPE: Schedule 40 PVC DRILLING MUD TYPE: Wyoming Bentonite WELL SCREEN LENGTH: 40 feet GROUT TYPE: Portland-Bentonite WELL SCREEN DIAMETER: 2" I.D. BENTONITE SEAL: 8 feet

SOIL BORING LOG/WELL CONSTRUCTION FORM BORING/WELL NO. DB-3/MW-3-160 Project Name & Location Project Number Date Started **Date Completed** REMEDIAL INVESTIGATION/MORRIS PARK YARD 7624-01 4/17/9R 4/18/96 **Drilling Company** Drilling Equipment Sampler(s) Drop SOIL TESTING INC Diedrich D-120 EPM JH/SH 135 Hammer, 300# 30" Geologist/Engineer Sampling Device Depth to Water Completion Deoth STV CV/PK SPLIT SPOON 41' 160 Next to MAN-3-An Depth SAMPLES (FL Below Chemical SOIL LOG (inches) Grade) Der tency Reeding **Parameters** USC WELL CONSTRUCTION GRAPHICS (PPM) Visual Description Code Ground Surface Brown and black stained fine to coarse SAND, am. fine to course gravel, tr. silt, 5 dry 53.7 petroleum odor Concrete 10 dry 23.8 SAME coller 15 20 dry 341.0 SAME 4" I.D. outer casing SAME 30 dry 207.0 222.0 194.0 SAME dry 194.0 Brown fine to coerse SAND, tr. F-gravel 41' W mois 290.0 50 1 16 103.0 30-31 wet 8010 Brown/grey and black stained fine SAND **Portland** 42-63 -dense and SILT, tr. fine gravel/cobbles, etroleum product 60 2 15 262.0 56-66 wet 8010 Orange-brown fine to coarse SAND, sm. 82-74 v-dens 8270 siit, lit. fine gravel, petroleum odor 8021 + MTBE 70 3 19 16-24 wet 44.0 8010 SAME 80 4 22 44-45 44.0 8010 Brown fine SAND am. SILT, tr. medium 53-51 danı sand, petroleum odor 5 90 19 28-37 wet 125.0 8010 Red/brown fine SAND and SILT, traces 54-52 dens of medium sand , traces of fine gravel, slight petroleum odor 2" I.D. inner casing 100 6 15 18-19 waż 2.2 8010 Brown fine to medium SAND, sm. silt, 25-32 dense traces of coarse sand traces of fine gravei 107 110 19 29-27 1.6 8010 wet Brown fine to medium SAND and SILT Bentonite 30-32 /-dens 120 8 20 38-36 1.1 8010 Brown fine SAND and SILT 120 37-41 130 9 18 26-29 wat 0.0 8010 SAME #2 Silica 31-37 Send 140 10 21 33-32 wet 1.5 N/A SAME 35-44 2" I.D. Black/brown fine SAND and SILT, grey/ 150 11 16 31-38 wet 0.0 N/A SCREEN 43-42 dens brown SAND and SILT, traces of fine gravel Layer of cobbles (158') 160 12 24 14-18 0.0 8010 Grey silty CLAY 160 18-19 Black/grey silty CLAY, lit. fine sand E.O.B. = 162 WELL CONSTRUCTION DETAILS: WELL CASING LENGTH: 90"(outer); 120'(inner) WELL SCREEN TYPE: Schedule 40 PVC WELL CASING DIAMETER: 4"(outer); 2"(inner) SLOT SIZE: 0.020 inches CASING TYPE: Schedule 40 PVC DRILLING MUD TYPE: Wyoming Bentonite WELL SCREEN LENGTH: 40 feet **GROUT TYPE:** Portland-Bentonite WELL SCREEN DIAMETER: 2 inches BENTONITE SEAL: 10 feet

SOIL BORING LOG/WELL CONSTRUCTION FORM BORING/WELL NO. DB-4/MW-4-160 Project Name & Location Project Number Date Started **Date Completed** REMEDIAL INVESTIGATION/MORRIS PARK YARD 7824-01 4/1/96 4/1/96 Driving Company Drilling Equipmen Sampler(s) Hammer Drop SOIL TESTING INC. EPM JH/SH Diedrich D-120 135 Hammer, 300# 30" Geologist/Enginee Sampling Device Depth to Water Completion Depth Location STV CV/PK SPLIT SPOON 160 AOC #4 Depth SAMPLES Consi Chemical **SOIL LOG** Grade) (inches) Reading **Parameters** tency USC WELL CONSTRUCTION GRAPHICS 6 in. (PPM) Visual Description Code Ground Surface Asphalt (6 inches) Stained Blk. F-C SAND, it F-C gravel, tr. 5 moist 2.1 Concrete dry silt, slight petroleum odor Collar Bm. F-C SAND it clay, it F-M tr. sit, 10 20.2 gravel (5'-10'), slight petroleum odor Brn. F-C SAND, f-c gravel, sm. cobbles GW 15 moist 24.3 (10-15') 20 28.5 2" I.D. moist 37 SAME, but now brown Bm. F-C SAND, sm. gravel, slight 30 moist 17 SW petroleum odor (appears clearer) moist 20 40 12 41' 🔻 30.2 Bm. F-C SAND, it F-gravel Brn F-C SAND, lit. cobbles SAME SW 50 **Portland** Brown SILT (57') Bentonite Grey F-SAND & SILT, lit clay (59') ML Grout 60 1 18 16-20 4.2 8010 20-30 dense Brown/grey F-C SAND, tr. sitt SW 70 SAME 80 90 Brown/grey F-C SAND, tr. sit SW wet SAME 100 SAME Bentonite 107 110 2 22 20-33 3.6 8010 Bm F-M SAND, tr. F-gravel SW 27-29 112 Brn F-M SAND, sm silt, tr. C-sand, SM F-oravel 120 120 130 #2 Silica 140 3 18 41-46 7.3 wet 8010 Brn F-M SAND, sm. silt, tr. C-sand SM sand 44-67 -dens tr. F-gravel 150 2" I.D. Screen 160 4 24 26-32 Brn. F-M SAND, sm silt, tr. C-sand, tr. SM 160 -dense F-gravel E.O.B. = 162 170 WELL CONSTRUCTION DETAILS: WELL CASING LENGTH: 120 feet WELL SCREEN TYPE: Schedule 40 PVC WELL CASING DIAMETER: 2 inches SLOT SIZE: 0.020 inches CASING TYPE: Schedule 40 PVC DRILLING MUD TYPE: Wyoming Bentonite WELL SCREEN LENGTH 40 feet **GROUT TYPE:** Portland-Bentonite WELL SCREEN DIAMETER: 2 inches BENTONITE SEAL:

5 feet

SOIL BORING LOG/WELL CONSTRUCTION FORM BORING/WELL NO. DB-5/MW-5-180 Project Name & Location Project Number Date Started **Date Completed** REMEDIAL INVESTIGATION/MORRIS PARK YARD 7624-01 4/1/96 4/1/96 Drilling Company Drilling Equipment Sampler(s) Hammer SOIL TESTING INC. EPM JH/SH Diedrich D-120 135 Hammer, 300# 30" Geologist/Engineer Sampling Device Depth to Water Completion Depth Location STV CV/PK SPL!T SPOON 42 R 180 ft. North Parking Lot near MW-5-60 SAMPLES Depth Recover Consis Chemical SOIL LOG Grade) (inches) tency Reading Parameters. USC **WELL CONSTRUCTION GRAPHICS** 6 in. (PPM) Visual Description Code Ground Surface Brown fine to coarse SAND, lit. fine to coarse GW 5 gravel, tr. siit (0-5') Concrete coller 10 SAME: it cobbies, boulders GW 20 Bm fine to coarse SAND, it. F-C gravel, tr. SW 2" LD. casing 30 40 42 50 15 60 1 21-26 0 8010 Brown fine to medium SAND, it sit, SW **Portland** 8021 + MTBE 28-29 /-dans colerse sand, tr. fine gravel Bentonite 8270 Grout 2 18 70 22-24 0 8010 SAME 31-29 80 3 14 24-31 0 8010 Lt. brown fine SAND, lit sitt, tr. medium-sand sw 30-33 90 14 18-34 0 8010 Brown SAND, lit medium sand, sm. siit SW 39-41 100 5 Brown fine SAND and SILT, tr. of fine gravel SW 18 24-29 0 8010 48-52 بمحمات 110 6 8 27-33 west 0 8010 Brown fine SoulD and SILT, tr. of fine gravel SM 43-39 r-dener 120 7 18 44-42 0 8010 wet Brown fine to medium SAND, sm. silt, tr. SW 39-37 -deni of coerse sand 126 130 20 48-73 8010 wet 0 Brown fine to medium SAND and SILT, tr. SM **Bentonite** 101-123 v-dense coarse sand, tr. fine gravel 136 140 140 150 9 16 0 8010 Red/brown fine SAND and SILT wet SM #2 Silica 10 160 18 26-33 wet 0 8010 SAME 42-58 -dane 2" I.D. 170 N/A Brown fine SAND and SILT SM SCIBBO 180 180 WELL CONSTRUCTION DETAILS: WELL CASING LENGTH: 140 feet WELL SCREEN TYPE: Schedule 40 PVC WELL CASING DIAMETER: 2 inches SLOT SIZE: 0.020 inches CASING TYPE: Schedule 40 PVC DRILLING MUD TYPE: Wyoming Bentonite WELL SCREEN LENGTH: 40 feet **GROUT TYPE:** Portland-Bentonite WELL SCREEN DIAMETER: 2 inches BENTONITE SEAL 10 feet

SOIL BORING LOG/WELL CONSTRUCTION FORM BORINGAVELL NO. DB-6/MW-6-168 Project Name & Location Project Number Date Started **Date Completed** REMEDIAL INVESTIGATION/MORRIS PARK YARD 7624-01 4/19/96 4/22/96 Drilling Company Drilling Equipment Droo SOIL TESTING INC. 135 Hammer Diedrich D-120 EPM JH/SH 30 Geologist/Engineer Sampling Device Depth to Water Completion Depth STV CV/PK SPLIT SPOON 41 R. 168 ft 5' west of end of Track 1 (near over walkway) SAMPLES Depth (Pt. Below No. Recover Consi Chemical **SOIL LOG** Grade) (inches) per tency Reedin **Parameters** USC **WELL CONSTRUCTION GRAPHICS** (PPM) 6 in **Visual Description** Code Ground Surface Brown and stained black, fine to coarse 5 2.1 SAND, it. fine to coarse gravel, tr. sit, concrete Slight petroleum odor. collec 10 2.2 15 2.3 Dark brown coerse to fine SAND little coarse to fine gravel, slight petroleum 4" LD outer 20 3.3 SAME, it. cobbles casing 1.2 30 3.5 SAME, but no petroleum odor 2.5 2.6 SAME 41' 50 **Portland** Grout 60 1 18 39-55 wet 105 Grey fine to coarse SAND, sm. silt, lit. 57-63 -dens fine gravel. Strong petroleum odor, petroleum product present. 70 2 15 22-26 59 8010 wet Brown fine to medium SAND, sm. silt, tr. 31-42 -dens coarse sand, tr. fine gravel, slight petroleum odor 3 6 43-55 Brown fine SAND, lit. fine gravel, sm. sit. 86 8010 wet 61-48 tr. coarse sand 90 6 66-64 2.2 8010 Brown fine to coerse SAND and fine 90' 52-43 GRAVEL 100 5 16 21-18 0 8010 Black/brown fine SAND sm. sitt 2" i.D. inner 19-20 deces 18 110 8 21-18 ٥ 8010 Brown fine SANO and SILT 19-20 dense 120 7 20 45-51 0 8010 wet Brown fine SAND, traces of medium 119 61-87 v-dens sand, silt, traces of fine gravel 124 130 8 12 25-39 0 8010 wet Brown fine SAND, traces of medium 128 40-41 sand, silt, traces of fine gravel, traces of cobbles #2 Silica 140 9 11 29-45 0 8010 wet Brown fine SAND, traces of medium Sand 57-77 sand, silt, traces of fine gravel 150 10 18 42-53 0 8010 SAME 69-72 Screen 160 11 43-60 0 8010 Brown fine SAND and SILT, tr. clay wet 85-83 170 12 24 15-19 0 8010 wet BLACK/grey fine SAND and silty CLAY 22-25 dense E.O.B. = 172 WELL CONSTRUCTION DETAILS: WELL CASING LENGTH: 90'(outer): 130'(inner) WELL SCREEN TYPE: Schedule 40 PVC WELL CASING DIAMETER: 4"(outer, 2"(inner) SLOT SIZE: 0.020 inches CASING TYPE Schedule 40 PVC DRILLING MUD TYPE: Wyoming Bentonite WELL SCREEN LENGTH: 40 ft **GROUT TYPE:** Portland Bentonite 2" I.D. WELL SCREEN DIAMETER: BENTONITE SEAL: 5 ft.

SOIL BORING LOG/WELL CONSTRUCTION FORM BORING/WELL NO. D8-8MW-8-150 Project Name & Location Project Number Date Started **Date Completed** REMEDIAL INVESTIGATION/MORRIS PARK YARD 4/1/96 7624-01 4/1/96 Drilling Company Drilling Equipment Hammer Drog SOIL TESTING INC Diedrich D-120 EPM JH/SH 135 Hammer 300# 30" Geologiet/Engineer Sampling Device Depth to Water Completion Depth Location STV CV/PK SPLIT SPOON 41 fL 150 ft. West alleyway SAMPLES (Pt. Belo Recovery Chemical Consi **SOIL LOG** (inches) Grade) tency Reading **Parameters** USC WELL CONSTRUCTION GRAPHICS (PPM) 6 in. Visual Description Code Ground Surface Asphelt (1") 5 Concrete (1"-12") GW concrete Brown SILT, sm. fine to medium sand coller 10 sm. fine to coerse gravel (1-5') 15 20 Brown fine to medium SAND sm. fine to coerse gravel, lit. cobbles 2" I.D. casing 30 Brown fine to course SAND, am fine SW to coarse gravel 40 SAME 41' ▼ 50 Portland Bentonite 60 Grout 24 30-33 1.6 8010 wet Brown fine to medium SAND, tr. sitt SW 29-25 -dene 8021 + MTBE 8270 80 SAME: lit cobbles for 87' 90 100 100 110 2 20 36-81 22 wet 8010 Brown fine SAND, lit. fine gravel SW 93-110 v-dense #2 Silica 120 Sand 130 2" I.D. 3 19 31-34 2.2 8010 wet Red/brown medium to coarse SAND, 能 SW 33-31 v-dense fine gravel, traces of six 150 E.O.B. 150 150 160 170 WELL CONSTRUCTION DETAILS: WELL CASING LENGTH: 150 feet WELL SCREEN TYPE: Schedule 40 PVC WELL CASING DIAMETER 2 inches SLOT SIZE: 0.020 inches Schedule 40 PVC CASING TYPE: DRILLING MUD TYPE: Wyoming Bentonite WELL SCREEN LENGTH: 50 feet GROUT TYPE: Portland-Bentonite WELL SCREEN DIAMETER: 2 inches BENTONITE SEAL: 5 feet

SOIL BORING LOGAVELL CONSTRUCTION FORM BORING/WELL NO. DB-10MW-10-159.5 Project Name & Location Project Number Date Started **Date Completed** REMEDIAL INVESTIGATION/MORRIS PARK YARD 7624-01 4/8/96 4/9/96 Drilling Company **Drilling Equipment** Sampler(s) Hammer Droo SOIL TESTING INC. EPM JH/SH Diedrich D-120 135 Hammer, 300# 30 Geologist/Enginee Sampling Device Depth to Water Completion Depth Location STV CV/PK SPLIT SPOON 159'6" NW comer Atlantic and 121st Depth SAMPLES (PL Belo decovery Cons Chemical SOIL LOG (inches) Grade) Reading **Parameters** tency USC **WELL CONSTRUCTION GRAPHICS** (PPM) 6 in Visual Description Code Ground Surface 6" Concrete/4" Asphalt 5 Concrete Brown fine to course SAND, sm. fine to SW Coller 10 dry coarse gravel, tr. of sit (10"-10") 15 dry SAME: am. cobbles 4" I.D 20 SAME Outer casing 30 Brown F-C SAND **Portland** Bentonite Grout 40 SAME 42 V 50 SAME wet 60 13 31-32 1 1.0 8010 Brown fine to medium SAND, am coarse SW 26-27 8021 +MTBE sand, sm. sit, traces of fine 2" I.D. 8270 gravel 2 8 31-33 8010 wet 8.4 SAME 49-56 80 3 16 26-22 5.0 8010 Lt. brown fine to medium SAND, sm. fine SW 31-41 gravel, sm. silt, traces of coarse sand 90 4 14 18-19 9.7 8010 Lt. brown fine to medium SAND, SW 90 33-34 am. silt, traces of coarse sand, traces of fine gravel 100 5 10 41-52 wet 1:0 8010 Lt. brown fina to coarse SAND, sm. sit, SW Bentonita 44-39 traces of fine gravel Seal 108 110 6 13 31-41 8010 SAME wet 24 109.5 35-52 120 7 16 33-61 wet 4.4 8010 SAME 62-58 #2 Silica 130 8 13 29-64 8010 1.7 wet Lt. brown F-SAND, tr. M-sand + sit SM 9 8 4- 13 5.3 8010 wet Lt brown fine SAND and SILT SM 2" I.D. 15-16 compa Screen 150 10 0 48-47 N/Α N/A NO RECOVERY 59-43 160 11 16 37-42 wet 3.0 N/A Grey fine SAND and SILT SM 159.5 38-61 E.O.B. = 162" 170 WELL CONSTRUCTION DETAILS: WELL CASING LENGTH: 90' (outer); 109.5' (inner) 4"(outer); 2" (inner) WELL SCREEN TYPE: Schedule 40 PVC WELL CASING DIAMETER: SLOT SIZE: 0.020 inches CASING TYPE: Schedule 40 PVC DRILLING MUD TYPE: Wyoming Bentonite WELL SCREEN LENGTH 50 ft. GROUT TYPE: Portaind Bentonite WELL SCREEN DIAMETER: BENTONITE SEAL

8 feet

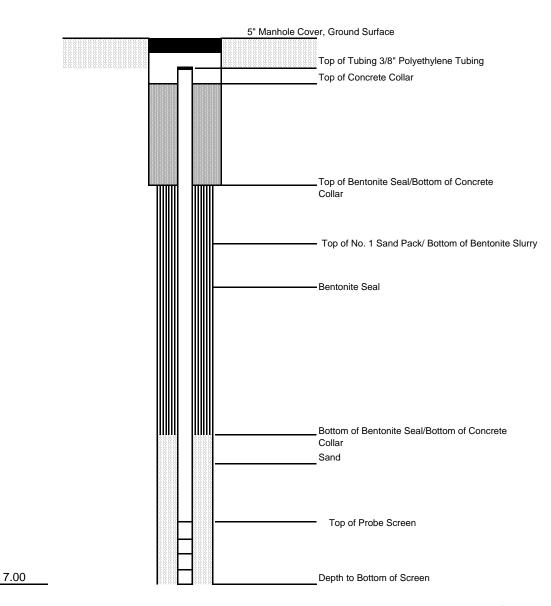
SOIL BORING LOG/WELL CONSTRUCTION FORM BORING/WELL NO. DB-11/MW-11-140 Project Name & Location Project Number Date Started **Date Completed** REMEDIAL INVESTIGATION/MORRIS PARK YARD 7624-01 4/10/96 4/10/98 **Uniting Company** Drilling Equipment Sampler(s) ammer Oron SOIL TESTING INC Diedrich D-120 EPM JH/SH 135 Hammer, 300# 30° Geologist/Engineer Sampling Device Depth to Water Completion Depth Location STV CV/PK SPLIT SPOON 41' 140 Atlantic Ave. Island east side of 121st St. SAMPLES Depth (Pt. Balon Recover Consi Chemical SOIL LOG Grade) (inches) tency Reading per Parameters 3 4 1 USC WELL CONSTRUCTION GRAPHICS (PPM) Visual Description Code Ground Surface 4" Asphalt/6" Concrete 5 dry Brown fine to coarse SAND, sm. fine to SW Concrete coarse gravel, traces of sit (10"-10") Coller 10 dry 4" LD. 15 Outer casing 20 dry SAME: am. cobbles 2"10 SAME inner cesting 30 dry Brown fine to coarse SAND SW dry 41 50 **Portiend Bentonite** Grout 60 1 9 22-28 1.5 8010 wet Brown fine to medium SAND, sm. sit, SW 32-38 8021 + MTBE traces of coarse sand , traces of fine 8270 oravel 70 2 14 21-23 2.5 8010 Red/brown fine to medium SAND, sm. sit, SW 26-46 traces of coarse sand, traces of fine 80 3 18 23-38 1.5 8010 Brown fine to medium SAND, lit. silt, traces SW 59-39 of coarse sand 88 16 36-38 wet 4.3 8010 Brown fine to medium SAND, em. sit. SW 33-44 traces of coarse sand 90 100 5 17 26-32 8010 wet 1.4 Brown fine to medium SAND, sm. sit, SW 29-39 -dens traces of coarse sand 100 #2 Silica Sand 110 6 18 31-41 wet 2.4 8010 Brown fine to medium SAND and SILT SM 35-52 120 7 15 46-56 1.0 8010 Brown fine to coarse SAND and SILT, lift SM 2"ID 35-49 fine gravel 130 8 17 44-48 1.4 8010 Brown fine SAND and SILT 56-57 140 9 16 64-62 8.0 Brown fine SAND and grey/black fine 8010 CL 36-44 SILTY CLAY 10 18 51-48 0.0 SAME wet 8010 41-66 150 E.O.B. = 144' 160 170 WELL CONSTRUCTION DETAILS: WELL CASING LENGTH: 90' (outer); 100' (inner) 4"(outer; 2"(inner) WELL SCREEN TYPE: Schedule 40 PVC WELL CASING DIAMETER: SLOT SIZE: .020 inches Schedule 40 PVC DRILLING MUD TYPE: Wyoming Bentonite

CASING TYPE: WELL SCREEN LENGTH: WELL SCREEN DIAMETER: 40 feet

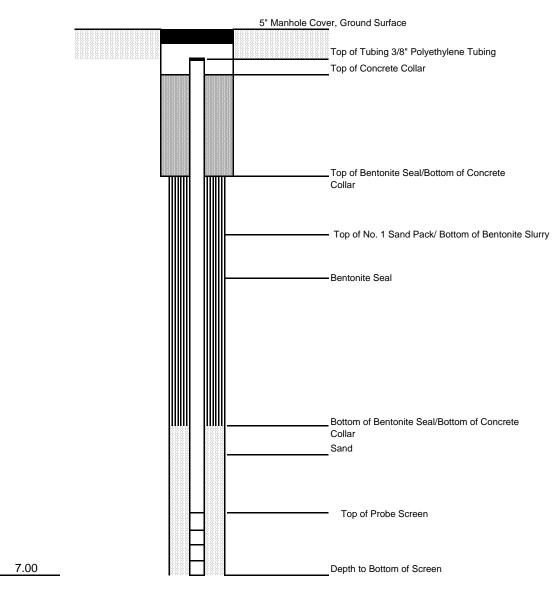
GROUT TYPE: BENTONITE SEAL: Portland Bentonite 8 feet

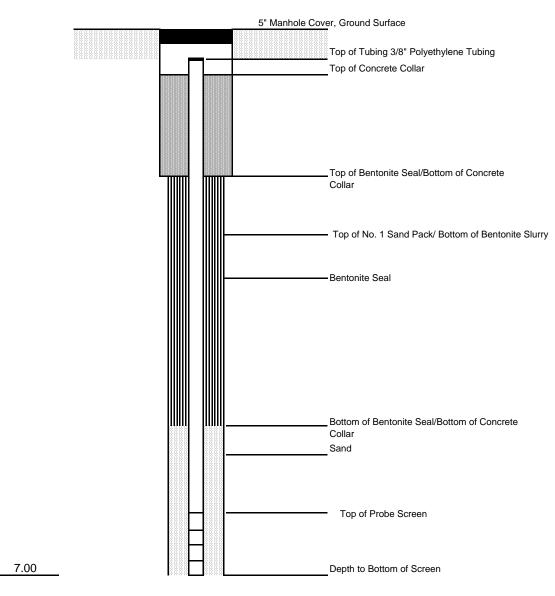
			SC	NI BOI	SING LOC	WELL CONSTRUCTION	N FO	284						
			_		uito Eot	WILL CONSTRUCTION	/N FOR	/m	WELL NO. P-2					
STV in	c													
Project Ne	me & Loca	ition	ρ	roject Number		Date Drilling Started Date Drilling Completed								
MODERNE		*	71	824-01		10/19/98								
Dritting Co						Sempler(s)								
UNI-TECH Drilling Eq	DRILLING	3 CO. INC.		·····		E. BEACON								
CME - 86	LICH THE INC.					Elevation & Detum	Comple	tion Depth	Rock Depth					
Geologieti	Engineer		84	empting Devic	•	Depth to Water								
ELLEN BE	ACON			PLIT-SPOON										
Depth (*1. Balow	Semple	Recovery	SAMPLES Blow	I PIO I	Chemical	SOIL LOG								
(Grade)	Interval	(R)	per	Reeding	Parameters		USC Soll		WELL CONSTRUCTION GRAPHICS					
	(R)	 	6 in.	(PPM)		Visual Description Ground Surface	Code	Graphic						
	 -	 		+}					12" steel cover					
<u> </u>	ļ			1 1		sephalt 6-8" cobbins, grave: brown coarse sand fill to 12 ft.								
	1	1		1 1		,	1							
							1							
30						light brown, coarse SAND, trace to								
				1 1		little very coarse sand, trace fine sand		- 1						
]					1 1	- 1						
		1		1 1			1 1	ł						
							1 1	I						
_ •• _		CHATTAGES		1 1			1 1	ı						
_							1 1							
İ				1 1		1		1						
- 1							1 1							
						1	1 1							
_ ∞ ᆗ						j	1							
	- 1						1 1							
ı														
									106					
	l													
_ 120							1 1	l	115					
									118					
ŀ	1	▼												
- 7	l	1						Ī						
	- 1	`	İ				1 1	İ						
- ¹⁵⁰ -	150-152	2	17,21,18,9			brown, coerse <u>SAMD</u> , wet								
		1				·								
ŀ	1	ľ												
- 7		- 1	Ī	ļ										
	- 1					0.4 brown and gray <u>CLAY</u> , dense, trace		ı						
_ 190	160-162	0.4	10,11,14,17			fine send.		ı	158					
			1				1							
WELL CONS	TRUCTIO	N DETAILS:												
WELL CASH				18 ft.		CI OT DITC.		020						
				***************************************		SLOT SIZE:								
VELL CASIA	NG DIAMET	IER:	2	-inch		DRILLING MUD TYPE:	NA							
ASING TYP	PE:			PVC		GROUT TYPE:	Cerne	nt-Bentoni	lo					
WELL SCRE	EN LENGT	ዝ:		IO RL	•	BENTONITE SEAL:	 .							
WELL SCRE	EN DIAME	TER:	2	-inch	F	FILTER PACK TYPE:	#2 #							
						-								
									1					

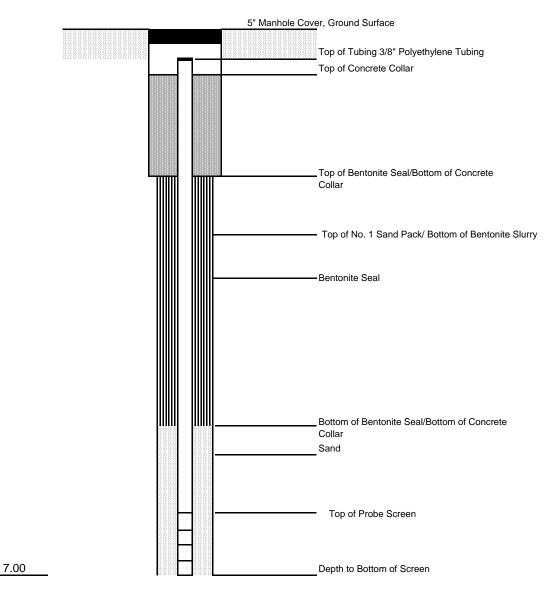
SOIL BORING LOG/WELL CONSTRUCTION FORM BORING/WELL NO. DB-3/MW-3-160 Project Name & Location Project Number Date Started **Date Completed** REMEDIAL INVESTIGATION/MORRIS PARK YARD 7624-01 4/17/96 4/18/96 Drilling Company **Drilling Equipment** Sampler(s) Hammer SOIL TESTING INC Diedrich D-120 EPM JH/SH 135 Hammer, 300# 30° Geologist/Engineer Sampling Device Depth to Water Completion Depth Location STV CV/PK SPLIT SPOON 160 Next to MW-3-80 Depth SAMPLES (Pl. Belov Recovery Const Chemical SOIL LOG Grade) (inches) tency TISE WELL CONSTRUCTION GRAPHICS Visual Description (PPM) Code Ground Surface Brown and black stained fine to coarse 5 53.7 dry SAND, sm. fine to coarse gravel, tr. silt, petroleum odor Concrete 10 SAME 23.8 din coller 15 20 dry 341.0 SAME 4" I.D. outer casing SAME 207.0 dry 222 0 194.0 SAME 194.0 άv Brown fine to coarse SAND, tr. F-gravel 41° ₩ 290.0 moist 50 1 16 30-31 103.0 8010 wet Brown/grey and black stained fine SAND **Portland** 42-63 and SILT, tr. fine gravel/cobbles, Bentonite etroleum product Grout 60 2 15 56-66 262.0 8010 Orange-brown fine to coarse SAND, sm. 82-74 8270 silt, lit. fine gravel, petroleum odor 8021 + MTBE 70 3 19 16-24 44.0 8010 SAME 28-32 dense 80 4 22 44-45 wet 44.0 8010 Brown fine SAND am. SILT, tr. medium 53-51 sand, petroleum odor v-dense 5 19 28-37 90 125.0 wet 8010 Red/brown fine SAND and StLT, traces 90 of medium sand , traces of fine gravel, 54-52 v-dens slight petroleum ador 2" I.D. 100 6 15 18-19 2.2 8010 Brown fine to medium SAND, sm. silt, wet 25-32 traces of coarse sand traces of fine aravel . 107 110 7 19 29-27 1.6 8010 Brown fine to medium SAND and SNT Bentonite 117 120 8 20 38-36 wet 1.1 8010 Brown fine SAND and SILT 120 37-41 130 9 18 26-29 0.0 8010 SAME #2 Silica 31-37 dans Sand 140 10 21 33-32 wet 1.5 N/A SAME 35-44 /-dens 2" I.D. 150 11 16 31-38 0.0 N/A wet Black/brown fine SAND and SiLT, grey/ screen 43-42 v-dense brown SAND and SILT, traces of fine gravel Layer of cobbles (158') 160 12 14-18 24 wet 0.0 8010 Grey silty CLAY 18-19 densa Black/grey sitty CLAY, lit. fine sand E.O.B. = 162 170 WELL CONSTRUCTION DETAILS: WELL CASING LENGTH: 90"(outer); 120'(inner) WELL SCREEN TYPE: Schedule 40 PVC WELL CASING DIAMETER: 4"(outer); 2"(inner) SLOT SIZE: 0.020 inches Schedule 40 PVC DRILLING MUD TYPE: Wyoming Bentonite WELL SCREEN LENGTH: GROUT TYPE: Portland-Bentonite WELL SCREEN DIAMETER: 2 inches BENTONITE SEAL: 10 feet

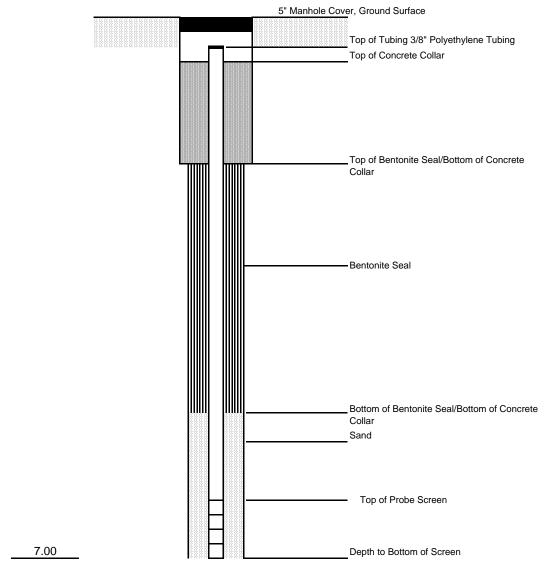

Project Name & Location Project Number						Yumber	Date Started	Dai	Date Completed		
		TIGATION/N	ORRIS I				4/19/96		2/96		
Drilling Co SOIL TEST		<u>.</u>			lling Equip Idrich D-12		Sampler(s) Hammer EPM JH/SH 135 Hammer		Drop 30°		
Geologist/t		<u> </u>			npling De	· · · · · · · · · · · · · · · · · · ·	Depth to Water Completion Dep	xth .			
STV CV/PI	<u> </u>			SPI	LIT SPOO	N	41 ft. 168 ft		Location 5' west of end of Track 1 (near over walkway)		
Depth (Ft. Below	No.	Recovery	SA	MPLES Consis-	PiD	Chemical					
Grade)	140.	(inches)	per 6 in.	tency	Reeding (PPM)	Parameters	SOIL LOG Visual Description	USC Code	WELL CONSTRU	CTION GRAPHICS	
		 -		· 	 		Ground Surface Brown and stained black, fine to coarse				
_ 5 _					2.1		SAND, lit. fine to coerse gravel, tr. silt,			concrete	
_ 10 _					2.2		Slight petroleum odor. SAME			coller	
15					2.3		Dark brown coarse to fine SAND, little				
							coarse to fine gravel, slight petroleum			4"LD custor	
- 20 -					3.3 1.2		SAME, fit. cobbles SAME			ceeing	
- 4											
_ 30					3.5		SAME, but no petroleum odor	İ			
- 7					2.5			i			
		ĺ					SAME	l			
- 40	}				2.6		SAME	1	4 ₩		
	-				- 1						
50								i			
. 1	- 1	I					1	i		Portland Bantonite	
	- 1	1						1	.	Grout	
- 60 —	1	16	39-55 57-63	wet v-dense	105		Grey fine to coarse SAND, sm. sit, lit. fine gravet. Strong petroleum odor,				
			٠, ٠٠		}		petroleum product present.	1			
70	2	15	22-26	wet	59	8010	Brown fine to medium SAND, sm. silt, tr.				
- 7			31-42	v-dense			coarse sand, tr. fine gravel, slight	ļ		11 1	
							petroleum odor	į į			
. 80 _	3	6	43-55 61-48	wet v-dense	86	8010	Brown fine SAND, lit. fine gravel, sm. sitt	ĺ			
			ا ۵۰۰۰۰	1-00.00	j		U. COM SO SETIO	1		11	
90	4	6	86-64	wet	2.2	8010	Brown fine to coarse SAND and fine	1			
	1		52-43	v-dense			GRAVEL		411	180	
	1		İ					1			
.100	5	16	21-18	wet dense	0	8010	Black/brown fine SAND sm. silt	1		2" I.D. inner	
. 4	-							Í		casing	
110	6	18	21-18	wet	0	8010	Brown fine SAND and SiLT				
				dense	1	33.0	STATE OF STA				
\dashv		1			- 1	i					
120	7	20	45-51	wet	0	8010	Brown fine SAND, traces of medium	1		119	
			61-87	/-dense			sand, silt, traces of fine gravel				
• 🚽										124'	
130	8	12	25-39 40-41	wet	0	8010	Brown fine SAND, traces of medium sand, sit, traces of fine gravel, traces			— 126°	
		İ					of cobbles		l i i i i		
140	9	11	29-45	wet	0	8010	Brown fine SAND, traces of medium			#2 Silica	
			57-77		1		sand, silt, traces of fine gravel			/ Sand	
-	ł	İ	İ					İ		j	
150	10	18	42-53	wet	0	8010	SAME			ĺ	
- 1		ł	69-72	-dense	İ						
								1		Screen	
160	11	8	43-60 85-83	wet -dense	0	8010	Brown fine SAND and SILT, tr. clay				
. 4		1							,		
170	12		15-19	wet	0	8010	BLACK/grey fine SAND and silty CLAY			168°	
				-dense			E.O.B. = 172'	l		168°	
ELL CONS ELL CASIN		ON DETAILS STH:		.ter); 130'((inner)		WELL SCREEN TYPE:	Cohedula do mira			
ELL CASIN	IG DIAMI		4"(ou	ter, 2"(inne	er)		SLOT SIZE:	Schedule 40 PVC 0.020 inches			
ASING TYP ELL SCRE		STH:	Scher	dule 40 PV	ru			Wyoming Bentonite Portland Bentonite			
		ETER:	2" I.D				BENTONITE SEAL:		•	1	

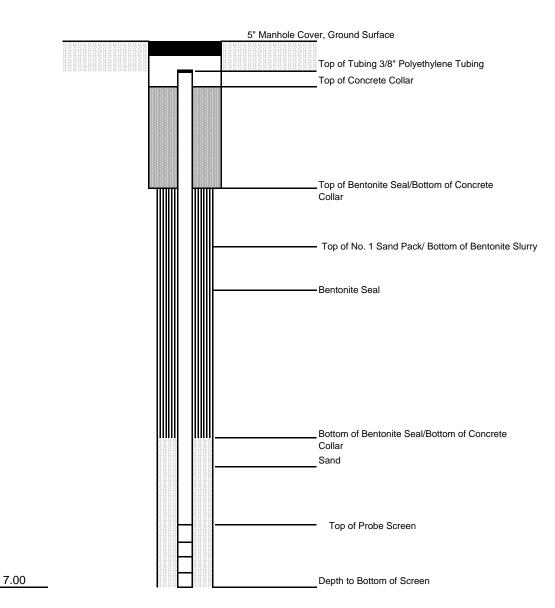
(")

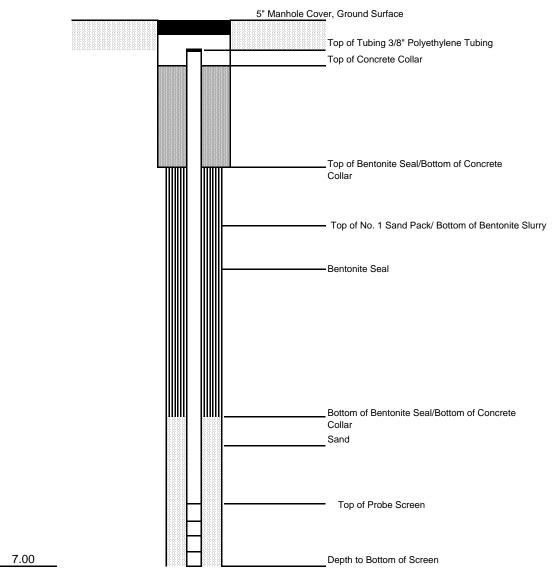

Soil Vapor Probe Logs

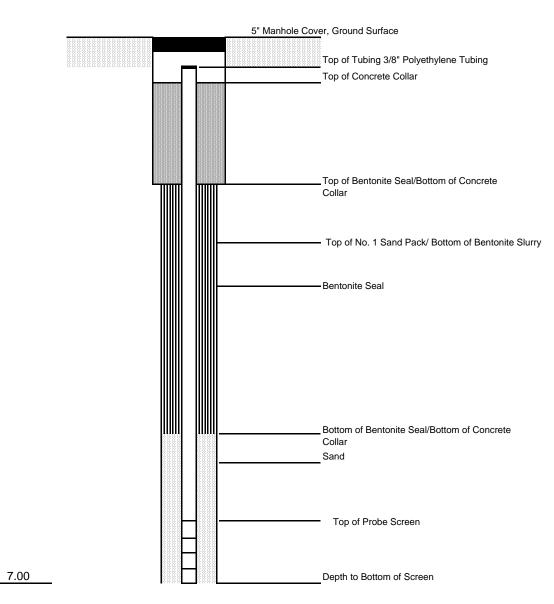

JOB NAME:	Remedial Investigation	WELL NUMBER:	SG-1
ADDRESS:	Morris Park Yard Facility	INSTALLATION METHOD: Air Knife	
INSTALLATION DATE:	11/1/06	DRILLER: ADT	
HEIGHT OF STICK-UP:	Flush Mount	TOTAL DEPTH: 7.00 feet	i e

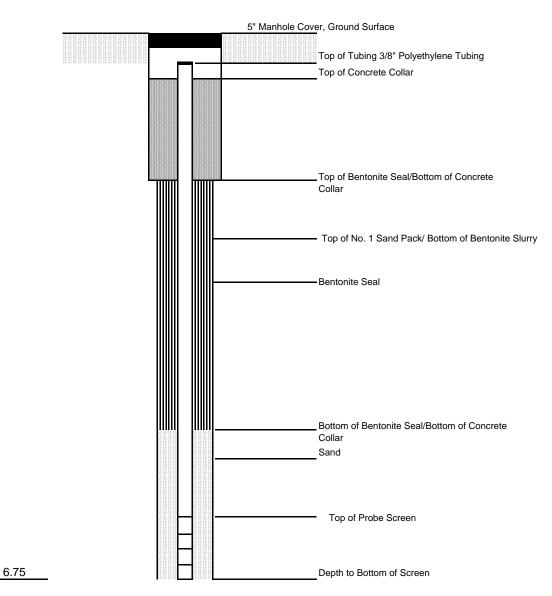

JOB NAME:	Remedial Investigation	WELL NUMBER:	SG-2
ADDRESS:	Morris Park Yard Facility	INSTALLATION METHOD: Air Knife	
INSTALLATION DATE:	11/2/06	DRILLER: ADT	
HEIGHT OF STICK-UP:	Flush Mount	TOTAL DEPTH: 7.00 feet	

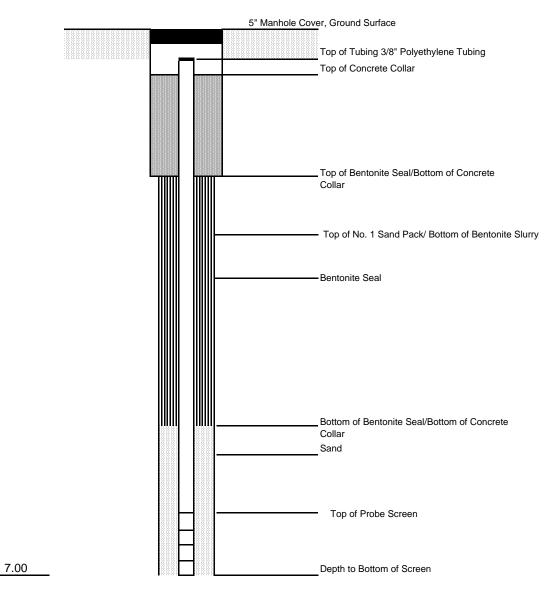

JOB NAME:	Remedial Investigation	WELL NUMBER:	SG-3
ADDRESS:	Morris Park Yard Facility	INSTALLATION METHOD: Air Knife	
INSTALLATION DATE:	11/2/06	DRILLER: ADT	
HEIGHT OF STICK-UP:	Flush Mount	TOTAL DEPTH: 7.00 feet	

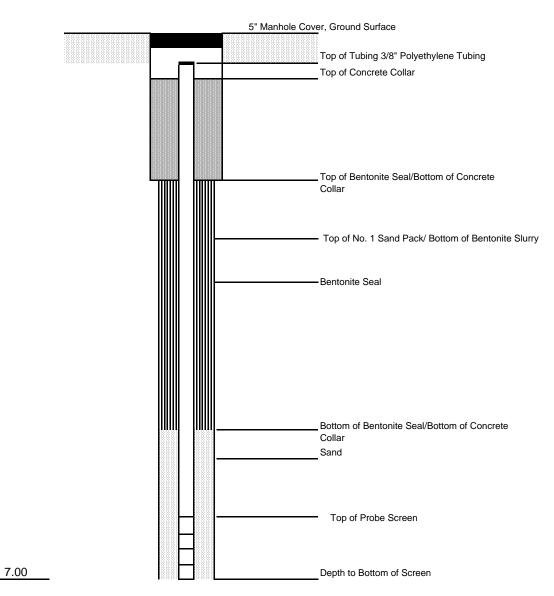

JOB NAME:	Remedial Investigation	WELL NUMBER:	SG-4
ADDRESS:	Morris Park Yard Facility	INSTALLATION METHOD: Air Knife	
INSTALLATION DATE:	11/1/06	DRILLER: ADT	
HEIGHT OF STICK-UP:	Flush Mount	TOTAL DEPTH: 7.00 feet	

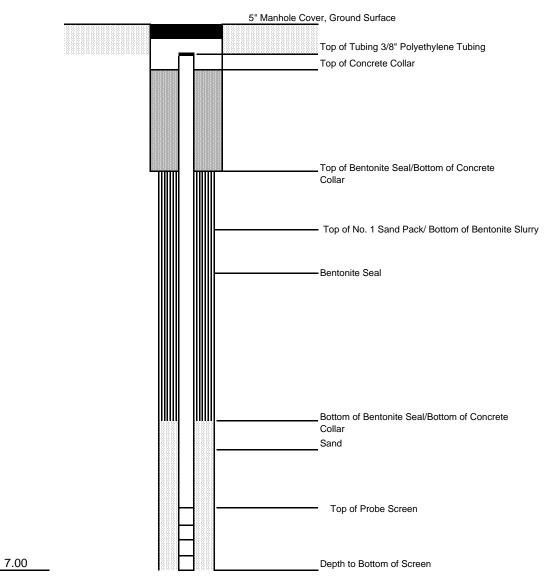

JOB NAME:	Remedial Investigation	WELL NUMBER:	SG-5
ADDRESS:	Morris Park Yard Facility	INSTALLATION METHOD: Air Knife	
INSTALLATION DATE:	10/30/06	DRILLER: ADT	
HEIGHT OF STICK-UP:	Flush Mount	TOTAL DEPTH: 7.00 fee	t

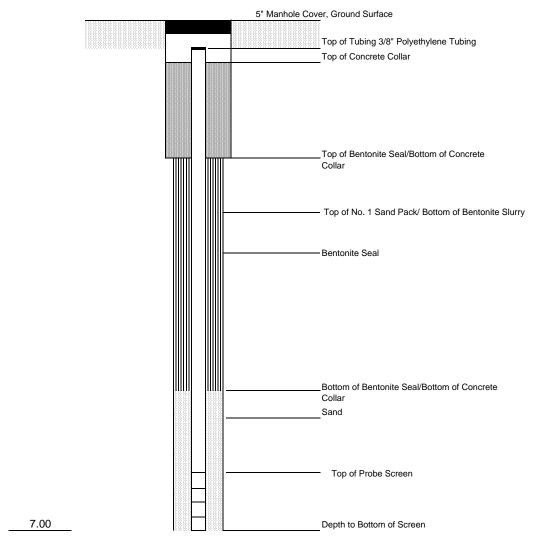

JOB NAME:	Remedial Investigation	WELL NUMBER:	SG-6
ADDRESS:	Morris Park Yard Facility	INSTALLATION METHOD: Air Knife	9
INSTALLATION DATE:	11/1/06	DRILLER: ADT	
HEIGHT OF STICK-UP:	Flush Mount	TOTAL DEPTH: 7.00 fee	t

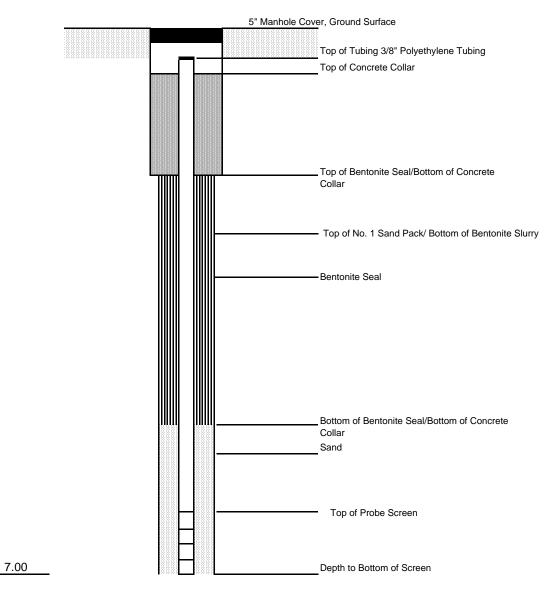

JOB NAME:	Remedial Investigation	WELL NUMBER:	SG-7
ADDRESS:	Morris Park Yard Facility	INSTALLATION METHOD: Air Knife	9
INSTALLATION DATE:	10/30/06	DRILLER: ADT	
HEIGHT OF STICK-UP:	Flush Mount	TOTAL DEPTH: 7.00 fee	et .

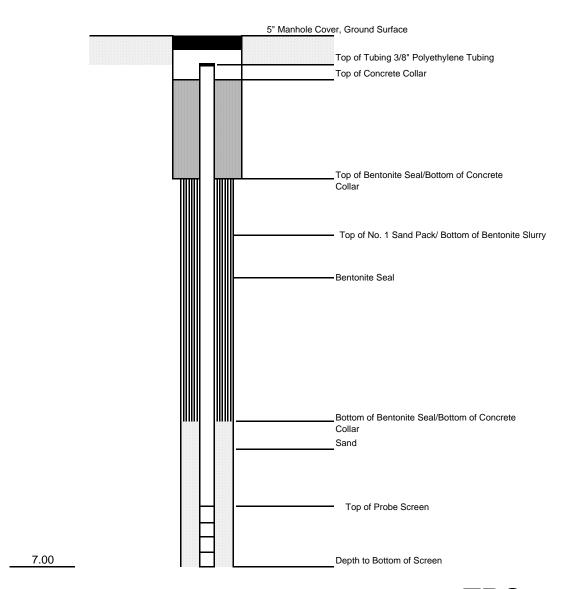

JOB NAME:	Remedial Investigation	WELL NUMBER:	SG-8
ADDRESS:	Morris Park Yard Facility	INSTALLATION METHOD: Air Knife	
INSTALLATION DATE:	10/30/06	DRILLER: ADT	
HEIGHT OF STICK-UP:	Flush Mount	TOTAL DEPTH: 7.00 feet	

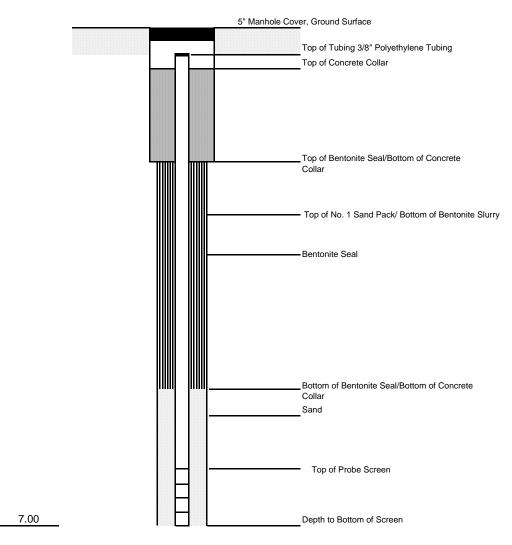

JOB NAME:	Remedial Investigation	WELL NUMBER:	SG-9
ADDRESS:	Morris Park Yard Facility	INSTALLATION METHOD: Air Knife	
INSTALLATION DATE:	10/30/06	DRILLER: ADT	
HEIGHT OF STICK-UP:	Flush Mount	TOTAL DEPTH: 6.75 feet	

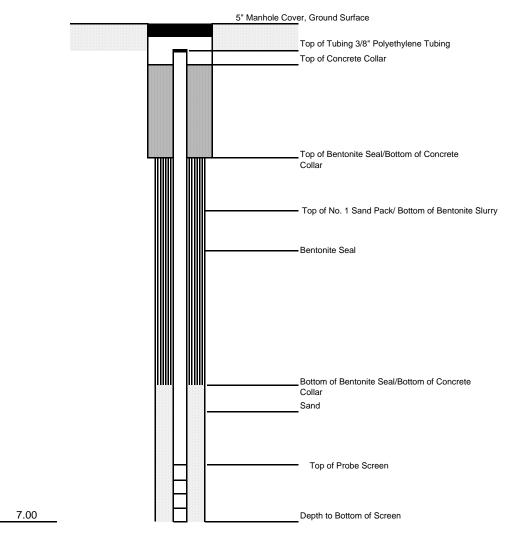

JOB NAME:	Remedial Investigation	WELL NUMBER:	SG-10
ADDRESS:	Morris Park Yard Facility	INSTALLATION METHOD: Air Knife	
INSTALLATION DATE:	10/31/06	DRILLER: ADT	
HEIGHT OF STICK-LIP	Flush Mount	TOTAL DEPTH: 7 00 feet	

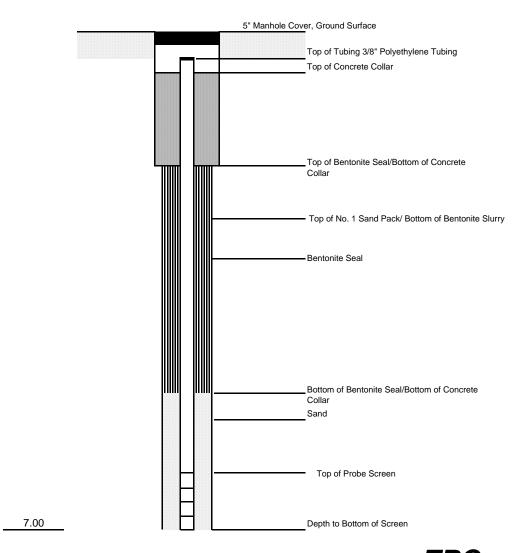

JOB NAME:	Remedial Investigation	WELL NUMBER:	SG-11
ADDRESS:	Morris Park Yard Facility	INSTALLATION METHOD: Air Knife	
INSTALLATION DATE:	10/31/06	DRILLER: ADT	
HEIGHT OF STICK-LIP:	Flush Mount	TOTAL DEPTH: 7 00 feet	

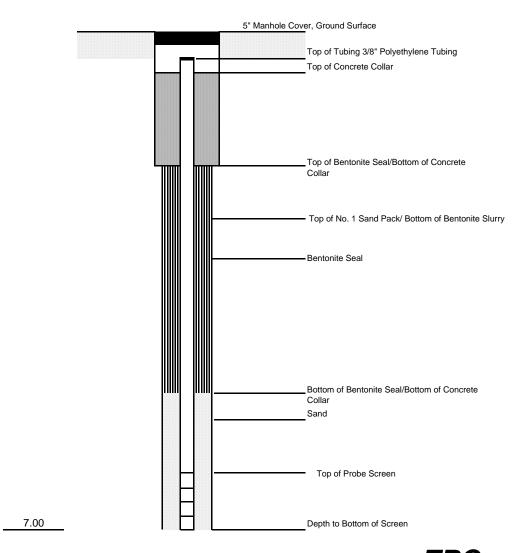

JOB NAME:	Remedial Investigation	WELL NUMBER:	SG-12
	_		
ADDRESS:	Morris Park Yard Facility	INSTALLATION METHOD: Air Knife	
INSTALLATION DATE:	10/31/06	DRILLER: ADT	
HEIGHT OF STICK-UP:	Flush Mount	TOTAL DEPTH: 7.00 feet	

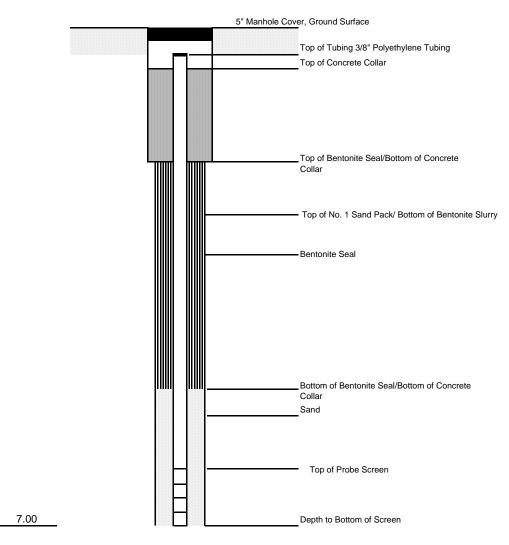

JOB NAME: Remedial Investigation	WELL NUMBER: SG-13	
ADDRESS: Morris Park Yard Facility	INSTALLATION METHOD: Air Knife	
INSTALLATION DATE: 11/1/06	DRILLER: ADT	
HEIGHT OF STICK-UP: Flush Mount	TOTAL DEPTH: 7.00 feet	

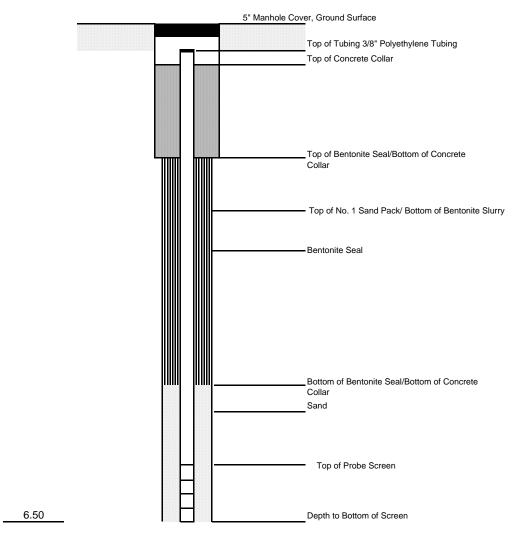

JOB NAME:	Remedial Investigation	WELL NUMBER:	SG-14
ADDRESS:	Morris Park Yard Facility	INSTALLATION METHOD: Air Knife	
INSTALLATION DATE:	11/1/06	DRILLER: ADT	
HEIGHT OF STICK-LIP:	Flush Mount	TOTAL DEPTH: 7.00 feet	

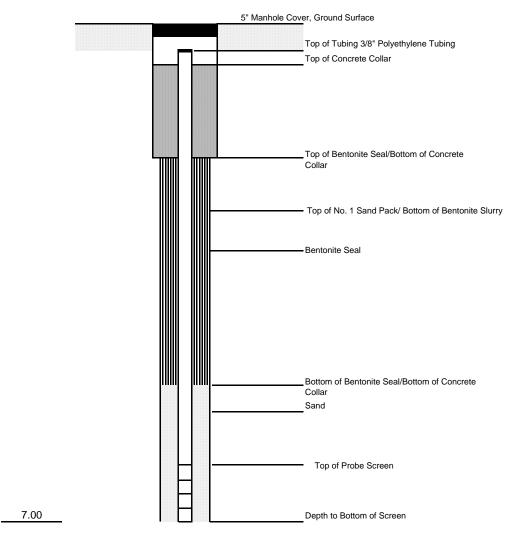

JOB NAME: Remedial Investigation	WELL NUMBER: SG-15
ADDRESS: Morris Park Yard Facility	INSTALLATION METHOD: Air Knife
INSTALLATION DATE: 9/17/08	DRILLER: ADT
HEIGHT OF STICK-UP: Flush Mount	TOTAL DEPTH: 7.00 feet

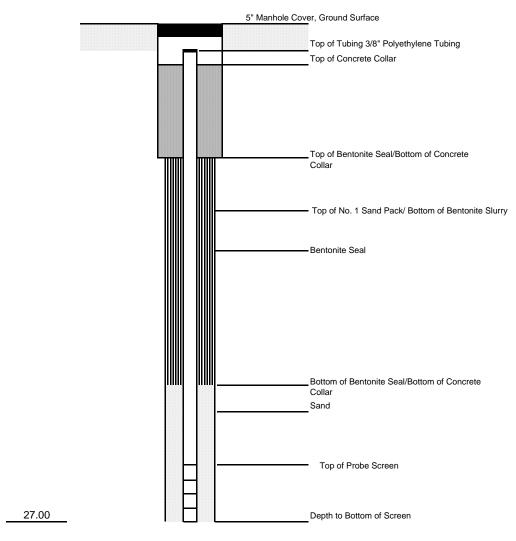

JOB NAME: Remedial Investigation	WELL NUMBER: SG-16	
ADDRESS: Morris Park Yard Facility	INSTALLATION METHOD: Air Knife	
INSTALLATION DATE: 9/18/08	DRILLER: ADT	
HEIGHT OF STICK-UP: Flush Mount	TOTAL DEPTH: 7.00 feet	

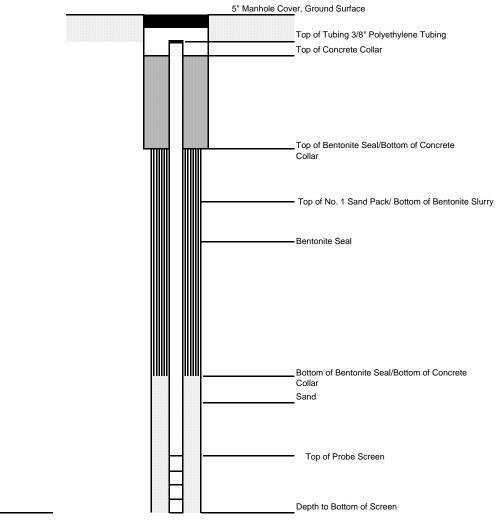

JOB NAME:	Remedial Investigation	WELL NUMBER:	SG-17
ADDRESS:	Morris Park Yard Facility	INSTALLATION METHOD: Air Knif	fe
INSTALLATION DATE:	9/19/08	DRILLER: ADT	
HEIGHT OF STICK-UP:	Flush Mount	TOTAL DEPTH: 7.00 fe	et

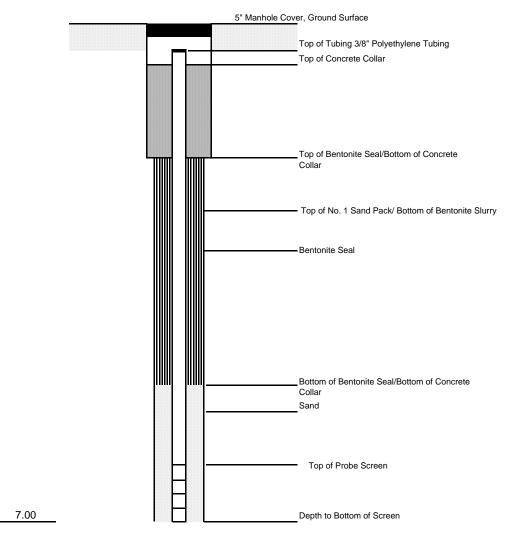

JOB NAME: Remedial Investigation	WELL NUMBER: SG-18	
ADDRESS: Morris Park Yard Facility	INSTALLATION METHOD: Air Knife	
INSTALLATION DATE: 9/16/08	DRILLER: ADT	
HEIGHT OF STICK-UP: Flush Mount	TOTAL DEPTH: 7.00 feet	


JOB NAME: Remedial	Investigation	WELL NUMBER:	SG-19
ADDRESS: Morris Pa	rk Yard Facility INS	TALLATION METHOD: Air Knife	
INSTALLATION DATE: 9/16/08		DRILLER: ADT	
HEIGHT OF STICK-UP: Flush Mou	unt	TOTAL DEPTH: 7.00 feet	


JOB NAME:	Remedial Investigation	WELL NUMBER:	SG-20
ADDRESS:	Morris Park Yard Facility	INSTALLATION METHOD: Air Knife	
INSTALLATION DATE:	9/17/08	DRILLER: ADT	
HEIGHT OF STICK-UP:	Flush Mount	TOTAL DEPTH: 7.00 feet	


JOB NAME: Remedial Inves	stigation	WELL NUMBER:	SG-21
ADDRESS: Morris Park Yar	rd Facility INSTA	LLATION METHOD: Air Knife	
INSTALLATION DATE: 9/22/08		DRILLER: ADT	
HEIGHT OF STICK-UP: Flush Mount		TOTAL DEPTH: 6.5 feet	


JOB NAME: Remedial Investigation	WELL NUMBER: SG-22	
ADDRESS: Morris Park Yard Facility	INSTALLATION METHOD: Air Knife	
NSTALLATION DATE: 923/2008	DRILLER: ADT	
IEIGHT OF STICK-UP: Flush Mount	TOTAL DEPTH: 7.00 feet	


JOB NAME: Remedial Investigation	WELL NUMBER: SG-23	
ADDRESS: Morris Park Yard Facility	INSTALLATION METHOD: Air Knife	
NSTALLATION DATE: 9/22/08	DRILLER: ADT	
IEIGHT OF STICK-UP: Flush Mount	TOTAL DEPTH: 27.00 feet	

JOB NAME: Remedial Investigation	WELL NUMBER: SG-24	ļ
ADDRESS: Morris Park Yard Facility	INSTALLATION METHOD: Air Knife	
INSTALLATION DATE: 9/16 and 9/22/08	DRILLER: ADT	
HEIGHT OF STICK-UP: Flush Mount	TOTAL DEPTH: 27 feet	

JOB NAME: Remedial Investigation	WELL NUMBER: SG-25	
ADDRESS: Morris Park Yard Facility	INSTALLATION METHOD: Air Knife	
INSTALLATION DATE: 9/17/08	DRILLER: ADT	
HEIGHT OF STICK-UP: Flush Mount	TOTAL DEPTH: 7.00 feet	

Groundwater Sampling Logs

Sheet c	of
---------	----

Well Total (1) Depth to Depth to Depth to Depth to Depth Water Product PID Site Name: LIRR-Morris Park Yard Facility PERMIT NUMBER (fit) TOC (ft) TOC (ft) (ppm) Site Location: Richmond Hill, NY	WELL NUMBER		WEL	L INFORMA	TION		Date: 17-13-76
the first too to too to too to too to too to too to t		Diameter	Depth	Water	Product	PID	TRC Personnel: Greg Soska, Joseph Schwarz Site Name: LIRR- Morris Park Yard Facility
		<u>ال</u>	(a)	39,41	100 (11)		TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

			G INFORM	ATION			Т	RC RAVIV METER N	UMBERS
Pump	Tubina	Pump (2)	Purge	Purge	Flow		pH:	Cond:	DO:
Туре		Depth (ft)	Start	Stop	Rate	_	Eh:	Turbidity:	NJDEP Cert. No. 07734
7 / /	Type	Debtii (it)	Time	Time			Rental Meter Name: Horib	a U-22	
mutos	WE	50	***	\$ & &	300	1	Rental Meter Serial No.:	10185	
		(2) Below	TOC						

·····	* 14 * *	PURC	SING PARA	METERS (be taken a	proximate	ly every 5	minutes)
	Criteria: Flow Rate	<0.3 ft Depth to	± 3%	<u>+ 0.1 su</u>		± 10%	± 10 mv	<u>+</u> 10% ⁽³⁾		-
Time	(ml/m)	Water (ft)		pH (su)	Cond (mS/cm)	D.O. (ppm)	ORP (mv)	Turbidity (NTU)	Initials	Water Conditions/Comment
1240	300	39,41		Ce.69	0.609	7.31	145	*	Sws	# turb. error
1246	350	গ্র,ধ।	17.73	6.71	0.605	7,50	83	*	4W5	+ turb. error
*										Generator failed
1440	300		15,58		0.616		liec	₩	E WA	atrapenor
1445	300				D.614			米	500E	\$ turb. error
450	300		17,18		0 ,688		68	₩	9092	u
455		39.41	17,92		0,515		55	₩	402 E	u .
500	30 O				0,575		55		<u>4002</u>	И
505	<i>3</i> 00	39,41	18,01	6.42	0,574	7,65	54	∂t	EVG.	h good!
										, ,
										·
										·
								•		
mments:	** PI	Devm	Ac.	** rao 世1 1	/2.45 -/2 4	19)	(np. +1 9	/1442		
alytical Pa	rameters:	- ~v1()	1	7	10	ייא קייי	"	CITTO,		Sample Start Time: 1505
L VOCs ar	d TCL SVO	Dš							13	Sample Finish Time: 1509
ather Con	ditions: p	50°F,	Raina	Mo.	+				R	
For values	greater than	1	LACINA	1 4 45	1					Revised 0

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

						• .	Sheet of
WELL NUMBER		WEL	L INFORMA	TION		Date: 17 12 116	
	Diameter	Total (1) Depth	Depth to Water			TRC Personnel: Greg Soska, Joseph Schwarz Site Name: LIRR- Morris Park Yard Facility	
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY	
· · ·	(1) けっこ	14/0	39.08		æ	TRC Job Number:46130-0010-00004	

Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling.
 TOC = top of casing

Ī										
-				G INFORMA	ATION			TR	CRAVIV METE	R NUMBERS
	Pump	Tubina	Pump (2)	Purge	Purge	Flow	Total		Cond:	DO:
- 1	•	Tubing	Intake	Start	Stop	Rate	Purge		urbidity:	
ļ	Туре	Туре	Depth (ft)	Time	Time	(ml/m)	Vol. (gal)	Rental Meter Name: Horiba i	1-22	NJDEP Cert. No. 07734
- 1	ornfor	LDCE	120	1235		300		Rental Meter Serial No.:		
L						750				. #
			(2) Below 7	-OC						

Ī			Dillo	SING DADA	WETCHO						
ľ		Criteria:	<0.3 ft	+ 3%	+ 0.1 su	measurem ± 3%	ents are to	be taken a	pproximate	ely every	5 minutes)
	· · · · · · · · · · · · · · · · · · ·	Flow Rate	Depth to	Temp	pH	Cond	± 10%	+ 10 mv	± 10% ⁽³⁾ Turbidity		
ļ	Time	(ml/m)	Water (ft)		(su)	(mS/cm)	(ppm)	(mv)	(NTU)	Initial	Water Conditions/Comments
	1240	250	39.20	15.2	7.29	0.90	0.0	196	**	05	
	1245	250	39 20	19:2	30	3461	0,0	1017	* 4	65	Gray-Very Turber
	~			Gen	ers Area	Ma	11400	1		-	Suspended Solids
				- 1	Altrew	1 600		: :			
	1445	250	39.20	15.9	7.45	0.950	0.65	200	*	65	C = 11
L	1450	250	39.20	159	7.45	0.943		190	798	<u>\$5</u>	Gray Turbid
	1455	256	39.20	16.0	7.44				282	ری ی ک	11 1/
	1500	250	3220	16.1		0.946	0.00	168	West same	<u>ره</u>	LIGHT GROY
	1505	250	39.20	16.2	7.44	0.945		166	259	G5	()
L	1510	250	39.20	16.2	7.45	0.946	000	160	255	65	11
L								,,,,,	447	6,7	7
L											
L											
L											
										· · · · · · · · · · · · · · · · · · ·	
											
											
Co	nments: چ	k Pod v i k Meti	wolfun	ction	pué 7	o Moi	i Tu zë		True (2.)		
Ana	lytical Par	ameters:		corc py	ue to	14161	e cou	is r	oub)	000	
TCL	. VOCs and	TCL SVOC	;								Sample Start Time: 1510
Ve	ther Cond	itions:	RATIO	1	5000	→	0000	top @	Hinn		Sample Finish Time:
3) i	or values o	reater than 1	l		-		(nun)	100	1700		

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

Revised 01/05

TRC Raviv Job No.

Company\technical\tTRC Forms and Templates\tow flow fleld form.xls\tow Flow - Field Form

Sheet <u>*</u> of <u>*</u>

WELL NUMBER			L INFORMA	TION		Date: /2/1/06
MW-02D-60	Well Diameter (inches)	Total (1) Depth (ft)	Depth to Water TOC (ft)	Depth to Product TOC (ft)	PID	TRC Personnel: Greg Soska, Joseph Schwarz Site Name: LIRR- Morris Park Yard Facility
	4	60	37.40	100 (12)	104	Site Location: Richmond Hill, NY TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

	· · · · · · · · · · · · · · · · · · ·		G INFORM	ATION	TRC RAVIV METER NUMBERS				
D	**	Pump (2)	Purge	Purge	Flow		pH:	Cond:	DO:
Pump	Tubing	Intake	Start	Stop	Rate	Purge	Eh:	Turbidity:	NJDEP Cert. No. 07734
Туре	Туре	Depth (ft)	Time	Time	(ml/m)	Vol. (gai)	Rental Meter Name: Hor	riba U-22	
Gruatus	LOPE	50'	1026		350		Rental Meter Serial No.:	10185	
		(2) Below	OC						

		PURG	ING PARA	METERS (measurem	ents are to	be taken a	nnrovimate	ly overy 5	minutes)
	Criteria:	<0.3 ft	± 3%	± 0.1 su	± 3%	± 10%	± 10 mv	+ 10% ⁽³⁾	y GVELY 3	· · · · · · · · · · · · · · · · · · ·
Time	Flow Rate (ml/m)	Depth to Water (ft)	Temp (°C)	pH (out)	Cond	D.O.	ORP	Turbidity		Water Conditions/Comments
	 		******	(su)	(mS/cm)	(ppm)	(mv)	(NTU)	Initials	
1030	300		17.93	6.21	0.546		/73	0.0	100	Clear
1035	300		-		0.543			0.04	4WS	* Turb error Cleu
1040	300	37.40	19.04	6.23	0.530	6.63	169	0.0*	Jus	Tub-error clear
045	300	37,40	19.11	6.28	0.529	6.37	164	0.0*	JWS	*Turb. coror - good
									Ano	
					-					
			-							
							Ī			
										
mments:										
	*P(1) Ba	ckano	nd = 1.	۵						
alytical P	arameters:		(- FPn						Sample Start Time: / \ 47
L VOCs at	nd TCL SVO	Zś		-						Sample Finish Time: 10 47
ather Cor		0°F.	<u>^1 \</u>							WISE WISE
	s greater than		Cloud	<u>Y</u>						Revised 01

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

TRC Raviv Job No.

Company\Technical\TRC Forms and Templates\low flow field form\Low Flow - Field Form

Sheet o	f
---------	---

WELL NUMBER		WEL	L INFORMA	ATION		Date: 11-14-86
MW-02-50R PERMIT NUMBER	Well Diameter (inches)	Total (1) Depth (ft)	Depth to Water TOC (ft)	Depth to Product TOC (ft)	PID	TRC Personnel: Greg Soska, Joseph Schwarz Site Name: LIRR- Morris Park Yard Facility Site Location: Richmond Hill, NY
	14	50			Mar. C.	TRC Job Number:46139-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing 39,40

	PURGING INFORMATION							TRC RAVIV METER NUMBERS			
Pump Type	Tubing Type	Pump (2) Intake Depth (ft)	Purge Start Time	Purge Stop Time	Flow Rate (ml/m)	Purge	pH: Eh: Rental Meter Name: Horiba	Cond: Turbidity:	DO: NJDEP Cert. No. 07734		
Snufoz	WPE	45 (2) Below	1520		350		Rental Meter Serial No.:	10185			

		fil inc	NO DAD							
	Criteria:	<0.3 ft	± 3%	+ 0.1 su	measurem + 3%	ents are to + 10%	be taken a + 10 my	pproximate + 10% ⁽³⁾	ely every 5	minutes)
Time	Flow Rate (mi/m)	Depth to Water (ft)	Temp	pH (su)	Cond (mS/cm)	D.O. (ppm)	ORP (mv)	Turbidity (NTU)	Initials	Water Conditions/Comments
1520	350	39.40	15.80	6-25	0,379	0.96	-95	123	<i>ws</i>	tropid
1525		<u> </u>	16,77	6.30	0,390	0.0	-111	132	ins	brown, turbid
1530	350	39.40	18.66	6.46	0.396	0.0	-133	129	4m2	brown, turbid
1535	350	39.40			0.394	0,0	-136	105	SUL	brown, turbiz
1540	350	39,40	18.82	6.49	0.394		-137	99.5	JUS	good! brown, turbid
									 -	·
						·				
	-					:				
										·
	1.1.6									
	** PID	Malton	ction							. 4
Analytical Pa										Sample Start Time: 1540
CL VOCs ar Veather Con	d TCL SVOC									Sample Finish Time: 1543
3\ For values	(<u>loud</u>	<u>,, 50°</u>	<u>E</u>						

(3) For values greater than 1.

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

Sheet	of	

WELL NUMBER			L INFORMA			Date: 12-14-66
Mw 2060	Well	Total (1)	Depth to	Depth to		TRC Personnel: Greg Soska, Joseph Schwarz
MWaked	Diameter	Depth	Water	Product	PID	Site Name: LiRR- Morris Park Yard Facility
PERMIT NUMBER	(înches)	(ft) <u>.</u>	(ft) OOT	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY
	4	51.6	37.68			TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

		PURGIN	G INFORM	ATION			TRC RAVIV METER NUMBERS			
		Pump (2)	Purge	Purge	Flow	Total	pH: C	ond:	DO:	
Pump	Tubing	intake	Start	Stop	Rate	Purge	Eh: T	urbidity:	NJDEP Cert. No. 07734	
Type	Type	Depth (ft)	Time	Time	(ml/m)	Vol. (gal)	Rental Meter Name: Horiba U	-22		
Grundfes	LDPE	45	1510				Rental Meter Serial No.:	01533		
		(2) Below	TOC		,					

1 , 2, 2	were "				·····					
		PURG <0.3 ft	ING PARA ± 3%	METERS (1 ± 0.1 su			be taken a	pproximate ± 10% ⁽³⁾	ly every 5	minutes)
	Criteria:		Temp	<u>7</u> 0.150	± 3% Cond	± 10% D.O.	ORP	Turbidity		Water Conditions/Comments
Time	(ml/m)	Water (ft)	(°C)	(su)	(mS/cm)	(ppm)	(mv)	(NTU)	Initials	174407 00114110115000111110115
1515	250	38.9	17.3	3,43	0.195	4.17	120	71000	GS	TURBID
1520	250	39.3	17.4	8.45	8.195	3.91	117	8001	<mark>৬</mark> ۶	VERY TUPBID-BROWN
1525	250	39.5	18.0	8.45	0:196	3.51	109	71000	G	(1
1530	250	40.0	18.5	8.46	0.197	3.47	97)/683	65	11
1535	250	40.0	19.5	8.46	0.196	3.41	94	>400c	65	11
1540	250	40.3	18.6	8.46	0.197	3,39	92	71000		· 11
					·	•				
The Control										
With the same of t										
								*		
·										
						٦,, ٦				
Comments	46 1, v21 2				C 2 2 2	14.66.14.5		a Barro VIII	31 1 K 2	
TO, TO	* WELL w/ for law f arameters:	MDING	torna	IATER.	WEL	- PUR	(e) 8	gallen	S	
Analytical P	arameters:	SLOV	JUNEC	- Acema Harce	i stail	ic leve	/ befa	me sa	प्पृ/स्प	Sample Start Time: 1540
TCL VOCs a	nd TCL SVO			_					~	Sample Finish Time: 1543
Neather Co	nditions:	Fo6	100%	desc	Coster	•				
3) For value	s greater tha									Revised 01/05
فيراد فالمراف والمتافيين	tar nammata		12		en en en en en en en en en en en en en e					

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

Sheet	of
Olicel	U)

WELL NUMBER			L INFORMA	TION		Date: 12-14-06
MW02-160P	Well	Total (1)	1	1	1 1	TRC Personnel: Greg Soska, Joseph Schwarz
PERMIT NUMBER	(inches)		Water	Product		Site Name: LIRR- Morris Park Yard Facility
L LYMII MOMDEN	(mches)	(ft)	TOC (ft)	TOC (ft)		Site Location: Richmond Hill, NY
	l a l	130	33.02	1	₩	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

			G INFORM	ATION		TRC RAVIV METER NUMBERS				
Pump	Tubing	Pump (2)	Purge Start	Purge	Flow		pH:	Cond:	DO:	
Type	Type	Depth (ft)	Time	Stop Time	Rate (mi/m)	Purge	Eh:	Turbidity:	NJDEP Cert. No. 07734	
				1 11116	(1100110)		Rental Meter Name: Horib Rental Meter Serial No.:			
\	LDPE	110	12:00		1250		Ventral meter Seliai MD":	10/82		

		PURC	ING PARA	METEDS (MAGGIFAN		ha Antron -			
	Criteria:	<0.3 ft	± 3%	± 0.1 su	+ 3%	± 10%	± 10 my	pproximate ± 10% ⁽³⁾	y every	5 minutes)
Time	Flow Rate	Depth to	Temp	рН	Cond	D.O.	ORP	Turbidity		Water Conditions/Comments
	(ml/m)	Water (ft)	1	(su)	(mS/cm)	(ppm)	(mv)	(NTU)	initials	
205	250	38.64			0.106	1.49	45	举半	63	Clear
1210	300	39.65	16.49		0 120	030	44		GS	Clear
1215	300	38.65	16.42	8.02	0.350	0.0	-145		GS	Cleas
1220	300	38.65	10,56	7.38	0.483	0-0	-135			Clear
12\$5	300	38.65	18.65	7.35	0.492	0.0	-136		<u>GS</u>	Clear
1230	300	38.65	16.66	7,37	0.495	0.0	-137	1	G 5	Clear
**										
<u> </u>										
									,	
										`
								· · ·		
F 4.									**	-
	* PID N	MALFUNC	TON POSE	MACFI	² ለ(CT) አላ	J	<u></u> L.			
nalytical Pa	rameters:									Sample Start Time: 1232
CL VOCs ar	nd TCL SVO	Os	<u> </u>	1 (1986) A						Sample Finish Time:
eather Con	ditions:		. 👸							
F	grantay than									

(3) For values greater than 1.

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

Revised 01/05

Sheet ____ of ____

WELL NUMBER		WEL	L INFORMA	TION		Date: 11:30-06
MW-3D-60	Well	Total (1)	Depth to	Depth to		TRC Personnel: Greg Soska, Joseph Schwarz
			Water	Product	PID	Site Name: LIRR- Morris Park Yard Facility
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY
	4	60	33.85		<i>a</i> .5*	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

		· · · · · · · · · · · · · · · · · · ·	G INFORM	ATION		TRC RAVIV METER NUMBERS			
Pump Type	Tubing Type	Pump (2) Intake Depth (ft)	Purge Start Time	Purge Stop Time	Flow Rate (ml/m)	Purge	pH: Eh: Rental Meter N	Cond: Turbidity:	DO: NJDEP Cert. No. 07734
Gronfos	LDPE	50 (2) Below	1435	1500	360		Rental Meter Se	erial No.: 01,533	

		PURC	ING PARA	METERS /	maseuram	ents are to	ha takan a			
	Criteria:	<0.3 ft	± 3%	± 0.1 su	+ 3%	± 10%	± 10 mv	± 10% ⁽³⁾	ly every 5	minutes)
Time	Flow Rate (ml/m)	Depth to Water (ft)	Temp (°C)	pH (su)	Cond (mS/cm)	D.O. (ppm)	ORP (mv)	Turbidity (NTU)	Initials	Water Conditions/Comments
1435	300	33,88	16.8	6.25	2.19	1.15	173	0.0	4w5	Clear
1440	360	33.88		6.08	2.32	0.00	123	0.0	4w5	Clear
1445	300	33.88	18.7	6-08	2.33	0.00	104	0.0	JWS	Clean
1450	3₩	33.88	19.0	6.09	2.36	7.00	95	1.9	JWS	Clean
1455	300	33.81	90	6.09	2,35	D-00	92	3.4	ZW	900di.
									r	J :
		-								
						-	i		,	
					-					
								1		
Comments:	PID bo	ukarov	ind=1	امع ک	~					
Analytical Pa	rameters:	- J		44.						Sample Start Time: 1353
CL VOCs ar		-	***************************************							Sample Finish Time:
Veather Con	ditions:	60°F	Pari	Hy Clo	udy					Revised 01/05

(3) For values greater than 1.

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

Sheet	-£
Just	of

WELL NUMBER		WELI	. INFORMA	TION		Date: 12-7-06
MW-30-60	Well Diameter	Depth	Depth to Water	Depth to Product	PID	TRC Personnel: Greg Soska, Joseph Schwarz Site Name: LIRR- Morris Park Yard Facility
PERMIT NOWBER	(inches)	(ft)	тос (н) 3 6.95	TOC (ft)	• •	Site Location: Richmond Hill, NY TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

ļ			G INFORM	ATION	TRC RAVIV METER NUMBERS				
D.,	T. L	Pump (2)	Purge	Purge	Flow		pH:	Cond:	DO:
Pump	Tubing	Intake	Start	Stop	Rate	Purge	Eh:	Turbidity:	NJDEP Cert. No. 07734
Type	Туре	Depth (ft)	Time	Time	(ml/m)	Vol. (gal)	Rental Meter Name: Horiba	U-22	
Stuntos	LOPE	38.5	0919				Rental Meter Serial No.:	10185	
		(2) Below	TOC						

		PHP	ING DADA	METERS /			Pro della con			
	Criteria:	<0.3 ft	± 3%	+ 0.1 su	measurem + 3%	елтs are to + 10%	± 10 mv	pproximate + 10% ⁽³⁾	ely every :	minutes)
	Flow Rate	Depth to	Temp	pH	Cond	D.O.	ORP	Turbidity	-	Water Conditions/Comments
Time	(ml/m)	Water (ft)		(su)	(mS/cm)	(ppm)	(mv)	(NTU)	Initials	Trates Conditional Comments
0920	200		16.56		1.16	0.0	133	0.0	JUS	Clear,
0925	250		17.59	6.65	1,18	0.0	72	0.0	2WG	Clear,
0930	250	36,95		6.65	1,22	00	49	0.0	Jus	Clear
5935	<u>೩५०</u>	36 <i>.</i> 95	20,83	6.65	1.26	210	27	0,0	4WZ	Clear
5940	<i>ই</i> 50	36,95	21.11	6.66	1.29	Ď- O	23	٥٠٥	40/2	Clen
6945	250.	36,95		6166		000	23	000	4m3	good .
						-			-	
						,				
									····	
						•				
Comments:	ا العظم الأن				, , , 					
		Lotal	depth	- 39	/ [SI	hallow \				
Analytical Pa	rameters:						<u> </u>			Sample Start Time: 945
CL VOCs an		Cs								Sample Finish Time: 09 48
Weather Con	aitions: 5	inny C	lan.	E S	50°F					
3) For values	greater than	1 11								Revised 01/05

(3) For values greater than 1. Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

Sheet	of

WELL NUMBER		WEL	. INFORMA	TION		Date: 12-06-06			
MW3-168	Well	Total (1)	Depth to	Depth to		TRC Personnel: Greg Soska, Joseph Schwarz			
	Diameter	Depth	Water	Product		Site Name: LIRR- Morris Park Yard Facility			
PERMIT NUMBER	(inches)	(inches) (ft) TOC (ft)		TOC (ft)	(ppm)	Site Location: Richmond Hill, NY			
	9	168	38,6Z		0.0	TRC Job Number:46130-0010-00004			

(1) Use a previously determined total depth. Confirm the total depth of well <u>after sampling</u>. TOC = top of casing

			G INFORM	ATION		TRC RAVIV METER NUMBERS			
1 _		Pump (2)	Purge	Purge	Flow			ond:	DO:
Pump	Tubing	intake	Start	Stop	Rate	Purge	Eh: Tu	rbidity:	NJDEP Cert. No. 07734
Туре	Type	Depth (ft)	Time	Time	(ml/m)	Vol. (gal)	Rental Meter Name: Horiba U-2	22	
Grunfos	FDDE	140	1125	1205	350		Rental Meter Serial No.:	10185	
		(2) Below	TOC						

	· · · · · · · · · · · · · · · · · · ·	PURG	ING PARA	METERS (measureme	ents are to	be taken a	pproximate	elv everv	5 minutes)
	Criteria:	<0.3 ft	± 3%	<u>±</u> 0.1 su	± 3%	± 10%	<u>+</u> 10 mv	± 10% ⁽³⁾		
Time	Flow Rate (ml/m)	Depth to Water (ft)		pH (su)	Cond (mS/cm)	D.O. (ppm)	ORP (mv)	Turbidity (NTU)	Initials	Water Conditions/Comments
1130	Z00			7.38	0.245	4.39	135	110.0	65	Vlear
1132	200		15.37	7.26	0.253	4.27	132	115.0	G)	Clear
1140	200	38.70	15.75	7.26	0.262	3.12	121	135.0	65	Cher
1145	2.00		15.75	7.27	0-289	1.44	108	196.0	GS	Clear
1150	200	33.70	15.85	7.26	0.292	1.01	85	245	65	SLIGHTLY THARIN
1155	200		16.15	7.26	8.293		64	463	G5	SLIGHTLY TURBID THRBID THRBID
1200	200	38.70		7.26	0.295	0,00	63	469	كف	THRBID "
1205	200	38.70	16.55	7.27	0.297	0.00	60	472	Gs	Thes io
										
						-				
										·
										·
Comments:										
Analytical Pa	rameters:						,			Sample Start Time: 1207
TCL VOCs ar		Cs								Sample Finish Time: 1211
Weather Con	ditions:	lear					******			Revised 01/05
3) For values		7			***************************************					nevișea U1/05

(3) For values greater than 1.

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

Same Section

Sheet	of

WELL NUMBER		WEL	L INFORMA	ATION		Date: 177 ~ 06
Mw 4-60	Well	, , ,		Depth to		TRC Personnel: Greg Soska, Joseph Schwarz
7	Diameter	Depth	Water	Product	PID	Site Name: LIRR- Morris Park Yard Facility
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY
	4	56.3	36.25		30	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

			G INFORM	ATION		TRC RAVIV METER NUMBERS				
Pump	Tubing	Pump (2) Intake	Purge Start	Purge Stop	Flow Rate	Purge	pH: Eh:	Cond: Turbidity:	DO: NJDEP Cert. No. 07734	
Grafos	LOPE	Depth (ft) リイス	1008	Time	(ml/m) 400		Rental Meter Name: Horiba Rental Meter Serial No.:	10185	•	
		(2) Below	roc		1		<u> </u>			

	Criteria: Flow Rate	<0.3 ft Depth to	<u>+</u> 3% Temp	<u>±</u> 0.1 su pH	± 3% Cond	<u>+</u> 10% D.O.	± 10 mv	± 10% ⁽³⁾ Turbidity		minutes) Water Conditions/Comment
Time	(ml/m)	Water (ft)		(su)	(mS/cm)	(ppm)	(mv)	(NTU)	Initials	vider Conditions/Commen
200			15,89	6.52	271	. 89	-126	0.0	WS.	Clear
014	400	36.25	16.59	633	2161	0,0	-115	D, O	Suc	Clook
019		36,25	16.80	6.33	2.53	0.0	-116	4,9	JWS	Clear Clear
024	400	36,75	17.00	6.33	2,45	0,0	-116	21.2	JWS	Clear
029	400	36:25	17:13	6.34	2,45	0.0	-117	20.8	WS	dean - good :
										0

mments:										
alytical Pa	rameters:									Sample Start Time: 1020
_ VOCs an	d TCL SVO									Sample Start Time: 1030 Sample Finish Time: 1034
ather Con	ditions: 1	50°F ,	<i>C</i> ,	α	······································				<u></u>	(-3)

Sheet	of

·	WELL NUMBER		WEL	INFORMA	TION		Date: 12-14-06
	PMW-05	Well	• • •	Depth to	Depth to		TRC Personnel: Greg Soska, Joseph Schwarz
ŀ		Diameter	Depth	Water	Product	PID	Site Name: LIRR- Morris Park Yard Facility
L	PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY
		7	56.5	39.05		**	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well after sampling. TOC = top of casing

			····								
			G INFORM	ATION			TRC RAVIV METER NUMBERS				
	1	Pump (2)	Purge	Purge	Flow	Total	pH:	Cond:	DO: ·		
Pump	Tubing	Intake	Start	Stop	Rate	Purge	Eh:	Turbidity:	NJDEP Cert. No. 07734		
Type	Туре	Depth (ft)	Time	Time	(ml/m)	Voi. (gal)	Rental Meter Name: Horiba	U-22			
Emmos	LOPE	50	1358		250		Rental Meter Serial No.:	10185			
		(2) Below	TOC								

		PURC	ING PARA	METERS (measurem	ante am to	ha takan a			
	Criteria:	<0.3 ft	+ 3%	+ 0.1 su	+ 3%	+ 10%	+ 10 mv	+ 10% ⁽³⁾	ely every :	minutes)
	Flow Rate		Temp	pН	Cond	D.O.	ORP	Turbidity		Water Conditions/Comments
Time	(ml/m)	Water (ft)		(su)	(mS/cm)	(ppm)	(mv)	(NTU)	Initials	
1400	250	39,05	14,93	7.21	0576	8,93	-16	X	2006	Brown turbid
1405	250	39,05	16.29	6.68	0.548	%,4 3	7	429	4WZ	Brown, Arbid
1410	250	39,05	18.32	6.75	0.602	7.88	6	515	JWS	Brown, turbid
1415	250	39.05	19.05	6.75	0,602	8.32	4	488	4005	Brown tubid
1420	250	39.05	19.29	6.74	0.599	\$130	3	527	dus	Brown torbid
1425	250	39.05			0,610		3	255	JWS	Cood!
		·								0
										·
					`					
		-								
			i							
								 		
	Abor PIDI				<u></u>					
Analytical Pa	* Turb.	probe	errol			÷:				
-		·							1	Sample Start Time: 1425
Veather Con	d TCL SVO		~~0~							Sample Finish Time: 1428
3) For values		my,	50°F	_				-		

(3) For values greater than 1.

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

Revised 01/05

Sheet	of	

WELL NUMBER		WEL	LINFORMA	TION		Date: 17 - 66 - 0 6
MW 06-168	Well	Total (1)	Depth to	Depth to		TRC Personnel: Greg Soska, Joseph Schwarz
		Depth	Water	Product	PID	Site Name: LIRR- Morris Park Yard Facility
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY
	2	168	38.72		≯ ℃	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

			G INFORM	ATION		TRC RAVIV METER NUMBERS			
!		Pump (2)		Purge	Flow		pH:	Cond:	DO:
Pump	Tubing	Intake	Start	Stop	Rate	Purge	Eh:	Turbidity:	NJDEP Cert. No. 07734
Type	Type	Depth (ft)	Time	Time	(ml/m)	Vol. (gal)	Rental Meter Name: H	oriba U-22	
Grunfos	LDPE	140	9:25	1005	200		Rental Meter Serial No	10185	
		(2) Relow	TOC	·····					

		PURG				ents are to		pproximate	ly every 5	i minutes)
	Criteria:	<0.3 ft Depth to	± 3% Temp	<u>+</u> 0.1 su pH	± 3%	<u>+</u> 10% D.O.	± 10 mv ORP	± 10% ⁽³⁾ Turbidity		
Time	(ml/m)	Water (ft)	(°C)	(su)	(mS/cm)	(ppm)	(mv)	(NTU)	Initials	Water Conditions/Comments
930	200	38.25	14.27	7.13	0.443	4.15	187	21.4	GS	Clear
435	300	38.35	14.72	7.23	0.481	3.33	183	17.3	GS	Clear
940	300	38 35	15.04	7.29	0.560	1.87	162	82.5	GS	Clear
945	300	38.35	15.17	7.30	0.597	1.36	123	137	હ	Clear
950	300	38.35	15.43	7.31	0.6/8	0.83	81	143	GS	Clear
955	300	38.35	15.60	7.32	6,616		66	158	G5	Clear
1000	300	38.35	15.62	7.32	0617		67	161	65	Oleur
1605	300	3635	15.62		0.616		65	165	6)	Clear
									.*	
				·						
						.				
omments:										69
alytical Pa L VOCs ar	nd TCL SVO	Os								Sample Start Time: 2/98 100
eather Con そろし	ditions:									Revised 01

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

VA.

Sheet ___ of ___

WELL NUMBER		WELI	. INFORMA	TION		Date: 12-4-06
MW-5-60	Well		Depth to	Depth to		TRC Personnel: Greg Soska, Joseph Schwarz
	Diameter		Water	Product	PID	Site Name: LIRR- Morris Park Yard Facility
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY
	4	57.5	37.35		0,0	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

		PURGIN	G INFORM	ATION	TRC RAVIV METER NUMBERS				
ı		Pump (2)	Purge	Purge	Flow	Total	pH:	Cond:	DO:
Pump	Tubing	Intake	Start	Stop	Rate	Purge	Eh:	Turbidity:	NJDEP Cert. No. 07734
Type	Type	Depth (ft)	Time	Time	(ml/m)	Vol. (gal)	Rental Meter Name: Horib	a U-22	
Gruntes	LDPE	143	1400				Rental Meter Serial No.:	01533	
		(2) Below	TOC						

		PURG	ING PARA	METERS (measureme	ents are fo	be taken a	pproximate	lv every f	minutes)			
	Criteria:	<0.3 ft	± 3%	± 0.1 su	± 3%	± 10%	± 10 mv	± 10% ⁽³⁾	.,, .				
Time	Flow Rate (ml/m)	Depth to Water (ft)	Temp (°C)	pH (su)	Cond (mS/cm)	D.O. (ppm)	ORP (mv)	Turbidity (NTU)	Initials	Water Conditions/Comments			
140 1	360	37.35	17.5	5,98	0.23)	0.73	147	5.2	کسل	Grity			
1406	300	37,35			0,342		157	0.0*		Clean			
ोद्या	350	37,35	1816	1 /2 \	0,243			010	SWP.	Clean			
1416	350		18.8	5.96	0.256	0.73	153	0.0*	GJS	Clear			
1421	350	37.35	20.6	5.93	0.255	$f_{\downarrow}H_{\parallel}$	153	D.0*	675				
1726	350	37.31		5.94	0,261		156	0.0	6J.S	Clear			
1431	350	37,35		5,7/	0,276	0.64	166	D10*	Ans	Clan			
1436	350	37,35	18.1	5,91	0,45	0.51	171	0,0%	4002	Clear			
				ī					*****				
				·				·					
										·			
Comments:	mments: * TURBIDY PROBE MALFUNCTION												
Analytical P	alytical Parameters: Sample Start Time:) 입니다												
TCL VOCs a	CL VOCs and TCL SVOCs Sample Finish Time: 4 4 4												
Weather Co	nditions:	Pr 6	50°F										
3) For value	s greater tha		<u> </u>	***************************************	***************************************	·····				Revised 01/05			

(3) For values greater than 1.

Sheet	of

WELL NUMBER		WEL	LINFORMA	TION		Date: 12-7-06
MILLON	Well	Total (1)	Depth to	Depth to		TRC Personnel: Greg Soska, Joseph Schwarz
17W-5-18U	Diameter	Depth	Water	Product	PID	Site Name: LIRR- Morris Park Yard Facility
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY
	4	681	37.35		5.7	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

		PURGIN	G INFORM	ATION			TRC RAVIV METER NUMBERS				
	T T	Pump (2)	Purge	Purge	Flow	Total	pH:	Cond:	DO:		
Pump	Tubing	Intake	Start	Stop	Rate	Purge	Eh:	Turbidity:	NJDEP Cert. No. 07734		
Type	Туре	Depth (ft)	Time	Time	(mi/m)	Vol. (gal)	Rental Meter Name: Horiba U-22				
Gruntos	LDPE	155	1575				Rental Meter Si	erial No.:			
		(2) Below	roc								

		(2) BEIOW	*******					·····		
								pproximate	ly every 5	minutes)
Time	Criteria: Flow Rate (ml/m)	<0.3 ft Depth to Water (ft)	± 3% Temp (°C)	<u>+</u> 0.1 su pH (su)	± 3% Cond (mS/cm)	± 10% D.O. (ppm)	± 10 mv ORP (mv)	± 10% ⁽³⁾ Turbidity (NTU)	Initials	Water Conditions/Comments
1517	300	37.35		6.37	0,555	202	151	36.1	65	Clear
1522	300	37. 35	15.09	6-19	1.01	0.0	137		G5	
1527	200	37.50	15.16	7.02	1.35	0.0	90	191	G5	Slightly turbid
1532	200	37.50	7	7.00	1.33	٥.٥	81	262	65	Stightly turbed
1537	200	37.50		6.95	1.32	0.0	81	255	9	turbed
1542	200		15.32	6.99	1.34	0.0	83	249	25	turbid
		•								
							•			
									,	
Comments:										
Analytical P	arameters:									Sample Start Time: 1545
	nd TCL SVC)Cś		<u> </u>		·				Sample Finish Time: 1547
Veather Co	nditions:	PC,	50° F							Revised 01/0

(3) For values greater than 1.

Sheet of	
----------	--

WELL NUMBER		WEL	L INFORMA	TION		Date: 12-6-06
Advant 1	Well	Total (1)	Depth to	Depth to		TRC Personnel: Greg Soska, Joseph Schwarz
	Diameter	Depth	Water	Product	PID	Site Name: LIRR- Morris Park Yard Facility
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY
	4	100	37.50		73	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

		PURGIN	G INFORM	ATION	TRC RAVIV METER NUMBERS						
		Pump (2)	Purge	Purge	Flow	Total	pH:	Cond:	DO:		
Pump	Tubing	Intake	Start	Stop	Rate	Purge	Eh:	Turbidity:	NJDEP Cert. No. 07734		
Type	Type	Depth (ft)	Time	Time	(ml/m)	Vol. (gal)	al) Rental Meter Name: Horiba U-22				
ษาของ	HOPE	50	1311	1733			Rental Meter Serial No.:	10185			
		(2) Below	гос	***************************************							

PURGING PARAMETERS (measurements are to be taken approximately every 5 minutes) ± 10 mv ± 10%⁽³⁾ Criteria: <0.3 ft ± 3% <u>+</u> 0.1 su ± 3% ± 10% Turbidity Flow Rate Depth to Cond D.O. Temp ЬH Water Conditions/Comments Time (ml/m) Water (ft) (°C) (NTU) (su) (mS/cm) (ppm) (mv) Initials 0,453 WS 3.40 108 200 **⊘**, ⊘ 126 ટ્યક 200 137 200 0,0 145 150 151 0,460 Comments: in Dupliete Collected Analytical Parameters: Şample Start Time: Sample Finish Time: TCL VOCs and TCL SVOCs 1342 Weather Conditions: Revised 01/05

(3) For values greater than 1.

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

TRC Raviv Job No.

Sheet ___ of_

WELL NUMBER		WEL	L INFORMA	TION		Date: / Z ~ / ソーク ら
MALL MO / 0	Well	, ,	Depth to	Depth to		TRC Personnel: Greg Soska, Joseph Schwarz
	Diameter	Depth	Water	Product	PID	Site Name: LIRR- Morris Park Yard Facility
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY
	4	57.9	371	2		TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

		PURGIN	G INFORM	ATION	TRC RAVIV METER NUMBERS						
		Pump (2)	Purge	Purge	Flow	Total	pH:	Cond:	DO:		
Pump	Tubing	Intake	Start	Stop	Rate	Purge	Eh:	Turbidity:	NJDEP Cert. No. 07734		
Туре	Туре	Depth (ft)	Time	Time	(ml/m)	Vol. (gal)	Rental Meter Name: Horiba U-22				
Gnings	LOPE	50	1045	1110	300		Rental Meter Serial	No.: 015733			
		(2) Below	TOC		111111111111111111111111111111111111111						

		PURC	ING PARA	METERS (measurem	ents are to	he taken a	nnrovimete	ly avan, 5	minutes)
	Criteria:	<0.3 ft	± 3%	± 0.1 su	+ 3%	+ 10%	± 10 mv	± 10% ⁽³⁾	ly every 3	(innutes)
	Flow Rate	Depth to	Temp	рH	Cond	D.O.	ORP	Turbidity	1	Water Conditions/Comments
Time	(ml/m)	Water (ft)		(su)	(mS/cm)	(ppm)	(mv)	(NTU)	Initials	
1045	250	37.42	14.9	6.46	0,993	4.45	164	×	-tra	Seni-murky
1051	300	37,40	16.1	5,98	1,02	3,53	153	*	ewl	clear
1056	300	37.40	16.3	5.99	1.01	3,74	153	*	كتتك	dear
1.101	300	37,40		5,99	1.01	3,98	151	æ	402E	clear
1106	300	37.tv	16.8	5,99	1.01	3.72	150	æ	The Contraction	5000
										U ·
									****	*.
	~**			~						
										, , , , , , , , , , , , , , , , , , ,
										
comments:		L								
	* Tork	· probe	Urro	/			_			
Analytical Parameters: Sample Start Time: NO 6										
	nd TCL SVO									Sample Finish Time: 1110
Veather Cor	nditioņs:	SUMA	y, 50	P						Revised 01/05
	s greater tha	n 1.	++							. cerasa ovac

Sheet	of
OHEEF.	VI.

WELL NUMBER		WEL	L INFORMA	TION		Date: 17-14-06
MW 08-150	Well	Total (1)	Depth to	Depth to		TRC Personnel: Greg Soska, Joseph Schwarz
	Diameter	Depth	Water	Product	PID	Site Name: LIRR- Morris Park Yard Facility
PERMIT NUMBER	(Inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY
	2	150	37.15	· ·	0	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well after sampling. TOC = top of casing · 藏 意 · · · ·

		· · · · · · · · · · · · · · · · · · ·	G INFORM	ATION		dillege.		TRC RAVIV METER	NUMBERS
B		Pump (2)	Purge	Purge	Flow		pH:	Cond:	DO:
Pump	Tubing	Intake	Start	Stop	Rate	Purge	Eh:	Turbidity:	NJDEP Cert. No. 07734
Туре	Туре	Depth (ft)	Time	Time	(ml/m)	Vol. (gal)	Rental Meter Name	: Horiba U-22	- 4
Grundfus	LDPE		1042	1116	OGO		Rental Meter Seria	INO.: 10185	
		(2) Below	TOC		300	71			100

		,					.4			
		PURC	ING PARA	METERS (measurem	ents are to	be taken a	pproximate	ely every	5 minutes)
Time	Criteria: Flow Rate (ml/m)	<0.3 ft Depth to Water (ft)	<u>+</u> 3% Temp (°C)	<u>+</u> 0.1 su pH (su)	± 3% Cond (mS/cm)	± 10% D.O. (ppm)	± 10 mv ORP (mv)	± 10% ⁽³⁾ Turbidity (NTU)		Water Conditions/Comments
1045	250	37.65	14,125	Coss	0.434	0,75	-83	A	IWS	murtay
1050	250	37,70	14.86	678	0.839	0.0	-98	236	Jus	turbid
1055	300	37.70	15.27	6.88	O'848	ව.0	-14	143	400s	turbid
1100	<u> 300</u>	37.70	15.32	6.98	0.847	0.0	-1	119	100S	terbid
1105	300	37.70	15,42	7.02	0,845	6,0	7	153	ಕೆಯಲ್ಲಿ	torbid
HIO	300	37,70	15,42	7,02	<i>0</i> ,835	010	(O)	157	JUS	tubid
								-		
										·
	-									
										·
omments:	* Tu	ibi pu	obe e	vro√						
nalytical Pa	rameters:	1								Sample Start Time: 1111
CL VOCs ar	nd TCL SVO	Cs								Sample Finish Time: 116
eatner Cor	id ICL SVOI	2°F,	SUKN	4			-			

(3) For values greater than 1.

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

Revised 01/05

Sheet of

WELL NUMBER		WEL	L INFORMA	TION		Date: 12-30-06
MW 9-60	Well	Total (1)	Depth to	Depth to		TRC Personnel: Greg Soska, Joseph Schwarz
1000 4.60			Water	Product	PID	Site Name: LIRR- Morris Park Yard Facility
PERMIT NUMBER	(inches) (ft)		TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY
	4	60	40.0		0.0	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

			G INFORM	ATION		TRC RAVIV METE	R NUMBERS		
_	1	Pump (2)	Purge	Purge	Flow		pH:	Cond:	DO:
Pump	Tubing	Intake	Start	Stop	Rate	Purge	Eh:	Turbidity:	NJDEP Cert. No. 07734
Туре	Туре	Depth (ft)	Time	Time	(ml/m)	Voi. (gal)	Rental Meter Name:	: Horiba U-22	
Grantos	LDPE	45	815	843	300		Rental Meter Serial	No.:	
		(2) Below 7	OC	***************************************	The state of the s	•			

		PURG	ING PARA	METERS /	moasurom	ente ara to	ho takon a	pproximate	lu ovone E	minutes)
	Criteria:	<0.3 ft	+ 3%	± 0.1 su	± 3%	± 10%	± 10 my	± 10% ⁽³⁾	ay every 5	enrates)
T	Flow Rate	Depth to	Temp	pН	Cond	D.O.	ORP	Turbidity	1	Water Conditions/Comments
Time	(ml/m)	Water (ft)	(°C)	(su)	(mS/cm)	(ppm)	(mv)	(NTU)	Initials	
820	200	40.0	17,S	6.98	1.27	7,49	129	0.0	JWS	Cies
982S	300	40.0	18,3	7.15	1.24	7,66	95	0.0	LMS	Clear
0830	300	40.0	18.2	7,20	1.21	7,84	94	000	aus	Clear
5 <u>835</u>	300	40.Ô	19,0	7.21	1.17	7,83	79		2Wc	Clean
3540	300	9-0P	19.0	7.23	1.19	7.68	81	0.0	4000	Cloen
84 Z	300	6.0	18.7	7.23	107	7.42	81	0,0	SUR	Clear-done.
						7				
	-									
		•								
omments:		<u> </u>		<u></u>						
<u></u>										
_	arameters:									Sample Start Time: 843
CL VOCs at	nd TCL SVO	Cś								Sample Finish Time: 845
caulti COI	iuitions;									Revised 01/0

(3) For values greater than 1.

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

11/27/2006 4:19 PM

Sheet ___ of ___

WELL NUMBER		WELI	L INFORMA	TION		Date: 1(-30~%
41.1 610	Well	Total (1)	Depth to	Depth to		TRC Personnel: Greg Soska, Joseph Schwarz
M(M) 10-60	Diameter	Depth	Water	Product	PID	Site Name: LiRR- Morris Park Yard Facility
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY
	4	60	39.5		95.4	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

		PURGIN	G INFORM	ATION		TRC RAVIV METER NUMBERS				
1		Pump (2)	Purge	Purge	Flow .	Total	pH:	Cond:	DO:	
Pump	Tubing	Intake	Start	Stop	Rate	Purge	Eh:	Turbidity:	NJDEP Cert. No. 07734	
Type	Type	Depth (ft)	Time	Time	(ml/m)	Vol. (gal)	Rental Meter Name: Horib	a U-22		
Grunfas	LDPE	50	606	1043	250		Rental Meter Serial No.:	01533		
		(2) Below	TOC		4/11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/					

		PURG	ING PARA	METERS (Moasilrom	ents are to	ha takan a	pproximate	aly overy f	(minutae)
···	Criteria:	<0.3 ft	± 3%	+ 0.1 su	± 3%	± 10%	± 10 mv		every	, annutes,
	Flow Rate	Depth to	Temp	pH	Cond	D.O.	ORP	Turbidity	1	Water Conditions/Comments
Time	(ml/m)	Water (ft)	(°C)	(su)	(mS/cm)	(ppm)	(mv)	(NTU)	Initials	
1008	250	39.50	16.5		1,04	7.32	136	5.6	4012	Claus
613	<u> 250</u>	39,50	17.6	6.81	1.02	7.65	104	0.0	4WZ	Clean
018	200	39.48	17.6	6.80	1.02	7.28	104	9.1	SWS	Clean
623	200	39.48	18.3	6.79	1.01	7.11	98	29.1	AMS	Clear
028	250	39.48		6.76		7.01		50.9	dus	Clear
033	206	39.48	18.7	6.76	1.02	7.22	20\	64.6	2006	Cleen,
038	250	39,48	1817	6.73	1.00	7,30	105	1.1*	442	* Turb. error apool
										10
							;			
										
`		•								
									The Name of State of	
										\.
										À.
							,			· .
omments:	High	(iD le	adinas	•						
nalytical Pa			0							Sample Start Time: 10 40
	nd TCL SVO	**								Sample Finish Time: (0 4 3
ather Co	nditions:	60°F	Pw	HJ CI	oudy					
For value	s greater tha		+	''' 	/-~ 			······································		Revised 01

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

11/27/2006 4:19 PM

Sheet	of	

WELL NUMBER		WEL	L INFORMA	TION		Date: #1-30-06
Must be the	Well	Total (1)	Depth to	Depth to		TRC Personnel: Greg Soska, Joseph Schwarz
11	Diameter	Depth	Water	Product	PID	Site Name: LIRR- Morris Park Yard Facility
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY
	a	160	39.58	—	70	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

		PURGIN	G INFORM	ATION		TRC RAVIV METER NUMBERS				
		Pump (2)	Purge	Purge	Flow	Total	pH:	Cond:	DO:	
Pump	Tubing	Intake	Start	Stop	Rate	Purge	Eh:	Turbidity:	NJDEP Cert. No. 07734	
Туре	Type	Depth (ft)	Time	Time	(ml/m)	Vol. (gal)	Rental Meter Name: Horib	a U-22		
Gruntes	LDPE	130	1005	to 35	400		Rental Meter Serial No.:	10185		
		(2) Below	roc							

		PURG	ING PARA	METERS (measuromo	ents are to	be taken a	nnrovimate	ly avary 5	minutael
——————————————————————————————————————	Criteria:	<0.3 ft	± 3%	± 0.1 su	± 3%	+ 10%	+ 10 mv	± 10% ⁽³⁾	.yevery 3	(initial es)
·····	Flow Rate	Depth to	Temp	Hq	Cond	D.O.	ORP	Turbidity		Water Conditions/Comments
Time	(ml/m)	Water (ft)	(°C)	(su)	(mS/cm)	(ppm)	(mv)	(NTU)	Initials	
1010	400	39.60		640	0.659	0.37	135	582	65	Ckar
1015	400		16.39	7.07	0.646	6.26	121	867	65	Chart Shantly tradid
1020	400	39.65	16.59	7.12	0.639	6.28	115	*	GS	Clear
1025	400	39.65	16.55	7.13	0.629	0.29	112	*	6)	Clear
1030	400	3945		7.14	0.626	6.30	112	*	S	
1035	400	39.65			6.625	0.31	110	*	65	
							·			
		·								
		·								
omments:	* TU SIMPLE	LBIN ADDE	ELLAP	MESS	166.	TURBISY	REMON	K Hubit	EL	
nalytical Pa	arameters:	/11.69	<u>~ ~(``</u> ,	CIT	IIU ME	<u> </u>				Sample Start Time: 1037
	nd TCL SVO	Cś								Sample Finish Time: 1939
eather Cor	nditions:	100%	Cloud	love/						
Forvolve	greater that			~, -						Revised 01/0

(3) For values greater than 1.

		· .				·	Sheet	of
WELL NUMBER		WEL	L INFORMA	TION		Date: 1\~30-06		
MW-11-60	Well Diameter	Total (1) Depth	Depth to Water	Depth to	1	TRC Personnel: Greg Soska, Joseph Schwarz		
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)		Site Name: LIRR- Morris Park Yard Facility Site Location: Richmond Hill, NY		
	4"	60'	39.52			TRC Job Number:46130-0010-00004	***	

(1) Use a previously determined total depth. Confirm the total depth of well after sampling. TOC = top of casing

Pump (2) Purge Purge Flow Total Purge Purge Flow Rate Purge Flow P			 IG INFORM	IATION		····		TRC RAVIV METE	R NUMBERS
	11	Tubing		1	1		pH:	Cond:	DO:
			Time	Time	(mi/m)	Vol. (gal)	Rental Meter Name: Ho		1100EF Cett. 140. 07734
(2) Below TOC 11:53 1220 350 Rental Meter Serial No.: 0/533	Structus	LDPE	 <u> 111:55</u>	1220	350		Rental Meter Serial No.	01533	

		PURC	ING PARA	AMETERS (measurem	ents are to	be taken a	pproximate	ly every	5 minutes)
	Criteria:	<0.3 ft	± 3%	± 0.1 su	± 3%	<u>± 10%</u>	<u>±</u> 10 mv	± 10% ⁽³⁾		
Time	Flow Rate (ml/m)	Depth to Water (ft)	Temp (°C)	pH	Cond	D.O.	ORP	Turbidity		Water Conditions/Comment
4			1	(su)	(mS/cm)	(ppm)	(mv)	(NTU)	Initials	
1:55	350	39.52	- F		0.922	9,00		6,9	J105	Clear
12:00	350	39.52	*****			8.92	76	9.2.	402	Clear
2:05	350	39.52			0.892	8.89	72	12.4	ive	Clem
	<u>350</u>	39.52	19.4	7,18	2869	8.74	73	19.8	Jus	Clear
2:15	350	39.52	19.4	1.19	0.863	8.75	73	22.6	425	9000.
										3
			·			·				
				-						
										
mments: ,	* _ *									
	<u>"Pid</u>	backgr	ound le	zuel =	20 PM	3M.				
alytical Pa					44					Sample Start Time: /2/8
	d TCL SVOC	s								Sample Finish Time: 1220
ather Con	ditions:	60°F	1 Pa	4 6	loudy			***************************************		

(3) For values greater than 1.

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

Sheet	of

WELL NUMBER		WEL	L INFORMA	TION		Date: // - 30-66
MW 11-160	Well		Depth to	Depth to		TRC Personnel: Greg Soska, Joseph Schwarz
70,700	Diameter	Depth	Water	Product	PID	Site Name: LIRR- Morris Park Yard Facility
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY
	2	*160	39.54		D	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well after sampling. TOC = top of casing

PURGING INFORMATION TRC RAVIV METER NUMBERS Pump (2) Purge Purge Flow Total pH: Cond: DO: Tubing Pump. Intake Start Stop Rate Eh: Purge Turbidity: NJDEP Cert. No. 07734 Depth (ft) Type Type Time Time (ml/m) Vol. (gal) Rental Meter Name: Horiba U-22

Rental Meter Serial No.:

400 10185 (2) Below TOC PURGING PARAMETERS (measurements are to be taken approximately every 5 minutes) Criteria: <0.3 ft <u>+</u> 3% ± 10% ± 10 mv ± 10%⁽³⁾ ± 0.1 su ± 3% Flow Rate Depth to Temp рΗ Cond D.O. ORP Turbidity Water Conditions/Comments (su) Time (ml/m) Water (ft) (°C) (mv) (NTU) Initials (mS/cm) (ppm) 400 6.92 1155 Cleas 0.700 143 0.56 26.3 රෙ 0.715 6.97 Clas 1200 400 137 0.38 22.7 65 4,00 1205 .04 0.720 60.0 109 70.9 400 1210 (1) car 7.07 0.702 00.0 26.6 GS Clear 400 7.08 6.701 32.6 GS 1215 00.0 0.699 1220 0.00 Man Clear Comments: * Ach disignation is MWII-160 -> SIEC SHEET IS MWIF140 TOTAL DEOTH COOLD NOT BE MEASURED - GITHGE ONLY TO 100 Analytical Parameters: Sample Start Time: 1222 Sample Finish Time: TCL VOCs and TCL SVOCs 1224 Weather Conditions: Partly Cloudy Revised 01/05

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

(3) For values greater than 1.

GRUNFOS

LDPE

130

1150

1220

Shee	t	of	

WELL NUMBER		WEL	L INFORMA	TION		Date: /2-77-06
1411117/0	Well	Total (1)	Depth to	Depth to		TRC Personnel: Greg Soska, Joseph Schwarz
	Diameter	Depth	Water	Product	PID	Site Name: LIRR- Morris Park Yard Facility
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY
	4	58	35.91		6,0	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

		PURGIN	G INFORM	ATION	Т	RC RAVIV METER	NUMBERS		
ļ _		Pump (2)	Purge	Purge	Flow	Total	pH:	Cond:	DO:
Pump	Tubing	Intake	Start	Stop	Rate	Purge	Eh:	Turbidity:	NJDEP Cert, No. 07734
Туре	Туре	Depth (ft)	Time	Time	(ml/m)	Voi. (gal)	Rental Meter Name: Horib	a U-22	
Gruntes	LDPE	45	1130		300		Rental Meter Serial No.:	01533	
		(2) Relow	TOC						

		DUDG	INC DADA	WETERS /			L . 4-1			
	Criteria:	<0.3 ft	± 3%	± 0.1 su	measureme ± 3%	<u>+</u> 10%	± 10 mv	pproximate ± 10% ⁽³⁾	ery every 5	minutes)
	Flow Rate	Depth to	Temp	рН	Cond	D.O.	ORP	Turbidity	1	Water Conditions/Comments
Time	(ml/m)	Water (ft)	(°C)	(su)	(mS/cm)	(ppm)	(mv)	(NTU)	Initials	
1142	GO P.	35.4	17.1	5.93	0.799	1.82	145	55	હડ	Con .
1147	400	35.90	17.5		0.297	1.80	140	65	کی	Clear
1152	400	35.90	18.1	5.94	0.340	1.82	132	12	6)	Close
J#57	400	35.90	18.4	5.92	0 295	1.90	129	୫୦	G5	Cker
12:02	300	35.90			0.293	1.89	132	83	65	Clear
1207	300	35.90	18.7	5.94	0-295	1.92	333	86	65	Clear
-25										
						·				
					r				Ì	
						es ²			,Ar	
Comments:										
Analytical Pa	rameters:			J			J.			Sample Start Time: 1707
CL VOCs an		Oś					•			Sample Start Time: 7707 Sample Finish Time: 7709
Veather Con	ditions:								<u> </u>	
3) For values				· · · · · · · · · · · · · · · · · · ·						Revised 01/05

(3) For values greater than 1.

Sheet	of

WELL NUMBER		WEL	L INFORMA	TION		Date: 12-6-06
MW15-60	Well		Depth to			TRC Personnel: Greg Soska, Joseph Schwarz
	Diameter	Depth	Water	Product		Site Name: LIRR- Morris Park Yard Facility
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY
	4	60	38.85		*0	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

	,		G INFORM	IATION		TRC RAVIV METER NUMBERS			
Pump Type	Tubing Type	Pump (2) Intake Depth (ft)	Start	Purge Stop Time	Flow Rate (ml/m)	Purge	pH; Eh: Rental Meter Nar	Gond: Turbidity: ne: Horiba U-22 0/537	DO: NJDEP Cert. No. 07734
Grunfos	LOPE	50	0854	0930	200		Rental Meter Ser		-
		(2) Below	TOC						

		PHR	ING DADA	METERS /	moneurom.	anto oro to	be taken a			_
	Criteria:	<0.3 ft	+ 3%	± 0.1 su	± 3%	± 10%	<u>±</u> 10 mv	± 10% ⁽³⁾	ely every 5	minutes)
Time	Flow Rate (ml/m)	Depth to Water (ft)	Temp (°C)	pH (su)	Cond (mS/cm)	D.O. (ppm)	ORP (mv)	Turbidity (NTU)	Initials	Water Conditions/Comments
0855	250	38 80		6.44	1.04	1.15		30,7	Jus	Clear
0900	200	38.80		6.61	1.16	0.0	-45	25,0	AMS	Clear
0905	3 00	38,80		6.43	0.990		-10	29.5	dus	Murky
0910	300	38.80		6.40	0.930	0.01	-1	25,3	JWS	Murky
0915	300	38,80	18,8	6.37			16	33,5	Ans	Murky
0920	300	45.8U	1816	6.37	0.772	1, 15	23	33,7	SMZ	Morky
0925	300	38.80	18.2	6.37	0.774	1.26	26		EWE	Murky - good!
										00
		-								
Comments:	f Sunn	7								
Analytical Pa			······································							Sample Start Time: 0925
CL VOCs ar	d TCL SVO	<u>Oś</u>								Sample Finish Time: 0436
Veather Con		Sonny,	Clem	30°1						Revised 01/05
3) For values										TCYISED O I) CO

(3) For values greater than 1.

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

TRC Ravlv Job No. _____Company\Technical\TRC Forms and Templates\low flow field form\Low Flow - Field Form

Sheet	of

WELL NUMBER		WEL	L INFORMA	TION		Date: 12 ~6 ~0 0
MW16-60 PERMIT NUMBER	Well Diameter (inches)	Total (1) Depth (ft)	Depth to Water TOC (ft)	Depth to Product TOC (ft)	PID	TRC Personnel: Greg Soska, Joseph Schwarz Site Name: LIRR- Morris Park Yard Facility Site Location: Richmond Hill, NY
	4	60	37.09			TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

			G INFORM			TRC RAVIV METER NUMBERS			
Pump Type	Tubing Type	Pump (2) Intake Depth (ft)	Purge Start Time	Purge Stop Time	Flow Rate (mi/m)	Purge	pH: Cond: DO: Eh: Turbidity: NJDEP Cert. No. 07734		
Grunfas	LDPE	50 (2). Below 1	1407	Time	250		Rental Meter Name: Horiba U-22 Rental Meter Serial No.: /O/85		

		PHR	SING DADA	METERS (
	Criteria:	<0.3 ft	+ 3%	+ 0.1 su	# 3%	ents are to	+ 10 my	pproximate	ely every	5 minutes)
	Flow Rate	Depth to	Temp	pН	Cond	D.O.	ORP	Turbidity	1	Water Conditions/Comments
Time	(ml/m)	Water (ft)		(su)	(mS/cm)	(ppm)	(mv)	(NTU)	Initials	water conditions/comments
1410	200	37.09		6.15	०.५५	0.05	59	25,5	كتنك	Clear
1415		37,09		6.04	0.550	0.0	62	<i>3</i> 2. ပ	Jus	Clear
1420	250		17,83		0,545	0,0	60	21.7	EW	Clean
1425			18,15		0.653	0,0	55	21.1	- MS	
1430		37.09	18.21	6.24	0.557	0.0	48	21,0,		Clean
1435	250	37.09	18:28	6.26	0.558	0,0	47	21.0		apod o
										200
									· · · · · · · · · · · · · · · · · · ·	
									<u> </u>	
					-					
Comments:					1					
malidical R-										
Inalytical Pa										Sample Start Time: / 43ス
CL VOCs an			^.	11-07		~				Sample Finish Time:
	୍	unny,(lear	40°f	•					
3) For values	greater than	1.								Revised 01/05

Sheet	of	

WELL NUMBER		WELI	L INFORMA	TION		Date: 12.15/06
MW-17-60R	Well Diameter	Depth	Depth to Water	Product		TRC Personniel: Greg Soska, Joseph Schwarz Site Name: LIRR- Morris Park Yard Facility
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY
	<u> </u>	49,2	38,35	~	米米	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

Pump Tubing Type Tubing Type Depth (ft) Time Time (ml/m) Vol. (gal) Rental Meter Name: Horiba U-22 Rental Meter Serial No.: 10185				G INFORM	ATION			TRC RAVIV METER NUMBERS				
COLUMN SEZ 10PF 45 2944 Rental Meter Serial No.: 10185	1	1	Intake	Start	Stop	Rate	Purge	Eh:	Turbidity:			
	JUN TOS		45		Time	(ml/m)			10185			

		DIIDA	SING DADA	METERS (S. Anlas			
	Criteria:	<0.3 ft	+ 3%	METERS (+ 3%	+ 10%	+ 10 mv	+ 10% ⁽³⁾	ely every :	minutes)
Time	Flow Rate (ml/m)		Temp	pH (su)	Cond (mS/cm)	D.O. (ppm)	ORP (mv)	Turbidity (NTU)	initials	Water Conditions/Comments
0945	300	38.35	15.89	5,86	0.269	1661	-7	434	Jws	brown, very fur bid
0950	300	<i>3</i> 3,35	19.18	615	0,275	0.0	-49	339	7MZ	bidred year, accord
0955	300	<i>3</i> 8.35			0,279	0,0	-51	343	かるい	brown, terbid, oily
1000	300	38,35	20.79	6:09	0.301	0.0	-56	354	dus	brown, oily layer in top
1005	300	38,35	20,63	6,10	0,286	DiO	-58	343	ANS	smells of gasoline
			•							<u> </u>
										AC.
:	. 💎									
	: <u>%</u>									
									· · · · · · · · · · · · · · · · · · ·	
Comments:	DIG **	Maltono	tion							
Analytical Pa	arameters:		Sample Start Time: /005							
	nd TCL SVO	Os								Sample Finish Time: 100 0
Weather Cor	nditions:	loidy	, 50°	F						
3) Ear value	s greater than	(1)	 		77°					

(3) For values greater than 1.

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

Revised 01/05

Sheet of	
----------	--

WELL NUMBER		WEL	L INFORMA	ATION		Date: 12 7 06				
MIN-19-60	Well	Total (1)	1			TRC Personnel: Greg Soska, Jose				
	Diameter	1	Water	Product		Site Name: LIRR- Morris Park Yard Facility				
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY				
	14	56	<u>35.60</u>	1 1	10.0	O TRC Job Number:46130-0010-00004				

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

		·	G INFORM	ATION		TRC RAVIV METER NUMBERS						
Pump Type	Tubing Type	Pump (2) Intake Depth (ft)	Purge Start Time	Purge Stop Time	Flow Rate (ml/m)	Purge	Total. IDO.					
Grinfos	LDPE	42_ (2) Below	1131		350		Rental Meter Serial No.:	10185				

		PURC	ING PARA	METERS (maseuram	onte aro to	ha takan a		. h					
	Criteria:	<0.3 ft	+ 3%	± 0.1 su	+ 3%	± 10%	± 10 mv	± 10% ⁽³⁾	every :	minutes)				
Time	Flow Rate (ml/m)	Depth to Water (ft)	Temp	pH (su)	Cond (mS/cm)	D.O. (ppm)	ORP (mv)	Turbidity (NTU)	Initials	Water Conditions/Comments				
1132		35.60		6.12	0,480	0.76	69	20	and	Clear				
1137	350	35.60			0.474		87	3.0	tus	Clear				
1142	350	35.60			0.471		84	0,0	eur	Clear				
1147	350	35.60						0,0	2008	Clear				
1152	350	35.60	19.09	6,18	0,470	0.0	82	0,0	Sie	Clear-good.				
			1											
·	·													
										·				
										· .				
Comments:														
Analytical Pa	rameters:		·							Sample Start Time: 11.52				
TCL VOCs ar										Sample Finish Time: 1157				
Neather Con	aitions:	55°f	. Simo	M Clea	V					Dovined Od for				
3) For values	greater then	1			ν-					Revised 01/05				

(3) For values greater than 1.

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

TRC Raviv Job No. Company\Technica\text{TRC Forms and Templates\text{low flow field form\text{Low Flow - Field Form}}

Sheet	of	

WELL NUMBER		LINFORMATION		Date: 12/14/06
MW 2050 PERMIT NUMBER	Well Total (1) Diameter Depth (inches) (ft)	Depth to Depth to Water Product TOC (ft) TOC (ft)	PiD	TRC Personnel: Greg Sóska, Joseph Schwarz Site Name: LiRR- Morris Park Yard Facility Site Location: Richmond Hill, NY
	4 6 50	38.14	**	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

			G INFORM	ATION	TRC RAVIV METER NUMBERS				
Pump Type	Tubing Type	Pump (2) Intake Depth (ft)	Purge Start Time	Purge Stop Time	Flow Rate (mi/m)	Purge	pH: Cond: Eh: Turbidity: Rental Meter Name: Horiba U-22	DO:	
Gruns	WPE	(2) Below	1207		300		Rental Meter Serial No.: 0153	33	

	Criteria;	<0.3 ft	+ 3%	+ 0.1 su	<u>+</u> 3%	ents are to	± 10 mv	± 10% ⁽³⁾	1	
	Flow Rate		Temp	pH	Cond	D.O.	ORP	Turbidity	-	W-1-1-2 N11 1-
Time	(mi/m)	Water (ft)		(su)	(mS/cm)	(ppm)	(mv)	(NTU)	Initials	Water Conditions/Commen
208	250	38,15	16.8	6,62	0.802	8.38	174	*	Ins.	Clean
213		38.15		6.53	0.821	8.20	113	*	405	Cleen
218	300	38.15	18.8	6.52	0.819	8,25	109	₩0	4005	elean
<i>U</i> 3	300	38,15	19.4	6.49	0,800	8,27	106	#0	ws	Clean
US.	300	35,15	19.4	6.48	0,793	8.26	106	×	<i>₩</i>	god
										V
			·							
					-					
nments:		. ^	13							
<i>a</i> ¥'	* PID N	<u>Naltuno</u>	tion_	* [de on	be eve	-0√			
	rameters: d TCL SVOC				1					Sample Start Time: (22-3
ther Cond	ditional ()	onny								Sample Finish Time: 1231

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

Revised 01/05

CL (
Sheet	of	

WELL NUMBER		WELI	L INFORMA	TION		Date: 12-6-06
MW 215 PERMIT NUMBER	Well Diameter (inches)		Depth to Water TOC (ft)	Depth to Product TOC (ft)	PID	TRC Personnel: Greg Soska, Joseph Schwarz Site Name: LIRR- Morris Park Yard Facility Site Location: Richmond Hill, NY
	2	49	38.90		A 3	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

			G INFORM	ATION		TRC RAVIV METER NUMBERS			
Pump Type	Tubing Type	Pump (2) Intake Depth (ft)	Purge Start Time	Purge Stop Time	Flow Rate (ml/m)	Purge	Eh:	Cond: Turbidity:	DO: NJDEP Cert. No. 07734
GrunAs	LDPE	(2) Below	1540		200		Rental Meter Name: Horiba Rental Meter Serial No.:	10185	

		PURC	SING PARA	METERS /	meacurom	anto ara ta	ha talesa a			5 minutes)	
	Criteria:	<0.3 ft	+ 3%	± 0.1 su	± 3%	+ 10%	+ 10 my	# 10% ⁽³⁾	ely every	5 minutes)	
	Flow Rate		Temp	pH	Cond	D.O.	ORP	Turbidity		Water Cond	itions/Comments
Time	(ml/m)	Water (ft)		(su)	(mS/cm)	(ppm)	(mv)	(NTU)	Initials	s Traiter Cond	edularoolitimetit?
1540	200	38.95	15.15	<u> </u>	0.120	10.85	118	916	G5	TURBIA	-BROWN
1545	200		14.34		0.119	10.29	135	912	ر2	1	-TAN
1550	300		14.87	6.20	0.121	10,03	141	887	GS	1,	11
1555	300	38.95			0.128		144	794	CS	()	4
16:00	300	38.95	15.55	6.32	0.125	10.06	142	345	63	71	11
1605	300	38.95	15.38	6.30	0.125	9.88	146	798	GS		
1610	350	38.95	15.40	6.29	0.127	10.09	150	299	65		
				<u> </u>							
											_
										-	
omments:											
nalytical Pa	rameters:			, 	· · · · · · · · · · · · · · · · · · ·					Sample Start Time	: 1(10
CL VOCs an	d TCL SVOC)ś								Sample Finish Tin	IVIU
eather Con	ditions:	Å.								Л	
3) For values		,									Revised 01/05

Sheet	of

WELL NUMBER		WEL	L INFORMA	ATION		Date: 12-6-06
MWZID PERMIT NUMBER	Well Diameter (inches)	Total (1) Depth (ft)	Depth to Water TOC (ft)	Depth to Product TOC (ft)	PID	TRC Personnel: Greg Soska, Joseph Schwarz Site Name: LiRR- Morris Park Yard Facility Site Location: Richmond Hill, NY
	2	150	38.80		-	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

			G INFORM	ATION		TRC RAVIV METER NUMBERS				
Pump	Tubing	Pump (2)		Purge	Flow		pH:	Cond:	DO:	
Type		Intake	Start	Stop	Rate		Eh:	Turbidity:	NJDEP Cert. No. 07734	
	Type	Depth (ft)		Time	(ml/m)		Rental Meter Nan			
Gruntos	LEYE	145	1884				Rental Meter Seri	al No.: 01533		
		(2) Below	TOCISA							

		DUD	EINIG DADA	METERS /						
	Criteria:	<0.3 ft	SING PARA + 3%	± 0.1 su	+ 3%	± 10%	+ 10 my	<u>+ 10%⁽³⁾</u>	ely every 5	i minutes)
	Flow Rate	Depth to	Temp	рH	Cond	D.O.	ORP	Turbidity	1	Water Conditions/Comments
Time	(ml/m)	Water (ft)		(su)	(mS/cm)	(ppm)	(mv)	(NTU)	Initials	
1546	200	38,81	14.1		1,35°	2,47	96	5313	Jus	Clean
1545		38,81	14.9	7.81	0,705	0,0	128	680	ONS	Turbid Brown
1550		38,81	15.5	7,61	0.913	0.0	66	*	2NL	Very Turbid, Turbiddy error
1555	300	38.81	15.3		0,923	0,0	66 52	*	WS	Very Turks of * Turks become
1600		38,81	15,3		7,32	0,0	45	*	JUS -	* trus, enor
1605	250	38,81	B.2		0,936			1×	AWS	* (vA. error
			7	,	<u> </u>	0.0				0.77. 0.700
					-					
						. [
								-		
omments:										
nalytical Pa						p 2				Sample Start Time: 605
CL VOCs and			A							Sample Finish Time: 16010
		actly (lovay	,40°F	•	-				
) For values	greater than	1.	- 1	/ 						Revised 01/05

Sheet	of	

WELL NUMBER		WEL	L INFORMA	ATION		Date: /1-22-06		
MW ZZS	Well		Depth to	Depth to		TRC Personnel: Greg Soska, Joseph Schwarz	. 174	
	Diameter	Depth.	Water	Product		Site Name: LIRR- Morris Park Yard Facility	400	
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY	7.75 (200)	
	2		38.55		0.0	TRC Job Number:46130-0010-00004		

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

		T	G INFORM	ATION	TRC RAVIV METER NUMBERS				
Pump	Tubing	Pump (2) Intake	Purge Start	Purge Stop	Flow Rate		pH: Eh:	Cond: Turbidity:	DO:
Туре	Type	Depth (ft)	Time	Time		. ~	Rental Meter Name: Horiba		NJDEP Cert. No. 07734
Grunfos	मग्री ह	43	1430	1506	200		Rental Meter Serial No.:	10185	

F			·	·						
	Outract	PURC	ING PARA	METERS (measurem	ents are to	be taken a	pproximate	ly every	minutes)
	Criteria: Flow Rate	<0.3 ft Depth to	± 3% Temp	± 0.1 su	± 3%	<u>+</u> 10% D.O.	<u>+</u> 10 mv	± 10% ⁽³⁾ Turbidity	_	144-4-0-144
Time	(ml/m)	Water (ft)		(su)	(mS/cm)	(ppm)	(mv)	(NTU)	Initials	Water Conditions/Comments
0/440		53.56			0.158	7.79	109	13.8	2605	Clear
1445		38.56			0.156	7,69	108	77,8	9002	increased flow rute,
1450	300	38,56	23,34	6.31	0.150	7,60	105	32.2	fus	Flow rate mosesed/post
452	250	38,56		6.31	0,168	8,46	123	77	100S	
1500	200		19,91	6,30	0.164	8115	130	19.1	SW 2W	lowered pump
1505	200	38,56	19.32	6.29	0.160	7.99	129	16.2	2WC	Bood o
				,	-			·		
									······································	
										
		-								
Comments:										
nalytical Pa	rameters:		•							Sample Start Time: 1507
CL VOCs ar	nd TCL SVO									Sample Finish Time: 1509
Veather Con	ditions:	06 %	cloud	C5 6 4					· ·	
3) For values										Revised 01/05

(3) For values greater than 1.

Sheet	of

WELL NUMBER		WEL	L INFORMA	TION		Date: 1)-29 - 66
MU 725	Well	Total (1)	Depth to	Depth to		TRC Personnel: Greg Soska, Joseph Schwarz
MM 792	Diameter	Depth	Water	Product	PID	Site Name: LIRR- Morris Park Yard Facility
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY
	2	<i>5</i> 0	40.25	ت	0.0	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

		PURGIN	G INFORM	ATION		TRC RAVIV METER NUMBERS				
_		Pump (2)		Purge	Flow	Total	pH:	Cond:	DO:	
Pump	Tubing	Intake	Start	Stop	Rate	Purge	Eh:	Turbidity:	NJDEP Cert. No. 07734	
Type	Type	Depth (ft)	Time	Time	(ml/m)	Vol. (gal)	Rental Meter Name	: Horiba U-22		
Gaures	HOPE	40	11:10	11:40	250		Rental Meter Serial	No.: 01533		
		(2) Below	TOC			- August				

***************************************	· · · · · · · · · · · · · · · · · · ·						·.			
	S					ents are to		pproximate	ly every 5	minutes)
	riteria: ow Rate	<0.3 ft Depth to	± 3% Temp	<u>± 0.1 su</u> Ha	± 3% Cond	<u>+</u> 10%	± 10 mv ORP	± 10% ⁽³⁾ Turbidity		Weter Conditions (Con
		Water (ft)	(°C)	(su)	(mS/cm)	(ppm)	(mv)	(NTU)	Initials	Water Conditions/Comments
11:12 2		40.25	18.7	5.80	1.13	7.53	193	55.8	Jus	clear
		40.25		5.81	1.10	7.60	182	40.2	{μσς	clear,
[1:22 2	50	40.25	B1.7	5.81	1.11	7.64	177	55.0	pas	clear/stop/start
11:27 2	50	40.20	20.6	5.79	1.12	7.60	176	45.1	gus	alen
11:32 2	50	40.20	22.8	5.79	613	7.78	(75	32.8	MS	clear
11:35 2	60	40.20	22.6	5,29	114	7.76	173	24.7	ws	spool!
					,					0
]									
								:		
· ·										
				***		-				
Comments:										
D	. O P	pm								
Analytical Parar									w	Sample Start Time: 1137
CL VOCs and T		Os								Sample Finish Time: 139
Veather Conditi	ions:	50°F	/Part	ly Ch	udy					Davide - J. 04/0.
B) For values gre	eater than		-	1	-		<u></u>			Revised 01/0

Sheet ____(of ____

WELL NUMBER		WELI	_ INFORMA	TION		Date: 11-29-06
M1.1.77	Well	Total (1)	Depth to	Depth to		TRC Personnel: Greg Soska, Joseph Schwarz
<u> </u>	Diameter	Depth	Water	Product	PID	Site Name: LIRR- Morris Park Yard Facility
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY
	2	165	ાના જ	}	0.0	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

		PURGIN	G INFORM	ATION		TRC RAVIV METER NUMBERS			
		Pump (2)	Purge	Purge	Flow	Total	pH:	Cond:	DO:
Pump	Tubing	Intake	Start	Stop	Rate	Purge	Eh:	Turbidity:	NJDEP Cert. No. 07734
Type	Туре	Depth (ft)	Time	Time	(mi/m)	Vol. (gal)	Rental Meter Na	ame: Horiba U-22	
GRUNFOS	HOME	155	11:00	1140	200		Rental Meter Se	erial No.: 10185	
		(2) Below 7	ГОС						

		DURC	INC BADA	METERS (l			
	Criteria:	<0.3 ft	+ 3%	+ 0.1 su	neasureme	+ 10%	be taken a	pproximate + 10% ⁽³⁾	ly every 5	minutes)
	Flow Rate	Depth to	Temp	pH	Cond	D.O.	ORP	Turbidity	1	Water Conditions/Comments
Time	(ml/m)	Water (ft)	(°C)	(su)	(mS/cm)	(ppm)	(mv)	(NTU)	Initials	
1110	200	40.82			0.590	0.0	83	59.6	GS	Clear
1115	200	40.92		7.08	0.593	0.0	73	77.2	6 5	Clear
1120	200	40.80	16.18	7.4	0.596	0.0	28	819	GS	Clea
1125	200		16.56	7.29	0.595	0.0	-17	97.9	35	Clear
1133	200	40.00	16.51	7.36	0.603	Q	-31	136	65	Clear
1135	200		16.59	7.39	0.602	0.0	-36	145	GS	Clear
1140	200	40.80	16,57	7.40	0.600	0.0	-38	144	65	Clear
1145	200	40.50	16.60	7.42	<i>o .5</i> 98	0.0	-40	150	GS	Clear
		·								·
Ş.										

			,,							
							·			
Comments:					J				·····	
										·
Analytical P	arameters:			•						Sample Start Time:), 445
	nd TCL SVO									Sample Finish Time: // 47
Weather Co	nditions:	Party	Cloud	Y	50°F	• .		į.·		Revised 01/05
				4						Mevised 0 1705

(3) For values greater than 1.

Sheet	of

WELL NUMBER		WEL	L INFORMA	TION		Date: 11-29-06
MW-245	Well	Total (1)	Depth to	,		TRC Personnel: Greg Soska, Joseph Schwarz
PERMIT NUMBER	Diameter	Depth	Water	Product		Site Name: LIRR- Morris Park Yard Facility
FERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(mqq)	Site Location: Richmond Hill, NY
	2	50	40.35		0.0	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well after sampling. TOC = top of casing

		,	G INFORM	ATION		TRC RAVIV METER NUMBERS			
D	Tubin	Pump (2)		Purge	Flow		pH:	Cond:	DO:
Pump	Tubing	Intake	Start	Stop	Rate		Eh:	Turbidity:	NJDEP Cert. No. 07734
Type	Type	Depth (ft)	Time	Time	(ml/m)	Vol. (gal)	Rental Meter Nam	e: Horiba U-22	
Gruntos	HOVE	41.0	1340	1405	300		Rental Meter Seria	No.: 0/532	
		(2) Below	TOC						

		nun.	NA DAD	1.0000000						
 	Criteria:	<0.3 ft	ING PARA	METERS (measurem	ents are to	be taken a	pproximate	ly every 5	minutes)
	Flow Rate		± 3% Temp	± 0.1 su	<u>+</u> 3%	± 10% D.O.	± 10 mv	± 10% ⁽³⁾ Turbidity	1	
Time	(ml/m)	Water (ft)		(su)	(mS/cm)	(ppm)	(mv)	(NTU)	Initials	Water Conditions/Comments
1342	300	40.35		6.67	2.10	7.27	151	49.2	4W2	Turbid lovange
1347	300	40.38	19.5	6.69	2.11	2.14	127	10.2	AWS	Clearing up
13.5a		40.38		6.71		8.17	125	4.6	ans	clear
1357	300	40.38	19.6	6.71	2.08	8.16	123	2.2	ZWE	Soid!
										0
					····· .				···	

		-								
				**		.				
										·
Comments: Analytical Pa	0.000	m Voi	C 5							
										Sample Start Time: /358
ICL VOCs ar Veather Con								······································		Sample Finish Time: 1400
3) For values	***************************************	50°F	<u>, C</u>	loudy						Revised 01/05

(3) For values greater than 1.

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

Sheet	of
SHERF	O:

WELL NUMBER		WEL	L INFORMA	TION		Date: 11-28-66
34.300	Well	Total (1)	Depth to	Depth to		TRC Personnel: Greg Soska, Joseph Schwarz
MW255	Diameter	Depth	Water	Product	PID	Site Name: LIRR- Morris Park Yard Facility
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY
	2	49	37,62		9.1	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

		PURGIN	G INFORM	ATION	TRC RAVIV METER NUMBERS				
		Pump (2)	Purge	Purge	Flow	Total	pH:	Cond:	DO:
Pump	Tubing	Intake	Start	Stop	Rate	Purge	Eh:	Turbidity:	NJDEP Cert. No. 07734
Туре	Type	Depth (ft)	Time	Time	(ml/m)	Vol. (gal)	Rental Meter Na	me: Horiba U-22	
Gruntag	HDPE	44	11:19	12:10	500		Rental Meter Sei	rial No.:	

(2) Below TOC

		PURG	ING PARA	METERS (measurem	ents are to	be taken a	pproximate	lv every 5	minutes)
	Criteria:	<0.3 ft	± 3%	± 0.1 su	± 3%	± 10%	± 10 mv	± 10% ⁽³⁾	., 0.01, 0	
	Flow Rate	Depth to	Temp	pН	Cond	D.O.	ORP	Turbidity		Water Conditions/Comments
Time	(ml/m)	Water (ft)	(°C)	(su)	(mS/cm)	(ppm)	(mv)	(NTU)	Initials	
11:49 33	200	37.62	18,02	5,87	0,326	7.50	172	956	JWS	lubid (tunforme)
11:38	300	37.62	20.66	5.94	0.316	7.02	170	634	JW.S	Clearing up
	<u> </u>									- Sws (issues w/pung)
										JWS (issues a) pump
11:50	500	37.65	<i>ો.</i> 35	6.22	, 285	7.11	161	150	JWS	moreased flow for owns
11:55	500	37.65	20.83	6.22	.289	7,09	174	163	1692	Flow still high for pum
12:00	500	৸	20.07	6.21	1293	7/05	165	128	24	J 7 /
12:05	500	37,63	19.82	6.20		6.99	168	126	ફ્યક	
12:10	500	37.65	19.52	6.19	,299	6,95	170	118	2 Cup	
	<u> </u>		-		-					
								:		
						•				
Comments:	D = 1.	6 1.1M	. ۵ وست	DPAN)					·
Analytical Pa		- 17		_ 80						Sample Start Time: 7215
TCL VOCs a		Cs								Sample Finish Time: 217
Weather Co					\ <u></u>					
										Revised 01/05

(3) For values greater than 1.

