

Remedial Investigation Report

Arch Street Yard, Long Island City, New York NYSDEC VCA Site No. V00733

REMEDIAL INVESTIGATION REPORT LONG ISLAND RAIL ROAD ARCH STREET YARD LONG ISLAND CITY, NEW YORK

NYSDEC VCA SITE NO. V00733

Prepared for:

METROPOLITAN TRANSPORTATION AUTHORITY LONG ISLAND RAIL ROAD

Prepared by:

D&B ENGINEERS AND ARCHITECTS, P.C. WOODBURY, NEW YORK

OCTOBER 2016 REVISED MAY 2017

CERTIFICATIONS

I, Thomas P. Fox, P.G., certify that I am currently a Qualified Environmental Professional as defined in 6 NYCRR Part 375 and that this Remedial Investigation Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in full accordance with the DER-approved work plan and any DER-approved modifications.

Thomas P. Fox, P.G.

Name of QEP

Signature

DSB ENGINEERS AND

Date

REMEDIAL INVESTIGATION REPORT ARCH STREET YARD NYSDEC VCA SITE NO. V00733

TABLE OF CONTENTS

<u>Section</u>		<u>litle</u>	Page
	ABBRI	EVIATIONS	. iv
1.0	INTRO	DDUCTION	. 1-1
	1.1 1.2 1.3 1.4 1.5	Project Background Site Description and Adjoining Property Site History Previous Investigations Project Objectives	. 1-5 . 1-6 . 1-7
2.0	REME	DIAL INVESTIGATION SCOPE OF WORK	. 2-1
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15	Underground Utility Clearance Geophysical Surveys. Membrane Interface Probe (MIP) Study. Deep Soil Boring Installation and Subsurface Soil Sampling. Monitoring Well Installation and Development. 2.5.1 Soil Sampling. 2.5.2 Monitoring Well Construction 2.5.3 Monitoring Well Development. Monitoring Well Sampling Shallow PCB Soil Boring Installation and Subsurface Soil Sampling. Site Survey. Tidal Investigation and Collecting Synoptic Water Levels. Soil Vapor Sampling/Indoor Air Sampling. Air Monitoring Management of Investigation Derived Waste Equipment Decontamination Analytical and QA/QC Procedures Data Usability Summary Report	. 2-9 . 2-11 . 2-12 . 2-14 . 2-14 . 2-15 . 2-16 . 2-17 . 2-18 . 2-22 . 2-22 . 2-23
3.0	REME	DIAL INVESTIGATION FINDINGS	. 3-1
	3.1 3.2	Site Geology and Hydrogeology	. 3-5

TABLE OF CONTENTS (continued)

<u>Section</u>		<u>Title</u>	<u>Page</u>
	3.3 3.4 3.5 3.6 3.7	3.2.2 Verification Borings Subsurface Soil 3.3.1 Deep Soil Borings 3.3.2 Shallow PCB Soil Borings Groundwater Air Exposure Assessment Conceptual Summary	3-15 3-17 3-17 3-19 3-20
4.0	CON	ICLUSIONS AND RECOMMENDATIONS	4-1
	4.1 4.2	Conclusions	
List of Ap	pendic	es	
	Work	Plan Modifications	A
	Mem	brane Interface Probe Logs	В
	Borin	g Logs	C
	Moni	toring Well Construction Logs	D
	Reme	edial Investigation Chemical Data Tables	E
	Indoo	or Air Quality Questionnaire and Building Inventory	F
	Wast	e Manifests	G

TABLE OF CONTENTS (continued)

List of Figures

1-1	Site Location Map	1-2
1-2	Site Plan Showing Defined Boundaries of Project Site	1-3
1-3	Previous PCB Sampling Results	1-9
1-4	Detected Contaminants in Previous Groundwater and Soil Samples	1-11
2-1	Sample Location Map	2-3
2-2	Sample Location Map for PCB Investigation	2-4
3-1	Shallow (Water Table) Groundwater Contour Map	3-6
3-2	Deep Groundwater Contour Map	
3-3	GW-01 Groundwater Elevation	
3-4	GW-03 Groundwater Elevation	3-9
3-5	MW-3 Groundwater Elevation	
3-6	Summary of RI Soil Sample Exceedances	3-13
3-7	Summary of RI Groundwater Sample Exceedances	3-14
List of Tables		
2-1	Remedial Investigation Scope Summary	2-5
3-1	Water Level Measurements and Groundwater Elevations	3-4

ABBREVIATIONS

		1	
1,2-DCE	Cis-1,2-Dichloroethene	NYSDOH	New York State Department of Health
AGS	Advanced Geological Services, Inc.	O.D.	Outer Diameter
AGV	Air Guideline Values	PAH	Polycyclic Aromatic Hydrocarbon
ASP	Analytical Services Protocol	PCB	Polychlorinated Biphenyl
bgs	Below Ground Surface	PCE	Tetrachloroethene
CAMP	Community Air Monitoring Program	PID	Photoionization Detector
CLP	Contract Laboratory Program	PPB	Parts Per Billion
COPC	Contaminant of Potential Concern	PVC	Polyvinyl Chloride
D&B	D&B Engineers and Architects, P.C.	QA/QC	Quality Assurance/Quality Control
DER	Division of Environmental Remediation	RAWP	Remedial Action Work Plan
DOT	Department of Transportation	RI	Remedial Investigation
ELAP	Environmental Laboratory Approval Program	RIWP	Remedial Investigation Work Plan
ESA	East Side Access Department	SC	Soil Conductivity
ESI	Environmental Site Investigation	SCO	Soil Cleanup Objective
FID	Flame-ionization Detector	SVOC	Semivolatile Organic Compound
GPR	Ground Penetrating Radar	TAGM	Technical and Administrative Guidance Memorandum
LIRR	Long Island Rail Road	TAL	Target Analyte List
LNAPL	Light Nonaqueous Phase Liquid	TCE	Trichloroethene
MIP	Membrane Interface Probe	TCL	Target Compound List
MNR	Metro North Railroad	TCLP	Toxicity Characteristic Leaching Procedure
MS	Matrix Spike	TOGS	Technical and Operational Guidance Series
MSD	Matrix Spike Duplicate	TPH	Total Petroleum Hydrocarbons
MSL	Mean Sea Level	USCS	Unified Soil Classification System
MTA	Metropolitan Transportation Authority	USEPA	United States Environmental Protection Agency
MTBE	Methyl Tert-Butyl Ether	υV	Microvolts
NAPL	Nonaqueous Phase Liquid	VC	Vinyl Chloride
NAVD88	North American Vertical Datum of 1988	VCA	Voluntary Cleanup Agreement
NTU	Nephelometric Turbidity Units	VOC	Volatile Organic Compound
NYCRR	New York Codes, Rules and Regulations	XSD	Halogen Specific Detector
NYCT	New York City Transit	Yard	Arch Street Yard
NYSDEC	New York State Department of Environmental Conservation		

1.0 INTRODUCTION

1.1 Project Background

As part of the existing Long Island Rail Road (LIRR) On-Call Environmental Consulting Services contract (Contract No. 6052A-9-5, Release B), the LIRR authorized D&B Engineers and Architects, P.C. (D&B) to conduct a Remedial Investigation (RI) of contamination at the LIRR Arch Street Yard (the Yard). The RI is being performed in accordance with a Voluntary Cleanup Agreement (VCA) between the New York State Department of Environmental Conservation (NYSDEC) and the Metropolitan Transportation Authority (MTA) LIRR (NYSDEC Index Nos. W1-0993-04-04 and W2-0994-04-04).

The Yard is located south of Jackson Avenue, under the 21st Street Bridge at 49th Avenue, in Long Island City, Queens, New York. A site location map is provided as Figure 1-1. The Yard is currently owned by the LIRR and is approximately eight acres in size. The Site that is subject to the VCA and this RI, however, is an approximately 2.7 acre portion of the Yard designated as NYSDEC Site No. V00733 (herein referred to as "the Site"). The defined boundaries of the Site are depicted on the Site Plan, provided as Figure 1-2. The Yard was previously utilized by LIRR to perform maintenance on passenger rail cars, however, these activities ceased in December 2009. In September 2016, the Maintenance Facility located east of the Site was leased to Metro North Railroad (MNR) and Bombardier to install Positive Train Control in their trains. The LIRR currently uses the Yard (and the Site) for storage, and operation of an electric substation located east of the Site, which is not regularly occupied.

A Remedial Investigation Work Plan (RIWP) was prepared by D&B dated July 2015, which was approved by the NYSDEC. D&B completed the RI field activities in three phases

LIRR Arch Street Yard (NYSDEC VCA Site No. V00733) Long Island City, Queens, New York Remedial Investigation

SITE LOCATION MAP

FIGURE 1-1

between October 2015 and August 2016, in accordance with the NYSDEC-approved RIWP and subsequent work plan modifications. The first phase of the RI was a Membrane Interface Probe (MIP) study completed in October 2015, summarized in a letter report to the NYSDEC dated December 2, 2015. The December 2, 2015 letter report outlined a proposed scope of work for the second phase of the RI that was approved by the NYSDEC in a February 11, 2016 letter. The letter report and NYSDEC approval letter are provided in **Appendix A** to this RI Report.

The second phase of the RI was a subsurface soil and groundwater investigation completed in March through May 2016, summarized in a letter report to the NYSDEC dated August 5, 2016. The August 5, 2016 letter report outlined a proposed scope of work for the third and final phase of the RI, a soil vapor/indoor air investigation, that was approved by the NYSDEC in an August 8, 2016 letter. This second letter report and NYSDEC approval letter are also provided in **Appendix A** to this RI Report. The soil vapor/indoor air investigation was completed in August 2016.

This RI Report was first submitted to the NYSDEC in October 2016. After review, the NYSDEC requested that the LIRR collect heating season air samples. D&B collected the samples in February 2017 and this RI Report has been revised accordingly.

This RI Report has been completed in accordance with NYSDEC Program Policy - DER-10/Technical Guidance for Site Investigation and Remediation and presents a comprehensive summary and analysis of the data generated during all phases of the RI. Specifically, this report includes:

- <u>Section 1</u> (Introduction) includes a site overview, history and previous investigation results;
- <u>Section 2</u> (Remedial Investigation Scope of Work) describes the completed RI field activities and any deviations from the planned scope of work;

- <u>Section 3</u> (Remedial Investigation Findings) presents the findings of the RI field activities, including a description of site-specific geology and hydrogeology, and the analytical results of all collected samples; and
- <u>Section 4</u> (Conclusions and Recommendations) presents conclusions and recommendations for future investigations and/or remediation, based on the findings of the RI.

1.2 Site Description and Adjoining Property

The LIRR Arch Street Yard (the Yard) is located south of Jackson Avenue, under the 21st Street Bridge at 49th Avenue, in Long Island City, Queens, New York. The Yard is currently owned by the LIRR. As stated in Section 1.0, the Yard is approximately eight acres in total area; however, the Site being investigated under the VCP (designated NYSDEC Site No. V00733) is an approximately 2.7 acre portion of the Yard. A plan depicting the Yard, surrounding areas and the defined boundaries of the Site is provided as Figure 1-2. The Yard has historically been utilized as a railroad yard where maintenance was performed on passenger rail cars, however, these activities ceased in December 2009. In September 2016, the Maintenance Facility building located east of the Site was leased to MNR and Bombardier to install Positive Train Control in their trains.

As depicted on Figure 1-2, buildings currently located on the Site include a Maintenance of Equipment building on the northern end of the Site near the entrance to the Yard, and an Engineering Support Building on the southern end of the Site. These buildings are utilized for storage and are not occupied on a regular basis. The northern building onsite was leased to MNR and Bombardier as part of the September 2016 agreement. A security booth is also located on the northern end of the Site, which is occupied during regular business hours. In addition, several sets of train tracks traverse the Site and under the 21st Street Bridge. These tracks are not currently active, and since the closing of the maintenance facility in 2009, no activities have occurred at the Site.

East of the Site and the Engineering Support Building, are a series of buildings located within the Yard including (from west to east): an open storage shed, a New York City Transit (NYCT) Signals Tower, an electric substation owned by LIRR and Con Edison, and a LIRR electric substation. Second floor office space within the Signals Tower is regularly occupied by NYCT employees during business hours. The remaining buildings are not regularly occupied. Note that a portion of the Yard adjacent to the southern side of the Maintenance Facility building was previously leased to the "Fresh Direct" trucking company from August 2012 through August 2015, which had occasionally washed the cargo areas of their trucks with washing fluid/disinfectant. When this issue was brought to the LIRR's attention by NYSDEC personnel, LIRR alerted MTA Real Estate to advise Fresh Direct to cease and desist with washing their trucks with a disinfectant over our storm drains in the parking lot.

The Yard is zoned for industrial use and the surrounding properties use is a combination of commercial, light industrial, professional office space, residential, and utility right of ways. The neighborhood includes warehouses, automotive repair shops, taxi garages, apartment buildings, and gasoline stations in the vicinity of the Yard. In addition, a below grade subway tunnel (G line) runs beneath Jackson Avenue immediately north of the Yard, approximately 15 feet below grade, and beneath 49th Avenue immediately south of the Yard (7 line).

1.3 Site History

The Yard has historically been used as a railroad maintenance yard and is currently owned by the LIRR. In December 2003, a LIRR contractor discovered contaminated soil while excavating a utility trench under the 21st Street Bridge at the Yard. The NYSDEC was notified and NYSDEC Spill No. 0310802 was opened. In April 2004, the LIRR's East Side Access Department (ESA) performed an environmental investigation of the impacted area in an attempt to delineate the extent of the contamination. Based on the results of this investigation,

it was determined that the majority of the impacted surface/shallow subsurface soil had been excavated and removed during the utility trenching. Note there are no records available concerning the details of the utility trenching such as the quantities of soil excavated or the limits of excavation. However, additional follow up investigations were completed in the vicinity of the excavation.

In 2005, ESA installed four groundwater monitoring wells, which were sampled three to four times per year during the time period from 2005 through 2009. In 2009, ESA advanced seven groundwater probes throughout the impacted area, in order to further define the extent of the contamination. Based on the investigation findings, it was determined that further horizontal and vertical delineation of groundwater contamination was required. In September 2011, the LIRR requested to add the 2.7-acre parcel of the Yard (i.e., the Site) to an existing Voluntary Cleanup Agreement with the MTA LIRR. The NYSDEC approved the addition of the Site to the existing VCA Index Nos. W1-0993-04-04 and W2-0994-04-04. Under this VCA, the Site as shown on Figure 1-2 was designated as NYSDEC Site No. V00733. A summary of previous investigations is presented below in Section 1.4.

1.4 Previous Investigations

The LIRR provided D&B with reports related to previous investigations of soil and groundwater contamination identified at the Site. A detailed summary of D&B's review of the historical reports was presented in the NYSDEC-approved RIWP dated July 2015. As described in the RIWP, the following environmental investigations were previously completed:

- Initial Environmental Site Investigation 2000
- Supplemental Environmental Site Investigation 2001
- Groundwater Monitoring 2005-2009
- Spill Investigation 2009

A brief summary of the relevant findings of D&B's review of the available historical reports is provided below. Historical soil data is compared to the Soil Cleanup Objectives (SCOs) for Restricted-Residential and Industrial Use as defined in NYSDEC 6 NYCRR Part 375. Historical groundwater data is compared to Class GA groundwater standards and guidance values (herein referred to as Class GA standards).

Soil

As part of the overall east side access construction project, an initial Environmental Site Investigation (ESI) was completed in October 2000 within the defined Site that detected elevated levels of polychlorinated biphenyls (PCBs) and pesticides in soil. The supplemental ESI included the collection of 26 soil samples from 13 soil borings (SE-AR-101 through SE-AR-113) for analysis of PCBs and pesticides to delineate the extent of the contamination and to provide an estimate of the volume of contaminated soil that would need to be removed for off-site disposal. Figure 1-3 depicts the approximate locations of the borings, as well as detected PCB concentrations during the ESI. Soil samples were collected for analysis at a depth of 0 to 0.5 feet below ground surface (bgs) and at 2.5 to 3.0 feet bgs at 12 soil borings (SE-AR-101 through SE-AR-112). In addition, two soil samples were collected from soil boring SE-AR-113 at 2.5 to 3.0 feet bgs and at 5.5 to 6.0 feet bgs.

PCBs were detected in 21 of the 26 soil samples collected during the Supplemental ESI, ranging from 28.6 ug/kg to a maximum of 547 ug/kg at SE-AR-113 (2.5 to 3 feet), below the Restricted-Residential Use SCO of 1,000 ug/kg and the Industrial Use SCO of 25,000 ug/kg. Soil boring SE-AR-113 was completed in the location of soil boring SE-AR-04, where the maximum PCB concentration of 320,000 ug/kg was detected during the initial ESI at a depth of 0 to 0.5 feet. Pesticides were detected in 24 of the 26 soil samples collected as part of the supplemental ESI, although all were well below Restricted-Residential and Industrial Use SCOs.

LIRR Arch Street Yard (NYSDEC VCA Site No. V00733) Long Island City, Queens, New York Remedial Investigation

PREVIOUS PCB SAMPLING RESULTS

FIGURE 1-3

In February 2009, subsurface soil samples were collected at seven boring locations (P-1 to P-7) to the southeast of the area investigated during the ESI as part of a separate spill investigation. The approximate locations of these borings and a summary of the results are provided on **Figure 1-4**. The highest concentrations of chlorinated volatile organic compounds (VOCs) in subsurface soil were detected at boring P-2 and lower concentrations detected at borings P-3, P-4, and P-7. Tetrachloroethene (PCE) and vinyl chloride (VC) were detected at respective concentrations of 89 mg/kg and 1.6 mg/kg, above the respective Restricted-Residential Use SCOs of 19 mg/kg and 0.9 mg/kg, but below the Industrial Use SCOs. No other VOCs were detected at concentrations above Restricted-Residential or Industrial Use SCOs.

Polycyclic aromatic hydrocarbons (PAHs), a type of semivolatile organic compounds (SVOCs), were detected at concentrations exceeding Restricted-Residential Use SCOs in subsurface soil samples collected from borings P-2, P-3 and P-4. In addition, benzo(a)pyrene was detected at concentrations of 1.5 mg/kg and 2.1 mg/kg in the soil samples collected from borings P-2 and P-3, respectively, above the Industrial Use SCO of 1.1 mg/kg.

<u>Groundwater</u>

Four groundwater monitoring wells (MW-1 through MW-4) were installed in 2005 to the southeast of the area investigated during the ESI as part of a separate spill investigation. Based on the review of the available data, there were 15 sampling events conducted during the time period from March 24, 2005 through April 17, 2009. The approximate location of the wells is shown on Figure 1-4. PCE, trichloroethylene (TCE), cis-1,2-dichloroethene (1,2-DCE), trans-1,2-dichloroethene and VC were consistently detected at levels exceeding Class GA standards in samples collected from MW-3. The highest concentrations were PCE at 5,200 ug/I; TCE at 1,500 ug/I; 1,2-DCE at 17,000 ug/I; trans-1, 2-dichloroethene at 230 ug/I and VC at 4,200 ug/I. Groundwater samples collected from MW-2 also detected the

LIRR Arch Street Yard (NYSDEC VCA Site No. V00733)
Long Island City, Queens, New York
Remedial Investigation

DETECTED CONTAMINANTS IN PREVIOUS GROUNDWATER AND SOIL SAMPLES

Source: LIRR

same VOCs exceeding Class GA standards, but at lower concentrations including PCE at 16 ug/l; TCE at 20 ug/l; 1,2-DCE at 28 ug/l; trans-1,2-dichloroethene at 5.6 ug/l and VC at 14 ug/l. The results of the analysis of groundwater samples collected from MW-1 and MW-4 detected elevated levels of PAHs and methyl-tert-butyl ether (MTBE).

In February 2009, groundwater samples were also collected at seven boring locations (P-1 to P-7) as part of the spill investigation in the same area as the monitoring wells. The approximate locations of these borings and a summary of the results are also provided on Figure 1-4. The highest concentrations of chlorinated VOCs in groundwater were detected at boring P-2 which is located to the east of MW-3. Concentrations in P-2 exceeding Class GA standards included: PCE at 14,000 ug/l; TCE at 1,600 ug/l, 1,2-DCE at 6,000 ug/l; and VC at 1,100 ug/l. These VOCs were also detected at lower concentrations at borings P-3, P-4, P-6 and P-7. Other exceedances of Class GA standards included MTBE at borings P-1 and P-6, and benzene, cyclohexane and xylenes at boring P-1.

1.5 Project Objectives

The primary objectives of the Remedial Investigation are consistent with DER-10 and include:

- Fully investigate and characterize the nature and extent of soil, groundwater and soil gas contamination associated with previously documented VOCs;
- Fully investigate and characterize the nature and extent of soil contamination associated with previously documented PCBs;
- Characterize soil and groundwater contamination related to other contaminants, including SVOCs, metals, etc.;
- Characterize site hydrogeology, especially regarding groundwater flow and how conditions influence contaminant migration;
- Identify migration pathways and potential human and ecological receptors, and collect data sufficient to complete the qualitative exposure assessment;

- Determine the need for supplemental data that may be necessary to adequately delineate the extent of contamination; and
- Collect enough field data in order to select appropriate remedial actions to remediate impacted soil, groundwater and/or soil gas, if warranted.

2.0 REMEDIAL INVESTIGATION SCOPE OF WORK

This section provides an overview of the field activities associated with the Remedial Investigation of an approximately 2.7 acre portion of the LIRR Arch Street Yard, designated as NYSDEC Site No. V00733 and referred to as "the Site". The RI field activities were completed at the Site in three phases between October 2015 and August 2016, as detailed below. In addition, heating season air samples were collected in February 2017 at the request of NYSDEC. The RI was completed in accordance with the NYSDEC-approved July 2015 Remedial Investigation Work Plan and subsequent work plan modifications. In order to meet the objectives stated in Section 1.5, the following activities were performed:

Phasing Schedule of Completed Remedial Investigation

Remedial Investigation Phase	Work Performed	Work Performed Date(s) Completed				
First Phase	Membrane Interface Probe (MIP) Study	October 2015	December 2, 2015			
	Deep Soil Boring Installation and Subsurface Soil Sampling	March 2016				
Consul Diagram	Monitoring Well Installation, Development and Sampling	April 2016	A			
Second Phase	Shallow PCB Soil Boring Installation and Subsurface Soil Sampling	March 2016	August 5, 2016			
	Tidal Investigation and Collection of Synoptic Water Levels	May 2016				
Third Phase	Soil Vapor Sampling/Indoor Air Sampling	August 2016 and February 2017				

In addition to the activities listed above, underground utility clearance activities, geophysical surveys, air monitoring and a site survey were performed as needed throughout the Remedial Investigation.

The RI was completed in phases in order to select sample locations based on the findings of the previous phase. Based on the findings of the MIP study, which was the first phase of the RI, D&B selected the location of the deep soil borings and the location and screen setting of the monitoring wells for review and approval by the NYSDEC. Similarly, the findings of the soil and groundwater sampling activities, which was the second phase of the RI, were utilized to select air sampling locations for the third phase of the RI.

Completed sample location maps are provided as Figure 2-1 and Figure 2-2. Figure 2-1 depicts all existing and newly installed sample locations, with the exception of the shallow PCB soil borings, which are depicted on Figure 2-2. The location of all newly installed MIPs, soil borings and monitoring wells, as well as existing monitoring wells were surveyed by a New York State-licensed surveyor. Table 2-1 provides a summary of sample depths and analyses, sample point objectives, field observations and field modifications to the NYSDEC approved scope of work. Due to the presence of underground utilities or other field conditions, modifications to the scope of work were necessary, including the relocation of some sample locations.

2.1 Underground Utility Clearance

Prior to undertaking any intrusive activities, utility clearance procedures were conducted. A Code 753 utility markout was completed as per the 16 New York Codes, Rules and Regulations (NYCRR) Part 753. Consistent with the One-Call (also called Dig Safe New York) criteria, a request was made at least 72 hours prior to initiating fieldwork. Per Code 753 requirements, confirmation that the utilities were marked out was documented in the

TABLE 2-1

Long Island Rail Road Arch Street Yard (Site No. V00733) Remedial Investigation

REMEDIAL INVESTIGATION SCOPE SUMMARY

		Completion	No. of	Sample			Analysis	s ¹				Sample Point Objectives			
Investigation Method/Media	Sample Point ID	Donth Bolow	Samples Selected for Analysis	Depth Below Grade (feet)	TCL VOCs	TCL SVOCs	PCBs	TCL Pesticides	TAL Metals	Installation/ Sample Date	Comments/Deviations from Work Plan				
Remedial Investig	emedial Investigation - First Phase (Completed)														
Verification Borings/	VB-01	27	1	13-15	Х					10/30/2015	Refusal encountered at 27 feet below grade.	Collect soil samples to verify the results of			
Subsurface Soil	VB-02	26.5	1	12-14	Х					10/30/2015	Refusal encountered at 26.5 feet below grade.	the MIP study.			
Verification Borings/	VB-01	27	2	15-16, 26-27	Х					10/30/2015	Refusal encountered at 27 feet below grade.	Collect groundwater samples to verify the			
Groundwater	VB-02	26.5	2	5, 12-14	Х					10/30/2015	Refusal encountered at 26.5 feet below grade.	results of the MIP study.			
Remedial Investig	gation - Seco	ond Phase (Coi	npleted)												
	SB-01	25	2	13-15, 23-25	Х	х				3/16/2016					
	SB-02	25	2	13-15, 23-25	х	х				3/17/2016					
	SB-03 25	25 2	12-14	Х	Х	Х	Х	Х	3/17/2016	Moved 4 feet south of planned location due to presence of underground utilities.					
				18-20	Χ	Х					due to presence of underground utilities.	Characterize soil and collect soil samples to define the limits of the contaminated area, with the primary contaminants of concern being VOCs.			
	SB-04	B-04 29	3	3-5	Х	Х	Х	Х	Х	3/16/2016	Refusal encountered at 29 feet below				
Deep Soil Borings/				10-12, 27-29	Х	Х					grade.				
Subsurface Soil	SB-05	SB-05	SB-05 25	25 2	10-11	Х	Х	Х	Х	Х	Blind duplicate collected for sample at 10-				
								11-13	Х	Х					11'.
	SB-06	25	2	8-10	Х	Х	Х	Х	Х	3/17/2016	3/17/2016				
				11-13	Χ	Х				. ,					
	SB-07	25	2	12-14	Х	Х	Х	х	Х	3/18/2016					
	35 07		_	23-25	X	Х				-, -,					
	SB-08	25	3	4-6, 6-8, 13-15	х	х				3/17/2016					

TABLE 2-1

Long Island Rail Road Arch Street Yard (Site No. V00733) Remedial Investigation

REMEDIAL INVESTIGATION SCOPE SUMMARY

		Completion	No. of	Sample			Analysis	; ¹		Installation/ Sample Date	_		
Investigation Method/Media	Sample Point ID	Denth Below	Samples Selected for Analysis	Depth Below Grade (feet)	TCL VOCs	TCL SVOCs	PCBs	TCL Pesticides	TAL Metals		· · · · · · · · · · · · · · · · · · ·		Sample Point Objectives
Remedial Investig	Remedial Investigation - Second Phase (Completed)												
	SB-09	8	4	0-1, 2-3 4-5, 7-8			х			3/18/2016	Top of boring below 24" of bluestone. Moved 5 feet north of planned location due to presence of underground utilities.		
	SB-10	8	4	0-1, 2-3 4-5, 7-8			Х			3/18/2016	Top of boring below 18" of bluestone. Blind duplicate collected for sample at 4- 5'. Moved southeast of planned location due to presence of third rail.		
	SB-11	8	4	0-1, 2-3 4-5, 7-8			х			3/18/2016	Top of boring below 24" of bluestone.		
	SB-12	6	3	0-1, 2-3 5-6			х			3/21/2016	Top of boring below 3" of bluestone. Moved 4 feet west of planned location due to presence of underground utilities.		
Shallow PCB Soil Borings/ Subsurface Soil	SB-13	6	3	0-1, 2-3 5-6			х			3/21/2016	Top of boring below 24" of bluestone. Blind duplicate collected for sample at 5-6'.	Characterize soil and collect soil samples for PCB analysis to define the limits of shallow soil PCB contamination, identified in 2000.	
	SB-14	6	3	0-1, 2-3 5-6			х			3/21/2016	Top of boring below 24" of bluestone.		
	SB-15	6	3	0-1, 2-3 5-6			х			3/18/2016	Top of boring below 24" of bluestone. Moved north of planned location due to presence of third rail.		
	SB-16	6	3	0-1, 2-3 5-6			х			3/18/2016	Top of boring below 12" of bluestone. Moved 5 feet north of planned location due to presence of underground utilities.		
	SB-17	6	3	0-1, 2-3 5-6			х			3/18/2016	Top of boring below 12" of bluestone. Moved 8 feet west of planned location due to equipment access constraints.		

TABLE 2-1

Long Island Rail Road Arch Street Yard (Site No. V00733) Remedial Investigation

REMEDIAL INVESTIGATION SCOPE SUMMARY

		Completion	No. of			Analysis	s ¹						
Investigation Method/Media	Sample Point ID	Depth Below Grade (feet)	Samples Selected for Analysis	Sample Depth Below Grade (feet)	TCL VOCs	TCL SVOCs	PCBs	TCL Pesticides	TAL Metals	Installation/ Sample Date	Comments/Deviations from Work Plan	Sample Point Objectives	
Remedial Investi	Remedial Investigation - Second Phase (Completed)												
	GW-01 (upgradient)	20	3	4-5, 18-20	X	X X	 X	 X	 X	3/21/2016		Determine background concentrations of contaminants of concern.	
Groundwater	GW-02			13-15 							Soil samples not collected since soil boring VB-01 was previously completed in the vicinity of this location.		
Monitoring Well Borings/	GW-03	20	3	3-4, 18-20	Х	Х				3/21/2016		Determine the presence and extent of soil	
Subsurface Soil	000	20	, and the second	12-14	Х	Х	Х	Х	Х	0,22,2020		contamination.	
	GW-04	19	3	2-3, 16-18	Х	Х				3/23/2016	Top of boring below 24" of bluestone. Refusal encountered at depth of 19 feet.		
				12-14	Х	Х	Х	х	Х		Blind duplicate collected for sample at 12-14'.		
	GW-01 (upgradient)	20	1	Screen interval 10-20	х	х				Sampled 4/7/2016	Installed on 3/22/2016 Developed on 3/24/2016	Determine the presence or absence of contaminants of concern within upgradient groundwater. Confirm groundwater flow direction and the influence of the East River and Newtown Creek.	
	GW-02S	7	1	Screen interval 2-7	Х	х				Sampled 4/7/2016	Installed on 3/22/2016 Developed on 3/25/2016		
Newly Installed Groundwater Monitoring Wells/	GW-02D	20	1	Screen interval 10-20	Х	Х	Х	х	Х	Sampled 4/7/2016	Installed on 3/22/2016 Developed on 3/24/2016	Determine the presence and extent of	
Groundwater	GW-03	19	1	Screen interval 9-19	Х	х	1			Sampled 4/7/2016	Installed on 3/21/2016 Developed on 3/24/2016	downgradient groundwater contamination. Confirm groundwater flow direction and the influence of the East River and Newtown	
	GW-04S	8	1	Screen interval 3-8	Х	х				Sampled 4/7/2016	Installed on 3/23/2016 Developed on 3/25/2016	Creek.	
	GW-04D	18	1	Screen interval 8-18	Х	x				Sampled 4/7/2016	Installed on 3/23/2016 Developed on 3/25/2016		
Existing	MW-1	N/A	1	Well depth 12.60	Х	х				Sampled 4/7/2016	Developed on 3/24/2016. Blind duplicate collected.	Determine the presence and extent of	
Groundwater Monitoring Wells/ Groundwater	MW-2	N/A	1	Well depth 6.85	х	х				Sampled 4/7/2016	Developed on 3/25/2016	downgradient groundwater contamination. Confirm groundwater flow direction and the influence of the East River and Newtown Creek.	
Groundwater	MW-3	N/A	1	Well depth 12.75	х	х	х	Х	Х	Sampled 4/7/2016	Developed on 3/24/2016		

TABLE 2-1

Long Island Rail Road Arch Street Yard (Site No. V00733) Remedial Investigation

REMEDIAL INVESTIGATION SCOPE SUMMARY

	_	Completion	No. of	Sample			Analysis	s ¹					
Investigation Method/Media	Sample Point ID	Depth Below Grade (feet)	Samples Selected for Analysis	Depth Below Grade (feet)	TCL VOCs	TCL SVOCs	PCBs	TCL Pesticides	TAL Metals	Installation/ Sample Date	Comments/Deviations from Work Plan	Sample Point Objectives	
Remedial Investig	Remedial Investigation - Third Phase (Completed)												
	SV-01	2.7	1	Screen interval 2.2-2.7	Х					8/17/2016	Outside soil vapor probe.		
	SV-02	4.4	1	Screen interval 3.9-4.4	Х					8/17/2016	Outside soil vapor probe. Completed within area of soil and groundwater chlorinated VOC contamination.		
	SV-03	4.8	1	Screen interval 4.3-4.8	X		1			8/17/2016	Outside soil vapor probe.		
	SV-04	4.4	1	Screen interval 3.9-4.4	Х					8/17/2016	Outside soil vapor probe.	Determine if soil vapor intrusion is a potential exposure pathway.	
	SV-05	4.5	1	Screen interval 4-4.5	Х					8/17/2016	Outside soil vapor probe.		
Soil Vapor Probes and Indoor/ Ambient Air	SV-06	Below Building Slab	1	Below Building Slab	Х		1			8/17/2016	Sub-slab soil vapor sample collected in office area of LIRR Engineering Support Building.		
	SV-06(R)	Below Building Slab	1	Below Building Slab	Х		1			2/22/2017	Recollected during the heating season at the request of NYSDEC.		
	IA-01	N/A	1	N/A	Х		1			8/17/2016	Collected in office area of LIRR Engineering Support Building.		
	IA-01(R)	N/A	1	N/A	Х		-			2/22/2017	Recollected during the heating season at the request of NYSDEC.		
	AA-01	N/A	1	N/A	Х					8/17/2016	Outdoor ambient air sample collected upwind of soil vapor/indoor air sampling area.		
	AA-01(R)	N/A	1	N/A	Х					2/22/2017	Recollected during the heating season at the request of NYSDEC.		

Notes:

Polychlorinated Biphenyls (PCBs) by EPA Method 8082.

TCL Pesticides by EPA Method 8081.

Target Analyte List (TAL) metals by EPA Method 6010.

X: Sample selected for analysis.

^{--:} Sample not selected for analysis.

N/A: Not available

¹ As per Work Plan, approximately 20% of the soil and groundwater samples collected from the soil borings and groundwater monitoring wells were analyzed for TAL metals, PCBs and pesticides in addition to VOC and SVOCs, biased toward visually impacted samples. Analytical methods were as follows

Target Compound List (TCL) Volatile Organic Compounds (VOCs) by EPA Methods 5035 and 8260 for soil samples, EPA Method 8260 for groundwater samples and EPA Method TO-15 for air samples.

TCL Semivolatile Organic Compounds (SVOCs) by EPA Method 8270.

project file. All hard copy confirmations were available in the field during all intrusive operations. Note that these markouts were limited to the sidewalk and public right-of-ways. The LIRR marked out all known or suspected underground utilities within LIRR property prior to D&B undertaking any intrusive work. In addition, D&B's geophysical contractor, Advanced Geological Services, Inc. (AGS), attempted to verify and mark all underground utilities in the vicinity of all proposed drilling locations prior to undertaking any intrusive work. Details regarding geophysical surveys are provided below in Section 2.2.

Following completion of the utility clearance described above, all boring/well locations were excavated to a maximum depth of 5 feet, and to the water table at a minimum, using hand tools to further ensure a utility was not located in the area to be drilled.

2.2 Geophysical Surveys

Prior to undertaking any intrusive activities, a 1-day geophysical survey was performed on October 6, 2015 by AGS in an attempt to verify and mark the location of any underground utilities present in the vicinity of all drilling locations. As part of this task, AGS utilized terrain conductivity and electromagnetic methods, along with ground penetrating radar (GPR). AGS marked the approximate limits of any underground utilities in the field. Note that the geophysical survey was limited in its ability to identify unknown utilities in the vicinity of the track areas of the Site given interference from the steel tracks. As stated above in Section 2.1, the LIRR also marked out all known or suspected underground utilities within their property.

2.3 Membrane Interface Probe (MIP) Study

A MIP study was completed as the first phase of the RI in order to define the current limits of VOC contamination in the Site and help optimize the selection of soil boring and permanent groundwater monitoring well locations. MIP technology can detect the presence

REMEDIAL INVESTIGATION REPORT

and relative concentration of chlorinated and non-chlorinated VOCs in both soil and groundwater by advancing instruments including: photoionization detector (PID); flame-ionization detector (FID); and a halogen specific detector (XSD). These detectors provide an overall screening level "snapshot" of total organic chemical constituent concentrations (in microvolts[uV]) present in the subsurface as the probe is advanced. The PID is used for the detection of aromatic VOCs (such as benzene), the FID is used for the detection of straight-chain alkanes (such as methane), and the XSD is utilized for the detection of halogenated organics including chlorinated VOCs. A soil conductivity (SC) detector also provides real-time soil conductivity data in millisiemens/meter as the probe is advanced into the subsurface.

As shown on Figure 2-1, a total of 11 MIP locations (MIP-1 through MIP-11) were completed within the Site and in the vicinity of the area where VOC contamination was documented during the previous investigations discussed in Section 1.4. The MIPs were advanced into the subsurface using standard Geoprobe equipment. The logs for the completed MIPs are provided in Appendix B. Each MIP location was completed until refusal, which was encountered at a depth between 20 and 30 feet below grade at all locations except MIP-11 where refusal was encountered at a depth of 15 feet below grade. Groundwater was observed at a depth of approximately 3 to 5 feet below grade. Based on the results of the MIPs, additional MIP locations were not determined to be necessary.

Two Geoprobe verification borings (VB-01 and VB-02) were completed at two MIP locations (MIP-2 and MIP-6, respectively), that were selected by D&B in order to collect subsurface soil and groundwater samples for analysis to verify the MIP results. Verification boring VB-01 was completed at the MIP-2 location to confirm the XSD/PID/FID detections at this location. Verification boring VB-02 was completed at the MIP-6 location to investigate the FID-only detections found at the remaining MIP locations. Boring logs are provided in Appendix C.