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

Sheet 1 of 1

WELL NUMBER		WEL	LINFORMA	TION		Date: 11-28-06
MW25D	Well	Total (1)	Depth to	Depth to		TRC Personnel: Greg Soska, Joseph Schwarz
	Diameter		Water	Product	PID	Site Name: LIRR- Morris Park Yard Facility
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(mqq)	Site Location: Richmond Hill, NY
	2	170	39194		1,2	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well after sampling. TOC = top of casing

			G INFORM	IATION		TRC RAVIV METER NUMBERS			
		Pump (2)	Purge	Purge	Flow	Total	pH:	Cond:	DO:
Pump	Tubing	Intake	Start	Stop	Rate	Purge	Eh:	Turbidity:	NJDEP Cert. No. 07734
Туре	Type	Depth (ft)	Time	Time	(ml/m)	Vol. (gal)	Rental Meter Name: Horib	na U-22	
Grunfor	HDPE	155	1240	1320	200	×4	Rental Meter Serial No.:	10185	
		(2) Below	TOC						

		PURG	ING PARA	METERS (measureme	ents are to	be taken a	pproximate	ly every 5	i minutes)		
	Criteria: Flow Rate	<0.3 ft Depth to	± 3% Temp	± 0.1 su	<u>+</u> 3%	± 10% D.O.	<u>+</u> 10 mv	± 10% ⁽³⁾ Turbidity		Water Conditions/Comments		
Time	(ml/m)	Water (ft)	(°C)	(su)	(mS/cm)	(ppm)	(mv)	(NTU)	Initials	Water Conditions/Confinents		
1242	200	37.95	16.69		0.654	0.04	106	32.7	G5	Clear		
1247	201	37.97	1667	6.92			107	41.2	65	Clear		
1252	200	37.95	16-67	7.00	0-666	0.0	92	79.6	65	Clear		
1257	200	37.95	16-80	7.18	0.672	0,0	81	126	ZWS	Ciear		
1302	48	27.95	16.88	7.15	0,675	0,0	67	176	2w)	Clear		
1307	5 50	27,95	16.97		0.618			248	qus	Clem		
1312	300	37.95	16.92	7.28	0.677	0.0	48 39	264	69	Slightly tucked		
1317	3აე	37.95	16.96	7.24	0.677	0.0	40	265	GS			
										·		
									-			
							-					
										:		
1												
Comments:		<u> </u>										
		1.2p	pm ->	8.01	pm							
Analytical Pa										Sample Start Time: 1320		
TCL VOCs ar Weather Cor	-1141									Sample Finish Time: √372		
	<u> </u>	lady	50°	F						Revised 01/05		
A Earwalue	areater that	. 1										

(3) For values greater than 1. Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

Sheet	of	

WELL NUMBER		WELI	. INFORMA	TION		Date: 12-8-06
10.12/6	Well	Total (1)	Depth to	Depth to		TRC Personnel: Greg Soska, Joseph Schwarz
MW 260	Diameter	Depth	Water	Product	PID	Site Name: LIRR- Morris Park Yard Facility
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY
	2	46.5	36 93	46.5	零	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well after sampling.

TOC = top of casing

		PURGIN	G INFORM	ATION		TRC RAVIV METER NUMBERS			
		Pump (2)	Purge	Purge	Flow	Total	pH:	Cond:	DO:
Pump	Tubing	Intake	Start	Stop	Rate	Purge	Eh:	Turbidity:	NJDEP Cert, No. 07734
Type	Type	Depth (ft)	Time	Time	(ml/m)	Vol. (gal)	Rental Meter Name: Horit	oa U-22	
CUMNS	LOPE	40	954	1022	350		Rental Meter Serial No.:	10185	
		(2) Below	TOC	1	***************************************				

PURGING PARAMETERS (measurements are to be taken approximately every 5 minutes) ± 10% ± 10 mv ± 10%(3) Criteria: <0.3 ft ± 0.1 su ± 3% D.O. ORP Turbidity Water Conditions/Comments Flow Rate Depth to Temp pН Cond <u>Initi</u>als (NTU) (ml/m) Water (ft) (°C) (su) (mS/cm) (ppm) (mv) 4 3695 1.17 0.517 0955 65 1000 1065 010 34 10 15 O Comments: norative Sample Start Time: / 0 () Analytical Parameters: Sample Finish Time: 10 7 CL VOCs and TCL SVOCs ather Conditions: Cledr

Sheet	of	

WELL NUMBER		WEL	INFORMA	TION		Date: 12-15-06
MW 27D				TRC Personnel: Greg Soska, Joseph Schwarz		
	Diameter	Depth	Water	Product	PID	Site Name: LIRR- Morris Park Yard Facility
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY
	2	150	38.19		**	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well after sampling.

TOC = top of cas	ing
------------------	-----

Pump Tubing Tubing Tupe Type Type Depth (ft) Time Time (ml/m) Vol. (gal) Rental Meter Name: Horiba U-22 Grand fos UPE 140 1036 300 Rental Meter Serial No.: 10185			G INFORM	ATION		TRC RAVIV METER NUMBERS			
Committy from (Sett) from the control of the contro	R	 	Start	Stop	Rate	Purge	Eh:	Turbidity:	
		 		Time				 	

		PURC	ING PARA	PURGING PARAMETERS (measurements are to be taken approximately every 5 minutes)											
· · · · · ·	Criteria:	<0.3 ft	+ 3%	± 0.1 su	± 3%	± 10%	+ 10 mv	± 10% ⁽³⁾	ely every :	minutes)					
Time	Flow Rate (ml/m)	Depth to Water (ft)	Temp (°C)	pH (su)	Cond (mS/cm)	D.O. (ppm)	ORP (mv)	Turbidity (NTU)	initials	Water Conditions/Comments					
1037	250		15.47	4.79	0.306	5,12	13	38.4	ten S	elear					
1092	300				0.683	0.0	23	*	4225	very brown, * twh error					
1047					0,685	0.0	21	<i>)</i> ¥	JW5	very boxon, y turb, ziror					
10.52	300	38,17	16.40	7,16	0,684	0,0	20	эb	SW	. " " " " " " " " " " " " " " " " " " "					
1057	306	38,17	16.42	7.16	0.682	0.0	19	<i>X</i> C	AMS	good!					
									· · · · · · · · · · · · · · · · · · ·						
1						-									
comments:	**** \$10	P26604	MRFU	worth)											
nalytical Pa	rameters:								·- · · · · · · · · · · · · · · · · · ·	Sample Start Time: 1057					
CL VOCs ar				T						Sample Finish Time: //b/					
Veather Con	10	00% C	oud co	シャセト	55° F	-									
3) For values						7			 						

(3) For values greater than 1.

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

Revised 01/05

Sheet	of

WELL NUMBER		WELI	L INFORMA	ATION		Date: 12-13-00	
MW-28S PERMIT NUMBER	Well Total (1) Diameter Depth (inches) (ft)		Depth to Water TOC (ft)	Product P		TRC Personnel: Greg Soska, Joseph Schwarz Site Name: LIRR-Morris Park Yard Facility Site Location: Richmond Hill, NY	
	2	44.2	35.20	•		TRC Job Number:46130-0010-00004	

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

			G INFORM	ATION	TRC RAVIV METER NUMBERS				
Pump	Tubing	Pump (2) Intake	Purge Start	Purge Stop	pH: Cond; DO; Eh: Turbidity: NJDEP Cert. No. 07734				
Type	Type しかぎ	Depth (ft) 낙O	Time	Time	(ml/m) 200		Rental Meter Name: Rental Meter Serial		\$
		(2) Below	TOC			<u> </u>			

•	Criteria:	<0.3 ft	± 3%	+ 0.1 su	measureme		4.5	bb. oxunare	SID GACIA	minutes)	
	Flow Rate	Depth to	Temp	± 0.1 Su	± 3% Cond	<u>+</u> 10% D.O.	± 10 mv ORP	± 10% ⁽³⁾ Turbidity		11/2-1-0	
Time	(ml/m)	Water (ft)	(°C)	(su)	(mS/cm)	(ppm)	(mv)	(NTU)	Initials	Water Conditions	/Comments
100	200	35.21	17.4	5.30	1.17	7.47	214	200	65	TURSIU	
105	200	35.20	18.1	5-45	1.16	646	218	348	03	TURSIO	
1110	200	35.20	182	5.49	1.16	6.47	211	326	ر (د)	SLICHTLY T	V/And
1115	200	35.22	18.3	5.50	1.15	6.42	سائد	307	65	11	
1/20	200	35.2	14.5	5.50	1.16	6.15	Zou	17:3	(-5		
1125	200	35.4	18.6	5.50	1.15	1 44	200	275	65	1	: •
1130	263	3524		5.49	1.14	7 39	199	2.11	65	1,	· · · · · · ·
		7.3.5		-12			* * *	<u> </u>			
							š				,,,
				·					•		
				· · · · ·						:	
		- 1	***************************************	-	i						
								·		-	
	·		<u>. </u>				-	<u> </u>			
									-		
											- 10 Pr
										_	
							+				
mments:				<u></u>							*
lutical Do	rameters:	******			· · · · · · · · · · · · · · · · · · ·						· · · ·
	rameters: d TCL SVO(?ė								Sample Start Time:	30
ather Con		RAII								Sample Finish Time:	177

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

TRC Raviv Job No.

Sheet	of

WELL NUMBER		WEL	L INFORMA	TION	****	Date: 12-13-01
MULZED	Well	Total (1)		Depth to		TRC Personnel: Greg Soska, Joseph Schwarz
1110 201	Diameter	Depth	Water	Product	PID	Site Name: LIRR- Morris Park Yard Facility
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY
	<u></u>	133	35,15		Ж	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well after sampling. TOC = top of casing

		PURGIN	G INFORM	ATION	TRC RAVIV METER NUMBERS						
Pump (2) Purge Purge Flow Total								Cond:	DO:		
Pump	Tubing	Intake	Start	Stop	Rate	Purge	Eh:	Turbidity:	NJDEP Cert. No. 07734		
Туре	Type	Depth (ft)	Time	Time	(ml/m)	Vol. (gal)	Rental Meter Name: Horiba U-22				
GNIVOS	LOPE	120	1100	1118	300	·	Rental Meter Se	erial No.:			
		(2) Below	TOC								

		PURC	ING PARA	METERS (measurem	ents are to	be taken a	pproximate	elv every 5	i minutes)
	Criteria:	<0.3 ft	± 3%	± 0.1 su	± 3%	± 10%	± 10 mv	± 10% ⁽³⁾	l viciy o	- Mindeesy
	Flow Rate		Temp	На	Cond	D.O.	ORP	Turbidity		Water Conditions/Comments
Time	(mi/m)	Water (ft)		(su)	(mS/cm)	k (ppm)	(mv)	(NTU)	Initials	
101	300	35,15	1526		-515	0.7	81	600	w	*
1106	302	35,15	1.8	6.14	.520	0.31	79	656	Jus.	À
HH	300	*	15.4	6.40	.514	0.74	84		Sul	¥
1116	3017	*	ال.ك	6.41	-484	0-75	31	741	SWL	¥
						*				
										<u> </u>
				·						
									- w. 4	·
									·····	£ '
	. 1	İ								
*			1							
				-;						
omments:	* Rain	ing h	ard							
	rameters:	·····	AC. A.	······································						Sample Start Time: 1/16
	nd TCL SVO	Cs -		-						Sample Finish Time: 1118
ather Cor	nditions: /) (. 50	·F					<u> </u>	
	greater than	ainy	, ,,,							Revised 01

(3) For values greater than 1. / Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

Sheet	of

WELL NUMBER		, METI	. INFORMA	TION	 Date: 12-14-06
MW-29D	Well	Total (1)		Depth to	TRC Personnel: Greg Soska, Joseph Schwarz Site Name: LIRR- Morris Park Yard Facility
PERMIT NUMBER	Diameter (inches)	Depth (ft)	Water TOC (ft)	Product TOC (ft)	Site Location: Richmond Hill, NY
	a	190	37.08		TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well after sampling.

TOC = top of casing

<u> </u>		PURGIN	G INFORM	ATION			TRC RAVIV METER NUMBERS			
Pump (2) Purge Purge Flow Total							pH:	Cond:	DO:	
Pump	Tubing	Intake	Start	Stop	Rate	Purge	Eh:	Turbidity:	NJDEP Cert. No. 07734	
Type	Туре	Depth (ft)	Time	Time	(ml/m)	<u></u>	Rental Meter Name: Hori			
Crutos	WPE	80	845				Rental Meter Serial No.:	01533		
		(2) Below	roc .					•		

PURGING PARAMETERS (measurements are to be taken approximately every 5 minutes) $\pm 3\%$ $\pm 10\%$ ± 10 mv $\pm 10\%$ <0.3 ft <u>+</u> 0.1 su Criteria: Water Conditions/Comments рН D.O. ORP Turbidity Depth to Temp Cond Flow Rate (mv) (NTU) Initials (ml/m) Water (ft) (°C) (su) (mS/cm) (ppm) Time 989 0.0 -31 Cless 14.8 8:50 200 673 .37 0.79 i (150 7,02 -50 07 名:55 300 L -70 15.1 7.05 9:00 Z00 -73 7.08 10.4 65 1.65 0.0 **1** # 100 15.2 9:05 2 110 7.05 .4 0.0 ħ 41.0 15.2 100 9:10 **G**5 47 0.0 7.09 1.64 100 9:15 12. Comments: & BRAW DOWN DUE TO LOW OR NO RECHARGE
FLOW DOWN TO 100 M/M, Still no recharge Sample Start Time: 915 Analytical Parameters: Sample Finish Time: 🧿 🤈 🕏 TCL VOCs and TCL SVOCs Weather Conditions: Revised 01/05

For values greater than 1

y Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

`(9 P\

Sheet	of	

WELL NUMBER		WEL	L INFORMA	TION		Date: 2-14-06
MW-300 PERMIT NUMBER	Well Dlameter (inches)	Total (1) Depth (ft)	Depth to Water TOC (ft)	Depth to Product TOC (ft)	PID	TRC Personnel: Greg Soska, Joseph Schwarz Site Name: LIRR- Morris Park Yard Facility Site Location: Richmond Hill, NY
	2	120	37.37		$\overline{}$	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

Pump Tubing Intake Start Stop Rate Purge Flow Rate Purge Flow Rate Purge Flow Total Purge Flow Purge Flow Rate Purge Flow Rate Purge Flow Purge Flow Rate Purg			•	IG INFORM	ATION			TRC RAVIV METER NUMBERS			
BG 12 12 15 15 15 15 15 15 15 15 15 15 15 15 15	Pump Tubing Intake Start Stop Rate Purge							pH: Cond: DO: Eh: Turbidity: NJDEP Cert. No. 07734			
	Bruntus	7.	120		Time	(ml/m)			10185		

		PURG	SING PARA	METERS (measurem	ente are to	be taken a			
	Criteria:	<0.3 ft	± 3%	± 0.1 su	± 3%	± 10%	+ 10 mv	+ 10% ⁽³⁾	every :	o minutes)
Time	Flow Rate (ml/m)	Depth to	Temp	рН	Cond	D.O.	ORP	Turbidity		Water Conditions/Comments
0855	 	Water (ft)	(°C)	(su)	(mS/cm)	(ppm)	(mv)	(NTU)	Initials	
	250		14.86	6.44	158.0	9,68	-62	₹	8008	clear
0980		37,37	15,32	7.05	0,942	0,44	-126	Æ.	4002	clear
0903	250	37.37	15,88	7.32	0.954	0.0	-156	ok€.	tw<	dear
0910	250	37.37	16.07	7.35	0,975	0.0	761	%€	1008	clean
0915	<i>হ</i> ত	33 05	16.17	7.32	0,998	0.0	-159	7X.	26A	clear
0920	250	38,15	16.17	7,25		0,0	-153	£48	ZOST	clear
0925	250	38,15	16.19	7,23	1.14	0.0	-153		Bast	good
										9
										_
										·
Comments:	00 tur	b. pvabe	e evro	<u>-</u>		·		<u></u>		
nalytical P	arameters:					······································				Sample Start Time: 0996
CL VOCs a	nd TCL SVO									Sample Finish Time: 0920
Veather Co	nditions:	Clear	Sunn	50°	F					
3) For value	greater than	4	~ ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `		<u> </u>					

(3) For values greater than 1. Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

Revised 01/05

TDC		Project: Pr			Proj	roject No.:			Date/Ţime	e:	-Cl 4	[
		<u> L1F</u>	RR CFC			107		$\int I $	914/06	1245	Sheet of		
Groundwater Low-Flov		TRC P	ersonr	nel:			,						
Sampling Data Rec		1 NW3 DWIALT											
Well Ide	entificati	ition: MW-33D											
WELL INTEGRITY												storical	
	YES N	10 C	asing S	tick-u	NF	ft.	Dep	th	ft.	p of rise	. —	easured:	
Protect. Casing Secure		_ <u> </u> "	rom gro	ound) - —			- Nevata		K74.	op of casi		otch orth side	
Concrete Collar Intact PVC Stick-up Intact	1 1	- R	iser Sti	ck-up	~^ ^		Dept	er th <u>35/52</u>	2 ft. 🗀 _			igh pt	
Well Cap Present	闵卜	- ["	rom gro	ound) .	<u> 10 U</u>	ft.			- p intake	1		en mark	
Security Lock Present		$ _{w}$	/ELL DI	AMETE	R 🕅	2 incl	1	in or puin	pao		 .16 gal/ft	(2 in.)	
		_ _				4 incl	1				.65 gal/ft (4 in.)		
		_				6 incl	Heig	ht of			1.5 gal/ft (6 in.)		
	1 aug l	\neg L			_ ᆜ		. Wate	er Column	f	t. x	gal/ft	gal/ft (in.)	
PID SCREENING (ppmV	Lary Mal	fund to	ELL M	ATERIA	NL		Volu	ıme of Wa	ter in Wel	=	gall	on(s)	
Background		4 1	1 . /l]			•				_ Total gallons	
Well Mouth	(if requir	ed)	PVC	SS	3		[Vol	. = r ² h(0.1	163)]		purge	purged	
FIELD WATER QUALITY	MEASUF	REMEN	TS	_	Deptl	n to NA	PL_	1	hickness	of NAPL			
Time	1245	121	18 1	251	125	54 17	257	1300	1303				
Temp. (C)	17,201	168	55 16	68	16,6	1 16	210	16.57	16,55				
Conduct. (µmhos/cm))	0.983		_	98 '98	21		16	7.17	7.18				
DO (mg/l)	3.70	_	-	.07	00		03,		0.00				
pH (Std. Units)	743	71	7 7	12	717		11	7.11	7.11				
-Eli (millivolts)	753	1		26	-74		711	-25	-24				
Turb. (NTU)	7-25	61		4 0	22		<u></u>	44	38				
Flow (ml/min)	300	`30°	- -	70 DO	300		\overrightarrow{bo}	300	2 00				
Depth To Water (ft)	c Var	cle		lear			eu/	CPON	clear				
Time	CIA	T.V.	MIL	HVV.	LACO	× 161	ev(Y	LACOU	7.16.04				
Temp. (C)		 				_							
		 	\dashv								-	-	
Conduct. (µmhos/cm)		-											
DO (mg/l)		╂					····				-		
pH (Std. Units)		 											
Eh (millivolts)		ļ	_								ļ		
Turb. (NTU)		1								:		<u> </u>	
Flow (ml/min)						\dashv					 	 	
Depth To Water (ft)	<u> </u>	<u> </u>					. = -		<u> </u>	<u> </u>	1	 	
Pump Type	Purge	Samp	le Des	criptio	n of Sa	mpling	g Equip	oment (Mo	del and S	N):		ł	
Peristaltic Pump Submersible Pump	H	H						 					
Bladder Pump		図											
Other:	ـ ك ـ								······································				
Analytical Parameter	Filtered	(Y/N)	Prese	rvation	T	Volum	e/Con	tainers	Time Co	llected	Samp	le ID	
VOC. TIL 41 AL	N)		14		+-		50 m		130		MW-		
7	1	1 401				- 2 V DO THE MAR			124		FRI		
								\sim					
					Signe	eq.	\int_{Ω}	<u> </u>			Rev: 1	Nov. 2005	
					J.9.10		# Y						

	Projec	t:	Project No	.: _	Date/Time:	1114		
INC	415	2RCFC	1078	65	10/14/0	8	Sheet	_ ot
Groundwater Low-F Sampling Data Reco		Personnel:	H					
Well ide	entification:	MW-32	D					
WELL INTEGRITY		Protective	a NiA	Well	Refere	nce Poi	—	torical
Protect. Casing Secure Concrete Collar Intact PVC Stick-up Intact Well Cap Present Security Lock Present		Casing Stick-up (from ground) Riser Stick-up (from ground) WELL DIAMETE		ł	9/ ft.	o of rise o of cas	r no ing no hiç	
			6 inch	Height of			1.5 gal/ft	
			_ 🖳	Water Colum	n ft.	x _	gal/ft (
PID SCREENING (ppmV)	Lamp [WELL MATERIAI		Volume of W	ater in Well :	=	gallo	on(s)
Background	Maltunette	$^{\prime\prime}$ \square						gallons
Well Mouth	(if required)	Pvc ss		[Vol. = r ² h(0	.163)]		purged	
FIELD WATER QUALITY	MEASUREME	NTS	Depth to NAI	PL NA	Thickness o	f NAPL	NA	
Time	1122 11	25 1128	1131 11	34 1137	1140			
Temp. (C)	1918 18	64 8 24	18.2818	29 181	71818			
Conduct. (µmhos/cm))	0.517 87	114 0.457	0388 01	688 0.77	0.846			
DO (mg/l)	1570	99 00	0.16 0.	00 0.00	000			
pH (Std. Units)	276 7	56 7.75	7717	76	7.66			
sti (millivolts)	117-11	0113	104 1	04 96	86			
Turb. (NTU)	850 4	13 555	646 7	50 913	, , , ,			
Flow (ml/min)		00 100	100 1	001100	100			
Depth To Water (ft)	clondy &	ondy Cloud	clearc	lear clea	clear	-		
Time	1	_11						
Temp. (C)								
Conduct. (µmhos/cm)				•				
DO (mg/l)								
pH (Std. Units)								
Eh (millivolts)								
Turb. (NTU)								
Flow (ml/min)								
Depth To Water (ft)								
Pump Type Peristaltic Pump Submersible Pump Bladder Pump Other:	Purge Sam	pple Description	n of Sampling	Equipment (M	lodel and S/N	V) :		
Analytical Parameter	Filtered (Y/N)	Preservation	Volum	e/Containers	Time Coll	lected	Sampl	e ID
VOC, TCL, 4CFG MS/MSD		HCI	3X(6X6	60 mLVia	1140		MW- MS/MSD	32D
	·							
								

TDC		Project:			Project No.:				J	Date/Time:			Sheet of _1		
		4	LIRRCFC			107865				10/14/080850			Sheet_	of	
Groundwater Low-Flo		TRC Personnel:					<u>, () (</u>	<u>~ ~</u>	L		- •				
Sampling Data Rec		DW/AH													
Well Id WELL INTEGRITY	entific	<u>atioi</u>	[i				Refer	ence Poir	nt. It	istorical	
WELLINIEGRITI	YES	NO	Prote	ective na Stick-w	N.	A	ft.	Well	th 135				П,	neasured:	
Protect. Casing Secure		NO Casing Stick-up (from ground)					'-	Depe	+	16.		p of rise	notch		
Concrete Collar Intact	K	Riser Stick-up					Water					p of casi	_ [] 	- Inorui side	
PVC Stick-up Intact			r Suck-up 1 ground)	N	11. Depth 48.1					<u> </u>			high pt		
Well Cap Present Security Lock Present	Well Cap Present			· <u> </u>				Dept	th of pun	ıp int	ake	f	t. L.	pen mark	
Security Lock Fresent	لكيا	<u>Ш</u>] WEL	L DIAMETE	ER /							X	.16 gal/ft (2 in.)		
			<u>-</u>		⊢	_	inch inch		L C				.65 gal/ft (4 in.)		
•			-		 	┤		Heig	nt of er Colum:	_	4	, H	1.5 gal/ft (6 in.)		
PID SCREENING (ppm\	/)					= =								_ gal/ft (in.)	
Background ().()	ĺ		WEL	L MATERIA	\L	_	,	Volu	me of Wa	ater ir	n Well	=	gallon(s)		
Well Mouth 5.3	(if req	uired)	X		ĺ	L	┙╽	[Val	. = r ² h(0.	163\]			Tota purg	l gallons	
Wen model 1 373			PV	C SS						103/]					
FIELD WATER QUALITY	1			1	Dep	th to	NAP	<u>ι Λ</u>	1/4	Thick	ness	of NAPL	NA		
Time	091	7	0919	0921	00	123	09	26	0929	(O	132	0935	0938	0941	
Temp. (C)	16:	99	16,77	16.50	161	<u>56</u>	16	63	16.7	16	\mathcal{H}	16.66	16,5	7 16.86	
Conduct. (µmhos/cm))	0.4	38/	2454	0.488	کرن	38	0.7	52	0.860	16	Ω	1.59	1,68	1.71	
DO (mg/l)	23	7 6	7.84	0.63	2.1	7	2	00	0.00	0.	00	0.00	0.00	0,00	
pH (Ştd. Units)	7.10	51	6.85	6.77	6.	76	6.	<u> ۲</u>	6.85	16.	92	6.49	7.0	JINL	
(hillivolts)	13	8	154	157	15	7	14	2	142	1/3	1	127	119		
Turb. (NTU)	44		48.7	200	₹,		5	0	500	4	41	267	262	202	
Flow (ml/min)	150		150	150		0		00	100	 		100	100	100	
_Depth To Water (ff)	Cla		clear	clear	da	7	cla	7	cloud		rida	cloud	7	clear	
Time	0944		2947		<i>t.100</i>	"	cw-		(1000	1 -	/ /	10000	1 Cico	cucy	
Temp. (C)		$\overline{}$								1			 	+	
Conduct. (µmhos/cm)	16.5		1656		ļ					+			-		
	1.74		1,74							-			 	-	
DO (mg/l)	<u>D.O.</u>	2 (<u> </u>										ļ		
pH (Std. Units)	10	٤٤	4.06							 					
स्ति (millivolts)	105		103							ļ					
Turb. (NTU)	109		105												
Flow (ml/min)	100	2	<u>100</u>							ļ		***			
Depth To Water (it)	Clea		cleas				<u> </u>			<u></u>			<u> </u>		
Pump Type	Purg	e S	ample	Descriptio	n of S	Samp	ling E	Equip	ment (Mo	odel a	nd S/	N):			
Peristaltic Pump	-		Н.					_							
Submersible Pump Bladder Pump			Θ .												
Other:			 												
Analytical Parameter	Filtere	d (Y/		eservation					ainers			lected	Sam	ple ID	
YOC, TCL, 4CFCS	^	JHG			\dashv	3XCOML Vial				9:55			MW-31D		
						1				10:00			DUPI		
		····			_										
					\dashv										
						···		7	A	,	····				
					Sigr	ned:	/	1/0		4	To the same	O-1	Rev:	1 Nov. 2005	
							,	ℓ^{-}		_					

Sheet	of	

WELL NUMBER	WEL	L INFORMAT	ПОМ		Date: 12/14/06
MW 2050 PERMIT NUMBER	Well Total (1) Dlameter Depth (inches) (ft)	Water	Depth to Product TOC (ft)	PID	TRC Personnel: Greg Sóska, Joseph Schwarz Site Name: LiRR- Morris Park Yard Facility Site Location: Richmond Hill, NY
	4 60 50	38.14	100(11)	tr. b	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

ļ	γ		G INFORM	ATION		TRC RAVIV METER NUMBERS		
Pump	Tubing	Pump (2)		Purge	Flow		pH; Cond: DO:	
Type	Type	Depth (ft)	Start Time	Stop	Rate	1 ~	Eh: Turbidity: NJDEP Cert. No. 07734	
/ //	i iyos		111110	Time			Rentel Meter Name: Horiba U-22	
Sounds	LWPE	144	1207		300		Rental Meter Serial No.: 01533	
		(2) Below	TOC					

****	0.71	PURU	ING PAR	METERS	measurem	ents are to	be taken a	pproximate	ly every t	ininutes)
	Criteria: Flow Rate	<0.3 ft	± 3%	+ 0.1 su	± 3%	± 10%	± 10 mv	± 10% ⁽³⁾		
Time	(ml/m)	Water (ft)	(°C)	pH (su)	Cond (mS/cm)	D.O. (ppm)	ORP (mv)	Turbidity (NTU)	Initials	Water Conditions/Comment
<u> 208</u>	250	38.15	· · · · · · · · · · · · · · · · · · ·	6,62	0.802	8.38	174	*	Jus.	Clean
213		38.15		6.53	0.821	8,20	113	*	405	clean
218	300	38.15	18.8		0.819		109	₩ 0	4000	elean
223	300	38,15	19.4	6.49	0,802	8,27	106	46	ws	Clean
US.	300	36,15	19.4	6.48	0,793	8,26	106	p (4 <i>∩</i> 7≥	god
										<u>V</u>
						-,-				
			•							
									•	
									·	
mments:		***************************************								
गमाशाहः व	* PID	nolfin.	Lan	* 7	J.,	100 00	co. /			
alytical Pa	rameters:	- IW 1 AU	~110V)	<u> </u>	wi pr	YX CV	UV			Sample Start Time: (22-3
_ VOCs ar	d TCL SVO	Os								Sample Finish Time: [23]
ather Con	ditions: (SONON	. 55	0 [V. i.i./			l	1001

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

110 115 24 2 110

Sheet ___ of ___

WELL NUMBER		WELI	INFORMA	TION	· · · · · · · · · · · · · · · · · · ·	Date: 12-6-06
MW 215	Well			Depth to		TRC Personnel: Greg Soska, Joseph Schwarz
	Diameter	Depth	Water	Product		Site Name: LIRR- Morris Park Yard Facility
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY
	2	49	38.90		0.0	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well after sampling. TOC = top of casing

							,			
	PURGING INFORMATION							TRC RAVIV METER NUMBERS		
_		Pump (2)	Purge	Purge	Flow	Total	pH:	Cond:	DO:	
Pump	Tubing	Intake	Start	Stop	Rate	Purge	Eh:	Turbidity:	NJDEP Cert. No. 07734	
Туре	Туре	Depth (ft)	Time	Time	(ml/m)	Vol. (gal)	Rental Meter Name: Horiba	u-22		
Growfes	LDPE	47	1540		200		Rental Meter Serial No.:	10185		
		(2) Below	roc							

	C-111	PURC	ING PARA	METERS (measureme	nts are to	be taken a	pproximate	ly every 5	i minutes)
	Criteria: Flow Rate	<0.3 ft Depth to	± 3%	± 0.1 su	±3%	± 10%	± 10 mv	± 10% ⁽³⁾		
Time	(mi/m)	Water (ft)		pH (su)	Cond (m5/cm)	D.O. (ppm)	ORP (mv)	Turbidity (NTU)	Initials	Water Conditions/Comments
1540	200	38.95		6.49	0.120	10.85	118	916	GT	TURBIS - BROWN
1545	200		14.34			10.29		912	رئ	TIMBIO -TAN
1550	300	38.95	14.87			10,03	141	887	GS	11 11
1555	300	38.95			0.128		144	794	CS	11 /
<u> </u>	300	38.95	15.55	6.32	0.125	10.06	142	345	ري	11 11
1505	300	38.95	15.38	6.30	6.125	9.88	146	298	GS	
1610	300	38.95	15.40	6.29	0.127	10.09	150	299	65	
•		•								
									····	
								***************************************	,	

									·	
Comments:							····			
Analytical Pa	arameters:			·						Sample Start Time: 1670
TCL VOCs at	nd TCL SVO	Cś.								Sample Finish Time: /6/2_
Weather Cor	iditions:		·.							
(3) For values	orester that	1	THE PERSON NAMED OF THE OWNER, TH	···						Revised 01/05

(3) For values greater than 1, and a Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

Sheat	of

WELL NUMBER		WELI	L INFORMA	TION		Date: 12-6-06
MWZID PERMIT NUMBER	Weil Diameter (inches)	Total (1) Depth (ft)	Depth to Water TOC (ft)	Depth to Product TOC (ft)	PID	TRC Personnel: Greg Soska, Joseph Schwarz Site Name: LiRR- Morris Park Yard Facility Site Location: Richmond Hill, NY
	2	150	38.80		0.0	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

		PURGIN	G INFORM	ATION	TRC RAVIV METER NUMBERS				
Pump Type	Tubing Type	Pump (2) Intake Depth (ft)	Start	Purge Stop Time	Flow Rate (ml/m)	Purge	pH: Eh:	Cond: Turbidity:	DO: NJDEP Cert, No. 07734
Bruntos				C	(111111)		Rental Motor Name: Horiba Rental Motor Serial No.:	10-22 11533	
	***************************************	(2) Below	TOCISSA						

	PURGING PARAMETERS (measurements are to be taken approximately every 5 minutes)									
	Criteria:	<0.3 ft	± 3%	± 0.1 su	+ 3%	± 10%	± 10 mv	+ 10% ⁽³⁾	ely every 5	minutes)
Time	Flow Rate		Temp	рН	Cond	D.O.	ORP	Turbldity	1	Water Conditions/Comments
	(ml/m)	Water (ft)		(su)	(mS/cm)	(ppm)	(mv)	(NTU)	initials	
1546	200	38,81	14.1	938	6.35°	2,47	96	5313	JWS	Clean
1545	250	38,81	14.9		0,765	0,0	128	680	dvS	Turbid Brown
1550	J20	38,81	15,5	7.61	0.913	0.0	66	*	SNE	Very Turbid Turbiddy error
1555		38.81	15.3	7.61	0,923	0,0	5a	*	CWS	Note The Park
1600	250 .	38,81	15,3	7,60	7,32	0,0	45	*	WS.	* trb, enor
1605	250	જી.હા	B12		01 936	0,0	45 -	*	AMS	* CoA. error
					· · · · · · · · · · · · · · · · · · ·					
			-							
									·	
						. [
			T							
Comments:			<u>-</u>			<u> </u>				
Analytical Pa									٤	Sample Start Time: 1605
CL VOCs ar Veather Con	d TCL SVO	Cs .			***				5	Sample Finish Time: 1600
		Partly	loudy	400F	-					
3) For values	greater then	1.	wvv.	/ ` '						Revised 01/05

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

Sheet	of	

WELL NUMBER		WEL	L INFORMA	TION		Date: //-28-06	1
MW 225	Well	Total (1)	Depth to	Depth to		TRC Personnel: Greg Soska, Joseph Schwarz	32 (44
	Diameter	Depth-	Water	Product	PID	Site Name: LIRR- Morris Park Yard Facility	
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY	
	2		38.55		0.0	TRC Job Number:46130-0010-00004	

(1) Use a previously determined total depth. Confirm the total depth of well after sampling.

TOC =	top of	casing
-------	--------	--------

		~	G INFORM	ATION			Т	RC RAVIV METER	NUMBERS
Pump	Tublum	Pump (2)	Purge	Purge	Flow	I	pH:	Cond:	DO:
1	Tubing	intake	Start	Stop	Rate	-	Eh:	Turbidity:	NJDEP Cert. No. 07734
Туре	Туре	Depth (ft)	Time	Time	(ml/m)	Vol. (gal)	Rental Meter Name: Horib	a U-22	
Gronfos	1208E	48	1430	1506	200		Rental Meter Serial No.:	10185	
•••		(2) Below	roc						

-	arameters: and TCL SVO	Cs 10690					weze :		1	Sample Start Time: 1507 Sample Finish Time: 150 9
omments:										
									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
· · · · · · · · · · · · · · · · · · ·									****	
· · · · · · · · · · · · · · · · · · ·										
								,		
	<u> </u>									<u> </u>
505	200	<u> 38,56</u>	1932	6.29	0.160	7,99	129	16.2	2W	Good
500	200			6.30	8.164	8115	130	19.1	aus	lowered pump
155	250	38,56	10.19	3	0,168	8,46	123	h,7	<u>ws</u>	
<u>450</u>	300		23,34		0.150	7,60	105	32.2	<i>fus</i>	Flow rate moresed/pos
1445		38.56	***		0.156	7,69	108	77,8	AMS	increased flow rute.
1440		53.56			0.158	7.79	109	73,8	SWP	Clear
Time	(ml/m)	Water (ft)		(su)	(mS/cm)	(ppm)	(mv)	Turbidity (NTU)	Initials	Water Conditions/Comments
	Criteria:	<0.3 ft Depth to	± 3% Temp	±0.1 su pH	±3% Cond	± 10% D.O.	<u>±</u> 10 mv			

(3) For values greater than 1.

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

11/27/2006 4:19 PM

Sheet	of
SHEET	or

WELL NUMBER		WELI	. INFORMA	TION		Date: 11-29-06			
111775	Well	Total (1)	Depth to	Depth to		TRC Personnel: Greg Soske, Joseph Schwarz			
WM 7.97	Diameter	Depth	Water	Product	PID	Site Name: LIRR-Morris Park Yard Facility			
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY			
·	2	<i>5</i> 0	40.25	ے	0,0	TRC Job Number:46130-0010-00004			

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

		PURGIN	G INFORM	ATION		TRC RAVIV METER NUMBERS			
		Pump (2)	Purge	Purge	Flow	Total	pH:	Cond:	DO:
Pump	Tubing	Intaka	Start	Stop	Rate	Purge	Eh:	Turbidity:	NJDEP Cert. No. 07734
Туре	Type	Depth (ft)	Time	Time	(ml/m)	Vol. (gal)	Rental Meter Name: Hori	ba U-22	
GOWFOS	HOPE	40	11:10	11:40	250		Rental Meter Serial No.:	01533	
		(2) Below	TOC		***************************************				. , . , . , . , . , . , . , . , . , . ,

r				h 4 Marrier Th. 4						ţ.
						ents are to		pproximate	ly every 5	minutés)
	Criteria: Flow Rate	<0.3 ft Depth to	±3% Temp	±0.1 su pH	± 3% Cond	± 10% D.O.	± 10 mv ORP	± 10% ⁽³⁾ Turbidity		Water Conditions/Comments .
Time	(ml/m)	Water (ft)	(°C)	μπ (su)	(mS/cm)	(ppm)	(mv)	(NTU)	initials	water conditions/comments (
11:12	200	40.25	18.7	5.80	1.13	7.53	193	55.8	JUS	der
11:17	250	40.25		5.81	[.10	7.60	182	40.2	∕w5	clase
[1:22	250	40.25	21.7	5.81	1.11	7.64	177	55.0	jus	clean/stop/start
11:87	250	40.20		5.79	1.12	7.60	176	45.1	&≈ 5	alen !
11:32	250	40.20		5.79	613	7.78	(75	32.8	MIS	clear
11:35	200	46.20	226	5,79	114	7.76	173	24.7	₹MS	sped!
										U
								-		
							· · · · · · · · · · · · · · · · · · ·			
										,
Comments	Comments: O. O ppm									
Analytical	Analytical Parameters: Sample Start Time: 1/37									
	CL VOCs and TCL SVOCs Sample Finish Time: 1,30									
Weather C	onditions:	50°F	Par	Hy CL	oudy.					Revised 01/05

(3) For values greater than 1.

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

Sheet ___ of __(

WELL NUMBER		WEL	. INFORMA	TION		Date: 11-29-06
AA) Tommin	Weil	Total (1)	Depth to	Depth to		TRC Personnel: Greg Soska, Joseph Schwarz
MW 23D	Diameter	Depth	Water	Product	PID	Site Name: LIRR- Morris Park Yard Facility
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY
	2	165	40.80	}	0.0	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

		PURGING	INFORM.	ATION		TRC RAVIV METER NUMBERS			
		Pump (2)	Purge	Purge	Flow		pH:	Cond:	DO:
Pump	Tubing	Intake	Start	Stop	Rate	Purge	Eh:	Turbidity:	NJDEP Cert. No. 07734
Туре	Туре	Depth (fl)	Time	Time	(ml/m)	Vol. (gal)	Rental Meter Na	ime: Horiba U-22	
GKUNFOS	HAL	155	11:00	1140	200		Rental Meter Se	erial No.: 10185	

(2) Below TOC

		PURG	ING PARA	METERS (neasureme	nts are to	be taken aı	pproximate	lv everv 5	mlnutes)
	Criteria:	<0.3 ft	± 3%	<u>+</u> 0.1 su	. <u>+</u> 3%	± 10%	± 10 mv	± 10% ⁽³⁾		
Time	Flow Rate (ml/m)	Depth to Water (ft)	Temp (°C)	pH (su)	Cond (mS/cm)	D.O. (ppm)	ORP (mv)	Turbidity (NTU)	Initials	Water Conditions/Comments
1110	200	40.82	16.26	6.98	0.590	***************************************	83	59.6	Ġ۶	Cleas
1115	200	40.32	16.71	7.08	0.593	0-0	73	77.2	65	Clear
1120	200	40.80		7.4	0.596	0.0	28	819	GS	Clea
1125	200	40,80		7.19	0.595	0.0	-17	97.9	35	Clear
1130	200	40.80		7.30	0.603	0:0	-31		ک	Clear
1135	200		16.59	7.39	0.602	0.0	-36	145	GS	Cleer
1140	200	40.80		7.40	0.600	0.0	-38	144	65	Clear
1145	200	40.50	16.60	7.42	0.598	6.0	-40	150	S	Clear
١.						***************************************				
										,
		-								
			ž.,							
***************************************	***************************************						·			
,			······································			<u></u>				
Comments:										
nalytical F	arameters:				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					Sample Start Time: 11445
CL VOCs and TCL SVOCs Sample Finish Time: // 47										
eather Conditions: Part 4 Cloudy 50°F 1 Revised 01/05										

(3) For values greater than 1.

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

Sheet	of
JIHH	£31

WELL NUMBER		WEL	L INFORMA	TION		Date: 11-29-06
MW-245	Well	Total (1)		Depth to		TRC Personnal: Greg Soska, Joseph Schwarz
	Diameter	Depth	Water	Product	PID	Site Name: LIRR- Morris Park Yard Facility
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY
	2	50	40.35		0.0	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well after sampling. TOC = top of casing

	PURGING INFORMATION							TRC RAVIV METER NUMBERS		
i	İ	Pump (2)	Purge	Purge	Flow		pH:	Cond:	DO:	
Pump	Tubing	intake	Start	Stop	Rate	Purge	Eh:	Turbidity:	NJDEP Cert. No. 07734	
Туре	Туре	Depth (ft)	Time	Time	(ml/m)	Vol. (gal)	Rental Meter Name: Hori	ba U-2 2		
Grunfas	HOTE	41.0	1340	1405	300		Rental Meter Serial No.:	0/533		
		(2) Below	roc							

		PURG	ING PARA	METERS (neasurem	ents are to	be taken a	pproximate	ly every 5	i minutac)
	Criteria:	<0.3 ft	± 3%	± 0.1 su	± 3%	± 10%	± 10 mv			
Time	Flow Rate (ml/m)	Depth to Water (ft)	Temp	pH (su)	Cond (mS/cm)	D.O. (ppm)	ORP (mv)	Turbidity (NTU)	Initials	Water Conditions/Comments
1342	300	40.35		6.67	2.10	7.27	151	49.2	4W2	Turbid lovange
1347	300	40-38		6.69	2.11	2.14	127	10.2	AMS	Clearing up
1352		40.38		6.71	2,10	23.17	125	4.6	جست	clear
1357	300	40.38	19.6	6.71	2.08	8.16	123	2.2	2WE	good!
										U
									~	

			·				***************************************			
					····					
						-				
Comments:				***************************************						
semmants:	0.0 p	om Vo	65							
nalytical P	arameters:	· T · · · · · · · · · · · · · · · · · ·			"				·	Sample Start Time: 1358
	nd TCL SVC									Sample Finish Time: 1400
Veather Co		50°f	= , C	loudy						Revised 01/05
	s greater tha	n 1.	•	- /						

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

TRC Raviv Job No. CompanylTechnical/TRC Forms and Templatesilow flow field formsl.ow Flow - Field Form

11/27/2006 4:19 PM

Sheet	of	

WELL NUMBER		WELI	INFORMA	TION		Date: 11-28-60
34 300	Well	Total (1)	Depth to	Depth to		TRC Personnel: Greg Soska, Joseph Schwarz
MW 255	Diameter	Depth	Water	Product	PID	Site Name: LIRR- Morris Park Yard Facility
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY
	2	49	31.62		d. ا	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

		PURGIN	G INFORM	ATION		TRC RAVIV METER NUMBERS			
		Pump (2)	Purge	Purge	Flow	Total	pH:	Cond:	DO:
Pump	Tubing	Intake	Start	Stop	Rate	Purge	Eh:	Turbidity:	NJDEP Cert. No. 07734
Туре	Type	Depth (ft)	Time	Time	(ml/m)	Vol. (gal)	Rental Meter Na	me: Horiba U-22	
Gruntan	HDPE	૫૫	11:19	12:10	500		Rental Meter Se	rial No.:	
		(2) Below	FOC			······································			

PURGING PARAMETERS (measurements are to be taken approximately every 5 minutes) Criteria: <0.3 ft ± 3% ± 0.1 su + 3% ± 10% | ± 10 mv | ± 10%⁽³⁾ Depth to Turbidity Flow Rate Temp pН Cond D.O. ORP Water Conditions/Comments (ml/m) Water (ft) (°C) (su) (mS/cm) (ppm) (mv) (NTU) Initials 18,025.89 0.326 7.50 ₩S 172 37.62 956 200 fw5 0.316 7,02 170 300 6.22 21.35 285 150 11:50 500 161 AW S 20.83 11:55 6.22 .289 116 500 163 20% 1293 7/05 165 37.65 20,07 6.21 128 500 19.82 . 299 6.20 6.09 168 126 EUF 500 12:05 .299 6,95 500 170 118 263 PD = 1.6 you - 0.0 ppm Analytical Parameters: Sample Start Time: 7215 Sample Finish Time: 21 TCL VOCs and TCL SVOCs Weather Conditions: Revised 01/05

(3) For values greater than 1.

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

Sheet _ of _ J

WELL NUMBER		WELL	INFORMA	TION		Date: 11-28-06
	Well	Total (1)	Depth to	Depth to		TRC Personnel: Greg Soske, Joseph Schwarz
MW25D	Dlameter	Depth	Water	Product	PID	Site Name: LIRR- Morris Park Yard Facility
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY
	2	170	39 94		1,2	TRC Job Number;46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

	PURGING INFORMATION							TRC RAVIV METER NUMBERS		
		Pump (2)	Purge	Purge	Flow	Total	pH:	Cond:	DO:	
Pump	Tubing	intake	Start	Stop	Rate	Purge	Eh:	Turbidity:	NJDEP Cert. No. 07734	
Туре	Type	Depth (ft)	Time	Time	(ml/m)	Vol. (gal)	Rental Meter Name: He	oriba U-22		
Garatos	HDPE	155	1240	1320	200	<i>≒</i> 4	Rental Meter Serial No	10185		
t		(2) Below	TOC*							

		PURG		METERS (r	neasureme		be taken aj	pproximate	ly every 5	minutes)
	Criteria: Flow Rate	<0.3 ft Depth to	± 3% Temp	<u>+</u> 0,1 su pH	± 3% Cond	± 10% D.O.	± 10 mv ORP	± 10% ⁽³⁾ Turbidity		Water Conditions/Comments
Time	(ml/m)	Water (ft)	(°C)	(su)	(mS/cm)	(ppm)	(mv)	(NTU)	Initials	
1242	200	37.95	16 Pd			0.04	106	32.7	G5	Clear
1247	200	37.47	16.67	6.92	0.648	0.0	107	41.2	65	Cleac
1252	200	37.95		7.00) .bbb	0.0	92	79.6	63	Clear
1257	200	37.95	16-80	7.18	0.672	0,0	81	126	JUS	Clear Clear Clear
1302	460	27.95			0,615	0,0	67	176	ZWS	den
1307	550	27,95	16.97	7.27	0,618		44 39	248	gas	Cton
1312	300	37.95			0.677	0.0		264	69	Slightly tucked
1317	3აე	37,95	1696	7.24	0.677	0.0	40	265	GS	-
	:									
									•	
										4. '
Comments	G19	= 1.2 p	on -	∌ 0.∂ /	mgn					
Analytical F			1							Sample Start Time: / 32p
TCL VOCs	and TCL SVC)Cs								Sample Finish Time:/372
Weather Co	nditions:	lade	1 50	مد						Revised 01/05

(3) For values greater than 1.

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

Sheet ___ of ___

WELL NUMBER		WELI	INFORMA	TION		Date: 12-8-06
10:0	Well	Total (1)	Depth to	Depth to		TRC Personnel: Greg Soska, Joseph Schwarz
MWZ6D	Diameter	Depth	Water	Product		Site Name: LIRR- Morris Park Yard Facility
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY
	7	46,5	36 93	46.5	ボ	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well after sampling. TOC = top of casing

		PURGIN	3 INFORM	ATION				TRC RAVIV METER	R NUMBERS
		Pump (2)	Purge	Purge	Flow	Total	pH:	Cond:	DO:
Pump	Tubing	Intake	Start	Stop	Rate	Purge	Eh:	Turbidity:	NJDEP Cert. No. 07734
Type	Туре	Dopth (ft)	Time	Time	(ml/m)	Vol. (gal)	Rental Meter Name: Ho	oriba U-22	
E Mays	WPE	40	954	1022	350		Rental Meter Serial No	" (ol 85 <u> </u>	

(2) Below TOC ± 3% Cond Criteria: <0.3 ft ORP Turbidity Water Conditions/Comments pН D.O. Flow Rate Depth to Temp (mv) (NTU) initials Time Water (ft) (°C) (su) (ppm) (ml/m) (m3/cm) 65 7.17 0517 63 30 1 3 $\Gamma,[$ 10 is 662 PID Horative Sample Start Time: 1017 Analytical Parameters: Sample Finish Time: 10 11 CL VOCs and TCL SVOCs 170F, Wint ather Conditions: Revised 01/05

Sheet		of	
-------	--	----	--

WELL NUMBER	WELL INFORMATION					Date: 12-15-06
MW 27D	Well	Total (1)	Depth to	Depth to		TRC Personnel: Greg Soska, Joseph Schwarz
MWaly	Diameter	Depth	Water	Product	PID	Site Name: LIRR- Morris Park Yard Facility
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY
	a	150	38.19		光平	TRC Job Number:46130-0010-00904

(1) Use a previously determined total depth. Confirm the total depth of well after sampling. TOC = top of casing

		PURGIN	G INFORM	ATION			T	RC RAVIV METER	RNUMBERS
Pump	Tubing	Pump (2) Intake	Purge Start	Purge Stop	Flow Rate	Total Purge	pH: Eh:	Cond: Turbidity:	DO: NJDEP Cert. No. 07734
. Туре	Type	Depth (ft)	Time	Time	(ml/m)	Vol. (gal)	Rental Meter Name: Horib	a U-22	
Grand fos	LDPE	140	1036		300		Rental Meter Serial No.:	10185	
	***************************************	(2) Below	TOC			*************************			

PURGING PARAMETERS (measurements are to be taken approximately every 5 minutes)										
	Criteria:	<0.3 ft	± 3%	± 0.1 su	+ 3%	± 10%	+ 10 mv	+ 10% ⁽³⁾	iy every 5	minutes)
Time	Flow Rate (ml/m)		Temp (°C)	pH (su)	Cond (mS/cm)	D.O. (ppm)	ORP (mv)	Turbidity (NTU)	Initials	Water Conditions/Comments
1037	250	38,17	15.47	6:79	0.306	5,12	13	38.4	Jeas.	elear
1042	300	38.17	16.11	6,97	0.683	0:0	23	*	しゃく	very brown, * twh. error
10 47	300	38,17	16.28	7.14	0,685	0.0	21	*	さい	very boxon, 4 turb. ciror
10.52	300	38,17	16.40		0.684	0,0	20	क्षे	£772	· tı ′
657	306	38,17	16.42	7.16	0.682	0.0	19	*	₩S.	good!
									, <u></u>	
									······································	
-										
									•	
	14.3									
comments:	*** \$10	PERSONAL PROPERTY.	MUR	MOT BU						
Analytical P	arameters:									Sample Start Time: 70 57
TCL VOCs a	ind TCL SVC						W-2-1			Sample Finish Time: 1/D
Weather Co	nditions:	100% 0	load c	wer	55° (
(2) East tales		****								

(3) For values greater than 1.

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

Revised 01/05

GIRACE OI	Sheet	of
-----------	-------	----

WELL NUMBER		WELI	L INFORMA	TION		Date: 12-13-080
MW-285	Well	, ,	Depth to	Depth to	·····	TRC Personnel: Greg Sóska, Joseph Schwarz
1	Diameter	Depth	Water	Product		Site Name: LIRR- Morris Park Yard Facility
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY
	1	44.2	35.20			TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

		PURGIN	G INFORM	ATION			TRC RAVIV METER NUMBERS
Pump	Tubing	Pump (2) Intake	Purge Start	Purge Stop	Flow Rate	Purge	pH: Cond: DO: Eh: Turbidity: NJDEP Cart, No: 07734
Type	Type しかき	Depth (ft) 닉O	Time 057	Time*	(ml/m)_ 2 <i>0</i> 0		I) Rental Meter Name: Horiba U-22 (\$5.73 Rental Meter Serial No.:
		(2) Below	TOC				

		PURG	ING PARA	METERS /	TIG DELLITORIO	nts are to	ha takan n	anzavimata	le area E	
•	Criteria:	<0.3 ft	± 3%	± 0.1 su	+ 3%	± 10%	+ 10 mv	± 10% ⁽³⁾	ny every o	minutes)
	Flow Rate	Depth to	Temp	рH	Cond	D.O.	ORP	Turbidity		Water Conditions/Comments
Time	(mi/m)	Water (ft)	(°C)	(su)	(m8/cm)	(ppm)	(mv)	(NTU)	initials	
1100	200	35.21	17.4	5.30	1.17	7.47	214	200	65	TURSIO
1105	200	35°.20	18.1	5.45	f_{ij}	646	218	348	03	TUASIO
1110	700	35 U	(8, <u>7</u>	5.40	1.16	647	211	326	(J)	SULHTU TUME
11 15	200	35.22	18.3	5.50	1.15	643	Zile	307	G	<u> </u>
1120	200	35.2	14.5	5.50	100	6.44	204	280	(~S	1,
1125	220	35.42	18.6	5.50	1.15	1 68	200	275	G5	
1130	263	35.24	10	5.44	1.14	7. 39	199	271	త్	l,
						y	e ^t			
	,									
										, X,
								,		
						· .				
_										
Comments:				· · · · · · · · · · · · · · · · · · ·			1		· · · · · · · · · · · · · · · · · · ·	
Analytical P TCL VOCs a)Cs				· · · · · · · · · · · · · · · · · · ·			\$	Sample Start Time: 11 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Weather Co	nditions:	RAI	لد					,		W 1/2
3) For value	s greater tha	1 <u> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>	<u> </u>							Revised 01/05

(3) For values greater than 1.

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

Sheet	~£
Jiluei	of

WELL NUMBER		WELI	L INFORMA	TION		Date: 12-13-08
MW-28D PERMIT NUMBER	Weil Diameter	Depth	Water	Depth to Product	PID	TRC Personnel: Greg Soska, Joseph Schwarz Site Name: LIRR-Morris Park Yard Facility
PERMIT NOWSER	(inches)	(ft)	TOC (#)	TOC (ft)	.,	Site Location: Richmond Hill, NY
		155	22,13		<u> </u>	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well after sampling. TOC = top of casing

<u> </u>	····	PURGIN	G INFORM	IATION		TRC RAVIV METER NUMBERS		
_		Pump (2)	Purge	Purge	Flow	Total	pH: Cond: DO:	
Pump	Tubing	Intake	Start	Stop	Rate		En: Turbidity: NJDEP Cert. No. 07734	
Туре	Type	Depth (ft)	Time	Time	(ml/m)	Vol. (gal)	l) Rental Meter Name: Horiba U-22	
Sivios	LAPE	120	1100	1118	300		Rental Motor Serial No.:	
b		(2) Below	TOC					

		PURC	ING PARA	METERS (measuram	ants are to	he taken a	nneavin ate	ily eveny	
	Criteria:	<0.3 ft	± 3%	± 0.1 su	± 3%	+ 10%	± 10 mv	± 10% ⁽³⁾	y avery :) minutes)
	Flow Rate	Depth to	Temp	pH	Cond	D.O.	ORP	Turbidity	1	Water Conditions/Comments
Time	(ml/m)	Water (ft)	And bearing to the second second second	(su)	(m8/cm)	∡ (ppm)	(mv)	(NTU)	initials	Trace: Gorandona Goranients
1101	300	35,15	1526	5.85	\$ 513	0.7	81	600	JUS.	*
1106	302	35,15	8,8	4.14	.520	0.81	79	650	2005	A
1111	300	*	is.y	6.40	. 514	0.74	84		Sul	· ·
1116	300	7 4-	لي.ل	6.41	989.	0-75	32	741	ZWE	*
			v.				4.3			
										_
									···	•
							1	1		
										:
						.				
omments:		<u>L</u>	<u>_</u> <u>_</u>	<u> </u>				<u> l </u>		
	* Raiv	rina h	ard							
nalytical P	arameters:	- 3								Sample Start Time: 1/16
CL VOCs a	nd TCL SVO	Cs								Sample Finish Time: ///8
eather Co	nditions:	ainy	. 50'	F						
Corvelin	s greater that									Revised 01/0

(3) For values greater than 1. / /
Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

	TRC Raviv Job No.
Company\Technical\TRC Forms and	Templates low flow field form Low Flow - Field Form

Sheet	o	f
CHECK	•	•

WELL NUMBER		WELL	. INFORMA	TION		Date: 12-14-06
NA AGA	Well	Total (1)	Depth to	Depth to		TRC Personnel: Greg Soska, Joseph Schwarz
MW-29 D	Diameter	Depth	Water	Product		Site Name: LIRR- Morris Park Yard Facility
PERMIT NUMBER	(inches)	(ft)	TOC (ft)	TOC (ft)	(ppm)	Site Location: Richmond Hill, NY
	a	190	37.08			TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well after sampling. TOC = top of casing

		PURGIN	G INFORM	ATION			TRC RAVIV METER NUMBERS						
Pump	Tubing	Pump (2) Intake	Purge Start	Purge Stop	Flow Rate		pH: Eh:	Cond: Turbidity:	DO: NJDEP Cert No. 07734				
Туре	Туре	Depth (ft)	Time	Time	(mi/m)	the state of the s	Rental Meter Name: Hor						
Environ	WPE_	180	845				Rental Meter Serial No.:	01533					

(2) Below TOC

				METERS (r	neasureme	nts are to	oe taken at	proximate	ly every 5	minutes)
	Criteria:	<0.3 ft	± 3%	+0.1 su	± 3%	<u>+</u> 10%	± 10 mv ORP	± 10% ⁽³⁾ Turbidity		Water Conditions/Comments
	Flow Rate	Depth to	Temp (°C)	pH (su)	Cond (m\$/cm)	D.O. (ppm)	(mv)	(NTU)	Initials	Water Condidons/Confinents
Time	(ml/m)	Water (ft)						989	65	
8:50	200	37.50		6.73	1.37	6.0	-31			Cless
3:55	300	32.5	150	7,02	1.62	0.79	-50	83	<u> </u>	£1
9:00	200	78.9	15.)	7.05	164	Ø -0	~7o	60	GJ	1,
7:05	100	20.	15.2	7.08	1.65	0.0	-73	10.4	G	**
1:10	100	41.0	15.2	2.05	1.41	0.0	-73	11.0	کی	ł;
7:15	100	46.3	12.1	7.09	1.64	0.0	-72	12.3	GS	*9
	····		*********							
							-			
····										
··- ··· ······························										
omments	: ak 800	ara Dasar	IN DIM	E 70	Low a	A NO	RECH	1166		
tion	* BRI	70	100 ml	m, st	11 no 1	recharge	e			
nalytical i	Parameters					7				Sample Start Time: 9/5
	and TCL SV	OC.								Sample Finish Time: Q 18

For values greater than 1.

TRC Raviv Job No. ______Company\Technica\TRC Forms and Templates\tow flow fleid form\tow Flow - Fleid Form

Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

Sheet	αf	
Sheet	of	

WELL NUMBER		WELI	. INFORMA	TION		Date: 2-14-06
MW-300 PERMIT NUMBER	Well Diameter (inches)	Total (1) Depth (ft)	Depth to Water TOC (ft)	Depth to Product TOC (ft)	PID	TRC Personnel: Greg Soska, Joseph Schwarz Site Name: LIRR- Morris Perk Yard Facility Site Location: Richmond Hill, NY
	2	133	37,37		$\overline{}$	TRC Job Number:46130-0010-00004

(1) Use a previously determined total depth. Confirm the total depth of well <u>after</u> sampling. TOC = top of casing

		PURGIN	G INFORM	ATION			TRO	RAVIV METER N	UMRERS I
Pump Type	Tubing Type	Pump (2) Intake Depth (ft)	Purge Start Time	Purge Stop Time	Flow Rate (ml/m)	Purge	pH: C	ond: urbidity:	DO: NJDEP Cert, No. 07734
Gruntus	TOSE	120 (2) Below	७ ८५५ ¹⁰⁰				Rental Meter Serial No.:	10185	

		PURC	ING PARA	METERS (measurem	ents are to	be taken a	oproximate	ly overv	5 m(nutoc)
	Criteria:	<0.3 ft	± 3%	± 0.1 su	± 3%	± 10%	± 10 mv	± 10% ⁽³⁾		
Time	Flow Rate (ml/m)	Depth to Water (ft)	Temp (°C)	pH (su)	Cond (mS/cm)	D.O. (ppm)	ORP (mv)	Turbidity _(NTU)	Initials	Water Conditions/Comments
0855	250	57.37	14.86	6.44	0.921	ව්.ල න	-6a	Æ	ζως	Clear
0900	250	37.37	15,32	7.05	0,942	6,44	-126	.ea.	402	clear
0903	250	37.37		7.32	0.954	0.0	-166	≯ €	Jus_	dear
6910	250	***************************************		7/35	0:975	0.0	761	*	1002	clean
0915	250	33.03	16.17	7.32	0,998	0.0	-159	X	26B	clear
0920	250	38,15	16.17	7,25	1.13	0,0	-153	ρΆδι	Zat	clear
0925	250	38,15	16.19	7,23	1.14	0.0	-153	De .	Bask	good

										,

· · · · · · · · · · · · · · · · · · ·										<u> </u>
-										
Comments:		<u> </u>								
	14 00	b. prob	e evro	V						
	municions.									Sample Start Time: 0994
CL VOCs a	ind TCL SVO									Sample Finish Time: 0920
		Clear,	Sony	50°	F					
For value	s greater tha	n 1	~~		···	·				

Note: Indicator parametes have stabilized when 3 consecutive readings are within criteria above.

Revised 01/05

	F	Ргојес	t:		Project	t No.:		1	Date/Time	:		
IRC		LIR	RC	FC	in	786	5	-	Date/Time 10 14 08	امعماه	heet	_of
Groundwater Low-F Sampling Data Reco	1	TRC	Perso	onnel:		2						
Well Ide	entificat	ion.	MI	^	D							
WELLINTEGRITY	manuai					1,	Vell		Refere	ence Point	: his	torical
Protect. Casing Secure Concrete Collar Intact PVC Stick-up Intact Well Cap Present Security Lock Present		90 	Casin (from Riser (from	g Stick-up ground) Stick-up ground)	NA 	ft. C	Pept Vate Pept	h <u>135</u> h <u>48.1</u>		\mathbf{X}	no no no hi pe	
					- I	inch inch _H		n+ n+			.65 gal/ft	
									1 ft	_	1.5 gal/ft gal/ft	
PID SCREENING (ppmV) Background (0,0) Well Mouth (5.3)) (if requi		WELL PV0	MATERIA SS		-	/olu	me of Wa	ater in Well		gall Total (purged	on(s) gallons
FIELD WATER QUALITY	MEASU	REME	NTS		Depth to	NAPL	Δ	JA ·	Thickness	of NAPL	NA	
Time	091-	HO	119	0921	0923	1042	6	0929	0932	0935	0938	0941
Temp. (C)	169	9 10	72	16.50	16,56	16.6	<u> </u>	16 7	16.71	16.66	16,57	16.86
Conduct. (µmhos/cm))	0.43	8104	54	0.488	0.588	137	$\sqrt{2}$	0.860	1151	1.59	1,68	1,71
DO (mg/l)	237	١٥.	84	0.63	217	100	οl	0.00	0.00	0.00	D.00	ð. <i>i</i> Ó
pH (Ştd. Units)	7.15	-16.	85	6.77	6.76	16.8	~	6.88	16.93	6.49	7.02	7.04
SIC (millivolts)	158	775	U	157	157	148		142	136	137	119	
Turb. (NTU)	54	¢ 4	8.7	700	351	55	0	400	441	367	262	202
Flow (ml/min)	150	"]	$\overline{50}$	150	750	10		100	100	100	100	100
Depth To Water (H)	Cla.		Pur	clear	dads	day	7		Clouds	7 8	7 7	Clean
Time	0944		147	1 Klass I	1832	T***	7	1 10 -50	1 7		1.11.11	213.12-7
Temp. (C)	16.56		156						†			
Conduct. (µmhos/cm)	10:34		44 74									
DO (mg/l)	7.00		DO									
pH (Std. Units)	7.00		<u> </u>				_					
Ar(millivolts)	105	47	<u>5</u>			 						
Turb. (NTU)	100	$+\frac{H}{2}$	\sim			<u> </u>						
Flow (ml/min)	The h	17	50			 						
Depth To Wale (it)	Cleu		eas									
Pump Type Peristaltic Pump Submersible Pump Bladder Pump Other:	Purge			Descriptio	n of Sam	pling E	quip	ment (M	odel and S/	N):		
Analytical Parameter	Filtered	(V/N)	p.	eservation	1/2	olume/C	`nnt	ainere	Time Co	llacted T	Sama!	o ID
WOC, TCL, 4CFCS	, merec	((1114)	 	+()	1 7			Viul	9:55	- Incomed	Samp!	2117
WATE TOPS	 	J	 	14-2-	$ +$ σ	الملم	- - 707	VILL	10:0		N135	714
									<u> </u>	- 		
			T	••••			,					

		***************************************			Cinnad.		11	()	/-		Dom d	Mor coor
					Signed:	·/	4				rev: 1	Nov. 2005
							ı					

Groundwater Low-Flow Sampling Data Record Well Identification: MW 32) Well Identification: MW 32) Well Identification: MW 32) Well Identification: MW 32) Well Identification: MW 32) Well Identification: MW 32) Well Identification: MW 32) Well Identification: MW 32) Protect Casing Stevery Market Casing Stick-up Market Casing Stick-up Index (from ground) Riser Stick-up Index (from ground) Riser Stick-up Market Index (from ground) Riser Stick-up Index (from ground) Riser Stic	TBC	Project:	Project No.:	Date/Time: 1114	Charat 15
Well Identification: WW 37 Well Reference Point: Initiation: Well Reference Point: Initiation: Well Reference Point: Initiation: Initiation: Well Reference Point: Initiation: I		LIRRCFC	107865	10/14/08	Sheet of
Well Identification: MVO-SD Protect. Casing Secure Concrete Collar Intact Cosing Stick-up Concrete Collar Intact Riser Stick-up Riser Stick-up Concrete Collar Intact Riser Stick-up Riser Stick-up Concrete Collar Intact Riser Stick-up Riser Stick-up Concrete Collar Intact Riser Stick-up Riser Sti		111011111111111111111111111111111111111	•	•	
WELL INTEGRITY Protect. Casing Secure Concrete Collar Intact Well Cash Present Security Lock Present Security	Sampling Data Record	1 DW/A	<u> </u>		
Protect. Casing Secure Population Population Population Protect. Casing Secure Population Protect. Casing Side. Up 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Well Identifi	cation: MW-37	D		
Protect: Casing Secure Concrete Collar Intact Concrete Collar Intact Concrete Collar Intact Well Cap Present Security Lock Present WELL DIAMETER 2 2 Inch 4 Inch 5 Security Lock Present WELL DIAMETER 2 2 Inch 4 Inch 5 Security Lock Present WELL DIAMETER 2 2 Inch 4 Inch 5 Security Lock Present WELL DIAMETER 2 2 Inch 4 Inch 5 Security Lock Present WELL DIAMETER 2 2 Inch 4 Inch 5 Security Lock Present WELL DIAMETER 2 2 Inch 4 Inch 5 Security Lock Present WELL DIAMETER 2 2 Inch 4 Inch 5 Security Lock Present Depth of pump Intake ft. WELL DIAMETER 2 2 Inch 4 Inch 5 Security Lock Present Depth of pump Intake ft. WELL DIAMETER 2 2 Inch 4 Inch 5 Security Lock Present Depth of pump Intake ft. WELL DIAMETER 2 2 Inch 4 Inch 5 Security Lock Present Depth of pump Intake ft. WELL DIAMETER 2 2 Inch 4 Inch 5 Security Lock Present Depth of pump Intake ft. WELL DIAMETER 2 2 Inch 4 Inch 5 Security Lock Present Depth of pump Intake ft. WELL DIAMETER 2 2 Inch 4 Inch 5 Inch 5 Security Lock Present Depth of pump Intake ft. WELL DIAMETER 2 2 Inch 4 Inch 5 Inch 5 Security Lock Present Depth of pump Intake ft. WELL DIAMETER 2 2 Inch 6 Inch 6 Inch Water of pump Intake ft. WELL DIAMETER 2 2 Inch 6 Inch		Protective	Mell Well		
Concrete Collar Intact PVC Stick-up Inta		; NO Casing Stick-up	Depth	rob or use	r notch
Well Cap Present Security Lock Present Security	· · · · · · · · · · · · · · · · · · ·	 - 	Water	top of cas	ing 🗔
Well Cap Present Security Lock Present Well DIAMETER Security Lock Present Well DIAMETER Security Lock Present Well DIAMETER Security Lock Present Well Mark Carlo Security Lock Present Well DIAMETER Security Lock Present Well Mark Carlo Security Lock Present Security Lock Present Well Mark Carlo Security Lock Present Security Lock Present Security Lock Present Security Lock Present Well Mark Carlo Security Lock Present Security Securit	<u>}</u>		NA ft. Depth 3	<u>777</u> / ft. ∐	[T
	1 1		Depth of p	ump intake	ft. Den mark
	Security Lock Present LX	WELL DIAMETE	-`` 	×	
PID SCREENING (ppmV) La MP WELL MATERIAL Volume of Water in Well = gallon(e) Gallon(e) Total gallons Well Mouth Uff required PvC SS Vol. = r² h(0.163)] Total gallons PiELD WATER QUALITY MEASUREMENTS Depth to NAPL NAPL				ļ	• •
PID SCREENING (ppmV)			1,10,3,10,01	ımn ft. x	1
Background	PID SCREENING (ppmV)	AMP WELL MATERIA	Volume of	Water in Well =	- I
Well Mouth	Background	1alfunction \	ì n l		
Time (122 1125 124 1131 1137 1140 Temp. (C) 19.14 18.64 5.24 18.25 18.29 18.18 18.18 Do (mg/l) 15.7 0.49 0.60 0.16 0.00 0.00 0.00 PH (Std. Units) 2.16 2.56 2.75 7.14 7.70 76.7 7.66 Samilifivolts) 11 11 11 13 104 104 96 96 Turb. (NTU) 48.0 113 555 6.16 750 913 5.0 Flow (ml/min) 100 100 100 100 100 100 100 100 100 10	Well Mouth (if re	equired) PVC SS	$\sqrt{\frac{1}{2}}$ [Vol. = r^2 t	n(0.163)]	purged
Time (122 1125 124 1131 1137 1140 Temp. (C) 19.14 18.64 5.24 18.25 18.29 18.18 18.18 Do (mg/l) 15.7 0.49 0.60 0.16 0.00 0.00 0.00 PH (Std. Units) 2.16 2.56 2.75 7.14 7.70 76.7 7.66 Samilifivolts) 11 11 11 13 104 104 96 96 Turb. (NTU) 48.0 113 555 6.16 750 913 5.0 Flow (ml/min) 100 100 100 100 100 100 100 100 100 10	FIELD WATER QUALITY MEA	SUREMENTS	Depth to NAPL NA	Thickness of NAPL	NA
Conduct. (µmhos/cm)	Time 112	12 1125 1128	1131 1134 113	7 1140	
DO (mg/l) pH (Std. Units)	Temp. (C)	18 18 14 15 74	18.7818.2918	19 18,18	
PH (Std. Units)	Conduct. (µmhos/cm))	517 8414 15457	034 0688 07	72 0.846	
Turb. (NTU) Flow (ml/min) Flow	DO (mg/i) / , <	7 0.49 0.00	0.16 0.00 0.0	00.00	
Turb. (NTU) Flow (ml/min) 100		16 756 7.75	77 770 76	77.66	
Flow (ml/min)	(millivolts)	HIID 113	104 104 96	86	
Time Temp. (C) Conduct. (µmhos/cm) DO (mg/l) pH (Std. Units) Eh (millivolts) Turb. (NTU) Flow (ml/min) Depth To Water (ft) Pump Type Peristaltic Pump Submersible Pump Bladder Pump Other: Analytical Parameter Filtered (Y/N) Preservation Volume/Containers Time Collected Sample ID	Turb. (NTU)	0 413 555	646 750 91		
Time Temp. (C) Conduct. (µmhos/cm) DO (mg/l) pH (Std. Units) En (millivolts) Turb. (NTU) Flow (ml/min) Depth To Water (ft) Pump Type Peristaltic Pump Submersible Pump Bladder Pump Other: Analytical Parameter Filtered (Y/N) Preservation Volume/Containers Time Collected Sample ID VX TYL, 4CRS N C 3X60 mL/via (1140) m/m - 3>D		T . T T T / J / J	 	0 100	
Temp. (C) Conduct. (µmhos/cm) DO (mg/l) pH (Std. Units) Eh (millivolts) Turb. (NTU) Flow (ml/min) Depth To Water (ft) Pump Type Peristaltic Pump Submersible Pump Bladder Pump Other: Analytical Parameter Filtered (Y/N) Preservation Volume/Containers Time Collected Sample ID VOCTAL, HCFG WW-32D	Depth To Water (ft)	ndy stoney cloud	Mean clean cle	ran clear	
Conduct. (µmhos/cm) DO (mg/l) pH (Std. Units) Eh (millivolts) Turb. (NTU) Flow (ml/min) Depth To Water (ft) Pump Type Peristaltic Pump Submersible Pump Bladder Pump Other: Analytical Parameter Filtered (Y/N) Preservation Yolume/Containers Time Collected Sample ID YOUT TO JUFES N H C	Time	1 1			
DO (mg/l) pH (Std. Units) Eh (millivolts) Turb. (NTU) Flow (ml/min) Depth To Water (ft) Pump Type Peristaltic Pump Submersible Pump Bladder Pump Other: Analytical Parameter Filtered (Y/N) Preservation Volume/Containers Time Collected Sample Document	Temp. (C)				
Eh (millivolts) Turb. (NTU) Flow (mil/min) Depth To Water (ft) Pump Type Peristaltic Pump Submersible Pump Bladder Pump Other: Analytical Parameter Filtered (Y/N) Preservation Volume/Containers Time Collected Sample ID VOLTAL, 4CFG N H C 3X60 m/L Via (1140 MW-320)	Conduct. (µmhos/cm)				
Eh (millivolts) Turb. (NTU) Flow (mil/min) Depth To Water (ft) Pump Type Peristaltic Pump Submersible Pump Bladder Pump Other: Analytical Parameter Filtered (Y/N) Preservation Volume/Containers Time Collected Sample ID VOC. TOL. HCRS N HC 3X60 m/L/ig/ 1140 MW-32D					
Turb. (NTU) Flow (mi/min) Depth To Water (ft) Pump Type Peristaltic Pump Submersible Pump Bladder Pump Other: Analytical Parameter Filtered (Y/N) Preservation Volume/Containers Time Collected Sample ID VOC. TOL. 4CFG N HCI 3X60 w/L/id/ 1140 WW-320	pH (Std. Units)				
Pump Type Peristaltic Pump Submersible Pump Bladder Pump Other: Analytical Parameter Filtered (Y/N) Preservation Volume/Containers Time Collected Sample ID VOC.TOL. 4CFG N H C 3X60 m/Vial 1140 MW-320					
Depth To Water (ft) Pump Type Peristaltic Pump Submersible Pump Bladder Pump Other: Analytical Parameter Filtered (Y/N) Preservation Yolume/Containers Time Collected Sample ID VOC. TOL. YCFG N HC 3X60 m/Vig/ 1140 WW-32D					
Pump Type Purge Sample Description of Sampling Equipment (Model and S/N): Peristaltic Pump Submersible Pump Bladder Pump Other: Analytical Parameter Filtered (Y/N) Preservation Volume/Containers Time Collected Sample ID VOC. TOL. 4CFG N HCI 3X60 w/Vigi 1140 w/w-320					
Peristaltic Pump Submersible Pump Bladder Pump Other: Analytical Parameter Filtered (Y/N) Preservation Volume/Containers Time Collected Sample ID VOC. T7 L, 4 CFG N H C 3 X 6 0 m L Vial 1140 m W - 320	•		n of Compliant Table	(Madel c=d Can)	
Submersible Pump Bladder Pump Other: Analytical Parameter Filtered (Y/N) Preservation Volume/Containers Time Collected Sample ID VOC. T7 L, 4 CFG N H C 3 X 6 0 m L Vigl 1140 WW-32D	· · · · · · · · · · · · · · · · · · ·	rge Sample Description	on or Sampling Equipment	(Model and S/N):	
Other: Analytical Parameter Filtered (Y/N) Preservation Volume/Containers Time Collected Sample ID VOC. T71, 4CFG N HC 3X60 m/L Vigl 1140 WW-32D					
Analytical Parameter Filtered (Y/N) Preservation Volume/Containers Time Collected Sample ID VOC. T71, 4CFG N H C 3X60 m Vigi 1140 WW-32D	, , , , , , , , , , , , , , , , , , ,	X X ——			
VOC. TIL 4CFG N HCI 3X60 mLVid 1140 MW-32D	Other:				
	Analytical Parameter Filte	red (Y/N) Preservation	n Volume/Container	s Time Collected	Sample ID
MS/MSD N = 6x60 m Via 1145 ms/m38 (mi			3X60mL	Val 1140	
	MS/MSD	N	6×60 WC V	a 1145	MS/M3D (7MG
	<u> </u>	LL			<u> </u>

	Pi	rojed	et:		Pr	oject	No.	:		Dat	e/Time):	T		. /
TRE		LI	RR	CFC		In	75	45		1di	ulaz	1746	She	et_	L of ⊥
Groundwater Low-Flo	w -	rpc	Dom	onnel:				7r.	٠ ١		400		¥		
Sampling Data Recor		INC	reisi	MALI	. ~		7	111	MAI	+					
Well Ident	tificati	an.	'n	1 /V)~.		> <i>[</i> /	, ——7	, yvc	100	,)					
WELL INTEGRITY	uncau	1				⇒ ∠	<u></u>		***************************************		Refer	ence Po	int:	h	istorical
	YES N	ااه	Prote Casin	ctive ig Stick-up	N	A	ft.	Well	h	ft.			Ì	_	neasured
Protect. Casing Secure	XI C	וונ	(from	ground)								op of rise op of cas		_ '	notch
Concrete Collar Intact]][Dicor	Stick-up				Wate	75	<u>ت</u> ر	Janes 1	op or cas	iing	~	orth side
PVC Stick-up Intact	XI L	411	(from	ground)	N)	A	ft.	Dept	h <u> </u>	<u>_</u> n	ــــــــــــــــــــــــــــــــــــــ		-	']	nigh pt
Well Cap Present	XI L	┩╟					-	Dept	th of pur	np In	take _		ft.	I	en mark
Security Lock Present	<u> </u>	ᅫ	WELL	. DIAMETE	R		nch					ľΣ	.16	gal/	ft (2 in.)
	· · · · · · · · · · · · · · · · · · ·	_			-		nch] .65	gal/	ft (4 in.)
		-1				┩゚゚	nch	.,,,,				_	1.5	gal/	ft (6 in.)
	Lave	, 			└-			Wate	er Colum	າກ	f	t. x	J	gai/t	t (in.)
PID SCREENING (ppmV)	Mal	(und	WELL	. — — MATE <u>ri</u>	<u>L</u>			Volu	me of W	/ater	in Well	=		. ga	llon(s)
Background	-		M	L]				_					Tota	gallons
Well Mouth (if require	ed)	PVC	<u> </u>	3			[Vol.	= r ² h(0	.163]			ourge	ed
FIELD WATER QUALITY M	EASUR	EME	NTS		De	pth to	NAF	L		Thic	kness	of NAPL			
Time (<u> 245</u>	1/2	248	1251	12	54	IZ	57	130	2 1	303				
Temp. (C)	7,201	16	85	1668	16.	61	16	(D	1657	2 /	5,55				
Conduct. (µmhos/cm))	983	١١٠	ζG	3.08	2,	14	2.	[<u>/</u>	7 13		2.18				
DO (mg/l) 2		1,	87	のカネ		00	0.	න	0,00		0.00			-	
pH (Std. Units)	2112	1	17	712	7	7	17	11	711	ħ	· []				
छेएउं ।	77	 7 7	5	713		2)] [-75	+-	211			***************************************	
Turb. (NTU)	<u> </u>	6	52	<u>- 20</u>	2.	<u>-)</u> ->!	/_/		1111	1-	<u>~~</u>		+		
			<u> </u>	540		<u> </u>		}_	300	5	<u> </u>	-			
	00	_	00	300		∞	Z		-		∞				
Depth To Water (ft)	Par	+-	leu/	clear	Ch	ew	Cle	u/	CPar	4	lead				_
Time		-								-			_ _		
Temp. (C)		<u> </u>			ļ										
Conduct. (µmhos/cm)		<u> </u>					ļ			<u> </u>					
DO (mg/l)		<u> </u>													
pH (Std. Units)		<u> </u>	• • • • • • • • • • • • • • • • • • • •												
Eh (millivolts)															
Turb. (NTU)															
Flow (mi/min)						-							\top		
Depth To Water (ft)															
Pump Type	Purge	San	nple	Descriptio	n of	Samp	oling	Equip	ment (N	lodel	and S	N):			
Peristaltic Pump			Ì												
Submersible Pump] -									w			
Bladder Pump	X		되 -	······											
Other:	Ш	L	┙-												
Analytical Parameter Fi	ltered (Y/N)	Pro	eservation	1	Vo	lume	/Cont	ainers	Т	me Co	llected	1	Sami	ole ID
VOC. TUL YCEL	N)		4	401		7	Y C	0 m	L Vinle	.1	120			W	-221
	7/	···········	1	H()		<u>_</u>	$\mu \nu$	1	× 111115	1	124		117	40	<u></u>
		,		, / }							·\1.				
			T							T			T		······································
			1	***************************************					~			•	1		

Signed:

Rev: 1 Nov. 2005

APPENDIX C

Laboratory Data Packages - Soil and Groundwater

REPORT DATE 10/29/2008

TRC ENVIRONMENTAL CORP - NY 1430 BROADWAY 10TH FLOOR NEW YORK, NY 10018 ATTN: J.D. PILATO

CONTRACT NUMBER: PURCHASE ORDER NUMBER:

PROJECT NUMBER:

ANALYTICAL SUMMARY

LIMS BAT #:

LIMT-20543

JOB NUMBER: CFCS

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report. Results are based on samples as submitted to the laboratory and relate only to the items collected and tested.

PROJECT LOCATION: RICHMOND HILL, QUEENS

FIELD SAMPLE #	LAB ID	MATRIX	SAMPLE DESCRIPTION	TEST	Subcontract Lab (if any) Cert. Nos.
DUP 1	08B41927	GRND WATER	Not Specified	8260 cfc lirr	
FB 1	08B41930	GRND WATER	Not Specified	8260 ofc lirr	
MW 31D	08B41926	GRND WATER	Not Specified	8260 cfc lirr	
MW 32 D QC	08B41928	GRND WATER	Not Specified	8260 ofc lirr	
MW 33D	08B41929	GRND WATER	Not Specified	8260 cfc lirr	
тв	08B41931	WATER OTHE	Not Specified	8260 cfc tirr	
Comments :					

LIMS BATCH NO.: LIMT-20543

In method 8260, any reported result for Acetone and 1,2-Dibromo-3-chloropropane in samples 08B41926, 08B41927, and 08B41929-08B41931 is estimated and likely to be biased on the low side based on continuing calibration bias.

In method 8260, any reported result for Chloromethane in sample 08B41928 is estimated and likely to be biased on the low side based on continuing calibration bias.

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations. AIHA accreditations only apply to NIOSH methods and Environmental Lead Analyses.

AIHA 100033

AIHA ELLAP (LEAD) 100033

NORTH CAROLINA CERT. # 652

MASSACHUSETTS MA0100

NEW HAMPSHIRE NELAP 2516

NEW JERSEY NELAP NJ MA007 (AIR)

CONNECTICUT PH-0567

VERMONT DOH (LEAD) No. LL015036

FLORIDA DOH E871027 (AIR)

NEW YORK ELAP/NELAP 10899

RHODE ISLAND (LIC. No. 112)

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Denson 10/29/08

Tod Kopyscinski Air Laboratory Manager Lisa Dagnoli General Manager

SIGNATURE DATE

Edward Denson

Daren Damboragian

Technical Director Organics Department Supervisor

^{*} See end of data tabulation for notes and comments pertaining to this sample

39 Spruce Street $^\circ$ East Longmeadow, MA $\,$ 01028 $^\circ$ FAX 413/525-6405 $^\circ$ TEL. 413/525-2332 $\,$

J.D. PILATO

TRC ENVIRONMENTAL CORP - NY 10/29/2008 1430 BROADWAY 10TH FLOOR Page 1 of 14

NEW YORK, NY 10018 Purchase Order No.:

Project Location: RICHMOND HILL, QUEENS LIMS-BAT #: LIMT-20543

Date Received: 10/15/2008 Job Number: CFCS

Field Sample #: DUP 1

Sample ID: 08B41927 ‡Sampled: 10/14/2008

Not Specified

Sample Matrix: GRND WATER

	Units	Results	Date	Analyst	RL	SPEC Lo	Limit Hi	P/F
Acetone	ug/l	ND	Analyzed 10/18/08	LBD	50.0	LU	П	
	· ·	ND		LBD	1.0			
Benzene	ug/l		10/18/08					
Bromodichloromethane	ug/l	ND	10/18/08	LBD	1.0			
Bromoform	ug/l	ND	10/18/08	LBD	1.0			
Bromomethane	ug/l	ND	10/18/08	LBD	2.0			
2-Butanone (MEK)	ug/l	ND	10/18/08	LBD	20.0			
Carbon Disulfide	ug/l	ND	10/18/08	LBD	3.0			
Carbon Tetrachloride	ug/l	ND	10/18/08	LBD	1.0			
Chlorobenzene	ug/l	ND	10/18/08	LBD	1.0			
Chlorodibromomethane	ug/l	ND	10/18/08	LBD	0.5			
Chlorodifluoromethane	ug/l	ND	10/18/08	LBD	1.0			
Chloroethane	ug/l	ND	10/18/08	LBD	2.0			
Chloroform	ug/l	3.8	10/18/08	LBD	2.0			
Chloromethane	ug/l	ND	10/18/08	LBD	2.0			
Cyclohexane	ug/l	ND	10/18/08	LBD	5.0			
1,2-Dibromo-3-Chloropropane	ug/l	ND	10/18/08	LBD	5.0			
1,2-Dibromoethane	ug/l	ND	10/18/08	LBD	0.50			
1,2-Dichlorobenzene	ug/l	ND	10/18/08	LBD	1.0			
1,3-Dichlorobenzene	ug/l	ND	10/18/08	LBD	1.0			
1,4-Dichlorobenzene	ug/l	ND	10/18/08	LBD	1.0			
Dichlorodifluoromethane	ug/l	ND	10/18/08	LBD	2.0			
1,1-Dichloroethane	ug/l	ND	10/18/08	LBD	1.0			
1,2-Dichloroethane	ug/l	ND	10/18/08	LBD	1.0			
1,1-Dichloroethylene	ug/l	ND	10/18/08	LBD	1.0			
cis-1,2-Dichloroethylene	ug/l	5.6	10/18/08	LBD	1.0			
trans-1,2-Dichloroethylene	ug/l	ND	10/18/08	LBD	1.0			
Dichlorofluoromethane	ug/l	ND	10/18/08	LBD	1.00			
1,2-Dichloropropane	ug/l	ND	10/18/08	LBD	1.0			
cis-1,3-Dichloropropene	ug/l	ND	10/18/08	LBD	1.0			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

J.D. PILATO

TRC ENVIRONMENTAL CORP - NY 10/29/2008 1430 BROADWAY 10TH FLOOR Page 2 of 14

NEW YORK, NY 10018 Purchase Order No.:

Project Location: RICHMOND HILL, QUEENS LIMS-BAT #: LIMT-20543

Date Received: 10/15/2008 Job Number: CFCS

Field Sample #: DUP 1

Sample ID: 08B41927 ‡Sampled: 10/14/2008

11.-24.-

Not Specified

Sample Matrix: GRND WATER

	Units	Results	Date	Analyst	RL	SPEC	Limit	P/ F
			Analyzed			Lo	Hi	
trans-1,3-Dichloropropene	ug/l	ND	10/18/08	LBD	1.0			
Ethyl Benzene	ug/l	ND	10/18/08	LBD	1.0			
2-Hexanone	ug/l	ND	10/18/08	LBD	10.0			
Isopropylbenzene	ug/l	ND	10/18/08	LBD	1.0			
Methyl Acetate	ug/l	ND	10/18/08	LBD	1.0			
Methylcyclohexane	ug/l	ND	10/18/08	LBD	1.0			
MTBE	ug/l	11.2	10/18/08	LBD	1.0			
Methylene Chloride	ug/l	ND	10/18/08	LBD	5.0			
MIBK	ug/l	ND	10/18/08	LBD	10.0			
Styrene	ug/l	ND	10/18/08	LBD	1.0			
1,1,2,2-Tetrachloroethane	ug/l	ND	10/18/08	LBD	0.5			
Tetrachloroethylene	ug/l	10.5	10/18/08	LBD	1.0			
Toluene	ug/l	ND	10/18/08	LBD	1.0			
1,2,4-Trichlorobenzene	ug/l	ND	10/18/08	LBD	1.0			
1,1,1-Trichloroethane	ug/l	ND	10/18/08	LBD	1.0			
1,1,2-Trichloroethane	ug/l	ND	10/18/08	LBD	1.0			
Trichloroethylene	ug/l	22.1	10/18/08	LBD	1.0			
Trichlorofluoromethane	ug/l	ND	10/18/08	LBD	2.0			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	ND	10/18/08	LBD	1.0			
Vinyl Chloride	ug/l	10.1	10/18/08	LBD	2.0			
m + p Xylene	ug/l	ND	10/18/08	LBD	2.0			
o-Xylene	ug/l	ND	10/18/08	LBD	1.0			

Analytical Method:

SW846 8260

SAMPLES ARE CONCENTRATED BY PURGE & TRAP, FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR 1,4-DIOXANE AND TERT-BUTYLALCOHOL ARE ESTIMATED SINCE RESPONSE FACTORS FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

J.D. PILATO

TRC ENVIRONMENTAL CORP - NY 10/29/2008 1430 BROADWAY 10TH FLOOR Page 3 of 14

NEW YORK, NY 10018 Purchase Order No.:

Project Location: RICHMOND HILL, QUEENS LIMS-BAT #: LIMT-20543

Date Received: 10/15/2008 Job Number: CFCS

Field Sample #: FB 1

Sample ID: 08B41930 ‡Sampled: 10/14/2008

Not Specified

Sample Matrix: GRND WATER

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
Acetone	ug/l	ND	10/17/08	LBD	50.0			
Benzene	ug/l	ND	10/17/08	LBD	1.0			
Bromodichloromethane	ug/l	ND	10/17/08	LBD	1.0			
Bromoform	ug/l	ND	10/17/08	LBD	1.0			
Bromomethane	ug/l	ND	10/17/08	LBD	2.0			
2-Butanone (MEK)	ug/l	ND	10/17/08	LBD	20.0			
Carbon Disulfide	ug/l	ND	10/17/08	LBD	3.0			
Carbon Tetrachloride	ug/l	ND	10/17/08	LBD	1.0			
Chlorobenzene	ug/l	ND	10/17/08	LBD	1.0			
Chlorodibromomethane	ug/l	ND	10/17/08	LBD	0.5			
Chlorodifluoromethane	ug/l	ND	10/17/08	LBD	1.0			
Chloroethane	ug/l	ND	10/17/08	LBD	2.0			
Chloroform	ug/l	ND	10/17/08	LBD	2.0			
Chloromethane	ug/l	ND	10/17/08	LBD	2.0			
Cyclohexane	ug/l	ND	10/17/08	LBD	5.0			
1,2-Dibromo-3-Chloropropane	ug/l	ND	10/17/08	LBD	5.0			
1,2-Dibromoethane	ug/l	ND	10/17/08	LBD	0.50			
1,2-Dichlorobenzene	ug/l	ND	10/17/08	LBD	1.0			
1,3-Dichlorobenzene	ug/l	ND	10/17/08	LBD	1.0			
1,4-Dichlorobenzene	ug/l	ND	10/17/08	LBD	1.0			
Dichlorodifluoromethane	ug/l	ND	10/17/08	LBD	2.0			
1,1-Dichloroethane	ug/l	ND	10/17/08	LBD	1.0			
1,2-Dichloroethane	ug/l	ND	10/17/08	LBD	1.0			
1,1-Dichloroethylene	ug/l	ND	10/17/08	LBD	1.0			
cis-1,2-Dichloroethylene	ug/l	ND	10/17/08	LBD	1.0			
trans-1,2-Dichloroethylene	ug/l	ND	10/17/08	LBD	1.0			
Dichlorofluoromethane	ug/l	ND	10/17/08	LBD	1.00			
1,2-Dichloropropane	ug/l	ND	10/17/08	LBD	1.0			
cis-1,3-Dichloropropene	ug/l	ND	10/17/08	LBD	1.0			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

J.D. PILATO

TRC ENVIRONMENTAL CORP - NY 10/29/2008 1430 BROADWAY 10TH FLOOR Page 4 of 14

NEW YORK, NY 10018 Purchase Order No.:

Project Location: RICHMOND HILL, QUEENS LIMS-BAT #: LIMT-20543

Date Received: 10/15/2008 Job Number: CFCS

Field Sample #: FB 1

Sample ID: 08B41930 ‡Sampled: 10/14/2008

11.....

Not Specified

Sample Matrix: GRND WATER

	Units	Results	Date	Analyst	RL	SPEC	Limit	P/ F
			Analyzed			Lo	Hi	
trans-1,3-Dichloropropene	ug/l	ND	10/17/08	LBD	1.0			
Ethyl Benzene	ug/l	ND	10/17/08	LBD	1.0			
2-Hexanone	ug/l	ND	10/17/08	LBD	10.0			
Isopropylbenzene	ug/l	ND	10/17/08	LBD	1.0			
Methyl Acetate	ug/l	ND	10/17/08	LBD	1.0			
Methylcyclohexane	ug/l	ND	10/17/08	LBD	1.0			
MTBE	ug/l	ND	10/17/08	LBD	1.0			
Methylene Chloride	ug/l	ND	10/17/08	LBD	5.0			
MIBK	ug/l	ND	10/17/08	LBD	10.0			
Styrene	ug/l	ND	10/17/08	LBD	1.0			
1,1,2,2-Tetrachloroethane	ug/l	ND	10/17/08	LBD	0.5			
Tetrachloroethylene	ug/l	ND	10/17/08	LBD	1.0			
Toluene	ug/l	ND	10/17/08	LBD	1.0			
1,2,4-Trichlorobenzene	ug/l	ND	10/17/08	LBD	1.0			
1,1,1-Trichloroethane	ug/l	ND	10/17/08	LBD	1.0			
1,1,2-Trichloroethane	ug/l	ND	10/17/08	LBD	1.0			
Trichloroethylene	ug/l	ND	10/17/08	LBD	1.0			
Trichlorofluoromethane	ug/l	ND	10/17/08	LBD	2.0			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	ND	10/17/08	LBD	1.0			
Vinyl Chloride	ug/l	ND	10/17/08	LBD	2.0			
m + p Xylene	ug/l	ND	10/17/08	LBD	2.0			
o-Xylene	ug/l	ND	10/17/08	LBD	1.0			

Analytical Method:

SW846 8260

SAMPLES ARE CONCENTRATED BY PURGE & TRAP, FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR 1,4-DIOXANE AND TERT-BUTYLALCOHOL ARE ESTIMATED SINCE RESPONSE FACTORS FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

J.D. PILATO

TRC ENVIRONMENTAL CORP - NY 10/29/2008 1430 BROADWAY 10TH FLOOR Page 5 of 14

NEW YORK, NY 10018 Purchase Order No.:

Project Location: RICHMOND HILL, QUEENS LIMS-BAT #: LIMT-20543

Date Received: 10/15/2008 Job Number: CFCS

Field Sample #: MW 31D

Sample ID: 08B41926 ‡Sampled: 10/14/2008

Not Specified

Sample Matrix: GRND WATER

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

J.D. PILATO

Date Received:

TRC ENVIRONMENTAL CORP - NY 10/29/2008 1430 BROADWAY 10TH FLOOR Page 6 of 14

NEW YORK, NY 10018 Purchase Order No.:

Project Location: RICHMOND HILL, QUEENS LIMS-BAT #: LIMT-20543

Job Number: CFCS

Field Sample #: MW 31D

Sample ID: 08B41926 ‡Sampled: 10/14/2008

Not Specified

Sample Matrix: GRND WATER

10/15/2008

	Units	Results	Date	Analyst	RL	SPEC	Limit	P/ F
			Analyzed			Lo	Hi	
trans-1,3-Dichloropropene	ug/l	ND	10/17/08	LBD	1.0			
Ethyl Benzene	ug/l	ND	10/17/08	LBD	1.0			
2-Hexanone	ug/l	ND	10/17/08	LBD	10.0			
Isopropylbenzene	ug/l	ND	10/17/08	LBD	1.0			
Methyl Acetate	ug/l	ND	10/17/08	LBD	1.0			
Methylcyclohexane	ug/l	ND	10/17/08	LBD	1.0			
MTBE	ug/l	15.8	10/17/08	LBD	1.0			
Methylene Chloride	ug/l	ND	10/17/08	LBD	5.0			
MIBK	ug/l	ND	10/17/08	LBD	10.0			
Styrene	ug/l	ND	10/17/08	LBD	1.0			
1,1,2,2-Tetrachloroethane	ug/l	ND	10/17/08	LBD	0.5			
Tetrachloroethylene	ug/l	14.4	10/17/08	LBD	1.0			
Toluene	ug/l	ND	10/17/08	LBD	1.0			
1,2,4-Trichlorobenzene	ug/l	ND	10/17/08	LBD	1.0			
1,1,1-Trichloroethane	ug/l	ND	10/17/08	LBD	1.0			
1,1,2-Trichloroethane	ug/l	ND	10/17/08	LBD	1.0			
Trichloroethylene	ug/l	27.2	10/17/08	LBD	1.0			
Trichlorofluoromethane	ug/l	ND	10/17/08	LBD	2.0			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	ND	10/17/08	LBD	1.0			
Vinyl Chloride	ug/l	13.4	10/17/08	LBD	2.0			
m + p Xylene	ug/l	ND	10/17/08	LBD	2.0			
o-Xylene	ug/l	ND	10/17/08	LBD	1.0			

Analytical Method:

SW846 8260

SAMPLES ARE CONCENTRATED BY PURGE & TRAP, FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR 1,4-DIOXANE AND TERT-BUTYLALCOHOL ARE ESTIMATED SINCE RESPONSE FACTORS FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to

ND = Not Detected at or above the Reporting Limit

determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

J.D. PILATO

TRC ENVIRONMENTAL CORP - NY 10/29/2008 1430 BROADWAY 10TH FLOOR Page 7 of 14

NEW YORK, NY 10018 Purchase Order No.:

Project Location: RICHMOND HILL, QUEENS LIMS-BAT #: LIMT-20543

Date Received: 10/15/2008 Job Number: CFCS

Field Sample #: MW 32 D QC

Not Specified

Sample Matrix: GRND WATER

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/F
Acetone	ug/l	ND	10/18/08	LBD	50.0			
Benzene	ug/l	ND	10/18/08	LBD	1.0			
Bromodichloromethane	ug/l	ND	10/18/08	LBD	1.0			
Bromoform	ug/l	ND	10/18/08	LBD	1.0			
Bromomethane	ug/l	ND	10/18/08	LBD	2.0			
2-Butanone (MEK)	ug/l	ND	10/18/08	LBD	20.0			
Carbon Disulfide	ug/l	ND	10/18/08	LBD	3.0			
Carbon Tetrachloride	ug/l	ND	10/18/08	LBD	1.0			
Chlorobenzene	ug/l	ND	10/18/08	LBD	1.0			
Chlorodibromomethane	ug/l	ND	10/18/08	LBD	0.5			
Chlorodifluoromethane	ug/l	ND	10/18/08	LBD	1.0			
Chloroethane	ug/l	ND	10/18/08	LBD	2.0			
Chloroform	ug/l	2.6	10/18/08	LBD	2.0			
Chloromethane	ug/l	ND	10/18/08	LBD	2.0			
Cyclohexane	ug/l	ND	10/18/08	LBD	5.0			
1,2-Dibromo-3-Chloropropane	ug/l	ND	10/18/08	LBD	5.0			
1,2-Dibromoethane	ug/l	ND	10/18/08	LBD	0.50			
1,2-Dichlorobenzene	ug/l	ND	10/18/08	LBD	1.0			
1,3-Dichlorobenzene	ug/l	ND	10/18/08	LBD	1.0			
1,4-Dichlorobenzene	ug/l	ND	10/18/08	LBD	1.0			
Dichlorodifluoromethane	ug/l	9.2	10/18/08	LBD	2.0			
1,1-Dichloroethane	ug/l	ND	10/18/08	LBD	1.0			
1,2-Dichloroethane	ug/l	ND	10/18/08	LBD	1.0			
1,1-Dichloroethylene	ug/l	ND	10/18/08	LBD	1.0			
cis-1,2-Dichloroethylene	ug/l	1.4	10/18/08	LBD	1.0			
trans-1,2-Dichloroethylene	ug/l	ND	10/18/08	LBD	1.0			
Dichlorofluoromethane	ug/l	ND	10/18/08	LBD	1.00			
1,2-Dichloropropane	ug/l	ND	10/18/08	LBD	1.0			
cis-1,3-Dichloropropene	ug/l	ND	10/18/08	LBD	1.0			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

J.D. PILATO

Date Received:

TRC ENVIRONMENTAL CORP - NY 10/29/2008 1430 BROADWAY 10TH FLOOR Page 8 of 14

NEW YORK, NY 10018 Purchase Order No.:

Project Location: RICHMOND HILL, QUEENS LIMS-BAT #: LIMT-20543

Date

Job Number: CFCS

SPEC Limit

P/F

RΙ

Analyst

Field Sample #: MW 32 D QC

10/15/2008

I Inite

Not Specified

Results

Sample Matrix: GRND WATER

	Units	Results	Date	Analyst	RL	SPECT		P/ F
			Analyzed			Lo	Hi	
trans-1,3-Dichloropropene	ug/l	ND	10/18/08	LBD	1.0			
Ethyl Benzene	ug/l	ND	10/18/08	LBD	1.0			
2-Hexanone	ug/l	ND	10/18/08	LBD	10.0			
Isopropylbenzene	ug/l	ND	10/18/08	LBD	1.0			
Methyl Acetate	ug/l	ND	10/18/08	LBD	1.0			
Methylcyclohexane	ug/l	ND	10/18/08	LBD	1.0			
MTBE	ug/l	11.0	10/18/08	LBD	1.0			
Methylene Chloride	ug/l	ND	10/18/08	LBD	5.0			
MIBK	ug/l	ND	10/18/08	LBD	10.0			
Styrene	ug/l	ND	10/18/08	LBD	1.0			
1,1,2,2-Tetrachloroethane	ug/l	ND	10/18/08	LBD	0.5			
Tetrachloroethylene	ug/l	11.8	10/18/08	LBD	1.0			
Toluene	ug/l	ND	10/18/08	LBD	1.0			
1,2,4-Trichlorobenzene	ug/l	ND	10/18/08	LBD	1.0			
1,1,1-Trichloroethane	ug/l	ND	10/18/08	LBD	1.0			
1,1,2-Trichloroethane	ug/l	ND	10/18/08	LBD	1.0			
Trichloroethylene	ug/l	138	10/18/08	LBD	1.0			
Trichlorofluoromethane	ug/l	ND	10/18/08	LBD	2.0			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	ND	10/18/08	LBD	1.0			
Vinyl Chloride	ug/l	ND	10/18/08	LBD	2.0			
m + p Xylene	ug/l	ND	10/18/08	LBD	2.0			
o-Xylene	ug/l	ND	10/18/08	LBD	1.0			

Analytical Method:

SW846 8260

SAMPLES ARE CONCENTRATED BY PURGE & TRAP, FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR 1,4-DIOXANE AND TERT-BUTYLALCOHOL ARE ESTIMATED SINCE RESPONSE FACTORS FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to

ND = Not Detected at or above the Reporting Limit

determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

J.D. PILATO

TRC ENVIRONMENTAL CORP - NY 10/29/2008 1430 BROADWAY 10TH FLOOR Page 9 of 14

Purchase Order No.: NEW YORK, NY 10018

Project Location: RICHMOND HILL, QUEENS LIMS-BAT #: LIMT-20543

Date Received: 10/15/2008 Job Number: CFCS

Field Sample #: MW 33D

Sample ID: 08B41929 ‡Sampled: 10/14/2008

Not Specified

Sample Matrix: **GRND WATER**

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
Acetone	ug/l	ND	10/18/08	LBD	50.0			
Benzene	ug/l	ND	10/18/08	LBD	1.0			
Bromodichloromethane	ug/l	ND	10/18/08	LBD	1.0			
Bromoform	ug/l	ND	10/18/08	LBD	1.0			
Bromomethane	ug/l	ND	10/18/08	LBD	2.0			
2-Butanone (MEK)	ug/l	ND	10/18/08	LBD	20.0			
Carbon Disulfide	ug/l	ND	10/18/08	LBD	3.0			
Carbon Tetrachloride	ug/l	1.1	10/18/08	LBD	1.0			
Chlorobenzene	ug/l	ND	10/18/08	LBD	1.0			
Chlorodibromomethane	ug/l	ND	10/18/08	LBD	0.5			
Chlorodifluoromethane	ug/l	ND	10/18/08	LBD	1.0			
Chloroethane	ug/l	ND	10/18/08	LBD	2.0			
Chloroform	ug/l	ND	10/18/08	LBD	2.0			
Chloromethane	ug/l	ND	10/18/08	LBD	2.0			
Cyclohexane	ug/l	ND	10/18/08	LBD	5.0			
1,2-Dibromo-3-Chloropropane	ug/l	ND	10/18/08	LBD	5.0			
1,2-Dibromoethane	ug/l	ND	10/18/08	LBD	0.50			
1,2-Dichlorobenzene	ug/l	ND	10/18/08	LBD	1.0			
1,3-Dichlorobenzene	ug/l	ND	10/18/08	LBD	1.0			
1,4-Dichlorobenzene	ug/l	ND	10/18/08	LBD	1.0			
Dichlorodifluoromethane	ug/l	40.8	10/18/08	LBD	2.0			
1,1-Dichloroethane	ug/l	1.1	10/18/08	LBD	1.0			
1,2-Dichloroethane	ug/l	ND	10/18/08	LBD	1.0			
1,1-Dichloroethylene	ug/l	3.3	10/18/08	LBD	1.0			
cis-1,2-Dichloroethylene	ug/l	26.7	10/18/08	LBD	1.0			
trans-1,2-Dichloroethylene	ug/l	ND	10/18/08	LBD	1.0			
Dichlorofluoromethane	ug/l	ND	10/18/08	LBD	1.00			
1,2-Dichloropropane	ug/l	ND	10/18/08	LBD	1.0			
cis-1,3-Dichloropropene	ug/l	ND	10/18/08	LBD	1.0			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

J.D. PILATO

TRC ENVIRONMENTAL CORP - NY 10/29/2008
1430 BROADWAY 10TH FLOOR Page 10 of 14

NEW YORK, NY 10018 Purchase Order No.:

Project Location: RICHMOND HILL, QUEENS LIMS-BAT #: LIMT-20543

Date Received: 10/15/2008 Job Number: CFCS

Field Sample #: MW 33D

Sample ID: 08B41929 ‡Sampled: 10/14/2008

11.-24.-

Not Specified

Sample Matrix: GRND WATER

	Units	Results	Date	Analyst	RL	SPEC	Limit	P/ F
			Analyzed			Lo	Hi	
trans-1,3-Dichloropropene	ug/l	ND	10/18/08	LBD	1.0			
Ethyl Benzene	ug/l	ND	10/18/08	LBD	1.0			
2-Hexanone	ug/l	ND	10/18/08	LBD	10.0			
Isopropylbenzene	ug/l	ND	10/18/08	LBD	1.0			
Methyl Acetate	ug/l	ND	10/18/08	LBD	1.0			
Methylcyclohexane	ug/l	ND	10/18/08	LBD	1.0			
MTBE	ug/l	45.8	10/18/08	LBD	1.0			
Methylene Chloride	ug/l	ND	10/18/08	LBD	5.0			
MIBK	ug/l	ND	10/18/08	LBD	10.0			
Styrene	ug/l	ND	10/18/08	LBD	1.0			
1,1,2,2-Tetrachloroethane	ug/l	ND	10/18/08	LBD	0.5			
Tetrachloroethylene	ug/l	198	10/18/08	LBD	1.0			
Toluene	ug/l	ND	10/18/08	LBD	1.0			
1,2,4-Trichlorobenzene	ug/l	ND	10/18/08	LBD	1.0			
1,1,1-Trichloroethane	ug/l	ND	10/18/08	LBD	1.0			
1,1,2-Trichloroethane	ug/l	ND	10/18/08	LBD	1.0			
Trichloroethylene	ug/l	1810	10/18/08	LBD	1.0			
Trichlorofluoromethane	ug/l	ND	10/18/08	LBD	2.0			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	ND	10/18/08	LBD	1.0			
Vinyl Chloride	ug/l	ND	10/18/08	LBD	2.0			
m + p Xylene	ug/l	ND	10/18/08	LBD	2.0			
o-Xylene	ug/l	ND	10/18/08	LBD	1.0			

Analytical Method:

SW846 8260

SAMPLES ARE CONCENTRATED BY PURGE & TRAP, FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR 1,4-DIOXANE AND TERT-BUTYLALCOHOL ARE ESTIMATED SINCE RESPONSE FACTORS FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to

ND = Not Detected at or above the Reporting Limit

determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

39 Spruce Street $^\circ$ East Longmeadow, MA $\,$ 01028 $^\circ$ FAX 413/525-6405 $^\circ$ TEL. 413/525-2332 $\,$

J.D. PILATO

TRC ENVIRONMENTAL CORP - NY 10/29/2008 1430 BROADWAY 10TH FLOOR Page 11 of 14

NEW YORK, NY 10018 Purchase Order No.:

Project Location: RICHMOND HILL, QUEENS LIMS-BAT #: LIMT-20543

Date Received: 10/15/2008 Job Number: CFCS

Field Sample #: TB

Sample ID: 08B41931 ‡Sampled: 10/14/2008

Not Specified

Sample Matrix: WATER OTHER

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/F
Acetone	ug/l	ND	10/17/08	LBD	50.0	LU	1 11	
Benzene	ug/l	ND	10/17/08	LBD	1.0			
Bromodichloromethane	J	ND	10/17/08	LBD	1.0			
	ug/l							
Bromoform	ug/l	ND	10/17/08	LBD	1.0			
Bromomethane	ug/l	ND	10/17/08	LBD	2.0			
2-Butanone (MEK)	ug/l	ND	10/17/08	LBD	20.0			
Carbon Disulfide	ug/l	ND	10/17/08	LBD	3.0			
Carbon Tetrachloride	ug/l	ND	10/17/08	LBD	1.0			
Chlorobenzene	ug/l	ND	10/17/08	LBD	1.0			
Chlorodibromomethane	ug/l	ND	10/17/08	LBD	0.5			
Chlorodifluoromethane	ug/l	ND	10/17/08	LBD	1.0			
Chloroethane	ug/l	ND	10/17/08	LBD	2.0			
Chloroform	ug/l	ND	10/17/08	LBD	2.0			
Chloromethane	ug/l	ND	10/17/08	LBD	2.0			
Cyclohexane	ug/l	ND	10/17/08	LBD	5.0			
1,2-Dibromo-3-Chloropropane	ug/l	ND	10/17/08	LBD	5.0			
1,2-Dibromoethane	ug/l	ND	10/17/08	LBD	0.50			
1,2-Dichlorobenzene	ug/l	ND	10/17/08	LBD	1.0			
1,3-Dichlorobenzene	ug/l	ND	10/17/08	LBD	1.0			
1,4-Dichlorobenzene	ug/l	ND	10/17/08	LBD	1.0			
Dichlorodifluoromethane	ug/l	ND	10/17/08	LBD	2.0			
1,1-Dichloroethane	ug/l	ND	10/17/08	LBD	1.0			
1,2-Dichloroethane	ug/l	ND	10/17/08	LBD	1.0			
1,1-Dichloroethylene	ug/l	ND	10/17/08	LBD	1.0			
cis-1,2-Dichloroethylene	ug/l	ND	10/17/08	LBD	1.0			
trans-1,2-Dichloroethylene	ug/l	ND	10/17/08	LBD	1.0			
Dichlorofluoromethane	ug/l	ND	10/17/08	LBD	1.00			
1,2-Dichloropropane	ug/l	ND	10/17/08	LBD	1.0			
cis-1,3-Dichloropropene	ug/l	ND	10/17/08	LBD	1.0			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

J.D. PILATO

TRC ENVIRONMENTAL CORP - NY 10/29/2008
1430 BROADWAY 10TH FLOOR Page 12 of 14

NEW YORK, NY 10018 Purchase Order No.:

Project Location: RICHMOND HILL, QUEENS LIMS-BAT #: LIMT-20543

10/15/2008 Job Number: CFCS

Field Sample #: TB

Date Received:

Sample ID: 08B41931 ‡Sampled: 10/14/2008

11.....

Not Specified

Sample Matrix: WATER OTHER

	Units	Results	Date	Analyst	RL	SPEC	Limit	P/ F
			Analyzed			Lo	Hi	
trans-1,3-Dichloropropene	ug/l	ND	10/17/08	LBD	1.0			
Ethyl Benzene	ug/l	ND	10/17/08	LBD	1.0			
2-Hexanone	ug/l	ND	10/17/08	LBD	10.0			
Isopropylbenzene	ug/l	ND	10/17/08	LBD	1.0			
Methyl Acetate	ug/l	ND	10/17/08	LBD	1.0			
Methylcyclohexane	ug/l	ND	10/17/08	LBD	1.0			
MTBE	ug/l	ND	10/17/08	LBD	1.0			
Methylene Chloride	ug/l	ND	10/17/08	LBD	5.0			
MIBK	ug/l	ND	10/17/08	LBD	10.0			
Styrene	ug/l	ND	10/17/08	LBD	1.0			
1,1,2,2-Tetrachloroethane	ug/l	ND	10/17/08	LBD	0.5			
Tetrachloroethylene	ug/l	ND	10/17/08	LBD	1.0			
Toluene	ug/l	ND	10/17/08	LBD	1.0			
1,2,4-Trichlorobenzene	ug/l	ND	10/17/08	LBD	1.0			
1,1,1-Trichloroethane	ug/l	ND	10/17/08	LBD	1.0			
1,1,2-Trichloroethane	ug/l	ND	10/17/08	LBD	1.0			
Trichloroethylene	ug/l	ND	10/17/08	LBD	1.0			
Trichlorofluoromethane	ug/l	ND	10/17/08	LBD	2.0			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	ND	10/17/08	LBD	1.0			
Vinyl Chloride	ug/l	ND	10/17/08	LBD	2.0			
m + p Xylene	ug/l	ND	10/17/08	LBD	2.0			
o-Xylene	ug/l	ND	10/17/08	LBD	1.0			

Analytical Method:

SW846 8260

SAMPLES ARE CONCENTRATED BY PURGE & TRAP, FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR 1,4-DIOXANE AND TERT-BUTYLALCOHOL ARE ESTIMATED SINCE RESPONSE FACTORS FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

J.D. PILATO

TRC ENVIRONMENTAL CORP - NY 10/29/2008 1430 BROADWAY 10TH FLOOR Page 13 of 14

NEW YORK, NY 10018 Purchase Order No.:

Project Location: RICHMOND HILL, QUEENS LIMS-BAT #: LIMT-20543

Date Received: 10/15/2008 Job Number: CFCS

The following notes were attached to the reported analysis:

Sample ID: * 08B41928

Analysis: Bromomethane

MATRIX SPIKE RECOVERY IS OUTSIDE OF CONTROL LIMITS. ANALYSIS IS IN CONTROL BASED ON LABORATORY FORTIFIED BLANK RECOVERY. POSSIBILITY OF SAMPLE MATRIX EFFECTS THAT LEAD TO LOW BIAS FOR REPORTED RESULT CANNOT BE ELIMINATED.

Sample ID: * 08B41928

Analysis: Chlorodifluoromethane

MATRIX SPIKE RECOVERY IS OUTSIDE OF CONTROL LIMITS. ANALYSIS IS IN CONTROL BASED ON LABORATORY FORTIFIED BLANK RECOVERY. POSSIBILITY OF SAMPLE MATRIX EFFECTS THAT LEAD TO LOW BIAS FOR REPORTED RESULT CANNOT BE ELIMINATED.

Sample ID: * 08B41928

Analysis: Chloromethane

MATRIX SPIKE RECOVERY IS OUTSIDE OF CONTROL LIMITS. ANALYSIS IS IN CONTROL BASED ON LABORATORY FORTIFIED BLANK RECOVERY. POSSIBILITY OF SAMPLE MATRIX EFFECTS THAT LEAD TO LOW BIAS FOR REPORTED RESULT CANNOT BE ELIMINATED.

Sample ID: * 08B41928

Analysis: Dichlorodifluoromethane

MATRIX SPIKE RECOVERY IS OUTSIDE OF CONTROL LIMITS. ANALYSIS IS IN CONTROL BASED ON LABORATORY FORTIFIED BLANK RECOVERY. POSSIBILITY OF SAMPLE MATRIX EFFECTS THAT LEAD TO LOW BIAS FOR REPORTED RESULT CANNOT BE ELIMINATED.

Sample ID: * 08B41928

Analysis: Methylcyclohexane

MATRIX SPIKE RECOVERY IS OUTSIDE OF CONTROL LIMITS. ANALYSIS IS IN CONTROL BASED ON LABORATORY FORTIFIED BLANK RECOVERY. POSSIBILITY OF SAMPLE MATRIX EFFECTS THAT LEAD TO LOW BIAS FOR REPORTED RESULT CANNOT BE ELIMINATED.

Sample ID: * 08B41928

Analysis: 1,2,4-Trichlorobenzene

MATRIX SPIKE DUPLICATE RPD IS OUTSIDE OF CONTROL LIMITS. REDUCED PRECISION IS ANTICIPATED FOR REPORTED RESULT FOR THIS COMPOUND IN THIS SAMPLE.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

J.D. PILATO

TRC ENVIRONMENTAL CORP - NY 10/29/2008
1430 BROADWAY 10TH FLOOR Page 14 of 14

NEW YORK, NY 10018 Purchase Order No.:

Project Location: RICHMOND HILL, QUEENS LIMS-BAT #: LIMT-20543

Date Received: 10/15/2008 Job Number: CFCS

Sample ID: * 08B41928

Analysis: Trichloroethylene

MATRIX SPIKE RECOVERY OUTSIDE OF CONTROL LIMITS. POSSIBILITY OF SAMPLE MATRIX EFFECTS THAT LEAD TO A HIGH BIAS FOR REPORTED RESULT CANNOT BE ELIMINATED AND IS LIKELY.

Sample ID: * 08B41928
Analysis: Vinyl Chloride

MATRIX SPIKE RECOVERY IS OUTSIDE OF CONTROL LIMITS. ANALYSIS IS IN CONTROL BASED ON LABORATORY FORTIFIED BLANK RECOVERY. POSSIBILITY OF SAMPLE MATRIX EFFECTS THAT LEAD TO LOW BIAS FOR REPORTED RESULT CANNOT BE ELIMINATED.

** END OF REPORT **

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

39 Spruce Street $^\circ$ East Longmeadow, MA $\,$ 01028 $^\circ$ FAX 413/525-6405 $^\circ$ TEL. 413/525-2332 $\,$

Lims Bat #: LIMT-20543

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

10/29/2008

Report Date:

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Page 1 of 25

Method Blanks

кероп рате:	10/29/2008 L	LIMS Bat # : LIMI1-20543	Page 1 of 25		
QC Batch Numb	ber: GCMS/VOL-20698				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
08B41926					
	1,2-Dichloroethane-d4	Surrogate Recovery	101.7	%	70-130
	Toluene-d8	Surrogate Recovery	95.4	%	70-130
	Bromofluorobenzene	Surrogate Recovery	90.0	%	70-130
08B41927					
	1,2-Dichloroethane-d4	Surrogate Recovery	99.9	%	70-130
	Toluene-d8	Surrogate Recovery	97.2	%	70-130
	Bromofluorobenzene	Surrogate Recovery	91.2	%	70-130
08B41929					
	1,2-Dichloroethane-d4	Surrogate Recovery	103.0	%	70-130
	Toluene-d8	Surrogate Recovery	95.0	%	70-130
	Bromofluorobenzene	Surrogate Recovery	90.0	%	70-130
08B41930					
	1,2-Dichloroethane-d4	Surrogate Recovery	101.5	%	70-130
	Toluene-d8	Surrogate Recovery	96.7	%	70-130
	Bromofluorobenzene	Surrogate Recovery	90.4	%	70-130
08B41931		-			
	1,2-Dichloroethane-d4	Surrogate Recovery	98.9	%	70-130
	Toluene-d8	Surrogate Recovery	98.5	%	70-130
	Bromofluorobenzene	Surrogate Recovery	92.5	%	70-130
BLANK-125416		,			
	Acetone	Blank	<50.0	ug/l	
	Benzene	Blank	<1.0	ug/l	
	Carbon Tetrachloride	Blank	<1.0	ug/l	
	Chloroform	Blank	<2.0	ug/l	
	1,2-Dichloroethane	Blank	<1.0	ug/l	
	1,4-Dichlorobenzene	Blank	<1.0	ug/l	
	Ethyl Benzene	Blank	<1.0	ug/l	
	2-Butanone (MEK)	Blank	<20.0	ug/l	
	MIBK	Blank	<10.0	ug/l	
	Styrene	Blank	<1.0	ug/l	
	Tetrachloroethylene	Blank	<1.0	ug/l	
	Toluene	Blank	<1.0	ug/l	
	1,1,1-Trichloroethane	Blank	<1.0	ug/l	
	Trichloroethylene	Blank	<1.0	ug/l	
	1,1,2-Trichloro-1,2,2-Trifluoroetha		<1.0	ug/l	
	Trichlorofluoromethane	Blank	<2.0	ug/l	
	o-Xylene	Blank	<1.0	ug/l	
	m + p Xylene	Blank	<2.0	ug/l	
	Chlorodifluoromethane	Blank	<1.0	ug/l	
	1,2-Dichlorobenzene	Blank	<1.0	ug/l	
	1,3-Dichlorobenzene	Blank	<1.0	ug/l	
	1,1-Dichloroethane	Blank	<1.0	ug/l	
		Blank	<1.0	•	
	1,1-Dichloroethylene	DIAHK	~1.0	ug/l	

39 Spruce Street $^\circ$ East Longmeadow, MA $\,$ 01028 $^\circ$ FAX 413/525-6405 $^\circ$ TEL. 413/525-2332 $\,$

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Method Blanks

Report Date:	10/29/2008 r: GCMS/VOL-20698	Lims Bat #: LIMT-20543	Page 2 of 25		
QC Batch Number					
Sample Id	Analysis	QC Analysis	Values	Units	Limits
BLANK-125416					
	MTBE	Blank	<1.0	ug/l	
	trans-1,2-Dichloroethylene	Blank	<1.0	ug/l	
	Vinyl Chloride	Blank	<2.0	ug/l	
	Methylene Chloride	Blank	<5.0	ug/l	
	Chlorobenzene	Blank	<1.0	ug/l	
	Chloromethane	Blank	<2.0	ug/l	
	Bromomethane	Blank	<2.0	ug/l	
	Chloroethane	Blank	<2.0	ug/l	
	cis-1,3-Dichloropropene	Blank	<1.0	ug/l	
	trans-1,3-Dichloropropene	Blank	<1.0	ug/l	
	Chlorodibromomethane	Blank	<0.5	ug/l	
	1,1,2-Trichloroethane	Blank	<1.0	ug/l	
	Bromoform	Blank	<1.0	ug/l	
	1,1,2,2-Tetrachloroethane	Blank	<0.5	ug/l	
	Isopropylbenzene	Blank	<1.0	ug/l	
	1,2,4-Trichlorobenzene	Blank	<1.0	ug/l	
	cis-1,2-Dichloroethylene	Blank	<1.0	ug/l	
	1,2-Dichloropropane	Blank	<1.0	ug/l	
	Dichlorodifluoromethane	Blank	<2.0	ug/l	
	Carbon Disulfide	Blank	<3.0	ug/l	
	2-Hexanone	Blank	<10.0	ug/l	
	Bromodichloromethane	Blank	<1.0	ug/l	
	1,2-Dibromo-3-Chloropropane	Blank	<5.0	ug/l	
	1,2-Dibromoethane	Blank	<0.50	ug/l	
	Methyl Acetate	Blank	<1.0	ug/l	
	Methylcyclohexane	Blank	<1.0	ug/l	
	Dichlorofluoromethane	Blank	<1.00	ug/l	
BLANK-125781	Biomoromounane	Blank	11.00	ug/i	
22, 11 11 (120, 0)	Cyclohexane	Blank	<5.0	ug/l	
FBLANK-87246	Systemosamo	Bidiik	.0.0	ug/i	
52, 6, 2 10	Acetone	Lab Fort Blank Amt.	100.0	ug/l	
	7.00.0110	Lab Fort Blk. Found	85.4	ug/l	
		Lab Fort Blk. % Rec.	85.4	%	70-160
	Benzene	Lab Fort Blank Amt.	10.0	ug/l	70 100
	Benzene	Lab Fort Blk. Found	8.8	ug/l	
		Lab Fort Blk. % Rec.	88.9	w %	70-130
	Carbon Tetrachloride	Lab Fort Blank Amt.	10.0		70-130
	Carbon rendemende	Lab Fort Blk. Found	9.6	ug/l ug/l	
		Lab Fort Blk. % Rec.	96.2	ug/i %	70-130
	Chloroform	Lab Fort Blank Amt.	10.0		70-130
	CHIOLOIGIII	Lab Fort Blank Amt. Lab Fort Blk. Found		ug/l	
			9.1	ug/l	70 400
	4.2 Diablass off	Lab Fort Blk. % Rec.	91.8	%	70-130
	1,2-Dichloroethane	Lab Fort Blank Amt.	10.0	ug/l	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	10/29/2008 Li	ms Bat #: LIMT-20543		Page :	3 of 25
QC Batch Numbe	r: GCMS/VOL-20698				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
FBLANK-87246					
	1,2-Dichloroethane	Lab Fort Blk. Found	9.5	ug/l	
		Lab Fort Blk. % Rec.	95.6	%	70-130
	1,4-Dichlorobenzene	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	9.9	ug/l	
		Lab Fort Blk. % Rec.	99.3	%	70-130
	Ethyl Benzene	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	10.0	ug/l	
		Lab Fort Blk. % Rec.	100.5	%	70-130
	2-Butanone (MEK)	Lab Fort Blank Amt.	100.0	ug/l	
		Lab Fort Blk. Found	86.4	ug/l	
		Lab Fort Blk. % Rec.	86.4	%	40-160
	MIBK	Lab Fort Blank Amt.	100.0	ug/l	
		Lab Fort Blk. Found	89.2	ug/l	
		Lab Fort Blk. % Rec.	89.2	%	70-160
	Styrene	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	9.6	ug/l	
		Lab Fort Blk. % Rec.	96.5	%	70-130
	Tetrachloroethylene	Lab Fort Blank Amt.	10.0	ug/l	
	·	Lab Fort Blk. Found	10.5	ug/l	
		Lab Fort Blk. % Rec.	105.0	%	70-160
	Toluene	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	9.7	ug/l	
		Lab Fort Blk. % Rec.	97.0	%	70-130
	1,1,1-Trichloroethane	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	9.4	ug/l	
		Lab Fort Blk. % Rec.	94.4	%	70-130
	Trichloroethylene	Lab Fort Blank Amt.	10.0	ug/l	
	•	Lab Fort Blk. Found	9.9	ug/l	
		Lab Fort Blk. % Rec.	99.3	%	70-130
	1,1,2-Trichloro-1,2,2-Trifluoroetha	ne Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	9.9	ug/l	
		Lab Fort Blk. % Rec.	99.7	%	70-130
	Trichlorofluoromethane	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	8.6	ug/l	
		Lab Fort Blk. % Rec.	86.9	%	70-130
	o-Xylene	Lab Fort Blank Amt.	10.0	ug/l	
	•	Lab Fort Blk. Found	10.5	ug/l	
		Lab Fort Blk. % Rec.	105.0	%	70-130
	m + p Xylene	Lab Fort Blank Amt.	20.0	ug/l	
	. ,	Lab Fort Blk. Found	20.6	ug/l	
		Lab Fort Blk. % Rec.	103.2	%	70-130
	Chlorodifluoromethane	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	6.7	ug/l	
		Edd I oft Dirk. I durid	0.7	~9 [,] ·	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	10/29/2008	Lims Bat #: LIMT-20543	Page 4 of 25		
QC Batch Number	er: GCMS/VOL-20698				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
LFBLANK-87246					
	Chlorodifluoromethane	Lab Fort Blk. % Rec.	67.0	%	70-130
	1,2-Dichlorobenzene	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	10.1	ug/l	
		Lab Fort Blk. % Rec.	101.5	%	70-130
	1,3-Dichlorobenzene	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	10.8	ug/l	
		Lab Fort Blk. % Rec.	108.2	%	70-130
	1,1-Dichloroethane	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	8.9	ug/l	
		Lab Fort Blk. % Rec.	89.2	%	70-130
	1,1-Dichloroethylene	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	8.4	ug/l	
		Lab Fort Blk. % Rec.	84.5	%	70-130
	MTBE	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	9.2	ug/l	
		Lab Fort Blk. % Rec.	92.1	%	70-130
	trans-1,2-Dichloroethylene	Lab Fort Blank Amt.	10.0	ug/l	
	•	Lab Fort Blk. Found	8.3	ug/l	
		Lab Fort Blk. % Rec.	83.6	%	70-130
	Vinyl Chloride	Lab Fort Blank Amt.	10.0	ug/l	
	•	Lab Fort Blk. Found	5.8	ug/l	
		Lab Fort Blk. % Rec.	58.5	%	40-160
	Methylene Chloride	Lab Fort Blank Amt.	10.0	ug/l	
	•	Lab Fort Blk. Found	7.7	ug/l	
		Lab Fort Blk. % Rec.	77.5	%	70-130
	Chlorobenzene	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	10.2	ug/l	
		Lab Fort Blk. % Rec.	102.7	%	70-130
	Chloromethane	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	5.7	ug/l	
		Lab Fort Blk. % Rec.	57.1	%	40-160
	Bromomethane	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	4.4	ug/l	
		Lab Fort Blk. % Rec.	44.7	%	40-160
	Chloroethane	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	8.3	ug/l	
		Lab Fort Blk. % Rec.	83.4	%	70-130
	cis-1,3-Dichloropropene	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	8.5	ug/l	
		Lab Fort Blk. % Rec.	85.8	%	70-130
	trans-1,3-Dichloropropene	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	8.7	ug/l	
		Lab Fort Blk. % Rec.	87.4	%	70-130

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	10/29/2008	Lims Bat #: LIMT-20543	Page 5 of 25		
QC Batch Number	: GCMS/VOL-20698				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
LFBLANK-87246					
	Chlorodibromomethane	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	8.7	ug/l	
		Lab Fort Blk. % Rec.	87.9	%	70-130
	1,1,2-Trichloroethane	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	9.8	ug/l	
		Lab Fort Blk. % Rec.	98.6	%	70-130
	Bromoform	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	8.9	ug/l	
		Lab Fort Blk. % Rec.	89.3	%	70-130
	1,1,2,2-Tetrachloroethane	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	10.4	ug/l	
		Lab Fort Blk. % Rec.	104.8	%	70-130
	Isopropylbenzene	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	10.0	ug/l	
		Lab Fort Blk. % Rec.	100.8	%	70-130
	1,2,4-Trichlorobenzene	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	8.4	ug/l	
		Lab Fort Blk. % Rec.	84.6	%	70-130
	cis-1,2-Dichloroethylene	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	8.6	ug/l	
		Lab Fort Blk. % Rec.	86.2	%	70-130
	1,2-Dichloropropane	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	9.8	ug/l	
		Lab Fort Blk. % Rec.	98.3	%	70-130
	Dichlorodifluoromethane	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	4.3	ug/l	
		Lab Fort Blk. % Rec.	43.7	%	40-160
	Carbon Disulfide	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	7.6	ug/l	
		Lab Fort Blk. % Rec.	76.1	%	70-130
	2-Hexanone	Lab Fort Blank Amt.	100.0	ug/l	
		Lab Fort Blk. Found	88.9	ug/l	
		Lab Fort Blk. % Rec.	88.9	%	70-160
	Bromodichloromethane	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	8.8	ug/l	
		Lab Fort Blk. % Rec.	88.8	%	70-130
	1,2-Dibromo-3-Chloropropane	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	6.2	ug/l	
		Lab Fort Blk. % Rec.	62.1	%	70-130
	1,2-Dibromoethane	Lab Fort Blank Amt.	10.00	ug/l	
		Lab Fort Blk. Found	10.09	ug/l	
		Lab Fort Blk. % Rec.	100.90	%	70-130
	Methyl Acetate	Lab Fort Blank Amt.	10.0	ug/l	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	10/29/2008	Lims Bat #: LIMT-20543	Page 6 of 25		
QC Batch Number	: GCMS/VOL-20698				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
LFBLANK-87246					
	Methyl Acetate	Lab Fort Blk. Found	7.6	ug/l	
		Lab Fort Blk. % Rec.	76.9	%	70-130
	Methylcyclohexane	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	9.6	ug/l	
		Lab Fort Blk. % Rec.	96.0	%	70-130
	Dichlorofluoromethane	Lab Fort Blank Amt.	10.00	ug/l	
		Lab Fort Blk. Found	8.44	ug/l	
		Lab Fort Blk. % Rec.	84.50	%	70-130
LFBLANK-87638					
	Cyclohexane	Lab Fort Blank Amt.	100.0	ug/l	
		Lab Fort Blk. Found	87.6	ug/l	
		Lab Fort Blk. % Rec.	87.6	%	70-130

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	10/29/2008	Lims Bat #: LIMT-20543		Page	Page 7 of 25	
QC Batch Numbe	er: GCMS/VOL-20699					
ample Id	Analysis	QC Analysis	Values	Units	Limits	
3B41928						
	Acetone	Sample Amount	<50.0	ug/l		
		Matrix Spk Amt Added	100.0	ug/l		
		MS Amt Measured	88.3	ug/l		
		Matrix Spike % Rec.	88.3	%	70-130	
		MSD Amount Added	100.0	ug/l		
		MSD Amt Measured	88.5	ug/l		
		MSD % Recovery	88.5	%		
		MSD Range	0.2	units		
		MS Duplicate RPD	0.2	%	0-30	
	Benzene	Sample Amount	<1.0	ug/l		
		Matrix Spk Amt Added	10.0	ug/l		
		MS Amt Measured	9.8	ug/l		
		Matrix Spike % Rec.	98.5	%	70-130	
		MSD Amount Added	10.0	ug/l		
		MSD Amt Measured	10.1	ug/l		
		MSD % Recovery	101.0	%		
		MSD Range	2.5	units		
		MS Duplicate RPD	2.5	%	0-30	
	Carbon Tetrachloride	Sample Amount	<1.0	ug/l		
		Matrix Spk Amt Added	10.0	ug/l		
		MS Amt Measured	9.8	ug/l		
		Matrix Spike % Rec.	98.7	%	70-130	
		MSD Amount Added	10.0	ug/l		
		MSD Amt Measured	9.7	ug/l		
		MSD % Recovery	97.5	%		
		MSD Range	1.2	units		
		MS Duplicate RPD	1.2	%	0-30	
	Chloroform	Sample Amount	2.6	ug/l		
		Matrix Spk Amt Added	10.0	ug/l		
		MS Amt Measured	12.7	ug/l		
		Matrix Spike % Rec.	101.6	%	70-130	
		MSD Amount Added	10.0	ug/l		
		MSD Amt Measured	12.6	ug/l		
		MSD % Recovery	100.1	%		
		MSD Range	1.4	units		
		MS Duplicate RPD	1.1	%	0-30	
	1,2-Dichloroethane	Sample Amount	<1.0	ug/l		
		Matrix Spk Amt Added	10.0	ug/l		
		MS Amt Measured	10.9	ug/l		
		Matrix Spike % Rec.	109.3	%	70-130	
		MSD Amount Added	10.0	ug/l		
		MSD Amt Measured	11.3	ug/l		
		MSD % Recovery	113.3	%		

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	10/29/2008	Lims Bat #: LIMT-20543	Page 8 of 25		
QC Batch Numbe	er: GCMS/VOL-20699				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
8B41928					
	1,2-Dichloroethane	MSD Range	4.0	units	
		MS Duplicate RPD	3.5	%	0-30
	1,4-Dichlorobenzene	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	10.3	ug/l	
		Matrix Spike % Rec.	103.6	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	10.6	ug/l	
		MSD % Recovery	106.6	%	
		MSD Range	3.0	units	
		MS Duplicate RPD	2.8	%	0-30
	Ethyl Benzene	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	11.2	ug/l	
		Matrix Spike % Rec.	112.3	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	11.3	ug/l	
		MSD % Recovery	113.6	%	
		MSD Range	1.2	units	
		MS Duplicate RPD	1.1	%	0-30
	2-Butanone (MEK)	Sample Amount	<20.0	ug/l	
		Matrix Spk Amt Added	100.0	ug/l	
		MS Amt Measured	93.6	ug/l	
		Matrix Spike % Rec.	93.6	%	70-130
		MSD Amount Added	100.0	ug/l	
		MSD Amt Measured	100.0	ug/l	
		MSD % Recovery	100.0	%	
		MSD Range	6.4	units	
		MS Duplicate RPD	6.6	%	0-30
	MIBK	Sample Amount	<10.0	ug/l	
		Matrix Spk Amt Added	100.0	ug/l	
		MS Amt Measured	104.5	ug/l	
		Matrix Spike % Rec.	104.5	%	70-130
		MSD Amount Added	100.0	ug/l	
		MSD Amt Measured	111.2	ug/l	
		MSD % Recovery	111.2	%	
		MSD Range	6.6	units	
		MS Duplicate RPD	6.2	%	0-30
	Styrene	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	10.3	ug/l	
		Matrix Spike % Rec.	103.0	%	70-130
		MSD Amount Added	10.0	ug/l	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	10/29/2008 Lims	Lims Bat #: LIMT-20543		Page 9 of 25		
QC Batch Number	r: GCMS/VOL-20699					
Sample Id	Analysis	QC Analysis	Values	Units	Limits	
8B41928						
	Styrene	MSD Amt Measured	10.4	ug/l		
		MSD % Recovery	104.4	%		
		MSD Range	1.4	units		
		MS Duplicate RPD	1.3	%	0-30	
	Tetrachloroethylene	Sample Amount	11.8	ug/l		
		Matrix Spk Amt Added	10.0	ug/l		
		MS Amt Measured	22.6	ug/l		
		Matrix Spike % Rec.	108.2	%	70-130	
		MSD Amount Added	10.0	ug/l		
		MSD Amt Measured	23.3	ug/l		
		MSD % Recovery	114.8	%		
		MSD Range	6.6	units		
		MS Duplicate RPD	2.8	%	0-30	
	Toluene	Sample Amount	<1.0	ug/l		
		Matrix Spk Amt Added	10.0	ug/l		
		MS Amt Measured	11.4	ug/l		
		Matrix Spike % Rec.	114.6	%	70-130	
		MSD Amount Added	10.0	ug/l		
		MSD Amt Measured	11.3	ug/l		
		MSD % Recovery	113.8	%		
		MSD Range	0.8	units		
		MS Duplicate RPD	0.7	%	0-30	
	1,1,1-Trichloroethane	Sample Amount	<1.0	ug/l		
		Matrix Spk Amt Added	10.0	ug/l		
		MS Amt Measured	10.0	ug/l		
		Matrix Spike % Rec.	100.4	%	70-130	
		MSD Amount Added	10.0	ug/l		
		MSD Amt Measured	10.4	ug/l		
		MSD % Recovery	104.3	%		
		MSD Range	3.8	units		
		MS Duplicate RPD	3.8	%	0-30	
	Trichloroethylene	Sample Amount	137.7	ug/l		
		Matrix Spk Amt Added	10.0	ug/l		
		MS Amt Measured	167.0	ug/l		
		Matrix Spike % Rec.	293.3	%	70-130	
		MSD Amount Added	10.0	ug/l		
		MSD Amt Measured	170.0	ug/l		
		MSD % Recovery	323.4	%		
		MSD Range	30.1	units		
		MS Duplicate RPD	1.7	%	0-30	
	1,1,2-Trichloro-1,2,2-Trifluoroethane	Sample Amount	<1.0	ug/l		
		Matrix Spk Amt Added	10.0	ug/l		
		MS Amt Measured	7.1	ug/l		

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	10/29/2008 Lims B	at #: LIMT-20543		Page	10 of 25
QC Batch Number:	GCMS/VOL-20699				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
8B41928					
	1,1,2-Trichloro-1,2,2-Trifluoroethane	Matrix Spike % Rec.	71.3	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	6.5	ug/l	
		MSD % Recovery	65.6	%	
		MSD Range	5.7	units	
		MS Duplicate RPD	8.3	%	0-30
	Trichlorofluoromethane	Sample Amount	<2.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	7.6	ug/l	
		Matrix Spike % Rec.	76.0	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	7.2	ug/l	
		MSD % Recovery	72.7	%	
		MSD Range	3.2	units	
		MS Duplicate RPD	4.4	%	0-30
	o-Xylene	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	11.9	ug/l	
		Matrix Spike % Rec.	119.5	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	11.9	ug/l	
		MSD % Recovery	119.8	%	
		MSD Range	0.3	units	
		MS Duplicate RPD	0.2	%	0-30
	m + p Xylene	Sample Amount	<2.0	ug/l	
		Matrix Spk Amt Added	20.0	ug/l	
		MS Amt Measured	22.2	ug/l	
		Matrix Spike % Rec.	111.1	%	70-130
		MSD Amount Added	20.0	ug/l	
		MSD Amt Measured	22.7	ug/l	
		MSD % Recovery	113.7	%	
		MSD Range	2.5	units	
		MS Duplicate RPD	2.2	%	0-30
	Chlorodifluoromethane	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	6.8	ug/l	
		Matrix Spike % Rec.	68.4	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	6.9	ug/l	
		MSD % Recovery	69.1	%	
		MSD Range	0.6	units	
		MS Duplicate RPD	1.0	%	0-30
	1,2-Dichlorobenzene	Sample Amount	<1.0	ug/l	
	.,	34p.0 //04/10	1.0	~∋	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	10/29/2008	Lims Bat #: LIMT-20543	Page 11 of 25		
QC Batch Numbe	er: GCMS/VOL-20699				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
)8B41928					
	1,2-Dichlorobenzene	Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	10.8	ug/l	
		Matrix Spike % Rec.	108.2	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	11.1	ug/l	
		MSD % Recovery	111.2	%	
		MSD Range	3.0	units	
		MS Duplicate RPD	2.7	%	0-30
	1,3-Dichlorobenzene	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	11.3	ug/l	
		Matrix Spike % Rec.	113.0	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	11.5	ug/l	
		MSD % Recovery	115.4	%	
		MSD Range	2.4	units	
		MS Duplicate RPD	2.1	%	0-30
	1,1-Dichloroethane	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	10.4	ug/l	
		Matrix Spike % Rec.	104.7	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	10.4	ug/l	
		MSD % Recovery	104.3	%	
		MSD Range	0.4	units	
		MS Duplicate RPD	0.3	%	0-30
	1,1-Dichloroethylene	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	9.6	ug/l	
		Matrix Spike % Rec.	96.7	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	9.0	ug/l	
		MSD % Recovery	90.5	%	
		MSD Range	6.1	units	
		MS Duplicate RPD	6.6	%	0-30
	MTBE	Sample Amount	11.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	20.5	ug/l	
		Matrix Spike % Rec.	95.3	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	23.3	ug/l	
		MSD % Recovery	123.8	%	
		MSD Range	28.5	units	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	10/29/2008	Lims Bat #: LIMT-20543		Page	12 of 25
QC Batch Numb	er: GCMS/VOL-20699				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
8B41928					
	MTBE	MS Duplicate RPD	12.9	%	0-30
	trans-1,2-Dichloroethylene	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	9.6	ug/l	
		Matrix Spike % Rec.	96.0	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	10.3	ug/l	
		MSD % Recovery	103.8	%	
		MSD Range	7.7	units	
		MS Duplicate RPD	7.8	%	0-30
	Vinyl Chloride	Sample Amount	<2.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	6.2	ug/l	
		Matrix Spike % Rec.	62.2	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	5.7	ug/l	
		MSD % Recovery	57.3	%	
		MSD Range	4.9	units	
		MS Duplicate RPD	8.2	%	0-30
	Methylene Chloride	Sample Amount	<5.0	ug/l	
	,	Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	8.1	ug/l	
		Matrix Spike % Rec.	81.4	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	7.6	ug/l	
		MSD % Recovery	76.2	%	
		MSD Range	5.2	units	
		MS Duplicate RPD	6.5	%	0-30
	Chlorobenzene	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	10.8	ug/l	
		Matrix Spike % Rec.	108.4	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	11.0	ug/l	
		MSD % Recovery	110.4	%	
		MSD Range	2.0	units	
		MS Duplicate RPD	1.8	%	0-30
	Chloromethane	Sample Amount	<2.0	ug/l	2 00
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	6.1	ug/l	
		Matrix Spike % Rec.	61.0	%	70-130
		MSD Amount Added	10.0	ug/l	. 0 100
		MSD Amount Added	5.5	ug/l	
		MOD AITH MEdauted	5.5	ugn	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	10/29/2008	Lims Bat #: LIMT-20543		Page 13 of 25		
QC Batch Number:	GCMS/VOL-20699					
Sample Id	Analysis	QC Analysis	Values	Units	Limits	
3B41928						
	Chloromethane	MSD % Recovery	55.9	%		
		MSD Range	5.1	units		
		MS Duplicate RPD	8.7	%	0-30	
	Bromomethane	Sample Amount	<2.0	ug/l		
		Matrix Spk Amt Added	10.0	ug/l		
		MS Amt Measured	6.7	ug/l		
		Matrix Spike % Rec.	67.2	%	70-130	
		MSD Amount Added	10.0	ug/l		
		MSD Amt Measured	7.6	ug/l		
		MSD % Recovery	76.6	%		
		MSD Range	9.3	units		
		MS Duplicate RPD	13.0	%	0-30	
	Chloroethane	Sample Amount	<2.0	ug/l		
		Matrix Spk Amt Added	10.0	ug/l		
		MS Amt Measured	9.1	ug/l		
		Matrix Spike % Rec.	91.4	%	70-130	
		MSD Amount Added	10.0	ug/l		
		MSD Amt Measured	8.4	ug/l		
		MSD % Recovery	84.7	%		
		MSD Range	6.6	units		
		MS Duplicate RPD	7.6	%	0-30	
	cis-1,3-Dichloropropene	Sample Amount	<1.0	ug/l		
		Matrix Spk Amt Added	10.0	ug/l		
		MS Amt Measured	9.4	ug/l		
		Matrix Spike % Rec.	94.6	%	70-130	
		MSD Amount Added	10.0	ug/l		
		MSD Amt Measured	9.5	ug/l		
		MSD % Recovery	95.8	%		
		MSD Range	1.2	units		
		MS Duplicate RPD	1.2	%	0-30	
	trans-1,3-Dichloropropene	Sample Amount	<1.0	ug/l		
		Matrix Spk Amt Added	10.0	ug/l		
		MS Amt Measured	9.5	ug/l		
		Matrix Spike % Rec.	95.2	%	70-130	
		MSD Amount Added	10.0	ug/l		
		MSD Amt Measured	9.7	ug/l		
		MSD % Recovery	97.6	%		
		MSD Range	2.4	units		
		MS Duplicate RPD	2.4	%	0-30	
	Chlorodibromomethane	Sample Amount	<0.5	ug/l		
		Matrix Spk Amt Added	10.0	ug/l		
		MS Amt Measured	10.3	ug/l		
		Matrix Spike % Rec.	103.2	%	70-130	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	10/29/2008	Lims Bat #: LIMT-20543	Page 14 of 25		
QC Batch Number	er: GCMS/VOL-20699				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
)8B41928					
	Chlorodibromomethane	MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	10.1	ug/l	
		MSD % Recovery	101.6	%	
		MSD Range	1.6	units	
		MS Duplicate RPD	1.5	%	0-30
	1,1,2-Trichloroethane	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	10.9	ug/l	
		Matrix Spike % Rec.	109.7	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	11.3	ug/l	
		MSD % Recovery	113.0	%	
		MSD Range	3.3	units	
		MS Duplicate RPD	2.9	%	0-30
	Bromoform	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	9.9	ug/l	
		Matrix Spike % Rec.	99.4	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	10.4	ug/l	
		MSD % Recovery	104.1	%	
		MSD Range	4.6	units	
		MS Duplicate RPD	4.6	%	0-30
	1,1,2,2-Tetrachloroethane	Sample Amount	<0.5	ug/l	
	.,.,_,_	Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	11.3	ug/l	
		Matrix Spike % Rec.	113.5	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	11.9	ug/l	
		MSD % Recovery	119.1	%	
		MSD Range	5.6	units	
		MS Duplicate RPD	4.8	%	0-30
	Isopropylbenzene	Sample Amount	<1.0	ug/l	0 00
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	10.6	ug/l	
		Matrix Spike % Rec.	106.5	%	70-130
		MSD Amount Added	10.0	ug/l	. 5 100
		MSD Amt Measured	10.9	ug/l	
		MSD % Recovery	109.1	%	
		MSD Range	2.6	units	
		MS Duplicate RPD	2.4	%	0-30
	1,2,4-Trichlorobenzene	Sample Amount	<1.0	ug/l	0.00
	.,_,	Matrix Spk Amt Added	10.0	ug/l	
		Matrix Opk Arrit Added	10.0	ugn	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	10/29/2008	Lims Bat #: LIMT-20543		Page	15 of 25
QC Batch Number	: GCMS/VOL-20699				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
3B41928					
	1,2,4-Trichlorobenzene	MS Amt Measured	8.9	ug/l	
		Matrix Spike % Rec.	89.7	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	14.0	ug/l	
		MSD % Recovery	140.3	%	
		MSD Range	50.6	units	
		MS Duplicate RPD	44.0	%	0-30
	cis-1,2-Dichloroethylene	Sample Amount	1.3	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	10.5	ug/l	
		Matrix Spike % Rec.	91.2	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	10.8	ug/l	
		MSD % Recovery	94.7	%	
		MSD Range	3.4	units	
		MS Duplicate RPD	3.2	%	0-30
	1,2-Dichloropropane	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	10.8	ug/l	
		Matrix Spike % Rec.	108.7	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	10.7	ug/l	
		MSD % Recovery	107.6	%	
		MSD Range	1.1	units	
		MS Duplicate RPD	1.0	%	0-30
	Dichlorodifluoromethane	Sample Amount	9.2	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	7.7	ug/l	
		Matrix Spike % Rec.	-14.8	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	8.0	ug/l	
		MSD % Recovery	-12.1	%	
		MSD Range	2.7	units	
		MS Duplicate RPD	3.4	%	0-30
	Carbon Disulfide	Sample Amount	<3.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	8.0	ug/l	
		Matrix Spike % Rec.	80.1	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	7.6	ug/l	
		MSD % Recovery	76.7	%	
		MSD Range	3.3	units	
		MS Duplicate RPD	4.3	%	0-30

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	10/29/2008	Lims Bat #: LIMT-20543		Page	16 of 25
QC Batch Number:	GCMS/VOL-20699				
ample Id	Analysis	QC Analysis	Values	Units	Limits
3B41928					
	2-Hexanone	Sample Amount	<10.0	ug/l	
		Matrix Spk Amt Added	100.0	ug/l	
		MS Amt Measured	105.6	ug/l	
		Matrix Spike % Rec.	105.6	%	70-130
		MSD Amount Added	100.0	ug/l	
		MSD Amt Measured	114.5	ug/l	
		MSD % Recovery	114.5	%	
		MSD Range	8.9	units	
		MS Duplicate RPD	8.1	%	0-30
	Bromodichloromethane	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	10.2	ug/l	
		Matrix Spike % Rec.	102.5	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	10.1	ug/l	
		MSD % Recovery	101.9	%	
		MSD Range	0.5	units	
		MS Duplicate RPD	0.5	%	0-30
	1,2-Dichloroethane-d4	Surrogate Recovery	100.3	%	70-130
	Toluene-d8	Surrogate Recovery	97.8	%	70-130
	Bromofluorobenzene	Surrogate Recovery	93.7	%	70-130
	1,2-Dibromo-3-Chloropropane	Sample Amount	<5.0	ug/l	
	,	Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	7.7	ug/l	
		Matrix Spike % Rec.	77.1	%	70-130
		MSD Amount Added	10.0	ug/l	70 100
		MSD Amt Measured	9.8	ug/l	
		MSD % Recovery	98.0	%	
		MSD Range	20.9	units	
		MS Duplicate RPD	23.8	%	0-30
	1,2-Dibromoethane	Sample Amount	<0.50	ug/l	0-30
	1,2-Dibiomoctilane	Matrix Spk Amt Added	10.00	ug/l	
		MS Amt Measured	11.18	ug/l	
		Matrix Spike % Rec.	111.80	w	70-130
		MSD Amount Added	10.00	ug/l	70-100
		MSD Amount Added MSD Amt Measured	11.44	ug/l ug/l	
			11.44	ug/i %	
		MSD Recovery			
		MSD Range	2.60	units 0/	0-30
	Mothyl Acetate	MS Duplicate RPD	2.29	% ug/l	0-30
	Methyl Acetate	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	8.1	ug/l	70.400
		Matrix Spike % Rec.	81.4	%	70-130

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	10/29/2008 Lims	Bat #: LIMT-20543		Page '	17 of 25
QC Batch Numbe	r: GCMS/VOL-20699				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
08B41928					
	Methyl Acetate	MSD Amount Added	10.0	ug/l	
	•	MSD Amt Measured	8.0	ug/l	
		MSD % Recovery	80.2	%	
		MSD Range	1.2	units	
		MS Duplicate RPD	1.4	%	0-30
	Methylcyclohexane	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	6.5	ug/l	
		Matrix Spike % Rec.	65.5	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	6.4	ug/l	
		MSD % Recovery	64.4	%	
		MSD Range	1.1	units	
		MS Duplicate RPD	1.6	%	0-30
	Dichlorofluoromethane	Sample Amount	<1.00	ug/l	
		Matrix Spk Amt Added	10.00	ug/l	
		MS Amt Measured	9.39	ug/l	
		Matrix Spike % Rec.	93.90	%	70-130
		MSD Amount Added	10.00	ug/l	
		MSD Amt Measured	8.92	ug/l	
		MSD % Recovery	89.20	%	
		MSD Range	4.70	units	
		MS Duplicate RPD	5.13	%	0-30
3LANK-125417					
	Acetone	Blank	<50.0	ug/l	
	Benzene	Blank	<1.0	ug/l	
	Carbon Tetrachloride	Blank	<1.0	ug/l	
	Chloroform	Blank	<2.0	ug/l	
	1,2-Dichloroethane	Blank	<1.0	ug/l	
	1,4-Dichlorobenzene	Blank	<1.0	ug/l	
	Ethyl Benzene	Blank	<1.0	ug/l	
	2-Butanone (MEK)	Blank	<20.0	ug/l	
	MIBK	Blank	<10.0	ug/l	
	Styrene	Blank	<1.0	ug/l	
	Tetrachloroethylene	Blank	<1.0	ug/l	
	Toluene	Blank	<1.0	ug/l	
	1,1,1-Trichloroethane	Blank	<1.0	ug/l	
	Trichloroethylene	Blank	<1.0	ug/l	
	1,1,2-Trichloro-1,2,2-Trifluoroethane	Blank	<1.0	ug/l	
	Trichlorofluoromethane	Blank	<2.0	ug/l	
	o-Xylene	Blank	<1.0	ug/l	
	m + p Xylene	Blank	<2.0	ug/l	
	Chlorodifluoromethane	Blank	<1.0	ug/l	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	10/29/2008	Lims Bat #: LIMT-20543		Page	18 of 25
QC Batch Number	: GCMS/VOL-20699				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
LANK-125417					
	1,2-Dichlorobenzene	Blank	<1.0	ug/l	
	1,3-Dichlorobenzene	Blank	<1.0	ug/l	
	1,1-Dichloroethane	Blank	<1.0	ug/l	
	1,1-Dichloroethylene	Blank	<1.0	ug/l	
	MTBE	Blank	<1.0	ug/l	
	trans-1,2-Dichloroethylene	Blank	<1.0	ug/l	
	Vinyl Chloride	Blank	<2.0	ug/l	
	Methylene Chloride	Blank	<5.0	ug/l	
	Chlorobenzene	Blank	<1.0	ug/l	
	Chloromethane	Blank	<2.0	ug/l	
	Bromomethane	Blank	<2.0	ug/l	
	Chloroethane	Blank	<2.0	ug/l	
	cis-1,3-Dichloropropene	Blank	<1.0	ug/l	
	trans-1,3-Dichloropropene	Blank	<1.0	ug/l	
	Chlorodibromomethane	Blank	<0.5	ug/l	
	1,1,2-Trichloroethane	Blank	<1.0	ug/l	
	Bromoform	Blank	<1.0	ug/l	
	1,1,2,2-Tetrachloroethane	Blank	<0.5	ug/l	
	Isopropylbenzene	Blank	<1.0	ug/l	
	1,2,4-Trichlorobenzene	Blank	<1.0	ug/l	
	cis-1,2-Dichloroethylene	Blank	<1.0	ug/l	
	1,2-Dichloropropane	Blank	<1.0	ug/l	
	Dichlorodifluoromethane	Blank	<2.0	ug/l	
	Carbon Disulfide	Blank	<3.0	ug/l	
	2-Hexanone	Blank	<10.0	ug/l	
	Bromodichloromethane	Blank	<1.0	ug/l	
	1,2-Dibromo-3-Chloropropane	Blank	<5.0	ug/l	
	1,2-Dibromoethane	Blank	<0.50	ug/l	
	Methyl Acetate	Blank	<1.0	ug/l	
	Methylcyclohexane	Blank	<1.0	ug/l	
	Dichlorofluoromethane	Blank	<1.00	ug/l	
3LANK-125783					
	Cyclohexane	Blank	<5.0	ug/l	
FBLANK-87247					
	Acetone	Lab Fort Blank Amt.	100.0	ug/l	
		Lab Fort Blk. Found	98.4	ug/l	
		Lab Fort Blk. % Rec.	98.4	%	70-160
	Benzene	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	9.2	ug/l	
		Lab Fort Blk. % Rec.	92.9	%	70-130
	Carbon Tetrachloride	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	9.9	ug/l	
		Lab Fort Blk. % Rec.	99.3	%	70-130

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

	Report Date:	10/29/2008 Lir	ms Bat # : LIMT-20543		Page	19 of 25
Chloroform	QC Batch Number	er: GCMS/VOL-20699				
Chloroform	Sample Id	Analysis	QC Analysis	Values	Units	Limits
Lab Fort Bik. Found	LFBLANK-87247	,				
Lab Fort Bik. % Rec. 94.4		Chloroform	Lab Fort Blank Amt.	10.0	ug/l	
1,2-Dichloroethane			Lab Fort Blk. Found	9.4	ug/l	
Lab Fort Bik. Found			Lab Fort Blk. % Rec.	94.4	%	70-130
Lab Fort Bik. % Rec. 96.8 % 70-130		1,2-Dichloroethane	Lab Fort Blank Amt.	10.0	ug/l	
1,4-Dichlorobenzene			Lab Fort Blk. Found	9.6	ug/l	
Lab Fort Bik. Found 9.9 ug/l			Lab Fort Blk. % Rec.	96.8	%	70-130
Lab Fort Bilk. Rec. 99.6 % 70-130		1,4-Dichlorobenzene	Lab Fort Blank Amt.	10.0	ug/l	
Ethyl Benzene			Lab Fort Blk. Found	9.9	ug/l	
Lab Fort Bik. Found			Lab Fort Blk. % Rec.	99.6	%	70-130
Lab Fort Blk. % Rec. 105.4 % 70-130		Ethyl Benzene	Lab Fort Blank Amt.	10.0	ug/l	
2-Butanone (MEK)			Lab Fort Blk. Found	10.5	ug/l	
Lab Fort Blk. Found			Lab Fort Blk. % Rec.	105.4	%	70-130
Lab Fort Blk. % Rec. 93.4		2-Butanone (MEK)	Lab Fort Blank Amt.	100.0	ug/l	
MIBK			Lab Fort Blk. Found	93.4	ug/l	
Lab Fort Bik. Found 98.5 ug/l			Lab Fort Blk. % Rec.	93.4	%	40-160
Lab Fort Bik. % Rec. 98.5		MIBK	Lab Fort Blank Amt.	100.0	ug/l	
Styrene			Lab Fort Blk. Found	98.5	ug/l	
Lab Fort Blk. Found			Lab Fort Blk. % Rec.	98.5	%	70-160
Lab Fort Blk. % Rec. 97.9 % 70-130		Styrene	Lab Fort Blank Amt.	10.0	ug/l	
Tetrachloroethylene Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. Found 10.9 ug/l Lab Fort Blk. % Rec. 109.0 % 70-160 Toluene Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. Found 10.1 ug/l Lab Fort Blk. % Rec. 101.6 % 70-130 1,1,1-Trichloroethane Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. % Rec. 99.2 % 70-130 Trichloroethylene Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. Found 10.0 ug/l Lab Fort Blk. Found 10.0 ug/l Lab Fort Blk. % Rec. 100.8 % 70-130 1,1,2-Trichloro-1,2,2-Trifluoroethane Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. % Rec. 111.6 % 70-130 Trichlorofluoromethane Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. % Rec. 93.0 % 70-130 O-Xylene Lab Fort Blk. Found 10.7 ug/l Lab Fort Blk. Found 10.7			Lab Fort Blk. Found	9.7	ug/l	
Lab Fort Blk. Found 10.9 ug/l			Lab Fort Blk. % Rec.	97.9	%	70-130
Lab Fort Blk. % Rec. 109.0		Tetrachloroethylene	Lab Fort Blank Amt.	10.0	ug/l	
Toluene Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. Found 10.1 ug/l Lab Fort Blk. % Rec. 101.6 % 70-130 1,1,1-Trichloroethane Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. Found 9.9 ug/l Lab Fort Blk. % Rec. 99.2 % 70-130 Trichloroethylene Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. Found 10.0 ug/l ug/l Lab Fort Blk. % Rec. 100.8 % 70-130 1,1,2-Trichloro-1,2,2-Trifluoroethane Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. % Rec. 111.6 % 70-130 Trichlorofluoromethane Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. Found 9.3 ug/l Lab Fort Blk. % Rec. 93.0 % 70-130 0-Xylene Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. Found 10.7 ug/l Lab Fort Blk. % Rec. 10.73 % 70-130			Lab Fort Blk. Found	10.9	ug/l	
Lab Fort Blk. Found Lab Fort Blk. Wec. 101.6 % 70-130 1,1,1-Trichloroethane Lab Fort Blk. Wec. 101.6 % 70-130 1,1,1-Trichloroethane Lab Fort Blk. Found P.9 ug/l Lab Fort Blk. Found P.9 ug/l Lab Fort Blk. Wec. P.0 ug/l Lab Fort Blk. Wec. P.0 ug/l Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. Wec. P.0 ug/l Lab Fort Blk. Wec. P.0 ug/l Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. Wec. P.0 ug/l Lab Fort Blk. Wec. P.0 ug/l Lab Fort Blk. Wec. P.0 ug/l Lab Fort Blk. Wec. P.0 ug/l Lab Fort Blk. Found P.0 ug/l Lab Fort Blk. Found P.0 ug/l Lab Fort Blk. Wec. P.0 ug/l Lab Fort Blk. Wec. P.0 ug/l Lab Fort Blk. Wec. P.0 ug/l Lab Fort Blk. Wec. P.0 ug/l Lab Fort Blk. Wec. P.0 ug/l Lab Fort Blk. Wec. P.0 ug/l Lab Fort Blk. Found P.0 ug/l Lab Fort Blk. Found P.0 ug/l Lab Fort Blk. Found P.0 ug/l Lab Fort Blk. Found P.0 ug/l Lab Fort Blk. Found P.0 ug/l Lab Fort Blk. Found P.0 ug/l Lab Fort Blk. Found P.0 ug/l Lab Fort Blk. Found P.0 ug/l Lab Fort Blk. Found P.0 ug/l Lab Fort Blk. Found P.0 ug/l Lab Fort Blk. Found P.0 ug/l P.0 ug/			Lab Fort Blk. % Rec.	109.0	%	70-160
Lab Fort Blk. % Rec. 101.6 % 70-130 1,1,1-Trichloroethane Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. Found 9.9 ug/l Lab Fort Blk. % Rec. 99.2 % 70-130 Trichloroethylene Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. % Rec. 100.8 % 70-130 1,1,2-Trichloro-1,2,2-Trifluoroethane Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. % Rec. 100.8 % 70-130 1,1,2-Trichloro-1,2,2-Trifluoroethane Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. % Rec. 111.6 % 70-130 Trichlorofluoromethane Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. % Rec. 111.6 % 70-130 O-Xylene Lab Fort Blk. % Rec. 93.0 % 70-130 o-Xylene Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. % Rec. 10.7 ug/l Lab Fort Blk. Found 10.7 ug/l Lab Fort Blk. Found 10.7 ug/l Lab Fort Blk. Found 10.7 ug/l Lab Fort Blk. % Rec. 107.3 % 70-130		Toluene	Lab Fort Blank Amt.	10.0	ug/l	
1,1,1-Trichloroethane Lab Fort Blak Amt. 10.0 ug/l Lab Fort Blk. Found 9.9 ug/l Lab Fort Blk. % Rec. 99.2 % 70-130 Trichloroethylene Lab Fort Blak Amt. 10.0 ug/l Lab Fort Blk. Found 10.0 ug/l Lab Fort Blk. % Rec. 100.8 % 70-130 1,1,2-Trichloro-1,2,2-Trifluoroethane Lab Fort Blak Amt. 10.0 ug/l Lab Fort Blk. Found 11.1 ug/l Lab Fort Blk. % Rec. 111.6 % 70-130 Trichlorofluoromethane Lab Fort Blak Amt. 10.0 ug/l Lab Fort Blk. Found 9.3 ug/l Lab Fort Blak Amt. 10.0 ug/l Lab Fort Blk. % Rec. 93.0 % 70-130 0-Xylene Lab Fort Blk. Found 10.7 ug/l Lab Fort Blk. % Rec. 107.3 % 70-130			Lab Fort Blk. Found	10.1	ug/l	
Lab Fort Blk. Found 9.9 ug/l Lab Fort Blk. % Rec. 99.2 % 70-130 Trichloroethylene Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. Found 10.0 ug/l Lab Fort Blk. % Rec. 100.8 % 70-130 1,1,2-Trichloro-1,2,2-Trifluoroethane Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. Found 11.1 ug/l Lab Fort Blk. % Rec. 111.6 % 70-130 Trichlorofluoromethane Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. Found 9.3 ug/l Lab Fort Blk. Found 9.3 ug/l Lab Fort Blk. % Rec. 93.0 % 70-130 o-Xylene Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. % Rec. 10.0 ug/l Lab Fort Blk. % Rec. 10.0 ug/l Lab Fort Blk. % Rec. 10.0 ug/l Lab Fort Blk. Found 10.7 ug/l Lab Fort Blk. Found 10.7 ug/l Lab Fort Blk. % Rec. 107.3 % 70-130			Lab Fort Blk. % Rec.	101.6	%	70-130
Lab Fort Blk. % Rec. 99.2 % 70-130		1,1,1-Trichloroethane	Lab Fort Blank Amt.	10.0	ug/l	
Trichloroethylene Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. Found 10.0 ug/l Lab Fort Blk. % Rec. 100.8 % 70-130 1,1,2-Trichloro-1,2,2-Trifluoroethane Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. Found 11.1 ug/l Lab Fort Blk. % Rec. 111.6 % 70-130 Trichlorofluoromethane Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. Found 93.0 % 70-130 o-Xylene Lab Fort Blk. % Rec. 93.0 % 70-130 Lab Fort Blk. Found 10.0 ug/l Lab Fort Blk. Found 10.7 ug/l Lab Fort Blk. % Rec. 107.3 % 70-130			Lab Fort Blk. Found	9.9	ug/l	
Lab Fort Blk. Found Lab Fort Blk. % Rec. 100.8 % 70-130 1,1,2-Trichloro-1,2,2-Trifluoroethane Lab Fort Blank Amt. Lab Fort Blk. Found Lab Fort Blk. % Rec. 111.6 % 70-130 Trichlorofluoromethane Lab Fort Blank Amt. Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. Found 9.3 ug/l Lab Fort Blk. % Rec. 93.0 % 70-130 o-Xylene Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. % Rec. 110.0 ug/l Lab Fort Blk. % Rec. 110.0 ug/l Lab Fort Blk. Found 10.7 ug/l Lab Fort Blk. % Rec. 107.3 % 70-130			Lab Fort Blk. % Rec.	99.2	%	70-130
Lab Fort Blk. % Rec. 100.8 % 70-130 1,1,2-Trichloro-1,2,2-Trifluoroethane Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. Found 11.1 ug/l Lab Fort Blk. % Rec. 111.6 % 70-130 Trichlorofluoromethane Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. Found 9.3 ug/l Lab Fort Blk. % Rec. 93.0 % 70-130 o-Xylene Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. Found 10.7 ug/l Lab Fort Blk. Found 10.7 ug/l Lab Fort Blk. % Rec. 107.3 % 70-130		Trichloroethylene	Lab Fort Blank Amt.	10.0	ug/l	
1,1,2-Trichloro-1,2,2-Trifluoroethane Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. Found 11.1 ug/l Lab Fort Blk. % Rec. 111.6 % 70-130 Trichlorofluoromethane Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. Found 9.3 ug/l Lab Fort Blk. % Rec. 93.0 % 70-130 o-Xylene Lab Fort Blk. Found 10.0 ug/l Lab Fort Blk. Found 10.7 ug/l Lab Fort Blk. % Rec. 107.3 % 70-130			Lab Fort Blk. Found	10.0	ug/l	
Lab Fort Blk. Found Lab Fort Blk. % Rec. 111.6 % 70-130 Trichlorofluoromethane Lab Fort Blank Amt. Lab Fort Blk. Found Lab Fort Blk. % Rec. 93.0 % 70-130 o-Xylene Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. Found 10.7 ug/l Lab Fort Blk. % Rec. 107.3 % 70-130			Lab Fort Blk. % Rec.	100.8	%	70-130
Lab Fort Blk. % Rec. 111.6 % 70-130 Trichlorofluoromethane Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. Found 9.3 ug/l Lab Fort Blk. % Rec. 93.0 % 70-130 o-Xylene Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. Found 10.7 ug/l Lab Fort Blk. % Rec. 107.3 % 70-130		1,1,2-Trichloro-1,2,2-Trifluoroethar	ne Lab Fort Blank Amt.	10.0	ug/l	
Trichlorofluoromethane Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. Found 9.3 ug/l Lab Fort Blk. % Rec. 93.0 % 70-130 o-Xylene Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. Found 10.7 ug/l Lab Fort Blk. % Rec. 107.3 % 70-130			Lab Fort Blk. Found	11.1	ug/l	
Lab Fort Blk. Found 9.3 ug/l Lab Fort Blk. % Rec. 93.0 % 70-130 o-Xylene Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. Found 10.7 ug/l Lab Fort Blk. % Rec. 107.3 % 70-130			Lab Fort Blk. % Rec.	111.6	%	70-130
Lab Fort Blk. % Rec. 93.0 % 70-130 o-Xylene Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. Found 10.7 ug/l Lab Fort Blk. % Rec. 107.3 % 70-130		Trichlorofluoromethane	Lab Fort Blank Amt.	10.0	ug/l	
o-Xylene Lab Fort Blank Amt. 10.0 ug/l Lab Fort Blk. Found 10.7 ug/l Lab Fort Blk. % Rec. 107.3 % 70-130			Lab Fort Blk. Found	9.3	ug/l	
Lab Fort Blk. Found 10.7 ug/l Lab Fort Blk. % Rec. 107.3 % 70-130			Lab Fort Blk. % Rec.	93.0	%	70-130
Lab Fort Blk. % Rec. 107.3 % 70-130		o-Xylene	Lab Fort Blank Amt.	10.0	ug/l	
			Lab Fort Blk. Found	10.7	ug/l	
m + p Xylene Lab Fort Blank Amt. 20.0 ug/l				107.3	%	70-130
		m + p Xylene	Lab Fort Blank Amt.	20.0	ug/l	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	10/29/2008	Lims Bat #: LIMT-20543		Page	20 of 25
QC Batch Numbe	er: GCMS/VOL-20699				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
LFBLANK-87247					
	m + p Xylene	Lab Fort Blk. Found	21.0	ug/l	
		Lab Fort Blk. % Rec.	105.4	%	70-130
	Chlorodifluoromethane	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	7.1	ug/l	
		Lab Fort Blk. % Rec.	71.1	%	70-130
	1,2-Dichlorobenzene	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	10.3	ug/l	
		Lab Fort Blk. % Rec.	103.4	%	70-130
	1,3-Dichlorobenzene	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	10.7	ug/l	
		Lab Fort Blk. % Rec.	107.5	%	70-130
	1,1-Dichloroethane	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	9.3	ug/l	
		Lab Fort Blk. % Rec.	93.9	%	70-130
	1,1-Dichloroethylene	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	8.8	ug/l	
		Lab Fort Blk. % Rec.	88.5	%	70-130
	MTBE	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	9.7	ug/l	
		Lab Fort Blk. % Rec.	97.2	%	70-130
	trans-1,2-Dichloroethylene	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	8.8	ug/l	
		Lab Fort Blk. % Rec.	88.0	%	70-130
	Vinyl Chloride	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	6.6	ug/l	
		Lab Fort Blk. % Rec.	66.2	%	40-160
	Methylene Chloride	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	8.0	ug/l	
		Lab Fort Blk. % Rec.	80.6	%	70-130
	Chlorobenzene	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	10.3	ug/l	
		Lab Fort Blk. % Rec.	103.3	%	70-130
	Chloromethane	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	6.0	ug/l	
		Lab Fort Blk. % Rec.	60.6	%	40-160
	Bromomethane	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	4.7	ug/l	
		Lab Fort Blk. % Rec.	47.7	%	40-160
	Chloroethane	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	8.9	ug/l	
		Lab Fort Blk. % Rec.	89.7	%	70-130
	cis-1,3-Dichloropropene	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	9.1	ug/l	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	10/29/2008	Lims Bat #: LIMT-20543		Page 21 of 25	
QC Batch Numbe	er: GCMS/VOL-20699				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
FBLANK-87247					
	cis-1,3-Dichloropropene	Lab Fort Blk. % Rec.	91.1	%	70-130
	trans-1,3-Dichloropropene	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	9.5	ug/l	
		Lab Fort Blk. % Rec.	95.2	%	70-130
	Chlorodibromomethane	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	9.4	ug/l	
		Lab Fort Blk. % Rec.	94.7	%	70-130
	1,1,2-Trichloroethane	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	10.6	ug/l	
		Lab Fort Blk. % Rec.	106.0	%	70-130
	Bromoform	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	9.9	ug/l	
		Lab Fort Blk. % Rec.	99.3	%	70-130
	1,1,2,2-Tetrachloroethane	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	10.9	ug/l	
		Lab Fort Blk. % Rec.	109.0	%	70-130
	Isopropylbenzene	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	10.5	ug/l	
		Lab Fort Blk. % Rec.	105.5	%	70-130
	1,2,4-Trichlorobenzene	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	8.9	ug/l	
		Lab Fort Blk. % Rec.	89.2	%	70-130
	cis-1,2-Dichloroethylene	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	8.7	ug/l	
		Lab Fort Blk. % Rec.	87.9	%	70-130
	1,2-Dichloropropane	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	10.0	ug/l	
		Lab Fort Blk. % Rec.	100.1	%	70-130
	Dichlorodifluoromethane	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	4.9	ug/l	
		Lab Fort Blk. % Rec.	49.4	%	40-160
	Carbon Disulfide	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	8.8	ug/l	
		Lab Fort Blk. % Rec.	88.9	%	70-130
	2-Hexanone	Lab Fort Blank Amt.	100.0	ug/l	
		Lab Fort Blk. Found	99.4	ug/l	
		Lab Fort Blk. % Rec.	99.4	%	70-160
	Bromodichloromethane	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	9.4	ug/l	
		Lab Fort Blk. % Rec.	94.2	%	70-130
	1,2-Dibromo-3-Chloropropane	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	7.3	ug/l	
		Lab Fort Blk. % Rec.	73.9	%	70-130

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	10/29/2008	Lims Bat #: LIMT-20543		Page 2	22 of 25
QC Batch Number	: GCMS/VOL-20699				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
LFBLANK-87247					
	1,2-Dibromoethane	Lab Fort Blank Amt.	10.00	ug/l	
		Lab Fort Blk. Found	10.71	ug/l	
		Lab Fort Blk. % Rec.	107.10	%	70-130
	Methyl Acetate	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	8.3	ug/l	
		Lab Fort Blk. % Rec.	83.5	%	70-130
	Methylcyclohexane	Lab Fort Blank Amt.	10.0	ug/l	
		Lab Fort Blk. Found	10.1	ug/l	
		Lab Fort Blk. % Rec.	101.8	%	70-130
	Dichlorofluoromethane	Lab Fort Blank Amt.	10.00	ug/l	
		Lab Fort Blk. Found	8.91	ug/l	
		Lab Fort Blk. % Rec.	89.10	%	70-130
LFBLANK-87641					
	Cyclohexane	Lab Fort Blank Amt.	100.0	ug/l	
		Lab Fort Blk. Found	92.3	ug/l	
		Lab Fort Blk. % Rec.	92.3	%	70-130

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Method Blanks

Report Date: 10/29/2008 Lims Bat #: LIMT-20543 Page 23 of 25

NOTES:

QC Batch No.: GCMS/VOL-20699

Sample ID : 08B41928

Analysis: 1,2,4-Trichlorobenzene

MATRIX SPIKE DUPLICATE RPD IS OUTSIDE OF CONTROL LIMITS. REDUCED PRECISION IS ANTICIPATED FOR REPORTED RESULT FOR THIS COMPOUND IN THIS SAMPLE.

QC Batch No.: GCMS/VOL-20699

Sample ID : 08B41928 Analysis : Bromomethane

MATRIX SPIKE RECOVERY IS OUTSIDE OF CONTROL LIMITS. ANALYSIS IS IN CONTROL BASED ON LABORATORY FORTIFIED BLANK RECOVERY. POSSIBILITY OF SAMPLE MATRIX EFFECTS THAT LEAD TO LOW BIAS FOR REPORTED RESULT CANNOT BE ELIMINATED.

QC Batch No.: GCMS/VOL-20699

Sample ID : 08B41928

Analysis : Chlorodifluoromethane

MATRIX SPIKE RECOVERY IS OUTSIDE OF CONTROL LIMITS. ANALYSIS IS IN CONTROL BASED ON LABORATORY FORTIFIED BLANK RECOVERY. POSSIBILITY OF SAMPLE MATRIX EFFECTS THAT LEAD TO LOW BIAS FOR REPORTED RESULT CANNOT BE ELIMINATED.

QC Batch No.: GCMS/VOL-20699

Sample ID : 08B41928 Analysis : Chloromethane

MATRIX SPIKE RECOVERY IS OUTSIDE OF CONTROL LIMITS. ANALYSIS IS IN CONTROL BASED ON LABORATORY FORTIFIED BLANK RECOVERY. POSSIBILITY OF SAMPLE MATRIX EFFECTS THAT LEAD TO LOW BIAS FOR REPORTED RESULT CANNOT BE ELIMINATED.

QC Batch No.: GCMS/VOL-20699

Sample ID : 08B41928

Analysis : Dichlorodifluoromethane

MATRIX SPIKE RECOVERY IS OUTSIDE OF CONTROL LIMITS. ANALYSIS IS IN CONTROL BASED ON LABORATORY FORTIFIED BLANK RECOVERY. POSSIBILITY OF SAMPLE MATRIX EFFECTS THAT LEAD TO LOW BIAS FOR REPORTED RESULT CANNOT BE ELIMINATED.

QC Batch No.: GCMS/VOL-20699

Sample ID : 08B41928

Analysis : Methylcyclohexane

MATRIX SPIKE RECOVERY IS OUTSIDE OF CONTROL LIMITS. ANALYSIS IS IN CONTROL BASED ON LABORATORY FORTIFIED BLANK RECOVERY. POSSIBILITY OF SAMPLE MATRIX EFFECTS THAT LEAD TO LOW BIAS FOR REPORTED RESULT CANNOT BE ELIMINATED.

QC Batch No.: GCMS/VOL-20699

Sample ID : 08B41928 Analysis : Trichloroethylene

MATRIX SPIKE RECOVERY OUTSIDE OF CONTROL LIMITS. POSSIBILITY OF SAMPLE MATRIX EFFECTS THAT LEAD TO A HIGH BIAS FOR REPORTED RESULT CANNOT BE ELIMINATED AND IS LIKELY.

39 Spruce Street ° East Longmeadow, MA 01028 ° FAX 413/525-6405 ° TEL. 413/525-2332

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Method Blanks

Report Date: 10/29/2008 Lims Bat #: LIMT-20543 Page 24 of 25

QC Batch No.: GCMS/VOL-20699

Sample ID : 08B41928 Analysis : Vinyl Chloride

MATRIX SPIKE RECOVERY IS OUTSIDE OF CONTROL LIMITS. ANALYSIS IS IN CONTROL BASED ON LABORATORY FORTIFIED BLANK RECOVERY. POSSIBILITY OF SAMPLE MATRIX EFFECTS THAT LEAD TO LOW BIAS FOR REPORTED RESULT CANNOT BE ELIMINATED.

QC Batch No. : GCMS/VOL-20698 Sample ID : LFBLANK-87246

Analysis : 1,2-Dibromo-3-Chloropropane

LABORATORY FORTIFIED BLANK RECOVERY OUTSIDE OF CONTROL LIMITS. ANY REPORTED RESULT FOR THIS COMPOUND IN THIS BATCH IS LIKELY TO BE BIASED ON THE LOW SIDE.

QC Batch No. : GCMS/VOL-20698
Sample ID : LFBLANK-87246
Analysis : Chlorodifluoromethane

LABORATORY FORTIFIED BLANK RECOVERY OUTSIDE OF CONTROL LIMITS. ANY REPORTED RESULT FOR THIS COMPOUND IN THIS BATCH IS LIKELY TO BE BIASED ON THE LOW SIDE.

39 Spruce Street ° East Longmeadow, MA 01028 ° FAX 413/525-6405 ° TEL. 413/525-2332

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Method Blanks

Report Date: 10/29/2008 Lims Bat #: LIMT-20543 Page 25 of 25

OUALITY CONTROL DEFINITIONS AND ABBREVIATIONS

This is the number assigned to all samples analyzed together that QC BATCH NUMBER

would be subject to comparison with a particular set of Quality

Control Data.

LIMITS Upper and Lower Control Limits for the QC ANALYSIS Reported. All

values normally would fall within these statistically determined limits, unless there is an unusual circumstance that would be documented in a NOTE appearing on the last page of the QC $\operatorname{SUMMARY}$

REPORT. Not all QC results will have Limits defined.

Sample Amount Amount of analyte found in a sample.

Method Blank that has been taken though all the steps of the Blank

analysis.

LFBLANK Laboratory Fortified Blank (a control sample)

STDADD Standard Added (a laboratory control sample)

Amount of analyte spiked into a sample Matrix Spk Amt Added

MS Amt Measured Amount of analyte found including amount that was spiked

Matrix Spike % Rec. % Recovery of spiked amount in sample.

Duplicate Value The result from the Duplicate analysis of the sample.

Duplicate RPD The Relative Percent Difference between two Duplicate Analyses.

The % Recovery for non-environmental compounds (surrogates) Surrogate Recovery

spiked into samples to determine the performance of

analytical methods.

Surrogate Recovery on the Electrolytic Conductivity Detector. Sur. Recovery (ELCD)

Sur. Recovery (PID) Surrogate Recovery on the Photoionization Detector.

Standard Measured Amount measured for a laboratory control sample Standard Amt Added

Known value for a laboratory control sample % recovered for a laboratory control sample with a known value. Standard % Recovery

Laboratory Fortified Blank Amount Added Lab Fort Blank Amt Lab Fort Blk. Found Laboratory Fortified Blank Amount Found

Lab Fort Blk % Rec Laboratory Fortified Blank % Recovered

Duplicate Laboratory Fortified Blank Amount Added Dup Lab Fort Bl Amt Duplicate Laboratory Fortified Blank Amount Found Dup Lab Fort Bl Fnd Duplicate Laboratory Fortified Blank % Recovery Dup Lab Fort Bl % Rec

Lab Fort Blank Range Laboratory Fortified Blank Range (Absolute value of difference

between recoveries for Lab Fortified Blank and Lab Fortified

Blank Duplicate).

Lab Fort Bl. Av. Rec. Laboratory Fortified Blank Average Recovery

Duplicate Sample Amt Sample Value for Duplicate used with Matrix Spike Duplicate

MSD Amount Added Matrix Spike Duplicate Amount Added (Spiked)

MSD Amt Measured Matrix Spike Duplicate Amount Measured

MSD % Recovery Matrix Spike Duplicate % Recovery

MSD Range Absolute difference between Matrix Spike and Matrix Spike

Duplicate Recoveries

Email: info@contestlabs.com Phone: 413-525-2332 Fax: 413-525-6405

54508-4W.7 CHAIN OF CUSTODY RECORD

EAST LONGMEADOW, MA 01028 39 SPRUCE ST, 2ND FLOOR

	o = Other	O = other					b approval	* Require lab approval			
ate	B = Sodium bisulfate	SL = sludge					*4-Day	☐ *72-Hr ☐ *4-Day	Date/Time:	Received by: (signature)	(ecei
	S = Sulfuric Acid	S = soil/solid	***************************************	r DL's:	rements or	Special Requirements or		_ □ *24-Hr □ *48-Hr			
	N = Nitric Acid						T	* HSUB	Date/Time:	Relinquished by: (signature)	elinc
	M = Methanol	DW = drinking water	DY DN	ect/RCP? (Data Enhancement Proj	Other[1908	A STATE OF THE STA	K
T = Na thiosulfate	H = HCL T	WW= wastewater			·	-	10-Day	7	Date/fime 1014	received the segment of the segment	- 60 (
X = Na hydroxide	l = lced X	GW= groundwater	***************************************			Regulations?			で 2007 大学 1007 100	11/14/14	\uparrow
odes:	**Preservation Codes:		ents	equirements	Limit R	Detection	E &	Turnaround **	Date/Time:	Relinquished by: (signature)	elinc
	-1	C - Clean; U - Unknown	M - Medium; L - Low;	M - Mediu	H - High;	***************************************		AND THE PROPERTY OF THE PROPER	To promise the second s	The same of the sa	
ay ey	specific sample m	be high in concentration in Matrix/Conc. Code Box:	wing codes	se me rollo	be high in					aboratory comments:	abor
					2						-
							Aftergressperroliste		モジ	₩ ₩	
				<u>「</u> 又			25		41930	TBC	
<u>L</u>				X		×	385		6661H	MW33D	
<u> </u>			X	N Y		<u> </u>	5		266H	URSON	
<u> </u>					Proces	×	80		1404	2007	
Comments:				 X	8	×	S S S	80910	7 P	MW310	
			A	.1	"Matrix Conc. Code Code	osite Grab	Dete/Time	Date/Fine L	Lab # 0818	Field ID Sample Description	ield
O=Other			<u>12</u>					ate S	□ yes □ no	yes proposal date	Ø
T=tedlar bag		-	1	<u> </u>		200	BOTHER S		State Form Required?	Proposal Provided? (For Billing purposes)	ropu
S=summa can			N	3 CL	□ GIS KEŶ		XCEL ,		**************************************		
V=vial			121	<u>ج</u> + 4		TOTAL:	131.6.5	Email:			šam;
P-plastic			<u> </u>	<u>-</u>	CLIENT	DWEBSITE CLIENT	MEMAIL O			prient location: Oxyman Line) PO io
G=glass						eck one):	IVERY (ch	DATA DELIVERY (check one):		Attention: J D. P. I.C. 40	∖tten
<u>~Cont. Code;</u>		ANALYSIS REQUESTED		<u> </u>		Annual An		Client PO#	10018	NOW TON THE	
						The state of the s	***************************************)) :			
~Cont.Code			<	«		۸ ا	へから	Project #	ラチガ	address: TON ROLL OF	\ddr _t
**Preservation			萨	科	か	CSELT.	ACT BE	Telephone:		Company Name:	ž Į
# of containers	-		5			1)		www.contestlabs.com	- 8 1 .	

		Español Custo	mer Support FedEx Loca	ations Search	Go	
hec		,				gi-
		Package/E	invelope Freigl	it Expedit	ed Offic	se/Print Services 🔻
		Ship ⊁	Track >	Manage +	Busines	ss Solutions >
Track Shipm Detailed F		Ex Kinko's Orders	(E)	Printable Version	ე ② Quick He	elp
Tracking num Signed for by Ship date Delivery date	•	864048659473 C.COLLINS Oct 14, 2008 Oct 15, 2008 10:24 AM	Delivered to Service type	Shipping/F Priority Ov		Wrong Address? Reduce future mist. FedEx Address Chi
Status		Delivered				Shipment? Go to <u>shipper login</u>
Signature ima available	age	Yes				and the land Service of
Date/Time Oct 15, 2008	10:24 AM 8:28 AM 7:50 AM 5:04 AM	On FedEx vehicle for delivery At local FedEx facility Departed FedEx location	Location WINDSOR LOCKS, CT WINDSOR LOCKS, CT NEWARK, NJ	Details		FedEx Desktop Tracking at your fingertips
Oct 14, 2008	12:01 AW 8:54 PW 5:29 PW	Left FedEx origin facility	NEWARK, NJ MASPETH, NY FOREST HILLS, NY	Tendered at Follocation	edEx Kinkoʻs	
Subscribe t	o tracking (nature proof E-mail r updates (optional)	results Traci	k more shipment	s/orders	
E-mail add	ress	Language		Exception updates	Delivery updates	
		English	-	Ess		
		English	_		 .	
***************************************		English				
***************************************	WWW.MANAGEROOF V	English	245 F 281			

Add personal message:

Not available for Wireless or non-English characters.

English

Select format: • HTML C Text C Wireless

www.contestlabs.com

Sample Receipt Checklist

39 Spruce St. East Longmeadow, MA. 01028

P: 413-525-2332 F: 413-525-6405

CLIENT NAME: 180	ENV	RECE	IVED BY: C'D C	ATE: 10/12/00
			A No	
1) Was the chain(s) of custod		signed?	Yes No	
2) Does the chain agree with t	the samples?		Yes No	
If not, explain:			Voc No	
3) Are all the samples in good	condition?		Yes No	
If not, explain:		*		
4) How were the samples rece		A	nt	
	Sampling L	Ambie		
Were the samples received in	Temperature Comp	liance of (2-6°C)? (Yes) No	
Temperature °C by Temp blank	4.0	Tempe	rature °C by Temp gun	
5) Are there Dissolved sample:	s for the lab to filter	?	Yes (No)	
Who was notified			me	
6) Are there any samples "On I				ored where:
7) Are there any RUSH or SHOI		samples?	Yes No	
Who was notified				
8) Location where samples are			Permission to subcontra	ct samples? Yes No
6) Location where samples are	114		(Walk-in clients only) if n	ot already approved
			Client Signature:	
		sent in	to Con-Test	
	# of containers			# of containers
1 Liter Amber		720,50	8 oz clear jar	
500 mL Amber		32.32	4 oz clear jar ,	
250 mL Amber (8oz amber)			2 oz clear jar	
1 Liter Plastic			Other glass jar	
500 mL Plastic			Plastic Bag / Ziploc	
250 mL plastic			Air Cassetté	
40 mL Vial - type listed below	23		Brass Sleeves	
Colisure / bacteria bottle		Provide	Tubes	
Dissolved Oxygen bottle			Summa Cans	
Flashpoint bottle		- Silver (5)	Regulators	
Encore			Other	
LITCOIG		2.2.3.1.1 2.2.3.1.1		
boratory Comments:		It stars and		
,				
mL vials: # HCI 23	# Mothanol			
# Bisulfate				
# Thiosulfate				
all samples have the proper p	H: Yes No N/A			

DATA PACKAGE FOR VOLATILE ORGANICS

PROJECT NAME: Morris park RI/FS TRC#46130-0010

TRC ENVIRONMENTAL CORP., NY 1430 BROADWAY 10TH FLOOR NEW YORK, NY 10018 2122217822

CHEMTECH PROJECT NO. ATTENTION:

X4449 Steven Meersma

COVER PAGE

ProjectID: Morris park RI/FS TRC#461

OrderID: X4449

CustomerName:

TRC Environmental Corp., NY

LAB SAMPLE NO. CLIENT SAMPLE NO X4449-01 MW-30D(35-37) X4449-02 MW-30D(57-59) X4449-03 MW-30D(69-71) X4449-04 FIELDBLANK X4449-05 TRIPBLANK

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature: <u>Halds 20</u>	Ulleijo	Name:	Mil Odrod	VRey
Date: 9127106	O	Title:	OA/UC	

CHEMTECH

284 Sheffield Street Mountainside NJ 07092 Tel. 908-789-8900 Fax: 908-789-8922

DATA REPORTING QUALIFIERS- ORGANIC

For reporting results, the following "Results Qualifiers" are used:

Value	If the result is a value greater than or equal to the detection limit, report the value
U	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10 U". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
J	 Indicates an estimated value. This flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise on any organic parameter i.e. Pest, PCB and others.
В	Indicates the analyte was found in the blank as well as the sample report as "12 B".
E	Indicates the analyte's concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
P	This flag is used for Pesticide/PCB target analyte when there is >25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".
N	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.
A	This flag indicates that a Tentatively Identified Compound is a suspected aldol-condensation product.

CHENTECH 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 9/11/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/13/2006 Client Sample ID: MW-30D(35-37) SDG No.: X4449 Lab Sample ID: X4449-01 Matrix: SOIL Analytical Method: 8260 % Moisture: 7 Sample Wt/Wol: Units: g 6.0 Soil Extract Vol: 10000 uL Soil Aliquot Vol: 100

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH009767.D	1	9/22/2006	VH092206

CAS Number	Parameter	Conc.	Qualifier	RL	MD	L Units
TARGETS						
75-71-8	Dichlorodifluoromethane	30	U	450	30	ug/Kg
74-87-3	Chloromethane	61	U	450	61	ug/Kg ug/Kg
75-01-4	Vinyl chloride	24	U	450	24	ug/Kg ug/Kg
74-83-9	Bromomethane	70	U	450	70	
75-00-3	Chloroethane	79	U	450	70 79	ug/Kg ug/Kg
75-69-4	Trichlorofluoromethane	51	U	450	51	
76-13-1	1,1,2-Trichlorotrifluoroethane	62	U	450	62	ug/Kg ug/Kg
75-35-4	1,1-Dichloroethene	29	Ŭ	450	29	ug/Kg ug/Kg
67-64-1	Acetone	470	j	2200	300	
75-15-0	Carbon disulfide	35	Ü	450	35	ug/Kg
1634-04-4	Methyl tert-butyl Ether	32	U	450	33 32	ug/Kg
79-20-9	Methyl Acetate	74	Ü	450	32 74	ug/Kg
75-09-2	Methylene Chloride	56	Ŭ	450	56	ug/Kg
156-60-5	trans-1,2-Dichloroethene	46	Ü	450	46	ug/Kg
75-34-3	1,1-Dichloroethane	19	Ŭ	450	19	ug/Kg ug/Kg
110-82-7	Cyclohexane	33	U	450	33	
78-93-3	2-Butanone	250	U	2200	250	ug/Kg ug/Kg
56-23-5	Carbon Tetrachloride	42	Ü	450	42	
156-59-2	cis-1,2-Dichloroethene	69	U	450	69	ug/Kg
67-66-3	Chloroform	51	U	450	51	ug/Kg
71-55-6	1,1,1-Trichloroethane	36	U	450	36	ug/Kg
108-87-2	Methylcyclohexane	54	Ŭ	450	54	ug/Kg
71-43-2	Benzene	22	Ü	450	22	ug/Kg
107-06-2	1,2-Dichloroethane	29	Ŭ	450	22 29	ug/Kg
79-01-6	Trichloroethene	60	Ŭ	450	60	ug/Kg
78-87-5	1,2-Dichloropropane	28	U	450	28	ug/Kg
75-27-4	Bromedichloromethane	31	U	450	31	ug/Kg
108-10-1	4-Methyl-2-Pentanone	120	Ü	2200	120	ug/Kg
108-88-3	Toluene	35	Ü	450	35	ug/Kg
10061-02-6	t-1,3-Dichloropropene	38	U	450	38	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	14	U	450	36 14	ug/Kg
79-00-5	1,1,2-Trichloroethane	46	Ü	450	46	ug/Kg ug/Kg

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

GEMIECH 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 9/11/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/13/2006 Client Sample ID: MW-30D(35-37) SDG No.: X4449 Lab Sample ID: X4449-01 Matrix: SOIL Analytical Method: 8260 % Moisture: 7 Sample Wt/Wol: 6.0 Units: g Soil Extract Vol: 10000 uL Soil Aliquot Vol: 100 uL

File 1D: Dilution: Date Analyzed **Analytical Batch ID** VH009767.D 1 9/22/2006 VH092206

CAS Number	Parameter	Conc.	Qualifier	RL	MDI	Units
591-78-6	2-Hexanone	59	U	2200	59	
124-48-1	Dibromochloromethane	34	Ü	450	34	ug/Kg
106-93-4	1,2-Dibromoethane	56	U	450	56	ug/Kg
127-18-4	Tetrachloroethene	29	U	450	29	ug/Kg
108-90-7	Chlorobenzene	33	U	450	33	ug/Kg
100-41-4	Ethyl Benzene	36	Ü	450	36	ug/Kg
126777-61-2	m&p-Xylenes	86	Ü	890	86	ug/Kg
95-47-6	o-Xylene	33	U	450	33	ug/Kg
100-42-5	Styrene	31	Ŭ	450	31	ug/Kg
75-25-2	Bromoform	23	Ŭ	450	23	ug/Kg
98-82-8	Isopropylbenzene	30	U	450	30	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	44	Ŭ	450	44	ug/Kg
541-73-1	1,3-Dichlorobenzene	33	Ü	450	33	ug/Kg ug/Kg
106-46-7	1,4-Dichlorobenzene	35	U	450	35 35	ug/Kg ug/Kg
95-50-1	1,2-Dichlorobenzene	33	Ŭ	450	33	ug/Kg ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	84	Ŭ	450	33 84	ug/Kg ug/Kg
120-82-1	1,2,4-Trichlorobenzene	26	Ü	450	26	ug/Kg ug/Kg
593-70-4	Chlorofluoromethane	450	U	450	450	ug/Kg ug/Kg
75-43-4	Fluorodichloromethane	450	Ü	450	450	ug/Kg ug/Kg
SURROGATES	:		Ü	150	430	ng/Kg
17060-07-0	1,2-Dichloroethane-d4	47.87	96 %	75 - 125		SPK: 50
1868-53-7	Dibromofluoromethane	49.09	98 %	75 - 125		SPK: 50
2037-26-5	Toluene-d8	48.66	97 %	75 - 125		SPK: 50
460-00-4	4-Bromofluorobenzene	45.11	90 %	75 - 125		SPK: 50
INTERNAL STA	ANDARDS		, , , ,	10 120		31 K. 30
363-72-4	Pentafluorobenzene	342681	4.69			
540-36-3	1,4-Difluorobenzene	544878	5.29			
3114-55-4	Chlorobenzene-d5	465922	9.03			
3855-82-1	1,4-Dichlorobenzene-d4	237627	11.58			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 9/12/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/13/2006 Client Sample ID: MW-30D(57-59) SDG No.: X4449 Lab Sample ID: X4449-02 Matrix: SOIL Analytical Method: 8260 % Moisture: 17 Sample Wt/Wol: 5.1 Units: g Soil Extract Vol: 10000 υL Soil Aliquot Vol: 100 uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH009768.D	1	9/22/2006	VH092206

CAS Number	Parameter	Conc.	Qualifier	RL	MD	L Units
TARGETS						
75-71-8	Dichlorodifluoromethane	39	U	590	39	u a 97 a
74-87-3	Chloromethane	80	U	590	39 80	ug/Kg
75-01-4	Vinyl chloride	31	U	590	31	ug/Kg
74-83-9	Bromomethane	92	U	590 590	92	ug/Kg
75-00-3	Chloroethane	100	U	590		ug/Kg
75-69-4	Trichlorofluoromethane	68	U	590	100	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	81	U	590 590	68	ug/Kg
75-35-4	1,1-Dichloroethene	38	U	590	18	ug/Kg
67-64-1	Acetone	390	U	2900	38	ug/Kg
75-15-0	Carbon disulfide	46	U	590 590	390	ug/Kg
1634-04-4	Methyl tert-butyl Ether	42	U	590 590	46	ug/Kg
79-20-9	Methyl Acetate	97	U	590 590	42	ug/Kg
75-09-2	Methylene Chloride	73	U	590 590	97	ug/Kg
156-60-5	trans-1,2-Dichloroethene	60	U	590 590	7 3	ug/Kg
75-34-3	1,1-Dichloroethane	25	U	590	60	ug/Kg
110-82-7	Cyclohexane	43	U	590 590	25 43	ug/Kg
78-93-3	2-Butanone	330	U	390 2900	43	ug/Kg
56-23-5	Carbon Tetrachloride	55	U		330	ug/Kg
156-59-2	cis-1,2-Dichloroethene	90	U	590	55	ug/Kg
67-66-3	Chloroform	67	U	590 500	90	ug/Kg
71-55-6	1,1,1-Trichloroethane	48	U	590	67	ug/Kg
108-87-2	Methylcyclohexane	70	U	590 590	48	ug/Kg
71-43-2	Benzene	28	U		70	ug/Kg
107-06-2	1,2-Dichloroethane	38	U	590	28	ug/Kg
79-01-6	Trichloroethene	79	U	590	38	ug/Kg
78-87-5	1,2-Dichloropropane	37	U	590	79	ug/Kg
75-27-4	Bromodichloromethane	41		590	37	ug/Kg
108-10-1	4-Methyl-2-Pentanone	150	U	590	41	ug/Kg
108-88-3	Toluene	45	U	2900	150	ug/Kg
10061-02-6	t-1,3-Dichloropropene	43 50	U	590	45	ug/Kg
10061-01-5	cis-1,3-Dichloropropene		U	590	50	ug/Kg
79-00-5	1,1,2-Trichloroethane	18	U	590	18	ug/Kg
	,,,,, ,, introduction	61	U	590	61	ug/Kg

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 9/12/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/13/2006 Client Sample ID: MW-30D(57-59) SDG No.: X4449 Lab Sample ID: X4449-02 Matrix: SOIL Analytical Method: 8260 % Moisture: 17 Sample Wt/Wol: Units: g 5.1 Soil Extract Vol: 10000 uL. Soil Aliquot Vol: 100 иL

File ID: Dilution: Date Analyzed Analytical Batch ID
VH009768.D 1 9/22/2006 VH092206

CAS Number	Parameter	Conc.	Qualifier	RL	MDI	Units
591-78-6	2-Hexanone	77	U	2900	77	ug/Kg
124-48-1	Dibromochloromethane	44	Ū	590	44	ug/Kg
106-93-4	1,2-Dibromoethane	74	U	590	74	ug/Kg ug/Kg
127-18-4	Tetrachloroethene	39	Ū	590	39	ug/Kg ug/Kg
108-90-7	Chlorobenzene	43	Ü	590	43	ug/Kg
100-41-4	Ethyl Benzene	48	Ū	590	48	ug/Kg
126777-61-2	m&p-Xylenes	110	Ü	1200	110	ug/Kg
95-47-6	o-Xylene	43	Ū	590	43	ug/Kg
100-42-5	Styrene	40	Ü	590	40	ug/Kg
75-25-2	Bromoform	30	Ū	590	30	ug/Kg
98-82-8	lsopropylbenzene	39	Ü	590	39	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	58	Ū	590	58	ug/Kg
541-73-1	1,3-Dichlorobenzene	44	Ū	590	44	ug/Kg
106-46-7	1,4-Dichlorobenzene	45	Ū	590	45	ug/Kg
95-50-1	1,2-Dichlorobenzene	43	Ü	590	43	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	110	Ū	590	110	ug/Kg ug/Kg
120-82-1	1,2,4-Trichlorobenzene	34	Ū	590	34	ug/Kg ug/Kg
593-70-4	Chlorofluoromethane	590	Ü	590	590	ug/Kg
75-43-4	Fluorodichloromethane	590	Ū	590	590	ug/Kg
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	48.54	97 %	75 - 125		SPK: 50
1868-53-7	Dibromofluoromethane	51.93	104 %	75 - 125		SPK: 50
2037-26-5	Toluene-d8	53.31	107 %	75 - 125		SPK: 50
460-00-4	4-Bromofluorobenzene	53.49	107 %	75 - 125		SPK: 50
INTERNAL ST.	ANDARDS					O 50
363-72-4	Pentafluorobenzene	313822	4.69			
540-36-3	I,4-Difluorobenzene	497919	5.30			
3114-55-4	Chlorobenzene-d5	471090	9.04			
3855-82-1	1,4-Dichlorobenzene-d4	247579	11.59			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

CHEMIECH 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 9/12/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/13/2006 Client Sample ID: MW-30D(69-71) SDG No.: X4449 Lab Sample ID: X4449-03 Matrix: SOIL Analytical Method: 8260 % Moisture: 14 Sample Wt/Wol: Units: g 5.1 Soil Extract Vol: 10000 uL Soil Aliquot Vol: 100 uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID	1
VH009769.D	1	9/22/2006	VH092206	

CAS Number	Parameter	Conc.	Qualifier	RL	MD	L Units
TARGETS						
75-71-8	Dichlorodifluoromethane	38	U	570	38	ug/Kg
74-87-3	Chloromethane	77	U	570	77	ug/Kg ug/Kg
75-01-4	Vinyl chloride	30	Ŭ	570	30	ug/Kg ug/Kg
74-83-9	Bromomethane	89	Ŭ	570	89	ug/Kg ug/Kg
75-00-3	Chloroethane	100	Ü	570	100	ug/Kg ug/Kg
75-69-4	Trichlorofluoromethane	66	Ŭ	570	66	ug/Kg ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	79	Ŭ	570	79	ug/Kg ug/Kg
75-35-4	1,1-Dichloroethene	37	ΰ	570	37	ug/Kg ug/Kg
67-64-1	Acetone	380	Ŭ	2800	380	ug/Kg ug/Kg
75-15-0	Carbon disulfide	44	Ŭ	570	44	ug/Kg ug/Kg
1634-04-4	Methyl tert-butyl Ether	41	Ŭ	570	41	
79-20-9	Methyl Acetate	94	Ŭ	570	94	ug/Kg ug/Kg
75-09-2	Methylene Chloride	71	Ŭ	570	71	ug/Kg ug/Kg
156-60-5	trans-1,2-Dichloroethene	58	Ū	570	58	ug/Kg ug/Kg
75-34-3	1,1-Dichloroethane	24	Ŭ	570	24	ug/Kg ug/Kg
110-82-7	Cyclohexane	42	Ü	570	42	ug/Kg ug/Kg
78-93-3	2-Butanone	320	U	2800	320	ug/Kg ug/Kg
56-23-5	Carbon Tetrachloride	53	Ŭ	570	53	ug/Kg ug/Kg
156-59-2	cis-1,2-Dichloroethene	88	Ŭ	570	88	ug/Kg ug/Kg
67-66-3	Chloroform	65	Ŭ	570	65	ug/Kg ug/Kg
71-55-6	1,1,1-Trichloroethane	46	Ŭ	570	46	ug/Kg ug/Kg
108-87-2	Methylcyclohexane	68	Ü	570	68	ug/Kg
71-43-2	Benzene	27	Ü	570	27	
107-06-2	1,2-Dichloroethane	36	Ū	570	36	ug/Kg ug/Kg
79-01-6	Trichloroethene	76	Ū	570	76	
78-87-5	1,2-Dichloropropane	36	Ü	570	36	ug/Kg ug/Kg
75-27-4	Bromodichloromethane	40	Ü	570	40	
108-10-1	4-Methyl-2-Pentanone	150	Ü	2800	150	ug/Kg
108-88-3	Toluene	44	Ü	570	44	ug/Kg
10061-02-6	t-1,3-Dichloropropene	48	U	570	48	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	17	U	570	17	ug/Kg
79-00-5	1,1,2-Trichloroethane	59	Ŭ	570	59	ug/Kg ug/Kg

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

GENTECH 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 9/12/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/13/2006 Client Sample ID: MW-30D(69-71) SDG No.: X4449 Lab Sample ID: X4449-03 Matrix: SOIL Analytical Method: 8260 % Moisture: 14 Sample Wt/Wol: Units: g 5.1 Soil Extract Vol: 10000 uL Soil Aliquot Vol: 100 uL

File 1D: Dilution: Date Analyzed **Analytical Batch 1D** VH009769.D 1 9/22/2006 VH092206

CAS Number	Parameter	Conc.	Qualifier	RL	MD	L Units
591-78-6	2-Hexanone	75	U	2800	75	ug/Kg
124-48-1	Dibromochloromethane	43	U	570	43	ug/Kg ug/Kg
106-93-4	1,2-Dibromoethane	72	Ŭ	570 570	72	ug/Kg ug/Kg
127-18-4	Tetrachloroethene	38	Ŭ	570	38	_
108-90-7	Chlorobenzene	42	U	570	42	ug/Kg ug/Kg
100-41-4	Ethyl Benzene	46	Ü	570	46	ug/Kg ug/Kg
126777-61-2	m&p-Xylenes	110	Ü	1100	110	
95-47-6	o-Xylene	42	Ŭ	570	42	ug/Kg
100-42-5	Styrene	39	Ŭ	570	39	ug/Kg
75-25-2	Bromoform	29	Ŭ	570	29	ug/Kg
98-82-8	Isopropylbenzene	38	Ŭ	570	38	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	56	Ŭ	570	56	ug/Kg
541-73-1	1,3-Dichlorobenzene	42	Ü	570	42	ug/Kg
106-46-7	1,4-Dichlorobenzene	44	Ŭ	570	44	ug/Kg
95-50-1	1,2-Dichlorobenzene	42	Ü	570	42	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	110	Ü	570	110	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	33	U	570	33	ug/Kg
593-70-4	Chlorofluoromethane	570	Ü	570	570	ug/Kg
75-43-4	Fluorodichloromethane	570	Ŭ	570	570 570	ug/Kg
SURROGATES		211	Ü	370	370	ug/Kg
17060-07-0	1,2-Dichloroethane-d4	44.24	88 %	75 - 125		SPK: 50
1868-53-7	Dibromofluoromethane	47.78	96 %	75 - 125		SPK: 50
2037-26-5	Toluene-d8	49,33	99 %	75 - 125		SPK: 50
460-00-4	4-Bromofluorobenzene	45.64	91%	75 - 125		SPK: 50
INTERNAL STA	ANDARDS		, , , o	75 - 125		3F.M., 3U
363-72-4	Pentafluorobenzene	351123	4.68			
540-36-3	1,4-Difluorobenzene	554610	5.29			
3114-55-4	Chlorobenzene-d5	466661	9.03			
3855-82-1	1,4-Dichlorobenzene-d4	247835	11.59			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

GENTECH 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

9/23/2006

Client: TRC Environmental Corp., NY

1

Project: Morris park RI/FS TRC#46130-0010

Client Sample ID: FIELDBLANK Lab Sample ID: X4449-04

Analytical Method: 8260

VH009773.D

Sample Wt/Wel: 5.0 Units: mL Soil Aliquot Vol: uL Date Collected:

9/11/2006

Date Received: 9/13/2006

SDG No.: X4449 Matrix:

WATER % Moisture: 100

Seil Extract Vol:

uL

File ID:	Dilution:	Date Analyzed

Analytical Batch 1D

VH092206

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS				****	
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17
74-87-3	Chloromethane	0.34	U	5.0	0.17 ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.34 ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.33 ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.41 ug/L
75-69-4	Trichlorofluoromethane	0.22	U		0.83 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	0.22 ug/L
75-35-4	1.1-Dichloroethene	0.42	U	5.0	1.3 ug/L
67-64-1	Acetone	9.6	J	5.0	0.42 ug/L
75-15-0	Carbon disulfide	0.40	U	25	2.3 ug/L
1634-04-4	Methyl tert-butyl Ether	0.28		5.0	0.40 ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.28 ug/L
75-09 - 2	Methylene Chloride	0.43	Ü	5.0	0.20 ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.43 ug/L
75-34-3	I,I-Dichloroethane	0.40	U	5.0	0.40 ug/L
110-82-7	Cyclohexane		U	5.0	0.38 ug/L
78-93-3	2-Butanone	0.36	U	5.0	0.36 ug/L
56-23-5	Carbon Tetrachloride	1.1	U	25	1.1 ug/L
156-59-2	cis-1,2-Dichloroethene	1.1	U	5.0	1.1 ug/L
57-66-3	Chloroform	0.29	U	5.0	0.29 ug/L
71-55-6	1,1,1-Trichloroethane	0.33	U	5.0	0.33 ug/L
08-87-2	Methylcyclohexane	0.32	U	5.0	0.32 ug/L
1-43-2	Benzene	0.34	U	5.0	0.34 ug/L
07-06-2	I,2-Dichloroethane	0.39	U	5.0	0.39 ug/L
9-01-6	Trichloroethene	0.34	U	5.0	0.34 ug/L
8-87-5		0.46	U	5.0	0.46 ug/L
5-27-4	1,2-Dichloropropane	0.40	U	5.0	0.40 ug/L
08-10-1	Bromodichloromethane	0.33	U	5.0	0.33 ug/L
08-88-3	4-Methyl-2-Pentanone	1.6	U	25	1.6 ug/L
08-88-3 0061-02-6	Toluene	0.36	U	5.0	0.36 ug/L
	t-1,3-Dichloropropene	0.32	U	5.0	0.32 ug/L
0061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36 ug/L
9-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B - Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client:

TRC Environmental Corp., NY

Project:

Morris park RI/FS TRC#46130-0010

Client Sample ID:

FIELDBLANK

Lab Sample ID:

X4449-04 8260

Analytical Method: Sample Wt/Wel:

5.0

Units: mL

Soil Aliquot Vol:

uL

Date Collected:

9/11/2006

Date Received:

9/13/2006

SDG No.:

X4449

Matrix:

WATER

% Moisture: Seil Extract Vol: 100

ul.

File ID: VH009773.D Dilution:

1

Date Analyzed 9/23/2006

Analytical Batch ID

VH092206

CAS Number	Parameter	Conc.	Qualifier	RL	MDI	Units
591-78-6	2-Hexanone	1.7	U	25		
124-48-1	Dibromochloromethane	0.26	U		1.7	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0 5.0	0.26	ug/L
127-18-4	Tetrachloroethene	0.48	U		0.32	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.48	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.47	ug/L
126777-61-2	m/p-Xylenes	1.2	U	5.0	0.45	ug/L
95-47-6	o-Xylene	0.46	U	10	1.2	ug/L
100-42-5	Styrene	0.41	U	5.0	0.46	ug/L
75-25-2	Bromoform	0.32		5.0	0.41	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.32	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.44	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.30	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.54	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.44	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.38	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	0.46	ug/L
75-43-4	Fluorodichloromethane		U	5.0	5.0	ug/L
SURROGATES		5.0	U	5.0	5.0	ug/L
17060-07-0	1,2-Dichloroethane-d4	43.98	88 %	70 110		.
1868-53-7	Dibromofluoromethane	50.25		72 - 119		SPK: 50
2037-26-5	Toluene-d8	52.71	101 %	85 - 115		SPK: 50
160-00-4	4-Bromofluorobenzene		105 %	81 - 120		SPK: 50
NTERNAL STA		51.73	103 %	76 - 119		SPK: 50
363-72-4	Pentafluorobenzene	214100	± 77.0			
40-36-3	1,4-Difluorobenzene	314198	4.70			
114-55-4	Chlorobenzene-d5	482460	5.30			
855-82-1	1,4-Dichlorobenzene-d4	428191 248761	9.04 11.59			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 9/11/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/13/2006 Client Sample 1D: TRIPBLANK SDG No.: X4449 Lab Sample ID: X4449-05 Matrix: SOIL Analytical Method: 8260 % Moisture: 0 Sample Wt/Wol: Units: g 5.4 Soil Extract Vol: 10000 ul. Soil Aliquot Vol: 100 uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID	7
VH009770.D	1	9/22/2006	VH092206	
	······································)

CAS Number	Parameter	Conc.	Qualifier	RL	MD	L Unit:
TARGETS						
75-71-8	Dichlorodifluoromethane	31	U	460	21	""
74-87-3	Chloromethane	63	U	460	31	ug/Kg
75-01-4	Vinyl chloride	25	U		63	ug/Kg
74-83-9	Bromomethane	73	U	460	25 53	ug/Kg
75-00-3	Chloroethane	82	U	460	73	ug/Kg
75-69-4	Trichlorofluoromethane	53	U	460	82	ug/Kg
76 - 13-1	1,1,2-Trichlorotrifluoroethane	64	U	460	53	ug/Kg
75-35-4	1,1-Dichloroethene	30	U	460	64	ug/Kg
67-64-1	Acetone	310	U	460	30	ug/Kg
75-15-0	Carbon disulfide	36	U	2300	310	ug/Kg
1634-04-4	Methyl tert-butyl Ether	33	U	460	36	ug/Kg
79-20-9	Methyl Acetate	77		460	33	ug/Kg
75-09-2	Methylene Chloride	58	U	460	77	ug/Kg
156-60-5	trans-1,2-Dichloroethene	48	U	460	58	ug/Kg
75-34 - 3	1,1-Dichloroethane	20	U	460	48	ug/Kg
110-82-7	Cyclohexane	34	U	460	20	ug/Kg
78-93 - 3	2-Butanone	260	U	460	34	ug/Kg
66-23-5	Carbon Tetrachloride	44	U	2300	260	ug/Kg
56-59-2	cis-1,2-Dichloroethene	71	U	460	44	ug/Kg
7-66-3	Chloroform	53	U	460	71	ug/Kg
1-55-6	1,1,1-Trichloroethane	38	U	460	53	ug/Kg
08-87-2	Methylcyclohexane	56	U	460	38	ug/Kg
1-43-2	Benzene	22	U	460	56	ug/Kg
07-06-2	1,2-Dichloroethane	30	U	460	22	ug/Kg
9-01-6	Trichloroethene	62	U	460	30	ug/Kg
8-87-5	1,2-Dichloropropane	02 29	U	460	62	ug/Kg
5-27-4	Bromodichloromethane	32	U	460	29	ug/Kg
08-10-1	4-Methyl-2-Pentanone		U	460	32	ug/Kg
08-88-3	Toluene	120	U	2300	120	ug/Kg
0061-02-6	t-1,3-Dichloropropene	36 30	U	460	36	ug/Kg
0061-01-5	cis-1,3-Dichloropropene	39	U	460	39	ug/Kg
9-00-5	1,1,2-Trichloroethane	14	U	460	14	ug/Kg
		48	U	460	48	ug/Kg

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 9/11/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/13/2006 Client Sample ID: TRIPBLANK SDG No.: X4449 Lab Sample ID: X4449-05 Matrix: SOIL Analytical Method: 8260 % Moisture: 0 Sample Wt/Wol: 5.4 Units: g Soil Extract Vol: 10000 ul. Soil Aliquot Vol; 100 uL

File ID: Dilution: Date Analyzed Analytical Batch ID VH009770.D 1 9/22/2006 VH092206

CAS Number	Parameter	Conc.	Qualifier	RL	MDI	Units
591-78-6	2-Hexanone	61	U	2300	61	ug/Kg
124-48-1	Dibromochloromethane	35	Ŭ	460	35	ug/Kg ug/Kg
106-93-4	1,2-Dibromoethane	59	Ŭ	460	59	ug/Kg ug/Kg
127-18-4	Tetrachloroethene	31	Ŭ	460	31	ug/Kg ug/Kg
108-90-7	Chlorobenzene	34	Ŭ	460	34	ug/Kg ug/Kg
100-41-4	Ethyl Benzene	38	Ü	460	38	ug/Kg ug/Kg
126777-61-2	m&p-Xylenes	89	Ü	930	89	ug/Kg ug/Kg
95-47-6	0-Xylene	34	Ü	460	34	ug/Kg ug/Kg
100-42-5	Styrene	32	Ü	460	32	ug/Kg ug/Kg
75-25-2	Bromoform	23	Ü	460	23	ug/Kg ug/Kg
98-82-8	Isopropylbenzene	31	U	460	31	ug/Kg ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	46	Ŭ	460	46	ug/Kg ug/Kg
541-73-1	1,3-Dichlorobenzene	35	Ü	460	35	ug/Kg ug/Kg
106-46-7	1,4-Dichlorobenzene	36	Ŭ	460	36	ug/Kg ug/Kg
95-50-1	1,2-Dichlorobenzene	34	U	460	34	ug/Kg ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	87	Ü	460	87	ug/Kg ug/Kg
120-82-1	1,2,4-Trichlorobenzene	27	Ŭ	460	27	ug/Kg ug/Kg
593-70-4	Chlorofluoromethane	460	Ū	460	460	ug/Kg ug/Kg
75-43-4	Fluorodichloromethane	460	Ü	460	460	ug/Kg ug/Kg
SURROGATES			Ŭ.	100	400	ug/Kg
17060-07-0	1,2-Dichloroethane-d4	45.97	92 %	75 - 125		SPK: 50
1868-53-7	Dibromofluoromethane	47.24	94 %	75 - 125		SPK: 50
2037-26-5	Toluene-d8	49.41	99 %	75 - 125		SPK: 50
460-00-4	4-Bromofluorobenzene	45.88	92 %	75 - 125		SPK: 50
INTERNAL STA	ANDARDS		,	, , , , , ,		51 K. 50
363-72-4	Pentafluorobenzene	352405	4.69			
540-36-3	1,4-Difluorobenzene	558274	5.29			
3114-55-4	Chlorobenzene-d5	470111	9.04			
3855-82-1	1,4-Dichlorobenzene-d4	243179	11.58			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

CHAIN OF CUSTODY RECORD

284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922

CHEMTECH PROJECT NO. XCLCLTG

789-8900 Fax (908) 789-8922 CHEMIECH PROJECT WWW.Chemtech.net

POIL 46150, 0000.02 Pors --- Specify Preservatives B - HNO, D-NaOH F-Other STATE: LY ZIP: 10018 Shipment Complete: PHONE: 212221 XEL DIYES DINO しって COMMENTS ice in Cooler?: ________ A-HCI C-HSO E-ICE CLIENT BILLING INFORMATION Cooler Temp. ... 060739 X OVERNIGHT Becal wing CHEMTECH: | PICKED UP | OVERNIGHT ANALYSIS Ö SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION INCLUDING COURIER DELIVERY Conditions of bottles or coolers at receipt:

MeOH extraction requires an additional 4 oz jar for percent solid. Ф SHIPPED VIA: CLIENT: (] HAND DELIVERED han Jack West Comilas 1430 PRESERVATIVES မှ ATTENTIONS ADDRESS: មា BILL TO: OITY: PROJECT NAME: LIKE CFC IN LOS PESSION Sange Cre sin pas Thesale +10-5. Con က Khit 112 221 7840 FAX: To se Mach St. A. Protection of CLIENT PROJECT INFORMATION DATA DELIVERABLE INFORMATION New Jorsey REDUCED | New York State ASP "A"
New Jorsey CLP | Other | SK Now York State ASP 'B" LOCATION: SEJTTOB 90 t 6 □ USEPACLP 100st 0511 raje116 15S TIME SAMPLE Ġ A12 221 7822 Histor. HILLOG PROJECT NO. 46/30 DATE PROJECT MANAGER: C RESULTS ONLY
C RESULTS + OC
C Now Jorsoy REDU
Now Jorsoy CLP
C EDD FORMAT SAMPLE CBYB TYPE dW00 MILMOZ PHONE e-mail: SAMPLE MATRIX Joseph . 20. 20. RECEIVED FOR LAB BY: STATE: NYZIP: 10013 12/2 22/ 2840 FAX: 3.J.M RECEIVED BY: RECEIVED BY: DAYS. DAYS. STANDARD TURNAROUND TIME IS 10 BUSINESS DAYS DAYS. Mespsona 16-5-(35-3> PROJECT SAMPLE IDENTIFICATION DATA-TURNAROUND INFORMATION 16-59 Breakeney DATE/TIME: 935 21,200 Blonk 5 CLIENT INFORMATION PEPORT TO BE SENT TO: DIMME \$112106 ALLARA DATE/TIME: DATETIME * TO BE APPROVED BY CHEMTECH 100 - WM m-300 7630 100 114 MW-30D F. e/d のころ 1430 New York RELINCU/SHET BY SAMPLER CHEMTECH SAMPLE ID ATTENTION: RELINCU/ISHED BY COMPANY: ADDRESS: HARD COP CITY: PHONE EDD: 300 ö હ્યું ಣ ø ₩. ဆဲ တ်

PINK - SAMPLER COPY YELLOW - CHEMTECH COPY WHITE - CHEMTECH COPY FOR RETURN TO CLIENT

Revision 4/2005

EPA SAMPLE NO.

MW-30D (57-59)

Lab Name: Chemtech		Con	tract:	TRCE	:03		
Lab Code: CHEM	Case No.: X4449	SAS No	.: <u>X44</u>	49	sr	G No.:	<u> </u>
Matrix (soil/water):	SOIL	Lab	Sample I	D: _	X4449-0)2	
Sample wt/vol: 5.1	(g/mL) g	Lab	File ID:	_	VH0097	58.D	
Level (low/med): MED	· ·	Date	e Receive	d:	9/13/2	2006	
% Moisture: not dec.	17	Date	e Analyze	d:	9/22/2	2006	
GC Column: RTX624	ID: 0.53	Dila	ution Fac	tor:	1.0		
Soil Extract Volume:	10000	Soi	l Aliquot	Volu	ne:	100	
Number TICS found:	1		CENTRATIO		·	<u>.</u>	
CAS NO.	COMPOUND		RT		EST.	CONC.	Q
1. 75-45-6	Difluorochloromethane		1.13			5900	υ

EPA SAMPLE NO.

MW-30D (69-71)

Lab Name: Chemtech		Conts	cact:	TRCE03		
Lab Code: CHEM	Case No.: <u>X4449</u>	SAS No.	: <u>X444</u>	19 :	SDG No.:	X4449
Matrix (soil/water):	SOIL	Lab S	Sample II	: X4449	-03	
Sample wt/vol: 5.1	(g/mL)g	Lab I	File ID:	VH009	769.D	
Level (low/med): MED	***************************************	Date	Received	i: 9/13,	/2006	
% Moisture: not dec.	_14	Date	Analyzed	ı: <u>9/22</u> ,	/2006	
GC Column: RTX624	ID: 0.53	Dilut	tion Fact	or: <u>1.</u>	0	
Soil Extract Volume:	10000	Soil	Aliquot	Volume:	100	
Number TICS found:	1		ENTRATION Ig/L or u	UNITS: g/Kg) <u>ug/K</u>	<u>1 </u>	
CAS NO.	COMPOUND		RT	EST	. CONC.	Q
1. 75-45-6	Difluorochloromethane		1.11		5700	ซ

EPA SAMPLE NO.

TRIPBLANK

Lab Name: Chemtech		Con	tract:	TRCI	E03		
Lab Code: CHEM	Case No.: <u>X4449</u>	SAS No	.: <u>X4</u>	449	sd	G No.:	<u> X4449</u>
Matrix (soil/water):	SOIL	Lab	Sample	ID:	X4449-0)5	
Sample wt/vol: 5.4	(g/mL) <u>g</u>	Lab	File ID	:	VH00977	d.0	
Level (low/med): MED		Date	e Receiv	ed:	9/13/2	2006	
% Moisture: not dec.	0	Date	e Analyz	ed;	9/22/2	2006	
GC Column: RTX624	ID: 0.53	Dil	ution Fa	ctor:	1.0		
Soil Extract Volume:	10000	Soi	l Aliquo	t Volu	me:	100	
Number TICS found:	1	* * * * * * * * * * * * * * * * * * * *	CENTRATI		TS:) <u>ug/Kg</u>		
CAS NO.	COMPOUND		RT		EST.	CONC	Ω
1. 75-45-6	Difluorochloromethane		1.3	11		4600	U

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

		į	VBLK01
Lab Name: Chemtech		Contract: TRC	E03
Lab Code: CHEM	Case No.: <u>X4449</u>	SAS No.: X4449	SDG No.: X4449
Matrix (soil/water):	WATER	Lab Sample ID:	VBH0922-01
Sample wt/vol: 5.0	_ (g/mL) _mL	Lab File ID:	VH009756.D
Level (low/med):		Date Received:	
% Moisture: not dec.	100	Date Analyzed:	9/22/2006
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0
Soil Extract Volume:	<u> </u>	Soil Aliquot Volu	me:
Number TICS found:	0	CONCENTRATION UNI	- - · ·
CAS NO.	COMPOUND	RT	EST. CONC. Q
1. 75-45-6	Difluorochloromethane	1.11	50 U

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

			VBLK02
Lab Name: Chemtech		Contract: TRO	CE03
Lab Code: CHEM	Case No.: <u>X4449</u>	SAS No.: X4449	SDG No.: X4449
Matrix (soil/water):	WATER	Lab Sample ID:	VBH0924-01
Sample wt/vol: 5.0	(g/mL)mL	Lab File ID:	VH009777.D
Level (low/med):		Date Received:	
% Moisture: not dec.	100	Date Analyzed:	9/24/2006
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0
Soil Extract Volume:		Soil Aliquot Vol	ume:
Number TICS found:	0	CONCENTRATION UN	
CAS NO.	COMPOUND	RT	EST. CONC. Q
1. 75-45-6	Difluorochloromethane	1.11	50 U

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

FIELDBLANK

Lab Name:	Chemtech		Con	tract	: TRC	E03		
Lab Code:	CHEM	Case No.: X4449	SAS No	·:	<u>x4449</u>	SDG No	:	<u> X4449</u>
Matrix (s	soil/water):	WATER	Ľab	Samp	le ID:	X4449-04		
Sample wt	t/vol: <u>5.0</u>	(g/mL) <u>mL</u>	Lab	File	ID:	VH009773.D		
Level (lo	ow/med):		Date	e Rec	eived:	9/13/2006		
% Moistur	ce: not dec.	100	Date Analyzed:			9/23/2006		
GC Column	n: RTX624	ID: 0.53	Dil	ution	Factor:	1.0		
Soil Extr	ract Volume:		Soi.	l Ali	quot Volu	ume:		
Number Ti	ICS found:	0	CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L					
CA	s no.	COMPOUND			RT	EST. CONC	÷.	Ď
1. 75-	45-6	Difluorochloromethane			1.11		50	U

EPA SAMPLE NO.

					VBLKO	1
Lab N	fame: Chemtech		Cont	ract: TRO	CE03	
Lab C	ode: <u>CHEM</u>	Case No.: <u>X4449</u>	SAS No.	: X4449	SDG No.:	X4449
Matri	x (soil/water):	SOIL	Lab :	Sample ID:	VBH0922-01	
Sampl	e wt/vol: <u>5.0</u>	(g/mL) <u>g</u>	Lab 1	File ID:	VH009756.D	
Level	(low/med): MED		Date	Received:		
% Moi	sture: not dec.	0	Date	Analyzed:	9/22/2006	
GC Co	olumn: RTX624	ID: 0.53	Dilu	tion Factor:	1.0	-
Soil	Extract Volume:	10000	Soil	Aliquot Vol	ume: 100	
Numbe	r TICS found:	0		ENTRATION UN	_	
	CAS NO.	COMPOUND		RT	EST. CONC.	Q
1.	75-45-6	Difluorochloromethane		1.11	50	lσ

EPA SAMPLE NO.

						VBLK0:	2
Lab N	Name: <u>Chemtech</u>		Con	tract: TRO	CE03		
Lab C	Code: CHEM	Case No.: <u>X4449</u>	SAS No	.: <u>X4449</u>	s	DG No.:	X4449
Matri	ix (soil/water):	SOIL	Lab	Sample ID:	VBH092	4-01	
Sampl	le wt/vol: <u>5.0</u>	(g/ml) <u>g</u>	Lab	File ID:	VH0097	77, D	
Level	L (low/med): MED		Date	e Received:			
% Moi	isture: not dec.	0	Date	e Analyzed:	9/24/	2006	
GC Cc	olumn: RTX624	ID: 0.53	Dil	ution Factor:	1.0)	
Soil	Extract Volume:	10000	Soi	l Aliquot Vol	ume:	100	
Numbe	er TICS found:	0		CENTRATION UN		, <u> </u>	
	CAS NO.	COMPOUND		rt	EST.	CONC.	٥
1.	75-45-6	Difluorochloromethane		1.11		50	U

EPA SAMPLE NO.

MW-30D (35-37)

Lab Name: Chemtech		Contract: T	RCE03
Lab Code: CHEM	Case No.: X4449	SAS No.: X4449	SDG No.: X4449
Matrix (soil/water):	SOIL	Lab Sample ID:	X4449-01
Sample wt/vol: 6.0	(g/mL) <u>g</u>	Lab File ID:	VH009767.D
Level (low/med): MED		Date Received:	9/13/2006
% Moisture: not dec.	7	Date Analyzed:	9/22/2006
GC Column: RTX624	ID: 0.53	Dilution Factor	1.0
Soil Extract Volume:	10000	Soil Aliquot Vo	lume: 100
Number TICS found:	0	CONCENTRATION U	
CAS NO.	COMPOUND	RT	EST. CONC. Q
1. 75-45-6	Difluorochloromethane	1.11	50 U

EPA SAMPLE NO.

MW-30D (57-59)

Lab Name: Chemtech		Contract: T	RCE03
Lab Code: CHEM	Case No.: <u>X4449</u>	sas no.: <u>X4449</u>	SDG No.: X4449
Matrix (soil/water):	SOIL	Lab Sample ID:	X4449-02
Sample wt/vol: 5.1	(g/mL) _g	Lab File ID:	VH009768.D
Level (low/med): ME	ED	Date Received:	9/13/2006
% Moisture: not dec.	_17	Date Analyzed:	9/22/2006
GC Column: RTX624	ID: 0.53	Dilution Factor	1.0
Soil Extract Volume:	10000	Soil Aliquot Vo	olume: 100
Number TICS found:	0	CONCENTRATION (
CAS NO.	COMPOUND	RT	EST. CONC. Q
1. 75-45-6	Difluorochloromethane	1.11	50 U

EPA SAMPLE NO.

MW-30D (69-71)

Lab Name: Chemtech		Contract:	TRCE03	
Lab Code: CHEM	Case No.: <u>X4449</u>	SAS No.: X444	9 SDG No.:	<u> </u>
Matrix (soil/water):	SOIL	Lab Sample ID	: X4449-03	
Sample wt/vol: 5.1	(g/mL) <u>g</u>	Lab File ID:	VH009769.D	
Level (low/med): MED		Date Received	: 9/13/2006	
% Moisture: not dec.	14	Date Analyzed	: <u>9/22/2006</u>	
GC Column: RTX624	ID: 0.53	Dilution Fact	or: 1.0	
Soil Extract Volume:	10000	Soil Aliquot	Volume: 100	
Number TICS found:	0	CONCENTRATION (ug/L or uc	UNITS: g/Kg) <u>ug/Kg</u>	
CAS NO.	COMPOUND	RT	EST. CONC.	Q
1. 75-45-6	Difluorochloromethane	1.11	50	U

EPA SAMPLE NO.

TRIPBLANK

Lab Name: Chemtech		Contract: TRC	E03
Lab Code: CHEM	Case No.: X4449	SAS No.: <u>X4449</u>	SDG No.: X4449
Matrix (soil/water):	SOIL	Lab Sample ID:	X4449-05
Sample wt/vol: 5.4	(g/mL) <u>g</u>	Lab File ID:	VH009770.D
Level (low/med): MED		Date Received:	9/13/2006
% Moisture: not dec.	0	Date Analyzed:	9/22/2006
GC Column: RTX524	ID: 0.53	Dilution Factor:	1.0
Soil Extract Volume:	10000	Soil Aliquot Volu	ume: 100
Number TICS found:	0	CONCENTRATION UN: (ug/L or ug/Kg	
CAS NO.	COMPOUND	RT	EST. CONC. Q
1. 75-45-6	Diflucrochloromethane	1.11	50 U

DATA PACKAGE FOR VOLATILE ORGANICS

PROJECT NAME: Morris park RI/FS TRC#46130-0010

TRC ENVIRONMENTAL CORP., NY
1430 BROADWAY
10TH FLOOR
NEW YORK, NY 10018
2122217822

CHEMTECH PROJECT NO. ATTENTION:

X4494 Sam Monte

COVER PAGE

ProjectID: Morris park RI/FS TRC#461

OrderID: X4494 CustomerName: TRC Environmental Corp., NY

CLIENT SAMPLE NO
MW-17R1B2(24-26)
MW-17R1B2(38-40)
MW-2-160R(170-172)
FIELDBLANK
TRIPBLANK
B-3(23-25)
B-3(27-29)
B-3(37-39)
B-4(25-27)
B-4(39-41)
MW-29D(36-38)
MW-29D(48-50)
FIELDBLANK
TRIPBLANK

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature:	unt	Name:	LIND A DI ONIO	
Date:	10/10/06	Title:	TON OC	~ ^ _

CHEMTECH

284 Sheffield Street Mountainside NJ 07092 Tel. 908-789-8900 Fax: 908-789-8922

DATA REPORTING QUALIFIERS- ORGANIC

For reporting results, the following "Results Qualifiers" are used:

Value	** ·
value	If the result is a value greater than or equal to the detection limit, report the value
Ū	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10 U". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
J	 Indicates an estimated value. This flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise or anything.
В	Pest, PCB and others. Indicates the analyte was found in the blank as well as the sample report as "12 B".
E	Indicates the analyte's concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
P	This flag is used for Pesticide/PCB target analyte when there is >25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form I and flagged with a "P".
N ,	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 9/18/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/20/2006 Client Sample ID: MW-17R1B2(24-26) SDG No.: X4494 Lab Sample ID: X4494-01 Matrix: SOIL Analytical Method: 8260 % Moisture: 11 Sample Wt/Wol: 7.4 Units: g Soil Extract Vol: 10000 uL. Soil Aliquot Vol: 100 uL

File ID: Dilution: Date Analyzed **Analytical Batch ID** VF004207.D I 9/28/2006 VF092106

CAS Number	Parameter	Conc.	Qualifier	RL	MDI	Units
TARGETS					***************************************	
75-71-8	Dichlorodifluoromethane	25	U	380	25	ug/Kg
74-87-3	Chloromethane	52	Ū	380	52	ug/Kg
75-01-4	Vinyl chloride	20	U	380	20	ug/Kg
74-83-9	Bromomethane	59	U	380	59	ug/Kg
75-00-3	Chloroethane	67	Ū	380	67	ug/Kg
75-69-4	Trichlorofluoromethane	1600		380	44	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	53	U	380	53	ug/Kg
75-35-4	1,1-Dichloroethene	24	Ū	380	24	ug/Kg
67-64-1	Acetone	250	Ū	1900	250	ug/Kg
75-15-0	Carbon disulfide	30	Ū	380	30	ug/Kg
1634-04-4	Methyl tert-butyl Ether	27	Ü	380	27	ug/Kg
79-20-9	Methyl Acetate	130	J	380	63	ug/Kg
75-09-2	Methylene Chloride	47	U	380	47	ug/Kg
156-60-5	trans-1,2-Dichloroethene	39	U	380	39	ug/Kg
75-34-3	1,1-Dichloroethane	16	U	380	16	ug/Kg
140-82-7	Cyclohexane	28	Ū	380	28	ug/Kg
78-93-3	2-Butanone	550	J	1900	210	ug/Kg
56-23-5	Carbon Tetrachloride	36	U	380	36	ug/Kg
156-59-2	cis-1,2-Dichloroethene	58	U	380	58	ug/Kg
67-66-3	Chloroform	55	j	380	44	ug/Kg
71-55-6	1,1,1-Trichloroethane	31	U	380	31	ug/Kg
108-87-2	Methylcyclohexane	100	J	380	45	ug/Kg
71-43-2	Benzene	1500		380	18	ug/Kg
107-06-2	1,2-Dichloroethane	24	U	380	24	ug/Kg
79-01-6	Trichloroethene	51	U	380	51	ug/Kg
78-87-5	1,2-Dichloropropane	24	U	380	24	ug/Kg
75-27-4	Bromodichloromethane	26	U	380	26	ug/Kg
108-10-1	4-Methyl-2-Pentanone	100	U	1900	100	ug/Kg
108-88-3	Toluene	1600		380	29	ug/Kg
10061-02-6	t-1,3-Dichloropropene	32	U	380	32	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	12	U	380	12	ug/Kg
79-00-5	1,1,2-Trichloroethane	39	U	380	39	ug/Kg

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 9/18/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/20/2006 Client Sample ID: MW-17R1B2(24-26) SDG No.: X4494 Lab Sample ID: Matrix: X4494-01 SOIL Analytical Method: 8260 % Moisture: 11 Sample Wt/Wel: 7.4 Units: g Soil Extract Vol: 10000 иL Soil Aliquot Vol: 100 uL

File ID: Dilution: Date Analyzed Analytical Batch ID
VF004207.D 1 9/28/2006 VF092106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	50	U	1900	50	ug/Kg
124-48-1	Dibromochloromethane	29	U	380	29	ug/Kg
106-93-4	1,2-Dibromoethane	48	U	380	48	ug/Kg
127-18-4	Tetrachloroethene	1600		380	25	ug/Kg
108-90-7	Chlorobenzene	28	U	380	28	ug/Kg
100-41-4	Ethyl Benzene	49	J	380	31	ug/Kg
126777-61-2	m&p-Xylenes	390	J	760	73	ug/Kg
95-47-6	o-Xylene	110	J	380	28	ug/Kg
100-42-5	Styrene	26	U	380	26	ug/Kg
75-25-2	Bromoform	19	U	380	19	ug/Kg
98-82-8	Isopropylbenzene	25	U	380	25	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	38	U	380	38	ug/Kg
541-73-1	1,3-Dichlorobenzene	28	U	380	28	ug/Kg
106-46-7	1,4-Dichlorobenzene	29	U	380	29	ug/Kg
95-50-1	1,2-Dichlorobenzene	28	U	380	28	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	71	U	380	71	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	22	U	380	22	ug/Kg
593-70-4	Chlorofluoromethane	380	U	380	380	ug/Kg
75-43-4	Fluorodichloromethane	380	U	380	380	ug/Kg
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	55.87	112 %	75 - 125		SPK: 50
1868-53-7	Dibromofluoromethane	52.13	104 %	75 - 125		SPK: 50
2037-26-5	Toluene-d8	53.56	107 %	75 - 125		SPK: 50
460-00-4	4-Bromofluorobenzene	54.36	109 %	75 - 125		SPK: 50
INTERNAL STA	ANDARDS					
363-72-4	Pentafluorobenzene	1745502	8.08			
540-36-3	1,4-Difluorobenzene	2137465	9.41			
3114-55-4	Chlorobenzene-d5	2036366	15.39			
3855-82-1	1,4-Dichlorobenzene-d4	1398281	20.75			

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

TRC Environmental Corp., NY Client: Date Collected: 9/18/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/20/2006 Client Sample ID: MW-17R1B2(38-40) SDG No.: X4494 Lab Sample ID: X4494-02 Matrix: SOIL Analytical Method: 8260 % Moisture: 9 Sample Wt/Wol: 6.8 Units: g Soil Extract Vol: 10000 uL Soil Aliquot Vol; 100 uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VF004208.D 1 9/28/2006 VF092106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	27	U	410	27	ug/Kg
74-87-3	Chloromethane	55	U	410	55	ug/Kg
75-01-4	Vinyl chloride	22	U	410	22	ug/Kg
74-83-9	Bromomethane	63	U	410	63	ug/Kg
75-00-3	Chloroethane	72	U	410	72	ug/Kg
75-69-4	Trichlorofluoromethane	1400		410	47	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	56	U	410	56	ug/Kg
75-35-4	1,1-Dichloroethene	26	U	410	26	ug/Kg
67-64-1	Acetone	270	U	2000	270	ug/Kg
75-15-0	Carbon disulfide	32	U	410	32	ug/Kg
1634-04-4	Methyl tert-butyl Ether	29	U	410	29	ug/Kg
79-20-9	Methyl Acetate	210	J	410	67	ug/Kg
75-09-2	Methylene Chloride	50	U	410	50	ug/Kg
156-60-5	trans-1,2-Dichloroethene	42	U	410	42	ug/Kg
75-34-3	1,1-Dichloroethane	17	U	410	17	ug/Kg
110-82-7	Cyclohexane	510		410	30	ug/Kg
78-93-3	2-Butanone	660	J	2000	230	ug/Kg
56-23-5	Carbon Tetrachloride	38	U	410	38	ug/Kg
156-59-2	cis-1,2-Dichloroethene	62	U	410	62	ug/Kg
67-66-3	Chloroform	51	J	410	47	ид/Кд
71-55-6	1,1,1-Trichloroethane	33	U	410	33	ug/Kg
108-87-2	Methylcyclohexane	1200		410	49	ug/Kg
71-43-2	Benzene	1300		410	20	ug/Kg
107-06-2	1,2-Dichloroethane	26	U	410	26	ug/Kg
79-01-6	Trichloroethene	54	U	410	54	ug/Kg
78-87-5	1,2-Dichloropropane	26	U	410	26	ug/Kg
75-27-4	Bromodichloromethane	28	U	410	28	ug/Kg
108-10-1	4-Methyl-2-Pentanone	110	U	2000	110	ug/Kg
108-88-3	Toluene	1500		410	31	ug/Kg
10061-02-6	t-1,3-Dichloropropene	34	U	410	34	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	12	U	410	12	ug/Kg
79-00-5	1,1,2-Trichloroethane	42	U	410	42	ug/Kg

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 9/18/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/20/2006 Client Sample ID: MW-17R1B2(38-40) SDG No.: X4494 Lab Sample ID: X4494-02 Matrix: SOIL Analytical Method: 8260 % Moisture: 9 Sample Wt/Wol: 6.8 Units: g Soil Extract Vol: 10000 uL Soil Aliquot Vol: 100 uL

File ID: Dilution: Date Analyzed Analytical Batch ID VF004208.D 1 9/28/2006 VF092106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	53	U	2000	53	ug/Kg
124-48-1	Dibromochloromethane	31	U	410	31	ug/Kg
106-93-4	1,2-Dibromoethane	51	U	410	51	ug/Kg
127-18-4	Tetrachloroethene	1300		410	27	ug/Kg
108-90-7	Chlorobenzene	30	U	410	30	ug/Kg
100-41-4	Ethyl Benzene	45	J	410	33	ug/Kg
126777-61-2	m&p-Xylenes	380	J	810	78	ug/Kg
95-47-6	o-Xylene	160	J	410	30	ug/Kg
100-42-5	Styrene	28	U	410	28	ug/Kg
75-25-2	Bromoform	20	U	410	20	ug/Kg
98-82-8	Isopropylbenzene	27	U	410	27	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	40	U	410	40	ug/Kg
541-73-1	1,3-Dichlorobenzene	30	U	410	30	ug/Kg
106-46-7	1,4-Dichlorobenzene	31	U	410	31	ug/Kg
95-50-1	1,2-Dichlorobenzene	30	U	410	30	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	76	U	410	76	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	23	U	410	23	ug/Kg
593-70-4	Chlorofluoromethane	410	U	410	410	ug/Kg
75-43-4	Fluorodichloromethane	410	U	410	410	ug/Kg
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	59.89	120 %	75 - 125		SPK: 50
1868-53-7	Dibromofluoromethane	52.33	105 %	75 - 125		SPK: 50
2037-26-5	Toluene-d8	52.51	105 %	75 - 125		SPK: 50
460-00-4	4-Bromofluorobenzene	55.06	110 %	75 - 125		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	1489548	8.08			
540-36-3	1,4-Difluorobenzene	1929823	9.42			
3114-55-4	Chlorobenzene-d5	1843728	15.39			
3855-82-1	1,4-Dichlorobenzene-d4	1331640	20.73			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 9/19/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/20/2006 Client Sample 1D: MW-2-160R(170-172) SDG No.: X4494 Lab Sample ID: X4494-03 Matrix: SOIL Analytical Method: 8260 % Moisture: 17 Sample Wt/Wol: 8.7 Units: g Soil Extract Vol: 10000 uL Soil Aliquot Vol: 100 uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VF004209.D 1 9/28/2006 VF092106

CAS Number	Parameter	Conc.	Qualifier	RL	MDI	L Units
TARGETS						
75-71-8	Dichlorodifluoromethane	23	U	350	23	ug/Kg
74-87-3	Chloromethane	47	U	350	47	ug/Kg
75-01-4	Vinyl chloride	19	U	350	19	ug/Kg
74-83-9	Bromomethane	54	U	350	54	ug/Kg
75-00-3	Chloroethane	61	U	350	61	ug/Kg
75-69-4	Trichlorofluoromethane	72	J	350	40	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	48	U	350	48	ug/Kg
75-35-4	1,1-Dichloroethene	22	U	350	22	ug/Kg
67-64-1	Acetone	510	J	1700	230	ug/Kg
75-15-0	Carbon disulfide	27	U	350	27	ug/Kg
1634-04-4	Methyl tert-butyl Ether	25	U	350	25	ug/Kg
79-20-9	Methyl Acetate	58	U	350	58	ug/Kg
75-09-2	Methylene Chloride	43	U	350	43	ug/Kg
156-60-5	trans-1,2-Dichloroethene	36	U	350	36	ug/Kg
75-34-3	1,1-Dichloroethane	15	U	350	15	ug/Kg
110-82-7	Cyclohexane	25	U	350	25	ug/Kg
78-93-3	2-Butanone	200	U	1700	200	ug/Kg
56-23-5	Carbon Tetrachloride	33	U	350	33	ug/Kg
156-59-2	cis-1,2-Dichloroethene	54	U	350	54	ug/Kg
67-66-3	Chloroform	40	U	350	40	ug/Kg
71-55-6	1,1,1-Trichloroethane	28	U	350	28	ug/Kg
108-87-2	Methylcyclohexane	42	U	350	42	ug/Kg
71-43-2	Benzene	17	U	350	17	ug/Kg
107-06-2	1,2-Dichloroethane	22	U	350	22	ug/Kg
79-01-6	Trichloroethene	47	U	350	47	ug/Kg
78-87-5	1,2-Dichloropropane	22	U	350	22	ug/Kg
75-27-4	Bromodichloromethane	24	U	350	24	ug/Kg
108-10-1	4-Methyl-2-Pentanone	92	U	1700	92	ug/Kg
108-88-3	Toluene	27	U	350	27	ug/Kg
10061-02-6	t-1,3-Dichloropropene	30	U	350	30	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	11	U	350	11	ug/Kg
79-00-5	1,1,2-Trichloroethane	36	U	350	36	ug/Kg

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY Project:

Morris park RI/FS TRC#46130-0010

Client Sample ID:

MW-2-160R(170-172)

Lab Sample ID: X4494-03 Analytical Method:

8260

Sample Wt/Wol:

8.7 Units: g

Soil Aliquot Vol: 100 υL Date Collected:

9/19/2006

Date Received:

9/20/2006

SDG No.:

X4494

Matrix:

SOIL

% Moisture:

17

Soil Extract Vol:

10000

uL.

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VF004209.D	1	9/28/2006	VF092106

CAS Number	Parameter	Conc.	Qualifier	RL	MDI	_ Units
591-78-6	2-Hexanone	46	U	1700	46	ug/Kg
124-48-1	Dibromochloromethane	26	U	350	26	ug/Kg
106-93-4	1,2-Dibromoethane	44	U	350	44	ug/Kg
127-18-4	Tetrachloroethene	23	U	350	23	ug/Kg
108-90-7	Chlorobenzene	26	U	350	26	ug/Kg
100-41-4	Ethyl Benzene	28	U	350	28	ug/Kg
126777-61-2	m&p-Xylenes	67	U	690	67	ug/Kg
95-47-6	o-Xylene	25	U	350	25	ug/Kg
100-42-5	Styrene	24	U	350	24	ug/Kg
75-25-2	Bromoform	18	U	350	18	ug/Kg
98-82-8	Isopropylbenzene	23	U	350	23	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	34	U	350	34	ug/Kg
541-73-1	1,3-Dichlorobenzene	26	U	350	26	ug/Kg
106-46-7	1,4-Dichlorobenzene	27	U	350	27	ug/Kg
95-50-1	1,2-Dichlorobenzene	25	U	350	25	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	65	U	350	65	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	20	U	350	20	ug/Kg
593-70-4	Chlorofluoromethane	350	U	350	350	ug/Kg
75-43-4	Fluorodichloromethane	350	U	350	350	ug/Kg
SURROGATES						-
17060-07-0	1,2-Dichloroethane-d4	62.46	125 %	75 - 125		SPK: 50
1868-53-7	Dibromofluoromethane	53.52	107 %	75 - 125		SPK: 50
2037-26-5	Toluene-d8	52.48	105 %	75 - 125		SPK: 50
460-00-4	4-Bromofluorobenzene	55.76	112 %	75 - 125		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	1302662	8.08			
540-36-3	1,4-Difluorobenzene	1685229	9.41			
3114-55-4	Chlorobenzene-d5	1656121	15.38			
3855-82-1	1,4-Dichlorobenzene-d4	1198941	20.73			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 9/19/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/20/2006 Client Sample ID: FIELDBLANK SDG No.: X4494-01 Lab Sample 1D: Matrix: X4494-04 WATER

Analytical Method: % Moisture: 8260 100

Sample Wt/Woi: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL.

Dilution: File ID: Date Analyzed Analytical Batch ID VF004203.D 9/28/2006 1 VF092106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS					
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17 ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34 ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33 ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41 ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83 ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3 ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42 ug/L
67-64-1	Acetone	2.3	U	25	2.3 ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40 ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28 ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20 ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43 ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40 ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38 ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36 ug/L
78-93-3	2-Butanone	2.7	J	25	1.1 ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1 ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29 ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33 ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32 ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34 ug/L
71-43-2	Benzene	0.39	U	5.0	0.39 ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34 ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46 ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40 ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33 ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6 ug/L
108-88-3	Toluene	0.36	U	5.0	0.36 ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32 ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36 ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client Sample ID:

Date Collected:

Date Received:

Soil Extract Vol:

Matrix:

9/19/2006

9/20/2006

X4494-01

uL

Report of Analysis

Client: TRC Environmental Corp., NY

Project: Morris park RI/FS TRC#46130-0010

FIELDBLANK SDG No.:

Lab Sample ID: X4494-04 WATER

Analytical Method: 8260 % Moisture: 100 Units: mL Sample Wt/Wol: 5.0

Soil Aliquot Vol: uL.

File ID: Dilution: Date Analyzed Analytical Batch ID VF004203.D 1 9/28/2006 VF092106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochleromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	52.13	104 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	51.4	103 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	51.9	104 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	50.5	101 %	76 - 119		SPK: 50
INTERNAL ST.	ANDARDS					
363-72-4	Pentafluorobenzene	1799212	8.08			
540-36-3	1,4-Difluorobenzene	2238713	9.41			
3114-55-4	Chlorobenzene-d5	2053713	15.38			
3855-82-1	1,4-Dichlorobenzene-d4	1409828	20.74			

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Sample Wt/Wol:

CETTLE 1 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Soil Extract Vol:

uL

Report of Analysis

TRC Environmental Corp., NY Date Collected: 9/19/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/20/2006 Client Sample ID: TRIPBLANK SDG No.: X4494-01 Matrix: Lab Sample ID: X4494-05 WATER

% Moisture: Analytical Method: 8260 100

Soil Aliquet Vol: uL

5.0

Units: mL

File ID: Dilution: Date Analyzed **Analytical Batch ID** VF004204.D 1 9/28/2006 VF092106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS				*****	
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17 ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34 ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33 ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41 ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83 ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3 ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42 ug/L
67-64-1	Acetone	2.3	U	25	2.3 ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40 ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28 ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20 ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43 ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40 ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38 ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36 ug/L
78-93-3	2-Butanone	1.1	U	25	1.1 ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1 ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29 ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33 ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32 ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34 ug/L
71-43-2	Benzene	0.39	U	5.0	0.39 ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34 ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46 ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40 ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33 ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6 ug/L
108-88-3	Toluene	0.36	U	5.0	0.36 ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32 ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36 ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Sample Wt/Wol:

Soil Extract Vol:

uL

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 9/19/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/20/2006

Client Sample 1D: TRIPBLANK SDG No.: X4494-01 Matrix: Lab Sample 1D: X4494-05 WATER

% Moisture: Analytical Method: 8260 100

5.0 Soil Aliquot Vol: uL.

Units: mL

Dilution: File ID: Date Analyzed Analytical Batch ID VF004204.D İ 9/28/2006 VF092106

CAS Number	Parameter	Cone.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	Ŭ	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES	\$					
17060-07-0	1,2-Dichloroethane-d4	53.94	108 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	51.7	103 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	52.08	104 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	51.55	103 %	76 - 119		SPK: 50
INTERNAL ST	ANDARDS					
363-72-4	Pentafluorobenzene	1824372	8.08			
540-36-3	1,4-Difluorobenzene	2251021	9.41			
3114-55-4	Chlorobenzene-d5	2104194	15.40			
3855-82-1	1,4-Dichlorobenzene-d4	1372264	20.75			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 9/19/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/20/2006 Client Sample ID: B-3(23-25) SDG No.: X4494 Lab Sample ID: Matrix: X4494-06 SOIL Analytical Method: 8260 % Moisture: 4 Sample Wt/Wol: Units: g 5.8 Soil Extract Vol: 10000 uLSoil Aliquot Vol: 100 uL,

File ID: Dilution: Date Analyzed Analytical Batch ID
VF004210.D 1 9/28/2006 VF092106

CAS Number	Parameter	Conc.	Qualifier	RL	MDI	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	30	U	450	30	ug/Kg
74-87-3	Chloromethane	61	U	450	61	ug/Kg
75-01-4	Vinyl chloride	24	U	450	24	ug/Kg
74-83-9	Bromomethane	70	U	450	70	ug/Kg
75-00-3	Chloroethane	79	U	450	79	ug/Kg
75-69-4	Trichlorofluoromethane	51	U	450	51	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	62	U	450	62	ug/Kg
75-35-4	1,1-Dichloroethene	29	U	450	29	ug/Kg
67-64-1	Acetone	300	U	2200	300	ug/Kg
75-15-0	Carbon disulfide	35	U	450	35	ug/Kg
1634-04-4	Methyl tert-butyl Ether	32	U	450	32	ug/Kg
79-20-9	Methyl Acetate	130	j	450	74	ug/Kg
75-09-2	Methylene Chloride	56	U	450	56	ug/Kg
156-60-5	trans-1,2-Dichloroethene	46	U	450	46	ug/Kg
75-34-3	1,1-Dichloroethane	19	U	450	19	ug/Kg
110-82-7	Cyclohexane	33	U	450	33	ug/Kg
78-93-3	2-Butanone	770	J	2200	250	ug/Kg
56-23-5	Carbon Tetrachloride	42	U	450	42	ug/Kg
156-59-2	cis-1,2-Dichloroethene	69	U	450	69	ug/Kg
67-66-3	Chloroform	51	U	450	51	ug/Kg
71-55-6	1,1,1-Trichloroethane	36	U	450	36	ug/Kg
108-87-2	Methylcyclohexane	54	U	450	54	ug/Kg
71-43-2	Benzene	22	U	450	22	ug/Kg
107-06-2	1,2-Dichloroethane	29	U	450	29	ug/Kg
79-01-6	Trichloroethene	60	U	450	60	ug/Kg
78-87-5	1,2-Dichloropropane	28	U	450	28	ug/Kg
75-27-4	Bromodichloromethane	31	U	450	31	ug/Kg
108-10-1	4-Methyl-2-Pentanone	120	U	2200	120	ug/Kg
108-88-3	Toluene	35	U	450	35	ug/Kg
10061-02-6	t-1,3-Dichloropropene	38	U	450	38	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	14	U	450	14	ug/Kg
79-00-5	1,1,2-Trichloroethane	46	U	450	46	ug/Kg

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 9/19/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/20/2006 Client Sample ID: B-3(23-25) SDG No.: X4494 Lab Sample ID: X4494-06 Matrix: SOIL Analytical Method: 8260 % Moisture: 4 Sample Wt/Woi: Units: g 5.8 Soil Extract Vol: 10000 uL Soil Aliquot Vol: 100 uL

File ID:	Dilution:	Date-Analyzed	Analytical Batch ID
VF004210.D	1	9/28/2006	VF092106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	59	U	2200	59	ug/Kg
124-48-1	Dibromochloromethane	34	U	450	34	ug/Kg
106-93-4	1,2-Dibromoethane	56	U	450	56	ug/Kg
127-18-4	Tetrachloroethene	29	U	450	29	ug/Kg
108-90-7	Chlorobenzene	33	U	450	33	ug/Kg
100-41-4	Ethyl Benzene	36	U	450	36	ug/Kg
126777-61-2	m&p-Xylenes	86	U	890	86	ug/Kg
95-47-6	o-Xylene	33	U	450	33	ug/Kg
100-42-5	Styrene	31	U	450	31	ug/Kg
75-25-2	Bromoform	23	U	450	23	ug/Kg
98-82-8	Isopropylbenzene	30	U	450	30	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	44	U	450	44	ug/Kg
541-73-1	1,3-Dichlorobenzene	33	U	450	33	ug/Kg
106-46-7	1,4-Dichlorobenzene	35	U	450	35	ug/Kg
95-50-1	1,2-Dichlorobenzene	33	U	450	33	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	84	U	450	84	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	26	U	450	26	ug/Kg
593-70-4	Chlorofluoromethane	450	U	450	450	ug/Kg
75-43-4	Fluorodichloromethane	450	U	450	450	ug/Kg
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	59.95	120 %	75 - 125		SPK: 50
1868-53-7	Dibromofluoromethane	52.98	106 %	75 - 125		SPK: 50
_2037-26-5	Toluene-d8	51.19	102 %	75 - 125		SPK: 50
460-00-4	4-Bromofluorobenzene	53.05	106 %	75 - 125		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	1402331	8.07			
540-36-3	1,4-Difluorobenzene	1763834	9.40			
3114-55-4	Chlorobenzene-d5	1664090	15.38			
3855-82-1	1,4-Dichlorobenzene-d4	1220645	20.73			

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 9/19/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/20/2006 Client Sample ID: B-3(27-29) SDG No.: X4494 Lab Sample ID: X4494-07 Matrix: SOIL Analytical Method: % Moisture: 8260 3 Sample Wt/Wol: 6.2 Units: g Soil Extract Vol: 10000 иL Soil Aliquot Vol: 100 uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VF004211.D 1 9/28/2006 VF092106

CAS Number	Parameter	Conc.	Qualifier	RL	MDI	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	28	U	420	28	ug/Kg
74-87-3	Chloromethane	57	U	420	57	ug/Kg
75-01-4	Vinyl chloride	22	U	420	22	ug/Kg
74-83-9	Bromomethane	65	U	420	65	ug/Kg
75-00-3	Chloroethane	73	Ü	420	73	ug/Kg
75-69-4	Trichlorofluoromethane	48	U	420	48	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	58	U	420	58	ug/Kg
75-35-4	1,1-Dichloroethene	27	U	420	27	ug/Kg
67-64-1	Acetone	270	U	2100	270	ug/Kg
75-15-0	Carbon disulfide	32	U	420	32	ug/Kg
1634-04-4	Methyl tert-butyl Ether	30	U	420	30	ug/Kg
79-20-9	Methyl Acetate	140	J	420	69	ug/Kg
75-09-2	Methylene Chloride	52	U	420	52	ug/Kg
156-60-5	trans-1,2-Dichloroethene	43	U	420	43	ug/Kg
75-34-3	1,1-Dichloroethane	18	U	420	18	ug/Kg
110-82-7	Cyclohexane	30	U	420	30	ug/Kg
78-93-3	2-Butanone	690	J	2100	230	ug/Kg
56-23-5	Carbon Tetrachloride	39	U	420	39	ug/Kg
156-59-2.	cis-1,2-Dichloroethene	64	U	420	64	ug/Kg
67-66-3	Chloroform	48	U	420	48	ug/Kg
71-55-6	I,I,I-Trichloroethane	34	U	420	34	ug/Kg
108-87-2	Methylcyclohexane	50	U	420	50	ug/Kg
71-43-2	Benzene	20	U	420	20	ug/Kg
107-06-2	1,2-Dichloroethane	27	U	420	27	ug/Kg
79-01-6	Trichloroethene	56	U	420	56	ug/Kg
78-87-5	1,2-Dichloropropane	26	U	420	26	ug/Kg
75-27-4	Bromodichloromethane	29	U	420	29	ug/Kg
108-10-1	4-Methyl-2-Pentanone	110	U	2100	110	ug/Kg
108-88-3.	Toluene	32	U	420	32	ug/Kg
10061-02-6	t-1,3-Dichloropropene	35	U	420	35	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	13	U	420	13	ug/Kg
79-00-5	1,1,2-Trichloroethane	43	U	420	43	ug/Kg

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY Date-Collected: 9/19/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/20/2006-Client Sample ID: B-3(27-29) SDG No.: X4494 Matrix: Lab Sample ID: X4494-07 SOIL Analytical Method: % Moisture: 8260 3 Sample Wt/Wol: 6.2 Units: g Seil Extract Vol: 10000 иL Soil Aliquot Vol: 100 uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VF004211.D 1 9/28/2006 VF092106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	55	Ŭ	2100	55	ug/Kg
124-48-1	Dibromochloromethane	31	U	420	31	ug/Kg
106-93-4	1,2-Dibromoethane	52	U	420	52	ug/Kg
127-18-4	Tetrachloroethene	27	U	420	27	ug/Kg
108-90-7	Chlorobenzene	31	U	420	31	ug/Kg
100-41-4	Ethyl Benzene	34	U	420	34	ug/Kg
126777-61-2	m&p-Xylenes	80	U	830	80	ug/Kg
95-47-6	o-Xylene	30	U	420	30	ug/Kg
100-42-5	Styrene	28	U	420	28	ug/Kg
75-25-2	Bromoform	21	U	420	21	ug/Kg
98-82-8	Isopropylbenzene	28	U	420	28	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	41	U	420	41	ug/Kg
541-73-1	1,3-Dichlorobenzene	31	U	420	31	ug/Kg
106-46-7	1,4-Dichlorobenzene	32	U	420	32	ug/Kg
95-50-1	1,2-Dichlorobenzene	30	U	420	30	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	78	U	420	78	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	24	U	420	24	ug/Kg
593-70-4	Chlorofluoromethane	420	U	420	420	ug/Kg
75-43-4	Fluorodichloromethane	420	U	420	420	ug/Kg
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	62.62	125 %	75 - 125		SPK: 50
1868-53-7	Dibromofluoromethane	54.77	110 %	75 - 125		SPK: 50
2037-26-5	Toluene-d8	53.19	106 %	75 - 125		SPK: 50
460-00-4	4-Bromofluorobenzene	56.07	112 %	75 - 125		SPK: 50
INTERNAL STA	ANDARDS					
363-72-4	Pentafluorobenzene	1387505	8.08			
540-36-3	1,4-Difluorobenzene	1768701	9.41			
3114-55-4	Chloröbenzene-d5	1737211	15.39			
3855-82-1	1,4-Dichlorobenzene-d4	1228021	20.74			

RL = Reporting Limit

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

TRC Environmental Corp., NY Client: Date Collected: 9/19/2006 Project: Date Received: Morris-park RI/FS TRC#46130-0010 9/20/2006 Client Sample ID: B-3(37-39) SDG No.: X4494 Lab Sample ID: Matrix: X4494-08 SOIL Analytical Method: % Moisture: 8260 13 Sample Wt/Wol: 7.5 Units: g Soil Extract Vol: 10000 uL Soil Aliquot Vol: 100 uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VF004212.D 1 9/28/2006 VF092106

CAS Number	Parameter	Conc.	Qualifier	RL	MDI	Units
TARGETS					'	
75-71-8	Dichlorodifluoromethane	26	U	380	26	ug/Kg
74-87-3	Chloromethane	52	U	380	52	ug/Kg
75-01-4	Vinyl chloride	20	U	380	20	ug/Kg
74-83-9	Bromomethane	60	U	380	60	ug/Kg
75-00-3	Chloroethane	68	U	380	68	ug/Kg
75-69-4	Trichlorofluoromethane	44	U	380	44	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	53	U	380	53	ug/Kg
75-35-4	1,1-Dichloroethene	25	U	380	25	ug/Kg
67-64-1	Acetone	250	U	1900	250	ug/Kg
75-15-0	Carbon disulfide	30	υ	380	30	ug/Kg
1634-04-4	Methyl tert-butyl Ether	28	U	380	28	ug/Kg
79-20-9	Methyl Acetate	110	j	380	64	ug/Kg
75-09-2	Methylene Chloride	48	U	380	48	ug/Kg
156-60-5	trans-1,2-Dichloroethene	39	U	380	39	ug/Kg
75-34-3	1,1-Dichloroethane	16	U	380	16	ug/Kg
110-82-7	Cyclohexane	28	U	380	28	ug/Kg
78-93-3	2-Butanone	600	J	1900	220	ug/Kg
56-23-5	Carbon Tetrachloride	36	U	380	36	ug/Kg
156-59-2	cis-1,2-Dichloroethene	59	U	380	59	ug/Kg
67-66-3	Chloroform	44	U	380	44	ug/Kg
71-55-6	1,1,1-Trichloroethane	31	U	380	31	ug/Kg
108-87-2	Methylcyclöhexane	46	U	380	46	ug/Kg
71-43-2	Benzene	18	U	380	18	ug/Kg
107-06-2	1,2-Dichloroethane	25	U	380	25	ug/Kg
79-01-6	Trichloroethene	51	U	380	51	ug/Kg
78-87-5	1,2-Dichloropropane	24	U	380	24	ug/Kg
75-27-4	Bromodichloromethane	27	U	380	27	ug/Kg
108-10-1	4-Methyl-2-Pentanone	100	U	1900	100	ug/Kg
108-88-3	Toluene	30	U	380	30	ug/Kg
10061-02-6	t-1,3-Dichloropropene	33	U	380	33	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	12	U	380	12	ug/Kg
79-00-5	1,1,2-Trichloroethane	40	U	380	40	ug/Kg

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client:	TRC Environmental Corp., NY	Date Collected:	9/19/2006
Project:	Morris park RI/FS TRC#46130-0010	Date Received:	9/20/2006
Client Sample ID:	B-3(37-39)	SDG No.:	X4494
Lab Sample ID:	X4494-08	Matrix:	SOIL
Analytical Method:	8260	% Moisture:	13
Sample Wt/Wol:	7.5 Units: g	Soil Extract Vol:	10000 uL
Soil Aliquot Vol:	100 uL		

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VF004212.D	1	9/28/2006	VF092106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	51	U	1900	5 I	ug/Kg
124-48-1	Dibromochloromethane	29	U	380	29	ug/Kg
106-93-4	1,2-Dibromoethane	48	U	380	48	ug/Kg
127-18-4	Tetrachloroethene	25	U	380	25	ug/Kg
108-90-7	Chlorobenzene	28	U	380	28	ug/Kg
100-41-4	Ethyl Benzene	31	U	380	31	ug/Kg
126777-61-2	m&p-Xylenes	74	U	770	74	ug/Kg
95-47-6	o-Xylene	28	U	380	28	ug/Kg
100-42-5	Styrene	26	U	380	26	ug/Kg
75-25-2	Bromoform	19	U	380	19	ug/Kg
98-82-8	Isopropylbenzene	26	U	380	26	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	38	U	380	38	ug/Kg
541-73-1	1,3-Dichlorobenzene	29	υ	380	29	ug/Kg
106-46-7	I,4-Dichlorobenzene	30	U	380	30	ug/Kg
95-50-1	1,2-Dichlorobenzene	28	U	380	28	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	72	U	380	72	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	22	U	380	22	ug/Kg
593-70-4	Chlorofluoromethane	380	U	380	380	ug/Kg
75-43-4	Fluorodichloromethane	380	U	380	380	ug/Kg
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	62.23	124 %	75 - 125		SPK: 50
1868-53-7	Dibromofluoromethane	52.87	106 %	75 - 125		SPK: 50
2037-26-5	Toluene-d8	53.72	107 %	75 - 125		SPK: 50
460-00-4	4-Bromofluorobenzene	55.47	111 %	75 - 125		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	1468244	8.08			
540-36-3	1,4-Diffuorobenzene	1900492	9.40			
3114-55-4	Chlorobenzene-d5	1864564	15.38			
3855-82-1	1,4-Dichlorobenzene-d4	1298872	20.73			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client:	TRC Environmental Corp., NY	Date Collected:	9/20/2006
Project:	Morris park RI/FS TRC#46130-0010	Date Received:	9/21/2006
Client Sample ID:	B-4(25-27)	SDG No.:	X4494
Lab Sample ID:	X4494-09	Matrix:	SOIL
Analytical Method:	8260	% Moisture:	4
Sample Wt/Wol:	6.8 Units: g	Seil Extract Vol:	10000 uL
Soil Aliquot Vol:	100 uL		

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VF004220.D	1	9/29/2006	VF092106

CAS Number	Parameter	Conc.	Qualifier	RL	MDI	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	26	U	380	26	ug/Kg
74-87-3	Chloromethane	52	U	380	52	ug/Kg
75-01-4	Vinyl chloride	21	U	380	21	ug/Kg
74-83-9	Bromomethane	60	U	380	60	ug/Kg
75-00-3	Chloroethane	68	U	380	68	ug/Kg
75-69-4	Trichlorofluoromethane	44	U	380	44	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	53	U	380	53	ug/Kg
75-35-4	1,1-Dichloroethene	25	U	380	25	ug/Kg
67-64-1	Acetone	250	U	1900	250	ug/Kg
75-15-0	Carbon disulfide	30	U	380	30	ug/Kg
1634-04-4	Methyl tert-butyl Ether	28	U	380	28	ug/Kg
79-20-9	Methyl Acetate	120	J	380	64	ug/Kg
75-09-2	Methylene Chloride	48	U	380	48	ug/Kg
156-60-5	trans-1,2-Dichloroethene	40	U	380	40	ug/Kg
75-34-3	1,1-Dichloroethane	17	U	380	17	ug/Kg
110-82-7	Cyclohexane	28	U	380	28	ug/Kg
78-93-3	2-Butanone	540	J	1900	220	ug/Kg
56-23-5	Carbon Tetrachloride	36	U	380	36	ug/Kg
156-59-2	cis-1,2-Dichloroethene	59	υ	380	59	ug/Kg
67-66-3	Chloroform	44	U	380	44	ug/Kg
71-55-6	1,1,1-Trichloroethane	31	U	3'80	31	ug/Kg
108-87-2	Methylcyclohexane	46	U	380	46	ug/Kg
71-43-2	Benzene	19	U	380	19	ug/Kg
107-06-2	1,2-Dichloroethane	25	U	380	25	ug/Kg
79-01-6	Trichloroethene	52	U	380	52	ug/Kg
78-87-5	1,2-Dichloropropane	24	U	380	24	ug/Kg
75-27-4	Bromodichloromethane	27	U	380	27	ug/Kg
108-10-1	4-Methyl-2-Pentanone	100	U	1900	100	ug/Kg
108-88-3	Toluene	30	U	380	30	ug/Kg
10061-02-6	t-1,3-Dichloropropene	33	U	380	33	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	12	Ü	380	12	ug/Kg
79-00-5	1,1,2-Trichloroethane	40	U	380	40	ug/Kg

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY 9/20/2006 Client: Date Collected: Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/21/2006 Client Sample ID: B-4(25-27) SDG No.: X4494 Lab Sample ID: X4494-09 Matrix: SOIL Analytical Method: % Moisture: 8260 4 Sample Wt/Wol: 6.8 Units: g Soil Extract Vol: 10000 uL Soil Aliquot Vol: 100 uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VF004220.D 1 9/29/2006 VF092106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	51	U	1900	51	ug/Kg
124-48-1	Dibromochloromethane	29	U	380	29	ug/Kg
106-93-4	1,2-Dibromoethane	49	U	380	49	ug/Kg
127-18-4	Tetrachloroethene	25	U	380	25	ug/Kg
108-90-7	Chlorobenzene	28	U	380	28	ug/Kg
100-41-4	Ethyl Benzene	31	U	380	31	ug/Kg
126777-61-2	m&p-Xylenes	74	U	770	74	ug/Kg
95-47-6	o-Xylene	28	U	380	28	ug/Kg
100-42-5	Styrene	26	U	380	26	ug/Kg
75-25-2	Bromoform	19	U	380	19	ug/Kg
98-82-8	Isopropylbenzene	26	U	380	26	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	38	U	380	38	ug/Kg
541-73-1	1,3-Dichlorobenzene	29	U	380	29	ug/Kg
106-46-7	1,4-Dichlorobenzene	30	U	380	30	ug/Kg
95-50-1	1,2-Dichlorobenzene	28	U	380	28	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	72	U	380	72	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	22	U	380	22	ug/Kg
593-70-4	Chlorofluoromethane	380	U	380	380	ug/Kg
75-43-4	Fluorodichloromethane	380	U	380	380	ug/Kg
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	58.43	117 %	75 - 125		SPK: 50
1868-53-7	Dibromofluoromethane	52.44	105 %	75 - 125		SPK: 50
2037-26-5	Toluene-d8	51.21	102 %	75 - 125		SPK: 50
460-00-4	4-Bromofluorobenzene	53.15	106 %	75 - 125		SPK: 50
INTERNAL STA	ANDARDS					
363-72-4	Pentafluorobenzene	1525319	8.08			
540-36-3	1,4-Difluorobenzene	1856176	9.41			
3114-55-4	Chlorobenzene-d5	1752361	15.38			
3855-82-1	1,4-Dichlorobenzene-d4	1245849	20.74			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 9/20/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/21/2006 Client Sample ID: B-4(39-41) SDG No.: X4494 Lab Sample ID: X4494-10 Matrix: SOIL Analytical Method: 8260 % Moisture: 13 Sample Wt/Wol: 1.2 Units: g Soil Extract Vol: 10000 uL Soil Aliquot Vol: 100 uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID	٦
VF004219.D	1	9/29/2006	VF092106	

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	170	U	2500	170	ug/Kg
74-87-3	Chloromethane	340	U	2500	340	ug/Kg
75-01-4	Vinyl chloride	130	U	2500	130	ug/Kg
74-83-9	Bromomethane	390	U	2500	390	ug/Kg
75-00-3	Chloroethane	440	U	2500	440	ug/Kg
75-69-4	Trichlorofluoromethane	290	U	2500	290	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	340	U	2500	340	ug/Kg
75-35-4	1,1-Dichloroethene	160	U	2500	160	ug/Kg
67-64-1	Acetone	1600	U	12000	1600	ug/Kg
75-15-0	Carbon disulfide	190	U	2500	190	ug/Kg
1634-04-4	Methyl tert-butyl Ether	180	U	2500	180	ug/Kg
79-20-9	Methyl Acetate	430	J	2500	410	ug/Kg
75-09-2	Methylene Chloride	310	U	2500	310	ug/Kg
156-60-5	trans-1,2-Dichloroethene	250	U	2500	250	ug/Kg
75-34-3	1,1-Dichloroethane	110	U	2500	110	ug/Kg
110-82-7	Cyclohexane	180	U	2500	180	ug/Kg
78-93-3	2-Butanone	2800	J	12000	1400	ug/Kg
56-23-5	Carbon Tetrachloride	230	U	2500	230	ug/Kg
156-59-2	cis-1,2-Dichloroethene	380	U	2500	380	ug/Kg
67-66-3	Chloroform	280	U	2500	280	ug/Kg
71-55-6	1,1,1-Trichloroethane	200	U	2500	200	ug/Kg
108-87-2	Methylcyclohexane	300	U	2500	300	ug/Kg
71-43-2	Benzene	120	U	2500	120	ug/Kg
107-06-2	1,2-Dichloroethane	160	U	2500	160	ug/Kg
79-01-6	Trichloroethene	330	U	2500	330	ug/Kg
78-87-5	1,2-Dichloropropane	160	U	2500	160	ug/Kg
75-27-4	Bromodichloromethane	170	U	2500	170	ug/Kg
108-10-1	4-Methyl-2-Pentanone	650	U	12000	650	ug/Kg
108-88-3	Toluene	190	U	2500	190	ug/Kg
10061-02-6	t-1,3-Dichloropropene	210	U	2500	210	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	75	U	2500	75	ug/Kg
79-00-5	1,1,2-Trichloroethane	260	U	2500	260	ug/Kg

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 9/20/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/21/2006 Client Sample ID: B-4(39-41) SDG No.: X4494 Lab Sample ID: Matrix: X4494-10 SOIL Analytical Method: 8260 % Moisture: 13 Sample Wt/Wel: Units: g 1.2 Soil Extract Vol: 10000 uL Soil Aliquot Vol: 100 uL

File ID: Dilution: Date Analyzed Analytical Batch ID
VF004219.D 1 9/29/2006 VF092106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	330	U	12000	330	ug/Kg
124-48-1	Dibromochloromethane	190	U	2500	190	ug/Kg
106-93-4	1,2-Dibromoethane	310	U	2500	310	ug/Kg
127-18-4	Tetrachloroethene	160	U	2500	160	ug/Kg
108-90-7	Chlorobenzene	180	U	2500	180	ug/Kg
100-41-4	Ethyl Benzene	200	U	2500	200	ug/Kg
126777-61-2	m&p-Xylenes	480	U	5000	480	ug/Kg
95-47-6	o-Xylene	180	U	2500	180	ug/Kg
100-42-5	Styrene	170	U	2500	170	ug/Kg
75-25-2	Bromoform	120	U	2500	120	ug/Kg
98-82-8	Isopropylbenzene	160	U	2500	160	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	250	U	2500	250	ug/Kg
541-73-1	1,3-Dichlorobenzene	180	U	2500	180	ug/Kg
106-46-7	1,4-Dichlorobenzene	190	U	2500	190	ug/Kg
95-50-1	1,2-Dichlorobenzene	180	U	2500	180	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	460	U	2500	460	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	140	U	2500	140	ug/Kg
593-70-4	Chlorofluoromethane	2500	U	2500	2500	ug/Kg
75-43-4	Fluorodichloromethane	2500	U	2500	2500	ug/Kg
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	55.61	111 %	75 - 125		SPK: 50
1868-53-7	Dibromofluoromethane	52.55	105 %	75 - 125		SPK: 50
2037-26-5	Toluene-d8	53.91	108 %	75 - 125		SPK: 50
460-00-4	4-Bromofluorobenzene	53.86	108 %	75 - 125		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	1715433	8.08			
540-36-3	1,4-Difluorobenzene	2097253	9.41			
3114-55-4	Chlorobenzene-d5	1961553	15.39			
3855-82-1	1,4-Dichlorobenzene-d4	1384373	20.73			

E = Value Exceeds Calibration Range

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY-Client: Date Collected: 9/20/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/21/2006 Client Sample ID: MW-29D(36-38) SDG No.: X4494 Lab Sample ID: X4494-11 Matrix: SOIL Analytical Method: % Moisture: 8260 0 Sample Wt/Wol: 7.9 Units: g Soil Extract Vol: 10000 uL Soil Aliquot Vol: 100 uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VF004221.D 1 9/29/2006 VF092106

CAS Number	Parameter	Conc.	Qualifier	RL	MDI	Units
TARGETS					*****	
75-71-8	Dichlorodifluoromethane	21	U	320	21	ug/Kg
74-87-3	Chloromethane	43	U	320	43	ug/Kg
75-01-4	Vinyl chloride	17	U	320	17	ug/Kg
74-83-9	Bromomethane	50	U	320	50	ug/Kg
75-00-3	Chloroethane	56	U	320	56	ug/Kg
75-69-4	Trichlorofluoromethane	37	U	320	37	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	44	U	320	44	ug/Kg
75-35-4	1,1-Dichloroethene	20	U	320	20	ug/Kg
67-64-1	Acetone	210	U	1600	210	ug/Kg
75-15-0	Carbon disulfide	25	U	320	25	ug/Kg
1634-04-4	Methyl tert-butyl Ether	23	U	320	23	ug/Kg
79-20-9	Methyl Acetate	85	J	320	53	ug/Kg
75-09-2	Methylene Chloride	40	U	320	40	ug/Kg
156-60-5	trans-1,2-Dichloroethene	33	U	320	33	ug/Kg
75-34-3	1,1-Dichloroethane	14	U	320	14	ug/Kg
110-82-7	Cyclohexane	23	U	320	23	ug/Kg
78-93-3	2-Butanone	370	J	1600	180	ug/Kg
56-23-5	Carbon Tetrachloride	30	U	320	30.	ug/Kg
156-59-2	cis-1,2-Dichloroethene	49	U	320	49	ug/Kg
67-66-3	Chloroform	37	U	320	37	ug/Kg
71-55-6	1,1,1-Trichloroethane	26	U	320	26	ug/Kg
108-87-2	Methylcyclohexane	38	υ	320	38	ug/Kg
71-43-2	Benzene	15	U	320	15	ug/Kg
107-06-2	1,2-Dichloroethane	20	U	320	20	ug/Kg
79-01-6	Trichloroethene	43	U	320	43	ug/Kg
78-87-5	1,2-Dichloropropane	20	U	320	20	ug/Kg
75-27-4	Bromodichloromethane	22	U	320	22	ug/Kg
108-10-1	4-Methyl-2-Pentanone	84	U	1600	84	ug/Kg
108-88-3	Toluene	120	J	320	25	ug/Kg
10061-02-6	t-1,3-Dichloropropene	27	U	320	27	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	9.7	U	320	9.7	ug/Kg
79-00-5	1,1,2-Trichloroethane	33	U	320	33	ug/Kg

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Client: **Bate Collected:** 9/20/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/21/2006 Client Sample ID: MW-29D(36-38) SDG No.: X4494 Lab Sample ID: X4494-11 Matrix: SOIL Analytical Method: 8260 % Moisture: 0 Sample Wt/Wol: 7.9 Units: g Soil Extract Vol: 10000 υL Soil Aliquot Vol: 100

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VF004221.D	1	9/29/2006	VF092106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	42	U	1600	42	ug/Kg
124-48-1	Dibromochloromethane	24	U	320	24	ug/Kg
106-93-4	1,2-Dibromoethane	40	U	320	40	ug/Kg
127-18-4	Tetrachloroethene	21	U	320	21	ug/Kg
108-90-7	Chlorobenzene	23	U	320	23	ug/Kg
100-41-4	Ethyl Benzene	26	U	320	26	ug/Kg
126777-61-2	m&p-Xylenes	61	U	640	61	ug/Kg
95-47-6	o-Xylene	23	U	320	23	ug/Kg
100-42-5	Styrene	22	U	320	22	ug/Kg
75-25-2	Bromoform	16	U	320.	16	ug/Kg
98-82-8	Isopropylbenzene	21	U	320	21	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	31	U	320	31	ug/Kg
541-73-1	1,3-Dichlorobenzene	24	U	320	24	ug/Kg
106-46-7	1,4-Dichlorobenzene	25	U	320	25	ug/Kg
95-50-1	1,2-Dichlorobenzene	23	U	320	23	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	60	U	320	60	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	18.	U	320	18	ug/Kg
593-70-4	Chlorofluoromethane	320	U	320	320	ug/Kg
75-43-4	Fluorodichloromethane	320	U	320	320	ug/Kg
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	56.88	114 %	75 - 125		SPK: 50
1868-53-7	Dibromofluoromethane	51	102 %	75 - 125		SPK: 50
2037-26-5	Toluene-d8	52.46	105 %	75 - 125		SPK: 50
460-00-4	4-Bromofluorobenzene	52.33	105 %-	75 - 125		SPK: 50
INTERNAL STA	ANDARDS					
363-72-4	Pentafluorobenzene	1641236	8.09			
540-36-3	1,4-Difluorobenzene	2050733	9.41			
3114-55-4	Chlorobenzene-d5	1915694	15.37			
3855-82-1	1,4-Dichlorobenzene-d4	1361000	20.72			

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 9/20/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/21/2006 Client Sample ID: MW-29D(48-50) SDG No.: X4494 Lab Sample ID: X4494-12 Matrix: SOIL % Moisture: Analytical Method: 8260 3 Sample Wt/Wol: 8.1 Units: g Soil Extract Vol: 10000 υĽ Soil Aliquot Vol: 100 uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VF004222.D 1 9/29/2006 VF092106

CAS Number	Parameter	Conc.	Qualifier	RL	MDI	Units
TARGETS				•		
75-71-8	Dichlorodifluoromethane	21	U	320	21	ug/Kg
74-87-3	Chloromethane	43	U	320	43	ug/Kg
75-01-4	Vinyl chloride	17	U	320	17	ug/Kg
74-83-9	Bromomethane	50	U	320	50	ug/Kg
75-00-3	Chloroethane	56	U	320	56	ug/Kg
75-69-4	Trichlorofluoromethane	37	U	320	37	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	44	Ü	320	44	ug/Kg
75-35-4	1,1-Dichloroethene	21	U	320	21	ug/Kg
67-64-1	Acetone	210	U	1600	210	ug/Kg
75-15-0	Carbon disulfide	25	U	320	25	ug/Kg
1634-04-4	Methyl tert-butyl Ether	23	U	320	23	ug/Kg
79-20-9	Methyl Acetate	100	J	320	53	ug/Kg
75-09-2	Methylene Chloride	40	U	320	40-	ug/Kg
156-60-5	trans-1,2-Dichloroethene	33	U	320	33	ug/Kg
75-34-3	1,1-Dichloroethane	14	Ŭ	320	14	ug/Kg
110-82-7	Cyclohexane	23	U	320	23	ug/Kg
78-93-3	2-Butanone	500	J	1600	180	ug/Kg
56-23-5	Carbon Tetrachloride	30	U	320	30	ug/Kg
156-59-2	cis-1,2-Dichloroethene	49	U	320	49	ug/Kg
67-66-3	Chloroform	37	U	320	37	ug/Kg
71-55-6	1,1,1-Trichloroethane	26	U	320	26	ug/Kg
108-87-2	Methylcyclohexane	38	Ŭ	320	38	ug/Kg
71-43-2	Benzene	15	U	320	15	ug/Kg
107-06-2	1,2-Dichloroethane	20	U	320	20	ug/Kg
79-01-6	Trichloroethene	43	U	320	43	ug/Kg
78-87-5	1,2-Dichloropropane	20	U	320	20	ug/Kg
75-27-4	Bromodichloromethane	22	U	320	22	ug/Kg
108-10-1	4-Methyl-2-Pentanone	84	U	1600	84	ug/Kg
108-88-3	Toluene	25	U	320	_25	ug/Kg
10061-02-6	t-1,3-Dichloropropene	27	U	320	27	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	9.7	U	320	9.7	ug/Kg
79-00-5	1,1,2-Trichloroethane	33	U	320	33	ug/Kg

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 9/20/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/21/2006 Client Sample ID: MW-29D(48-50) SDG No.: X4494 Lab Sample ID: Matrix: X4494-12 SOIL Analytical Method: 8260 % Moisture: 3 Sample Wt/Wol: 8.1 Units: g Soil Extract Vol: 10000 иL Soil Aliquot Vol: 100 uL

File ID: Dilution: Date Analyzed Analytical Batch ID
VF004222.D 1 9/29/2006 VF092106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	42	U	1600	42	ug/Kg
124-48-1	Dibromochloromethane	24	U	320	24	ug/Kg
106-93-4	1,2-Dibromoethane	40	U	320	40	ug/Kg
127-18-4	Tetrachloroethene	21	U	320	21	ug/Kg
108-90-7	Chlorobenzene	23	U	320	23	ug/Kg
100-41-4	Ethyl Benzene	26	U	320	26	ug/Kg
126777-61-2	m&p-Xylenes	61	U	640	61	ug/Kg
95-47-6	o-Xylene	23	U	320	23	ug/Kg
100-42-5	Styrene	22	U	320	22	ug/Kg
75-25-2	Bromoform	16	U	320	16	ug/Kg
98-82-8	Isopropylbenzene	21	U	320	21	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	32	U	320	32	ug/Kg
541-73-1	1,3-Dichlorobenzene	24	U	320	24	ug/Kg
106-46-7	1,4-Dichlorobenzene	25	U	320	25	ug/Kg
95-50-1	1,2-Dichlorobenzene	23	U	320	23	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	60	U	320	60	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	81	U	320	18	ug/Kg
593-70-4	Chlorofluoromethane	320	U	320	320	ug/Kg
75-43-4	Fluorodichloromethane	320	U	320	320	ug/Kg
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	58.78	118 %	75 - 125		SPK: 50
1868-53-7	Dibromofluoromethane	52.04	104 %	75 - 125		SPK: 50
2037-26-5	Toluene-d8	52.1	104 %	75 - 125		SPK: 50
460-00-4	4-Bromofluorobenzene	54.2	108 %	75 - 125		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	1603474	8.08			
540-36-3	1,4-Difluorobenzene	1990228	9.41			
3114-55-4	Chlorobenzene-d5	1866709	15.39			
3855-82-1	1,4-Dichlorobenzene-d4	1332635	20.74			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Date Collected: 9/20/2006 TRC Environmental Corp., NY Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/21/2006 SDG No.: X4494-01 Client Sample ID: FIELDBLANK Matrix: Lab Sample ID: WATER X4494-13 % Moisture: Analytical Method: 8260 100

Sample Wt/Wol: Units: mL 5.0 Soil Extract Vol: uL

Soil Aliquot Vol: шĹ.