Soil borings were logged and subsurface soil samples were collected in accordance with the procedures detailed in Section 2.4 below. Groundwater samples were collected by driving probe rods to the designated sample depth and installing a temporary well point. A portable peristaltic pump with disposable tubing was used to purge and sample using United States Environmental Protection Agency (USEPA) low-flow sampling techniques, and new tubing was used between each interval. The purge water was monitored in the field for the following parameters utilizing a calibrated multiple parameter water quality instrument: pH, conductivity, turbidity, dissolved oxygen, temperature and oxidation-reduction potential. After stabilization, groundwater samples were collected for laboratory analysis. Additionally, any evidence of odors, sheens or the presence of free phase nonaqueous phase liquid (NAPL) was noted.

As summarized in **Table 2-1**, one subsurface soil sample and two groundwater samples were collected from each verification boring for laboratory analysis of Target Compound List (TCL) VOCs by USEPA Methods 5035 and 8260. Analytical results are summarized in **Appendix E** on Table E-1 for subsurface soil and Table E-6 for groundwater. The results of the MIP study are discussed in Section 3.2. Analytical and Quality Assurance/Quality Control (QA/QC) procedures are discussed in Section 2.14.

2.4 Deep Soil Boring Installation and Subsurface Soil Sampling

A total of eight deep soil borings (SB-01 through SB-08) were completed as part of the field investigation in order to define the limits of VOC contamination identified by the MIP study at MIP-2. The surveyed soil boring locations are depicted on **Figure 2-1** and the rationales are provided in **Table 2-1**. Soil borings were completed using direct push technology, i.e., Geoprobe, with soil samples collected continuously from ground surface to the boring termination depth of 25 feet below grade. However, soil boring SB-04 was completed until refusal at 29 feet below grade. Groundwater was observed at a depth of approximately 3 to 5 feet below grade.

The borings were advanced utilizing a decontaminated macro core soil sampler fitted with a disposable 5-foot acetate liner. During the advancement of each boring, each recovered soil sample was inspected and characterized by a geologist in accordance with the Unified Soil Classification System (USCS). The geologist also described any evidence of contamination, such as NAPL, staining, sheens or odors, and screened the sample for organic vapors using a PID. Boring logs are provided in **Appendix C**.

As summarized in **Table 2-1**, a total of 18 subsurface soil samples were collected for laboratory analysis from the eight deep soil borings. At a minimum, soil samples were collected for analysis from the most impacted zone based on visual/PID readings and the first visually clean zone beneath the impacted zone at each soil boring. Additional samples were collected as necessary to delineate any suspected contamination. Each soil sample was selected for analysis of TCL VOCs by USEPA Methods 5035 and 8260 (using the Encore sampling method), and TCL SVOCs by USEPA Method 8270. Five of the selected soil samples (greater than 20% of the total) were also analyzed for Target Analyte List (TAL) metals, PCBs and TCL pesticides by USEPA Methods 6010, 8082 and 8081, respectively, biased towards visually impacted samples. Subsurface soil analytical results are summarized in **Appendix E** on Tables E-1 through E-5. The results of the deep soil borings are discussed in Section 3.3.1. Analytical and QA/QC procedures are discussed in Section 2.14.

2.5 Monitoring Well Installation and Development

Two water table monitoring wells (GW-02S and GW-04S) and four deep monitoring wells (GW-01, GW-02D, GW-03 and GW-04D) were installed and developed in order to determine the presence and extent of groundwater contamination, and confirm groundwater flow direction and tidal influence. The surveyed monitoring well locations are depicted on Figure 2-1, and the rationales are provided in Table 2-1. Note that both a water table and a deep well were installed at the GW-02 and GW-04 locations, designated by a "S" and "D",

respectively. Based on the results of the MIP study, deep monitoring wells were installed below the water table in order to intercept the highest chlorinated VOC concentration observed during the MIP study at MIP-2/VB-01. The following sections describe the soil sampling completed during monitoring well installation, and detail the construction and development of the new wells.

2.5.1 Soil Sampling

Soil samples were collected at three of the four well locations (GW-01, GW-03 and GW-04) utilizing direct push sampling methods, i.e., Geoprobe. Subsurface soil samples were not collected at GW-02 since verification soil boring VB-01 was previously completed in the vicinity of GW-02. Soil samples were collected continuously from ground surface to a depth of 20 feet below grade. However, refusal was encountered at well location GW-04 at 19 feet below grade. Groundwater was observed at a depth of approximately 3 to 5 feet below grade.

The borings were advanced utilizing a decontaminated macro core soil sampler fitted with a disposable 5-foot acetate liner. Each recovered soil sample was inspected and characterized by a D&B geologist as described in Section 2.4. Boring logs are provided in Appendix C.

As summarized in **Table 2-1**, a total of nine subsurface soil samples were collected for laboratory analysis from the three well locations. Soil samples were collected for analysis from the most impacted zone based on visual/PID readings and the previously completed MIP study, and the first visually clean zone beneath the impacted zone at each location. Lastly, a soil sample at the groundwater interface or water table was selected for analysis. Each soil sample was selected for analysis of TCL VOCs by USEPA Methods 5035 and 8260 (using the Encore sampling method), and TCL SVOCs by USEPA Method 8270. Three of the selected soil samples (greater than 20% of the total) were also analyzed for TAL metals, PCBs and TCL

pesticides by USEPA Methods 6010, 8082 and 8081, respectively, biased towards visually impacted samples. Subsurface soil analytical results are summarized in **Appendix E** on Tables E-1 through E-5, and the results are discussed in Section 3.3.1. Analytical and QA/QC procedures are discussed in Section 2.14.

2.5.2 Monitoring Well Construction

Groundwater monitoring wells were installed in unconsolidated sediment as 1-inch diameter pre-packed PVC wells by direct push technology, i.e., Geoprobe. Shallow wells GW-02S and GW-04S were installed with a 5-foot length of 1-inch diameter PVC pre-packed well screen to intercept the water table, observed at a depth of 3 to 5 feet below grade, and are between 7 and 8 feet deep. Deep wells GW-01, GW-02D, GW-03 and GW-04D were installed with 10 feet of screen below the water table and are between 18 and 20 feet deep.

Each well was installed by advancing 3.5-inch O.D. probe rods to the desired depth with a disposable drive point. After reaching the desired depth, the pre-assembled well screen and PVC riser pipe were installed inside the probe rods. After setting the well, the probe rods were retracted from the ground and a 1 to 2-foot layer of fine sand was placed above the pre-packed well screen prior to installing a 2-foot bentonite seal. To complete each well, a locking steel "stick-up" protective casing was grouted in place, except for the wells completed in track areas (GW-04S and GW-04D) which were completed with flush-mounted well covers. Monitoring well depths and screen intervals are summarized in Table 2-1. Monitoring well construction logs are provided in Appendix D.

2.5.3 Monitoring Well Development

Following installation, the newly installed monitoring wells were developed by the pump and surge method for up to 2 hours, or until the turbidity of the groundwater achieved a reading of 50 NTUs (nephelometric turbidity units) or less. However, a minimum of five well

volumes of water were purged from each well. Well development was supplemented by measurements of additional field parameters, including pH, conductivity, dissolved oxygen, temperature and oxidation-reduction potential. In addition, existing wells MW-1, MW-2 and MW-3 were redeveloped. Existing well MW-4 could not be located and is presumed to be destroyed.

2.6 Monitoring Well Sampling

As summarized on **Table 2-1**, groundwater samples were collected from the three remaining existing wells (MW-1, MW-2 and MW-3), and the six newly installed wells (GW-01, GW-02S, GW-02D, GW-03, GW-04S and GW-04D) on April 7, 2016. Sampling of the newly installed wells was completed more than one week after well installation and development as specified in the RIWP.

Prior to sampling, the depth to groundwater and the presence of an immiscible floating NAPL layer (LNAPL) was measured in the wells using an electronic oil/water interface probe attached to a measuring tape accurate to 0.01 foot. The well was opened, and the head space was monitored with a PID. The probe was then carefully lowered into the well to check the depth of the water surface, as well as for the presence and thickness of an LNAPL layer. VOCs were not detected within the headspace of any of the newly installed or existing monitoring wells during the sampling process. In addition, LNAPL was not observed in any of the monitoring wells.

A portable peristaltic pump with disposable tubing was used to purge and sample each well using USEPA low-flow sampling techniques, and new tubing was used between each well. The purge water was monitored in the field for the following parameters utilizing a calibrated multiple parameter water quality instrument: pH, conductivity, turbidity, dissolved oxygen, temperature and oxidation-reduction potential. After stabilization, groundwater samples were collected for laboratory analysis in laboratory-supplied sample bottles.

Additionally, any evidence of odors, sheens or the presence of NAPL was noted. All samples will be labeled and placed in a cooler with bagged ice sufficient to cool the samples to 4°C.

As summarized in **Table 2-1**, the nine groundwater samples were analyzed for TCL VOCs and SVOCs by USEPA Methods 8260 and 8270, respectively. Two of the groundwater monitoring well samples (greater than 20% of the total) were also analyzed for TAL metals, PCBs and TCL pesticides by USEPA Methods 6010, 8082 and 8081, respectively, biased towards the most impacted areas. Groundwater analytical results are summarized in **Appendix E** on Tables E-6 through E-9, and the results are discussed in Section 3.4. Analytical and QA/QC procedures are discussed in Section 2.14.

As described in Section 2.12, all purge water was containerized on-site in DOT-approved 55-gallon drums for proper characterization and off-site disposal by the LIRR. All non-dedicated sampling equipment (e.g., oil-water interface probes) was decontaminated between sampling locations as described in Section 2.13.

2.7 Shallow PCB Soil Boring Installation and Subsurface Soil Sampling

A total of nine shallow soil borings (SB-09 through SB-17) were completed as part of the PCB field investigation in order to confirm and define the limits of the PCB contamination previously identified at the Site in 2000. The surveyed soil boring locations are depicted on Figure 2-2 and the rationales are provided in Table 2-1. As indicated in Table 2-1, a majority of the soil borings had to be moved several feet due to the presence of the third rail or underground utilities within this area of tracks. However, the completed soil borings remained centered around the previously identified maximum PCB concentration of 320 mg/kg detected in subsurface soil sample SE-AR-04 (0 to 0.5 feet). Soil borings SB-09 through SB-11 were completed to a depth of 8 feet and a total of four samples were selected for PCB analysis at the following intervals:

- 0 to 1 feet (not including the 12 to 24 inches of bluestone found in the track area)
- 2 to 3 feet
- 4 to 5 feet
- 7 to 8 feet

The remaining six soil borings (SB-12 through SB-17) were completed to a depth of 6 feet with three samples selected for PCB analysis at the following intervals:

- 0 to 1 feet (not including the 12 to 24 inches of bluestone found in the track area)
- 2 to 3 feet
- 5 to 6 feet

Once the 12 to 24 inches of bluestone present in the track area was cleared away at each location, the soil borings were completed using direct push technology, i.e., Geoprobe. The borings were advanced utilizing a decontaminated macro core soil sampler fitted with a disposable 5-foot acetate liner. Each recovered soil sample was inspected and characterized by a D&B geologist as described in Section 2.4. Boring logs are provided in Appendix C.

As summarized in **Table 2-1**, a total of 30 subsurface soil samples were collected for PCB analysis from the nine shallow PCB soil borings in accordance with EPA Method 8082. Subsurface soil analytical results for PCBs are summarized in **Appendix E** on Table E-3. The results of the shallow PCB soil borings are discussed in Section 3.3.2. Analytical and QA/QC procedures are discussed in Section 2.14.

2.8 Site Survey

At the completion of installation activities, the location and elevation of all newly installed MIPs, soil borings and groundwater monitoring wells were surveyed by a New York State-licensed surveyor for placement on the base map. Two elevation measurements were taken at each new monitoring well location to assist in the determination of groundwater flow direction: the ground elevation and the elevation of the top of PVC well casing. In addition,

the location and elevation of all existing monitoring wells were surveyed in order to properly locate them on the D&B sample location map. The survey elevations were measured to an accuracy of 0.01 foot. All elevations were referenced to the North American Vertical Datum of 1988 (NAVD88) and horizontal locations were based upon the North American Datum of 1983, New York State Coordinate System.

2.9 Tidal Investigation and Collecting Synoptic Water Levels

D&B collected two rounds of synoptic water levels from all 9 monitoring wells at the approximate time of low, mid and high tides in the nearest water bodies (East River and Newtown Creek) on April 22 and April 27, 2016. In addition, D&B conducted a 48-hour tidal survey between May 4 and May 6, 2016 to determine the degree of tidal influence associated with the East River and Newtown Creek. As part of the tidal survey, D&B selected three monitoring wells (GW-01, GW-03 and MW-3) for the installation of pressure transducer/data loggers which convert water pressure into water level elevation. The pressure transducers were configured to record water levels every 15 minutes over the 48-hour test period, and D&B collected manual water level measurements before and after the tidal survey. Note that the tidal survey included a new moon on May 6, when the tidal fluctuation is greatest.

The findings of the tidal survey and synoptic water levels are discussed in Section 3.1, including a summary of water level measurements and calculated groundwater elevations, and groundwater contour maps. Graphs of the water level data over time compared to the tidal cycle of the two water bodies are also provided to determine the degree of tidal influence.

2.10 Soil Vapor Sampling/Indoor Air Sampling

A total of five temporary soil vapor probes (SV-01 through SV-05), one sub-slab soil vapor sample (SV-06), one indoor air sample (IA-01) and one outdoor ambient air sample (AA-01) were completed to determine if soil vapor intrusion is a potential exposure pathway. The sample locations were selected based on the VOC contamination identified during the MIP study, and the soil and groundwater sampling. The completed locations are depicted on Figure 2-1 and the rationales are provided in Table 2-1. Note that the indoor air sample (IA-01) was collected within an office area of the LIRR Engineering Support Building, which is the closest on-site building to the VOC contamination. The sub-slab soil vapor sample (SV-06) was completed from below the concrete slab in the vicinity of the indoor air sample.

Each air sample was selected for analysis of VOCs by USEPA Method TO-15. Air analytical results are summarized in **Appendix E** on Tables E-10 and E-11. The results of the air sampling are discussed in Section 3.5. Sampling protocols were consistent with the New York State Department of Health (NYSDOH) document entitled, "Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York", dated October 2006, as follows:

The air sampling was completed in August 2016 during the summer. After initially submitting this RI Report to NYSDEC in October 2016, the NYSDEC requested that the LIRR recollect three of these air samples during the heating season, including the indoor air sample (IA-01), the sub-slab soil vapor sample (SV-06) and the outdoor ambient air sample (AA-01). The samples were recollected in February 2017 from the same locations, and the results are provided in **Appendix E** on Table E-12. An "R" has been added to the sample IDs to indicate that these locations were resampled.

Soil Vapor Sampling

The soil vapor samples were collected using a direct-drive rig (i.e., Geoprobe) that utilized drive rods to advance the stainless steel probe to the sample depth above the water table. As summarized in **Table 2-1**, subsurface soil vapor samples were collected at depths ranging from 2 to 5 feet below grade, depending on the water table depth at each location. The temporary soil vapor probe was then purged using a PID to evacuate one to three volumes of soil vapor. The PID recorded VOC concentrations from the soil vapor probe in the parts per billion (ppb) range. Each probe was connected via Teflon tubing to a laboratory-supplied SUMMA canister. Using a flow regulator calibrated at a flow rate not to exceed 0.2 liter per minute and an individually certified clean 6-liter capacity SUMMA canister, the sample collection time was 2 hours. In accordance with the NYSDOH vapor intrusion guidance, tracer gas (i.e., helium) was used at every soil vapor sampling location to ensure that an adequate surface seal was created.

Sub-Slab Soil Vapor Sampling

The collection of the sub-slab soil vapor sample followed a similar procedure to the soil vapor samples. Prior to installation of the sub-slab vapor probe, the building floor was inspected for any penetrations, and the location chosen to ensure that there was minimal potential for ambient air infiltration via floor penetrations. The sub-slab soil vapor sample was collected in an office area in the approximate center of the Engineering Support Building from 2 inches beneath the concrete slab. The sample was collected in an individually certified clean 6-liter SUMMA canister fitted with a laboratory calibrated low-flow regulator set to collect the sample over a 2-hour period. Similar to the outdoor soil vapor samples, a tracer gas (i.e., helium) was used to ensure that an adequate surface seal was created. The heating season resample was collected in close proximity to the original sample location, but with a new penetration through the slab.

REMEDIAL INVESTIGATION REPORT

Indoor Air Sample

An indoor air quality questionnaire and building inventory was completed by D&B prior to sampling to evaluate the type of structure, floor layout and physical conditions of the buildings being studied and to identify and minimize conditions that may affect or interfere with the testing. This information along with information on sources of potential indoor contamination were identified. A ppb range PID was used to help evaluate potential interferences. The building inventory included the use or storage of petroleum products including gasoline operated equipment, un-vented kerosene heaters, recent use of petroleum-based finishes or products containing petroleum distillates. Products that contain VOCs were listed on the building inventory form along with PID readings obtained near the container. Where available, the volatile ingredients were recorded for each product. The manufacturer's name, address and/or phone number were also recorded (where available) when the ingredients were not listed on the product label. The completed indoor air quality questionnaire and building inventory is provided in Appendix F.

The indoor air sample was collected in an office area in the approximate center of the Engineering Support Building utilizing an individually certified clean 6-liter stainless steel SUMMA canister fitted with a laboratory calibrated low-flow regulator. The sample was collected over an 8-hour period with the regulator calibrated at a flow rate not to exceed 0.2 liter per minute. The canister was placed at a height of approximately 3 feet above the floor.

Ambient Air Sampling

D&B collected one ambient air sample in conjunction with the soil vapor and indoor air sampling over an 8-hour period. The ambient air sample was collected within the Site in the observed upwind direction on the day of the soil vapor and indoor air sampling. The ambient air was screened with a properly calibrated ppb range PID and the readings were recorded prior to sampling.

The ambient air sample was collected utilizing an individually certified clean 6-liter stainless steel SUMMA canister fitted with a laboratory calibrated low-flow regulator. The sample was collected over an 8-hour period with the regulator calibrated at a flow rate not to exceed 0.2 liter per minute. The canister was placed in a secure location at a height of approximately 3 feet.

2.11 Air Monitoring

Ambient air monitoring was performed during all intrusive activities. A PID was utilized to detect VOCs in ambient air. All readings were below action levels during intrusive activities. In addition, the PID was used to screen soil samples for the presence of VOCs and assist in the selection of soil samples for chemical analysis.

In accordance with the RIWP, a Community Air Monitoring Program (CAMP) consistent with NYSDOH guidance was implemented during intrusive activities as a precaution in order to protect the downwind community. This included continuous monitoring of VOCs and particulates (dust) at the downwind perimeter of the work area using a PID and portable dust monitor, respectively. Upwind concentrations were also monitored for comparison purposes. Action levels above background concentrations were not reached or exceeded during intrusive activities.

2.12 Management of Investigation Derived Waste

No excess visibly-impacted soil and soil cuttings were generated during the soil boring and well installation tasks. However, all well development and sampling purge water was collected and containerized on-site in DOT-approved 55-gallon drums for proper off-site disposal by the LIRR. A total of 4 drums of liquid waste were generated.

The drums used to store investigation waste were sealed at the end of each workday and labeled with the date, the well(s), the type of waste (i.e., development water or purge water) and the name of a point-of-contact. Grab samples were collected from the drums in order to determine the most appropriate disposal method. Since the source of the elevated levels of VOCs detected in the soil and groundwater has not been identified, the investigational waste would not be classified as a listed hazardous waste and, therefore, a "contained-in" demonstration is not required. However, a determination was made as to whether the waste is classified as a characteristic waste. To conduct that determination, the samples were analyzed for Toxicity Characteristic Leaching Procedure (TCLP) VOCs, TCLP SVOCs, TCLP metals, PCBs, total petroleum hydrocarbons (TPHs), ignitability, corrosivity, reactivity, and total cyanide. All drums were labeled "pending analysis" until laboratory data was available.

Based on the TCLP vinyl chloride results, the liquid waste was considered a characteristic waste. The LIRR properly disposed of the drummed waste according to applicable local, state and federal regulations. The hazardous waste manifest is included in Appendix G.

2.13 Equipment Decontamination

Whenever possible, all field sampling equipment was sterile/disposable and dedicated to a particular sampling point. In instances where this was not possible, a field cleaning/decontamination procedure was used in order to mitigate cross contamination between sample locations. In addition, drilling equipment was decontaminated before use and between sample locations in an area located away from the source of contamination so as not to adversely impact the decontamination procedure, but close enough to the sampling locations to keep equipment transport handling to a minimum after decontamination. Specific decontamination procedures for drilling equipment and sampling equipment were described in the QA/QC plan in the RIWP.

2.14 Analytical and QA/QC Procedures

All sample analyses were performed by Chemtech, a certified NYSDOH Environmental Laboratory Approval Program (ELAP) laboratory. All analyses were conducted utilizing NYSDEC 7/05 Analytical Services Protocol (ASP) methods, or latest version, that are at least as stringent as USEPA CLP protocols. NYSDEC ASP Category B data deliverable packages and EDDs in EQuIS format were provided by the laboratory for all analyses. The EDDs will be submitted to the NYSDEC. In accordance with USEPA guidance, samples were shipped daily to ensure that they were received at the laboratory no later than 48 hours after collection.

QA/QC samples that were collected as part of the RI include matrix spike (MS) and matrix spike duplicate (MSD) samples, blind duplicate samples, field blanks and trip blanks. The MS/MSD samples, blind duplicate samples and field blanks were collected at a frequency of one per 20 environmental samples for each sampled medium (soil and groundwater), per analytical parameter. Trip blanks were shipped to and from the field with the sample containers when VOC analyses were conducted on aqueous samples. Trip blanks consist of VOC vials filled at the laboratory with distilled, deionized water, which remain unopened in the field and are analyzed for VOCs only to provide an indication of potential sample contamination due to sample transport, preservation, storage and preparation procedures, as well as atmospheric conditions during transportation and time on-site.

2.15 Data Usability Summary Report

A total of 59 subsurface soil samples, 13 groundwater samples and 11 air samples were selected for analysis as part of the Remediation Investigation that occurred at LIRR Arch Street Yard, NYSDEC VCA Site No. V00733. Depending on the sample location, soil and

groundwater samples were analyzed for TCL VOCs, TCL SVOCs, PCBs, TCL pesticides and/or TAL metals. Air samples were analyzed for TO-15 VOCs.

The analytical laboratory, Chemtech, provided eight NYSDEC ASP Category B deliverable data packages for review, including G4239, H1857, H1881, H1884, H1937, H2402, H4563 and I1974. These data packages were reviewed by Ms. Donna Brown, D&B's QA/QC Officer. Ms. Brown meets the NYSDEC requirements of a data validator as listed in the DER-10 Technical Guidance for Site Investigation and Remediation, dated June 2010. The review of the data was conducted in accordance with NYSDEC 7/05 ASP QA/QC requirements, as well as DER-10, as specified in the RIWP.

All samples were analyzed using the proper methods and within the method-specified holding times. The internal standard area counts and spike recoveries were within QC limits except where noted below. Initial and continuing calibrations were analyzed at the method specified frequency and were within QC limits. Raw data confirmed the reported sample results. The sample results were qualified based on the review process as follows:

- Numerous VOCs and SVOCs exceeded the calibration range in G4239, H1857, H1937, H2402 and H4563, and acetone for sub-slab soil vapor sample SV-06(R) in I1974, and were reanalyzed at a secondary dilution. The reanalyzed data was reported for these compounds, and the results qualified as "D".
- Methylene chloride was qualified as non-detect (UB) based on blank results for subsurface soil samples SB-01 (13 to 15 feet), SB-07 (12 to 14 feet) and SB-07 (23 to 25 feet), and air samples AA-01, IA-01, SV-01 and SV-02.
- The following compounds were qualified as estimated (J) based on the relative percent difference (RPD) in subsurface soil sample SB-05 (10 to 11 feet) and the blind duplicate for this sample: cis-1,2-dichloroethene, tetrachloroethene, trichloroethene, vinyl chloride and calcium.
- Carbon disulfide was qualified as estimated (J) based on the RPD in subsurface soil sample GW-04 (12 to 14 feet) and the blind duplicate for this sample.

- The percent recovery (%R) was beyond the QC limits in the MS, MSD and/or laboratory control sample (LCS) for the following: 2,4-dinitrophenol in H1857; 1,4-dioxane and 3+4-methylphenols in H2402; 1,4-dioxane and benzaldehyde in H1937; tetrachloroethene for groundwater samples GW-02S, GW-02D and MW-3; and dichlorodifluoromethane and naphthalene in H4563. These compounds were qualified as estimated (J/UJ) for the corresponding samples.
- The RPD was above the QC limits in the MS/MSD for acetone in subsurface soil samples GW-01 (4 to 5 feet), GW-03 (12 to 14 feet) and GW-03 (18 to 20 feet), and for detected SVOCs in H1884 and H1937. These compounds were qualified as estimated (J) for the corresponding samples.
- The %R was below the QC limit in the laboratory control sample for dichlorodifluoromethane in 11974, and the RPD was above the QC limit in the duplicate. Dichlorodifluoromethane was qualified as estimated (J) for the corresponding samples.
- The surrogate %R and internal standards were outside the QC limits in the original and reanalysis for subsurface soil sample GW-01 (4 to 5 feet). The reanalysis was reported for this sample with all VOCs qualified as estimated (UJ) or estimated bias high (J+).
- The surrogate %R was below the QC limit for 4-bromoflurobenzene in subsurface soil sample GW-03 (3 to 4 feet) and was within QC limits in the reanalysis. In addition, this sample had the internal standards chlorobenzene-d5 and 1,4-dichlorobenzene-d4 below the QC limit. Based on surrogate and internal standard results, the reanalysis was reported and the following compounds were qualified as an estimated (UJ) or estimated bias high (J+): bromoform; chlorobenzene; ethylbenzene; m/p-xylenes; o-xylene; styrene; tetrachloroethene; 1,1,2,2-tetrachloroethane; 1,2,3-trichlorobenzene; 1,2,4-trichlorobenzene; 1,2-dichlorobenzene; 1,3-dichlorobenzene; 1,4-dichlorobenzene; and isopropylbenzene.
- The surrogates %R was below the QC limit, and the original analysis was reported for groundwater sample GW-01. The SVOCs were qualified as estimated (UJ) or estimated bias low (J-) for this sample.
- The internal standards area was below the QC limit for 1,4-dichlorobenzene-d4 in several samples. The reanalysis for subsurface soil samples VP-02 (12 to 14 feet), SB-01 (13 to 15 feet), SB-08 (4 to 6 feet) and GW-04 (2 to 3 feet), and the original analysis for subsurface soil samples SB-04 (3 to 5 feet), SB-05 (11 to 13 feet) and SB-08 (6 to 8 feet) were reported with the following compounds qualified as estimated (UJ) or estimated bias high (J+): 1,1,2,2-tetrachloroethane; 1,2,3-

REMEDIAL INVESTIGATION REPORT

trichlorobenzene; 1,2,4-trichlorobenzene; 1,2-dibromo-3-chloropropane; 1,2-dichlorobenzene; 1,3-dichlorobenzene; 1,4-dichlorobenzene; and isopropylbenzene.

- The surrogate %R was below the QC limit for the original and reanalysis for the following subsurface soil samples: SB-04 (3 to 5 feet); SB-06 (8 to 10 feet); SB-07 (12 to 14 feet); SB-09 (4 to 5 feet); SB-10 (2 to 3 feet); SB-12 (2 to 3 feet); SB-12 (5 to 6 feet); SB-13 (2 to 3 feet); SB-15 (0 to 1 feet); SB-17 (2 to 3 feet); GW-01 (13 to 15 feet); and GW-03 (12 to 14 feet). All PCB results were reported from the original analysis and qualified as estimated (UJ) or estimated bias low (J-) for these samples.
- The %Rs for numerous metals were outside the QC limit in the spike sample in H1857, H1881, H1884 and H1937. These metals were qualified as estimated (J/UJ) for the corresponding samples.
- The percent difference (%D) for numerous metals were above the QC limit of 10% in the serial dilution check in H1857, H1881, H1884 and H1937. These metals were qualified as estimated (J) for the corresponding samples.

Based on the findings of the data validation process, the results have been deemed valid and usable for environmental assessment purposes as qualified above.

3.0 REMEDIAL INVESTIGATION FINDINGS

This section presents a detailed discussion of the results of the Remedial Investigation specific to geology and hydrogeology, and the presence or absence of contaminants in soil, groundwater and air. In order to present a logical discussion of the data generated as part of this Remedial Investigation, the discussion has been organized into the following subsections:

- Site Geology and Hydrogeology;
- Membrane Interface Probe (MIP) Study;
- Subsurface Soil;
- Groundwater; and
- Air.

Figure 2-1 and Figure 2-2, provided in Section 2.0, depicts the location of all sample locations referenced in this section. Table 2-1, also provided in Section 2.0, presents a summary of the completed RI scope of work. MIP logs, boring logs and monitoring well construction logs for the RI are provided in Appendix B, Appendix C and Appendix D, respectively.

3.1 Site Geology and Hydrogeology

The following section presents the findings, as well as a discussion and interpretation of geologic and hydrogeologic data collected during the RI. Information utilized in support of this evaluation includes the following:

- Logs from completed MIPs, soil borings and groundwater monitoring wells;
- Hydraulic head measurements from groundwater monitoring wells; and

 Geologic and hydrogeologic data obtained from previously completed investigations.

Topography

Based on the survey data and field observations, land surface within the Site is generally flat with an elevation of between 7 to 11 feet above mean sea level (msl). The area where VOC contamination was detected during previous investigations, located south of the tracks within the fenced area, has an elevation of approximately 7 to 9 feet msl.

Geology

As is typical for most highly industrialized areas such as Queens, New York, the Yard property was likely filled and reworked to allow for development. Based on the RI boring logs and consistent with previous investigations, a layer of urban fill material was observed immediately below the ground surface with a minimum thickness of 5 feet. The fill material is generally described as a dark brown to gray and black, sand and gravel mix with some silt. Varying amounts of anthropogenic material were observed in the fill, such as bluestone, concrete and brick, as well as coal, slag, ash and cinders. The water table was observed within this fill material at a depth of approximately 3 to 5 feet below grade.

Based on the absence of anthropogenic materials, native glacial deposits may be present beneath the fill material in some locations that is similar in texture but generally finer and lighter in color. However, at all locations the top of a native clay-rich unit was observed at depths ranging from 10 to 15 feet below grade. The clay-rich unit consists of gray, plastic clay, with some zones of silt or silty sand, and often mixed with significant amounts of organic peat material. It is possible that this clay-rich unit marks the location of a wetland area which may have existed prior to filling activities. The clay-rich unit continues to approximately 20 feet below grade, with a thickness ranging from 5 to 10 feet.

The clay-rich unit transitions into a coarser sandy material at depths greater than 20 feet below grade, with refusal generally being encountered at a depth between 25 and 30 feet below grade. Based on USGS data for this area of Queens, it is suspected that the refusal is bedrock-related. Bedrock is this area of Queens likely consists of gneiss of the Ravenswood Formation or schist of the Hartland Formation. Material consistent with weathered bedrock was encountered before refusal, including rock fragments. In the track area where the PCB investigation was conducted, refusal was encountered at shallower depths ranging from 15 to 20 feet below grade.

Limited evidence of contamination was observed in soil during the RI, primarily in soil borings located within the area where VOC contamination was detected during previous investigations, such as soil borings VB-01 and SB-05. These soil borings exhibited PID readings up to 250 ppm, slight staining and a hydrocarbon or solvent-like odor immediately above the clay-rich unit at depths ranging from 10 to 13 feet below grade. Some minor petroleum contamination was also observed in soil boring SB-04 at the water table at a depth of 3 to 5 feet below grade, including a PID reading of 7.8 ppm, petroleum odor and a sheen on the water. Evidence of contamination was not observed deeper within the clay-rich unit or below the unit.

Hydrogeology

As discussed in Section 2.9, D&B collected two rounds of synoptic water levels at the approximate time of low, mid and high tides in the nearest water bodies (East River and Newtown Creek). A summary of the water level data is provided in **Table 3-1**, including surveyed measuring point elevations, measured total well depths and calculated water elevations. The water table was observed at a depth of 3 to 5 feet below grade, at an elevation ranging from 4.50 feet msl at the easternmost monitoring well GW-01 to 3.64 feet msl at the westernmost monitoring well GW-04S. As discussed above, clay and silt with peat

TABLE 3-1 LONG ISLAND RAIL ROAD ARCH STREET YARD

WATER LEVEL MEASUREMENTS AND GROUNDWATER ELEVATIONS

Well #	Total Depth of Well (ft)	Casing Elevation (ft msl)	Date	Approximate Tidal Stage	Depth to Water (ft)	Calculated Groundwater Elevation (ft msl)
MW-1				Low	3.83	4.20
			4/22/2016	Mid	3.83	4.20
	12.60	8.03	l	High	3.83	4.20
	12.00		4/27/2016	Low	3.72	4.31
				Mid	3.71	4.32
				High	3.71	4.32
MW-2	6.85	9.43	4/22/2016	Low	5.04	4.39
				Mid High	5.04 5.04	4.39 4.39
			4/27/2016	Low	4.98	4.45
				Mid	4.98	4.45
				High	4.98	4.45
			4/22/2016	Low	5.50	4.39
				Mid	5.51	4.38
MW-3	12.75	9.89		High	5.51	4.38
10100	12.70	0.00		Low	5.41	4.48
			4/27/2016	Mid	5.41	4.48
				High	5.41	4.48
			4/22/2016	Low	7.68	4.52
				Mid	7.70	4.50
GW-01	22.80	12.20		High	7.69 7.65	4.51 4.55
			4/27/2016	Low Mid	7.65	4.55
				High	7.64	4.56
				Low	10.68	0.37
			4/22/2016	Mid	10.70	0.35
014/ 005		44.0=	.,,_	High	10.70	0.35
GW-02D	22.80	11.05	4/27/2016	Low	10.71	0.34
				Mid	10.71	0.34
				High	10.70	0.35
		10.65	4/22/2016	Low	6.24	4.41
	9.45			Mid	6.24	4.41
GW-02S				High	6.24	4.41
OVV-020			4/27/2016	Low	6.15	4.50
				Mid	6.15	4.50 4.50
				High	6.15	
GW-03	20.10	10.41	4/22/2016	Low Mid	11.87 11.88	-1.46 -1.47
				High	11.87	-1.46
			4/27/2016	Low	12.13	-1.72
				Mid	12.12	-1.71
				High	12.12	-1.71
GW-04D	19.35	7.12	4/22/2016	Low	9.00	-1.88
				Mid	8.99	-1.87
				High	8.99	-1.87
			4/27/2016	Low	9.18	-2.06
				Mid	9.19	-2.07
	7.85	7.01		High	9.18	-2.06
			4/22/2016	Low	3.38	3.63
GW-04S				Mid	3.37	3.64
			4/27/2016	High Low	3.37 3.28	3.64 3.73
				Mid	3.28	3.73
				High	3.28	3.73

NOTES:

Measurements collected in feet below top of casing

NAPL was not detected in any groundwater monitoring well.

and organic material was observed throughout the Site starting at a depth of approximately 10 to 15 feet below grade. As indicated in **Table 3-1**, deep wells screened within or below this material, such as GW-02D, GW-03 and GW-04D, exhibited apparent confined groundwater conditions with the water level depressed approximately 4 to 5 feet as compared with unconfined, water table conditions.

A shallow (water table) groundwater contour map is provided as Figure 3-1, and a deep groundwater contour map as Figure 3-2. As indicated on Figure 3-1, shallow groundwater generally flows in a west-northwesterly direction, consistent with the reported regional groundwater flow direction towards the East River. The groundwater contour map for the deep wells provided on Figure 3-2 shows that groundwater generally flows in a westerly direction in this zone, similar to the water table.

The synoptic water elevation data summarized on **Table 3-1** showed no discernable tidal fluctuation, and the data suggests that groundwater flow remains in a general west-northwesterly direction during all stages of the tidal cycle. These results are supported by the findings of the tidal survey, which are depicted on **Figure 3-3** through **Figure 3-5**. These graphs depict the water levels in the three wells selected for the tidal study (GW-01, GW-03 and MW-3) over time, and the data is compared to the nearest tidal gauge station. The tidal study results do not show a tidal fluctuation in groundwater at the Site.

3.2 Membrane Interface Probe (MIP) Study

3.2.1 Membrane Interface Probes

As described in Section 2.3, a total of 11 MIP locations (MIP-1 through MIP-11) were completed within the Site and in the vicinity of the area where VOC contamination was documented during the previous investigations. The MIP locations are depicted on **Figure 2-1**

DEFINED LIMIT OF SITE

SUBJECT TO VCA (NYSDEC No:V00733) AND RI (APPROX. 2.7 LIRR ARCH

STREET YARD

FORMER
MAINTENANCE
FACILITY

FIGURE 3-3 LONG ISLAND RAIL ROAD ARCH STREET YARD RI TIDAL SURVEY

FIGURE 3-4 LONG ISLAND RAIL ROAD ARCH STREET YARD RI TIDAL SURVEY

FIGURE 3-5 LONG ISLAND RAIL ROAD ARCH STREET YARD RI TIDAL SURVEY

and the MIP logs are provided in **Appendix B**. As indicated on the MIP logs, only MIP-2 exhibited evidence of chlorinated VOCs, with elevated XSD detections above background. There were no XSD detections above background at MIP-2 until a depth of approximately 10 feet below grade, which is approximately 6 feet below the water table. The maximum XSD detection of 794 mV was observed at a depth of approximately 12.5 feet below grade, above the background level of 17 mV. The XSD detections then slowly decreased with depth until refusal at 23 feet below grade. The PID and FID results showed a similar pattern, hitting the maximum detection limit of 5,000 mV at a depth of approximately 14.5 to 15 feet below grade.

The other MIP locations did not exhibit elevated XSD detections above background. Although some spikes in PID detections above background were observed at MIP-1, MIP-4, MIP-5 and MIP-6, these detections were not sustained and were at least one order of magnitude lower than those detected at MIP-2. Some peaks in FID detections were observed in most MIP locations. However, in the absence of XSD or PID detections, it is likely that the FID detections are related to methane derived from organic decomposition. Note that verification boring VB-02, completed in the location of MIP-6, exhibited clay with peat and organic material at depths coinciding with FID peaks, with no indication of VOC contamination. As discussed in Section 3.1, peat and organic material was commonly observed in soil borings completed during the RI.

3.2.2 Verification Borings

Two verification borings (VB-01 and VB-02) were completed at two MIP locations (MIP-2 and MIP-6, respectively) to verify the MIP results. As summarized in **Table 2-1**, one subsurface soil sample and two groundwater samples were collected from each verification boring for analysis of TCL VOCs. The results are summarized in **Appendix E** on Table E-1 for subsurface soil and Table E-6 for groundwater. The subsurface soil data has been compared to the SCOs for Restricted-Residential and Industrial Use as defined in NYSDEC 6 NYCRR

Part 375. At the request of NYSDEC, chlorinated VOCs have also been compared to Protection of Groundwater SCOs. The groundwater data has been compared to Class GA groundwater standards and guidance values. In addition, Figure 3-6 presents a summary of the subsurface soil sample locations where exceedances of the SCOs were detected during the RI, and Figure 3-7 presents a summary of groundwater sample locations where Class GA standards were exceeded.

The results of verification boring VB-01 confirmed the presence of chlorinated VOCs at MIP-2. As indicated on the boring log provided in Appendix C, a maximum PID reading of 250 ppm and a hydrocarbon-like odor were observed in VB-01 from approximately 12 to 13 feet below grade, coinciding with the maximum XSD detection during advancement of the MIP. In addition, subsurface soil sample VB-01 (13 to 15 feet) exhibited a PCE concentration of 1,160,900 ug/kg, above the Restricted-Residential Use SCO of 19,000 ug/kg and the Industrial Use SCO of 300,000 ug/kg, as well the Protection of Groundwater SCO of 1,300 ug/kg. Groundwater samples VB-01 (15 to 16 feet) and (26 to 27 feet) exhibited PCE, TCE, 1,2-DCE and VC at concentrations well above Class GA standards. The highest concentrations were detected in groundwater sample VB-01 (15 to 16 feet), with PCE exhibiting the maximum individual concentration of 17,600 ug/l, above the Class GA standard of 5 ug/l.

The analytical results from verification boring VB-02 were consistent with the MIP findings, with significantly lower chlorinated VOC concentrations compared with verification boring VB-01. Subsurface soil sample VB-02 (12 to 14 feet) did not exhibit VOCs at concentrations above SCOs. Groundwater sample VB-02 (5 feet), collected at the water table, exhibited 1,2-DCE and VC at concentrations of 36 ug/l and 17.9 ug/l, respectively, above their respective Class GA standards of 5 ug/l and 2 ug/l. VOCs were not detected above Class GA standards in the deeper groundwater sample, VB-02 (12 to 14 feet).

3.3 Subsurface Soil

As summarized on Table 2-1, a total of 27 subsurface soil samples were collected for analysis from the eight deep soil borings (SB-01 through SB-08) and three of the monitoring well locations (GW-01, GW-03 and GW-04). Each soil sample was analyzed for TCL VOCs and TCL SVOCs, and eight of the samples were also analyzed for TAL metals, PCBs and TCL pesticides. In addition, a total of 30 subsurface soil samples were collected for analysis of PCBs from the nine shallow PCB soil borings (SB-09 through SB-17). The results are summarized on Table E-1 through Table E-5, provided in Appendix E. The subsurface soil data has been compared to the SCOs for Restricted-Residential and Industrial Use as defined in NYSDEC 6 NYCRR Part 375. At the request of NYSDEC, chlorinated VOCs have also been compared to Protection of Groundwater SCOs. In addition, Figure 3-6 presents a summary of the subsurface soil sample locations where exceedances of these SCOs were detected during the RI.

The following is a discussion of the analytical results for the subsurface soil samples, organized by the deep soil borings and shallow PCB soil borings. It should be noted that a discussion of the visual evidence of impacts was previously provided in Section 3.1, and is referenced below where appropriate. Historical soil data was discussed in Section 1.4.

3.3.1 Deep Soil Borings

VOCs were detected in all 27 subsurface soil samples collected from the deep soil borings. However, as indicated on Table E-1 in **Appendix E**, detections of VOCs above Restricted-Residential Use SCOs in the deep soil borings were limited to SB-05. Only the subsurface soil sample collected from verification boring VB-01, discussed above in Section 3.2.2, exhibited VOC concentrations above Industrial Use SCOs. The following table summarizes all VOCs detected above SCOs in subsurface soil samples collected during the

RI, including the verification boring results. At the request of NYSDEC, detections of chlorinated VOCs above Protection of Groundwater SCOs are also provided:

Compound	Concentration (ug/kg)			Protection of Groundwater	Restricted- Residential	Industrial Use SCO	
	SB-05 (10-11 feet)	SB-05 (11-13 feet)	SB-06 (8-10 feet)	VB-01 (13-15 feet)	SCO (ug/kg)	Use SCO (ug/kg)	(ug/kg)
cis-1,2- Dichloroethene	<u>880</u>	<u>3,400</u>	<u>1,600</u>	ND*	250	100,000	1,000,000
Tetrachloroethene	20,900	31,300	1,300	1,160,900	1,300	19,000	300,000
Trichloroethene	400	<u>2,600</u>	22.2	ND*	470	21,000	400,000
Vinyl Chloride	<u>560</u>	2,200	<u>410</u>	ND*	20	900	27,000

Bold/Underline=exceeds Protection of Groundwater SCO

Shading=also exceeds Restricted-Residential Use SCO

Bold outline=also exceeds Industrial Use SCO

ND*=Not Detected, note that other VOCs are likely present but were not detected due to dilution.

Soil boring SB-05 was completed in the area where VOC contamination was documented during the previous investigations, and approximately 10 to 15 feet to the west of MIP-2/VB-01 where chlorinated VOCs were detected during the MIP study as part of this RI. Note that an elevated PID reading of 250 ppm and a solvent odor were observed in subsurface soil sample SB-05 (10 to 11 feet). Similar to the results from MIP-2/VB-01, the chlorinated VOC contamination at soil boring SB-05 was located below a depth of 10 feet below grade. The remaining soil borings completed around the suspected source area did not exhibit VOCs at concentrations above Restricted-Residential Use SCOs.

Several SVOCs, consisting of PAHs, were detected at concentrations above Restricted-Residential Use SCOs in subsurface soil samples SB-04 (3 to 5 feet) and GW-04 (2 to 3 feet). The highest concentrations were detected in SB-04 (3 to 5 feet), with benzo(a)anthracene detected at a concentration of 5,300 ug/kg, above the Restricted-Residential Use SCO of 1,000 ug/kg. All SVOC concentrations were below Industrial Use SCOs, except for benzo(a)pyrene in SB-04 (3 to 5 feet) at 2,900 ug/kg, above the SCO of 1,100 ug/kg. A sheen, petroleum odor and PID reading of 7.8 ppm was noted in this soil sample.

PCBs and pesticides were not detected in any of the subsurface soil samples collected from the deep soil borings. Metals were detected at concentrations below Restricted-Residential Use SCOs, except for lead detected at a concentration of 483 mg/kg in subsurface soil sample SB-06 (8 to 10 feet) above the SCO of 400 mg/kg, and mercury detected at 0.949 mg/kg in SB-07 (12 to 14 feet) above the SCO of 0.81 mg/kg. All metals concentrations were below Industrial Use SCOs.

3.3.2 Shallow PCB Soil Borings

PCBs were detected in 5 of the 30 subsurface soil samples collected from the shallow PCB borings, but at concentrations below Restricted-Residential Use and Industrial Use SCOs. The maximum PCB concentration of 310 ug/kg was detected in subsurface soil sample SB-14 (0 to 1 foot), well below the Restricted-Residential SCO of 1,000 ug/kg.

3.4 Groundwater

As summarized on Table 2-1, a total of 9 groundwater samples were collected for analysis from the three existing groundwater monitoring wells (MW-1, MW-2 and MW-3) and the six newly installed wells (GW-01, GW-02S, GW-02D, GW-03, GW-04S and GW-04D). Each groundwater sample was analyzed for TCL VOCs and TCL SVOCs, and two of the samples were also analyzed for TAL metals, PCBs and TCL pesticides. The results are summarized on Table E-6 through Table E-9, provided in Appendix E. The groundwater data has been compared to the Class GA groundwater standards and guidance values (herein referred to as Class GA standards). In addition, Figure 3-7 presents a summary of the groundwater sample locations where exceedances of Class GA standards were detected during the RI.

The following is a discussion of the analytical results for the groundwater samples. Note that NAPL was not observed in any of the monitoring wells during the RI. Historical groundwater data was discussed in Section 1.4.

VOCs were detected in all 9 groundwater monitoring well samples. However, as indicated on Table E-6 in **Appendix E**, VOC concentrations were generally detected below Class GA standards. Detections of VOCs above Class GA standards in the monitoring wells were limited to the following:

Compound		Class GA Groundwater				
·	GW-02S	GW-02D	MW-1	MW-3	Standard (ug/l)	
1,1-Dichloroethene	3.9	23.6	ND	3.2	5	
cis-1,2-Dichloroethene	1,700	8,100	ND	510	5	
trans-1,2-Dichloroethene	27.5	68.7	ND	2	5	
Tetrachloroethene	69.4	5,900	ND	78.9	5	
Trichloroethene	25.3	1,400	ND	34.8	5	
Vinyl Chloride	1,500	5,300	ND	240	2	
MTBE	ND	ND	26.2	0.74	10	

Bold/shading=exceeds standard

ND=Not Detected

Note that monitoring wells GW-02S, GW-02D and MW-3, which exhibited chlorinated VOC concentrations above Class GA standards, are located in the area where VOC contamination was documented during the previous investigations, and where chlorinated VOCs were detected during the MIP study and soil boring installation program as part of this RI. Neither the upgradient well GW-01 nor any of the downgradient wells exhibited chlorinated VOCs above Class GA standards.

SVOCs were either not detected or were detected below Class GA standards. PCBs and pesticides were not detected in any groundwater samples. The following metals were

detected at concentrations above Class GA standards in the total (unfiltered) analysis: iron in GW-02D and MW-3, manganese in GW-02D and sodium in GW-02D and MW-3. The concentrations of these metals are typically elevated in urban settings. Turbidity was low in these samples, and a filtered analysis was not completed.

3.5 Air

As summarized on **Table 2-1**, a total of 8 air samples were collected for analysis in August 2016, including five temporary soil vapor probes (SV-01 through SV-05), one subslab soil vapor sample (SV-06), one indoor air sample (IA-01) and one outdoor ambient air sample (AA-01). In addition, sample locations SV-06, IA-01 and AA-01 were resampled during the heating season in February 2017 at NYSDEC request. Each air sample was analyzed for TO-15 VOCs. The results are summarized on Table E-10 (indoor/outdoor air) and Table E-11 (soil vapor), provided in **Appendix E**. The heating season sample results are summarized on Table E-12. New York State has not established standards for soil vapor quality. For conservative evaluation purposes, all air data has been compared to the NYSDOH Air Guideline Values (AGVs).

Chlorinated VOCs were detected in all 5 soil vapor probes, with PCE and TCE detected above their respective AGVs of 2 ug/m³ and 30 ug/m³ at all locations except SV-03. The highest PCE and TCE concentrations of 881 ug/m³ and 859 ug/m³, respectively, were detected at soil vapor probe SV-02, located in the area where VOC contamination was documented during the previous investigations, and where chlorinated VOCs were detected in soil and groundwater during this RI. The second highest VOC concentrations were detected at soil vapor probe SV-01, located approximately 50 feet to the west and downgradient of the SV-02 location with respect to groundwater flow direction. Soil vapor probe SV-03 exhibited the lowest VOC concentrations, with only TCE detected marginally above the AGV. SV-03 is located to the east and upgradient of SV-02, between SV-02 and the closest structure (the LIRR Engineering Support Building).

As indicated on Table E-11, the sub-slab soil vapor sample (SV-06) collected from the LIRR Engineering Support Building in August 2016 exhibited VOCs at concentrations below the AGVs, except for TCE detected at a concentration of 5 ug/m³. During the February 2017 resample (Table E-12), no VOCs were detected above AGVs in SV-06, including TCE.

As indicated on Table E-10 for the August 2016 results, the outdoor ambient air sample exhibited VOC concentrations that were comparable or above the indoor air sample concentrations, and all concentrations were below AGVs. In addition, a comparison of the results for the sub-slab soil vapor sample and the indoor air sample from August 2016 using the NYSDOH decision matrices suggest that sub-slab soil vapor is not expected to significantly affect indoor air quality, and no further action is needed to address human exposures. Similar results were found for the February 2017 heating season data provided on Table E-12, with all concentrations below AGVs. Note that the indoor air sample was collected in the office area of the Engineering Support Building, in the same vicinity of the sub-slab sample.

3.6 Exposure Assessment

The purpose of this exposure assessment is to determine how and when an individual may be exposed to contaminants of potential concern (COPCs) associated with NYSDEC VCA Site No. V00733 at the LIRR Arch Street Yard. A COPC is any chemical detected above the NYSDEC cleanup guidelines in a medium, which could produce adverse health effects under the right conditions of dose and exposure. For exposure to occur there must be a complete "pathway of exposure" where a person can come into contact with COPCs. For a pathway to be complete, there must be: (1) a source or medium containing the COPCs; (2) a location where human contact can take place (i.e., an exposure point); and (3) a feasible means for the COPC to enter the person's body. The person who could come into contact with the COPC at an exposure point is called a "receptor." The ways in which the COPC can

enter the body are called "routes of exposure." Ingestion (by mouth), dermal (contact with skin) and inhalation (breathing into the lungs) are the routes of exposure considered in this and other human health risk assessments. This assessment considers both current and potential future exposures.

As with any exposure assessment, this assessment is not intended to predict disease outcome, but rather, is meant to be used as a tool to make decisions regarding the need for remediation or the institution of precautionary measures, such as limiting the affected area to non-residential land uses. Given the available information for the Site, and keeping the purpose of this assessment in mind, the following evaluation is qualitative in nature. Consistent with the previous presentation of the analytical data, the exposure assessment below is presented by medium of interest.

General Site Conditions

The Site being investigated under the VCP (NYSDEC Site No. V00733) is an approximately 2.7 acre portion of the 8 acre LIRR Arch Street Yard. The Yard was previously utilized to perform maintenance on passenger rail cars until December 2009. As of September 2016, the Maintenance Facility building located east of the Site is leased to Metro North Railroad (MNR) and Bombardier to install Positive Train Control in their trains. The southern side of the Maintenance Facility building was previously leased for truck parking from August 2012 through August 2015, located outside of the Site. On-site buildings currently include a Maintenance of Equipment building on the northern end of the Site and an Engineering Support Building on the southern end of the Site. These buildings are utilized for storage and are not occupied on a regular basis. The northern building on-site was leased to MNR and Bombardier as part of the September 2016 agreement. Several sets of inactive train tracks traverse the Site. The surface is generally bluestone or soil, although portions of the Site near the buildings are paved.

The Site is approximately 10 to 15 feet lower than the surrounding streets, and access is restricted by a retaining wall on the western, southern and northern sides. Access to the remainder of the Yard is restricted by a fence, and an electronic gate which requires valid identification to open. A security guard is stationed at the gate during business hours. Concentrations of chlorinated VOCs in soil exceeding Protection of Groundwater, Restricted-Residential and Industrial Use SCOs at depths exceeding 8 feet below grade, and in groundwater exceeding Class GA standards, have been detected in the southern portion of the Site south of the tracks. This area of contamination is enclosed within a chain link fence, with a locked gate.

Given that access to the Yard is restricted to authorized personnel, the general public does not have the potential to be exposed to on-site contamination. Since the known area of contamination within the Site is separately fenced, the only potential receptors of on-site contamination would be LIRR workers or their contractors who may periodically enter the Site and this separately fenced area. However, potential exposure is significantly minimized by the below grade nature of the contamination. In addition, excavations do not routinely take place on-site and no excavations are planned for the foreseeable future. Any future excavations will be completed under proper health and safety protocols and as per the requirements of the LIRR's EPC-03-001 document entitled Excavating Soils at Railroad Locations, dated August 11, 2003 and revised March 2015.

Soil

The chemical analysis of the 59 subsurface soil samples found concentrations of chlorinated VOCs exceeding Protection of Groundwater and Restricted-Residential Use SCOs at depths exceeding 8 feet below grade in the southern portion of the Site south of the tracks. Lead and mercury were also detected slightly above Restricted-Residential Use SCOs in one sample each in this area at similar depths. Several PAHs were detected at concentrations above their respective Restricted-Residential Use SCOs at shallower depths of 2 to 5 feet

below grade. Concentrations exceeding Industrial Use SCOs were limited to PCE at a depth of 13 to 15 feet below grade, and benzo(a)pyrene at a depth of 3 to 5 feet below grade.

Exposure to contaminants within subsurface soil on-site is not a significant potential route of exposure to site workers during routine site operations. There is the potential for on-site workers to be exposed to these contaminants through dermal contact or inhalation of windblown dust during any future excavation activities. However, as stated above, excavations do not routinely take place on-site and no excavations are planned for the foreseeable future. Any future excavations will be completed under proper health and safety protocols and as per the requirements of the LIRR's EPC-03-001 document entitled Excavating Soils at Railroad Locations, dated August 11, 2003 and revised March 2015.

<u>Groundwater</u>

The completed groundwater sampling identified VOCs at concentrations above their respective Class GA Standards in verification borings VB-01 and VB-02, and monitoring wells GW-02S, GW-02D, MW-1 and MW-3, located in the southern portion of the Site south of the tracks. The highest chlorinated VOCs were detected in verification boring VB-01 and monitoring wells GW-02S and GW-02D, located in the vicinity of soil borings which exhibited chlorinated VOCs in subsurface soil at concentrations above SCOs.

Downgradient monitoring wells located west of this area exhibited concentrations of VOCs below Class GA Standards, including MW-2, GW-03, GW-04S and GW-04D, suggesting that the observed groundwater contamination has not migrated to downgradient locations. It is likely that the clay-rich unit present throughout the Site helps limit the overall migration of contaminants. Given that the contamination has not migrated and the below grade nature of the groundwater contamination, direct exposure of the public and on-site workers to these groundwater contaminants would not be expected under current conditions.

In addition, groundwater in this area of Queens is not utilized as a potable water supply source.

<u>Air</u>

Soil vapor sampling results suggest that the chlorinated VOCs detected in soil and groundwater in the on-site area south of the tracks have volatilized into the soil gas at concentrations above NYSDOH Air Guideline Values (AGVs). However, there are no structures built over the area of soil and groundwater contamination, and there is no evidence that downgradient migration of the contamination is occurring. Therefore, direct exposure by inhalation of the chlorinated VOCs detected in soil gas would not be expected under current conditions.

In addition, indoor air sampling completed within the closest on-site structure (the LIRR Engineering Support Building) exhibited VOC concentrations below AGVs and comparable to outdoor concentrations. Comparison of the results for the sub-slab soil vapor sample and the indoor air sample using the NYSDOH decision matrices suggest that no action is needed to address human exposures.

Future Use and Potential Exposure Routes

Currently, the LIRR does not have any plans to change the industrial nature of the LIRR Arch Street Yard. As a result, the Yard will remain an industrial property for the foreseeable future and all future excavations, if any, will be completed under proper health and safety protocols and as per the requirements of the LIRR's EPC-03-001 document entitled Excavating Soils at Railroad Locations, dated August 11, 2003 and revised March 2015. In addition, the LIRR does not have any plans to construct any structures in the area where soil and groundwater contamination was observed during the RI. Therefore, on-site environmental

conditions will not change and the potential for on-site receptors to be exposed to on-site contamination will remain very low.

3.7 Conceptual Summary

Based on the site history, it appears that chlorinated VOCs were spilled in a limited area on-site under the 21st Street Bridge sometime prior to December 2003 when a LIRR contractor discovered contaminated soil while excavating a utility trench. Due to its discrete location under the bridge and the fact that there is no evidence that the LIRR has utilized, disposed or accidentally spilled chlorinated VOCs at the Yard, it is possible that the chlorinated VOCs were dumped onto the Site by an outside party during a "one-time event" or over a limited period of time. Follow-up investigations found chlorinated VOC contamination in soil and groundwater, but determined that the majority of impacted surface/shallow subsurface soil had been excavated and removed during utility trenching. However, records of the limits of excavation and soil quantities that were removed during the trenching are not available.

The results of the RI described in this report indicate that the chlorinated VOC contamination is present in a limited area of the Site south of the tracks, with the majority of the soil contamination currently observed at depths greater than 8 feet below grade. This distribution would be expected if the majority of surface and shallow contamination had previously been removed, leaving only deeper residual contamination. Based on previous investigations and the results of the RI, the approximate remaining residual contamination source area or "hot-spot" is depicted on Figure 2-1.

The deep contamination does not appear to have migrated downgradient to the west with the direction of groundwater flow, possibly due in part to the fine grained nature and high organic content of the soil matrix below a depth of 10 feet below grade. It is likely that the clay-rich unit present throughout the Site helps limit the overall migration of contaminants.

REMEDIAL INVESTIGATION REPORT

Unless actively remediated, the residual contamination will naturally degrade over time with continued localized impacts to soil, groundwater and soil gas.

Historical data also indicates that surface soil and shallow subsurface soil PCB contamination was previously observed within the track area to the northwest of the chlorinated VOC contamination area. However, the RI sampling program did not detect any PCB concentrations above Restricted-Residential Use SCOs. Given that the tracks were installed following the initial discovery of elevated PCBs in 2000, and the current presence of up to two feet of bluestone in the track area, it is likely that the majority of the shallow PCB contaminated soil was excavated during construction activities, similar to the shallow chlorinated VOC contamination.

4.0 CONCLUSIONS AND RECOMMENDATIONS

This section of the report presents the conclusions and recommendations of the Remedial Investigation with respect to the nature and extent of contamination associated with NYSDEC VCA Site No. V00733 at the LIRR Arch Street Yard. The conclusions and recommendations are based on the comparison of chemical constituents detected in soil and groundwater during the RI to appropriate criteria, including Protection of Groundwater, Restricted-Residential and Industrial Use SCOs for soil, and Class GA Standards for groundwater. Note that the recommendations have been developed in the anticipation that the LIRR Arch Street Yard will continue to be utilized for industrial purposes. Sample locations discussed below are depicted on Figure 2-1 and Figure 2-2.

4.1 Conclusions

Subsurface Soil

Based on the findings of the RI, the Site is underlain by a layer of fill with a minimum thickness of 5 feet. A native clay-rich unit was encountered below the fill layer starting at a depth of 10 to 15 feet below grade. During the MIP study completed during the RI, chlorinated VOCs were only detected at location MIP-2, which was completed in the southern portion of the Site south of the tracks in the area where chlorinated VOC contamination was identified during previous construction activities and investigations. The VOC detections at MIP-2 started at a depth of 10 feet below grade and the highest concentrations were found at approximately 12 to 16 feet below grade. The water table was observed at a depth of approximately 3 to 5 feet below grade. Although generally limited visual evidence of contamination was observed during the soil boring program, elevated PID readings, slight staining and odors were detected in verification boring VB-01 and soil boring SB-05 completed in the vicinity of MIP-2 at a depth of 10 to 13 feet below grade, immediately above the clay-rich unit.

As part of the RI, a total of two MIP verification borings, eight soil borings and three monitoring well soil borings were completed to define the limits of the chlorinated VOC contamination. Four of the 29 subsurface soil samples selected for chemical analysis showed concentrations of chlorinated VOCs exceeding Protection of Groundwater, Restricted-Residential and/or Industrial Use SCOs at depths exceeding 8 feet below grade in the southern portion of the Site south of the tracks, including PCE, TCE, 1,2-DCE and VC. The four samples were collected from verification boring VB-01 and soil boring SB-05 and SB-06. However, concentrations of chlorinated VOCs above Restricted-Residential Use SCOs were limited to SB-05, and Industrial Use SCOs to PCE at VB-01.

Lead and mercury were also detected slightly above Restricted-Residential Use SCOs in one sample each in this area at similar depths to the chlorinated VOCs. Several PAHs were detected at concentrations above their respective Restricted-Residential Use SCOs at shallower depths of 2 to 5 feet below grade. Benzo(a)pyrene also exceeded its Industrial Use SCO in subsurface soil sample SB-04 (3 to 5 feet).

In addition to the chlorinated VOC investigation, a total of nine soil borings were completed to confirm and define the limits of the previously identified surface and shallow subsurface soil PCB contamination in the track area. All PCB concentrations were either not detected or were detected below Restricted-Residential and Industrial Use SCOs.

Based on the subsurface soil results, we can conclude the following:

A localized source area or "hot-spot" of chlorinated VOC contamination is present
in a discrete area south of the tracks within the Site, at a depth of approximately 8
to 16 feet below grade immediately above and within the uppermost portion of the
clay-rich unit. The approximate area based on the results of the RI and previous
investigations is depicted on Figure 2-1, encompassing approximately 680 square
feet.

- Based on surrounding subsurface soil data, the presence and extent of residual chlorinated VOC contamination has been adequately delineated.
- The chlorinated VOCs were spilled in this area sometime prior to December 2003 when they were discovered by a LIRR contractor excavating a utility trench. Due to its discrete location under the bridge and the fact that there is no evidence that the LIRR has utilized, disposed or accidentally spilled chlorinated VOCs at the Yard, the chlorinated VOCs may have been dumped onto the Site by an outside party during a "one-time event" or over a limited period of time.
- The results of the RI showing the presence of fill material and limited shallow impacts by chlorinated VOCs are consistent with previous reports indicating that the majority of impacted surface/shallow subsurface soil was excavated and removed during the utility trenching.
- The RI results did not confirm the presence of PCB contamination within surface and shallow subsurface soil in the track area to the northwest of the chlorinated VOC contamination area, as depicted on Figure 2-2. Given that the tracks and the approximately one to two feet of bluestone now present in the area were installed following the initial discovery of the elevated PCB concentrations in 2000, it is likely that the majority of the PCB contaminated soil was previously removed.
- Given that access to the Yard is restricted to LIRR personnel, the general public does not have the potential to be exposed to on-site contamination. In addition, exposure to contaminants within subsurface soil on-site is not a significant potential route of exposure to site workers during routine site operations. Any future excavations, if any, will be completed under proper health and safety protocols. Therefore, the potential for on-site receptors to be exposed to contamination will remain very low.

Groundwater

Clay and silt with peat and organic material was observed throughout the Site starting at a depth of approximately 10 to 15 feet below grade. Deep wells screened within or below this material, such as GW-02D, GW-03 and GW-04D, exhibited apparent confined groundwater conditions with the water level depressed approximately 4 to 5 feet as compared with unconfined, water table conditions. Groundwater flow was determined to be in a west-

northwesterly direction for both the water table and deep zones. There was no evidence of tidal influence on groundwater elevation or flow direction on-site.

Three of the 9 groundwater monitoring well samples (GW-02S, GW-02D and MW-3) collected during the RI exhibited chlorinated VOCs at concentrations exceeding Class GA standards. These wells are located in the area where chlorinated VOC contamination was identified during previous investigations and during RI activities, including the MIP study and soil boring program. The highest concentrations were detected at deep monitoring well GW-02D, screened from 10 to 20 feet below grade, where PCE, TCE, 1,2-DCE and VC were detected above Class GA standards, as well as 1,1-dichloroethene, and trans-1,2-dichloroethene. Groundwater samples from verification boring VB-01 also exhibited chlorinated VOCs at concentrations well above Class GA standards. However, neither the upgradient well GW-01 nor any of the downgradient wells exhibited chlorinated VOCs above Class GA standards. Note that MTBE was also detected above Class GA standards in existing well MW-1. NAPL was not identified in any of the groundwater monitoring wells.

SVOCs were either not detected or were detected below Class GA standards in the groundwater samples selected for analysis. Pesticides and PCBs were not detected in any of the groundwater samples. Total metals exceeding Class GA standards included iron, manganese and sodium. These metals are typically detected at elevated concentrations in urban settings.

Based on the groundwater results, we can conclude the following:

- The presence of chlorinated VOCs at concentrations above Class GA standards in groundwater is consistent with the discrete residual source area or "hot-spot" defined earlier and depicted on Figure 2-1.
- Based on current and historical sampling from newly installed wells GW-01, GW-03, GW-04S and GW-04D, and existing wells MW-1 and MW-2, the chlorinated VOC contamination appears limited to the residual source area and does not

appear to have migrated downgradient in groundwater. The clay-rich unit present throughout the Site likely helps limit the overall migration of contaminants.

- Groundwater flow appears to be in a general west-northwesterly direction on-site
 in both shallow and deep zones, and there is no discernable tidal influence.
 Therefore, these factors are not anticipated to have a significant effect on
 contaminant migration.
- Given that the contamination has not migrated and the below grade nature of the
 documented groundwater contamination, direct exposure of the public and on-site
 workers to these contaminants would not occur under current conditions. In
 addition, groundwater in this area of Queens is not utilized as a potable water
 supply source.

Air

Soil vapor sampling results suggest that the chlorinated VOCs detected in soil and groundwater in the on-site area south of the tracks have volatilized into the soil gas at concentrations above NYSDOH Air Guideline Values (AGVs), including PCE and TCE. However, soil vapor concentrations were lowest to the east and upgradient of the residual source area, in the direction of the closest on-site structure (the LIRR Engineering Support Building). Indoor air sampling completed within this building exhibited VOC concentrations below AGVs and comparable to outdoor concentrations.

Based on the air results, we can conclude the following:

- The detection of chlorinated VOCs in soil gas in the vicinity of the residual source area was expected, especially given the shallow depth to groundwater. However, there are no structures built over the area of soil and groundwater contamination, and there is no evidence that downgradient migration of the contamination is occurring. Therefore, direct exposure by inhalation of the chlorinated VOCs detected in soil gas would not be expected under current conditions.
- Comparison of the results for the sub-slab soil vapor sample and the indoor air sample using the NYSDOH decision matrices suggest that sub-slab soil vapor is not expected to significantly affect indoor air quality, and no further action is needed to address human exposures.

4.2 Recommendations

The recommendations detailed below are provided based on the findings of this Remedial Investigation and previous investigations for NYSDEC VCA Site No. V00733 at the LIRR Arch Street Yard. A residual source area or "hot-spot" of chlorinated VOC contamination exists in subsurface soil and groundwater in a discrete on-site area to the south of the tracks, which may have been dumped onto the Site by an outside party. As depicted on Figure 2-1, the source area encompasses approximately 680 square feet and is located approximately 8 to 16 feet below grade, and below the water table. It appears that the majority of shallow chlorinated VOC contamination was previously removed, and the current contamination is not migrating. The completed RI has adequately defined the nature and extent of contamination to allow the development of an appropriate remedy for the defined chlorinated VOC contamination. Therefore, the following is recommended:

- Given the nature of the contamination, D&B recommends that the LIRR draft a Remedial Action Work Plan (RAWP) to evaluate the feasibility of various remedial options for the chlorinated VOCs, and select the most feasible remedy for the Site. Additional investigation or delineation sampling is not recommended at this time.
- PCB contamination was not detected on-site during the RI, and was likely previously removed. Therefore, further investigation and remediation of the historical PCB contamination located in the track area is not warranted.

APPENDIX A

WORK PLAN MODIFICATIONS

December 2, 2015

Ioana Munteanu-Ramnic, P.E.
Environmental Engineer
New York State Department of Environmental Conservation
Division of Environmental Remediation, Region 2
Hunters Point Plaza
47-40 21st Street
Long Island City, NY 11101-5401

Re: LIRR Arch Street Yard (NYSDEC VCA Site No. V00733)

Remedial Investigation

MIP Discussion and Proposed Scope of Work

Dear Ms. Munteanu-Ramnic:

D&B Engineers and Architects, P.C. (D&B) has prepared this letter on behalf of the Long Island Rail Road (LIRR) to discuss the results of the completed Membrane Interface Probe (MIP) phase of the Remedial Investigation (RI) being conducted at the LIRR Arch Street Yard (the Yard), and to propose a scope of work for the second phase of the RI, including the installation and sampling of soil borings and monitoring wells. The RI is being conducted at the 2.7 acre portion of the Yard that is subject to the Voluntary Cleanup Agreement, designated as New York State Department of Environmental Conservation (NYSDEC) Site No. V00733 (the Site).

The implementation of the MIP phase of the RI was completed in October 2015 in accordance with the NYSDEC-approved Remedial Investigation Work Plan, dated July 2015. As required by the RI Work Plan, daily reports were provided to NYSDEC during the MIP work, which included the MIP results. The summary of Completed Field Activities below also serves as the monthly progress report for October.

Completed Field Activities

The field activities for the MIP study were completed between October 5 and October 9, 2015 and between October 28 and October 30, 2015, consisting of the completion of 11 MIP locations (MIP-1 through MIP-11) and two verification borings (VB-01 and VB-02). Note that this phase of the RI was intended to be a 3-day study. However, difficult subsurface conditions required additional equipment in order to complete the hand clearing, resulting in additional field days and a delay in the field program. A completed sample location map is provided as **Figure 1** in **Attachment 1**. Daily Field Activity Reports for each day of field work were previously provided to NYSDEC and are included in **Attachment 2**.

As described in the RI Work Plan, MIP technology can detect the presence and relative concentration of chlorinated and non-chlorinated volatile organic compounds (VOCs) in both soil and groundwater by advancing instruments including: soil conductivity (SC) detector; photoionization detector (PID); flame-ionization detector (FID); and a halogen specific detector (XSD). The PID is used for the detection of aromatic VOCs (such as benzene), the FID is used for the detection of straight-chain alkanes (such as methane), and the XSD is utilized for the detection of halogenated organics including chlorinated VOCs. The objective of the MIP Study was to define the current limits of VOC contamination in the Site prior to the installation of soil borings and permanent groundwater monitoring wells.

Prior to intrusive activities, utility clearance procedures were followed, including the One-Call markouts, LIRR markouts, a geophysical study and hand clearing all locations to 5 feet. Following utility clearance, the MIPs were advanced into the subsurface using Geoprobe equipment. The logs for the completed MIPs are provided as **Attachment 3**. Each MIP location was completed until refusal, which was encountered at a depth between 20 and 30 feet below grade at all locations except for MIP-11 where refusal was encountered at a depth of 15 feet below grade. Based on USGS data for this area of Queens, it is suspected that the refusal is bedrock-related. Groundwater was observed at a depth of approximately 3 to 5 feet below grade.

Two Geoprobe verification borings (VB-01 and VB-02) were completed at two MIP locations (MIP-2 and MIP-6, respectively), that were selected by D&B in order to collect subsurface soil and groundwater samples for analysis to verify the MIP results. Verification boring VB-01 was completed at the MIP-2 location to confirm the XSD/PID/FID detections at this location. Verification boring VB-02 was completed at the MIP-6 location to investigate the FID-only detections found at the remaining MIP locations. Boring logs are provided as **Attachment 4**.

Subsurface soil samples were collected for analysis using the Encore sampling method in accordance with USEPA Method 5035. Groundwater samples were collected by driving probe rods to the designated sample depth and installing a temporary well point. A portable peristaltic pump with disposable tubing was used to purge and sample using USEPA low-flow sampling techniques, and new tubing was used between each interval. The purge water was monitored in the field for the following parameters utilizing a calibrated multiple parameter water quality instrument: pH, conductivity, turbidity, dissolved oxygen, temperature and oxidation-reduction potential. After stabilization, groundwater samples were collected for laboratory analysis.

One subsurface soil sample and two groundwater samples were collected from each verification boring for laboratory analysis for Target Compound List (TCL) VOCs by USEPA Method 8260. Data summary tables are provided as **Attachment 5**. The following samples were collected:

- Subsurface soil samples: VB-01 (13 to 15 feet) and VB-02 (12 to 14 feet)
- Groundwater samples: VB-01 (15 to 16 feet), VB-01 (26 to 27 feet), VB-02 (5 feet) and VB-02 (12 to 14 feet)

Findings

As indicated on the MIP logs provided in **Attachment 3**, only MIP-2 exhibited evidence of chlorinated VOCs, with elevated XSD detections above background. There were no XSD detections above background at MIP-2 until a depth of approximately 10 feet below grade, which is approximately 6 feet below the water table. The maximum XSD detection of 794 mV was observed at a depth of approximately 12.5 feet below grade, above the background level of 17 mV. The XSD detections then slowly decreased with depth until refusal at 23 feet below grade, suspected to be bedrock. The PID and FID results showed a similar pattern, hitting the maximum detection limit of 5,000 mV at a depth of approximately 14.5 to 15 feet below grade.

The results of verification boring VB-01 confirmed the presence of chlorinated VOCs at MIP-2. As indicated on the boring log provided in **Attachment 4**, a maximum PID reading of 250 ppm and a hydrocarbon-like odor were observed in VB-01 from approximately 12 to 13 feet below grade. As indicated on the data summary tables provided in **Attachment 5**, subsurface soil sample VB-01 (13 to 15 feet) exhibited a tetrachloroethene (PCE) concentration of 1,160.9 mg/kg, above the Restricted-Residential Use SCO of 19 mg/kg and the Industrial Use SCO of 300 mg/kg. Groundwater samples VB-01 (15 to 16 feet) and (26 to 27 feet) exhibited PCE, trichloroethene (TCE), cis-1,2-dichloroethene (1,2-DCE) and vinyl chloride (VC) at concentrations well above Class GA groundwater standards. The highest concentrations were detected in groundwater sample VB-01 (15 to 16 feet), with PCE exhibiting the maximum individual concentration of 17,600 ug/l, above the groundwater standard of 5 ug/l.

The other MIP locations did not exhibit elevated XSD detections above background. Although some spikes in PID detections above background were observed at MIP-1, MIP-4, MIP-5 and MIP-6, these detections were not sustained and were at least one order of magnitude lower than those detected at MIP-2. Some peaks in FID detections were observed in most MIP locations. However, in the absence of XSD or PID detections, it is likely that the FID detections are related to methane derived from organic decomposition. Note that verification boring VB-02, completed in the location of MIP-6, exhibited clay with peat and organic material at depths coinciding with FID peaks, with no indication of contamination.

The analytical results from verification boring VB-02 were consistent with the MIP findings, with significantly lower chlorinated VOC concentrations compared with verification boring VB-01. Subsurface soil sample VB-02 (12 to 14 feet) exhibited detectable concentrations of several VOCs, including chlorinated VOCs such as PCE, TCE and 1,2-DCE, but at concentrations well below Restricted-Residential Use and Industrial Use SCOs. Groundwater sample VB-02 (5 feet), collected at the water table, exhibited 1,2-DCE and VC at concentrations of 36 ug/l and 17.9 ug/l, respectively, above their respective Class GA groundwater standards of 5 ug/l and 2 ug/l. VOCs were not detected above Class GA groundwater samples in the deeper groundwater sample, VB-02 (12 to 14 feet).

Ioana Munteanu-Ramnic, Environmental Engineer New York State Department of Environmental Conservation December 2, 2015

Proposed Scope of Work

MIP-2 and the follow-up verification boring VB-01 identified a chlorinated VOC hot-spot between a depth of 10 feet below grade and refusal at 23 to 27 feet below grade, with the highest concentrations found at approximately 12 to 16 feet below grade. Based on the lack of response in the XSD detector at the other MIPs, this hot-spot appears to be localized to the immediate vicinity of MIP-2. Therefore, the majority of soil borings to be completed as part of the next investigation phase should be placed in close proximity of MIP-2 to better define the source area for remediation purposes. Eight soil borings (SB-01 through SB-08) are proposed to be completed at this time, keeping four soil borings as a contingency in the event that additional delineation is necessary. The proposed soil borings are depicted on **Figure 1** provided in **Attachment 1**.