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VF004205.D	1	9/28/2006	VF092106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS					
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17 ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34 ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33 ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41 ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83 ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3 ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42 ug/L
67-64-1	Acetone	2.3	U	25	2.3 ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40 ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28 ug/L
79-20-9	Methyl Acetate	0.20	Ü	5.0	0.20 ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43 ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40 ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38 ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36 ug/L
78-93-3	2-Butanone	2.5	J	25	1.1 ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1 ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29 ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33 ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32 ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34 ug/L
71-43-2	Benzene	0.39	U	5.0	0.39 ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34 ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46 ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40 ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33 ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6 ug/L
108-88-3	Toluene	0.36	U	5.0	0.36 ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32 ug/L
10061-01-5	eis-1,3-Dichloropropene	0.36	U	5.0	0.36 ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Date Collected: 9/20/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/21/2006 Client Sample ID: FIELDBLANK SDG No.: X4494-01

Matrix: Lab Sample ID: X4494-13 WATER

% Moisture: Analytical Method: 100 8260

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

	File ID:	Dilution:	Date Analyzed	Analytical Batch ID	
TOTAL PROPERTY.	VF004205.D	1	9/28/2006	VF092106	

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES	3					
17060-07-0	1,2-Dichloroethane-d4	52.96	106 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	49.28	99%	85 - 115		SPK: 50
2037-26-5	Toluene-d8	50.38	101%	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	50.01	100 %	76 - 119		SPK: 50
INTERNAL ST	ANDARDS					
363-72-4	Pentafluorobenzene	1740446	8.09			
540-36-3	1,4-Difluorobenzene	2171277	9.42			
3114-55-4	Chlorobenzene-d5	2016232	15.40			
3855-82-1	1,4-Dichlorobenzene-d4	1395145	20.75			

U = Not Detected

RL = Reporting Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

uL

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 9/20/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/21/2006

Client Sample ID: SDG No.: TRIPBLANK X4494-01 Matrix: Lab Sample ID: X4494-14 WATER

Analytical Method: % Moisture: 100 8260

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol:

Soil Aliquot Vol: uL,

Dilution: File ID: Date Analyzed Analytical Batch ID VF004206.D Í 9/28/2006 VF092106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3	ug/L
75-35-4	1,1-Dichloroethene	0,42	U	5.0	0.42	ug/L
67-64-1	Acetone	2.3	U	25	2.3	ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40	ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28	ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36	ug/L
78-93-3	2-Butanone	1.4	j	25	1.1	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29	ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34	ug/L
71-43-2	Benzene	0.39	U	5.0	0.39	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0,40	U	5.0	0.40	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6	ug/L
108-88-3	Toluene	0.36	U	5.0	0.36	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropenc	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Matrix:

Report of Analysis

Date Collected: 9/20/2006 TRC Environmental Corp., NY Client:

Morris park RI/FS TRC#46130-0010 Date Received: 9/21/2006 Project: SDG No.: X4494-01 Client Sample ID: TRIPBLANK

WATER Lab Sample ID: X4494-14 % Moisture: 100 Analytical Method: 8260

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: ul_

Soil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VF004206.D	1	9/28/2006	VF092106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES	}					
17060-07-0	1,2-Dichloroethane-d4	53.31	107 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	50.99	102 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	51.55	103 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	50.63	101 %	76 - 119		SPK: 50
INTERNAL ST	ANDARDS					
363-72-4	Pentafluorobenzene	1789742	8.09			
540-36-3	1,4-Difluorobenzene	2212032	9.41			
3114-55-4	Chlorobenzene-d5	2075861	15.39			
3855+82-1	1,4-Dichlorobenzene-d4	1395705	20.73			

U = Not Detected

RL = Reporting Limit

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

CHEMTECH PROJECT NO.

COC Number 060805

RELINQUISHED BY:	2.	неционер ву:	HELINGOISSIED OF SWITTER	or moincile on over	10.	9.	,	7.	6,	5	4	3.	2.		CHEMTECH SAMPLE ID	• TO BE APPRO	FAX:EDD:		PHONE: 1	ATTENTION:	CITY: File	ADDRESS:	COMPANY:	
DATETIME:		DATE/TIME:	Soft France				Q = 3	B-3	Reserved to the second	11 2 6/2 K	State of the state	Mary work	100-00	MW-17R1	PROJECT SAMPLE IDENTIFICATION	TO BE APPROVED BY CHEMTECH STANDARD TURNAROUND TIME IS 10 BUSINESS DAYS	FAN in 1	DATA TURNAROUND INFORMATION	シノフジンス FAX: シノン	STONE MOCISA	You K	14/30 Brondway	REPORT TO BE SENT TO:	CLIENT INFORMATION
RECEIVED FOR LAB BY:	2.	RECEIVED 8Y:	1.	DY MUST BE DOCU			(22.39)	(32.5)	(22,25)		***************************************	(Mrod)	82 (J.KO)	入 は の に る に の に る に る に る に る に る に る に る に る に る に る に る に る に に る に る に る に る に る に る に る に る に る に る に 。 に る に 。 に る に る に る に る に る に る に る に る に る に 。 る 。 に る 。 に る に る に る に 。 に に る に	·	SS DAYS	DAYS DAYS DAYS		212JU >840	26.00	STATE: NY ZIP: 10018			
*				SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION INCLUDING COURIER DELIVERY						:				<i>.</i>	SAMPLE TYPE COMP GRAB	☐ New Jersey CLP ☐ EDD FORMAT			PHONE: 3/1	e-mail: 5/MC // SMAC	PROJECT MANAGER:	PROJECT NO.: 4(%)	PROJECT NAME:	C
Dana		Comments:	Conditions of bottles or coolers at rece MeOH extraction requires an addit	ACH TIME SAMPLE					9/15/2/ 1085	*	5.2	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	7/9/ 140	W. State	SAMPLE COLLECTION DATE TIME	Other	RESULTS ONLY RESULTS + QC Results + QC Rew York State ASP "8" New Jersey REDUCED Rew York State ASP "A"	DATA DELIVERABLE INFORMATION	AND DEL FAX	The Act Control	A: 5700	6730 LOCATION:	LIRA	CLIENT PROJECT INFORMATION
HS.			or coolers at receipt: requires an additiona	S CHANGE POSS			\	W 7	ん-	*	상 ~	と	*= *\?	カイ	101	- F	ite ASP "8"		FAX: O/O SO/S	Sant from	20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ON: A)	CER)RMATION
SHIPPED VIA: CLIENT: HAND DELIVERED CHENTECH: PICKED UP			eipt: Compliant Cional 4 oz jar for percent solid.	SSION INCLUDING					OPPONENTATION OF THE PROPERTY						<u> </u>	PRESERVATIVES	J. F.		00.85	ATTENTION:	OIT: NOW	ADDRESS:	BILL TO:	
HAND DELIVERED			☐ Non Compliant solid.	COURIER DELIVE			;								7	6 7 8			An An	7	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1430 Com	119' (CLIENT BILI
OVERNIGHT Ship	-	Ice in Cooler i.		RY											φ πΟ» [†]	9		/	ANALYSIS MINIS				PO#∷ √√	CLIENT BILLING INFORMATION
Shipment Complete:							**************************************			•					Specify Preservatives \-HCI B-HNO ₃ \-HSO ₄ D-NaOH -ICE F-Other	COMMENTS					P: 705/2		650	

EPA SAMPLE NO.

			VBLK01
Lab Name: Chemtech		Contract: TRC	E03
Lab Code: <u>CHEM</u>	Case No.: <u>X4494</u>	SAS No.: X4494	SDG No.: X4494
Matrix (soil/water):	SOIL	Lab Sample ID:	VBF0928M1
Sample wt/vol: 5.0	(g/mL) g	Lab File ID:	VF004202.D
Level (low/med): MED		Date Received:	
% Moisture: not dec.	0	Date Analyzed:	9/28/2006
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0
Soil Extract Volume:	10000	Soil Aliquot Volu	ume: 100
Number TICS found:	0	CONCENTRATION UNI	
CAS NO.	COMPOUND	RT	EST. CONC. Q
75-45-6	Difluorochloromethane	2.00	5000 U

EPA SAMPLE NO.

			VBLK02
Lab Name: Chemtech		Contract: TRC	CE03
Lab Code: CHEM	Case No.: <u>X4494</u>	SAS No.: X4494	SDG No.: X4494
Matrix (soil/water):	SOIL	Lab Sample ID:	VBF0929M1
Sample wt/vol: 5.0	(g/mL) <u>g</u>	Lab File ID:	VF004218.D
Level (low/med): MED	···	Date Received:	
% Moisture: not dec.	0	Date Analyzed:	9/29/2006
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0
Soil Extract Volume:	10000	Soil Aliquot Vol	ume: 100
Number TICS found:	0	CONCENTRATION UN:	
CAS NO.	COMPOUND	RT	EST. CONC. Q
75-45-6	Difluorochloromethane	2.00	5000 บ

Comments:	

EPA SAMPLE NO.

MW-17R1B2 (24-26)

Lab Name: Chemtech		Contract: TRC			E03		
Lab Code: CHEM	Case No.: <u>X4494</u>	SAS No	o.:	X4494	SDG No.:	X4494	
Matrix (soil/water):	SOIL	Lab	Samp	ole ID:	X4494-01		
Sample wt/vol: 7.4	(g/mL) _g	Lab	File	D:	VF004207.D		
Level (low/med): MED		Date	e Rec	eived:	9/20/2006	_	
% Moisture: not dec.	11	Date	e Ana	lyzed:	9/28/2006		
GC Column: RTX624	ID: 0.53	Dil	ution	Factor:	1.0		
Soil Extract Volume:	10000	Soil	l Ali	.quot Vol	ume: 100	•	
Number TICS found:	0			ATION UN or ug/Kg	ITS:		
CAS NO.	COMPOUND			RT	EST. CONC.	Q	
75-45-6	Difluorochloromethane			2.00	5000	U	

EPA SAMPLE NO.

MW-17R1B2 (38-40)

Lab Name: Chemtech		Con	trac	t:	TRCE	03		
Lab Code: CHEM	Case No.: <u>X4494</u>	SAS No	·.:	<u>x449</u>	94	SDG 1	No.:	X4494
Matrix (soil/water):	SOIL	Lab	Sam	ple ID): <u> </u>	X4494-02		
Sample wt/vol: 6.8	(g/mL) g	Lab	Fil	e ID:		VF004208.	D	
Level (low/med): MED		Date	e Re	ceived	1:	9/20/200	6	
% Moisture: not dec.	9	Date	a An	alyzed	l:	9/28/200	б	
GC Column: RTX624	ID: 0.53	Dil	ıtio	n Fact	or:	1.0		
Soil Extract Volume:	10000	Soil	L Al:	iquot	Volum	e: <u>10</u>	٥	
Number TICS found:	0			RATION		s: ug/Kg		·
CAS NO.	COMPOUND			RT		EST. CO	NC.	Q
75-45-6	Difluorochloromethane			2.00		5	000	U

EPA SAMPLE NO.

MW-2-160R (170-172)

Lab Name: Chemtech		Contract:	TRCE03	:03			
Lab Code: CHEM	Case No.: <u>X4494</u>	SAS No.: X44	194	SDG No.:	X4494		
Matrix (soil/water):	SOIL	Lab Sample 1	D: <u>X44</u>	194-03			
Sample wt/vol: 8.7	(g/mL) <u>g</u>	Lab File ID:	VFO	04209.D			
Level (low/med): MED		Date Receive	ed: 9/	20/2006			
% Moisture: not dec.	17	Date Analyze	ed: 9/	28/2006			
GC Column: RTX624	ID: 0.53	Dilution Fac	etor:	1.0			
Soil Extract Volume:	10000	Soil Aliquot	: Volume:	100			
Number TICS found:	0	CONCENTRATIO	N UNITS:	ı/Kg			
CAS NO.	CAS NO. COMPOUND		RT ES		Q		
75-45-6	Difluorochloromethane	2.0	0	5000	ប		

EPA SAMPLE NO.

B-3 (23-25)	
5-3 (23-25)	

Lab Name: Chemtech		Contract: TRCE03					
Lab Code: CHEM	Case No.: <u>X4494</u>	SAS No	.: <u>x449</u>	4 SI	DG No.:	X4494	
Matrix (soil/water):	SOIL	Lab	Sample ID	X4494-	06		
Sample wt/vol: 5.8	(g/mL) <u>g</u>	Lab	File ID:	VF0042	10.D		
Level (low/med): MED	· · · · · · · · · · · · · · · · · · ·	Date	a Received	9/20/	2006		
% Moisture: not dec.	4	Date	a Analyzed	9/28/	2006		
GC Column: RTX624	ID: 0.53	Dil	ution Facto	>r: 1.0)		
Soil Extract Volume:	10000	Soil	l Aliquot V	Tolume:	100		
Number TICS found:	0		CENTRATION ug/L or ug	UNITS: /Kg) ug/Kg			
CAS NO.	COMPOUND		RT	EST.	CONC.	δ	
75-45-6	Difluorochloromethane		2.00		5000	U	

EPA SAMPLE NO.

B-3	(27-29)	

Lab Name: Chemtech		Cont	ract:	TRCI	E03	
Lab Code: CHEM	Case No.: X4494	SAS No	.: <u>x4</u>	1494	SDG No.:	X4494
Matrix (soil/water):	SOIL	Lab	Sample	ID:	X4494-07	
Sample wt/vol: 6.2	(g/mL) _g_	Lab	File II): _	VF004211.D	···
Level (low/med): MED		Date	Receiv	red:	9/20/2006	
% Moisture: not dec.	3	Date	Analy:	zed:	9/28/2006	
GC Column: RTX624	ID: 0.53	Dile	ition Fa	actor:	1.0	
Soil Extract Volume:	10000	Soil	Alique	ot Volu	me: 100	
Number TICS found:	0		ENTRATI		TS: ug/Kg	
CAS NO.	COMPOUND		RI	;	EST. CONC.	۵
75-45-6	Difluorochloromethane		2.	00	5000	ט

EPA SAMPLE NO.

B-3	(37-39)	

Lab Name: Chemtech		Contract: TRCE03					
Lab Code: CHEM	Case No.: <u>X4494</u>	SAS No.: X4494	SDG No.: X44	94			
Matrix (soil/water):	SOIL	Lab Sample ID:	X4494-08				
Sample wt/vol: 7.5	(g/mL) <u>g</u>	Lab File ID:	VF004212.D				
Level (low/med): ME	<u> </u>	Date Received:	9/20/2006				
% Moisture: not dec.	13	Date Analyzed:	9/28/2006				
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0				
Soil Extract Volume:	10000	Soil Aliquot Vol	ume: 100				
Number TICS found:	0	CONCENTRATION UN (ug/L or ug/K					
CAS NO.	COMPOUND	RI	EST. CONC.	Ω			
75-45-6	Difluorochloromethane	2.00	5000 บ				

EPA SAMPLE NO.

B-4	(25-27)	

Lab Name: Chemtech		Contract: TRCE03					
Lab Code: CHEM	Case No.: <u>X4494</u>	SAS No.: <u>X4494</u>	SDG No.: X4494				
Matrix (soil/water):	SOIL	Lab Sample ID:	X4494-09				
Sample wt/vol: 6.8	(g/mL) <u>g</u>	Lab File ID:	VF004220.D				
Level (low/med): MEI	<u> </u>	Date Received:	9/21/2006				
% Moisture: not dec.	4	Date Analyzed:	9/29/2006				
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0				
Soil Extract Volume:	10000	Soil Aliquot Volu	ume: 100				
Number TICS found:	<u> </u>	CONCENTRATION UN: (ug/L or ug/Kg	,				
CAS NO.	COMPOUND	RT	EST. CONC. Q				
75-45-6	Difluorochloromethane	2.00	ט 5000				

EPA SAMPLE NO.

B-4	(39-41)	

Lab Name: Chemtech		Contract: TRCE03				
Lab Code: CHEM	Case No.: <u>X4494</u>	SAS No	.: X4494	SD	G No.:	X4494
Matrix (soil/water):	SOIL	Lab	Sample ID:	X4494-1	.0	
Sample wt/vol: 1.2	(g/mL) <u>g</u>	Lab	File ID:	VF00421	9.0	
Level (low/med): MEI)	Date	Received:	9/21/2	006	
% Moisture: not dec.	13	Date	Analyzed:	9/29/2	:006	
GC Column: RTX624	ID: 0.53	Dilu	tion Factor	1.0		
Soil Extract Volume:	10000	Soil	. Aliquot Vo	olume:	100	
Number TICS found:	0		ENTRATION (ug/L or ug/			
CAS NO.	COMPOUND		RŢ	EST.	CONC.	Q
75-45-6	Difluorochloromethane		2.00		5000	Ū

EPA SAMPLE NO.

MW-29D (36-38)

Lab Name: Chemtech		Con	trac	it:	TRCI	E03	
Lab Code: CHEM	Case No.: <u>X4494</u>	SAS No	>.:	X44	94	SDG No.:	X4494
Matrix (soil/water):	SOIL	Lab	Sam	ple II): _	X4494-11	
Sample wt/vol: 7.9	(g/mL) <u>g</u>	Lab	Fil	e ID:		VF004221.D	
Level (low/med): MED	<u></u>	Date	e Re	ceive	i :	9/21/2006	•
% Moisture: not dec.	0	Date	e An	alyzed	1:	9/29/2006	
GC Column: RTX624	ID: 0.53	Dil	utio	n Fact	tor:	1.0	
Soil Extract Volume:	10000	Soi	l Al	iquot	Volu	me: 100	
Number TICS found:	0			RATION		TS:	
CAS NO.	COMPOUND			RT		EST. CONC.	Ω
75-45-6	Difluorochloromethane			2.00		5000	U

EPA SAMPLE NO.

MW-29D (48-50)

Lab Name: Chemtech		Contract: T	RCE03
Lab Code: CHEM	Case No.: <u>X4494</u>	SAS No.: X4494	SDG No.: X4494
Matrix (soil/water):	SOIL	Lab Sample ID:	X4494-12
Sample wt/vol: 8.1	(g/mL) <u>g</u>	Lab File ID:	VF004222.D
Level (low/med): MED		Date Received:	9/21/2006
% Moisture: not dec.	3	Date Analyzed:	9/29/2006
GC Column: RTX624	ID: 0.53	Dilution Factor	r: 1.0
Soil Extract Volume:	10000	Soil Aliquot Vo	olume: 100
Number TICS found:	0	CONCENTRATION (ug/L or ug/	
CAS NO.	COMPOUND	RT	EST. CONC. Q
75-45-6	Difluorochloromethane	2.00	5000 บ

EPA SAMPLE NO.

						VBLK	01
Lab 1	Name: Chemtech		Con	tract	: TRC	E03	
Lab (Code: <u>CHEM</u>	Case No.: <u>X4494</u>	SAS N	>.:	X4494	SDG No.	: <u>x4494</u>
Matr	ix (soil/water):	WATER	Lab	Samp	le ID:	VBF0928W2	
Samp	le wt/vol: 5.0	(g/mL) mL	Lab	File	ID:	VF004201.D	
Leve	l (low/med):		Dat	e Rec	eived:		
& Mo	isture: not dec.	100	Dat	e Ana	lyzed:	9/28/2006	
GC C	olumn: RTX624	ID: 0.53	Dil	ution	Factor:	1.0	
Soil	Extract Volume:		Soi	l Ali	quot Volu	me:	
Numb	er TICS found:	0			ATION UNI or ug/Kg		
	CAS NO.	COMPOUND			RT	EST. CONC.	Q
	75-45-6	Difluorochloromethane			2 00	5/	1 17

Comments:		

EPA SAMPLE NO.

FIEI	DBLAN	ν ι κ	

Lab Name: Chemtech		Contract: TRC	E03	
Lab Code: CHEM	Case No.: <u>X4494</u>	SAS No.: <u>X4494</u>	SDG No.:	X4494
Matrix (soil/water):	WATER	Lab Sample ID:	X4494-04	
Sample wt/vol: 5.0	(g/mL) mL	Lab File ID:	VF004203.D	
Level (low/med):	· ·	Date Received:	9/20/2006	
% Moisture: not dec.	100	Date Analyzed:	9/28/2006	
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0	
Soil Extract Volume:	·	Soil Aliquot Volu	me:	
Number TICS found:	0	CONCENTRATION UNI		
CAS NO.	COMPOUND	ŔŢ	EST. CONC.	Q ·
75-45-6	Difluorochloromethane	2.00	50	ซ

LSC Area Percent Report

Data Path : Y:\HPCHEM1\MSVOA F\DATA\SEP-2006\VF092806\

Data File: VF004203.D

Acq On : 28 Sep 2006 15:40

Operator : SY

Sample : X4494-04 Misc : 5mL

ALS Vial : 6 Sample Multiplier: 1

Integration Parameters: RTEINT.P

Integrator: RTE

Smoothing : ON Filtering: 5

Sampling : 1 Min Area: 3 % of largest Peak

Start Thrs: 0.2 Max Peaks: 100 Stop Thrs : 0 Peak Location: TOP

If leading or trailing edge < 100 prefer < Baseline drop else tangent > Peak separation: 5

Method : Y:\HPCHEM1\MSVOA_F\METHOD\82F092206W.M

Title : SW846 8260

Signal : TIC

peak #	R.T. min	first scan		last scan	PK TY	peak height	corr. area	corr. % max.	% of total
7	1.742	100	715	117	7377	1.60077	007007		0 3000
1	1.742	109	115	11/	rBV	162077	287027	3.66%	0.702%
2	7.926	692	705	712	rBV	549885	2880230	36.68%	7.044%
3	8.082	712	720	747	rVB	837759	4849631	61.77%	11.860%
4	8.585	757	768	787	rVB	387419	1899492	24.19%	4.645%
5	9.413	833	847	873	rBV	948214	4991846	63.58%	12.207%
_	12,258	1100	1110	1151	DXI	7700000	C114001	33 000	14 0500
6	12.238	1106	1110	1154	IBA	1126370	6114231	77.88%	14.952%
7	15.385	1403	1416	1448	rBV	1148975	5964109	75.96%	14.585%
8	18.096	1661	1674	1702	rBV2	1125525	6053948	77.11%	14.805%
9	20.744	1912	1926	1948	rBV	1502031	7851257	100.00%	19.200%

Sum of corrected areas: 40891771

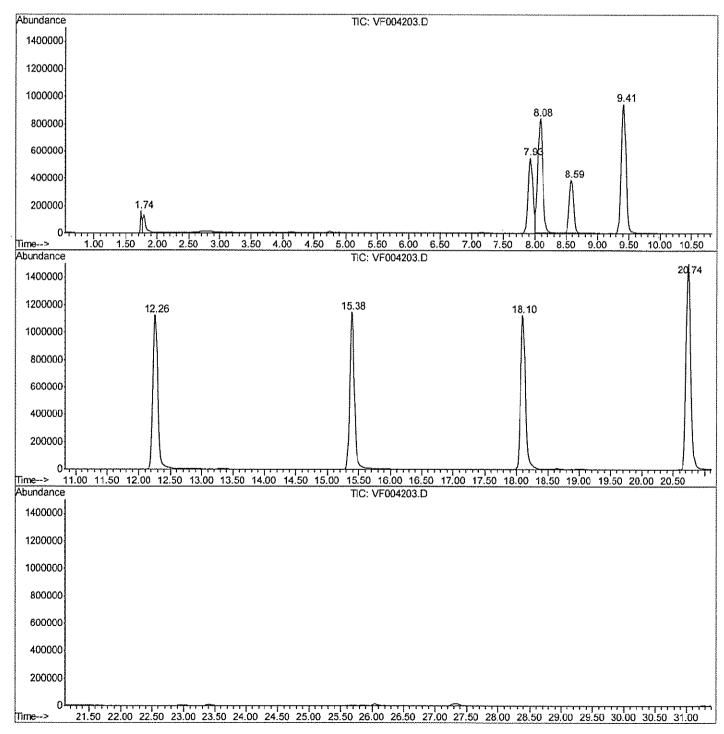
LSC Report - Integrated Chromatogram

Data Path : Y:\HPCHEM1\MSVOA F\DATA\SEP-2006\VF092806\

Data File: VF004203.D

Acq On : 28 Sep 2006 15:40

Operator : SY


Sample : X4494-04 Misc : 5mL

ALS Vial : 6 Sample Multiplier: 1

Quant Method: X:\HPCHEM1\MSVOA F\METHOD\82F092206W.M

Quant Title : SW846 8260

TIC Library : C:\DATABASE\NISTO2.L TIC Integration Parameters: RTEINT.P

Tentativelbrädgnseared Compound Res6ttsummary

/JOOSEGRY/JOOSEGRAFINEMARCH THE CONTROL OF THE CONT

DBataFFlèe::VF600A003DD

AAgg06n ::288S6pp20066 155400

Oppeaabor ::SYY

Samphee ::XX4994004 Milisc ::5fmL

AASSVVáál ::66 SampheeMMúlíphléer:11

QQaantMMehbdd::XX/NHCHHMINGEWAAFENHEHHOD382F09226WMM

QQuantTffile::SEW86688E60

TTCCLLbbaryy :: CC\NAMMABABERNNSS002LL
TTCClhbeggzbionnPBasmmetess: REEENNTPP

|--Internal Standard---|

TIC Top Hit name RT EstConc Units Response | # RT Resp Conc|

No Library Search Compounds Detected

EPA SAMPLE NO.

TRIPBLANK_	

Lab Name: Chemtech		Contract: TRC	E03	
Lab Code: CHEM	Case No.: <u>X4494</u>	SAS No.: <u>X4494</u>	SDG No.:	X4494
Matrix (soil/water):	WATER	Lab Sample ID:	X4494-05	
Sample wt/vol: 5.0	(g/mL) mL	Lab File ID:	VF004204.D	
Level (low/med):		Date Received:	9/20/2006	
% Moisture: not dec.	100	Date Analyzed:	9/28/2006	
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0	
Soil Extract Volume:	***************************************	Soil Aliquot Volu	me:	
Number TICS found:	0	CONCENTRATION UNI		
CAS NO.	COMPOUND	RT	EST. CONC.	Ω .
75-45-6	Difluorochloromethane	2.00	50	Ū

EPA SAMPLE NO.

FIELDBLANK	

Lab Name: Chemtech		Contract: TRO	E03
Lab Code: CHEM	Case No.: <u>X4494</u>	SAS No.: X4494	SDG No.: X4494
Matrix (soil/water):	WATER	Lab Sample ID:	X4494-13
Sample wt/vol: 5.0	(g/mL) mL	Lab File ID:	VF004205.D
Level (low/med):	···········	Date Received:	9/21/2006
% Moisture: not dec.	100	Date Analyzed:	9/28/2006
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0
Soil Extract Volume:	***************************************	Soil Aliquot Volu	ıme:
Number TICS found:	0	CONCENTRATION UNI	
CAS NO.	COMPOUND	RT	EST. CONC. Q
75-45-6	Difluorochloromethane	2.00	50 U

EPA SAMPLE NO.

TRIPBLANK

Lab Name: Chemtech		Contract: TRC	E03	
Lab Code: CHEM	Case No.: X4494	SAS No.: X4494	SDG No.:	X4494
Matrix (soil/water):	WATER	Lab Sample ID:	X4494-14	
Sample wt/vol: 5.0	(g/mL) mL	Lab File ID:	VF004206.D	
Level (low/med):		Date Received:	9/21/2006	
% Moisture: not dec.	100	Date Analyzed:	9/28/2006	
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0	
Soil Extract Volume:		Soil Aliquot Volu	me:	
Number TICS found:	0	CONCENTRATION UNI		
CAS NO.	COMPOUND	RT	EST. CONC.	Q
75-45-6	Difluorochloromethane	2.00	50	U

EPA SAMPLE NO.

MW-17R1B2(24-26)

Lab Name: Chemtech		Cont	ract: TR	CE03	
Lab Code: CHEM	Case No.: <u>X4494</u>	SAS No.	: <u>X4494</u>	SDG No.:	X4494
Matrix (soil/water):	SOIL	Lab :	Sample ID:	X4494-01	
Sample wt/vol: 7.4	(g/mL) <u>g</u>	Lab 1	File ID:	VF004207.D	
Level (low/med): MEI	<u> </u>	Date	Received:	9/20/2006	
% Moisture: not dec.	11	Date	Analyzed:	9/28/2006	
GC Column: RTX624	ID: 0.53	Dilu	tion Factor:	1.0	
Soil Extract Volume:	10000	Soil	Aliquot Vol	ume: 100	
Number TICS found:	1		ENTRATION UN		
CAS NO.	COMPOUND		RT	EST. CONC.	Q
1. 75-45-6	Difluorochloromethane		2.00	3800	ט

EPA SAMPLE NO.

MW-17R1B2(38-40)

Lab Name: Chemtech		Con	tract:	TRCI	E03		
Lab Code: CHEM	Case No.: <u>X4494</u>	SAS No	s.: <u>X4</u>	1494	sı	OG No.:	X4494
Matrix (soil/water):	SOIL	Lab	Sample	ID:	X4494-	02 .	
Sample wt/vol: 6.8	(g/mL)g	Lab	File II): _	VF0042	D.80	
Level (low/med): MED		Date	e Receiv	red:	9/20/2	2006	
% Moisture: not dec.	9	Date	e Analys	ed:	9/28/2	2006	
GC Column: RTX624	ID: 0.53	Dil	ution Fa	actor:	1.0		
Soil Extract Volume:	10000	Soi	l Aliquo	ot Volu	me:	100	
Number TICS found:	1		CENTRATI		TS: ug/Kg	<u> </u>	
CAS NO.	COMPOUND		RI		EST.	CONC.	δ
1. 75-45-6	Difluorochloromethane		2.	00		4100	U

EPA SAMPLE NO.

MW-2-160R (170-172)

Lab Name: Chemtech	Contract: TRCE03						
Lab Code: CHEM	Case No.: X4494	_ SAS No	.: <u>x4494</u>	SDG No.:	<u> </u>		
Matrix (soil/water):	SOIL	Lab	Sample ID:	X4494-03			
Sample wt/vol: 8.7	(g/mL) <u>g</u>	Lab	File ID:	VF004209.D	···		
Level (low/med): MED		Date	Date Received: 9/20/2006				
% Moisture: not dec.	17	Date Analyzed: 9/		9/28/2006			
GC Column: RTX624	Dilution Factor: 1.0						
Soil Extract Volume:	10000	Soil Aliquot Volume: 100					
Number TICS found:	1	CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg					
CAS NO.	COMPOUND		RT	EST. CONC.	Q		
1. 75-45-6	Difluorochloromethane	-	2.00	3500	Ū		

EPA SAMPLE NO.

B-3(23-25)	

Lab Name: Chemtech	Chemtech		TRC	E03		
Lab Code: CHEM	Case No.: X4494	SAS No.:	X4494	SDG No.:	<u> X4494</u>	
Matrix (soil/water):	SOIL	Lab Sampl	e ID:	X4494-06		
Sample wt/vol: 5.8	(g/mL) _ g	Lab File ID:		VF004210.D		
Level (low/med): MED		Date Rece	ived:	9/20/2006		
% Moisture: not dec.	4	Date Analyzed: 9/28/2006				
GC Column: RTX624	ID: 0.53	Dilution	Factor:	1.0		
Soil Extract Volume:	10000	Soil Aliquot Volume: 100				
Number TICs found:	1	CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg				
CAS NO.	COMPOUND		RT	EST. CONC.	Q	
1. 75-45-6	Difluorochloromethane	. 2	2.00	4500	U	

EPA SAMPLE NO.

	••••••
B-3(27-29)	
,	

Lab Name: Chemtech	· · · · · · · · · · · · · · · · · · ·	Contract: TRC			E03		
Lab Code: CHEM	Case No.: <u>X4494</u>	SAS No	>.: <u>X</u>	4494	sr	G No.:	<u> </u>
Matrix (soil/water):	SOIL	Lab	Sample	ID:	X4494-0	07	
Sample wt/vol: 6.2	(g/mL) <u>g</u>	Lab	File I	:ם:	VF0042	L1.D	
Level (low/med): MEI	<u>) </u>	Date	e Recei	.ved:	9/20/2	2006	
% Moisture: not dec.		Date	e Analy	zed:	9/28/2	2006	
GC Column: RTX624	ID: 0.53	Dil	ution F	actor:	1.0		
Soil Extract Volume:	10000	Soi	l Aliqu	ot Volu	ıme:	100	
Number TICS found: 1 CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg							
CAS NO.	COMPOUND		R	T	EST.	CONC.	Õ
1. 75-45-6	Difluorochloromethane		2.	.00		4200	บ

EPA SAMPLE NO.

B-3(37-39)

Lab Name: Chemt	ech	Cont	ract: TRO	Œ03		
Lab Code: CHEM	Case No.: X	4494 SAS No	.: <u>x4494</u>	SDG No.	X445	
Matrix (soil/wate	r): SOIL	Lab	Sample ID:	X4494-08		
Sample wt/vol:	7.5 (g/mL)	gLab	File ID:	VF004212.D		
Level (low/med):	MED	Date	Received:	9/20/2006		
% Moisture: not d	ec. <u>13</u>	Date	Analyzed:	9/28/2006		
GC Column: RTX	524 ID: 0.53	Dilu	tion Factor:	1.0		
Soil Extract Volu	me: 10000	Soil	Soil Aliquot Volume: 100			
Number TICS found: 1 CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg						
CAS NO.	COMPOUND		RT	EST. CONC.	Ď	
1. 75-45-6	Difluorochlo	romethane	2.00	3800	U	

EPA SAMPLE NO.

B-4	(25 -	27)	

Lab Name: Chemtech	 	Contract:	TRCE03		
Lab Code: CHEM	Case No.: <u>X4494</u>	SAS No.: <u>X44</u>	94 sr	OG No.: X4494	
Matrix (soil/water):	SOIL	Lab Sample I	D: <u>X4494-</u> ()9	
Sample wt/vol: 6.8	(g/ml) <u>g</u>	Lab File ID:	VF00422	20.D	
Level (low/med): MEI		Date Receive	d: 9/21/2	2006	
% Moisture: not dec.	4	Date Analyze	d: 9/29/2	2006	
GC Column: RTX624	ID: 0.53	Dilution Fac	tor: <u>1.0</u>		
Soil Extract Volume:	10000	Soil Aliquot	Volume:	100	
Number TICS found:	1	CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg			
CAS NO.	COMPOUND	RT	EST.	CONC. Q	
1. 75-45-6	Difluorochloromethane	2.00)	3800 🗓	

EPA SAMPLE NO.

B-4 (39-41)

Lab Name	: Chemtech		Con	tract:	TRCE	E03		
Lab Code	: CHEM	Case No.: <u>X4494</u>	SAS No	.: <u>X4</u>	494	SI	OG No.:	X4494
Matrix (soil/water):	SOIL	Lab	Sample	ID:	X4494-	10	
Sample w	t/vol: <u>1.2</u>	(g/mL) <u></u>	Lab	File ID	: _	VF0042	19.D	
Level (lo	ow/med): MED		Date	e Receiv	ed:	9/21/2	2006	
% Moistu	re: not dec.	_13	Date	e Analyz	ed:	9/29/2	2006	
GC Column	a: <u>RTX624</u>	ID: 0.53	Dil	ution Fa	ctor:	1.0		
Soil Ext	ract Volume:	10000	Soil	l Aliquo	t Volu	me:	100	
Number T	ICS found:	1		CENTRATI				
CA	S NO.	COMPOUND		RT		EST.	CONC.	Ω
1. 75-	45-6	Difluorochloromethane		2.0	00	***************************************	25000	ט

DATA PACKAGE FOR VOLATILE ORGANICS

PROJECT NAME: Morris park RI/FS TRC#46130-0010

TRC ENVIRONMENTAL CORP., NY
1430 BROADWAY
10TH FLOOR
NEW YORK, NY 10018
2122217822

CHEMTECH PROJECT NO. ATTENTION:

X4559 Steven Meersma

COVER PAGE

ProjectID:

Morris park RI/FS TRC#461

OrderID: X4559

CustomerName:

TRC Environmental Corp., NY

LAB SAMPLE NO.

X4559-01

X4559-02

X4559-03

CLIENT SAMPLE NO

MW-30D(145-147)

FIELDBLANK

TRIPBLANK

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Name: Mildud V Roys Date:

NYDOH CERTIFICATION NO.11376

NJDEP CERTIFICATION NO. 20012

DATA REPORTING QUALIFIERS- ORGANIC

For reporting results, the following "Results Qualifiers" are used:

Value	If the result is a value greater than or equal to the detection limit, report the value
U	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10 U". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
J	 (1) When estimated value. This flag is used: (2) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise on any organic parameter i.e. Pest, PCB and others. Indicates the analyte was found in the blank as well as the sample report as "12 B".
Ε	Indicates the analyte's concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
P	This flag is used for Pesticide/PCB target analyte when there is >25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".
N	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.

CETTLE 3. 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

TRC Environmental Corp., NY Date Collected: 9/13/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/15/2006 Client Sample ID: MW-30D(145-147) SDG No.: X4559 Lab Sample ID: Matrix: X4559-01 SOIL % Moisture: Analytical Method: 8260 15 Sample Wt/Wol: 5.1 Units: g Soil Extract Vol: 10000 uL Seil Aliquot Vol: 100 иL

Dilution: File ID: Date Analyzed **Analytical Batch ID** VH009762.D 1 9/22/2006 VH092206

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	39	U	580	39	ug/Kg
74-87-3	Chloromethane	79	U	580	79	ug/Kg
75-01-4	Vinyl chloride	31	U	580	31	ug/Kg
74-83-9	Bromomethane	90	Ü	580	90	ug/Kg
75-00-3	Chloroethane	100	U	580	100	ug/Kg
75-69-4	Trichlorofluoromethane	67	U	580	67	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	80	U	580	80	ug/Kg
75-35-4	1,1-Dichloroethene	37	U	580	37	ug/Kg
67-64-1	Acetone	380	U	2900	380	ug/Kg
75-15-0	Carbon disulfide	45	U	580	45	ug/Kg
1634-04-4	Methyl tert-butyl Ether	41	U	580	41	ug/Kg
79-20-9	Methyl Acetate	96	U	580	96	ug/Kg
75-09-2	Methylene Chloride	72	U	580	72	ug/Kg
156-60-5	trans-1,2-Dichloroethene	59	U	580	59	ug/Kg
75-34-3	1,1-Dichloroethane	25	U	580	25	ug/Kg
110-82-7	Cyclohexane	42	U	580	42	ug/Kg
78-93-3	2-Butanone	330	U	2900	330	ug/Kg
56-23-5	Carbon Tetrachloride	54	U	580	54	ug/Kg
156-59-2	cis-1,2-Dichloroethene	89	U	580	89	ug/Kg
67-66-3	Chloroform	66	U	580	66	ug/Kg
71-55-6	1,1,1-Trichloroethane	47	U	580	47	ug/Kg
108-87-2	Methylcyclohexane	69	U	580	69	ug/Kg
71-43-2	Benzene	28	U	580	28	ug/Kg
107-06-2	I,2-Dichloroethane	37	U	580	37	ug/Kg
79-01-6	Trichloroethene	970		580	77	ug/Kg
78-87-5	1,2-Dichloropropane	37	U	580	37	ug/Kg
75-27-4	Bromodichloromethane	40	U	580	40	ug/Kg
108-10-1	4-Methyl-2-Pentanone	150	U	2900	150	ug/Kg
108-88-3	Toluene	45	U	580	45	ug/Kg
10061-02-6	t-1,3-Dichloropropene	49	U	580	49	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	18	U	580	18	ug/Kg
79-00-5	1,1,2-Trichloroethane	60	U	580	60	ug/Kg

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 9/13/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/15/2006 Client Sample ID: MW-30D(145-147) SDG No.: X4559 Matrix: Lab Sample ID: X4559-01 SOIL % Moisture: Analytical Method: 8260 15 Sample Wt/Wol: Units: g 5.1 Soil Extract Vol: 10000 uL Soil Aliquot Vol: 100 uL.

Dilution: File ID: Date Analyzed **Analytical Batch ID** VH009762.D 1 9/22/2006 VH092206

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	76	U	2900	76	ug/Kg
124-48-1	Dibromochloromethane	44	U	580	44	ug/Kg
106-93-4	1,2-Dibromoethane	73	U	580	73	ug/Kg
127-18-4	Tetrachloroethene	38	U	580	38	ug/Kg
108-90-7	Chlorobenzene	43	U	580	43	ug/Kg
100-41-4	Ethyl Benzene	47	U	580	47	ug/Kg
126777-61-2	m&p-Xylenes	110	U	1200	110	ug/Kg
95-47-6	o-Xylene	42	U	580	42	ug/Kg
100-42-5	Styrene	40	U	580	40	ug/Kg
75-25-2	Bromoform	29	U	580	29	ug/Kg
98-82-8	lsopropylbenzene	38	U	580	38	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	57	U	580	57	ug/Kg
541-73-1	1,3-Dichlorobenzene	43	U	580	43	ug/Kg
106-46-7	1,4-Dichlorobenzene	45	U	580	45	ug/Kg
95-50-1	1,2-Dichlorobenzene	42	U	580	42	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	110	U	580	110	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	33	U	580	33	ug/Kg
593-70-4	Chlorofluoromethane	580	U	580	580	ug/Kg
75-43-4	Fluorodichloromethane	580	U	580	580	ug/Kg
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	44.28	89 %	75 - 125		SPK: 50
1868-53-7	Dibromofluoromethane	47.62	95 %	75 - 125		SPK: 50
2037-26-5	Toluene-d8	48.4	97 %	75 - 125		SPK: 50
460-00-4	4-Bromofluorobenzene	46.48	93 %	75 - 125		SPK: 50
INTERNAL STA	ANDARDS					
363-72-4	Pentafluorobenzene	340393	4.69			
540-36-3	1,4-Difluorobenzene	539090	5.29			
3114-55-4	Chlorobenzene-d5	469879	9.03			
3855-82-1	1,4-Dichlorobenzene-d4	237701	11.58			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

CHETTLECH 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

TRC Environmental Corp., NY Date Collected: 9/13/2006 Client:

Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/15/2006

Client Sample ID: FIELDBLANK SDG No.: X4559 Lab Sample ID: Matrix: X4559-02 WATER

Analytical Method: % Moisture: 8260 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uĽ,

File ID:	Dilution:	Date Analyzed	Analytical Batch ID	\bigcap
VH009765.D	1	9/22/2006	VH092206	

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS					
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17 ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34 ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33 ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41 ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83 ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3 ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42 ug/L
67-64-1	Acetone	10	J	25	2.3 ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40 ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28 ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20 ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43 ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40 ug/L
75-34-3	I,1-Dichloroethane	0.38	U	5.0	0.38 ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36 ug/L
78-93-3	2-Butanone	1.1	U	25	1.1 ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1 ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29 ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33 ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32 ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34 ug/L
71-43-2	Benzene	0.39	U	5.0	0.39 ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34 ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46 ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40 ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33 ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6 ug/L
108-88-3	Toluene	0.36	U	5.0	0.36 ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32 ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36 ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 9/13/2006

Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/15/2006

Client Sample ID: FIELDBLANK SDG No.: X4559 Lab Sample ID: Matrix: X4559-02 WATER

% Moisture: Analytical Method: 8260 100

5.0 Units: mL Sample Wt/Wol: Soil Extract Vol: uL

Seil Aliquot Vol: иL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID	
VH009765.D	1	9/22/2006	VH092206	

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	54.12	108 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	54.17	108 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	53.43	107 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	50.62	101 %	76 - 119		SPK: 50
INTERNAL STA	ANDARDS					
363-72-4	Pentafluorobenzene	317307	4.70			
540-36-3	1,4-Difluorobenzene	505970	5.30			
3114-55-4	Chlorobenzene-d5	474989	9.04			
3855-82-1	1,4-Dichlorobenzene-d4	243690	11.58			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Sample Wt/Wol:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Soil Extract Vol:

uL

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 9/13/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/15/2006 Client Sample ID: TRIPBLANK SDG No.: X4559 Lab Sample ID: X4559-03 Matrix: WATER

Analytical Method: 8260 % Moisture: 100

Soil Aliquet Vol: uL

5.0

Units: mL

File ID: Dilution: Date Analyzed Analytical Batch ID
VH009766.D 1 9/22/2006 VH092206

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS					
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17 ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34 ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33 ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41 ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83 ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3 ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42 ug/L
67-64-1	Acetone	7.3	j	25	2.3 ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40 ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28 ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20 ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43 ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40 ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38 ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36 ug/L
78-93-3	2-Butanone	1,1	U	25	1.1 ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1 ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29 ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33 ug/L
71-55-6	I,1,1-Trichloroethane	0.32	U	5.0	0.32 ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34 ug/L
71-43-2	Benzene	0.39	U	5.0	0.39 ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34 ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46 ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40 ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33 ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6 ug/L
108-88-3	Toluene	0.36	U	5.0	0.36 ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32 ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	Ü	5.0	0.36 ug/L
79-00-5	1,1,2-Trichloroethane	0.41	Ū	5.0	0.41 ug/L
	•		-		

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N =Presumptive Evidence of a Compound

Report of Analysis

TRC Environmental Corp., NY Client:

Date Collected:

9/13/2006

Project:

Morris park RI/FS TRC#46130-0010

Date Received:

9/15/2006

Client Sample ID:

TRIPBLANK

SDG No.:

X4559

Lab Sample ID:

X4559-03

Matrix:

WATER

Analytical Method:

8260

% Moisture:

100

Sample Wt/Wol:

5.0

Soil Extract Vol:

uL.

Soil Aliquot Vol:

uL.

Units: mL

File ID:

Dilution:

Date Analyzed

Analytical Batch ID

VH009766.D

1

9/22/2006

VH092206

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES	1					
17060-07-0	1,2-Dichloroethane-d4	45.62	91 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	50.96	102 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	52.16	104 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	50.25	101 %	76 - 119		SPK: 50
INTERNAL ST	ANDARDS					
363-72-4	Pentafluorobenzene	325265	4.70			
540-36-3	1,4-Difluorobenzene	509532	5.30			
3114-55-4	Chlorobenzene-d5	470336	9.04			
3855-82-1	1,4-Dichlorobenzene-d4	243095	11.58			

U = Not Detected

RL = Reporting Limit

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

CHAIN OF CUSTODY RECORD

284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

CHEMTECH PROJECT NO. X 45 15

COC Number

- Specify Preservatives B-HNO, D-NaOH F-Other Stipment Complete: 8 1001 ATTENTION: SINCE M. SINDHONE: 2/2 da. 1 282 COMMENTS **ট** STATE: NU ZIP. A-HCI C-HSO, E-ICE ce in Cooler?: CLIENT BILLING INFORMATION 060776 Cooler Temp. SHIPPED VIA: CLIENT: CHAND DELIVERED / DOVERNIGHT Gentrum ANALYSIS o SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION INCLUDING COURIER DELIVERY Conditions of bottles or coolers at receipt: (pg Compliant C) Non Compliant MeOH extraction requires an additional 4 62 ar for percent solid. 8 CITY: New YOLK ADDRESS: 142 & PRESERVATIVES ဖ BILTO: MC r) ÷ Morais And FAX: 21221 3540 O-Mail-Suradon a Traces between con ď MAHAM PROJECT NO.: 46/30 LOCATION: 1/7 PROJECT MANAGER S. MARRIE S' 1-14 DATA DELIVERABLE INFORMATION CLIENT PROJECT INFORMATION # OF BOTTLES e i 귱 SAMPLE COLLECTION TIME PHONE: 21 & 22/7822 9/13/6 DATE SAMPLE PROJECT NAME: 8489 чиоо SAMPLE J 2 RECEIVED FOR LAB BY 212 2217833 FAX: 212 201 7848 8/02/diz/n RECEIVED BY: RECEIVED BY. DAYS. DAYS. TO BE APPROVED BY CHEMITECH
 STANDARD TURNAROUND TIME IS 10 BUSINESS DAYS DAYS. PROJECT SAMPLE IDENTIFICATION DATA TURNAROUND INFORMATION DATEMINE: 9.25 DATE/TUME: 1820 1430 Brander 24 9.1500 12. 12 Black CLIENT INFORMATION STATE REPORT TO BE SENT TO: 20/4/16 DATE/TIME: MW-301 120 SAMPLER HARD COPY: CHEMTECH SAMPLE ID OFY-CS ATTENTION COMPANY: ADDRESS: RELINOURAGED BY PHONE: RECINOL 233 e) õ 4. ξ ø, ω

EPA SAMPLE NO.

			VBLK0:	1
Lab Name: Chemtech	Cont	tract: TRC	CE03	
Lab Code: CHEM Case No	.: <u>X4559</u> SAS No	.: <u>X4559</u>	SDG No.:	X4559
Matrix (soil/water): SOIL	Lab	Sample ID:	VBH0922-01	
Sample wt/vol: 5.0 (g	g/mL) g Lab	File ID:	VH009756.D	
Level (low/med): MED	Date	Received:		
% Moisture: not dec. 0	Date	Analyzed:	9/22/2006	
GC Column: RTX624 ID: 0	.53 Dil	ition Factor:	1.0	·····
Soil Extract Volume: 10000) Soil	L Aliquot Volu	ume: 100	
Number TICS found: 0	-	CENTRATION UND		
CAS NO. COMPOUN	TD	RT	EST. CONC.	٥

Difluorochloromethane

75-45-6

1.11

EPA SAMPLE NO.

MW-30D (145-147)

Lab Name: Chemtech		Contract:	TRCE03		
Lab Code: CHEM	Case No.: <u>X4559</u>	SAS No.: X45	59 s	DG No.:	X4559
Matrix (soil/water):	SOIL	Lab Sample I	D: <u>X4559</u> -	01	
Sample wt/vol: 5.1	(g/mL) <u>g</u>	Lab File ID:	VH0097	VH009762.D	
Level (low/med): MEI	<u> </u>	Date Receive	d: 9/15/	2006	
% Moisture: not dec.	15	Date Analyze	d: 9/22/	2006	
GC Column: RTX624	ID: 0.53	Dilution Fac	tor: 1.0)	
Soil Extract Volume:	10000	Soil Aliquot Volume: 100			
Number TICS found: 0		CONCENTRATIO	n units: ug/Kg) <u>ug/Kg</u>	—	
CAS NO.	COMPOUND	RT	EST.	CONC.	δ
1. 75-45-6	Difluorochloromethane	1.13	i.	50	U

EPA SAMPLE NO.

		• .		VBLK01		
Lab Name: Chemtech		Contract:	TRCE03			
Lab Code: CHEM	Case No.: <u>X4559</u>	SAS No.: <u>X45</u>	59	SDG No.:	X4559	
Matrix (soil/water):	WATER	Lab Sample II	: <u>VBH09</u>	22-01		
Sample wt/vol: 5.0	(g/mL) mL	Lab File ID:	VH009	756.D		
Level (low/med):		Date Received	d:			
% Moisture: not dec.	100	Date Analyze	d: 9/22	/2006		
GC Column: RTX624	ID: 0.53	Dilution Fac	tor: 1.	. 0		
Soil Extract Volume:		Soil Aliquot Volume:				
Number TICS found: 0 CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L						
CAS NO.	COMPOUND	RT	EST	CONC.	Q	
1. 75-45-6	Difluorochloromethane	1.11		50	U	

EPA SAMPLE NO.

		VBLK02				
Lab Name: Chemtech	Contract	t: TRCE03				
Lab Code: CHEM Case No	o.: <u>X4559</u> SAS No.:	X4559 SDG No.: X4559				
Matrix (soil/water): WATER	Lab Samp	mple ID: VBH0924-01				
Sample wt/vol: <u>5.0</u> (6	g/mL) mL Lab File	e ID: VH009777.D				
Level (low/med):	Date Rec	eceived:				
% Moisture: not dec. 100	Date Ana	9/24/2006				
GC Column: RTX624 ID: C	0.53 Dilution	on Factor: 1.0				
Soil Extract Volume:	Soil Ali	.iquot Volume:				
Number TICS found: 0		CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L				
CAS NO. COMPOU	ND	RT EST. CONC. Q				
1. 75-45-6 Difluo	prochloromethane	1.11 50 0				

EPA SAMPLE NO.

FIELDBLANK

Lab Name: Chemtech	Chemtech		Contract: TI		E03		
Lab Code: CHEM	Case No.: <u>X4559</u>	SAS No	.: <u>x</u>	4559	SDG No.:	X4559	
Matrix (scil/water):	WATER	Lab	Sample	ID:	X4559-02		
Sample wt/vol: 5.0	(g/mL) mL	Lab	File I	D:	VH009765.D		
Level (low/med):		Date	e Recei	ved:	9/15/2006		
% Moisture: not dec. 100		Date Analyzed:		9/22/2006			
GC Column: RTX624 ID: 0.53			Dilution Factor: 1.0				
Soil Extract Volume:	**************************************	Soil	l Aliqu	ot Volu	me:	·	
Number TICS found: 0				ION UNI			
CAS NO.	COMPOUND		R	T	EST. CONC.	Ō	
1, 75-45-6	Difluorochloromethane		1.	.11	50	ប	

EPA SAMPLE NO.

					l.	TRIPBLA	NK
Lab Na	me: Chemtech		Con	tract:	TRO	E03	
Lab Co	ode: <u>CHEM</u>	Case No.: <u>X4559</u>	SAS No	: <u>X</u>	4559	SDG No.:	X4559
Matrix	(soil/water):	WATER	Lab	Sample	ID:	X4559-03	
Sample	wt/vol: 5.0	(g/mL)mL	Lab	File I	D:	VH009766.D	
Level	(low/med):	·	Date	e Recei	ved:	9/15/2006	
% Mois	sture: not dec.	100	Date	a Analy	zed:	9/22/2006	
GC Col	lumn: RTX624	ID: 0.53	Dil	ition F	actor:	1.0	
Soil E	Extract Volume:		Soil	l Aliqu	ot Volu	ıme:	
Number	TICS found:	0		CENTRAT		rs:	
	CAS NO.	COMPOUND		R	r	EST. CONC.	Q
1.	75-45-6	Difluorochloromethane		1.	11	50	Ū

DATA PACKAGE FOR VOLATILE ORGANICS

PROJECT NAME: Morris park RL/FS TRC#46130-0010

TRC ENVIRONMENTAL CORP., NY 1430 BROADWAY 10TH FLOOR NEW YORK, NY 10018 2122217822

CHEMTECH PROJECT NO. ATTENTION:

X4572 Steven Meersma

COVER PAGE

ProjectiD: Morris park RI/FS TRC#461

OrderID: X4572

CustomerName:

TRC Environmental Corp., NY

LAB SAMPLE NO.

X4572-01

X4572-02

X4572-03

X4572-04

CLIENT SAMPLE NO

MW-2-160R(25-27)

MW-2-160R(37-39)

FIELDBLANK

TRIPBLANK

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

_Name: ____

NYDOH CERTIFICATION NO.11376

NJDEP CERTIFICATION NO. 20012

284 Sheffield Street Mountainside NJ 07092 Tel. 908-789-8900 Fax: 908-789-8922

DATA REPORTING QUALIFIERS- ORGANIC

For reporting results, the following "Results Qualifiers" are used:

Value	If the result is a value greater than or equal to the detection limit, report the value
U	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10 U". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
J	 Indicates an estimated value. This flag is used: When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise on any organic parameter i.e. Pest, PCB and others.
В	Indicates the analyte was found in the blank as well as the sample report as "12 B".
E .	Indicates the analyte's concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
P	This flag is used for Pesticide/PCB target analyte when there is >25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".
N	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.
A	This flag indicates that a Tentatively Identified Compound is a suspected aldol-condensation product.

QA Control # A3040283

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 9/15/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/16/2006 Client Sample ID: MW-2-160R(37-39) SDG No.: X4572 Lab Sample ID: Matrix: X4572-02 SOIL Analytical Method: % Moisture: 8260 13 Sample Wt/Wol: 5.1 Units: g Soil Extract Vol: 10000 uL Soil Aliquot Vol: 100 uL

File ID: Dilution: Date Analyzed Analytical Batch ID
VH009763.D 1 9/22/2006 VH092206

CAS Number	Parameter	Conc.	Qualifier	RL	MDI	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	38	U	560	38	ug/Kg
74-87-3	Chloromethane	77	U	560	77	ug/Kg
75-01-4	Vinyl chloride	30	U	560	30	ug/Kg
74-83-9	Bromomethane	88	U	560	88	ug/Kg
75-00-3	Chloroethane	99	U	560	99	ug/Kg
75-69-4	Trichlorofluoromethane	65	υ	560	65	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	78	U	560	78	ug/Kg
75-35-4	1,1-Dichloroethene	36	U	560	36	ug/Kg
67-64-1	Acetone	840	Ĵ	2800	370	ug/Kg
75-15-0	Carbon disulfide	44	U	560	44	ug/Kg
1634-04-4	Methyl tert-butyl Ether	40	U	560	40	ug/Kg
79-20-9	Methyl Acetate	93	U	560	93	ug/Kg
75-09-2	Methylene Chloride	70	U	560	70	ug/Kg
156-60-5	trans-1,2-Dichloroethene	58	U	560	58	ug/Kg
75-34-3	1,1-Dichloroethane	24	U	560	24	ug/Kg
1-10-82-7	Cyclohexane	41	U	560	41	ug/Kg
78-93-3	2-Butanone	320	U	2800	320	ug/Kg
56-23-5	Carbon Tetrachloride	53	U	560	53	ug/Kg
156-59-2	cis-1,2-Dichloroethene	87	U	560	87	ug/Kg
67-66-3	Chloroform	65	U	560	65	ug/Kg
71-55-6	1,1,1-Trichloroethane	46	U	560	46	ug/Kg
108-87-2	Methylcyclohexane	67	U	560	67	ug/Kg
71-43-2	Benzene	27	U	560	27	ug/Kg
107-06-2	1,2-Dichloroethane	36	U	560	36	ug/Kg
79-01-6	Trichloroethene	75	U	560	75	ug/Kg
78-87-5	1,2-Dichloropropane	36	U	560	36	ug/Kg
75-27-4	Bromodichloromethane	39	U	560	39	ug/Kg
108-10-1	4-Methyl-2-Pentanone	150	U	2800	150	ug/Kg
108-88-3	Toluene	44	U	560	44	ug/Kg
10061-02-6	t-1,3-Dichloropropene	48	U	560	48	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	17	U	560	17	ug/Kg
79-00-5	1,1,2-Trichloroethane	58	U	560	58	ug/Kg

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

TRC Environmental Corp., NY Date Collected: 9/15/2006 Client: Date Received: Project: Morris park RI/FS TRC#46130-0010 9/16/2006 Client Sample ID: SDG No.: MW-2-160R(37-39) X4572 Matrix: Lab Sample ID: X4572-02 SOIL % Moisture: Analytical Method: 8260 13 Sample Wt/Wol: 5.1 Units: g Soil Extract Vol: 10000 иL Soil Aliquot Vol: 100 uL

File ID: Dilution: Date Analyzed Analytical Batch ID
VH009763.D 1 9/22/2006 VH092206

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	74	U	2800	74	ug/Kg
124-48-1	Dibromochloromethane	43	U	560	43	ug/Kg
106-93-4	1,2-Dibromoethane	71	U	560	71	ug/Kg
127-18-4	Tetrachloroethene	37	U	560	37	ug/Kg
108-90-7	Chlorobenzene	41	U	560	41	ug/Kg
100-41-4	Ethyl Benzene	46	U	560	46	ug/Kg
126777-61-2	m&p-Xylenes	110	U	1100	110	ug/Kg
95-47-6	o-Xylene	41	U	560	41	ug/Kg
100-42-5	Styrene	38	U	560	38	ug/Kg
75-25-2	Bromoform	28	U	560	28	ug/Kg
98-82-8	Isopropylbenzene	37	U	560	37	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	56	U	560	56	ug/Kg
541-73-1	1,3-Dichlorobenzene	42	U	560	42	ug/Kg
106-46-7	1,4-Dichlorobenzene	44	U	560	44	ug/Kg
95-50-I	1,2-Dichlorobenzene	41	U	560	41	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	110	U	560	110	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	32	U	560	32	ug/Kg
593-70-4	Chlorofluoromethane	560	U	560	560	ug/Kg
75-43-4	Fluorodichloromethane	560	U	560	560	ug/Kg
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	48.31	97 %	75 - 125		SPK: 50
1868-53-7	Dibromofluoromethane	52.37	105 %	75 - 125		SPK: 50
2037-26-5	Toluene-d8	52.46	105 %	75 - 125		SPK: 50
460-00-4	4-Bromofluorobenzene	50.46	101 %	75 - 125		SPK: 50
INTERNAL STA						
363-72-4	Pentafluorobenzene	319538	4.70			
540-36-3	1,4-Difluorobenzene	506954	5.30			
3114-55-4	Chlorobenzene-d5	462183	9.04			
3855-82-1	1,4-Dichlorobenzene-d4	240769	11.58			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client Sample ID:

GENTECH 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Date Collected:

Date Received:

Soil Extract Vol:

Matrix:

9/15/2006

9/16/2006

X4572

WATER

υL

Report of Analysis

Client: TRC Environmental Corp., NY

Project: Morris park RI/FS TRC#46130-0010

> FIELDBLANK SDG No.:

Lab Sample ID: X4572-03

Analytical Method: % Moisture: 100

8260

Sample Wt/Wol: 5.0 Units: mL

Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID VH009764.D 1 9/22/2006 VH092206

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Unit	\$
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17 ug/L	
74-87-3	Chloromethane	0.34	Ū	5.0	0.34 ug/L	
75-01-4	Vinyl chloride	0.33	Ū	5.0	0.33 ug/L	
74-83-9	Bromomethane	0.41	Ū	5.0	0.41 ug/L	
75-00-3	Chloroethane	0.83	Ü	5.0	0.83 ug/L	
75-69-4	Trichlorofluoromethane	0.22	Ũ	5.0	0.22 ug/L	
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	Ü	5.0	1.3 ug/L	
75-35-4	1,1-Dichloroethene	0.42	Ū	5.0	0.42 ug/L	
67-64-1	Acetone	7.3	J	25	2.3 ug/L	
75-15-0	Carbon disulfide	0.40	Ü	5.0	0.40 ug/L	
1634-04-4	Methyl tert-butyl Ether	0.28	Ū	5.0	0.28 ug/L	
79-20-9	Methyl Acetate	0.20	Ū	5.0	0.20 ug/L	
75-09-2	Methylene Chloride	0.43	Ü	5.0	0.43 ug/L	
156-60-5	trans-1,2-Dichloroethene	0.40	Ü	5.0	0.40 ug/L	
75-34-3	1,1-Dichloroethane	0.38	Ū	5.0	0.38 ug/L	
110-82-7	Cyclohexane	0.36	Ū	5.0	0.36 ug/L	
78-93-3	2-Butanone	1.1	Ū	25	1.1 ug/L	
56-23-5	Carbon Tetrachloride	1.1	Ū	5.0	1.1 ug/L	
156-59-2	cis-1,2-Dichloroethene	0.29	Ŭ	5.0	0.29 ug/L	
67-66-3	Chloroform	0.33	Ũ	5.0	0.33 ug/L	
71-55-6	1,1,1-Trichloroethane	0.32	Ü	5.0	0.32 ug/L	
108-87-2	Methylcyclohexane	0.34	Ŭ	5.0	0.34 ug/L	
71-43-2	Benzene	0.39	Ū	5.0	0.39 ug/L	
107-06-2	1,2-Dichloroethane	0.34	Ŭ	5.0	0.34 ug/L	
79-01-6	Trichloroethene	0.46	Ŭ	5.0	0.46 ug/L	
78-87-5	1,2-Dichloropropane	0.40	Ŭ	5.0	0.40 ug/L	
75-27-4	Bromodichloromethane	0.33	Ü	5.0	0.33 ug/L	
108-10-1	4-Methyl-2-Pentanone	1.6	Ŭ	25	1.6 ug/L	
108-88-3	Toluene	0.36	Ŭ	5.0	0.36 ug/L	
10061-02-6	t-1,3-Dichloropropene	0.32	Ŭ	5.0	_	
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	J	
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.36 ug/L 0.41 ug/L	

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

CHEMIECH 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client: TRC Environmental Corp., NY

Project: Morris park RI/FS TRC#46130-0010

Client Sample ID: FIELDBLANK

Lab Sample ID: X4572-03

Analytical Method: 8260

Sample Wt/Wol: Units: mL 5.0 Soil Aliquot Vol:

uL

Date Collected:

9/15/2006

Date Received: 9/16/2006

SDG No.:

X4572

Matrix: % Moisture:

WATER 100

Soil Extract Vol:

uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH009764.D	1	9/22/2006	VH092206

CAS Number	Parameter	Conc.	Qualifier	RL	MD	L Units
591-78-6	2-Hexanone	1.7	U	25	1.7	
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	I,2-Dibromoethane	0.32	Ü	5.0		ug/L
127-18-4	Tetrachloroethene	0.48	Ü	5.0	0.32	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.48	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.47	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	0.45	ug/L
95-47-6	o-Xylene	0.46	U	5.0	1.2	ug/L
100-42-5	Styrene	0.41	U	5.0	0.46	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.41	ug/L
98-82-8	lsopropylbenzene	0.44	U	5.0	0.32	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U		0.44	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.30	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.54	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.44	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.38	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	0.46	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES		5.0	U	5.0	5.0	ug/L
17060-07-0	1,2-Dichloroethane-d4	48.71	97%	72 - 119		6D14 . 50
1868-53-7	Dibromofluoromethane	52.88	106 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	52.78	106 %	81 - 120		SPK: 50
160-00-4	4-Bromofluorobenzene	49.88	100 %			SPK: 50
NTERNAL ST	ANDARDS	12.00	100 76	76 - 119		SPK: 50
363-72-4	Pentafluorobenzene	315275	4.70			
340-36-3	1,4-Difluorobenzene	497790	5.30			
3114-55-4	Chlorobenzene-d5	458943	9.04			
855-82-1	1,4-Dichlorobenzene-d4	236221	11.59			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

CHEMIECH 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client: TRC Environmental Corp., NY

Project: Morris park RI/FS TRC#46130-0010

Client Sample ID: TRIPBLANK

Lab Sample ID: X4572-04

Analytical Method: 8260

Sample Wt/Wol: 5.0 Units: mL

Soil Aliquot Vol: uL Date Collected:

9/15/2006

Date Received:

9/16/2006

SDG No.:

X4572

Matrix:

WATER

% Moisture:

100

Soil Extract Vol:

uL

File ID: VH009771.D Dilution:

1

Date Analyzed 9/22/2006

Analytical Batch ID

VH092206

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS					
75-71-8	Dichlorodifluoromethane	0.17	U	£ 0	O 1 m /s
74-87-3	Chloromethane	0.34	U	5.0	0.17 ug/L
75-01-4	Vinyl chloride	0.33	U	5.0 5.0	0.34 ug/L
74-83-9	Bromomethane	0.41	U		0.33 ug/L
75- 00-3	Chloroethane	0.83	U	5.0 5.0	0.41 ug/L
75-69-4	Trichlorofluoromethane	0.22	U		0.83 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	0.22 ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	1.3 ug/L
67-64-1	Acetone	2.3	U	5.0	0.42 ug/L
75-15-0	Carbon disulfide	0.40	U	25 5.0	2.3 ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0 5.0	0.40 ug/L
79-20-9	Methyl Acetate	0.20	U		0.28 ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.20 ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.43 ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.40 ug/L
110-82-7	Cyclohexane	0.36	Ŭ	5.0	0.38 ug/L
78-93-3	2-Butanone	1.1	U	5.0	0.36 ug/L
56-23-5	Carbon Tetrachloride	1.1	U	25 5.0	1.1 ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	1.1 ug/L
67-66-3	Chloroform	0.33	U	5.0	0.29 ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.33 ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.32 ug/L
71-43-2	Benzene	0.39	U	5.0	0.34 ug/L
107-06-2	1,2-Dichloroethane	0.34	_	5.0	0.39 ug/L
79-01 - 6	Trichloroethene	0.46	U	5.0	0.34 ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.46 ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.40 ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	Ü	5.0	0.33 ug/L
108-88-3	Toluene	0.36	U	25	1.6 ug/L
10061-02-6	t-1,3-Dichloropropene		U	5.0	0.36 ug/L
10061-01-5	cis-1,3-Dichloropropene	0.32 0.36	U	5.0	0.32 ug/L
79-00-5	1,1,2-Trichloroethane	0.36	U U	5.0 5.0	0.36 ug/L 0.41 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client:

TRC Environmental Corp., NY

Project:

Morris park RI/FS TRC#46130-0010

Client Sample ID:

TRIPBLANK

X4572-04

Lab Sample ID: Analytical Method:

8260

Sample Wt/Wol:

Units: mL

Soil Aliquot Vol:

uL.

Date Collected:

9/15/2006

Date Received:

9/16/2006

SDG No.:

X4572

Matrix:

WATER

% Moisture:

100

Soil Extract Vol:

uL

File ID: VH009771.D Dilution:

1

Date Analyzed 9/22/2006

Analytical Batch ID

VH092206

CAS Number	Parameter	Conc.	Qualifier	RL	MDI	L Units
591-78-6	2-Hexanone	1.7	U	25	1.7	
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	Ü	5.0	0.26	ug/L
127-18-4	Tetrachloroethene	0.48	Ü	5.0	0.32	ug/L
108-90-7	Chlorobenzene	0.47	Ü	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	Ŭ	5.0	0.47	ug/L
126777-61-2	m/p-Xylenes	1.2	Ü	10	1.2	ug/L
95-47-6	o-Xylene	0.46	Ü	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.46	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.41	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.32	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.34	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1.2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	Ŭ	5.0	5.0	ug/L
SURROGATES			Ü	5.0	5.0	ug/L
17060-07-0	1,2-Dichloroethane-d4	47.69	95 %	72 - 119		CDV. CA
1868-53-7	Dibromofluoromethane	48.16	96 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	49.29	99 %	81 - 120		SPK: 50 SPK: 50
460-00-4	4-Bromofluorobenzene	44.85	90 %	76 - 119		
INTERNAL STA	ANDARDS		JU 70	70 - 119		SPK: 50
363-72-4	Pentafluorobenzene	357086	4.68			
540-36-3	1,4-Difluorobenzene	579188	5.29			
3114-55-4	Chlorobenzene-d5	462440	9.03			
3855-82-1	1,4-Dichlorobenzene-d4	246353	11.59			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E - Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

284 Sheffield Street, Wountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 vvvvv.chemtech.net

CHEMTECH PROJECT NO. X 4572

060746

1,282.1 シンクラ -- Specify Preservatives B-HNO3 D-NaOH F-Other SHIPPED VIA: CLIENT: CHAND DELIVERED DOVERNIGHT SHIPMONT COMPIOLO: CHEMTECH: CPICKED UP COVERNIGHT //ZYES CHO MAYES DNO COMMENTS PO#: 46/30 ZIP: A-HCI C-H,SQ E-ICE ce in Cooler?; Cooler Temp. _ CLIENT BILLING INFORMATION STATEALL ADDRESS: 1430 Brandway ATTENTION: S. in PRACE AND PHONE: ANALYSIS Φ SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION INCLUDING COURIER DELIVERY MeOH extraction requires an additional 4 oz jar for percent solid.

Comments: 8 Nas york TRC **PRESERVATIVES** တ ŝ BILL TO: <u>で</u> CITY: 0-mall: Smil re Sand a) TO C Solution I Com FAX: JOST JEWO Sheve Macassime Conditions of bottles or coolers at receipt: CLIENT PROJECT INFORMATION MEDICAL DATA DELIVERABLE INFORMATION PROJECT NO.: 46/30 LOCATION: 414 □ RESULTS ONLY
□ USEPA CLP
□ RESULTS + OC
□ Now Jersey REDUCED □ New York State ASP "8"
□ New Jersey CLP
□ New Jersey CLP
□ EDD FORMAT □ USEPACLP TIME COLLECTION PHONE: 212 22 17823 SAMPLE Page 9650b DATE KPHISTOG 1 5/1 5/kg PROJECT MANAGER: PROJECT NAME: SAMPLE aard TYPE сомь SAMPLE イングラン 7 Š vė 1000 d 10-19 FECEIVED FOR LAB BY: 7840 STATE: WY ZIP: 10018 シャー39 15-27 9/15/06 RECEIVED BY: RECEIVED BY: DAYS: DAYS. TO BE APPROVED BY CHEMTECH STANDARD TURNAROUND TIME IS 10 BUSINESS DAYS DAYS. deve pheaves was PROJECT SAMPLE IDENTIFICATION DATA TURNAROUND INFORMATION PHONE: & Jakol 2011 FAX: 2122 8/2 430 Branchia MW-2-160K 1602 CLIENT INFORMATION TREPORT TO BE SENT TO: Le in Blow DATETIME Far dhe ŧ 13. アンシーク 5 SAMPLER CITY: FRE HARD COPY: ATTENTION: CHEMTECH SAMPLE COMPANY: ADDRESS: 9 252 FAX: οi ಣೆ 4, Ġ φį S | H

EPA SAMPLE NO.

MW-2-160R(37-39)

Lab Name: Chemtech		Contract: TRC	E03
Lab Code: CHEM	Case No.: <u>X4572</u>	sas no.: <u>X4572</u>	SDG No.: X4572
Matrix (soil/water):	SOIL	Lab Sample ID:	X4572-02
Sample wt/vol: 5.1	(g/mL) <u>g</u>	Lab File ID:	VH009763.D
Level (low/med): MEI)	Date Received:	9/16/2006
% Moisture: not dec.	_13	Date Analyzed:	9/22/2006
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0
Soil Extract Volume:	10000	Soil Aliquot Volu	me: 100
Number TICS found:	0	CONCENTRATION UNI	
CAS NO.	COMPOUND	RT	EST. CONC. Q
1. 75-45-6	Difluorochloromethane	1.11	50 บ

EPA SAMPLE NO.

	· .		VBLK01	•	
Lab Name: Chemtech	Contr	act: TRCE	303		
Lab Code: CHEM Case	No.: <u>X4572</u> SAS No.	: <u>x4572</u>	SDG No.:	<u>x4572</u>	
Matrix (soil/water): WAT	ER Lab S	ample ID:	VBH0922-01		
Sample wt/vol: 5.0	(g/mL) mL Lab H	ile ID:	VH009756.D		
Level (low/med):	Date	Received:			
% Moisture: not dec. 100) Date	Analyzed:	9/22/2006		
GC Column: RTX624 ID:	0.53 Dilut	ion Factor:	1.0		
Soil Extract Volume:	Soil	Soil Aliquot Volume:			
Number TICS found: 0		NTRATION UNI			
CAS NO. COMP	OUND	RT	EST. CONC.	Q	
1. 75-45-6 Dif	fluorochloromethane	1.11	50	U	

EPA SAMPLE NO.

			VBLK02
Lab Name: Chemtech		Contract: TRO	Œ03
Lab Code: CHEM	Case No.: X4572	SAS No.: <u>X4572</u>	SDG No.: X4572
Matrix (soil/water):	WATER	Lab Sample ID:	VBH0924-01
Sample wt/vol: 5.0	(g/mL) mL	Lab File ID:	VH009777.D
Level (low/med):		Date Received:	-
% Moisture: not dec.	100	Date Analyzed:	9/24/2006
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0
Soil Extract Volume:		Soil Aliquot Vol	une:
Number TICS found:	0	CONCENTRATION UN	
CAS NO.	COMPOUND	RT	EST. CONC. Q
1. 75-45-6	Difluorochloromethane	1.11	50 U

EPA SAMPLE NO.

					FIELDBL	ANK
Lab N	Name: Chemtech		Con	tract: TR	CE03	
Lab C	Code: <u>CHEM</u>	Case No.: <u>X4572</u>	SAS No	x4572	SDG No.:	X4572
Matri	ix (soil/water):	WATER	Lab	Sample ID:	X4572-03	
Sampl	le wt/vol: <u>5.0</u>	(g/mL)mL	Lab	File ID:	VH009764.D	
Level	l (low/med):		Date	e Received:	9/16/2006	
% Moi	isture: not dec.	100	Date	e Analyzed:	9/22/2006	
GC Cc	olumn: RTX624	ID: 0.53	Dil	ution Factor	: 1.0	
Soil	Extract Volume:	***************************************	Soi	l Aliquot Vo	lume:	
Numbe	er TICS found:	0		CENTRATION UN		
	CAS NO.	COMPOUND		RT	EST. CONC.	Q
1.	75-45-6	Difluorochloromethane		1.11	50	Ū

EPA SAMPLE NO.

		٠.	TRIPBLANK
Lab Name: Chemtech		Contract: TRO	CE03
Lab Code: CHEM	Case No.: <u>X4572</u>	SAS No.: <u>X4572</u>	SDG No.: <u>X4572</u>
Matrix (soil/water):	WATER	Lab Sample ID:	X4572-04
Sample wt/vol: 5.0	(g/mL) mL	Lab File ID:	VH009771.D
Level (low/med):		Date Received:	9/16/2006
% Moisture: not dec.	100	Date Analyzed:	9/22/2006
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0
Soil Extract Volume:		Soil Aliquot Vol	ume:
Number TICS found:	0	CONCENTRATION UN	
CAS NO.	COMPOUND	TA	EST. CONC. Q
1. 75-45-6	Difluorochloromethane	1.11	50 U

DATA PACKAGE FOR VOLATILE ORGANICS

PROJECT NAME: Morris park RI/FS TRC#46130-0010

TRC ENVIRONMENTAL CORP., NY 1430 BROADWAY 10TH FLOOR NEW YORK, NY 10018 2122217822

CHEMTECH PROJECT NO. ATTENTION:

X4673 Sam Monte

DATA REPORTING QUALIFIERS- ORGANIC

For reporting results, the following "Results Qualifiers" are used:

Value	If the result is a value greater than or equal to the detection limit, report the value
U .	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10 U". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
J	 Indicates an estimated value. This flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise on any organic parameter i.e. Pest, PCB and others.
В	Indicates the analyte was found in the blank as well as the sample report as "12 B".
E	Indicates the analyte's concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
P	This flag is used for Pesticide/PCB target analyte when there is >25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".
N .	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.

COVER PAGE

ProjectID:

Morris park RI/FS TRC#461

OrderID:

X4673

CustomerName:

TRC Environmental Corp., NY

LAB SAMPLE NO.

X4673-01

X4673-02

X4673-03

X4673-04

CLIENT SAMPLE NO

MW-29D(165-167)

MW-29DDUPLICATE(16

FIELDBLANK

TRIPBLANK

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature:	Hilde	e OUL	eus	Name:	Lile	Diod)	V Leu	ريو
Date:	10/12	104	8	Title:	LOAL	(oc	Ó	

GENTECH 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 9/22/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/23/2006 Client Sample ID: MW-29D(165-167) SDG No.: X4673 Lab Sample ID: X4673-01 Matrix: SOIL Analytical Method: 8260 % Moisture: 14 Sample Wt/Wol: 7.9 Units: g Soil Extract Vol: 10000 uL Soil Aliquot Vol: 100 uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID	7
VF004189.D	1	9/27/2006	VF092106	

CAS Number	Parameter	Conc.	Qualifier	RL	MI	L Units
TARGETS						· · · · · · · · · · · · · · · · · · ·
75-71-8	Dichlorodifluoromethane	25	U	370	25	O/ -
74-87-3	Chloromethane	50	U	370	23 50	ug/Kg
75-01-4	Vinyl chloride	20	U	370	20	ug/Kg
74-83-9	Bromomethane	58	U	370	20 58	ug/Kg
75-00-3	Chloroethane	65	U	370	56 65	ug/Kg
75-69-4	Trichlorofluoromethane	43	U	370		ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	51	U	370	43 51	ug/Kg
75-35-4	1,1-Dichloroethene	2 4	U	370	24	ug/Kg
67-64-1	Acetone	240	U	1800		ug/Kg
75-15-0	Carbon disulfide	29	U	370	240	ug/Kg
1634-04-4	Methyl tert-butyl Ether	27	U	370	29	ug/Kg
79-20-9	Methyl Acetate	61	U	370	27	ug/Kg
75-09-2	Methylene Chloride	46	U	370	61	ug/Kg
156-60-5	trans-1,2-Dichloroethene	38	U	370	46	ug/Kg
75-34-3	1,1-Dichloroethane	16	U	370	38	ug/Kg
110-82-7	Cyclohexane	27	U	370 370	16	ug/Kg
78-93-3	2-Butanone	210	U	1800	27	ug/Kg
56-23-5	Carbon Tetrachloride	35	U	370	210	ug/Kg
156-59-2	cis-1,2-Dichloroethene	57	U	370	35 57	ug/Kg
67-66-3	Chloroform	42	U	370 370	57	ug/Kg
71-55-6	I, I, I-Trichloroethane	30	U	370 370	42	ug/Kg
108-87-2	Methylcyclohexane	44	U		30	ug/Kg
71-43-2	Benzene	18	U	370	44	ug/Kg
107-06-2	1,2-Dichloroethane	24	U	370	18	ug/Kg
79-01-6	Trichloroethene	49	U	370	24	ug/Kg
78-87- <i>5</i>	1,2-Dichloropropane	23		370	49	ug/Kg
75-27-4	Bromodichloromethane	26	U	370	23	ug/Kg
108-10-1	4-Methyl-2-Pentanone	98	U	370	26	ug/Kg
108-88-3	Toluene	98 29	U	1800	98	ug/Kg
10061-02-6	t-1,3-Dichloropropene	31	U	370	29	ug/Kg
10061-01-5	cis-1,3-Dichloropropene		U	370	31	ug/K.g
79-00-5	1,1,2-Trichloroethane	11 38	U U	370 370	11 38	ug/Kg ug/Kg

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

CHEMIECH 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 9/22/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/23/2006 Client Sample ID: MW-29D(165-167) SDG No.: X4673 Lab Sample ID: X4673-01 Matrix: SOIL Analytical Method: 8260 % Moisture: 14 Sample Wt/Wol: 7.9 Units: g Soil Extract Vol: 10000 uL Soil Aliquot Vol: 100 uL

File ID: Dilution: Date Analyzed **Analytical Batch ID** VF004189.D 1 9/27/2006 VF092106

CAS Number	Parameter	Conc.	Qualifier	RL	MD	L Units
591-78-6	2-Hexanone	49	U	1800	49	ug/Kg
124-48-1	Dibromochloromethane	28	Ŭ	370	28	ug/Kg ug/Kg
106-93-4	1,2-Dibromoethane	47	Ŭ	370	47	ug/Kg ug/Kg
127-18-4	Tetrachloroethene	24	Ŭ	370	24	_
108-90-7	Chlorobenzene	27	Ŭ	370	27	ug/Kg
100-41-4	Ethyl Benzene	30	Ŭ	370	30	ug/Kg
126777-61-2	m&p-Xylenes	71	Ŭ	740	30 71	ug/Kg
95-47-6	o-Xylene	27	Ü	370	27	ug/Kg
100-42-5	Styrene	25	U	370	25	ug/Kg
75-25-2	Bromoform	19	Ü	370	23 19	ug/Kg
98-82 - 8	Isopropylbenzene	25	U	370 370	25	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	37	U	370	25 37	ug/Kg
541-73-1	1,3-Dichlorobenzene	27	U	370		ug/Kg
106-46-7	1,4-Dichlorobenzene	29	U	370	27	ug/Kg
95-50-1	1,2-Dichlorobenzene	27	U	370	29	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	69	U	370	27	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	21	U	370	69	ug/Kg
593-70-4	Chlorofluoromethane	370	U	370	21	ug/Kg
75-43-4	Fluorodichloromethane	370	U	370	370	ug/Kg
SURROGATES		370	U	370	370	ug/Kg
17060-07-0	1,2-Dichloroethane-d4	61.3	123 %	75 - 125		SDV. EA
1868-53-7	Dibromofluoromethane	54.35	109 %	75 - 125		SPK: 50
2037-26-5	Toluene-d8	54.88	110 %	75 - 125		SPK: 50
460-00-4	4-Bromofluorobenzene	54.5	109 %	75 - 125 75 - 125		SPK: 50
INTERNAL STA		21.2	102 70	13 - 123		SPK: 50
363-72-4	Pentafluorobenzene	1475354	8.07			
540-36-3	I,4-Difluorobenzene	1914297	9.41			
3114-55-4	Chlorobenzene-d5	1828619	15.38			
3855 - 82-1	1,4-Dichlorobenzene-d4	1268550	20.74			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

CHEMIECH 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 9/22/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 9/23/2006 Client Sample ID: MW-29DDUPLICATE(165-167) SDG No.: X4673 Lab Sample ID: X4673-02 Matrix: SOIL Analytical Method: 8260 % Moisture: 12 Sample Wt/Wol: Units: g 7.6 Soil Extract Vol: 10000 uL Soil Aliquot Vol: 100 uL

File ID: Dilution: Date Analyzed **Analytical Batch ID** VF004192.D 1 9/27/2006 VF092106

CAS Number	Parameter	Conc.	Qualifier	RL	MD	L Units
TARGETS			***************************************			
75-71-8	Dichlorodifluoromethane	25	U	370	25	
74-87-3	Chloromethane	51	U	370	23 51	ug/Kg
75-01-4	Vinyl chloride	20	U	370		ug/Kg
74-83-9	Bromomethane	58	U	370 370	20	ug/Kg
75-00-3	Chloroethane	66	U	370 370	58	ug/Kg
75-69-4	Trichlorofluoromethane	43	U	370	66	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	52	U	370 370	43 53	ug/Kg
75-35-4	1,1-Dichloroethene	24	U	370	52	ug/Kg
67-64-1	Acetone	250	U		24	ug/Kg
75-15-0	Carbon disulfide	29	U	1900	250	ug/Kg
1634-04-4	Methyl tert-butyl Ether	27	U	370	29	ug/Kg
79-20-9	Methyl Acetate	62	U	370	27	ug/Kg
75-09-2	Methylene Chloride	46	U	370	62	ug/Kg
156-60-5	trans-1,2-Dichloroethene	38		370	46	ug/Kg
75-34-3	I,1-Dichloroethane	16	U	370	38	ug/Kg
110-82-7	Cyclohexane	27	U U	370	16	ug/Kg
78-93-3	2-Butanone	210	U	370	27	ug/Kg
56-23-5	Carbon Tetrachloride	35		1900	210	ug/Kg
156-59-2	cis-1,2-Dichloroethene	57	U	370	35	ug/Kg
67-66-3	Chloroform	43	U	370	57	ug/Kg
71-55-6	1,1,1-Trichloroethane	30	U	370	43	ug/Kg
108-87-2	Methylcyclohexane	45	U	370	30	ug/Kg
71-43-2	Benzene	18	U	370	45	ug/Kg
107-06-2	1,2-Dichloroethane	24	U	370	18	ug/Kg
79-01-6	Trichloroethene	50	U	370	24	ug/Kg
78-87-5	1,2-Dichloropropane		U	370	50	ug/Kg
75-2 7- 4	Bromodichloromethane	24	U	370	24	ug/Kg
108-10-1	4-Methyl-2-Pentanone	26	U	370	26	ug/Kg
108-88-3	Toluene	99	U	1900	99	ug/Kg
10061-02-6	t-1,3-Dichloropropene	29	U	370	29	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	32	U	370	32	ug/Kg
79-00-5	1,1,2-Trichloroethane	11 39	U U	370 370	11 39	ug/Kg ug/Kg

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client: TRC Environmental Corp., NY

Project:

Morris park RI/FS TRC#46130-0010

Client Sample ID:

MW-29DDUPLICATE(165-167)

Lab Sample ID: Analytical Method:

8260

Sample Wt/Wol:

Units: g 7.6

X4673-02

Seil Aliquot Vol;

100 uL Date Collected:

9/22/2006

Date Received:

9/23/2006 X4673

SDG No.: Matrix:

SOIL

% Moisture:

12

Soil Extract Vol:

10000 uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VF004192.D	1	9/27/2006	VF092106

CAS Number	Parameter	Conc.	Qualifier	RL	MD	L Units
591-78-6	2-Hexanone	49	U	1900	49	
124-48-1	Dibromochloromethane	28	U	370	28	ug/Kg
106-93-4	1,2-Dibromoethane	47	Ü	370	47	ug/Kg
127-18-4	Tetrachloroethene	25	Ü	370	25	ug/Kg
108-90-7	Chlorobenzene	27	Ŭ	370	23 27	ug/Kg
100-41-4	Ethyl Benzene	30	Ŭ	370	30	ug/Kg
126777-61-2	m&p-Xylenes	72	Ü	750	30 72	ug/Kg
95-47-6	o-Xylene	27	U	370	27	ug/Kg
100-42-5	Styrene	26	Ü	370	26	ug/Kg
75-25-2	Bromoform	19	Ü	370	20 19	ug/Kg
98-82-8	Isopropylbenzene	25	U	370	25	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	37	U	370	23 37	ug/Kg
541-73-1	1,3-Dichlorobenzene	28	U	370	28	ug/Kg
106-46-7	1,4-Dichlorobenzene	29	Ü	370	28 29	ug/Kg
95-50-1	1,2-Dichlorobenzene	27	Ü	370	27	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	70	U	370	70	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	21	Ü	370	21	ug/Kg
593-70-4	Chlorofluoromethane	370	Ü	370	370	ug/Kg ug/Kg
75-43-4	Fluorodichloromethane	370	Ü	370	370 3 7 0	
SURROGATES			•	370	370	ug/Kg
17060-07-0	1,2-Dichloroethane-d4	60.37	121 %	75 - 125		CDIZ. EQ
1868-53-7	Dibromofluoromethane	53.66	107 %	75 - 125		SPK: 50 SPK: 50
2037-26-5	Toluene-d8	52,85	106 %	75 - 125		
460-00-4	4-Bromofluorobenzene	52.77	106 %	75 - 125		SPK: 50
INTERNAL STA	ANDARDS	02(,,,	100 70	15 - 125		SPK: 50
363-72-4	Pentafluorobenzene	1206923	8.08			
540-36-3	1,4-Difluorobenzene	1539162	9.41			
3114-55-4	Chlorobenzene-d5	1456013	15.39		_	
3855-82-1	1,4-Dichlorobenzene-d4	1011617	20.73			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

GENTECH 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client: TRC Environmental Corp., NY

Morris park RI/FS TRC#46130-0010

Date Collected: Date Received:

9/22/2006

Project:

9/23/2006

Client Sample ID:

FIELDBLANK

SDG No.:

X4673

Lab Sample ID:

X4673-03

Matrix:

WATER

Analytical Method:

8260

% Moisture:

100

Sample Wt/Wol:

Units: mL 5.0

1

Soil Extract Vol:

иL

Soil Aliquot Vol:

VF004187.D

uL

File ID: Dilution:

Date Analyzed

Analytical Batch ID

9/27/2006 VF092106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS				***************************************	
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17 ug/L
74-87-3	Chloromethane	0,34	U	5.0	
75-01-4	Vinyl chloride	0.33	U	5.0	0.34 ug/L 0.33 ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41 ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.41 ug/L 0.83 ug/L
75-69-4	Trichlorofluoromethane	0.22	Ü	5.0	0.22 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3 ug/L
75-35-4	1,1-Dichloroethene	0.42	Ū	5.0	-
67-64 - 1	Acetone	2.3	Ŭ	25	0.42 ug/L 2.3 ug/L
75-15-0	Carbon disulfide	0.40	Ŭ	5.0	0.40 ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.40 ug/L 0.28 ug/L
79-20-9	Methyl Acetate	0.20	Ŭ	5.0	0.28 dg/L 0.20 ug/L
75-09-2	Methylene Chloride	0.43	Ü	5.0	0.43 ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40 ug/L
75-34-3	1,1-Dichloroethane	0.38	Ü	5.0	0.38 ug/L
110-82-7	Cyclohexane	0.36	Ŭ	5.0	0.36 ug/L
78-93-3	2-Butanone	1.1	Ü	25	1.1 ug/L
56-23-5	Carbon Tetrachloride	1.1	Ŭ	5.0	I.l ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	Ŭ	5.0	0.29 ug/L
67-66-3	Chloroform	0.33	Ü	5.0	0.33 ug/L
71-55-6	1,1,1-Trichloroethane	0.32	Ü	5.0	0.32 ug/L
108-87-2	Methylcyclohexane	0.34	Ŭ	5.0	0.34 ug/L
71-43-2	Benzene	0.39	Ŭ	5.0	0.39 ug/L
107-06-2	1,2-Dichloroethane	0.34	Ū	5.0	0.34 ug/L
79-01-6	Trichloroethene	0.46	Ü	5.0	0.46 ug/L
78-87-5	1,2-Dichloropropane	0.40	Ū	5.0	0.40 ug/L
75-27-4	Bromodichloromethane	0.33	Ü	5.0	0.33 ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	Ü	25	1.6 ug/L
108-88-3	Toluene	0.36	Ü	5.0	0.36 ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	Ŭ	5.0	0.32 ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	Ŭ	5.0	0.32 ug/L 0.36 ug/L
79-00-5	1,1,2-Trichloroethane	0.41	Ŭ	5.0	0.41 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Project:

File ID:

GENTECH 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client: TRC Environmental Corp., NY

Dilution:

Morris park RI/FS TRC#46130-0010

Date Collected: 9/22/2006 Date Received: 9/23/2006

Client Sample ID: **FIELDBLANK** SDG No.: X4673

Lab Sample ID: X4673-03

Matrix: WATER

Analytical Method: 8260

% Moisture: 100

Sample Wt/Wol: 5.0 Soil Extract Vol:

uL

Units: mL Soil Aliquot Vol:

uL

Date Analyzed

Analytical Batch ID

VF004187.D

1 9/27/2006 VF092106

CAS Number	Parameter	Conc.	Qualifier	RL	MDI	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						_
17060-07-0	1,2-Dichloroethane-d4	51.76	104 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	50.65	101 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	52.68	105 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	51.01	102 %	76 - 119		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	1895936	8.07			
540-36-3	1,4-Difluorobenzene	2272230	9.40			
3114-55-4	Chlorobenzene-d5	2081889	15.39			
3855-82-1	1,4-Dichlorobenzene-d4	1461195	20.74			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

GENTECH 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client: TRC Environmental Corp., NY

Project:

Morris park RI/FS TRC#46130-0010 Date Received:

Client Sample ID: TRIPBLANK

Lab Sample ID: X4673-04 Analytical Method:

8260 Sample Wt/Wol: 5.0 Units: mL

Soil Aliquot Vol: uL. SDG No.:

Matrix:

Date Collected:

X4673

WATER % Moisture:

100

9/22/2006

9/23/2006

Soil Extract Vol: uL.

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VF004188.D	1	9/27/2006	VF092106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS					
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17 //
74-87-3	Chloromethane	0.34	U	5.0	0.17 ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.34 ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.33 ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.41 ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.83 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	υ	5.0	0.22 ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	1.3 ug/L
67 - 64-1	Acetone	2.3	U	25	0.42 ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	2.3 ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.40 ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.28 ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.20 ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	Ŭ	5.0	0.43 ug/L 0.40 ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	-
110-82-7	Cyclohexane	0.36	U	5.0	-
78-93-3	2-Butanone	1.1	U	25	0.36 ug/L 1.1 ug/L
56-23-5	Carbon Tetrachloride	1.1	Ü	5.0	.
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	J
67-66-3	Chloroform	0.33	Ŭ	5.0	0
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	•
108-87-2	Methylcyclohexane	0.34	Ü	5.0	ū
71-43-2	Benzene	0.39	U	5.0	-
107-06-2	1,2-Dichloroethane	0.34	U	5.0	U
79-01-6	Trichloroethene	0.46	U	5.0	J
78-87-5	1,2-Dichloropropane	0.40	U	5.0	2
75-27-4	Bromodichloromethane	0.33	Ü	5.0	J
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	3
108-88-3	Toluene	0.36	U	5.0	0
10061-02-6	t-1,3-Dichloropropene	0.32	Ü	5.0	
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.32 ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.36 ug/L 0.41 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

GENTECH 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client: TRC Environmental Corp., NY Project:

Morris park RI/FS TRC#46130-0010

Date Received:

9/22/2006 9/23/2006

Client Sample ID:

TRIPBLANK

SDG No.:

Date Collected:

X4673

Lab Sample ID:

X4673-04

Matrix:

WATER

Analytical Method:

8260

% Moisture:

100

Sample Wt/Wel:

5.0 Units: mL Soil Extract Vol:

uL,

Soil Aliquot Vol:

иL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VF004188.D	1	9/27/2006	VF092106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L.
124-48-1	Dibromochloromethane	0.26	Ū	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	Ū	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	Ü	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	Ū	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	Ü	10	1.2	ug/L
95-47-6	o-Xylene	0.46	Ü	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						2
17060-07-0	1,2-Dichloroethane-d4	55.16	110 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	52.05	104 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	52	104 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	51.06	102 %	76 - 119		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	1626935	8.09			
540-36-3	1,4-Difluorobenzene	2036545	9.42			
3114-55-4	Chlorobenzene-d5	1893325	15.39			
3855-82-1	1,4-Dichlorobenzene-d4	1292697	20.73			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

CHAIN OF CUSTODY RECORD

284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

CHEMTECH PROJECT NO. X H673

COC Number 060747

-	CLIENT INFORMATION	CLIENT PROJECT INFORMATION	CLIENT BILLING INFORMATION
COMPANY:	160	PROJECT NAME: LIRA CFC	811. TO: 11.
ADDRESS: /	1430 Broadway	PROJECT NO.: 46/30 LOCATION: NV	20 Benching
OITY New York	STATE: AH ZIP:10018	PROJECT MANAGER: S. M. C. M. C. M. A.	CITY: Asu los K STATE NV 718 1/00/8
ATTENTION:	Stir Meersona	e-mall: SMECASMA (D) TAC SE (Lub): 125. (24)	ATTENTION: S, MERSING
PHONE: A 13	PHONE Als DOIDS FAX: 212 SAT SEYO	PHONE SLE SAL FAX SLE LAS SLO	ANALYSIS
0	TA TURNAROUND INFORMATION	DATA DELIVERABLE INFORMATION	
FAX:	DAYS.	CHESULTS ONLY CHUSEPACLP CHESULTS + CC CA Now York State ASP '8' CHESULTS + CC CA Now York State ASP '7' CHESULTS + CC CA Now York State ASP '7'	
• TO BE APPRE STANDARD TI	10 BUSINES		/ 1
CHEMTECH		SAMPLE SAMPLE	PRESERVATIVES COMMENTS
SAMPLE ID	SAMPLEIDENTIFICATION	 -	4 5 6 7 8 9 6-HSO D-NaOH
-1-	MU-29 0 /16696)	-	
ς.	Mus-290 dustiente (65-407)	1.5° × × × × × × × × × × × × × × × × × × ×	
3.		Joseph	
	Tais Blank	Jaker J. A. X	
,		1	
6			
er,	7		
3,			
10.			
		SAMPLE-CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION INCLUDING COURIER DELIVERY	ON INCLUDING COURIER DELIVERY
RELINGUISHED BY SAMPLER.	олетие Пажо	Conditions of bottles or coolers at receipt: A. Compilant II Non Compilant MeOH extraction requires an additional 4 oz jar for percent solid.	CA Compliant II Non Compilant Cooler Temp. 110
IELINOUISHED BY:	DATE/TIME: RECEIVED 6Y:	Comments:	I POUISI I.
195	Sy 9/23/64, 23 Heceived Forling BY.	M. Dans of	SHIPPED VIA: CLIENT: CHAND DELIVERED (TOVERNIGHT Shipmon Complete: CHENTECH: DPICKED UP COVERNIGHT AT YES CHO ?
		BABLE O	

EPA SAMPLE NO.

VBLK01

Lab Name: Chemtech		Contract: TRC	E03
Lab Code: CHEM	Case No.: X4673	SAS No.: <u>X4673</u>	SDG No.: X4673
Matrix (soil/water):	SOIL	Lab Sample ID:	VBF0927M1
Sample wt/vol: 5.0	(g/mL) g	Lab File ID:	VF004186.D
Level (low/med): MED		Date Received:	
% Moisture: not dec.	0	Date Analyzed:	9/27/2006
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0
Soil Extract Volume:	10000	Soil Aliquot Volu	me: 100
Number TICS found:	0	CONCENTRATION UNI	
CAS NO.	COMPOUND .	RT	EST. CONC. Q
75-45-6	Difluorochloromethane	2.00	50 U

EPA SAMPLE NO.

MW-29D (165-167)

Lab Name: Chemtech		Contract: TRC	E03	······································
Lab Code: CHEM	Case No.: X4673	SAS No.: <u>X4673</u>	SDG No.:	X4673
Matrix (soil/water):	SOIL	Lab Sample ID:	X4673-01	
Sample wt/vol: 7.9	(g/mL)g_	Lab File ID:	VF004189.D	
Level (low/med): MED		Date Received:	9/23/2006	
% Moisture: not dec.	14	Date Analyzed:	9/27/2006	
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0	
Soil Extract Volume:	10000	Soil Aliquot Volu	me: 100	
Number TICS found:	0	CONCENTRATION UNI		-
CAS NO.	COMPOUND	RT	EST. CONC.	Q
75-45-6	Difluorochloromethane	2.00	50	U

EPA SAMPLE NO.

MW-29DDUPLICATE (165-1

Lab Name: Chemtech		Contract: TRC	E03	
Lab Code: CHEM	Case No.: <u>X4673</u>	sas No.: <u>X4673</u>	SDG No.:	X4673
Matrix (soil/water):	SOIL	Lab Sample ID:	X4673-02	
Sample wt/vol: 7.6	(g/ml)g	Lab File ID:	VF004192.D	-
Level (low/med): MED		Date Received:	9/23/2006	
% Moisture: not dec.	12	Date Analyzed:	9/27/2006	
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0	
Soil Extract Volume:	10000	Soil Aliquot Volu	me: 100	
Number TICS found:	0	CONCENTRATION UNI		
CAS NO.	СОМРОПИР	RT	EST. CONC.	Q
75-45-6	Difluorochloromethane	2.00	50	U

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

50 U

	VBLK01
Lab Name: Chemtech	Contract: TRCE03
Lab Code: CHEM Case No.: X4673	SAS No.: X4673 SDG No.: X4673
Matrix (soil/water): WATER	Lab Sample ID: VBF0927W2
Sample wt/vol: 5.0 (g/mL) mL	Lab File ID: VF004185.D
Level (low/med):	Date Received:
Moisture: not dec. 100	Date Analyzed: 9/27/2006
GC Column: RTX624 ID: 0.53	Dilution Factor: 1.0
Soil Extract Volume:	Soil Aliquot Volume:
Number TICS found: 0	CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L
CAS NO. COMPOUND	RT EST. CONC. Q

2.00

Difluorochloromethane

75-45-6

Comments:	

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

FIELD	BLANK	

Lab Name: Chemtech		Contract: TRO	E03	
Lab Code: CHEM	Case No.: X4673	SAS No.: <u>X4673</u>	SDG No.:	X4673
Matrix (soil/water):	WATER	Lab Sample ID:	X4673-03	
Sample wt/vol: 5.0	(g/mL) mL	Lab File ID:	VF004187.D	
Level (low/med):		Date Received:	9/23/2006	
% Moisture: not dec.	100	Date Analyzed:	9/27/2006	
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0	
Soil Extract Volume:	***************************************	Soil Aliquot Volu	ime :	
Number TICS found:	<u> </u>	CONCENTRATION UN: (ug/L or ug/Kg		
CAS NO.	COMPOUND	RT	EST. CONC.	Q
75-45-6	Difluorochloromethane	2.00	50	U

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

TRIPBLA	NK

Lab Name: Chemtech	ab Name: Chemtech Contract: TRCE03								
Lab Code: CHEM	Case No.: <u>X4673</u>	SAS No.: <u>X4673</u>	SDG No.: X4673						
Matrix (soil/water):	WATER	Lab Sample ID:	X4673-04						
Sample wt/vol: 5.0	(g/mL)mL	Lab File ID:	VF004188.D						
Level (low/med):		Date Received:	9/23/2006						
% Moisture: not dec.	100	Date Analyzed:	9/27/2006						
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0						
Soil Extract Volume:	www.common.com	Soil Aliquot Volu	ome:						
Number TICS found: 0		CONCENTRATION UNI							
CAS NO.	COMPOUND	RT	EST, CONC. Q						
75-45-6	Difluorochloromethane	2.00	50 U						

DATA PACKAGE FOR VOLATILE ORGANICS

PROJECT NAME: Morris park RI/FS TRC#46130-0010

TRC ENVIRONMENTAL CORP., NY
1430 BROADWAY
10TH FLOOR
NEW YORK, NY 10018
2122217822

CHEMTECH PROJECT NO. ATTENTION:

X4794 Steven Meersma

COVER PAGE

ProjectID: Mo

Morris park RI/FS TRC#461

OrderID:

X4794

CustomerName:

TRC Environmental Corp., NY

LAB SAMPLE NO.

CLIENT SAMPLE NO

X4794-01

B-1(18-20)

X4794-02

B-1(36-38)

X4794-03

FIELDBLANK

X4794-04

TRIPBLANK

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature: <u>Uldue</u> Vley

Name: Muldreal

Date: 10/19/00

Title: UA/UC

284 Shelfield Street Mountainside NJ 07092 Tel. 908-789-8900 Fax: 908-789-8922

DATA REPORTING QUALIFIERS- ORGANIC

For reporting results, the following "Results Qualifiers" are used:

Value	If the result is a value greater than or equal to the detection limit, report the value
Δ,	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10 U". This is not necessarily the instrument detection limitattainable for this particular sample based on any concentration or dilution that may have been required.
J	 Indicates an estimated value. This flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise on any organic parameter i.e. Pest, PCB and others.
В	Indicates the analyte was found in the blank as well as the sample report as "12 B".
E	Indicates the analyte's concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
P	This flag is used for Pesticide/PCB target analyte when there is >25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".
	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.
	This flag indicates that a Tentatively Identified Compound is a suspected aldol-condensation product.

Report of Analysis

TRC Environmental Corp., NY Client: Date Collected: 10/3/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 10/4/2006 Client Sample ID: B-1(18-20) SDG No.: X4794 Lab Sample ID: Matrix: X4794-01 SOIL Analytical Method: % Moisture: 8260 7 Sample Wt/Wol: 6.9 Units: g Soil Extract Vol: 10000 uLSoil Aliquot Vol: 100 uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VI008032.D	1	10/17/2006	VI101506

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	26	U	390	26	ug/Kg
74-87-3	Chloromethane	100	J	390	53	ug/Kg
75-01-4	Vinyl chloride	21	U	390	21	ug/Kg
74-83-9	Bromomethane	100	J	390	61	ug/Kg
75-00-3	Chloroethane	69	U	390	69	ug/Kg
75-69-4	Trichlorofluoromethane	45	U	390	45	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	54	U	390	54	ug/Kg
75-35-4	1,1-Dichloroethene-	25	U	390	25	ug/Kg
67-64-1	Acetone	2000		1900	260	ug/Kg
75-15-0	Carbon disulfide	30	U	390	30	ug/Kg
1634-04-4	Methyl tert-butyl Ether	28	U	390	28	ug/Kg
79-20-9	Methyl Acetate	64	·U	390	64	ug/Kg
75-09-2	Methylene Chloride	48	U	390	48	ug/Kg
156-60-5	trans-1,2-Dichloroethene	40	U	390	40	ug/Kg
75-34-3	1,1-Dichloroethane	17	U	390	17	ug/Kg
110-82-7	Cyclohexane	29	U	390	29	ug/Kg
78 - 93-3	2-Butanone	220	U	1900	220	ug/Kg
56-23-5	Carbon Tetrachloride	37	U	390	37	ug/Kg
156-59-2	cis-1,2-Dichloroethene	60	U	390	60	ug/Kg
67-66-3	Chloroform	45	U	390	45	ug/Kg
71-55-6	1,1,1-Trichloroethane	32	U	390	32	ug/Kg
108-87-2	Methylcyclohexane	47	U	390	47	ug/Kg
71-43-2	Benzene	19	U	390	19	ug/Kg
107-06-2	1,2-Dichloroethane	25	U	390	25	ug/Kg
79-01-6	Trichloroethene	52	U	390	52	ug/Kg
78-87-5	1,2-Dichloropropane	25	U	390	25	ug/Kg
75-27-4	Bromodichloromethane	27	U	390	27	ug/Kg
108-10-1	4-Methyl-2-Pentanone	100	U	1900	100	ug/Kg
108-88-3	Toluene	30	U	390	30	ug/Kg
10061-02-6	t-1,3-Dichloropropene	33	U	390	33	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	12	U	390	12	ug/Kg
79-00-5	1,1,2-Trichloroethane	40	U	390	40	ug/Kg

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 10/3/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 10/4/2006 Client Sample ID: B-1(18-20) SDG No.: X4794 Lab Sample ID: X4794-01 Matrix: SOIL Analytical Method: 8260 % Moisture: 7 Sample Wt/Wol: 6.9 Units: g Soil Extract-Vol: 10000 uL Soil Aliquot Vol: 100 uL

-	File ID:	Dilution:	Date Analyzed	Analytical Batch ID	
	V1008032.D	7	10/17/2006	VI101506	

CAS Number	Parameter	Conc.	Qualifier	RL	MĐL	Units
591-78-6	2-Hexanone	51	U	1900	51	ug/Kg
124-48-1	Dibromochloromethane	29	U	390	29	ug/Kg
106-93-4	1,2-Dibromoethane	49	U	390	49	ug/Kg
127-18-4	Tetrachloroethene	26	U	390	26	ug/Kg
108-90-7	Chlorobenzene	29	U	390	29	ug/Kg
100-41-4	Ethyl Benzene	32	U	390	32	ug/Kg
126777-61-2	m&p-Xylenes	75	U	780	75	ug/Kg
95-47-6	o-Xylene	29	U	390	29	ug/Kg
100-42-5	Styrene	27	U	390	27	ng/Kg
75-25-2	Bromoform	20	U	390	20	ug/Kg
98-82-8	Isopropylbenzene	26	U	390	26	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	38	U	390	.38	ug/Kg
541-73-1	1,3-Dichlorobenzene	29	U	390	29	ug/Kg
106-46-7	1,4-Dichlorobenzene	30	U	390	30	ug/Kg
95-50-1	1,2-Dichlorobenzene	28	U	390	28	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	73	U	390	73	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	22	U	390	22	ug/Kg
593-70-4	Chlorofluoromethane	390	U	390	390	ug/Kg
75-43-4	Fluorodichloromethane	390	U	390	390	ug/Kg
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	40.42	81 %	75 - 125		SPK: 50
1868-53-7	Dibromofluoromethane	49.15	98 %	75 - 125		SPK: 50
2037-26-5	Toluene-d8	51:28	103 %	75 - 125		SPK: 50
460-00-4	4-Bromofluorobenzene	49.39	99 %	75 - 125		SPK: 50
INTERNAL STA	ANDARDS					
363-72-4	Pentafluorobenzene	259210	3.69			
540-36-3	1,4-Difluorobenzene	499434	4.13			
3114-55-4	Chlorobenzene-d5	573637	7.16			
3855-82-1	1,4-Dichlorobenzene-d4	310989	9.49			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

TRC Environmental Corp., NY Date Collected: 10/3/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 10/4/2006 SDG No.: X4794 Client Sample ID: B-1(36-38) Matrix: Lab Sample ID: X4794-02 SOIL Analytical Method: % Moisture: 5 8260 Sample Wt/Wol: 5.9 Units: g Soil Extract Vol: 10000 uL Soil Aliquot Vol: 100 uĽ.

File ID:	Dilution:	Date Analyzed	Analytical Batch ID	
V1008033.D	1	10/17/2006	VI101506	ļ

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	30	U	450	30	ug/Kg
74-87-3	Chloromethane	61	U	450	61	ug/Kg
75-01-4	Vinyl chloride	24	U	450	24	ug/Kg
74-83-9	Bromomethane	200	J	450	70	ug/Kg
75-00-3	Chloroethane	79	U	450	79	ug/Kg
75-69-4	Trichlorofluoromethane	52	U	450	52	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	62	U	450	62	ug/Kg
75-35-4	1,1-Dichloroethene	29	U	450	29	ug/Kg
67-64-1	Acetone	2200		2200.	300	ug/Kg
75-15-0	Carbon disulfide	35	U	450	35	ug/Kg
1634-04-4	Methyl tert-butyl Ether	32	U	450	32	ug/Kg
79-20-9	Methyl Acetate	74	U	450	74	ug/Kg
75-09-2	Methylene Chloride	56	U	450	56	ug/Kg
156-60-5	trans-1,2-Dichloroethene	46	U	450	46	ug/Kg
75-34-3	1,1-Dichloroethane	19	U	450	19	ug/Kg
110-82-7	Cyclohexane	33	U	450	33	ug/Kg
78-93-3	2-Butanone	250	U	2200	250	ug/Kg
56-23-5	Carbon Tetrachloride	42	U	450	42	ug/Kg
156-59-2	cis-1,2-Dichloroethene	69	U	450	69	ug/Kg
67-66-3	Chloroform	51	U	450	51	ug/Kg
71-55-6	1,1,1-Trichloroethane	37	U	450	37	ug/Kg
108-87-2	Methylcyclohexane	54	U	450.	54	ug/Kg
71-43-2	Benzene	22	U	450	22	ug/Kg
107-06-2	1,2-Dichloroethane	29	U	450	29	ug/Kg
79-01-6	Trichloroethene	60	U	450	60	ug/Kg
78-87-5	1,2-Dichloropropane	28	U	450	28	ug/Kg
75-27-4	Bromodichloromethane	31	U	450	31	ug/Kg
108-10-1	4-Methyl-2-Pentanone	120	U	2200	120	ug/Kg
108-88-3	Toluene	35	U	450	35	ug/Kg
10061-02-6	t-1,3-Dichloropropene	38	U	450	38	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	14	U	450	14	ug/Kg
79-00-5	1,1,2-Trichloroethane	46	U	450	46	ug/Kg

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

GENTECH 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

TRC Environmental Corp., NY Client: Date Collected: 10/3/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 10/4/2006 Client Sample ID: B-1(36-38) SDG No.: X4794 Lab Sample ID: Matrix: X4794-02 SOIL Analytical Method: 8260 % Moisture: 5 Sample Wt/Wol: Units: g 5.9 Soil Extract Vol: 10000 шL Soil Aliquot Vol: 100 uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VI008033.D	1	10/17/2006	VI101506

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Нехапопе	59	U	2200	59	ug/Kg
124-48-1	Dibromochloromethane	34	U	450	34	ug/Kg
106-93-4	1,2-Dibromoethane	57	U	450	57	ug/Kg
127-18-4	Tetrachloroethene	30	U	450	30	ug/Kg
108-90-7	Chlorobenzene	33	U	450	33	ug/Kg
100-41-4	Ethyl Benzene	37	U	450	37	ug/Kg
126777-61-2	m&p-Xylenes	86	U	900	86	ug/Kg
95-47-6	o-Xylene	33	U	450	33	ug/Kg
100-42-5	Styrene	31	U	450	31	ug/Kg
75-25-2	Bromoform	23	U	450	23	ug/Kg
98-82-8	Isopropylbenzene	3 0	U	450	30	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	44	U	450	44	ug/Kg
541-73-1	1,3-Dichlorobenzene	33	U	450	33	ug/Kg
106-46-7	1,4-Dichlorobenzene	35	U	450	35	ug/Kg
95-50-1	1,2-Dichlorobenzene	33	U	450	33	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	84	U	450	84	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	26	U	450	26	ug/Kg
593-70-4	Chlorofluoromethane	450	U	450	450	ug/Kg
75-43-4	Fluorodichloromethane	450	U	450	450	ug/Kg
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	41.82	84 %	75 - 125		SPK: 50
1868-53-7	Dibromofluoromethane	48.8	98 %	75 - 125		SPK: 50
2037-26-5	Toluene-d8	50.79	102 %	75 - 125		SPK: 50
460-00-4	4-Bromofluorobenzene	48.77	98 %	75 - 125		SPK: 50
INTERNAL ST	ANDARDS					
363-72-4	Pentafluorobenzene	258867	3.69			
540-36-3	1,4-Difluorobenzene	505198	4.13			
3114-55-4	Chlorobenzene-d5	571740	7.16			
3855-82-1	1,4-Dichlorobenzene-d4	311056	9.49			

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Summary Sheet SW-846

SDG No.:

X4794

Order ID:

X4794

ጥድሮድሰን

Client:	TRC Environme	ntal Corp., NY	Y Project ID: TRCE03							
Sample ID Client ID:	Client ID B-1(18-20)	Matrix	Parameter	Concentration	С	RDL	MDL	Units		
X4794-01	B-1(18-20)	SOIL	Chloromethane	100	J	390	53	ug/Kg		
X4794-01	B-1(18-20)	SOIL	Bromomethane	100	J	390	61	ug/Kg		
X4794-01	B-1(18-20)	SOIL	Acetone	2000		1900	260	ug/Kg		
			Total VOC's: Total TIC's: Total VOC's and TIC's:	2200.00 0.00 2200.00						
Client ID:	B-1(36-38)									
X4794-02	B-1(36-38)	SOIL	Bromomethane	200	J	450	70	ug/Kg		
X4794-02	B-1(36-38)	SOIL	Acetone	2200		2200	300	ug/Kg		
			Total VOC's: Total TIC's: Total VOC's and TIC's:	2400.00 0.00 2400.00						

^{&#}x27;ote: The asterisk "*" flag next to a parameter signifies a TIC parameter.

Report of Analysis

TRC Environmental Corp., NY Date Collected: 10/3/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 10/4/2006 Client Sample ID: **FIELDBLANK** SDG No.: X4794 Lab Sample ID: Matrix: X4794-03 WATER Analytical Method: % Moisture: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID VI1015016 VI008012.D 1 10/16/2006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units	
TARGETS						_
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17 ug/L	
74-87-3	Chloromethane	0.34	U	5.0	0.34 ug/L	
75-01-4	Vinyl chloride	0.33	U	5.0	0.33 ug/L	
74-83-9	Bromomethane	0.41	U	5.0	0.41 ug/L	
75-00-3	Chloroethane	0.83	U	5.0	0.83 ug/L	
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22 ug/L	
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3 ug/L	
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42 ug/L	
67-64-1	Acetone	10	${\tt J}{\tt B}$	25	2.3 ug/L	
75-15-0	Carbon disulfide	0.40	U	5.0	0.40 ug/L	
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28 ug/L	
79-20-9	Methyl Acetate	0.20	U	5.0	0.20 ug/L	
75-09-2	Methylene Chloride	0.43	U	5.0	0.43 ug/L	
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40 ug/L	
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38 ug/L	
110-82-7	Cyclohexane Cyclohexane	0.36	U	5.0	0.36 ug/L	
78-93-3	2-Butanone	1.1	U	25	1.1 ug/L	
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1 ug/L	
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29 ug/L	
67-66-3	Chloroform	0.33	U	5.0	0.33 ug/L	
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32 ug/L	
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34 ug/L	
71-43-2	Benzene	0.39	U	5.0	0.39 ug/L	
107-06-2	1,2-Dichloroethane	0.34	Ŭ	5.0	0.34 ug/L	
79-01-6	Trichloroethene	0.46	U	5.0	0.46 ug/L	
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40 ug/L	
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33 ug/L	
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6 ug/L	
108-88-3	Toluene	0.36	U	5.0	0.36 ug/L	
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32 ug/L	
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36 ug/L	
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41 ug/L	

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

10/3/2006 Date Collected: Client: TRC Environmental Corp., NY Project: Morris park RI/FS TRC#46130-0010 Date Received: 10/4/2006 Client Sample ID: SDG No.: X4794 **FIELDBLANK** Matrix: Lab Sample ID: X4794-03 WATER % Moisture: Analytical Method: 100 8260 Sample Wt/Wol: 5.0 Units: mL Seil Extract Vol: uL

Soil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID	1
VI008012.D	1	10/16/2006	VI1015016	

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Нехаполе	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4 Tetrachloroethene		0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	43.05	86 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	50.72	101 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	51.04	102 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	48.59	97 %	76 - 119		SPK: 50
INTERNAL STA	ANDARDS					
363-72-4	Pentafluorobenzene	270310	3.69			
540-36-3	1,4-Difluorobenzene	522375	4-13			
3114-55-4	Chlorobenzene-d5	577279	7.15			
3855-82-1	1,4-Dichlorobenzene-d4	320045	9.49			

U = Not Detected

RL = Reporting Limit

E = Value Exceeds Calibration Range

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 10/3/2006 Project: Morris park RI/FS TRC#46130-0010-Date Received: 10/4/2006 Client Sample ID: TRIPBLANK SDG No.: X4794 Lab Sample ID: Matrix: X4794-04 WATER Analytical Method: % Moisture: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: иL Soil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID	٦
VI008013,D	1	10/16/2006	VI1015016	

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units	S
TARGETS				·		
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17 ug/L	
74-87-3	Chloromethane	0.34	U	5.0	0.34 ug/L	
75-01-4	Vinyl chloride	0.33	U	5.0	0.33 ug/L	
74-83-9	Bromomethane	0.41	U	5.0	0.41 ug/L	
75-00-3	Chloroethane	0.83	U	5.0	0.83 ug/L	
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22 ug/L	
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3 ug/L	
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42 ug/L	
67-64-1	Acetone	9.9	JB	25	2.3 ug/L	
75-15-0	Carbon disulfide	0.40	U	5.0	0.40 ug/L	
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28 ug/L	
79-20-9	Methyl Acetate	0.20	U	5.0	0.20 ug/L	
75-09-2	Methylene Chloride	0.43	U	5.0	0.43 ug/L	
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40 ug/L	
75-34-3	1,I-Dichloroethane	0.38	U	5.0	0.38 ug/L	
110-82-7	Cyclohexane	0.36	U	5.0	0.36 ug/L	
78-93-3	2-Butanone	1.1	U	25	1.1 ug/L	
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1 ug/L	
156-59-2	cis-1,2-Dichloroethene	0.29	U	5_0	0.29 ug/L	
67-66-3	Chloroform	0.33	U	5.0	0.33 ug/L	
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32 ug/L	
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34 ug/L	
71-43-2	Benzene	0.39	U	5.0	0.39 ug/L	
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34 ug/L	
79-01-6	Trichloroethene	0.46	U	5.0	0.46 ug/L	
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40 ug/L	
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33 ug/L	
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6 ug/L	
108-88-3	Toluene	0.36	U	5.0	0.36 ug/L	
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32 ug/L	
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36 ug/L	
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41 ug/L	

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N =Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 10/3/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 10/4/2006 Client Sample ID: TRIPBLANK SDG No.: X4794 Lab Sample ID: X4794-04 Matrix: WATER Analytical Method: 8260 % Moisture: 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID VI008013.D 1 10/16/2006 VI1015016

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	.5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	12	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	I,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5:0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	43.16	86 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	51.1	102 %	85 - 115		SPK: '50
2037-26-5	Toluene-d8	51.83	104 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	48.01	96 %	76 - 119		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	264649	3.69			
540-36-3	1,4-Difluorobenzene	512382	4.13			
3114-55-4	Chlorobenzene-d5	552291	7.15			
3855-82-1	1,4-Dichlorobenzene-d4	305395	9.48			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

CHAIN OF CUSTODY RECORD

284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

CHEMTECH PROJECT NO. X 4794

COC Number DED 7.7.7

Sales de Carlos de la	CLIENT INFORMATION		- 7	-		
			CLIENT PROJECT INFORMATION		CLIENT BILLING INFORMATION	
COMPANY	The	PHOJECT NAME:	LIRA. LFL	7		
000	11182 Ra 11.12	11			PO#: 1	6130
AUUHESS:	-	PROJECT NO.: 7	PROJECT NO.: 76/30 LOCATION: DV	ADDRESS: 1430	Somonde ion	
5	New York STATEMY ZIP. MOI'S	PROJECT MANAGER:	ER. S. Meek Simp	CITY: ALL YOCK		9/20/
ATTENTION:	5 Mee 195 MA	e-mall: System	O-Malli SAJEL 12 5 20 MAS 12 CON.	_	A PHONE.	8 2
PHONE:	PHONE: 2/2 LACK STORY SHO	PHONE: 21 &	PHONE & A S S C K S S S S S S S S S S S S S S S S	The state of the s		1 100
學完全學	2	TO DATA	DATA DELIVERABLE INFORMATION			
FAX:	5/2	II. RESULTS ONLY	1	100		
EDD:	12 Jan 19 19 19 19 19 19 19 19 19 19 19 19 19	☐ New Jersey REDL	New Jersey REDUCED New York State ASP "8"	1		
• TO BE APPF STANDARD	 TO BE APPROVED BY CHEMTECH STANDARD TURNAROUND TIME IS 10 BUSINESS DAYS 	☐ New Jersey CLP ☐ EDD FORMAT	□ Other	2 3 4 . 5 6	8 6 8	•
CHEMTECH	*	SAMPLE	\vdash	PRESERVATIVES		NTS
SAMPLE	PROJECT SAMPLE IDENTIFICATION	SAMPLE TYPE	COLLECTION E		n	servatives B-HNO,
			11ME 0	2 3 4 5 6	7 8 9 E-10E F	E-Caron
-	(ar-s1) 1-8	1/1/1/1/85	X X 006 196/01			
2.	136-38)	S. 1 / 45	X > 0001 2/00			
3.	Field Blowk	×.	10/2/0 1 NOW 2 X			
. **	gr h		X			
5.						
6.						
7,						
.69	· 10-					
.9						-
10,		-				
	SAMPLE CUSTODY MUST BE DOCU	MENTED BELOW E.	MENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION INCLUDING COURIER DELIVERY	SSESSION INCLUDING COURIEF	1 DELIVERY WINDS RESIDENCE	X 0.5 7/08
Hetydouilpred or S	BAYSAMPLER: DATETIME: (300) RECEIVED BY:		Conditions of bottles or coolers at receipt: Which extraction requires an additional 4 or far for narrow collection.	pt: (供 Compilant 口 Non long) And And And And And And In The Non Inc. Inc. Inc. Inc. Inc. Inc. Inc. Inc	Cooler	
31(⊮ ‰		/	Comments:		Ice In Cooler7:	ر ب
<u> </u>	10/4/00 3.7X(2,1,2)	7 who	Раде ј о	SHIPPED VIA: CLIENT: UHAND DELIVERED CHEMTECH: DPICKED UP	Ø OVERNIGHT	Shipment Complete:
Benjetes Amont	WHITE . CHEMTECH COBY FOR BETTIEN TO CITENT	V FOR BETHING	VEI I OW . CHEIMEO	1 CABY DINK - CAMB! ED FADV		

EPA SAMPLE NO.

I	
l	VBLK01
l	

Lab Name: Chemtech		Contract: TRC	E03	
Lab Code: CHEM	Case No.: <u>X4794</u>	SAS No.: X4794	SDG No.:	X4794
Matrix (soil/water):	SOIL	Lab Sample ID:	VBH1011-02	
Sample wt/vol: 5.0	(g/mL) _ g_	Lab File ID:	VH010358.D	_
Level (low/med): ME	<u>D</u>	Date Received:		
% Moisture: not dec.	0	Date Analyzed:	10/11/2006	
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0	
Soil Extract Volume:	10000	Soil Aliquot Volu	me: 100	
Number TICS found:		CONCENTRATION UNI		
CAS NO.	COMPOUND	RT	EST. CONC.	Q .
75-45-6	Difluorochloromethane	1.11	50	U

EPA SAMPLE NO.

VBLKU.		
Œ03		
SDG No.:	X4794	
VBI1017-01		
VI008028.D		
10/17/2006		
	SDG No.: VBI1017-01 VI008028.D	SDG No.: <u>X4794</u> VBI1017-01 VI008028.D

Date Receiv Date Analys

SAS No.:

% Moisture: not dec. 0

(g/mL)

X4794

g

Case No.:

SOIL

1.0

GC Column: ID: RTXVMS 0.18 Soil Extract Volume: 10000

MED

5.0

Chemtech

CHEM

Soil Aliquot Volume:

Dilution Factor:

100

Number TICS found:

Matrix (soil/water):

Sample wt/vol:

Level (low/med):

Lab Name:

Lab Code:

0

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

CAS NO.	COMPOUND	RT	EST. CONC.	Q.
75-45-6	Difluorochloromethane	1.04	50	U

EPA SAMPLE NO.

B-1	(18-20)	

Lab Name:	Chemtech		Con	tract	t: TRO	E03		
Lab Code:	CHEM	Case No.: X4794	SAS No).:	X4794		SDG No.:	X4794
Matrix (soi	1/water):	SOIL	Lab	Sam	ple ID:	X4794	1-01	
Sample wt/v	ol: <u>6.9</u>	(g/mL) _ g	Lab	File	∍ ID:	VIOOE	3032.D	
Level (low/	med): MED	········	Date	e Rec	ceived:	10/4	1/2006	
% Moisture:	not dec.	7	Date	e Ana	alyzed:	10/1	7/2006	
GC Column:	RTXVMS	ID: 0.18	Dil	ution	n Factor:	1	.0	
Soil Extrac	t Volume:	10000	Soi	l Ali	iquot Vol	ume:	100	
Number TICS	found:	0			RATION UNI		(g	
CAS 1	10.	COMPOUND			RT	ES!	r. conc.	Ω
75-45-	-6	Difluorochloromethane			1.04	1	50	U

EPA SAMPLE NO.

B-1	(36-38)	

Lab Name: Chemtech		Contract: TRCE03		
Lab Code: CHEM	Case No.: X4794	SAS No.: <u>X4794</u>	SDG No.:	<u>x4794</u>
Matrix (soil/water):	SOIL	Lab Sample ID:	X4794-02	
Sample wt/vol: 5.9	(g/mL) g	Lab File ID:	VI008033.D	_
Level (low/med): MED)	Date Received:	10/4/2006	•
% Moisture: not dec.		Date Analyzed:	10/17/2006	***********
GC Column: RTXVMS	ID: 0.18	Dilution Factor:	1.0	
Soil Extract Volume:	10000	Soil Aliquot Volu	me: 100	
Number TICS found:	0	CONCENTRATION UNI:		
CAS NO.	COMPOUND	RT	EST. CONC.	<u>Q</u> .
75-45-6	Difluorochloromethane	1 1 04	50	77

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

			VBLK01
Lab Name: Chemtech		Contract: TRC	E03
Lab Code: CHEM	Case No.: <u>X4794</u>	SAS No.: <u>X4794</u>	SDG No.: X4794
Matrix (soil/water):	WATER	Lab Sample ID:	VBI1016-01
Sample wt/vol: 5.0	(g/mL)mL_	Lab File ID:	VI008009.D
Level (low/med):		Date Received:	
% Moisture: not dec.	100	Date Analyzed:	10/16/2006
GC Column: RTXVMS	ID: 0.18	Dilution Factor:	1.0
Soil Extract Volume:	***************************************	Soil Aliquot Volu	me:
Number TICS found:	0	CONCENTRATION UNI	
CAS NO.	COMPOUND	RT .	EST. CONC. Q
75-45-6	Difluorochloromethane	1.04	50 ซ

Comments:

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

FIELDBLANK

Lab Name: Chemtech		Contract: TRC	E03	
Lab Code: CHEM	Case No.: <u>X4794</u>	SAS No.: <u>X4794</u>	SDG No.:	X4794
Matrix (soil/water):	WATER	Lab Sample ID:	X4794-03	
Sample wt/vol: 5.0	(g/mL) mL	Lab File ID:	VI008012.D	,
Level (low/med):		Date Received:	10/4/2006	
% Moisture: not dec.	100	Date Analyzed:	10/16/2006	
GC Column: RTXVMS	ID: 0.18	Dilution Factor:	1.0	
Soil Extract Volume:		Soil Aliquot Volu	me:	
Number TICS found:	0	CONCENTRATION UNI		
CAS NO.	COMPOUND	RT	EST. CONC.	۵,
75-45-6	Difluorochloromethane	1.04	50	Ü

Comments:

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

TRIPBLANK

Lab Name: Chemtech		Contract: TRCE03							
Lab Code: CHEM	Case No.: <u>X4794</u>	SAS No.: <u>X4794</u>	SDG No.:	X4794					
Matrix (soil/water):	WATER	Lab Sample ID:	X4794-04						
Sample wt/vol: 5.0	(g/mL)mL	Lab File ID:	VI008013.D						
Level (low/med):		Date Received:	10/4/2006						
% Moisture: not dec.	100	Date Analyzed:	_						
GC Column: RTXVMS	ID: 0.18	Dilution Factor:	1.0	-					
Soil Extract Volume:	WWW.	Soil Aliquot Volume:							
Number TICS found:	0	CONCENTRATION UNI							
CAS NO.	COMPOUND	RT	EST. CONC.	Ď					
75-45-6	Difluorochloromethane	1.04	50	U					

Comments:

284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

CHEMTECH PROJECT NO.	X4989
COC Number	5.A

	CLIENT INFORMATION				CLIENT PROJECT INFORMATION				CLIENT BILLING INFORMATION											
COMPANY.	REPORT	TO BE SENT TO:		PROJEC	PROJECT NAME: Similar CITY				BILL TO: TRC PO# 46/30											
ADDRESS	1430	Beendu.	Ay	PROJEC	T NC	D.: 46/3D LOCATION NY					ADDRESS. 1430 Broadway									
CITY New York STATE NY ZIP: 100/8				PROJEC	T M/	NAG	ER S	. Me	en.	, باسر <u>ی</u>	4		CITY.	/UC.	1/0	nk	<u>. </u>	STAT	EWY Z	1P. 10018
ATTENTION S MEERSONS			e-mail:	٤,	m	edson	127	res	o/wt	<u>. کچ</u>	Co	ATTEN	ITION:	K.n	ren.	gm _A	PHON	IE: 112.	15636166	
			2217840	PHONE:	_		N 288				4 78	40					57	LYSIS		الولاد الم
	DATA TURNAR	OUND INFORMAT				ATA	DELIVER	ABLE IN	FORMA	TION				//	/ /	(MA)		137	المرسوع	The last
FAX HARD COPY EDD		dan	_ DAYS * _ DAYS * _ DAYS *	☐ RESU	JLTS +	- QC		USEPA CL New York : New York :	State AS			10	Sugar	2/00	stels!	A A	Det	True of the state	addition of	N Vantible
* TO BE APPR	OVED BY CHEM			□ New	Jersey	CLP		Other	··	-/	12	1/1/3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(W) ₅	14'S		1		PALITY .	
STANDARD	TURNAROUND	TIME IS 10 BUSINE	ESS DATS				CAL	IDI C	S				PRES	BERVA	TVES			Ţ	CC	MMENTS
CHEMTECH SAMPLE ID	PROJECT SAMPLE IDENTIFICATION		ν,		SAMPLE TYPE			SAMPLE COLLECTION				1		1	<i>[</i>	7			y Preservatives	
			MATRIX	800	GRAB	DATE			1	2	3	4	5	6	7	8	9	C-HS E-ICE	O, D-NaOH F-Other	
1.	Drum	Composi	xe -1	Sail	X		10/4/06	143	4	X	V	V	K		K	K	K	V		
2					ľ	:				Ψ.		·								
3.		·																		
4.					ļ															
5			·					_												
6																	<u> </u>			
7																				
8																				
9												,								
10.														<u>. </u>			l			
RELINGULA HEDAY	SAMPLES	SAMPLE CUSTO	DY MUST BE DOO	UMENTE	D BE	LOW												-		4.0
AELINQUISHED BY	3	JOSTESTIME. JOSTESTIME:	RECEIVED BY RECEIVED BY				MeQI	ions of boti H extraction ments:					Comp jar for		□ Non Compliant Cooler Temp. 4 C. ent solld. Ice In Cooler?: 4 90					
2 /			2																	
RELINQUISHED BY DATE/TIME 945 RECEIVED FOR LA				^{эвү.}	٠		Page	- [of	}	Sì	#PPED	VIA; CL	IENT	H: DI	D DELIV	VERED	V OVERN		ipment Complete: YES NO

Test:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client: TRC Environmental Corp., NY Date 10/18/06

Collected:

X4989

Project ID: Morris park RI/FS TRC#46130-0010 Date Received: 10/19/06

Customer DRUMCOMPOSITE-1 Lab Sample X4989-01

Sample No.: ID:

Corrosivity SDG ID:

Analytical 9045 Corrosivity % Moisture: 0.00 Method:

Result Type: Final Datafile: LB31163

CAS Number Parameter Results Qualifier Units DL RT/RL DF DIL/RE

Corrosivity (as pH) 8.3 pH 0.00 0.00 1

Test:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client: TRC Environmental Corp., NY Date 10/18/06

Collected:

Project ID: Morris park RI/FS TRC#46130-0010 Date Received: 10/19/06

Customer DRUMCOMPOSITE-1 Lab Sample X4989-01

Sample No.: ID:

Ignitability SDG ID: X4989

Analytical SW-846 CH 7.1 Ignitability % Moisture: 0.00 Method:

Result Type: Final Datafile: Ib31168

CAS Number Parameter Results Qualifier Units DL RT/RL DF DIL/RE

Ignitability NO ignit. 0.0000 0.0000 1

Final

Test:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client: TRC Environmental Corp., NY Date 10/18/06

Collected:

Project ID: Morris park RI/FS TRC#46130-0010 Date Received: 10/19/06

DRUMCOMPOSITE-1 Customer Lab Sample X4989-01

Sample No.: ID:

> **Reactive Cyanide** SDG ID: X4989

Analytical 7.3.3.2 Reactive Cyanide % Moisture: 0.00 Method:

Result Type: Datafile: LB31161

CAS Number Parameter Results Qualifier DL RT/RL DF DIL/RE Units

> **Reactive Cyanide** ND U mg/Kg 10 10 1

Report of Analysis

Client: TRC Environmental Corp., NY Date 10/18/06

Collected:

Project ID: Morris park RI/FS TRC#46130-0010 Date Received: 10/19/06

Customer DRUMCOMPOSITE-1 Lab Sample X4989-01

Sample No.: ID:

Test: Reactive Sulfide SDG ID: X4989

Analytical 7.3.4.2 Reactive Sulfide % Moisture: 0.00 Method:

Result Type: Final Datafile: LB31162

CAS Number Parameter Results Qualifier Units DL RT/RL DF DIL/RE

Reactive Sulfide ND U mg/Kg 40 40 1

Report of Analysis

Client: TRC Environmental Corp., NY	Date	10/18/06
-------------------------------------	------	----------

Collected:

Project ID: Morris park RI/FS TRC#46130-0010 Date Received: 10/19/06

DRUMCOMPOSITE-1 Customer Lab Sample X4989-01

Sample No.: ID:

Test: **TCLP BNA** SDG ID: X4989

Analytical EPA SW-846 8270 % Moisture: 100.00

Method:

Result Type:	Final				Datafile:	В	F006856
CAS Number	Parameter	Results	Qualifier	Units	DL	RT/RL	DF DIL/RE
110-86-1	Pyridine	NE	U	ug/L	0.980	10	1
106-46-7	1,4-Dichlorobenzene	NE	U	ug/L	1.2	10	1
95-48-7	2-Methylphenol	NE	U	ug/L	1.5	10	1
106-44-5	3+4-Methylphenols	NE	U	ug/L	1.3	10	1
67-72-1	Hexachloroethane	NE	U	ug/L	1.2	10	1
98-95-3	Nitrobenzene	NE	U	ug/L	1.6	10	1
87-68-3	Hexachlorobutadiene	NE	U	ug/L	1.4	10	1
95-95-4	2,4,5-Trichlorophenol	NE	U	ug/L	1.2	10	1
88-06-2	2,4,6-Trichlorophenol	NE	U	ug/L	1.1	10	1
121-14-2	2,4-Dinitrotoluene	NE	U	ug/L	1.2	10	1
118-74-1	Hexachlorobenzene	NE	U	ug/L	1.2	10	1
87-86-5	Pentachlorophenol	NE	U	ug/L	1.6	10	1

Report of Analysis

Client: TRC Environmental Corp., NY Date 10/18/06

Collected:

Project ID: Morris park RI/FS TRC#46130-0010 Date Received: 10/19/06

Customer DRUMCOMPOSITE-1 Lab Sample X4989-01

Sample No.: ID:

Test: TCLP Herbicide SDG ID: X4989

Analytical EPA SW-846 8151 % Moisture: 100.00

Method:

Result Type: Final Datafile: P8003544

CAS Number Parameter Results Qualifier Units DL RT/RL DF DIL/RE

2,4-D 94-75-7 ND U ug/L 1.000 2.0 1 2,4,5-TP (SILVEX) 93-72-1 ND U 2.0 ug/L 1.000 1

TRC Environmental Corp., NY

Client:

CARROLL 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Date

10/18/06

Report of Analysis

onent.	The Environmental corp., N	Collected:	10/10/00
Project ID:	Morris park RI/FS TRC#46130-0010	Date Received:	10/19/06
Customer Sample No.:	DRUMCOMPOSITE-1	Lab Sample ID:	X4989-01
Test:	TCLP ICP Metals	SDG ID:	X4989
Analytical Method:	EPA SW-846 6010 - ICP1	% Moisture:	100.00
Result Type:	Final	Datafile:	P1102406

Result Type:	Final			Data	ıfile:	P1102406		
CAS Number	Parameter	Results Q	ualifier	Units	DL	RT/RL	DF DIL/R	E
7440-38-2	Arsenic	ND	U	ug/L	33.2	100	1	
7440-39-3	Barium	130	J	ug/L	7.230	2000	1	
7440-43-9	Cadmium	ND	U	ug/L	3.270	50.0	1	
7440-47-3	Chromium	41.7	J	ug/L	3.430	100	1	
7439-92-1	Lead	ND	U	ug/L	21.8	50.0	1	
7782-49-2	Selenium	ND	U	ug/L	30.4	200	1	
7440-22-4	Silver	ND	U	ug/L	16.4	100	1	

Report of Analysis

Client: TRC Environmental Corp., NY Date 10/18/06

Collected:

Project ID: Morris park RI/FS TRC#46130-0010 Date Received: 10/19/06

Customer DRUMCOMPOSITE-1 Lab Sample X4989-01

Sample No.: ID:

Test: TCLP Mercury SDG ID: X4989

Analytical EPA SW-846 7470 - HG % Moisture: 100.00

Method:

Result Type: Final Datafile: 102206B1

CAS Number Parameter Results Qualifier Units DL RT/RL DF DIL/RE

7439-97-6 Mercury ND U ug/L 0.3300 2 1

CHEMITECH284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client:	TRC Environmental Corp.	Date Collecte		10/18/06					
Project ID:	Morris park RI/FS TRC#4	16130-001	10		Date Re	eceived: 1	10/19/06		
Customer Sample No.:	DRUMCOMPOSITE-1	DRUMCOMPOSITE-1						X4989-01	
Test:	TCLP Pesticide				SDG ID	: >	(4989		
Analytical Method:	EPA SW-846 8081				% Mois	sture: 1	100.00	ı	
Result Type:	Final				Datafile	e: F	70080	055	
CAS Number	Parameter	Results	Qualifie	r Units	DL	RT/RL	DF	DIL/RE	
58-89-9	gamma-BHC	NE	U	ug/L	0.0071	0.050) 1		
76-44-8	Heptachlor	NE	U	ug/L	0.0227	0.050) 1		
1024-57-3	Heptachlor epoxide	NE	U	ug/L	0.0121	0.050) 1		
72-20-8	Endrin	NE	U	ug/L	0.0069	0.050) 1		
72-43-5	Methoxychlor	NE	U	ug/L	0.0072	0.050) 1		
8001-35-2	Toxaphene	NE	U	ug/L	0.0900	0.50) 1		
57-74-9	Chlordane	NE	U	ug/L	0.1914	0.50) 1		

CARROLL 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client:	TRC Environmental Corp., NY	Date Collected:		10/18/06				
Project ID:	Morris park RI/FS TRC#4613	Date Re	ceived:	10/19/06				
Customer Sample No.:	DRUMCOMPOSITE-1				Lab Sam ID:	nple	X4989-01	
Test:	TCLP VOA				SDG ID:		X4989	
Analytical Method:	EPA SW846 8260				% Moist	ture:	100.00	
Result Type:	Final				Datafile	:	VD00649	3
CAS Number	Parameter	Results	Qualifie	r Units	DL	RT/RL	DF DII	L/RE
75-01-4	Vinyl Chloride	NE) U	ug/L	1.6	2	5 5	
75-35-4	1,1-Dichloroethene	N	U	ug/L	2.1	2	5 5	
78-93-3	2-Butanone	N	U	ug/L	5.7	12	0 5	
56-23-5	Carbon Tetrachloride	N	U	ug/L	5.7	2	5 5	
67-66-3	Chloroform	N) U	ug/L	1.7	2	5 5	
71-43-2	Benzene	N	U	ug/L	1.9	2	5 5	
107-06-2	1,2-Dichloroethane	N	U	ug/L	1.7	2	5 5	
79-01-6	Trichloroethene	N	U	ug/L	2.3	2	5 5	
127-18-4	Tetrachloroethene	NE	U	ug/L	2.4	2	5 5	
108-90-7	Chlorobenzene	NE) U	ug/L	2.3	2	5 5	

11096-82-5 Aroclor-1260

CARROLL 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

5.0

20 1

Report of Analysis

Client:	TRC Environmental Corp	C Environmental Corp., NY				Date Collected:		8/06
Project ID:	Morris park RI/FS TRC#	46130-00°	10		Date Re	ceived:	10/1	9/06
Customer Sample No.:	DRUMCOMPOSITE-1				Lab San ID:	nple	X498	9-02
Test:	PCB				SDG ID	:	X498	9
Analytical Method:	EPA SW-846 8082				% Mois	ture:	16.00)
Result Type:	Final				Datafile	:	P500	8056
CAS Number	Parameter	Results	Qualifier	Units	DL	RT/RL	DF	DIL/RE
12674-11-2	Aroclor-1016	NI) U	ug/Kg	3.0	20	1	
11104-28-2	Aroclor-1221	NI) U	ug/Kg	4.6	20	1	
11141-16-5	Aroclor-1232	NI) U	ug/Kg	6.9	20	1	
53469-21-9	Aroclor-1242	NI	U	ug/Kg	6.2	20	1	
12672-29-6	Aroclor-1248	NI) U	ug/Kg	3.0	20	1	
11097-69-1	Aroclor-1254	NI) U	ug/Kg	2.0	20	1	

ND

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method

Blank

N = Presumptive Evidence of a Compound

Project #: X4989 11/2/2006 5:46:12 PM End of Report

DATA PACKAGE FOR **VOLATILE ORGANICS**

PROJECT NAME: Morris park RI/FS TRC#46130-0010

SUBCONTRACT # 46130-SC-002

TRC ENVIRONMENTAL CORP., NY 1430 BROADWAY 10TH FLOOR NEW YORK, NY 10018 2122217822

CHEMTECH PROJECT NO. ATTENTION:

X5669 William Silveri

COVER PAGE

ProjectID:

Morris park RI/FS TRC#461

OrderID: X5669

CustomerName:

TRC Environmental Corp., NY

LAB SAMPLE NO.	CLIENT SAMPLE NO
X5669-01	MW25S
X5669-02	MW25D
X5669-03	MW22S
X5669-04	MW23S
X5669-05	MW23D
X5669-06	MW24S
X5669-07	MW9-60
X5669-08	MW10-160
X5669-09	MW10-60
X5669-10	MW11-60
X5669-11	MW11-160
X5669-12	MW3D-60
X5669-13	MW2D-60

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature: Milole & Vhuye	Name: Wildied	Vleye
Date: 19/18/06	Title:(0A / @ C	<i>)</i> , ~

CHEMTECH

284 Sheffield Street Mountainside NJ 07092 Tel. 908-789-8900 Fax: 908-789-8922

DATA REPORTING QUALIFIERS- ORGANIC

For reporting results, the following "Results Qualifiers" are used:

Value .	If the result is a value greater than or equal to the detection limit, report the value
U	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10 U". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
J	 Indicates an estimated value. This flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise on any organic parameter i.e. Pest, PCB and others.
В .	Indicates the analyte was found in the blank as well as the sample report as "12 B".
E .	Indicates the analyte's concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
P	This flag is used for Pesticide/PCB target analyte when there is >25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".
Ň	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.

Client: TRC Environmental Corp., NY Date Collected:

11/28/2006

Project:

Morris park RI/FS TRC#46130-0010

Date Received:

12/1/2006

Client Sample ID:

MW25S

SDG No.:

X5669

Lab Sample ID:

X5669-01

Matrix:

WATER

Analytical Method:

8260

% Moisture:

100

Sample Wt/Wol:

5.0 Units: mL

Soil Extract Vol:

ul,

Soil Aliquot Vol:

шL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH012166.D	1	12/7/2006	VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS				<u>~</u>	
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17 ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34 ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33 ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41 ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83 ug/L
. 75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3 ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42 ug/L
67-64-1	Acetone	2.3	U	25	2.3 ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40 ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28 ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20 ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43 ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40 ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38 ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36 ug/L
78-93-3	2-Butanone	1.1	U	25	1.1 ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1 ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29 ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33 ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32 ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34 ug/L
71-43-2	Benzene	0.39	U	5.0	0.39 ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34 ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46 ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40 ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33 ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6 ug/L
108-88-3	Toluene	0.36	U	5.0	0.36 ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32 ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36 ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 11/28/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/1/2006 Client Sample ID: MW25S SDG No.: X5669 Matrix: Lab Sample ID: WATER X5669-01 % Moisture: Analytical Method: 100 8260

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

uL Soil Aliquet Vel:

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH012166.D	1	12/7/2006	VH120706
·			

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	53.02	106 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	54.28	109 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	49.12	98 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	50.3	101%	76 - 119		SPK: 50
INTERNAL ST.	ANDARDS					
363-72-4	Pentafluorobenzene	457747	4.64			
540-36-3	1,4-Difluorobenzene	815879	5.24			
3114-55-4	Chlorobenzene-d5	843223	8.98			
3855-82-1	1,4-Dichlorobenzene-d4	402383	11.55			

U = Not Detected

RL = Reporting Limit

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Client: Date Collected: 11/28/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/1/2006 Client Sample ID: MW25D SDG No.: X5669 Matrix: Lab Sample ID: X5669-02 WATER Analytical Method: % Moisture: 8260 100 Sample Wt/Wol: Units: mL 5.0 Soil Extract Vol: uL

Soil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID	٦
VH012167.D	1	12/7/2006	VH120706	

CAS Number	Parameter	Сопс.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	69		5.0	0.22	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3	ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42	ug/L
67-64-1	Acetone	2.3	U	25	2.3	ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40	ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28	ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36	ug/L
78-93-3	2-Butanone		U	25	1.1	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29	ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34	ug/L
71-43-2	Benzene	0.39	U	5.0	0.39	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6	ug/L
108-88-3	Toluene	0.36	U	5.0	0.36	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Client: Date Collected: 11/28/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/1/2006 Client Sample ID: MW25D SDG No.: X5669 Matrix: Lab Sample 1D: X5669-02 WATER Analytical Method: 8260 % Moisture: 100

Sample Wt/Wol: Units: mL 5.0 Soil Extract Vol: uL

Soil Aliquet Vol: ul.

File ID: Dilution:		Date Analyzed	Analytical Batch 1D				
VH012167.L) [12/7/2006		VH120706			
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units	
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L	
124-48-1	Dîbromochloromethane	0.26	U	5.0	0.26	ug/L	
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L	
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L	
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L	
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L	
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L	
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L	
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L	
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L	
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L	
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L	
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L	
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L	
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L	
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L	
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L	
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L	
75-43-4	Fluorodichloromethane	63		5.0	5.0	ug/L	
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	52.68	105 %	72 - 119		SPK: 50	
1868-53-7	Dibromofluoromethane	52.65	105 %	85 - 115		SPK: 50	
2037-26-5	Toluene-d8	49.16	98 %	81 - 120		SPK: 50	
460-00-4	4-Bromofluorobenzene	49.1	98%	76 - 119		SPK: 50	
INTERNAL STA	ANDARDS						
363-72-4	Pentafluorobenzene	473540	4.64				
540-36-3	1,4-Difluorobenzene	837357	5.24				
3114-55-4	Chlorobenzene-d5	872444	8.98				
3855-82-1	1,4-Dichlorobenzene-d4	405551	11.55				

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Analytical Method:

100

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 11/28/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/1/2006

Client Sample ID: MW22S SDG No.: X5669

Matrix: Lab Sample ID: X5669-03 WATER % Moisture:

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL.

8260

Dilution: Date Analyzed File ID: Analytical Batch ID 12/7/2006 VH012168.D 1 VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS					
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17 ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34 ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33 ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41 ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83 ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3 ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42 ug/L
67-64-1	Acetone	2.3	U	25	2.3 ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40 ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28 ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20 ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43 ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40 ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38 ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36 ug/L
78-93-3	2-Butanone	1.1	U	25	1.1 ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1 ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29 ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33 ug/L
71-55-6	I,I,I-Trichloroethane	0.32	U	5.0	0.32 ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34 ug/L
71-43-2	Benzene	0.39	U	5.0	0.39 ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34 ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46 ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40 ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33 ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6 ug/L
108-88-3	Toluene	0.36	U	5.0	0.36 ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32 ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36 ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Soil Extract Vol:

uL

Report of Analysis

Date Collected: 11/28/2006 TRC Environmental Corp., NY Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/1/2006 Client Sample ID: MW22S SDG No.: X5669 Matrix: WATER Lab Sample ID: X5669-03 % Moisture: 100 Analytical Method: 8260

Sample Wt/Wol: 5.0 Units: mL

Soil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH012168.D	1	12/7/2006	VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	υ	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	47,9	96 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	52.57	105 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	48.86	98 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	49.75	100 %	76 - 119		SPK: 50
INTERNAL ST	ANDARDS					
363-72-4	Pentafluorobenzene	467337	4.64			
540-36-3	1,4-Difluorobenzene	802013	5.24			
3114-55-4	Chlorobenzene-d5	787127	8.98			
3855-82-1	1,4-Dichlorobenzene-d4	396984	11.56			

U = Not Detected

RL = Reporting Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Date Collected: 11/29/2006 TRC Environmental Corp., NY Client: Morris park RI/FS TRC#46130-0010 Project: Date Received: 12/1/2006

SDG No.: X5669 Client Sample ID: MW23S

Matrix: WATER Lab Sample 1D: X5669-04

% Moisture: 100 Analytical Method: 8260

Sample Wt/Wol: Units: mL 5.0 Soil Extract Vol: uL.

Soil Aliquet Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID 12/7/2006 VH120706 VH012169.D 1

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS					
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17 ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34 ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33 ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41 ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83 ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3 ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42 ug/L
67-64-1	Acetone	2.3	U	25	2.3 ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40 ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28 ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20 ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43 ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40 ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38 ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36 ug/L
78-93-3	2-Butanone	1.1	U	25	1.1 ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1 ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29 ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33 ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32 ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34 ug/L
71-43-2	Benzene	0.39	U	5.0	0.39 ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34 ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46 ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40 ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33 ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6 ug/L
108-88-3	Toluene	0.36	U	5.0	0.36 ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32 ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36 ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J - Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 11/29/2006 Project: Date Received: Morris park RI/FS TRC#46130-0010 12/1/2006

Client Sample ID: MW23S SDG No.: X5669 Lab Sample ID: Matrix: X5669-04 WATER

Analytical Method: 8260 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquet Vol: υL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH012169.D	Ī	12/7/2006	VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	48.69	97%	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	52.44	105 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	47.8	96%	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	51.17	102 %	76 - 119		SPK: 50
INTERNALST	ANDARDS					
363-72-4	Pentafluorobenzene	468109	4.64			
540-36-3	1,4-Difluorobenzene	821000	5.25			
3114-55-4	Chlorobenzene-d5	799709	8.98			
3855-82-1	1,4-Dichlorobenzene-d4	408638	11.55			

U = Not Detected

RL = Reporting Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

File ID:

VH012170.D

Report of Analysis

TRC Environmental Corp., NY Date Collected: 11/29/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/1/2006 Client Sample ID: MW23D SDG No.: X5669 Matrix: Lab Sample ID: X5669-05 WATER % Moisture: Analytical Method: 100 8260

Sample Wt/Wol: 5.0 Units: mL Soil Aliquot Vol: uL

1

Dilution: Date Analyzed Analytical Batch ID 12/7/2006 VH120706

Soil Extract Vol:

uL

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS					
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17 ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34 ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33 ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41 ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83 ug/L
75-69-4	Trichlorofluoromethane	14		5.0	0.22 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3 ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42 ug/L
67-64-1	Acetone	2.3	U	25	2.3 ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40 ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28 ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20 ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43 ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40 ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38 ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36 ug/L
78-93-3	2-Butanone	1.1	U	25	1.1 ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	I.I ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29 ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33 ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32 ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34 ug/L
71-43-2	Benzene	0.39	U	5.0	0.39 ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34 ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46 ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40 ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33 ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6 ug/L
108-88-3	Toluene	0.36	U	5.0	0.36 ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32 ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36 ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Date Collected: 11/29/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/1/2006

Client Sample ID: SDG No.: MW23D X5669

Matrix: Lab Sample ID: X5669-05 WATER % Moisture: Analytical Method: 100 8260

Sample Wt/Woi: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: ul.

File ID:	Dilution:	Date Analyzed	Analytical Batch ID	
VH012170.D	1	12/7/2006	VH120706	

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES	}					
17060-07-0	1,2-Dichloroethane-d4	50.42	101 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	54.46	109 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	48.43	97 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	49.51	99 %	76 - 119		SPK: 50
INTERNAL ST	ANDARDS					
363-72-4	Pentafluorobenzene	483268	4.65			
540-36-3	1,4-Difluorobenzene	863357	5.25			
3114-55-4	Chlorobenzene-d5	874319	8.98			
3855-82-1	1,4-Dichlorobenzene-d4	416721	11.55			

U = Not Detected

RL = Reporting Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

11/29/2006 TRC Environmental Corp., NY Date Collected: Client: 12/1/2006 Morris park RI/FS TRC#46130-0010 Date Received: Project:

SDG No.: X5669 Client Sample 1D: MW24S Matrix: WATER

Lab Sample ID: X5669-06 % Moisture: 100 Analytical Method: 8260

Units: mL Soil Extract Vol: Sample Wt/Wol: 5.0 uL.

Soil Aliquot Vol: uL

Analytical Batch ID Date Analyzed Dilution: File ID: VH120706 12/7/2006 1 VH012171.D

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3	ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42	ug/L
67-64-1	Acetone	2.3	U	25	2.3	ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40	ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28	ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36	ug/L
78-93-3	2-Butanone	1.1	U	25	1.1	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29	ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34	ug/L
71-43-2	Benzene	0.39	U	5.0	0.39	ug/L
107-06-2	1,2-Dichloroethane	0.34	Ü	5.0	0.34	ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6	ug/L
108-88-3	Toluene	0.36	U	5.0	0.36	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	Ū	5.0	0.32	ug/L
10061-02-0	cis-1,3-Dichloropropene	0.36	Ü	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

uL

Report of Analysis

Date Collected: 11/29/2006 TRC Environmental Corp., NY Client: Date Received: 12/1/2006 Project: Morris park RI/FS TRC#46130-0010 SDG No.: X5669 Client Sample ID: MW24S Matrix: WATER Lab Sample ID: X5669-06 % Moisture: 100 Analytical Method: 8260 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol:

Soil Aliquot Vol: uL

Dilution: Date Analyzed Analytical Batch 1D File ID: 12/7/2006 VH120706 VH012171.D 1

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES	\$					
17060-07-0	1,2-Dichloroethane-d4	51.38	103 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	51.49	103 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	46.39	93 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	48.9	98 %	76 - 119		SPK: 50
INTERNAL ST	ANDARDS					
363-72-4	Pentafluorobenzene	478295	4.64			
540-36-3	1,4-Difluorobenzene	874582	5.25			
3114-55-4	Chlorobenzene-d5	827744	8.98			
3855-82-1	1,4-Dichlorobenzene-d4	415243	11.56			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

% Moisture:

Report of Analysis

TRC Environmental Corp., NY Date Collected: 11/30/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/1/2006

SDG No.: Client Sample ID: MW9-60 X5669

Matrix: WATER Lab Sample ID: X5669-07

Analytical Method: 100 8260 Sample Wt/Wol: Units: mL Soil Extract Vol: uL

шL Soil Aliquot Vol:

Dilution: Date Analyzed **Analytical Batch ID** File ID: 12/7/2006 VH120706 VH012172.D 1

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS					
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17 ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34 ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33 ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41 ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83 ug/L
75-69-4	Trichlorofluoromethane	2.6	J	5.0	0.22 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3 ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42 ug/L
67-64-1	Acetone	2.3	U	25	2.3 ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40 ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28 ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20 ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43 ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40 ug/L
75-34-3	1,1-Dichlorcethane	0.38	U	5.0	0.38 ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36 ug/L
78-93-3	2-Butanone	1.1	U	25	1.1 ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1 ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29 ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33 ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32 ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34 ug/L
71-43-2	Benzene	0.39	U	5.0	0.39 ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34 ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46 ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40 ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33 ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6 ug/L
108-88-3	Toluene	0.36	U	5.0	0.36 ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32 ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36 ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Date Collected: 11/30/2006 Client: 12/1/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received:

SDG No.: X5669 Client Sample 1D: MW9-60 Matrix: WATER Lab Sample ID: X5669-07

% Moisture: Analytical Method: 8260 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID	1
VH012172.D	1	12/7/2006	VH120706	

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	1.1	J	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	50.49	101 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	53.67	107 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	47.38	95 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	49.73	99 %	76 - 119		SPK: 50
INTERNAL ST.	ANDARDS					
363-72-4	Pentafluorobenzene	475999	4.65			
540-36-3	1,4-Difluorobenzene	852757	5.25			
3114-55-4	Chlorobenzene-d5	791464	8.98			
3855-82-1	1,4-Dichlorobenzene-d4	412066	11.55			

U = Not Detected

RL = Reporting Limit

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Analytical Method:

% Moisture:

100

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 11/30/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/1/2006

Client Sample ID: MW10-160 SDG No.: X5669

Matrix: Lab Sample ID: X5669-08 WATER

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

8260

Dilution: File ID: Date Analyzed Analytical Batch ID VH012173.D 1 12/7/2006 VH120706

CAS Number	Parameter	Cone.	Qualifier	RL	MDL Units
TARGETS					
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17 ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34 ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33 ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41 ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83 ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3 ug/L
75-35-4	I,I-Dichloroethene	2.6	J	5.0	0.42 ug/L
67-64-1	Acetone	2.3	U	25	2.3 ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40 ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28 ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20 ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43 ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40 ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38 ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36 ug/L
78-93-3	2-Butanone	1.1	U	25	1.1 ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1 ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29 ug/L
67-66-3	Chloroform	1.5	J	5.0	0.33 ug/L
71-55-6	1,1,1-Trichloroethane	3.1	j	5.0	0.32 ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34 ug/L
71-43-2	Benzene	0.39	U	5.0	0.39 ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34 ug/L
79-01-6	Trichloroethene	3.9	J	5.0	0.46 ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40 ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33 ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6 ug/L
108-88-3	Toluene	0.36	U	5.0	0.36 ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32 ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36 ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 11/30/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/1/2006

SDG No.: Client Sample ID: MW10-160 X5669 Matrix: Lab Sample ID: X5669-08 WATER

% Moisture: Analytical Method: 8260 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Sell Aliquot Vol: uL.

File ID:	Dilution:	Date Analyzed	Analytical Batch ID	1
VH012173.D	1	12/7/2006	VH120706	

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES	3					
17060-07-0	1,2-Dichloroethane-d4	50.92	102 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	52.02	104 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	47.31	95 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	50.81	102 %	76 - 119		SPK: 50
INTERNAL ST	ANDARDS					
363-72-4	Pentafluorobenzene	473450	4.64			
540-36-3	1,4-Difluorobenzene	857864	5.25			
3114-55-4	Chlorobenzene-d5	834471	8.98			
3855-82-1	1,4-Dichlorobenzene-d4	415927	11.56			

U = Not Detected

RL = Reporting Limit

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY 11/30/2006 Client: Date Collected: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/1/2006 SDG No.: Client Sample ID: MW10-60 X5669 Matrix: Lab Sample ID: X5669-09 WATER % Moisture: 100 Analytical Method: 8260 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquet Vol: uL.

File ID:	Dilution:	Date Analyzed	Analytical Batch ID	
VH012174.D	1	12/8/2006	VH120706	

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3	ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42	ug/L
67-64-1	Acetone	2.3	U	25	2.3	ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40	ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28	ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36	ug/L
78-93-3	2-Butanone	1.1	U	25	1.1	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29	ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34	ug/L
71-43-2	Benzene	0.39	U	5.0	0.39	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6	ug/L
108-88-3	Toluene	0.36	U	5.0	0.36	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Client:

Morris park RI/FS TRC#46130-0010

11/30/2006

Client Sample ID:

Project:

MW10-60

SDG No.:

Date Collected:

Date Received:

12/1/2006 X5669

Lab Sample 1D:

X5669-09

Matrix:

WATER

Analytical Method:

8260

% Moisture:

100

Sample Wt/Wol:

5.0 Units: mL

Soil Extract Vol:

uL

Soil Aliquot Vol:

uL.

File ID:	Dilution:	Date Analyzed	Analytical Batch ID	
VH012174.D	1	12/8/2006	VH120706	

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	3.7	J	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES	S					
17060-07-0	1,2-Dichloroethane-d4	52.09	104 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	52.92	106 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	47.03	94 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	48.68	97 %	76 - 119		SPK: 50
INTERNAL ST	ANDARDS					
363-72-4	Pentafluorobenzene	480736	4.65			
540-36-3	1,4-Difluorobenzene	886395	5.26			
3114-55-4	Chlorobenzene-d5	853644	8.98			
3855-82-1	1,4-Dichlorobenzene-d4	411100	11.56			

N = Presumptive Evidence of a Compound

Soil Aliquot Vol:

Report of Analysis

TRC Environmental Corp., NY Client: Date Collected: 11/30/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/1/2006

Client Sample ID: MW11-60 SDG No.: X5669

Lab Sample ID: Matrix: X5669-10 WATER

Analytical Method: % Moisture: 8260 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

иL

File ID: Dilution: Date Analyzed **Analytical Batch ID** VH012175.D 1 12/8/2006 VH120706

CAS Number	Parameter	Сове.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3	ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42	ug/L
67-64-1	Acetone	2.3	U	25	2,3	ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40	ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28	ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36	ug/L
78-93-3	2-Butanone	1.1	U	25	1.1	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29	ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34	ug/L
71-43-2	Benzene	0.39	U	5.0	0.39	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6	ug/L
108-88-3	Toluene	0.36	U	5.0	0.36	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY

Morris park RI/FS TRC#46130-0010

Date Collected:

11/30/2006

Project:

uL.

Date Received:

12/1/2006

Client Sample ID:

MW11-60

SDG No.:

X5669

Lab Sample ID:

X5669-10

Matrix:

WATER

Analytical Method:

8260

% Moisture:

100

Sample Wt/Wol: Soil Aliquot Vol: 5.0 Units: mL Soil Extract Vol:

uL

File ID:

Dilution:

Date Analyzed

Analytical Batch ID

VH012175.D

1

12/8/2006

VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	Ŭ	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	53.19	106 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	52.54	105 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	47.21	94 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	49.03	98 %	76 - 119		SPK: 50
INTERNAL ST	ANDARDS					
363-72-4	Pentafluorobenzene	472233	4.65			
540-36-3	1,4-Difluorobenzene	875470	5.25			
3114-55-4	Chlorobenzene-d5	831600	8.98			
3855-82-1	1,4-Dichlorobenzene-d4	413775	11.56			

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

% Moisture:

Report of Analysis

TRC Environmental Corp., NY Client: Date Collected: 11/30/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/1/2006

Client Sample ID: SDG No.: MW11-160 X5669

Matrix: Lab Sample ID: X5669-11 WATER

Analytical Method: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: шL

Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID VH012176.D 12/8/2006 VH120706 1

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3	ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42	ug/L
67-64-1	Acetone	2.3	U	25	2.3	ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40	ug/L
1634-04-4	Methyl tert-butyl Ether	2.1	J	5.0	0.28	ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36	ug/L
78-93-3	2-Butanone	1.1	U	25	1.1	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29	ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34	ug/L
71-43-2	Benzene	0.39	U	5.0	0.39	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6	ug/L
108-88-3	Toluene	0.36	U	5.0	0.36	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Date Collected: 11/30/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/1/2006 Client Sample ID: MW11-160 SDG No.: X5669 Matrix: Lab Sample ID: X5669-11 WATER 8260 % Moisture: Analytical Method: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquet Vol: ul.

File ID: VH012176.D	Dilution:	Date Analyzed 12/8/2006		Analytical E VH120706	Batch ID	
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	49.07	98 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	52.7	105 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	48.36	97 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	51.55	103 %	76 - 119		SPK: 50
INTERNAL STA	ANDARDS					
363-72-4	Pentafluorobenzene	474991	4.65			
540-36-3	1,4-Difluorobenzene	851178	5.25			
3114-55-4	Chlorobenzene-d5	844344	8.98			
3855-82-1	1,4-Dichlorobenzene-d4	409786	11.56			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 11/30/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/1/2006 Client Sample ID: MW3D-60 SDG No.: X5669 Matrix: Lab Sample ID: X5669-12 WATER

% Moisture: Analytical Method: 8260 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL.

Soil Aliquot Vol: uL.

File ID: Dilution: Date Analyzed Analytical Batch ID VH012177.D 1 12/8/2006 VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3	ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42	ug/L
67-64-1	Acetone	2.3	U	25	2.3	ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40	ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28	ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36	ug/L
78-93-3	2-Butanone	1.1	U	25	1.1	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29	ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34	иg/L
71-43-2	Benzene	0.39	U	5.0	0.39	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6	ug/L
108-88-3	Toluene	0.36	U	5.0	0.36	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 11/30/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/1/2006 Client Sample 1D: MW3D-60 SDG No.: X5669 Lab Sample ID: Matrix: X5669-12 WATER Analytical Method: % Moisture: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: иL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH012177.D	1	12/8/2006	VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1,2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-I	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATE	S					
17060-07-0	1,2-Dichloroethane-d4	53.56	107 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	52.68	105 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	49.3	99 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	50.34	101 %	76 - 119		SPK: 50
INTERNAL ST	TANDARDS					
363-72-4	Pentafluorobenzene	479328	4.65			
540-36-3	1,4-Difluorobenzene	871549	5.25			
3114-55-4	Chlorobenzene-d5	884324	8.98			
3855-82-1	1,4-Dichlorobenzene-d4	405541	11.55			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

uL

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/1/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/1/2006 SDG No.: Client Sample 1D: MW2D-60 X5669

Matrix: WATER Lab Sample ID: X5669-13

% Moisture: Analytical Method: 100 8260 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol:

uL Soil Aliquot Vol:

1	File ID:	Dilution:	Date Analyzed	Analytical Batch ID	1
	VH012178.D	1	12/8/2006	VH120706	

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	120	E	5.0	0.22	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3	ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42	ug/L
67-64-I	Acetone	2.3	U	25	2.3	ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40	ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28	ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36	ug/L
78-93-3	2-Butanone	1.1	U	25	1.1	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29	ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34	ug/L
71-43-2	Benzene	0.39	U	5.0	0.39	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6	ug/L
108-88-3	Toluene	0.36	U	5.0	0.36	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Date Collected: 12/1/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/1/2006 Client Sample ID: MW2D-60 SDG No.: X5669 Matrix: Lab Sample 1D: X5669-13 WATER % Moisture: Analytical Method: 100 8260 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed **Analytical Batch ID** 12/8/2006 VH120706 VH012178.D 1

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	Ü	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	85		5.0	5.0	ug/L
SURROGATES	3					
17060-07-0	1,2-Dichloroethane-d4	53.66	107 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	54.17	108 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	49.19	98 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	49.79	100 %	76 - 119		SPK: 50
INTERNAL ST	ANDARDS					
363-72-4	Pentafluorobenzene	476470	4.65			
540-36-3	1,4-Difluorobenzene	877985	5.25			
3114-55-4	Chlorobenzene-d5	856851	8.98			
3855-82-1	1,4-Dichlorobenzene-d4	403187	11.56			

U = Not Detected

RL = Reporting Limit

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client: TRC Environmental Corp., NY

Date Collected:

12/1/2006

Project:

Morris park RI/FS TRC#46130-0010

Date Received:

12/1/2006

Client Sample ID: Lab Sample ID: MW2D-60DL

SDG No.:

X5669

Analytical Method:

X5669-13DL

Matrix:

WATER

A A ALL TO A

8260

% Moisture:

100

Sample Wt/Wol: Soil Aliquot Vol: 5.0 Units: mL

Dilution:

2

Soil Extract Vol:

uL

VH012186.D

uŁ

File ID:

Date Analyzed

Analytical Batch 1D

12/8/2006

VH120706

<u></u>					***************************************			
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units		
TARGETS								
75-71-8	Dichlorodifluoromethane	0.34	U	10	0.34 u	g/L		
74-87-3	Chloromethane	0.69	U	10		g/L		
75-01-4	Vinyl chloride	0.66	U	10		2/L		
74-83-9	Bromomethane	0.82	U	10		ı∕L		
75-00-3	Chloroethane	1.7	U	10		g/L		
75-69-4	Trichlorofluoromethane	51	D	10	,	3/L		
76-13-1	1,1,2-Trichlorotrifluoroethane	2.6	U	10	-	3/L		
75-35-4	1,1-Dichloroethene	0.83	U	10	•	y/L		
67-64-1	Acetone	4.5	U	50	•	z/L		
75-15-0	Carbon disulfide	0.80	U	10		2/L		
1634-04-4	Methyl tert-butyl Ether	0.56	U	10	•	g/L		
79-20-9	Methyl Acetate	0.40	U	10	-	z/L		
75-09-2	Methylene Chloride	0.85	U	10		g/L		
156-60-5	trans-1,2-Dichloroethene	0.80	U	10	•	g/L		
75-34-3	1, I-Dichloroethane	0.76	U	10	-	y/L		
110-82-7	Cyclohexane	0.73	U	10	_	y/L		
78-93-3	2-Butanone	2.3	U	50	•	y/L		
56-23-5	Carbon Tetrachloride	2.3	U	10	_	y/L		
156-59-2	cis-1,2-Dichloroethene	0.58	U	10	-	γ/L		
67-66-3	Chloroform	0.67	U	10	_	ŗ/L		
71-55-6	1,1,1-Trichloroethane	0.65	U	10	-	/L		
108-87-2	Methylcyclohexane	0.68	U	10	_	/L		
71-43-2	Benzene	0.77	U	10	-	/L		
107-06-2	1,2-Dichloroethane	0.68	U	10	0.68 ug			
79-01-6	Trichloroethene	0.92	U	10	0.92 ug			
78-87- <i>5</i>	1,2-Dichloropropane	0.81	U	10	0.81 ug			
75-27-4	Bromodichloromethane	0.67	U	10	0.67 ug			
108-10-1	4-Methyl-2-Pentanone	3.2	U	50	3.2 ug			
108-88-3	Toluene	0.73	U	10	0.73 ug			
10061-02-6	t-1,3-Dichloropropene	0.63	U	10	0.63 ug			
10061-01-5	cis-1,3-Dichloropropene	0.72	U	10	0.72 ug			
79-00-5	1,1,2-Trichloroethane	0.81	U	10	0.81 ug			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

12/1/2006

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected:

Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/1/2006

Client Sample ID: MW2D-60DL SDG No.: X5669 Lab Sample 1D: X5669-13DL Matrix: WATER

Analytical Method: 8260 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL

Soil Extract Vol: uL

Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID VH012186.D 2 12/8/2006 VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	3.4	U	50	3.4	ug/L
124-48-1	Dibromochloromethane	0.53	U	10	0.53	ug/L
106-93-4	1,2-Dibromoethane	0.65	U	10	0.65	ug/L
127-18-4	Tetrachloroethene	0.96	U	10	0.96	ug/L
108-90-7	Chlorobenzene	0.93	U	10	0.93	ug/L
100-41-4	Ethyl Benzene	0.91	U	10	0.91	ug/L
126777-61-2	m/p-Xylenes	2,4	U	20	2.4	ug/L
95-47-6	o-Xylene	0.91	U	10	0.91	ug/L
100-42-5	Styrene	0.82	U	10	0.82	ug/L
75-25-2	Bromoform	0.63	U	10	0.63	ug/L
98-82-8	Isopropylbenzene	0.88	U	10	0.88	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.60	U	10	0.60	ug/L
541-73-1	1,3-Dichlorobenzene	0.99	U	10	0.99	ug/L
106-46-7	1,4-Dichlorobenzene	1.1	U	10	1.1	ug/L
95-50-1	1,2-Dichlorobenzene	0.87	U	10	0.87	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.75	U	10	0.75	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.92	U	10	0.92	ug/L
593-70-4	Chlorofluoromethane	10	U	10	10	ug/L
75-43-4	Fluorodichloromethane	61	D	10	10	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	56.73	113 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	54.92	110 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	49,16	98 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	48.71	97%	76 - 119		SPK: 50
INTERNAL STANDARDS						
363-72-4	Pentafluorobenzene	473338	4.64			
540-36-3	1,4-Difluorobenzene	876843	5.24			
3114-55-4	Chlorobenzene-d5	883648	8.98			
3855-82-1	1,4-Dichlorobenzene-d4	398537	11.56			

U = Not Detected

RL = Reporting Limit

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

X5669

TODY RECORD
CHAIN OF CU

284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

062426 CHEMTECH PROJECT NO. COC Number

- Specify Preservatives C-H.SQ D-NOH E-ICE F-Oller Shipment Complete: COMMENTS ce in Coolor?: 26 ľ ZIP: Cooler Temp. CLIENT BILLING INFORMATION POH: STATE PHONE ANALYSIS SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION INCLUDING COURIER DELIVERY ON STATEMENTS OF THE SAMPLES CHANGE POSSESSION INCLUDING COURIER DELIVERY Conditions of bolloss or coolors at mospic C Compilant MaCM extraction requires an additional 4 oz jar for percent solid Comments: James PRESERVATIVES œ ATTENTION: 10 ADDRESS: BILL TO: 200 PHOJECT NO. 46 130 - 06 10 COATION. PICKING HII) WSilveri @ TReSalvhuns, can PROJECT MANAGER WILLS AN Silveri بر X PROJECT NAME: LIRE Morris Park C RESULTS + QC P Now York State ASP 'B'

C Now Jorday REDUCED C Now York State ASP 'A'

C Now Jorday CLP C Other DATA DELIVERABLE INFORMATION CLIENT PROJECT INFORMATION x. ¢ 11-30.06/1040 11-30-06 1218 11-30-06-11 SAMPLE THE X 11-29-4 1145 11.29-06 1358 512119032-11 x Ur.28-05/13-00 11.28-45 15-67 × 11:2706 1137 11.30 ac 1037 WHITE - CHEMTECH COPY FOR ACTURN TO CLIFNT DATE SAMPLE TYPE KATHER EYH0 X بر × یز Ł يد × o-mail; PHONE: SS S. S ら 3 35 3 ₹ S 3 3 GO 3. SNETHY DATETINE 12:50 RECEIVED FOR LAB BY STATE: NY ZIP: 1001B. Broadway, 10th Fl. RECEIVED DY DAYS. DAYS. TO BE APPROVED BY CHEMTECH STANDARD TURNAROUND TIME IS 10 BUSINESS DAYS DAYS. PROJECT SAMPLE IDENTIFICATION 646-584 2787 FAX: DATA TURNAROUND INFORMATION αĬ Silver R-FOG 1250 Engineers CLIENT INFORMATION HERDAT TO BE SENT TO 0 Nw 10-160 MW 9-60 MW 10 - 60 MW 11-60 Steinduce MW 23 D MW 245 Standurd 4 WW 252 MW 255 MW 235 MW122S Willyam ADDRESS: 1430 COMPANY: TRC pished by southing наяр сору-CITY: DY ATTENTION: CHEMTECH SAMPLE ID יבטימטיטובים שני Ravision 4/2005 v;

VR11 CM. CUENTECU CONV

CHAIN OF CUSTODY RECORD

284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

COC NUMBER 1062425 CHEMTECH PROJECT NO.

	CLIENT INFORMATION COMMENTED	OLIENT PROJECT INFORMATION (C. C. CLIENT BILLING INFORMATION	BIATION
, CONDANY.	TO FOOL DON'S TOC.	BILTO SAME	PO#:
1	1422 Breedings , 10(1) Fl.	md Hill ADDRESS:	
N Y	NY STATE: NY ZIP:	PROJECT MANAGER: WINDING S.	: ZIP;
읃	William Silveri	onal WSIVEN OTRESOLDING COL ATTENTION: PHONE	Ġij.
PHONE	FAX:	648-584-2767 FAX:	
70.5	DATA TURNAROUND INFORMATION	DATA DELIVERABLE INFORMATION: N	
FAX-		RESULTS ONLY DUSEPACIP	
HARD COPY.	Standand DAYS.	, CED	
* TO BE APPRO	H IS 10 BUSINES	EDD FORMAT DOTHOR DEFERBUATIVES	COMMENTS E
CHEMTECH	PROJECT	MPLE SAMPLE 91 TYPE COLLECTION E 7	Specify Prosonalf -HCI B-HNC -H.SO D-NaO
0	SAMPLEIDENIFICATION	ਤੋਂ ਤੋਂ DATE TIME ਨੂੰ ।	
-	MW 11-160	6-12 K 11-30-46 1222 3 X X	
2	09-48 MW	6W X 11:32 00 1457 3 X X	
(3.	My 20-60	6W X 12-1-66 1047 3 X X	
ζ.	Trin Blank		
ů			
.5			
7.			
Ŕ			
හි			
10.		A CHARGE BOSSESSION INCLUDING COURIERY	
natural paragraphy and lan			/
HELTHRONDARD OF	DATE DATE RECEIVED BY		lea In Coolui C.
2. RELINCUISHED BY:	DATE/BUSE 21/0 RECEIVED FOR LAB BY	S Start Page	RNIGHT Blipment Complete:
3. Ravigan #12003	HO-BANKE-OH	FOR RETURN TO CLIENT YELL	

DATA PACKAGE FOR SEMI-VOLATILE ORGANICS

PROJECT NAME: Morris park RI/FS TRC#46130-0010

SUBCONTRACT # 46130-SC-002

TRC ENVIRONMENTAL CORP., NY
1430 BROADWAY
10TH FLOOR
NEW YORK, NY 10018
2122217822

CHEMTECH PROJECT NO. ATTENTION:

X5669 William Silveri

DATA REPORTING QUALIFIERS- ORGANIC

For reporting results, the following "Results Qualifiers" are used:

	•
Value	If the result is a value greater than or equal to the detection limit, report the value
U .	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10 U". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
.	 Indicates an estimated value. This flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise on any organic parameter i.e. Pest, PCB and others.
В .	Indicates the analyte was found in the blank as well as the sample report as "12 B".
E	Indicates the analyte 's concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
P	This flag is used for Pesticide/PCB target analyte when there is >25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".
Й	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Cor	TDC F - 1 I C NN	Data Callantale	11/39/300/	
Client:	TRC Environmental Corp., NY	Date Collected:	11/28/2006	
Project:	Morris park RI/FS TRC#46130-0010	Date Received: 12/		
Client Sample	MW25S	SDG No.:	X5669	
Lab Sample ID:	X5669-01	Matrix:	WATER	
Analytical Method:	8270	% Moisture:	100	
Sample Wt/Wol:	950.0 mL	Extract Vol:	1000 uL	

File ID	Dilution	Date Extracted Date Analyzed		d An	Analytical Batch ID		
BF008641.D	1 12/4/2006		12/8/2006	BF	113006		J
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
111-44-4	bis(2-Chloroethyl)ether		1.5	U	11	1.5	ug/L
95-50-1	1,2-Dichlore		1.3	U	11	1.3	ug/L
541-73-1	1,3-Dichlore	obenzene	1.3	U	11	1.3	ug/L
106-46-7	1,4-Dichlore	obenzene	1.3	U	11	1.3	ug/L
108-60-1	2,2-oxybis(l-Chloropropane)	1.3	U	11	1.3	ug/L
621-64-7		li-n-propylamine	1.5	U	11	1.5	ug/L
67-72-1	Hexachloro	ethane	1.2	U	11	1.2	ug/L
98-95-3	Nitrobenzer	ie	1.7	U	11	1.7	ug/L
78-59-1	Isophorone		1.3	U	11	1.3	ug/L
111-91-1	bis(2-Chlore	oethoxy)methane	1.4	U	11	1.4	ug/L
120-82-1	1,2,4-Trichl	orobenzene	1.5	U	11	1.5	ug/L
91-20-3	Naphthalen	2	1.5	U	11	1.5	ug/L
106-47-8	4-Chloroani	line	0.900	U	11	0.900	ug/L
87-68-3	Hexachloro	butadiene	1.4	U	11	1.4	ug/L
91-57-6	2-Methylna	phthalene	1.1	U	11	1.1	ug/L
77-47-4	Hexachloro	cyclopentadiene	1.2	U	11	1.2	ug/L
91-58-7	2-Chlorona	ohthalene	1.5	U	11	1.5	ug/L
88-74-4	2-Nitroanili	ne	1.1	U	11	1.1	ug/L
131-11-3	Dimethylph	thalate	1.3	U	11	1.3	ug/L
208-96-8	Acenaphthy	lene	1.4	U	11	1.4	ug/L
606-20-2	2,6-Dinitrot	oluene	1.3	U	11	1.3	ug/L
99-09-2	3-Nitroanili	ne	1.1	U	11	1.1	ug/L
83-32-9	Acenaphthe	ne	1.4	U	11	1.4	ug/L
132-64-9	Dibenzofun	an	1.4	U	11	1.4	ug/L
121-14-2	2,4-Dinitrot	oluene	1.3	U	11	1.3	ug/L
84-66-2	Diethylphth	alate	1.4	U	11	1.4	ug/L
7005-72-3	4-Chloroph	enyl-phenylether	1.4	U	11	1.4	ug/L
86-73-7	Fluorene		1.5	U	11	1.5	ug/L
100-01-6	4-Nitroanili	ne	1.2	U	11	1.2	ug/L
86-30-6	N-Nitrosodi	phenylamine	1.3	U	11	1.3	ug/L
101-55-3	4-Bromoph	enyl-phenylether	1.6	U	11	1.6	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client:	TRC Environmental Corp., NY	Date Collected:	11/28/2006
Project:	Morris park RI/FS TRC#46130-0010	Date Received:	12/1/2006
Client Sample	MW25S	SDG No.:	X5669
Lab Sample ID:	X5669-01	Matrix:	WATER
Analytical Method:	8270	% Moisture:	100
Sample Wt/Wol:	950.0 mL	Extract Vol:	1000 uL

File ID BF008641.D	Dilution Date Extracted 1 12/4/2006					d An BF	
CAS Number	Parameter	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS							
118-74-1	Hexachlorol		1.3	U	11	1.3	ug/L
85-01-8	Phenanthren	ie	1.5	U	11	1.5	ug/L
120-12-7	Anthracene		1.5	U	11	1.5	ug/L
86-74-8	Carbazole		1.3	U	11	1.3	ug/L
84-74-2	Di-n-butylpl	hthalate	1.4	U	11	1.4	ug/L
206-44-0	Fluoranthen	e	1.3	U	11	1.3	ug/L
129-00-0	Pyrene		1.5	U	11	1.5	ug/L
85-68-7	Butylbenzyl	phthalate	1.5	U	11	1.5	ug/L
91-94-1	3,3-Dichloro	benzidine	1.1	U	21	1.1	ug/L
56-55-3	Benzo(a)ant	hracene	1.2	U	11	1.2	ug/L
218-01-9	Chrysene		1.8	U	11	1.8	ug/L
117-81-7	bis(2-Ethylh	bis(2-Ethylhexyl)phthalate		JВ	11	1.6	ug/L
117-84-0	Di-n-octyl p	hthalate	1.4	U	11	1.4	ug/L
205-99-2	Benzo(b)flu	oranthene	0.790	U	11	0.790	ug/L
207-08-9	Benzo(k)flu	oranthene	2.0	U	11	2.0	ug/L
50-32-8	Benzo(a)pyr	ene	1.2	U	11	1.2	ug/L
193-39-5	Indeno(1,2,3	3-cd)pyrene	0.870	U	11	0.870	ug/L
53-70-3	Dibenz(a,h)	anthracene	0.910	U	11	0.910	ug/L
191-24-2	Benzo(g,h,i)	perylene	1.1	U	11	1.1	ug/L
SURROGATES							
4165-60-0	Nitrobenzen	e-d5	67.39	67 %	35 - 114		SPK: 1
321-60-8	2-Fluorobipl	henyl	62.74	63 %	43 - 116		SPK: 1
1718-51-0	Terphenyl-d	14	63.79	64 %	33 - 141		SPK: 1
INTERNAL STANI	DARDS						
3855-82-1	1,4-Dichloro	benzene-d4	29595	3.94			
1146-65-2	Naphthalene		122281	5.10			
15067-26-2	Acenaphthe	ne-d10	61770	6.78			
1517-22-2	Phenanthren		83614	8.24			
1719-03-5	Chrysene-d1	2	78219	10.84			
1520-96-3	Perylene-d1		56477	12.30			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client:	TRC Environmental Corp., NY	Date Collected:	11/28/2006	
Project:	Morris park RI/FS TRC#46130-0010	Date Received:	12/1/2006	
Client Sample	MW25D	SDG No.:	X5669	
Eab Sample ID:	X5669-02	Matrix:	WATER	
Analytical Method:	8270	% Moisture:	100	
Sample Wt/Wol:	990.0 mL	Extract Vol:	1000 uL	

File ID	Dilution	Date Extracted	Date Analyzed	zed Analytical Batch		atch ID)
BF008642.D	1	12/4/2006	12/8/2006	BF	113006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS					_		
111-44-4	•	oethyl)ether	1.5	U	10	1.5	ug/L
95-50-1	1,2-Dichlor		1.2	U	10	1.2	ug/L
541-73-1	1,3-Dichlor		1.2	U	10	1.2	ug/L
106-46-7	1,4-Dichlor		1.2	U	10	1.2	ug/L
108-60-1		l-Chloropropane)	1.2	U	10	1.2	ug/L
621-64-7		li-n-propylamine	1.4	U	10	1.4	ug/L
67-72-1	Hexachloro	ethane	1.2	U	10	1.2	ug/L
98-95-3	Nitrobenzer	ie	1.6	U	10	1.6	ug/L
78-59-1	Isophorone		1.3	U	10	1.3	ug/L
111-91-1	•	oethoxy)methane	1.4	U	10	1.4	ug/L
120-82-1	1,2,4-Trichl	orobenzene	1.4	U	10	1.4	ug/L
91-20-3	Naphthalen	2	1.4	U	10	1.4	ug/L
106-47-8	4-Chloroan	line	0.870	U	10	0.870	ug/L
87-68-3	Hexachloro	butadiene	1.4	U	10	1.4	ug/L
91-57-6	2-Methylna	phthalene	1.1	U	10	1.1	ug/L
77-47-4	Hexachloro	cyclopentadiene	1.2	U	10	1.2	ug/L
91-58-7	2-Chlorona	ohthalene	1.4	U	10	1.4	ug/L
88-74-4	2-Nitroanili	ne	1.1	U	10	1.1	ug/L
131-11-3	Dimethylph	thalate	1.3	U	10	1.3	ug/L
208-96-8	Acenaphthy	lene	1.3	U	10	1.3	ug/L
606-20-2	2,6-Dinitrot	oluene	1.3	U	10	1.3	ug/L
99-09-2	3-Nitroanili	ne	1.0	U	10	1.0	ug/L
83-32-9	Acenaphthe	ne	1.4	U	10	1.4	ug/L
132-64-9	Dibenzofur	ın	1.3	U	10	1.3	ug/L
121-14-2	2,4-Dinitrot	oluene	1.2	U	10	1.2	ug/L
84-66-2	Diethylphth	alate	1.3	U	10	1.3	ug/L
7005-72-3	4-Chloroph	enyl-phenylether	1.4	U	10	1.4	ug/L
86-73-7	Fluorene		1.4	U	10	1.4	ug/L
100-01-6	4-Nitroanili	4-Nitroaniline		U	10	1.1	ug/L
86-30-6	N-Nitrosod	phenylamine	1.3	U	10	1.3	ug/L
101-55-3		enyl-phenylether	1.5	U	10	1.5	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 11/28/2006 Date Received: 12/1/2006 Project: Morris park RI/FS TRC#46130-0010 Client Sample MW25D SDG No.: X5669 Lab Sample ID: X5669-02 Matrix: WATER Analytical Method: 8270 % Moisture: 100 990.0 Extract Vol: Sample Wt/Wol: mL1000 uL

File ID	Dilution Date Extracted		•			lytical Batch ID			
BF008642.D	1	12/4/2006	12/8/2006	BF	113006				
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units		
TARGETS									
118-74-1	Hexachlorob		1.2	U	10	1.2	ug/L		
85-01-8	Phenanthreno	2	1.4	U	10	1.4	ug/L		
120-12-7	Anthracene		1.4	U	10	1.4	ug/L		
86-74-8	Carbazole		1.3	U	10	1.3	ug/L		
84-74-2	Di-n-butylph		1.3	U	10	1.3	ug/L		
206-44-0	Fluoranthene		1.2	U	10	1.2	ug/L		
129-00-0	Pyrene		1.5	U	10	1.5	ug/L		
85-68-7	Butylbenzylr	hthalate	1.4	U	10	1.4	ug/L		
91-94-1	3,3-Dichloro	benzidine	1.1	U	20	1.1	ug/L		
56-55-3	Benzo(a)anth	racene	1.1	U	10	1.1	ug/L		
218-01-9	Chrysene		1.7	U	10	1.7	ug/L		
117-81-7	bis(2-Ethylhe	exyl)phthalate	2.9	JВ	10	1.5	ug/L		
117-84-0	Di-n-octyl pl	ithalate	1.3	U	10	1.3	ug/L		
205-99-2	Benzo(b)fluc	ranthene	0.760	U	10	0.760	ug/L		
207-08-9	Benzo(k)fluc	ranthene	1.9	U	10	1.9	ug/L		
50-32-8	Benzo(a)pyro	ene	1.2	U	10	1.2	ug/L		
193-39-5	Indeno(1,2,3	-cd)pyrene	0.840	U	10	0.840	ug/L		
53-70-3	Dibenz(a,h)a	nthracene	0.870	U	10	0.870	ug/L		
191-24-2	Benzo(g,h,i)	perylene	1.1	U	10	1.1	ug/L		
SURROGATES									
4165-60-0	Nitrobenzene	÷-d5	62.68	63 %	35 - 114		SPK: 10		
321-60-8	2-Fluorobiph	enyl	58.18	58 %	43 - 116		SPK: 10		
1718-51-0	Terphenyl-d	14	63.44	63 %	33 - 141		SPK: 10		
INTERNAL STAND	ARDS								
3855-82-1	1,4-Dichloro	benzene-d4	30230	3.94					
1146-65-2	Naphthalene	-d8	122474	5.10					
15067-26-2	Acenaphthen	e-d10	61716	6.78					
1517-22-2	Phenanthrene	e-d10	83177	8.24					
1719-03-5	Chrysene-d1	2	78178	10.84					
1520-96-3	Perylene-d12		57964	12.29					

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: Project:	TRC Environmental Corp., NY Morris park RI/FS TRC#46130-0010	Date Collected: Date Received:	11/28/2006 12/1/2006	
Client Sample ID: Lab Sample ID:	MW22S	SDG No.:	X5669	
Lao Sample ID: Analytical Method:	X5669-03 8270	Matrix: % Moisture:	WATER 100	
Sample Wt/Wol:	990.0 mL	Extract Vol:	1000 uL	

File ID	Dilution	Date Extracted	Date Analyz	ed An	alytical I	Batch ID	
BF008643.D	1	12/4/2006	12/8/2006	BF	113006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
111-44-4	bis(2-Chlore		1.5	U	10	1.5	ug/L
95-50-1	1,2-Dichlore	obenzene	1.2	U	10	1.2	ug/L
541-73-1	1,3-Dichlor	obenzene	1.2	U	10	1.2	ug/L
106-46-7	1,4-Dichlore	obenzene	1.2	U	10	1.2	ug/L
108-60-1	2,2-oxybis()	l-Chloropropane)	1.2	U	10	1.2	ug/L
621-64-7	N-Nitroso-d	li-n-propylamine	1.4	U	1 0	1.4	ug/L
67-72-1	Hexachloro	ethane	1.2	U	10	1.2	ug/L
98-95-3	Nitrobenzer	ie	1.6	U	10	1.6	ug/L
78-59-1	Isophorone		1.3	U	10	1.3	ug/L
111-91-1	bis(2-Chlore	oethoxy)methane	1.4	U	10	1.4	ug/L
120-82-1	1,2,4-Trichl	orobenzene	1.4	U	10	1.4	ug/L
91-20-3	Naphthalene		1.4	U	10	1.4	ug/L
106-47-8	4-Chloroani	line	0.870	U	10	0.870	ug/L
87-68-3	Hexachloro	butadiene	1.4	U	10	1.4	ug/L
91-57-6	2-Methylna	phthalene	1.1	U	10	1.1	ug/L
77-47-4	Hexachloro	cyclopentadiene	1.2	U	10	1.2	ug/L
91-58-7	2-Chloronar	ohthalene	1.4	U	10	1.4	ug/L
88-74-4	2-Nitroanili	ne	1.1	U	10	1.1	ug/L
131-11-3	Dimethylph	thalate	1.3	U	10	1.3	ug/L
208-96-8	Acenaphthy	lene	1.3	U	10	1.3	ug/L
606-20-2	2,6-Dinitrot	oluene	1.3	U	1 0	1.3	ug/L
99-09-2	3-Nitroanili	ne	1.0	U	10	1.0	ug/L
83-32-9	Acenaphthe	ne	1.4	U	10	1.4	ug/L
132-64-9	Dibenzofura	ın	1.3	U	10	1.3	ug/L
121-14-2	2,4-Dinitrot	oluene	1.2	U	10	1.2	ug/L
84-66-2	Diethylphth	alate	1.3	U	10	1.3	ug/L
7005-72-3	4-Chlorophe	enyl-phenylether	1.4	U	10	1.4	ug/L
86-73-7	Fluorene		1.4	U	10	1.4	ug/L
100-01-6	4-Nitroanili	ne	1.1	U	10	1.1	ug/L
86-30-6	N-Nitrosodi	phenylamine	1.3	U	10	1.3	ug/L
101-55-3	4-Bromophe	enyl-phenylether	1.5	U	10	1.5	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 11/28/2006 Date Received: 12/1/2006 Project: Morris park RI/FS TRC#46130-0010 Client Sample MW22S SDG No.: X5669 Lab Sample ID: X5669-03 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 990.0 mLExtract Vol: 1000 uL

File ID	Dilution Date Extract		Date Analyze	d An	•			
BF008643.D	1	12/4/2006	12/8/2006	BF	113006			
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units	
TARGETS		,						
118-74-1	Hexachloro		1.2	U	10	1.2	ug/L	
85-01-8	Phenanthrer	ne	1.4	U	10	1.4	ug/L	
120-12-7	Anthracene		1.4	U	10	1.4	ug/L	
86-74-8	Carbazole		1.3	U	10	1.3	ug/L	
84-74-2	Di-n-butylp		1.3	U	10	1.3	ug/L	
206-44-0	Fluoranthen	e	1.2	U	10	1.2	ug/L	
129-00-0	Pyrene		1.5	U	10	1.5	ug/L	
85-68-7	Butylbenzyl	phthalate	1.4	U	10	1.4	ug/L	
91-94-1	3,3-Dichloro	obenzidine	1.1	U	20	1.1	ug/L	
56-55-3	Benzo(a)ant	thracene	1.1	U	10	1.1	ug/L	
218-01-9	Chrysene		1.7	U	10	1.7	ug/L	
117-81-7	bis(2-Ethylhexyl)phthalate		2.5	JB	10	1.5	ug/L	
117-84-0	Di-n-octyl p	hthalate	1.3	U	10	1.3	ug/L	
205-99-2	Benzo(b)flu	oranthene	0.760	U	10	0.760	ug/L	
207-08-9	Benzo(k)flu	oranthene	1.9	U	10	1.9	ug/L	
50-32-8	Benzo(a)pyr	rene	1.2	U	10	1.2	ug/L	
193-39-5	Indeno(1,2,3	3-cd)pyrene	0.840	U	10	0.840	ug/L	
53-70-3	Dibenz(a,h)	anthracene	0.870	U	10	0.870	ug/L	
191-24-2	Benzo(g,h,i))perylene	1.1	U	10	1.1	ug/L	
SURROGATES								
4165-60-0	Nitrobenzen	ne-d5	68.45	68 %	35 - 114		SPK: 10	
321-60-8	2-Fluorobip	henyl	63.05	63 %	43 - 116		SPK: 10	
1718-51-0	Terphenyl-d	114	63.36	63 %	33 - 141		SPK: 10	
INTERNAL STANE	ARDS							
3855-82-1	1,4-Dichloro	obenzene-d4	29249	3.94				
1146-65-2	Naphthalene	e-d8	118378	5.10				
15067-26-2	Acenaphthe		60459	6.78				
1517-22-2	Phenanthren	ne-d10	80595	8.24				
1719-03-5	Chrysene-d	12	76492	10.84				
1520-96-3	Perylene-d1		57294	12.29				

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client:	TRC Environmental Corp., NY	Date Collected:	11/29/2006		
Project:	Morris park RI/FS TRC#46130-0010	Date Received:	12/1/2006		
Client Sample	MW23S	SDG No.:	X5669		
Lab Sample ID:	X5669-04	Matrix:	WATER		
Analytical Method:	8270	% Moisture:	100		
Sample Wt/Wol:	990.0 mL	Extract Vol:	1000 uL		

File ID BF008644.D	Dilution Date Extracted 1 12/4/2006		Date Analyzed 12/9/2006		Analytical Batch ID BF113006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							·····
111-44-4	bis(2-Chlore	oethyl)ether	1.5	U	10	1.5	ug/L
95-50-1	1,2-Dichlor	obenzene	1.2	U	10	1.2	ug/L
541-73-1	1,3-Dichlor	obenzene	1.2	U	10	1.2	ug/L
106-46-7	1,4-Dichlor	obenzene	1.2	U	10	1.2	ug/L
108-60-1	2,2-oxybis(l-Chloropropane)	1.2	U	10	1.2	ug/L
621-64-7	N-Nitroso-d	li-n-propylamine	1.4	U	10	1.4	ug/L
67-72-1	Hexachloro	ethane	1.2	U	10	1.2	ug/L
98-95-3	Nitrobenzer	ie	1.6	U	10	1.6	ug/L
78-59-1	Isophorone		1.3	U	10	1.3	ug/L
111-91-1	bis(2-Chlore	oethoxy)methane	1.4	U	10	1.4	ug/L
120-82-1	1,2,4-Trichl	orobenzene	1.4	U	10	1.4	ug/L
91-20-3	Naphthalen	9	1.4	U	10	1.4	ug/L
106-47-8	4-Chloroani	line	0.870	U	10	0.870	ug/L
87-68-3	Hexachloro	butadiene	1.4	U	10	1.4	ug/L
91-57-6	2-Methylna	phthalene	1.1	U	10	1.1	ug/L
77-47-4	Hexachloro	cyclopentadiene	1.2	U	10	1.2	ug/L
91-58-7	2-Chlorona	ohthalene	1.4	U	10	1.4	ug/L
88-74-4	2-Nitroanili	ne	1.1	U	10	. 1.1	ug/L
131-11-3	Dimethylph	thalate	1.3	U	10	1.3	ug/L
208-96-8	Acenaphthy	lene	1.3	U	10	1.3	ug/L
606-20-2	2,6-Dinitrot	oluene	1.3	U	10	1.3	ug/L
99-09-2	3-Nitroanili	ne	1.0	U	10	1.0	ug/L
83-32-9	Acenaphthe	ne	1.4	U	10	1.4	ug/L
132-64-9	Dibenzofura	ın	1.3	U	10	1.3	ug/L
121-14-2	2,4-Dinitrot	oluene	1.2	U	10	1.2	ug/L
84-66-2	Diethylphth	alate	1.3	U	10	1.3	ug/L
7005-72-3	4-Chlorophe	enyl-phenylether	1.4	U	10	1.4	ug/L
86-73-7	Fluorene		1.4	U	10	1.4	ug/L
100-01-6	4-Nitroanili	ne	1.1	U	10	1.1	ug/L
86-30-6	N-Nitrosodi	phenylamine	1.3	U	10	1.3	ug/L
101-55-3	4-Bromophe	enyl-phenylether	1.5	U	10	1.5	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Client: Date Collected: 11/29/2006 Date Received: Project: 12/1/2006 Morris park RI/FS TRC#46130-0010 Client Sample MW23S SDG No.: X5669 ID: Lab Sample ID: X5669-04 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 990.0 mLExtract Vol: 1000 uL

File ID	Dilution				alytical Ba	tch ID	
BF008644.D	1	12/4/2006	12/9/2006		113006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
118-74-1	Hexachlorol		1.2	U	10	1.2	ug/L
85-01-8	Phenanthrene		1.4	U	10	1.4	ug/L
120-12-7	Anthracene		1.4	U	10	1.4	ug/L
86-74-8	Carbazole		1.3	U	10	1.3	ug/L
84-74-2	Di-n-butylp	hthalate	1.3	U	10	1.3	ug/L
206-44-0	Fluoranthen	Fluoranthene		U	10	1.2	ug/L
129-00-0	Pyrene		1.5	U	10	1.5	ug/L
85-68-7	Butylbenzyl	Butylbenzylphthalate		U	10	1,4	ug/L
91-94-1	3,3-Dichloro	benzidine	1.1	U	20	1.1	ug/L
56-55-3	Benzo(a)ant	hracene	1.1	U	10	1.1	ug/L
218-01-9	Chrysene		1.7	U	10	1.7	ug/L
117-81-7	bis(2-Ethylhexyl)phthalate		2.1	JB	10	1.5	ug/L
117-84-0	Di-n-octyl p	hthalate	1.3	U	10	1.3	ug/L
205-99-2	Benzo(b)flu	oranthene	0.760	U	10	0.760	ug/L
207-08-9	Benzo(k)flu	oranthene	1.9	U	10	1.9	ug/L
50-32-8	Benzo(a)pyr	rene	1.2	U	10	1.2	ug/L
193-39-5	Indeno(1,2,3	3-cd)pyrene	0.840	U	10	0.840	ug/L
53-70-3	Dibenz(a,h)	anthracene	0.870	U	10	0.870	ug/L
191-24-2	Benzo(g,h,i)	perylene	1.1	U	10	1.1	ug/L
SURROGATES							
4165-60-0	Nitrobenzen	e-d5	64.67	65 %	35 - 114		SPK: 10
321-60-8	2-Fluorobipl	henyl	62.32	62 %	43 - 116		SPK: 10
1718-51-0	Terphenyl-d	14	63.17	63 %	33 - 141		SPK: 10
INTERNAL STAND	ARDS						
3855-82-1	1,4-Dichloro	benzene-d4	30079	3.94			
1146-65-2	Naphthalene	:-d8	121527	5.10			
15067-26-2	Acenaphthe	ne-d10	60759	6.78			
1517-22-2	Phenanthren	e-d10	80660	8.24			
1719-03-5	Chrysene-d1	.2	77657	10.84			
1520-96-3	Perylene-d1		56320	12.30			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 11/29/2006 Date Received: Morris park RI/FS TRC#46130-0010 12/1/2006 Project: Client Sample MW23D SDG No.: X5669 Eab Sample ID: X5669-05 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 950.0 Extract Vol: mL1000 uL

File ID BF008645.D	Dilution 1	Date Extracted Date Analyzed Analytical Bate 12/4/2006 12/9/2006 BF113006		atch ID			
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
111-44-4	bis(2-Chlore	• •	1.5	U	11	1.5	ug/L
95-50-1	1,2-Dichlore		1.3	U	11	1.3	ug/L
541-73-1	1,3-Dichlore	obenzene	1.3	U	11	1.3	ug/L
106-46-7	1,4-Dichlore	benzene	1.3	U	11	1.3	ug/L
108-60-1	2,2-oxybis(-Chloropropane)	1.3	U	11	1.3	ug/L
621-64-7	N-Nitroso-d	i-n-propylamine	1.5	U	11	1.5	ug/L
67-72-1	Hexachloro	ethane	1.2	U	11	1.2	ug/L
98-95-3	Nitrobenzen	e	1.7	U	11	1.7	ug/L
78-59-1	Isophorone		1.3	Ŭ	11	1.3	ug/L
111-91-1	bis(2-Chlore	ethoxy)methane	1.4	U	11	1.4	ug/L
120-82-1	1,2,4-Trichl	orobenzene	1.5	U	11	1.5	ug/L
91-20-3	Naphthalene	•	1.5	U	11	1.5	ug/L
106-47-8	4-Chloroani	line	0.900	U	11	0.900	ug/L
87-68-3	Hexachlorol	outadiene	1.4	U	11	1.4	ug/L
91-57-6	2-Methylna _l	ohthalene	1.1	U	11	1.1	ug/L
77-47-4	Hexachloro	cyclopentadiene	1.2	U	11	1.2	ug/L
91-58-7	2-Chloronap	hthalene	1.5	U	11	1.5	ug/L
88-74-4	2-Nitroanili	ne	1.1	U	11	1.1	ug/L
131-11-3	Dimethylph	thalate	1.3	U	11	1.3	ug/L
208-96-8	Acenaphthy	lene	1.4	U	11	1.4	ug/L
606-20-2	2,6-Dinitrot	oluene	1.3	U	11	1.3	ug/L
99-09-2	3-Nitroanili	ne	1.1	U	11	1.1	ug/L
83-32-9	Acenaphthe	ne	1.4	Ų	11	1.4	ug/L
132-64-9	Dibenzofura	n	1.4	U	11	1.4	ug/L
121-14-2	2,4-Dinitrot	oluene	1.3	U	11	1.3	ug/L
84-66-2	Diethylphth	alate	1.4	U	11	1.4	ug/L
7005-72-3	4-Chlorophe	nyl-phenylether	1.4	U	11	1.4	ug/L
86-73-7	Fluorene		1.5	U	11	1.5	ug/L
100-01-6	4-Nitroanili	ne	1.2	U	11	1.2	ug/L
86-30-6	N-Nitrosodi	phenylamine	1.3	U	11	1.3	ug/L
101-55-3		enyl-phenylether	1.6	U	11	1.6	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 11/29/2006 Date Received: 12/1/2006 Project: Morris park RI/FS TRC#46130-0010 Client Sample MW23D SDG No.: X5669 Lab Sample ID: X5669-05 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: Extract Vol: 950.0 mL1000 uL

File ID	Dilution	Date Extracted	Date Analyzed	An	alytical Ba	tch ID	
BF008645.D	1	12/4/2006	12/9/2006	BF	113006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
118-74-1	Hexachlorol		1.3	U	11	1.3	ug/L
85-01-8	Phenanthren	e	1.5	U	11	1.5	ug/L
120-12-7	Anthracene		1.5	U	11	1.5	ug/L
86-74-8	Carbazole		1.3	U	11	1.3	ug/L
84-74-2	Di-n-butylpl		1.4	U	11	1.4	ug/L
206-44-0	Fluoranthen	e	1.3	U	11	1.3	ug/L
129-00-0	Pyrene		1.5	U	11	1.5	ug/L
85-68-7	Butylbenzyl	phthalate	1.5	U	11	1.5	ug/L
91-94-1	3,3-Dichloro	benzidine	1.1	U	21	1.1	ug/L
56-55-3	Benzo(a)ant	hracene	1.2	U	11	1.2	ug/L
218-01-9	Chrysene		1.8	U	11	1.8	ug/L
117-81-7	bis(2-Ethylhexyl)phthalate		2.3	JB	11	1.6	ug/L
117-84-0	Di-n-octyl p	hthalate	1.4	U	11	1.4	ug/L
205-99-2	Benzo(b)flu	oranthene	0.790	U	11	0.790	ug/L
207-08-9	Benzo(k)flu	oranthene	2.0	U	11	2.0	ug/L
50-32-8	Benzo(a)pyr	ene	1.2	U	11	1.2	ug/L
193-39-5	Indeno(1,2,3	3-cd)pyrene	0.870	U	11	0.870	ug/L
53-70-3	Dibenz(a,h)	anthracene	0.910	U	11	0.910	ug/L
191-24-2	Benzo(g,h,i)	perylene	1.1	U	11	1.1	ug/L
SURROGATES							-
4165-60-0	Nitrobenzen	e-d5	69.78	70 %	35 - 114		SPK: 10
321-60-8	2-Fluorobip	henyl	65.71	66 %	43 - 116		SPK: 10
1718-51-0	Terphenyl-d	14	62.5	63 %	33 - 141		SPK: 10
INTERNAL STAND	ARDS						
3855-82-1	1,4-Dichloro	benzene-d4	31683	3.94			
1146-65-2	Naphthalene	:-d8	126906	5.10			
15067-26-2	Acenaphthe	ne-d10	63167	6.78			
1517-22-2	Phenanthren	e-d10	84350	8.24			
1719-03-5	Chrysene-dl	2	81272	10.84			
1520-96-3	Perylene-d1		60456	12.30			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: Project:	TRC Environmental Corp., NY Morris park RI/FS TRC#46130-0010	Date Collected: Date Received:	11/29/2006 12/1/2006
Client Sample	MW24S	SDG No.:	X5669
Lab Sample ID:	X5669-06	Matrix:	WATER
Analytical Method:	8270	% Moisture:	100
Sample Wt/Wol:	990.0 mL	Extract Vol:	1000 uL

File ID	Dilution	Date Extracted	Date Analyzed	An	Analytical Batch ID		
BF008646.D	1	12/4/2006	12/9/2006	BF	113006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
111-44-4	bis(2-Chloro	• •	1.5	U	10	1.5	ug/L
95-50-1	1,2-Dichloro	benzene	1.2	U	10	1.2	ug/L
541-73-1	1,3-Dichloro	benzene	1.2	Ŭ	10	1.2	ug/L
106-46-7	1,4-Dichloro	benzene	1.2	U	10	1.2	ug/L
108-60-1	2,2-oxybis(1	-Chloropropane)	1.2	U	10	1.2	ug/L
621-64-7	N-Nitroso-d	i-n-propylamine	1.4	U	10	1.4	ug/L
67-72-1	Hexachloro	ethane	1.2	U	10	1.2	ug/L
98-95-3	Nitrobenzen	e	1.6	U	10	1.6	ug/L
78-59-1	Isophorone		1.3	U	10	1.3	ug/L
111-91-1	bis(2-Chloro	ethoxy)methane	1.4	U	10	1.4	ug/L
120-82-1	1,2,4-Trichle	orobenzene	1.4	U	10	1.4	ug/L
91-20-3	Naphthalene	:	1.4	U	10	1.4	ug/L
106-47-8	4-Chloroani	line	0.870	U	10	0.870	ug/L
87-68-3	Hexachlorol	outadiene	1.4	U	10	1.4	ug/L
91-57-6	2-Methylna	ohthalene	1.1	U	10	1.1	ug/L
77-47-4	Hexachloro	cyclopentadiene	1.2	U	10	1.2	ug/L
91-58-7	2-Chloronar	hthalene	1.4	U	10	1.4	ug/L
88-74-4	2-Nitroanili	ne	1.1	U	10	1.1	ug/L
131-11-3	Dimethylph	thalate	1.3	U	10	1.3	ug/L
208-96-8	Acenaphthy	lene	1.3	U	10	1.3	ug/L
606-20-2	2,6-Dinitrot		1.3	U	10	1.3	ug/L
99-09-2	3-Nitroanili	ne	1.0	U	10	1.0	ug/L
83-32-9	Acenaphthe	ne	1.4	U	10	1.4	ug/L
132-64-9	Dibenzofura	ın	1.3	U	10	1.3	ug/L
121-14-2	2,4-Dinitrot	oluene	1.2	U	10	1.2	ug/L
84-66-2	Diethylphth	alate	1.3	U	10	1.3	ug/L
7005-72-3		enyl-phenylether	1.4	U	10	1.4	ug/L
86-73-7	Fluorene	- w -	1.4	U	10	1.4	ug/L
100-01-6	4-Nitroanili	ne	1.1	U	10	1.1	ug/L
86-30-6		phenylamine	1.3	U	10	1.3	ug/L
101-55-3		enyl-phenylether	1.5	U	10	1.5	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank N = Presumptive Evidence of a Compound

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 11/29/2006 Date Received: 12/1/2006 Project: Morris park RI/FS TRC#46130-0010 Client Sample MW24S SDG No.: X5669 Lab Sample ID: X5669-06 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 990.0 Extract Vol: mL1000 uL

File ID	Dilution Date Extracted		Date Analyze		Analytical Batch ID			
BF008646.D	1	12/4/2006	12/9/2006	BF	113006			
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units	
TARGETS								
118-74-1	Hexachlorol		1.2	U	10	1.2	ug/L	
85-01-8	Phenanthrer	le	1.4	U	10	1.4	ug/L	
120-12-7	Anthracene		1.4	U	10	1.4	ug/L	
86-74-8	Carbazole		1.3	U	10	1.3	ug/L	
84-74-2	Di-n-butylp		1.3	U	10	1.3	ug/L	
206-44-0	Fluoranthen	e	1,2	U	10	1.2	ug/L	
129-00-0	Pyrene		1.5	U	10	1.5	ug/L	
85-68-7	Butylbenzyl	phthalate	1.4	U	10	1.4	ug/L	
91-94-1	3,3-Dichloro	benzidine	1.1	U	20	1.1	ug/L	
56-55-3	Benzo(a)ant	Benzo(a)anthracene		U	10	1.1	ug/L	
218-01-9	Chrysene		1.7	U	10	1.7	ug/L	
117-81-7	bis(2-Ethylhexyl)phthalate		3.2	JB	10	1.5	ug/L	
117-84-0	Di-n-octyl phthalate		1.3	U	10	1.3	ug/L	
205-99-2	Benzo(b)flu	oranthene	0.760	U	10	0.760	ug/L	
207-08-9	Benzo(k)flu	oranthene	1.9	U	10	1.9	ug/L	
50-32-8	Benzo(a)pyr	ene	1.2	U	10	1.2	ug/L	
193-39-5	Indeno(1,2,3	3-cd)pyrene	0.840	υ	10	0.840	ug/L	
53-70-3	Dibenz(a,h)	anthracene	0.870	U	10	0.870	ug/L	
191-24-2	Benzo(g,h,i)	perylene	1.1	U	10	1.1	ug/L	
SURROGATES							_	
4165-60-0	Nitrobenzen	e-d5	67.88	68 %	35 - 114		SPK: 10	
321-60-8	2-Fluorobip	henyl	61.01	61 %	43 - 116		SPK: 10	
1718-51-0	Terphenyl-d	14	63.9	64 %	33 - 141		SPK: 10	
INTERNAL STAND	ARDS							
3855-82-1	1,4-Dichloro	benzene-d4	31546	3.94				
1146-65-2	Naphthalene	:-d8	129572	5.10				
15067-26-2	Acenaphthe	ne-d10	66106	6.78				
1517-22-2	Phenanthren	e-d10	86792	8.24				
1719-03-5	Chrysene-d1	2	82444	10.84				
1520-96-3	Perylene-dl		61231	12.29				

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 11/30/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/1/2006 Client Sample MW9-60 SDG No.: X5669 D: Lab Sample ID: X5669-07 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 990.0 Extract Vol: 1000 mLuL

File ID	Dilution	Date Extracted	Date Analyze	ed An	alytical I	Batch ID	
BF008647.D	1	12/4/2006	12/9/2006	BF	113006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS			1.5				
111-44-4	•	bis(2-Chloroethyl)ether		U	10	1.5	ug/L
95-50-1	1,2-Dichloro		1.2	U	10	1.2	ug/L
541-73-1	1,3-Dichloro	obenzene	1.2	U	10	1.2	ug/L
106-46-7	1,4-Dichloro	obenzene	1.2	U	10	1.2	ug/L
108-60-1	2,2-oxybis(1	-Chloropropane)	1.2	U	10	1.2	ug/L
621-64-7	N-Nitroso-d	i-n-propylamine	1.4	U	10	1.4	ug/L
67-72-1	Hexachloro	ethane	1.2	U	10	1.2	ug/L
98-95-3	Nitrobenzen	e	1.6	U	10	1.6	ug/L
78-59-1	Isophorone		1.3	U	10	1.3	ug/L
111-91-1	bis(2-Chloro	ethoxy)methane	1.4	U	10	1.4	ug/L
120-82-1	1,2,4-Trichl	orobenzene	1.4	U	10	1.4	ug/L
91-20-3	Naphthalene		1.4	U	10	1.4	ug/L
106-47-8	4-Chloroani	line	0.870	U	10	0.870	ug/L
87-68-3	Hexachlorol	outadiene	1.4	U	10	1.4	ug/L
91-57-6	2-Methylna	ohthalene	1.1	U	10	1.1	ug/L
77-47-4	Hexachloro	cyclopentadiene	1.2	U	10	1.2	ug/L
91-58-7	2-Chloronar	hthalene	1.4	U	10	1.4	ug/L
88-74-4	2-Nitroanili	ne	1.1	U	10	1.1	ug/L
131-11-3	Dimethylph	thalate	1.3	U	10	1.3	ug/L
208-96-8	Acenaphthy	lene	1.3	U	10	1.3	ug/L
606-20-2	2,6-Dinitrot	oluene	1.3	U	10	1.3	ug/L
99-09-2	3-Nitroanili	ne	1.0	U	10	1.0	ug/L
83-32-9	Acenaphthe	ne	1.4	U	10	1.4	ug/L
132-64-9	Dibenzofura	ın	1.3	U	10	1.3	ug/L
121-14-2	2,4-Dinitrot	oluene	1.2	U	10	1.2	ug/L
84-66-2	Diethylphth	alate	1.3	U	10	1.3	ug/L
7005-72-3	- -	enyl-phenylether	1.4	U	10	1.4	ug/L
86-73-7	Fluorene		1.4	U	10	1.4	ug/L
100-01-6	4-Nitroanili	ne	1.1	U	10	1.1	ug/L
86-30-6	N-Nitrosodi	phenylamine	1.3	U	10	1.3	ug/L
101-55-3		enyl-phenylether	1.5	U	10	1.5	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 11/30/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/1/2006 Client Sample MW9-60 SDG No.: X5669 Lab Sample ID: X5669-07 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 990.0 mLExtract Vol: 1000 uL

File ID	Dilution Date Extracted		Date Analyzed	l An	Analytical Batch ID BF113006			
BF008647.D	1	12/4/2006	12/4/2006 12/9/2006					
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units	
TARGETS								
118-74-1	Hexachlorob		1.2	U	10	1.2	ug/L	
85-01-8	Phenanthren	e	1.4	U	10	1.4	ug/L	
120-12-7	Anthracene		1.4	U	10	1.4	ug/L	
86-74-8	Carbazole		1.3	U	10	1.3	ug/L	
84-74-2	Di-n-butylph	nthalate	1.3	U	10	1.3	ug/L	
206-44-0	Fluoranthene	3	1.2	U	10	1.2	ug/L	
129-00-0	Pyrene		1.5	U	10	1.5	ug/L	
85-68-7	Butylbenzylj	phthalate	1.4	U	10	1.4	ug/L	
91-94-1	3,3-Dichloro	benzidine	1.1	U	20	1.1	ug/L	
56-55-3	Benzo(a)antl	nracene	1.1	U	10	1.1	ug/L	
218-01-9	Chrysene		1.7	U	10	1.7	ug/L	
117-81-7	bis(2-Ethylh	exyl)phthalate	4.3	JB	10	1.5	ug/L	
117-84-0	Di-n-octyl pl	hthalate	1.3	U	10	1.3	ug/L	
205-99-2	Benzo(b)fluo	oranthene	0.760	U	10	0.760	ug/L	
207-08-9	Benzo(k)fluo	oranthene	1.9	U	10	1.9	ug/L	
50-32-8	Benzo(a)pyre	ene	1.2	U	10	1.2	ug/L	
193-39-5	Indeno(1,2,3	-cd)рутепе	0.840	U	10	0.840	ug/L	
53-70-3	Dibenz(a,h)a	inthracene	0.870	U	10	0.870	ug/L	
191-24-2	Benzo(g,h,i)	perylene	1.1	U	10	1.1	ug/L	
SURROGATES								
4165-60-0	Nitrobenzene	e-d5	61.53	62 %	35 - 114		SPK: 10	
321-60-8	2-Fluorobiph	nenyl	58.5	59 %	43 - 116		SPK: 10	
1718-51-0	Terphenyl-d	14	63.01	63 %	33 - 141		SPK: 10	
INTERNAL STAND	ARDS							
3855-82-1	1,4-Dichloro	benzene-d4	31948	3.94				
1146-65-2	Naphthalene	-d8	132737	5.10				
15067-26-2	Acenaphthen		64204	6.78				
1517-22-2	Phenanthren		86918	8.24				
1719-03-5	Chrysene-d1		82116	10.84				
1520-96-3	Perylene-d12		60316	12.29				

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 11/30/2006 Date Received: 12/1/2006 Morris park RI/FS TRC#46130-0010 Project: Client Sample SDG No.: X5669 MW10-160 Lab Sample ID: WATER X5669-08 Matrix: Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 920.0 mLExtract Vol: 1000 uL

File ID BF008648.D	Dilution 1	Date Extracted 12/4/2006	Date Analyze 12/9/2006		alytical B 113006	Satch ID	
CAS Number	Parameter		Сопс.	Qualifier	RL	MDL	Units
TARGETS							
111-44-4	bis(2-Chlore		1.6	U	11	1.6	ug/L
95-50-1	1,2-Dichlore		1.3	U	11	1.3	ug/L
541-73-1	1,3-Dichlore		1.3	U	11	1.3	ug/L
106-46-7	1,4-Dichlore		1.3	U	11	1.3	ug/L
108-60-1		l-Chloropropane)	1.3	U	11	1.3	ug/L
621-64-7		i-n-propylamine	1.5	U	11	1.5	ug/L
67-72-1	Hexachloro		1.3	U	11	1.3	ug/L
98-95-3	Nitrobenzer	ıe	1.7	U	11	1.7	ug/L
78-59-1	Isophorone		1.4	U	11	1.4	ug/L
111-91-1		oethoxy)methane	1.5	U	11	1.5	ug/L
120-82-1	1,2,4-Trichl		1.5	U	11	1.5	ug/L
91-20-3	Naphthalen		1.5	U	11	1.5	ug/L
106-47-8	4-Chloroani		0.930	U	11	0.930	ug/L
87-68-3	Hexachloro		1.5	U	11	1.5	ug/L
91-57-6	2-Methylna		1.2	U	11	1.2	ug/L
77-47-4		cyclopentadiene	1.3	U	11	1.3	ug/L
91-58-7	2-Chlorona		1.5	U	11	1.5	ug/L
88-74-4	2-Nitroanili	ne	1.2	U	11	1.2	ug/L
131-11-3	Dimethylph	thalate	1.4	U	11	1.4	ug/L
208-96-8	Acenaphthy	lene	1.4	U	11	1.4	ug/L
606-20-2	2,6-Dinitrot		1.4	U	11	1.4	ug/L
99-09-2	3-Nitroanili	ne	1.1	U	11	1.1	ug/L
83-32-9	Acenaphthe	ne	1.5	U	11	1.5	ug/L
132-64-9	Dibenzofura	ın	1.4	U	11	1.4	ug/L
121-14-2	2,4-Dinitrot	oluene	1.3	U	11	1.3	ug/L
84-66-2	Diethylphth	alate	1.4	U	11	1.4	ug/L
7005-72-3	4-Chloroph	enyl-phenylether	1.5	U	11	1.5	ug/L
86-73-7	Fluorene		1.5	U	11	1.5	ug/L
100-01-6	4-Nitroanili	ne	1.2	U	11	1.2	ug/L
86-30-6	N-Nitrosodi	phenylamine	1.4	U	11	1.4	ug/L
101-55-3	4-Bromoph	enyl-phenylether	1.6	U	11	1.6	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 11/30/2006 Project: Date Received: 12/1/2006 Morris park RI/FS TRC#46130-0010 Client Sample MW10-160 SDG No.: X5669 Lab Sample ID: X5669-08 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 920.0 Extract Vol: mL1000 uL

File ID	Dilution	Date Extracted	Date Analyze	d An	alytical Ba	tch ID	
BF008648.D	1 12/4/2006		12/9/2006	BF	113006		J
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							· · · · · · · · · · · · · · · · · · ·
118-74-1	Hexachlorob		1.3	U	11	1.3	ug/L
85-01-8	Phenanthren	e	1.5	U	11	1.5	ug/L
120-12-7	Anthracene		1.5	U	11	1.5	ug/L
86-74-8	Carbazole		1.4	U	11	1.4	ug/L
84-74-2	Di-n-butylph		1.4	U	11	1.4	ug/L
206-44-0	Fluoranthen	3	1.3	U	11	1.3	ug/L
129-00-0	Pyrene		1.6	U	11	1.6	ug/L
85-68-7	Butylbenzyl	phthalate	1.6	U	11	1.6	ug/L
91-94-1	3,3-Dichloro	benzidine	1.1	U	22	1.1	ug/L
56-55-3	Benzo(a)ant	hracene	1.2	U	11	1.2	ug/L
218-01-9	Chrysene		1.8	U	11	1.8	ug/L
117-81-7	bis(2-Ethylh	exyl)phthalate	8.1	JB	11	1.7	ug/L
117-84-0	Di-n-octyl p	hthalate	1.4	U	11	1.4	ug/L
205-99-2	Benzo(b)flue	oranthene	0.810	U	11	0.810	ug/L
207-08-9	Benzo(k)flu	oranthene	2.0	U	11	2.0	ug/L
50-32-8	Benzo(a)pyr	ene	1.3	U	11	1.3	ug/L
193-39-5	Indeno(1,2,3	-cd)pyrene	0.900	U	11	0.900	ug/L
53-70-3	Dibenz(a,h)a	inthracene	0.940	U	11	0.940	ug/L
191-24-2	Benzo(g,h,i)	perylene	1.2	U	11	1.2	ug/L
SURROGATES							
4165-60-0	Nitrobenzen	e-d5	68.31	68 %	35 - 114		SPK: 10
321-60-8	2-Fluorobiph	nenyl	62.46	62 %	43 - 116		SPK: 10
1718-51-0	Terphenyl-d	14	62.78	63 %	33 - 141		SPK: 10
INTERNAL STAND	ARDS						
3855-82-1	1,4-Dichloro	benzene-d4	31166	3.94			
1146-65-2	Naphthalene	-d8	126068	5.10			
15067-26-2	Acenaphther	ne-d10	64521	6.78			
1517-22-2	Phenanthren	e-d10	84712	8.24			
1719-03-5	Chrysene-dl	2	81910	10.84			
1520-96-3	Perylene-d12	2	57124	12.29			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client:	TRC Environmental Corp., NY	Date Collected:	11/30/2006		
Project:	Morris park RI/FS TRC#46130-0010	Date Received:	12/1/2006		
Client Sample	MW10-60	SDG No.:	X5669		
Lab Sample ID:	X5669-09	Matrix:	WATER		
Analytical Method:	8270	% Moisture:	100		
Sample Wt/Wol:	990.0 mL	Extract Vol:	1000 uL		

File ID BF008649.D	Dilution 1	Date Extracted 12/4/2006	Date Analyze 12/9/2006		alytical B 113006	latch ID	
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
111-44-4	bis(2-Chloroethyl)ether		1.5	U	10	1.5	ug/L
95-50-1	1,2-Dichloro	obenzene	1.2	U	10	1.2	ug/L
541-73-1	1,3-Dichloro	obenzene	1.2	U	10	1.2	ug/L
106-46-7	1,4-Dichloro	obenzene	1.2	U	10	1.2	ug/L
108-60-1	2,2-oxybis(l-Chloropropane)	1.2	U	10	1.2	ug/L
621-64-7	N-Nitroso-d	i-n-propylamine	1.4	U	10	1.4	ug/L
67-72-1	Hexachloro	ethane	1.2	U	10	1.2	ug/L
98-95-3	Nitrobenzen	ie	1.6	U	10	1.6	ug/L
78-59-1	Isophorone		1.3	U	10	1.3	ug/L
111-91-1	bis(2-Chlore	oethoxy)methane	1.4	U	10	1.4	ug/L
120-82-1	1,2,4-Trichl	orobenzene	1.4	U	10	1.4	ug/L
91-20-3	Naphthalene	•	1.4	U	10	1.4	ug/L
106-47-8	4-Chloroani	line	0.870	U	10	0.870	ug/L
87-68-3	Hexachlorol	outadiene	1.4	U	10	1.4	ug/L
91-57-6	2-Methylna	phthalene	1.1	U	10	1.1	ug/L
77-47-4	Hexachloro	cyclopentadiene	1.2	U	10	1.2	ug/L
91-58-7	2-Chloronap	ohthalene	1.4	U	10	1.4	ug/L
88-74-4	2-Nitroanili	ne	1.1	U	10	1.1	ug/L
131-11-3	Dimethylph	thalate	1.3	U	10	1.3	ug/L
208-96-8	Acenaphthy	lene	1.3	U	10	1.3	ug/L
606-20-2	2,6-Dinitrot	oluen e	1.3	U	10	1.3	ug/L
99-09-2	3-Nitroanili	ne	1.0	U	10	1.0	ug/L
83-32-9	Acenaphthe	ne	1.4	U	10	1.4	ug/L
132-64-9	Dibenzofura	ın	1.3	U	10	1.3	ug/L
121-14-2	2,4-Dinitrot	oluene	1.2	U	10	1.2	ug/L
84-66-2	Diethylphth	alate	1.3	U	10	1.3	ug/L
7005-72-3	4-Chlorophe	enyl-phenylether	1.4	U	10	1.4	ug/L
86-73-7	Fluorene		1.4	U	10	1.4	ug/L
100-01-6	4-Nitroanili	ne	1.1	U	10	1.1	ug/L
86-30-6	N-Nitrosodi	phenylamine	1.3	U	10	1.3	ug/L
101-55-3	4-Bromophe	enyl-phenylether	1.5	U	10	1.5	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 11/30/2006 Project: Date Received: 12/1/2006 Morris park RI/FS TRC#46130-0010 Client Sample MW10-60 SDG No.: X5669 Lab Sample ID: X5669-09 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 990.0 Extract Vol: mL1000 uL

File ID BF008649.D	Dilution 1	Date Extracted 12/4/2006	Date Analyzed 12/9/2006		alytical Ba	itch ID	
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
118-74-1	Hexachlorob	enzene	1.2	U	10	1.2	ug/L
85-01-8	Phenanthrene	e	1.4	U	10	1.4	ug/L
120-12-7	Anthracene		1.4	U	10	1.4	ug/L
86-74-8	Carbazole		1.3	U	10	1.3	ug/L
84-74-2	Di-n-butylph	thalate	1.3	U	10	1.3	ug/L
206-44-0	Fluoranthene		1.2	U	10	1.2	ug/L
129-00-0	Pyrene		1.5	U	10	1.5	ug/L
85-68-7	Butylbenzylp	hthalate	1.4	U	10	1.4	ug/L
91-94-1	3,3-Dichloro	benzidine	1.1	U	20	1.1	ug/L
56-55-3	Benzo(a)anth	racene	1.1	U	10	1.1	ug/L
218-01-9	Chrysene		1.7	U	10	1.7	ug/L
117-81-7	bis(2-Ethylhe	exyl)phthalate	8.5	JВ	10	1.5	ug/L
117-84-0	Di-n-octyl ph	thalate	1.3	U	10	1.3	ug/L
205-99-2	Benzo(b)fluo	ranthene	0.760	U	10	0.760	ug/L
207-08-9	Benzo(k)fluo	ranthene	1.9	U	10	1.9	ug/L
50-32-8	Benzo(a)pyre	ene	1.2	U	10	1.2	ug/L
193-39-5	Indeno(1,2,3-	-cd)pyrene	0.840	U	10	0.840	ug/L
53-70-3	Dibenz(a,h)a	nthracene	0.870	U	10	0.870	ug/L
191-24-2	Benzo(g,h,i)p	perylene	1.1	U	10	1.1	ug/L
SURROGATES							_
4165-60-0	Nitrobenzene	:-d5	69.87	70 %	35 - 114		SPK: 10
321-60-8	2-Fluorobiph	eny1	63.17	63 %	43 - 116		SPK: 10
1718-51-0	Terphenyl-d1	4	63.21	63 %	33 - 141		SPK: 10
INTERNAL STAND	ARDS						
3855-82-1	1,4-Dichlorol	oenzene-d4	31921	3.94			
1146-65-2	Naphthalenc-	d8	129966	5.10			
15067-26-2	Acenaphthen	e-d10	66265	6.78			
1517-22-2	Phenanthrene		88251	8.24			
1719-03-5	Chrysene-d12	2	81724	10.84			
1520-96-3	Perylene-d12		57485	12.29			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client:	TRC Environmental Corp., NY	Date Collected:	11/30/2006	
Project:	Morris park RI/FS TRC#46130-0010	Date Received:	12/1/2006	
Client Sample	MW11-60	SDG No.:	X5669	
Lab Sample ID:	X5669-10	Matrix:	WATER	
Analytical Method:	8270	% Moisture:	100	
Sample Wt/Wol:	930.0 mL	Extract Vol:	1000 uL	

File ID BF008650.D	Dilution 1	Date Extracted 12/4/2006	Date Analyzo 12/9/2006		Analytical Ba BF113006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
111-44-4	bis(2-Chlore	oethyl)ether	1.5	U	11	1.5	ug/L
95-50-1	1,2-Dichlor	obenzene	1.3	U	11	1.3	ug/L
541-73-1	1,3-Dichlor	obenzene	1.3	U	11	1.3	ug/L
106-46-7	1,4-Dichlore	obenzene	1.3	U	11	1.3	ug/L
108-60-1	2,2-oxybis(I-Chloropropane)	1.3	U	11	1.3	ug/L
621-64-7	N-Nitroso-d	i-n-propylamine	1.5	U	11	1.5	ug/L
67-72-1	Hexachloro	ethane	1.3	U	11	1.3	ug/L
98-95-3	Nitrobenzer	e	1.7	U	11	1.7	ug/L
78-59-1	Isophorone		1.4	U	11	1.4	ug/L
111-91-1	bis(2-Chlore	oethoxy)methane	1.5	U	11	1.5	ug/L
120-82-1	1,2,4-Trichl	orobenzene	1.5	U	11	1.5	ug/L
91-20-3	Naphthalene	;	1.5	U	11	1.5	ug/L
106-47-8	4-Chloroani	line	0.920	U	11	0.920	ug/L
87-68-3	Hexachloro	outadiene	1.5	U	11	1.5	ug/L
91-57-6	2-Methylna	ohthalene	1.2	U	11	1.2	ug/L
77-47-4	Hexachloro	cyclopentadiene	1.2	U	11	1.2	ug/L
91-58-7	2-Chloronar	hthalene	1.5	U	11	1.5	ug/L
88-74-4	2-Nitroanili	ne	1.1	U	11	1.1	ug/L
131-11-3	Dimethylph	thalate	1.3	U	11	1.3	ug/L
208-96-8	Acenaphthy	lene	1.4	U	11	1.4	ug/L
606-20-2	2,6-Dinitrot	oluene	1.3	U	11	1.3	ug/L
99-09-2	3-Nitroanili	ne	1.1	U	11	1.1	ug/L
83-32-9	Acenaphthe	ne	1.4	U	11	1.4	ug/L
132-64-9	Dibenzofura	in	1.4	U	11	1.4	ug/L
121-14-2	2,4-Dinitrot	oluene	1.3	U	11	1.3	ug/L
84-66-2	Diethylphth	alate	1.4	U	11	1.4	ug/L
7005-72-3	4-Chlorophe	enyl-phenylether	1.5	U	11	1.5	ug/L
86-73-7	Fluorene	•	1.5	U	11	1.5	ug/L
100-01-6	4-Nitroanili	ne	1.2	U	11	1.2	ug/L
86-30-6	N-Nitrosodi	phenylamine	1.3	U	11	1.3	ug/L
101-55-3	4-Bromophe	nyl-phenylether	1.6	U	11	1.6	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 11/30/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/1/2006 Client Sample MW11-60 SDG No.: X5669 Lab Sample ID: X5669-10 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 930.0 mL Extract Vol: 1000 uL

Dilution	Date Extracted	Date Analyze	d An	alytical Ba	itch ID	
1	12/4/2006	12/9/2006	BF	113006		
Parameter		Conc.	Qualifier	RL	MDL	Units
			U	11	1.3	ug/L
	e			11	1.5	ug/L
		1.5	U	11	1.5	ug/L
		1.4	U	11	1.4	ug/L
Di-n-butylpl	nthalate	1.4	U	11	1.4	ug/L
Fluoranthen	e	1.3	U	11	1.3	ug/L
Pyrene		1.6	U	11	1.6	ug/L
Butylbenzyl	phthalate	1.5	U	11	1.5	ug/L
3,3-Dichloro	benzidine	1.1	U	22	1.1	ug/L
Benzo(a)ant	hracene	1.2	U	11	1.2	ug/L
Chrysene		1.8	U	11	1.8	ug/L
bis(2-Ethylh	exyl)phthalate	2.4	JВ	11	1.6	ug/L
Di-n-octyl p	hthalate	1.4	U	11	1.4	ug/L
Benzo(b)flue	oranthene	0.810	U	11	0.810	ug/L
Benzo(k)flue	oranthene	2.0	U	11	2.0	ug/L
Benzo(a)pyr	ene	1.3	U	11	1.3	ug/L
Indeno(1,2,3	-cd)pyrene	0.890	U	11	0.890	ug/L
Dibenz(a,h)a	inthracene	0.930	U	11	0.930	ug/L
Benzo(g,h,i)	perylene	1.2	U	11	1.2	ug/L

Nitrobenzen	e-d5	76.03	76 %	35 - 114		SPK: 10
2-Fluorobiph	nenyl	69.85	70 %	43 - 116		SPK: 10
Terphenyl-d	14	69.56	70 %	33 - 141		SPK: 10
ARDS						
1,4-Dichloro	benzene-d4	30221	3.94			
Naphthalene	-d8	123557	5.10			
Acenaphther	ie-d10	61716	6.78			
Phenanthren	e-d10	81170	8.24			
Chrysene-d1	2	78711	10.84			
•		55409	12.29			
	Parameter Hexachlorot Phenanthren Anthracene Carbazole Di-n-butylph Fluoranthene Pyrene Butylbenzyl 3,3-Dichlorot Benzo(a)ant Chrysene bis(2-Ethylh Di-n-octyl p Benzo(b)fluo Benzo(a)pyr Indeno(1,2,3 Dibenz(a,h)a Benzo(g,h,i) Nitrobenzen 2-Fluorobiph Terphenyl-d ARDS 1,4-Dichlorot Naphthalene Acenaphther Phenanthren Chrysene-d1	1 12/4/2006 Parameter Hexachlorobenzene Phenanthrene Anthracene Carbazole Di-n-butylphthalate Fluoranthene Pyrene Butylbenzylphthalate 3,3-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-Ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	1 12/4/2006 12/9/2006 Parameter Conc. Hexachlorobenzene 1.3 Phenanthrene 1.5 Anthracene 1.5 Carbazole 1.4 Di-n-butylphthalate 1.4 Fluoranthene 1.3 Pyrene 1.6 Butylbenzylphthalate 1.5 3,3-Dichlorobenzidine 1.1 Benzo(a)anthracene 1.2 Chrysene 1.8 bis(2-Ethylhexyl)phthalate 2.4 Di-n-octyl phthalate 1.4 Benzo(b)fluoranthene 0.810 Benzo(k)fluoranthene 2.0 Benzo(a)pyrene 1.3 Indeno(1,2,3-cd)pyrene 0.890 Dibenz(a,h)anthracene 0.930 Benzo(g,h,i)perylene 1.2 Nitrobenzene-d5 76.03 2-Fluorobiphenyl 69.85 Terphenyl-d14 69.56 ARDS 1,4-Dichlorobenzene-d4 30221 Naphthalene-d8 123557 Acenaphthene-d10 61	Parameter Conc. Qualifier Hexachlorobenzene 1.3 U Phenanthrene 1.5 U Anthracene 1.5 U Carbazole 1.4 U Di-n-butylphthalate 1.4 U Fluoranthene 1.3 U Pyrene 1.6 U Butylbenzylphthalate 1.5 U 3,3-Dichlorobenzidine 1.1 U Benzo(a)anthracene 1.2 U Chrysene 1.8 U bis(2-Ethylhexyl)phthalate 2.4 JB Di-n-octyl phthalate 1.4 U Benzo(b)fluoranthene 0.810 U Benzo(k)fluoranthene 2.0 U Benzo(a)pyrene 1.3 U Indeno(1,2,3-cd)pyrene 0.890 U Dibenz(a,h)anthracene 0.930 U Benzo(g,h,i)perylene 1.2 U Nitrobenzene-d5 76.03 76 % 2-Fluorobiphenyl 69.85	Parameter Conc. Qualifier RL Hexachlorobenzene 1.3 U 11 Phenanthrene 1.5 U 11 Anthracene 1.5 U 11 Carbazole 1.4 U 11 Di-n-butylphthalate 1.4 U 11 Fluoranthene 1.3 U 11 Pyrene 1.6 U 11 Butylbenzylphthalate 1.5 U 11 Butylbenzylphthalate 1.5 U 11 Butylbenzylphthalate 1.5 U 11 Butylbenzylphthalate 1.5 U 11 Benzo(a)anthracene 1.2 U 11 Benzo(a)anthracene 1.8 U 11 bis(2-Ethylhexyl)phthalate 2.4 JB 11 Di-n-octyl phthalate 1.4 U 11 Benzo(b)fluoranthene 0.810 U 11 Benzo(k)fluoranthene 0.810 U 11 <td> 1 12/4/2006 12/9/2006 RF113006 </td>	1 12/4/2006 12/9/2006 RF113006

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 11/30/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/1/2006 Client Sample MW11-160 SDG No.: X5669 ID: Lab Sample ID: X5669-11 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 940.0 Extract Vol: 1000 mLuL

File ID	Dilution	Date Extracted	Date Analyzed	l An	alytical B	atch ID	
BF008651.D	1 12/4/2006		12/9/2006	BF	113006		j
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
111-44-4	bis(2-Chloro	ethyl)ether	1.5	U	11	1.5	ug/L
95-50-1	1,2-Dichloro	benzene	1.3	U	11	1.3	ug/L
541-73-1	1,3-Dichloro	benzene	1.3	U	11	1.3	ug/L
106-46-7	1,4-Dichlore	benzene	1.3	U	11	1.3	ug/L
108-60-1	2,2-oxybis(1	-Chloropropane)	1.3	U	11	1.3	ug/L
621-64-7	N-Nitroso-di	i-n-propylamine	1.5	U	11	1.5	ug/L
67-72-1	Hexachloroe	thane	1.2	U	11	1.2	ug/L
98-95-3	Nitrobenzen	e	1.7	U	11	1.7	ug/L
78-59-1	Isophorone		1.3	U	11	1.3	ug/L
111-91-1	bis(2-Chloro	ethoxy)methane	1.5	U	11	1.5	ug/L
120-82-1	1,2,4-Trichlo	probenzene	1.5	U	11	1.5	ug/L
91-20-3	Naphthalene		1.5	U	11	1.5	ug/L
106-47-8	4-Chloroanil	ine	0.910	U	11	0.910	ug/L
87-68-3	Hexachlorob	utadiene	1.4	U	11	1.4	ug/L
91-57-6	2-Methylnap	hthalene	1.2	U	11	1.2	ug/L
77-47-4	Hexachloroc	yclopentadiene	1.2	U	11	1.2	ug/L
91-58-7	2-Chloronap	hthalene	1.5	U	11	1.5	ug/L
88-74-4	2-Nitroanilin	ie	1.1	U	11	1.1	ug/L
131-11-3	Dimethylpht	halate	1.3	U	11	1.3	ug/L
208-96-8	Acenaphthyl	ene	1.4	U	11	1.4	ug/L
606-20-2	2,6-Dinitroto	luene	1.3	U	11	1.3	ug/L
99-09-2	3-Nitroanilin	ie	1.1	U	11	1.1	ug/L
83-32-9	Acenaphther	ie	1.4	U	11	1.4	ug/L
132-64-9	Dibenzofura	n	1.4	U	11	1.4	ug/L
121-14-2	2,4-Dinitroto	luene	1.3	U	11	1.3	ug/L
84-66-2	Diethylphtha	late	1,4	U	11	1.4	ug/L
7005-72-3	4-Chlorophe	nyl-phenylether	1.4	U	11	1.4	ug/L
86-73-7	Fluorene		1.5	U	11	1.5	ug/L
100-01-6	4-Nitroanilin	e	1.2	U	11	1.2	ug/L
86-30-6	N-Nitrosodip	henylamine	1.3	U	11	1.3	ug/L
101-55-3		nyl-phenylether	1.6	U	11	1.6	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 11/30/2006 Project: Date Received: 12/1/2006 Morris park RI/FS TRC#46130-0010 Client Sample MW11-160 SDG No.: X5669 ID: Lab Sample ID: X5669-11 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 940.0 mLExtract Vol: 1000 uL

File ID	Dilution	Date Extracted	Date Analyz		alytical Ba	atch ID	
BF008651.D	1	12/4/2006	12/9/2006	BF	113006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
118-74-1	Hexachlorob		1.3	U	11	1.3	ug/L
85-01-8	Phenanthren	e	1.5	U	11	1.5	ug/L
120-12-7	Anthracene		1.5	U	11	1.5	ug/L
86-74-8	Carbazole		1.4	U	11	1.4	ug/L
84-74-2	Di-n-butylph	ıthalate	1.4	U	11	1.4	ug/L
206-44-0	Fluoranthene	•	1.3	U	11	1.3	ug/L
129-00-0	Pyrene		1.5	U	11	1.5	ug/L
85-68-7	Butylbenzyl	phthalate	1.5	U	11	1.5	ug/L
91-94-1	3,3-Dichloro	benzidine	1.1	U	21	1.1	ug/L
56-55-3	Benzo(a)antl	nracene	1.2	U	11	1.2	ug/L
218-01-9	Chrysene		1.8	U	11	1.8	ug/L
117-81-7	bis(2-Ethylh	exyl)phthalate	1.6	Ŭ	11	1.6	ug/L
117-84-0	Di-n-octyl pl	hthalate	1.4	U	11	1.4	ug/L
205-99-2	Benzo(b)fluo	oranthene	0.800	U	11	0.800	ug/L
207-08-9	Benzo(k)fluo	oranthene	2.0	U	11	2.0	ug/L
50-32-8	Benzo(a)pyr	ene	1.2	U	11	1.2	ug/L
193-39-5	Indeno(1,2,3	-cd)pyrene	0.880	U	11	0.880	ug/L
53-70-3	Dibenz(a,h)a	inthracene	0.920	U	11	0.920	ug/L
191-24-2	Benzo(g,h,i)	perylene	1.2	U	11	1.2	ug/L
SURROGATES							
4165-60-0	Nitrobenzene	e-d5	72.06	72 %	35 - 114		SPK: 10
321-60-8	2-Fluorobiph	nenyl	65.86	66 %	43 - 116		SPK: 10
1718-51-0	Terphenyl-d	14	66.36	66 %	33 - 141		SPK: 10
INTERNAL STAND	ARDS						
3855-82-1	1,4-Dichloro	benzene-d4	31388	3.94			
1146-65-2	Naphthalene	-d8	126968	5.10			
15067-26-2	Acenaphthen		63091	6.78			
1517-22-2	Phenanthren		83729	8.24			
1719-03-5	Chrysene-d1	2	80479	10.84			
1520-96-3	Perylene-d12		57111	12.29			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 11/30/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/1/2006 Client Sample MW3D-60 SDG No.: X5669 Lab Sample ID: X5669-12 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 990.0 mLExtract Vol: 1000 uL

File ID	Dilution	Date Extracted	Date Analyzed	An	alytical B	atch ID	
BF008652.D	1	12/4/2006	12/9/2006	BF	113006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							***************************************
111-44-4	bis(2-Chlore	• •	1.5	U	10	1.5	ug/L
95-50-1	1,2-Dichloro	obenzene	1.2	U	10	1.2	ug/L
541-73-1	1,3-Dichloro	benzene	1.2	U	10	1.2	ug/L
106-46-7	1,4-Dichloro	benzene	1.2	U	10	1.2	ug/L
108-60-1	2,2-oxybis(-Chloropropane)	1.2	U	10	1.2	ug/L
621-64-7	N-Nitroso-d	i-n-propylamine	1.4	U	10	1.4	ug/L
67-72-1	Hexachloro	ethane	1.2	U	10	1.2	ug/L
98-95-3	Nitrobenzen	е	1.6	U	10	1.6	ug/L
78-59-1	Isophorone		1.3	U	10	1.3	ug/L
111-91-1	bis(2-Chloro	ethoxy)methane	1.4	U	10	1.4	ug/L
120-82-1	1,2,4-Trichl	orobenzene	1.4	U	10	1.4	ug/L
91-20-3	Naphthalene	;	1.4	U	10	1.4	ug/L
106-47-8	4-Chloroani	line	0.870	U	10	0.870	ug/L
87-68-3	Hexachlorol	outadiene	1.4	U	10	1.4	ug/L
91-57-6	2-Methylnap	ohthalene	1.1	U	10	1.1	ug/L
77-47-4	Hexachloro	yclopentadiene	1.2	U	10	1.2	ug/L
91-58-7	2-Chloronap	hthalene	1.4	U	10	1.4	ug/L
88-74-4	2-Nitroanili	ne	1.1	U	10	1.1	ug/L
131-11-3	Dimethylph	halate	1.3	U	10	1.3	ug/L
208-96-8	Acenaphthy	lene	1.3	U	10	1.3	ug/L
606-20-2	2,6-Dinitrot	oluene	1.3	U	10	1.3	ug/L
99-09-2	3-Nitroanilii	ne	1.0	U	10	1.0	ug/L
83-32-9	Acenaphthe	ne	1.4	U	10	1.4	ug/L
132-64-9	Dibenzofura	n	1.3	U	10	1.3	ug/L
121-14-2	2,4-Dinitrot	oluene	1.2	U	10	1.2	ug/L
84-66-2	Diethylphth:	alate	1.3	U	10	1.3	ug/L
7005-72-3	4-Chlorophe	nyl-phenylether	1.4	U	10	1.4	ug/L
86-73-7	Fluorene		1.4	U	10	1.4	ug/L
100-01-6	4-Nitroanilin	ne	1.1	U	10	1.1	ug/L
86-30-6	N-Nitrosodi	phenylamine	1.3	U	10	1.3	ug/L
101-55-3	·	nyl-phenylether	1.5	U	10	1.5	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client:	TRC Environmental Corp., NY	Date Collected:	11/30/2006
Project:	Morris park RI/FS TRC#46130-0010	Date Received:	12/1/2006
Client Sample	MW3D-60	SDG No.:	X5669
Lab Sample ID:	X5669-12	Matrix:	WATER
Analytical Method:	8270	% Moisture:	100
Sample Wt/Wol:	990.0 mL	Extract Vol:	1000 uL

File ID BF008652.D	Dilution 1	Date Extracted 12/4/2006	Date Analyzed 12/9/2006		alytical Ba 113006	itch ID	
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS		_				_	
118-74-1	Hexachloro		1.2	U	10	1.2	ug/L
85-01-8	Phenanthre	ne	1.4	U	10	1.4	ug/L
120-12-7	Anthracene		1.4	U	10	1.4	ug/L
86-74-8	Carbazole		1.3	U	10	1.3	ug/L
84-74-2	Di-n-butylp		1.3	U	10	1.3	ug/L
206-44-0	Fluoranthen	е	1.2	U	10	1.2	ug/L
129-00-0	Pyrene		1.5	U	10	1.5	ug/L
85-68-7	Butylbenzy	•	1,4	U	10	1.4	ug/L
91-94-1	3,3-Dichlor	obenzidine	1.1	U	20	1.1	ug/L
56-55-3	Benzo(a)ant	thracene	1.1	U	10	1.1	ug/L
218-01-9	Chrysene		1.7	U	10	1.7	ug/L
117-81-7	bis(2-Ethyll	nexyl)phthalate	3.5	JΒ	10	1.5	ug/L
117-84-0	Di-n-octyl p	hthalate	1.3	U	10	1.3	ug/L
205-99-2	Benzo(b)flu	oranthene	0.760	U	10	0.760	ug/L
207-08-9	Benzo(k)flu	oranthene	1.9	U	10	1.9	ug/L
50-32-8	Benzo(a)py	rene	1.2	U	10	1.2	ug/L
193-39-5	Indeno(1,2,	3-cd)pyrene	0.840	U	10	0.840	ug/L
53-70-3	Dibenz(a,h)	anthracene	0.870	U	10	0.870	ug/L
191-24-2	Benzo(g,h,i)perylene	1.1	U	10	1.1	ug/L
SURROGATES							
4165-60-0	Nitrobenzer	ie-d5	64.61	65 %	35 - 114		SPK: 10
321-60-8	2-Fluorobip	henyl	62.24	62 %	43 - 116		SPK: 10
1718-51-0	Terphenyl-c	114	62.94	63 %	33 - 141		SPK: 10
INTERNAL STANE	DARDS						
3855-82-1	1,4-Dichlor	obenzene-d4	30801	3.94			
1146-65-2	Naphthalen	e-d8	125959	5.10			
15067-26-2	Acenaphthe	ne-d10	60868	6.78			
1517-22-2	Phenanthrer	ne-d10	79938	8.24			
1719-03-5	Chrysene-d	12	75962	10.84			
1520-96-3	Perylene-d1		52773	12.30			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 12/1/2006 Date Received: Project: Morris park RI/FS TRC#46130-0010 12/1/2006 Client Sample MW2D-60 SDG No.: X5669 ID: Lab Sample ID: X5669-13 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 990.0 mL Extract Vol: 1000 uL

File ID	Dilution	Date Extracted	Date Analyzed	An	alytical B	atch ID	
BF008653.D	1	12/4/2006	12/9/2006	BF	113006		J
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
111-44-4	bis(2-Chloro		1.5	U	10	1.5	ug/L
95-50-1	1,2-Dichloro		1.2	U	10	1.2	ug/L
541-73-1	1,3-Dichloro	benzene	1.2	U	10	1.2	ug/L
106-46-7	1,4-Dichloro	benzene	1.2	U	10	1.2	ug/L
108-60-1	2,2-oxybis(1	-Chloropropane)	1.2	U	10	1.2	ug/L
621-64-7	N-Nitroso-d	i-n-propylamine	1.4	U	10	1.4	ug/L
67-72-1	Hexachloroe	thane	1.2	U	10	1.2	ug/L
98-95-3	Nitrobenzen	e	1.6	U	10	1.6	ug/L
78-59-1	Isophorone		1.3	U	10	1.3	ug/L
111-91-1	bis(2-Chlore	ethoxy)methane	1.4	U	10	1.4	ug/L
120-82-1	1,2,4-Trichlo	orobenzene	1.4	U	10	1.4	ug/L
91-20-3	Naphthalene		1.4	U	10	1.4	ug/L
106-47-8	4-Chloroanil	ine	0.870	U	10	0.870	ug/L
87-68-3	Hexachlorob	outadiene	1.4	U	10	1.4	ug/L
91-57-6	2-Methylnap	hthalene	1.1	U	10	1.1	ug/L
77-47-4	Hexachloroc	yclopentadiene	1.2	U	10	1.2	ug/L
91-58-7	2-Chloronap	hthalene	1.4	U	10	1.4	ug/L
88-74-4	2-Nitroanilir	ne	1.1	U	10	1.1	ug/L
131-11-3	Dimethylpht	halate	1.3	U	10	1.3	ug/L
208-96-8	Acenaphthyl	ene	1.3	U	10	1.3	ug/L
606-20-2	2,6-Dinitroto	oluene	1.3	U	10	1.3	ug/L
99-09-2	3-Nitroanilir	ne	1.0	U	10	1.0	ug/L
83-32-9	Acenaphther	ne	1.4	U	10	1.4	ug/L
132-64-9	Dibenzofura	n	1.3	U	10	1.3	ug/L
121-14-2	2,4-Dinitroto	oluene	1.2	U	10	1.2	ug/L
84-66-2	Diethylphtha	alate	1.3	U	10	1.3	ug/L
7005-72-3		nyl-phenylether	1.4	U	10	1.4	ug/L
86-73-7	Fluorene	- • •	1.4	U	10	1.4	ug/L
100-01-6	4-Nitroanilir	ne	1.1	Ü	10	1,1	ug/L
86-30-6	N-Nitrosodi	henylamine	1.3	Ü	10	1.3	ug/L
101-55-3	-	nyl-phenylether	1.5	U	10	1.5	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client:	TRC Environmental Corp., NY	Date Collected:	12/1/2006
Project:	Morris park RI/FS TRC#46130-0010	Date Received:	12/1/2006
Client Sample	MW2D-60	SDG No.:	X5669
Lab Sample ID:	X5669-13	Matrix:	WATER
Analytical Method:	8270	% Moisture:	100
Sample Wt/Wol:	990.0 mL	Extract Vol:	1000 uL

File ID	Dilution	Date Extracted	Date Analyzed	An	alytical Ba	tch ID	
BF008653.D	1	12/4/2006	12/9/2006	BF	113006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
118-74-1	Hexachlorob		1.2	U	10	1.2	ug/L
85-01-8	Phenanthren	e	1.4	U	10	1.4	ug/L
120-12-7	Anthracene		1.4	U	10	1.4	ug/L
86-74-8	Carbazole		1.3	U	10	1.3	ug/L
84-74-2	Di-n-butylph		1.3	U	10	1.3	ug/L
206-44-0	Fluoranthene	•	1.2	U	10	1.2	ug/L
129-00-0	Pyrene		1.5	U	10	1.5	ug/L
85-68-7	Butylbenzylj	ohthalate	1.4	U	10	1.4	ug/L
91-94-1	3,3-Dichloro	benzidine	1.1	U	20	1.1	ug/L
56-55-3	Benzo(a)antl	nracene	1.1	U	10	1.1	ug/L
218-01-9	Chrysene		1.7	U	10	1.7	ug/L
117-81-7	bis(2-Ethylh	exyl)phthalate	2.4	JВ	10	1.5	ug/L
117-84-0	Di-n-octyl pl	nthalate	1.3	U	10	1.3	ug/L
205-99-2	Benzo(b)fluo	oranthene	0.760	U	10	0.760	ug/L
207-08-9	Benzo(k)fluo	oranthene	1.9	U	10	1.9	ug/L
50-32-8	Benzo(a)pyr	ene	1.2	U	10	1.2	ug/L
193-39-5	Indeno(1,2,3	-cd)pyrene	0.840	U	10	0.840	ug/L
53-70-3	Dibenz(a,h)a	nthracene	0.870	U	10	0.870	ug/L
191-24-2	Benzo(g,h,i)	perylene	1.1	U	10	1.1	ug/L
SURROGATES							•
4165-60-0	Nitrobenzen	e-d5	66.57	67 %	35 - 114		SPK: 10
321-60-8	2-Fluorobiph	enyl	62.94	63 %	43 - 116		SPK: 10
1718-51-0	Terphenyl-d	14	67.93	68 %	33 - 141		SPK: 10
INTERNAL STAND	ARDS						
3855-82-1	1,4-Dichloro	benzene-d4	30978	3.94			
1146-65-2	Naphthalene		124569	5.10			
15067-26-2	Acenaphthen	ie-d10	59999	6.78			
1517-22-2	Phenanthren		77125	8.24			
1719-03-5	Chrysene-d1	2	73828	10.84			
1520-96-3	Perylene-d12		49870	12.30			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

CHAIN OF CUSTODY RECORD

284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

сос литрег 062426

	CLIENT INFORMATION (CORES CONTROLL)		CLIENT PROJECT INFORMATION	CLIENT BILL	CLIENT BILLING INFORMATION
COMPANY: TR C	RAC ENGLACECS INC	PROJECT NAME: LIRE MORFIS	IRE Morris Park	BILL TO: Sang	PO#:
ADDRESS: 14.30	1	PROJECT NO. 46130 - UDIA	10 - 00 (a LOCATION: RICHMAN HI)	HII) ADDRESS:	
NZ .LIO	V STATE:	PROJECT MANAGER: WILLS am	. Willsan Silveri	CITY:	STATE: ZIP:
ATTENTION.		e-mail: WS:17	WS: Iveri @TRCSolutions, Co	: N ATTENTION:	PHONE:
Only on the			FAX		ANALYSIS TATE TO THE TATE OF T
	13	273.0	DATA DELIVERABLE INFORMATION		
FAX	.SAVQ	C RESULTS ONLY	C USEPACLP	1/2/2	
HARD COPY:_	DAYS:	☐ New Jersey REDUCE	ED C New York State ASP "A"		
• TO BE APPRI STANDARD T	• TO BE APPROVED BY CHEMTECH STANDARD TURNAROUND TIME IS 10 BUSINESS DAYS	C SDD FORMAT	Other 1	7 4 5 6 7 6 MM	6 8
TO THE PERSON NAMED AND POST OF THE PERSON NA		SAMPLE	SAMPLE 55 WASHER	PHESEHVAIIVES TOTAL	DOMMENIS COMMENIS
CHEMTECH SAMPLE ID	PROJECT SAMPLE IDENTIFICATION		N H		
)		49		3 4 5 6 7 8	9 E-ICE
·	MW 255	(SV x	11-28-66 215 3 X X		
2, 2	MW 252	100 × 100	W. 28-66 1320 3 X X		
3,	MW 22S	6W 7 11.	11.28 to 1567 3 XX		
4.	MW 235	GW × 11.	11-24-06 1137 3 XX		
s. S	0 57 MW	SW KI	XX 145 13 ANS		
6. 6	MW 245	GW × 1.2	11-251-66 13 XX	AND THE PROPERTY OF THE PROPER	
7. 7	09-6 MW	<u>ئ</u> د ع	XX 8 CH 30 35-25-11		
s. S	MW 10-160	GW # 11.	11-30.06 1037 3 XX		
£. 9	09 - 61 WM	GW R 1.	XX 5 0401 30 15-11		
رح) (٥	Mw 11-60		11-32-06 1218 3 XX		
	SAMPLE CUSTODY		ACH TIME SAMPLES CHANGE PO	TED BELOW EACH TIME SAMPLES CHANGE POSSESSION INCLUDING COURIER DELIVERY	ERY NEW THE THE
RELINDUISHED BY SAMPLER:	DATE/TIME: 125'3	A CONTRACTOR OF THE CONTRACTOR	Conditions of bollas or coolers at recolpt. MeOH extraction requires an addition.	Sanditions of boildes or coolers at receipt: (2) Compilant D. Non Compilant MeOH extraction requires an additional 4 oz jar for percent solid.	nt Cooler Temp. 57C
f 40 BY:	DATE/TIME		commonts:		
30				,	
			Fry Page of 2	SHIPPED VIA: CLIENT: EX HAND DELIVERED CHEMTECH: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	O O OVERNIGHT Shipment Complote:

CHAIN OF CUSTODY RECORD

284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

CHEMTECH PROJECT NO. X50

Shipment Complete: - Specify Preservatives B-HNO, D-NaOH F-Olher ØXYES □ NO とって COMMENTS A-HCI C-H.SO, E-ICE ice in Cooler?: ZIP: Cooler Temp. CLIENT BILLING INFORMATION SHIPPED VIA: CLIENT: 12 HAND DELIVERED DOVERNIGHT CHEMTECH: DPICKED UP DOVERNIGHT PO#; PHONE STATE ANALYSIS c) SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION INCLUDING COURIER DELIVERY ω O. Sail PRESERVATIVES ဖ ATTENTION: ທ ADDRESS: BILL TO: CITY Ž WS: Noch OTAC SOLDWING COLD ന 至 Richmond F Ø PROJECT NAME: LIRG MOCK'S PRITK DATA DELIVERABLE INFORMATION 5.) 18.5 CLIENT PROJECT INFORMATION RESULTS ONLY

RESULTS + QC

Now York State ASP *8*

Now Jersey REDUCED

Other

Other PROJECT NO. 46 30 . DV) DLOCATION: 7 NOT BOTTLES 648-584- 2787 FAX. × 11-30 cm 1222 1:32 1757 112-1-09 1047 PHOJECT MANAGER: WISSIAM TIME COLLECTION SAMPLE 11/Syn Page DATE SAMPLE > X, EVND EDD FORMAT dWOO SAMPLE PHONE e-mail: 3 3 3 3. SNE1141 00000 DATE/TIME: (2)(70) RECEIVED FOR LAB BY: ZIP: 10018 RECEIVED BY: RECEIVED BY: 15/15/15 DAYS. DAYS. DAYS. • TO BE APPROVED BY CHEMTECH STANDARD TURNABOUND TIME IS 10 BUSINESS DAYS PROJECT SAMPLE IDENTIFICATION DATA TURNAROUND INFORMATION STATE: NY Silveri 90 09-02 MW Bread way Endineris , MW 32-60 CLIENT INFORMATION REPORT TO BE SENT TO: MW11-160 12-1-04. DATE/TIME: DATE/TIME: 7 FAX (N) (119.00) $\frac{7}{2}$ [子 2 125 SAMPLER 5 ED 8Y. HARD COPY: ATTENTION: CHEMTECH COMPANY: SAMPLE ADDRESS: ~ 0 PHONE 306 ï Ci⊥ EDD Ö <u>ci</u> ú တ် ன்

EPA SAMPLE NO.

1	VBLK01
1	

Lab Name: Chemtech		Contract: TRCE	203	
Lab Code: CHEM	Case No.: <u>X5669</u>	sas no.: <u>x5669</u>	SDG No.:	X5669
Matrix (soil/water):	WATER	Lab Sample ID:	VBH1207-01	
Sample wt/vol: 5.0	(g/mL)mL	Lab File ID:	VH012164.D	
Level (low/med):		Date Received:		
% Moisture: not dec.	100	Date Analyzed:	12/7/2006	
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0	
Soil Extract Volume:		Soil Aliquot Volu	me:	
Number TICs found:	0	CONCENTRATION UNI		
CAS NO.	СОМРОUND	RT	EST. CONC.	Š
75-45-6	Chlorcdifluoromethane	1.11	50.0	U

EPA SAMPLE NO.

			VBLKU:	۷	
Lab Name: Chemtech		Contract: TRO	E03		
Lab Code: <u>CHEM</u>	Case No.: <u>X5669</u>	SAS No.: <u>X5669</u>	SDG No.:	<u> </u>	
Matrix (soil/water):	WATER	Lab Sample ID:	VBH1208-01	·····	
Sample wt/vol: 5.0	(g/mL) <u>mL</u>	Lab File ID:	VH012182.D		
Level (low/med):		Date Received:			
% Moisture: not dec.	100	Date Analyzed:	12/8/2006		
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0		
Soil Extract Volume:		Soil Aliquot Vol	ume:		
Number TICS found:	0	CONCENTRATION UN			
CAS NO.	COMPOUND	RT	EST. CONC.	Q	
75-45-6	Chlorodifluoromethane	1.11	50.0	บ	

EPA SAMPLE NO.

				MW25S	
Lab	Name: Chemtech		Contract: TRC	E03	
Lab	Code: <u>CHEM</u>	Case No.: <u>X5669</u>	sas no.: <u>x5669</u>	SDG No.: <u>X5669</u>	
Matr	ix (soil/water):	WATER	Lab Sample ID:	X5669-01	
Samp	le wt/vol: 5.0	(g/mL) mL	Lab File ID:	VH012166.D	
Leve	l (low/med):		Date Received:	12/1/2006	
% Mo	isture: not dec.	100	Date Analyzed:	12/7/2006	
GC C	olumn: RTX624	ID: 0.53	Dilution Factor:	1.0	
Soil	Extract Volume:		Soil Aliquot Volu	ume:	
Numb	er TICS found:	0	CONCENTRATION UNI		
	CAS NO.	COMPOUND	RT	EST. CONC. Q	
	75-45-6	Chlorodifluoromethane	1 11	50 0 11	

EPA SAMPLE NO.

MW25D	
L	

Lab Name: Chemtech		Contract: TRO	E03
Lab Code: CHEM	Case No.: <u>X5669</u>	sas no.: <u>x5669</u>	SDG No.: X5669
Matrix (soil/water):	WATER	Lab Sample ID:	X5669-02
Sample wt/vol: 5.0	(g/ml)ml	Lab File ID:	VH012167.D
Level (low/med):		Date Received:	12/1/2006
% Moisture: not dec.	100	Date Analyzed:	12/7/2006
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0
Soil Extract Volume:	***************************************	Soil Aliquot Volu	me:
Number TICS found:	0	CONCENTRATION UNI	
CAS NO.	COMPOUND	RT	EST. CONC. Q
75-45-6	Chlorodifluoromethane	1.11	45.0 J

EPA SAMPLE NO.

EST. CONC.

50.0 U

Q

			MW22S
Lab Name: Chemtech		Contract: TRC	E03
Lab Code: CHEM	Case No.: <u>X5669</u>	SAS No.: <u>X5669</u>	SDG No.: X5669
Matrix (soil/water):	WATER	Lab Sample ID:	X5669-03
Sample wt/vol: 5.0	(g/mL) mL	Lab File ID:	VH012168.D
Level (low/med):	·····	Date Received:	12/1/2006
% Moisture: not dec.	100	Date Analyzed:	12/7/2006
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0
Soil Extract Volume:	·	Soil Aliquot Volu	ime:
Number TICS found:	0	CONCENTRATION UNI	

RT

1.11

CAS NO.

75-45-6

COMPOUND

Chlorodifluoromethane

Comments:	

EPA SAMPLE NO.

			MW23S	
Lab Name: Chemtech		Contract: TRC	E03	
Lab Code: CHEM	Case No.: <u>X5669</u>	sas No.: <u>x5669</u>	SDG No.: <u>X5669</u>	
Matrix (soil/water):	WATER	Lab Sample ID:	X5669-04	
Sample wt/vol: 5.0	(g/mL) mL	Lab File ID:	VH012169.D	
Level (low/med):		Date Received:	12/1/2006	
& Moisture: not dec.	100	Date Analyzed:	12/7/2006	
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0	
Soil Extract Volume:		Soil Aliquot Volu	me:	
Number TICS found:	0	CONCENTRATION UNI		
CAS NO.	COMPOUND	RT	EST. CONC. Q	
75-45-6	Chlorodifluoromethane	1.11	50.0 U	

EPA SAMPLE NO.

MW23D

Lab Name: Chemtech		Contract: TRCE	03	
Lab Code: CHEM	Case No.: <u>X5669</u>	SAS No.: <u>X5669</u>	SDG No.: X5669	
Matrix (soil/water):	WATER	Lab Sample ID:	X5669-05	
Sample wt/vol: 5.0	(g/mL) mL	Lab File ID:	VH012170.D	
Level (low/med):		Date Received:	12/1/2006	
% Moisture: not dec.	100	Date Analyzed:	12/7/2006	
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0	
Soil Extract Volume:		Soil Aliquot Volum	me:	
Number TICS found:	0	CONCENTRATION UNIT		
CAS NO.	COMPOUND	RT .	EST. CONC. Q	
75-45-6	Chlorodifluoromethane	1.11	180.0 J	

EPA SAMPLE NO.

		٦
1	MW24S	
1		
L		_

Lab Name: Chemtech		Contract: TRC	E03	
Lab Code: CHEM	Case No.: <u>X5669</u>	SAS No.: X5669	SDG No.:	<u>x5669</u>
Matrix (soil/water):	WATER	Lab Sample ID:	X5669-06	
Sample wt/vol: 5.0	(g/mL) mL	Lab File ID:	VH012171.D	
Level (low/med):		Date Received:	12/1/2006	
% Moisture: not dec.	100	Date Analyzed:	12/7/2006	
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0	
Soil Extract Volume:		Soil Aliquot Volu	ome:	
Number TICS found:	0	CONCENTRATION UNI		
CAS NO.	COMPOUND	. RT	EST. CONC.	Q
75-45-6	Chlorodifluoromethane	1.11	50.0	U

EPA SAMPLE NO.

MW9-60	

Lab Name: Chemtech		Contr	act: TR	CE03	
Lab Code: CHEM	Case No.: X5669	SAS No.	: <u>x5669</u>	SDG No.:	X5669
Matrix (soil/water):	WATER	Lab S	ample ID:	X5669-07	
Sample wt/vol: 5.0	(g/mL) mL	Lab F	Tile ID:	VH012172.D	_
Level (low/med):		Date	Received:	12/1/2006	
% Moisture: not dec.	100	Date	Analyzed:	12/7/2006	
GC Column: RTX624	ID: 0.53	Dilut	ion Factor:	1.0	
Soil Extract Volume:	***************************************	Soil	Aliquot Vol	.ume :	
Number TICS found:	0		NTRATION UN		
CAS NO.	COMPOUND		RT	EST. CONC.	Q
75-45-6	Chlorodifluoromethane		1.11	50.0	บ

EPA SAMPLE NO.

	- 1
	•
MW10-160	·
1314TO_TOO	- 1
	E

Lab Name: Chemtech		Contract: TRC	E03	
Lab Code: CHEM	Case No.: X5669	SAS No.: <u>X5669</u>	SDG No.:	X5669
Matrix (soil/water):	WATER	Lab Sample ID:	X5669-08	
Sample wt/vol: 5.0	(g/mL) mL	Lab File ID:	VH012173.D	
Level (low/med):		Date Received:	12/1/2006	
% Moisture: not dec.	100	Date Analyzed:	12/7/2006	
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0	
Soil Extract Volume:		Soil Aliquot Volu	me:	
Number TICS found:	0	CONCENTRATION UNI		
CAS NO.	COMPOUND	RT	EST. CONC.	Q
75-45-6	Chlorodifluoromethane	1.11	50.0	U

EPA SAMPLE NO.

MW10-60

Lab Name: Chemtech		Contract: TRC	E03	
Lab Code: CHEM	Case No.: <u>X5669</u>	SAS No.: X5669	SDG No.:	X5669
Matrix (soil/water):	WATER	Lab Sample ID:	X5669-09	·····
Sample wt/vol: 5.0	(g/ml)mL	Lab File ID:	VH012174.D	
Level (low/med):		Date Received:	12/1/2006	
% Moisture: not dec.	100	Date Analyzed:	12/8/2006	
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0	
Soil Extract Volume:		Soil Aliquot Volu	me:	
Number TICS found:	0	CONCENTRATION UNI		
CAS NO.	СОМРОИИО	RT .	EST. CONC.	ò
75-45-6	Chlorodifluoromethane	1.11	50.0	U

EPA SAMPLE NO.

MW11-60

Lab Name: Chemtech		Contract: TRC	E03
Lab Code: CHEM	Case No.: X5669	SAS No.: X5669	SDG No.: X5669
Matrix (soil/water):	WATER	Lab Sample ID:	X5669-10
Sample wt/vol: 5.0	(g/mL) <u>mL</u>	Lab File ID:	VH012175.D
Level (low/med):	· · · · · · · · · · · · · · · · · · ·	Date Received:	12/1/2006
% Moisture: not dec.	100	Date Analyzed:	12/8/2006
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0
Soil Extract Volume:		Soil Aliquot Volu	ume :
Number TICS found:	0	CONCENTRATION UNI	
CAS NO.	СОМРОПИП	RT	EST. CONC. Q
75-45-6	Chlorodifluoromethane	1.11	50.0 U

EPA SAMPLE NO.

MW1	1-1	L.	6	0	

Lab Name: Chemtech		Contract: TRC	E03
Lab Code: CHEM	Case No.: X5669	SAS No.: X5669	SDG No.: X5669
Matrix (soil/water):	WATER	Lab Sample ID:	X5669-11
Sample wt/vol: 5.0	(g/mL) mL	Lab File ID:	VH012176.D
Level (low/med):		Date Received:	12/1/2006
% Moisture: not dec.	100	Date Analyzed:	12/8/2006
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0
Soil Extract Volume:		Soil Aliquot Volu	me:
Number TICS found:	0	CONCENTRATION UNI	
CAS NO.	COMPOUND	RT	EST. CONC. Q
75-45-6	Chlorodifluoromethane	1.11	6.6 J

EPA SAMPLE NO.

M	W3D-60	

Lab Name: Chemtech		Contract: TRO	E03	
Lab Code: CHEM	Case No.: X5669	SAS No.: <u>X5669</u>	SDG No.:	X5669
Matrix (soil/water):	WATER	Lab Sample ID:	X5669-12	
Sample wt/vol: 5.0	(g/ml) <u>ml</u>	Lab File ID:	VH012177.D	
Level (low/med):	<u>.</u>	Date Received:	12/1/2006	
% Moisture: not dec.	100	Date Analyzed:	12/8/2006	
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0	
Soil Extract Volume:		Soil Aliquot Volu	ıme:	
Number TICS found:	0	CONCENTRATION UNI		
CAS NO.	СОМРОПИТ	RT	EST. CONC.	Q
75-45-6	Chlorodifluoromethane	1.11	50.0	Ŭ

EPA SAMPLE NO.

MW2D-60

Lab Name: Chemtech		Contract: TRC	E03	
Lab Code: CHEM	Case No.: X5669	SAS No.: X5669	SDG No.:	X5669
Matrix (soil/water):	WATER	Lab Sample ID:	X5669-13	······
Sample wt/vol: 5.0	(g/mL) mL	Lab File ID:	VH012178.D	
Level (low/med):		Date Received:	12/1/2006	
% Moisture: not dec.	100	Date Analyzed:	12/8/2006	
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0	
Soil Extract Volume:		Soil Aliquot Volu	me:	
Number TICS found:	0	CONCENTRATION UNI		
CAS NO.	COMPOUND	RT	EST. CONC.	Ď
75-45-6	Chlorodifluoromethane	1.11	50.0	U

	EPA	SAMPLE	NO.	

	1	1W2D-60)	

		•		
Lab Name: Chemtech		Contract: TRO	E03	
Lab Code: CHEM	Case No.: X5669	SAS No.: X5669	SDG No.:	X5669-01
Matrix (soil/water):	WATER	Lab Sample ID:	X5669-13	
Sample wt/vol: 5.0	(g/mL) <u>mL</u>	Lab File ID:	VH012178.D	·
Level (low/med):		Date Received:	12/1/2006	
% Moisture: not dec.	100	Date Analyzed:	12/8/2006	***************************************
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0	
Soil Extract Volume:		Soil Aliquot Volu	ıme:	
Number TICS found:	0	CONCENTRATION UNI		
CAS NO.	COMPOUND	RT	EST. CONC.	Q
1. 75-45-6	Difluorochloromethane	1.11	5.73	J

DATA PACKAGE FOR VOLATILE ORGANICS

PROJECT NAME: Morris park RI/FS TRC#46130-0010

SUBCONTRACT # 46130-SC-002

TRC ENVIRONMENTAL CORP., NY
1430 BROADWAY
10TH FLOOR
NEW YORK, NY 10018
2122217822

CHEMTECH PROJECT NO. ATTENTION:

X5831 William Silveri

COVER PAGE

ProjectID: Morris park RI/FS TRC#461

OrderID: X5831 CustomerName: TRC Environmental Corp., NY

NO

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature:_	Uldeen V.	Reyes Name	: 11 ildeed U	Reyos
Date:	12/27/06	<i>}</i> Title:_	WALUC	<i>''</i>

CETTLECH 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

TRC Environmental Corp., NY Date Collected: Client: 12/6/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/11/2006 Client Sample ID: MW15-60 SDG No.: X5831 Matrix: Lab Sample ID: X5831-01 WATER Analytical Method: % Moisture: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID VH012429.D 1 12/15/2006 VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS					
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17 ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34 ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33 ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41 ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83 ug/L
75-69-4	Trichlorofluoromethane	3.4	J	5.0	0.22 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3 ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42 ug/L
67-64-1	Acetone	2.3	U	25	2.3 ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40 ug/L
1634-04-4	Methyl tert-butyl Ether	2.4	ĵ	5.0	0.28 ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20 ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43 ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40 ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38 ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36 ug/L
78-93-3	2-Butanone	1.1	U	25	1.1 ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1 ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29 ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33 ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32 ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34 ug/L
71-43-2	Benzene	6.1		5.0	0.39 ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34 ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46 ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40 ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33 ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6 ug/L
108-88-3	Toluene	0.36	U	5.0	0.36 ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32 ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36 ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Date Collected: TRC Environmental Corp., NY 12/6/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/11/2006 SDG No.: X5831 Client Sample ID: MW15-60 Matrix: WATER Lab Sample ID: X5831-01 % Moisture: Analytical Method: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uŁ Soil Aliquot Vol:

File ID:	Dilution:	Date Analyzed	Analytical Batch ID	
VH012429.D	1	12/15/2006	VH120706	

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Нехаполе	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	2.3	J	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES	S					
17060-07-0	1,2-Dichloroethane-d4	54.5	109 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	49.25	99 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	48.63	97 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	49.08	98 %	76 - 119		SPK: 50
INTERNAL ST	ANDARDS					
363-72-4	Pentafluorobenzene	457144	4.66			
540-36-3	1,4-Difluorobenzene	815931	5.28			
3114-55-4	Chlorobenzene-d5	824034	9.00			
3855-82-1	1,4-Dichlorobenzene-d4	398677	11.57			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Date Collected: 12/6/2006 Client: TRC Environmental Corp., NY Morris park RI/FS TRC#46130-0010 Project: Date Received: 12/11/2006 Client Sample ID: MW06-168 SDG No .: X5831 Matrix:

Lab Sample ID: X5831-02 WATER % Moisture: 100 Analytical Method: 8260

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: υL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH012430.D	1	12/15/2006	VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS					
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17 ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34 ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33 ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41 ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83 ug/L
75-69-4	Trichlorofluoromethane	1.2	J	5.0	0.22 ug/L
76-13-1	1.1.2-Trichlorotrifluoroethane	1.3	U	5.0	1.3 ug/L
75-35-4	1,1-Dichloroethene	1.8	J	5.0	0.42 ug/L
67-64-1	Acetone	2.3	U	25	2.3 ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40 ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28 ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20 ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43 ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40 ug/L
75-34-3	1.1-Dichloroethane	0.38	U	5.0	0.38 ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36 ug/L
78-93-3	2-Butanone	1.1	U	25	1.1 ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1 ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29 ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33 ug/L
71-55-6	1,1,1-Trichloroethane	3.8	J	5.0	0.32 ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34 ug/L
71-43-2	Benzene	0.39	U	5.0	0.39 ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34 ug/L
79-01-6	Trichloroethene	1.0	J	5.0	0.46 ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40 ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33 ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6 ug/L
108-88-3	Toluene	0.36	U	5.0	0.36 ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32 ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36 ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41 ug/L
					~

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 12/6/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/11/2006 Client Sample ID: MW06-168 SDG No.: X5831 Lab Sample ID: Matrix: X5831-02 WATER Analytical Method: % Moisture: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol: иL

File ID: Dilution: Date Analyzed **Analytical Batch ID** VH012430.D 1 12/15/2006 VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	58.66	117 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	50.39	101 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	52.12	104 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	51.45	103 %	76 - 119		SPK: 50
INTERNAL STA	ANDARDS					
363-72-4	Pentafluorobenzene	475212	4.66			
540-36-3	1,4-Difluorobenzene	841652	5.28			
3114-55-4	Chlorobenzene-d5	912019	9.00			
3855-82-1	1,4-Dichlorobenzene-d4	407644	11.58			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

пL

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/6/2006

Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/11/2006

Client Sample ID: MW3-168 SDG No.: X5831

Lab Sample ID: X5831-03 Matrix: WATER

Analytical Method: 8260 % Moisture: 100

Sample Wt/Woi: 5.0 Units: mL Soil Extract Vol:
Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VH012431.D 1 12/15/2006 VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	1.7	J	5.0	0.22	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3	ug/L
75-35-4	1,1-Dichloroethene	3.8	J	5.0	0.42	ug/L
67-64-1	Acetone	2.3	U	25	2.3	ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0:40	ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28	ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36	ug/L
78-93-3	2-Butanone	1.1	U	25	1.1	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
156-59-2	cis-1,2-Dichloroethene	1.5	J	5.0	0.29	ug/L
67-66-3	Chloroform	1.6	J	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	2.8	J	5.0	0.32	ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34	ug/L
71-43-2	Benzene	0.39	U	5.0	0.39	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	160	E	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6	ug/L
108-88-3	Toluene	0.36	U	5.0	0.36	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	Ū	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	Ü	5.0	0.41	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Date Collected: 12/6/2006 Client: TRC Environmental Corp., NY Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/11/2006 Client Sample ID: MW3-168 SDG No.: X5831 Matrix: Lab Sample ID: X5831-03 WATER % Moisture: Analytical Method: 8260 100 5.0 Units: mL Sample Wt/Wol: Soil Extract Vol: uL Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed **Analytical Batch ID** VH012431.D 1 12/15/2006 VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	58.13	116 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	49.42	99 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	51.78	104 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	51.2	102 %	76 - 119		SPK: 50
INTERNAL STA	ANDARDS					
363-72-4	Pentafluorobenzene	455406	4.66			
540-36-3	1,4-Difluorobenzene	807391	5.27			
3114-55-4	Chlorobenzene-d5	885845	9.00			
3855-82-1	1,4-Dichlorobenzene-d4	395557	11.57			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Soil Extract Vol:

uL

Report of Analysis

Date Collected: 12/6/2006 Client: TRC Environmental Corp., NY Morris park RI/FS TRC#46130-0010 Project: Date Received: 12/11/2006 Client Sample ID: MW3-168DL SDG No.: X5831

Matrix: Lab Sample ID: X5831-03DL WATER

% Moisture: 100 Analytical Method: 8260

Sample Wt/Wol: 5.0 Units: mL Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed **Analytical Batch ID** VH120706 VH012442.D 10 12/15/2006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	1.7	U	50	1.7	ug/L
74-87-3	Chloromethane	3.4	U	50	3.4	ug/L
75-01-4	Vinyl chloride	3.3	U	50	3.3	ug/L
74-83-9	Bromomethane	4.1	U	50	4.1	ug/L
75-00-3	Chloroethane	8.3	U	50	8.3	ug/L
75-69-4	Trichlorofluoromethane	2.2	U	50	2.2	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	13	U	50	13	ug/L
75-35-4	1,1-Dichloroethene	4.2	U	50	4.2	ug/L
67-64-1	Acetone	23	U	250	23	ug/L
75-15-0	Carbon disulfide	4.0	U	50	4.0	ug/L
1634-04-4	Methyl tert-butyl Ether	2.8	U	50	2.8	ug/L
79-20-9	Methyl Acetate	2.0	U	50	2.0	ug/L
75-09-2	Methylene Chloride	4.3	U	50	4.3	ug/L
156-60-5	trans-1,2-Dichloroethene	4.0	U	50	4.0	ug/L
75-34-3	1,1-Dichloroethane	3.8	U	50	3.8	ug/L
110-82-7	Cyclohexane	3.6	U	50	3.6	ug/L
78-93-3	2-Butanone	11	U	250	11	ug/L
56-23-5	Carbon Tetrachloride	11	U	50	11	ug/L
156-59-2	cis-1,2-Dichloroethene	2.9	U	50	2.9	ug/L
67-66-3	Chloroform	3.3	U	50	3.3	ug/L
71-55-6	1,1,1-Trichloroethane	3.2	U	50	3.2	ug/L
108-87-2	Methylcyclohexane	3.4	U	5 0	3.4	ug/L
71-43-2	Benzene	3.9	U	50	3.9	ug/L
107-06-2	1,2-Dichloroethane	3.4	U	50	3.4	ug/L
79-01-6	Trichloroethene	100	D	50	4.6	ug/L
78-87- 5	1,2-Dichloropropane	4.0	U	50	4.0	ug/L
75-27-4	Bromodichloromethane	3.3	U	50	3.3	ug/L
108-10-1	4-Methyl-2-Pentanone	16	U	250	16	ug/L
108-88-3	Toluene	3.6	U	50	3.6	ug/L
10061-02-6	t-1,3-Dichloropropene	3.2	U	50	3.2	ug/L
10061-01-5	cis-1,3-Dichloropropene	3.6	U	50	3.6	ug/L
79-00-5	1,1,2-Trichloroethane	4.1	U	50	4.1	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Sample Wt/Wol:

Soil Extract Vol:

uL

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/6/2006

Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/11/2006

Client Sample ID: MW3-168DL SDG No.: X5831

Lab Sample ID: X5831-03DL Matrix: WATER

Analytical Method: 8260 % Moisture: 100

Soil Aliquot Vol: uL

5.0 Units: mL

File ID: Dilution: Date Analyzed Analytical Batch ID

VH012442.D 10 12/15/2006 VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	17	U	250	17	ug/L
124-48-1	Dibromochloromethane	2.6	U	50	2.6	ug/L
106-93-4	1,2-Dibromoethane	3.2	U	50	3.2	ug/L
127-18-4	Tetrachloroethene	4.8	U	50	4.8	ug/L
108-90-7	Chlorobenzene	4.7	U	50	4.7	ug/L
100-41-4	Ethyl Benzene	4.5	U	50	4.5	ug/L
126777-61-2	m/p-Xylenes	12	U	100	12	ug/L
95-47-6	o-Xylene	4.6	U	50	4.6	ug/L
100-42-5	Styrene	4.1	U	50	4.1	ug/L
75-25-2	Bromoform	3.2	U	50	3.2	ug/L
98-82-8	Isopropylbenzene	4.4	U	50	4.4	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	3.0	U	50	3.0	ug/L
541-73-1	1,3-Dichlorobenzene	5.0	U	50	5.0	ug/L
106-46-7	1,4-Dichlorobenzene	5.4	U	50	5.4	ug/L
95-50-1	1,2-Dichlorobenzene	4.4	U	50	4.4	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	3.8	U	50	3.8	ug/L
120-82-1	1,2,4-Trichlorobenzene	4.6	U	50	4.6	ug/L
593-70-4	Chlorofluoromethane	50	U	50	50	ug/L
75-43-4	Fluorodichloromethane	50	U	50	50	ug/L
SURROGATES	3					
17060-07-0	1,2-Dichloroethane-d4	69.91	140 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	49.57	99 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	50.13	100 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	48.25	97 %	76 - 119		SPK: 50
INTERNAL ST	ANDARDS					
363-72-4	Pentafluorobenzene	377048	4.66			
540-36-3	1,4-Difluorobenzene	791025	5.26			
3114-55-4	Chlorobenzene-d5	828463	9.01			
3855-82-1	1,4-Dichlorobenzene-d4	378704	11.57			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

CHETTLECH 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/6/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/11/2006 Client Sample ID: MW16-60 SDG No.: X5831 Lab Sample ID: X5831-04 Matrix: WATER Analytical Method: 8260 % Moisture: 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol: uL,

Dilution: File ID: Date Analyzed Analytical Batch ID VH012432.D 12/15/2006 VH120706 1

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS					
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17 ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34 ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33 ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41 ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83 ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3 ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42 ug/L
67-64-1	Acetone	2.3	U	25	2.3 ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40 ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28 ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20 ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43 ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40 ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38 ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36 ug/L
78-93-3	2-Butanone	1.1	U	25	1.1 ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	I.1 ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29 ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33 ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0:32 ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34 ug/L
71-43-2	Benzene	0.39	U	5.0	0.39 ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34 ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46 ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40 ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33 ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6 ug/L
108-88-3	Toluene	0.36	U	5.0	0.36 ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32 ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36 ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 12/6/2006 Date Received: 12/11/2006 Project: Morris park RI/FS TRC#46130-0010 SDG No.: X5831 Client Sample ID: MW16-60 Matrix: WATER Lab Sample ID: X5831-04 % Moisture: Analytical Method: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID	
VH012432.D	1	12/15/2006	VH120706	

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5:0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	\mathbf{U}	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0°	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES	3					
17060-07-0	1,2-Dichloroethane-d4	52.97	106 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	49.91	100 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	49.9	100 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	49.41	99 %	76 - 119		SPK: 50
INTERNAL ST	ANDARDS					
363-72-4	Pentafluorobenzene	443616	4.66			
540-36-3	1,4-Difluorobenzene	793025	5.27			
3114-55-4	Chlorobenzene-d5	813850	9.00			
3855-82-1	1,4-Dichlorobenzene-d4	393879	11.57			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Date Collected: Client: TRC Environmental Corp., NY 12/6/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/11/2006 Client Sample ID: SDG No.: MW6-60 X5831 Matrix: Lab Sample ID: X5831-05 WATER Analytical Method: 8260 % Moisture: 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: иL

Soil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH012427.D	1	12/15/2006	VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3	ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42	ug/L
67-64-1	Acetone	2.3	U	25	2.3	ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40	ug/L
1634-04-4	Methyl tert-butyl Ether	5.5		5.0	0.28	ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
110-82-7	Cyclohexane	4.1	J	5.0	0.36	ug/L
78-93-3	2-Butanone	1.1	U	25	1.1	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29	ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
108-87-2	Methylcyclohexane	6.4		5.0	0.34	ug/L
71-43-2	Benzene	9.0		5.0	0.39	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46	ug/L
78-87- <i>5</i>	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6	ug/L
108-88-3	Toluene	0.36	U	5.0	0.36	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 12/6/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/11/2006 Client Sample ID: MW6-60 SDG No.: X5831 Matrix: Lab Sample ID: X5831-05 WATER % Moisture: Analytical Method: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL.