With regard to the monitoring wells, the RI Work Plan calls for a maximum of seven wells to be installed. However at this phase of the project, the LIRR proposes to install four monitoring wells (GW-01 through GW-04). The proposed monitoring well locations are depicted on **Figure 1** provided in **Attachment 1**. The remaining three monitoring wells would be installed at a later date if necessary. Each well would be installed with 10 feet of screen below the water table at a depth of approximately 10 to 20 feet below grade in order to intercept the highest chlorinated VOC concentrations observed at MIP-2/VB-01. The screen zones may be modified in the field in consultation with the NYSDEC depending on findings from the planned soil borings.

Assuming a westerly groundwater flow direction, which has not been confirmed, monitoring well GW-01 will be completed upgradient of the area of contamination, and wells GW-03 and GW-04 will completed downgradient of the area of contamination. Monitoring well GW-02 will be completed in the vicinity of the area of contamination. Note that three existing monitoring wells MW-1 through MW-3 were observed in the locations depicted on Figure 1. Existing well MW-4 could not be located. The four newly installed and three existing monitoring wells will be developed and sampled to determine groundwater quality. In addition, these wells will be surveyed and water levels collected to confirm groundwater flow direction and any tidal influence on groundwater flow.

As described in the RI Work Plan, soil samples will be collected for characterization and analysis during the installation of the monitoring wells, except for monitoring well GW-02 which will be completed in the location of soil boring SB-06. The PCB soil investigation will also be completed as part of this next phase of the RI in accordance with the NYSDEC-approved RI Work Plan.

If you have any questions or comments, please do not hesitate to call me at (347) 494-6034.

Sincerely,

Gloria Russo

Manager - Environmental Planning & Compliance

Gloria Russo

GR/AMC(t)/nc Attachment

cc: K

K. Green (LIRR)

T. Fox (D&B)

A. Caniano (D&B)

ATTACHMENT 1 SAMPLE LOCATION MAP

ATTACHMENT 2 DAILY FIELD ACTIVITY REPORTS

DAILY FIELD ACTIVITY REPORT 10/5/15

							SDEC VO	CA Site No. V00)733	
Address: A	Arch Stre	eet Yard,	Long	Island City, No	ew York					
Weather: (AM)			Ove	ercast	R	ainfall:	(AM)	None	Inch Inches	
			C	lear			(PM)	None		
emperature	: (AM)	60	°F	Wind Speed:	(AM)	0-5	MPH	Wind Direction	on: (AM)	SW
	(PM)	70	°F		(PM)	0-5	MPH		(PM)	SW
Site:	<u>-</u>	Anthony Paul E Kathle	Barusic	ch	D	&B &B IRR		1045 1045 1100	1230 1230 1230	
	_	•						_		
	- -	Kaume	en Gre		LI	IKK				30
	<u>-</u>									
	-									
	<u>-</u>									
	<u>-</u>									
ubcontracto	or Work	Comme	nceme	ent: (A	(AM)			(PM)		
ubcontracto	or Work	Comple	tion:	(1	AM)			(PM)		

DAILY FIELD ACTIVITY REPORT 10/5/15

Three existing on-site wells were located, including MW-1, MW-2 and MW-3. Existing well MW-4 could not be located.

Site access was discussed, including access to the site through the entrance gate and guard booth, and use of combination lock to access fenced area. An equipment/IDW storage area within the fenced area was selected. The completion of some LIRR markouts were verified with the remaining markouts to be completed before intrusive work begins.

The MIP locations (MIP-1 through MIP-11) and shallow PCB soil boring locations (SB-13 to SB-21) were measured, located and marked with survey flags. MIP locations MIP-8 and MIP-9, and soil boring location SB-19 will require cutting of the chain link fence at the western end of the fenced area in order to obtain access. These locations may also need to be moved several feet to avoid the thick vegetation in the area.

Locations in the track areas may require moving several feet in order to avoid track infrastructure, such as the de-energized third rail. Site photos and measurements of work area were taken, and have been sent to drilling contractor to verify access.

Site activities tomorrow, 10/6/15, will include a geophysical survey by D&B's contractor to mark out utilities and clear the selected locations.

MIP locations will begin on Wednesday, 10/7/15.

DAILY FIELD ACTIVITY REPORT 10/6/15

Project: LIRR – A	rch Stree	et Yard	Remedial Inve	estigation	n, NYS	SDEC VO	CA Site No. V00	0733	
Address: Arch Stre	et Yard,	, Long	Island City, Ne	w York					
Weather: (AM)		C	lear	Ra	ainfall:	(AM)	None	Inch	
(PM)	(PM) Clear		lear			(PM)	None	Inches	
Γemperature: (AM)	60	°F	Wind Speed:	(AM)	-	MPH	Wind Directi	on: (AM)	-
(PM)	70	°F		(PM)	-	MPH		(PM)	-
Site: - -		<u>ame</u> Barusic Gourni		Affiliation D&B AGS			Time 0650 0800	<u>Ti</u> 1111	20
- - -									
- - -									
- -									
Subcontractor Work	Comme	nceme	nt: (A	M)	0	800	(PM)		

DAILY FIELD ACTIVITY REPORT 10/6/15

Advanced Geological Services (AGS) conducted a geophysical survey of the Site, including the planned MIP locations (MIP-1 through MIP-11) and shallow PCB soil boring locations (SB-13 to SB-21). AGS marked out utilities and cleared the sample locations. In addition, LIRR utility markouts were proceeding.

All locations were found to be clear of utilities. Currently, none of the locations have had to be relocated due to the presence of utilities.

Site activities tomorrow, 10/7/15, will include the start of the MIP locations.

DAILY FIELD ACTIVITY REPORT 10/7/15

Project: L	IRR – A	rch Stree	et Yard	Remedial Inve	estigatio	n, NYS	SDEC VO	CA Site No. V00	0733	
Address: A	Arch Stre	et Yard,	Long	Island City, Ne	w York					
Weather: (AM)			C	lear	R	ainfall:	(AM)	None	Inch	
			C	ear			(PM)	None	Inch	
emperature	e: (AM)	60	°F	Wind Speed:	(AM)	0-5	MPH	Wind Direction	on: (AM)	NW
	(PM)	70	°F		(PM)	0-5	MPH		(PM)	NW
ite:	- -	Mike	y Cani Barusic e Ryan ı Rizio	eh	D Ze	&B &B ebra		1145 0645 0700 0700	15	30 30
	- - -	JOIII	I KIZIO		Z	eora				30
	- - -									
ubcontract	or Work	Comme	nceme	nt: (A	AM)	0	700	(PM)		
ubcontract	or Work	Comple	tion:	(A	AM)			(PM)	1530	

DAILY FIELD ACTIVITY REPORT 10/7/15

Zebra attempted to hand-clear Membrane Interface Probe (MIP) locations MIP-1 through MIP-6 within the fenced area using hand tools, but a thick layer of concrete was encountered anywhere from 5 to 10 inches below grade at these locations. At location MIP-7, the bluestone at the surface was found to be at least 2 feet thick, and caving-in prevented hand clearing at this location.

Zebra utilized the Geoprobe drill steel to break through the concrete layer at location MIP-2 to complete hand clearing to 5 feet. Groundwater was present at approximately 3 to 4 feet below grade. MIP-2 was completed with readings collected to 23 feet below grade where refusal was encountered. Based on bedrock data for this area of Queens from the USGS, this refusal is possibly bedrock.

Attached is the MIP log for MIP-2. As indicated, there was a strong detection of VOCs by the XSD, PID and FID sensors starting approximately 12 to 13 feet below grade, approximately 8 to 10 feet below the water table. The signal declined slowly over depth but was still detected at the refusal depth of 23 feet below grade. Note that the XSD probe detects chlorinated solvents.

After completing the MIP-2 location, Zebra attempted break through the concrete layer at location MIP-1, using the Geoprobe drill steel. However, the drill steel became stuck within the thick concrete layer, and could not be retrieved. D&B, Zebra and LIRR discussed that the potential origin of this concrete layer is unknown, but that it may be related to the footings for the current or a former bridge. Utilities were marked out by LIRR and the geophysical contractor and are being avoided during the MIP program.

Site activities on 10/8/15, will include hand-clearing and concrete coring using additional equipment that Zebra will bring on-site (air compressor, core drill, and additional hand tools) for the MIP borings, as well as the retrieval of the Geoprobe drill steel from location MIP-1. The focus will be on clearing the locations, and most likely MIP work will not be completed. The MIP work will resume Friday assuming the locations can be successfully cleared.

DAILY FIELD ACTIVITY REPORT 10/8/15

Field Log Bo Project: LIF				Remedial Investi	gatior	n. NYS	SDEC VO	CA Site No. V00	0733	
				Island City, New						
Weather: (A	M)		C	lear	Ra	infall·	(AM)	None	Inch	
(PM) — Temperature: (AM				lear		a	(PM)	None	Inch	
		65	°F	Wind Speed: (A	Speed: (AM) 0-5 MPH			Wind Direction	on: (AM) NV	
emperature.	(PM)		- °F	-	_	0-10	MPH	Wind Direction	(PM)	NW
Personnel Site:	On	N	<u>ame</u>		<u>Affiliation</u>				_	rture <u>me</u>
	On	N	<u>ame</u>		<u>Affili</u>	<u>ation</u>		<u>Time</u>	<u>Ti</u>	<u>me</u>
inc.		Paul E	Barusic	eh	D&B				16	00
	_	Mike	e Ryan		Zebra Zebra Zebra			0730	16	00
		Alex l	Elhedit	ty				0730	16	00
		John I	Diamor	nd				0810	16	00
		Ioana M Ra	Iuntea mnic	nu-	NYS	/SDEC		1010	10	20
	_	Gloria	a Russ	0	LIRR			1035	1045	
	_	Kathle	en Gre	en	LII	RR		1035	10	45
	- -									
	<u>-</u>									
Subcontractor	r Work	Comme	nceme	nt: (AM		0	730	(PM)		
Subcontractor	r Work	Comple	tion:	(AM				(PM)	1600	

DAILY FIELD ACTIVITY REPORT 10/8/15

The MIP contractor, Zebra, utilized hand tools, an air-knife and mini-vacuum powered by compressed air, and completed hand-clearing of the remaining MIP locations inside the Site's fenced area from 0 to 5 feet below grade. These locations included MIP-1 and MIP-3 through MIP-6. The Geoprobe drill steel which was previously stuck at the MIP-1 location was removed from the ground.

In addition to concrete and coarse fill, soil conditions consisted of very dense, dark brown sandy soil, with some gravel and a trace of silt. All photoionization detector (PID) readings were non-detect from the hand cleared zones. No staining or odors were noted.

Outside the fenced area, Zebra was able to determine the bluestone layer at the MIP-7 location (in the track areas) was approximately 2.25 ft. thick, and underlain by a hard surface, possibly concrete.

Site activities on 10/9/15 will include completing the MIP locations within the fenced area of the Site that have now been hand cleared, including MIP-1 and MIP-3 through MIP-6. Additional locations will be hand cleared and completed as time allows.

DAILY FIELD ACTIVITY REPORT 10/9/15

Report Date : 10/9/				oject N	lumber:	3455	- 2D			
Field Log Book Page										
<u> </u>							SDEC VO	CA Site No. V00)733	
Address: Arch Stre	eet Yard,	Long	Island C	ity, Ne	w York					
Weather: (AM)		Ove	ercast		Ra	ainfall:	(AM)	None	Inch	
(PM)		Ove	ercast				(PM) _	None	Inch	
Temperature: (AM)	() 65 °F		F Wind Speed: (A)		(AM)	0	MPH	Wind Direction	on: (AM)	
(PM)	70	°F			(PM)	0-5	MPH		(PM)	NW
Site Condition: <u>Grave</u> Personnel On		ame	.,			iation		Arrival <u>Time</u>	-	arture me
Site:										
_		Barusic e Ryan		D&B Zebra				$-\frac{0645}{0700}$		00
_						ebra		0700		500
- - - -	John Diamond Ioana Munteanu- Ramnic			NYSDEC				1040		10
- - - - Subcontractor Work	Comme	nceme	.nt·	(A	AM)	0	700	(PM)		
				`	´ <u>—</u>			<u> </u>	1500	
Subcontractor Work	Comple	uon:		(<i>P</i>	AM)			(PM)	1500	

DAILY FIELD ACTIVITY REPORT 10/9/15

The MIP contractor, Zebra, utilized the Geoprobe to complete the MIP locations within the fenced area of the Site that have been hand cleared to 5 feet below grade. These locations included MIP-1 and MIP-3 through MIP-6. MIP-1, MIP-3, MIP-4, MIP-5 and MIP-6 were completed with readings collected to 26 feet below grade, 23.45 feet below grade, 25.25 feet below grade, 26.8 feet below grade and 26.05 feet below grade, respectively where refusal was encountered. Based on bedrock data for this area of Queens from the USGS, this refusal is possibly bedrock.

D&B gauged depth to water from three ground water monitoring wells within the fenced area of the Site. The groundwater monitoring wells gauged were MW-1 through MW-3. Depth to water at well MW-1, MW-2 and MW-3 were at 3.56 feet, 4.65 feet and 5.19 feet, respectively from the top of the casing.

Attached are the MIP logs for MIP-1 and MIP-3 through MIP-6. As indicated, for MIP-1 there was a slight detection of VOCs by the PID and FID sensors starting approximately 12 to 13 feet below grade. The signal declined quickly after 16 feet below grade but was still detected at the refusal depth of 23.45 feet below grade. For MIP-3 and MIP 5, there was a strong detection of VOCs by the FID sensor starting approximately 14 feet below grade, then the signal declined quickly at approximately 16 feet below grade. For MIP-4, there was a strong detection of VOCs by the PID and FID sensors starting at the refusal depth of 25 feet below grade. For MIP-6, there was a strong detection of VOCs by the PID and FID sensors starting at approximately 13-14 feet below grade, then the signal declines quickly at approximately 15-16 feet below grade. VOCs were not detected by the XSD sensor in any of the above MIP locations. Note that the XSD probe detects chlorinated solvents.

Outside the fenced area, Zebra, attempted to hand-clear location MIP-8 using hand tools, refusal was encountered at 24 inches below grade. In addition to concrete and coarse fill, soil conditions consisted of medium dense, dark brown sandy soil, with some gravel and a trace of silt. The PID reading was non-detect from the hand cleared zone. No staining or odors were noted.

Site activities on 10/13/15 will include completing hand clearing of the MIP locations outside the fenced area of the Site, including MIP-7 through MIP-11.

DAILY FIELD ACTIVITY REPORT 10/28/15

Project: L	IRR – A	rch Stree	et Yard	Remedial Inve	estigatio	n, NYSI	DEC VCA	A Site No. V00)733		
Address:	Arch Stre	et Yard	, Long	Island City, No	ew York						
Weather: (AM)			Cloud	y, Rain	Ra	ainfall:	(AM)	0.5	Inch		
((PM) Cloudy, Ra		y, Rain		(PM)		0.5	Inch			
Геmperature: (Al		60	°F	Wind Speed:	(AM)	10-20	MPH	Wind Direc	tion:	(AM)	SE
	(PM)	65	- °F		(PM)	10-20	MPH			(PM)	SE
Personnel On Site:		Keith Johr Alex l	ame Robin Puzio Elhadio	ly	Do Ze Ze	iation &B bra bra		Time 0715 0700 0700	<u> </u>	Time 1600 1600 1600)))
		Kathle	en Gre	en	LI	RR		0820	 	1400)
	- - - -								 		
Subcontract	or Work	Comme	nceme	nt: (A	AM)	070	00	(PM)			
Subcontract	or Work	Comple	tion:	(1	AM)		_	(PM)		1600	

DAILY FIELD ACTIVITY REPORT 10/28/15

The MIP contractor, Zebra, utilized hand tools, an air-knife and mini-vacuum powered by compressed air, and completed hand-clearing of the remaining MIP locations from 0 to 5 feet below grade. These locations included MIP-8 through MIP-11. MIP-7 was cleared to 3 feet and will require some additional clearance activities before completing the MIP. An additional location next to previously completed MIP-2 within the fenced area was also cleared to 5 feet in anticipation of completing a verification boring at this location.

Up to 2 feet of bluestone was encountered at locations MIP-7, MIP-10 and MIP-11. In addition to brick, concrete and coarse fill, soil conditions consisted of compacted dark brown sandy soil, with some gravel and a trace of silt. In general, no staining or odors were noted.

Site activities on 10/29/15 will include completing the remaining MIP locations that have now been hand cleared, including MIP-7 through MIP-11. Additional locations will be hand cleared and completed as time allows, as will the verification borings.

DAILY FIELD ACTIVITY REPORT 10/29/15

Project: L	IRR – Ai	rch Stree	et Yard	l Remedial Inve	stigatio	n, NYS	DEC VC	A Site No. V00)733	
				Island City, Ne						
				<u>·</u>						
Weather: (AM)		Partly	Cloudy	R	ainfall:	(AM)	None	Inch	
((PM) Partly Cloud		Cloudy			(PM)	None	Inch		
Гетреratur	e: (AM)	65	°F	Wind Speed:	(AM)	10-15	MPH	Wind Directi	ion: (AM)	SW
	(PM)	70	- °F		(PM)	10-15	MPH		(PM)	SW
Personnel On Site:		Carl Sc	ame hmidla Puzio e Ryan		Affiliation D&B Zebra Zebra			Time 0645 0700 0700	Tir 130 122 122	00 30
	- - - - - -									
Subcontract	or Work	Comme	nceme	nt: (A	M)	07	700	(PM)		
Subcontract	or Work	Comple	tion:	(A	M)			(PM)	1230	

DAILY FIELD ACTIVITY REPORT 10/29/15

The MIP contractor, Zebra, utilized the Geoprobe to complete the five remaining MIP locations outside the fenced area of the Site that have been hand cleared to 5 feet below grade. These locations included MIP-7 through MIP-11. The MIP logs are attached. Refusal was encountered between 20 and 30 feet below grade except for MIP-11 where refusal was encountered at approximately 15 feet below grade. Based on bedrock data for this area of Queens from the USGS, this refusal is possibly bedrock.

As indicated, there were detections by the FID at MIP-7 through MIP-11, which is similar to the results for MIP-1 through MIP-6. Since there were generally no corresponding detections by the PID or XSD, it is possible that the FID detections are related to the matrix (e.g., methane in a former wetland area) rather than contamination. Two verification borings are planned for 10/30/15 as described below and a soil boring/monitoring well program is the next phase of work for the RI.

With this work, the MIP program is complete.

Site activities on 10/30/15 will include completing two verification soil borings at two of the MIP locations to confirm the MIP findings. Soil and groundwater samples will be collected for VOCs as per the Work Plan. Verification borings are planned for MIP-2 to confirm the XSD/PID/FID detections at the location, and MIP-6 to investigate the FID-only detections found at the remaining locations.

DAILY FIELD ACTIVITY REPORT 10/30/15

Project: LIRR –	- Arc	ch Stree	et Yard	Remedial Inve	estigatio	n, NYS	DEC VC	A Site No. V00)733	
Address: Arch S	Stree	t Yard,	Long	Island City, No	ew York	(
Weather: (AM)			Cl	ear	R	ainfall:	(AM)	None	Inch	
(PM)	(PM) Clear		ear			(PM)	None	Inch		
Геmperature: (Al	M)	55	°F	Wind Speed:	(AM)	10-15	MPH	Wind Direct	ion: (AM)	NW
(Pl	M)	60	°F		(PM)	10-15	MPH		(PM)	NW
Personnel Or Site:		Carl Sc	Puzio		D Ze	liation &B ebra ebra		Time 0655 0730 0750	Tin 153 153 153	30 30
Subcontractor Wo	ork C	Comme	nceme	nt: (A	AM)	08	300	(PM)		
Subcontractor Wo	ork (Complet	tion:	(A	AM)		-	(PM)	1530	

DAILY FIELD ACTIVITY REPORT 10/30/15

The MIP contractor, Zebra, utilized the Geoprobe to complete two verification soil borings at two of the MIP locations to confirm the MIP findings. Continuous soil sampling was completed to refusal and soil and groundwater samples were collected for VOC analysis as per the work plan.

Verification boring VB-01 was completed at the MIP-2 location to confirm the XSD/PID/FID detections at this location. Refusal was encountered at approximately 27 feet below grade where a rock was found in the end of the point (refusal had been at approximately 24 feet below grade during the MIP). At approximately 12 to 13 feet below grade, a maximum PID reading of 250 ppm was observed with a petroleum-like odor immediately above a finer organic-rich clay zone. This depth is similar to where the MIP exhibited the highest XSD/PID/FID detection. A soil and groundwater sample were collected from this zone for VOC analysis, and a groundwater sample was also collected from the base of the boring.

Verification boring VB-02 was completed at the MIP-6 location to investigate the FID-only detections found at the remaining MIP locations. Refusal was encountered at approximately 26-27 feet below grade (same depth as during the MIP). No evidence of contamination was observed, and the only odor was organic (natural). A soil sample and groundwater sample was collected for VOC analysis at 12 to 14 feet below grade where there was a small PID and FID detection during the MIP. Clay and organic material were observed at this zone. A water table groundwater sample was also collected at approximately 5 feet below grade.

With this work, the verification boring program is complete.

The next phase of fieldwork (soil borings/monitoring wells) is not currently scheduled pending analysis of the MIP and verification boring results. The analysis of the results will determine where soil borings and monitoring wells are to be installed.

ATTACHMENT 3 MIP LOGS

EC (mS/m \times 10 3) XSD Max ($\mu V \times 10^4$) PID Max ($\mu V \times 10^5$) FID Max ($\mu V \times 10^7$) 3 0.9 3 1.4 3 0.0 0.5 1.0 0 -2 4 6 8 10 12 14 Depth (ft) 16 18 20 22 24 26 28 30 File: MIP1.MIP Company: Operator: Date: 10/9/2015 Mike Ryan Client:
D&B Engineers and Architects Project ID: Location: LIRR Arch Street Yard

EC (mS/m \times 10 4) XSD Max ($\mu V \times 10^6$) PID Max ($\mu V \times 10^7$) FID Max ($\mu V \times 10^7$) 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0 -2 3 4 5 6 7 8 9 10 11 Depth (ft) 12 13 14 15 16 17 18 19 20 21 22 23 24 File: MIP2.MIP Company: Date: Operator: MR 10/7/2015 ZTS Client:
D&B Engineers and Architects Project ID: Location: LIRR Arch Street Yard

EC (mS/m \times 10³) XSD Max ($\mu V \times 10^4$) PID Max ($\mu V \times 10^5$) FID Max ($\mu V \times 10^7$) 1.9 1.6 5 1 5 0.0 0.5 1.0 0 -2 3 5 6 7 -8 -9 10 11 Depth (ft) 12 13 14 15 16 17 18 19 20 21 22 23 24 25 File: MIP3.MIP Company: Operator: Date: 10/9/2015 Mike Ryan ZTS Client:
D&B Engineers and Architects Project ID: Location: LIRR Arch Street Yard

EC (mS/m \times 10 3) XSD Max ($\mu V \times 10^4$) PID Max ($\mu V \times 10^5$) FID Max ($\mu V \times 10^6$) 3.4 1.6 5 1.1 2 5 0 2 0 0 -1 2 3 4 5 6 7 8 9 10 11 12 Depth (ft) 13 14 15 16 17 18 19 20 21 22 -23 24 25 26 File: MIP4.MIP Company: Operator: Date: Mike Ryan 10/9/2015 ZTS Client:
D&B Engineers and Architects Project ID: Location: LIRR Arch Street Yard

EC (mS/m \times 10 3) XSD Max ($\mu V \times 10^4$) $PID~Max~(\mu V\!\times\!10^5)$ FID Max ($\mu V \times 10^7$) 3 1.7 5 1.2 1.5 2.0 2.5 0.0 0.5 1.0 0 -2 6 8 10 -12 Depth (ft) 16 18 20 -22 24 26 28 File: MIP5.MIP Company: Operator: Date: 10/9/2015 Mike Ryan Client:
D&B Engineers and Architects Project ID: Location: LIRR Arch Street Yard

EC (mS/m \times 10³) XSD Max ($\mu V \times 10^4$) PID Max ($\mu V \times 10^5$) FID Max ($\mu V \times 10^7$) 0 5 1.6 5 1.2 2 5 0.0 0.5 1.0 0 -6 -8 10 -12 -Depth (ft) 16 -18 -20 22 -24 26 File: MIP6.MIP Company: Operator: Date: 10/9/2015 Mike Ryan Client:
D&B Engineers and Architects Project ID: Location: LIRR Arch Street Yard

XSD Max ($\mu V \times 10^4$) PID Max ($\mu V \times 10^6$) FID Max ($\mu V \times 10^7$) EC (mS/m \times 10⁴) 0.0 0.5 1.0 3.2 5 0.2 0.5 1.0 0.0 0.5 1.0 0 — 2 3 4 5 6 7 8 9 10 11 Depth (ft) 12 13 14 15 16 -17 -18 19 20 21 22 23 24 25 File: MIP-07.MIP Company: Date: Operator: MR 10/29/2015 ZTS Client:
D&B Engineers and Architects

LIRR Arch Street Yard

Location:

Project ID:

XSD Max ($\mu V \times 10^4$) PID Max ($\mu V \times 10^6$) FID Max ($\mu V \times 10^7$) EC (mS/m \times 10⁴) 0.0 0.5 1.0 3.4 5 0.2 0.5 1.0 0.0 0.5 1.0 0 — 2 3 5 8 -9 -10 -Depth (ft) 11 12 13 14 15 16 17 18 -19 20 21 22 23 File: MIP 8.MIP Company: Date: Operator: MR 10/29/2015 ZTS Client:
D&B Engineers and Architects Project ID: Location:

LIRR Arch Street Yard

XSD Max ($\mu V \times 10^4$) PID Max ($\mu V \times 10^6$) FID Max ($\mu V \times 10^7$) EC (mS/m \times 10³) 5.0 0.2 6.6 3.7 4.0 4.5 0.5 1.0 0.0 0.5 1.0 0 -2 8 10 -12 14 Depth (ft) 18 20 22 24 26 28 30 31 File: MIP-9.MIP Company: Operator: Date: MR 10/29/2015 Client:
D&B Engineers and Architects Project ID: Location:

LIRR Arch Street Yard

XSD Max ($\mu V \times 10^4$) PID Max ($\mu V \times 10^5$) FID Max ($\mu V \times 10^6$) EC (mS/m \times 10³) 3 2.9 5 2.4 5 0.1 0 -1 2 3 4 5 -6 7 -8 9 Depth (ft) 10 11 12 13 14 -15 -16 -17 -18 19 -20 -21 File: MIP-10.MIP Date: Company: Operator: MR 10/29/2015 ZTS Client:
D&B Engineers and Architects Project ID: Location: LIRR Arch Street Yard

EC (mS/m \times 10³) XSD Max ($\mu V \times 10^4$) PID Max ($\mu V \times 10^5$) FID Max ($\mu V \times 10^7$) 1.8 3.9 7 1.9 5 0.0 0.5 1.0 0 -3 -4 -5 6 7 Depth (ft) 10 11 12 13 14 15 File: MIP-11.MIP Operator: Company: Date: MR 10/29/2015 Client:
D&B Engineers and Architects Project ID: Location: LIRR Arch Street Yard

ATTACHMENT 4 VERIFICATION BORING LOGS

Project No.: 3455-2 Project Name: LIRR – Arch Street Yard RI Sheet 1 of 1 By: Carl Schmidlapp

Drill Rig: Geoprobe 6620DT **Date Started:** 10/30/15

Geologist: Carl Schmidlapp Drilling Method: Macrocore Drive Hammer Weight: N/A Date Completed: 10/30/15 Boring Completion Depth: 27' Ground Surface Elevation: ---

Boring Diameter: 2"

Soil sample VB-01 (13-15') and groundwater samples VB-

01 (15-16') and VB-01 (26-27') collected for VOC analysis.

Depth				PID Per 6"	Sample Description
(ft.)	No.	Туре	Rec.	(ppm)	Cumple Description
0'-5'	1	HA	60"	0.0	0-3": Bluestone
0 0	l '	, .	00	0.0	o o . Bladdiono
				0.7	3"-60": Dark brown, fine-medium SAND, some fine to medium subangular
					gravel, trace silt, concrete, medium dense, moist, no odor, no staining.
5'-10'	2	MC	38"	0.0	0-11": Dark brown to black, fine to medium SAND, trace subrounded gravel,
				0.0	moist, no odor, no staining.
				62	11"-24": Brown to light brown, medium to fine SAND, trace silt, wet, no odor,
				02	no staining.
					no stairing.
				64	24"-38": Brown to dark brown, medium to fine SAND, trace silt, wet, no odor,
					no staining.
10'-15'	3	MC	57"	10	0-7": Black, fine SAND, trace subangular gravel, no odor, slight staining.
				0.0	
				0.0	7"-24": Dark brown to black, fine SAND, trace subangular gravel, wet, no
					odor, no staining.
				150	24"-36": Black/gray, fine SAND, trace clay, moist, hydrocarbon-like odor, no
				250	staining.
				40	36"-47": Gray, CLAY, slightly plastic, trace organics(shells), moist, no odor,
					no staining.
				0.0	47"-57": Gray, CLAY, dense, trace organics (shells), dense, moist, no odor,
				0.0	no staining.
15'-20'	4	MC	29"	0.0	0-12": Brown, fine SAND, trace SILT, trace fine subangular gravel, wet,
				0.0	loose, no odor, no staining.
				40	40" 0 4" 0 0 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				18	12"-24": Gray, CLAY, slightly plastic, dry, no odor, no staining.
				12.5	24"-29": Gray to black, CLAY, dense to slightly plastic, dry, no odor, no
					staining.
20'-25'	5	MC	28"	0.0	0-13": Green to brown, fine to medium SAND, trace medium to coarse
				0.0	gravel, dense, dry, no odor, no staining.
				0.0	AON CONTRACTOR OF THE CONTRACT
				0.0	13"-28": Green to brown, medium to coarse SAND, trace medium to coarse
				0.0	gravel, dense, moist, no odor, no staining.
25'-30	6	MC	24"	0.0	0-24": Brown to gray, fine to medium SAND, trace fine to medium subangula
			_ ·	0.0	gravel, poorly sorted, moist, no odor, no staining.
Sample	Тур	es:		1	NOTES: Refusal encountered at 27'
	٠.,				Coll control (10 04 (40 45)) and array divistor accorded (10

HA = Hand Auger **MC** = Macrocore

Project No.: 3455-2 Project Name: LIRR – Arch Street Yard RI Sheet 1 of 1 By: Carl Schmidlapp

Drill Rig: Geoprobe 6620DT **Date Started:** 10/30/15

Geologist: Carl Schmidlapp Drilling Method: Macrocore Drive Hammer Weight: N/A Date Completed: 10/30/15 **Boring Completion Depth:** 26.5' **Ground Surface Elevation:** ---

Boring Diameter: 2"

Soil sample VB-02 (12-14') and groundwater samples VB-

02 (5') and VB-02 (12-14') collected for VOC analysis.

Donth				PID Per 6"	Sample Description
Depth	No	Type	Poo		Sample Description
(ft.)	No.	Туре	Rec.	(ppm)	O COULDIA
0'-5'	1	HA	60"	0.0	0-36": Bluestone
				0.0, 0.0	36"-60": Dark brown, fine to medium SAND, trace concrete, trace silt, dense,
				0.0, 0.0	poorly sorted, moist, no odor, no staining.
5'-10'	2	MC	28"	0.0	0-5": Black-dark brown, medium to coarse SAND, some medium to coarse
					subangular gravel, moist, no odor, no staining.
				0.0	5"-19": Black-brown, medium to fine SAND, trace medium to coarse gravel,
				0.0	loose, moist, no odor, no staining.
				0.0	AON CON Disable as a series of a CANID design and a series of a se
				0.0	19"-23": Black-brown, medium to fine SAND, dense, moist, no odor, no staining.
				0.0	23"-28": Gray, fine to medium SAND, trace SILT, loose, dry, no odor, no
				0.0	staining.
10'-15'	3	MC	32"	0.0, 0.0	0"-22": Gray, CLAY, trace organics and peat, slightly plastic, moist, organic
				0.0, 0.0	odor, no staining.
				0.0	22"-32": Gray-brown, CLAY, some peat and organics, slightly dense, organic
				0.0	odor, no staining.
15'-20'	4	MC	41"	0.0	0-9": Dark gray, medium to fine SAND, trace silt, trace subangular medium-
					fine gravel, moist, no odor, no staining.
				0.0, 0.0	9"-27" Gray, CLAY, some peat and organics, plastic, loose, no odor, no
				0.0	staining.
				0.0	27"-36": Gray, medium to coarse SAND, some medium to coarse subangular
				0.0	gravel, rock fragments 34"-36", poorly sorted, dense, no odor, no staining.
				0.0	36"-41": Brown-green, medium to coarse SAND, some large rock fragments,
					dense, poorly sorted, dry, no odor, no staining.
20'-25'	5	MC	42"	0.0, 0.0	0-22": Green-brown, medium to fine SAND, trace subrounded gravel, dense,
				0.0, 0.0	well sorted, dry, no odor, no staining.
				0.0	22"-26": Brown-dark brown/green, medium to fine SAND, poorly sorted, dry,
					no odor, no staining.
				0.0	26"-42": Green to brown, fine to medium SAND, trace subangular gravel,
				0.0	trace rock fragments, well sorted, dense, dry, no odor, no staining.
25'-30'	6	MC	0"	N/A	No Recovery
Sample	Туре	es:			NOTES: Refusal encountered at 26.5'.
					10 "

\\dbfs1\Jobs_HazWaste\3455 (LIRR On-Call)\Task 2 (Arch Street)\Boring Logs\VB-02.doc

HA = Hand Auger

MC = Macrocore

ATTACHMENT 5 VERIFICATION BORING SAMPLE RESULTS

Table 1 Long Island Rail Road **Arch Street Yard RI Soil Samples**

TCL Volatile Organic Compounds

	TCL Volatile Org	ganic Compound	ds	
Sample ID	VB-01(13-15)	VB-02(12-14)	NYCRR 6 Part375	NYCRR 6 Part375
Sampling Date	10/30/15	10/30/15	Industrial	Restricted-
Start Depth in Feet	13	12	Use Soil Cleanup	Residential
-				
End Depth in Feet	15	14	Objectives	Use
Dilution Factor	100	1	sco	SCO
Units	mg/kg	mg/kg	mg/kg	mg/kg
VOLATILE COMPOUNDS				
1,1,1-Trichloroethane	66.9 U	0.0075 U	1000	100
1,1,2,2-Tetrachloroethane	66.9 U	0.0075 U		
1,1,2-Trichloroethane	66.9 U	0.0075 U		
1,1,2-Trichlorotrifluoroethane	66.9 U	0.0075 U		
1,1-Dichloroethane	66.9 U	0.0075 U	480	26
1,1-Dichloroethene	66.9 U	0.0075 U	1000	100
1,2,3-Trichlorobenzene	66.9 U	0.0075 U		
1,2,4-Trichlorobenzene	66.9 U	0.0075 U		
1,2-Dibromo-3-Chloropropane	66.9 U	0.0075 U		
1,2-Dibromoethane	66.9 U	0.0075 U		
1,2-Dichloropenzene	66.9 U	0.0075 U	1000	100
1,2-Dichloroethane 1,2-Dichloropropane	66.9 U 66.9 U	0.0075 U 0.0075 U	60 	3.1
1,2-Dichioropropane 1,3-Dichiorobenzene	66.9 U	0.0075 U 0.0075 U	 560	 49
1,4-Dichlorobenzene	66.9 U	0.0075 U 0.0075 U	250	13
1,4-Dictrioroberizerie	1338.7 U	0.0075 U	250 250	13
2-Butanone	334.7 U	0.13 U 0.0148 J	1000	100
2-Butanone 2-Hexanone	334.7 U	0.0377 U		
4-Methyl-2-Pentanone	334.7 U	0.0377 U		
Acetone	334.7 U	0.0916	1000	100
Benzene	66.9 U	0.0075 U	89	4.8
Bromochloromethane	66.9 U	0.0075 U		
Bromodichloromethane	66.9 U	0.0075 U		
Bromoform	66.9 U	0.0075 U		
Bromomethane	66.9 U	0.0075 U		
Carbon Disulfide	66.9 U	0.0735		
Carbon Tetrachloride	66.9 U	0.0075 U	44	2.4
Chlorobenzene	66.9 U	0.0075 U	1000	100
Chloroethane	66.9 U	0.0075 U		
Chloroform	66.9 U	0.0075 U	700	49
Chloromethane	66.9 U	0.0075 U		
Cis-1,2-Dichloroethylene	66.9 U	0.0758	1000	100
Cis-1,3-Dichloropropene	66.9 U	0.0075 U		
Cyclohexane	66.9 U	0.0075 U		
Dibromochloromethane	66.9 U	0.0075 U		
Dichlorodifluoromethane Ethylbenzene	66.9 U	0.0075 U	700	 41
	66.9 U 66.9 U	0.0075 U 0.0075 U	780	41
Isopropylbenzene m,p-Xylene	133.9 U	0.0075 U 0.0151 U	1000	100
Methyl Acetate	66.9 U	0.0151 U 0.0075 U		100
Methyl tert-butyl Ether	66.9 U	0.0073 0	1000	100
Methylcyclohexane	66.9 U	0.0005 0.0075 U		
Methylene Chloride	66.9 U	0.0075 U	1000	100
O-Xylene	66.9 U	0.0075 U	1000	100
Styrene	66.9 U	0.0075 U		
Trans-1,3-Dichloropropene	66.9 U	0.0075 U		
Tetrachloroethylene	<u>1160.9</u>	0.0173	300	19
Toluene	66.9 U	0.0075 U	1000	100
Trans-1,2-Dichloroethene	66.9 U	0.0038 J	1000	100
Trichloroethylene	66.9 U	0.0104	400	21
Trichlorofluoromethane	66.9 U	0.0075 U		
Vinyl Chloride	66.9 U	0.0075 U	27	0.9
Total Volatile Compounds	1160.9	0.2961		

Footnotes/Qualifiers:

Exceeds Restricted-residential and industrial SCO

- mg/kg: Milligrams per kilogram
 --: No standard or not analyzed
 U: Analyzed for but not detected