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH012427.D	1	12/15/2006	VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	16		5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	9.4		5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.5		5.0	5:0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	54.62	109 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	46.43	93 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	50.17	100 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	48.33	97 %	76 - 119		SPK: 50
INTERNAL STA	ANDARDS					
363-72-4	Pentafluorobenzene	449054	4.66			
540-36-3	1,4-Difluorobenzene	785280	5.27			
3114-55-4	Chlorobenzene-d5	810746	9.01			
3855-82-1	1,4-Dichlorobenzene-d4	392585	11.57			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Date Collected: 12/6/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/11/2006 Client Sample ID: MW6-60(DUP) SDG No.: X5831 Matrix: Lab Sample ID: X5831-06 WATER % Moisture: Analytical Method: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: вL uL, Soil Aliquot Vol:

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH012428.D	1	12/15/2006	VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Unit	ts
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17 ug/L	
74-87-3	Chloromethane	0.34	U	5.0	0.34 ug/L	
75-01-4	Vinyl chloride	0.33	U	5.0	0.33 ug/L	
74-83-9	Bromomethane	0.41	U	5.0	0.41 ug/L	
75-00-3	Chloroethane	0.83	U	5.0	0.83 ug/L	
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22 ug/L	
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	Ŭ	5.0	1.3 ug/L	
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42 ug/L	
67-64-1	Acetone	2.3	U	25	2.3 ug/L	
75-15-0	Carbon disulfide	0.40	U	5.0	0.40 ug/L	
1634-04-4	Methyl tert-butyl Ether	5.8		5.0	0.28 ug/L	
79-20-9	Methyl Acetate	0.20	U	5.0	0.20 ug/L	
75-09-2	Methylene Chloride	0.43	U	5.0	0.43 ug/L	
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40 ug/L	
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38 ug/L	
110-82-7	Cyclohexane	4.3	J	5.0	0.36 ug/L	
78-93-3	2-Butanone	1.1	U	25	1.1 ug/L	
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1 ug/L	
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29 ug/L	
67-66-3	Chloroform	0.33	U	5.0	0.33 ug/L	
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32 ug/L	
108-87-2	Methylcyclohexane	6.4		5.0	0.34 ug/L	
71-43-2	Benzene	9.0		5.0	0.39 ug/L	
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34 ug/L	
79-01-6	Trichloroethene	0.46	U	5.0	0.46 ug/L	
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40 ug/L	
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33 ug/L	
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6 ug/L	
108-88-3	Toluene	0.36	\mathbf{U}	5.0	0.36 ug/L	
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32 ug/L	
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36 ug/L	
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41 ug/L	

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 12/6/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/11/2006 SDG No.: Client Sample ID: MW6-60(DUP) X5831 Matrix: WATER Lab Sample ID: X5831-06 % Moisture: Analytical Method: 100 8260 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol: иL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH012428.D	1	12/15/2006	VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	16		5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.3	J	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	9.9		5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	\mathbf{U}	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.5		5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	54.61	109 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	46.94	94 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	50.89	102 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	51.76	104 %	76 - 119		SPK: 50
INTERNAL ST.	ANDARDS					
363-72-4	Pentafluorobenzene	452463	4.66			
540-36-3	1,4-Difluorobenzene	805005	5.27			
3114-55-4	Chlorobenzene-d5	862417	9.00			
3855-82-1	1,4-Dichlorobenzene-d4	392293	11.57			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 12/6/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/11/2006 Client Sample ID: **MW21S** SDG No.: X5831 Lab Sample 1D: X5831-07 Matrix: WATER Analytical Method: 8260 % Moisture: 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: иL Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID VH012433.D 12/15/2006 VH120706 1

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS					
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17 ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34 ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33 ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41 ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83 ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3 ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42 ug/L
67-64-1	Acetone	2.3	U	25	2.3 ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40 ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28 ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20 ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43 ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40 ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38 ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36 ug/L
78-93-3	2-Butanone	1.1	U	25	1.1 ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1 ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29 ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33 ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32 ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34 ug/L
71-43-2	Benzene	0.39	U	5.0	0.39 ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34 ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46 ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40 ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33 ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6 ug/L
108-88-3	Toluene	0.36	U	5.0	0.36 ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32 ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36 ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

12/6/2006 Client: TRC Environmental Corp., NY Date Collected: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/11/2006 Client Sample ID: SDG No.: **MW21S** X5831 Matrix: Lab Sample ID: X5831-07 WATER Analytical Method: 8260 % Moisture: 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol: υL

File ID: Dilution: Date Analyzed Analytical Batch ID

VH012433.D 1 12/15/2006 VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES	3					
17060-07-0	1,2-Dichloroethane-d4	58.61	117 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	49.58	99 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	51.67	103 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	48.97	98 %	76 - 119		SPK: 50
INTERNAL ST	ANDARDS					
363-72-4	Pentafluorobenzene	446833	4.66			
540-36-3	1,4-Difluorobenzene	788266	5.26			
3114-55-4	Chlorobenzene-d5	836941	9.00			
3855-82-1	1,4-Dichlorobenzene-d4	371883	11.57			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 12/6/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/11/2006 Client Sample ID: MW21D SDG No.: X5831 Matrix: Lab Sample ID: X5831-08 WATER Analytical Method: % Moisture: 100 8260 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol: uŁ

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH0124	10.D 1	12/15/2006	VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	4.6	J	5.0	0.17 ug	/L
74-87-3	Chloromethane	1.7	J	5.0	0.34 ug	/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33 ug	/L
74-83-9	Bromomethane	0.41	U	5.0	0.41 ug	/L
75-00-3	Chloroethane	0.83	U	5.0	0.83 ug	/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22 ug	/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3 ug	/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42 ug	/L
67-64-1	Acetone	2.3	U	25	2.3 ug	/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40 ug	/L
1634-04-4	Methyl tert-butyl Ether	0.28	Ŭ	5.0	0.28 ug	/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20 ug	/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43 ug	/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40 ug	/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38 ug	/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36 ug	/L
78-93-3	2-Butanone	1.1	U	25	1.1 ug	/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1 ug	/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29 ug	/L
67-66-3	Chloroform	0.33	U	5.0	0.33 սջ	/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32 ug	/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34 ug	/L
71-43-2	Benzene	0.39	U	5.0	0.39 ug	/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34 ug	/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46 ug	/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40 ug	/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33 ug	/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6 ug	/L
108-88-3	Toluene	0.36	U	5.0	0.36 ug	/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32 ug	/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36 ug	/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41 ug	/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

VH012440.D

1

Report of Analysis

Date Collected: TRC Environmental Corp., NY 12/6/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/11/2006 SDG No.: X5831 Client Sample ID: MW21D Matrix: Lab Sample ID: WATER X5831-08 Analytical Method: % Moisture: 100 8260 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

12/15/2006

VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	57.47	115 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	47.84	96 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	51.6	103 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	45.18	90 %	76 - 119		SPK: 50
INTERNAL STA	ANDARDS					
363-72-4	Pentafluorobenzene	435855	4.66			
540-36-3	1,4-Difluorobenzene	782077	5.26			
3114-55-4	Chlorobenzene-d5	826035	9.00			
3855-82-1	1,4-Dichlorobenzene-d4	372246	11.57			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Date Collected: 12/6/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/11/2006 Client Sample ID: FIELDBLANK SDG No.: X5831 Matrix: WATER Lab Sample ID: X5831-09 % Moisture: Analytical Method: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol:

File ID: Dilution: Date Analyzed Analytical Batch ID

VII012426.D 1 12/15/2006 VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS					
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17 ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34 ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33 ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41 ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83 ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3 ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42 ug/L
67-64-1	Acetone	2.3	U	25	2.3 ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40 ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28 ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20 ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43 ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40 ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38 ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36 ug/L
78-93-3	2-Butanone	1.1	U	25	1.1 ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1 ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29 ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33 ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32 ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34 ug/L
71-43-2	Benzene	0.39	U	5.0	0.39 ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34 ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46 ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40 ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33 ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6 ug/L
108-88-3	Toluene	0.36	U	5.0	0.36 ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32 ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36 ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Date Collected: 12/6/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/11/2006

Client Sample ID: **FIELDBLANK** SDG No.: X5831 Matrix:

Lab Sample ID: X5831-09 WATER % Moisture: Analytical Method: 8260 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: иL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID	
VH012426.	D 1	12/15/2006	VH120706	
CAS Number	Parameter	Conc.	Oualifier RL MDL	Units

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	57.23	114 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	47	94 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	46.47	93 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	48.39	97 %	76 - 119		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	421891	4.66			
540-36-3	1,4-Difluorobenzene	776241	5.27			
3114-55-4	Chlorobenzene-d5	753776	9.00			
3855-82-1	1,4-Dichlorobenzene-d4	375046	11.57			

U = Not Detected

RL = Reporting Limit

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

12/7/2006 Client: TRC Environmental Corp., NY Date Collected: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/11/2006 Client Sample ID: MW-3U-60 SDG No.: X5831 Matrix: Lab Sample ID: X5831-10 WATER Analytical Method: 8260 % Moisture: 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH012434.D	1	12/15/2006	VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3	ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42	ug/L
67-64-1	Acetone	2.3	U	25	2.3	ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40	ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28	ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36	ug/L
78-93-3	2-Butanone	1.1	U	25	1.1	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29	ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33	ug/L
71-55-6	1,T,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34	ug/L
71-43-2	Benzene	0.39	U	5.0	0.39	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6	ug/L
108-88-3	Toluene	0.36	U	5.0	0.36	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Date Collected: Client: 12/7/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/11/2006 Client Sample ID: MW-3U-60 SDG No.: X5831 Matrix: Lab Sample ID: X5831-10 WATER Analytical Method: 8260 % Moisture: 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: υL

Soil Aliquot Vol: uL

File ID:	Dilution;	Date Analyzed	Analytical Batch ID
VII012434.D	1	12/15/2006	VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	υ	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	\mathbf{U}	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES	3					
17060-07-0	1,2-Dichloroethane-d4	56.52	113 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	46.11	92 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	49.59	99 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	44.71	89 %	76 - 119		SPK: 50
INTERNAL ST	ANDARDS					
363-72-4	Pentafluorobenzene	441653	4.66			
540-36-3	1,4-Difluorobenzene	807320	5.27			
3114-55-4	Chlorobenzene-d5	819318	9.00			
3855-82-1	1,4-Dichlorobenzene-d4	381687	11.58			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 12/7/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/11/2006 Client Sample ID: SDG No.: MW4-60 X5831 Matrix: Lab Sample ID: WATER X5831-11 % Moisture: Analytical Method: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol:

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH012435.D	1	12/15/2006	VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Unit	S
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17 ug/L	
74-87-3	Chloromethane	0.34	U	5.0	0.34 ug/L	
75-01-4	Vinyl chloride	0.33	U	5.0	0.33 ug/L	
74-83-9	Bromomethane	0.41	U	5.0	0.41 ug/L	
75-00-3	Chloroethane	0.83	U	5.0	0.83 ug/L	
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22 ug/L	
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3 ug/L	
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42 ug/L	
67-64-1	Acetone	2.3	U	25	2.3 ug/L	
75-15-0	Carbon disulfide	0.40	U	5.0	0.40 ug/L	
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28 ug/L	
79-20-9	Methyl Acetate	0.20	U	5.0	0.20 ug/L	
75-09-2	Methylene Chloride	0.43	U	5.0	0.43 ug/L	
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40 ug/L	
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38 ug/L	
110-82-7	Cyclohexane	2.9	J	5.0	0.36 ug/L	
78-93-3	2-Butanone	1.1	U	25	1.1 ug/L	
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1 ug/L	
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29 ug/L	
67-66-3	Chloroform	0.33	U	5.0	0.33 ug/L	
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32 ug/L	
108-87-2	Methylcyclohexane	4.5	J	5.0	0.34 ug/L	
71-43-2	Benzene	0.39	U	5.0	0.39 ug/L	
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34 ug/L	
79-01-6	Trichloroethene	0.46	U	5.0	0.46 ug/L	
78-87-5	1,2-Dichloropropane	0.40	υ	5.0	0.40 ug/L	
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33 ug/L	
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6 ug/L	
108-88-3	Toluene	0.36	U	5.0	0.36 ug/L	
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32 ug/L	
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36 ug/L	
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41 ug/L	

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Date Collected: 12/7/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/11/2006 Client Sample ID: MW4-60 SDG No.: X5831 Lab Sample ID: Matrix: X5831-11 WATER % Moisture: Analytical Method: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol:

File ID: Dilution: Date Analyzed Analytical Batch ID

VH012435.D 1 12/15/2006 VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	\mathbf{U}	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	1.4	j	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	53.02	106 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	51.64	103 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	50.73	101 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	52.88	106 %	76 - 119		SPK: 50
INTERNAL ST.	ANDARDS					
363-72-4	Pentafluorobenzene	431215	4.66			
540-36-3	1,4-Difluorobenzene	753417	5.26			
3114-55-4	Chlorobenzene-d5	782148	9.00			
3855-82-1	1,4-Dichlorobenzene-d4	384574	11.57			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Date Collected: 12/7/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/11/2006 SDG No.: Client Sample ID: MW19-60 X5831 Matrix: WATER Lab Sample ID: X5831-12 % Moisture: Analytical Method: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: иL Soil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH012436.D	1	12/15/2006	VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS					
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17 ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34 ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33 ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41 ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83 ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3 ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42 ug/L
67-64-1	Acetone	2.3	U	25	2.3 ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40 ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28 ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20 ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43 ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40 ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38 ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36 ug/L
78-93-3	2-Butanone	1.1	U	25	1.1 ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1 ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29 ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33 ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32 ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0:34 ug/L
71-43-2	Benzene	0.39	U	5.0	0.39 ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34 ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46 ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40 ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33 ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6 ug/L
108-88-3	Toluene	0.36	U	5.0	0.36 ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32 ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	Ü	5.0	0.36 ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Date Collected: 12/7/2006 Client: TRC Environmental Corp., NY Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/11/2006 Client Sample ID: SDG No.: MW19-60 X5831 Matrix: Lab Sample ID: X5831-12 WATER Analytical Method: 8260 % Moisture: 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: иL Soil Aliquot Vol: иL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH012436.D	1	12/15/2006	VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	56.66	113 %	72 - 119		SPK: 50
1868=53-7	Dibromofluoromethane	47.98	96 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	51.32	103 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	47.62	95 %	76 - 119		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	445392	4.66			
540-36-3	1,4-Difluorobenzene	791006	5.27			
3114-55-4	Chlorobenzene-d5	835500	9.00			
3855-82-1	1,4-Dichlorobenzene-d4	380527	11.57			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 12/7/2006 Project: Date Received: Morris park RI/FS TRC#46130-0010 12/11/2006 Client Sample ID: MW12-60 SDG No.: X5831 Lab Sample ID: X5831-13 Matrix: WATER Analytical Method: 8260 % Moisture: 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uLSoil Aliquot Vol: uL.

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH012437.D	1	12/15/2006	VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3	ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42	ug/L
67-64-1	Acetone	2.3	U	25	2.3	ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40	ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28	ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36	ug/L
78-93- 3	2-Butanone	1.1	U	25	1.1	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29	ug/L
67-66-3	Chloroform	0.33	IJ	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34	ug/L
71-43-2	Benzene	0.39	U	5.0	0.39	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6	ug/L
108-88-3	Toluene	0.36	U	5.0	0.36	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Date Collected: 12/7/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/11/2006 SDG No.: Client Sample ID: MW12-60 X5831 Matrix: WATER Lab Sample ID: X5831-13 % Moisture: Analytical Method: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol:

File ID: Dilution: Date Analyzed Analytical Batch ID

VH012437.D 1 12/15/2006 VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	58.92	118 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	50.73	101 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	50.07	100 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	49.95	100 %	76 - 119		SPK: 50
INTERNAL STA	ANDARDS					
363-72-4	Pentafluorobenzene	448943	4.66			
540-36-3	1,4-Difluorobenzene	806593	5.27			
3114-55-4	Chlorobenzene-d5	819377	9.00			
3855-82-1	1,4-Dichlorobenzene-d4	386520	11.57			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Date Collected: 12/7/2006 Client: Project: Morris park RI/FS TRC#46130-0010 12/11/2006 Date Received: Client Sample ID: MW5-60 SDG No.: X5831 Lab Sample ID: Matrix: WATER X5831-14 % Moisture: Analytical Method: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol:

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH012438.D	1	12/15/2006	VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS					
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17 ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34 ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33 ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41 ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83 ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3 ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42 ug/L
67-64-1	Acetone	2.3	U	25	2.3 ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40 ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28 ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20 ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43 ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40 ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38 ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36 ug/L
78-93-3	2-Butanone	1.1	U	25	1.1 ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1 ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29 ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33 ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32 ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34 ug/L
71-43-2	Benzene	0.39	U	5.0	0.39 ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34 ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46 ug/L
78-87-5	I,2-Dichloropropane	0.40	U	5.0	0.40 ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33 ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6 ug/L
108-88-3	Toluene	0.36	U	5.0	0.36 ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32 ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36 ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Sample Wt/Wol:

Soil Extract Vol:

uL

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/7/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/11/2006 Client Sample ID: MW5-60 SDG No.: X5831

Matrix: Lab Sample ID: X5831-14 WATER

% Moisture: Analytical Method: 8260 100

Soil Aliquot Vol:

5.0 Units: mL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH012438.D	1	12/15/2006	VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	59.71	119 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	48.25	97 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	50.64	101 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	47.86	96 %	76 - 119		SPK: 50
INTERNAL STA	ANDARDS					
363-72-4	Pentafluorobenzene	441136	4.66			
540-36-3	1,4-Difluorobenzene	811478	5.27			
3114-55-4	Chlorobenzene-d5	854187	9.01			
3855-82-1	1,4-Dichlorobenzene-d4	351094	11.57			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Date Collected: 12/7/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/11/2006 Client Sample ID: SDG No.: X5831 MW5-180 Matrix: Lab Sample ID: X5831-15 WATER % Moisture: Analytical Method: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH012441.D	1	12/15/2006	VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS					
75-71-8	Dichlorodifluoromethane	24		5.0	0.17 ug/L
74-87-3	Chloromethane	0.34	Ŭ	5.0	0.34 ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33 ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41 ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83 ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3 ug/L
75-35-4	1,1-Dichloroethene	4.2	J	5.0	0.42 ug/L
67-64-1	Acetone	2.3	U	25	2.3 ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40 ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28 ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20 ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43 ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40 ug/L
75-34-3	1,1-Dichloroethane	2.4	J	5.0	0.38 ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36 ug/L
78-93-3	2-Butanone	1.1	U	25	1.1 ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1 ug/L
156-59-2	cis-1,2-Dichloroethene	11		5.0	0.29 ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33 ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5:0	0.32 ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34 ug/L
71-43-2	Benzene	0.39	U	5.0	0.39 ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34 ug/L
79-01-6	Trichloroethene	1400	E	5.0	0.46 ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40 ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33 ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6 ug/L
108-88-3	Toluene	0.36	U	5.0	0.36 ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32 ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36 ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Date Collected: 12/7/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/11/2006 Client Sample ID: MW5-180 SDG No.: X5831 Lab Sample ID: Matrix: X5831-15 WATER Analytical Method: % Moisture: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uLSoil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID		
VH012441.D	1	12/15/2006	VH120706		
		_			

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	20		5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES	S					
17060-07-0	1,2-Dichloroethane-d4	58.08	116 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	53.25	107 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	55.35	111 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	48.2	96 %	76 - 119		SPK: 50
INTERNAL ST	FANDARDS					
363-72-4	Pentafluorobenzene	436032	4.66			
540-36-3	1,4-Difluorobenzene	720490	5.27			
3114-55-4	Chlorobenzene-d5	814051	9.00			
3855-82-1	1,4-Dichlorobenzene-d4	379795	11.57			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Date Collected: 12/7/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/11/2006 Client Sample ID: MW5-180DL SDG No.: X5831 Lab Sample ID: Matrix: X5831-15DL WATER % Moisture: Analytical Method: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol:

File ID: Dilution: Date Analyzed Analytical Batch ID

VH012443.D 25 12/15/2006 VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	4.2	U	120	4.2	ug/L
74-87-3	Chloromethane	8.6	U	120	8.6	ug/L
75-01-4	Vinyl chloride	8.2	U	120	8.2	ug/L
74-83-9	Bromomethane	10	U	120	10	ug/L
75-00-3	Chloroethane	21	U	120	21	ug/L
75-69-4	Trichlorofluoromethane	5.5	U	120	5.5	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	32	U	120	32	ug/L
75-35-4	1,1-Dichloroethene	10	U	120	10	ug/L
67-64-1	Acetone	56	U	620	56	ug/L
75-15-0	Carbon disulfide	10	U	120	10	ug/L
1634-04-4	Methyl tert-butyl Ether	7.0	U	120	7.0	ug/L
79-20-9	Methyl Acetate	5.0	U	120	5.0	ug/L
75-09-2	Methylene Chloride	11	U	120	11	ug/L
156-60-5	trans-1,2-Dichloroethene	10	U	120	10	ug/L
75-34-3	1,1-Dichloroethane	9.5	U	120	9.5	ug/L
110-82-7	Cyclohexane	9.1	U	120	9.1	ug/L
78-93-3	2-Butanone	29	U	620	29	ug/L
56-23-5	Carbon Tetrachloride	28	U	120	28	ug/L
156-59-2	cis-1,2-Dichloroethene	7.3	U	120	7.3	ug/L
67-66-3	Chloroform	8.3	U	120	8.3	ug/L
71-55-6	1,1,1-Trichloroethane	8.1	U	120	8.1	ug/L
108-87-2	Methylcyclohexane	8.4	U	120	8.4	ug/L
71-43-2	Benzene	9.7	U	120	9.7	ug/L
107-06-2	1,2-Dichloroethane	8.5	U	120	8.5	ug/L
79-01-6	Trichloroethene	1400	D	120	12	ug/L
78-87-5	1,2-Dichloropropane	10	U	120	10	ug/L
75-27-4	Bromodichloromethane	8.3	U	120	8.3	ug/L
108-10-1	4-Methyl-2-Pentanone	40	U	620	40	ug/L
108-88-3	Toluene	9.1	U	120	9.1	ug/L
10061-02-6	t-1,3-Dichloropropene	7.9	U	120	7.9	ug/L
10061-01-5	cis-1,3-Dichloropropene	9.0	U	120	9.0	ug/L
79-00-5	1,1,2-Trichloroethane	10	U	120	10	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 12/7/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/11/2006 Client Sample ID: MW5-180DL SDG No.: X5831 Matrix: Lab Sample ID: X5831-15DL WATER Analytical Method: 8260 % Moisture: 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uLSoil Aliquot Vol: ul.

File ID:	Dilution:	Date Analyzed		Analytical E	Batch ID	
VH012443.E	25	12/15/2006		VH120706		
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	42	U	620	42	ug/L
124-48-1	Dibromochloromethane	6.6	U	120	6.6	ug/L
106-93-4	1,2-Dibromoethane	8.1	U	120	8.1	ug/L
127-18-4	Tetrachloroethene	12	U	120	12	ug/L
108-90-7	Chlorobenzene	12	U	120	12	ug/L
100-41-4	Ethyl Benzene	11	U	120	11	ug/L
126777-61-2	m/p-Xylenes	30	U	250	30	ug/L
95-47-6	o-Xylene	11	U	120	11	ug/L
100-42-5	Styrene	10	U	120	10	ug/L
75-25-2	Bromoform	7.9	U	120	7.9	ug/L
98-82-8	Isopropylbenzene	11	U	120	11	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	7.5	U	120	7.5	ug/L
541-73-1	1,3-Dichlorobenzene	12	U	120	12	ug/L
106-46-7	1,4-Dichlorobenzene	13	U	120	13	ug/L
95-50-1	1,2-Dichlorobenzene	11	U	120	11	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	9.4	U	120	9.4	ug/L
120-82-1	1,2,4-Trichlorobenzene	11	U	120	11	ug/L
593-70-4	Chlorofluoromethane	120	U	120	120	ug/L
75-43-4	Fluorodichloromethane	120	U	120	120	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	59.2	118%	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	46.8	94 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	49.28	99 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	48.42	97 %	76 - 119		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	434718	4.66			
540-36-3	1,4-Difluorobenzene	791340	5.26			
3114-55-4	Chlorobenzene-d5	783075	9.00			
3855-82-1	1,4-Dichlorobenzene-d4	372435	11.57			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

TRC Environmental Corp., NY Date Collected: 12/8/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/11/2006 Client Sample ID: **MW26S** SDG No.: X5831 Lab Sample ID: Matrix: X5831-16 WATER Analytical Method: % Moisture: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH012439.D	1	12/15/2006	VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS					
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17 ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34 ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33 ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41 ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83 ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3 ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42 ug/L
67-64-1	Acetone	2.3	U	25	2.3 ug/L
75-15-0	Carbon-disulfide	0.40	U	5.0	0.40 ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28 ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20 ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43 ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40 ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38 ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36 ug/L
78-93-3	2-Butanone	1.1	U	25	1.1 ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1 ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29 ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33 ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32 ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34 ug/L
71-43-2	Benzene	0.39	U	5.0	0.39 ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34 ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46 ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40 ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33 ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6 ug/L
108-88-3	Toluene	0.36	U	5.0	0.36 ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32 ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36 ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Date Collected: 12/8/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/11/2006 Client Sample ID: **MW26S** SDG No.: X5831 Lab Sample ID: Matrix: X5831-16 WATER % Moisture: Analytical Method: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH012439.D	1	12/15/2006	VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	57.13	114 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	48.88	98 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	50.98	102 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	46.27	93 %	76 - 119		SPK: 50
INTERNAL ST	ANDARDS					
363-72-4	Pentafluorobenzene	435183	4.66			
540-36-3	1,4-Difluorobenzene	773841	5.26			
3114-55-4	Chlorobenzene-d5	815803	9.00			
3855-82-1	1,4-Dichlorobenzene-d4	367118	11.57			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

284 Sheffield Street Mountainside NJ 07092 Tel. 908-789-8900 Fax: 908-789-8922

DATA REPORTING QUALIFIERS- ORGANIC

For reporting results, the following "Results Qualifiers" are used:

Value .	If the result is a value greater than or equal to the detection limit, report the value
U :	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10 U". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
J.	Indicates an estimated value. This flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result
	was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise on any organic parameter i.e. Pest, PCB and others.
В	Indicates the analyte was found in the blank as well as the sample report as "12 B".
E .	Indicates the analyte's concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
P	This flag is used for Pesticide/PCB target analyte when there is >25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".
й	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.

CHAIN OF CUSTODY RECORD

284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

CHEMTECH PROJECT NO. χ_{583}

COC Number | 15.04.31

COMPANY: QC. 11	REPORT TO BE SENT TO:			アファ		CLIENT BILL	CLIENT BILLING INFORMATION	N G W W W	
70.5		PHOJECT NAME: 4	115 12 12 12 12 12 12 12 12 12 12 12 12 12	Ī	BILL TO: JA	FAIL	PO#:		-
ı	10 10	PHOJECT NO.: 461	HOJECT NO.: 46136 - COLO LOCATION: FILST MUSA H	7	ADDRESS:				
CITY: NY AL	X STATE:NY ZIP: /00/PL	PROJECT MANAGE	HOJECT MANAGER: William Silveri		CITY:		STATE	715	-
ATTENTION: (U]	19m Silver	e-mail: W5)	1461	@ TRL SOlving, Cer A	ATTENTION:	7-11-11-11-11-11-11-11-11-11-11-11-11-11	PHONE		-
C8C2 18.76) BNOHD	FAX:	PHONE	FAX:			AN	ANALYSIS		***************************************
MANUEL DATA TURNA	DATA TURNAROUND INFORMATION	DATAC	DATA DELIVERABLE INFORMATION	Z S			/		
FAX:		C RESULTS ONLY	C USEPACLP	1					
EDD:	DAYS .	☐ RESULTS + OC ☐ New Jersey REDUCED	DED [] New York State ASP 'B'	15					
• TO BE APPROVED BY CHEMTECH STANDARD TURNAROUND TIME IS	10 BUSINESS DAYS	CI Now Jersey CLP	D Other	2 2 2	4 5 6	7 7 8	6	\	
СНЕМТЕСН		SAMPLE	-		PRESERVATIVES			COMMENTS D	
	PROJECT SAMPLE IDENTIFICATION	i	COLLECTION III THE	£.w			Q + - 4°	- Specify Preservatives A-HCI B-HNO,	
		ев	HIME	2 3	4 5 6	7 8	9	CE F-Other	
1. MW 15	260	GU x 2	12 500 0921 2 X						
2. M W	MW 06-16B	GW × 12	12-6-26 1005 2 2 ×	×					
3. MW	3-168	GW x 12	X 7 LOC170-9-21	X					
4. MW	09-91	1 × 1 12	12.6 c6 1432 2 X	X					
5. MW	09-9	بد	12-6-36 1340 2 ×	X					
6. My	6-60 "DuP"	Ж	2-6-66 13-72 2 x						
7. MW	21.5	У.	12.606 1610 2 ×	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
B. MW	-10	۸	17-6-06 1605 4 X	X					
9. FIELD	BLANK	74 ×	12-06 MOO 7	Y					
N.S.	· 24 -60	<i>i</i> 3	7-7-460915 2-1 X	¥ (
		ENTED BELOW	EACH TIME SAMPLES CHANGE POSSESSION INCLUDING COURIER DELIVERY	GE POSSESSION	NCLUDING COU	RER DELIVER	1.V		
	و <mark>در</mark> کر	J.	Conditions of tottles or coolers at mostic: (2) Compilant Came MeOH extraction requires an additional 4 oz jar for percent solid.	at mosipt: (D) (Non Compliant	Cooler Tamp.	p. #20C	
488			Comments:				ice in Coaler?:	m: 19	
-4	- 12. 11. 56 3. SNEHAL	MEMINE	Page 1 01		SHIPPED VIA: CLIENT: CHAND DELIVERED CHEMTECH: SQ PICKED UP	D DELIVERED PICKED UP	О ООСЕНИВНТ О ООСЕНИВНТ	Shipment Complete:	
Revision 4/2005	WHITE - CHEMTECH COPY FOR RETURN TO CLIENT	PY FOR RETURN TO	OCLIENT YELLOW - CHEMTECH COPY	МТЕСН СОРУ	PINK - SAMPLER COPY	COPY		er .	

CHAIN OF CUSTODY RECORD

284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

CHEMTECH PROJECT NO.

COC Number

- Specify Preservatives B-HNO, D-NaOH F-Olher Shipment Complete: 8 0 COMMENTS D YES A-HCI C-H₁SQ, E-ICE ZIP ce In Cooler?: CLIENT BILLING INFORMATION Cooler Temp. 062430 PO#; SHIPPED VIA: CLIENT: CHAND DELIVERED COVERNIGHT STATE: PHONE ANALYSIS o, SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION INCLUDING COURIER DELIVERY œ MeOH extraction requires an additional 4 oz jar for percent solid. ø いろうへ PRESERVATIVES ဖ ATTENTION: មា ADDRESS: BILL TO: CITY A) 207 c) سلا منا Conditions of boldes or coolers at receipt: PROJECT NO : 96130 -0010 DOCOS Ö X WSI Iveri QTRC Sily HIMS PROJECT MANAGER: WILLIAM SILVEY. DATA DELIVERABLE INFORMATION CLIENT PROJECT INFORMATION ☐ RESULTS ONLY ☐ USEPACLP
☐ RESULTS + OC ☐ ☐ New York State ASP '8'
☐ New Jersey REDUCED ☐ New York State ASP 'A'
☐ New Jersey CLP ☐ Other
☐ EDD FORMAT ☐ O X Χ X MOCE S Ч ι 'n x 12-7-06 1440 TIME SAMPLE × 12-7-06 1033 × 12-7-26 1152 12-7-66 1207 x 112.7-04 1545 X 112-5-06 1017 1 Page PROJECT NAME: 618R DATE 12-6-CC SAMPLE × BARD Mrnym 4800 SAMPLE e-mail: PHONE 3 3 35 3 3 \mathbb{S} # RECEIVED FOR LAB BY: SNEHIFL SID 10018 THE DATE/TIME: 12:5 SPECEIVED BY: DAYS: DAYS. * TO BE APPROVED BY CHEMTECH STANDARD TURNAROUND TIME IS 10 BUSINESS DAYS DAYS. PROJECT SAMPLE IDENTIFICATION 0 DATA TURNAHOUND INFORMATION STATE: NY DATE/TIME (350 ه د TRIP BLANK CLIENT INFORMATION REPORT TO BE SENT TO: 12-11-06 Brocadway DATE/TIME: PHONE: 646-584-278 FAX: 19-60 07-21 MM 2-60 3-130 7-60 Engineer NAIN 2665 ATTENTION: 11.11, CM 3 ≥ 3 3 3 ~ APLER: COMPANY: TRC H30 こ RELINCOUSHED BY, SA HARD COPY: CHEMTECH SAMPLE ADDRESS: Xhu ≘ EDD: <u>CIT</u> 489 <u>.</u> તાં 'n Ġ ஷ் o; ci|ã

DATA PACKAGE FOR SEMI-VOLATILE ORGANICS

PROJECT NAME: Morris park RI/FS TRC#46130-0010

SUBCONTRACT # 46130-SC-002

TRC ENVIRONMENTAL CORP., NY
1430 BROADWAY
10TH FLOOR
NEW YORK, NY 10018
2122217822

CHEMTECH PROJECT NO. ATTENTION:

X5831 William Silveri

DATA REPORTING QUALIFIERS- ORGANIC

For reporting results, the following "Results Qualifiers" are used:

Value .	If the result is a value greater than or equal to the detection limit, report the value
U ·	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10 U". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
J ,	Indicates an estimated value. This flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result
•	was less than the specified detection limit greater than zero. If the detection limit was 10 ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise on any organic parameter i.e. Pest, PCB and others.
В	Indicates the analyte was found in the blank as well as the sample report as "12 B".
E	Indicates the analyte 's concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
P	This flag is used for Pesticide/PCB target analyte when there is >25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".
N	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.
~	

Client: Project:	TRC Environmental Corp., NY Morris park RI/FS TRC#46130-0010	Date Collected: Date Received:	12/6/2006 12/11/200
Client Sample	MW15-60	SDG No.:	X5831
Lab Sample ID:	X5831-01	Matrix:	WATER
Analytical Method:	8270	% Moisture:	100
Sample Wt/Wol:	990.0 mL	Extract Vol:	1000 uL

File ID BF009186.D	Dilution Date Extracted 1 12/13/2006		Date Analyze 12/21/2006	zed Analytical I BF122006		Batch ID	
	1	12/13/2000				*****	
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS		a 18 a		* *			r.
111-44-4	bis(2-Chloro	• •	1.5	U	10	1.5	ug/L
95-50-1	1,2-Dichloro		1.2	U	10	1.2	ug/L
541-73-1	1,3-Dichloro		1.2	U	10	1.2	ug/L
106-46-7	1,4-Dichloro		1.2	U	10	1.2	ug/L
108-60-1	=	-Chloropropane)	1.2	U	10	1.2	ug/L
621-64-7		i-n-propylamine	1.4	U	10	1.4	ug/L
67-72-1	Hexachloroe		1.2	U	10	1.2	ug/L
98-95-3	Nitrobenzen	e	1.6	U	10	1.6	ug/L
78-59-1	Isophorone		1.3	U	10	1.3	ug/L
111-91-1	bis(2-Chlore	ethoxy)methane	1.4	U	10	1.4	ug/L
120-82-1	1,2,4-Trichlorobenzene		1.4	U	10	1.4	ug/L
91-20-3	Naphthalene		1.4	U	10	1.4	ug/L
106-47-8	4-Chloroaniline		0.870	U	10	0.870	ug/L
87-68-3	Hexachlorobutadiene		1.4	U	10	1.4	ug/L
91-57-6	2-Methylnaphthalene		1.1	U	10	1.1	ug/L
77-47-4	Hexachlorocyclopentadiene		1.2	U	10	1.2	ug/L
91-58-7	2-Chloronaphthalene		1.4	U	10	1.4	ug/L
88-74-4	2-Nitroaniline		1.1	U	10	1.1	ug/L
131-11-3	Dimethylphthalate		1.3	U	10	1.3	ug/L
208-96-8	Acenaphthy	lene	1.3	U	10	1.3	ug/L
606-20-2	2,6-Dinitroto	oluene	1.3	U	10	1.3	ug/L
99-09-2	3-Nitroanilii	ne	1.0	U	10	1.0	ug/L
83-32-9	Acenaphthe	ne	1.4	U	10	1.4	ug/L
132-64-9	Dibenzofura		1.3	U	10	1.3	ug/L
121-14-2	2,4-Dinitroto	oluene	1.2	U	10	1.2	ug/L
84-66-2	Diethylphthalate		1.3	U	10	1.3	ug/L
7005-72-3	4-Chlorophenyl-phenylether		1.4	U	10	1.4	ug/L
86-73-7	Fluorene	· •	1.4	U	10	1.4	ug/L
100-01-6	4-Nitroaniline		1.1	U	10	1.1	ug/L
86-30-6	N-Nitrosodiphenylamine		1.3	U	10	1.3	ug/L
101-55-3		nyl-phenylether	1.5	U	10	1.5	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 12/6/2006 Date Received: 12/11/2000 Project: Morris park RI/FS TRC#46130-0010 Client Sample MW15-60 SDG No.: X5831 Lab Sample ID: X5831-01 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 990.0 Extract Vol: 1000 mLuL

File ID	Dilution Date Extracted		Date Analyze		Analytical Batch ID		
BF009186.D	1	12/13/2006	12/21/2006	BF	BF122006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS				~ •			
118-74-1	Hexachlorol		1.2	U	10	1.2	ug/L
85-01-8	Phenanthren	e	1.4	U	10	1.4	ug/L
120-12-7	Anthracene		1.4	U	10	1.4	ug/L
86-74-8	Carbazole		1.3	U	10	1.3	ug/L
84-74-2	Di-n-butylpl		1.3	U	10	1.3	ug/L
206-44-0	Fluoranthen	e	1.2	U	10	1.2	ug/L
129-00-0	Pyrene		1.5	U	10	1.5	ug/L
85-68-7	Butylbenzyl	-	1.4	U	10	1.4	ug/L
91-94-1	3,3-Dichloro		1.1	U	20	1.1	ug/L
56-55-3	Benzo(a)ant	hracene	1.1	U	10	1.1	ug/L
218-01-9	Chrysene		1.7	U	10	1.7	ug/L
117-81-7	bis(2-Ethylhexyl)phthalate		1.5	U	10	1.5	ug/L
117-84-0	Di-n-octyl phthalate		1.3	U	10	1.3	ug/L
205-99-2	Benzo(b)fluoranthene		0.760	U	10	0.760	ug/L
207-08-9	Benzo(k)flu	oranthene	1.9	·U	10	1.9	ug/L
50-32-8	Benzo(a)pyi	ene	1.2	U	10	1.2	ug/L
193-39-5	Indeno(1,2,3	3-cd)pyrene	0.840	U	10	0.840	ug/L
53-70-3	Dibenz(a,h)	anthracene	0.870	U	10	0.870	ug/L
191-24-2	Benzo(g,h,i)	perylene	1.1	U	10	1.1	ug/L
SURROGATES							
4165-60-0	Nitrobenzen	e-d5	67.41	67 %	35 - 114		SPK: 10
321-60-8	2-Fluorobip	henyl	60.64	61%	43 - 116		SPK: 10
1718-51-0	Terphenyl-d	14	47.53	48 %	33 - 141		SPK: 10
INTERNAL STANE	ARDS						
3855-82-1	1,4-Dichlore	obenzene-d4	26738	4.38			
1146-65-2	Naphthalene	e-d8	104380	5.55			
15067-26-2	Acenaphthene-d10		46460	7.26			
1517-22-2	•	Phenanthrene-d10		8.73			
1719-03-5	Chrysene-d	12	62065	11.35			
1520-96-3	Perylene-d1		66287	13.09			
TENTITIVE IDENT	-						

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client:	TRC Environmental Corp., NY	Date Collected:	12/6/2006	
Project:	Morris park RI/FS TRC#46130-0010	Date Received:	12/11/2000	
Client Sample	MW15-60	SDG No.:	X5831	
Lab Sample ID:	X5831-01	Matrix:	WATER	
Analytical Method:	8270	% Moisture:	100	
Sample Wt/Wol:	990.0 mL	Extract Vol:	1000 uL	

File ID BF009186.D	Dilution Date Extracted 1 12/13/2006	Date Analyzed 12/21/2006	Analytical Batch ID BF122006			
CAS Number	Parameter	Conc.	Qualifier RL		MDL	Units
TENTITIVE IDENT	TIFIED COMPOUNDS					
	ACP3.08	83	A	3.08		ug/L
2416-94-6	Phenol, 2,3,6-trimethyl-	2.6	j	5.79		ug/L
88-69-7	Phenol, 2-(1-methylethyl)-	3.6	J	6.00		ug/L
	unknown6.39	2.8	J	6.39		ug/L
	unknown6.47	3.3	J	6.47		ug/L
	unknown6.70	2.4	J	6.70		ug/L
1483-60-9	Benzene, 2,4-dimethyl-1-(1-me	thyl 2.9	J	6.78		ug/L
	unknown6.86	2.7	J	6.86		ug/L
	unknown6.94	2.3	J	6.94		ug/L
	unknown10.92	3.8	J	10.92		ug/L

Client: TRC Environmental Corp., NY Date Collected: 12/6/2006 Project: Date Received: Morris park RI/FS TRC#46130-0010 12/11/2000 Client Sample MW06-168 SDG No.: X5831 Lab Sample ID: X5831-02 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 970.0 mLExtract Vol: 1000 uL

File ID	Dilution Date Extracted		Date Analyzed	l An	alytical B	atch ID	
BF009173.D	1	12/13/2006	12/20/2006	BF	122006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							-
111-44-4	bis(2-Chlore		1.5	U	10	1.5	ug/L
95-50-1	1,2-Dichloro		1.3	υ	10	1.3	ug/L
541-73-1	1,3-Dichloro		1.2	U	10	1.2	ug/L
106-46-7	1,4-Dichloro		1.3	U	10	1.3	ug/L
108-60-1	2,2-oxybis(1	-Chloropropane)	1.3	U	10	1.3	ug/L
621-64-7	N-Nitroso-d	i-n-propylamine	1.4	U	10	1.4	ug/L
67-72-1	Hexachloroe	thane	1.2	U	10	1.2	ug/L
98-95-3	Nitrobenzen	e	1.6	U	10	1.6	ug/L
78-59-1	Isophorone		1.3	U	10	1.3	ug/L
111-91-1	bis(2-Chloro	ethoxy)methane	1.4	U	10	1.4	ug/L
120-82-1	1,2,4-Trichle	orobenzene	1.4	U	10	1.4	ug/L
91-20-3	Naphthalene	:	1.4	U	10	1.4	ug/L
106-47-8	4-Chloroani	line	0.880	U	10	0.880	ug/L
87-68-3	Hexachlorobutadiene		1.4	U	10	1.4	ug/L
91-57-6	2-Methylnaphthalene		1.1	U	10	1.1	ug/L
77-47-4	Hexachlorocyclopentadiene		1.2	U	10	1.2	ug/L
91-58-7	2-Chloronaphthalene		1.4	U	10	1.4	ug/L
88-74-4	2-Nitroaniline		1.1	U	10	1.1	ug/L
131-11-3	Dimethylphthalate		1.3	U	10	1.3	ug/L
208-96-8	Acenaphthyl	lene	1.3	U	10	1.3	ug/L
606-20-2	2,6-Dinitroto	oluene	1.3	U	10	1.3	ug/L
99-09-2	3-Nitroanilir	ne	1.0	U	10	1.0	ug/L
83-32-9	Acenaphther	ne	1.4	U	10	1.4	ug/L
132-64-9	Dibenzofura	n	1.3	U	10	1.3	ug/L
121-14-2	2,4-Dinitroto	oluene	1.2	U	10	1.2	ug/L
84-66-2	Diethylphthalate		1.4	U	10	1.4	ug/L
7005-72-3		nyl-phenylether	1.4	U	10	1.4	ug/L
86-73-7	Fluorene		1.4	U	10	1.4	ug/L
100-01-6	4-Nitroanilir	ne	1.1	U	10	1.1	ug/L
86-30-6	N-Nitrosodiphenylamine		1.3	U	10	1.3	ug/L
101-55-3		nyl-phenylether	1.5	U	10	1.5	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 12/6/2006 Project: Date Received: Morris park RI/FS TRC#46130-0010 12/11/2000 Client Sample MW06-168 SDG No.: X5831 Lab Sample ID: X5831-02 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 970.0 mLExtract Vol: 1000 uL

File ID	Dilution Date Extracted Da		Date Analyzed	Analytical Batch ID)	
BF009173.D	1	12/13/2006	12/20/2006	BF122006			J	
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units	
TARGETS 118-74-1	Hexachlorob	anzana	1.3	U	10	1.2	(4	
85-01-8	Phenanthrene		1.5	U	10	1.3 1.5	ug/L	
120-12-7	Anthracene	•	1.4	U	10		ug/L	
86-74-8	Carbazole		1.3	U	10	1.4	ug/L	
84-74-2	Di-n-butylph	tholoto	1.3	U		1.3	ug/L	
206-44-0	Fluoranthene		1.3		10	1.3	ug/L	
129-00-0	Pyrene			U	10	1.2	ug/L	
85-68-7	•	hthalata	1.5	U	10	1.5	ug/L	
91-94-1	Butylbenzylp 3,3-Dichlorol		1.5	U	10	1.5	ug/L	
56-55-3	Benzo(a)anth		1.1	U	21	1.1	ug/L	
218-01-9		racene	1.1	U	10	1.1	ug/L	
	Chrysene		1.7	U	10	1.7	ug/L	
117-81-7	bis(2-Ethylhexyl)phthalate		1.6	U	10	1.6	ug/L	
117-84-0	Di-n-octyl phthalate		1.3	U	10	1.3	ug/L	
205-99-2	Benzo(b)fluoranthene		0.770	U	10	0.770	ug/L	
207-08-9	Benzo(k)fluo		1.9	U	10	1.9	ug/L	
50-32-8	Benzo(a)pyre		1.2	U	10	1.2	ug/L	
193-39-5	Indeno(1,2,3-		0.850	U	10	0.850	ug/L	
53-70-3	Dibenz(a,h)ai		0.890	U	10	0.890	ug/L	
191-24-2	Benzo(g,h,i)p	erylene	1.1	U	10	1.1	ug/L	
SURROGATES								
4165-60-0	Nitrobenzene	-d5	67.28	67 %	35 - 114		SPK: 10	
321-60-8	2-Fluorobiph	enyl	58.5	59 %	43 - 116		SPK: 10	
1718-51-0	Terphenyl-dl	4	47.53	48 %	33 - 141		SPK: 10	
INTERNAL STAND	ARDS							
3855-82-1	1,4-Dichlorob	enzene-d4	22307	4.38				
1146-65-2	Naphthalene-	d8	91686	5.55				
15067-26-2	Acenaphthene	e-d10	42204	7.26				
1517-22-2	Phenanthrene-d10		61400	8.72				
1719-03-5	Chrysene-d12		51347	11.34				
1520-96-3	Perylene-d12		61278	13.07				
TENTITIVE IDENTIFIED COMPOUNDS								

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client:	TRC Environmental Corp., NY	Date Collected:	12/6/2006	
Project: Client Sample	Morris park RI/FS TRC#46130-0010 MW06-168	Date Received: SDG No.:	12/11/200(X5831	
Lab Sample ID:	X5831-02	Matrix:	WATER	
Analytical Method:	8270	% Moisture:	100	
Sample Wt/Wol:	970.0 mL	Extract Vol:	1000 uL	

File ID	Dilution				Analytical Batch ID BF122006			
BF009173.D	1			BF				
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units	
TENTITIVE IDE	NTIFIED COM	POUNDS					**************************************	
	ACP3.05		91	AB	3.05		ug/L	
57-10-3	n-Hexadeca	noic acid	3.1	J	9.27		ug/L	
74339-52-9	Trichloroace	etic acid, tetradecyl e	2.7	J	11.20		ug/L	

Client: Project:	TRC Environmental Corp., NY Morris park RI/FS TRC#46130-0010	Date Collected: Date Received:	12/6/2006 12/11/200
Client Sample	MW3-168	SDG No.:	X5831
ID: Lab Sample ID:	X5831-03	Matrix:	WATER
Analytical Method:	8270	% Moisture:	100
Sample Wt/Wol:	910.0 mL	Extract Vol:	1000 uL

File ID BF009181.D	Dilution Date Extracted 1 12/13/2006		Date Analyze 12/21/2006		alytical B 122006	atch ID	
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
111-44-4	bis(2-Chlor		1.6	U	11	1.6	ug/L
95-50-1	1,2-Dichlor		1.3	U	11	1.3	ug/L
541-73-1	1,3-Dichlor		1.3	U	11	1.3	ug/L
106-46-7	1,4-Dichlor	obenzene	1.3	U	11	1.3	ug/L
108-60-1	2,2-oxybis(l-Chloropropane)	1.3	U	11	1.3	ug/L
621-64-7	N-Nitroso-o	li-n-propylamine	1.5	U	11	1.5	ug/L
67-72-1	Hexachloro	ethane	1.3	U	11	1.3	ug/L
98-95-3	Nitrobenzer	ne	1.7	U	11	1.7	ug/L
78-59-1	Isophorone		1.4	U	11	1.4	ug/L
111-91-1	bis(2-Chlor	oethoxy)methane	1.5	U	11	1.5	ug/L
120-82-1	1,2,4-Trich	orobenzene	1.5	U	11	1.5	ug/L
91-20-3	Naphthalen	e	1.5	U	11	1.5	ug/L
106-47-8	4-Chloroan	iline	0.940	U	11	0.940	ug/L
87-68-3	Hexachloro	butadiene	1.5	U	I 1	1.5	ug/L
91-57-6	2-Methylna	phthalene	1.2	U	11	1.2	ug/L
77-47-4	Hexachloro	cyclopentadiene	1.3	U	11	1.3	ug/L
91-58-7	2-Chlorona	phthalene	1.5	U	11	1.5	ug/L
88-74-4	2-Nitroanil	ne	1.2	U	11	1.2	ug/L
131-11-3	Dimethylph	thalate	1.4	U	11	1.4	ug/L
208-96-8	Acenaphthy	lene	1.4	U	11	1.4	ug/L
606-20-2	2,6-Dinitro	oluene	1.4	U	11	1.4	ug/L
99-09-2	3-Nitroanil	ne	1.1	U	11	1.1	ug/L
83-32-9	Acenaphthe	ene	1.5	U	11	1.5	ug/L
132-64-9	Dibenzofur	an	1.4	U	11	1.4	ug/L
121-14-2	2,4-Dinitro	toluene	1.3	U	11	1.3	ug/L
84-66-2	Diethylphtl	alate	1.5	U	11	1.5	ug/L
7005-72-3	4-Chloroph	enyl-phenylether	1.5	U	11	1.5	ug/L
86-73-7	Fluorene		1.5	U	11	1.5	ug/L
100-01-6	4-Nitroanil	ine	1.2	U	11	1.2	ug/L
86-30-6	N-Nitrosod	iphenylamine	1.4	U	11	1.4	ug/L
101-55-3	4-Bromoph	enyl-phenylether	1.6	U	11	1.6	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 12/6/2006 Date Received: 12/11/2000 Project: Morris park RI/FS TRC#46130-0010 Client Sample MW3-168 SDG No.: X5831 ID: Lab Sample ID: X5831-03 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 910.0 Extract Vol: 1000 mLuL

File ID	Dilution Date Extracted		Date Analyze		alytical B	atch ID	
BF009181.D	1	12/13/2006	12/21/2006	BF	122006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS				•			
118-74-1	Hexachlorob		1.3	U	11	1.3	ug/L
85-01-8	Phenanthren	е	1.6	U	11	1.6	ug/L
120-12-7	Anthracene		1.5	U	11	1.5	ug/L
86-74-8	Carbazole		1.4	U	11	1.4	ug/L
84-74-2	Di-n-butylpl		1.4	U	11	1.4	ug/L
206-44-0	Fluoranthen	e	1.3	U	11	1.3	ug/L
129-00-0	Pyrene		1.6	U	11	1.6	ug/L
85-68-7	Butylbenzyl	phthalate	1.6	U	11	1.6	ug/L
91-94-1	3,3-Dichloro	benzidine	1.1	U	22	1.1	ug/L
56-55-3	Benzo(a)ant	hracene	1.2	U	11	1.2	ug/L
218-01-9	Chrysene		1.8	U	11	1.8	ug/L
117-81-7	bis(2-Ethylh	exyl)phthalate	1.7	U	11	1.7	ug/L
117-84-0	Di-n-octyl p	hthalate	1.4	U	11	1.4	ug/L
205-99-2	Benzo(b)flue	oranthene	0.820	U	11	0.820	ug/L
207-08-9	Benzo(k)flue	oranthene	2.1	U	11	2.1	ug/L
50-32-8	Benzo(a)pyr	ene	1.3	U	11	1.3	ug/L
193-39-5	Indeno(1,2,3	i-cd)pyrene	0.910	U	11	0.910	ug/L
53-70-3	Dibenz(a,h)a	anthracene	0.950	U	11	0.950	ug/L
191-24-2	Benzo(g,h,i)	perylene	1.2	U	11	1.2	ug/L
SURROGATES							
4165-60-0	Nitrobenzen	e-d5	64.6	65 %	35 - 114		SPK: 10
321-60-8	2-Fluorobipl	nenyl	53.4	53 %	43 - 116		SPK: 10
1718-51-0	Terphenyl-d	14	45.32	45 %	33 - 141		SPK: 10
INTERNAL STAND	ARDS						
3855-82-1	1,4-Dichloro	benzene-d4	30282	4.38			
1146-65-2	Naphthalene	:-d8	122446	5.55			
15067-26-2	Acenaphther	ne-d10	57261	7.26			
1517-22-2	Phenanthren		83322	8.73			
1719-03-5	Chrysene-d1	2	69236	11.34			
1520-96-3	Perylene-d12		81052	13.08			
TENTITIVE IDENT	IFIED COM	POUNDS					

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client:	TRC Environmental Corp., NY	Date Collected:	12/6/2006
Project:	Morris park RI/FS TRC#46130-0010	Date Received:	12/11/2000
Client Sample	MW3-168	SDG No.:	X5831
Lab Sample ID:	X5831-03	Matrix:	WATER
Analytical Method:	8270	% Moisture:	100
Sample Wt/Wol:	910.0 mL	Extract Vol:	1000 uL

File ID BF009181.D			Date Analyze 12/21/2006		alytical E 122006	Satch ID	
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TENTITIVE IDEN	TIFIED COM	POUNDS					
	ACP3.07		96	A	3.07		ug/L
544-63-8	Tetradecano	oic acid	2.8	J	9.27		ug/L
18435-45-5	1-Nonadece	ne	4.3	J	11.20		ug/L

Client: Project:	TRC Environmental Corp., NY Morris park RI/FS TRC#46130-0010	Date Collected: Date Received:	12/6/2006 12/11/200
Client Sample	MW16-60	SDG No.:	X5831
Lab Sample ID:	X5831-04	Matrix:	WATER
Analytical Method:	8270	% Moisture:	100
Sample Wt/Wol:	1000.0 mL	Extract Vol:	1000 uL

File ID	Dilution	Date Extracted	Date Analyzed	l An	Analytical Batch ID		
BF009184.D	1	12/13/2006	12/21/2006	BF	122006		_
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
111-44-4	bis(2-Chlore	- /	1.4 1.2	U	10	1.4	ug/L
95-50-1	*	1,2-Dichlorobenzene		U	10	1.2	ug/L
541-73-1	1,3-Dichlore	obenzene	1.2	U	10	1.2	ug/L
106-46-7	1,4-Dichlore	obenzene	1.2	U	10	1.2	ug/L
108-60-1	2,2-oxybis()	l-Chloropropane)	1.2	U	10	1.2	ug/L
621-64-7	N-Nitroso-d	i-n-propylamine	1.4	U	10	1.4	ug/L
67-72-1	Hexachloro	ethane	1,2	U	10	1.2	ug/L
98-95-3	Nitrobenzen	ie	1.6	U	10	1.6	ug/L
78-59-1	Isophorone		1.3	U	10	1.3	ug/L
111-91-1	bis(2-Chlore	oethoxy)methane	1.4	U	10	1.4	ug/L
120-82-1	1,2,4-Trichl	orobenzene	1.4	U	10	1.4	ug/L
91-20-3	Naphthalene	2	1.4	U	10	1.4	ug/L
106-47-8	4-Chloroani	line	0.860	U	10	0.860	ug/L
87-68-3	Hexachlorol	outadiene	1.4	U	10	1.4	ug/L
91-57-6	2-Methylnaj	ohthalene	1.4	J	10	1.1	ug/L
77-47-4	Hexachloro	cyclopentadiene	1.2	U	10	1.2	ug/L
91-58-7	2-Chloronap	hthalene	1.4	U	10	1.4	ug/L
88-74-4	2-Nitroanili	ne	1.1	U	10	1.1	ug/L
131-11-3	Dimethylph	thalate	1.3	U	10	1.3	ug/L
208-96-8	Acenaphthy		1.3	U	10	1.3	ug/L
606-20-2	2,6-Dinitrot		1.2	U	10	1.2	ug/L
99-09-2	3-Nitroanili	ne	1.0	U	10	1.0	ug/L
83-32-9	Acenaphthe	ne	1.3	U	10	1.3	ug/L
132-64-9	Dibenzofura		1.3	U	10	1.3	ug/L
121-14-2	2,4-Dinitrot	oluene	1.2	U	10	1.2	ug/L
84-66-2	Diethylphth	alate	1.3	U	10	1.3	ug/L
7005-72-3		enyl-phenylether	1.4	U	10	1.4	ug/L
86-73-7	Fluorene	·	1.4	U	10	1.4	ug/L
100-01-6	4-Nitroanili	ne	1.1	U	10	1.1	ug/L
86-30-6	N-Nitrosodi	phenylamine	1.2	U	10	1.2	ug/L
101-55-3		enyl-phenylether	1.5	U	10	1.5	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Date Collected: 12/6/2006 Client: TRC Environmental Corp., NY Morris park RI/FS TRC#46130-0010 Date Received: 12/11/200 Project: SDG No.: X5831 Client Sample MW16-60 Lab Sample ID: WATER X5831-04 Matrix: % Moisture: 100 Analytical Method: 8270 Extract Vol: 1000 Sample Wt/Wol: 1000.0 uLmL

File ID	Dilution	Date Extracted	Date Analyze		alytical B	atch ID	
BF009184.D	1	12/13/2006	12/21/2006	BF	122006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							~
118-74-1	Hexachlorol		1.2	U	10	1.2	ug/L
85-01-8	Phenanthren	e	1.4	U	10	1.4	ug/L
120-12-7	Anthracene		1.4	U	10	1.4	ug/L
86-74-8	Carbazole		1.3	U	10	1.3	ug/L
84-74-2	Di-n-butylpl		1.3	U	10	1.3	ug/L
206-44-0	Fluoranthen	e	1.2	U	10	1.2	ug/L
129-00-0	Pyrene		1.5	U	10	1.5	ug/L
85-68-7	Butylbenzyl	phthalate	1.4	U	10	1.4	ug/L
91-94-1	3,3-Dichloro	benzidine	1.0	U	20	1.0	ug/L
56-55-3	Benzo(a)ant	hracene	1.1	U	10	1.1	ug/L
218-01-9	Chrysene		1.7	U	10	1.7	ug/L
117-81-7	bis(2-Ethylhexyl)phthalate		1.5	U	10	1.5	ug/L
117-84-0	Di-n-octyl p	hthalate	1.3	U	10	1.3	ug/L
205-99-2	Benzo(b)flu	oranthene	0.750	U	10	0.750	ug/L
207-08-9	Benzo(k)flu	oranthene	1.9	U	10	1.9	ug/L
50-32-8	Benzo(a)pyr	rene	1.2	U	10	1.2	ug/L
193-39-5	Indeno(1,2,3	3-cd)pyrene	0.830	U	10	0.830	ug/L
53-70-3	Dibenz(a,h)	anthracene	0.870	U	10	0.870	ug/L
191-24-2	Benzo(g,h,i)	perylene	1.1	U	10	1.1	ug/L
SURROGATES		•					
4165-60-0	Nitrobenzen	e-d5	67.13	67%	35 - 114		SPK: 10
321-60-8	2-Fluorobip	henyl	58.83	59 %	43 - 116		SPK: 10
1718-51-0	Terphenyl-d	114	46.5	47 %	33 - 141		SPK: 10
INTERNAL STAND	ARDS						
3855-82-1	1,4-Dichlore	obenzene-d4	29916	4.38			
1146-65-2	Naphthalene	e-d8	116226	5.55			
15067-26-2	Acenaphthe		50060	7.26			
1517-22-2	Phenanthrer		66963	8.73			
1719-03-5	Chrysene-d12		60806	11.36			
1520-96-3	Perylene-d1		62069	13.10			
TENTITIVE IDENI	,						

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: Project:	TRC Environmental Corp., NY Morris park RI/FS TRC#46130-0010	Date Collected: Date Received:	12/6/2006 12/11/200
Client Sample	MW16-60	SDG No.:	X5831
ID: Lab Sample ID:	X5831-04	Matrix:	WATER
Analytical Method:	8270	% Moisture:	100
Sample Wt/Wol:	1000.0 mL	Extract Vol:	1000 uL

File ID BF009184.D	Dilution 1	Date Extracted 12/13/2006	Date Analyzed 12/21/2006		alytical B 122006	atch ID	
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TENTITIVE IDENT	IFIED COM	POUNDS					
	ACP3.07		92	A	3.07		ug/L
	unknown3.2	1	4.0	Ĵ	3.21		ug/L
	unknown4.4	4	7.4	J	4.44		ug/L
	unknown5.0	1	3.3	J	5.01		ug/L
	unknown6.7	7	2.8	J	6.77		ug/L
719-22-2	2,5-Cyclohe	xadiene-1,4-dione, 2,6	18	J	7.09		ug/L
	unknown7.1	7	3.7	J	7.17		ug/L
	unknown7.3	5	3.2	J	7.35		ug/L
	unknown10.	97	18	J	10.97		ug/L

Client: Project:	TRC Environmental Corp., NY Morris park RI/FS TRC#46130-0010	Date Collected: Date Received:	12/6/2006 12/11/200
Client Sample	MW6-60	SDG No.:	X5831
Lab Sample ID:	X5831-05	Matrix:	WATER
Analytical Method:	8270	% Moisture:	100
Sample Wt/Wol:	990.0 mL	Extract Vol:	1000 uL

File ID	Dilution	Date Extracted	Date Analyzed	•		atch ID	
BF009188.D	1	12/13/2006	12/21/2006	BF	BF122006		لـــــــا
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
111-44-4	bis(2-Chlore	• .	1.5	U	10	1.5	ug/L
95-50-1	1,2-Dichloro		1.2	U	10	1.2	ug/L
541-73-1	1,3-Dichlore		1.2	U	10	1.2	ug/L
106-46-7	1,4-Dichlore	benzene	1.2	U	10	1.2	ug/L
108-60-1	2,2-oxybis(-Chloropropane)	1.2	U	10	1.2	ug/L
621-64-7	N-Nitroso-d	i-n-propylamine	1.4	U	10	1.4	ug/L
67-72-1	Hexachloro	ethane	1.2	U	10	1.2	ug/L
98-95-3	Nitrobenzen	e	1.6	U	10	1.6	ug/L
78-59-1	Isophorone		1.3	U	10	1.3	ug/L
111-91-1	bis(2-Chlore	ethoxy)methane	1.4	U	10	1.4	ug/L
120-82-1	1,2,4-Trichl	orobenzene	1.4	U	10	1.4	ug/L
91-20-3	Naphthalene	:	68		10	1.4	ug/L
106-47-8	4-Chloroani	line	0.870	U	10	0.870	ug/L
87-68-3	Hexachloro	butadiene	1.4	U	10	1.4	ug/L
91-57-6	2-Methylna	ohthalene	230	E	10	1.1	ug/L
77-47-4	Hexachloro	cyclopentadiene	1.2	U	10	1.2	ug/L
91-58-7	2-Chlorona	onthalene	1.4	U	10	1.4	ug/L
88-74-4	2-Nitroanili	ne	1.1	U	10	1.1	ug/L
131-11-3	Dimethylph	thalate	1.3	U	10	1.3	ug/L
208-96-8	Acenaphthy	lene	1.3	U	10	1.3	ug/L
606-20-2	2,6-Dinitrot	oluene	1.3	U	10	1.3	ug/L
99-09-2	3-Nitroanili	ne	1.0	U	10	1.0	ug/L
83-32-9	Acenaphthe	ne	13		10	1.4	ug/L
132-64-9	Dibenzofura	ın	1.3	U	10	1.3	ug/L
121-14-2	2,4-Dinitrot	oluene	1.2	U	10	1.2	ug/L
84-66-2	Diethylphth	alate	1.3	U	10	1.3	ug/L
7005-72-3	4-Chlorophe	enyl-phenylether	1.4	U	10	1.4	ug/L
86-73-7	Fluorene	-	27		10	1.4	ug/L
100-01-6	4-Nitroanili	ne	1.1	U	10	1.1	ug/L
86-30-6	N-Nitrosodi	phenylamine	1.3	U	10	1.3	ug/L
101-55-3		enyl-phenylether	1.5	U	10	1.5	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: Project:	TRC Environmental Corp., NY Morris park RI/FS TRC#46130-0010	Date Collected: Date Received:	12/6/2006 12/11/200
Client Sample	MW6-60	SDG No.:	X5831
Lab Sample ID:	X5831-05	Matrix:	WATER
Analytical Method:	8270	% Moisture:	100
Sample Wt/Wol:	990.0 mL	Extract Vol:	1000 uL

File ID BF009188.D	Dilution 1	Date Extracted 12/13/2006	Date Analyzed 12/21/2006		Analytical Batch II BF122006		}
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
118-74-1	Hexachloro		1.2	U	10	1.2	ug/L
85-01-8	Phenanthre		37		10	1.4	ug/L
120-12-7	Anthracene		1.4	U	10	1.4	ug/L
86-74-8	Carbazole		11		10	1.3	ug/L
84-74-2	Di-n-butylp		1.3	U	10	1.3	ug/L
206-44-0	Fluoranther	ne	1.2	U	10	1.2	ug/L
129-00-0	Pyrene		1.5	U	10	1.5	ug/L
85-68-7	Butylbenzy	=	1.4	U	10	1.4	ug/L
91-94-1	3,3-Dichlor		1.1	U	20	1.1	ug/L
56-55-3	Benzo(a)an	thracene	1.1	U	10	1.1	ug/L
218-01-9	Chrysene		1.7	U	10	1.7	ug/L
117-81-7	bis(2-Ethyl	hexyl)phthalate	1.5	U	10	1.5	ug/L
117-84-0	Di-n-octyl p	ohthalate	1.3	U	10	1.3	ug/L
205-99-2	Benzo(b)flu	ioranthene	0.760	U	10	0.760	ug/L
207-08-9	Benzo(k)flu	ioranthene	1.9	U	10	1.9	ug/L
50-32-8	Benzo(a)py	rene	1.2	U	10	1.2	ug/L
193-39-5	Indeno(1,2,	3-cd)pyrene	0.840	U	10	0.840	ug/L
53-70-3	Dibenz(a,h)	anthracene	0.870	U	10	0.870	ug/L
191-24-2	Benzo(g,h,i)perylene	1.1	U	10	1.1	ug/L
SURROGATES							
4165-60-0	Nitrobenze	ne-d5	88.61	89 %	35 - 114		SPK: 10
321-60-8	2-Fluorobig	henyl	84.15	84%	43 - 116		SPK: 10
1718-51-0	Terphenyl-	114	66.31	66 %	33 - 141		SPK: 10
INTERNAL STANI	DARDS						
3855-82-1	1,4-Dichlor	obenzene-d4	25653	4.38			
1146-65-2	Naphthalen	e-d8	66208	5.57			
15067-26-2	Acenaphth	ene-d10	22506	7.30			
1517-22-2	Phenanthre		39446	8.77			
1719-03-5	Chrysene-d	12	41180	11.36			
1520-96-3	Perylene-d	12	56794	13.10			
TENTITIVE IDEN	· ·						

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: Project:	TRC Environmental Corp., NY Morris park RI/FS TRC#46130-0010	Date Collected: Date Received:	12/6/2006 12/11/200
Client Sample	MW6-60	SDG No.:	X5831
ID: Lab Sample ID:	X5831-05	Matrix:	WATER
Analytical Method:	8270	% Moisture:	100
Sample Wt/Wol:	990.0 mL	Extract Vol:	1000 uL

File ID BF009188.D	Dilution 1	Date Extracted 12/13/2006	Date Analyzed 12/21/2006		alytical B 122006	atch ID	
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TENTITIVE IDENT	IFIED COM	POUNDS				·	
	ACP3.08		61	A	3.08		ug/L
493-02-7	Naphthalene	, decahydro-, trans-	17	J	4.73		ug/L
	unknown4.9	6	22	J	4.96		ug/L
17312-53-7	Decane, 3,6-	dimethyl-	24	J	5.02		ug/L
95-93-2	Benzene, 1,2	2,4,5-tetramethyl-	25	J	5.09		ug/L
99-87-6	Benzene, 1-1	methyl-4-(1-methyleth	21	J	5.11		ug/L
4292-92-6	Cyclohexan		21	J	5.20		ug/L
1560-06-1	Benzene, 2-l		24	J	5.26		ug/L
934-10-1	3-Phenylbut	-1-ene	58	J	5.32		ug/L
5911-04-6	Nonane, 3-n		44	j	6.00		ug/L

B = Analyte Found In Associated Method Blank

Client: TRC Environmental Corp., NY Date Collected: 12/6/2006 Date Received: 12/11/2000 Project: Morris park RI/FS TRC#46130-0010 Client Sample MW6-60DL SDG No.: X5831 ID: Lab Sample 1D: X5831-05DL Matrix: WATER Analytical Method: 8270 % Moisture: 100 990.0 Extract Vol: 1000 Sample Wt/Wol: uL mL

File ID BF009199.D	Dilution 5	Date Extracted 12/13/2006	Date Analyze 12/21/2006		Analytical Batch ID BF122006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
111-44-4	bis(2-Chlore	ethyl)ether	7.3	UD	51	7.3	ug/L
95-50-1	1,2-Dichloro	benzene	6.2	UD	51	6.2	ug/L
541-73-1	1,3-Dichloro	benzene	6.1	UD	51	6.1	ug/L
106-46-7	1,4-Dichloro	benzene	6.1	UD	51	6.1	ug/L
108-60-1	2,2-oxybis(1	-Chloropropane)	6.1	UD	51	6.1	ug/L
621-64-7	N-Nitroso-d	i-n-propylamine	7.0	UD	51	7.0	ug/L
67-72-1	Hexachloro	ethane	5.9	UD	51	5.9	ug/L
98-95-3	Nitrobenzen	e	7.9	UD	51	7.9	ug/L
78-59-1	Isophorone		6.4	UD	51	6.4	ug/L
111-91-1	bis(2-Chloro	ethoxy)methane	6.9	UD	51	6.9	ug/L
120-82-1	1,2,4-Trichl	orobenzene	7.0	UD	51	7.0	ug/L
91-20-3	Naphthalene	•	78	D	51	7.0	ug/L
106-47-8	4-Chloroani	line	4.3	UD	51	4.3	ug/L
87-68-3	Hexachlorol	outadiene	6.9	UD	51	6.9	ug/L
91-57-6	2-Methylnaj	ohthalene	300	D	51	5.5	ug/L
77-47-4	Hexachloro	cyclopentadiene	5.9	UD	51	5.9	ug/L
91-58-7	2-Chloronar	hthalene	7.0	UD	51	7.0	ug/L
88-74-4	2-Nitroanili	ne	5.4	UD	51	5.4	ug/L
131-11-3	Dimethylph	thalate	6.3	UD	51	6.3	ug/L
208-96-8	Acenaphthy	lene	7.3	JD	51	6.5	ug/L
606-20-2	2,6-Dinitrot	oluene	6.3	UD	51	6.3	ug/L
99-09-2	3-Nitroanili	ne	5.1	UD	51	5.1	ug/L
83-32-9	Acenaphthe	ne	15	JD	51	6.8	ug/L
132-64-9	Dibenzofura	ın	16	JD	51	6.5	ug/L
121-14-2	2,4-Dinitrot	oluene	6.1	UD	51	6.1	ug/L
84-66-2	Diethylphth	alate	6.7	UD	51	6.7	ug/L
7005-72-3	4-Chlorophe	enyl-phenylether	6.9	UD	51	6.9	ug/L
86-73-7	Fluorene		31	JD	51	7.1	ug/L
100-01-6	4-Nitroanili	ne	5.6	UD	51	5.6	ug/L
86-30-6	N-Nitrosodi	phenylamine	6.3	UD	51	6.3	ug/L
101-55-3	4-Bromophe	enyl-phenylether	7.4	UD	51	7.4	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 12/6/2006 Project: Morris park RL/FS TRC#46130-0010 Date Received: 12/11/2000 Client Sample MW6-60DL SDG No.: X5831 Lab Sample ID: X5831-05DL Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 990.0 mLExtract Vol: 1000 uL

File ID Dilution Date Extracted		Date Analyze	d An	alytical Ba	tch ID		
BF009199.D	5	12/13/2006	12/21/2006	BF	122006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
118-74-1	Hexachlorob		6.2	UD	51	6.2	ug/L
85-01-8	Phenanthren	3	44	1D	51	7.2	ug/L
120-12-7	Anthracene		7.1	UD	51	7.1	ug/L
86-74-8	Carbazole		13	JD	51	6.4	ug/L
84-74-2	Di-n-butylph	thalate	6.6	UD	51	6.6	ug/L
206-44-0	Fluoranthene	:	6.1	UD	51	6.1	ug/L
129-00-0	Pyrene		7.3	UD	51	7.3	ug/L
85-68-7	Butylbenzylj	hthalate	7.2	UD	51	7.2	ug/L
91-94-1	3,3-Dichloro	benzidine	5.3	UD	100	5.3	ug/L
56-55-3	Benzo(a)antl	rracene	5.6	UD	51	5.6	ug/L
218-01-9	Chrysene		8.4	UD	51	8.4	ug/L
117-81-7	bis(2-Ethylhe	exyl)phthalate	63	D	51	7.7	ug/L
117-84-0	Di-n-octyl pl	nthalate	6.5	UD	51	6.5	ug/L
205-99-2	Benzo(b)fluo	ranthene	3.8	UD	51	3.8	ug/L
207-08-9	Benzo(k)fluo	ranthene	9.5	UD	51	9.5	ug/L
50-32-8	Benzo(a)pyr	ene	5.9	UD	51	5.9	ug/L
193-39-5	Indeno(1,2,3	-cd)pyrene	4.2	UD	51	4.2	ug/L
53-70-3	Dibenz(a,h)a	nthracene	4.4	UD	51	4.4	ug/L
191-24-2	Benzo(g,h,i)	perylene	5.5	UD	51	5.5	ug/L
SURROGATES							
4165-60-0	Nitrobenzene	e-d5	86.25	86 %	35 - 114		SPK: 10
321-60-8	2-Fluorobiph	enyl	94.25	94%	43 - 116		SPK: 10
1718-51-0	Terphenyl-d	•	67.95	68 %	33 - 141		SPK: 10
INTERNAL STAND							
3855-82-1	1,4-Dichloro	benzene-d4	26815	4.38			
1146-65-2	Naphthalene		94748	5.56			
15067-26-2	Acenaphther		39208	7.27			
1517-22-2	Phenanthren		62225	8.74			
1719-03-5	Chrysene-d1		58156	11.35			
1520-96-3	Perylene-d12		73284	13.08			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client:	TRC Environmental Corp., NY	Date Collected:	12/6/2006 12/11/200
Project: Client Sample	Morris park RI/FS TRC#46130-0010 MW6-60(DUP)	SDG No.:	X5831
Lab Sample ID:	X5831-06	Matrix:	WATER
Analytical Method:	8270	% Moisture:	100
Sample Wt/Wol:	1000.0 mL	Extract Vol:	1000 uL

File ID	Dilution	Date Extracted	Date Analyzed	•			
BF009185.D	1	12/13/2006	12/21/2006	BF	122006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
111-44-4	bis(2-Chloro		1.4	U	10	1.4	ug/L
95-50-1	1,2-Dichloro		1.2	U	10	1.2	ug/L
541-73-1	1,3-Dichloro		1.2	U	10	1.2	ug/L
106-46-7	1,4-Dichloro		1.2	U	10	1.2	ug/L
108-60-1	•	-Chloropropane)	1.2	U	10	1.2	ug/L
621-64-7		i-n-propylamine	1.4	U	10	1.4	ug/L
67-72-1	Hexachloroe	thane	1.2	U	10	1.2	ug/L
98-95-3	Nitrobenzen	e	1.6	υ	10	1.6	ug/L
78-59-1	Isophorone		1.3	U	10	1.3	ug/L
111-91-1	•	ethoxy)methane	1.4	U	10	1.4	ug/L
120-82-1	1,2,4-Trichlo	orobenzene	1.4	U	10	1.4	ug/L
91-20-3	Naphthalene		54		10	1.4	ug/L
106-47-8	4-Chloroanil	line	0.860	U	10	0.860	ug/L
87-68-3	Hexachlorob	utadiene	1.4	U	10	1.4	ug/L
91-57-6	2-Methylnap	hthalene	150	E	10	1.1	ug/L
77-47-4	Hexachloroc	yclopentadiene	1.2	U	10	1.2	ug/L
91-58-7	2-Chloronap	hthalene	1.4	U	10	1.4	ug/L
88-74-4	2-Nitroanilin	ne	1.1	U	10	1.1	ug/L
131-11-3	Dimethylpht	halate	1.3	U	10	1.3	ug/L
208-96-8	Acenaphthyl		1.3	U	10	1.3	ug/L
606-20-2	2,6-Dinitroto		1.2	U	10	1.2	ug/L
99-09-2	3-Nitroanilin	ne	1.0	U	10	1.0	ug/L
83-32-9	Acenaphther	ne	7.4	J	10	1.3	ug/L
132-64-9	Dibenzofura		7.1	J	10	1.3	ug/L
121-14-2	2,4-Dinitroto	oluene	1.2	U	10	1.2	ug/L
84-66-2	Diethylphtha		1.3	U	10	1.3	ug/L
7005-72-3		nyl-phenylether	1.4	U	10	1.4	ug/L
86-73-7	Fluorene	-	14		10	1.4	ug/L
100-01-6	4-Nitroanilin	ne .	1.1	U	10	1.1	ug/L
86-30-6	N-Nitrosodi		1.2	Ū	10	1.2	ug/L
101-55-3	•	nyl-phenylether	1.5	U	10	1.5	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 12/6/2006 Date Received: 12/11/2000 Project: Morris park RI/FS TRC#46130-0010 Client Sample MW6-60(DUP) SDG No.: X5831 Lab Sample ID: X5831-06 Matrix: WATER % Moisture: 100 Analytical Method: 8270 Extract Vol: 1000.0 1000 Sample Wt/Wol: mL uL

File ID	Dilution	Date Extracted	Date Analyzed Analytical Batch ID		itch ID	}	
BF009185.D	1	12/13/2006	12/21/2006	BF	122006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS	TY 11		1.2	* *	10	1.0	or
118-74-1	Hexachloro		1.2	U	10	1.2	ug/L
85-01-8	Phenanthrer	ie	14	* 7	10	1.4	ug/L
120-12-7	Anthracene		1.4	U	10	1.4	ug/L
86-74-8	Carbazole	2.4. 1.4.	13	# T	10	1.3	ug/L
84-74-2	Di-n-butylp		1.3	U	10	1.3	ug/L
206-44-0	Fluoranthen	e	1.2	U	10	1,2	ug/L
129-00-0	Pyrene		1.5	U	10	1.5	ug/L
85-68-7	Butylbenzyl	-	1.4	U	10	1.4	ug/L
91-94-1	3,3-Dichlor		1.0	U	20	1.0	ug/L
56-55-3	Benzo(a)an	thracene	1.1	U	10	1.1	ug/L
218-01-9	Chrysene		1.7 1.5	U	10	1.7	ug/L
117-81-7		bis(2-Ethylhexyl)phthalate		U	10	1.5	ug/L
117-84-0	Di-n-octyl p		1.3	U	10	1.3	ug/L
205-99-2	Benzo(b)flu		0.750	U	10	0.750	ug/L
207-08-9	Benzo(k)flu		1.9	U	10	1.9	ug/L
50-32-8	Benzo(a)py	rene	1.2	U	10	1.2	ug/L
193-39-5	Indeno(1,2,	3-cd)pyrene	0.830	U	10	0.830	ug/L
53-70-3	Dibenz(a,h)	anthracene	0.870	U	10	0.870	ug/L
191-24-2	Benzo(g,h,i)perylene	1.1	U	10	1.1	ug/L
SURROGATES							
4165-60-0	Nitrobenzer	ne-d5	71.84	72 %	35 - 114		SPK: 10
321-60-8	2-Fluorobip	henyl	69.64	70 %	43 - 116		SPK: 10
1718-51-0	Terphenyl-o	114	44.96	45 %	33 - 141		SPK: 10
INTERNAL STANE							
3855-82-1	1,4-Dichlor	obenzene-d4	26480	4.38			
1146-65-2	Naphthalen	e-d8	85977	5.56			
15067-26-2	Acenaphthe	ne-d10	33806	7.27			
1517-22-2	Phenanthre	ne-d10	53381	8.74			
1719-03-5	Chrysene-d	12	60041	11.36			
1520-96-3	Perylene-d1	2	63141	13.10			
TENTITIVE IDENT	CIFIED COM	IPOUNDS					

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: Project:	TRC Environmental Corp., NY Morris park RI/FS TRC#46130-0010	Date Collected: Date Received:	12/6/2006 12/11/200
Client Sample	MW6-60(DUP)	SDG No.:	X5831
ID: Lab Sample ID:	X5831-06	Matrix:	WATER
Analytical Method:	8270	% Moisture:	100
Sample Wt/Wol:	1000.0 mL	Extract Vol:	1000 uL

File ID BF009185.D			Date Analyzed 12/21/2006	Analytical Batch ID BF122006			
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TENTITIVE IDENT	TIFIED COM	IPOUNDS					
	ACP3.07		75	A	3.07		ug/L
	unknown5.3	known5.32		J	5.32		ug/L
90-12-0	Naphthalen	e, 1-methyl-	47	J	6.36		ug/L
939-27-5	Naphthalene	e, 2-ethyl-	29	J	6.80		ug/L
581-42-0	Naphthalen	e, 2,6-dimethyl-	68	J	6.88		ug/L
581-40-8	Naphthalen	e, 2,3-dimethyl-	52	J	6.95		ug/L
	unknown7.0)6	34	J	7.06		ug/L
17301-22-3	Undecane, 2	2,5-dimethyl-	31	J	7.94		ug/L
55045-11-9	Tridecane, 5	-propyl-	73	J	8.20		ug/L
13151-34-3	Decane, 3-n		44	J	8.66		ug/L

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Date Collected: Client: TRC Environmental Corp., NY 12/6/2006 Date Received: 12/11/2000 Morris park RI/FS TRC#46130-0010 Project: Client Sample MW6-60(DUP)DL SDG No.: X5831 Lab Sample ID: X5831-06DL Matrix: WATER % Moisture: 100 Analytical Method: 8270 1000 Extract Vol: uL Sample Wt/Wol: 1000.0 mL

File ID	Dilution	Date Extracted	Date Analyzed	d Analytical Batch ID BF122006			
BF009200.D	5	12/13/2006	12/21/2006	BF	122006		
CAS Number	Parameter	•	Conc.	Qualifier	RL	MDL	Units
TARGETS							
111-44-4	,	oethyl)ether	7.2 6.1	UD	50	7.2	ug/L
95-50-1	•	1,2-Dichlorobenzene		UD	50	6.1	ug/L
541-73-1	1,3-Dichlor	obenzene	6.0	UD	50	6.0	ug/L
106-46-7	1,4-Dichlor	obenzene	6.1	UD	50	6.1	ug/L
108-60-1	2,2-oxybis(I-Chloropropane)	6.1	UD	50	6.1	ug/L
621-64-7	N-Nitroso-	di-n-propylamine	6.9	UD	50	6.9	ug/L
67-72-I	Hexachloro	ethane	5.8	UD	50	5.8	ug/L
98-95-3	Nitrobenze	ne	7.9	UD	50	7.9	ug/L
78-59-1	Isophorone		6.3	UD	50	6.3	ug/L
111-91-1	bis(2-Chlor	oethoxy)methane	6.9	UD	50	6.9	ug/L
120-82-1	1,2,4-Trich	lorobenzene	6.9	UD	50	6.9	ug/L
91-20-3	Naphthalen	e	68	D	50	6.9	ug/L
106-47-8	4-Chloroan	iline	4.3	UD	50	4.3	ug/L
87-68-3	Hexachloro	butadiene	6.8	UD	50	6.8	ug/L
91-57-6	2-Methylna	phthalene	230	D	50	5.4	ug/L
77-47-4	Hexachloro	cyclopentadiene	5.8	UD	50	5.8	ug/L
91-58-7	2-Chlorona	phthalene	6.9	UD	50	6.9	ug/L
88-74-4	2-Nitroanil	ine	5.3	UD	50	5.3	ug/L
131-11-3	Dimethylph	nthalate	6.3	UD	50	6.3	ug/L
208-96-8	Acenaphthy	ylene	6.5	UD	50	6.5	ug/L
606-20-2	2,6-Dinitro	toluene	6.2	UD	50	6.2	ug/L
99-09-2	3-Nitroanil	ine	5.1	UD	50	5.1	ug/L
83-32-9	Acenaphthe	ene	7.6	JD	50	6.7	ug/L
132-64-9	Dibenzofur	an	8.4	JD	50	6.5	ug/L
121-14-2	2,4-Dinitro	toluene	6.0	UD	50	6.0	ug/L
84-66-2	Diethylphth	nalate	6.6	UD	50	6.6	ug/L
7005-72-3		enyl-phenylether	6.8	UD	50	6.8	ug/L
86-73-7	Fluorene	· •	16	JD	50	7.0	ug/L
100-01-6	4-Nitroanil	ine	5.6	UD	50	5.6	ug/L
86-30-6	N-Nitrosod	iphenylamine	6.2	UD	50	6.2	ug/L
101-55-3		enyl-phenylether	7.4	UD	50	7.4	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: Date Collected: TRC Environmental Corp., NY 12/6/2006 Date Received: 12/11/2000 Project: Morris park RI/FS TRC#46130-0010 Client Sample MW6-60(DUP)DL SDG No.: X5831 ID: Lab Sample ID: X5831-06DL Matrix: WATER Analytical Method: 8270 % Moisture: 100 Extract Vol: Sample Wt/Wol: 1000.0 1000 mL uL

File ID BF009200.D	Dilution 5	Date Extracted	Date Analyze 12/21/2006		alytical B 122006	atch ID	
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
118-74-1	Hexachlorob	enzene	6.1	UD	50	6.1	ug/L
85-01-8	Phenanthren	e	17	JD	50	7.1	ug/L
120-12-7	Anthracene		7.0	UD	50	7.0	ug/L
86-74-8	Carbazole		14	JD	50	6.4	ug/L
84-74-2	Di-n-butylpl	nthalate	6.5	UD	50	6.5	ug/L
206-44-0	Fluoranthene		6.0	UD	50	6.0	ug/L
129-00-0	Ругепе		7.3	UD	50	7.3	ug/L
85-68-7	Butylbenzyl	phthalate	7.2	UD	50	7.2	ug/L
91-94-1	3,3-Dichloro	benzidine	5.2	UD	100	5.2	ug/L
56-55-3	Benzo(a)anthracene		5.6	UD	50	5.6	ug/L
218-01-9	Chrysene		8.4	UD	50	8.4	ug/L
117-81-7	bis(2-Ethylhexyl)phthalate		7.6	UD	50	7.6	ug/L
117-84-0	Di-n-octyl p	hthalate	6.4	UD	50	6.4	ug/L
205-99-2	Benzo(b)fluo	oranthene	3.7	UD	50	3.7	ug/L
207-08-9	Benzo(k)flue	oranthene	9.4	UD	50	9.4	ug/L
50-32-8	Benzo(a)pyr	ene	5.8	UD	50	5.8	ug/L
193-39-5	Indeno(1,2,3	-cd)pyrene	4.1	UD	50	4.1	ug/L
53-70-3	Dibenz(a,h)a	inthracene	4.3	UD	50	4.3	ug/L
191-24-2	Benzo(g,h,i)	perylene	5.4	UD	50	5.4	ug/L
SURROGATES							
4165-60-0	Nitrobenzen	e-d5	79.1	79 %	35 - 114		SPK: 10
321-60-8	2-Fluorobipl	nenyl	86	86 %	43 - 116		SPK: 10
1718-51-0	Terphenyl-d	14	60.75	61%	33 - 141		SPK: 10
INTERNAL STANI	DARDS						
3855-82-1	1,4-Dichloro	benzene-d4	27017	4.38			
1146-65-2	Naphthalene		100149	5.56			
15067-26-2	Acenaphther		45756	7.26			
1517-22-2	Phenanthren		67698	8.73			
1719-03-5	Chrysene-d1		66597	11.35			
1520-96-3	Perylene-dl:		73112	13.08			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 12/6/2006 Date Received: 12/11/2000 Project: Morris park RI/FS TRC#46130-0010 Client Sample MW21S SDG No.: X5831 Lab Sample ID: X5831-07 WATER Matrix: Analytical Method: 8270 % Moisture: 100 900.0 Sample Wt/Wol: mL Extract Vol: 1000 uL

File ID	Dilution	Date Extracted	Date Analyzed		alytical Ba	atch ID	
BF009194.D	1	12/13/2006	12/21/2006	BF	122006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
111-44-4	bis(2-Chloro	, ,	1.6	U	11	1.6	ug/L
95-50-1	1,2-Dichloro		1.4	U	11	1.4	ug/L
541-73-1	•	1,3-Dichlorobenzene		U	11	1.3	ug/L
106-46-7	1,4-Dichlore		1.3	U	11	1.3	ug/L
108-60-1	2,2-oxybis(1	I-Chloropropane)	1.3	U	11	1.3	ug/L
621-64-7	N-Nitroso-d	i-n-propylamine	1.5	U	11	1.5	ug/L
67-72-1	Hexachloroe		1.3	U	11	1.3	ug/L
98-95-3	Nitrobenzen	e	1.7	U	11	1.7	ug/L
78-59-1	Isophorone		1.4	U	11	1.4	ug/L
111-91-1	bis(2-Chlore	oethoxy)methane	1.5	U	11	1.5	ug/L
120-82-1	1,2,4-Trichle	1,2,4-Trichlorobenzene		U	11	1.5	ug/L
91-20-3	Naphthalene	Naphthalene		U	11	1.5	ug/L
106-47-8	4-Chloroanil	line	0.950	U	11	0.950	ug/L
87-68-3	Hexachlorob	outadiene	1.5	U	11	1.5	ug/L
91-57-6	2-Methylnap	ohthalene	1.2	U	11	1.2	ug/L
77-47-4	Hexachloroc	cyclopentadiene	1.3	U	11	1.3	ug/L
91-58-7	2-Chloronap		1.5	U	11	1.5	ug/L
88-74-4	2-Nitroanilir	пе	1.2	U	11	1.2	ug/L
131-11-3	Dimethylpht	thalate	1.4	U	11	1.4	ug/L
208-96-8	Acenaphthyl	lene	1.4	U	11	1.4	ug/L
606-20-2	2,6-Dinitroto	oluene	1.4	U	11	1.4	ug/L
99-09-2	3-Nitroanilir	пе	1.1	U	11	1.1	ug/L
83-32-9	Acenaphther	ne	1.5	U	11	1.5	ug/L
132-64-9	Dibenzofura	'n	1.4	U	11	1.4	ug/L
121-14-2	2,4-Dinitroto	oluene	1.3	U	11	1.3	ug/L
84-66-2	Diethylphtha	alate	1.5	U	11	1.5	ug/L
7005-72-3	4-Chlorophe	enyl-phenylether	1.5	U	11	1.5	ug/L
86-73-7	Fluorene		1.6	U	11	1.6	ug/L
100-01-6	4-Nitroanilir	пе	1.2	U	11	1.2	ug/L
86-30-6	N-Nitrosodi	phenylamine	1.4	U	11	1.4	ug/L
101-55-3		enyl-phenylether	1.6	U	11	1.6	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 12/6/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/11/2000 Client Sample MW21S SDG No.: X5831 Lab Sample ID: X5831-07 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 900.0 mLExtract Vol: 1000 uL

File ID	Dilution	Date Extracted	Date Analyze	d An	alytical Ba	itch ID	
BF009194.D	1	12/13/2006	12/21/2006	BF	122006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							~
118-74-1	Hexachlorob		1.4	U	11	1.4	ug/L
85-01-8	Phenanthren	e	1.6	U	11	1.6	ug/L
120-12-7	Anthracene		1.6	U	11	1.6	ug/L
86-74-8	Carbazole		1.4	U	11	1.4	ug/L
84-74-2	Di-n-butylph		1.4	U	11	1.4	ug/L
206-44-0	Fluoranthene	2	1.3	U	11	1.3	ug/L
129-00-0	Pyrene		1.6	U	11	1.6	ug/L
85-68-7	Butylbenzylphthalate		1.6 1.2	U	11	1.6	ug/L
91-94-1	3,3-Dichloro	3,3-Dichlorobenzidine		U	22	1.2	ug/L
56-55-3	Benzo(a)ant	hracene	1.2	U	11	1.2	ug/L
218-01-9	Chrysene		1.9	U	11	1.9	ug/L
117-81-7	bis(2-Ethylhexyl)phthalate		3.9	J	11	1.7	ug/L
117-84-0	Di-n-octyl p	hthalate	1.4	U	11	1.4	ug/L
205-99-2	Benzo(b)fluo	oranthene	0.830	U	11	0.830	ug/L
207-08-9	Benzo(k)flu	oranthene	2.1	U	11	2.1	ug/L
50-32-8	Benzo(a)pyr	ene	1.3	U	11	1.3	ug/L
193-39-5	Indeno(1,2,3	-cd)pyrene	0.920	U	1 i-	0.920	ug/L
53-70-3	Dibenz(a,h)a	nthracene	0.960	U	11	0.960	ug/L
191-24-2	Benzo(g,h,i)	perylene	1.2	U	11	1.2	ug/L
SURROGATES							-
4165-60-0	Nitrobenzen	e-d5	64.32	64 %	35 - 114		SPK: 10
321-60-8	2-Fluorobipl	nenyl	57.45	57%	43 - 116		SPK: 10
1718-51-0	Terphenyl-d	14	47.24	47 %	33 - 141		SPK: 10
INTERNAL STANE	ARDS						
3855-82-1	1,4-Dichloro	benzene-d4	29297	4.38			
1146-65-2	Naphthalene	-d8	115887	5.55			
15067-26-2	Acenaphther		54396	7.26			
1517-22-2	Phenanthren		83819	8.73			
1719-03-5	Chrysene-d1		72033	11.34			
1520-96-3	Perylene-d1:		67446	13.08			
TENTITIVE IDENT	•						

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: Project:	TRC Environmental Corp., NY Morris park RI/FS TRC#46130-0010	Date Collected: Date Received:	12/6/2006 12/11/200
Client Sample	MW21S	SDG No.:	X5831
Lab Sample ID:	X5831-07	Matrix:	WATER
Analytical Method:	8270	% Moisture:	100
Sample Wt/Wol:	900.0 mL	Extract Vol:	1000 uL

File ID BF009194.D	Dilution 1	Date Extracted 12/13/2006	Date Analyzed 12/21/2006		Analytical Batch ID BF122006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TENTITIVE IDEN	CIFIED COMP	OUNDS					
	ACP3.07		91	A	3.07		ug/L
112-92-5	1-Octadecand	ol	2.4	J	11.21		ug/L

Client: TRC Environmental Corp., NY Date Collected: 12/6/2006 Date Received: Project: Morris park RI/FS TRC#46130-0010 12/11/2000 Client Sample MW21D SDG No.: X5831 Lab Sample ID: X5831-08 WATER Matrix: Analytical Method: 8270 % Moisture: 100 990.0 Sample Wt/Wol: mL Extract Vol: 1000 uL

File ID BF009195.D	Dilution 1	Date Extracted	Date Analyze 12/21/2006		alytical I 122006	Batch ID	
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
111-44-4	bis(2-Chlore	ethyl)ether	1.5	U	10	1.5	ug/L
95-50-1	1,2-Dichloro	benzene	1.2	U	10	1.2	ug/L
541-73-1	1,3-Dichloro	benzene	1.2	U	10	1.2	ug/L
106-46-7	1,4-Dichloro	benzene	1.2	U	10	1.2	ug/L
108-60-1	2,2-oxybis(1	-Chloropropane)	1.2	U	10	1.2	ug/L
621-64-7	N-Nitroso-d	i-n-propylamine	1.4	U	10	1.4	ug/L
67-72-1	Hexachloroe	thane	1.2	U	10	1.2	ug/L
98-95-3	Nitrobenzen	e	1.6	U	10	1.6	ug/L
78-59- 1	Isophorone		1.3	U	10	1.3	ug/L
111-91-1	bis(2-Chloro	ethoxy)methane	1.4	U	10	1.4	ug/L
120-82-1	1,2,4-Trichle	orobenzene	1.4	U	10	1.4	ug/L
91-20-3	Naphthalene	!	1.4	U	10	1.4	ug/L
106-47-8	4-Chloroani	line	0.870	U	10	0.870	ug/L
87-68-3	Hexachlorol	outadiene	1.4	U	10	1.4	ug/L
91-57-6	2-Methylnar	hthalene	1.1	U	10	1.1	ug/L
77-47-4	Hexachloro	yclopentadiene	1.2	U	10	1.2	ug/L
91-58-7	2-Chloronap	hthalene	1.4	U	10	1.4	ug/L
88-74-4	2-Nitroanilir	ne	1.1	U	10	1.1	ug/L
131-11-3	Dimethylpht	halate	1.3	U	10	1.3	ug/L
208-96-8	Acenaphthy	lene	1.3	U	10	1.3	ug/L
606-20-2	2,6-Dinitroto	oluene	1.3	U	10	1.3	ug/L
99-09-2	3-Nitroanilii	ne	1.0	U	10	1.0	ug/L
83-32-9	Acenaphthe	ne	1.4	U	10	1.4	ug/L
132-64-9	Dibenzofura	n	1.3	U	10	1.3	ug/L
121-14-2	2,4-Dinitrote	oluene	1.2	U	10	1.2	ug/L
84-66-2	Diethylphtha	alate	1.3	U	10	1.3	ug/L
7005-72-3	4-Chlorophe	nyl-phenylether	1.4	U	10	1.4	ug/L
86-73-7	Fluorene	•	1.4	U	10	1.4	ug/L
100-01-6	4-Nitroanilii	ne	1.1	U	10	1.1	ug/L
86-30-6	N-Nitrosodi	phenylamine	1.3	U	10	1.3	ug/L
101-55-3	4-Bromophe	nyl-phenylether	1.5	U	10	1.5	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 12/6/2006 Date Received: 12/11/2000 Project: Morris park RI/FS TRC#46130-0010 Client Sample SDG No.: MW21D X5831 Lab Sample ID: X5831-08 Matrix: WATER % Moisture: Analytical Method: 8270 100 Sample Wt/Wol: 990.0 mLExtract Vol: 1000 uL

File ID BF009195.D	Dilution 1	Date Extracted 12/13/2006	Date Analyzed 12/21/2006		alytical Ba 122006	tch ID	
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS				**	• •		
118-74-1	Hexachlorob		1.2	U	10	1.2	ug/L
85-01-8	Phenanthren	e	1.4	Ŭ	10	1.4	ug/L
120-12-7	Anthracene		1.4 1.3	U	10	1.4	ug/L
86-74-8		Carbazole		U	10	1.3	ug/L
84-74-2	Di-n-butylph		1.3	U	10	1.3	ug/L
206-44-0	Fluoranthene	•	1.2	U	10	1.2	ug/L
129-00-0	Pyrene		1.5	U	10	1.5	ug/L
85-68-7	Butylbenzylp		1.4 1.1	U	10	1.4	ug/L
91-94-1	="	3,3-Dichlorobenzidine		U	20	1.1	ug/L
56-55-3		Benzo(a)anthracene		U	10	1.1	ug/L
218-01-9	Chrysene		1.7	U	10	1.7	ug/L
117-81-7	· · · · · · · · ·	exyl)phthalate	3.5	J	10	1.5	ug/L
117-84-0	Di-n-octyl pl		1.3	U	10	1.3	ug/L
205-99-2	Benzo(b)fluo		0.760	U	10	0.760	ug/L
207-08-9	Benzo(k)fluo		1.9	U	10	1.9	ug/L
50-32-8	Benzo(a)pyro	ene	1.2	U	10	1.2	ug/L
193-39-5	Indeno(1,2,3	-cd)pyrene	0.840	U	10	0.840	ug/L
53-70-3	Dibenz(a,h)a	inthracene	0.870	U	10	0.870	ug/L
191-24-2	Benzo(g,h,i)	perylene	1.1	U	10	1.1	ug/L
SURROGATES							
4165-60-0	Nitrobenzene	e-d5	64.8	65 %	35 - 114		SPK: 10
321-60-8	2-Fluorobiph	nenyl	57.53	58 %	43 - 116		SPK: 10
1718-51-0	Terphenyl-d	14	46.65	47 %	33 - 141		SPK: 10
INTERNAL STANI	DARDS						
3855-82-1	1,4-Dichloro	benzene-d4	30729	4.38			
1146-65-2	Naphthalene	-d8	121888	5.55			
15067-26-2	Acenaphther		57285	7.26			
1517-22-2	Phenanthren		87746	8.73			
1719-03-5	Chrysene-d1	2	75600	11.34			
1520-96-3	Perylene-d12		71229	13.08			
TENTITIVE IDEN	-						

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: Project:	TRC Environmental Corp., NY Morris park RI/FS TRC#46130-0010	Date Collected: 12/6/2006 Date Received: 12/11/2000			
Client Sample	MW21D	SDG No.:	X5831		
Lab Sample ID:	X5831-08	Matrix:	WATER		
Analytical Method:	8270	% Moisture:	100		
Sample Wt/Wol:	990.0 mL	Extract Vol:	1000 uL		

File ID BF00919	Dilution 5.D 1	Date Extracted 12/13/2006	Date Analyze 12/21/2006		alytical E 122006	Batch ID	
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TENTITIVE II	ENTIFIED COM	POUNDS					
	ACP3.08		82	A	3.08		ug/L
18835-32-0	1-Tricosene		2.5	J	11.21		ug/L

Client: TRC Environmental Corp., NY Date Collected: 12/6/2006 Date Received: 12/11/2000 Project: Morris park RI/FS TRC#46130-0010 Client Sample FIELDBLANK SDG No.: X5831 ID: Lab Sample ID: X5831-09 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 920.0 Extract Vol: 1000 mLuL

File ID BF009174.D	Dilution 1	Date Extracted	Date Analyzee		alytical I 122006	Batch ID	
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
111-44-4	bis(2-Chlore	ethyl)ether	1.6	U	11	1.6	ug/L
95-50-1	1,2-Dichloro	benzene	1.3	U	11	1.3	ug/L
541-73-1	1,3-Dichlore	1,3-Dichlorobenzene		U	11	1.3	ug/L
106-46-7	1,4-Dichlorobenzene		1.3	U	11	1.3	ug/L
108-60-1	2,2-oxybis(1-Chloropropane)		1.3	U	11	1.3	ug/L
621-64-7	N-Nitroso-d	i-n-propylamine	1.5	U	11	1.5	ug/L
67-72-1	Hexachloro	ethane	1.3	U	11	1.3	ng/L
98-95-3	Nitrobenzen	e	1.7	U	11	1.7	ug/L
78-59-1	Isophorone		1.4	U	11	1.4	ug/L
111-91-1	bis(2-Chlore	ethoxy)methane	1.5	U	11	1.5	ug/L
120-82-1	1,2,4-Trichl	orobenzene	1.5	U	11	1.5	ug/L
91-20-3	Naphthalene	;	1.5	U	11	1.5	ug/L
106-47-8	4-Chloroani	line	0.930	U	11	0.930	ug/L
87-68-3	Hexachlorol	outadiene	1.5	U	11	1.5	ug/L
91-57-6	2-Methylna	ohthalene	1.2	U	11	1.2	ug/L
77-47-4	Hexachloro	cyclopentadiene	1.3	U	11	1.3	ug/L
91-58-7	2-Chloronap	hthalene	1.5	U	11	1.5	ug/L
88-74-4	2-Nitroanili	ne	1.2	U	11	1.2	ug/L
131-11-3	Dimethylph	thalate	1.4	U	11	1.4	ug/L
208-96-8	Acenaphthy	lene	1.4	U	11	1.4	ug/L
606-20-2	2,6-Dinitrot	oluene	1.4	U	11	1.4	ug/L
99-09-2	3-Nitroanili	ne	1.1	U	11	1.1	ug/L
83-32-9	Acenaphthe	ne	1.5	U	11	1.5	ug/L
132-64-9	Dibenzofura	ın	1.4	U	11	1.4	ug/L
121-14-2	2,4-Dinitrot	oluene	1.3	U	11	1.3	ug/L
84-66-2	Diethylphth	alate	1.4	U	11	1.4	ug/L
7005-72-3	4-Chlorophe	enyl-phenylether	1.5	U	11	1.5	ug/L
86-73-7	Fluorene		1.5	U	11	1.5	ug/L
100-01-6	4-Nitroanili	ne	1.2	U	11	1.2	ug/L
86-30-6	N-Nitrosodi	phenylamine	1.4	U	11	1.4	ug/L
101-55-3	4-Bromophe	enyl-phenylether	1.6	U	11	1.6	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 12/6/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/11/2000 Client Sample SDG No.: **FIELDBLANK** X5831 Lab Sample ID: X5831-09 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 920.0 mLExtract Vol: 1000 uL

File ID	Dilution	Date Extracted	Date Analyzed	ed Analytical Batch ID			
BF009174.D	1	12/13/2006	12/20/2006	BF	122006		J
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS	•						
118-74-1	Hexachlorol	oenzene	1.3	U	11	1.3	ug/L
85-01-8	Phenanthren	ie	1.5	U	11	1.5	ug/L
120-12-7	Anthracene		1.5	U	11	1.5	ug/L
86-74-8	Carbazole		1.4	U	11	1.4	ug/L
84-74-2	Di-n-butylpl	nthalate	1.4	U	11	1.4	ug/L
206-44-0	Fluoranthen	e	1.3	U	11	1.3	ug/L
129-00-0	Pyrene		1.6	U	11	1.6	ug/L
85-68-7	Butylbenzyl	phthalate	1.6	U	11	1.6	ug/L
91-94-1	3,3-Dichloro	benzidine	1.1	U	22	1.1	ug/L
56-55-3	Benzo(a)ant	hracene	1.2	U	11	1.2	ug/L
218-01-9	Chrysene		1.8	U	11	1.8	ug/L
117-81-7	bis(2-Ethylhexyl)phthalate		1.7	U	11	1.7	ug/L
117-84-0	Di-n-octyl p	Di-n-octyl phthalate		U	11	1.4	ug/L
205-99-2	Benzo(b)flu	oranthene	0.810	U	11	0.810	ug/L
207-08-9	Benzo(k)flu	oranthene	2.0	U	11	2.0	ug/L
50-32-8	Benzo(a)pyi	ene	1.3	U	11	1.3	ug/L
193-39-5	Indeno(1,2,3	3-cd)pyrene	0.900	U	11	0.900	ug/L
53-70-3	Dibenz(a,h)	anthracene	0.940	U	11	0.940	ug/L
191-24-2	Benzo(g,h,i)	perylene	1.2	U	11	1.2	ug/L
SURROGATES							-
4165-60-0	Nitrobenzen	e-d5	65.33	65 %	35 - 114		SPK: 10
321-60-8	2-Fluorobip	henyl	55.78	56 %	43 - 116		SPK: 10
1718-51-0	Terphenyl-d	14	45.92	46 %	33 - 141		SPK: 10
INTERNAL STAND	ARDS						
3855-82-1	1,4-Dichlore	obenzene-d4	24804	4.38			
1146-65-2	Naphthalene	e-d8	98717	5.55			
15067-26-2	Acenaphthe		45848	7.26			
1517-22-2	Phenanthren		67706	8.72			
1719-03-5	Chrysene-d		56597	11.34			
1520-96-3	Perylene-d1		68299	13.07			
TENTITIVE IDENT	•						

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: Date Collected: TRC Environmental Corp., NY 12/6/2006 Date Received: 12/11/2000 Project: Morris park RI/FS TRC#46130-0010 Client Sample **FIELDBLANK** SDG No.: X5831 ID: Lab Sample ID: X5831-09 WATER Matrix: Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 920.0 mLExtract Vol: 1000 uL

File ID BF009174.D	Dilution 1	Date Extracted 12/13/2006	Date Analyzed 12/20/2006		Analytical Batch ID BF122006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TENTITIVE IDENT	TIFIED COM	POUNDS	······································				
	ACP3.05		94	AB	3.05		ug/L
57-10-3	n-Hexadecar	n-Hexadecanoic acid		J	9.27		ug/L
77899-03-7	1-Heneicosy	l formate	4.3	J	11.20		ug/L

Client: TRC Environmental Corp., NY Date Collected: 12/7/2006 Date Received: 12/11/2000 Project: Morris park RI/FS TRC#46130-0010 Client Sample MW-3U-60 SDG No.: X5831 Lab Sample ID: X5831-10 WATER Matrix: Analytical Method: 8270 % Moisture: 100 990.0 Extract Vol: Sample Wt/Wol: mL 1000 uL

File ID	Dilution	Date Extracted	Date Analyzed	l An	alytical B	atch ID	
BF009187.D	1	12/13/2006	12/21/2006	BF	122006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
111-44-4	bis(2-Chlore	ethyl)ether	1.5	U	10	1.5	ug/L
95-50-1	1,2-Dichloro	obenzene	1.6	J	10	1.2	ug/L
541-73-1	1,3-Dichloro	obenzene	1.2	U	10	1.2	ug/L
106-46-7	1,4-Dichloro	obenzene	1.2	U	10	1.2	ug/L
108-60-1	2,2-oxybis(l-Chloropropane)	1.2	U	10	1.2	ug/L
621-64-7	N-Nitroso-d	i-n-propylamine	1.4	U	10	1.4	ug/L
67-72-1	Hexachloro	ethane	1.2	U	10	1.2	ug/L
98-95-3	Nitrobenzen	e	1.6	U	10	1.6	ug/L
78-59-1	Isophorone		1.3	U	10	1.3	ug/L
111-91-1	bis(2-Chlore	oethoxy)methane	1.4	U	10	1.4	ug/L
120-82-1	1,2,4-Trichl	orobenzene	1.4	U	10	1.4	ug/L
91-20-3	Naphthalene		1.4	U	10	1.4	ug/L
106-47-8	4-Chloroaniline		0.870	U	10	0.870	ug/L
87-68-3	Hexachlorol	butadiene	1.4	U	10	1.4	ug/L
91-57-6	2-Methylna	phthalene	1.1	U	10	1.1	ug/L
77-47-4	Hexachloro	cyclopentadiene	1.2	U	10	1.2	ug/L
91-58-7	2-Chloronap	hthalene	1.4	U	10	1.4	ug/L
88-74-4	2-Nitroanili	ne	1.1	U	10	1.1	ug/L
131-11-3	Dimethylph	thalate	1.3	U	10	1.3	ug/L
208-96-8	Acenaphthy	lene	1.3	U	10	1.3	ug/L
606-20-2	2,6-Dinitrot	oluene	1.3	U	10	1.3	ug/L
99-09-2	3-Nitroanili	ne	1.0	U	10	1.0	ug/L
83-32-9	Acenaphthe	ne	1.4	U	10	1.4	ug/L
132-64-9	Dibenzofura	ın	1.4	J	10	1.3	ug/L
121-14-2	2,4-Dinitrot	oluene	1.2	U	10	1.2	ug/L
84-66-2	Diethylphth	alate	1.3	U	10	1.3	ug/L
7005-72-3		enyl-phenylether	1.4	U	10	1.4	ug/L
86-73-7	Fluorene	· •	1.4	U	10	1.4	ug/L
100-01-6	4-Nitroanili	ne	1.1	U	10	1.1	ug/L
86-30-6	N-Nitrosodi	phenylamine	1.3	U	10	1.3	ug/L
101-55-3		enyl-phenylether	1.5	U	10	1.5	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 12/7/2006 Date Received: 12/11/200(Project: Morris park RI/FS TRC#46130-0010 Client Sample MW-3U-60 SDG No.: X5831 ID: Lab Sample ID: WATER X5831-10 Matrix: Analytical Method: 8270 % Moisture: 100 Extract Vol: Sample Wt/Wol: 990.0 mL 1000 uL

File ID		Date Extracted	Date Analyze	d An	alytical Ba		
BF009187.D	1	12/13/2006	12/21/2006	BF	122006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS				* *			
118-74-1	Hexachlorob		1.2	U	10	1.2	ug/L
85-01-8	Phenanthren	e	1.4	U	10	1.4	ug/L
120-12-7	Anthracene		1.4	U	10	1.4	ug/L
86-74-8	Carbazole		2.6	J	10	1.3	ug/L
84-74-2	Di-n-butylphthalate		1.3	U	10	1.3	ug/L
206-44-0	Fluoranthene	e	1.2	U	10	1.2	ug/L
129-00-0	Pyrene		1.5	U	10	1.5	ug/L
85-68-7	Butylbenzyl	phthalate	1.4	U	10	1.4	ug/L
91-94-1	3,3-Dichloro	benzidine	1.1	U	20	1.1	ug/L
56-55-3	Benzo(a)antl	hracene	1.1	U	10	1.1	ug/L
218-01-9	Chrysene		1.7	U	10	1.7	ug/L
117-81-7	bis(2-Ethylh	exyl)phthalate	1.5	U	10	1.5	ug/L
117-84-0	Di-n-octyl pl	hthalate	1.3	U	10	1.3	ug/L
205-99-2	Benzo(b)fluo	oranthene	0.760	U	10	0.760	ug/L
207-08-9	Benzo(k)fluo	oranthene	1.9	U	10	1.9	ug/L
50-32-8	Benzo(a)pyr	ene	1.2	U	10	1.2	ug/L
193-39-5	Indeno(1,2,3	-cd)pyrene	0.840	U	10	0.840	ug/L
53-70-3	Dibenz(a,h)a	anthracene	0.870	U	10	0.870	ug/L
191-24-2	Benzo(g,h,i)		1.1	U	10	1.1	ug/L
SURROGATES		•					_
4165-60-0	Nitrobenzen	e-d5	68.14	68 %	35 - 114		SPK: 10
321-60-8	2-Fluorobipl	nenyl	60.54	61%	43 - 116		SPK: 10
1718-51-0	Terphenyl-d	14	50.6	51%	33 - 141		SPK: 10
INTERNAL STAND	ARDS						
3855-82-1	1,4-Dichloro	benzene-d4	25833	4.38			
1146-65-2	Naphthalene	e-d8	100468	5.56			
15067-26-2	Acenaphther		45607	7.26			
1517-22-2	Phenanthren		63585	8.73			
1719-03-5	Chrysene-d1		56646	11.36			
1520-96-3	Perylene-d1:		52484	13.10			
TENTITIVE IDENT	•						

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client:	TRC Environmental Corp., NY	Date Collected:	12/7/2006	
Project:	Morris park RI/FS TRC#46130-0010	Date Received:	12/11/2000	
Client Sample	MW-3U-60	SDG No.:	X5831	
ID: Lab Sample ID:	X5831-10	Matrix:	WATER	
Analytical Method:	8270	% Moisture:	100	
Sample Wt/Wol:	990.0 mL	Extract Vol:	1000 uL	

File ID BF009187.D	Dilution Date Extracted 1 12/13/2006		Date Analyze 12/21/2006		Analytical Batch ID BF122006		
CAS Number	Parameter		Conc.	Qualifier	Qualifier RL		Units
TENTITIVE IDENT	TIFIED COM	POUNDS				<u>.</u>	
	ACP3.07		86	A	3.07		ug/L
5131-66-8	2-Propanol,	1-butoxy-	10	J	3.80		ug/L
136-85-6	1H-Benzotri	1H-Benzotriazole, 5-methyl-		J	7.68		ug/L
140-66-9	Phenol, 4-(1	,1,3,3-tetramethylbuty	39	J	7.80		ug/L
934-34-9	2(3H)-Benzo	othiazolone	15	J	8.21		ug/L
140-66-9	Phenol, 4-(1	,1,3,3-tetramethylbuty	7.5	J	8.24		ug/L
	unknown8.28		10	J	8.28		ug/L
80-46-6	Phenol, 4-(1	,1-dimethylpropyl)-	7.3	J	8.31		ug/L
	unknown8.42		6.9	J	8.42		ug/L
140-66-9	Phenol, 4-(1.	1,3,3-tetramethylbuty	9.6	J	8.46		ug/L

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 12/7/2006 Project: Date Received: 12/11/200 Morris park RI/FS TRC#46130-0010 Client Sample MW4-60 SDG No.: X5831 Lab Sample ID: X5831-11 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 990.0 mLExtract Vol: 1000 иL

File ID	Dilution	Date Extracted	Date Analyzed		alytical B	atch ID	
BF009183.D	1	12/13/2006	12/21/2006	BF	122006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
111-44-4	bis(2-Chloro	• •	1.5	U	10	1.5	ug/L
95-50-I	1,2-Dichloro	benzene	1.2	U	10	1.2	ug/L
541-73-1	1,3-Dichloro	benzene	1.2	U	10	1.2	ug/L
106-46-7	1,4-Dichloro	benzene	1.2	U	10	1.2	ug/L
108-60-1	2,2-oxybis(1	-Chloropropane)	1.2	U	10	1.2	ug/L
621-64-7	N-Nitroso-di	-n-propylamine	1.4	U	10	1.4	ug/L
67-72-1	Hexachloroe	thane	1.2	U	10	1.2	ug/L
98-95-3	Nitrobenzene	<u>.</u>	1.6	U	10	1.6	ug/L
78-59-1	Isophorone		1.3	U	10	1.3	ug/L
111-91-1	bis(2-Chloro	ethoxy)methane	1.4	U	10	1.4	ug/L
120-82-1	1,2,4-Trichlo	robenzene	1.4	U	10	1.4	ug/L
91-20-3	Naphthalene		1.4	U	10	1.4	ug/L
106-47-8	4-Chloroaniline		0.870	U	10	0.870	ug/L
87-68-3	Hexachlorobutadiene		1.4	U	10	1.4	ug/L
91-57-6	2-Methylnap	hthalene	1.1	U	10	1.1	ug/L
77-47-4	Hexachloroc	yclopentadiene	1.2	·U	10	1.2	ug/L
91-58-7	2-Chloronap	hthalene	1.4	U	10.	1.4	ug/L
88-74-4	2-Nitroanilin	e	1.1	U	10	1.1	ug/L
131-11-3	Dimethylpht	halate	1.3	U	10	1.3	ug/L
208-96-8	Acenaphthyl	ene	1.3	U	10	1.3	ug/L
606-20-2	2,6-Dinitroto	luene	1.3	U	10	1.3	ug/L
99-09-2	3-Nitroanilin	e	1.0	U	10	1.0	ug/L
83-32-9	Acenaphthen	e	1.4	U	10	1.4	ug/L
132-64-9	Dibenzofurai	1	1.3	U	10	1.3	ug/L
121-14-2	2,4-Dinitroto	luene	1.2	U	10	1.2	ug/L
84-66-2	Diethylphtha	late	1.3	U	10	1.3	ug/L
7005-72-3	4-Chlorophe	nyl-phenylether	1.4	U	10	1.4	ug/L
86-73-7	Fluorene		1.7	J	10	1.4	ug/L
100-01-6	4-Nitroanilin	e	1.1	U	10	1.1	ug/L
86-30-6	N-Nitrosodip	henylamine	1.3	U	10	1.3	ug/L
101-55-3		nyl-phenylether	1.5	U	10	1.5	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 12/7/2006 Date Received: 12/11/2000 Project: Morris park RI/FS TRC#46130-0010 Client Sample MW4-60 SDG No.: X5831 ID: Lab Sample ID: X5831-11 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 990.0 Extract Vol: 1000 mL uL

File ID BF009183.D	Dilution 1	Date Extracted 12/13/2006	Date Analyzo 12/21/2006		Analytical Batch ID BF122006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
118-74-1	Hexachloro		1.2	U	10	1.2	ug/L
85-01-8	Phenanthre		1.4	U	10	1.4	ug/L
120-12-7	Anthracene		1.4	U	10	1.4	ug/L
86-74-8	Carbazole		1.3	U	10	1.3	ug/L
84-74-2	Di-n-butylp		1.3	U	10	1.3	ug/L
206-44-0	Fluoranthen	e	1.2	U	10	1.2	ug/L
129-00-0	Pyrene		1.5	U	10	1.5	ug/L
85-68-7	Butylbenzy	-	1.4	U	10	1.4	ug/L
91-94-1	3,3-Dichlon	obenzidine	1.1	U	20	1.1	ug/L
56-55-3	Benzo(a)ani	thracene	1.1	U	10	1.1	ug/L
218-01-9	Chrysene		1.7	U	10	1.7	ug/L
117-81-7	bis(2-Ethyll	nexyl)phthalate	1.5	U	10	1.5	ug/L
117-84-0	Di-n-octyl p	hthalate	1.3	U	10	1.3	ug/L
205-99-2	Benzo(b)flu	oranthene	0.760	U	10	0.760	ug/L
207-08-9	Benzo(k)flu	oranthene	1.9	U	10	1.9	ug/L
50-32-8	Benzo(a)py	rene	1.2	U	10	1.2	ug/L
193-39-5	Indeno(1,2,	3-cd)pyrene	0.840	U	10-	0.840	ug/L
53-70-3	Dibenz(a,h)	anthracene	0.870	U	10	0.870	ug/L
191-24-2	Benzo(g,h,i)perylene	1.1	U	10	1.1	ug/L
SURROGATES							
4165-60-0	Nitrobenzer	ne-d5	65.41	65 %	35 - 114		SPK: 10
321-60-8	2-Fluorobip	henyl	57.48	57 %	43 - 116		SPK: 10
1718-51-0	Terphenyl-c	114	43.83	44 %	33 - 141		SPK: 10
INTERNAL STANI	DARDS						
3855-82-1	1,4-Dichlon	obenzene-d4	29260	4.38			
1146-65-2	Naphthalen	e-d8	111702	5.55			
15067-26-2	Acenaphthe		48644	7.26			
1517-22-2	Phenanthrene-d10		67518	8.73			
1719-03-5	Chrysene-d		64193	11.35			
1520-96-3	Perylene-d1		69451	13.09			
TENTITIVE IDEN	-			•			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: Project:	TRC Environmental Corp., NY Morris park RI/FS TRC#46130-0010	Date Collected: Date Received:	12/7/2006 12/11/200	
Client Sample	MW4-60	SDG No.:	X5831	
Lab Sample ID:	X5831-11	Matrix:	WATER	
Analytical Method:	8270	% Moisture:	100	
Sample Wt/Wol:	990.0 mL	Extract Vol:	1000 uL	

File ID BF009183.D	Dilution Date Extracted 1 12/13/2006		Date Analyzed 12/21/2006		Analytical Batch ID BF122006		
CAS Number	Parameter		Conc.	Qualifier	Qualifier RL		Units
TENTITIVE IDENT	CIFIED COMI	POUNDS					
	ACP3.07		84	A	3.07		ug/L
824-22-6	1H-Indene, 2,3-dihydro-4-methyl-		6.4	J	5.31		ug/L
	unknown6.93		25	J	6.93		ug/L
	unknown7.06 unknown7.21		4.7	J	7.06		ug/L
			4.7	J	7.21		ug/L
	unknown7.40		8.7	J	7.40		ug/L
2245-38-7	Naphthalene,	1,6,7-trimethyl-	11	J	7.57	•	ug/L
	unknown7.89		6.8	J	7.89		ug/L
57-10-3	n-Hexadecan	oic acid	5.7	j	9.31		ug/L
51235-04-2	1,3,5-Triazin	e-2,4(1H,3H)-dione, 3	7.4	J	10.94		ug/L

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 12/7/2006 Date Received: 12/11/2000 Project: Morris park RI/FS TRC#46130-0010 Client Sample MW5-180 SDG No.: X5831 Lab Sample ID: X5831-15 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Extract Vol: 1000 Sample Wt/Wol: 1000.0 mL uL

File ID	Dilution	Date Extracted	Date Analyze		-	Batch ID	
BF009177.D	1	12/13/2006	12/20/2006	BF	122006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
111-44-4	bis(2-Chloro	• •	1.4	U	10	1.4	ug/L
95-50-1	1,2-Dichloro		1.2	U	10	1.2	ug/L
541-73-1	1,3-Dichlore		1.2	U	10	1.2	ug/L
106-46-7	1,4-Dichloro	benzene	1.2	U	10	1.2	ug/L
108-60-1		-Chloropropane)	1.2	U	10	1.2	ug/L
621-64-7	N-Nitroso-d	i-n-propylamine	1.4	U	10	1.4	ug/L
67-72-1	Hexachloro	ethane	1.2	U	10	1.2	ug/L
98-95-3	Nitrobenzen	e	1.6	U	10	1.6	ug/L
78-59-1	Isophorone		1.3	U	10	1.3	ug/L
111-91-1	bis(2-Chloro	ethoxy)methane	1.4	U	10	1.4	ug/L
120-82-1	1,2,4-Trichle	orobenzene	1.4	U	10	1.4	ug/L
91-20-3	Naphthalene	•	1.4	U	10	1.4	ug/L
106-47-8	4-Chloroaniline		0.860	U	10	0.860	ug/L
87-68-3	Hexachlorobutadiene		1.4	U	10	1.4	ug/L
91-57-6	2-Methylnaphthalene		1.1	U	10	1.1	ug/L
77-47-4	Hexachloro	cyclopentadiene	1.2	U	10	1.2	ug/L
91-58-7	2-Chloronap	hthalene	1.4	U	10	1.4	ug/L
88-74-4	2-Nitroanilii	ne	1.1	U	10	1.1	ug/L
131-11-3	Dimethylph	thalate	1.3	U	10	1.3	ug/L
208-96-8	Acenaphthy	lene	1.3	U	10	1.3	ug/L
606-20-2	2,6-Dinitrote	oluene	1.2	U	10	1.2	ug/L
99-09-2	3-Nitroanilii	ne	1.0	U	10	1.0	ug/L
83-32-9	Acenaphthe	ne	1.3	U	10	1.3	ug/L
132-64-9	Dibenzofura	n	1.3	U	10	1.3	ug/L
121-14-2	2,4-Dinitrote	oluene	1.2	Ü	10	1.2	ug/L
84-66-2	Diethylphtha	alate	1.3	U	10	1.3	ug/L
7005-72-3	4-Chlorophe	enyl-phenylether	1.4	U	10	1.4	ug/L
86-73-7	Fluorene	-	1.4	U	10	1.4	ug/L
100-01-6	4-Nitroanilii	ne	1.1	U	10	1.1	ug/L
86-30-6	N-Nitrosodi	phenylamine	1.2	U	10	1.2	ug/L
101-55-3		enyl-phenylether	1.5	U	10	1.5	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: Date Collected: TRC Environmental Corp., NY 12/7/2006 Date Received: 12/11/2000 Project: Morris park RI/FS TRC#46130-0010 Client Sample SDG No.: MW19-60 X5831 ID: Lab Sample ID: X5831-12 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 1000.0 Extract Vol: 1000 uL mL

File ID	Dilution	Date Extracted	Date Analyze		alytical B	atch ID	
BF009175.D	1	12/13/2006	12/20/2006	BF	122006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
111-44-4	bis(2-Chlore		1.4	U	10	1.4	ug/L
95-50-1	1,2-Dichlore		1.2	U	10	1.2	ug/L
541-73-1	1,3-Dichlor		1.2	U	10	1.2	ug/L
106-46-7	1,4-Dichlore		1.2	U	10	1.2	ug/L
108-60-1		l-Chloropropane)	1.2	U	10	1.2	ug/L
621-64-7		li-n-propylamine	1.4	U	10	1.4	ug/L
67-72-1	Hexachloro		1.2	U	10	1.2	ug/L
98-95-3	Nitrobenzer	ne	1.6	U	10	1.6	ug/L
78-59-1	Isophorone		1.3	U	10	1.3	ug/L
111-91-1		oethoxy)methane	1.4	U	10	1.4	ug/L
120-82-1	1,2,4-Trichl		1.4	U	10	1.4	ug/L
91-20-3	Naphthalene		1.4	U	10	1.4	ug/L
106-47-8	4-Chloroaniline		0.860	U	10	0.860	ug/L
87-68-3	Hexachlorobutadiene		1.4	U	10	1.4	ug/L
91-57-6	2-Methylna		1.1	U	10	1.1	ug/L
77-47-4		cyclopentadiene	1.2	U	10	1.2	ug/L
91-58-7	2-Chloronar		1.4	U	10	1.4	ug/L
88-74-4	2-Nitroanili		1.1	U	10	1.1	ug/L
131-11-3	Dimethylph	thalate	1.3	U	10	1.3	ug/L
208-96-8	Acenaphthy		1.3	U	10	1.3	ug/L
606-20-2	2,6-Dinitrot		1.2	U	10	1.2	ug/L
99-09-2	3-Nitroanili		1.0	U	10	1.0	ug/L
83-32-9	Acenaphthe		1.3	U	10	1.3	ug/L
132-64-9	Dibenzofura		1.3	U	10	1.3	ug/L
121-14-2	2,4-Dinitrot	oluene	1.2	U	10	1.2	ug/L
84-66-2	Diethylphth	alate	1.3	U	10	1.3	ug/L
7005-72-3	4-Chloropho	enyl-phenylether	1.4	U	10	1.4	ug/L
86-73-7	Fluorene		1.4	U	10	1.4	ug/L
100-01-6	4-Nitroanili	ne	1.1	U	10	1.1	ug/L
86-30-6	N-Nitrosodi	phenylamine	1.2	U	10	1.2	ug/L
101-55-3	4-Bromopho	enyl-phenylether	1.5	U	10	1.5	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: Date Collected: TRC Environmental Corp., NY 12/7/2006 Date Received: 12/11/2000 Project: Morris park RI/FS TRC#46130-0010 Client Sample MW19-60 SDG No.: X5831 Lab Sample ID: X5831-12 WATER Matrix: % Moisture: Analytical Method: 8270 100 Sample Wt/Wol: 1000.0 mL Extract Vol: 1000 uL

BF009175.D 1 12/13/2006 12/20/2006 BF122006 CAS Number Parameter Conc. Qualifier RL MDL TARGETS 118-74-1 Hexachlorobenzene 1.2 U 10 1.2 85-01-8 Phenanthrene 1.4 U 10 1.4 120-12-7 Anthracene 1.4 U 10 1.4 86-74-8 Carbazole 1.3 U 10 1.3 84-74-2 Di-n-butylphthalate 1.3 U 10 1.3 206-44-0 Fluoranthene 1.2 U 10 1.2 129-00-0 Pyrene 1.5 U 10 1.5 85-68-7 Butylbenzylphthalate 1.4 U 10 1.4	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L
TARGETS 118-74-1 Hexachlorobenzene 1.2 U 10 1.2 85-01-8 Phenanthrene 1.4 U 10 1.4 120-12-7 Anthracene 1.4 U 10 1.4 86-74-8 Carbazole 1.3 U 10 1.3 84-74-2 Di-n-butylphthalate 1.3 U 10 1.3 206-44-0 Fluoranthene 1.2 U 10 1.2 129-00-0 Pyrene 1.5 U 10 1.5	ug/L ug/L ug/L ug/L ug/L ug/L
118-74-1 Hexachlorobenzene 1.2 U 10 1.2 85-01-8 Phenanthrene 1.4 U 10 1.4 120-12-7 Anthracene 1.4 U 10 1.4 86-74-8 Carbazole 1.3 U 10 1.3 84-74-2 Di-n-butylphthalate 1.3 U 10 1.3 206-44-0 Fluoranthene 1.2 U 10 1.2 129-00-0 Pyrene 1.5 U 10 1.5	ug/L ug/L ug/L ug/L ug/L
85-01-8 Phenanthrene 1.4 U 10 1.4 120-12-7 Anthracene 1.4 U 10 1.4 86-74-8 Carbazole 1.3 U 10 1.3 84-74-2 Di-n-butylphthalate 1.3 U 10 1.3 206-44-0 Fluoranthene 1.2 U 10 1.2 129-00-0 Pyrene 1.5 U 10 1.5	ug/L ug/L ug/L ug/L ug/L
120-12-7 Anthracene 1.4 U 10 1.4 86-74-8 Carbazole 1.3 U 10 1.3 84-74-2 Di-n-butylphthalate 1.3 U 10 1.3 206-44-0 Fluoranthene 1.2 U 10 1.2 129-00-0 Pyrene 1.5 U 10 1.5	ug/L ug/L ug/L ug/L
86-74-8 Carbazole 1.3 U 10 1.3 84-74-2 Di-n-butylphthalate 1.3 U 10 1.3 206-44-0 Fluoranthene 1.2 U 10 1.2 129-00-0 Pyrene 1.5 U 10 1.5	ug/L ug/L ug/L
84-74-2 Di-n-butylphthalate 1.3 U 10 1.3 206-44-0 Fluoranthene 1.2 U 10 1.2 129-00-0 Pyrene 1.5 U 10 1.5	ug/L ug/L
206-44-0 Fluoranthene 1.2 U 10 1.2 129-00-0 Pyrene 1.5 U 10 1.5	ug/L
129-00-0 Pyrene 1.5 U 10 1.5	
•	ug/L
85-68-7 Butylbenzylphthalate 1.4 U 10 1.4	_
	ug/L
91-94-1 3,3-Dichlorobenzidine 1.0 U 20 1.0	ug/L
56-55-3 Benzo(a)anthracene 1.1 U 10 1.1	ug/L
218-01-9 Chrysene 1.7 U 10 1.7	ug/L
117-81-7 bis(2-Ethylhexyl)phthalate 1.5 U 10 1.5	ug/L
117-84-0 Di-n-octyl phthalate 1.3 U 10 1.3	ug/L
205-99-2 Benzo(b)fluoranthene 0.750 U 10 0.750	ug/L
207-08-9 Benzo(k)fluoranthene 1.9 U 10 1.9	ug/L
50-32-8 Benzo(a)pyrene 1.2 U 10 1.2	ug/L
193-39-5 Indeno(1,2,3-cd)pyrene 0.830 U 10 0.830	ug/L
53-70-3 Dibenz(a,h)anthracene 0.870 U 10 0.870	ug/L
191-24-2 Benzo(g,h,i)perylene 1.1 U 10 1.1	ug/L
SURROGATES	
4165-60-0 Nitrobenzene-d5 69.95 70 % 35 - 114	SPK: 10
321-60-8 2-Fluorobiphenyl 59.31 59 % 43 - 116	SPK: 10
1718-51-0 Terphenyl-d14 51.54 52 % 33 - 141	SPK: 10
INTERNAL STANDARDS	
3855-82-1 1,4-Dichlorobenzene-d4 24748 4.38	
1146-65-2 Naphthalene-d8 99065 5.55	
15067-26-2 Acenaphthene-d10 45676 7.26	
1517-22-2 Phenanthrene-d10 67999 8.72	
1719-03-5 Chrysene-d12 53891 11.34	
1520-96-3 Perylene-d12 67008 13.08	
TENTITIVE IDENTIFIED COMPOUNDS	

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: Project:	TRC Environmental Corp., NY Morris park RI/FS TRC#46130-0010	Date Collected: Date Received:	12/7/2006 12/11/200	
Client Sample	MW19-60	SDG No.:	X5831	
Lab Sample ID:	X5831-12	Matrix:	WATER	
Analytical Method:	8270	% Moisture:	100	
Sample Wt/Wol:	1000.0 mŁ	Extract Vol:	1000 uL	

File ID BF009175.D			Date Analyzed 12/20/2006	•			
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TENTITIVE IDENT	TIFIED COMI	POUNDS					
	ACP3.06		92	A	3.06		ug/L
57-10-3	n-Hexadecanoic acid		3.0	J	9.27		ug/L
51235-04-2	1,3,5-Triazine-2,4(1H,3H)-dione, 3		5.4	J	10.90		ug/L
295-48-7	Cyclopentade	ecane	3.9	J	11.21		ug/L

Date Collected: 12/7/2006 Client: TRC Environmental Corp., NY Project: Date Received: 12/11/2006 Morris park RI/FS TRC#46130-0010 SDG No.: Client Sample MW12-60 X5831 D: Lab Sample ID: WATER X5831-13 Matrix: % Moisture: Analytical Method: 8270 100 Sample Wt/Wol: 900.0 Extract Vol: 1000 uLmL

File ID BF009176.D	Dilution Date Extracted 1 12/13/2006		Date Analyze 12/20/2006		alytical B 122006	lytical Batch ID 22006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units	
TARGETS								
111-44-4	bis(2-Chloro	• •	1.6	U	11	1.6	ug/L	
95-50-1	1,2-Dichloro		1.4	U	11	1.4	ug/L	
541-73-1	1,3-Dichloro		1.3	U	11	1.3	ug/L	
106-46-7	1,4-Dichloro		1.3	U	11	1.3	ug/L	
108-60-1	•	-Chloropropane)	1.3	U	11	1.3	ug/L	
621-64-7		i-n-propylamine	1.5	U	11	1.5	ug/L	
67-72-1	Hexachloro	ethane	1.3	U	11	1.3	ug/L	
98-95-3	Nitrobenzen	e	1.7	U	11	1.7	ug/L	
78-59-1	Isophorone		1.4	U	11	1.4	ug/L	
111-91-1	•	ethoxy)methane	1.5	U	11	1.5	ug/L	
120-82-1	1,2,4-Trichle		1.5	U	11	1.5	ug/L	
91-20-3	Naphthalene		1.5	U	11	1.5	ug/L	
106-47-8	4-Chloroani		0.950	U	11	0.950	ug/L	
87-68-3	Hexachlorol		1.5	U	11	1.5	ug/L	
91-57-6	2-Methylna	ohthalene	1.2	U	11	1.2	ug/L	
77-47-4		cyclopentadiene	1.3	U	11	1.3	ug/L	
91-58-7	2-Chloronar		1.5	U	11	1.5	ug/L	
88-74-4	2-Nitroanili	ne	1.2	U	11	1.2	ug/L	
131-11-3	Dimethylph	thalate	1.4	U	11	1.4	ug/L	
208-96-8	Acenaphthy	lene	1.4	U	11	1.4	ug/L	
606-20-2	2,6-Dinitrot	oluene	1.4	U	11	1.4	ug/L	
99-09-2	3-Nitroanili	ne	1.1	U	11	1.1	ug/L	
83-32-9	Acenaphthe	ne	1.5	U	11	1.5	ug/L	
132-64-9	Dibenzofura	m	1.4	U	11	1.4	ug/L	
121-14-2	2,4-Dinitrot	oluene	1.3	U	11	1.3	ug/L	
84-66-2	Diethylphth	alate	1.5	U	11	1.5	ug/L	
7005-72-3	4-Chlorophe	enyl-phenylether	1.5	U	11	1.5	ug/L	
86-73-7	Fluorene		1.6	U	11	1.6	ug/L	
100-01-6	4-Nitroaniline		1.2	U	11	1.2	ug/L	
86-30-6	N-Nitrosodi	phenylamine	1.4	U	11	1.4	ug/L	
101-55-3	4-Bromopho	enyl-phenylether	1.6	U	11	1.6	ug/L	

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: Date Collected: TRC Environmental Corp., NY 12/7/2006 Date Received: 12/11/200 Project: Morris park RI/FS TRC#46130-0010 Client Sample MW12-60 SDG No.: X5831 Lab Sample ID: X5831-13 Matrix: WATER % Moisture: 100 Analytical Method: 8270 900.0 Extract Vol: 1000 Sample Wt/Wol: uL mL

File ID	Dilution	Date Extracted	Date Analyzed	l An	alytical Ba	itch ID	
BF009176.D	1	12/13/2006	12/20/2006	BF	BF122006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS				* 7	4.4	1 4	tr.
118-74-1	Hexachlorob		1.4	U	11	1.4	ug/L
85-01-8	Phenanthren	e	1.6	U	11	1.6	ug/L
120-12-7	Anthracene		1.6	U	11	1.6	ug/L
86-74-8	Carbazole		1.4	U	11	1.4	ug/L
84-74-2	Di-n-butylph		1.4	U	11	1.4	ug/L
206-44-0	Fluoranthene	;	1.3	U	11	1.3	ug/L
129-00-0	Pyrene		1.6	U	11	1.6	ug/L
85-68-7	Butylbenzyl	ohthalate	1.6	U	H	1.6	ug/L
91-94-1	3,3-Dichloro	benzidine	1.2	U	22	1.2	ug/L
56-55-3	Benzo(a)antl	racene	1.2	Ų	11	1.2	ug/L
218-01-9	Chrysene		1.9	U	11	1.9	ug/L
117-81-7	bis(2-Ethylh	exyl)phthalate	1.7	U	11	1.7	ug/L
117-84-0	Di-n-octyl pl	hthalate	1.4	U	11	1.4	ug/L
205-99-2	Benzo(b)fluo	oranthene	0.830	U	11	0.830	ug/L
207-08-9	Benzo(k)fluo	oranthene	2.1	U	11	2.1	ug/L
50-32-8	Benzo(a)pyr	ene	1.3	U	11	1.3	ug/L
193-39-5	Indeno(1,2,3	-cd)pyrene	0.920	U	11	0.920	ug/L
53-70-3	Dibenz(a,h)a	inthracene	0.960	U	11	0.960	ug/L
191-24-2	Benzo(g,h,i)		1.2	U	11	1.2	ug/L
SURROGATES							
4165-60-0	Nitrobenzen	e-d5	63.61	64%	35 - 114		SPK: 10
321-60-8	2-Fluorobiph	nenyl	53.7	54%	43 - 116		SPK: 10
1718-51-0	Terphenyl-d		47.57	48 %	33 - 141		SPK: 10
INTERNAL STAND							
3855-82-1	1,4-Dichloro	benzene-d4	26203	4.38			
1146-65-2	Naphthalene-d8		107804	5.55			
15067-26-2	Acenaphthene-d10		50001	7.26			
1517-22-2	Phenanthrene-d10		74253	8.73			
1719-03-5	Chrysene-d1		59246	11.34			
1520-96-3	Perylene-d12		72396	13.08			
TENTITIVE IDENT	•						

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: Project:	TRC Environmental Corp., NY Morris park RI/FS TRC#46130-0010	Date Collected: Date Received:	12/7/2006 12/11/200	
Client Sample ID: Lab Sample ID:	MW12-60 X5831-13	SDG No.:	X5831 WATER	
Analytical Method: Sample Wt/Wol:		% Moisture: Extract Vol:	100 1000 uL	

File ID BF009176.D	Dilution 1	Date Extracted 12/13/2006	Date Analyzed 12/20/2006		Analytical Batch ID BF122006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TENTITIVE IDEN	TIFIED COM	OUNDS					
	ACP3.06		94	Α	3.06		ug/L
	unknown9.07	,	2.6	J	9.07		ug/L
57-10-3	n-Hexadecan	oic acid	3.1	J	9.27		ug/L
79392-43-1	Trifluoroacet	ic acid, n-octadecyl	8.4	J	11.20		ug/L
	unknown16.0	00	2.4	J	16.00		ug/L

B = Analyte Found In Associated Method Blank

Client:	TRC Environmental Corp., NY	Date Collected:	12/7/2006 12/11/200	
Project: Client Sample	Morris park RI/FS TRC#46130-0010 MW5-60	SDG No.:	X5831	
ID: Lab Sample ID:	X5831-14	Matrix:	WATER	
Analytical Method:	% Moisture:		100	
Sample Wt/Wol:	1000.0 mL	Extract Vol:	1000 uL	

File ID	Dilution	Date Extracted	Date Analyzed	An	alytical B	atch ID	
BF009182.D	1	12/13/2006	12/21/2006	BF	122006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
111-44-4	bis(2-Chlore	• /	1.4	U	10	1.4	ug/L
95-50-1	1,2-Dichloro		1.2	U	10	1.2	ug/L
541-73-1	1,3-Dichlore	benzene	1.2	U	10	1.2	ug/L
106-46-7	1,4-Dichloro	benzene	1.2	U	10	1.2	ug/L
108-60-1		-Chloropropane)	1.2	U	10	1.2	ug/L
621-64-7	N-Nitroso-d	i-n-propylamine	1.4	U	10	1.4	ug/L
67-72-1	Hexachloroe	thane	1.2	U	10	1.2	ug/L
98-95-3	Nitrobenzen	e	1.6	U	10	1.6	ug/L
78-59-1	Isophorone		1.3	U	10	1.3	ug/L
111-91-1	bis(2-Chlore	ethoxy)methane	1.4	U	10	1.4	ug/L
120-82-1	1,2,4-Trichle	orobenzene	1.4	U	10	1.4	ug/L
91-20-3	Naphthalene	Naphthalene		U	10	1.4	ug/L
106-47-8	4-Chloroani	4-Chloroaniline		U	10	0.860	ug/L
87-68-3	Hexachlorob	outadiene	1.4	U	10	1.4	ug/L
91-57-6	2-Methylnap	ohthalene	1.1	U	10	1.1	ug/L
77-47-4	Hexachloro	cyclopentadiene	1.2	U	10	1.2	ug/L
91-58-7	2-Chloronap	hthalene	1.4	U	10	1.4	ug/L
88-74-4	2-Nitroanilii	пе	1.1	U	10	1.1	ug/L
131-11-3	Dimethylph	thalate	1.3	U	10	1.3	ug/L
208-96-8	Acenaphthy	lene	1.3	U	10	1.3	ug/L
606-20-2	2,6-Dinitrote	oluene	1.2	U	10	1.2	ug/L
99-09-2	3-Nitroanilii	ne	1.0	U	10	1.0	ug/L
83-32-9	Acenaphthe	ne	1.3	U	10	1.3	ug/L
132-64-9	Dibenzofura	n	1.3	U	10	1.3	ug/L
121-14-2	2,4-Dinitroto	oluene	1.2	U	10	1.2	ug/L
84-66-2	Diethylphth	alate	1.3	U	10	1.3	ug/L
7005-72-3	4-Chlorophe	enyl-phenylether	1.4	U	10	1.4	ug/L
86-73-7	Fluorene		1.4	U	10	1.4	ug/L
100-01-6	4-Nitroanilii	ne	1.1	U	10	1.1	ug/L
86-30-6	N-Nitrosodi	phenylamine	1.2	U	10	1.2	ug/L
101-55-3	4-Bromophe	enyl-phenylether	1.5	U	10	1.5	ug/L

U = Not Detected

RL = Reporting Limit

E = Value Exceeds Calibration Range

MDL = Method Detection Limit

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

12/7/2006 Client: TRC Environmental Corp., NY Date Collected: Date Received: 12/11/2000 Project: Morris park RI/FS TRC#46130-0010 Client Sample MW5-60 SDG No.: X5831 Lab Sample ID: Matrix: WATER X5831-14 % Moisture: 100 Analytical Method: 8270 Extract Vol: 1000 uL Sample Wt/Wol: 1000.0 mL

File ID BF009182.D	Dilution Date Extracted 1 12/13/2006		Date Analyzed 12/21/2006		alytical Ba 122006	itch ID	
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							~
118-74-1	Hexachlorol		1.2	U	10	1.2	ug/L
85-01-8	Phenanthrer	ie	1.4	U	10	1.4	ug/L
120-12-7	Anthracene		1.4	U	10	1.4	ug/L
86-74-8	Carbazole		1.3	U	10	1.3	ug/L
84-74-2	Di-n-butylp		1.3	U	10	1.3	ug/L
206-44-0	Fluoranthen	e	1.2	U	10	1.2	ug/L
129-00-0	Ругепе		1.5	U	10	1.5	ug/L
85-68-7	Butylbenzyl	-	1.4	U	10	1.4	ug/L
91-94-1	3,3-Dichloro	obenzidine	1.0	U	20	1.0	ug/L
56-55-3	Benzo(a)ant	thracene	1.1	U	10	1.1	ug/L
218-01-9	Chrysene		1.7	U	10	1.7	ug/L
117-81-7	bis(2-Ethyll	nexyl)phthalate	1.5	U	10	1.5	ug/L
117-84-0	Di-n-octyl p	hthalate	1.3	U	10	1.3	ug/L
205-99-2	Benzo(b)flu	oranthene	0.750	U	10	0.750	ug/L
207-08-9	Benzo(k)flu	oranthene	1.9	U	10	1.9	ug/L
50-32-8	Benzo(a)py	rene	1.2	U	10	1.2	ug/L
193-39-5	Indeno(1,2,	3-cd)pyrene	0.830	U	10	0.830	ug/L
53-70-3	Dibenz(a,h)	anthracene	0.870	U	10	0.870	ug/L
191-24-2	Benzo(g,h,i)perylene	1.1	U	10	1.1	ug/L
SURROGATES							
4165-60-0	Nitrobenzer	ne-d5	67.56	68 %	35 - 114		SPK: 10
321-60-8	2-Fluorobip	henyl	54.49	54 %	43 - 116		SPK: 10
1718-51-0	Terphenyl-o	114	47.99	48 %	33 - 141		SPK: 10
INTERNAL STANI	DARDS						
3855-82-1	1,4-Dichlor	obenzene-d4	30893	4.38			
1146-65-2	Naphthalen	e-d8	124371	5.55			
15067-26-2		Acenaphthene-d10		7.26			
1517-22-2	•	Phenanthrene-d10		8.73			
1719-03-5	Chrysene-d	12	85309 66894	11.34			
1520-96-3	Perylene-dl		79247	13.08			
TENTITIVE IDEN	•						

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: Project:	TRC Environmental Corp., NY Morris park RI/FS TRC#46130-0010	Date Collected:	12/7/2006 12/11/200
Client Sample	MW5-60	SDG No.:	X5831
Lab Sample ID:	X5831-14	Matrix:	WATER
Analytical Method:		% Moisture:	100
Sample Wt/Wol:	1000.0 mL	Extract Vol:	1000 uL

File ID BF009182.D	Dilution Date Extracted 1 12/13/2006 Parameter						Analytical Batch ID BF122006		
CAS Number			Conc.	Qualifier	RL	MDL	Units		
TENTITIVE IDENT	TIFIED COM	IPOUNDS							
	ACP3.07		90	A	3.07		ug/L		
	unknown9.0)8	5.5	J	9.08		ug/L		
57-10-3	n-Hexadeca	n-Hexadecanoic acid		J	9.27		ug/L		
18435-45-5	1-Nonadece	ene	4.8	J	9.78		ug/L		
2136-72-3	Ethanol, 2-(octadecyloxy)-	6.5	J	11.21		ug/L		
638-67-5	Tricosane		3.8	J	11.53		ug/L		
593-49-7	Heptacosan	e	5.0	J	11.86		ug/L		
529-97-0	Docosane	•		J	12.25		ug/L		
71005-15-7	Pentadecano	e, 8-heptyl-	4.2	J	12.69		ug/L		
529-94-7	Heneicosan	• •	4.4	J	13.22		ug/L		

J = Estimated Value

B = Analyte Found In Associated Method Blank

Client: TRC Environmental Corp., NY Date Collected: 12/7/2006 Date Received: 12/11/2000 Morris park RI/FS TRC#46130-0010 Project: Client Sample MW5-180 SDG No.: X5831 Lab Sample ID: WATER X5831-15 Matrix: Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 1000.0 Extract Vol: 1000 uLmL

File ID	Dilution	Date Extracted	Date Analyzed	An	alytical Ba	tch ID	1
BF009177.D	1	12/13/2006	12/20/2006	BF	122006		
CAS Number	Parameter	•	Conc.	Qualifier	RL	MDL	Units
TARGETS							
118-74-1	Hexachloro		1.2	U	10	1.2	ug/L
85-01-8	Phenanthre	ne	1.4	U	10	1.4	ug/L
120-12-7	Anthracene	:	1.4	U	10	1.4	ug/L
86-74-8	Carbazole		1.3	U	10	1.3	ug/L
84-74-2	Di-n-butylp		1.3	U	10	1.3	ug/L
206-44-0	Fluoranther	ne	1.2	U	10	1.2	ug/L
129-00-0	Pyrene		1.5	U	10	1.5	ug/L
85-68-7	Butylbenzy	lphthalate	1.4	U	10	1.4	ug/L
91-94-1	3,3-Dichlor	obenzidine	1.0	U	20	1.0	ug/L
56-55-3	Benzo(a)an	thracene	1.1	U	10	1.1	ug/L
218-01-9	Chrysene		1.7	U	10	1.7	ug/L
117-81-7	bis(2-Ethyl	hexyl)phthalate	1.5	U	10	1.5	ug/L
117-84-0	Di-n-octyl	phthalate	1.3	U	10	1.3	ug/L
205-99-2	Benzo(b)flu	ioranthene	0.750	U	10	0.750	ug/L
207-08-9	Benzo(k)flu	ioranthene	1.9	U	10	1.9	ug/L
50-32-8	Benzo(a)py	rene	1.2	U	10	1.2	ug/L
193-39-5	Indeno(1,2,	3-cd)pyrene	0.830	U	10	0.830	ug/L
53-70-3	Dibenz(a,h))anthracene	0.870	U	10	0.870	ug/L
191-24-2	Benzo(g,h,i	i)perylene	1.1	U	10	1.1	ug/L
SURROGATES							
4165-60-0	Nitrobenze	ne-d5	63.56	64 %	35 - 114		SPK: 10
321-60-8	2-Fluorobij	ohenyl	54.64	55 %	43 - 116		SPK: 10
1718-51-0	Terphenyl-	d14	49.14	49 %	33 - 141		SPK: 10
INTERNAL STAND	ARDS						
3855-82-1	1,4-Dichlor	obenzene-d4	25235	4.38			
1146-65-2	Naphthalene-d8		101294	5.55			
15067-26-2	Acenaphthene-d10		46759	7.26			
1517-22-2	Phenanthrene-d10		68605	8.72			
1719-03-5	Chrysene-d		55461	11.34			
1520-96-3	Perylene-d		69272	13.07			
TENTITIVE IDENT	•						

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: Project:	TRC Environmental Corp., NY Morris park RI/FS TRC#46130-0010	Date Collected: Date Received:	12/7/2006 12/11/200
Client Sample	MW5-180	SDG No.:	X5831
Lab Sample ID:	X5831-15	Matrix:	WATER
Analytical Method:	8270	% Moisture:	100
Sample Wt/Wol:	1000.0 mL	Extract Vol:	1000 uL

File ID BF009177.D	Dilution 1	Date Extracted 12/13/2006	Date Analyzed 12/20/2006		Analytical Batch ID BF122006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TENTITIVE IDENT	TFIED COMP	OUNDS					
127-18-4	Tetrachloroet	hylene	2.8	J	2.77		ug/L
	ACP3.06		85	A	3.06		ug/L
57-10-3	n-Hexadecand	oic acid	5.1	J	9.27		ug/L
629-96-9	1-Eicosanol		10	JВ	11.20		ug/L
557-61-9	Octacosanol		2.4	J	13.91		ug/L
	unknown16.0	0	2.3	J	16.00		ug/L

Client:	TRC Environmental Corp., NY	Date Collected:	12/8/2006
Project:	Morris park RI/FS TRC#46130-0010	Date Received:	1 2/11/200 0
Client Sample	MW26S	SDG No.:	X5831
Lab Sample ID:	X5831-16	Matrix:	WATER
Analytical Method:	8270	% Moisture:	100
Sample Wt/Wol:	980.0 mL	Extract Vol:	1000 uL

File ID	Dilution	Date Extracted	Date Analyzed	An	alytical B	atch ID	
BF009178.D	1	12/13/2006	12/20/2006	BF	122006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
111-44-4	bis(2-Chloro	ethyl)ether	1.5	U	10	1.5	ug/L
95-50-1	1,2-Dichloro	benzene	1.2	U	10	1.2	ug/L
541-73-1	1,3-Dichloro	benzene	1.2	U	10	1.2	ug/L
106-46-7	1,4-Dichloro	benzene	1.2	U	10	1.2	ug/L
108-60-1	2,2-oxybis(1	-Chloropropane)	1.2	U	10	1.2	ug/L
621-64-7	N-Nitroso-d	i-n-propylamine	1.4	U	10	1.4	ug/L
67-72-1	Hexachloro	ethane	1.2	U	10	1.2	ug/L
98-95-3	Nitrobenzen	e	1.6	U	10	1.6	ug/L
78-59-1	Isophorone		1.3	U	10	1.3	ug/L
111-91-1	bis(2-Chlore	ethoxy)methane	1.4	U	10	1.4	ug/L
120-82-1	1,2,4-Trichle	orobenzene	1.4	U	10	1.4	ug/L
91-20-3	Naphthalene	;	1.4	U	10	1.4	ug/L
106-47-8	4-Chloroani	line	0.880	U	10	0.880	ug/L
87-68-3	Hexachlorol	outadiene	1.4	U	10	1.4	ug/L
91-57-6	2-Methylna	ohthalene	1.1	U	10	1.1	ug/L
77-47-4	Hexachloro	cyclopentadiene	1.2	U	10	1.2	ug/L
91-58-7	2-Chloronap	hthalene	1.4	U	10	1.4	ug/L
88-74-4	2-Nitroanilii	ne	1.1	U	10	1.1	ug/L
131-11-3	Dimethylph	thalate	1.3	U	10	1.3	ug/L
208-96-8	Acenaphthy	lene	1.3	U	10	1.3	ug/L
606-20-2	2,6-Dinitrote	oluene	1.3	U	10	1.3	ug/L
99-09-2	3-Nitroanilii	ne	1.0	U	10	1.0	ug/L
83-32-9	Acenaphthe	ne	1.4	U	10	1.4	ug/L
132-64-9	Dibenzofura	in	1.3	U	10	1.3	ug/L
121-14-2	2,4-Dinitrot	oluene	1.2	U	10	1.2	ug/L
84-66-2	Diethylphth	alate	1.4	U	10	1.4	ug/L
7005-72-3	4-Chlorophe	enyl-phenylether	1.4	U	10	1.4	ug/L
86-73-7	Fluorene		1.4	U	10	1.4	ug/L
100-01-6	4-Nitroanilii	ne	1.1	U	10	1.1	ug/L
86-30-6	N-Nitrosodi	phenylamine	1.3	U	10	1.3	ug/L
101-55-3	4-Bromophe	enyl-phenylether	1.5	U	10	1.5	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: Date Collected: 12/8/2006 TRC Environmental Corp., NY Date Received: 12/11/2000 Project: Morris park RI/FS TRC#46130-0010 Client Sample MW26S SDG No.: X5831 Lab Sample ID: WATER X5831-16 Matrix: Analytical Method: 8270 % Moisture: 100 Extract Vol: 1000 uLSample Wt/Wol: 980.0 mL

File ID	Dilution	Date Extracted	Date Analyzed	l An	alytical Ba	tch ID)
BF009178.D	1	12/13/2006	12/20/2006	BF	122006		J
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS				~ .			~
118-74-1	Hexachlorol		1.2	U	10	1.2	ug/L
85-01-8	Phenanthren	ie	1.4	U	10	1.4	ug/L
120-12-7	Anthracene		1.4	U	10	1.4	ug/L
86-74-8	Carbazole		1.3	U	10	1.3	ug/L
84-74-2	Di-n-butylp		1.3	U	10	1.3	ug/L
206-44-0	Fluoranthen	e	1.2	U	10	1.2	ug/L
129-00-0	Pyrene		1.5	U	10	1.5	ug/L
85-68-7	Butylbenzyl	phthalate	1.5	U	10	1.5	ug/L
91-94-1	3,3-Dichloro	obenzidine	1.1	U	20	1.1	ug/L
56-55-3	Benzo(a)ant	hracene	1.1	U	10	1.1	ug/L
218-01-9	Chrysene		1.7	U	10	1.7	ug/L
117-81-7	bis(2-Ethyll	nexyl)phthalate	1.6	U	10	1.6	ug/L
117-84-0	Di-n-octyl p	hthalate	1.3	U	10	1.3	ug/L
205-99-2	Benzo(b)flu	oranthene	0.760	U	10	0.760	ug/L
207-08-9	Benzo(k)flu	oranthene	1.9	U	10	1.9	ug/L
50-32-8	Benzo(a)pyr	rene	1.2	U	10	1.2	ug/L
193-39-5	Indeno(1,2,3	3-cd)pyrene	0.840	U	10	0.840	ug/L
53-70-3	Dibenz(a,h)	anthracene	0.880	U	10	0.880	ug/L
191-24-2	Benzo(g,h,i)perylene	1.1	U	10	1.1	ug/L
SURROGATES							
4165-60-0	Nitrobenzer	ie-d5	63.83	64 %	35 - 114		SPK: 10
321-60-8	2-Fluorobip	henyl	54.7	55 %	43 - 116		SPK: 10
1718-51-0	Terphenyl-d	114	44.74	45 %	33 - 141		SPK: 10
INTERNAL STAND	DARDS						
3855-82-1	1,4-Dichlore	obenzene-d4	24751	4.38			
1146-65-2	Naphthalen	e-d8	100872	5.55			
15067-26-2	Acenaphthene-d10		47020	7.26			
1517-22-2	Phenanthrene-d10		68756	8.72			
1719-03-5	Chrysene-d12		57357	11.34			
1520-96-3	Perylene-d1		68674	13.07			
TENTITIVE IDENT	•						

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 12/8/2006 Date Received: 12/11/200 Project: Morris park RI/FS TRC#46130-0010 Client Sample MW26S SDG No.: X5831 ID: Lab Sample ID: WATER X5831-16 Matrix: Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 980.0 Extract Vol: 1000 mLuL

File ID BF009178.D	Dilution 1	Date Extracted 12/13/2006	Date Analyzeo 12/20/2006		Analytical Batch ID BF122006		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TENTITIVE IDENT	TIFIED COMI	POUNDS	· · · · · · · · · · · · · · · · · · ·				
	ACP3.06		84	A	3.06		ug/L
297-03-0	Cyclotetraco	sane	2.3	J	11.20		ug/L

Hit Summary	Re	port
-------------	----	------

Order ID: X5831 SDG No.: X5831

Project ID: TRC Environmental Corp., NY Morris park RI/FS TRC#46130-0010 Client:

Test:	SVOC-TCL BN -10							
Sample ID	Client ID	Matrix	Parameter	Concentration	С	RDL	MDL	Units
Client ID: X5831-09	FIELDBLANK FIELDBLANK	WATER	ACP3.05	* 94	AB	0	0	ng/I
X5831-09	FIELDBLANK	WATER	n-Hexadecanoic acid	* 2.7	J	0	0	ug/L ug/L
X5831-09	FIELDBLANK	WATER	1-Heneicosyl formate	* 4.3	j	0	0	ug/L
A3631-09	FILLDDIAM		·		3	U	U	ug D
		Total SV Total TI		0.00				
			OC's and TIC's:	101.00				
Client ID:	MW06-168							
X5831-02	MW06-168	WATER	ACP3.05	* 91	AB	0	0	ug/L
X5831-02	MW06-168	WATER	n-Hexadecanoic acid	* 3.1	J	0	0	ug/L
X5831-02	MW06-168	WATER	Trichloroacetic acid, tetradecy	* 2.7	J	0	0	ug/L
		Total SV	OC1s:	0.00				
		Total TI	C's:	96.80				
		Total SV	OC's and TIC's:	96.80				
Client ID:	MW12-60							
X5831-13	MW12-60	WATER	ACP3.06	* 94	A	0	0	ug/L
X5831-13	MW12-60	WATER	unknown9.07	* 2.6	J	0	0	ug/L
X5831-13	MW12-60	WATER	n-Hexadecanoic acid	* 3.1	J	0	0	ug/L
X5831-13	MW12-60	WATER	Trifluoroacetic acid, n-octadec	* 8.4	J	0	0	ug/L
X5831-13	MW12-60	WATER	unknown16.00	* 2.4	J	0	0	ug/L
		Total SV	OC's:	0.00				
		Total TI		110.50				
		Total SV	OC's and TIC's:	110.50				
Client ID:	MW15-60							
X5831-01	MW15-60	WATER	ACP3.08	* 83	A	0	0	ug/L
X5831-01	MW15-60	WATER	Phenol, 2,3,6-trimethyl-	* 2.6	J	0	0	ug/L
X5831-01	MW15-60	WATER	Phenol, 2-(1-methylethyl)-	* 3.6	J	0	0	ug/L
X5831-01	MW15-60	WATER	unknown6.39	* 2.8	J	0	0	ug/L
X5831-01	MW15-60	WATER	unknown6.47	* 3.3	J	0	0	ug/L
X5831-01	MW15-60	WATER	unknown6.70	* 2.4	J	0	0	ug/L
X5831-01	MW15-60	WATER	Benzene, 2,4-dimethyl-1-(1-m		J	0	0	ug/L
X5831-01	MW15-60	WATER	unknown6.86	* 2.7	J	0	0	ug/L
X5831-01	MW15-60	WATER	unknown6.94	* 2.3	J	0	0	ug/L
X5831-01	MW15-60	WATER	unknown10.92	* 3.8	J	0	0	ug/L
		Total SV		0.00				
		Total TI		109.40				
		TOTAL SV	OC's and TIC's:	109.40				

Hit	Sum	mary	Ren	ori	-
1111	Jun	IM ALL Y	IVEL	U.	ŧ

SDG No.: X5831 Order ID: X5831

Client: TRC Environmental Corp., NY Project ID: Morris park RI/FS TRC#46130-0010

Test: SVOC-TCL BN -10

Test:	SVOC-TCL BN -10							
Sample ID	Client ID	Matrix	Parameter	Concentration	С	RDL	MDL	Units
Client ID:	MW16-60							
X5831-04	MW16-60	WATER	2-Methylnaphthalene	1.4	J	10	1.1	ug/L
X5831-04	MW16-60	WATER	ACP3.07	* 92	Α	0	0	ug/L
X5831-04	MW16-60	WATER	unknown3.21	* 4.0	J	0	0	ug/L
X5831-04	MW16-60	WATER	unknown4.44	* 7.4	J	0	0	ug/L
X5831-04	MW16-60	WATER	unknown5.01	* 3.3	J	0	0	ug/L
X5831-04	MW16-60	WATER	unknown6.77	* 2.8	J	0	0	ug/L
X5831-04	MW16-60	WATER	2,5-Cyclohexadiene-1,4-dione	* 18	J	0	0	ug/L
X5831-04	MW16-60	WATER	unknown7.17	* 3.7	J	0	0	ug/L
X5831-04	MW16-60	WATER	unknown7.35	* 3.2	J	0	0	ug/L
X5831-04	MW16-60	WATER	unknown10.97	* 18	J	0	0	ug/L
		Total SV	OC's:	1.40				
		Total TI	C's:	152.40				
		Total SV	OC's and TIC's:	153.80				
Client ID:	MW19-60							
X5831-12	MW19-60	WATER	ACP3.06	* 92	Α	0	0	ug/L
X5831-12	MW19-60	WATER	n-Hexadecanoic acid	* 3.0	J	0	0	ug/L
X5831-12	MW19-60	WATER	1,3,5-Triazine-2,4(1H,3H)-dio	* 5.4	J	0	0	ug/L
X5831-12	MW19-60	WATER	Cyclopentadecane	* 3.9	J	0	0	ug/L
		Total SVOC's:		0.00				
		Total TI		104.30				
		Total SV	OC's and TIC's:	104.30				
Client ID:	MW21D							
X5831-08	MW21D	WATER	bis(2-Ethylhexyl)phthalate	3.5	J	10	1.5	ug/L
X5831-08	MW21D	WATER	ACP3.08	* 82	Α	0	0	ug/L
X5831-08	MW21D	WATER	1-Tricosene	* 2.5	J	0	0	ug/L
		Total SV	OC's:	3.50				
		Total TI	C¹s:	84.50				
		Total SV	OC's and TIC's:	88.00				
Client ID:	MW21S							
X5831-07	MW21S	WATER	bis(2-Ethylhexyl)phthalate	3.9	J	11	1.7	ug/L
X5831-07	MW21S	WATER	ACP3.07	* 91	A	0	0	ug/L
X5831-07	MW21S	WATER	1-Octadecanol	* 2.4	J	0	0	ug/L
		Total SV	OC's:	3.90				
		Total TI	C's:	93.40				
		Total SV	OC's and TIC's:	97.30				

Hit Summary Report

SDG No.: X5831 Order ID: X5831

Client: TRC Environmental Corp., NY Project ID: Morris park RI/FS TRC#46130-0010

Test: SVOC-TCL BN -10

Sample ID Client ID:	Client ID MW26S	Matrix	Parameter	Concentration	C	RDL	MDL	Units
X5831-16	MW26S	WATER	ACP3.06	* 84	Α	0	0	ug/L
X5831-16	MW26S	WATER	Cyclotetracosane	* 2.3	J	0	0	ug/L
		Total SV	OC's:	0.00				
		Total TI	C¹s:	86.30				
		Total SV	OC's and TIC's:	86.30				
Client ID:	MW3-168							
X5831-03	MW3-168	WATER	ACP3.07	* 96	Α	0	0	ug/L
X5831-03	MW3-168	WATER	Tetradecanoic acid	* 2.8	J	0	0	ug/L
X5831-03	MW3-168	WATER	1-Nonadecene	* 4.3	J	0	0	ug/L
		Total SV	OC's:	0.00				
		Total TI		103.10				
		Total SV	OC's and TIC's:	103.10				
Client ID:	MW-3U-60							
X5831-10	MW-3U-60	WATER	1,2-Dichlorobenzene	1.6	J	10	1.2	ug/L
X5831-10	MW-3U-60	WATER	Dibenzofuran	1.4	J	10	1.3	ug/L
X5831-10	MW-3U-60	WATER	Carbazole	2.6	J	10	1.3	ug/L
X5831-10	MW-3U-60	WATER	ACP3.07	* 86	Α	0	0	ug/L
X5831-10	MW-3U-60	WATER	2-Propanol, 1-butoxy-	* 10	J	0	0	ug/L
X5831-10	MW-3U-60	WATER	1H-Benzotriazole, 5-methyl-	* 9.0	J	0	0	ug/L
X5831-10	MW-3U-60	WATER	Phenol, 4-(1,1,3,3-tetramethyl	t * 39	J	0	0	ug/L
X5831-10	MW-3U-60	WATER	2(3H)-Benzothiazolone	* 15	J	0	0	ug/L
X5831-10	MW-3U-60	WATER	Phenol, 4-(1,1,3,3-tetramethyl	t * 7.5	J	0	0	ug/L
X5831-10	MW-3U-60	WATER	unknown8.28	* 10	J	0	0	ug/L
X5831-10	MW-3U-60	WATER	Phenol, 4-(1,1-dimethylpropyl	* 7.3	J	0	0	ug/L
X5831-10	MW-3U-60	WATER	unknown8.42	* 6.9	J	0	0	ug/L
X5831-10	MW-3U-60	WATER	Phenol, 4-(1,1,3,3-tetramethyl	t * 9.6	J	0	0	ug/L
		Total S	OC's:	5.60				
				222 22				

Total SVOC's: 5.60
Total TIC's: 200.30

Total SVOC's and TIC's: 205.90

Hit Summary Report

SDG No.: X5831 Order ID: X5831

Client: TRC Environmental Corp., NY Project ID: Morris park RI/FS TRC#46130-0010

Test:	SVOC-TCL BN -10							
Sample ID	Client ID	Matrix	Parameter	Concentration	С	RDL	MDL	Units
Client ID:	MW4-60	** * * *******	**1			• •		žer.
X5831-11	MW4-60	WATER	Fluorene	1.7	J	10	1.4	ug/L
X5831-11	MW4-60	WATER	ACP3.07	* 84	A	0	0	ug/L
X5831-11	MW4-60	WATER	1H-Indene, 2,3-dihydro-4-met		J	0	0	ug/L
X5831-11	MW4-60	WATER	unknown6.93	* 25	Ĵ	0	0	ug/L
X5831-11	MW4-60	WATER	unknown7.06	* 4.7	J	0	0	ug/L
X5831-11	MW4-60	WATER	unknown7.21	* 4.7	J	0	0	ug/L
X5831-11	MW4-60	WATER	unknown7.40	* 8.7	J	0	0	ug/L
X5831-11	MW4-60	WATER	Naphthalene, 1,6,7-trimethyl-	* 11	J	0	0	ug/L
X5831-11	MW4-60	WATER	unknown7.89	* 6.8	J	0	0	ug/L
X5831-11	MW4-60	WATER	n-Hexadecanoic acid	* 5.7	J	0	0	ug/L
X5831-11	MW4-60	WATER	1,3,5-Triazine-2,4(1H,3H)-dio	* 7.4	Ĵ	0	0	ug/L
		Total SV	OC1s:	1.70				
		Total TI	C's:	164.40				
		Total SV	OC's and TIC's:	166.10				
Client ID:	MW5-180							
X5831-15	MW5-180	WATER	Tetrachloroethylene	* 2.8	J	0	0	ug/L
X5831-15	MW5-180	WATER	ACP3.06	* 85	A	0	0	ug/L
X5831-15	MW5-180	WATER	n-Hexadecanoic acid	* 5.1	J	0	0	ug/L
X5831-15	MW5-180	WATER	1-Eicosanol	* 10	JB	0	0	ug/L
X5831-15	MW5-180	WATER	Octacosanol	* 2.4	J	0	0	ug/L
X5831-15	MW5-180	WATER	unknown16.00	* 2.3	J	0	0	ug/L
		Total SV	OC's:	0.00				
		Total TI	C's:	107.60				
		Total SV	OC's and TIC's:	107.60				
Client ID:	MW5-60							
X5831-14	MW5-60	WATER	ACP3.07	* 90	Α	0	0-	ug/L
X5831-14	MW5-60	WATER	unknown9.08	* 5.5	J	0	0	ug/L
X5831-14	MW5-60	WATER	n-Hexadecanoic acid	* 5.7	J	0	0	ug/L
X5831-14	MW5-60	WATER	1-Nonadecene	* 4.8	J	0	0	ug/L
X5831-14	MW5-60	WATER	Ethanol, 2-(octadecyloxy)-	* 6.5	J	0	0	ug/L
X5831-14	MW5-60	WATER	Tricosane	* 3.8	J	0	0	ug/L
X5831-14	MW5-60	WATER	Heptacosane	* 5.0	J	0	0	ug/L
X5831-14	MW5-60	WATER	Docosane	* 3.8	J	0	0	ug/L
X5831-14	MW5-60	WATER	Pentadecane, 8-heptyl-	* 4.2	J	0	0	ug/L
X5831-14	MW5-60	WATER	Heneicosane	* 4.4	J	0	0	ug/L
		Total SV	OC's:	0.00				
		Total TI	C's:	133.70				
		Total SV	OC's and TIC's:	133.70				

Hit	Sum	mary	Re	nort

SDG No.: X5831 Order ID: X5831

Client: TRC Environmental Corp., NY Project ID: Morris park RI/FS TRC#46130-0010

Test: SVOC-TCL BN -10

l-est:	SVOC-1 CL BN -10							
Sample ID	Client ID	Matrix	Parameter	Concentration	С	RDL	MDL	Units
Client ID:	MW6-60							
X5831-05	MW6-60	WATER	Naphthalene	68		10	1.4	ug/L
X5831-05	MW6-60	WATER	Acenaphthene	13		10	1.4	ug/L
X5831-05	MW6-60	WATER	Fluorene	27		10	1.4	ug/L
X5831-05	MW6-60	WATER	Phenanthrene	37		10	1.4	ug/L
X5831-05	MW6-60	WATER	Carbazole	11		10	1.3	ug/L
X5831-05	MW6-60	WATER	ACP3.08	* 61	Α	0	0	ug/L
X5831-05	MW6-60	WATER	Naphthalene, decahydro-, tra	* 17	J	0	0	ug/L
X5831-05	MW6-60	WATER	unknown4.96	* 22	J	0	0	ug/L
X5831-05	MW6-60	WATER	Decane, 3,6-dimethyl-	* 24	J	0	0	ug/L
X5831-05	MW6-60	WATER	Benzene, 1,2,4,5-tetramethyl-	* 25	J	0	0	ug/L
X5831-05	MW6-60	WATER	Benzene, 1-methyl-4-(1-methy	* 21	Ĵ	0	0	ug/L
X5831-05	MW6-60	WATER	Cyclohexane, pentyl-	* 21	J	0	0	ug/L
X5831-05	MW6-60	WATER	Benzene, 2-butenyl-	* 24	J	0	0	ug/L
X5831-05	MW6-60	WATER	3-Phenylbut-1-ene	* 58	J	0	0	ug/L
X5831-05	MW6-60	WATER	Nonane, 3-methyl-	* 44	J	0	0	ug/L
		Total SV	OC's:	156.00				
		Total TI	C's:	317.00				
		Total SV	OC's and TIC's:	473.00				
Client ID:	MW6-60(DUP)							
X5831-06	MW6-60(DUP)	WATER	Naphthalene	54		10	1.4	ug/L
X5831-06	MW6-60(DUP)	WATER	Acenaphthene	7.4	J	10	1.3	ug/L
X5831-06	MW6-60(DUP)	WATER	Dibenzofuran	7.1	J	10	1.3	ug/L
X5831-06	MW6-60(DUP)	WATER	Fluorene	14		10	1.4	ug/L
X5831-06	MW6-60(DUP)	WATER	Phenanthrene	14		10	1.4	ug/L
X5831-06	MW6-60(DUP)	WATER	Carbazole	13		10	1.3	ug/L
X5831-06	MW6-60(DUP)	WATER	ACP3.07	* 75	A	0	0	ug/L
X5831-06	MW6-60(DUP)	WATER	unknown5.32	* 33	J	0	0	ug/L
X5831-06	MW6-60(DUP)	WATER	Naphthalene, 1-methyl-	* 47 [.]	J	0	0	ug/L
X5831-06	MW6-60(DUP)	WATER	Naphthalene, 2-ethyl-	* 29	J	0	0	ug/L
X5831-06	MW6-60(DUP)	WATER	Naphthalene, 2,6-dimethyl-	* 68	J	0	0	ug/L
X5831-06	MW6-60(DUP)	WATER	Naphthalene, 2,3-dimethyl-	* 52	J	0	0	ug/L
X5831-06	MW6-60(DUP)	WATER	unknown7.06	* 34	J	0	0	ug/L
X5831-06	MW6-60(DUP)	WATER	Undecane, 2,5-dimethyl-	* 31	J	0	0	ug/L
X5831-06	MW6-60(DUP)	WATER	Tridecane, 5-propyl-	* 73	J	0	0	ug/L
X5831-06	MW6-60(DUP)	WATER	Decane, 3-methyl-	* 44	J	0	0	ug/L
		Total SV	•	109.50				
		Total TI		486.00				
		Total SV	OC's and TIC's:	595.50				

			Hit Summary Rep	ort				
SDG No.:	X5831			Order ID:	X5831			
Client:	TRC Environmental	Corp., NY		Project ID:	Morris park	RI/FS TF	RC#46130	-0010
Test:	SVOC-TCL BN -10				-			
Sample ID	Client ID	Matrix	Parameter	Concentration	эп С	RDL	MDL	Units
Client ID:	MW6-60(DUP)DL							
X5831-06DL	MW6-60(DUP)DL	WATER	Naphthalene	68	D	50	6.9	ug/L
X5831-06DL	MW6-60(DUP)DL	WATER	2-Methylnaphthalene	230	D	50	5.4	ug/L
X5831-06DL	MW6-60(DUP)DL	WATER	Acenaphthene	7.6	JD	50	6.7	ug/L
X5831-06DL	MW6-60(DUP)DL	WATER	Dibenzofuran	8.4)D	50	6.5	ug/L
X5831-06DL	MW6-60(DUP)DL	WATER	Fluorene	16	JD	50	7.0	ug/L
X5831-06DL	MW6-60(DUP)DL	WATER	Phenanthrene	17	JD	50	7.1	ug/L
X5831-06DL	MW6-60(DUP)DL	WATER	Carbazole	14	JD	50	6.4	ug/L
		Total SV Total TI Total SV		361.00 0.00 361.00				
Client ID:	MW6-60DL							
X5831-05DL	MW6-60DL	WATER	Naphthalene	78	D	51	7.0	ug/L
X5831-05DL	MW6-60DL	WATER	2-Methylnaphthalene	300	D D	51	5.5	ug/L
X5831-05DL	MW6-60DL	WATER	Acenaphthylene	7.3	JD	51	6.5	ug/L
X5831-05DL	MW6-60DL	WATER	Acenaphthene	15	JD	51	6.8	ug/L
X5831-05DL	MW6-60DL	WATER	Dibenzofuran	16	JD	51	6.5	ug/L
X5831-05DL	MW6-60DL	WATER	Fluorene	31	ID.	51	7.1	ug/L
X5831-05DL	MW6-60DL	WATER	Phenanthrene	44	JD	51	7.2	ug/L
X5831-05DL	MW6-60DL	WATER	Carbazole	13	JD 	51	6.4	ug/L
X5831-05DL	MW6-60DL	WATER	bis(2-Ethylhexyl)phthalat	te 63	Ď	51	7.7	ug/L
		Total SV		567.30 0.00 567.30				Ü

CHAIN OF CUSTODY RECORD

284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 769-8922 www.chemtech.net

CHEMTECH PROJECT NO. X583

:

COC Number C.C.O. L.S. J. C.C.O.

	REPORT TO BE SENT TO:	PROJECT NAME: 6	PROJECT NAME: LIRA MASICIS F	R, K	LK BILLTO: S	E	UOZ431 CLENT BILLING INFORMATION	ion Research
ADDRESS: CITY:	1450 Spinelaby 1014 Fl.	PROJECT NO.: 4613	PROJECT NO. 46/36 - del O LOCATION. AILLI MANA PROJECT MANAGER (J. 11)	1/1/ Prowi	ADDRESS:			
NOL Y	Cuilliam Silve	e-mail: WSi	Veri OTALSO	@ Tal solution, an	ATTENTION:		STATE: PHONE:	ZIP:
PHONE: (4/	4.584 2787 FAX:		FAX:				ANALYSIS	
	DATA TURNAROUND INFORMATION	DATA DE	DATA DELIVERABLE INFORMATION	NO STATE OF			\ \	/
FAX:	DAYS.	CI RESULTS ONLY	USEPACLP		1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2			
EDD:	DAYS.		ED IN New York State ASP *A*	15		/	/	
• TO BE APPR(STANDARD T	• TO BE APPROVED BY CHEMTECH STANDARD TURNAROUND TIME IS 10 BUSINESS DAYS	C New Jersay CLP C EDD FORMAT	Other		. 11	/ N	9 9	
CHEMTECH	PROJECT	SAMPLE TYPE	SAMPLE SAMPLE COLLECTION	(S)	PRESERVATIVES	IVES		3516
G	SAMPLE IDENTIFICATION	ATHIX COMP GARD	DATE TIME %	ε. Σ/V ~	4	2	Κ Ου	A-HC B-HNO, C-H,SO, D-NaOH
**	MW15-60.	151 × 0.2	126.cb 10925 2 >		\vdash			
65	MW 06-168	× .	77	×				
3	MW 3-16B	*	7	×××				
4.	MW 16-60	رج × الك	X 7 7 764190 9.71	X				
S		× 3-	7	¥ X				
6,	MW 6-60 "DUP"	×	124-26 1342 2	X				
7	MW 21 S	GW X 12	12.606 1610 2 >	У Х				
8,	MW 210		17-6-06 1605 2 1	<u>×</u>				
9.	9	194 X P.	12-09 1400 7 X	く、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、				
10.	MW.54-60		1-7-c1,0915 2-1-5	\ \ \				
25.1	SAMPLE CUSTODY		ENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION INCLUDING COURIER DELIVERY	IGE POSSESSIC	N INCLUDING	COURIER DE	NERY .	
X Ask	12-11-26	1	Conditions of bottes or coolers at receipt: (C) Compilent C) MeOH extraction requires an additional 4 oz jar for percent solid.	s et receipt: (E an additional 4 oz	5 Compilent Jar for percent	C Non Compilant solid.		3
305	1 1		Comments:	-			ide in Coolery.	01617:
_	ONE 12. 11.06 3. SNEH P.C.	MEHTA	Page ()		SHIPPED VIA: CLIENT: [CHEMTEC!	CHAND DELIVERED OH: (A) PICKED UP [CLIENT: П НАИ DELIVERED ПOVERNIAHT CHEMTECH: AZ PICKED UP ПOVERNIAHT	Supment Complete:
Revision 4/2005	WHITE - CHEMTECH COPY FOR RETURN TO CLIENT	OPY FOR RETURN TO		YELLOW - CHEMTECH COPY	PINK - SAMPLER COPY	чен сору		

CHAIN OF CUSTODY RECORD

284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

CHEMTECH PROJECT NO.

COC Number 062430

	CLIENT INFORMATION		CLIENT PROJECT INFORMATION	ORMATION				CLIENT BILLING INFORMATION	IMATION MATION	F-65
	REPORT TO BE SENT TO:				-		(3
COMPANY: TAC	Engineest 1,3C,	PROJECT NAME: LIRR	1 RR M	0 C C; 5	みんえ	BILL TO:	いをもぐ	11.	PO#:	
ADDRESS: 1430	Bracoliday 10th Fl	PROJECT NO.: 96, 30 -00, 100- 06003 Richmeni	30-00100-08	oes Jon: Rich	11/1 /1 1/2m	ADDRESS:				r
CITY: NY	NY STATE: NY ZIP: 10018	PROJECT MANAGER:	: Wil/i€m	, Silver,	, ,	:אדוס		STATE	dZ	7
ATTENTION		e-mall: LUS; /	Iveri aTRasinhons	15/4 7 ×	אל . למנא	ATTENTION		PHONE	ļ	
PHONE: 646	PHONE 646-584-279, FAX.		FAX	×				ANALYSIS		Sie
AND THE C	ID INFORMATION		DATA DELIVERABLE INFORMATION	ORMATION	B. W. W. (2)					
FAX:	DAYS.	C RESULTS ONLY	USEPA CI		\		/	\ \ \	/	
HARD COPY:			B New York State ASP '8"	itale ASP '8"		/ / /				
EDD: TO BE APPR	TO BE APPROVED BY CHEMTECH	☐ Now Jersey REDUCED ☐ New York State ASP "A" ☐ New Jersey CLP ☐ Other	ED IN New York S	State ASP 'A						
SIANDARU I	STANDARU TURNAHUUNU TIME IS 10 BUSINESS DAYS	ביט רטחשאו			Act Control of the Co	PRESERVATIVES	ATIVES	Katha San San San San San San San San San Sa	COMMENTS	7.
CHEMTECH	PROJECT	SAMPLE TYPE	SAMPLE COLLECTION	STILLE	E21				- 10	e ·
0	SAMPLE IDENTIFICATION	COMP GRAB	DATE TIME	8:01	2) K	4 20	9	7 8 9	C-H,SO, D-NaOH E-ICE F-Oher	
1	1-60 WM	4 N O O	127.06 1033	7	<u> </u>			-		ă
2	97-BI MW	X.	12-7-56 1152	۲ ×	×					T
3.	07-21 MY	۲ <u>.</u>	12-7-66 1207	7	X					1
· ·	29-5 mm	*	2-7-06 1440	7 ×	X					7
5.	061-2 WM	21 x 32	12.7-00 1545	Ч Х	×					
5.		X	12-506 1017	7 ×	×					
7.	TAIP BLANK	Ac 1 12	7.7.U	× -						
9.		ý								-
Ġ.										r
10,				ec.28.7*****						
	SAMPLE CUSTODY MUST BE DOCU	UMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION INCLUDING COURIER DELIVERY	ACH TIME SAME	LES CHAN	SE POSSESSI	ON INCLUDIA	IG COURIE	R DELIVERY		CA.
RELING/ASHED BY.	Sydocea:	Tary.	Conditions of bottles or coolers at receipt. Occupitant DAMPH extraction requires an additional 4 oz jar for percent solid.	les ar coolers on requires a	at receipt: n additional 4 6	Complient z jar for perce	nt solid.	Non Compilant Co	Cooler Temp. <u>(12 C</u> Ice In Cooler?: \{2	
301 301	DATE INC.) }			-				<u>1</u>	
6 -	ONTERTIME: (350 RECEIVED FOR UAB BY (1) (2) 1/1. 0 6 3. SPENM-C	BY: MENTA	Page 2	١ ~.		SHIPPED VIA: CLIENT: D	ΕÜÄ	n	OVERNIGHT Shipment Completes	T
	4					- VIII				¥.

EPA SAMPLE NO.

					VBLKU	•
Lab Name: Chemtech		Cont	ract:	TRCE	03	***************************************
Lab Code: CHEM	Case No.: <u>X5831</u>	SAS No	.: <u>X58</u>	831	SDG No.:	X5831
Matrix (soil/water):	WATER	Lab	Sample :	ID: _	VBH1207-01	
Sample wt/vol: 5.0	(g/mL)mL	Lab	File ID	: _	VH012164.D	
Level (low/med):		Date	Receive	ed:		
% Moisture: not dec.	100	Date	Analyze	ed:	12/7/2006	
GC Column: RTX624	ID: 0.53	Dilu	tion Fac	ctor:	1.0	-
Soil Extract Volume:		Soil	Aliquot	t Volum	ae:	
Number TICS found:	1		ENTRATIO			
CAS NO.	COMPOUND		RT		EST. CONC.	Q
1. 75-45-6	Chlorodifluoromethane		1.1	1	50	ប

EPA SAMPLE NO.

			VBLK02	}
Lab Name: Chemtech	Con	tract: TRCE	:03	
Lab Code: <u>CHEM</u> Ca	ase No.: X5831 SAS N	o.: <u>X5831</u>	SDG No.:	X5831
Matrix (soil/water): W	VATER Lab	Sample ID:	VBH1215-01	
Sample wt/vol: 5.0	(g/mL) mL Lab	File ID:	VH012422.D	
Level (low/med):	Dat	e Received:		
% Moisture: not dec.	100 Dat	e Analyzed:	12/15/2006	····
GC Column: RTX624 I	D: 0.53 Dil	ution Factor:	1.0	
Soil Extract Volume:	Soi	l Aliquot Volum	me:	
Number TICS found: 2		CENTRATION UNI:		
CAS NO.	OMPOUND	RT	EST. CONC.	٥
1. 75-45-6	Chlorodifluoromethane	1.11	50	U

EPA SAMPLE NO.

 	
MW06-168	

Lab Name: Chemtech		Cont	ract:	TRCE03		
Lab Code: CHEM	Case No.: <u>X5831</u>	SAS No	.: <u>x58</u>	31	_ SDG No.:	X5831
Matrix (soil/water):	WATER	Lab	Sample I	D: <u>X5</u>	831-02	
Sample wt/vol: 5.0	(g/mL) mL	Lab	File ID:	VH	012430.D	
Level (low/med):		Date	Receive	d: 1	2/11/2006	
% Moisture: not dec.	100	Date	Analyze	d: <u>1</u>	2/15/2006	
GC Column: RTX624	ID: 0.53	Dilu	tion Fac	tor:	1.0	
Soil Extract Volume:		Soil	Aliquot	Volume:	<u></u>	
Number TICS found:	1		ENTRATIO			
CAS NO.	COMPOUND		RT		EST. CONC.	Q
1. 75-45-6	Chlorodifluoromethane		1.13	l	50.0	Ü

EPA SAMPLE NO.

MW3-168

50.0 U

Lab 1	Name:	Chemtech		Contract: TR	CE03
Lab (Code:	CHEM	Case No.: X5831	SAS No.: X5831	SDG No.: X5831
Matri	ix (soi	.l/water):	WATER	Lab Sample ID:	X5831-03
Sampl	le wt/v	rol: <u>5.0</u>	(g/mL) mL	Lab File ID:	VH012431.D
Level	l (low/	med):		Date Received:	12/11/2006
t Moi	isture:	not dec.	100	Date Analyzed:	12/15/2006
GC Cd	olumn:	RTX624	ID: 0.53	Dilution Factor:	1.0
Soil	Extrac	t Volume:		Soil Aliquot Vol	.ume;
Numbe	er TICS	found:	1	CONCENTRATION UN (ug/L or ug/K	
	CAS 1	NO.	COMPOUND	RT	EST. CONC. Q

1.11

Chlorodifluoromethane

75-45-6

EPA SAMPLE NO.

MW16-60

		l		
Lab Name: Chemtech		Contract: TRO	E03	
Lab Code: CHEM	Case No.: X5831	SAS No.: <u>X5831</u>	SDG No.: <u>X5831</u>	
Matrix (soil/water):	WATER	Lab Sample ID:	X5831-04	
Sample wt/vol: 5.0	(g/mL) _mL	Lab File ID:	VH012432.D	
Level (low/med):		Date Received:	12/11/2006	
% Moisture: not dec.	100	Date Analyzed:	12/15/2006	
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0	
Soil Extract Volume:		Soil Aliquot Volu	ume:	
Number TICS found:	1	CONCENTRATION UN		
CAS NO.	COMPOUND	RT	EST. CONC. Q	
1. 75-45-6	Chlorodifluoromethane	1.11	ט 50.0	7

EPA SAMPLE NO.

					MW6-60)	
Lab Name:	Chemtech		Contra	act: TRO	DE03		
Lab Code:	СНЕМ	Case No.: <u>X5831</u>	_ SAS No.:	<u>x5831</u>	SDG No.:	X5831	
Matrix (s	oil/water):	WATER	Lab Sa	ample ID:	X5831-05		
Sample wt	/vol: <u>5.0</u>	(g/mL) mL	Lab F	ile ID:	VH012427.D		
Level (lo	w/med):		Date 1	Received:	12/11/2006		
% Moistur	e: not dec.	100	Date 1	Analyzed:	12/15/2006	-	
GC Column	: RTX624	ID: 0.53	Diluti	ion Factor:	1.0		
Soil Extr	act Volume:		Soil 2	Aliquot Vol	ume:		
Number TI	CS found:	1		NTRATION UN			
CAS	S NO.	COMPOUND		RT	EST. CONC.	Ď	
1. 75-4	5-6	Chlorodifluoromethane		7 77	50.0	77	

EPA SAMPLE NO.

MW6-60	(DUP)

Lab Name: Chemtech	44.44.	Contract: TRC	E03
Lab Code: CHEM	Case No.: X5831	sas no.: <u>X5831</u>	SDG No.: <u>X5831</u>
Matrix (soil/water):	WATER	Lab Sample ID:	X5831-06
Sample wt/vol: 5.0	(g/mL)mL	Lab File ID:	VH012428.D
Level (low/med):		Date Received:	12/11/2006
% Moisture: not dec.	100	Date Analyzed:	12/15/2006
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0
Soil Extract Volume:	***************************************	Soil Aliquot Volu	ıme:
Number TICS found:	1	CONCENTRATION UNI	
CAS NO.	COMPOUND	RT	EST. CONC. Q
1. 75-45-6	Chlorodifluoromethane	1.11	50.0 U

EPA SAMPLE NO.

MW21S

		L	
Lab Name: Chemtech		Contract: TRO	E03
Lab Code: CHEM	Case No.: <u>X5831</u>	SAS No.: <u>X5831</u>	SDG No.: X5831
Matrix (soil/water):	WATER	Lab Sample ID:	X5831-07
Sample wt/vol: 5.0	(g/mL) mL	Lab File ID:	VH012433.D
Level (low/med):		Date Received:	12/11/2006
% Moisture: not dec.	100	Date Analyzed:	12/15/2006
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0
Soil Extract Volume:		Soil Aliquot Volu	ume:
Number TICS found:	1	CONCENTRATION UN (ug/L or ug/Kg	
CAS NO.	COMPOUND	RT	EST. CONC. Q
1. 75-45-6	Chlorodifluoromethane	1.11	50.0 U

EPA SAMPLE NO.

		· ·	L	MW21D	
Lab Name: Chemtech		Contract:	TRCE	303	
Lab Code: CHEM	Case No.: <u>X5831</u>	SAS No.:	X5831	SDG No.:	X5831
Matrix (soil/water):	WATER	Lab Sampl	e ID:	X5831-08	
Sample wt/vol: 5.0	(g/mL) _mL	Lab File	ID:	VH012440.D	
Level (low/med):		Date Rece	ived:	12/11/2006	
% Moisture: not dec.	100	Date Anal	yzed:	12/15/2006	
GC Column: RTX624	ID: 0.53	Dilution	Factor:	1.0	
Soil Extract Volume:	<u></u>	Soil Aliq	uot Volu	me:	
Number TICS found:	1	CONCENTRA (ug/L d	TION UNI or ug/Kg)		
CAS NO.	COMPOUND		RT	EST. CONC.	Q
1. 75-45-6	Chlorodifluoromethane	1	.11	50.0	U

EPA SAMPLE NO.

FIELDBLANK	

Lab Name: Chemtech		Contract:	TRCE03
Lab Code: CHEM	Case No.: <u>X5831</u>	sas no.: <u>X583</u>	1 SDG No.: X5831
Matrix (soil/water):	WATER	Lab Sample ID	: <u>X5831-09</u>
Sample wt/vol: 5.0	(g/mL) mL	Lab File ID:	VH012426.D
Level (low/med):		Date Received	: 12/11/2006
% Moisture: not dec.	100	Date Analyzed	: 12/15/2006
GC Column: RTX624	ID: 0.53	Dilution Fact	or: <u>1.0</u>
Soil Extract Volume:	***************************************	Soil Aliquot	Volume:
Number TICS found:	1	CONCENTRATION (ug/L or ug	
CAS NO.	COMPOUND	RT	EST. CONC. Q
1. 75-45-6	Chlorodifluoromethane	1.11	50.0 ט

EPA SAMPLE NO.

MW-3U-60

Lab Name: Chemtech		Contract: TRC	E03
Lab Code: CHEM	Case No.: X5831	sas No.: <u>X5831</u>	SDG No.: X5831
Matrix (soil/water):	WATER	Lab Sample ID:	X5831-10
Sample wt/vol: 5.0	(g/mL) mL	Lab File ID:	VH012434.D
Level (low/med):	***************************************	Date Received:	12/11/2006
% Moisture: not dec.	100	Date Analyzed:	12/15/2006
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0
Soil Extract Volume:	·····	Soil Aliquot Volu	ime:
Number TICS found:	1	CONCENTRATION UN:	
CAS NO.	COMPOUND	RT	EST. CONC. Q
1. 75-45-6	Chlorodifluoromethane	1.11	50.0 U

EPA SAMPLE NO.

		· .	MW4-6 0
Lab Name: Chemtech		Contract: TR	CE03
Lab Code: CHEM	Case No.: <u>X5831</u>	SAS No.: <u>X5831</u>	SDG No.: X5831
Matrix (soil/water):	WATER	Lab Sample ID:	X5831-11
Sample wt/vol: 5.0	(g/mL)mL	Lab File ID:	VH012435.D
Level (low/med):		Date Received:	12/11/2006
% Moisture: not dec.	100	Date Analyzed:	12/15/2006
GC Column: RTX624	ID: 0.53	Dilution Factor	: 1.0
Soil Extract Volume:		Soil Aliquot Vo	lume:
Number TICS found:	1	CONCENTRATION U	
CAS NO.	COMPOUND	RI	EST. CONC. Q
1. 75-45-6	Chlorodifluoromethane	1.11	ט 50.0

EPA SAMPLE NO.

			MW19-6	0
Lab Name: Chemtech		ontract: TRO	E03	
Lab Code: CHEM Case	No.: <u>X5831</u> sas	No.: <u>X5831</u>	SDG No.:	X5831
Matrix (soil/water): WAT	ER L	ab Sample ID:	X5831-12	
Sample wt/vol: 5.0	(g/mL) mL L	ab File ID:	VH012436.D	
Level (low/med):		ate Received:	12/11/2006	
% Moisture: not dec. 100	<u>) </u>	ate Analyzed:	12/15/2006	
GC Column: RTX624 ID:	0.53 D	ilution Factor:	1.0	
Soil Extract Volume:	<u> </u>	oil Aliquot Vol	ume:	
Number TICS found: 1	c	ONCENTRATION UN:		
CAS NO. COMP	OUND	RT	EST. CONC.	Q
1. 75-45-6 Chi	orodifluoromethane	1.11	50.0	U

EPA SAMPLE NO.

MW12-60

Lab Name: Chemtech		Contract: T	RCE03
Lab Code: CHEM	Case No.: <u>X5831</u>	sas no.: <u>X5831</u>	SDG No.: <u>X5831</u>
Matrix (soil/water):	WATER	Lab Sample ID:	X5831-13
Sample wt/vol: 5.0	(g/mL)mL	Lab File ID:	VH012437.D
Level (low/med):	 	Date Received:	12/11/2006
% Moisture: not dec.	100	Date Analyzed:	12/15/2006
GC Column: RTX624	ID: 0.53	Dilution Factor	r: 1.0
Soil Extract Volume:		Soil Aliquot V	olume:
Number TICS found:	1	CONCENTRATION (ug/L or ug/	
CAS NO.	COMPOUND	RT	EST. CONC. Q
1. 75-45-6	Chlorodifluoromethane	1.11	50.0 🛡

EPA SAMPLE NO.

				MW5-60	
Lab Name: Chemtech		Contract:	TRCE	03	***************************************
Lab Code: CHEM	Case No.: <u>X5831</u>	SAS No.: X	5831	SDG No.:	X5831
Matrix (soil/water):	WATER	Lab Sample	ID: _	X5831-14	
Sample wt/vol: 5.0	(g/mL) mL	Lab File I	:D:	VH012438.D	
Level (low/med):		Date Recei	.ved:	12/11/2006	
% Moisture: not dec.	100	Date Analy	zed:	12/15/2006	
GC Column: RTX624	ID: 0.53	Dilution F	actor:	1.0	
Soil Extract Volume:		Soil Aliqu	ot Volum	ne:	
Number TICS found:	1	CONCENTRAT	lon Unii r ug/Kg)		
CAS NO.	COMPOUND	R	.T	EST. CONC.	Ď
1. 75-45-6	Chlorodifluoromethane	1.	.11	50.0	U

EPA SAMPLE NO.

	MW5-180
Contract: TR	CE03
sas No.: <u>X5831</u>	SDG No.: <u>X5831</u>
Lab Sample ID:	X5831-15
Lab File ID:	VH012441.D

Sample wt/vol: 5.0 Lab File ID: (g/mL) mLLevel (low/med):

X5831

Case No.:

WATER

Date Received: 12/11/2006

% Moisture: not dec. 100 GC Column: RTX624 ID: 0.53

Lab Name: Chemtech

Matrix (soil/water):

CHEM

Lab Code:

12/15/2006 Date Analyzed: Dilution Factor: 1.0

Soil Extract Volume:

Soil Aliquot Volume:

Number TICS found: CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NO. COMPOUND RT EST. CONC. Q 75-45-6 Chlorodifluoromethane 1.11 50.0 U

EPA SAMPLE NO.

						MW26S		
Lab Name: Chemtech			Cont	ract:	TRCE	03		
Lab Code:	CHEM	Case No.: <u>X5831</u>	SAS No	.: <u>X583</u>	31	SDG No.:	x5831	
Matrix (soil/water):		WATER	Lab Sample ID:): <u> </u>	X5831-16		
Sample wt/vol: 5.0		(g/mL) mL	Lab	ab File ID:		VH012439.D	_	
Level (low/med):			Date Received:		i:	12/11/2006		
% Moisture: not dec.		100	Date Analyzed:		ì:	12/15/2006		
GC Column: RTX624		ID: 0.53	Dilution Factor:		or:	1.0		
Soil Extract Volume:			Soil Aliquot Volu			e:	•	
Number TICS found:		1	CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L					
CAS	з ио.	COMPOUND		RT	ALVALADA ALVADA	EST. CONC.	Q	
1. 75-4	-45-6 Chlorodifluoromethane			1.11		50.0 U		

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

			MW21D	*****************
Lab Name: Chemtech		Contract: TRC	E03	
Lab Code: CHEM	Case No.: <u>X5831</u>	SAS No.: X5831	SDG No.: X5831	
Matrix (soil/water):	WATER	Lab Sample ID:	X5831-08	
Sample wt/vol: 5.0	(g/ml) mL	Lab File ID:	VH012440.D	
Level (low/med):		Date Received:	12/11/2006	
% Moisture: not dec.	100	Date Analyzed:	12/15/2006	
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0	
Soil Extract Volume:	***************************************	Soil Aliquot Volu	ıme:	
Number TICS found:	1	CONCENTRATION UNI		
CAS NO.	COMPOUND	RT	EST. CONC. Q	
1. 75-45-6	Difluorochlorometane	1.11	11.9 J	7

Comments:


DATA PACKAGE FOR VOLATILE ORGANICS

PROJECT NAME: Morris park RI/FS TRC#46130-0010

TRC ENVIRONMENTAL CORP., NY
1430 BROADWAY
10TH FLOOR
NEW YORK, NY 10018
2122217822

CHEMTECH PROJECT NO. ATTENTION:

X5892 William Silveri

COVER PAGE

ProjectID:

Morris park RI/FS TRC#461

OrderID: X5892

CustomerName:

TRC Environmental Corp., NY

LAB SAMPLE NO.	CLIENT SAMPLE NO
X5892-01	TRIPBLANK
X5892-02	MW28D
X5892-03	MW28S
X5892-04	MVV-01-60
X5892-05	MW01-140
X5892-06	MW29-D
X5892-07	MW30D
X5892-08	MW08-60
X5892-09	MW08-150
X5892-10	MW20-50
X5892-11	MW02-160R
X5892-12	PMW-05
X5892-13	MW24-60
X5892-14	MW02-50R
X5892-15	FIELDBLANK
X5892-16	MW17-60R -
X5892-17	MW17-60R(DUP)
X5892-18	MW27D
X5892-19	TRIPBLANK

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature: Hildred V L	Wes Name: Wildud	U Reise
Date: //3/07	Title: <u>ΦΑ / φ</u> ς	

CHEMTECH

284 Sheffield Street Mountainside NJ 07092 Tel. 908-789-8900 Fax: 908-789-8922

DATA REPORTING QUALIFIERS- ORGANIC

For reporting results, the following "Results Qualifiers" are used:

Value	If the result is a value greater than or equal to the detection limit, report the value
U	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10 U". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
J	 Indicates an estimated value. This flag is used: When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise on any organic parameter i.e. Pest, PCB and others.
В	Indicates the analyte was found in the blank as well as the sample report as "12 B".
E	Indicates the analyte's concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
P	This flag is used for Pesticide/PCB target analyte when there is >25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".
N	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.

Sample Wt/Wol:

Report of Analysis

TRC Environmental Corp., NY Client: Date Collected: 12/11/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: TRIPBLANK SDG No.: X5892 Lab Sample ID: Matrix: X5892-01 WATER

Analytical Method: 8260 % Moisture: 100

Soil Aliquot Vol: uL

5.0

Units: mL

File ID: Dilution: Date Analyzed Analytical Batch ID

VG005805.D 1 12/26/2006 VG122106

Soil Extract Vol:

пĽ

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0		ug/L
75-01-4	Vinyl chloride	0.33	U	5.0		ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0		ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0		ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0		ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0		ug/L
67-64-1	Acetone	2.3	U	25		ug/L
75-15-0	Carbon disulfide	0.40	U	5.0		ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0		ug/L
79-20-9	Methyl Acetate	0.20	U	5.0		ug/L
75-09-2	Methylene Chloride	0.43	U	5.0		ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0		ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0		ug/L
110-82-7	Cyclohexane	0,36	U	5.0		ug/L
78-93-3	2-Butanone	1.1	U	25		ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0		ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0		ug/L
67-66-3	Chloroform	0.33	U	5.0		ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0		ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0		ug/L
71-43-2	Веплепе	0.39	U	5.0		ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0		ug/L
79-01-6	Trichloroethene	0.46	Ŭ	5.0		ug/L
78-87-5	I,2-Dichloropropane	0.40	U	5.0		ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0		ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25		ug/L
108-88-3	Toluene	0.36	U	5.0		ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0		ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0		ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0		ug/L
						-

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Client:

Morris park RI/FS TRC#46130-0010

Date Collected:

12/11/2006

Project:

Date Received: SDG No.:

12/15/2006 X5892

Client Sample ID: Lab Sample ID:

TRIPBLANK X5892-01

Matrix:

WATER

Analytical Method:

8260

% Moisture:

100

Sample Wt/Wel:

5.0 Units: mL

Soil Extract Vol:

υL

Soil Aliquot Vol:

uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID	٦
VG005805.D	1	12/26/2006	VG122106	

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromeform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	45.02	90 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	54.77	110 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	49.12	98 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	46.26	93 %	76 - 119		SPK: 50
INTERNAL STAN	DARDS					
363-72-4	Pentafluorobenzene	761745	4.34			
540-36-3	1,4-Difluorobenzene	992791	5.64			
3114-55-4	Chiorobenzene-d5	1044986	10.60			
3855-82-1	1,4-Dichlorobenzene-d4	496033	14.37			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Client: Date Collected: 12/13/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: MW28D SDG No.: X5892 Lab Sample ID: X5892-02 Matrix: WATER Analytical Method: 8260 % Moisture: 100 Sample Wt/Wel: 5.0 Units: mL Soil Extract Vol: υL Soil Aliquot Vol: иL

File ID: Dilution: Date Analyzed Analytical Batch ID

VG005798.D 1 12/22/2006 VG122106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3	ug/L
75-35-4	I,1-Dichloroethene	0.42	U	5.0	0.42	ug/L
67-64-1	Acetone	2.3	U	25	2.3	ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40	ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28	ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36	ug/L
78-93-3	2-Butanone	1.1	U	25	1.1	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
156-59-2	cis-1,2-Dichloroethene	2.9	j	5.0	0.29	ug/L
67-66-3	Chloroform	4.0	j	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34	ug/L
71-43-2	Benzene	0.39	U	5.0	0.39	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	1100	E	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0,40	U	5.0	0.40	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6	ug/L
108-88-3	Toluene	0.36	U	5.0	0.36	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 12/13/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: MW28D SDG No.: X5892 Lab Sample ID: X5892-02 Matrix: WATER Analytical Method: 8260 % Moisture: 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol: цL

File ID: Dilution: Date Analyzed Analytical Batch ID

VG005798.D 1 12/22/2006 VG122106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	8.2		5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichleromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	54.43	109 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	59.4	119 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	46.89	94 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	35.38	71 %	76 - 119		SPK: 50
INTERNAL STA	ANDARDS					
363-72-4	Pentafluorobenzene	749681	4.32			
540-36-3	1,4-Difluorobenzene	1247207	5.61			
3114-55-4	Chlorobenzene-d5	1147551	10.56			
3855-82-1	1,4-Dichlorobenzene-d4	333427	14.32			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Client: Date Collected: 12/13/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: MW28DDL SDG No.: X5892 Lab Sample ID: X5892-02DL Matrix: WATER Analytical Method: 8260 % Moisture: 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol: υL

File ID: Dilution: Date Analyzed Analytical Batch ID

VG005808.D 20 12/26/2006 VG122106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	3.4	U	100	3.4	ug/L
74-87-3	Chloromethane	6.9	U	100	6.9	ug/L
75-01-4	Vinyl chloride	6.6	U	100	6.6	ug/L
74-83-9	Bromomethane	8.2	U	100	8.2	ug/L
75-00-3	Chloroethane	17	U	100	17	ug/L
75-69-4	Trichlorofluoromethane	4.4	U	100	4.4	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	26	U	100	26	ug/L
75-35-4	1,1-Dichloroethene	8.3	U	100	8.3	ug/L
67-64-1	Acetone	45	U	500	45	ug/L
75-15-0	Carbon disulfide	8.0	U	100	8.0	ug/L
1634-04-4	Methyl tert-butyl Ether	5.6	U	100	5.6	ug/L
79-20-9	Methyl Acetate	4.0	U	100	4.0	ug/L
75-09-2	Methylene Chloride	8.5	U	100	8.5	ug/L
156-60-5	trans-1,2-Dichloroethene	8.0	U	100	8.0	ug/L
75-34-3	1,1-Dichloroethane	7.6	U	100	7.6	ug/L
110-82-7	Cyclohexane	7.3	U	100	7.3	ug/L
78-93-3	2-Butanone	23	U	500	23	ug/L
56-23-5	Carbon Tetrachloride	23	U	100	23	ug/L
156-59-2	cis-1,2-Dichloroethene	5.8	U	100	5.8	ug/L
67-66-3	Chloroform	6.7	U	100	6.7	ug/L
71-55-6	1,1,1-Trichloroethane	6.5	U	100	6.5	ug/L
108-87-2	Methylcyclohexane	6.8	U	100	6.8	ug/L
71-43-2	Benzene	7.7	U	100	7.7	ug/L
107-06-2	1,2-Dichloroethane	6.8	U	100	6.8	ug/L
79-01-6	Trichloroethene	1000	D	100	9.2	ug/L
78-87-5	1,2-Dichloropropane	8.1	U	100	8.1	ug/L
75-27-4	Bromodichloromethane	6.7	U	100	6.7	ug/L
108-10-1	4-Methyl-2-Pentanone	32	U	500	32	ug/L
108-88-3	Toluene	7.3	U	100	7.3	ug/L
10061-02-6	t-1,3-Dichloropropene	6.3	U	100	6.3	ug/L
10061-01-5	cis-1,3-Dichloropropene	7.2	U	100	7.2	ug/L
79-00-5	1,1,2-Trichloroethane	8.1	U	100	8.1	ug/L

U = Not Detected

RL= Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 12/13/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: MW28DDL SDG No.: X5892 Lab Sample ID: X5892-02DL Matrix: WATER Analytical Method: % Moisture: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL. Soil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID	
VG005808.D	20	12/26/2006	VG122106	

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	34	U	500	34	ug/L
124-48-1	Dibromochloromethane	5.3	U	100	5.3	ug/L
106-93-4	1,2-Dibromoethane	6.5	U	100	6.5	ug/L
127-18-4	Tetrachloroethene	9.6	U	100	9.6	ug/L
108-90-7	Chlorobenzene	9.3	U	100	9.3	ug/L
100-41-4	Ethyl Benzene	9.1	U	100	9.1	ug/L
126777-61-2	m/p-Xylenes	24	U	200	24	ug/L
95-47-6	o-Xylene	9.1	U	100	9.1	ug/L
100-42-5	Styrene	8.2	U	100	8.2	ug/L
75-25-2	Bromoform	6.3	U	100	6.3	ug/L
98-82-8	Isopropylbenzene	8.8	U	100	8.8	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	6.0	U	100	6.0	ug/L
541-73-1	1,3-Dichlorobenzene	9.9	U	100	9.9	ug/L
106-46-7	1,4-Dichlorobenzene	11	U	100	11	ug/L
95-50-1	1,2-Dichlorobenzene	8.7	U	100	8.7	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	7.5	U	100	7.5	ug/L
120-82-1	1,2,4-Trichlorobenzene	9.2	U	100	9.2	ug/L
593-70-4	Chlorofluoromethane	100	U	100	100	ug/L
75-43-4	Fluorodichloromethane	100	U	100	100	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	47.12	94 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	58.64	117 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	49.5	99 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	48.21	96 %	76 - 119		SPK: 50
INTERNAL STAN	DARDS					
363-72-4	Pentafluorobenzene	689527	4.34			
540-36-3	1,4-Difluorobenzene	871160	5.65			
3114-55-4	Chlorobenzene-d5	903183	10.61			
3855-82-1	1,4-Dichlorobenzene-d4	425927	14.38			

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 12/13/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: SDG No.: X5892 Lab Sample ID: X5892-03 Matrix: WATER Analytical Method: 8260 % Moisture: 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH012616.D	1	12/27/2006	VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3	ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42	ug/L
67-64-1	Acetone	2.3	U	25	2.3	ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40	ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28	ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,I-Dichloroethane	0.38	U	5.0	0.38	ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36	ug/L
78-93-3	2-Butanone	1.1	U	25	1.1	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	\mathbf{U}	5.0	0.29	ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
108-87-2	Methylcyclohexane	0.34	υ	5.0	0.34	ug/L
71-43-2	Benzene	0.39	U	5.0	0.39	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0,40	U	5.0	0.40	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6	ug/L
108-88-3	Toluene	0.36	U	5.0	0,36	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Client: Date Collected: 12/13/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: MW28S SDG No.: X5892 Lab Sample ID: X5892-03 Matrix: WATER Analytical Method: 8260 % Moisture: 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VH012616.D 1 12/27/2006 VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	Ŭ	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	54.3	109 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	50.07	100 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	49.42	99 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	47.66	95 %	76 - 119		SPK: 50
INTERNAL STAP	NDARDS					
363-72-4	Pentafluorobenzene	448175	4.65			
540-36-3	1,4-Difluorobenzene	823647	5.26			
3114-55-4	Chlorobenzene-d5	857757	8.99			
3855-82-1	1,4-Dichlorobenzene-d4	377483	11.57			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Client: Date Collected: 12/13/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: MW-01-60 SDG No.: X5892 Lab Sample ID: X5892-04 Matrix: WATER Analytical Method: 8260 % Moisture: 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL. Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VH012617.D 1 12/27/2006 VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chioromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	\mathbf{U}	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	3.0	J	5.0	0.22	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3	ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42	ug/L
67-64-1	Acetone	2.3	U	25	2.3	ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40	ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28	ug/L
79-20-9	Methyl Acetate	0,20	U	5.0	0.20	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	I,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36	ug/L
78-93-3	2-Butanone	1.1	U	25	1.1	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29	ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34	ug/L
71-43-2	Benzene	0.39	U	5.0	0.39	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6	ug/L
108-88-3	Toluene	0,36	U	5.0	0.36	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Sample Wt/Wol:

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/13/2006

Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006

Client Sample ID: MW-01-60 SDG No.: X5892

Lab Sample ID: X5892-04 Matrix: WATER

Analytical Method: 8260 % Moisture: 100

Soil Aliquot Vol: uL

5.0

Units: mL

File ID: Dilution: Date Analyzed Analytical Batch ID

VH012617.D 1 12/27/2006 VH120706

Soil Extract Vol:

uL

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	1.2	J	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	52.89	106 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	45.98	92 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	49.35	99 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	49.68	99 %	76 - 119		SPK: 50
INTERNAL STAN	DARDS					
363-72-4	Pentafluorobenzene	444219	4.65			
540-36-3	1,4-Difluorobenzene	815118	5.26			
3114-55-4	Chlorobenzene-d5	852104	8.99			
3855-82-1	1,4-Dichlorobenzene-d4	379010	11.56			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

GETTLECH 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/13/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: MW01-140 SDG No.: X5892 Lab Sample ID: X5892-05 Matrix: WATER Analytical Method: % Moisture: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol: иL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH012618.D	1	12/27/2006	VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	4.4	J	5.0	0.22	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3	ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42	ug/L
67-64-1	Acetone	2.3	U	25	2.3	ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40	ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28	ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36	ug/L
78-93-3	2-Butanone	1.1	U	25	1.1	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29	ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34	ug/L
71-43-2	Benzene	0.39	U	5.0	0.39	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6	ug/L
108-88-3	Toluene	0,36	U	5.0	0.36	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Date Collected: 12/13/2006 TRC Environmental Corp., NY Client: Date Received: Project: Morris park RI/FS TRC#46130-0010 12/15/2006 Client Sample ID: MW01-140 SDG No.: X5892 Matrix: Lab Sample ID: X5892-05 WATER % Moisture: Analytical Method: 100 8260 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH012618.D	1	12/27/2006	VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1,7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	2.8	J	5.0	2.79	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	53.89	108 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	47.37	95 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	49.2	98 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	47.31	95 %	76 - 119		SPK: 50
INTERNAL STA	ANDARDS					
363-72-4	Pentafluorobenzene	438934	4.65			
540-36-3	1,4-Difluorobenzene	810200	5.26			
3114-55-4	Chlorobenzene-d5	848692	8.98			
3855-82-1	1,4-Dichlorobenzene-d4	376655	11.56			

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Date Collected: TRC Environmental Corp., NY 12/14/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: MW29-D SDG No.: X5892 Matrix: Lab Sample ID: X5892-06 WATER % Moisture: Analytical Method: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VG005812.D 1 12/26/2006 VG122106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3	ug/L
75-35-4	1,1-Dichloroethene	3.7	J	5.0	0.42	ug/L
67-64-1	Acetone	2.3	U	25	2.3	ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40	ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28	ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36	ug/L
78-93-3	2-Butanone	1.1	U	25	1.1	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
156-59-2	cis-1,2-Dichloroethene	11		5.0	0.29	ug/L
67-66-3	Chloroform	3.8	J	5.0	0.33	ug/L
71-55-6	I,I,I-Trichloroethane	0.32	U	5.0	0.32	ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34	ug/L
71-43-2	Benzene	0.39	U	5.0	0.39	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	1100	E	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6	ug/L
108-88-3	Toluene	0.36	U	5.0	0.36	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Date Collected: 12/14/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: MW29-D SDG No.: X5892 Lab Sample ID: Matrix: WATER X5892-06 % Moisture: Analytical Method: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: υL Soil Aliquot Vol: uL

File ID:	Dilution;	Date Analyzed	Analytical Batch ID	
VG005812.D	1	12/26/2006	VG122106	

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	I,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	10		5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	50.6	101 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	61.22	122 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	44.96	90 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	44.17	88 %	76 - 119		SPK: 50
INTERNAL STAN	DARDS					
363-72-4	Pentafluorobenzene	625581	4.34			
540-36-3	1,4-Difluorobenzene	826029	5.64			
3114-55-4	Chlorobenzene-d5	842456	10.60			
3855-82-1	1,4-Dichlorobenzene-d4	353525	14.37			

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Date Collected: 12/14/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: MW29-DDL SDG No.: X5892 Lab Sample ID: X5892-06DL Matrix: WATER Analytical Method: % Moisture: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol: uL

-	File ID:	Dilution:	Date Analyzed	Analytical Batch ID	
	VH012628.D	20	12/27/2006	VH120706	***************************************

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	3.4	U	100	3.4	ug/L
74-87-3	Chloromethane	6.9	U	100	6.9	ug/L
75-01-4	Vinyl chloride	6.6	U	100	6.6	ug/L
74-83-9	Bromomethane	8.2	\mathbf{U}	100	8.2	ug/L
75-00-3	Chloroethane	17	U	100	17	ug/L
75-69-4	Trichlorofluoromethane	4,4	U	100	4.4	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	26	U	100	26	ug/L
75-35-4	1,1-Dichloroethene	8.3	U	100	8.3	ug/L
67-64-1	Acetone	45	U	500	45	ug/L
75-15-0	Carbon disulfide	8.0	U	100	8.0	ug/L
1634-04-4	Methyl tert-butyl Ether	5.6	U	100	5.6	ug/L
79-20-9	Methyl Acetate	4.0	U	100	4.0	ug/L
75-09-2	Methylene Chloride	8.5	U	100	8.5	ug/L
156-60-5	trans-1,2-Dichlomethene	8.0	U	100	8.0	ug/L
75-34-3	I,I-Dichloroethane	7.6	U	100	7.6	ug/L
110-82-7	Cyclohexane	7.3	U	100	7.3	ug/L
78-93-3	2-Butanone	23	U	500	23	ug/L
56-23-5	Carbon Tetrachloride	23	U	100	23	ug/L
156-59-2	cis-1,2-Dichloroethene	5.8	U	100	5.8	ug/L
67-66-3	Chloroform	6.7	U	100	6.7	ug/L
71-55-6	1,1,1-Trichloroethane	6.5	U	100	6.5	ug/L
108-87-2	Methylcyclohexane	6.8	U	100	6.8	ug/L
71-43-2	Benzene	7.7	U	100	7.7	ug/L
107-06-2	1,2-Dichloroethane	6.8	U	100	6.8	ug/L
79-01-6	Trichloroethene	1000	D	100	9.2	ug/L
78-87-5	1,2-Dichloropropane	8.1	U	100	8.1	ug/L
75-27-4	Bromodichloromethane	6.7	U	100	6.7	ug/L
108-10-1	4-Methyl-2-Pentanone	32	U	500	32	ug/L
108-88-3	Toluene	7.3	U	100	7.3	ug/L
10061-02-6	t-1,3-Dichloropropene	6.3	U	100	6.3	ug/L
10061-01-5	cis-1,3-Dichloropropene	7.2	U	100	7.2	ug/L
79-00-5	1,1,2-Trichloroethane	8,1	U	100	8.1	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Date Collected: TRC Environmental Corp., NY 12/14/2006 Client: Morris park RI/FS TRC#46130-0010 Project: 12/15/2006 Date Received: Client Sample ID: MW29-DDL SDG No.: X5892 Matrix: Lab Sample ID: X5892-06DL WATER % Moisture: Analytical Method: 100 8260 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uLSoil Aliquot Vol: uL.

File ID: Dilution: Date Analyzed Analytical Batch ID

VH012628.D 20 12/27/2006 VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	34	U	500	34	ug/L
124-48-1	Dibromochloromethane	5.3	U	100	5.3	ug/L
106-93-4	1,2-Dibromoethane	6.5	U	100	6.5	ug/L
127-18-4	Tetrachloroethene	9.6	U	100	9.6	ug/L
108-90-7	Chlorobenzene	9.3	U	100	9.3	ug/L
100-41-4	Ethyl Benzene	9.1	U	100	9.1	ug/L
126777-61-2	m/p-Xylenes	24	U	200	24	ug/L
95-47-6	o-Xylene	9.1	U	100	9.1	ug∕L
100-42-5	Styrene	8.2	U	100	8.2	ug/L
75-25-2	Bromoform	6.3	U	100	6.3	ug/L
98-82-8	Isopropylbenzene	8.8	U	100	8.8	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	6.0	U	100	6.0	ug/L
541-73-1	1,3-Dichlorobenzene	9.9	U	100	9.9	ug/L
106-46-7	I,4-Dichlorobenzene	11	U	100	11	ug/L
95-50-1	1,2-Dichlorobenzene	8.7	U	100	8.7	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	7.5	U	100	7.5	ug/L
120-82-1	1,2,4-Trichlorobenzene	9.2	U	100	9.2	ug/L
593-70-4	Chlorofluoromethane	100	U	100	100	ug/L
75-43-4	Fluorodichloromethane	100	U	100	100	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	58.09	116 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	50.57	101 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	51.68	103 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	48.53	97 %	76 - 119		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	427899	4.64			
540-36-3	I,4-Difluorobenzene	766434	5.24			
3114-55-4	Chlorobenzene-d5	811588	8.98			
3855-82-1	1,4-Dichlorobenzene-d4	352538	11.55			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Date Collected: 12/14/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: MW30D SDG No.: X5892 Lab Sample ID: Matrix: X5892-07 WATER % Moisture: Analytical Method: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: nI. Soil Aliquot Vol: uL.

File ID: Dilution: Date Analyzed Analytical Batch ID

VG005813.D 1 12/26/2006 VG122106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3	ug/L
75-35-4	1,1-Dichloroethene	2.6	J	5.0	0.42	ug/L
67-64-1	Acetone	2.3	υ	25	2.3	ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40	ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28	ug/L
79-20-9	Methyl Acetate	0,20	U	5.0	0.20	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36	ug/L
78-93-3	2-Butanone	1.1	U	25	1.1	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
156-59-2	cis-1,2-Dichloroethene	7.8		5.0	0.29	ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34	ug/L
71-43-2	Benzene	1.0	J	5.0	0.39	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	1100	E	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6	ug/L
108-88-3	Toluene	1.4	J	5.0	0.36	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5,0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Date Collected: Client: 12/14/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: MW30D SDG No.: X5892 Lab Sample ID: Matrix: X5892-07 WATER Analytical Method: % Moisture: 8260 100 Sample Wt/Wel: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID	
VG005813.D	1	12/26/2006	VG122106	

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	5.7		5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	53.46	107 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	62.19	124 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	46.68	93 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	46.6	93 %	76 - 119		SPK: 50
INTERNAL STA	ANDARDS					
363-72-4	Pentafluorobenzene	638744	4.34			
540-36-3	I,4-Difluorobenzene	810334	5.64			
3114-55-4	Chlorobenzene-d5	850427	10.61			
3855-82-1	1,4-Dichlorobenzene-d4	384720	14.37			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Date Collected: 12/14/2006 Client; Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: MW30DDL SDG No.: X5892 Lab Sample ID: Matrix: X5892-07DL WATER % Moisture: Analytical Method: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VH012629.D 20 12/27/2006 VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	3.4	U	100	3.4	ug/L
74-87-3	Chloromethane	6.9	U	100	6.9	ug/L
75-01-4	Vinyl chloride	6,6	U	100	6.6	ug/L
74-83-9	Bromomethane	8.2	U	100	8.2	ug/L
75-00-3	Chloroethane	17	U	100	17	ug/L
75-69-4	Trichlorofluoromethane	4.4	U	100	4.4	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	26	U	100	26	ug/L
75-35-4	1,1-Dichloroethene	8.3	U	100	8.3	ug/L
67-64-1	Acetone	45	U	500	45	ug/L
75-15-0	Carbon disulfide	8.0	U	100	8.0	ug/L
1634-04-4	Methyl tert-butyl Ether	5.6	U	100	5.6	ug/L
79-20-9	Methyl Acetate	4,0	U	100	4.0	ug/L
75-09-2	Methylene Chloride	8.5	U	100	8.5	ug/L
156-60-5	trans-1,2-Dichloroethene	8.0	U	100	8.0	ug/L
75-34-3	1,1-Dichloroethane	7.6	U	100	7.6	ug/L
110-82-7	Cyclohexane	7.3	U	100	7.3	ug/L
78-93-3	2-Butanone	23	U	500	23	ug/L
56-23-5	Carbon Tetrachloride	23	U	100	23	ug/L
156-59-2	cis-1,2-Dichloroethene	5.8	U	100	5.8	ug/L
67-66-3	Chloreform	6.7	U	100	6.7	ug/L
71-55-6	1,1,1-Trichloroethane	6.5	U	100	6.5	ug/L
108-87-2	Methylcyclohexane	6.8	U	100	6.8	ug/L
71-43-2	Benzene	7.7	U	100	7.7	ug/L
107-06-2	1,2-Dichloroethane	6.8	U	100	6.8	ug/L
79-01-6	Trichloroethene	1700	D	100	9.2	ug/L
78-87-5	1,2-Dichloropropane	8.1	U	100	8.1	ug/L
75-27-4	Bromedichloromethane	6.7	U	100	6.7	ug/L
108-10-1	4-Methyl-2-Pentanone	32	U	500	32	ug/L
108-88-3	Toluene	7.3	U	100	7.3	ug/L
10061-02-6	t-1,3-Dichloropropene	6.3	U	100	6.3	ug/L
10061-01-5	cis-1,3-Dichloropropene	7.2	U	100	7.2	ug/L
79-00-5	1,1,2-Trichloroethane	8.1	U	100	8.1	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Date Collected: TRC Environmental Corp., NY 12/14/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: MW30DDL SDG No.: X5892 Matrix: Lab Sample ID: X5892-07DL WATER % Moisture: Analytical Method: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: υL Soil Aliquot Vol: uL

File I	D:	Dilution:	Date Analyzed	Analytical Batch ID
VH0:	12629.D	20	12/27/2006	VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	34	U	500	34	ug/L
124-48-1	Dibromochloromethane	5.3	U	100	5.3	ug/L
106-93-4	1,2-Dibromoethane	6.5	U	100	6.5	ug/L
127-18-4	Tetrachloroethene	9.6	U	100	9.6	ug/L
108-90-7	Chlorobenzene	9.3	U	100	9.3	ug/L
100-41-4	Ethyl Benzene	9.1	U	100	9.1	ug/L
126777-61-2	m/p-Xylenes	24	U	200	24	ug/L
95-47-6	o-Xylene	9.1	U	100	9.1	ug/L
100-42-5	Styrene	8.2	U	100	8.2	ug/L
75-25-2	Bromoform	6.3	U	100	6.3	ug/L
98-82-8	Isopropylbenzene	8.8	U	100	8.8	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	6.0	U	100	6.0	ug/L
541-73-1	1,3-Dichlorobenzene	9.9	U	100	9.9	ug/L
106-46-7	1,4-Dichlorobenzene	11	U	100	11	ug/L
95-50-1	1,2-Dichlorobenzene	8.7	U	100	8.7	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	7.5	U	100	7.5	ug/L
120-82-1	1,2,4-Trichlorobenzene	9.2	U	100	9.2	ug/L
593-70-4	Chlorofluoromethane	100	U	100	100	ug/L
75-43-4	Fluorodichloromethane	100	U	100	100	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	57.95	116 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	49.21	98 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	49.42	99 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	47.51	95 %	76 - 119		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	427132	4.64			
540-36-3	1,4-Difluorobenzene	779473	5.24			
3114-55-4	Chlorobenzene-d5	792550	8.98			
3855-82-1	I,4-Dichlorobenzene-d4	372659	11.55			

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Date Collected: 12/14/2006 TRC Environmental Corp., NY Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: MW08-60 SDG No.: X5892 Matrix: Lab Sample ID: X5892-08 WATER % Moisture: Analytical Method: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: πI. Soil Aliquot Vol: uL.

File ID: Dilution: Date Analyzed Analytical Batch ID

VH012619.D 1 12/27/2006 VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	Ŭ	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3	ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42	ug/L
67-64-1	Acetone	2.3	U	25	2.3	ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40	ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28	ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36	ug/L
78-93-3	2-Butanone	1.1	U	25	1.1	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	υ	5.0	0.29	ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34	ug/L
71-43-2	Benzene	0.39	U	5.0	0.39	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6	ug/L
108-88-3	Toluene	0.36	U	5.0	0.36	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Date Collected: Client: 12/14/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: MW08-60 SDG No.: X5892 Lab Sample ID: Matrix: X5892-08 WATER Analytical Method: % Moisture: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL. Soil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID	
VH012619.D	1	12/27/2006	VH120706	

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromeform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	55.27	111 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	46.79	94 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	49.17	98 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	48.97	98 %	76 - 119		SPK: 50
INTERNAL STA	ANDARDS					
363-72-4	Pentafluorobenzene	427798	4.65			
540-36-3	1,4-Difluorobenzene	791835	5.25			
3114-55-4	Chlorobenzene-d5	829361	8.99			
3855-82-1	1,4-Dichlorobenzene-d4	365703	11.55			

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client:	TRC Environmental Corp., NY	Date Collected:	12/14/2006
Project:	Morris park RI/FS TRC#46130-0010	Date Received:	12/15/2006
Client Sample ID:	MW08-150	SDG No.:	X5892
Lab Sample ID:	X5892-09	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	uL
Soil Aliquot Vol:	aL		

File ID: Dilution:		Date Analyzed	Analytical Batch ID
VH012620.D	1	12/27/2006	VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	Ŭ	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3	ug/L
75-35-4	1,1-Dichloroethene	1.1	J	5.0	0.42	ug/L
67-64-1	Acetone	2.3	U	25	2.3	ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40	ug/L
1634-04-4	Methyl tert-butyl Ether	5.0	J	5.0	0.28	ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36	ug/L
78-93-3	2-Butanone	1.1	U	25	1.1	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29	ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	1.1	J	5.0	0.32	ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34	ug/L
71-43-2	Benzene	0.39	U	5.0	0.39	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	4.9	J	5.0	0.46	ug/L
78-87-5	I,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6	ug/L
108-88-3	Toluene	0.36	U	5.0	0.36	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Date Collected: TRC Environmental Corp., NY 12/14/2006 Client: Project: Morris park RI/FS TRC#46130-0010 12/15/2006 Date Received: Client Sample ID: MW08-150 SDG No.: X5892 Matrix: Lab Sample ID: X5892-09 WATER % Moisture: Analytical Method: 8260 100 Sample Wt/Wel: 5.0 Units: mL Soil Extract Vol: цL Soil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH012620.D	1	12/27/2006	VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	IJ	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromeform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	52,41	105 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	45.09	90 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	50.22	100 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	48.97	98 %	76 - 119		SPK: 50
INTERNAL STAP	NDARDS					
363-72-4	Pentafluorobenzene	429007	4.65			
540-36-3	1,4-Difluorobenzene	784073	5.25			
3114-55-4	Chlorobenzene-d5	828180	8.99			
3855-82-1	1,4-Dichlorobenzene-d4	364049	11.55			

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Date Collected: 12/14/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: MW20-50 SDG No.: X5892 Lab Sample ID: X5892-10 Matrix: WATER Analytical Method: 8260 % Moisture: 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VG005816.D 1 12/26/2006 VG122106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3	ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42	ug/L
67-64-1	Acetone	2.3	U	25	2.3	ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40	ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28	ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36	ug/L
78-93-3	2-Butanone	1.1	U	25	1.1	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29	ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34	ug/L
71-43-2	Benzene	0.39	U	5.0	0.39	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	0.46	υ	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
108-10-1	4-MethyI-2-Pentanone	1.6	U	25	1.6	ug/L
108-88-3	Toluene	0.36	U	5.0	0.36	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Date Collected: 12/14/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: MW20-50 SDG No.: X5892 Matrix: Lab Sample ID: X5892-10 WATER Analytical Method: 8260 % Moisture: 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL. Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VG005816.D 1 12/26/2006 VG122106

CAS Number	Parameter	Совс.	Qualifier	RL.	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1,7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	48.95	98 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	56.53	113 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	45.42	91 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	43.96	88 %	76 - 119		SPK: 50
INTERNAL STAN	NDARDS					
363-72-4	Pentafluorobenzene	578811	4.33			
540-36-3	1,4-Difluorobenzene	760131	5.64			
3114-55-4	Chlorobenzene-d5	765068	10.59			
3855-82-1	1,4-Dichlorobenzene-d4	333066	14.37			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Date Collected: TRC Environmental Corp., NY 12/14/2006 Client: Morris park RI/FS TRC#46130-0010 Project: Date Received: 12/15/2006 Client Sample ID: MW02-160R SDG No.: X5892 Matrix: Lab Sample ID: X5892-11 WATER Analytical Method: 8260 % Moisture: 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: υL Soil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH012621.D	1	12/27/2006	VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	42		5.0	0.22	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3	ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42	ug/L
67-64-1	Acetone	2.3	U	25	2.3	ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40	ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28	ug∕L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36	ug/L
78-93-3	2-Butanone	1.1	U	25	1.1	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29	ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34	ug/L
71-43-2	Benzene	0.39	U	5.0	0.39	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6	ug/L
108-88-3	Toluene	0.36	U	5.0	0.36	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

12/14/2006 TRC Environmental Corp., NY Date Collected: Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: MW02-160R SDG No.: X5892 Matrix: Lab Sample ID: X5892-11 WATER Analytical Method: 8260 % Moisture: 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uŁ Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VH012621.D 1 12/27/2006 VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-TetrachIoroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	6.8		5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	54.09	108 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	46.78	94 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	50.43	101 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	49.1	98 %	76 - 119		SPK: 50
INTERNAL STAN	DARDS					
363-72-4	Pentafluorobenzene	436384	4.65			
540-36-3	1,4-Difluorobenzene	790292	5.26			
3114-55-4	Chlorobenzene-d5	820089	8.98			
3855-82-1	1,4-Dichlorobenzene-d4	364216	11.56			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 12/14/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: SDG No.: PMW-05 X5892 Lab Sample ID: Matrix: WATER X5892-12 % Moisture: Analytical Method: 8260 100 Sample Wt/Wel: Units: mL 5.0 Soil Extract Vol: uL Soil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID	٦
VH012622.D	1	12/27/2006	VH120706	

CAS Number	Parameter	Совс.	Qualifier	RL	MDL Units
TARGETS					
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17 ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34 ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33 ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41 ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83 ug/L
75-69-4	Trichlorofluoromethane	3.4	J	5.0	0.22 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3 ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42 ug/L
67-64-1	Acetone	2.3	U	25	2.3 ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40 ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28 ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20 ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43 ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40 ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38 ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36 ug/L
78-93-3	2-Butanone	1.1	U	25	1.1 ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1 ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29 ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33 ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32 ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34 ug/L
71-43-2	Benzene	0.39	U	5.0	0.39 ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34 ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46 ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40 ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33 ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6 ug/L
108-88-3	Toluene	0.36	U	5.0	0.36 ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32 ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36 ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Date Collected: TRC Environmental Corp., NY 12/14/2006 Client: Morris park RI/FS TRC#46130-0010 Project: Date Received: 12/15/2006 Client Sample ID: PMW-05 SDG No.: X5892 Lab Sample ID: X5892-12 Matrix: WATER Analytical Method: % Moisture: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VH012622.D 1 12/27/2006 VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochioromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	3.6	J	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-I	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	55.42	111%	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	47.94	96 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	49.6	99 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	48.44	97 %	76 - 119		SPK: 50
INTERNAL STAP	NDARDS					
363-72-4	Pentafluorobenzene	423049	4.65			
540-36-3	1,4-Difluorobenzene	785185	5.26			
3114-55-4	Chlorobenzene-d5	815130	8.98			
3855-82-1	1,4-Dichlorobenzene-d4	347628	11.56			

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Date Collected: 12/14/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: MW24-60 SDG No.: X5892 Lab Sample ID: Matrix: X5892-13 WATER % Moisture: Analytical Method: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: иL Soil Aliquot Vol: uL.

File ID: Dilution: Date Analyzed Analytical Batch ID

VG005819.D 1 12/26/2006 VG122106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3	ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42	ug/L
67-64-1	Acetone	14	J	25	2.3	ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40	ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28	ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	I,I-Dichloroethane	0.38	U	5.0	0.38	ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36	ug/L
78-93-3	2-Butanone	1.1	U	25	1.1	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29	ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34	ug/L
71-43-2	Benzene	0.39	U	5.0	0.39	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	0,46	U	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
108-10-1	4-Methyl-2-Pentanone	6.3	J	25	1.6	ug/L
108-88-3	Toluene	0.36	υ	5.0	0.36	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 12/14/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: MW24-60 SDG No.: X5892 Lab Sample ID: Matrix: X5892-13 WATER % Moisture: Analytical Method: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uŁ Soil Aliquot Vol: иL

File ID: Dilution: Date Analyzed Analytical Batch ID

VG005819.D 1 12/26/2006 VG122106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	\mathbf{U}	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	I,2-Dichloroethane-d4	51.35	103 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	61.7	123 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	43.59	87 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	41.57	83 %	76 - 119		SPK: 50
INTERNAL STAN	NDARDS					
363-72-4	Pentafluorobenzene	564778	4.33			
540-36-3	1,4-Difluorobenzene	735018	5.63			
3114-55-4	Chlorobenzene-d5	708646	10.59			
3855-82-1	1,4-Dichlorobenzene-d4	322812	14.36			

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Date Collected: Client: 12/14/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: MW24-60RE SDG No.: X5892 Lab Sample ID: X5892-13RE Matrix: WATER Analytical Method: 8260 % Moisture: 100 Sample Wt/Wel: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VH012623.D 1 12/27/2006 VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3	ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42	ug/L
67-64-1	Acetone	2.3	U	25	2.3	ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40	ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28	ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36	ug/L
78-93-3	2-Butanone	1.1	U	25	1.1	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29	ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33	ug/L
71-55- 6	1,1,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34	ug/L
71-43-2	Benzene	0.39	U	5.0	0.39	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
108-10-1	4-Methyl-2-Pentanone	8.0	J	25	1.6	ug/L
108-88-3	Toluene	0,36	U	5.0	0.36	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Date Collected: Client: 12/14/2006 Morris park RI/FS TRC#46130-0010 Project: Date Received: 12/15/2006 Client Sample ID: MW24-60RE SDG No.: X5892 Lab Sample ID: X5892-13RE Matrix: WATER Analytical Method: % Moisture: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: иL Soil Aliquot Vol: uL.

File ID: Dilution: Date Analyzed Analytical Batch ID

VH012623.D 1 12/27/2006 VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL.	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	ប	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibrome-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	60.68	121 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	47.03	94 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	49.69	99 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	48.03	96 %	76 - 119		SPK: 50
INTERNAL STA	INDARDS					
363-72-4	Pentafluorobenzene	421795	4.65			
540-36-3	1,4-Difluorobenzene	781178	5.25			
3114-55-4	Chlorobenzene-d5	812447	8.98			
3855-82-1	1,4-Dichlorobenzene-d4	352812	11,55			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Date Collected: 12/14/2006 TRC Environmental Corp., NY Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: SDG No.: X5892 MW02-50R Lab Sample ID: X5892-14 Matrix: WATER Analytical Method: % Moisture: 100 8260 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH012624.D	1	12/27/2006	VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS					
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17 ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34 ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33 ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41 ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83 ug/L
75-69-4	Trichlorofluoromethane	10		5.0	0.22 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	ប	5.0	1.3 ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42 ug/L
67-64-1	Acetone	2.3	U	25	2,3 ug/L
75-15-0	Carbon disulfide	0.40	\mathbf{U}	5.0	0.40 ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28 ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20 ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43 ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40 ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38 ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36 ug/L
78-93-3	2-Butanone	1.1	U	25	1.1 ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1 ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29 ug/L
67-66-3	Chloroform	0.33	\mathbf{U}	5.0	0.33 ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32 ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34 ug/L
71-43-2	Benzene	0.39	U	5.0	0.39 ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34 ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46 ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40 ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33 ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6 ug/L
108-88-3	Toluene	0.36	U	5.0	0.36 ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32 ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36 ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Date Collected: TRC Environmental Corp., NY Client: 12/14/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: MW02-50R SDG No.: X5892 Matrix: Lab Sample ID: X5892-14 WATER Analytical Method: % Moisture: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol: иL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH012624.D	1	12/27/2006	VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	3.8	J	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	2.6	J	10	1.2	ug/L
95-47-6	o-Xylene	1.3	J	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	4.81	J	5.0	4.81	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	56.53	113 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	47.12	94 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	50.05	100 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	48.47	97 %	76 - 119		SPK: 50
INTERNAL STA	ANDARDS					
363-72-4	Pentafluorobenzene	413897	4.65			
540-36-3	1,4-Difluorobenzene	777758	5.25			
3114-55-4	Chlorobenzene-d5	801317	8.98			
3855-82-1	1,4-Dichlorobenzene-d4	352701	11.55			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 12/15/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: FIELDBLANK SDG No.: X5892 Matrix: Lab Sample ID: X5892-15 WATER Analytical Method: % Moisture: 100 8260 Sample Wt/Wol: Units: mL 5.0 Soil Extract Vol: uL. Soil Aliquot Vol: uL.

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VG005807.D	1	12/26/2006	VG122106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0,33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3	ug/L
75-35-4	I,I-Dichloroethene	0.42	U	5.0	0.42	ug/L
67-64-1	Acetone	2.3	U	25	2.3	ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40	ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28	ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	Ū	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36	ug/L
78-93-3	2-Butanone	1.1	U	25	1.1	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29	ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33	ug/L
71-55-6	I,1,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34	ug/L
71-43-2	Benzene	0.39	U	5.0	0.39	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6	ug/L
108-88-3	Toluene	0.36	U	5.0	0.36	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Date Collected: 12/15/2006 Client: TRC Environmental Corp., NY Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 SDG No.: X5892 Client Sample ID: FIELDBLANK Lab Sample ID: X5892-15 Matrix: WATER % Moisture: Analytical Method: 8260 100 Sample Wt/Wol: Units: mL 5.0 Soil Extract Vol: uL uL Soil Aliquot Vol:

File ID: Dilution: Date Analyzed Analytical Batch ID

VG005807.D 1 12/26/2006 VG122106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0,45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Вготоботп	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	I,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	51.66	103 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	56.67	113 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	48.95	98 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	45.05	90 %	76 - 119		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	678671	4.34			
540-36-3	I,4-Difluorobenzene	931345	5.65			
3114-55-4	Chlorobenzene-d5	985045	10.60			
3855-82-1	1,4-Dichlorobenzene-d4	457161	14.37			

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Date Collected: TRC Environmental Corp., NY 12/15/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: MW17-60R SDG No.: X5892 Matrix: Lab Sample ID: X5892-16 WATER % Moisture: Analytical Method: 100 8260 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VH012625.D 1 12/27/2006 VH120706

CAS Number	Parameter	Сопс.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	1.3	J	5.0	0.22	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3	ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42	ug/L
67-64-1	Acetone	2.3	U	25	2.3	ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40	ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28	ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20	ug/L
75-09-2	Methylene Chloride	5.3		5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36	ug/L
78-93-3	2-Butanone	1.1	U	25	1.1	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29	ug/L
67-66-3	Chloroform	1.5	J	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34	ug/L
71-43-2	Benzene	0.39	U	5.0	0.39	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6	ug/L
108-88-3	Toluene	0.36	U	5.0	0.36	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Date Collected: TRC Environmental Corp., NY 12/15/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: SDG No.: X5892 MW17-60R Lab Sample ID: X5892-16 Matrix: WATER Analytical Method: % Moisture: 8260 100 Sample Wt/Wel: 5.0 Units: mL Soil Extract Vol: αL Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VH012625.D 1 12/27/2006 VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	7.4		5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.6	J	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromeform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	8.1		5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	I,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	I,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	17		5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	62.1	124 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	50.1	100 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	49.65	99 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	48.78	98 %	76 - 119		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	414705	4.64			
540-36-3	1,4-Difluorobenzene	795476	5.25			
3114-55-4	Chlorobenzene-d5	809982	8.98			
3855-82-1	1,4-Dichlorobenzene-d4	357862	11.55			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 12/15/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: MW17-60RRE SDG No.: X5892 Lab Sample ID: X5892-16RE Matrix: WATER % Moisture: Analytical Method: 8260 100 Sample Wt/Wol: Units: mL 5.0 Soil Extract Vol: uL Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VH012630.D 1 12/27/2006 VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chlorcethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	1.2	J	5.0	0.22	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3	ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42	ug/L
67-64-1	Acetone	2.3	U	25	2.3	ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40	ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28	ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20	ug/L
75-09-2	Methylene Chloride	4.7	J	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36	ug/L
78-93-3	2-Butanone	1.1	U	25	1.1	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29	ug/L
67-66-3	Chloroform	1.4	J	5.0	0,33	ug/L
71-55-6	1,1,1-Trichloroethane	0,32	U	5.0	0.32	ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34	ug/L
71-43-2	Benzene	0.39	U	5.0	0.39	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6	ug/L
108-88-3	Toluene	0.36	U	5.0	0.36	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Date Collected: 12/15/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: MW17-60RRE SDG No.: X5892 Lab Sample ID: X5892-16RE Matrix: WATER Analytical Method: % Moisture: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL. Soil Aliquot Vol: uL.

File ID:	Dilution:	Date Analyzed	Analytical Batch ID	
VH012630.D	1	12/27/2006	VH120706	

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	6.5		5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.6	J	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	8.0		5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	11		5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	60.11	120 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	49.53	99 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	50.67	101 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	48.14	96 %	76 - 119		SPK: 50
INTERNAL STAN	DARDS					
363-72-4	Pentafluorobenzene	420478	4.64			
540-36-3	1,4-Difluorobenzene	783936	5.25			
3114-55-4	Chlorobenzene-d5	822354	8.97			
3855-82-1	1,4-Dichlorobenzene-d4	346752	11.55			

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Date Collected: TRC Environmental Corp., NY 12/15/2006 Client: Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: MW17-60R(DUP) SDG No.: X5892 Matrix: Lab Sample ID: X5892-17 WATER % Moisture: Analytical Method: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: υL Soil Aliquot Vol: uL.

File ID: Dilution: Date Analyzed Analytical Batch ID

VH012626.D I 12/27/2006 VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	1.0	J	5.0	0.22	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3	ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42	ug/L
67-64-1	Acetone	2.3	U	25	2.3	ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40	ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28	ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20	ug/L
75-09-2	Methylene Chloride	4.8	J	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36	ug/L
78-93-3	2-Butanone	1.1	U	25	1.1	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29	ug/L
67-66-3	Chloroform	1.4	J	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34	ug/L
71-43-2	Benzene	0.39	U	5.0	0.39	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	υ	25	1.6	ug/L
108-88-3	Toluene	0.36	U	5.0	0.36	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Date Collected: Client: 12/15/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: MW17-60R(DUP) SDG No.: X5892 Lab Sample ID: Matrix: X5892-17 WATER Analytical Method: % Moisture: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: nL Soil Aliquot Vol: uL,

File ID: Dilution: Date Analyzed Analytical Batch ID

VH012626.D 1 12/27/2006 VH120706

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	υ	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	7.1		5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.8	J	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	7.8		5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	11		5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	56.83	114 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	45.06	90 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	48.9	98 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	45.81	92 %	76 - 119		SPK: 50
INTERNAL STAN	NDARDS					
363-72-4	Pentafluorobenzene	421601	4.64			
540-36-3	1,4-Difluorobenzene	805393	5.25			
3114-55-4	Chlorobenzene-d5	807481	8.98			
3855-82-1	1,4-Dichlorobenzene-d4	382234	11.56			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

TRC Environmental Corp., NY Date Collected: Client: 12/15/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: MW27D SDG No.: X5892 Lab Sample ID: Matrix: X5892-18 WATER Analytical Method: % Moisture: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH012627.D	1	12/27/2006	VH120706

CAS Number	Parameter	Conc.	Qualifier	RI.	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	5.1		5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0,22	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3	ug/L
75-35-4	1,1-Dichloroethene	2.2	J	5.0	0.42	ug/L
67-64-1	Acetone	2.3	U	25	2.3	ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40	ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28	ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20	ug/L
75-09-2	Methylene Chloride	0.43	Ŭ	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36	ug/L
78-93-3	2-Butanone	1.1	U	25	1.1	ug/L
56-23-5	Carbon Tetrachloride	1.8	J	5.0	1.1	ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29	ug/L
67-66-3	Chloroform	2.5	J	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	3.0	J	5.0	0.32	ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34	ug/L
71-43-2	Benzene	0.39	U	5.0	0.39	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6	ug/L
108-88-3	Toluene	0.36	U	5.0	0.36	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	υ	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 12/15/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample 1D: MW27D SDG No.: X5892 Lab Sample ID: X5892-18 Matrix: WATER Analytical Method: 8260 % Moisture: 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: вL Soil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID	
VH012627.D	1	12/27/2006	VH120706	***************************************

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	1,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	57.43	115 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	49.46	99 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	49.78	100 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	48.56	97 %	76 - 119		SPK: 50
INTERNAL STAT	NDARDS					
363-72-4	Pentafluorobenzene	417120	4.64			
540-36-3	1,4-Difluorobenzene	781807	5.24			
3114-55-4	Chlorobenzene-d5	811773				
3855-82-1	1,4-Dichlorobenzene-d4	349567	11.55			

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/11/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: TRIPBLANK-SDG No.: X5892 Lab Sample ID: X5892-19 Matrix: WATER Analytical Method: 8260 % Moisture: 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VG005806.D 1 12/26/2006 VG122106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1.3	U	5.0	1.3	ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42	ug/L
67-64-1	Acetone	2.3	U	25	2.3	ug/L
75-15-0	Carbon disulfide	0.40	U	5.0	0.40	ug/L
1634-04-4	Methyl tert-butyl Ether	0.28	U	5.0	0.28	ug/L
79-20-9	Methyl Acetate	0.20	U	5.0	0.20	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,I-Dichloroethane	0.38	U	5.0	0.38	ug/L
110-82-7	Cyclohexane	0.36	U	5.0	0.36	ug/L
78-93-3	2-Butanone	1.1	U	25	1.1	ug/L
56-23-5	Carbon Tetrachloride	1,1	U	5.0	1.1	ug/L
156-59-2	cis-1,2-Dichloroethene	0.29	U	5.0	0.29	ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
108-87-2	Methylcyclohexane	0.34	U	5.0	0.34	ug/L
71-43-2	Benzene	0.39	U	5.0	0.39	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
108-10-1	4-Methyl-2-Pentanone	1.6	U	25	1.6	ug/L
108-88-3	Toluene	0.36	U	5.0	0.36	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client: TRC Environmental Corp., NY Date Collected: 12/11/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample ID: TRIPBLANK-SDG No.: X5892 Lab Sample ID: X5892-19 Matrix: WATER Analytical Method: % Moisture: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL. Soil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID	
VG005806.D	1	12/26/2006	VG122106	

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	1.7	U	25	1.7	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
108-90-7	Chlorobenzene	0.47	U	5.0	0.47	ug/L
100-41-4	Ethyl Benzene	0.45	U	5.0	0.45	ug/L
126777-61-2	m/p-Xylenes	1.2	U	10	1.2	ug/L
95-47-6	o-Xylene	0.46	U	5.0	0.46	ug/L
100-42-5	Styrene	0.41	U	5.0	0.41	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
98-82-8	Isopropylbenzene	0.44	U	5.0	0.44	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	5.0	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.54	U	5.0	0.54	ug/L
95-50-1	I,2-Dichlorobenzene	0.44	U	5.0	0.44	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.46	U	5.0	0.46	ug/L
593-70-4	Chlorofluoromethane	5.0	U	5.0	5.0	ug/L
75-43-4	Fluorodichloromethane	5.0	U	5.0	5.0	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	47.57	95 %	72 - 119		SPK: 50
1868-53-7	Dibromofluoromethane	57.33	115 %	85 - 115		SPK: 50
2037-26-5	Toluene-d8	46.74	93 %	81 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	44.56	89 %	76 - 119		SPK: 50
INTERNAL STA	NDARDS					
363-72-4	Pentafluorobenzene	702616	4.36			
540-36-3	1,4-Difluorobenzene	966206	5.65			
3114-55-4	Chlorobenzene-d5	972173	10.60			
3855-82-1	1,4-Dichlorobenzene-d4	485362	14.38			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

CHAIN OF CUSTODY RECORD

284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

 СНЕМТЕСН РЯОЈЕСТ NO.
 Х 5 8 4 2

COC Number 062228

TION TO THE CLIENT BILLING INFORMATION TO THE PERIOD OF TH	PAR BILTO: SAX	Such mand Hill ADDRESS:	ν(ε), CITY: STATE. 710.	ATTENTION: PHONE:	ANAL	VITION THE PROPERTY OF THE PRO	. \	1 2 3 4 5 6 7 8 9	PRESERVATIVES CONTINUES	(C)	B B	x	X	X X	×	X \(\lambda \)	X	× ×	×	\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	ENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION INCLUDING COURIER DELIVERY	Conditions of bottles or coolers at receipt: A Compilant Compilant Cooler Temp. SC MeOH extraction requires an additional 4 bz jat for percent solid.		SHIPPED VIA: CLIENT: BTHAND DELIVERED OVERNIGHT Shipmont Complete:	OY PINK - SAMPLER COPY
CLIENT PROJECT INFORMATION	ROJECT NAME: LIKA WARKETS	ROJECT NO.: 4 64 30 64 DELOCATION:	PROJECT MANAGER: William Silver	QTIVE SOL	646-584 2787 FAX:	DATA DELIVERABLE INFORMATION	AC D USEPA CLP	New Jersey REDUCED IJ New York State ASP 'A' New Jersey CLP IJ Other EDD FORMAT	SAMPLE	╀"	7	x 12 13 06 1/16 3	× 1130 3	x 1565 3	x 女 1510 3	x 12/1466 0915/3	x 1, 0926 3	> 11.9¢ 3	x 11.11 3	V 1226 3	W EACH TIME SAMPLES CH	Conditions of bottles or coolers at receipt: MeOH extraction requires an addition. Comments:		Page 1 of	
	PROJECT NAM	PROJECT NO.	10018 PROJECT MAN	e-mall: WS; Iver.	PHONE: 6 48	/O 2000		O New Jersey neu O New Jersey CLP	SAMPLE SAMPLE TYPE	MATRIX	-	S.G.	M				C W S		S S S	x MS	E DOCUMENTED BELC			COSTAR AG	WHITE - CHEMTECH COPY FOR RETURN TO CLIENT
	The Emineury Inc.	1433 Broadway 10th Fl	re: AV ziP:	William Silveri	FAX:	DATA TURNAROUND INFORMATION		• TO BE APPROVED BY CHEMTECH STANDARD TURNAROUND TIME IS 10 BUSINESS DAYS	PROJECT	SAMPLE IDENTIFICATION	TRIP BLANK	Mw 28D	MIN 28 S	MUS-61-60	MW 61-140	MW 29-D	Mw 30D	Mu 68-60	MW 08-150	MW 20-50	SAMPLE CUSTODY	AMPLER: DATEMER: 1'3/0 RECEIVED BY: Z K O 1,	ļ	i2/i5/c6 3. $c250$	WHITE - CHEMTE
	COMPANY:	ADDRESS:	CITY: N.Y	ATTENTION:	PHONE:		FAX: HARD COPY:	• TO BE APPR STANDARD	CHEMTECH	D ID	1.	2. 2	3. 3	4.	5.			£.	9.	10. J.O.		1. 777 1. 777 ВЕЦИОЦЗИЕО ВУ:	3	89	Revision 4/2005

CHAIN OF CUSTODY RECORD

284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

CHEMTECH PROJECT NO.

COC Number 062227

	CLIENT IMEDIBATION REPORTS SERVICES	SECTION OF THE PARTY OF THE PAR		1		-	- 55500	
C-CCARLON TRANSPORT	REPORT TO BE SENT TO:		CLIENT PROJECT INFORMATION	- 1			CLIENT BILLING INFORMATION	
COMPANY: TRC	Engioces dos.	PROJECT NAME:	LIRA Mornis	is Park	Ċ	74.A.	Ĉ	
ADDRESS:	1430 Brandway, 10th Fl.	- 3	PROJECT NO.: 76.130 -001. OCATION:	9 • •	ADDBERG.		::C:::::::::::::::::::::::::::::::::::	
CITY:	NY, NY STATE: NY ZIP: 10018	PROJECT MANAGER	PROJECT MANAGER: LUITHAM STIVEL	/Ver;	OTV.			
ATTENTION:	William Silveri	e-mail: LUSTI	e-mall: LUSIIVETI @ TRC SOLATIONS	h Trans , cox	ATTENTION		SIAIE: ZIP:	
PHONE	FAX:	PHONE: 64/8-58	4/8-584-2767 FAX:	1			ANALYSIS	
	DATA TURNAROUND INFORMATION	DATA DE	DATA DELIVERABLE INFORMATION	ATION M				
HARD COPY:	DAYS.	C RESULTS ONLY C RESULTS + OC	☐ USEPA CLP	ia. a.	15			
EDD:	DAYS.			N. ds				
STANDARD.	TO BE APPROVED BY CHEMIFICH STANDARD TURNAROUND TIME IS TO BUSINESS DAYS	LI New Jersey CLP LI EDD FORMAT	Other		4 5	6 7	8 8	
CHEMTECH		SAMPLE	H	\ \ \	PRESERVATIVES	IVES		
SAMPLE	SAMPLEIDENTIFICATION	MATRIX MATRIX	COLLECTION E	チア			A-HCI B-HNO.	S C
		e!		1 2 3	4 5	6 7		٠ ۲
	MW 02-160R	GW. X 24	12-14-06 1132 3	х Х				
7 .2	PMW-05	GW. X 12.1	12.14:06 1:42.5 3	メ				T
3. 12	MW 24-60	5 × W	E 0451 30H-21	X 火				T
4. [4-	MW 62-50R	GW × 12.	12-1406 15-40 3	x X				
5.	Fierd BLANK	×	12-15-60 06/15 3	x X				T
6. (6	17-60 R	<i>پ</i> در	12-15-46 1005 3	v X				
7. 7	MW 17-60 R "DWP"	<u>۲</u>	12.15-06 1007 3	x X				
8. <u>S</u>		M	12-15-46 1057 3	×				
ر ا	Tris Blank	R. Z	7	×				
10.		ر						
	SAMPLE CUSTODY	MENTED BELOW EA(CH TIME SAMPLES C	HANGE POSSESSIO	IN INCLUDING C	COURIER DELI	VERY KINDS	
IK VE	SAMPLEIK		Conditions of bottles or coolers at receipt: O Compilant	Solers at receipt:	Compilant	☐ Non Compilant	lant Cooler Temp, S	1.1
3			Comments:				to in Cooler?: VEJ	
390	DATETIME 15: JEECSWEDE	11 013	d	C	VIA: CLIENT: 13	LANN OG BYED	- 1	T
3.	14/58° 3. COAS	2/7	Page Of of	7	CHEMTECH! [] PICKED UP [D PICKED UP	OVERNIGHT	. 0
Revision 4/2005	VOCC HOSTMEND " BTIMW	טד אפו ודבים פרים						

DATA PACKAGE FOR SEMI-VOLATILE ORGANICS

PROJECT NAME: Morris park RI/FS TRC#46130-0010

TRC ENVIRONMENTAL CORP., NY 1430 BROADWAY 10TH FLOOR NEW YORK, NY 10018 2122217822

CHEMTECH PROJECT NO. ATTENTION:

X5892 William Silveri

COVER PAGE

ProjectID:

Morris park RI/FS TRC#461

OrderID: X5892

CustomerName:

TRC Environmental Corp., NY

LAB SAMPLE NO.	CLIENT SAMPLE NO
X5892-01	TRIPBLANK
X5892-02	MW28D
X5892-03	MW28S
X5892-04	MW-01-60
X5892-05	MW01-140
X5892-06	MW29-D
X5892-07	MW30D
X5892-08	MW08-60
X5892-09	MW08-150
X5892-10	MW20-50
X5892-11	MW02-160R
X5892-12	PMW-05
X5892-13	MW24-60
X5892-14	MW02-50R
X5892-15	FIELDBLANK
X5892-16	MW17-60R -
X5892-17	MW17-60R(DUP)
X5892-18	MW27D
X5892-19	TRIPBLANK

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature: 1	lilde	D Vley	ا صار Name:	Hilde	e Q V Rei	103
	1/3/0			OA/O		<i>J</i>

CHEMTECH

284 Sheffield Street Mountainside NJ 07092 Tel. 908-789-8900 Fax: 908-789-8922

DATA REPORTING QUALIFIERS- ORGANIC

For reporting results, the following "Results Qualifiers" are used:

Value	If the result is a value greater than or equal to the detection limit, report the value
U	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10 U". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
J	 Indicates an estimated value. This flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise on any organic parameter i.e. Pest, PCB and others.
B .	Indicates the analyte was found in the blank as well as the sample report as "12 B".
E	Indicates the analyte's concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
P	This flag is used for Pesticide/PCB target analyte when there is >25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".
N	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/13/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2000 Client Sample MW28D SDG No.: X5892 Lab Sample ID: X5892-02 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 910.0 mL Extract Vol: 1000 uL

File ID	Dilution	Date Extracted	Date Analyzee		alytical I	Batch ID	
BB035296.D	1	12/19/2006	12/22/2006	BB	122106		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
111-44-4	bis(2-Chlore	• •	1.6	U	11	1.6	ug/L
95-50-1	1,2-Dichlore	obenzene	1.3	U	11	1.3	ug/L
541-73-1	1,3-Dichlore	obenzene	1.3	U	11	1.3	ug/L
106-46-7	1,4-Dichlore	obenzene	1.3	U	11	1.3	ug/L
108-60-1	2,2-oxybis(1	I-Chloropropane)	1.3	U	11	1.3	ug/L
621-64-7	N-Nitroso-d	i-n-propylamine	1.5	U	11	1.5	ug/L
67-72-1	Hexachloro	ethane	1.3	U	11	1.3	ug/L
98-95-3	Nitrobenzen	e	1.7	U	11	1.7	ug/L
78-59-1	Isophorone		1.4	U	11	1.4	ug/L
111-91-1	bis(2-Chloro	ethoxy)methane	1.5	U	11	1.5	ug/L
120-82-1	1,2,4-Trichl	orobenzene	1.5	U	11	1.5	ug/L
91-20-3	Naphthalene	>	1.5	U	11	1.5	ug/L
106-47-8	4-Chloroani	line	0.940	U	П	0.940	ug/L
87-68-3	Hexachlorol	outadiene	1.5	U	11	1.5	ug/L
91-57-6	2-Methylnap	ohthalene	1.2	U	11	1.2	ug/L
77-47-4	Hexachloro	cyclopentadiene	1.3	U	11	1.3	ug/L
91-58-7	2-Chloronap	hthalene	1.5	U	11	1.5	ug/L
88-74-4	2-Nitroanilii	ne	1.2	U	11	1.2	ug/L
131-11-3	Dimethylpht	thalate	1.4	U	11	1.4	ug/L
208-96-8	Acenaphthy	lene	1.4	U	11	1.4	ug/L
606-20-2	2,6-Dinitroto	oluene	1.4	U	11	1.4	ug/L
99-09-2	3-Nitroanilir	ne	1.1	U	11	1.1	ug/L
83-32-9	Acenaphthei	ne	1.5	U	11	1.5	ug/L
132-64-9	Dibenzofura	n	1.4	U	11	1.4	ug/L
121-14-2	2,4-Dinitroto	oluene	1.3	U	11	1.3	ug/L
84-66-2	Diethylphtha	alate	1.5	U	11	1.5	ug/L
7005-72-3	4-Chlorophe	nyl-phenylether	1.5	U	11	1.5	ug/L
86-73-7	Fluorene		1.5	U	11	1.5	ug/L
100-01-6	4-Nitroanilir	ne	1.2	U	11	1.2	ug/L
86-30-6	N-Nitrosodij	ohenylamine	1.4	U	11	1.4	ug/L
101-55-3	4-Bromophe	nyl-phenylether	1.6	U	11	1.6	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

File ID

Dilution

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Date Analyzed

Analytical Batch ID

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/13/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2000 Client Sample MW28D SDG No.: X5892 Lab Sample ID: X5892-02 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 910.0 Extract Vol: mL1000 uL

Date Extracted

BB035296.D	1 1	12/19/2006	12/22/2006		авунсаг ва 122106	nen 19	
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
118-74-1	Hexachloro		1.3	U	11	1.3	ug/L
85-01-8	Phenanthre	ne	1.6	U	11	1.6	ug/L
120-12-7	Anthracene		1.5	U	11	1.5	ug/L
86-74-8	Carbazole		1.4	U	11	1.4	ug/L
84-74-2	Di-n-butylp	hthalate	1.4	U	11	1.4	ug/L
206-44-0	Fluoranther	e	1.3	U	11	1.3	ug/L
129-00-0	Pyrene		1.6	U	11	1.6	ug/L
85-68-7	Butylbenzy	phthalate	1.6	U	11	1.6	ug/L
91-94-1	3,3-Dichlor	obenzidine	1.1	U	22	1.1	ug/L
56-55-3	Benzo(a)ani	hracene	1.2	U	11	1.2	ug/L
218-01-9	Chrysene		1.8	U	11	1.8	ug/L
117-81-7	bis(2-Ethyll	nexyl)phthalate	1.7	U	11	1.7	ug/L
117-84-0	Di-n-octyl phthalate		1.4	U	11	1.4	ug/L
205-99-2	Benzo(b)fluoranthene		0.820	U	11	0.820	ug/L
207-08-9	Benzo(k)flu	oranthene	2.1	U	11	2.1	ug/L
50-32-8	Benzo(a)py	rene	1.3	U	11	1.3	ug/L
193-39-5	Indeno(1,2,3	3-cd)pyrene	0.910	U	11	0.910	ug/L
53-70-3	Dibenz(a,h)	anthracene	0.950	U	11	0.950	ug/L
191-24-2	Benzo(g,h,i	perylene	1.2	U	11	1.2	ug/L
SURROGATES							
4165-60-0	Nitrobenzen	e-d5	78.85	79 %	35 - 114		SPK: 10
321-60-8	2-Fluorobip	henyl	77.18	77 %	43 - 116		SPK: 10
1718-51-0	Terphenyl-d	114	74.77	75 %	33 - 141		SPK: 10
INTERNAL STAND	ARDS						
3855-82-1	1,4-Dichloro	benzene-d4	277017	6.76			
1146-65-2	Naphthalene	;-d8	1126222	9.09			
15067-26-2	Acenaphthe	ne-d10	615551	12.57			
1517-22-2	Phenanthren	e-d10	1010635	15.58			
1719-03-5	Chrysene-d	2	810217	20.95			
1520-96-3	Perylene-d1	2	760998	24.45			
TENTITIVE IDENT	TFIED COM	POUNDS					

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/13/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/200c Client Sample MW28D SDG No.: X5892 Lab Sample ID: X5892-02 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 910.0 mL Extract Vol: 1000 uL

File 1	D	Dilution	Date Extracted	Date Analyze	d An	Analytical Batch ID		
BB03	5296.D	1	12/19/2006	12/22/2006	ВВ	BB122106		
CAS Numb	er	Parameter		Conc.	Qualifier	RL	MDL	Units
TENTITIV	EIDENT	TEIED COME	OHNE					

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TENTITIVE IDE	NTIFIED COMPOUNDS					***************************************
	ACP4.30	190	AB	4.30		ug/L
57-10-3	n-Hexadecanoic acid	5.0	JB	16.79		ug/L
7683-64-9	Squalene	30	JВ	23.10		ug/L

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/13/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2000 Client Sample MW28S SDG No.: X5892 Lab Sample ID: X5892-03 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 900.0 mL Extract Vol: 1000 uL

File ID	Dilution	Date Extracted	Date Analyzed		alytical B	atch ID	
BB035291.D	1	12/19/2006	12/22/2006	ВВ	122106		j
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
111-44-4	bis(2-Chloro	ethyl)ether	1.6	U	11	1.6	ug/L
95-50-1	1,2-Dichloro	benzene	1.4	U	11	1.4	ug/L
541-73-1	1,3-Dichloro	benzene	1.3	U	11	1.3	ug/L
106-46-7	1,4-Dichloro	benzene	1.3	U	11	1.3	ug/L
108-60-1	2,2-oxybis(1	-Chloropropane)	1.3	U	11	1.3	ug/L
621-64-7	N-Nitroso-di	-n-propylamine	1.5	U	11	1.5	ug/L
67-72-1	Hexachloroe	thane	1.3	U	11	1.3	ug/L
98-95-3	Nitrobenzeno	;	1.7	U	11	1.7	ug/L
78-59-1	Isophorone		1.4	U	11	1.4	ug/L
111-91-1	bis(2-Chloro	ethoxy)methane	1.5	U	11	1.5	ug/L
120-82-1	1,2,4-Trichle	robenzene	1.5	U	11	1.5	ug/L
91-20-3	Naphthalene		1.5	U	11	1.5	ug/L
106-47-8	4-Chloroanil	ine	0.950	U	11	0.950	ug/L
87-68-3	Hexachlorob	utadiene	1.5	U	11	1.5	ug/L
91-57-6	2-Methylnap	hthalene	1.2	U	11	1.2	ug/L
77-47-4	Hexachloroc	yclopentadiene	1.3	U	11	1.3	ug/L
91-58-7	2-Chloronapl	ıthalene	1.5	U	11	1.5	ug/L
88-74-4	2-Nitroanilin	e	1.2	U	11	1.2	ug/L
131-11-3	Dimethylphtl	nalate	1.4	U	11	1.4	ug/L
208-96-8	Acenaphthyl	ene	1.4	U	11	1.4	ug/L
606-20-2	2,6-Dinitroto	luene	1.4	U	11	1.4	ug/L
99-09-2	3-Nitroanilin	e	1.1	U	11	1.1	ug/L
83-32-9	Acenaphthen	e	1.5	U	11	1.5	ug/L
132-64-9	Dibenzofurar	1	1.4	U	11	1.4	ug/L
121-14-2	2,4-Dinitroto	luene	1.3	U	11	1.3	ug/L
84-66-2	Diethylphtha	late	1.5	U	11	1.5	ug/L
7005-72-3	4-Chloropher	yl-phenylether	1.5	U	11	1.5	ug/L
86-73-7	Fluorene		1.6	U	11	1.6	ug/L
100-01-6	4-Nitroanilin	e	1.2	U	11	1.2	ug/L
86-30-6	N-Nitrosodip	henylamine	1.4	U	11	1.4	ug/L
101-55-3	4-Bromopher	yl-phenylether	1.6	U	11	1.6	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

File ID

Dilution

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Date Analyzed

Analytical Batch ID

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/13/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2004 Client Sample MW28S SDG No.: X5892 Lab Sample ID: X5892-03 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 900.0 mL Extract Vol: 1000 uL

Date Extracted

BB035291.D	1 <i>1</i> 1801100	12/19/2006	12/22/2006		122106	aten ID	
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
118-74-1	Hexachloro		1.4	U	11	1.4	ug/L
85-01-8	Phenanthre	ie	1.6	U	11	1.6	ug/L
120-12-7	Anthracene		1.6	U	11	1.6	ug/L
86-74-8	Carbazole		1.4	U	11	1.4	ug/L
84-74-2	Di-n-butylp		1.4	U	11	1.4	ug/L
206-44-0	Fluoranthen	e	1.3	U	11	1.3	ug/L
129-00-0	Pyrene		1.6	U	11	1.6	ug/L
85-68-7	Butylbenzyl	phthalate	1.6	U	11	1.6	ug/L
91-94-1	3,3-Dichlore	obenzidine	1.2	U	22	1.2	ug/L
56-55-3	Benzo(a)ant	hracene	1.2	U	11	1.2	ug/L
218-01-9	Chrysene		1.9	U	11	1.9	ug/L
117-81-7	bis(2-Ethyll	exyl)phthalate	1.7	U	11	1.7	ug/L
117-84-0	Di-n-octyl phthalate		1.4	U	11	1.4	ug/L
205-99-2	Benzo(b)fluoranthene		0.830	U	11	0.830	ug/L
207-08-9	Benzo(k)flu	oranthene	2.1	U	11	2.1	ug/L
50-32-8	Benzo(a)pyi	rene	1.3	U	11	1.3	ug/L
193-39-5	Indeno(1,2,3	3-cd)pyrene	0.920	U	11	0.920	ug/L
53-70-3	Dibenz(a,h):	anthracene	0.960	U	11	0.960	ug/L
191-24-2	Benzo(g,h,i)	perylene	1.2	U	11	1.2	ug/L
SURROGATES							
4165-60-0	Nitrobenzen	e-d5	69.31	69 %	35 - 114		SPK: 10
321-60-8	2-Fluorobipl	nenyl	71.28	71 %	43 - 116		SPK: 10
1718-51-0	Terphenyl-d	14	70.36	70 %	33 - 141		SPK: 10
INTERNAL STAND	ARDS						
3855-82-1	1,4-Dichloro	benzene-d4	287626	6.76			
1146-65-2	Naphthalene	-d8	1222646	9.08			
15067-26-2	Acenaphthei	ne-d10	653158	12.57			
1517-22-2	Phenanthren	e-d10	1094135	15.57			
1719-03-5	Chrysene-d1	2	863276	20.94			
1520-96-3	Perylene-d1:		825008	24.43			
TENTITIVE IDENT	•						

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/13/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2000 Client Sample MW28S SDG No.: X5892 Lab Sample ID: X5892-03 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 900.0 mLExtract Vol: 1000 uL

File ID BB035291.D	Dilution 1	Date Extracted 12/19/2006	Date Analyzed 12/22/2006	•,		atch ID	
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TENTITIVE IDENT	TIFIED COMP	POUNDS					
	ACP4.30		170	AB	4.30		ug/L
57-10-3	n-Hexadecan	oic acid	8.2	JB	16.79		ug/L
61-19-8	1-Docosanol		3.8	J	20.74		ug/L
7683-64-9	Squalene		44	JB	23.09		ug/L

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/13/2006 Project: Date Received: 12/15/2000 Morris park RI/FS TRC#46130-0010 Client Sample MW-01-60 SDG No.: X5892 Lab Sample ID: X5892-04 Matrix: WATER Analytical Method: 8270 % Moisture: 100 900.0 Sample Wt/Wol: mL Extract Vol: 1000 uL

File ID	Dilution	Date Extracted	Date Analyzo	ed An	alytical l	Batch ID	
BB035301.D	1	12/19/2006	12/23/2006	BB	122106		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS					***************************************		
] 11-44-4	bis(2-Chloro	ethyl)ether	1.6	U	11	1.6	ug/L
95-50-1	1,2-Dichloro	benzene	1.4	U	11	1.4	ug/L
541-73-1	1,3-Dichloro	benzene	1.3	U	11	1.3	ug/L
106-46-7	1,4-Dichloro	benzene	1.3	U	11	1.3	ug/L
108-60-1	2,2-oxybis(1-	-Chloropropane)	1.3	U	11	1.3	ug/L
621-64-7	N-Nitroso-di	-n-propylamine	1.5	U	11	1.5	ug/L
67-72-1	Hexachloroe	thane	1.3	U	11	1.3	ug/L
98-95-3	Nitrobenzene	;	1.7	U	11	1.7	ug/L
78-59-1	Isophorone		1.4	U	11	1.4	ug/L
111-91-1	bis(2-Chloro	ethoxy)methane	1.5	U	11	1.5	ug/L
120-82-1	1,2,4-Trichlo	robenzene	1.5	U	11	1.5	ug/L
91-20-3	Naphthalene		1.5	U	11	1.5	ug/L
106-47-8	4-Chloroanili	ine	0.950	U	11	0.950	ug/L
87-68-3	Hexachlorob	utadiene	1.5	U	11	1.5	ug/L
91-57-6	2-Methylnap	hthalene	1.2	U	11	1.2	ug/L
77-47-4	Hexachlorocy	yclopentadiene	1.3	U	11	1.3	ug/L
91-58-7	2-Chloronapl	nthalene	1.5	U	11	1.5	ug/L
88-74-4	2-Nitroanilin	e	1.2	U	11	1.2	ug/L
131-11-3	Dimethylphtl	nalate	1.4	U	11	1.4	ug/L
208-96-8	Acenaphthyle	ene	1.4	U	11	1.4	ug/L
606-20-2	2,6-Dinitroto	luene	1.4	U	11	1.4	ug/L
99-09-2	3-Nitroanilin	e	1.1	U	11	1.1	ug/L
83-32-9	Acenaphthen	e	1.5	U	11	1.5	ug/L
132-64-9	Dibenzofurar	1	1.4	U	11	1.4	ug/L
121-14-2	2,4-Dinitroto	luene	1.3	U	11	1.3	ug/L
84-66-2	Diethylphtha	late	1.5	U	11	1.5	ug/L
7005-72-3	4-Chloropher	yl-phenylether	1.5	U	11	1.5	ug/L
86-73-7	Fluorene		1.6	U	11	1.6	ug/L
100-01-6	4-Nitroanilin	e	1,2	U	11	1.2	ug/L
86-30-6	N-Nitrosodip	henylamine	1.4	U	11	1.4	ug/L
101-55-3	4-Bromopher	yl-phenylether	1.6	U	11	1.6	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/13/2006 Project: Date Received: Morris park RI/FS TRC#46130-0010 12/15/2000 **Client Sample** MW-01-60 SDG No.: X5892 Lab Sample ID: X5892-04 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 900.0 mL Extract Vol: 1000 uL

File ID BB035301.D	Dilution I	Date Extracted	Date Analyzeo		alytical Ba	itch ID	
CAS Number	Parameter	12/1//2000	Conc.	Qualifier	RL	MDL	Units
TARGETS							
118-74-1	Hexachlorot	enzene	1.4	U	11	1.4	ug/L
85-01-8	Phenanthren	e	1.6	U	11	1.6	ug/L
120-12-7	Anthracene	Anthracene		U	11	1.6	ug/L
86-74-8	Carbazole		1.4	U	11	1.4	ug/L
84-74-2	Di-n-butylpl	ıthalate	1.4	U	11	1.4	ug/L
206-44-0	Fluoranthene	e	1.3	U	11	1.3	ug/L
129-00-0	Pyrene		1.6	U	11	1.6	ug/L
85-68-7	Butylbenzyl	phthalate	1.6	U	11	1.6	ug/L
91-94-1	3,3-Dichloro	benzidine	1.2	U	22	1.2	ug/L
56-55-3	Benzo(a)anti	hracene	1.2	U	11	1.2	ug/L
218-01-9	Chrysene		1.9	U	11	1.9	ug/L
117-81-7	bis(2-Ethylh	bis(2-Ethylhexyl)phthalate		U	11	1.7	ug/L
117-84-0	Di-n-octyl pl	hthalate	1.4	U	11	1.4	ug/L
205-99-2	Benzo(b)fluo	oranthene	0.830	U	11	0.830	ug/L
207-08-9	Benzo(k)fluo	oranthene	2.1	U	11	2.1	ug/L
50-32-8	Benzo(a)pyr	ene	1.3	U	11	1.3	ug/L
193-39-5	Indeno(1,2,3	-cd)pyrene	0.920	U	11	0.920	ug/L
53-70-3	Dibenz(a,h)a	inthracene	0.960	U	11	0.960	ug/L
191-24-2	Benzo(g,h,i)	perylene	1.2	U	11	1.2	ug/L
SURROGATES							-
4165-60-0	Nitrobenzen	e-d5	72.85	73 %	35 - 114		SPK: 10
321-60-8	2-Fluorobiph	nenyl	72.93	73 %	43 - 116		SPK: 10
1718-51-0	Terphenyl-d	14	76.38	76 %	33 - 141		SPK: 10
INTERNAL STAND	ARDS						
3855-82-1	1,4-Dichloro	benzene-d4	277751	6.76			
1146-65-2	Naphthalene	-d8	1183972	9.09			
15067-26-2	Acenaphther		651168	12.58			
1517-22-2	Phenanthren		1068057	15.58			
1719-03-5	Chrysene-d1		795081	20.95			
1520-96-3	Perylene-d12		711068	24.45			
TENTITIVE IDENT	•						

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/13/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2004 Client Sample MW-01-60 SDG No.: X5892 Lab Sample ID: X5892-04 Matrix: WATER Analytical Method: 8270 % Moisture: 100 900.0 Sample Wt/Wol: mLExtract Vol: 1000 uL

File ID BB035301.D	Dilution 1	Date Extracted 12/19/2006	Date Analyzed 12/23/2006		alytical B 122106	atch ID	
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TENTITIVE IDENT	TIFIED COMI	POUNDS					
	ACP4.30		180	A	4.30		ug/L
57-10-3	n-Hexadecan	oic acid	8.2	JB	16.79		ug/L
1454-85-9	1-Heptadecar	noi	5.0	J	20.73		ug/L
24035-35-6	2,6,10,14-He	xadecatetraenoic acid,	42	J	23.09		ug/L

File ID

Dilution

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Date Analyzed

Analytical Batch ID

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/13/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2000 Client Sample MW01-140 SDG No.: X5892 Lab Sample ID: X5892-05 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 940.0 mLExtract Vol: 1000 uL

Date Extracted

BB035380.D	035380.D 1 12/19/2006		12/26/2006	BB	saten 19		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
111-44-4	bis(2-Chloro	ethyl)ether	1.5	U	11	1.5	ug/L
95-50-1	1,2-Dichloro	benzene	1.3	U	11	1.3	ug/L
541-73-1	1,3-Dichloro	benzene	1.3	U	11	1.3	ug/L
106-46-7	1,4-Dichloro	benzene	1.3	U	11	1.3	ug/L
108-60-1	2,2-oxybis(1	-Chloropropane)	1.3	U	11	1.3	ug/L
621-64-7	N-Nitroso-d	i-n-propylamine	1.5	U	11	1.5	ug/L
67-72-1	Hexachloroe	thane	1.2	υ	11	1.2	ug/L
98-95-3	Nitrobenzen	e	1.7	U	11	1.7	ug/L
78-59-1	Isophorone		1.3	U	11	1.3	ug/L
111-91-1	bis(2-Chloro	ethoxy)methane	1.5	U	11	1.5	ug/L
120-82-1	1,2,4-Trichle	orobenzene	1.5	U	11	1.5	ug/L
91-20-3	Naphthalene		1.5	U	11	1.5	ug/L
106-47-8	4-Chloroanil	ine	0.910	U	11	0.910	ug/L
87-68-3	Hexachlorob	utadiene	1.4	U	11	1.4	ug/L
91-57-6	2-Methylnap	hthalene	1.2	U	11	1.2	ug/L
77-47-4	Hexachloroc	yclopentadiene	1.2	U	11	1.2	ug/L
91-58-7	2-Chloronap	hthalene	1.5	U	11	1.5	ug/L
88-74-4	2-Nitroanilin	e	1.1	U	11	1.1	ug/L
131-11-3	Dimethylpht	halate	1.3	U	11	1.3	ug/L
208-96-8	Acenaphthyl	ene	1.4	U	11	1.4	ug/L
606-20-2	2,6-Dinitroto	luene	1.3	U	11	1.3	ug/L
99-09-2	3-Nitroanilin	e	1.1	U	11	1.1	ug/L
83-32-9	Acenaphthen	e	1.4	U	11	1.4	ug/L
132-64-9	Dibenzofura	า	1.4	U	11	1.4	ug/L
121-14-2	2,4-Dinitroto	luene	1.3	U	11	1.3	ug/L
84-66-2	Diethylphtha	late	1.4	U	11	1.4	ug/L
7005-72-3	4-Chlorophe	nyl-phenylether	1.4	U	11	1.4	ug/L
86-73-7	Fluorene	•	1.5	U	11	1.5	ug/L
100-01-6	4-Nitroanilin	e	1.2	Ū	11	1.2	ug/L
86-30-6	N-Nitrosodip	henylamine	1.3	Ū	11	1.3	ug/L
101-55-3		nyl-phenylether	1.6	U	11	1.6	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

File ID

Dilution

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Date Analyzed

Analytical Batch ID

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/13/2006 Project: Date Received: Morris park RI/FS TRC#46130-0010 12/15/2004 Client Sample MW01-140 SDG No.: X5892 Lab Sample ID: X5892-05 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 940.0 mL Extract Vol: 1000 uL

Date Extracted

BB035380.D 1 12/19/2006		12/19/2006	12/26/2006	ВВ	3122106		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
118-74-1	Hexachloroben.	zene	1.3	U	11	1.3	ug/L
85-01-8	Phenanthrene		1.5	U	11	1.5	ug/L
120-12-7	Anthracene		1.5	U	11	1.5	ug/L
86-74-8	Carbazole		1.4	U	11	1.4	ug/L
84-74-2	Di-n-butylphtha	alate	1.4	U	11	1.4	ug/L
206-44-0	Fluoranthene		1.3	U	11	1.3	ug/L
129-00-0	Pyrene		1.5	U	11	1.5	ug/L
85-68-7	Butylbenzylpht		1,5	U	11	1.5	ug/L
91-94-1	3,3-Dichlorober		1.1	U	21	1.1	ug/L
56-55-3	Benzo(a)anthra	cene	1.2	U	11	1.2	ug/L
218-01-9	Chrysene		1.8	U	11	1.8	ug/L
117-81-7	bis(2-Ethylhexy	/l)phthalate	1.6	U	11	1.6	ug/L
117-84-0	Di-n-octyl phth		1.4	U	11	1.4	ug/L
205-99-2	Benzo(b)fluorar	nthene	0.800	U	11	0.800	ug/L
207-08-9	Benzo(k)fluorai	nthene	2.0	U	11	2.0	ug/L
50-32-8	Benzo(a)pyrene)	1.2	U	11	1.2	ug/L
193-39-5	Indeno(1,2,3-cd	l)pyrene	0.880	U	11	0.880	ug/L
53-70-3	Dibenz(a,h)anth	rracene	0.920	U	11	0.920	ug/L
191-24-2	Benzo(g,h,i)per	ylene	1,2	U	11	1.2	ug/L
SURROGATES							
4165-60-0	Nitrobenzene-d	5	84.54	85 %	35 - 114		SPK: 10
321-60-8	2-Fluorobiphen	yl	82.39	82 %	43 - 116		SPK: 10
1718-51-0	Terphenyl-d14		83.08	83 %	33 - 141		SPK: 10
INTERNAL STAND	ARDS						
3855-82-1	1,4-Dichlorober	izene-d4	270868	6.75			
1146-65-2	Naphthalene-d8		1141893	9.09			
15067-26-2	Acenaphthene-c		677368	12.59			
1517-22-2	Phenanthrene-d		1204486	15.59			
1719-03-5	Chrysene-d12		798272	20.98			
1520-96-3	Perylene-d12		710468	24.51			
TENTITIVE IDENT		UNDS					

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/13/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2000 Client Sample MW01-140 SDG No.: X5892 ID: Lab Sample ID: X5892-05 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 940.0 mL Extract Vol: 1000 uL

File ID Dilution Date Extracted Date Analyzed Analytical Batch ID
BB035380.D 1 12/19/2006 12/26/2006 BB122106

CAS Number	Parameter	Conc.	Qualifi	er RL	MDL	Units
TENTITIVE IDE	NTIFIED COMPOUNDS					
	ACP4.28	190	Α	4.28		ug/L
661-19-8	1-Docosanol	4.8	j	20.76		ug/L
7683-64-9	Squalene	12	JB	23.14		ug/L

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/14/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2000 Client Sample MW29-D SDG No.: X5892 Lab Sample ID: X5892-06 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 900.0 mL Extract Vol: 1000 uL