 - J: Estimated value or limit

Table 2 Long Island Rail Road **Arch Street Yard RI Groundwater Samples**

TCL Volatile Organic Compounds

		CL Volatile O				
Sample ID		VB-01(26-27)	VB-02(5)	VB-02(12-14)	TRIPBLANK	NYSDEC Class GA
Sampling Date	10/30/15	10/30/15	10/30/15	10/30/15	10/30/15	Standard or
Start Depth in Feet	15	26	5	12		Guidance Value
End Depth in Feet	16	27	5	14		
Dilution Factor		100	1	1	1	
Units	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
VOLATILE COMPOUNDS	- U	- U	- U	Ü		
1,1,1-Trichloroethane	200 U	100 U	1 U	1 U	1 U	5
1,1,2,2-Tetrachloroethane	200 U	100 U	1 U	1 U	1 Ü	5
1,1,2-Trichloroethane	200 U	100 U	1 U	1 U	1 U	1
1,1,2-Trichlorotrifluoroethane	200 U	100 U	1 U	1 U	1 U	5
1,1-Dichloroethane	200 U	100 U	1 U	1 U	1 U	5
1,1-Dichloroethene	200 U	100 U	1 U	1 U	1 U	5
1,2,3-Trichlorobenzene	200 U	100 U	1 U	1 U	1 U	5
1,2,4-Trichlorobenzene	200 U	100 U	1 U	1 U	1 U	5
1,2-Dibromo-3-Chloropropane	200 U	100 U	1 U	1 U	1 U	0.04
1,2-Dibromoethane	200 U	100 U	1 U	1 U	1 U	0.0006
1,2-Dichlorobenzene	200 U	100 U	1 U	1 U	1 U	3
1,2-Dichloroethane	200 U	100 U	1 U	1 U	1 U	0.6
1,2-Dichloropropane	200 U	100 U	1 U	1 U	1 U	1
1,3-Dichlorobenzene	200 U 200 U	100 U 100 U	1 U 1 U	1 U 1 U	1 U 1 U	3 3
1,4-Dichlorobenzene 1.4-Dioxane	200 U 20000 U	100 U 10000 U	1 U 100 U	1 U 100 U	1 U 100 U	3
2-Butanone	1000 U	500 U	5 U	5 U	5 U	50
2-Hexanone	1000 U	500 U	5 U	5 U	5 U	50 50
4-Methyl-2-Pentanone	1000 U	500 U	5 U	5 U	5 U	
Acetone	1000 U	500 U	5 U	5 U	5 U	50
Benzene	200 U	100 U	1 U	1 U	1 U	1
Bromochloromethane	200 U	100 U	1 U	1 U	1 U	5
Bromodichloromethane	200 U	100 U	1 U	1 U	1 U	50
Bromoform	200 U	100 U	1 U	1 U	1 U	50
Bromomethane	200 U	100 U	1 U	1 U	1 U	5
Carbon Disulfide	200 U	100 U	1 U	1 U	1 U	60
Carbon Tetrachloride	200 U	100 U	1 U	1 U	1 U	5
Chlorobenzene	200 U	100 U	1 U	1 U	1 U	5
Chloroethane	200 U	100 U	1 U	1 U	1 U	5
Chloroform Chloromethane	200 U 200 U	100 U 100 U	1 U 1 U	1 U 1 U	1 U 1 U	7 5
Cis-1,2-Dichloroethylene	6900	1800 1800	<u>36</u>	1.2	1 U	5
Cis-1,3-Dichloropropene	200 U	100 U	<u>30</u> 1 U	1.2 1 U	1 U	0.4
Cyclohexane	200 U	100 U	1 U	1 U	1 U	0. 4
Dibromochloromethane	200 U	100 U	1 U	1 U	1 U	50
Dichlorodifluoromethane	200 U	100 U	1 U	1 U	1 U	5
Ethylbenzene	200 U	100 U	1 U	1 U	1 U	5
Isopropylbenzene	200 U	100 U	1 U	1 U	1 U	5
m,p-Xylene	400 U	200 U	2 U	2 U	2 U	5
Methyl Acetate	200 U	100 U	1 U	1 U	1 U	50
Methyl tert-butyl Ether	200 U	100 U	1.6	1.6	1 U	10
Methylcyclohexane	200 U	100 U	1 U	1 U	1 U	
Methylene Chloride	200 U	100 U	1 U	1 U	1 U	5
O-Xylene Styrene	200 U 200 U	100 U 100 U	1 U 1 U	1 U 1 U	1 U 1 U	5 5
Trans-1,3-Dichloropropene	200 U	100 U	1 U	1 U	1 U	0.4
Tetrachloroethylene	<u>17600</u>	4500	0.71 J	1.5	1 U	5
Toluene	200 U	100 U	1 U	1.3 1 U	1 U	5
Trans-1,2-Dichloroethene	200 U	100 U	2.5	1 U	1 U	5
Trichloroethylene	<u>1000</u>	<u>1100</u>	2.2	0.93 J	1 U	5
Trichlorofluoromethane	200 U	100 U	1 U	1 U	1 U	5
Vinyl Chloride	<u>4900</u>	<u>560</u>	<u>17.9</u>	1 U	1 U	2
Total Volatile Compounds	30400	7960	61	5.2	0	_
Total Volatile Compounds	30400		וט		0	

Footnotes/Qualifiers:

- ug/L: Micrograms per liter
 --: No standard or not analyzed
 U: Analyzed for but not detected
 J: Estimated value or limit

Exceeds Class GA Standard or Guidance Value

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 2 47-40 21st Street, Long Island City, NY 11101 P: (718) 482-4995 www.dec.ny.gov

February 11, 2016

Gloria Russo, M.S., LEED Green Associate Manager – Environmental Planning & Compliance Corporate Safety Department MTA Long Island Rail Road 144-41 94th Avenue, Mail Code 1947, 7th Floor Jamaica, NY 11435 Via e-mail: ggrusso@lirr.org

Re:

Arch Street Yards (LIRR) Site NYSDEC Site No. V00733 Proposed modifications to RIWP

Dear Ms. Russo:

The New York State Department of Environmental Conservation (the Department), in consultation with the New York State Department of Health (NYSDOH), has completed its review of the December 2, 2015 letter and the January 11, 2016 e-mail proposing modifications to the Remedial Investigation Work Plan (RIWP), which were prepared by D&B Engineers and Architects, P.C. (D&B), on behalf of MTA Long Island Rail Road (the Volunteer).

The modification consists of installation of eight (8) soil borings (SB-01 to SB-08) and four (4) contingency soil borings (if necessary) around the chlorinated VOC hot spot instead of twelve (12) soil borings; and installation of four (4) monitoring wells (GW-01 to GW-04) and three (3) contingency monitoring wells (if necessary) instead of a total of seven (7) monitoring wells. The January 11, 2016, e-mail described relocation of two of the previously proposed monitoring wells (one shallow and one cluster) within the chlorinated VOC hot spot instead of outside the hot spot.

The Department has determined that these modifications to the RIWP are acceptable and are hereby approved.

In accordance with the requirements of the Voluntary Cleanup Agreement, the approved modifications to the RIWP must be placed by the Volunteer in all publicly accessible repositories for the project within 5 business days. A certification that this documents have been placed in project repositories, and that the repositories are complete with all project documents, must be submitted to the NYSDEC project manager.

Ms. Gloria Russo February 10, 2016 Page 2

The Volunteer and its contractors are solely responsible for safe execution of all invasive and other field work performed under the modified RIWP. The Volunteer and its contractors must obtain all local, state, and/or federal permits or approvals that may be required to perform work under the modified RIWP. Further, the Volunteer and its contractors are solely responsible for the identification of utilities that might be affected by work under this RIWP and, implementation of all required, appropriate, or necessary health and safety measures during performance of work under the modified RIWP.

If you have any questions, please call me at (718) 482-4065 or email me at ioana.munteanu-ramnic@dec.ny.gov.

Sincerely,

Ioana Munteanu-Ramnic, P.E. Environmental Engineer II

ec:

J. O'Connell - NYSDEC

B. Boyd – NYSDOH

T. Fox, A. Caniano – D&B Engineers

August 5, 2016

Ioana Munteanu-Ramnic, P.E.
Environmental Engineer
New York State Department of Environmental Conservation
Division of Environmental Remediation, Region 2
Hunters Point Plaza
47-40 21st Street
Long Island City, NY 11101-5401

Re: LIRR Arch Street Yard (NYSDEC VCA Site No. V00733)

Remedial Investigation

Soil/Groundwater Data Discussion and Proposed Scope of Work

Originally Issued July 13, 2016, Revised August 5, 2016

Dear Ms. Munteanu-Ramnic:

D&B Engineers and Architects, P.C. (D&B) has prepared this letter on behalf of the Long Island Rail Road (LIRR) to discuss the results of the completed second phase of the Remedial Investigation (RI) being conducted at the LIRR Arch Street Yard (the Yard), and to propose a scope of work for the third and final phase of the RI, including the collection of soil vapor, indoor air, ambient air and sub-slab soil vapor samples. Note that this letter and third phase scope of work has been revised from our original July 13, 2016 letter and scope to address New York State Department of Environmental Conservation (NYSDEC) comments provided to the LIRR on July 25, 2016.

Background and Completed Field Activities

The second phase of the RI included the installation of soil borings and groundwater monitoring wells, and the collection of subsurface soil and groundwater samples for analysis. The RI is being conducted at the 2.7 acre portion of the Yard that is subject to the Voluntary Cleanup Agreement, designated as NYSDEC Site No. V00733 (the Site).

The first phase of the RI was the Membrane Interface Probe (MIP) study completed in October 2015, and summarized in a letter report to the NYSDEC dated December 2, 2015. The December 2, 2015 letter report outlined a proposed scope of work for the second phase of the RI that was approved by the NYSDEC in a letter dated February 11, 2016. The second phase of the RI discussed in this report was completed from March through May 2016 in accordance with the NYSDEC-approved RI Work Plan, dated July 2015, and the scope of work outlined in the December 2, 2015 letter report. As required by the RI Work Plan, daily and monthly reports were provided to NYSDEC during the implementation of the RI, including air monitoring data and photographs.

The field activities for the second phase of the RI consisted of the following:

• Installation of 17 soil borings (SB-01 through SB-17) and the collection of subsurface soil samples for analysis. Deep soil borings SB-01 through SB-08 were completed to define the limits

of the volatile organic compound (VOC) contamination identified by the MIP study at MIP-2, and shallow polychlorinated biphenyl (PCB) soil borings SB-09 through SB-17 were completed to confirm and define the previously identified PCB contamination at the Site.

- Installation of two water table monitoring wells (GW-02S and GW-04S) and four deep monitoring wells (GW-01, GW-02D, GW-03 and GW-04D) to determine impacts to groundwater from VOCs.
- Collection of subsurface soil samples for analysis during monitoring well installation;
- Sampling of the six newly installed and three existing groundwater monitoring wells (MW-1, MW-2 and MW-3) for analysis;
- Collection of two rounds of synoptic water levels from all newly installed and existing monitoring wells at high, low and mid-tide; and
- Completion of a 48-hour tidal study utilizing pressure transducers.

Completed sample location maps are provided as **Figure 1** and **Figure 2** in **Attachment 1**. **Figure 1** depicts all existing and newly installed sample locations, with the exception of the PCB soil borings, which are depicted on **Figure 2**. All depicted sample locations were surveyed by a New York Statelicensed surveyor. **Table 1** in **Attachment 2** provides a summary of the RI scope of work, including a summary of sample depths and analyses, analytical methods, sample point objectives, field observations and modifications to the approved scope of work. Note that Quality Assurance (QA)/Quality Control (QC) samples were collected in accordance with the RI Work Plan, including matrix spike (MS) and matrix spike duplicate (MSD) samples, blind duplicate samples, field blanks and trip blanks.

Soil Borings and Subsurface Soil Sampling

Soil borings were completed using direct-push technology. Prior to intrusive activities, utility clearance procedures were followed, including markouts and hand clearing. The deep Geoprobe soil borings were completed to a depth of 25 feet below grade, and the shallow PCB soil borings to 6 or 8 feet below grade. Deep soil boring SB-04 was completed until refusal at 29 feet below grade, suspected to be bedrock. Soil boring logs are provided as **Attachment 3**.

A total of 27 subsurface soil samples were collected for analysis from the 8 deep soil borings (SB-01 through SB-08) and 3 of the 4 monitoring well locations (GW-01, GW-03 and GW-04). Subsurface soil samples were not collected at GW-02 since verification soil boring VB-01 was previously completed in the vicinity of GW-02. At a minimum, soil samples were collected for analysis at the most impacted zone and the first clean zone below the impacted zone at each soil boring. Each soil sample was submitted for analysis of Target Compound List (TCL) VOCs, and TCL semivolatile organic compounds (SVOCs). Eight of the selected soil samples were also analyzed for Target Analyte List (TAL) metals, PCBs and TCL pesticides, biased towards visually impacted samples.

A total of 30 subsurface soil samples were collected for PCB analysis from the 9 shallow PCB soil borings (SB-09 through SB-17). Note that approximately 12 to 24 inches of bluestone was present at all shallow PCB soil boring locations, and soil samples were collected for analysis from below the bluestone

layer. Validated data summary tables for subsurface soil are provided as **Table 2** through **Table 6** in **Attachment 4**.

Groundwater Monitoring Wells and Groundwater Sampling

Groundwater monitoring wells were installed as 1-inch diameter pre-packed wells by direct-push technology. Shallow wells GW-02S and GW-04S were installed with 5 feet of screen to intercept the water table, observed at a depth of 3 to 5 feet below grade. Deep wells GW-01, GW-02D, GW-03 and GW-04D were installed with 10 feet of screen below the water table in order to intercept the highest chlorinated VOC concentrations previously observed at MIP-2/VB-01. Well construction logs detailing the construction of each well are provided in **Attachment 3**.

Following installation, all newly installed and existing wells were successfully developed by the pump and surge method. Groundwater samples were collected from the six newly installed and three existing wells a minimum of one week following development. A portable peristaltic pump with disposable tubing was used to purge and sample using USEPA low-flow sampling techniques, and new tubing was used between each well. The purge water was monitored in the field for the following parameters utilizing a calibrated multiple parameter water quality instrument: pH, conductivity, turbidity, dissolved oxygen, temperature and oxidation-reduction potential. After stabilization, groundwater samples were collected for laboratory analysis. Each groundwater sample was submitted for analysis of TCL VOCs and TCL SVOCs. Two of the groundwater samples were also analyzed for TAL metals, PCBs and TCL pesticides, biased towards impacted samples. Validated data summary tables for groundwater are provided as **Table 7** through **Table 10** in **Attachment 4**. Note that all purge water was collected and contained on-site in DOT-approved 55-gallon drums for characterization and proper off-site disposal.

Water Level Measurements and Tidal Survey

D&B collected two rounds of synoptic water levels from all 9 monitoring wells at the approximate time of low, mid and high tides in the nearest water bodies (East River and Newtown Creek). Light non-aqueous phase liquid (LNAPL) or dense non-aqueous phase liquid (DNAPL) was not detected in any of the monitoring wells. The water level measurements and calculated groundwater elevations are provided on **Table 11** in **Attachment 5**. Groundwater contour maps for the shallow (water table) wells and the deep wells are provided as **Figure 3** and **Figure 4** in **Attachment 5**.

In addition, D&B completed a 48-hour tidal survey between May 4 and May 6, 2016 to determine the degree of tidal influence associated with the nearby East River and Newtown Creek. As part of the tidal survey, D&B selected three monitoring wells (GW-01, GW-03 and MW-3) for the installation of pressure transducer/data loggers which convert water pressure into water level elevation. The pressure transducers were configured to record water levels every 15 minutes over the 48-hour test period, and D&B collected manual water levels before and after the tidal survey. Provided as **Figure 5** through **Figure 7** in **Attachment 6**, D&B plotted the generated water level data over time and compared the data to the tidal cycle of the two nearest water bodies as measured at the NOAA Hunters Point, Newtown Creek tidal gauge station to determine the degree of tidal influence.

Findings

Groundwater Flow

The water table was observed at a depth of 3 to 5 feet below grade. As indicated on **Figure 3**, shallow groundwater generally flows in a west-northwesterly direction, consistent with the reported regional groundwater flow direction. However, clay and silt with peat and organic material was observed throughout the Site below a depth of approximately 10 feet. As indicated on **Table 11**, deep wells screened within or below this material, such as GW-02D, GW-03 and GW-04D, exhibited apparent confined groundwater conditions with the water level depressed approximately 4 to 5 feet as compared to unconfined, water table conditions. The groundwater contour map for these deep wells provided on **Figure 4** shows that groundwater generally flows in a westerly direction in this zone, similar to the water table.

The synoptic water elevation data summarized on **Table 11** showed no discernable tidal fluctuation. Analysis of the synoptic water level data suggests that groundwater flow remains in a general west-northwesterly direction during all stages of the tidal cycle. These results are supported by the findings of the tidal survey depicted on **Figure 5** through **Figure 7**. The graphs of the water levels in the wells over time as compared to the nearest tidal gauge station do not show a tidal fluctuation in groundwater at the Site.

Subsurface Soil Quality

VOCs were detected in all 27 subsurface soil samples. However, as indicated on **Table 2** in **Attachment 4**, VOC concentrations were generally detected well below Restricted-Residential Use Soil Cleanup Objectives (SCOs) and all concentrations were below Industrial Use SCOs. Detections of VOCs above Restricted-Residential Use SCOs were limited to the following:

Compound	Concentra	ation (ug/kg)	Restricted- Residential Use
	SB-05 (10 to 11 feet)	SB-05 (11 to 13 feet)	SCO (ug/kg)
Tetrachloroethene	20,900	31,300	19,000
Vinyl Chloride	560	2,200	900

Bold/shading=exceeds SCO

Note that an elevated PID reading of 250 ppm and a solvent odor were noted in subsurface soil sample SB-05 (10 to 11 feet). Soil boring SB-05 was completed within the approximate suspected source area of chlorinated VOCs, depicted on **Figure 1**, and located below a depth of 10 feet below grade. The remaining soil borings completed around the suspected source area did not exhibit chlorinated VOCs at concentrations above SCOs.

Several SVOCs, consisting of polycyclic aromatic hydrocarbons (PAHs), were detected at concentrations above Restricted-Residential Use SCOs in subsurface soil samples SB-04 (3 to 5 feet) and GW-04 (2 to 3 feet). The highest concentrations were detected in SB-04 (3 to 5 feet), with benzo(a)anthracene detected

at a concentration of 5,300 ug/kg, above the Restricted-Residential Use SCO of 1,000 ug/kg. All SVOC concentrations were below Industrial Use SCOs, except for benzo(a)pyrene in SB-04 (3 to 5 feet) at 2,900 ug/kg, above the SCO of 1,100 ug/kg. A sheen, petroleum odor and PID reading of 7.8 ppm was noted in this soil sample.

PCBs were either not detected or were detected at concentrations below Restricted-Residential Use and Industrial Use SCOs, including the samples collected from the shallow PCB borings. A maximum PCB concentration of 310 ug/kg was detected in subsurface soil sample SB-14 (0 to 1 foot), well below the Restricted-Residential SCO of 1,000 ug/kg. Pesticides were not detected in any of the subsurface soil samples.

Metals were detected at concentrations below Restricted-Residential Use SCOs, except for lead detected at a concentration of 483 mg/kg in subsurface soil sample SB-06 (8 to 10 feet) above the SCO of 400 mg/kg, and mercury detected at 0.949 mg/kg in SB-07 (12 to 14 feet) above the SCO of 0.81 mg/kg. All metals concentrations were below Industrial Use SCOs.

Groundwater Quality

VOCs were detected in all 9 groundwater samples. However, as indicated on **Table 7** in **Attachment 4**, VOC concentrations were generally detected below Class GA groundwater standards and guidance values (Class GA groundwater standards). Detections of VOCs above Class GA groundwater standards were limited to the following:

Compound			Class GA Groundwater		
•	GW-02S	GW-02D	MW-1	MW-3	Standard (ug/l)
1,1-Dichloroethene	3.9	23.6	ND	3.2	5
cis-1,2-Dichloroethene	1,700	8,100	ND	510	5
trans-1,2-Dichloroethene	27.5	68.7	ND	2	5
Tetrachloroethene	69.4	5,900	ND	78.9	5
Trichloroethene	25.3	1,400	ND	34.8	5
Vinyl Chloride	1,500	5,300	ND	240	2
MTBE	ND	ND	26.2	0.74	10

Bold/shading=exceeds standard

ND=Not Detected

Note that monitoring wells GW-02S, GW-02D and MW-3, which exhibited chlorinated VOC concentrations well above Class GA groundwater standards, are located within the approximate suspected

source area of chlorinated VOCs, depicted on **Figure 1**. Neither the upgradient well GW-01 nor any of the downgradient wells exhibited chlorinated VOCs above Class GA groundwater standards.

SVOCs were either not detected or detected below Class GA groundwater standards. PCBs and pesticides were not detected in any groundwater samples.

The following metals were detected at concentrations above Class GA standards in the total (unfiltered) analysis: iron in GW-02D and MW-3, manganese in GW-02D and sodium in GW-02D and MW-3. The concentrations of these metals are typically elevated in urban settings. Turbidity was low in these samples, and a filtered analysis was not completed.

Conclusions

As discussed earlier, the detection of chlorinated VOC contamination in subsurface soil and groundwater at concentrations above Restricted-Residential Use SCOs and Class GA groundwater standards was limited to soil boring SB-05, and monitoring wells GW-02S, GW-02D and MW-3, respectively. These soil borings and monitoring wells are located within the approximate source area or "hot-spot" depicted on **Figure 1**, which was originally defined following completion of the MIP/verification boring phase of the RI. Based on the surrounding subsurface soil data from soil borings SB-01 to SB-04, and SB-06 to SB-08, and groundwater monitoring well data from wells GW-01, GW-03, GW-04S, GW-04D, MW-1 and MW-2, the chlorinated VOC contamination appears limited to the source area and does not appear to have migrated downgradient in groundwater, perhaps due to the fine grained nature and high organic content of the soil matrix below a depth of 10 feet. In summary, the first two phases of the RI have defined the limits of the chlorinated VOC source area as shown on **Figure 1**.

Previous sampling from 2000 and 2001 found elevated PCB concentrations in shallow soil in the track area on-site, as depicted on **Figure 2**. However, subsurface soil samples collected from the shallow PCB borings during the RI did not confirm the presence of PCBs at concentrations above Restricted-Residential Use SCOs.

Proposed Scope of Work

Note the proposed scope of work has been revised to address NYSDEC comments presented to the LIRR on July 27, 2016. To determine if soil vapor intrusion is a potential exposure pathway, the RI Work Plan calls for up to four soil vapor samples, two indoor air samples and one outdoor ambient air sample to be collected to be collected, with the final number and location of samples to be determined based on the findings of the soil and groundwater sampling. As part of the third and final investigation phase of the RI, and in order to address NYSDEC comments, the LIRR proposes to collect five soil vapor samples (SV-01 through SV-05), one indoor air sample (IA-01) and one sub-slab soil vapor sample (SV-06). The proposed sampling locations are depicted on **Figure 1** provided in **Attachment 1**.

One soil vapor sample will be completed within the chlorinated VOC "hot-spot" (SV-02). Although there is no indication that chlorinated VOC contamination has migrated from the source area, soil vapor samples will also be collected around the source area, as follows: to the west of the source area in the downgradient direction (SV-01), to the east of the source area in the upgradient direction (SV-03), to the

north of the source area in the crossgradient direction (SV-04) and to the south of the source area in the crossgradient direction (SV-05). The upgradient soil vapor sample SV-03 will be completed between the "hot-spot" and the closest building located within the Site (the LIRR Engineering Support Building). The one indoor air sample (IA-01) will be completed within this building. In addition, one sub-slab soil vapor sample will be collected from below the concrete slab of the LIRR Engineering Support Building.

Note that a restaurant is depicted on **Figure 1**, south of the "hot-spot" and the LIRR Engineering Support Building, that is located outside of the Site. As indicated on the figure, this restaurant is closed and has been closed for several years. In addition, the location of the former restaurant is elevated approximately 15 feet above the Site. Therefore, sampling within this structure is not recommended.

All soil vapor and ambient air samples will be collected in certified-clean SUMMA canisters for VOC analysis by USEPA Method TO-15, as outlined in the RI Work Plan.

The collection of the sub-slab soil vapor sample will follow a similar procedure to the soil vapor samples. Prior to installation of the sub-slab vapor probe, the building floor will be inspected for any penetrations to ensure that the installation location of sample provides minimal potential for ambient air infiltration via floor penetrations. The sub-slab soil vapor sample will be collected in the approximate center of the Engineering Support Building from 2 inches beneath the concrete slab of the building. The sample will be collected in an individually certified 6-liter SUMMA canister fitted with a laboratory calibrated low-flow regulator set to collect the sample over a 30 minute period, consistent with the NYSDEC-approved RI work plan. The collected sub-slab sample will be analyzed for VOCs utilizing USEPA Method TO-15, again consistent with the RI work plan.

All sampling protocols will follow the procedures described in the RI Work Plan and will be consistent with the NYSDOH document entitled, "Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York", dated October 2006.

If you have any questions or comments, please do not hesitate to call me at (347) 494-6034.

Sincerely,

Gloria Russo

Director - Environmental Planning & Compliance

GR/AMC(t)/nc Attachment

cc:

K. Green (LIRR)

T. Fox (D&B)

A. Caniano (D&B)

ATTACHMENT 1 SAMPLE LOCATION MAPS

3455\MTA\Dwg\FIGURES\3455-FIG-1 Prop SVE-IA SAMPLE LOC MAP.dwg, 8/3/2016 4:52:06 PM, DWG to PDF

ATTACHMENT 2 COMPLETED WORK SUMMARY TABLE

Long Island Rail Road Arch Street Yard (Site No. V00733) Remedial Investigation

SAMPLING SUMMARY AND RATIONALE

		Completion	No. of	Sample			Analysis	s ¹				
Investigation Method/Media	Sample Point ID	Depth Below Grade (feet)	Samples Selected for Analysis	Depth Below Grade (feet)	TCL VOCs	TCL SVOCs	PCBs	TCL Pesticides	TAL Metals	Installation/ Sample Date	Comments/Deviations from Work Plan	Sample Point Objectives
Remedial Investig	ation - First	Phase (Comp	leted)									
Verification Borings/	VB-01	27	1	13-15	х					10/30/2015	Refusal encountered at 27 feet below grade.	Collect soil samples to verify the results of
Subsurface Soil	VB-02	26.5	1	12-14	Х	1				10/30/2015		the MIP study.
Verification	VB-01	27	2	15-16, 26-27	Х	1				10/30/2015	Refusal encountered at 27 feet below grade.	Collect groundwater samples to verify the
Borings/ Groundwater	VB-02	26.5	2	5, 12-14	Х					10/30/2015	Refusal encountered at 26.5 feet below grade.	results of the MIP study.
Remedial Investig	ation - Seco	ond Phase (Cor	npleted)									
	SB-01	25	2	13-15, 23-25	Х	х	-1			3/16/2016		
	SB-02	25	2	13-15, 23-25	X	х	-			3/17/2016		
	SB-03	25	2	12-14	Х	Х	Х	х	Х	3/17/2016	Moved 4 feet south of planned location	
				18-20	Х	Х				. ,	due to presence of underground utilities.	
	SB-04	29	3	3-5	Х	Х	Х	х	Х	3/16/2016	Refusal encountered at 29 feet below	
Deep Soil Borings/				10-12, 27-29	Х	Х					grade.	Characterize soil and collect soil samples to define the limits of the contaminated area,
Subsurface Soil	SB-05	25	2	10-11	Х	Х	Х	х	Х	3/16/2016		with the primary contaminants of concern being VOCs.
				11-13	Х	Х					11'.	
	SB-06	25	2	8-10	Х	Х	Х	х	Х	3/17/2016		
				11-13	Х	х				. ,		
	SB-07	25	2	12-14	Х	Х	Х	х	Х	3/18/2016		
				23-25	Х	Х				-,,		
	SB-08	25	3	4-6, 6-8, 13-15	х	х	1			3/17/2016		

Long Island Rail Road Arch Street Yard (Site No. V00733) Remedial Investigation

SAMPLING SUMMARY AND RATIONALE

	_	Completion	No. of	Sample			Analysi	s ¹				
Investigation Method/Media	Sample Point ID	Denth Below	Samples Selected for Analysis	Depth Below Grade (feet)	TCL VOCs	TCL SVOCs	PCBs	TCL Pesticides	TAL Metals	Installation/ Sample Date	Comments/Deviations from Work Plan	Sample Point Objectives
Remedial Investig	ation - Seco	ond Phase (Cor	mpleted)									
	SB-09	8	4	0-1, 2-3 4-5, 7-8			x				Top of boring below 24" of bluestone. Moved 5 feet north of planned location due to presence of underground utilities.	
	SB-10	8	4	0-1, 2-3 4-5, 7-8			х			3/18/2016	Top of boring below 18" of bluestone. Blind duplicate collected for sample at 4- 5'. Moved southeast of planned location due to presence of third rail.	
	SB-11	8	4	0-1, 2-3 4-5, 7-8			х			3/18/2016	Top of boring below 24" of bluestone.	
	SB-12	6	3	0-1, 2-3 5-6			Х			' '	Top of boring below 3" of bluestone. Moved 4 feet west of planned location due to presence of underground utilities.	
Shallow PCB Soil Borings/ Subsurface Soil	SB-13	6	3	0-1, 2-3 5-6			х				Top of boring below 24" of bluestone. Blind duplicate collected for sample at 5-6'.	Characterize soil and collect soil samples for PCB analysis to define the limits of shallow soil PCB contamination, identified in 2000.
	SB-14	6	3	0-1, 2-3 5-6			х			3/21/2016	Top of boring below 24" of bluestone.	
	SB-15	6	3	0-1, 2-3 5-6			х			' '	Top of boring below 24" of bluestone. Moved north of planned location due to presence of third rail.	
	SB-16	6	3	0-1, 2-3 5-6	1		x				Top of boring below 12" of bluestone. Moved 5 feet north of planned location due to presence of underground utilities.	
	SB-17	6	3	0-1, 2-3 5-6			х				Top of boring below 12" of bluestone. Moved 8 feet west of planned location due to equipment access constraints.	

Long Island Rail Road Arch Street Yard (Site No. V00733) Remedial Investigation

SAMPLING SUMMARY AND RATIONALE

		Completion	No. of	Sample			Analysi	s ¹					
Investigation Method/Media	Sample Point ID	Depth Below Grade (feet)	Samples Selected for Analysis	Depth Below Grade (feet)	TCL VOCs	TCL SVOCs	PCBs	TCL Pesticides	TAL Metals	Installation/ Sample Date	Comments/Deviations from Work Plan	Sample Point Objectives	
Remedial Investi	gation - Seco	ond Phase (Cor	npleted)										
	GW-01 (upgradient)	20	3	4-5, 18-20 13-15	X X	X X	 X	 X	 X	3/21/2016		Determine background concentrations of contaminants of concern.	
Groundwater	GW-02		-1		1		1		1		Soil samples not collected since soil boring VB-01 was previously completed in the vicinity of this location.		
Monitoring Well Borings/	GW-03	20	3	3-4, 18-20	Х	Х	-			3/21/2016		Determine the presence and extent of soil	
Subsurface Soil	U 03	20		12-14	Х	Х	Х	Х	Х	3,21,2010		contamination.	
	GW-04	18	3	2-3, 16-18	Х	Х				3/23/2016	Top of boring below 24" of bluestone. Refusal encountered at depth of 19 feet. Blind duplicate collected for sample at 12-		
				12-14	Х	Х	Х	Х	Х		14'.		
	GW-01 (upgradient)	20	1	Screen interval 10-20	Х	х				Sampled 4/7/2016	Installed on 3/22/2016 Developed on 3/24/2016	Determine the presence or absense of contaminants of concern within upgradient groundwater. Confirm groundwater flow direction and the influence of the East River and Newtown Creek.	
	GW-02S	7	1	Screen interval 2-7	Х	Х	1		1	Sampled 4/7/2016	Installed on 3/22/2016 Developed on 3/25/2016		
Newly Installed Groundwater Monitoring Wells/	GW-02D	20	1	Screen interval 10-20	Х	х	х	х	Х	Sampled 4/7/2016	Installed on 3/22/2016 Developed on 3/24/2016	Determine the presence and extent of	
Groundwater	GW-03	19	1	Screen interval 9-19	Х	Х			-	Sampled 4/7/2016	Installed on 3/21/2016 Developed on 3/24/2016	downgradient groundwater contamination. Confirm groundwater flow direction and the influence of the East River and Newtown	
	GW-04S	8	1	Screen interval 3-8	Х	Х				Sampled 4/7/2016	Installed on 3/23/2016 Developed on 3/25/2016	Creek.	
	GW-04D	18	1	Screen interval 8-18	Х	Х				Sampled 4/7/2016	Installed on 3/23/2016 Developed on 3/25/2016		
Existing	MW-1	N/A	1	Well depth 12.60	Х	х				Sampled 4/7/2016	Developed on 3/24/2016. Blind duplicate collected.	Determine the presence and extent of	
Groundwater Monitoring Wells/ Groundwater	MW-2	N/A	1	Well depth 6.85	Х	х				Sampled 4/7/2016	Developed on 3/25/2016	downgradient groundwater contamination. Confirm groundwater flow direction and the influence of the East River and Newtown	
- Canada	MW-3	N/A	1	Well depth 12.75	Х	х	Х	Х	х	Sampled 4/7/2016	Developed on 3/24/2016	Creek.	

Long Island Rail Road Arch Street Yard (Site No. V00733) Remedial Investigation

SAMPLING SUMMARY AND RATIONALE

		Completion	No. of	Sample			Analysis	s ¹					
Investigation Method/Media	Sample Point ID	Donth Bolow	Samples Selected for Analysis	Depth Below Grade (feet)	TCL VOCs	TCL SVOCs	PCBs	TCL Pesticides	TAL Metals	Installation/ Sample Date	=	Sample Point Objectives	
Remedial Investig	emedial Investigation - Third Phase (To Be Completed)												
	SV-01	TBD	1	TBD	х					TBD	TBD		
	SV-02	TBD	1	TBD	х					TBD	TBD		
	SV-03	TBD	1	TBD	х					TBD	TBD		
Soil Vapor Probes and Indoor/ Ambient Air	SV-04	TBD	1	TBD	Х		1			TBD	I IRD	Determine if soil vapor intrusion is a potential exposure pathway.	
	SV-05	TBD	1	TBD	Х					TBD	TBD		
	IA-01	N/A	1	N/A	Х					TBD	TBD		
	AA-01	N/A	1	N/A	Х					TBD	TBD		
Sub-Slab Soil Vapor Probe	SV-06	Below Building Slab	1	Below Building Slab	х					TBD	I IBD	Determine if soil vapor intrusion is a potential exposure pathway.	

Notes:

X: Sample selected for analysis.

N/A: Not available

Target Compound List (TCL) Volatile Organic Compounds (VOCs) by EPA Methods 5035 and 8260 for soil samples, EPA Method 8260 for groundwater samples and EPA Method TO-15 for air samples.

TCL Semivolatile Organic Compounds (SVOCs) by EPA Method 8270.

Polychlorinated Biphenyls (PCBs) by EPA Method 8082.

TCL Pesticides by EPA Method 8081.

Target Analyre List (TAL) metals by EPA Method 6010.

^{--:} Sample not selected for analysis.

¹ As per Work Plan, approximately 20% of the soil and groundwater samples collected from the soil borings and groundwater monitoring wells were analyzed for TAL metals, PCBs and pesticides in addition to VOCs and SVOCs, biased toward visually impacted samples. Analytical methods were as follows:

ATTACHMENT 3 BORING LOGS AND WELL CONSTRUCTION LOGS

Project No.: 3455-2D Project Name: LIRR –

Arch Street

Boring No.: SB-01
Sheet 1 of 1
By: Keith Robins

Drilling Contractor: AARCO Drill Rig: Geoprobe 7822DT Date Started: 3/15/16

Geologist: Keith Robins
Drilling Method: Macrocore
Drive Hammer Weight: N/A
Date Completed: 3/16/16

Boring Completion Depth: 25 Ground Surface Elevation: 7.48

Boring Diameter: 2"

Soil samples from 13'-15' and 23'-25' submitted for TCL

VOC and TCL SVOC analysis.

Depth (ft.)	No.	Туре	Rec.	PID Per 6" (ppm)	Sample Description
0'-6"	1	HA	6"	0.0	Bluestone.
6"-1'	2	НА	12"	0.0	Same as above.
1'-2'	3	НА	12"	0.0	Dark gray-brown, medium to coarse SAND and STONE and GRAVEL, trace brick, concrete and wood, dense.
2'-2.5'	4	НА	6"	0.0	Bluestone and felt barrier fabric.
2.5'-3'	5	НА	6"	0.1	Black, silty SAND, organic odor, water encountered at 3' bgs.
3'-5'	6	MC	16"	0.0	Black, fine to medium SAND, some silt, fine to medium gravel, trace slag, fabric, rock fragments, poorly sorted, loose, wet, no staining, organic odor.
5'-10'	7	МС	30"	0.1	0"-19": Black-dark gray, silty SAND, little fine gravel, poorly sorted, loose, wet, no staining, no odor.
				0.1	19"-30": Gray-brown, clayey SILT, firm-soft, wet-moist, no staining, organic odor.
10'-15'	8	MC	36"	0.0	0"-29": Dark gray, CLAY, trace organic material, slightly plastic-firm, moist, no staining, trace organic odor.
				0.0	29"-36": Dark brown-gray, CLAY, some organic material, soft, damp, no staining, organic odor.
15'-20'	9	МС	38"	0.0	0"-19": Gray-silver, silty CLAY, slightly plastic firm, moist.
				0.0	19"-28": Gray, fine silty SAND, wet.
				0.0	28"-38": Olive-brown, clayey SILT, trace fine sand, fine subrounded gravel, dense, no staining, no odor.
20'-25'	10	MC	34"	0.0	0"-24": Olive green-brown, fine to medium SAND, some silt, trace fine subrounded gravel, poorly sorted, medium dense, wet, no staining, no odor
				0.0	24"-34": Gray-light gray, fine SAND, trace silt, well sorted, wet, no staining, no odor.
Sample	Type	es:			NOTES:

HA = Hand Auger

MC = Macrocore

Project No.: 3455-2D

Arch Street

Boring No.: SB-02 Sheet <u>1</u> of <u>1</u> By: Keith Robins

Drilling Contractor: AARCO Drill Rig: Geoprobe 7822DT **Date Started: 3/14/16**

Geologist: Keith Robins **Drilling Method:** Macrocore Drive Hammer Weight: N/A

Boring Diameter: 2"

Boring Completion Depth: 25°

Ground Surface Elevation: 8.60'

Date Completed: 3/17/16

Depth				PID Per 6"	Sample Description
(ft.)	No.	Туре	Rec.	(ppm)	Sample Description
0'-1'	1	HA	12"	0.0	Bluestone.
1'-2'	2	HA	12"	0.0	Gravel, brick, stone, cobbles, no odor, no staining.
2'-3'	3	HA	12"	0.0	Dark gray, fine to medium SAND, some brick, stone, cobbles, dense gravel,
2 3	3	11/3	12	0.0	no staining, no odor. Water encountered at 3' bgs.
3'-5'	4	МС	24"	0.0	0"-6": CONCRETE.
				0.0	6"-24": Black, fine to medium SAND, some rock, stones, trace silt, fine gravel, trace yellow brick, slag and coal, poorly sorted, loose, wet, no staining, no odor.
5'-10'	5	MC	46"	0.0	0"-12": Black-brown, ASH, COAL, and Cinders, poorly sorted, loose, wet, no staining, no odor.
				0.0	12"-22": Olive-gray, fine to medium SAND, some rock, trace fine gravel, stones, poorly sorted, wet, no staining, no odor.
				0.0	22"-46": Olive-brown, fine to very fine SAND, little silt, trace fine gravel, well sorted, moist, no staining, no odor.
10'-15'	6	MC	44"	0.0	0"-10": Olive-brown, fine to medium SAND, trace silt, fine subrounded grave and stone, well sorted, wet, no staining, no odor.
				0.0	10"-18": Olive-brown, medium to coarse SAND, trace subrounded gravel, poorly sorted, loose, wet, no staining, no odor.
				0.0	18"-44": Gray, CLAY, some organic matter, trace shells, soft, damp-moist, no staining, organic odor.
15'-20'	7	MC	36"	0.0	0"-8": Brown, CLAY, trace sand, soft, moist, no staining, no odor.
				0.0	8"-22": Gray, CLAY, trace fine gravel, dense-firm, damp, no staining, no odor.
				0.0	
				0.0	22"-27": Brown-light red, fine SAND, well sorted, wet, no staining, no odor.
					27"-36": Olive-brown, SILT, trace clay, dense, damp.
20'-25'	8	MC	36"	0.0	0"-24": Brown-olive, silty fine SAND, trace fine gravel, poorly sorted, dense, moist, no staining, no odor.
				0.0	24"-36": Gray, fine to medium SAND, some silt, trace clay, subrounded gravel, rock, poorly sorted, wet, no staining, no odor.
Sample HA = Ha					NOTES: Soil samples from 13'-15' and 23'-25' submitted for TCL

MC = Macrocore

VOC and TCL SVOC analysis.

Project No.: 3455-2D Project Name: LIRR –

Arch Street

Boring No.: SB-03
Sheet 1 of 1
By: Keith Robins

Drilling Contractor: AARCO Drill Rig: Geoprobe 7822DT Date Started: 3/14/16 Geologist: Keith Robins
Drilling Method: Macrocore
Drive Hammer Weight: N/A
Date Completed: 3/17/16

Boring Completion Depth: 25' **Ground Surface Elevation:** 8.72'

Boring Diameter: 2"

Depth				PID Per 6"	Sample Description
(ft.)	No.	Туре	Rec.	(ppm)	Oditiple Description
0'-6"	1	HA	6"	0.0	Bluestone.
6"-2'	2	HA	1.5"	0.0	Dark gray, fine SAND, some stone, gravel, dense, no staining, no odor.
2'-5'	3	MC	25"	0.0	0"-16": Brown, medium to coarse SAND, some fine gravel, cinders, concrete, poorly sorted, loose, wet at 3' bgs, no staining, no odor.
				0.0	16"-25": Black, fine to medium SAND, some cinders, slag, angular gravel, trace ash, poorly sorted, loose, wet, no staining, no odor.
5'-10'	4	MC	36"	0.0	0"-18": Black, medium to coarse SAND and angular GRAVEL, trace angular rock, brick, poorly sorted, very loose, wet, no staining, no odor.
				0.0	18"-21": Black, fine silty SAND, some gravel, wet.
				0.0	21"-27": Wood.
				0.0	27"-36": Black-gray brown, fine to very fine SAND, trace silt, trace wood, wet, no staining, no odor.
10'-15'	5	MC	36"	0.0	0"-10": Black, coarse SAND and GRAVEL, loose, wet.
				0.0	10"-36": Brown, fine to very fine silty SAND, well sorted, loose, wet, no staining, no odor.
15'-20'	6	MC	39"	0.0	0"-14": Dark gray, CLAY, trace shells, soft, moist, no staining, organic odor.
				0.0	14"-27": Gray-light gray, SILT, trace clay, dense, damp, no staining, no odor.
				0.0	27"-39": Brown-olive, SILT, some fine sand, trace fine gravel, damp, dense, no staining, no odor.
20'-25'	7	MC	36"	0.0	0"-13": Brown, fine to medium SAND, trace silt, subrounded gravel, poorly sorted, medium dense, wet, no staining, no odor.
				0.0	13"-25": Olive-brown, very fine to fine SAND, trace silt, well sorted, moist, no staining, no odor.
				0.0	25"-36": Gray-brown, silty fine SAND, trace subrounded gravel, dense, moist, no staining, no odor.

NOTES:

and PCBs.

Soil samples from 12'-14' and 18'-20' submitted for TCL

VOC and TCL SVOC analysis. Soil sample from 12'-14'

also submitted for analysis of TAL metals, TCL Pesticides

Sample Types:

HA = Hand Auger

MC = Macrocore

Project No.: 3455-2D Project Name: LIRR –

Arch Street

Boring No.: SB-04
Sheet 1 of 1
By: Keith Robins

Drilling Contractor: AARCO **Drill Rig:** Geoprobe 7822DT **Date Started:** 3/14/16

Geologist: Keith Robins
Drilling Method: Macrocore
Drive Hammer Weight: N/A
Date Completed: 3/16/16

Boring Completion Depth: 29 Ground Surface Elevation: 7.46

Boring Diameter: 2"

TCL VOC and TCL SVOC analysis. Soil sample from 3'-5' also submitted for analysis of TAL Metals, TCL

Pesticides and PCBs.

Depth (ft.)	No.	Туре	Rec.	PID Per 6" (ppm)	Sample Description
0'-6"	1	HA	6"	0.0	Bluestone.
6"-1'	2	НА	6"	0.0	Brown, medium to coarse SAND, some gravel, organic matter, trace silt, dry, no odor.
1'-2'	3	НА	12"	0.0	Gray-light black, medium to coarse SAND and GRAVEL, trace cobbles, stone, brick and concrete, very dense, no odor, no staining.
2'-3'	4	НА	12"	0.0	Black, SAND, ROCK and GRAVEL, dense, organic odor, water encountered at 3' bgs.
3'-5'	5	MC	5"	7.8	Black-dark gray, medium to coarse SAND, some fine to coarse gravel, trace silt, trace stone, concrete and rubber, poorly sorted, loose, wet, no staining, very slight sheen on water, petroleum odor.
5'-10'	6	MC	8"	2.3	Black, medium to coarse SAND and subangular GRAVEL, crushed ROCK, trace wood, poorly sorted, loose, wet, no staining, slight petroleum odor.
10'-15'	7	MC	42"	0.0	0"-33": Dark gray, CLAY, trace organic matter, trace shells, soft, slightly plastic, damp-moist, no staining, organic odor.
				0.0	33"-42": Dark gray-brown, silty CLAY, some organic matter, firm-dense, slightly plastic, no staining, organic odor, moist-wet.
15'-20'	8	MC	40"	0.0	0"-21": Gray, clayey SILT, trace fine gravel, organic matter, firm-dense, damp-moist, no staining, no odor.
				0.0	21"-40": Olive-brown, fine to medium SAND, some silt, subrounded gravel, trace rock, muscovite flakes, poorly sorted, dense-moist, no staining, no odor.
20'-25'	9	MC	6"	0.0	Olive-brown, fine to medium SAND, some silt, subrounded gravel, trace rock, poorly sorted, dense, damp-moist, no staining, no odor. Note large stone stuck in tip of soil sampler.
25'-29'	10	MC	23"	0.0	Gray, fine to medium SAND, trace silt, fine gravel and rock fragments, shale/slate, poorly sorted, loose, wet, no staining, no odor. Encountered refusal at 29'.
Sample HA = Ha				1	NOTES: Soil samples from 3'-5', 10'-12' and 27'-29' submitted for

MC = Macrocore

Arch Street

Boring No.: SB-05
Sheet 1 of 1
By: Keith Robins

Drilling Contractor: AARCO **Drill Rig:** Geoprobe 7822DT **Date Started:** 3/14/16

Geologist: Keith Robins
Drilling Method: Macrocore
Drive Hammer Weight: N/A
Date Completed: 3/16/16

Boring Diameter: 2"

Boring Completion Depth: 25°

Ground Surface Elevation: 7.94'

Depth				PID Per 6"	Sample Description
(ft.)	No.	Type	Rec.	(ppm)	·
0'-6"	1	HA	6"	0.0	Bluestone.
6"-2'	2	НА	18"	0.0	Gray, medium to coarse SAND and GRAVEL, dense, no staining, no odor.
2'-3'	3	НА	12"	0.0	Dark gray, fine SAND and BRICK, some gravel, no staining, no odor. Water encountered at 3' bgs.
3'-5'	4	MC	21"	0.0	Dark gray-black, medium to coarse SAND, some cinders, slag, brick, trace silt, brick, fine gravel, angular rock, poorly sorted, loose, wet, no staining, no odor.
5'-10'	5	МС	45"	0.0	0"-18": Black-dark gray, fine to medium SAND, some silt, trace fine gravel, poorly sorted, loose, wet, no staining, organic odor.
				0.0	18"-45": Gray-olive, silty fine SAND, well sorted, wet, no staining, organic odor.
10'-15'	6	MC	47"	250	0"-12": Black-dark gray, fine to medium SAND, trace silt, fine gravel, poorly sorted, loose, wet, no staining, trace solvent odor.
				0.0	12"-42": Gray, CLAY, soft-plastic, damp-moist, no staining, trace organic matter.
				0.0	42"-47": Dark gray-brown, CLAY, soft-slightly plastic, some organic matter, dry-damp, no staining.
15'-20'	7	MC	42"	0.0	0"-12": Light gray, CLAY, trace organic matter, dense, moist, no staining, no odor.
				0.0	12"-24": Gray-dark gray, silty SAND, wet, no staining, no odor.
				0.0	24"-42": Olive-brown, fine to medium SAND, some silt, subrounded gravel, trace clay, poorly sorted, dense, no odor, no staining.
20'-25'	8	MC	44"	0.0	0"-20": Brown-olive, CLAY, trace fine subrounded gravel, rock, dense, damp, no odor, no staining.
				0.0	20"-32": Olive-brown, silty SAND, some subrounded gravel, stones, poorly sorted, dense, moist, no staining, no odor.
				0.0	32"-44": Gray, fine SAND, trace silt, well sorted, wet, no staining, no odor.

Sample Types: HA = Hand Auger MC = Macrocore **NOTES:** Soil samples from 10'-11', 11'-13' submitted for TCL VOC and TCL SVOC analysis. Soil sample from 10'-11' also submitted for analysis of TAL metals, TCL Pesticides and PCBs.

Arch Street

Boring No.: SB-06
Sheet 1 of 1
By: Keith Robins

Drilling Contractor: AARCO **Drill Rig:** Geoprobe 7822DT **Date Started:** 3/14/16

Geologist: Keith Robins
Drilling Method: Macrocore
Drive Hammer Weight: N/A
Date Completed: 3/17/16

Boring Completion Depth: 25' **Ground Surface Elevation:** 9.23'

Boring Diameter: 2"

Donth	-			PID Per 6"	Sample Description
Depth (ft.)	No.	Туре	Rec.	(ppm)	Sample Description
0'-1"	1	HA	1"	0.0	Bluestone.
1"-3'	2	НА	35"	0.0	Dark gray, fine to medium SAND and BRICK, dense, no staining, no odor.
3'-5'	4	MC	13"	0.0	Black-brown, fine to coarse SAND and Stones, Concrete, Gravel, poorly sorted, loose, no staining, no odor. Water encountered at 4.5' bgs.
5'-10'	5	MC	31"	0.0	0"-19": Dark brown-black, medium to coarse SAND and CONCRETE, some rock, stone, gravel, trace brick, poorly sorted, loose, wet, no staining, no odor.
				25	19"-31": Dark black, silty fine SAND, trace fine gravel, well sorted, wet, no staining, no odor.
10'-15'	6	MC	21"	5.0	0"-4": Black, fine to coarse SAND, trace fine gravel, poorly sorted, wet, no staining, no odor.
				0.0	4"-16": Dark brown, fine SAND, trace silt, fine gravel, well sorted, wet, no staining, no odor.
				0.0	16"-21": Black-dark gray, fine SAND, trace silt, well sorted, wet, no staining, no odor.
15'-20'	7	MC	39"	0.0	0"-12": Dark gray, CLAY, some organic matter and shells, soft, moist, no staining, trace organic odor.
				0.0	12"-31": Light gray, SILT, trace clay, subrounded gravel, dense, moist, no staining, no odor.
				0.0	31"-39": Reddish-brown, silty fine SAND, well sorted, medium dense, wet, no staining, no odor.
20'-25'	8	MC	45"	0.0	0"-18": Olive-brown, CLAY and SILT, trace fine sand seams, dense, dampmoist, no staining, no odor.
				0.0	18"-34": Olive-brown, fine to medium SAND, some silt, trace rock, fine subrounded gravel, poorly sorted, dense, moist, no staining, no door.
				0.0	34"-45": Light gray-tan, fine SAND, some silt, trace clay, subrounded gravel, medium dense, damp-moist, no staining, no odor.
Sample HA = Ha MC = M	and A	uger			NOTES: Soil samples from 8'-10' and 11'-13' submitted for TCL VOC and TCL SVOC analysis. Soil sample from 8'-10' also submitted for analysis of TAL Metals, TCL Pesticides and PCBs.

Arch Street

Boring No.: SB-07
Sheet 1 of 1
By: Keith Robins

Drilling Contractor: AARCO **Drill Rig:** Geoprobe 7822DT **Date Started:** 3/14/16

Geologist: Keith Robins
Drilling Method: Macrocore
Drive Hammer Weight: N/A
Date Completed: 3/18/16

Boring Completion Depth: 25 Ground Surface Elevation: 8.10 3.10

Boring Diameter: 2"

Depth (ft.)	No.	Туре	Rec.	PID Per 6" (ppm)	Sample Description
0'-8"	1	НА	8"	0.0	Bluestone.
8"-20"	2	НА	12"	0.0	Gray-brown, medium to coarse SAND and GRAVEL, trace stone, poorly sorted, loose, moist.
20"-36"	3	НА	16"	0.0	Black-dark gray, SILT and SAND, some gravel, trace cobbles, trace metal, brick and slag, poorly sorted, loose, moist, no staining, no odor.
36"-42"	4	НА	6"	0.0	Gray-brown, SILT and SAND, some gravel, poorly sorted, loose, wet at 3.8' bgs.
3.5'-5'	5	MC	7"	0.0	Bluestone/gravel, wet, loose, no staining, no odor.
5'-10'	6	MC	42"	0.3	Gray-brown, fine to medium SAND, trace fine gravel, trace clayey silt, organic matter, poorly sorted, loose, wet, no staining, no odor.
10'-15'	7	7 MC 36	36"	0.2	0"-8": Gray-brown, fine to medium SAND, trace coarse sand and gravel, well sorted, loose, wet, no staining, no odor.
				0.3	8"-36": Dark gray, CLAY, some organic matter and shells, soft, damp, no staining, organic odor.
15'-20'	8	MC	34"	0.3	0"-22": Gray, SILT, trace rock, dense, damp-moist.
				0.3	22"-34": Brown-olive, silty fine SAND, trace rock and gravel, poorly sorted, dense, moist, no staining, no odor.
20'-25'	9	MC	35"	0.0	0"-19": Brown-olive, fine to medium SAND, some silt, trace rock, gravel, poorly sorted, dense, moist-wet, no staining, no odor.
				0.0	19"-35": Gray, fine to very fine SAND, trace fine gravel, well sorted, wet, no staining, no odor.
Sample	<u> </u>				NOTES:

Sample Types: HA = Hand Auger MC = Macrocore NOTES:

Soil samples from 12'-14' and 23'-25' submitted for TCL VOC and TCL SVOC analysis. Soil sample from 12'-14' also submitted for TAL Metals, TCL Pesticides and PCB analysis.

Arch Street

Boring No.: SB-08 Sheet <u>1</u> of <u>1</u> By: Keith Robins

Drilling Contractor: AARCO Drill Rig: Geoprobe 7822DT **Date Started: 3/14/16**

Geologist: Keith Robins **Drilling Method:** Macrocore Drive Hammer Weight: N/A

Date Completed: 3/17/16

Boring Completion Depth: 25° **Ground Surface Elevation:** 8.62'

Boring Diameter: 2"

Depth (ft.)	No.	Туре	Rec.	PID Per 6" (ppm)	Sample Description
0'-1'	1	HA	12"	0.0	Bluestone.
1'-4'	2	НА	36"	0.0	Dark gray-brown, fine to medium SAND and GRAVEL, no odor, no staining. Water encountered at 4' bgs.
4'-10'	3	MC	36"	56.0	0"-24": Black, medium to coarse SAND and fine GRAVEL, some stone, trace clay, coal, cinders, brick, poorly sorted, wet, loose.
				0.0	24"-36": Dark brown, medium to coarse SAND, Rock and Stones, some gravel, brick, poorly sorted, loose, wet, no staining, no odor.
10'-15'	4	MC	20"	0.0	0"-12": Black, medium to coarse SAND and fine to coarse angular GRAVEL, some rock, concrete, brick, poorly sorted, very loose, wet, no staining, no odor.
				0.0	12"-20": Dark brown-gray, silty SAND, some subrounded gravel, trace stone, poorly sorted, wet, no staining, no odor.
15'-20'	5	MC	52"	0.0	0"-12": Dark gray, CLAY, some organic matter, soft-firm, slightly plastic, moist, no staining, slight organic odor.
				0.0	12"-20": Dark gray-brown, silty CLAY, moist.
				0.0	20"-40": Light gray-blue, SILT, trace clay, dense, damp, no staining, no odor.
				0.0	40"-52": Reddish-olive, silty fine to medium SAND, some fine subrounded gravel, poorly sorted, dense, moist, no staining, no odor.
20'-25'	6	MC	40"	0.0	0"-16": Olive-brown, SILT, little sand, trace fine gravel, dense, damp, no staining, no odor.
					16"-40": Olive-brown, silty fine SAND, some subrounded gravel, trace weathered rock, poorly sorted, moist-damp, no staining, no odor.
Sample	Type	es:			NOTES:

HA = Hand Auger

MC = Macrocore

Soil samples from 4'-6', 6'-8' and 13'-15' submitted for TCL VOC and TCL SVOC analysis.

Arch Street

Sheet 1 of 1

By: Keith Robins

Drilling Contractor: AARCO **Drill Rig:** Geoprobe 7822DT **Date Started:** 3/18/16

Geologist: Keith Robins
Drilling Method: Macrocore
Drive Hammer Weight: N/A
Date Completed: 3/18/16

Boring Completion Depth: 8' **Ground Surface Elevation:** 7.10'*

Boring Diameter: 2"

Soil samples from 0'-1', 2'-3', 4'-5' and 7'-8' submitted for

Boring log begins approximately 2 ft. below bluestone. *Ground surface elevation is from top of bluestone.

Depth				PID Per 6"	Sample Description
(ft.)	No.	Type	Rec.	(ppm)	
0'-5'	1	MC	36"	0.3	0"-12": Brown, medium to coarse SAND, crushed ROCK and GRAVEL, poorly sorted, loose, damp to wet.
				0.0	12"-18": Dark gray, silty SAND and STONE, poorly sorted, loose, no staining, no odor.
				0.0	18"-21": Concrete, dry, no staining, no odor.
				0.0	21"-42": Black, fine SAND, SLAG and COAL, trace silt, lumber, poorly sorted, very loose, wet, no staining, no odor.
				0.0	42"-46": Olive-brown, fine SAND, some fine angular gravel, wet, no staining, no odor.
5'-8'	2	MC	34"	0.3	0"-21": Dark gray, fine to medium SAND, trace fine gravel, well sorted, wet, no staining, no odor.
				0.3	21"-30": Brown-olive, fine to medium SAND, trace fine gravel, wet, no staining, no odor.
				0.3	30"-34": Dark gray, very fine SAND, trace silt, wet, no staining, no odor.

NOTES:

PCBs analysis.

J:_HazWaste\3455 (LIRR On-Call)\Task 2 (Arch Street)\Boring Logs\SB-09.doc

Sample Types:

HA = Hand Auger

MC = Macrocore

Arch Street

Boring No.: SB-10
Sheet 1 of 1
By: Keith Robins

Drilling Contractor: AARCO **Drill Rig:** Geoprobe 7822DT **Date Started:** 3/18/16

Geologist: Keith Robins
Drilling Method: Macrocore
Drive Hammer Weight: N/A
Date Completed: 3/18/16

Boring Completion Depth: 8' **Ground Surface Elevation:** 7.21'*

Boring Diameter: 2"

Depth (ft.)	No.	Туре	Rec.	PID Per 6" (ppm)	Sample Description
0'-1'	1	HA	12"	0.0	Dark gray, medium to fine SAND, some brick, rock, no staining, no odor.
1.5'-5'	2	НА	35"	0.3	0"-17": Black, medium to coarse SAND, SLAG and GRAVEL, poorly sorted loose, wet, no staining, no odor.
				0.3	17"-35": Black, fine to medium SAND and crushed ROCK, trace gravel, lumber, poorly sorted, wet, no staining, no odor.
5'-8'	3	MC	27"	0.2	0"-18": Black, medium to coarse SAND, fine GRAVEL, SLAG and COAL fragments, poorly sorted, loose, wet, no staining, no odor.
				0.2	18"-27": Olive-brown, fine SAND, wet, well sorted, wet, no staining, no odo

HA = Hand Auger **MC** = Macrocore

Sample Types:

NOTES:

Soil samples from 2'-3', 4'-5' and 7'-8' submitted for PCBs analysis.

Boring log begins approximately 18" below the bluestone. *Ground surface elevation is from top of bluestone.

Arch Street

Boring No.: SB-11
Sheet 1 of 1
By: Keith Robins

Drilling Contractor: AARCO **Drill Rig:** Geoprobe 7822DT **Date Started:** 3/18/16

Geologist: Keith Robins
Drilling Method: Macrocore
Drive Hammer Weight: N/A

Date Completed: 3/18/16

Boring Completion Depth: 8' **Ground Surface Elevation:** 7.39'*

Boring Diameter: 2"

			T	T = -= -	
Depth (ft.)	No.	Туре	Rec.	PID Per 6" (ppm)	Sample Description
0'-5'	1	MC	35"	0.2	0"-15": Black, medium to coarse SILT, GRAVEL and STONE, trace brick, poorly sorted, loose, wet, no staining, no odor.
				0.2	15"-35": Olive-brown, fine to medium SAND, some silt, crushed stone, rock, gravel, compacted, dense, wet, no staining, no odor.
5'-8'	2	MC	24"	0.6	0"-12": Black-dark gray, medium to coarse SAND, STONE, ROCK and GRAVEL, poorly sorted, loose, wet, no staining, no odor.
				0.6	12"-24": Brown-gray, organic CLAY and PEAT, damp, slightly plastic, soft, no staining, some organic odors.

NOTES:

PCBs analysis.

Soil samples from 0'-1', 2'-3', 4'-5' and 7'-8' submitted for

Boring log begins approximately 24" below bluestone. *Ground surface elevation is from top of bluestone.

J:_HazWaste\3455 (LIRR On-Call)\Task 2 (Arch Street)\Boring Logs\SB-11.doc

Sample Types:

HA = Hand Auger

MC = Macrocore

Arch Street

Boring No.: SB-12
Sheet 1 of 1
By: Keith Robins

Drilling Contractor: AARCO Drill Rig: Geoprobe 7822DT Date Started: 3/21/16 Geologist: Keith Robins
Drilling Method: Macrocore
Drive Hammer Weight: N/A
Date Completed: 3/21/16

Boring Completion Depth: 6' **Ground Surface Elevation:** 6.89'*

Boring Diameter: 2"

_				T =	T
Depth	NI-	T	Des	PID Per 6"	Sample Description
(ft.)	No.	Туре	Rec.	(ppm)	O'! 40!! Orange I' as a see CAND ODANG! OTONICO (see a be'd
0'-5'	1	HA/ MC	44"	0.5	0"-16": Gray, medium-coarse SAND, GRAVEL, STONES, trace brick, concrete, poorly sorted, loose.
				0.5	16"-39": Black, fine to medium SAND, some slag, trace coal, cinders, gravel, poorly sorted, loose, wet, no staining, no odor.
				0.5	39"-44": Black-brown, fine to medium SAND, trace gravel, well sorted, wet, no staining, no odor.
5'-6'	2	МС	12"	0.5	Dark gray, organic CLAY, soft-slightly plastic, organic odor, moist.

Sample Types: HA = Hand Auger MC = Macrocore NOTES:

Soil samples from 0'-1', 2'-3' and 5'-6' submitted for PCBs analysis.

Boring log begins approximately 3" below bluestone. *Ground surface elevation is from top of bluestone.

Arch Street

Boring No.: SB-13
Sheet 1 of 1
By: Keith Robins

Drill Rig: Geoprobe 7822DT **Date Started:** 3/21/16

Geologist: Keith Robins **Drilling Method:** Macrocore **Drive Hammer Weight:** N/A

Date Completed: 3/21/16

Boring Completion Depth: 6' **Ground Surface Elevation:** 7.12'*

Boring Diameter: 2"

Depth (ft.)	No.	Туре	Rec.	PID Per 6" (ppm)	Sample Description
0'-5'	1	MC	50"	0.4	0"-12": Dark brown-gray, medium to coarse SAND and STONES, some angular gravel, trace concrete, poorly sorted, damp-moist, no staining, no odor.
				0.4	12"-29": Black, medium to coarse SAND, some coarse gravel, slag, poorly sorted, loose, wet, no staining, no odor.
				0.4	29"-50": Dark gray-olive, organic CLAY, soft-slightly plastic, moist, organic odor.
5'-6'	2	MC	10"	0.4	Gray, CLAY, some organic material, soft-slightly plastic, moist, no staining, no odor.

Sample Types: HA = Hand Auger MC = Macrocore NOTES:

Soil samples from 0'-1', 2'-3' and 5'-6' submitted for PCBs analysis.

Boring log begins approximately 24" below bluestone. *Ground surface elevation is from top of bluestone.

Arch Street

Boring No.: SB-14
Sheet 1 of 1
By: Keith Robins

Drilling Contractor: AARCO Drill Rig: Geoprobe 7822DT Date Started: 3/21/16 Geologist: Keith Robins
Drilling Method: Macrocore
Drive Hammer Weight: N/A

Date Completed: 3/21/16

Boring Completion Depth: 6' **Ground Surface Elevation:** 7.76'*

Boring Diameter: 2"

		1		T = -= -	
Depth	N.a	Tuma	Daa	PID Per 6"	Sample Description
(ft.) 0'-5'	NO.	HA/ MC	Rec. 35"	(ppm) 0.3	0"-17": Black-dark gray, medium to coarse SAND, some fine gravel, silt, slag, trace silt, brick, poorly sorted, loose, no staining, no odor.
				0.3	17"-35": Brown-light orange, medium SAND, trace fine gravel, well sorted, compacted, wet, no staining, no odor.
5'-6'	2	MC	10"	0.3	Light gray, fine to medium SAND, trace silt, gravel, well sorted, wet, no staining, no odor.
l					

Sample Types: HA = Hand Auger MC = Macrocore NOTES:

Soil samples from 0'-1', 2'-3' and 5'-6' submitted for PCBs analysis.

Boring log begins approximately 24 " below bluestone. *Ground surface elevation is from top of bluestone.

Arch Street

Boring No.: SB-15
Sheet 1 of 1
By: Keith Robins

Drilling Contractor: AARCO Drill Rig: Geoprobe 7822DT Date Started: 3/18/16 Geologist: Keith Robins
Drilling Method: Macrocore
Drive Hammer Weight: N/A
Date Completed: 3/18/16

Boring Completion Depth: 6' **Ground Surface Elevation:** 6.94'*

Boring Diameter: 2"

Depth (ft.)	No.	Туре	Rec.	PID Per 6" (ppm)	Sample Description
1'-5'	1'-5' 1	HA/ MC	36"	0.1	0"-31": Black-dark gray, medium to coarse SAND, some angular gravel, trace silt, cinders, slag, crushed rock poorly sorted, loose, wet, no staining, no odor.
				0.1	31"-36": Olive green-brown, fine to coarse SAND, trace subrounded-flat gravel, well sorted, wet, no staining, no odor.
5'-6'	2	MC	8"	0.1	Olive-brown, SILT, dense, moist, no staining, no odor.

Sample Types: HA = Hand Auger MC = Macrocore NOTES:

Soil samples from 0'-1', 2'-3' and 5'-6' submitted for PCBs analysis.

Boring log begins approximately 24" below bluestone. *Ground surface elevation is from top of bluestone.

Arch Street

Boring No.: SB-16
Sheet 1 of 1
By: Keith Robins

Drilling Contractor: AARCO Drill Rig: Geoprobe 7822DT Date Started: 3/18/16

Geologist: Keith Robins
Drilling Method: Macrocore
Drive Hammer Weight: N/A
Date Completed: 3/18/16

Boring Completion Depth: 6' **Ground Surface Elevation:** 7.13'*

Boring Diameter: 2"

Depth (ft.)	No.	Туре	Rec.	PID Per 6" (ppm)	Sample Description
(ft.) 0'-5'	1	HA/ MC	Rec. 31"	(ppm) 0.3	Black-light gray, fine to medium SAND, some silt, stones, concrete, trace brick, damp-moist, no staining, no odor.
5'-6'	2	MC	10"	0.3	Olive-light black, medium to coarse SAND, some gravel, poorly sorted, medium-loose, moist-wet, no staining, no odor.

Sample Types: HA = Hand Auger MC = Macrocore NOTES:

Soil samples from 0'-1', 2'-3' and 5'-6' submitted for PCBs analysis.

Boring log begins approximately 12" below bluestone. *Ground surface elevation is from top of bluestone.

Arch Street

Boring No.: SB-17
Sheet _ 1 of _1
By: Keith Robins

Drilling Contractor: AARCO **Drill Rig:** Geoprobe 7822DT **Date Started:** 3/18/16

Geologist: Keith Robins
Drilling Method: Macrocore
Drive Hammer Weight: N/A
Date Completed: 3/18/16

Boring Completion Depth: 6' **Ground Surface Elevation:** 6.41'*

Boring Diameter: 2"

1	Type HA		(ppm)	Sample Description					
_		12"	0.0	Black-dark brown, SAND and GRAVEL, trace brick, wet.					
2	НА	12"	0.0	Black, SAND and GRAVEL, poorly sorted, wet.					
3	НА	12"	0.0	Black, medium to coarse SAND and subangular GRAVEL, poorly sorted, loose, wet, no staining, no odor.					
4	НА	24"	0.0	Black-dark gray, fine to medium SAND, trace gravel, wet, no staining, no odor.					
5	НА	12"	0.0	Gray-brown, SILT, some fine to coarse sand, poorly sorted, wet, no staining, no odor.					
	4	4 HA	4 HA 24"	4 HA 24" 0.0					

Sample Types: HA = Hand Auger MC = Macrocore

NOTES

Soil samples from 12'-14' and 23'-25' submitted for TCL VOC and TCL SVOC analysis. Soil sample from 23'-25' also submitted for TAL Metals, TCL Pesticides and PCB analysis.

Boring log begins approximately 12" below bluestone. *Ground surface elevation is from top of bluestone.

Arch Street

Boring No.: GW-01 Sheet _ 1 of _1 By: Keith Robins

Drilling Contractor: AARCO

Drill Rig: Geoprobe **Date Started:** 3/15/16

Geologist: Keith Robins **Drilling Method:** Macrocore **Drive Hammer Weight:** N/A

Date Completed: 3/21/16

Boring Completion Depth: 20' Ground Surface Elevation: 9.85'

Boring Diameter: 2"

Depth (ft.)	No.	Туре	Rec.	PID Per 6" (ppm)	Sample Description
0'-6"	1	HA	6"	0.0	Bluestone.
6"-1'	2	НА	6"	0.0	Dark brown, medium to coarse SAND, GRAVEL and STONE, dry-damp.
1'-3'	3	НА	2"	0.0	Dark brown-brown, medium to coarse SAND, GRAVEL and STONE, trace brick, concrete, tile, wood, glass, poorly sorted, dense, no staining, no odor.
3'-5'	4	HA	24"	0.0	Black-dark brown, medium to coarse SAND, GRAVEL and STONE, trace silt, trace slag, cinders, poorly sorted, dense, no staining, no odor. Water encountered at 4.5' bgs.
5'-10'	5	MC	39"	0.4	0"-19": Black, medium to coarse SAND and SLAG, ASH, fine to coarse GRAVEL, trace brick, fill material, poorly sorted, very loose, wet, no staining, no odor.
				0.4	19"-39": Olive green-light black, fine to medium SAND, trace silt, rock fragments, trace fill material, poorly sorted, wet, no staining, no odor.
10'-15'	6	MC	43"	0.5	0"-11": Black, fine to medium SAND, trace silt, well sorted, no staining, no odor.
				0.5	11"-32": Olive-brown, clayey SILT, slightly firm-soft, slightly plastic, wet, no staining, no odor.
				0.5	32"-40": Olive green-brown, fine SAND, well sorted, wet.
				0.5	40"-43": Black, fine SAND, trace silt, well sorted, wet, no staining, no odor.
15'-20'	7	МС	42"	0.4	0"-16": Dark gray, CLAY, trace shells, slightly plastic, soft, damp-moist, no staining, no odor.
				0.4	16"-34": Gray-light gray, clayey SILT, trace fine subrounded gravel, firm-dense, moist.
				0.4	34"-42": Olive green-brown, silty fine SAND, trace fine gravel, poorly sorted, compacted-dense, moist-wet, no staining, no odor.
	<u> </u>				110==0

MC = Macrocore

Sample Types: HA = Hand Auger NOTES:

Soil samples from 4'-5', 13'-15' and 18'-20' submitted for TCL VOC and TCL SVOC analysis.

Arch Street

Boring No.: GW-03
Sheet 1 of 1
By: Keith Robins

Drilling Contractor: AARCO

Drill Rig: Geoprobe **Date Started:** 3/15/16

Geologist: Keith Robins **Drilling Method:** Macrocore **Drive Hammer Weight:** N/A

Date Completed: 3/21/16

Boring Completion Depth: 20' **Ground Surface Elevation:** 8.23'

Boring Diameter: 2"

Depth				PID Per 6"	Sample Description
(ft.)	No.	Туре	Rec.	(ppm)	Sample Description
0'-1'	1	НА	12"	0.0	Bluestone.
1'-3'	2	HA	24"	0.0	Black-dark brown, medium to coarse SAND, STONE and GRAVEL, trace concrete, wood, poorly sorted, dense, no staining, no odor.
3'-5'	3	НА	29"	0.7	0"-12": Black, medium to coarse SAND, some gravel, trace silt, poorly sorted, loose, wet, no staining, no odor.
				0.7	12"-23": Black, fine to medium SAND, some fine to coarse angular gravel, rock, poorly sorted, very loose, wet, no staining, no odor.
				0.7	23"-29": Dark brown, medium SAND, trace fine gravel, well sorted, dense, wet, no staining, no odor.
5'-10'	4	MC	52"	0.6	Dark brown-gray, fine to medium SAND, trace silt, coarse subrounded gravel, well sorted, medium compaction, wet, no staining, no odor.
10'-15'	5	MC	52"	0.5	0"-5": Dark gray-brown, fine to medium SAND, trace fine gravel, coarse sand, poorly sorted, wet, no staining, no odor.
				2.2	5"-48": Dark gray, CLAY, some organic matter, trace shells, firm, slightly plastic, damp-moist, some organic odor.
				2.2	48"-52": Dark brown-red, Organic Clay and PEAT, slightly plastic, organic odor, damp.
15'-20'	6	MC	48"	0.6	0"-30": Gray, silty CLAY, trace subrounded gravel, soft-firm, slightly plastic, damp-moist.
				0.6	30"-48": Dark brown, SILT and fine SAND, trace black gravel, rock, muscovite flakes, poorly sorted, compacted, wet, no staining, no odor.
	Type			1	NOTES:

Sample Types:

HA = Hand Auger **MC** = Macrocore

NOTES:

Soil samples from 3'-4', 12'-14' and 18'-20' submitted for TCL VOC and TCL SVOC analysis.

Arch Street

Boring No.: GW-04D **Sheet** <u>1</u> **of** <u>1</u>

By: Keith Robins

Drilling Contractor: AARCO

Drill Rig: Geoprobe **Date Started:** 3/15/16

Geologist: Keith Robins
Drilling Method: Macrocore
Drive Hammer Weight: N/A
Date Completed: 3/23/16

Boring Completion Depth: 19' **Ground Surface Elevation:** 7.31'

Boring Diameter: 2"

Depth				PID Per 6"	Sample Description
(ft.)	No.	Туре	Rec.	(ppm)	
0'-2'	1	HA	24"	0.0	Bluestone. Encountered water at 2 feet.
2'-4'	2	НА	24"	0.0	0"-6": Dark gray, medium to coarse SAND, some silt, gravel and stone, poorly sorted, damp, no staining, no odor.
				0.0	6"-12": Black, fine to medium SAND, trace fine gravel, cobbles, trace brick, poorly sorted, damp-moist, no staining, no odor.
				0.0	12"-18": Olive-brown, medium SAND, well sorted, moist-wet.
				0.0	18"-24": Black, fine to medium SAND, some silt, trace gravel, poorly sorted, dense, moist-wet, no staining, no odor.
4'-5'	3	HA	12"	0.0	Olive green-brown, silty fine SAND, some fine gravel, compacted, well sorted, wet, no staining, no odor.
5'-10'	4	MC	48"	0.2	0"-19": Olive-dark brown, medium SAND, trace coarse sand, fine to coarse gravel, well sorted, wet, no staining, no odor.
				0.2	19"-40": Brown, SILT, trace fine sand, well sorted, compacted-dense, wet, no staining, no odor.
				0.2	40"-48": Dark gray, CLAY, some organic material, slightly plastic-soft, organic odor, moist.
10'-15'	5	МС	45"	0.2	0"-32": Gray, CLAY, some organic material, trace shells, firm, slightly plastic, no staining, organic odor.
				0.2	32"-45": Gray-light gray, clayey SILT, trace subrounded stone, slightly plastic-soft, wet-moist, no staining, no odor.
15'-19'	6	МС	48"	0.2	0"-40": Dark brown-light gray, medium to coarse SAND, well sorted, loose, wet, no staining, no odor.
				0.2	40"-48": Gray-brown, SILT, trace fine gravel, compact-dense, moist-wet, no staining, no odor.