CAS Number Parameter Conc. Qualifier RL MDL UTARGETS 111-44-4 bis(2-Chloroethyl)ether 1.6 U 11 1.6 u 95-50-1 1,2-Dichlorobenzene 1.4 U 11 1.4 u 164-67 1,4-Dichlorobenzene 1.3 U 11 1.3 u 108-60-1 2,2-oxybis(1-Chloroptopane) 1.3 U 11 1.3 u 168-60-1 2,2-oxybis(1-Chloroptopane) 1.3 U 11 1.3 u 167-72-1 Hexachloroethane 1.5 U 11 1.5 u 167-72-1 Hexachloroethane 1.3 U 11 1.7 u 178-59-1 Isophorone 1.4 U 11 1.7 u 11.7 u 111-11 bis(2-Chloroethoxy)methane 1.5 U 11 1.5 u 111-91-1 bis(2-Chloroethoxy)methane 1.5 U 11 1.5 u 111-91-1 bis(2-Chloroethoxy)methane 1.5 U 11 1.5 u 1106-47-8 4-Chloroantline 0.950 U 11 0.950 u 11 0.	File ID BB035297.D	Dilution	Date Extracted	Date Analyze 12/22/2006		alytical l	Batch ID	
TARGETS 111-44-4 bis(2-Chloroethyl)ether 1.6 U 11 1.6 u 95-50-1 1,2-Dichlorobenzene 1.4 U 11 1.4 u 106-46-7 1,4-Dichlorobenzene 1.3 U 11 1.3 u 106-46-7 1,4-Dichlorobenzene 1.3 U 11 1.3 u 108-60-1 2,2-oxybis(1-Chloropropane) 1.3 U 11 1.3 u 621-64-7 N-Nitroso-di-n-propylamine 1.5 U 11 1.5 u 67-72-1 Hexachloroethane 1.3 U 11 1.3 u 98-95-3 Nitrobenzene 1.7 U 11 1.7 u 111-91-1 bis(2-Chloroethoxy)methane 1.5 U 11 1.5 u 111-91-1 bis(2-Chloroethoxy)methane 1.5 U 11 1.5 u 111-92-3 Naphthalene 1.5 U 11 1.5 u 106-47-8 4-Chloroanline 0.950 U 11 0.950 u 87-68-3 Hexachlorobutadiene 1.5 U 11 1.5 u 106-47-4 Hexachlorocyclopentadiene 1.3 U 11 1.3 u 191-57-6 2-Methylnaphthalene 1.5 U 11 1.5 u 191-58-7 2-Chloronaphthalene 1.5 U 11 1.5 u 191-58-7 2-Chloronaphthalene 1.5 U 11 1.5 u 191-10-3 Naphthalene 1.5 U 11 1.5 u 191-58-7 2-Chloronaphthalene 1.5 U 11 1.5 u 191-58-7 2-Chloronaphthalene 1.5 U 11 1.5 u 191-58-7 2-Chloronaphthalene 1.5 U 11 1.5 u 191-1-1 Dimethylphthalate 1.4 U 11 1.4 u 193-90-92 3-Nitroaniline 1.2 U 11 1.5 u 191-1-1-2 U 11 1.5 u 191-1-4 U 11 1.4 u 193-90-92 3-Nitroaniline 1.1 U 11 1.4 u 193-90-92 3-Nitroaniline 1.1 U 11 1.4 u 194-90-92 3-Nitroaniline 1.5 U 11 1.5 u 191-1-1-2 U 11 1.5 u 191-2-2-3 U 11 1.5 u 191-2-2-3 U 11 1.5 u 191-2-2-3 U 11 1.5 u 191-3-2-4-9 Dibenzofuran 1.4 U 11 1.4 u 191-1-1-2 U 11 1.5 u 191-2-2-3 U 11 1.5 u 191-2-2-3 U 11 1.5 u 191-2-2-3 U 11 1.5 u 191-2-2-3 U 11 1.5 u 191-2-2-3 U 11 1.5 u 191-2-2-3 U 11 1.5 u 191-2-2-3 U 11 1.5 u 191-2-2-3 U 11 1.5 u 191-2-2-3 U 11 1.5 u 191-2-2-3 U 11 1.5 u 191-2-2-3 U 11 1.5 u 191-2-2-3 U 11 1.5 u 191-2-3-3 U 11 1.5 u 191-3-3-4 U 11 1.4 u 191-3-4 U 11 1.4 u 191-3-4 U 11 1.4 u 191-3-4 U 11 1.4 u 191-3-4 U 11 1.4 u 191-3-4 U 11 1.4 u 191-3-4 U 11 1.4 u 191-3-4 U 11 1.4 u 191-3-4 U 11 1.5 u 191-3-7 U 11 1.5 u 191-3-7 U 11 1.5 u 191-3-7 U 11 1.5 u 191-3-7 U 11 1.5 u 191-3-7 U 11 1.5 u 191-3-7 U 11 1.5 u 191-3-7 U 11 1.5 u 191-3-7 U 11 1.5 u 191-3-7 U 11 1.5 u 191-3-7 U 11 1.5 u 191-3-7 U 11 1.5 u 191-3-7 U 11 1.5 u 191-3-7 U 11 1.5 u 191-3-7 U 11 1.5 u 191-3-7		1	12/19/2006	12/22/2000		122100		
111-44-4 bis(2-Chloroethyl)ether 1.6 U 11 1.6 u 95-50-1 1,2-Dichlorobenzene 1.4 U 11 1.4 u 541-73-1 1,3-Dichlorobenzene 1.3 U 11 1.3 u 108-60-7 1,4-Dichlorobenzene 1.3 U 11 1.3 u 108-60-1 2,2-oxybis(1-Chloropropane) 1.3 U 11 1.3 u 621-64-7 N-Nitroso-di-n-propylamine 1.5 U 11 1.5 u 621-64-7 N-Nitroso-di-n-propylamine 1.5 U 11 1.3 u 627-2-1 Hexachloroethane 1.3 U 11 1.3 u 98-95-3 Nitrobenzene 1.7 U 11 1.7 u 11-91-1 bis(2-Chloroethoxy)methane 1.5 U 11 1.5 u 11-91-1 bis(2-Chloroethoxy)methane 1.5 U 11 1.5 u		Parameter		Conc.	Qualifier	RL	MDL	Units
95-50-1 1,2-Dichlorobenzene 1.4 U 11 1.4 u 1541-73-1 1,3-Dichlorobenzene 1.3 U 11 1.3 u 106-46-7 1,4-Dichlorobenzene 1.3 U 11 1.3 u 108-60-1 2,2-oxybis(1-Chloropropane) 1.3 U 11 1.3 u 1621-64-7 N-Nitroso-di-n-propylamine 1.5 U 11 1.5 u 167-72-1 Hexachloroethane 1.3 U 11 1.3 u 178-95-3 Nitrobenzene 1.7 U 11 1.7 u 178-59-1 Isophorone 1.4 U 11 1.5 u 111-91-1 bis(2-Chloroethoxy)methane 1.5 U 11 1.5 u 111-91-1 bis(2-Chloroethoxy)methane 1.5 U 11 1.5 u 191-20-3 Naphthalene 1.5 U 11 1.5 u 191-20-3 Naphthalene 1.5 U 11 1.5 u 191-20-3 Hexachlorobutadiene 1.5 U 11 1.5 u 191-58-3 Hexachlorobutadiene 1.5 U 11 1.5 u 191-58-7 2-Chloroaphthalene 1.2 U 11 1.5 u 191-58-7 2-Chloroaphthalene 1.5 U 11 1.5 u 191-58-7 2-Chloroaphthalene 1.5 U 11 1.5 u 191-58-7 2-Chloroaphthalene 1.5 U 11 1.5 u 191-58-7 2-Chloroaphthalene 1.5 U 11 1.5 u 191-58-7 2-Chloroaphthalene 1.5 U 11 1.5 u 191-58-7 2-Chloroaphthalene 1.5 U 11 1.5 u 191-58-7 2-Chloroaphthalene 1.5 U 11 1.5 u 191-58-7 2-Chloroaphthalene 1.5 U 11 1.5 u 191-58-7 2-Chloroaphthalene 1.5 U 11 1.5 u 191-58-7 2-Chloroaphthalene 1.5 U 11 1.5 u 191-58-7 2-Chloroaphthalene 1.5 U 11 1.5 u 191-58-7 2-Chloroaphthalene 1.5 U 11 1.5 u 191-58-7 2-Chloroaphthalene 1.5 U 11 1.4 u 199-09-2 3-Nitroaniline 1.1 U 11 1.4 u 199-09-2 3-Nitroaniline 1.1 U 11 1.4 u 199-09-2 3-Nitroaniline 1.1 U 11 1.4 u 199-09-2 3-Nitroaniline 1.5 U 11 1.5 u 191-11-12 u 191-1						· · · · · · · · · · · · · · · · · · ·		
541-73-1 1,3-Dichlorobenzene 1.3 U 11 1.3 u 106-46-7 1,4-Dichlorobenzene 1.3 U 11 1.3 u 108-60-1 2,2-oxybis(1-Chloropropane) 1.3 U 11 1.3 u 621-64-7 N-Nitroso-di-n-propylamine 1.5 U 11 1.5 u 67-72-1 Hexachloroethane 1.3 U 11 1.5 u 98-95-3 Nitrobenzene 1.7 U 11 1.7 u 78-59-1 Isophorone 1.4 U 11 1.5 u 111-91-1 bis(2-Chloroethoxy)methane 1.5 U 11 1.5 u 112-82-1 1,2,4-Trichlorobenzene 1.5 U 11 1.5 u 11-20-2 1,2 1,2-Trichlorobenzene 1.5 U 11 1.5 u 11-20-2 1,2 1,2 1.1 1.5 u 11 1.5 u		bis(2-Chlore	oethyl)ether	1.6	U	11	1.6	ug/L
106-46-7		1,2-Dichlor	obenzene	1.4	U	11	1.4	ug/L
108-60-1 2,2-oxybis(1-Chloropropane) 1.3 U 11 1.3 U 12 1.5 U 13 1.5 U 14 1.5 U 15 1.5 U 15 1.5 U 16 1.5 U 17 1.5 U 17 1.5 U 18 1.5 U 19 1.5 U U 19 1.5 U U 19 1.5 U U 19 1.5 U U 19 1.5 U U 19 1.5 U U 19 1.5 U U 19 1.5 U U 19 1.5 U U U 19 1.5 U U U U U U U U U	541-73-1	1,3-Dichlor	obenzene	1.3	U	11	1.3	ug/L
621-64-7 N-Nitroso-di-n-propylamine 1.5 U 11 1.5 u 67-72-1 Hexachloroethane 1.3 U 11 1.3 u 98-95-3 Nitrobenzene 1.7 U 11 1.7 u 11-7 v 17-78-59-1 Isophorone 1.4 U 11 1.5 u 111-91-1 bis(2-Chloroethoxy)methane 1.5 U 11 1.5 u 110-82-1 1,2,4-Trichlorobenzene 1.5 U 11 1.5 u 110-47-8 4-Chloroaniline 0.950 U 11 0.950 u 110-47-8 4-Chloroaniline 0.950 U 11 0.950 u 11-55 u 1	106-46-7	1,4-Dichlore	obenzene	1.3	U	11	1.3	ug/L
67-72-1 Hexachloroethane 1.3 U 11 1.3 u 98-95-3 Nitrobenzene 1.7 U 11 1.7 u 78-59-1 Isophorone 1.4 U 11 1.4 u 111-91-1 bis(2-Chloroethoxy)methane 1.5 U 11 1.5 u 120-82-1 1,2,4-Trichlorobenzene 1.5 U 11 1.5 u 91-20-3 Naphthalene 1.5 U 11 1.5 u 106-47-8 4-Chloroaniline 0.950 U 11 0.950 u 87-68-3 Hexachlorobutadiene 1.5 U 11 1.5 u 91-57-6 2-Methylnaphthalene 1.2 U 11 1.2 u 91-58-7 2-Chloronaphthalene 1.3 U 11 1.5 u 88-74-4 2-Nitroaniline 1.2 U 11 1.4 u 131-11-3 Dimethylphthalate	108-60-1	2,2-oxybis(l-Chloropropane)	1.3	U	11	1.3	ug/L
98-95-3 Nitrobenzene 1.7 U 11 1.7 u 78-59-1 Isophorone 1.4 U 11 1.4 u 111-91-1 bis(2-Chloroethoxy)methane 1.5 U 11 1.5 u 120-82-1 1,2,4-Trichlorobenzene 1.5 U 11 1.5 u 91-20-3 Naphthalene 1.5 U 11 1.5 u 106-47-8 4-Chloroaniline 0.950 U 11 0.950 u 87-68-3 Hexachlorobutadiene 1.5 U 11 1.5 u 91-57-6 2-Methylnaphthalene 1.2 U 11 1.2 u 91-58-7 2-Chloronaphthalene 1.3 U 11 1.3 u 91-58-7 2-Chloronaphthalene 1.5 U 11 1.5 u 91-158-7 2-Chloronaphthalene 1.5 U 11 1.5 u 91-58-7 2-Chloronaphthalene 1.5 U 11 1.5 u 91-58-7 2-Chloronaphthalene 1.5 U 11 1.5 u 91-58-7 2-Chloronaphthalene 1.5 U 11 1.5 u 91-58-7 2-Chloronaphthalene 1.5 U 11 1.5 u 91-58-7 2-Chloronaphthalene 1.5 U 11 1.5 u 91-58-7 2-Chloronaphthalene 1.5 U 11 1.5 u 91-58-7 2-Chloronaphthalene 1.5 U 11 1.5 u 91-58-7 2-Chloronaphthalene 1.5 U 11 1.4 u 91-58-7 2-Chloronaphthalate 1.4 U 11 1.4 u 91-58-7 2-Chloronaphthalate 1.4 U 11 1.4 u 91-58-9-8 Acenaphthylene 1.4 U 11 1.4 u 99-09-2 3-Nitroaniline 1.1 U 11 1.4 u 99-09-2 3-Nitroaniline 1.1 U 11 1.5 u 91-158-04-9 Dibenzofuran 1.4 U 11 1.5 u 91-158-04-9 Dibenzofuran 1.4 U 11 1.5 u 91-158-04-9 Dibenzofuran 1.4 U 11 1.5 u 91-158-04-9 Dibenzofuran 1.4 U 11 1.5 u 91-158-04-9 Dibenzofuran 1.4 U 11 1.5 u 91-158-04-9 Dibenzofuran 1.4 U 11 1.5 u 91-158-04-9 Dibenzofuran 1.5 U 11 1.5	621-64-7	N-Nitroso-d	li-п-propylamine	1.5	U	11	1.5	ug/L
98-95-3 Nitrobenzene 1.7 U 11 1.7 u 78-59-1 Isophorone 1.4 U 11 1.4 u 111-91-1 bis(2-Chloroethoxy)methane 1.5 U 11 1.5 u 120-82-1 1,2,4-Trichlorobenzene 1.5 U 11 1.5 u 160-47-8 4-Chloroaniline 0,950 U 11 0,950 u 87-68-3 Hexachlorobutadiene 1.5 U 11 1.5 u 91-57-6 2-Methylnaphthalene 1.2 U 11 1.2 u 91-58-7 2-Chloronaphthalene 1.3 U 11 1.5 u 91-58-7 2-Chloronaphthalene 1.5 U 11 1.2 u 91-158-7 2-Chloronaphthalene 1.5 U 11 1.5 u 91-58-7 2-Chloronaphthalene 1.5 U 11 1.5 u 91-58-7 2-Chloronaphthalene 1.5 U 11 1.5 u 91-58-7 2-Chloronaphthalene 1.5 U 11 1.5 u 91-58-7 2-Chloronaphthalene 1.5 U 11 1.5 u 91-58-7 2-Chloronaphthalene 1.5 U 11 1.5 u 91-58-7 2-Chloronaphthalene 1.5 U 11 1.5 u 91-58-7 2-Chloronaphthalene 1.5 U 11 1.5 u 91-58-7 2-Chloronaphthalene 1.5 U 11 1.5 u 91-58-7 2-Chloronaphthalene 1.5 U 11 1.5 u 91-58-7 2-Chloronaphthalene 1.5 U 11 1.4 u 91-58-7 2-Chloronaphthalate 1.4 U 11 1.4 u 91-58-7-8 Acenaphthylene 1.4 U 11 1.4 u 91-58-9-9-9-2 3-Nitroaniline 1.1 U 11 1.5 u 91-58-9-9-9-2 3-Nitroaniline 1.1 U 11 1.5 u 91-58-9-9-9-2 3-Nitroaniline 1.1 U 11 1.5 u 91-58-9-9-9-9-2 3-Nitroaniline 1.1 U 11 1.5 u 91-58-9-9-9-9-2 3-Nitroaniline 1.1 U 11 1.5 u 91-58-9-9-9-9-2 3-Nitroaniline 1.5 U 11 1.5 u 91-58-9-9-9-9-2 3-Nitroaniline 1.5 U 11 1.5 u 91-58-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-	67-72-1	Hexachloro	ethane	1.3	U	11	1.3	ug/L
78-59-1 Isophorone 1.4 U 11 1.4 u 111-91-1 bis(2-Chloroethoxy)methane 1.5 U 11 1.5 u 120-82-1 1,2,4-Trichlorobenzene 1.5 U 11 1.5 u 91-20-3 Naphthalene 1.5 U 11 1.5 u 106-47-8 4-Chloroaniline 0.950 U 11 0.950 u 87-68-3 Hexachlorobutadiene 1.5 U 11 1.5 u 91-57-6 2-Methylnaphthalene 1.2 U 11 1.2 u 91-58-7 2-Methylnaphthalene 1.3 U 11 1.5 u 91-58-7 2-Methylnaphthalene 1.5 U 11 1.5 u 91-58-7 2-Chloronaphthalene 1.5 U 11 1.5 u 88-74-4 2-Nitroaniline 1.4 U 11 1.4 u 88-74-4 2-Nitroaniline </td <td>98-95-3</td> <td>Nitrobenzen</td> <td>ie</td> <td>1.7</td> <td>U</td> <td>11</td> <td>1.7</td> <td>ug/L</td>	98-95-3	Nitrobenzen	ie	1.7	U	11	1.7	ug/L
111-91-1 bis(2-Chloroethoxy)methane 1.5 U 11 1.5 u 120-82-1 1,2,4-Trichlorobenzene 1.5 U 11 1.5 u 91-20-3 Naphthalene 1.5 U 11 1.5 u 106-47-8 4-Chloroaniline 0.950 U 11 0.950 u 87-68-3 Hexachlorobutadiene 1.5 U 11 1.5 u 91-57-6 2-Methylnaphthalene 1.2 U 11 1.2 u 91-58-7 2-Chloronaphthalene 1.3 U 11 1.5 u 91-58-7 2-Chloronaphthalene 1.5 U 11 1.5 u 88-74-4 2-Nitroaniline 1.2 U 11 1.4 u 131-11-3 Dimethylphthalate 1.4 U 11 1.4 u 208-96-8 Acenaphthylene 1.4 U 11 1.4 u 83-32-9 Acenaphthene	78-59-1	Isophorone		1.4	U	11	1.4	ug/L
120-82-1 1,2,4-Trichlorobenzene 1.5 U 11 1.5 u 91-20-3 Naphthalene 1.5 U 11 1.5 u 106-47-8 4-Chloroaniline 0.950 U 11 0.950 u 87-68-3 Hexachlorobutadiene 1.5 U 11 1.5 u 91-57-6 2-Methylnaphthalene 1.2 U 11 1.2 u 77-47-4 Hexachlorocyclopentadiene 1.3 U 11 1.3 u 91-58-7 2-Chloronaphthalene 1.5 U 11 1.5 u 88-74-4 2-Nitroaniline 1.2 U 11 1.2 u 131-11-3 Dimethylphthalate 1.4 U 11 1.4 u 208-96-8 Acenaphthylene 1.4 U 11 1.4 u 606-20-2 2,6-Dinitrotoluene 1.4 U 11 1.4 u 83-32-9 Acenaphthene 1.5 U 11 1.5 u 132-64-9 D	111-91-1	bis(2-Chlore	oethoxy)methane	1.5	U	11	1.5	ug/L
106-47-8 4-Chloroaniline 0.950 U 11 0.950 u 87-68-3 Hexachlorobutadiene 1.5 U 11 1.5 u 91-57-6 2-Methylnaphthalene 1.2 U 11 1.2 u 77-47-4 Hexachlorocyclopentadiene 1.3 U 11 1.3 u 91-58-7 2-Chloronaphthalene 1.5 U 11 1.5 u 88-74-4 2-Nitroaniline 1.2 U 11 1.2 u 131-11-3 Dimethylphthalate 1.4 U 11 1.4 u 208-96-8 Acenaphthylene 1.4 U 11 1.4 u 606-20-2 2,6-Dinitrotoluene 1.4 U 11 1.4 u 99-09-2 3-Nitroaniline 1.1 U 11 1.5 u 132-64-9 Dibenzofuran 1.4 U 11 1.5 u 132-64-9 Dibenzofuran 1.4 U 11 1.3 u 121-14-2 2,4-Din	120-82-1	1,2,4-Trichl	orobenzene	1.5	U	11	1.5	ug/L
106-47-8 4-Chloroaniline 0.950 U 11 0.950 u 87-68-3 Hexachlorobutadiene 1.5 U 11 1.5 u 91-57-6 2-Methylnaphthalene 1.2 U 11 1.2 u 77-47-4 Hexachlorocyclopentadiene 1.3 U 11 1.3 u 91-58-7 2-Chloronaphthalene 1.5 U 11 1.5 u 88-74-4 2-Nitroaniline 1.2 U 11 1.2 u 131-11-3 Dimethylphthalate 1.4 U 11 1.4 u 208-96-8 Acenaphthylene 1.4 U 11 1.4 u 606-20-2 2,6-Dinitrotoluene 1.4 U 11 1.4 u 99-09-2 3-Nitroaniline 1.1 U 11 1.5 u 83-32-9 Acenaphthene 1.5 U 11 1.5 u 132-64-9 Dibenzofuran 1.4 U 11 1.3 u 121-14-2 2,4-Dini	91-20-3	Naphthalene	2	1.5	U	11	1.5	ug/L
87-68-3 Hexachlorobutadiene 1.5 U 11 1.5 u 91-57-6 2-Methylnaphthalene 1.2 U 11 1.2 u 77-47-4 Hexachlorocyclopentadiene 1.3 U 11 1.3 u 91-58-7 2-Chloronaphthalene 1.5 U 11 1.5 u 88-74-4 2-Nitroaniline 1.2 U 11 1.2 u 131-11-3 Dimethylphthalate 1.4 U 11 1.4 u 208-96-8 Acenaphthylene 1.4 U 11 1.4 u 606-20-2 2,6-Dinitrotoluene 1.4 U 11 1.4 u 99-09-2 3-Nitroaniline 1.1 U 11 1.5 u 83-32-9 Acenaphthene 1.5 U 11 1.5 u 132-64-9 Dibenzofuran 1.4 U 11 1.4 u 121-14-2 2,4-Dinitrotoluene 1.3 U 11 1.5 u 84-66-2 Diethylpht	106-47-8	4-Chloroani	line	0.950	U	H	0.950	ug/L
91-57-6 2-Methylnaphthalene 1.2 U 11 1.2 up 77-47-4 Hexachlorocyclopentadiene 1.3 U 11 1.3 up 91-58-7 2-Chloronaphthalene 1.5 U 11 1.5 up 1.5 up 1.5	87-68-3	Hexachlorol	outadiene	1.5	U	11	1.5	ug/L
77-47-4 Hexachlorocyclopentadiene 1.3 U 11 1.3 ug 91-58-7 2-Chloronaphthalene 1.5 U 11 1.5 ug 88-74-4 2-Nitroaniline 1.2 U 11 1.2 ug 131-11-3 Dimethylphthalate 1.4 U 11 1.4 ug 208-96-8 Acenaphthylene 1.4 U 11 1.4 ug 606-20-2 2,6-Dinitrotoluene 1.4 U 11 1.4 ug 99-09-2 3-Nitroaniline 1.1 U 11 1.5 ug 83-32-9 Acenaphthene 1.5 U 11 1.5 ug 132-64-9 Dibenzofuran 1.4 U 11 1.4 ug 121-14-2 2,4-Dinitrotoluene 1.3 U 11 1.3 ug 84-66-2 Diethylphthalate 1.5 U 11 1.5 ug 7005-72-3 4-Chlorophenyl-phenylether 1.5 U 11 1.6 ug 86-73-7	91-57-6	2-Methylna	ohthalene	1.2	U	11	1.2	ug/L
91-58-7 2-Chloronaphthalene 1.5 U 11 1.5 ug 88-74-4 2-Nitroaniline 1.2 U 11 1.2 ug 131-11-3 Dimethylphthalate 1.4 U 11 1.4 ug 208-96-8 Acenaphthylene 1.4 U 11 1.4 ug 606-20-2 2,6-Dinitrotoluene 1.4 U 11 1.4 ug 99-09-2 3-Nitroaniline 1.1 U 11 1.1 ug 83-32-9 Acenaphthene 1.5 U 11 1.5 ug 132-64-9 Dibenzofuran 1.4 U 11 1.4 ug 121-14-2 2,4-Dinitrotoluene 1.3 U 11 1.3 ug 84-66-2 Diethylphthalate 1.5 U 11 1.5 ug 7005-72-3 4-Chlorophenyl-phenylether 1.5 U 11 1.5 ug 86-73-7 Fluorene 1.6 U 11 1.5 ug	77-47-4	Hexachloro	cyclopentadiene	1.3	U	11	1.3	ug/L
88-74-4 2-Nitroaniline 1.2 U 11 1.2 u 131-11-3 Dimethylphthalate 1.4 U 11 1.4 u 208-96-8 Acenaphthylene 1.4 U 11 1.4 u 606-20-2 2,6-Dinitrotoluene 1.4 U 11 1.4 u 99-09-2 3-Nitroaniline 1.1 U 11 1.1 u 83-32-9 Acenaphthene 1.5 U 11 1.5 u 132-64-9 Dibenzofuran 1.4 U 11 1.4 u 121-14-2 2,4-Dinitrotoluene 1.3 U 11 1.3 u 84-66-2 Diethylphthalate 1.5 U 11 1.5 u 7005-72-3 4-Chlorophenyl-phenylether 1.5 U 11 1.6 u 86-73-7 Fluorene 1.6 U 11 1.6 u	91-58-7	2-Chloronap	hthalene	1.5	U	11	1.5	ug/L
131-11-3 Dimethylphthalate 1.4 U 11 1.4 ug 208-96-8 Acenaphthylene 1.4 U 11 1.4 ug 606-20-2 2,6-Dinitrotoluene 1.4 U 11 1.4 ug 99-09-2 3-Nitroaniline 1.1 U 11 1.1 ug 83-32-9 Acenaphthene 1.5 U 11 1.5 ug 132-64-9 Dibenzofuran 1.4 U 11 1.4 ug 121-14-2 2,4-Dinitrotoluene 1.3 U 11 1.3 ug 84-66-2 Diethylphthalate 1.5 U 11 1.5 ug 7005-72-3 4-Chlorophenyl-phenylether 1.5 U 11 1.6 ug 86-73-7 Fluorene 1.6 U 11 1.6 ug	88-74-4	2-Nitroanilii	ne	1.2	U	11	1.2	ug/L
208-96-8 Acenaphthylene 1.4 U 11 1.4 ug 606-20-2 2,6-Dinitrotoluene 1.4 U 11 1.4 ug 99-09-2 3-Nitroaniline 1.1 U 11 1.1 ug 83-32-9 Acenaphthene 1.5 U 11 1.5 ug 132-64-9 Dibenzofuran 1.4 U 11 1.4 ug 121-14-2 2,4-Dinitrotoluene 1.3 U 11 1.3 ug 84-66-2 Diethylphthalate 1.5 U 11 1.5 ug 7005-72-3 4-Chlorophenyl-phenylether 1.5 U 11 1.5 ug 86-73-7 Fluorene 1.6 U 11 1.6 ug	131-11-3	Dimethylphi	thalate	1.4	U	11	1.4	ug/L
606-20-2 2,6-Dinitrotoluene 1.4 U 11 1.4 ug 99-09-2 3-Nitroaniline 1.1 U 11 1.1 ug 83-32-9 Acenaphthene 1.5 U 11 1.5 ug 132-64-9 Dibenzofuran 1.4 U 11 1.4 ug 121-14-2 2,4-Dinitrotoluene 1.3 U 11 1.3 ug 84-66-2 Diethylphthalate 1.5 U 11 1.5 ug 7005-72-3 4-Chlorophenyl-phenylether 1.5 U 11 1.5 ug 86-73-7 Fluorene 1.6 U 11 1.6 ug	208-96-8	Acenaphthy	lene	1.4	U	11	1.4	ug/L
99-09-2 3-Nitroaniline 1.1 U 11 1.1 ug 83-32-9 Acenaphthene 1.5 U 11 1.5 ug 132-64-9 Dibenzofuran 1.4 U 11 1.4 ug 121-14-2 2,4-Dinitrotoluene 1.3 U 11 1.3 ug 84-66-2 Diethylphthalate 1.5 U 11 1.5 ug 7005-72-3 4-Chlorophenyl-phenylether 1.5 U 11 1.5 ug 86-73-7 Fluorene 1.6 U 11 1.6 ug	606-20-2	2,6-Dinitroto	oluene	1.4	U	11	1.4	ug/L
83-32-9 Acenaphthene 1.5 U 11 1.5 ug 132-64-9 Dibenzofuran 1.4 U 11 1.4 ug 121-14-2 2,4-Dinitrotoluene 1.3 U 11 1.3 ug 84-66-2 Diethylphthalate 1.5 U 11 1.5 ug 7005-72-3 4-Chlorophenyl-phenylether 1.5 U 11 1.5 ug 86-73-7 Fluorene 1.6 U 11 1.6 ug	99-09-2	3-Nitroanilir	ne	1.1	U	11	1.1	ug/L
132-64-9 Dibenzofuran 1.4 U 11 1.4 ug 121-14-2 2,4-Dinitrotoluene 1.3 U 11 1.3 ug 84-66-2 Diethylphthalate 1.5 U 11 1.5 ug 7005-72-3 4-Chlorophenyl-phenylether 1.5 U 11 1.5 ug 86-73-7 Fluorene 1.6 U 11 1.6 ug	83-32-9	Acenaphthei	ne	1.5	U	11	1.5	ug/L
121-14-2 2,4-Dinitrotoluene 1.3 U 11 1.3 ug 84-66-2 Diethylphthalate 1.5 U 11 1.5 ug 7005-72-3 4-Chlorophenyl-phenylether 1.5 U 11 1.5 ug 86-73-7 Fluorene 1.6 U 11 1.6 ug	132-64-9	Dibenzofura	n	1.4	U	11	1.4	ug/L
84-66-2 Diethylphthalate 1.5 U 11 1.5 ug 7005-72-3 4-Chlorophenyl-phenylether 1.5 U 11 1.5 ug 86-73-7 Fluorene 1.6 U 11 1.6 ug	121-14-2	2,4-Dinitroto	oluene	1.3	U	11	1.3	ug/L
7005-72-3 4-Chlorophenyl-phenylether 1.5 U 11 1.5 ug 86-73-7 Fluorene 1.6 U 11 1.6 ug	84-66-2	Diethylphtha	alate	1.5	U	11	1.5	ug/L
86-73-7 Fluorene 1.6 U 11 1.6 ug	7005-72-3	4-Chlorophe	nyl-phenylether	1.5	U	11	1.5	ug/L
100.01	86-73-7	Fluorene		1.6	U	11	1.6	ug/L
100-01-6 4-Nitroaniline 1.2 U 11 1.2 up	100-01-6	4-Nitroanilir	ne	1.2	U	11	1.2	ug/L
0.00.0	36-30-6	N-Nitrosodij	phenylamine	1.4	U	11	1.4	ug/L
	101-55-3			1.6	U	11		ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

File ID

Dilution

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Date Analyzed

Analytical Batch ID

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/14/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2000 Client Sample MW29-D X5892 SDG No.: Lab Sample ID: X5892-06 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 900.0 mL **Extract Vol:** 1000 uL

Date Extracted

BB035297.D	1)	12/19/2006	12/22/2006	BB122106		ich id	
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS		······································					
118-74-1	Hexachlorob		1.4	U	11	1.4	ug/L
85-01-8	Phenanthrene	•	1.6	U	11	1.6	ug/L
120-12-7	Anthracene		1.6	U	11	1.6	ug/L
86-74-8	Carbazole		1.4	U	11	1.4	ug/L
84-74-2	Di-n-butylph	thalate	1.4	U	11	1.4	ug/L
206-44-0	Fluoranthene		1.3	U	11	1.3	ug/L
129-00-0	Pyrene		1.6	U	11	1.6	ug/L
85-68-7	Butylbenzylp	hthalate	1.6	U	11	1.6	ug/L
91-94-1	3,3-Dichlorol	penzidine	1.2	U	22	1.2	ug/L
56-55-3	Benzo(a)anth	racene	1.2	U	11	1.2	ug/L
218-01-9	Chrysene		1.9	U	11	1.9	ug/L
117-81-7	bis(2-Ethylhe	xyl)phthalate	1.7	U	11	1.7	ug/L
117-84-0	Di-n-octyl ph	thalate	1.4	U	11	1.4	ug/L
205-99-2	Benzo(b)fluo:	ranthene	0.830	U	11	0.830	ug/L
207-08-9	Benzo(k)fluo	ranthene	2.1	U	11	2.1	ug/L
50-32-8	Benzo(a)pyre	ne	1.3	U	11	1.3	ug/L
193-39-5	Indeno(1,2,3-	cd)pyrene	0.920	U	11	0.920	ug/L
53-70-3	Dibenz(a,h)ar	nthracene	0.960	U	11	0.960	ug/L
191-24-2	Benzo(g,h,i)p	erylene	1.2	U	11	1.2	ug/L
SURROGATES							_
4165-60-0	Nitrobenzene	-d5	72.57	73 %	35 - 114		SPK: 10
321-60-8	2-Fluorobipho	enyl	71.75	72 %	43 - 116		SPK: 10
1718-51-0	Terphenyl-d1	4	72.38	72 %	33 - 141	-	SPK: 10
INTERNAL STAND	ARDS						
3855-82-1	1,4-Dichlorob	enzene-d4	275989	6.76			
1146-65-2	Naphthalene-	d8	1174858	9.09			
15067-26-2	Acenaphthene	e-d10	632674	12.59			
1517-22-2	Phenanthrene	-d10	1048585	15.59			
1719-03-5	Chrysene-d12		826162	20.95			
1520-96-3	Perylene-d12		777921	24.46			
TENTITIVE IDENT	TIFIED COMP	OUNDS					

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

4	r e			
	Client:	TRC Environmental Corp., NY	Date Collected:	12/14/2006
	Project:	Morris park RI/FS TRC#46130-0010	Date Received:	12/15/2004
	Client Sample	MW29-D	SDG No.:	X5892
	ID: Lab Sample ID:	X5892-06	Matrix:	WATER
	Analytical Method:	8270	% Moisture:	100
	Sample Wt/Wol:	900.0 mL	Extract Vol:	1000 uL
١				

File ID	Dilution	Date Extracted	Date Analyzed	Analytical Batch ID
BB035297.I	D 1	12/19/2006	12/22/2006	BB122106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TENTITIVE IDE	NTIFIED COMPOUNDS					***************************************
	ACP4.31	180	A	4.31		ug/L
57-10-3	n-Hexadecanoic acid	6.8	JB	16.80		ug/L
111-02-4	2,6,10,14,18,22-Tetracosahexaene,	45	J	23.11		ug/L

Dilution

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Date Analyzed

Analytical Batch ID

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/14/2006 Project: Date Received: Morris park RI/FS TRC#46130-0010 12/15/2000 **Client Sample** MW30D SDG No.: X5892 Lab Sample ID: X5892-07 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 900.0 mLExtract Vol: 1000 uL

Date Extracted

BB035304.D	1 12/19/2006	12/23/2006	ВВ			
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
111-44-4	bis(2-Chloroethyl)ether	1.6	U	11	1.6	ug/L
95-50-1	1,2-Dichlorobenzene	1.4	U	11	1.4	ug/L
541-73-1	1,3-Dichlorobenzene	1.3	U	11	1.3	ug/L
106-46-7	1,4-Dichlorobenzene	1.3	U	11	1.3	ug/L
108-60-1	2,2-oxybis(1-Chloropropane)	1.3	U	11	1.3	ug/L
621-64-7	N-Nitroso-di-n-propylamine	1.5	U	11	1.5	ug/L
67-72-1	Hexachloroethane	1.3	U	11	1.3	ug/L
98-95-3	Nitrobenzene	1.7	U	11	1.7	ug/L
78-59-1	Isophorone	1.4	U	11	1.4	ug/L
111-91-1	bis(2-Chloroethoxy)methane	1.5	U	11	1.5	ug/L
120-82-1	1,2,4-Trichlorobenzene	1.5	U	11	1.5	ug/L
91-20-3	Naphthalene	1.5	U	11	1.5	ug/L
106-47-8	4-Chloroaniline	0.950	U	11	0.950	ug/L
87-68-3	Hexachlorobutadiene	1.5	U	Н	1.5	ug/L
91-57-6	2-Methylnaphthalene	1.2	U	11	1.2	ug/L
77-47-4	Hexachlorocyclopentadiene	1.3	U	11	1.3	ug/L
91-58-7	2-Chloronaphthalene	1.5	U	11	1.5	ug/L
88-74-4	2-Nitroaniline	1.2	U	11	1.2	ug/L
131-11-3	Dimethylphthalate	1.4	U	11	1.4	ug/L
208-96-8	Acenaphthylene	1.4	U	11	1.4	ug/L
606-20-2	2,6-Dinitrotoluene	1.4	U	11	1.4	ug/L
99-09-2	3-Nitroaniline	1.1	U	11	1.1	ug/L
83-32-9	Acenaphthene	1.5	U	11	1.5	ug/L
132-64-9	Dibenzofuran	1.4	U	11	1.4	ug/L
121-14-2	2,4-Dinitrotoluene	1.3	U	11	1.3	ug/L
84-66-2	Diethylphthalate	1.5	U	11	1.5	ug/L
7005-72-3	4-Chlorophenyl-phenylether	1.5	U	11	1.5	ug/L
86-73-7	Fluorene	1.6	U	11	1.6	ug/L
100-01-6	4-Nitroaniline	1.2	U	11	1.2	ug/L
86-30-6	N-Nitrosodiphenylamine	1.4	U	11	1.4	ug/L
						_

U = Not Detected

101-55-3

4-Bromophenyl-phenylether

1.6

11

1.6

ug/L

U

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Dilution

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Date Analyzed

Analytical Batch ID

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/14/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2000 Client Sample MW30D SDG No.: X5892 Lab Sample ID: X5892-07 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 900.0 mL Extract Vol: 1000 uL

BB035304.D	1 12/19/2006	12/23/2006		BB122106		
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
118-74-1	Hexachlorobenzene	1.4	U	11	1.4	ug/L
85-01-8	Phenanthrene	1.6	U	11	1.6	ug/L
120-12-7	Anthracene	1.6	U	11	1.6	ug/L
86-74-8	Carbazole	1.4	U	11	1.4	ug/L
84-74-2	Di-n-butylphthalate	1.4	U	11	1.4	ug/L
206-44-0	Fluoranthene	1.3	U	11	1.3	ug/L
129-00-0	Pyrene	1.6	U	11	1.6	ug/L
85-68-7	Butylbenzylphthalate	1.6	U	11	1.6	ug/L
91-94-1	3,3-Dichlorobenzidine	1.2	U	22	1.2	ug/L
56-55-3	Benzo(a)anthracene	1.2	U	11	1.2	ug/L
218-01-9	Chrysene	1.9	U	11	1.9	ug/L
117-81-7	bis(2-Ethylhexyl)phthalate	1.7	U	11	1.7	ug/L
117-84-0	Di-n-octyl phthalate	1.4	U	11	1.4	ug/L
205-99-2	Benzo(b)fluoranthene	0.830	U	11	0.830	ug/L
207-08-9	Benzo(k)fluoranthene	2.1	U	11	2.1	ug/L
50-32-8	Benzo(a)pyrene	1.3	U	11	1.3	ug/L
193-39-5	Indeno(1,2,3-cd)pyrene	0.920	U	11	0.920	ug/L
53-70-3	Dibenz(a,h)anthracene	0.960	U	11	0.960	ug/L
191-24-2	Benzo(g,h,i)perylene	1.2	U	11	1.2	ug/L
SURROGATES						•
4165-60-0	Nitrobenzene-d5	79.53	80 %	35 - 114		SPK: 10
321-60-8	2-Fluorobiphenyl	77.96	78 %	43 - 116		SPK: 10
1718-51-0	Terphenyl-d14	79.11	79 %	33 - 141		SPK: 10
INTERNAL STAND	ARDS					
3855-82-1	1,4-Dichlorobenzene-d4	185469	6.76			
1146-65-2	Naphthalene-d8	745913	9.08			
15067-26-2	Acenaphthene-d10	416739	12.57			
1517-22-2	Phenanthrene-d10	712963	15.57			
1719-03-5	Chrysene-d12	524213	20.94			
1520-96-3	Perylene-d12	469700	24.43			
TENTITIVE IDENT	IFIED COMPOUNDS					

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/14/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2000 Client Sample MW30D SDG No.: X5892 Lab Sample ID: X5892-07 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 900.0 mL **Extract Vol:** 1000 uL

File ID BB035304.D	Dilution 1	Date Extracted 12/19/2006	Date Analyzed 12/23/2006		Analytical Batch ID BB122106			
CAS Number	Parameter		Conc.	Qualifier	lifier RL MDL		Units	
TENTITIVE IDENT	TIFIED COM	IPOUNDS						
	ACP4.30		180	AB	4.30		ug/L	
37-10-3	n-Hexadeca	noic acid	7.1	JB	16.78		ug/L	
74685-33-9	3-Eicosene,	(E)-	5.3	3	20.73		ug/L	
7683-64-9	Squalene		38	JB	23.08		ug/L	

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/14/2006 Project: Date Received: Morris park RI/FS TRC#46130-0010 12/15/2000 Client Sample MW08-60 SDG No.: X5892 Lab Sample ID: X5892-08 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Woi: 980.0 mL Extract Vol: 1000 uL

	File ID BB035303.D	Dilution 1	Date Extracted 12/19/2006	Date Analyzed 12/23/2006		alytical l	Batch ID	
CAS N	Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARG	ETS							

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
111-44-4	bis(2-Chloroethyl)ether	1.5	U	10	1.5	ug/L
95-50-1	1,2-Dichlorobenzene	1.2	U	10	1.2	ug/L
541-73-1	1,3-Dichlorobenzene	1.2	U	10	1.2	ug/L
106-46-7	1,4-Dichlorobenzene	1.2	U	10	1.2	ug/L
108-60-1	2,2-oxybis(1-Chloropropane)	1.2	U	10	1.2	ug/L
621-64-7	N-Nitroso-di-n-propylamine	1.4	U	10	1.4	ug/L
67-72-1	Hexachloroethane	1.2	U	10	1.2	ug/L
98-95-3	Nitrobenzene	1.6	U	10	1.6	ug/L
78-59-1	Isophorone	1.3	U	10	1.3	ug/L
111-91-1	bis(2-Chloroethoxy)methane	1.4	U	10	1.4	ug/L
120-82-1	1,2,4-Trichlorobenzene	1.4	U	10	1.4	ug/L
91-20-3	Naphthalene	1.4	U	10	1.4	ug/L
106-47-8	4-Chloroaniline	0.880	U	10	0.880	ug/L
87-68-3	Hexachlorobutadiene	1.4	U	10	1.4	ug/L
91-57-6	2-Methylnaphthalene	1.1	U	10	1.1	ug/L
77-47-4	Hexachlorocyclopentadiene	1.2	U	10	1.2	ug/L
91-58-7	2-Chloronaphthalene	1.4	U	10	1.4	ug/L
88-74-4	2-Nitroaniline	1.1	U	10	1.1	ug/L
131-11-3	Dimethylphthalate	1.3	U	10	1.3	ug/L
208-96-8	Acenaphthylene	1.3	U	10	1.3	ug/L
606-20-2	2,6-Dinitrotoluene	1.3	U	10	1.3	ug/L
99-09-2	3-Nitroaniline	1.0	U	10	1.0	ug/L
83-32-9	Acenaphthene	1.4	U	10	1.4	ug/L
132-64-9	Dibenzofuran	1.3	U	10	1.3	ug/L
121-14-2	2,4-Dinitrotoluene	1.2	U	10	1.2	ug/L
84-66-2	Diethylphthalate	1.4	U	10	1.4	ug/L
7005-72-3	4-Chlorophenyl-phenylether	1.4	U	10	1.4	ug/L
86-73-7	Fluorene	1.4	U	10	1.4	ug/L
100-01-6	4-Nitroaniline	1.1	U	10	1.1	ug/L
86-30-6	N-Nitrosodiphenylamine	1.3	U	10	1.3	ug/L
101-55-3	4-Bromophenyl-phenylether	1.5	U	10	1.5	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/14/2006 Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2000 Project: Client Sample MW08-60 SDG No.: X5892 Lab Sample ID: X5892-08 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 980.0 Extract Vol: mL 1000 uL

File ID	Dilution	Date Extracted	Date Analyzed		alytical Ba	tch ID	
BB035303.D	1	12/19/2006	12/23/2006	BB	122106		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS				* -			
118-74-1	Hexachlorob		1.2	U	10	1.2	ug/L
85-01-8	Phenanthren	e	1.4	U	10	1.4	ug/L
120-12-7	Anthracene		1.4	U	10	1.4	ug/L
86-74-8	Carbazole		1.3	U	10	1.3	ug/L
84-74-2	Di-n-butylpl		1.3	U	10	1.3	ug/L
206-44-0	Fluoranthen	2	1.2	U	10	1.2	ug/L
129-00-0	Ругепе		1.5	U	10	1.5	ug/L
85-68-7	Butylbenzyl		1.5	U	10	1.5	ug/L
91-94-1	3,3-Dichloro	benzidine	1.1	U	20	1.1	ug/L
56-55-3	Benzo(a)ant	hracene	1.1	U	10	1.1	ug/L
218-01-9	Chrysene		1.7	U	10	1.7	ug/L
117-81-7	bis(2-Ethylh	exyl)phthalate	1.6	U	10	1.6	ug/L
117-84-0	Di-n-octyl phthalate		1.3	U	10	1.3	ug/L
205-99-2	Benzo(b)flu	oranthene	0.760	U	10	0.760	ug/L
207-08-9	Benzo(k)flue	oranthene	1.9	U	10	1.9	ug/L
50-32-8	Benzo(a)pyr	ene	1.2	U	10	1.2	ug/L
193-39-5	Indeno(1,2,3	-cd)pyrene	0.840	U	10	0.840	ug/L
53-70-3	Dibenz(a,h)a	inthracene	0.880	U	10	0.880	ug/L
191-24-2	Benzo(g,h,i)	perylene	1.1	U	10	1.1	ug/L
SURROGATES							
4165-60-0	Nitrobenzen	e-d5	79. 1	79 %	35 - 114		SPK: 10
321-60-8	2-Fluorobipl	nenyl	76.77	77%	43 - 116		SPK: 10
1718-51-0	Terphenyl-d	14	75.66	76 %	33 - 141		SPK: 10
INTERNAL STAND	ARDS						
3855-82-1	1,4-Dichloro	benzene-d4	281011	6.76			
1146-65-2	Naphthalene	-d8	1173559	9.09			
15067-26-2	Acenaphther	ne-d10	630475	12.58			
1517-22-2	Phenanthren	e-d10	1083106	15.58			
1719-03-5	Chrysene-d1	2	804675	20.95			
1520-96-3	Perylene-d1:		733821	24.44			
TENTITIVE IDENT	•						

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/14/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2000 Client Sample MW08-60 SDG No.: X5892 Lab Sample ID: X5892-08 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 980.0 mL Extract Vol: 1000 uL

File ID BB035303.D	Dilution Date Extracted 1 12/19/2006		Date Analyze 12/23/2006		Analytical Batch ID BB122106		
CAS Number Parameter		Conc.	Qualifier	RL	MDL	Units	
TENTITIVE IDENT		POUNDS	^				
	ACP4.30		170	AB	4.30		ug/L
57-10-3	n-Hexadecar	n-Hexadecanoic acid		JB	16.79		ug/L
111-02-4	2,6,10,14,18,	,22-Tetracosahexaene,	16	J	23.09		ug/L

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/14/2006 Project: Date Received: Morris park RI/FS TRC#46130-0010 12/15/2000 Client Sample MW08-150 SDG No.: X5892 ID: Lab Sample ID: X5892-09 Matrix: WATER Analytical Method: 8270 % Moisture: 100 990.0 Sample Wt/Wol: mL Extract Vol: 1000 uL

File ID	Dilution	Date Extracted	Date Analyzed	Analytical Batch ID	
BB035302.D	1	12/19/2006	12/23/2006	BB122106	

	1271372000	12/20/2000		122100		<i></i>	
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units	
TARGETS						·····	
111-44-4	bis(2-Chloroethyl)ether	1.5	U	10	1.5	ug/L	
95-50-1	1,2-Dichlorobenzene	1.2	U	10	1.2	ug/L	
541-73-1	1,3-Dichlorobenzene	1.2	U	10	1.2	ug/L	
106-46-7	1,4-Dichlorobenzene	1.2	U	10	1.2	ug/L	
108-60-1	2,2-oxybis(1-Chloropropane)	1.2	U	10	1.2	ug/L	
621-64-7	N-Nitroso-di-n-propylamine	1.4	U	10	1.4	ug/L	
67-72-1	Hexachloroethane	1.2	U	10	1.2	ug/L	
98-95-3	Nitrobenzene	1.6	U	10	1.6	ug/L	
78-59-1	Isophorone	1.3	U	10	1.3	ug/L	
111-91-1	bis(2-Chloroethoxy)methane	1.4	U	10	1.4	ug/L	
120-82-1	1,2,4-Trichlorobenzene	1.4	U	10	1.4	ug/L	
91-20-3	Naphthalene	1.4	U	10	1.4	ug/L	
106-47-8	4-Chloroaniline	0.870	U	10	0.870	ug/L	
87-68-3	Hexachlorobutadiene	1.4	U	10	1.4	ug/L	
91-57-6	2-Methylnaphthalene	1.1	U	10	1.1	ug/L	
77-47-4	Hexachlorocyclopentadiene	1.2	U	10	1.2	ug/L	
91-58-7	2-Chloronaphthalene	1.4	U	10	1.4	ug/L	
88-74-4	2-Nitroaniline	1.1	U	10	1.1	ug/L	
131-11-3	Dimethylphthalate	1.3	U	10	1.3	ug/L	
208-96-8	Acenaphthylene	1.3	U	10	1.3	ug/L	
606-20-2	2,6-Dinitrotoluene	1.3	U	10	1.3	ug/L	
99-09-2	3-Nitroaniline	1.0	U	10	1.0	ug/L	
83-32-9	Acenaphthene	1.4	U	10	1.4	ug/L	
132-64-9	Dibenzofuran	1.3	U	10	1.3	ug/L	
121-14-2	2,4-Dinitrotoluene	1.2	U	10	1.2	ug/L	
84-66-2	Diethylphthalate	1.3	U	10	1.3	ug/L	
7005-72-3	4-Chlorophenyl-phenylether	1.4	U	10	1.4	ug/L	
86-73-7	Fluorene	1.4	U	10	1.4	ug/L	
100-01-6	4-Nitroaniline	1.1	U	10	1.1	ug/L	
86-30-6	N-Nitrosodiphenylamine	1.3	U	10	1.3	ug/L	
101-55-3	4-Bromophenyl-phenylether	1.5	U	10	1.5	ug/L	
						-	

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Dilution

Date Analyzed

Analytical Batch ID

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/14/2006 Project: Date Received: Morris park RI/FS TRC#46130-0010 12/15/2000 Client Sample MW08-150 SDG No.: X5892 Lab Sample ID: X5892-09 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 990.0 mL Extract Vol: 1000 uL

BB035302.D	Ditation 1	12/19/2006	12/23/2006		BB122106		J
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
118-74-1	Hexachloro		1.2	U	10	1.2	ug/L
85-01-8	Phenanthrer	ie	1.4	U	10	1.4	ug/L
120-12-7	Anthracene		1.4	U	10	1.4	ug/L
86-74-8	Carbazole		1.3	U	10	1.3	ug/L
84-74-2	Di-n-butylp	hthalate	1.3	U	10	1.3	ug/L
206-44-0	Fluoranthen	e	1.2	U	10	1.2	ug/L
129-00-0	Pyrene		1.5	U	10	1.5	ug/L
85-68-7	Butylbenzyl	phthalate	1.4	U	10	1.4	ug/L
91-94-1	3,3-Dichloro	benzidine	1.1	U	20	1.1	ug/L
56-55-3	Benzo(a)ant	hгасепе	1.1	U	10	1.1	ug/L
218-01-9	Chrysene		1.7	U	10	1.7	ug/L
117-81-7	bis(2-Ethylh	exyl)phthalate	1.5	U	10	1.5	ug/L
117-84-0	Di-n-octyl p	hthalate	1.3	U	10	1.3	ug/L
205-99-2	Benzo(b)flu	oranthene	0.760	U	10	0.760	ug/L
207-08-9	Benzo(k)flu	oranthene	1.9	U	10	1.9	ug/L
50-32-8	Benzo(a)pyr	ene	1.2	U	10	1.2	ug/L
193-39-5	Indeno(1,2,3	l-cd)pyrene	0.840	U	10	0.840	ug/L
53-70-3	Dibenz(a,h)a	anthracene	0.870	U	10	0.870	ug/L
191-24-2	Benzo(g,h,i)	perylene	1.1	U	10	1.1	ug/L
SURROGATES							_
4165-60-0	Nitrobenzen	e-d5	72.66	73 %	35 - 114		SPK: 10
321-60-8	2-Fluorobipl	nenyl	74.89	75 %	43 - 116		SPK: 10
1718-51-0	Terphenyl-d	14	75.3	75 %	33 - 141		SPK: 10
INTERNAL STAND	ARDS						
3855-82-1	1,4-Dichloro	benzene-d4	269414	6.76			
1146-65-2	Naphthalene	-d8	1124192	9.09			
15067-26-2	Acenaphther	ne-d10	615263	12.57			
1517-22-2	Phenanthren		1042513	15.57			
1719-03-5	Chrysene-d1	2	771791	20.95			
1520-96-3	Perylene-d1:		694599	24.44			
TENTITIVE IDENT	•						

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/14/2006 Project: Date Received: Morris park RI/FS TRC#46130-0010 12/15/2000 Client Sample MW08-150 SDG No.: X5892 Lab Sample ID: X5892-09 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 990.0 mL Extract Vol: 1000 uL

File ID	Dilution	Date Extracted	Date Analyzed	Analytical Batch ID
BB035302.D	1	12/19/2006	12/23/2006	BB122106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TENTITIVE IDE	NTIFIED COMPOUNDS			•••••••		
	ACP4.30	170	AB	4.30		ug/L
57-10-3	n-Hexadecanoic acid	3.8	JB	16.79		ug/L
131143-01-6	Bromoacetic acid, pentadecyl ester	4.3	J	20.73		ug/L
111-02-4	2,6,10,14,18,22-Tetracosahexaene,	21	J	23.10		ug/L

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/14/2006 Date Received: Project: 12/15/2000 Morris park RI/FS TRC#46130-0010 Client Sample MW20-50 SDG No.: X5892 Lab Sample ID: X5892-10 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 900.0 mL Extract Vol: 1000 uL

File ID	Dilution	Date Extracted	Date Analyzed	Analytical Batch ID
BB035307.D	1	12/19/2006	12/23/2006	BB122106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
111-44-4	bis(2-Chloroethyl)ether	1.6	U	11	1.6	ug/L
95-50-1	1,2-Dichlorobenzene	1.4	U	11	1.4	ug/L
541-73-1	1,3-Dichlorobenzene	1.3	U	11	1.3	ug/L
106-46-7	1,4-Dichlorobenzene	1.3	U	11	1.3	ug/L
108-60-1	2,2-oxybis(1-Chloropropane)	1.3	U	11	1.3	ug/L
621-64-7	N-Nitroso-di-n-propylamine	1.5	U	11	1.5	ug/L
67-72-1	Hexachloroethane	1.3	U	11	1.3	ug/L
98-95-3	Nitrobenzene	1.7	U	11	1.7	ug/L
78-59-1	Isophorone	1.4	U	11	1.4	ug/L
111-91-1	bis(2-Chloroethoxy)methane	1.5	U	11	1.5	ug/L
120-82-1	1,2,4-Trichlorobenzene	1.5	U	11	1.5	ug/L
91-20-3	Naphthalene	1.5	U	11	1.5	ug/L
106-47-8	4-Chloroaniline	0.950	U	11	0.950	ug/L
87-68-3	Hexachlorobutadiene	1.5	U]]	1.5	ug/L
91-57-6	2-Methylnaphthalene	1.2	U	11	1.2	ug/L
77-47-4	Hexachlorocyclopentadiene	1.3	U	11	1.3	ug/L
91-58-7	2-Chloronaphthalene	1.5	U	11	1.5	ug/L
88-74-4	2-Nitroaniline	1.2	U	11	1.2	ug/L
131-11-3	Dimethylphthalate	1.4	U	11	1.4	ug/L
208-96-8	Acenaphthylene	1.4	U	11	1.4	ug/L
606-20-2	2,6-Dinitrotoluene	1.4	U	11	1.4	ug/L
99-09-2	3-Nitroaniline	1.1	U	11	1.1	ug/L
83-32-9	Acenaphthene	1.5	U	11	1.5	ug/L
132-64-9	Dibenzofuran	1.4	U	11	1.4	ug/L
121-14-2	2,4-Dinitrotoluene	1.3	U	11	1.3	ug/L
84-66-2	Diethylphthalate	1.5	U	11	1.5	ug/L
7005-72-3	4-Chlorophenyl-phenylether	1.5	U	11	1.5	ug/L
86-73-7	Fluorene	1.6	U	11	1.6	ug/L
100-01-6	4-Nitroaniline	1.2	U	11	1.2	ug/L
86-30-6	N-Nitrosodiphenylamine	1.4	U	11	1.4	ug/L
101-55-3	4-Bromophenyl-phenylether	1.6	U	11	1.6	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client Sample

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Date Collected:

Date Received:

Matrix:

% Moisture:

12/14/2006

12/15/2000

X5892

100

1000

uL

WATER

Report of Analysis

Client: TRC Environmental Corp., NY

Project: Morris park RI/FS TRC#46130-0010

MW20-50 SDG No.:

Lab Sample ID: X5892-10

Analytical Method: 8270

Sample Wt/Wol: 900.0 mL Extract Vol:

File ID Dilution Date Extracted Date Analyzed Analytical Batch ID
BB035307.D 1 12/19/2006 12/23/2006 BB122106

CAS Number	Parameter	Conc.	Qualifie	r RL	MDL	Units
TARGETS						
118-74-1	Hexachlorobenzene	1.4	U	11	1.4	ug/L
85-01-8	Phenanthrene	1.6	U	11	1.6	ug/L
120-12-7	Anthracene	1.6	U	11	1.6	ug/L
86-74-8	Carbazole	1.4	U	11	1.4	ug/L
84-74-2	Di-n-butylphthalate	1.4	U	11	1.4	ug/L
206-44-0	Fluoranthene	1.3	U	11	1.3	ug/L
129-00-0	Pyrene	1.6	U	11	1.6	ug/L
85-68-7	Butylbenzylphthalate	1.6	U	11	1.6	ug/L
91-94-1	3,3-Dichlorobenzidine	1.2	U	22	1.2	ug/L
56-55-3	Benzo(a)anthracene	1.2	U	11	1.2	ug/L
218-01-9	Chrysene	1.9	U	11	1.9	ug/L
117-81-7	bis(2-Ethylhexyl)phthalate	1.7	U	11	1.7	ug/L
117-84-0	Di-n-octyl phthalate	1.4	U	11	1.4	ug/L
205-99-2	Benzo(b)fluoranthene	0.830	U	11	0.830	ug/L
207-08-9	Benzo(k)fluoranthene	2.1	U	11	2.1	ug/L
50-32-8	Benzo(a)pyrene	1.3	U	11	1.3	ug/L
193-39-5	Indeno(1,2,3-cd)pyrene	0.920	U	11	0.920	ug/L
53-70-3	Dibenz(a,h)anthracene	0.960	U	11	0.960	ug/L
191-24-2	Benzo(g,h,i)perylene	1.2	U	11	1.2	ug/L
SURROGATES						-
4165-60-0	Nitrobenzene-d5	80.54	81 %	35 - 114		SPK: 10
321-60-8	2-Fluorobiphenyl	80.69	81%	43 - 116		SPK: 10
1718-51-0	Terphenyl-d14	82.93	83 %	33 - 141		SPK: 10
INTERNAL STAN	NDARDS					
3855-82-1	1,4-Dichlorobenzene-d4	184651	6.75			
1146-65-2	Naphthalene-d8	763176	9.08			
15067-26-2	Acenaphthene-d10	438866	12.56			
1517-22-2	Phenanthrene-d10	762150	15.57			
1719-03-5	Chrysene-d12	520169	20.94			
1520-96-3	Perylene-d12	497898	24.42			
TENTITIVE IDE!	NTIFIED COMPOUNDS					

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: Project:	TRC Environmental Corp., NY Morris park RI/FS TRC#46130-0010	Date Collected: Date Received:	12/14/2006 12/15/200
Client Sample	MW20-50	SDG No.:	X5892
Lab Sample ID:	X5892-10	Matrix:	WATER
Analytical Method:	8270	% Moisture:	100
Sample Wt/Wol:	900.0 mL	Extract Vol:	1000 uL

File ID	Dilution Date Extracted		Date Analyze	d An:	Analytical Batch ID		
BB035307.D	1	12/19/2006	12/23/2006	ВВ	122106		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TENTITIVE IDENT	TIFIED COMI	POUNDS					

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TENTITIVE IDE	NTIFIED COMPOUNDS					
	ACP4.30	180	AB	4.30		ug/L
57-10-3	n-Hexadecanoic acid	3.8	JB	16.78		ug/L
74685-30-6	5-Eicosene, (E)-	3.6	J	17.82		ug/L
56221-91-1	13-Tetradecen-1-ol acetate	5.3	J	20.73		ug/L
111-02-4	2,6,10,14,18,22-Tetracosahexaene,	22	J	23.08		ug/L

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/14/2006 Project: Date Received: Morris park RI/FS TRC#46130-0010 12/15/2000 Client Sample MW02-160R SDG No.: X5892 Lab Sample ID: X5892-11 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 970.0 mL Extract Vol: 1000 uL

File ID	Dilution	Date Extracted	Date Analyzed	Analytical Batch ID	1
BB035306.D	1	12/19/2006	12/23/2006	BB122106	

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
111-44-4	bis(2-Chloroethyl)ether	1.5	U	10	1.5	ug/L
95-50-1	1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L
541-73-1	1,3-Dichlorobenzene	1.2	U	10	1.2	ug/L
106-46-7	1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L
108-60-1	2,2-oxybis(1-Chloropropane)	1.3	U	10	1.3	ug/L
621-64-7	N-Nitroso-di-n-propylamine	1.4	U	10	1.4	ug/L
67-72-1	Hexachloroethane	1.2	U	10	1.2	ug/L
98-95-3	Nitrobenzene	1.6	U	10	1.6	ug/L
78-59-1	Isophorone	1.3	U	10	1.3	ug/L
111-91-1	bis(2-Chloroethoxy)methane	1.4	U	10	1.4	ug/L
120-82-1	1,2,4-Trichlorobenzene	1.4	U	10	1.4	ug/L
91-20-3	Naphthalene	1.4	U	10	1.4	ug/L
106-47-8	4-Chloroaniline	0.880	U	10	0.880	ug/L
87-68-3	Hexachlorobutadiene	1.4	U	10	1.4	ug/L
91-57-6	2-Methylnaphthalene	1.1	υ	10	1.1	ug/L
77-47-4	Hexachlorocyclopentadiene	1.2	U	10	1.2	ug/L
91-58-7	2-Chloronaphthalene	1.4	U	10	1.4	ug/L
88-74-4	2-Nitroaniline	1.1	U	10	1.1	ug/L
131-11-3	Dimethylphthalate	1.3	U	10	1.3	ug/L
208-96-8	Acenaphthylene	1.3	U	10	1.3	ug/L
606-20-2	2,6-Dinitrotoluene	1.3	U	10	1.3	ug/L
99-09-2	3-Nitroaniline	1.0	U	10	1.0	ug/L
83-32-9	Acenaphthene	1.4	U	10	1.4	ug/L
132-64-9	Dibenzofuran	1.3	U	10	1.3	ug/L
121-14-2	2,4-Dinitrotoluene	1.2	U	10	1.2	ug/L
84-66-2	Diethylphthalate	1.4	U	10	1.4	ug/L
7005-72-3	4-Chlorophenyl-phenylether	1.4	U	10	1.4	ug/L
86-73-7	Fluorene	1.4	U	10	1.4	ug/L
100-01-6	4-Nitroaniline	1.1	U	10	1.1	ug/L
86-30-6	N-Nitrosodiphenylamine	1.3	U	10	1.3	ug/L
101-55-3	4-Bromophenyl-phenylether	1.5	U	10	1.5	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/14/2006 Project: Date Received: Morris park RI/FS TRC#46130-0010 12/15/2000 **Client Sample** MW02-160R SDG No.: X5892 Lab Sample ID: X5892-11 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 970.0 mL Extract Vol: 1000 uL

File ID	Dilution	Date Extracted	Date Analyzed	l An	alytical Ba	itch ID	
BB035306.D	1	12/19/2006	12/23/2006	BB	3122106		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
118-74-1	Hexachlorob		1.3	U	10	1.3	ug/L
85-01-8	Phenanthren	2	1.5	U	10	1.5	ug/L
120-12-7	Anthracene		1.4	U	10	1.4	ug/L
86-74-8	Carbazole		1.3	U	10	1.3	ug/L
84-74-2	Di-n-butylph	thalate	1.3	U	10	1.3	ug/L
206-44-0	Fluoranthene	:	1.2	U	10	1.2	ug/L
129-00-0	Pyrene		1.5	U	10	1.5	ug/L
85-68-7	Butylbenzylp	hthalate	1.5	U	10	1.5	ug/L
91-94-1	3,3-Dichloro	benzidine	1.1	U	21	1.1	ug/L
56-55-3	Benzo(a)antl	ıracene	1.1	U	10	1.1	ug/L
218-01-9	Chrysene		1.7	U	10	1.7	ug/L
117-81-7	bis(2-Ethylho	exyl)phthalate	1.6	U	10	1.6	ug/L
117-84-0	Di-n-octyl pl	ıthalate	1.3	U	10	1.3	ug/L
205-99-2	Benzo(b)fluo	ranthene	0.770	U	10	0.770	ug/L
207-08-9	Benzo(k)fluo	ranthene	1.9	U	10	1.9	ug/L
50-32-8	Benzo(a)pyro	ene	1.2	U	10	1.2	ug/L
193-39-5	Indeno(1,2,3-	-cd)pyrene	0.850	U	10	0.850	ug/L
53-70-3	Dibenz(a,h)a	nthracene	0.890	U	10	0.890	ug/L
191-24-2	Benzo(g,h,i)	perylene	1.1	U	10	1.1	ug/L
SURROGATES		·					9
4165-60-0	Nitrobenzene	:-d5	79.16	79 %	35 - 114		SPK: 10
321-60-8	2-Fluorobiph	enyl	79.45	79 %	43 - 116		SPK: 10
1718-51-0	Terphenyl-d1	4	79.52	80 %	33 - 141		SPK: 10
INTERNAL STAND	ARDS						
3855-82-1	1,4-Dichlorol	oenzene-d4	185290	6.75			
1146-65-2	Naphthalene-	d8	766527	9.09			
15067-26-2	Acenaphthen		419726	12.57			
1517-22-2	Phenanthrene		723406	15.57			
1719-03-5	Chrysene-d1:		516956	20.94			
1520-96-3	Perylene-d12		499055	24.43			
TENTITIVE IDENT	•			** * **			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/14/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/200¢ Client Sample MW02-160R SDG No.: X5892 Lab Sample ID: X5892-11 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 970.0 mL Extract Vol: 1000 uL

File ID	Dilution	Date Extracted	Date Analyzed	Analytical Batch ID
BB035306.D	1	12/19/2006	12/23/2006	BB122106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TENTITIVE IDE	NTIFIED COMPOUNDS					
	ACP4.30	170	AB	4.30		ug/L
57-10-3	n-Hexadecanoic acid	5.3	JB	16.78		ug/L
86711-81-1	2- Chloropropionic acid, hexadecyl	4.4	1	20.72		ug/L
111-02-4	2,6,10,14,18,22-Tetracosahexaene,	21	J	23.08		ug/L

Dilution

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Date Analyzed

Analytical Batch ID

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/14/2006 Project: Date Received: Morris park RI/FS TRC#46130-0010 12/15/2004 Client Sample PMW-05 SDG No.: X5892 Lab Sample ID: X5892-12 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 980.0 mL Extract Vol: 1000 uL

BB035305.D	1 12/19/2006		12/23/2006		BB122106		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
111-44-4	bis(2-Chlore	oethyl)ether	1.5	U	10	1.5	ug/L
95-50-1	1,2-Dichlor	obenzene	1.2	U	10	1.2	ug/L
541-73-1	1,3-Dichlor	obenzene	1.2	U	10	1.2	ug/L
106-46-7	1,4-Dichlor	obenzene	1.2	U	10	1.2	ug/L
108-60-1	2,2-oxybis(I-Chloropropane)	1.2	U	10	1.2	ug/L
621-64-7	N-Nitroso-d	i-n-propylamine	1.4	U	10	1.4	ug/L
67-72-1	Hexachloro	ethane	1.2	U	10	1.2	ug/L
98-95-3	Nitrobenzer	ie	1.6	U	10	1.6	ug/L
78-59-1	Isophorone		1.3	U	10	1.3	ug/L
111-91-1	bis(2-Chlore	ethoxy)methane	1.4	U	10	1.4	ug/L
120-82-1	1,2,4-Trichl	orobenzene	1.4	U	10	1.4	ug/L
91-20-3	Naphthalene	2	1.4	U	10	1.4	ug/L
106-47-8	4-Chloroani	line	0.880	U	10	0.880	ug/L
87-68-3	Hexachloro	outadiene	1.4	U	10	1.4	ug/L
91-57-6	2-Methylna	ohthalene	1.1	U	10	1.1	ug/L
77-47-4	Hexachloro	cyclopentadiene	1.2	U	10	1.2	ug/L
91-58-7	2-Chloronap	hthalene	1.4	U	10	1.4	ug/L
88-74-4	2-Nitroanili	ne	1.1	U	10	1.1	ug/L
131-11-3	Dimethylph	thalate	1.3	U	10	1.3	ug/L
208-96-8	Acenaphthy	lene	1.3	U	10	1.3	ug/L
606-20-2	2,6-Dinitrot	oluene	1.3	U	10	1.3	ug/L
99-09-2	3-Nitroanilii	ne	1.0	U	10	1.0	ug/L
83-32-9	Acenaphthe	ne	1.4	U	10	1.4	ug/L
132-64-9	Dibenzofura	n	1.3	U	10	1.3	ug/L
121-14-2	2,4-Dinitrot	oluene	1.2	U	10	1.2	ug/L
84-66-2	Diethylphth	alate	1.4	U	10	1.4	ug/L
7005-72-3	4-Chlorophe	nyl-phenylether	1.4	U	10	1.4	ug/L
86-73-7	Fluorene		1.4	U	10	1.4	ug/L
100-01-6	4-Nitroanilii	ne	1.1	U	10	1.1	ug/L
86-30-6	N-Nitrosodi	phenylamine	1.3	U	10	1.3	ug/L
101-55-3	4-Bromophe	nyl-phenylether	1.5	U	10	1.5	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Dilution

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Date Analyzed

Analytical Batch ID

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/14/2006 Date Received: Project: 12/15/2004 Morris park RI/FS TRC#46130-0010 Client Sample PMW-05 SDG No.: X5892 Lab Sample ID: X5892-12 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 980.0 mL Extract Vol: 1000 uL

BB035305.D	1 12/19/2006	12/23/2006		BB122106		
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
118-74-1	Hexachlorobenzene	1.2	U	10	1.2	ug/L
85-01-8	Phenanthrene	1.4	U	10	1.4	ug/L
120-12-7	Anthracene	1.4	U	10	1.4	ug/L
86-74-8	Carbazole	1.3	U	10	1.3	ug/L
84-74-2	Di-n-butylphthalate	1.3	U	10	1.3	ug/L
206-44-0	Fluoranthene	1.2	U	10	1.2	ug/L
129-00-0	Pyrene	1.5	U	10	1.5	ug/L
85-68-7	Butylbenzylphthalate	1.5	U	10	1.5	ug/L
91-94-1	3,3-Dichlorobenzidine	1.1	U	20	1.1	ug/L
56-55-3	Benzo(a)anthracene	1.1	U	10	1.1	ug/L
218-01-9	Chrysene	1.7	U	10	1.7	ug/L
117-81-7	bis(2-Ethylhexyl)phthalate	1.6	U	10	1.6	ug/L
117-84-0	Di-n-octyl phthalate	1.3	U	10	1.3	ug/L
205-99-2	Benzo(b)fluoranthene	0.760	U	10	0.760	ug/L
207-08-9	Benzo(k)fluoranthene	1.9	U	10	1.9	ug/L
50-32-8	Benzo(a)pyrene	1.2	U	10	1.2	ug/L
193-39-5	Indeno(1,2,3-cd)pyrene	0.840	U	10	0.840	ug/L
53-70-3	Dibenz(a,h)anthracene	0.880	U	10	0.880	ug/L
191-24-2	Benzo(g,h,i)perylene	1.1	U	10	1.1	ug/L
SURROGATES						Ü
4165-60-0	Nitrobenzene-d5	80.83	81%	35 - 114		SPK: 10
321-60-8	2-Fluorobiphenyl	77.86	78%	43 - 116		SPK: 10
1718-51-0	Terphenyl-d14	79.7	80%	33 - 141		SPK: 10
INTERNAL STAND	DARDS					
3855-82-1	1,4-Dichlorobenzene-d4	184759	6.76			
1146-65-2	Naphthalene-d8	764783	9.08			
15067-26-2	Acenaphthene-d10	446018	12.57			
1517-22-2	Phenanthrene-d10	761175	15.58			
1719-03-5	Chrysene-d12	527895	20.94			
1520-96-3	Perylene-d12	492316	24.43			
	TIFIED COMPOUNDS					

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/14/2006 Project: Date Received: 12/15/2000 Morris park RI/FS TRC#46130-0010 Client Sample PMW-05 SDG No.: X5892 Lab Sample ID: X5892-12 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 980.0 Extract Vol: uL mL 1000

File ID	Dilution	Date Extracted	Date Analyzed	Analytical Batch ID
BB035305.D	1	12/19/2006	12/23/2006	BB122106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TENTITIVE IDE	NTIFIED COMPOUNDS					
	ACP4.30	160	AB	4.30		ug/L
57-10-3	n-Hexadecanoic acid	4.1	JB	16.78		ug/L
111-02-4	2,6,10,14,18,22-Tetracosahexaene,	17	J	23.08		ug/L

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/14/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2000 Client Sample MW24-60 SDG No.: X5892 ID: Lab Sample ID: X5892-13 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 980.0 mL Extract Vol: 1000 uL

File ID	Dilution	Date Extracted	Date Analyze	ed Analytical Batch ID		Batch ID	
BB035338.I) 1	12/19/2006	12/25/2006	BE	122106		
CAS Number	Paramet	er	Conc.	Qualifier	RL	MDL	Units
TARGETS							
111-44-4		oroethyl)ether	1.5	U	10	1.5	ug/L
95-50-1	1,2-Dichl	orobenzene	1.2	U	10	1.2	ug/L
541-73-1	1,3-Dichl	orobenzene	1.2	U	10	1.2	ug/L
106-46-7	1,4-Dichl	orobenzene	1.2	U	10	1.2	ug/L
108-60-1	2,2-oxybi	s(1-Chloropropane)	1.2	U	10	1.2	ug/L
621-64-7	N-Nitrosc	o-di-n-propylamine	1.4	U	10	1.4	ug/L
67-72-1	Hexachlo	roethane	1.2	U	10	1.2	ug/L
98-95-3	Nitrobenz	ene	1.6	U	10	1.6	ug/L
78-59-1	Isophoror	ne	1.3	U	10	1.3	ug/L
111-91-1	bis(2-Chl	oroethoxy)methane	1.4	U	10	1.4	ug/L
120-82-1	1,2,4-Tric	chlorobenzene	1.4	U	10	1.4	ug/L
91-20-3	Naphthale	ene	1.4	U	10	1.4	ug/L
106-47-8	4-Chloroa	niline	0.880	U	10	0.880	ug/L
87-68-3	Hexachlo	robutadiene	1.4	U	10	1.4	ug/L
91-57-6	2-Methyli	naphthalene	1.1	U	10	1.1	ug/L
77-47-4	Hexachlo	rocyclopentadiene	1.2	U	10	1.2	ug/L
91-58-7	2-Chloror	naphthalene	1.4	U	10	1.4	ug/L
88-74-4	2-Nitroan	iline	1.1	U	10	1.1	ug/L
131-11-3	Dimethyl	phthalate	1.3	U	10	1.3	ug/L
208-96-8	Acenapht	hylene	1.3	U	10	1.3	ug/L
606-20-2	2,6-Dinitr	otoluene	1.3	U	10	1.3	ug/L
99-09-2	3-Nitroan	iline	1.0	U	10	1.0	ug/L
83-32-9	Acenaphtl	hene	1.4	U	10	1.4	ug/L
132-64-9	Dibenzofi	ıran	1.3	U	10	1.3	ug/L
121-14-2	2,4-Dinitr	otoluene	1.2	U	10	1.2	ug/L
84-66-2	Diethylph	thalate	1.4	U	10	1.4	ug/L
7005-72-3		henyl-phenylether	1.4	U	10	1.4	ug/L
86-73-7	Fluorene	• •	1,4	U	10	1.4	ug/L
100-01-6	4-Nitroan	iline	1.1	U	10	1.1	ug/L
86-30-6		diphenylamine	1.3	U	10	1.3	ug/L ug/L
101-55-3		henyl-phenylether	1.5	U	10	1.5	ug/L
	•			***			-5

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/14/2006 Date Received: Project: 12/15/2000 Morris park RI/FS TRC#46130-0010 Client Sample MW24-60 SDG No.: X5892 Lab Sample ID: X5892-13 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 980.0 mL Extract Vol: 1000 uL

File ID BB035338.D	Dilution	Date Extracted	Date Analyze 12/25/2006		alytical Ba	itch ID	
DB055556.D	1	12/19/2006	12/25/2000	BB	122106		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
118-74-1	Hexachlorot		1.2	U	10	1.2	ug/L
85-01-8	Phenanthren	e	1.4	U	10	1.4	ug/L
120-12-7	Anthracene		1,4	U	10	1.4	ug/L
86-74-8	Carbazole		1.3	U	10	1.3	ug/L
84-74-2	Di-n-butylpl	Di-n-butylphthalate		U	10	1.3	ug/L
206-44-0	Fluoranthen	Fluoranthene		U	10	1.2	ug/L
129-00-0	Pyrene		1.5	U	10	1.5	ug/L
85-68-7	Butylbenzyl	phthalate	1.5	U	10	1.5	ug/L
91-94-1	3,3-Dichloro	benzidine	1.1	U	20	1.1	ug/L
56-55-3	Benzo(a)ant	hracene	1.1	U	10	1.1	ug/L
218-01-9	Chrysene		1.7	U	10	1.7	ug/L
117-81-7	bis(2-Ethylh	exyl)phthalate	3.7	J	10	1.6	ug/L
117-84-0	Di-n-octyl p	hthalate	1.3	U	10	1.3	ug/L
205-99-2	Benzo(b)fluoranthene		0.760	U	10	0.760	ug/L
207-08-9	Benzo(k)flue	oranthene	1.9	U	10	1.9	ug/L
50-32-8	Benzo(a)pyr	ene	1.2	U	10	1.2	ug/L
193-39-5	Indeno(1,2,3	-cd)pyrene	0.840	U	10	0.840	ug/L
53-70-3	Dibenz(a,h)a	inthracene	0.880	U	10	0.880	ug/L
191-24-2	Benzo(g,h,i)	perylene	1.1	U	10	1.1	ug/L
SURROGATES							Ü
4165-60-0	Nitrobenzen	e-d5	83.78	84 %	35 - 114		SPK: 10
321-60-8	2-Fluorobiph	nenyl	84.17	84 %	43 - 116		SPK: 10
1718-51-0	Terphenyl-d	14	84.61	85 %	33 - 141		SPK: 10
INTERNAL STAND	ARDS						
3855-82-1	1,4-Dichloro	benzene-d4	223091	6.75			
1146-65-2	Naphthalene	-d8	924264	9.08			
15067-26-2	Acenaphther	ne-d10	492084	12.57			
1517-22-2	Phenanthren	e-d10	852700	15.59			
1719-03-5	Chrysene-d1	2	545065	20.97			
1520-96-3	Perylene-d12		329047	24.49			
TENTITIVE IDENT	-						

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

•	F			
	Client:	TRC Environmental Corp., NY	Date Collected:	12/14/2006
	Project:	Morris park RI/FS TRC#46130-0010	Date Received:	12/15/2000
	Client Sample	MW24-60	SDG No.:	X5892
	ID: Lab Sample ID:	X5892-13	Matrix:	WATER
	Analytical Method:	8270	% Moisture:	100
	Sample Wt/Wol:	980.0 mL	Extract Vol:	1000 uL
٠.				i

File ID BB035338.D	Dilution 1	Date Extracted 12/19/2006	Date Analyzed 12/25/2006	Analytical Bate BB122106		atch ID	
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TENTITIVE IDENT	TIFIED COM	IPOUNDS			***************************************		
	ACP4.28		170	A	4.28		ug/L
57-10-3	n-Hexadeca	noic acid	6.1	JB	16.80		ug/L
52132-58-8	Acetic acid,	chloro-, hexadecyl es	4.9	J	17.83		ug/L
13287-24-6	Nonadecane	, 9-methyl-	7.2	j	20.78		ug/L
7225-64-1	Heptadecan	e, 9-octyl-	6.0	J	21,44		ug/L
35599-77-0	Tridecane, I	l-iodo-	6.3	J	22.15		ug/L
55282-16-1	Docosane, 5	-butyl-	10	J	22.95		ug/L
502-62-5	.psi.,.psiCa	arotene, 7,7,8,8,11	29	J	23.13		ug/L
7225-66-3	Tridecane, 7	⁷ -hexyl-	12	J	23.86		ug/L
14905-56-7	Tetradecane	:, 2,6,10-trimethyl-	12	J	24.93		ug/L
54833-48-6	Heptadecan	e, 2,6,10,15-tetramethy	9.8	j	26.20		ug/L
	Unknown27	7.71	9.1	j	27.71		ug/L

N = Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/14/2006 Project: Date Received: 12/15/2000 Morris park RI/FS TRC#46130-0010 Client Sample MW02-50R SDG No.: X5892 Lab Sample ID: X5892-14 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 990.0 mL Extract Vol: 1000 uL

File ID BB035371.D	Dilution 1	Date Extracted 12/19/2006	Date Analyzed 12/26/2006		Analytical Batch ID BB122106		
CAS Number	Parameter		Conc.	Qualifier	Qualifier RL MD		Units
ΓARGETS							***************************************
11-44-4	bis(2-Chlor	oethyl)ether	1.5	U	10	1.5	ug/L
15 50 1	100000		1.0	• •	10		

TARGETS 111-44-4 95-50-1	bis(2-Chloroethyl)ether	1.5				
	• •	1.5				
95-50-1	1.2-Dichlorobenzene		U	10	1.5	ug/L
	· in Dienisiocomizente	1.2	U	10	1.2	ug/L
541-73-1	1,3-Dichlorobenzene	1.2	U	10	1.2	u <u>e</u> /L
106-46-7	1,4-Dichlorobenzene	1.2	U	10	1.2	ug/L
108-60-1	2,2-oxybis(1-Chloropropane)	1.2	U	10	1.2	ug/L
621-64-7	N-Nitroso-di-n-propylamine	1.4	U	10	1.4	ug/L
67-72-1	Hexachloroethane	1.2	U	10	1.2	ug/L
98-95-3	Nitrobenzene	1.6	U	10	1.6	ug/L
78-59-1	Isophorone	1.3	U	10	1.3	ug/L
111-91-1	bis(2-Chloroethoxy)methane	1.4	U	10	1.4	ug/L
120-82-1	1,2,4-Trichlorobenzene	1.4	U	10	1.4	ug/L
91-20-3	Naphthalene	2.0	J	10	1.4	ug/L
106-47-8	4-Chloroaniline	0.870	U	10	0.870	ug/L
87-68-3	Hexachlorobutadiene	1.4	U	10	1.4	ug/L
91-57-6	2-Methylnaphthalene	1.1	J	10	1.1	ug/L
77-47-4	Hexachlorocyclopentadiene	1.2	U	10	1.2	ug/L
91-58-7	2-Chloronaphthalene	1.4	U	10	1.4	ug/L
88-74-4	2-Nitroaniline	1.1	U	10	1.1	ug/L
131-11-3	Dimethylphthalate	1.3	U	10	1.3	ug/L
208-96-8	Acenaphthylene	1.3	U	10	1.3	ug/L
606-20-2	2,6-Dinitrotoluene	1.3	U	10	1.3	ug/L
99-09-2	3-Nitroaniline	1.0	U	10	1.0	ug/L
83-32-9	Acenaphthene	1.4	U	10	1.4	ug/L
132-64-9	Dibenzofuran	1.3	U	10	1.3	ug/L
121-14-2	2,4-Dinitrotoluene	1.2	U	10	1.2	ug/L
84-66-2	Diethylphthalate	1.3	U	10	1.3	ug/L
7005-72-3	4-Chlorophenyl-phenylether	1.4	U	10	1.4	ug/L
86-73-7	Fluorene	1.4	U	10	1.4	ug/L
100-01-6	4-Nitroaniline	1.1	U	10	1.1	ug/L
86-30-6	N-Nitrosodiphenylamine	1.3	U	10	1.3	ug/L
101-55-3	4-Bromophenyl-phenylether	1.5	U	10	1.5	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/14/2006 Project: Date Received: 12/15/2000 Morris park RI/FS TRC#46130-0010 Client Sample MW02-50R SDG No.: X5892 Lab Sample ID: X5892-14 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 990.0 mLExtract Vol: 1000 uL

File ID	Dilution	Date Extracted	Date Analyzed	d Analytical Batch ID			
BB035371.D	1	12/19/2006	12/26/2006	BB	122106]
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
118-74-1	Hexachloro		1.2	U	10	1.2	ug/L
85-01-8	Phenanthre	ne	1.4	U	10	1.4	ug/L
120-12-7	Anthracene		1.4	U	10	1.4	ug/L
86-74-8	Carbazole		1.3	U	10	1.3	ug/L
84-74-2	Di-n-butylp		1.3	U	10	1.3	ug/L
206-44-0	Fluoranthen	e	1.2	U	10	1.2	ug/L
129-00-0	Pyrene		1.5	U	10	1.5	ug/L
85-68-7	Butylbenzyl	•	1.4	U	10	1.4	ug/L
91-94-1	3,3-Dichlore	obenzidine	1.1	U	20	1.1	ug/L
56-55-3	Benzo(a)ani	hracene	1.1	U	10	1.1	ug/L
218-01-9	Chrysene		1.7	U	10	1.7	ug/L
117-81-7	bis(2-Ethyll	nexyl)phthalate	1.5	U	10	1.5	ug/L
117-84-0	Di-n-octyl p	hthalate	1.3	U	10	1.3	ug/L
205-99-2	Benzo(b)fluoranthene		0.760	U	10	0.760	ug/L
207-08-9	Benzo(k)flu	oranthene	1.9	U	10	1.9	ug/L
50-32-8	Benzo(a)pyr	rene	1.2	U	10	1.2	ug/L
193-39-5	Indeno(1,2,3	3-cd)pyrene	0.840	U	10	0.840	ug/L
53-70-3	Dibenz(a,h)	anthracene	0.870	U	10	0.870	ug/L
191-24-2	Benzo(g,h,i)	perylene	1.1	U	10	1.1	ug/L
SURROGATES							
4165-60-0	Nitrobenzen	e-d5	84.42	84 %	35 - 114		SPK: 10
321-60-8	2-Fluorobip	henyl	84.08	84%	43 - 116		SPK: 10
1718-51-0	Terphenyl-d	14	82.81	83 %	33 - 141		SPK: 10
INTERNAL STAND	ARDS						
3855-82-1	1,4-Dichloro	benzene-d4	183446	6.77			
1146-65-2	Naphthalene	:-d8	786489	9.11			
15067-26-2	Acenaphthe	ne-d10	427933	12.60			
1517-22-2	Phenanthren		659407	15.61			
1719-03-5	Chrysene-d1	12	443207	21,00			
1520-96-3	Perylene-d1		434430	24.55			
TENTITIVE IDENT							

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

57-10-3

111-02-4

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/14/2006 Project: Date Received: 12/15/2000 Morris park RI/FS TRC#46130-0010 Client Sample MW02-50R SDG No.: X5892 ID: Lab Sample ID: X5892-14 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 990.0 mLExtract Vol: 1000 uL

File ID BB035371.D	Dilution 1	Dilution Date Extracted Date Analyzed 1 12/19/2006 12/26/2006	Analytical Batch ID BB122106				
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TENTITIVE IDEN	TIFIED COM	POUNDS					
	ACP4.29		180	A	4.29		ug/L
	unknown12.8	80	4.2	j	12.80		ug/L
6512-99-8	9-Octadecend	oic acid, ethyl ester	4.1	J	16.69		ug/L

11

17

JB

J

16.85

23.16

ug/L

ug/L

n-Hexadecanoic acid

2,6,10,14,18,22-Tetracosahexaene,

J = Estimated Value

Dilution

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Date Analyzed

Analytical Batch ID

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/15/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2000 Client Sample **FIELDBLANK** SDG No.: X5892 Lab Sample ID: X5892-15 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 980.0 mL Extract Vol: 1000 uL

BB035308.D	1 12/19/2006	12/23/2006		BB122106			
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units	
TARGETS							
111-44-4	bis(2-Chloroethyl)ether	1.5	U	10	1.5	ug/L	
95-50-1	1,2-Dichlorobenzene	1.2	U	10	1.2	ug/L	
541-73-1	1,3-Dichlorobenzene	1.2	U	10	1.2	ug/L	
106-46-7	1,4-Dichlorobenzene	1.2	U	10	1.2	ug/L	
108-60-1	2,2-oxybis(1-Chloropropane)	1.2	U	10	1.2	ug/L	
621-64-7	N-Nitroso-di-n-propylamine	1.4	U	10	1.4	ug/L	
67-72-1	Hexachloroethane	1.2	U	10	1.2	ug/L	
98-95-3	Nitrobenzene	1.6	U	10	1.6	ug/L	
78-59-1	lsophorone	1.3	U	10	1.3	ug/L	
111-91-1	bis(2-Chloroethoxy)methane	1.4	U	10	1.4	ug/L	
120-82-1	1,2,4-Trichlorobenzene	1.4	U	10	1.4	ug/L	
91-20-3	Naphthalene	1.4	U	10	1.4	ug/L	
106-47-8	4-Chloroaniline	0.880	U	10	0.880	ug/L	
87-68-3	Hexachlorobutadiene	1.4	U	10	1.4	ug/L	
91-57-6	2-Methylnaphthalene	1.1	U	10	1.1	ug/L	
77-47-4	Hexachlorocyclopentadiene	1.2	U	10	1,2	ug/L	
91-58-7	2-Chloronaphthalene	1.4	U	10	1.4	ug/L	
88-74-4	2-Nitroaniline	1.1	U	10	1.1	ug/L	
131-11-3	Dimethylphthalate	1.3	U	10	1.3	ug/L	
208-96-8	Acenaphthylene	1.3	U	10	1.3	ug/L	
606-20-2	2,6-Dinitrotoluene	1.3	U	10	1.3	ug/L	
99-09-2	3-Nitroaniline	1.0	U	10	1.0	ug/L	
83-32-9	Acenaphthene	1.4	U	10	1.4	ug/L	
132-64-9	Dibenzofuran	1.3	U	10	1.3	ug/L	
121-14-2	2,4-Dinitrotoluene	1.2	U	10	1.2	ug/L	
84-66-2	Diethylphthalate	6.0	j	10	1.4	ug/L	
7005-72-3	4-Chlorophenyl-phenylether	1.4	U	10	1.4	ug/L	
86-73-7	Fluorene	1.4	U	10	1.4	ug/L	
100-01-6	4-Nitroaniline	1.1	U	10	1.1	ug/L	
86-30-6	N-Nitrosodiphenylamine	1.3	U	10	1.3	ug/L	
101-55-3	4-Bromophenyl-phenylether	1.5	U	10	1.5	ug/L	

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

TRC Environmental Corp., NY Client:

Project:

Morris park RI/FS TRC#46130-0010

Date Received:

Date Collected:

12/15/2006 12/15/2000

Client Sample

FIELDBLANK

SDG No.:

X5892

Lab Sample ID:

X5892-15

Matrix:

Analytical Method: 8270

% Moisture:

WATER 100

Sample Wt/Wol:

980.0 mL

Extract Vol:

1000

uL

File ID	Dilution	Date Extracted	Date Analyzed	Analytical Batch ID
BB035308.D	1	12/19/2006	12/23/2006	BB122106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS	***************************************					
118-74-1	Hexachlorobenzene	1.2	U	10	1.2	ug/L
85-01-8	Phenanthrene	1.4	U	10	1.4	ug/L
120-12-7	Anthracene	1.4	U	10	1.4	ug/L
86-74-8	Carbazole	1.3	U	10	1.3	ug/L
84-74-2	Di-n-butylphthalate	1.4	J	10	1.3	ug/L
206-44-0	Fluoranthene	1.2	U	10	1.2	ug/L
129-00-0	Pyrene	1.5	U	10	1.5	ug/L
85-68-7	Butylbenzylphthalate	1.5	U	10	1.5	ug/L
91-94-1	3,3-Dichlorobenzidine	1.1	U	20	1.1	ug/L
56-55-3	Benzo(a)anthracene	1.1	U	10	1.1	ug/L
218-01-9	Chrysene	1.7	U	10	1.7	ug/L
117-81-7	bis(2-Ethylhexyl)phthalate	1.6	U	10	1.6	ug/L
117-84-0	Di-n-octyl phthalate	1.3	U	10	1.3	ug/L
205-99-2	Benzo(b)fluoranthene	0.760	U	10	0.760	ug/L
207-08-9	Benzo(k)fluoranthene	1.9	U	10	1.9	ug/L
50-32-8	Benzo(a)pyrene	1.2	U	10	1.2	ug/L
193-39-5	Indeno(1,2,3-cd)pyrene	0.840	U	10	0.840	ug/L
53-70-3	Dibenz(a,h)anthracene	0.880	U	10	0.880	ug/L
191-24-2	Benzo(g,h,i)perylene	1.1	U	10	1.1	ug/L
SURROGATES						_
4165-60-0	Nitrobenzene-d5	80.71	81 %	35 - 114		SPK: 10
321-60-8	2-Fluorobiphenyl	75.95	76 %	43 - 116		SPK: 10
1718-51-0	Terphenyl-d14	78.49	78 %	33 - 141		SPK: 10
INTERNAL STAN	NDARDS					
3855-82-1	1,4-Dichlorobenzene-d4	186682	6.76			
1146-65-2	Naphthalene-d8	746815	9.08			
15067-26-2	Acenaphthene-d10	437995	12.57			
1517-22-2	Phenanthrene-d10	735996	15.57			
1719-03-5	Chrysene-d12	531423	20.93			
1520-96-3	Perylene-d12	507494	24.43			
TENTITIVE IDE	NTIFIED COMPOUNDS					

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: Project:	TRC Environmental Corp., NY Morris park RI/FS TRC#46130-0010	Date Collected: Date Received:	12/15/2006 12/15/200a
Client Sample	FIELDBLANK	SDG No.:	X5892
Lab Sample ID:	X5892-15	Matrix:	WATER
Analytical Method:	8270	% Moisture:	100
Sample Wt/Wol:	980.0 mL	Extract Vol:	1000 uL

C.	AS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
	BB035308.D	1	12/19/2006	12/23/2006	BB	122106		
	File ID	Dilution	Date Extracted	Date Analyzeo	i Ana	alytical l	Batch ID)

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TENTITIVE IDE	NTIFIED COMPOUNDS					
	ACP4.30	170	AB	4.30		ug/L
74367-33-2	Propanoic acid, 2-methyl-, 2,2-dim	10	J	11.00		ug/L
2728-05-4	Benzamide, N,N-diethyl-4-methyl-	8.5	3	13.40		ug/L
56221-91-1	13-Tetradecen-1-ol acetate	4.7	J	20.73		ug/L
111-02-4	2,6,10,14,18,22-Tetracosahexaene,	27	j	23.08		ug/L

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/15/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2000 Client Sample MW17-60R SDG No.: X5892 Lab Sample ID: X5892-16 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 980.0 mL Extract Vol: 1000 uL

File ID	Dilution	Date Extracted	Date Analyze	d An	alytical E	latch ID	
BB035312.D	1	12/19/2006	12/24/2006	BE	3122106		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
111-44-4	bis(2-Chloro	ethyl)ether	1.5	U	10	1.5	ug/L
95-50-1	1,2-Dichloro	benzene	1.2	U	10	1.2	ug/L
541-73-1	1,3-Dichloro	benzene	1.2	U	10	1.2	ug/L
106-46-7	1,4-Dichloro	benzene	1.2	U	10	1.2	ug/L
108-60-1	2,2-oxybis(1-	Chloropropane)	1.2	U	10	1.2	ug/L
621-64-7	N-Nitroso-di-	-n-propylamine	1.4	U	10	1.4	ug/L
67-72-1	Hexachloroet	hane	1.2	U	10	1.2	ug/L
98-95-3	Nitrobenzene		1.6	U	10	1.6	ug/L
78-59-1	Isophorone		1.3	U	10	1.3	ug/L
111-91-1	bis(2-Chloroc	ethoxy)methane	1.4	U	10	1.4	ug/L
120-82-1	1,2,4-Trichlo	robenzene	1.4	U	10	1.4	ug/L
91-20-3	Naphthalene		7.1	J	10	1.4	ug/L
106-47-8	4-Chloroaniline		0.880	U	10	0.880	ug/L
87-68-3	Hexachlorobu	ıtadiene	1.4	U	10	1.4	ug/L
91-57-6	2-Methylnapl	nthalene	190	Е	10	1.1	ug/L
77-47-4	Hexachlorocy	clopentadiene	1.2	U	10	1.2	ug/L
91-58-7	2-Chloronaph	thalene	1.4	U	10	1.4	ug/L
88-74-4	2-Nitroaniline	;	1,1	U	10	1.1	ug/L
131-11-3	Dimethylphth	alate	1.3	U	10	1.3	ug/L
208-96-8	Acenaphthyle	ne	2.4	J	10	1.3	ug/L
606-20-2	2,6-Dinitrotol	uene	1.3	U	10	1.3	ug/L
99-09-2	3-Nitroaniline	:	1.0	U	10	1.0	ug/L
83-32-9	Acenaphthene	•	5.6	J	10	1.4	ug/L
132-64-9	Dibenzofuran		8.3	J	10	1.3	ug/L
121-14-2	2,4-Dinitrotol	uene	1.2	U	10	1.2	ug/L
84-66-2	Diethylphthala	ate	1.4	U	10	1.4	ug/L
7005-72-3	4-Chlorophen	yl-phenylether	1.4	U	10	1.4	ug/L
86-73-7	Fluorene		11		10	1.4	ug/L
100-01-6	4-Nitroaniline		1.1	U	10	1.1	ug/L
86-30-6	N-Nitrosodiph	enylamine	12		10	1.3	ug/L
101-55-3	4-Bromophen	yl-phenylether	1.5	U	10	1.5	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/15/2006 Project: Date Received: 12/15/2006 Morris park RI/FS TRC#46130-0010 Client Sample MW17-60R SDG No.: X5892 Lab Sample ID: X5892-16 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 980.0 mL Extract Vol: 1000 uL

File ID	Dilution	Date Extracted	Date Analyzed	l An	alytical Ba	itch ID	
BB035312.D	1	12/19/2006	12/24/2006	BE	3122106		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
118-74-1	Hexachlorol		1.2	U	10	1.2	ug/L
85-01-8	Phenanthrene		18		10	1.4	ug/L
120-12-7	Anthracene		3.6	J	10	1.4	ug/L
86-74-8		Carbazole		U	10	1.3	ug/L
84-74-2	Di-n-butylpl	nthalate	1.3	U	10	1.3	ug/L
206-44-0	Fluoranthen	Fluoranthene		U	10	1.2	ug/L
129-00-0	Pyrene	Pyrene		U	10	1.5	ug/L
85-68-7	Butylbenzyl	phthalate	1.5	U	10	1.5	ug/L
91-94-1	3,3-Dichloro	benzidine	1.1	U	20	1.1	ug/L
56-55-3	Benzo(a)anthracene		1.1	U	10	1.1	ug/L
218-01-9	Chrysene		1.7	U	10	1.7	ug/L
117-81-7	bis(2-Ethylhexyl)phthalate		3.7	J	10	1.6	ug/L
117-84-0	Di-n-octyl p	Di-n-octyl phthalate		U	10	1.3	ug/L
205-99-2	Benzo(b)flu	oranthene	0.760	U	10	0.760	ug/L
207-08-9	Benzo(k)flu	oranthene	1.9	U	10	1.9	ug/L
50-32-8	Benzo(a)pyr	ene	1.2	U	10	1.2	ug/L
193-39-5	Indeno(1,2,3	-cd)pyrene	0.840	U	10	0.840	ug/L
53-70-3	Dibenz(a,h)a	inthracene	0.880	U	10	0.880	ug/L
191-24-2	Benzo(g,h,i)	perylene	1.1	U	10	1.1	ug/L
SURROGATES							•
4165-60-0	Nitrobenzen	e-d5	100.89	101 %	35 - 114		SPK: 10
321-60-8	2-Fluorobiph	nenyl	82.98	83 %	43 - 116		SPK: 10
1718-51-0	Terphenyl-d	14	82.27	82 %	33 - 141		SPK: 10
INTERNAL STAND	ARDS						
3855-82-1	1,4-Dichloro	benzene-d4	160042	6.75			
1146-65-2	Naphthalene		552301	9.09			
15067-26-2	Acenaphther		259610	12.59			
1517-22-2	Phenanthren		421683	15.60			
1719-03-5	Chrysene-d1		336231	20.94			
1520-96-3	Perylene-d12		343603	24.42			
TENTITIVE IDENT	•		2.2002	/ -			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY Project: Morris park RI/FS TRC#46130-0010

Date Collected: Date Received:

12/15/2006 12/15/2000

Client Sample

MW17-60R

SDG No.:

ID: Lab Sample ID:

X5892-16

X5892

100

Analytical Method: 8270

Matrix:

WATER

Sample Wt/Wol:

980.0 mL % Moisture: Extract Vol:

1000

uL

File ID	Dilution	Date Extracted	Date Analyzed	Analytical Batch ID
BB035312.D	1	12/19/2006	12/24/2006	BB122106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TENTITIVE IDE	NTIFIED COMPOUNDS					
	ACP4.30	140	AB	4.30		ug/L
581-42-0	Naphthalene, 2,6-dimethyl-	48	J	11.79		ug/L
581-40-8	Naphthalene, 2,3-dimethyl-	56	j	11.93		ug/L
575-37-1	Naphthalene, 1,7-dimethyl-	30	j	11.99		ug/L
6165-40-8	Pentadecane, 7-methyl-	86	J	12.16		ug/L
2245-38-7	Naphthalene, 1,6,7-trimethyl-	32	J	13.44		ug/L
3892-00-0	Pentadecane, 2,6,10-trimethyl-	49	J	14.05		ug/L
638-36-8	Hexadecane, 2,6,10,14-tetramethy	240	J	14.60		ug/L
55045-09-5	Tridecane, 7-propyl-	100	J	15.53		ug/L
112-95-8	Eicosane	44	J	16,23		ug/L

Report of Analysis

Client: TRC Environmental Corp., NY

Project:

Morris park RI/FS TRC#46130-0010

MW17-60RDL

Client Sample ID:

X5892-16DL

Analytical Method: 8270

Sample Wt/Wol:

980.0 mL

Date Collected:

Date Received:

12/15/2006 12/15/2006

SDG No.:

Matrix:

X5892 WATER

% Moisture:

100

Extract Vol:

1000

uL

File ID	Dilution	Date Extracted	Date Analyzed	Analytical Batch ID
BB035376.D	10	12/19/2006	12/26/2006	BB122106

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS					·	
111-44-4	bis(2-Chloroethyl)ether	15	UD	100	15	ug/L
95-50-1	1,2-Dichlorobenzene	12	UD	100	12	ug/L
541-73-1	1,3-Dichlorobenzene	12	UD	100	12	ug/L
106-46-7	1,4-Dichlorobenzene	12	UD	100	12	ug/L
108-60-1	2,2-oxybis(1-Chloropropane)	12	UD	100	12	ug/L
621-64-7	N-Nitroso-di-n-propylamine	14	UD	100	14	ug/L
67-72-1	Hexachloroethane	12	UD	100	12	ug/L
98-95-3	Nitrobenzene	16	UD	100	16	ug/L
78-59-1	lsophorone	13	UD	100	13	ug/L
111-91-1	bis(2-Chloroethoxy)methane	14	UD	100	14	ug/L
120-82-1	1,2,4-Trichlorobenzene	14	UD	100	14	ug/L
91-20-3	Naphthalene	14	UD	100	14	ug/L
106-47-8	4-Chloroaniline	8.8	UD	100	8.8	ug/L
87-68-3	Hexachlorobutadiene	14	UD	100	14	ug/L
91-57-6	2-Methylnaphthalene	200	D	100	11	ug/L
77-47-4	Hexachlorocyclopentadiene	12	UD	100	12	ug/L
91-58-7	2-Chloronaphthalene	14	UD	100	14	ug/L
88-74-4	2-Nitroaniline	11	UD	100	11	ug/L
131-11-3	Dimethylphthalate	13	UD	100	13	ug/L
208-96-8	Acenaphthylene	13	UD	100	13	ug/L
606-20-2	2,6-Dinitrotoluene	13	UD	100	13	ug/L
99-09-2	3-Nitroaniline	10	UD	100	10	ug/L
83-32-9	Acenaphthene	14	UD	100	14	ug/L
132-64-9	Dibenzofuran	13	UD	100	13	ug/L
121-14-2	2,4-Dinitrotoluene	12	UD	100	12	ug/L
84-66-2	Diethylphthalate	14	UD	100	14	ug/L
7005-72-3	4-Chlorophenyl-phenylether	14	UD	100	14	ug/L
86-73-7	Fluorene	14	UD	100	14	ug/L
100-01-6	4-Nitroaniline	11	UD	100	11	ug/L
86-30-6	N-Nitrosodiphenylamine	13	UD	100	13	ug/L
101-55-3	4-Bromophenyl-phenylether	15	UD	100	15	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY

Project: Morris park RI/FS TRC#46130-0010

MW17-60RDL SDG No.

Client Sample MW17-60RDI Lab Sample ID: X5892-16DL

Analytical Method: 8270

Analytical Method: 8270
Sample Wt/Wol: 980.0 mL

Date Received:

Date Collected:

Matrix:

Extract Vol:

12/15/2006 12/15/2000

WATER

uL

SDG No.: X5892

% Moisture: 1

100 1000

File ID	Dilution	Date Extracted	Date Analyzed	Analytical Batch ID
BB035376.D	10	12/19/2006	12/26/2006	BB122106

	10 12/19/2000	12,20,2000		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS	-					
118-74-1	Hexachlorobenzene	12	UD	100	12	ug/L
85-01-8	Phenanthrene	17	JD	100	14	ug/L
120-12-7	Anthracene	14	UD	100	14	ug/L
86-74-8	Carbazole	13	UD	100	13	ug/L
84-74-2	Di-n-butylphthalate	13	UD	100	13	ug/L
206-44-0	Fluoranthene	12	UD	100	12	ug/L
129-00-0	Pyrene	15	UD	100	15	սց/L
85-68-7	Butylbenzylphthalate	15	UD	100	15	ug/L
91-94-1	3,3-Dichlorobenzidine	11	UD	200	11	ug/L
56-55-3	Benzo(a)anthracene	11	UD	100	11	ug/L
218-01-9	Chrysene	17	UD	100	17	ug/L
117-81-7	bis(2-Ethylhexyl)phthalate	16	UD	100	16	ug/L
117-84-0	Di-n-octyl phthalate	13	UD	100	13	ug/L
205-99-2	Benzo(b)fluoranthene	7.6	UD	100	7.6	ug/L
207-08-9	Benzo(k)fluoranthene	19	UD	100	19	ug/L
50-32-8	Benzo(a)pyrene	12	UD	100	12	ug/L
193-39-5	Indeno(1,2,3-cd)pyrene	8.4	UD	100	8.4	ug/L
53-70-3	Dibenz(a,h)anthracene	8.8	UD	100	8.8	ug/L
191-24-2	Benzo(g,h,i)perylene	11	UD	100	11	ug/L
SURROGATES						Ū
4165-60-0	Nitrobenzene-d5	91.4	91%	35 - 114		SPK: 10
321-60-8	2-Fluorobiphenyl	84.9	85 %	43 - 116		SPK: 10
1718-51-0	Terphenyl-d14	69.2	69 %	33 - 141		SPK: 10
INTERNAL STANE	OARDS					
3855-82-1	1,4-Dichlorobenzene-d4	268558	6.76			
1146-65-2	Naphthalene-d8	999913	9.10			
15067-26-2	Acenaphthene-d10	519694	12.59			
1517-22-2	Phenanthrene-d10	851851	15.61			
1719-03-5	Chrysene-d12	780197	20.99			
1520-96-3	Perylene-d12	639910	24.52			
	-					

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Client Sample

Lab Sample ID:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Date Collected:

Date Received:

Matrix:

12/15/2006

12/15/2004

X5892

WATER

Report of Analysis

Client: TRC Environmental Corp., NY

Project: Morris park RI/FS TRC#46130-0010

X5892-17

MW17-60R(DUP) SDG No.:

Analytical Method: 8270 % Moisture: 100

970.0 Sample Wt/Wol: mLExtract Vol: 1000 uL

File ID	Dilution	Date Extracted	Date Analyzed		Analytical Batch ID		
BB035310.D	1	12/19/2006	12/23/2006	BB122106			
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS							
111-44-4	bis(2-Chloro	* *	1.5	U	10	1.5	ug/L
95-50-1	1,2-Dichlord		1.3	U	10	1.3	ug/L
541-73-1	1,3-Dichloro		1.2	U	10	1.2	ug/L
106-46-7	1,4-Dichloro		1.3	U	10	1.3	ug/L
108-60-1	2,2-oxybis(1	-Chloropropane)	1.3	U	10	1.3	ug/L
621-64-7		-n-propylamine	1.4	U	10	1.4	ug/L
67-72-1	Hexachloroe	thane	1.2	U	10	1.2	ug/L
98-95-3	Nitrobenzen	e	1.6	U	10	1.6	ug/L
78-59-1	Isophorone		1.3	U	10	1.3	ug/L
111-91-1	bis(2-Chloro	ethoxy)methane	1.4	U	10	1.4	ug/L
120-82-1	1,2,4-Trichlo	orobenzene	1.4	U	10	1.4	ug/L
91-20-3	Naphthalene		6.1	J	10	1.4	ug/L
106-47-8	4-Chloroaniline		0.880	U	10	0.880	ug/L
87-68-3	Hexachlorobutadiene		1.4	U	10	1.4	ug/L
91-57-6	2-Methylnap	hthalene	190	E	10	1.1	ug/L
77-47-4	Hexachloroc	yclopentadiene	1.2	U	10	1.2	ug/L
91-58-7	2-Chloronap	hthalene	1.4	U	10	1.4	ug/L
88-74-4	2-Nitroanilin	e	1.1	U	10	1.1	ug/L
131-11-3	Dimethylpht	halate	1.3	U	10	1.3	ug/L
208-96-8	Acenaphthyl	ene	1.8	J	10	1.3	ug/L
606-20-2	2,6-Dinitroto	luene	1.3	U	10	1.3	ug/L
99-09-2	3-Nitroanilin	e	1.0	U	10	1.0	ug/L
83-32-9	Acenaphthen	e	4.9	J	10	1.4	ug/L
132-64-9	Dibenzofura	1	6.7	J	10	1.3	ug/L
121-14-2	2,4-Dinitroto	luene	1.2	U	10	1.2	ug/L
84-66-2	Diethylphtha	late	1.4	U	10	1.4	ug/L
7005-72-3	4-Chlorophe	yl-phenylether	1.4	U	10	1.4	ug/L
86-73-7	Fluorene		9.6	J	10	1.4	ug/L
100-01-6	4-Nitroanilin	e	1.1	U	10	1.1	ug/L
86-30-6	N-Nitrosodip	henylamine	7.1	J	10	1.3	ug/L
101-55-3	-	nyl-phenylether	1.5	U	10	1.5	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Sample Wt/Wol:

970.0

mL

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Extract Vol:

1000

uL

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/15/2006 Project: Date Received: Morris park RI/FS TRC#46130-0010 12/15/2000 Client Sample MW17-60R(DUP) SDG No.: X5892 Lab Sample ID: X5892-17 Matrix: WATER Analytical Method: 8270 % Moisture: 100

File ID Dilution		Date Extracted Date Analyza		d An			
BB035310.D	1	12/19/2006	12/23/2006	BB122106			
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS			***				
118-74-1	Hexachlorobo		1.3	U	10	1.3	ug/L
85-01-8	Phenanthrene		14		10	1.5	ug/L
120-12-7	Anthracene		1.4	U	10	1.4	ug/L
86-74-8	Carbazole		1.3	U	10	1.3	ug/L
84-74-2	Di-n-butylpht	halate	1.3	U	10	1.3	ug/L
206-44-0	Fluoranthene		1.2	U	10	1.2	ug/L
129-00-0	Pyrene		1.5	U	10	1.5	ug/L
85-68-7	Butylbenzylp	hthalate	1.5	U	10	1.5	ug/L
91-94-1	3,3-Dichlorob	enzidine	1.1	U	21	1.1	ug/L
56-55-3	Benzo(a)anth	racene	1.1	U	10	1.1	ug/L
218-01-9	Chrysene		1.7	U	10	1.7	ug/L
117-81-7	bis(2-Ethylhe	xyl)phthalate	3.0	J	10	1.6	ug/L
117-84-0	Di-n-octyl ph	thalate	1.3	U	10	1.3	ug/L
205-99-2	Benzo(b)fluor	anthene	0.770	U	10	0.770	ug/L
207-08-9	Benzo(k)fluor	anthene	1.9	U	10	1.9	ug/L
50-32-8	Benzo(a)pyre	ne	1.2	U	10	1.2	ug/L
193-39-5	Indeno(1,2,3-	cd)pyrene	0.850	U	10	0.850	ug/L
53-70-3	Dibenz(a,h)an	thracene	0.890	U	10	0.890	ug/L
191-24-2	Benzo(g,h,i)p	erylene	1.1	U	10	1.1	ug/L
SURROGATES							_
4165-60-0	Nitrobenzene-	·d5	96.99	97 %	35 - 114		SPK: 10
321-60-8	2-Fluorobiphe	nyl	84.56	85 %	43 - 116		SPK: 10
1718-51-0	Terphenyl-d1	1	80.27	80 %	33 - 141		SPK: 10
INTERNAL STAND	ARDS						
3855-82-1	1,4-Dichlorob	enzene-d4	167472	6.75			
1146-65-2	Naphthalene-c	18	576791	9.08			
15067-26-2	Acenaphthene	-d10	285057	12.57			
1517-22-2	Phenanthrene-	d10	445690	15.58			
1719-03-5	Chrysene-d12		370047	20.94			
1520-96-3	Perylene-d12		363186	24.42			
TENTITIVE IDENT	TFIED COMP	OUNDS					

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/15/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2000 Client Sample MW17-60R(DUP) SDG No.: X5892 Lab Sample ID: X5892-17 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 970.0 mL Extract Vol: 1000 uL

CAS	Number	Parameter		Cono	Ovelica	ni	XAY) I	NT
	BB035310.D	1	12/19/2006	12/23/2006	BB	BB122106		
	File ID	Dilution	Date Extracted	Date Analyze	d An	alytical	Batch ID	

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TENTITIVE IDE	NTIFIED COMPOUNDS					
	ACP4.30	160	AB	4.30		ug/L
90-12-0	Naphthalene, 1-methyl-	34	J	10.71		ug/L
1127-76-0	Naphthalene, 1-ethyl-	29	J	11.62		ug/L
581-42-0	Naphthalene, 2,6-dimethyl-	45	J	11.77		ug/L
581-40-8	Naphthalene, 2,3-dimethyl-	55	j	11.92		ug/L
6165-40-8	Pentadecane, 7-methyl-	70	j	12.16		ug/L
3892-00-0	Pentadecane, 2,6,10-trimethyl-	34	J	14.03		ug/L
54105-67-8	Heptadecane, 2,6-dimethyl-	160	J	14.58		ug/L
54833-48-6	Heptadecane, 2,6,10,15-tetramethy	66	J	15.52		ug/L
111-02-4	2,6,10,14,18,22-Tetracosahexaene,	42	J	23.08		ug/L

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Dilution

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Date Analyzed

Analytical Batch ID

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/15/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2000 Client Sample MW17-60R(DUP)DL SDG No.: X5892 ID: Lab Sample ID: X5892-17DL Matrix: WATER Analytical Method: 8270 % Moisture: 100 970.0 Sample Wt/Wol: mLExtract Vol: 1000 uL

BB035377.D	10 12/19/2006	12/26/2006	BB122106		JA. C. 112	
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
111-44-4	bis(2-Chloroethyl)ether	15	UD	100	15	ug/L
95-50-1	1,2-Dichlorobenzene	13	UD	100	13	ug/L
541-73-1	1,3-Dichlorobenzene	12	UD	100	12	ug/L
106-46-7	1,4-Dichlorobenzene	13	UD	100	13	ug/L
108-60-1	2,2-oxybis(1-Chloropropane)	13	UD	100	13	ug/L
621-64-7	N-Nitroso-di-n-propylamine	14	UD	100	14	ug/L
67-72-1	Hexachloroethane	12	UD	100	12	ug/L
98-95-3	Nitrobenzene	16	UD	100	16	ug/L
78-59-1	Isophorone	13	UD	100	13	ug/L
111-91-1	bis(2-Chloroethoxy)methane	14	UD	100	14	ug/L
120-82-1	1,2,4-Trichlorobenzene	14	UD	100	14	ug/L
91-20-3	Naphthalene	14	UD	100	14	ug/L
106-47-8	4-Chloroaniline	8.8	UD	100	8.8	ug/L
87-68-3	Hexachlorobutadiene	14	UD	100	14	ug/L
91-57-6	2-Methylnaphthalene	170	D	100	11	ug/L
77-47-4	Hexachlorocyclopentadiene	12	UD	100	12	ug/L
91-58-7	2-Chloronaphthalene	14	UD	100	14	ug/L
88-74-4	2-Nitroaniline	11	UD	100	11	ug/L
131-11-3	Dimethylphthalate	13	UD	100	13	ug/L
208-96-8	Acenaphthylene	13	UD	100	13	ug/L
606-20-2	2,6-Dinitrotoluene	13	UD	100	13	ug/L
99-09-2	3-Nitroaniline	10	UD	100	10	ug/L
83-32-9	Acenaphthene	14	UD	100	14	ug/L
132-64-9	Dibenzofuran	13	UD	100	13	ug/L
121-14-2	2,4-Dinitrotoluene	12	UD	100	12	ug/L
84-66-2	Diethylphthalate	14	UD	100	14	ug/L
7005-72-3	4-Chlorophenyl-phenylether	14	UD	100	14	ug/L
86-73-7	Fluorene	14	UD	100	14	ug/L
100-01-6	4-Nitroaniline	11	UD	100	11	ug/L
86-30-6	N-Nitrosodiphenylamine	13	UD	100	13	ug/L
101-55-3	4-Bromophenyl-phenylether	15	UD	100	15	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

File ID

Dilution

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Date Analyzed

Analytical Batch ID

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/15/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2006 Client Sample MW17-60R(DUP)DL SDG No.: X5892 Lab Sample ID: X5892-17DL Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 970.0 mLExtract Vol: 1000 uL

Date Extracted

BB035377.D	10 12/19/2006	12/26/2006	ВВ	3122106		
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS		***************************************			······································	
118-74-1	Hexachlorobenzene	13	UD	100	13	ug/L
85-01-8	Phenanthrene	15	UD	100	15	ug/L
120-12-7	Anthracene	14	UD	100	14	ug/L
86-74-8	Carbazole	13	UD	100	13	ug/L
84-74-2	Di-n-butylphthalate	13	UD	100	13	ug/L
206-44-0	Fluoranthene	12	UD	100	12	ug/L
129-00-0	Pyrene	15	UD	100	15	ug/L
85-68-7	Butylbenzylphthalate	15	UD	100	15	ug/L
91-94-1	3,3-Dichlorobenzidine	11	UD	210	11	ug/L
56-55-3	Benzo(a)anthracene	11	UD	100	11	ug/L
218-01-9	Chrysene	17	UD	100	17	ug/L
117-81-7	bis(2-Ethylhexyl)phthalate	16	UD	100	16	ug/L
117-84-0	Di-n-octyl phthalate	13	UD	100	13	ug/L
205-99-2	Benzo(b)fluoranthene	7.7	UD	100	7.7	ug/L
207-08-9	Benzo(k)fluoranthene	19	UD	100	19	ug/L
50-32-8	Benzo(a)pyrene	12	UD	100	12	ug/L
193-39-5	Indeno(1,2,3-cd)pyrene	8.5	UD	100	8.5	ug/L
53-70-3	Dibenz(a,h)anthracene	8.9	UD	100	8.9	ug/L
191-24-2	Benzo(g,h,i)perylene	11	UD	100	11	ug/L
SURROGATES						v
4165-60-0	Nitrobenzene-d5	78.2	78 %	35 - 114		SPK: 10
321-60-8	2-Fluorobiphenyl	76	76 %	43 - 116		SPK: 10
1718-51-0	Terphenyl-d14	64.8	65 %	33 - 141		SPK: 10
INTERNAL STAND	ARDS					***
3855-82-1	1,4-Dichlorobenzene-d4	265344	6.76			
1146-65-2	Naphthalene-d8	1002535	9.09			
15067-26-2	Acenaphthene-d10	514127	12.59			
1517-22-2	Phenanthrene-d10	897631	15.60			
1719-03-5	Chrysene-d12	790053	20.98			
1520-96-3	Perylene-d12	642530	24.52			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

File ID

Dilution

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Date Analyzed

Analytical Batch ID

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/15/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2000 Client Sample MW27D SDG No.: X5892 Lab Sample ID: X5892-18 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 990.0 mLExtract Vol: 1000 uL

Date Extracted

BB035309.D	1 12/19/2006	12/23/2006		вагунсат в 3122106	ACH 117	
CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS			***************************************			
111-44-4	bis(2-Chloroethyl)ether	1.5	U	10	1.5	ug/L
95-50-1	1,2-Dichlorobenzene	1.2	U	10	1.2	ug/L
541-73-1	1,3-Dichlorobenzene	1.2	U	10	1.2	ug/L
106-46-7	1,4-Dichlorobenzene	1.2	U	10	1.2	ug/L
108-60-1	2,2-oxybis(1-Chloropropane)	1.2	U	10	1.2	ug/L
621-64-7	N-Nitroso-di-n-propylamine	1.4	U	10	1.4	ug/L
67-72-1	Hexachloroethane	1.2	U	10	1.2	ug/L
98-95-3	Nitrobenzene	1.6	U	10	1.6	ug/L
78-59-1	Isophorone	1.3	U	10	1.3	ug/L
111-91-1	bis(2-Chloroethoxy)methane	1.4	. U	10	1.4	ug/L
120-82-1	1,2,4-Trichlorobenzene	1.4	U	10	1.4	ug/L
91-20-3	Naphthalene	1.4	U	10	1.4	ug/L
106-47-8	4-Chloroaniline	0.870	U	10	0.870	ug/L
87-68-3	Hexachlorobutadiene	1.4	U	10	1.4	ug/L
91-57-6	2-Methylnaphthalene	1.4	J	10	1.1	ug/L
77-47-4	Hexachlorocyclopentadiene	1.2	U	10	1.2	ug/L
91-58-7	2-Chloronaphthalene	1,4	U	10	1.4	ug/L
88-74-4	2-Nitroaniline	1.1	U	10	1.1	ug/L
131-11-3	Dimethylphthalate	1.3	U	10	1.3	ug/L
208-96-8	Acenaphthylene	1.3	U	10	1.3	ug/L
606-20-2	2,6-Dinitrotoluene	1.3	U	10	1.3	ug/L
99-09-2	3-Nitroaniline	1.0	U	10	1.0	ug/L
83-32-9	Acenaphthene	1.4	U	10	1.4	ug/L
132-64-9	Dibenzofuran	1.3	U	10	1.3	ug/L
121-14-2	2,4-Dinitrotoluene	1.2	U	10	1.2	ug/L
84-66-2	Diethylphthalate	1.3	U	10	1.3	ug/L
7005-72-3	4-Chlorophenyl-phenylether	1.4	U	10	1.4	ug/L
86-73-7	Fluorene	1.4	U	10	1.4	ug/L
100-01-6	4-Nitroaniline	1.1	U	10	1.1	ug/L
86-30-6	N-Nitrosodiphenylamine	1.3	U	10	1.3	ug/L
101-55-3	4-Bromophenyl-phenylether	1.5	U	10	1.5	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client: TRC Environmental Corp., NY

Project:

Morris park RI/FS TRC#46130-0010

Date Received:

Date Collected:

12/15/2006 12/15/2000

Client Sample

MW27D

SDG No.:

X5892

Lab Sample ID: Analytical Method: 8270

X5892-18 Matrix:

% Moisture:

WATER

100

Sample Wt/Wol:

990.0

mL

Extract Vol:

1000 uL

File ID	Dilution	Date Extracted	Date Analyze	ed An	alytical B	atch ID	
BB035309.D	1	12/19/2006	12/23/2006	BE	3122106		
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TARGETS						*******	
118-74-1	Hexachlorob		1.2	U	10	1.2	ug/L
85-01-8	Phenanthren	e	1.4	U	10	1.4	ug/L
120-12-7	Anthracene		1.4	U	10	1.4	ug/L
86-74-8	Carbazole		1.3	U	10	1.3	ug/L
84-74-2	Di-n-butylph	thalate	1.3	U	10	1.3	ug/L
206-44-0	Fluoranthene	•	1.2	U	10	1.2	ug/L
129-00-0	Pyrene		1.5	U	10	1.5	ug/L
85-68-7	Butylbenzylp	ohthalate	1.4	U	10	1.4	ug/L
91-94-1	3,3-Dichloro	benzidine	1.1	U	20	1.1	ug/L
56-55-3	Benzo(a)anth	ıracene	1.1	U	10	1.1	ug/L
218-01-9	Chrysene		1.7	U	10	1.7	ug/L
117-81-7	bis(2-Ethylhe	exyl)phthalate	1.5	U	10	1.5	ug/L
117-84-0	Di-n-octyl pl	nthalate	1.3	U	10	1.3	ug/L
205-99-2	Benzo(b)fluc	ranthene	0.760	U	10	0.760	ug/L
207-08-9	Benzo(k)fluc	ranthene	1.9	U	10	1.9	ug/L
50-32-8	Benzo(a)pyro	ene	1.2	U	10	1.2	ug/L
193-39-5	Indeno(1,2,3	-cd)pyrene	0.840	U	10	0.840	ug/L
53-70-3	Dibenz(a,h)a	nthracene	0.870	U	10	0.870	ug/L
191-24-2	Benzo(g,h,i)		1.1	U	10	1.1	ug/L
SURROGATES		·				***	-5.~
4165-60-0	Nitrobenzene	-d5	84.2	84 %	35 - 114		SPK: 10
321-60-8	2-Fluorobiph	envl	81.44	81%	43 - 116		SPK: 10
1718-51-0	Terphenyl-d1	•	82.33	82 %	33 - 141		SPK: 10
INTERNAL STAND			02.00	0 / 0	32 - 141		5114. 10
3855-82-1	1,4-Dichlorol	henzene-d4	173081	6.75			
1146-65-2	Naphthalene-		714883	9.07			
15067-26-2	Acenaphthen		410641	12.57			
1517-22-2	Phenanthrene		720845	15.56			
1719-03-5	Chrysene-d12		511643	20.93			
1520-96-3	Perylene-d12		489623	20.93			
TENTITIVE IDENT	-		407023	۵4,42			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client: TRC Environmental Corp., NY Date Collected: 12/15/2006 Project: Morris park RI/FS TRC#46130-0010 Date Received: 12/15/2000 Client Sample MW27D SDG No.: X5892 Lab Sample ID: X5892-18 Matrix: WATER Analytical Method: 8270 % Moisture: 100 Sample Wt/Wol: 990.0 mL Extract Vol: 1000 uL

File ID BB035309.D	Dilution 1	Date Extracted 12/19/2006	Date Analyzed 12/23/2006	An BB			
CAS Number	Parameter		Conc.	Qualifier	RL	MDL	Units
TENTITIVE IDENT	TIFIED COM	POUNDS		***************************************			
	ACP4.30		170	AB	4.30		ug/L
57-10-3	n-Hexadecar	noic acid	3.0	JB	16.77		ug/L
000130-97-9	E-15-Heptad	lecenal	4.2	J	20.72		ug/L
111-02-4	2,6,10,14,18	,22-Tetracosahexaene,	14	J	23.07		ug/L

N = Presumptive Evidence of a Compound

CHAIN OF CUSTODY RECORD

284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

	CHEMIECH PROJECT NO.
۱,	
O	
$ \tilde{\alpha}$	
10	
١. 🛈	

Revision 4/2005	688	(ELINOUSHED BY:	St.		10.	5	, °	7	6. 6	5.	7	3. 3			5	CHEMTECH SAMPLE	STANDARD TU	• TO BE ABBOOK	HARD COPY:		PHONE:	ATTENTION:	CITY: NY	ADDRESS:	COMPANY:		
WHITE - CHEMTEC	(VE)					MW 20-50	MW 08-150	MW 08-60	Mw 30 D	Mw 29-D	MW 01-140	MU4-01-60	MW 78.5	Mw 28D	TRIP BLANK		PROJECT SAMPLE IDENTIFICATION	STANDARD TURNAROUND TIME IS 10 BUSINESS DAYS	DAYS.	DAYS	CALA TORIVARIOUND INFORMATION	FAX:	William Silver,	NY STATE: NY ZIP: 10018	1430 Bredway 10th FI	PL EMINEUR INC	CLIENT INFORMATION	SOLVE INFOCUTE
WHITE - CHEMTECH COPY FOR RETURN TO CLIENT	in Ay				OCUMENTED BELOW EA	GW × /	GW x	GW 7	GW X	ャ	SW ×	らい *	K MS	GE x 12	Y	COMP	YPE I	☐ EDD FORMAT		D RESULTS + QC	N. CO.	L'r-	e-mall: LJS; Ive	PROJECT MANAGER: (J.1) 1021	PROJECT NO.: 467	PROJECT NAME: /	CL	WWWW.C
CLIENT YELLOW - CHEMTECH COPY	Page 1 of 2 SHI		Comments:	Conditions of bottles or coolers at receipt	CH TIME SAMPLES CHANGE POSSE		1111 3 XX	11% 3 XX	09:26 3 XX	12/1466 0915-3 XX	V 1510 3 X X	١٠.	1)30 4 X	12/6/06 1/16 3 X X	7-11-66 2 X	- 2	SAMPLE SAMPLE	O Ciner 1 2	ED CI New York State ASP *A*	New York State ASP '8"	DATA DELIVERABLE INFORMATION	2787	e-mall: WS7 Iveri QTHE Solations does	Eldilliam Silveri	e.c.h.mo	RR MIRRIE PAR	CLIENT PROJECT INFORMATION	www.chemtech.net
OPY PINK - SAMPLER COPY	SHIPPED VIA: CLIENT: OTHAND DELIVERED OF CHEMTECH. CPICKED UP		il 4 oz jar ior percent solid.	Compliant D Non Compliant	SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION INCLUDING COURIER DELIVERY											3 4 5 6 7 8		DBESERVATIVES TO		1/1/2/CV		AN MARKET AND AND AND AND AND AND AND AND AND AND	ATTENTION:	CITY:	ċċ	BILL TO: 54ME	CLIENT BILL	COC Number
- 4	OVERNIGHT DYES ONO	ļ	Ice in Cooler?: メソ	Cooler												9 C-HSQ D-NaOH	414					ANALYSIS		STATE: ZIP:		PO#:	CLIENT BILLING INFORMATION	062228

284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

CHEMTECH PROJECT NO.

COC Number 062227

X0

EPA SAMPLE NO.

				VBLK0	L
Lab Name: Chemtech		Con	tract: <u>T</u>	RCE03	
Lab Code: CHEM	Case No.: X5892	SAS No	.: <u>X5892</u>	SDG No.:	X5892
Matrix (soil/water):	WATER	Lab	Sample ID:	VBG1222W2	
Sample wt/vol: 5.0	(g/ml) _ml_	Lab	File ID:	VG005792.D	
Level (low/med):		Date	a Received:		
% Moisture: not dec.	100	Date	a Analyzed:	12/22/2006	
GC Column: RTX624	ID: 0.18	Dilu	ution Factor	1.0	
Soil Extract Volume:		Soil	l Aliquot Vo	olume:	
Number TICS found:	0		CENTRATION (ug/L or ug/		
CAS NO.	COMPOUND		RT	EST. CONC.	Q
75-45-6	Difluorochloromethane		1.04	50	U

EPA SAMPLE NO.

		months of the state of the stat	VBLK03				
Lab Name: Chemtech	Contra	act: TRO	CE03				
Lab Code: CHEM Case No.	.: <u>X5892</u> SAS No.:	<u>x5892</u>	SDG No.:	<u>x5892</u>			
Matrix (soil/water): WATER	Lab Sa	ample ID:	VBH1227-01				
Sample wt/vol: 5.0 (g.	/mL) _mL Lab Fi	ile ID:	VH012613.D				
Level (low/med):	Date F	Received:					
% Moisture: not dec. 100	Date A	Analyzed:	12/27/2006				
GC Column: RTX624 ID: 0.	.53 Diluti	ion Factor:	1.0	-			
Soil Extract Volume:	Soil A	Aliquot Vol	ume:				
Number TICS found: 0		NTRATION UN					
CAS NO. COMPOUNI	D	RT	EST. CONC.	Q			
75-45-6 Difluor	cochloromethane	1.11	50	U			

EPA SAMPLE NO. שואג וסחדסיי

•	INTEDIFICA
Contract: TRO	CE03
sas no.: <u>%5892</u>	SDG No.: X5892
Lab Sample ID:	X5892-01
Lab File ID:	VG005805.D
Data Pagaired:	12/15/2006

5.0 Sample wt/vol: (g/mL) Lab File ID: nLLevel (low/med):

Case No.: X5892

WATER

0

Lab Name: Chemtech

Matrix (soil/water):

Number TICS found:

CHEM

Lab Code:

Date Received: 12/15/2006

CONCENTRATION UNITS:

% Moisture: not dec. 100 Date Analyzed: 12/26/2006 GC Column: RTX624 ID: 0.18 Dilution Factor: 1.0

Soil Extract Volume: Soil Aliquot Volume:

(ug/L or ug/Kg) ug/L COMPOUND CAS NO. EST. CONC. RT 75-45-6 Difluorochloromethane 1.04 50 U

EPA SAMPLE NO.

					MW28D	
Lab Name: C	Chemtech		Con	tract: TRC	E03	
Lab Code:	CHEM	Case No.: <u>X5892</u>	SAS No	x5892	SDG No.:	X5892
Matrix (soil,	/water):	WATER	Lab	Sample ID:	X5892-02	
Sample wt/vo	1: 5.0	(g/mL)mL	Ľab	File ID:	VG005798.D	
Level (low/me	ed):		Date	e Received:	12/15/2006	
% Moisture:	not dec.	100	Date	e Analyzed:	12/22/2006	
GC Column:	RTX624	ID: 0.18	Dil	ution Factor:	1.0	
Soil Extract	Volume:		Soil	l Aliquot Volu	ıme:	
Number TICS :	found:	0		CENTRATION UNI		
CAS NO	o.	COMPOUND		RT	EST. CONC.	Q
75-45-6	5	Difluorochloromethane		1.04	50	U

EPA SAMPLE NO.

						MW28S	
Lab N	Mame: Chemtech		Con	tract:	TRCI	203	
Lab C	Code: CHEM	Case No.: <u>X5892</u>	SAS No	o.: <u>X5</u>	892	SDG No.:	x5892
Matri	.x (soil/water):	WATER	Ľab	Sample	ID:	X5892-03	
Sampl	e wt/vol: 5.0	(g/mL) mL	Lab	File ID	;	VH012616.D	
Level	(low/med):		Date	e Receiv	ed:	12/15/2006	
% Moi	sture: not dec.	100	Date	e Analyz	ed:	12/27/2006	
GC Cc	olumn: RTX624	ID: 0.53	Dil	ution Fa	ctor:	1.0	
Soil	Extract Volume:	B-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Soi	l Aliquo	t Volu	me:	
Numbe	er TICS found:	0		CENTRATI			·····
	CAS NO.	COMPOUND		RT		EST. CONC.	Q
İ	75-45-6	Difluorochloromethane		1.1	.1	50	U

EPA SAMPLE NO.

MW-01-60
Į

Lab Name: Chemtech	· · · · · · · · · · · · · · · · · · ·	Contract	: TRC	E03	
Lab Code: CHEM	Case No.: <u>X5892</u>	SAS No.:	X5892	SDG No.:	<u>x5892</u>
Matrix (soil/water):	WATER	Lab Samp	ole ID:	X5892-04	
Sample wt/vol: 5.0	(g/mL)mL_	Lab File	D:	VH012617.D	
Level (low/med):		Date Rec	eived:	12/15/2006	
% Moisture: not dec.	100	Date Ana	lyzed:	12/27/2006	
GC Column: RTX624	ID: 0.53	Dilution	Factor:	1.0	
Soil Extract Volume:		Soil Ali	.quot Volu	ıme:	
Number TICS found:	0		RATION UNI		
CAS NO.	COMPOUND		RT	EST. CONC.	Ω
75-45-6	Difluorochloromethane		1.11	50	ט

EPA SAMPLE NO.

MW01-140	

Lab Name: Chemtech		Cont	ract: T	RCE03	
Lab Code: CHEM	Case No.: <u>X5892</u>	SAS No	.: <u>x5892</u>	SDG No	o.: <u>X5892</u>
Matrix (soil/water):	WATER	Lab	Sample ID:	X5892-05	
Sample wt/vol: 5.0	(g/mL) mL	Lab	File ID:	VH012618.D	F
Level (low/med):	***************************************	Date	Received:	12/15/200	16
% Moisture: not dec.	100	Date	Analyzed:	12/27/200	6
GC Column: RTX624	ID: 0.53	Dilu	tion Factor	:: 1.0	
Soil Extract Volume:		Soil	Aliquot Vo	lume:	
Number TICS found:	0		ENTRATION U		
CAS NO.	COMPOUND		RT	EST. CON	c. Q
75-45-6	Difluorochloromethane		1.13	33	3.1 J

EPA SAMPLE NO.

					MW29-	-D
Lab 1	Name: Chemtech		Cont	ract: TR	CE03	
Lab (Code: <u>CHEM</u>	Case No.: <u>X5892</u>	SAS No.	.: <u>X5892</u>	SDG No.:	x5892
Matri	ix (soil/water):	WATER	Lab	Sample ID:	X5892-06	
Sampl	le wt/vol: 5.0	(g/mL)mL	Lab	File ID:	VG005812.D	_
Level	(low/med):	***************************************	Date	Received:	12/15/2006	
% Moi	sture: not dec.	100	Date	Analyzed:	12/26/2006	
GC C	olumn: RTX624	ID: 0.18	Dilu	tion Factor:	1.0	
Soil	Extract Volume:	***************************************	Soil	Aliquot Vol	lume:	
Numbe	er TICS found:	0		ENTRATION UN		
	CAS NO.	СОМРОИИР		RT	EST. CONC.	δ
	75-45-6	Difluorochloromethane	T.	1.04	50	ס ס

EPA SAMPLE NO.

		<u></u>	MW30D
Lab Name: Chem	tech	Contract: TRCE03	
Lab Code: CHEM	Case No.: X5892	SAS No.: <u>X5892</u>	SDG No.: X5892
Matrix (soil/wate	er): WATER	Lab Sample ID: X58	892-07
Sample wt/vol:	5.0 (g/mL) mL	Lab File ID: VG(005813.D
Level (low/med):		Date Received: 12	2/15/2006
% Moisture: not	dec. 100	Date Analyzed: 12	2/26/2006
GC Column: RTX	624 ID: 0.18	Dilution Factor:	1.0
Soil Extract Volu	ime:	Soil Aliquot Volume:	
Number TICS found	d: <u>0</u>	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>uc</u>	g/L
CAS NO.	COMPOUND	RT	EST. CONC. Q
75-45-6	Difluorochlorometha	ne 1.04	50 U

EPA SAMPLE NO.

				[MW08-6	0	
Lab N	ame: Chemtech		Con	tract: TRO	E03		*****
Lab C	ode: <u>CHEM</u>	Case No.: X5892	SAS No	o.: <u>X5892</u>	SDG No.:	<u>x5892</u>	
Matri	x (soil/water):	WATER	Lab	Sample ID:	X5892-08	***************************************	
Sampl	e wt/vol: <u>5.0</u>	(g/mL)mL	Lab	File ID:	VH012619.D		
Level	(low/med):		Date	e Received:	12/15/2006		
% Moi	sture: not dec.	100	Date	e Analyzed:	12/27/2006		
GC Co	lumn: RTX624	ID: 0.53	Dil	ution Factor:	1.0		
Soil	Extract Volume:		Soi	l Aliquot Vol	ume:		
Numbe	r TICS found:	0		CENTRATION UN			
	CAS NO.	COMPOUND		RT	EST. CONC.	Q	
Ī	75-45-6	Difluorochloromethane		1.11	50	ט	

EPA SAMPLE NO.

MW08-150	

Lab Name: Chemtech		Contract: TR	CE03
Lab Code: CHEM	Case No.: X5892	SAS No.: <u>X5892</u>	SDG No.: <u>X5892</u>
Matrix (soil/water):	WATER	Lab Sample ID:	x5892-09
Sample wt/vol: 5.0	(g/mL) <u>mL</u>	Lab File ID:	VH012620.D
Level (low/med):		Date Received:	12/15/2006
% Moisture: not dec.	100	Date Analyzed:	12/27/2006
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0
Soil Extract Volume:	·	Soil Aliquot Vol	·ume:
Number TICS found:	0	CONCENTRATION UN (ug/L or ug/K	
CAS NO.	COMPOUND	RT	EST. CONC. Q
75-45-6	Difluorochloromethane	1.11	50 ט

EPA SAMPLE NO.
MW20-50

50 U

Lab N	Name:	Chemtech		Conti	eact: <u>1</u>	PRCE03			
Lab C	ode:	СНЕМ	Case No.: <u>X5892</u>	SAS No.	: <u>x5892</u>	2	SDG No.:	<u>x5892</u>	
Matri	x (soi	.l/water):	WATER	Lab S	Sample ID:	X589	2-10		
Sampl	Le wt/v	ro1: <u>5.0</u>	(g/mL)	Lab E	File ID:	VG00)5816.D		
Level	L (low/	med):		Date	Received:	12/	15/2006		
% Moi	sture:	not dec.	100	Date	Analyzed:	12/	/26/2006		
GC Cd	olumn:	RTX624	ID: 0.18	Dilut	cion Facto	r: j	1.0		
Soil	Extrac	t Volume:	<u> </u>	Soil	Aliquot V	olume:			
Numbe	er TICS	found:	0		ENTRATION g/L or ug		<u>'L</u>		
	CAS	NO.	COMPOUND		RT	E	ST. CONC.	Q	

1.04

Difluorochloromethane

1. 75-45-6

EPA SAMPLE NO.

MW02-160R	

Lab Name: Chemtech		Contract: TRC	E03	
Lab Code: CHEM	Case No.: <u>X5892</u>	sas no.: <u>X5892</u>	SDG No.:	X5892
Matrix (soil/water):	WATER	Lab Sample ID:	X5892-11	
Sample wt/vol: 5.0	(g/mL) mL	Lab File ID:	VH012621.D	
Level (low/med):		Date Received:	12/15/2006	
% Moisture: not dec.	100	Date Analyzed:	12/27/2006	
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0	
Soil Extract Volume:		Soil Aliquot Volu	rwe:	
Number TICs found:	0	CONCENTRATION UN:		
CAS NO.	COMPOUND	RT	EST. CONC.	Ď
75-45-6	Difluorochloromethane	1.11	50	U

EPA SAMPLE NO.

					[PMW-05	5
Lab 1	Name: Chemtech		Con	tract	: TRC	E03	
Lab (Code: CHEM	Case No.: <u>X5892</u>	SAS No).:	X5892	SDG No.:	X5892
Matri	ix (soil/water):	WATER	Lab	Samp	le ID:	X5892-12	
Samp.	le wt/vol: <u>5.0</u>	(g/mL) <u>mL</u>	Lab	File	ID:	VH012622.D	
Level	L (Low/med):		Date Received:		12/15/2006		
% Moi	isture: not dec.	100	Date	e Ana	lyzed:	12/27/2006	
GC C	olumn: RTX624	ID: 0.53	Dil	ution	Factor:	1.0	
Soil Extract Volume:			Soi	l Ali	quot Volu	ume:	
Numbe	er TICS found:	0			ATION UN or ug/Kg		
	CAS NO.	COMPOUND			RT	EST. CONC.	Q
	75-45-6	Difluorochloromethane		<u> </u>	1 11	50	TT

CONCENTRATION UNITS:

EPA SAMPLE NO.

	MW24-60
Contract: TRC	CE03
SAS No.: <u>X5892</u>	SDG No.: <u>X5892</u>
Lab Sample ID:	X5892-13
Lab File ID:	VG005819.D
Date Received:	12/15/2006
Date Analyzed:	12/26/2006

GC Column: RTX624 ID: 0.18 Dilution Factor: 1.0

Soil Extract Volume: Soil Aliquot Volume:

mL

Case No.: X5892

(g/mL)

WATER

100

0

Lab Name: Chemtech

Matrix (soil/water):

% Moisture: not dec.

Number TICS found:

Sample wt/vol:

Level (low/med):

CHEM

5.0

Lab Code:

(ug/L or ug/Kg) ug/L CAS NO. COMPOUND EST. CONC. RT 75-45-6 Difluorochloromethane 1.04 50 U

EPA SAMPLE NO.

	_
MW02-50R	

Lab Name: Chemtech		Contract: TRC	E03	
Lab Code: CHEM	Case No.: X5892	SAS No.: <u>X5892</u>	SDG No.:	X5892
Matrix (soil/water):	WATER	Lab Sample ID:	X5892-14	
Sample wt/vol: 5.0	(g/mL)mL	Lab File ID:	VH012624.D	
Level (low/med):		Date Received:	12/15/2006	
% Moisture: not dec. 100		Date Analyzed:	12/27/2006	_
GC Column: RTX624 ID: 0.53		Dilution Factor:	1.0	
Soil Extract Volume:		Soil Aliquot Volu	me:	
Number TICS found:	0	CONCENTRATION UNI		
CAS NO.	COMPOUND	TA	EST. CONC.	Q
75-45-6	Difluorochloromethane	1.11	50	U

EPA SAMPLE NO.

Lab Name: Chemtech		Contract: TRO	CE03	
Lab Code: CHEM	Case No.: X5892	sas no.: <u>X5892</u>	SDG No.: <u>X58</u>	92
Matrix (soil/water):	WATER	Lab Sample ID:	X5892-15	
Sample wt/vol: 5.0	(g/mL) <u>mL</u>	Lab File ID:	VG005807.D	
Level (low/med):		Date Received:	12/15/2006	
% Moisture: not dec.	100	Date Analyzed:	12/26/2006	
GC Column: RTX624	ID: 0.18	Dilution Factor:	1.0	
Soil Extract Volume:		Soil Aliquot Vol	.ume:	
Number TICS found:	0	CONCENTRATION UN (ug/L or ug/K		
CAS NO.	COMPOUND	RT	EST. CONC.	2
75-45-6	Difluorochloromethane	1.04	ס 50	

EPA SAMPLE NO.

MW17-60R	

Lab Name: Chemtech		Cont	ract:	TRC	E03	
Lab Code: <u>CHEM</u>	Case No.: <u>X5892</u>	SAS No	.: <u>x</u>	5892	SDG No.:	X5892
Matrix (soil/water):	WATER	Lab	Sample	ID:	X5892-16	
Sample wt/vol: 5.0	(g/mL) <u>mL</u>	Lab	File I	D:	VH012625.D	
Level (low/med):	***************************************	Date	Recei	ved:	12/15/2006	
% Moisture: not dec.	100	Date	Analy	zed:	12/27/2006	
GC Column: RTX624	ID: 0.53	Dilu	tion E	actor:	1.0	_
Soil Extract Volume:	VIII.	Soil	Aliqu	ot Volu	me:	
Number TICS found:	0			ion uni r ug/Kg		
CAS NO.	COMPOUND		R	T	EST. CONC.	ŏ
75-45-6	Difluorochloromethane		1	.11	50	υ

EPA SAMPLE NO.

MW17-60R(DUP)

Lab Name: Chemtech		Contract: TRO	E03	
Lab Code: CHEM	Case No.: <u>X5892</u>	SAS No.: <u>X5892</u>	SDG No.:	X5892
Matrix (soil/water):	WATER	Lab Sample ID:	X5892-17	
Sample wt/vol: 5.0	(g/mL) mL	Lab File ID:	VH012626.D	
Level (low/med):		Date Received:	12/15/2006	
% Moisture: not dec.	100	Date Analyzed:	12/27/2006	
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0	
Soil Extract Volume:	***************************************	Soil Aliquot Vol	ume:	
Number TICS found:	0	CONCENTRATION UNI		
CAS NO.	СОМВОЛИВ	RT	EST. CONC.	۵ ا
75-45-6	Difluorochloromethane	1.11	50	ט

EPA SAMPLE NO.

			MW27D
Lab Name: Chemtech		Contract: TR	CE03
Lab Code: CHEM	Case No.: <u>X5892</u>	SAS No.: <u>X5892</u>	SDG No.: X5892
Matrix (soil/water):	WATER	Lab Sample ID:	X5892-18
Sample wt/vol: 5.0	(g/mL) _mL	Lab File ID:	VH012627.D
Level (low/med):		Date Received:	12/15/2006
% Moisture: not dec.	100	Date Analyzed:	12/27/2006
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0
Soil Extract Volume:		Soil Aliquot Vol	.ume:
Number TICS found:	0	CONCENTRATION UN	
CAS NO.	COMPOUND	RT	EST. CONC. Q
75-45-6	Difluorochloromethane	1.11	50 U

EPA SAMPLE NO.

TRIPBLANK-

Lab Name: Chemtech		Contract: TRO	CE03	
Lab Code: CHEM	Case No.: <u>X5892</u>	sas no.: <u>X5892</u>	SDG No.: 3	5892
Matrix (soil/water):	WATER	Lab Sample ID:	X5892-19	
Sample wt/vol: 5.0	(g/mL) mL	Lab File ID: VG005806.D		
Level (low/med):	<u></u>	Date Received:	12/15/2006	_
% Moisture: not dec.	100	Date Analyzed:	<u>-</u>	
GC Column: RTX624 ID: 0.18		Dilution Factor:	1.0	
Soil Extract Volume:		Soil Aliquot Vol	.ume :	
Number TICS found:	0	CONCENTRATION UN (ug/L or ug/K		
CAS NO.	COMPOUND	RT	EST. CONC.	8
75-45-6	Difluorochloromethane	1.04	50 T	J

EPA SAMPLE NO.

		· .	MW15-60
Lab Name: Chemtech		Contract: TRO	PE03
Lab Code: CHEM	Case No.: <u>X5831</u>	SAS No.: X5831	SDG No.: X5831
Matrix (soil/water):	WATER	Lab Sample ID:	X5831-01
Sample wt/vol: 5.0	(g/ml)ml	Lab File ID:	VH012429.D
Level (low/med):		Date Received:	12/11/2006
% Moisture: not dec.	100	Date Analyzed:	12/15/2006
GC Column: RTX624	ID: 0.53	Dilution Factor:	1.0
Soil Extract Volume:		Soil Aliquot Volu	ime:
Number TICS found:	1	CONCENTRATION UNITS:	
		(ug/L or ug/Kg) ug/L
CAS NO.	COMPOUND	RT	EST. CONC. Q
1. 75-45-6	Difluorochloromethane	1.10	6.54 J