Sample Types:

HA = Hand Auger **MC** = Macrocore

NOTES:

Soil samples from 2'-3', 12'-14' and 16'-18' submitted for TCL VOC and TCL SVOC analysis. Refusal at 19' below top of bluestone.

Site	Site LIRR – Arch Street					455	Well No.	GW-01
Total Depth	20'		Surface Elevation	12.57	Т	op Riser El	evation	12.20'
Water Levels (Depth, Date, Time)			7.65, 4/27/16, 0725			Date Installed 3/22/16		
Riser Screen	Dia Dia	1" 1"		PVC PVC	Length Length	12' 10'	Slot Size	0.010

Site LIRR – Arch Street			r 3455	Well No.	GW-02S
7'	Surface Elevation	11.15'	Top Riser	Elevation	10.65'
Date, Time)	6.15', 4/27	7/16, 0726	Da	te Installed	3/22/16
			·	 Slot Size	e 0.010
	7' Date, Time) _ ia1"	7' Surface Elevation Date, Time) 6.15', 4/27 via. 1" Material	7' Surface Elevation 11.15' Date, Time) 6.15', 4/27/16, 0726 ria. 1" Material PVC I	7' Surface Elevation 11.15' Top Riser Date, Time) 6.15', 4/27/16, 0726 Da via. 1" Material PVC Length 4'	7' Surface Elevation 11.15' Top Riser Elevation Date, Time) 6.15', 4/27/16, 0726 Date Installed Date 1'' Material PVC Length 4'

Site	LIRR – Arcl	Street	Job Number	3455	Well No.	GW-02D
Total Depth	20'	Surface Elevation	11.49'	Top Riser E	levation	11.05'
Water Levels (Dep	th, Date, Time)	10.71', 4/27	7/16, 0726	Date Installed 3/22/16		
Riser Screen	Dia. 1"			ngth 12'	Slot Size	0.010

Site <u>LIRR – Arch</u>			Street	Job Numbe	er 3455	5 We	ell No	GW-03
Total Depth	19'		Surface Elevation	10.88'	Top :	Riser Elevatio	on	10.41'
Water Levels (Dep	th, Date	, Time) _	12.13', 4/27	7/16, 0730		Date Install	ed	3/21/16
Riser Screen	Dia Dia	1" 1"			Length	11' 10' S	Slot Size	0.010

Site LIRR – Arch S			Street	Job Numb	er3	455	Well No.	GW-04S
Total Depth	8'		Surface Elevation	7.32'	To	op Riser Ele	evation	7.01'
Water Levels (Dep	th, Date,	Time) _	3.28', 4/27/16, 0730			Date Installed3/23/16		
Riser Screen	Dia Dia.	1" 1"			Length Length	3' 5'	Slot Size	0.010

Site	LIRR – Arcl	Street	Job Number	3455	Well No.	GW-04D
Total Depth	18'	Surface Elevation	7.32'	Top Riser E	levation	7.12'
Water Levels (Dep	th, Date, Time)	9.18', 4/27/	/16, 0728	Date	Installed	3/23/16
Riser Screen	Dia. 1" Dia. 1"			ngth 8'	Slot Size	0.010

ATTACHMENT 4 CHEMICAL DATA TABLES

TCL Volatile Organic Compounds

I GL Volatile Organic Compounds Sample ID SB-01(13-15) SB-01(23-25) SB-02(13-15) SB-02(23-25) SB-03(12-14) NYCRR 6 Part 375 NYCR 6 Part 375 NYCR 6 Part 375 NYCR 6 Part 375 NYCR 6 Part 375 NYC									
Sample ID Sampling Date	3/16/2016	3/16/2016	SB-02(13-15) 3/17/2016	3/17/2016	SB-03(12-14) 3/17/2016	NYCRR 6 Part 375 Restricted-	NYCRR 6 Part 375 Industrial		
Start Depth (in Feet)	13	23	13	23	12	Residential	Use Soil		
End Depth (in Feet)	15	25 25	15	25 25	14	Use Soil Cleanup	Cleanup		
End Depth (in Feet)	13	25	13	25	14	Objectives (SCO)	Objectives (SCO)		
Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/kg	ug/kg		
VOLATILE COMPOUNDS	ug/itg	ug/itg	ug/itg	ug/itg	ug/itg	ug/kg	ug/kg		
1,1,1-Trichloroethane	8.6 U	4.2 U	10.7 U	4.5 U	5.7 U	100000	1000000		
1,1,2,2-Tetrachloroethane	8.6 UJ	4.2 U	10.7 U	4.5 U	5.7 U				
1,1,2-Trichloroethane	8.6 U	4.2 U	10.7 U	4.5 U	5.7 U				
1,1,2-Trichlorotrifluoroethane	8.6 U	4.2 U	10.7 U	4.5 U	5.7 U				
1,1-Dichloroethane	8.6 U	4.2 U	10.7 U	4.5 U	5.7 U	26000	480000		
1,1-Dichloroethene	8.6 U	4.2 U	10.7 U	4.5 U	5.7 U	100000	1000000		
1,2,3-Trichlorobenzene	8.6 UJ	4.2 U	10.7 U	4.5 U	5.7 U				
1,2,4-Trichlorobenzene	8.6 UJ	4.2 U	10.7 U	4.5 U	5.7 U				
1,2-Dibromo-3-Chloropropane	8.6 UJ	4.2 U	10.7 U	4.5 U	5.7 U				
1,2-Dibromoethane	8.6 U	4.2 U	10.7 U	4.5 U	5.7 U				
1,2-Dichlorobenzene	8.6 UJ	4.2 U	10.7 U	4.5 U	5.7 U	100000	1000000		
1,2-Dichloroethane	8.6 U	4.2 U	10.7 U	4.5 U	5.7 U	3100	60000		
1,2-Dichloropropane	8.6 U	4.2 U	10.7 U	4.5 U	5.7 U				
1,3-Dichlorobenzene	8.6 UJ	4.2 U	10.7 U	4.5 U	5.7 U	49000	560000		
1,4-Dichlorobenzene	8.6 UJ	4.2 U	10.7 U	4.5 U	5.7 U	13000	250000		
2-Butanone	42.9 U	21.2 U	9.6 J	22.7 U	5.5 J	100000	1000000		
2-Hexanone	42.9 U	21.2 U	53.3 U	22.7 U	28.7 U				
4-Methyl-2-Pentanone	42.9 U	21.2 U	53.3 U	22.7 U	28.7 U	400000	4000000		
Acetone	15.4 J 8.6 U	9.1 J	37.4 J 10.7 U	22.7 U	40.3 5.7 U	100000 4800	1000000		
Benzene Bromochloromethane	8.6 U	4.2 U 4.2 U	10.7 U	4.5 U 4.5 U	5.7 U 5.7 U	4600	89000		
Bromodichloromethane	8.6 U	4.2 U 4.2 U	10.7 U	4.5 U 4.5 U	5.7 U 5.7 U		 		
Bromoform	8.6 U	4.2 U	10.7 U	4.5 U	5.7 U	 			
Bromomethane	8.6 U	4.2 U	10.7 U	4.5 U	5.7 U				
Carbon Disulfide	8.9 J	4.2 U	11.3 J	4.5 U	5.7 U				
Carbon Tetrachloride	8.6 U	4.2 U	10.7 U	4.5 U	5.7 U	2400	44000		
Chlorobenzene	8.6 U	4.2 U	10.7 U	4.5 U	5.7 U	100000	1000000		
Chloroethane	8.6 U	4.2 U	10.7 U	4.5 U	5.7 U				
Chloroform	8.6 U	4.2 U	10.7 U	4.5 U	5.7 U	49000	700000		
Chloromethane	8.6 U	4.2 U	10.7 U	4.5 U	5.7 U				
cis-1,2-Dichloroethene	5 J	1.3 J	7.3 J	1.1 J	5.7 U	100000	1000000		
cis-1,3-Dichloropropene	8.6 U	4.2 U	10.7 U	4.5 U	5.7 U				
Cyclohexane	8.6 U	4.2 U	10.7 U	4.5 U	5.7 U				
Dibromochloromethane	8.6 U	4.2 U	10.7 U	4.5 U	5.7 U				
Dichlorodifluoromethane	8.6 U	4.2 U	10.7 U	4.5 U	5.7 U		700000		
Ethyl Benzene	8.6 U 8.6 UJ	4.2 U 4.2 U	10.7 U 10.7 U	4.5 U 4.5 U	5.7 U 5.7 U	41000	780000		
Isopropylbenzene m/p-Xylenes	8.6 UJ 17.4 U	4.2 U 8.5 U	21.3 U	4.5 U 9.1 U	5.7 U 11.5 U	100000	1000000		
Methyl Acetate	8.6 U	4.2 U	10.7 U	9.1 U 4.5 U	5.7 U				
Methyl tert-butyl Ether	2.5 J	4.2 U	51.3	4.5 U	5.7 U	100000	1000000		
Methylcyclohexane	8.6 U	4.2 U	10.7 U	4.5 U	5.7 U				
Methylene Chloride	7.9 UB	4.2 U	10.7 U	4.5 U	5.7 U	100000	1000000		
o-Xylene	8.6 U	4.2 U	10.7 U	4.5 U	5.7 U	100000	1000000		
Styrene	8.6 U	4.2 U	10.7 U	4.5 U	5.7 U				
t-1,3-Dichloropropene	8.6 U	4.2 U	10.7 U	4.5 U	5.7 U				
Tetrachloroethene	8.6 U	4.2 U	10.7 U	3 J	5.7 U	19000	300000		
Toluene	8.6 U	4.2 U	10.7 U	4.5 U	5.7 U	100000	1000000		
trans-1,2-Dichloroethene	8.6 U	4.2 U	10.7 U	4.5 U	5.7 U	100000	1000000		
Trichloroethene	8.6 U	4.2 U	10.7 U	4.5 U	5.7 U	21000	400000		
Trichlorofluoromethane	8.6 U	4.2 U	10.7 U	4.5 U	5.7 U				
Vinyl Chloride	8.6 U	1.5 J	7.7 J	4.5 U	5.7 U	900	27000		
Total Valatila Organia Campania	20.7	10	105	4	46		ļ		
Total Volatile Organic Compounds		12	125	4 D: Banar	46				
	Footnotes/Qua	alitiers: grome per kilo			ted from secor	idary dilution			

ug/kg: Micrograms per kilogram Exceeded calibration range estimated value

BD: Blind duplicate Estimated value or detection limits

U: Analyzed for but not detected --: UB:

No standard

E:

J:

Exceeded the Restricted-Residential Use SCO Not detected based on blank results

TCL Volatile Organic Compounds

Sample ID	SB-03(18-20)	SB-04(3-5)	SB-04(10-12)	SB-04(27-29)	NYCRR 6 Part 375	NYCRR 6 Part 375
Sampling Date	3/17/2016	3/16/2016	3/16/2016	3/16/2016	Restricted-	Industrial
Start Depth (in Feet)	18	3	10	27	Residential	Use Soil
End Depth (in Feet)	20	5	12	29	Use Soil Cleanup	Cleanup
Unite					Objectives (SCO)	Objectives (SCO)
VOLATILE COMPOUNDS	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/kg	ug/kg
1,1,1-Trichloroethane	4.8 U	5.5 U	10.1 U	5.1 U	100000	1000000
1,1,2,2-Tetrachloroethane	4.8 U	4.6 J+	10.1 U	5.1 U		
1,1,2-Trichloroethane	4.8 U	5.5 U	10.1 U	5.1 U		
1,1,2-Trichlorotrifluoroethane	4.8 U	5.5 U	10.1 U	5.1 U		
1,1-Dichloroethane	4.8 U	5.5 U	10.1 U	5.1 U	26000	480000
1,1-Dichloroethene	4.8 U	5.5 U	10.1 U	5.1 U	100000	1000000
1,2,3-Trichlorobenzene	4.8 U	5.5 UJ	10.1 U	5.1 U		
1,2,4-Trichlorobenzene	4.8 U 4.8 U	5.5 UJ 5.5 UJ	10.1 U 10.1 U	5.1 U 5.1 U		
1,2-Dibromo-3-Chloropropane 1.2-Dibromoethane	4.8 U	5.5 U 5.5 U	10.1 U	5.1 U 5.1 U	 	
1,2-Dibromoethane 1,2-Dichlorobenzene	4.8 U	5.5 UJ	10.1 U	5.1 U 5.1 U	100000	1000000
1,2-Dichloroethane	4.8 U	5.5 U	10.1 U	5.1 U	3100	60000
1,2-Dichloropropane	4.8 U	5.5 U	10.1 U	5.1 U		
1,3-Dichlorobenzene	4.8 U	5.5 UJ	10.1 U	5.1 U	49000	560000
1,4-Dichlorobenzene	4.8 U	5.5 UJ	10.1 U	5.1 U	13000	250000
2-Butanone	23.8 U	8.9 J	9.9 J	25.6 U	100000	1000000
2-Hexanone	23.8 U	27.7 U	50.4 U	25.6 U		
4-Methyl-2-Pentanone	23.8 U	27.7 U	50.4 U	25.6 U		
Acetone	12.6 J	57	68.7	25.6 U	100000	1000000
Benzene Bromochloromethane	4.8 U	1.4 J	10.1 U 10.1 U	5.1 U	4800	89000
Bromocniorometnane Bromodichloromethane	4.8 U 4.8 U	5.5 U 5.5 U	10.1 U 10.1 U	5.1 U 5.1 U		
Bromoform	4.8 U	5.5 U 5.5 U	10.1 U	5.1 U 5.1 U		
Bromomethane	4.8 U	5.5 U	10.1 U	5.1 U		
Carbon Disulfide	2.6 J	5.5 U	10.1 U	5.1 U		
Carbon Tetrachloride	4.8 U	5.5 U	10.1 U	5.1 U	2400	44000
Chlorobenzene	4.8 U	5.5 U	10.1 U	5.1 U	100000	1000000
Chloroethane	4.8 U	5.5 U	10.1 U	5.1 U		
Chloroform	4.8 U	5.5 U	10.1 U	5.1 U	49000	700000
Chloromethane	4.8 U	5.5 U	10.1 U	5.1 U		
cis-1,2-Dichloroethene	4.8 U	12.5	43.4	5.1 U	100000	1000000
cis-1,3-Dichloropropene Cyclohexane	4.8 U 4.8 U	5.5 U 5.5 U	10.1 U 10.1 U	5.1 U 5.1 U		
Dibromochloromethane	4.8 U	5.5 U	10.1 U	5.1 U 5.1 U		
Dichlorodifluoromethane	4.8 U	5.5 U	10.1 U	5.1 U		
Ethyl Benzene	4.8 U	5.5 U	10.1 U	5.1 U	41000	780000
Isopropylbenzene	4.8 U	4.8 J+	10.1 U	5.1 U		
m/p-Xylenes	9.5 U	11.1 U	20.2 U	10.2 U	100000	1000000
Methyl Acetate	4.8 U	5.5 U	10.1 U	5.1 U		
Methyl tert-butyl Ether	4.8 U	5.5 U	35.5	1.1 J	100000	1000000
Methylcyclohexane	4.8 U	5.5 U	10.1 U	5.1 U	400000	4000000
Methylene Chloride	4.8 U	5.5 U	10.1 U	5.1 U	100000	1000000
o-Xylene Styrene	4.8 U 4.8 U	1.4 J 5.5 U	10.1 U 10.1 U	5.1 U 5.1 U	100000	1000000
t-1,3-Dichloropropene	4.8 U	5.5 U	10.1 U	5.1 U	 	
Tetrachloroethene	4.8 U	19.6	10.5	1.1 J	19000	300000
Toluene	4.8 U	5.5 U	10.1 U	5.1 U	100000	1000000
trans-1,2-Dichloroethene	4.8 U	5.5 U	10.1 U	5.1 U	100000	1000000
Trichloroethene	4.8 U	2.9 J	10.1 U	5.1 U	21000	400000
Trichlorofluoromethane	4.8 U	5.5 U	10.1 U	5.1 U		
Vinyl Chloride	4.8 U	6	6.2 J	5.1 U	900	27000
Total Valatila Organia Canana	15	110.1	474.0	2.2		
Total Volatile Organic Compounds	15 Footnotes/Qualifi	119.1	174.2	2.2 D: Reported	 from secondary dilut	ion
	rootholes/Qualin				i irom secondary dilut	

ug/kg: Micrograms per kilogram

BD: Blind duplicate

U: Analyzed for but not detected UB: Not detected based on blank results E: Exceeded calibration range estimated value

J: Estimated value or detection limits

No standard

TCL Volatile Organic Compounds

0		OD OF (40 44) DD	<u> </u>		NIVODD O David 075	NIVODD O David 075
Sample ID	SB-05(10-11) 3/16/2016	SB-05(10-11)BD 3/16/2016	3/16/2016	SB-06(8-10) 3/17/2016	NYCRR 6 Part 375	NYCRR 6 Part 375
Sampling Date Start Depth (in Feet)			3/10/2016		Restricted- Residential	Industrial Use Soil
	10 11	10 11	13	8 10		
End Depth (in Feet)	11	11	13	10	Use Soil Cleanup Objectives (SCO)	Cleanup Objectives (SCO)
Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/kg	ug/kg
VOLATILE COMPOUNDS	ug/itg	ug/itg	ug/Ng	ug/Ng	ug/kg	ug/kg
1,1,1-Trichloroethane	5.3 U	5 U	7.6 U	6.2 U	100000	1000000
1,1,2,2-Tetrachloroethane	5.3 U	5 U	7.6 UJ	6.2 U		
1,1,2-Trichloroethane	5.3 U	5 U	7.6 U	6.2 U		
1,1,2-Trichlorotrifluoroethane	5.3 U	5 U	7.6 U	6.2 U		
1,1-Dichloroethane	5.3 U	5 U	7.6 U	6.2 U	26000	480000
1,1-Dichloroethene	5.3 U	5 U	8.7	6.2 U	100000	1000000
1,2,3-Trichlorobenzene	5.3 U	5 U	7.6 UJ	6.2 U		
1,2,4-Trichlorobenzene	5.3 U	5 U	7.6 UJ	6.2 U		
1,2-Dibromo-3-Chloropropane	5.3 U	5 U	7.6 UJ	6.2 U		
1,2-Dibromoethane	5.3 U	5 U	7.6 U	6.2 U		
1,2-Dichlorobenzene	5.3 U	5 U	7.6 UJ	6.2 U	100000	1000000
1,2-Dichloroethane	5.3 U	5 U	7.6 U	6.2 U	3100	60000
1,2-Dichloropropane	5.3 U	5 U	7.6 U	6.2 U		
1,3-Dichlorobenzene	5.3 U	5 U	7.6 UJ	6.2 U	49000	560000
1,4-Dichlorobenzene	5.3 U	5 U	7.6 UJ	6.2 U	13000	250000
2-Butanone	3.8 J	5.9 J	15.1 J	4.4 J	100000	1000000
2-Hexanone	26.6 U	25.1 U	37.8 U	4 J		
4-Methyl-2-Pentanone	26.6 U	25.1 U	37.8 U	3.1 J		
Acetone Benzene	15.8 J 5.3 U	27.4 5 U	75 2.4 J	16.6 J 6.2 U	100000 4800	1000000 89000
Bromochloromethane	5.3 U	5 U	2.4 J 7.6 U	6.2 U	4000	69000
Bromodichloromethane	5.3 U	5 U	7.6 U	6.2 U		
Bromoform	5.3 U	5 U	7.6 U	6.2 U		
Bromomethane	5.3 U	5 U	7.6 U	6.2 U		
Carbon Disulfide	5.3 U	6.2 J	37.9 J	2.3 J		
Carbon Tetrachloride	5.3 U	5 U	7.6 U	6.2 U	2400	44000
Chlorobenzene	5.3 U	5 U	7.6 U	6.2 U	100000	1000000
Chloroethane	5.3 U	5 U	7.6 U	6.2 U		
Chloroform	5.3 U	5 U	7.6 U	6.2 U	49000	700000
Chloromethane	5.3 U	5 U	7.6 U	6.2 U		
cis-1,2-Dichloroethene	880 JD	180 JD	3400 JD	1600 D	100000	1000000
cis-1,3-Dichloropropene	5.3 U	5 U	7.6 U	6.2 U		
Cyclohexane	5.3 U	5 U	7.6 U	6.2 U		
Dibromochloromethane	5.3 U	5 U	7.6 U	6.2 U		
Dichlorodifluoromethane	5.3 U	5 U	7.6 U	6.2 U		
Ethyl Benzene	5.3 U	5 U	7.6 U	6.2 U	41000	780000
Isopropylbenzene m/p-Xylenes	5.3 U 10.6 U	5 U 10.1 U	7.6 UJ 15.1 U	6.2 U 12.5 U	10000	100000
Methyl Acetate	5.3 U	10.1 U 5 U	7.6 U	12.5 U 6.2 U	100000	1000000
Methyl tert-butyl Ether	2.8 J	1.3 J	7.6 U 26.7	6.2 U	100000	1000000
Methylcyclohexane	5.3 U	1.5 J 5 U	7.6 U	6.2 U		
Methylene Chloride	5.3 U	5 U	7.6 U	6.2 U	100000	1000000
o-Xylene	5.3 U	5 U	7.6 U	6.2 U	100000	1000000
Styrene	5.3 U	5 U	7.6 U	6.2 U		
t-1,3-Dichloropropene	5.3 U	5 U	7.6 U	6.2 U		
Tetrachloroethene	20900 JD	7000 JD	31300 D	1300 D	19000	300000
Toluene	5.3 U	5 U	2.7 J	6.2 U	100000	1000000
trans-1,2-Dichloroethene	100 J	75.3 J	190 EJ	15.2 J	100000	1000000
Trichloroethene	400 JD	81 JD	2600 JD	22.2 J	21000	400000
Trichlorofluoromethane	5.3 U	5 U	7.6 U	6.2 U		
Vinyl Chloride	560 JD	120 JD	<u>2200</u> <u>JD</u>	410 JD	900	27000
Total Valatila Oncertia Commun.	22222	7407	20000	2270		
Total Volatile Organic Compounds		7497	39669	3378		
	Footnotes/Quali	fiers:		•	ed from secondary dilu	

ug/kg: Micrograms per kilogram BD: Blind duplicate

U: Analyzed for but not detected UB: Not detected based on blank results E: Exceeded calibration range estimated value

J: Estimated value or detection limits

No standard

TCL	Volatile	Organic	Compound	S

	SB-06(11-13)				SB-08(6-8)	NYCRR 6 Part 375	
Sampling Date	3/17/2016	3/18/2016	3/18/2016	3/17/2016	3/17/2016	Restricted-	Industrial
Start Depth (in Feet)	11	12	23	4	6	Residential	Use Soil
End Depth (in Feet)	13	14	25	6	8	Use Soil Cleanup	Cleanup
Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	Objectives (SCO) ug/kg	Objectives (SCO) ug/kg
VOLATILE COMPOUNDS	g.r.ig	99		9.1.9	ug vig	9.1.9	
1,1,1-Trichloroethane	6.2 U	5.7 U	4.3 U	10.3 U	5 U	100000	1000000
1,1,2,2-Tetrachloroethane	6.2 U	5.7 U	4.3 U	10.3 UJ	5 UJ		
1,1,2-Trichloroethane	6.2 U	5.7 U	4.3 U	10.3 U	5 U		
1,1,2-Trichlorotrifluoroethane	6.2 U	5.7 U	4.3 U	10.3 U	5 U		
1,1-Dichloroethane	6.2 U	5.7 U	4.3 U	10.3 U	5 U	26000	480000
1,1-Dichloroethene	6.2 U	5.7 U	4.3 U	10.3 U	5 U	100000	1000000
1,2,3-Trichlorobenzene	6.2 U	5.7 U	4.3 U	10.3 UJ	5 UJ		
1,2,4-Trichlorobenzene	6.2 U	5.7 U	4.3 U	10.3 UJ	5 UJ		
1,2-Dibromo-3-Chloropropane	6.2 U 6.2 U	5.7 U	4.3 U	10.3 UJ	5 UJ 5 U		
1,2-Dibromoethane 1,2-Dichlorobenzene	6.2 U 6.2 U	5.7 U 5.7 U	4.3 U 4.3 U	10.3 U 10.3 UJ	5 U 5 UJ	100000	1000000
1,2-Dichlorobenzene 1,2-Dichloroethane	6.2 U	5.7 U 5.7 U	4.3 U 4.3 U	10.3 UJ 10.3 U	5 UJ 5 U	3100	60000
1,2-Dichloropropane	6.2 U	5.7 U	4.3 U	10.3 U	5 U		
1,3-Dichlorobenzene	6.2 U	5.7 U	4.3 U	10.3 UJ	5 UJ	49000	560000
1,4-Dichlorobenzene	6.2 U	5.7 U	4.3 U	10.3 UJ	5 UJ	13000	250000
2-Butanone	5.2 J	28.7 U	21.7 U	51.5 U	24.9 U	100000	1000000
2-Hexanone	31 U	28.7 U	21.7 U	51.5 U	24.9 U		
4-Methyl-2-Pentanone	31 U	28.7 U	21.7 U	51.5 U	24.9 U		
Acetone	33.4	17.1 J	13.9 J	140	29.7	100000	1000000
Benzene	6.2 U	5.7 U	4.3 U	10.3 U	5 U	4800	89000
Bromochloromethane	6.2 U	5.7 U	4.3 U	10.3 U	5 U		
Bromodichloromethane	6.2 U	5.7 U	4.3 U	10.3 U	5 U		
Bromoform	6.2 U	5.7 U	4.3 U	10.3 U	5 U		
Bromomethane	6.2 U	5.7 U	4.3 U	10.3 U	5 U		
Carbon Disulfide	6.2 U	5.7 U	4.3 U	4.6 J	1.3 J		44000
Carbon Tetrachloride Chlorobenzene	6.2 U 6.2 U	5.7 U 5.7 U	4.3 U 4.3 U	10.3 U 10.3 U	5 U 5 U	2400 100000	44000 1000000
Chloroethane	6.2 U	5.7 U 5.7 U	4.3 U 4.3 U	10.3 U	5 U	100000	1000000
Chloroform	6.2 U	5.7 U	4.3 U	10.3 U	5 U	49000	700000
Chloromethane	6.2 U	5.7 U	4.3 U	10.3 U	5 U		
cis-1,2-Dichloroethene	6.1 J	1.6 J	1.4 J	5.8 J	4.6 J	100000	1000000
cis-1,3-Dichloropropene	6.2 U	5.7 U	4.3 U	10.3 U	5 U		
Cyclohexane	6.2 U	5.7 U	4.3 U	10.3 U	5 U		
Dibromochloromethane	6.2 U	5.7 U	4.3 U	10.3 U	5 U		
Dichlorodifluoromethane	6.2 U	5.7 U	4.3 U	10.3 U	5 U		
Ethyl Benzene	6.2 U	5.7 U	4.3 U	10.3 U	5 U	41000	780000
Isopropylbenzene	1.4 J	5.7 U	4.3 U	10.3 UJ	5 UJ		
m/p-Xylenes	12.4 U	11.5 U	8.7 U	17.4 U	10 U	100000	1000000
Methyl Acetate	6.2 U	5.7 U	4.3 U	10.3 U	5 U	400000	4000000
Methyl tert-butyl Ether Methylcyclohexane	6.2 U 6.2 U	4.2 J 5.7 U	4.3 U 4.3 U	10.3 U 10.3 U	5 U 5 U	100000	1000000
Methylene Chloride	6.2 U	5.7 UB	4.3 U 5.1 UB	35.2	5 U	100000	1000000
o-Xylene	6.2 U	5.7 U	4.3 U	10.3 U	5 U	100000	1000000
Styrene	6.2 U	5.7 U	4.3 U	10.3 U	5 U		
t-1,3-Dichloropropene	6.2 U	5.7 U	4.3 U	10.3 U	5 U		
Tetrachloroethene	2 J	2.8 J	2.1 J	10.3 U	3.6 J	19000	300000
Toluene	6.2 U	5.7 U	4.3 U	10.3 U	5 U	100000	1000000
trans-1,2-Dichloroethene	6.2 U	2.8 J	1.4 J	10.3 U	5 U	100000	1000000
Trichloroethene	6.2 U	1.9 J	4.3 U	10.3 U	5 U	21000	400000
Trichlorofluoromethane	6.2 U	5.7 U	4.3 U	10.3 U	5 U		
Vinyl Chloride	2.2 J	5.7 U	4.3 U	10.3 U	4.8 J	900	27000
Total Volatile Organic Compounds	50.3	33.1	23.9	185.6	44		
	Footnotes/Qua	alifiers:			ted from secor	ndary dilution	

ug/kg: Micrograms per kilogram BD: Blind duplicate

Exceeded calibration range estimated value

J: U: Analyzed for but not detected --: Estimated value or detection limits

UB:

No standard

E:

Exceeded the Restricted-Residential Use SCO Not detected based on blank results

Table 2 Long Island Rail Road Arch Street Yard RI Subsurface Soil Samples TCL Volatile Organic Compounds

Sample ID Sampling Date	3/17/2016	GW-01(4-5) 3/21/2016	GW-01(13-15) 3/21/2016	GW-01(18-20) 3/21/2016	GW-03(3-4) 3/21/2016	NYCRR 6 Part 375 Restricted-	NYCRR 6 Part 375 Industrial
Start Depth (in Feet)	13	4	13	18	3	Residential	Use Soil
End Depth (in Feet)	15	5	15	20	4	Use Soil Cleanup Objectives (SCO)	Cleanup Objectives (SCO)
Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/kg	ug/kg
VOLATILE COMPOUNDS							
1,1,1-Trichloroethane	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	100000	1000000
1,1,2,2-Tetrachloroethane	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 UJ		
1,1,2-Trichloroethane	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U		
1,1,2-Trichlorotrifluoroethane 1,1-Dichloroethane	4.9 U 4.9 U	5.8 UJ 5.8 UJ	4.9 U 4.9 U	4.3 U 4.3 U	4.5 U 4.5 U	26000	480000
1,1-Dichloroethane	4.9 U 4.9 U	5.8 UJ	4.9 U 4.9 U	4.3 U 4.3 U	4.5 U 4.5 U	100000	100000
1,2,3-Trichlorobenzene	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 UJ	100000 	
1,2,4-Trichlorobenzene	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 UJ		
1,2-Dibromo-3-Chloropropane	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 UJ		
1,2-Dibromoethane	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U		
1,2-Dichlorobenzene	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 UJ	100000	1000000
1,2-Dichloroethane	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	3100	60000
1,2-Dichloropropane	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U		
1,3-Dichlorobenzene	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 UJ	49000	560000
1,4-Dichlorobenzene	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 UJ	13000	250000
2-Butanone	24.3 U	28.9 UJ	4.3 J	21.5 U	22.3 U	100000	1000000
2-Hexanone	24.3 U	28.9 UJ	24.7 U	21.5 U	22.3 U		
4-Methyl-2-Pentanone	24.3 U	10.9 J+	24.7 U	21.5 U	22.3 U		
Acetone	14.2 J	30.8 J+	22 J	12.4 J	20.0 J	100000	1000000
Benzene Bromochloromethane	4.9 U 4.9 U	5.8 UJ 5.8 UJ	4.9 U 4.9 U	4.3 U 4.3 U	1.6 J 4.5 U	4800 	89000
Bromodichloromethane	4.9 U 4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U		
Bromoform	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 UJ		
Bromomethane	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U		
Carbon Disulfide	1.2 J	5.8 UJ	4.9 U	4.3 U	4.5 U		
Carbon Tetrachloride	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	2400	44000
Chlorobenzene	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 UJ	100000	1000000
Chloroethane	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U		
Chloroform	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	49000	700000
Chloromethane	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U		
cis-1,2-Dichloroethene	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	100000	1000000
cis-1,3-Dichloropropene	4.9 U 4.9 U	5.8 UJ 5.8 UJ	4.9 U 4.9 U	4.3 U 4.3 U	4.5 U 4.5 U		
Cyclohexane Dibromochloromethane	4.9 U 4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U		
Dichlorodifluoromethane	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U		
Ethyl Benzene	4.9 U	5.8 UJ	4.9 U	4.3 U	0.97 J+	41000	780000
Isopropylbenzene	4.9 U	5.8 UJ	4.9 U	4.3 U	1.4 J+		
m/p-Xylenes	9.7 U	11.8 UJ	9.9 U	8.6 U	3.1 J+	100000	1000000
Methyl Acetate	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U		
Methyl tert-butyl Ether	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	100000	1000000
Methylcyclohexane	4.9 U	5.8 UJ	4.9 U	4.3 U	8		
Methylene Chloride	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	100000	1000000
o-Xylene	4.9 U	5.8 UJ	4.9 U	4.3 U	2.9 J+	100000	1000000
Styrene t-1,3-Dichloropropene	4.9 U 4.9 U	5.8 UJ 5.8 UJ	4.9 U 4.9 U	4.3 U 4.3 U	4.5 UJ 4.5 U	 	
Tetrachloroethene	4.9 U 4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U 3.0 J+	19000	300000
Toluene	4.9 U	5.8 UJ	4.9 U	4.3 U	2.4 J	100000	1000000
trans-1,2-Dichloroethene	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	100000	1000000
Trichloroethene	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	21000	400000
Trichlorofluoromethane	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U		
Vinyl Chloride	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	900	27000
Total Volatile Organic Compounds	15.4	41.7	26.3	12.4	43.37		

Footnotes/Qualifiers:

Reported from secondary dilution

ug/kg: Micrograms per kilogram

Exceeded calibration range estimated value

BD: Blind duplicate

Estimated value or detection limits

U: Analyzed for but not detected

No standard

D:

E:

J:

--:

UB: Not detected based on blank results

TCL Volatile Organic Compounds

Sample ID		GW-03(18-20)	GW-04(2-3)	GW-04(12-14)		NYCRR 6 Part 375
Sampling Date	3/21/2016	3/21/2016	3/23/2016	3/23/2016	Restricted-	Industrial
Start Depth (in Feet) End Depth (in Feet)	12 14	18 20	2 3	12 14	Residential Use Soil Cleanup	Use Soil Cleanup
End Depth (in Feet)	14	20	3	14	Objectives (SCO)	Objectives (SCO)
Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/kg	ug/kg
VOLATILE COMPOUNDS	- J	- J	- J	- 3	- 3- 3	
1,1,1-Trichloroethane	9.2 U	5.1 U	4.9 U	6.5 U	100000	1000000
1,1,2,2-Tetrachloroethane	9.2 U	5.1 U	4.9 UJ	6.5 U		
1,1,2-Trichloroethane	9.2 U	5.1 U	4.9 U	6.5 U		
1,1,2-Trichlorotrifluoroethane	9.2 U	5.1 U	4.9 U	6.5 U		
1,1-Dichloroethane	9.2 U	5.1 U	4.9 U	6.5 U	26000	480000
1,1-Dichloroethene	9.2 U	5.1 U	4.9 U	6.5 U	100000	1000000
1,2,3-Trichlorobenzene	9.2 U	5.1 U	4.9 UJ	6.5 U		
1,2,4-Trichlorobenzene	9.2 U 9.2 U	5.1 U 5.1 U	4.9 UJ 4.9 UJ	6.5 U 6.5 U		
1,2-Dibromo-3-Chloropropane 1,2-Dibromoethane	9.2 U 9.2 U	5.1 U 5.1 U	4.9 U 4.9 U	6.5 U		
1,2-Dibromoethane	9.2 U 9.2 U	5.1 U	4.9 UJ	6.5 U	100000	1000000
1,2-Dichloroethane	9.2 U 9.2 U	5.1 U 5.1 U	4.9 U	6.5 U	3100	60000
1,2-Dichloropropane	9.2 U	5.1 U	4.9 U	6.5 U		
1,3-Dichlorobenzene	9.2 U	5.1 U	4.9 UJ	6.5 U	49000	560000
1,4-Dichlorobenzene	9.2 U	5.1 U	4.9 UJ	6.5 U	13000	250000
2-Butanone	46.1 U	25.4 U	24.3 U	32.5 U	100000	1000000
2-Hexanone	46.1 U	25.4 U	24.3 U	32.5 U		
4-Methyl-2-Pentanone	46.1 U	25.4 U	24.3 U	32.5 U		
Acetone	60.7 J	28.5 J	22.7 J	14.1 J	100000	1000000
Benzene	9.2 U	5.1 U	4.9 U	6.5 U	4800	89000
Bromochloromethane	9.2 U	5.1 U	4.9 U	6.5 U		
Bromodichloromethane	9.2 U	5.1 U	4.9 U	6.5 U		
Bromoform	9.2 U	5.1 U	4.9 UJ	6.5 U		
Bromomethane Carbon Disulfide	9.2 U 43.5	5.1 U 5.1 U	4.9 U 4.9 U	6.5 U 3.2 J		
Carbon Distillide Carbon Tetrachloride	43.5 9.2 U	5.1 U 5.1 U	4.9 U 4.9 U	3.2 J 6.5 U	2400	44000
Chlorobenzene	9.2 U	5.1 U	4.9 UJ	6.5 U	100000	1000000
Chloroethane	9.2 U	5.1 U	4.9 U	6.5 U		
Chloroform	9.2 U	5.1 U	4.9 U	6.5 U	49000	700000
Chloromethane	9.2 U	5.1 U	4.9 U	6.5 U		
cis-1,2-Dichloroethene	9.2 U	5.1 U	4.9 U	6.5 U	100000	1000000
cis-1,3-Dichloropropene	9.2 U	5.1 U	4.9 U	6.5 U		
Cyclohexane	9.2 U	5.1 U	4.9 U	6.5 U		
Dibromochloromethane	9.2 U	5.1 U	4.9 U	6.5 U		
Dichlorodifluoromethane	9.2 U	5.1 U	4.9 U	6.5 U		
Ethyl Benzene	9.2 U	5.1 U	4.9 U	6.5 U	41000	780000
Isopropylbenzene	9.2 U	5.1 U	4.9 U	6.5 U	400000	4000000
m/p-Xylenes	18.4 U	10.2 U 5.1 U	9.7 U	13 U	100000	1000000
Methyl Acetate Methyl tert-butyl Ether	9.2 U 9.2 U	5.1 U 5.1 U	4.9 U 4.9 U	6.5 U 6.5 U	100000	1000000
Methylcyclohexane	9.2 U 9.2 U	5.1 U 5.1 U	4.9 U	6.5 U		
Methylene Chloride	9.2 U	5.1 U	3.3 J	7.5	100000	1000000
o-Xylene	9.2 U	5.1 U	4.9 U	6.5 U	100000	1000000
Styrene	9.2 U	5.1 U	4.9 UJ	6.5 U		
t-1,3-Dichloropropene	9.2 U	5.1 U	4.9 U	6.5 U		
Tetrachloroethene	9.2 U	5.1 U	4.9 U	6.5 U	19000	300000
Toluene	9.2 U	5.1 U	4.9 U	6.5 U	100000	1000000
trans-1,2-Dichloroethene	9.2 U	5.1 U	4.9 U	6.5 U	100000	1000000
Trichloroethene	9.2 U	5.1 U	4.9 U	6.5 U	21000	400000
Trichlorofluoromethane	9.2 U	5.1 U	4.9 U	6.5 U		
Vinyl Chloride	9.2 U	5.1 U	4.9 U	6.5 U	900	27000
Total Volatile Organia Compounds	104.2	29.5	26	24.8		
Total Volatile Organic Compounds	104.2	28.5	26		 d from socondary dilu	

Footnotes/Qualifiers:

ug/kg: Micrograms per kilogram

BD: Blind duplicate

U: Analyzed for but not detected UB: Not detected based on blank results

Reported from secondary dilution

E: Exceeded calibration range estimated value

J: Estimated value or detection limits

--: No standard

D:

TCL Volatile Organic Compounds

Comple ID		CW 04/46 49)	=	NVCDD C Dowt 275
	GW-04(12-14)BD 3/23/2016	GW-04(16-18) 3/23/2016	Restricted-	NYCRR 6 Part 375 Industrial
Sampling Date Start Depth (in Feet)			Residential	Use Soil
	12 14	16 18		
End Depth (in Feet)	14	18	Use Soil Cleanup	Cleanup
Units	ua/Ka	ua/Ka	Objectives (SCO)	Objectives (SCO) ug/kg
VOLATILE COMPOUNDS	ug/Kg	ug/Kg	ug/kg	ug/kg
1,1,1-Trichloroethane	7 U	4.5 U	100000	1000000
1,1,2,2-Tetrachloroethane	7 U	4.5 U	100000 	1000000
1.1.2-Trichloroethane	7 U	4.5 U		
1,1,2-Trichlorottifluoroethane	7 U	4.5 U		
1,1-Dichloroethane	7 U	4.5 U	26000	480000
1,1-Dichloroethene	7 U	4.5 U	100000	1000000
1,2,3-Trichlorobenzene	7 U	4.5 U		
1,2,4-Trichlorobenzene	7 U	4.5 U		
1,2-Dibromo-3-Chloropropane	7 U	4.5 U		
1,2-Dibromoethane	7 U	4.5 U		
1,2-Dichlorobenzene	7 U	4.5 U	100000	1000000
1,2-Dichloroethane	7 U	4.5 U	3100	60000
1,2-Dichloropropane	7 U	4.5 U		
1,3-Dichlorobenzene	7 U	4.5 U	49000	560000
1,4-Dichlorobenzene	7 U	4.5 U	13000	250000
2-Butanone	35.2 U	22.4 U	100000	1000000
2-Hexanone	35.2 U	22.4 U		
4-Methyl-2-Pentanone	35.2 U	22.4 U		
Acetone	18.7 J	9.7 J	100000	1000000
Benzene	7 U	4.5 U	4800	89000
Bromochloromethane	7 U	4.5 U		
Bromodichloromethane	7 U	4.5 U		
Bromoform	7 U	4.5 U		
Bromomethane	7 U	4.5 U		
Carbon Disulfide	10.2 J	2.7 J		
Carbon Tetrachloride	7 U	4.5 U	2400	44000
Chlorobenzene	7 U	4.5 U	100000	1000000
Chloroethane	7 U	4.5 U		
Chloroform	7 U	4.5 U	49000	700000
Chloromethane	7 U 7 U	4.5 U 4.5 U	100000	100000
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	7 U	4.5 U 4.5 U	100000	1000000
Cyclohexane	7 U	4.5 U		
Dibromochloromethane	7 U	4.5 U		
Dichlorodifluoromethane	7 U	4.5 U		
Ethyl Benzene	7 U	4.5 U	41000	780000
Isopropylbenzene	7 U	4.5 U		
m/p-Xylenes	14.1 U	9 U	100000	1000000
Methyl Acetate	7 U	4.5 U		
Methyl tert-butyl Ether	7 U	4.5 U	100000	1000000
Methylcyclohexane	7 U	4.5 U		
Methylene Chloride	7 U	5.1	100000	1000000
o-Xylene	7 U	4.5 U	100000	1000000
Styrene	7 U	4.5 U		
t-1,3-Dichloropropene	7 U	4.5 U		
Tetrachloroethene	7 U	4.5 U	19000	300000
Toluene	7 U	4.5 U	100000	1000000
trans-1,2-Dichloroethene	7 U	4.5 U	100000	1000000
Trichloroethene Trichlorofluoromethane	7 U 7 U	4.5 U 4.5 U	21000	400000
Vinyl Chloride	7 U	4.5 U 4.5 U	900	27000
Tinyi Omoriuc	, 0	7.5 0	300	21000
Total Volatile Organic Compounds	28.9	17.5		
The state of game compounds	Footnotes/Qualifier			D: Reported fro

Footnotes/Qualifiers:

ug/kg: Micrograms per kilogram

BD: Blind duplicate

U: Analyzed for but not detected UB: Not detected based on blank results

D: Reported from secondary dilution

E: Exceeded calibration range estimated value

J: Estimated value or detection limits

--: No standard

TCL Semivolatile Organic Compounds

		Committee ID		olatile Organic Co		CD 00/00 05\	CD 00/40 44\	CD 00/40 00\	CD 04/2 F
		Sample ID	SB-01(13-15)	SB-01(23-25)	SB-02(13-15)	SB-02(23-25)	SB-03(12-14)	SB-03(18-20)	SB-04(3-5)
		Sampling Date	3/16/2016	3/16/2016	3/17/2016	3/17/2016	3/17/2016	3/17/2016	3/16/2016
		Start Depth (in Feet)	13	23	13	23	12	18	3
		End Depth (in Feet)	15	25	15	25	14	20	5
	111/0000 000 0000	Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
		NYCRR 6 Part 375							
	Restricted-	Industrial							
	Residential	Use Soil							
	Use Soil Cleanup	Cleanup							
	Objectives (SCO)	Objectives (SCO)							
	ug/kg	ug/kg							
SEMIVOLATILE COMPOUNDS									
1,1-Biphenyl			550 U	370 U	580 U	380 U	410 U	380 U	300 J
1,2,4,5-Tetrachlorobenzene			550 U	370 U	580 U	380 U	410 U	380 U	400 U
1,4-Dioxane	13000	250000	550 U	370 U	580 U	380 U	410 U	380 U	400 U
2,2-oxybis(1-Chloropropane)			550 U	370 U	580 U	380 U	410 U	380 U	400 U
2,3,4,6-Tetrachlorophenol			550 U	370 U	580 U	380 U	410 U	380 U	400 U
2,4,5-Trichlorophenol			550 U	370 U	580 U	380 U	410 U	380 U	400 U
2,4,6-Trichlorophenol			550 U	370 U	580 U	380 U	410 U	380 U	400 U
2,4-Dichlorophenol			550 U	370 U	580 U	380 U	410 U	380 U	400 U
2,4-Dimethylphenol			550 U	370 U	580 U	380 U	410 U	380 U	100 J
2,4-Dinitrophenol			550 UJ	370 UJ	580 UJ	380 UJ	410 UJ	380 UJ	400 UJ
2,4-Dinitrotoluene			550 U	370 U	580 U	380 U	410 U	380 U	400 U
2,6-Dinitrotoluene			550 U	370 U	580 U	380 U	410 U	380 U	400 U
2-Chloronaphthalene			550 U	370 U	580 U	380 U	410 U	380 U	400 U
2-Chlorophenol			550 U	370 U	580 U	380 U	410 U	380 U	400 U
2-Methylnaphthalene			550 U	370 U	580 U	380 U	410 U	380 U	990
2-Methylphenol	100000	1000000	550 U	370 U	580 U	380 U	410 U	380 U	400 U
2-Nitroaniline			550 U	370 U	580 U	380 U	410 U	380 U	400 U
2-Nitrophenol			550 U	370 U	580 U	380 U	410 U	380 U	400 U
3,3-Dichlorobenzidine			550 U	370 U	580 U	380 U	410 U	380 U	400 U
3+4-Methylphenols	100000	1000000	550 U	370 U	580 U	380 U	410 U	380 U	400 U
3-Nitroaniline			550 U	370 U	580 U	380 U	410 U	380 U	400 U
4,6-Dinitro-2-methylphenol			550 U	370 U	580 U	380 U	410 U	380 U	400 U
4-Bromophenyl-phenylether			550 U	370 U	580 U	380 U	410 U	380 U	400 U
4-Chloro-3-methylphenol			550 U	370 U	580 U	380 U	410 U	380 U	400 U
4-Chloroaniline			550 U	370 U	580 U	380 U	410 U	380 U	400 U
4-Chlorophenyl-phenylether			550 U	370 U	580 U	380 U	410 U	380 U	400 U
4-Nitroaniline			550 U	370 U	580 U	380 U	410 U	380 U	400 U
4-Nitrophenol			550 U	370 U	580 U	380 U	410 U	380 U	400 U
Acenaphthene	100000	1000000	550 U	370 U	580 U	380 U	410 U	380 U	2300
Acenaphthylene	100000	1000000	550 U	370 U	580 U	380 U	410 U	380 U	400 U
Acetophenone			550 U	370 U	580 U	380 U	410 U	380 U	400 U
Anthracene	100000	1000000	550 U	370 U	580 U	380 U	410 U	380 U	5600 D
Atrazine			550 U	370 U	580 U	380 U	410 U	380 U	400 U
Benzaldehyde	4000		550 U	370 U	580 U	380 U	410 U	380 U	400 U
Benzo(a)anthracene	1000	11000	550 U	370 U	580 U	380 U	410 U	380 U	<u>5300</u> <u>D</u>
Benzo(a)pyrene	1000	1100	550 U	370 U	580 U	380 U	410 U	380 U	<u>2900</u>
Benzo(b)fluoranthene	1000	11000	550 U	370 U	580 U	380 U	410 U	380 U	4000 <u>D</u>
Benzo(g,h,i)perylene	100000	1000000	550 U	370 U	580 U	380 U	410 U	380 U	1500

See next page for Footnotes/Qualifiers

Table 3 Long Island Rail Road Arch Street Yard RI

Subsurface Soil Samples

		0		Diatile Organic Co	_	00.00/00.05	00.00/40.4.0	00 00/40 00	05 04/0 F
		Sample ID	SB-01(13-15)	SB-01(23-25)	SB-02(13-15)	SB-02(23-25)	SB-03(12-14)	SB-03(18-20)	SB-04(3-5)
		Sampling Date	3/16/2016	3/16/2016	3/17/2016	3/17/2016	3/17/2016	3/17/2016	3/16/2016
		Start Depth (in Feet)	13	23	13	23	12	18	3
		End Depth (in Feet)	15	25	15	25	14	20	5
		Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
	NYCRR 6 Part 375								
	Restricted-	Industrial							
	Residential	Use Soil							
	Use Soil Cleanup	Cleanup							
	Objectives (SCO)	Objectives (SCO)							
	ug/kg	ug/kg							
COMPOUNDS CONTINUED									
Benzo(k)fluoranthene	3900	110000	550 U	370 U	580 U	380 U	410 U	380 U	1100
bis(2-Chloroethoxy)methane			550 U	370 U	580 U	380 U	410 U	380 U	400 U
bis(2-Chloroethyl)ether			550 U	370 U	580 U	380 U	410 U	380 U	400 U
Bis(2-ethylhexyl)phthalate			550 U	370 U	580 U	380 U	410 U	380 U	400 U
Butylbenzylphthalate			550 U	370 U	580 U	380 U	410 U	380 U	400 U
Caprolactam			550 U	370 U	580 U	380 U	410 U	380 U	400 U
Carbazole			550 U	370 U	580 U	380 U	410 U	380 U	1600
Chrysene	3900	110000	550 U	370 U	580 U	380 U	410 U	380 U	3800 JD
Dibenzo(a,h)anthracene	330	1100	550 U	370 U	580 U	380 U	410 U	380 U	<u>430</u>
Dibenzofuran	59000	1000000	550 U	370 U	580 U	380 U	410 U	380 U	1900
Diethylphthalate			550 U	370 U	580 U	380 U	410 U	380 U	400 U
Dimethylphthalate			1000	550	1000	620	660	620	520
Di-n-butylphthalate			550 U	370 U	580 U	380 U	410 U	380 U	400 U
Di-n-octyl phthalate			550 U	370 U	580 U	380 U	410 U	380 U	400 U
Fluoranthene	100000	1000000	550 U	370 U	580 U	380 U	410 U	380 U	10000 D
Fluorene	100000	1000000	550 U	370 U	580 U	380 U	410 U	380 U	2700
Hexachlorobenzene	1200	12000	550 U	370 U	580 U	380 U	410 U	380 U	400 U
Hexachlorobutadiene			550 U	370 U	580 U	380 U	410 U	380 U	400 U
Hexachlorocyclopentadiene			550 U	370 U	580 U	380 U	410 U	380 U	400 U
Hexachloroethane			550 U	370 U	580 U	380 U	410 U	380 U	400 U
Indeno(1,2,3-cd)pyrene	500	11000	550 U	370 U	580 U	380 U	410 U	380 U	1900
Isophorone			550 U	370 U	580 U	380 U	410 U	380 U	400 U
Naphthalene	100000	1000000	550 U	370 U	580 U	380 U	410 U	380 U	1400
Nitrobenzene	15000	140000	550 U	370 U	580 U	380 U	410 U	380 U	400 U
n-Nitroso-di-n-propylamine			550 U	370 U	580 U	380 U	410 U	380 U	400 U
n-Nitrosodiphenylamine			550 U	370 U	580 U	380 U	410 U	380 U	400 U
Pentachlorophenol	6700	55000	550 U	370 U	580 U	380 U	410 U	380 U	400 U
Phenanthrene	100000	1000000	550 U	370 U	580 U	380 U	410 U	380 U	17100 D
Phenol	100000	1000000	550 U	370 U	580 U	380 U	410 U	380 U	400 U
Pyrene	100000	1000000	550 U	370 U	580 U	380 U	410 U 410 U	380 U	7500 D
rylelle	100000	1000000	550 U	310 0	360 U	300 0	410 0	300 0	7300 D
Total Semivolatile Compounds			1000	550	1000	620	660	620	72940
-	-		1000	ວວບ	1000	UZU	000	020	12340
Footnotes/Qualifiers:									

ug/kg: Micrograms per kilogram --:

No standard

BD: Blind duplicate

Exceeded the Industrial Use SCO

U: Analyzed for but not detected
D: Reported from secondary dilution
J: Estimated value or detection limits

TCL Semivolatile Organic Compounds

				olatile Organic Co					
		Sample ID	SB-04(10-12)	SB-04(27-29)	SB-05(10-11)	SB-05(10-11) BD	SB-05(11-13)	SB-06(8-10)	SB-06(11-13)
		Sampling Date	3/16/2016	3/16/2016	3/16/2016	3/16/2016	3/16/2016	3/17/2016	3/17/2016
		tart Depth (in Feet)	10	27	10	10	11	8	11
		End Depth (in Feet)	12	29	11	11	13	10	13
		Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
	NYCRR 6 Part 375								
	Restricted-	Industrial							
	Residential	Use Soil							
	Use Soil Cleanup	Cleanup							
	Objectives (SCO)	Objectives (SCO)							
	ug/kg	ug/kg							
SEMIVOLATILE COMPOUNDS									
1,1-Biphenyl			570 U	370 U	400 U	390 U	490 U	430 U	380 U
1,2,4,5-Tetrachlorobenzene			570 U	370 U	400 U	390 U	490 U	430 U	380 U
1,4-Dioxane	13000	250000	570 U	370 U	400 U	390 U	490 U	430 U	380 U
2,2-oxybis(1-Chloropropane)			570 U	370 U	400 U	390 U	490 U	430 U	380 U
2,3,4,6-Tetrachlorophenol			570 U	370 U	400 U	390 U	490 U	430 U	380 U
2,4,5-Trichlorophenol			570 U	370 U	400 U	390 U	490 U	430 U	380 U
2,4,6-Trichlorophenol			570 U	370 U	400 U	390 U	490 U	430 U	380 U
2,4-Dichlorophenol			570 U	370 U	400 U	390 U	490 U	430 U	380 U
2,4-Dimethylphenol			570 U	370 U	400 U	390 U	490 U	430 U	380 U
2,4-Dinitrophenol			570 UJ	370 UJ	400 UJ	390 UJ	490 UJ	430 UJ	380 UJ
2,4-Dinitrotoluene			570 U	370 U	400 U	390 U	490 U	430 U	380 U
2,6-Dinitrotoluene			570 U	370 U	400 U	390 U	490 U	430 U	380 U
2-Chloronaphthalene			570 U	370 U	400 U	390 U	490 U	430 U	380 U
2-Chlorophenol			570 U	370 U	400 U	390 U	490 U	430 U	380 U
2-Methylnaphthalene			570 U	370 U	400 U	390 U	490 U	430 U	380 U
2-Methylphenol	100000	1000000	570 U	370 U	400 U	390 U	490 U	430 U	380 U
2-Nitroaniline			570 U	370 U	400 U	390 U	490 U	430 U	380 U
2-Nitrophenol			570 U	370 U	400 U	390 U	490 U	430 U	380 U
3,3-Dichlorobenzidine			570 U	370 U	400 U	390 U	490 U	430 U	380 U
3+4-Methylphenols	100000	1000000	570 U	370 U	400 U	390 U	490 U	430 U	380 U
3-Nitroaniline			570 U	370 U	400 U	390 U	490 U	430 U	380 U
4,6-Dinitro-2-methylphenol			570 U	370 U	400 U	390 U	490 U	430 U	380 U
4-Bromophenyl-phenylether			570 U	370 U	400 U	390 U	490 U	430 U	380 U
4-Chloro-3-methylphenol			570 U	370 U	400 U	390 U	490 U	430 U	380 U
4-Chloroaniline			570 U	370 U	400 U	390 U	490 U	430 U	380 U
4-Chlorophenyl-phenylether			570 U	370 U	400 U	390 U	490 U	430 U	380 U
4-Nitroaniline			570 U	370 U	400 U	390 U	490 U	430 U	380 U
4-Nitrophenol			570 U	370 U	400 U	390 U	490 U	430 U	380 U
Acenaphthene	100000	1000000	570 U	370 U	400 U	390 U	490 U	430 U	380 U
Acenaphthylene	100000	1000000	570 U	370 U	400 U	390 U	490 U	430 U	380 U
Acetophenone			570 U	370 U	400 U	390 U	490 U	430 U	380 U
Anthracene	100000	1000000	570 U	370 U	400 U	390 U	490 U	430 U	380 U
Atrazine			570 U	370 U	400 U	390 U	490 U	430 U	380 U
Benzaldehyde			570 U	370 U	400 U	390 U	490 U	430 U	380 U
Benzo(a)anthracene	1000	11000	570 U	370 U	400 U	390 U	490 U	92.3 J	380 U
Benzo(a)pyrene	1000	1100	570 U	370 U	400 U	390 U	490 U	430 U	380 U
Benzo(b)fluoranthene	1000	11000	570 U	370 U	400 U	390 U	490 U	430 U	380 U
Benzo(g,h,i)perylene	100000	1000000	570 U	370 U	400 U	390 U	490 U	430 U	380 U

See next page for Footnotes/Qualifiers

TCL Semivolatile Organic Compounds

Sampling Date Start Depth (in Feet) 10 27 10 10 11 8 8 10 10 11 13 10 10 10 11 13 10 10	380 U 380 U 380 U 380 U 380 U
Start Depth (in Feet) 10 27 10 10 11 8 10 10 11 13 10 10 11 13 10 10	11 13 ug/Kg 380 U 380 U
NYCRR 6 Part 375 NYCRR 6 Part 375 Restricted-Residential Use Soil Cleanup Objectives (SCO) ug/kg	13 ug/Kg 380 U 380 U
NYCRR 6 Part 375 NYCRR 6 Part 375 Restricted-Residential Use Soil Use Soil Cleanup Objectives (SCO) ug/kg Ug/K	ug/Kg 380 U 380 U
NYCRR 6 Part 375 Restricted-Residential Use Soil Cleanup Objectives (SCO) ug/kg Objectiv	380 U 380 U
Restricted- Residential Use Soil Cleanup Objectives (SCO) ug/kg Objectives (SCO)	380 U
Residential Use Soil Cleanup Objectives (SCO) ug/kg Use Soil Use Soil Use Soil Cleanup Objectives (SCO) Use Soil Use	380 U
Use Soil Cleanup Cleanup Objectives (SCO) Ug/kg Ug/k	380 U
Objectives (SCO)	380 U
ug/kg	380 U
COMPOUNDS CONTINUED 3900 110000 570 U 370 U 400 U 390 U 490 U 430 U	380 U
Benzo(k)fluoranthene 3900 110000 570 U 370 U 400 U 390 U 490 U 430 U	380 U
	380 U
ois(2-Chloroethoxy)methane 570 U 370 U 400 U 390 U 490 U 430 U	380 U
ois(2-Chloroethyl)ether 570 U 370 U 400 U 390 U 490 U 430 U	
3is(2-ethylhexyl)phthalate 570 U 370 U 400 U 390 U 490 U 430 U	380 U
340 U 390 U 490 U 430 U 300 U	380 U
Caprolactam 570 U 370 U 400 U 390 U 490 U 430 U	380 U
Carbazole 570 U 370 U 400 U 390 U 490 U 430 U	380 U
Chrysene 3900 110000 570 U 370 U 400 U 390 U 490 U 430 U	380 U
Dibenzo(a,h)anthracene 330 1100 570 U 370 U 400 U 390 U 490 U 430 U	380 U
Dibenzofuran 59000 1000000 570 U 370 U 400 U 390 U 490 U 430 U	380 U
Diethylphthalate 570 U 370 U 400 U 390 U 490 U 430 U	380 U
	610
Di-n-butylphthalate 570 U 370 U 400 U 390 U 490 U 430 U	380 U
Di-n-octyl phthalate 570 U 370 U 400 U 390 U 490 U 430 U	380 U
Fluoranthene 100000 1000000 570 U 370 U 84.3 J 390 U 490 U 170 J	380 U
Tuorene 100000 1000000 570 U 370 U 400 U 390 U 490 U 430 U	380 U
Hexachlorobenzene 1200 12000 570 U 370 U 400 U 390 U 490 U 430 U	380 U
Hexachlorobutadiene 570 U 370 U 400 U 390 U 490 U 430 U	380 U
Hexachlorocyclopentadiene 570 U 370 U 400 U 390 U 490 U 430 U	380 U
Hexachloroethane 570 U 370 U 400 U 390 U 490 U 430 U	380 U
ndeno(1,2,3-cd)pyrene 500 11000 570 U 370 U 400 U 390 U 490 U 430 U	380 U
sophorone 570 U 370 U 400 U 390 U 490 U 430 U	380 U
Naphthalene 100000 1000000 570 U 370 U 400 U 390 U 490 U 160 J	380 U
litrobenzene 15000 140000 570 U 370 U 400 U 390 U 490 U 430 U	380 U
i-Nitroso-di-n-propylamine 570 U 370 U 400 U 390 U 490 U 430 U	380 U
570 U 370 U 400 U 390 U 490 U 430 U	380 U
Pentachlorophenol 6700 55000 570 U 370 U 400 U 390 U 490 U 430 U	380 U
Phenanthrene 100000 1000000 570 U 370 U 400 U 390 U 490 U 180 J	380 U
Phenol 100000 1000000 570 U 370 U 400 U 390 U 490 U 430 U	380 U
Pyrene 100000 1000000 570 U 370 U 91.6 J 390 U 490 U 190 J	380 U
Total Semivolatile Compounds 890 580 835.9 680 860 1342.3	610

Footnotes/Qualifiers:

ug/kg: Micrograms per kilogram --:

No standard

BD: Blind duplicate

Exceeded the Industrial Use SCO

U: Analyzed for but not detected
D: Reported from secondary dilution
J: Estimated value or detection limits

TCL Semivolatile Organic Compounds

				olatile Organic Co	_				
		Sample ID	SB-07(12-14)	SB-07(23-25)	SB-08(4-6)	SB-08(6-8)	SB-08(13-15)	GW-01(4-5)	GW-01(13-15)
		Sampling Date	3/18/2016	3/18/2016	3/17/2016	3/17/2016	3/17/2016	3/21/2016	3/21/2016
		Start Depth (in Feet)	12	23	4	6	13	4	13
		End Depth (in Feet)	14	25	6	8	15	5	15
		Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
	NYCRR 6 Part 375								
	Restricted-	Industrial							
	Residential	Use Soil							
	Use Soil Cleanup	Cleanup							
	Objectives (SCO)	Objectives (SCO)							
	ug/kg	ug/kg							
SEMIVOLATILE COMPOUNDS									
1,1-Biphenyl			450 U	360 U	660 U	380 U	380 U	400 U	390 U
1,2,4,5-Tetrachlorobenzene			450 U	360 U	660 U	380 U	380 U	400 U	390 U
1,4-Dioxane	13000	250000	450 U	360 U	660 U	380 U	380 U	400 U	390 U
2,2-oxybis(1-Chloropropane)			450 U	360 U	660 U	380 U	380 U	400 U	390 U
2,3,4,6-Tetrachlorophenol			450 U	360 U	660 U	380 U	380 U	400 U	390 U
2,4,5-Trichlorophenol			450 U	360 U	660 U	380 U	380 U	400 U	390 U
2,4,6-Trichlorophenol			450 U	360 U	660 U	380 U	380 U	400 U	390 U
2,4-Dichlorophenol			450 U	360 U	660 U	380 U	380 U	400 U	390 U
2,4-Dimethylphenol			450 U	360 U	660 U	380 U	380 U	400 U	390 U
2,4-Dinitrophenol			450 U	360 U	660 UJ	380 UJ	380 U	400 U	390 U
2,4-Dinitrotoluene			450 U	360 U	660 U	380 U	380 U	400 U	390 U
2,6-Dinitrotoluene			450 U	360 U	660 U	380 U	380 U	400 U	390 U
2-Chloronaphthalene			450 U	360 U	660 U	380 U	380 U	400 U	390 U
2-Chlorophenol			450 U	360 U	660 U	380 U	380 U	400 U	390 U
2-Methylnaphthalene			450 U	360 U	290 J	380 U	380 U	400 U	390 U
2-Methylphenol	100000	1000000	450 U	360 U	660 U	380 U	380 U	400 U	390 U
2-Nitroaniline			450 U	360 U	660 U	380 U	380 U	400 U	390 U
2-Nitrophenol			450 U	360 U	660 U	380 U	380 U	400 U	390 U
3,3-Dichlorobenzidine			450 U	360 U	660 U	380 U	380 U	400 U	390 U
3+4-Methylphenols	100000	1000000	450 U	360 U	660 U	380 U	380 U	400 U	390 U
3-Nitroaniline			450 U	360 U	660 U	380 U	380 U	400 U	390 U
4,6-Dinitro-2-methylphenol			450 U	360 U	660 U	380 U	380 U	400 U	390 U
4-Bromophenyl-phenylether			450 U	360 U	660 U	380 U	380 U	400 U	390 U
4-Chloro-3-methylphenol			450 U	360 U	660 U	380 U	380 U	400 U	390 U
4-Chloroaniline			450 U	360 U	660 U	380 U	380 U	400 U	390 U
4-Chlorophenyl-phenylether			450 U	360 U	660 U	380 U	380 U	400 U	390 U
4-Nitroaniline			450 U	360 U	660 U	380 U	380 U	400 U	390 U
4-Nitrophenol			450 U	360 U	660 U	380 U	380 U	400 U	390 U
Acenaphthene	100000	1000000	450 U	360 U	660 U	380 U	380 U	400 U	390 U
Acenaphthylene	100000	1000000	450 U	360 U	660 U	380 U	380 U	400 U	390 U
Acetophenone			450 U	360 U	660 U	380 U	380 U	400 U	390 U
Anthracene .	100000	1000000	450 U	360 U	230 J	100 J	380 U	90.4 J	390 U
Atrazine			450 U	360 U	660 U	380 U	380 U	400 U	390 U
Benzaldehyde			450 U	360 U	660 U	380 U	380 U	400 U	390 U
Benzo(a)anthracene	1000	11000	450 U	360 U	590 J	220 J	380 U	330 J	390 U
Benzo(a)pyrene	1000	1100	450 U	360 U	520 J	190 J	380 U	250 J	390 U
Benzo(b)fluoranthene	1000	11000	450 U	360 U	680	260 J	380 U	340 J	390 U
Benzo(g,h,i)perylene	100000	1000000	450 U	360 U	320 J	120 J	380 U	140 J	390 U

See next page for Footnotes/Qualifiers

TCL Semivolatile Organic Compounds

TCL Semivolatile Organic Compounds									
		Sample ID	SB-07(12-14)	SB-07(23-25)	SB-08(4-6)	SB-08(6-8)	SB-08(13-15)	GW-01(4-5)	GW-01(13-15)
Sampling Date			3/18/2016	3/18/2016	3/17/2016	3/17/2016	3/17/2016	3/21/2016	3/21/2016
Start Depth (in Feet)			12	23	4	6	13	4	13
End Depth (in Feet)			14	25	6	8	15	5	15
		Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
	NYCRR 6 Part 375								
	Restricted-	Industrial							
	Residential	Use Soil							
	Use Soil Cleanup	Cleanup							
	Objectives (SCO)	Objectives (SCO)							
	ug/kg	ug/kg							
COMPOUNDS CONTINUED									
Benzo(k)fluoranthene	3900	110000	450 U	360 U	300 J	100 J	380 U	180 J	390 U
bis(2-Chloroethoxy)methane			450 U	360 U	660 U	380 U	380 U	400 U	390 U
bis(2-Chloroethyl)ether			450 U	360 U	660 U	380 U	380 U	400 U	390 U
Bis(2-ethylhexyl)phthalate			450 U	360 U	290 J	140 J	380 U	130 J	390 U
Butylbenzylphthalate			450 U	360 U	660 U	380 U	380 U	400 U	390 U
Caprolactam			450 U	360 U	660 U	380 U	380 U	400 U	390 U
Carbazole			450 U	360 U	660 U	380 U	380 U	400 U	390 U
Chrysene	3900	110000	450 U	360 U	630 J	220 J	380 U	280 J	390 U
Dibenzo(a,h)anthracene	330	1100	450 U	360 U	660 U	380 U	380 U	400 U	390 U
Dibenzofuran	59000	1000000	450 U	360 U	660 U	380 U	380 U	400 U	390 U
Diethylphthalate			450 U	360 U	660 U	380 U	380 U	400 U	390 U
Dimethylphthalate			800	600	970	450	750	590 J	660 J
Di-n-butylphthalate			450 U	360 U	660 U	380 U	380 U	400 U	390 U
Di-n-octyl phthalate			450 U	360 U	660 U	380 U	380 U	400 U	390 U
Fluoranthene	100000	1000000	450 U	360 U	1100	410	380 U	430 J	390 U
Fluorene	100000	1000000	450 U	360 U	660 U	380 U	380 U	400 U	390 U
Hexachlorobenzene	1200	12000	450 U	360 U	660 U	380 U	380 U	400 U	390 U
Hexachlorobutadiene			450 U	360 U	660 U	380 U	380 U	400 U	390 U
Hexachlorocyclopentadiene			450 U	360 U	660 U	380 U	380 U	400 U	390 U
Hexachloroethane			450 U	360 U	660 U	380 U	380 U	400 U	390 U
Indeno(1,2,3-cd)pyrene	500	11000	450 U	360 U	240 J	91.5 J	380 U	170 J	390 U
Isophorone			450 U	360 U	660 U	380 U	380 U	400 U	390 U
Naphthalene	100000	1000000	450 U	360 U	300 J	88.9 J	380 U	400 U	390 U
Nitrobenzene	15000	140000	450 U	360 U	660 U	380 U	380 U	400 U	390 U
n-Nitroso-di-n-propylamine			450 U	360 U	660 U	380 U	380 U	400 U	390 U
n-Nitrosodiphenylamine			450 U	360 U	660 U	380 U	380 U	400 U	390 U
Pentachlorophenol	6700	55000	450 U	360 U	660 U	380 U	380 U	400 U	390 U
Phenanthrene	100000	1000000	450 U	360 U	820	340 J	380 U	300 J	390 U
Phenol	100000	1000000	450 U	360 U	660 U	380 U	380 U	400 U	390 U
Pyrene	100000	1000000	450 U	360 U	950	400	380 U	370 J	390 U
Total Semivolatile Compounds			800	600	8230	3130.4	750	3600.4	660
Footnotes/Qualifiers:									

Footnotes/Qualifiers:

ug/kg: Micrograms per kilogram --: No standard

BD: Blind duplicate Exceeded the Industrial Use SCO

U: Analyzed for but not detected
D: Reported from secondary dilution
J: Estimated value or detection limits

Table 3 Long Island Rail Road Arch Street Yard RI Subsurface Soil Samples

TCI Semivolatile Organic Compounds

TCL Semivolatile Organic Compounds										
		Sample ID	GW-01(18-20)	GW-03(3-4)	GW-03(12-14)	GW-03(18-20)	GW-04(2-3)	GW-04(12-14)	GW-04(12-14)BD	GW-04(16-18)
		Sampling Date	3/21/2016	3/21/2016	3/21/2016	3/21/2016	3/23/2016	3/23/2016	3/23/2016	3/23/2016
		tart Depth (in Feet)	18	3	12	18	2	12	12	16
		End Depth (in Feet)	20	4	14	20	3	14	14	18
		Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
	NYCRR 6 Part 375									
	Restricted-	Industrial								
	Residential	Use Soil								
	Use Soil Cleanup	Cleanup								
	Objectives (SCO)	Objectives (SCO)								
	ug/kg	ug/kg								
SEMIVOLATILE COMPOUNDS										
1,1-Biphenyl			370 U	77.7 J	540 U	390 U	370 U	520 U	550 U	370 U
1,2,4,5-Tetrachlorobenzene			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
1,4-Dioxane	13000	250000	370 U	360 U	540 U	390 U	370 UJ	520 UJ	550 UJ	370 UJ
2,2-oxybis(1-Chloropropane)			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
2,3,4,6-Tetrachlorophenol			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
2,4,5-Trichlorophenol			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
2,4,6-Trichlorophenol			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
2,4-Dichlorophenol			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
2,4-Dimethylphenol			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
2,4-Dinitrophenol			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
2,4-Dinitrotoluene			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
2,6-Dinitrotoluene			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
2-Chloronaphthalene			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
2-Chlorophenol			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
2-Methylnaphthalene			370 U	310 J	540 U	390 U	110 J	520 U	550 U	370 U
2-Methylphenol	100000	1000000	370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
2-Nitroaniline			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
2-Nitrophenol			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
3,3-Dichlorobenzidine			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
3+4-Methylphenols	100000	1000000	370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
3-Nitroaniline			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
4,6-Dinitro-2-methylphenol			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
4-Bromophenyl-phenylether			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
4-Chloro-3-methylphenol			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
4-Chloroaniline			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
4-Chlorophenyl-phenylether			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
4-Nitroaniline			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
4-Nitrophenol			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Acenaphthene	100000	1000000	370 U	280 J	540 U	390 U	660 J	520 U	550 U	370 U
Acenaphthylene	100000	1000000	370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Acetophenone			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Anthracene	100000	1000000	370 U	540 J	540 U	390 U	1200 J	520 U	550 U	370 U
Atrazine			370 U	540 J	540 U	390 U	370 U	520 U	550 U	370 U
Benzaldehyde			370 U	360 U	540 U	390 U	370 UJ	520 UJ	550 UJ	370 UJ
Benzo(a)anthracene	1000	11000	370 U	610 J	540 U	390 U	<u>1200 J</u>	520 U	550 U	370 U
Benzo(a)pyrene	1000	1100	370 U	370 J	540 U	390 U	810 J	520 U	550 U	370 U
Benzo(b)fluoranthene	1000	11000	370 U	580 J	540 U	390 U	950 J	520 U	550 U	370 U
Benzo(g,h,i)perylene	100000	1000000	370 U	190 J	540 U	390 U	430 J	520 U	550 U	370 U

See next page for Footnotes/Qualifiers

Table 3 Long Island Rail Road Arch Street Yard RI Subsurface Soil Samples

TCL Semivolatile Organic Compounds

Sample ID GW-01(18-20) GW-03(3-4) GW-03(12-14) GW-03(18-20) GW-04(12-14) GW-04(12-14)										
		Sampling Date	3/21/2016	3/21/2016	3/21/2016	3/21/2016	3/23/2016	3/23/2016	3/23/2016	3/23/2016
		start Depth (in Feet)	18	3	12	18	2	12	12	16
		End Depth (in Feet)	20	4	14	20	3	14	14	18
		Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
	NYCRR 6 Part 375				9.1.9		-9-1-9	9.1.9	9.1.9	
	Restricted-	Industrial								
	Residential	Use Soil								
	Use Soil Cleanup	Cleanup								
	Objectives (SCO)	Objectives (SCO)								
	ug/kg	ug/kg								
COMPOUNDS CONTINUED										
Benzo(k)fluoranthene	3900	110000	370 U	270 J	540 U	390 U	290 J	520 U	550 U	370 U
bis(2-Chloroethoxy)methane			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
bis(2-Chloroethyl)ether			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Bis(2-ethylhexyl)phthalate			370 U	120 J	540 U	390 U	370 U	520 U	550 U	370 U
Butylbenzylphthalate			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Caprolactam			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Carbazole			370 U	360 U	540 U	390 U	410 J	520 U	550 U	370 U
Chrysene	3900	110000	370 U	660 J	540 U	390 U	990 J	520 U	550 U	370 U
Dibenzo(a,h)anthracene	330	1100	370 U	360 U	540 U	390 U	120 J	520 U	550 U	370 U
Dibenzofuran	59000	1000000	370 U	340 J	540 U	390 U	430 J	520 U	550 U	370 U
Diethylphthalate			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Dimethylphthalate			370 J	240 J	440 J	580 J	510 J	960 J	780 J	590 J
Di-n-butylphthalate			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Di-n-octyl phthalate			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Fluoranthene	100000	1000000	370 U	1500 J	540 U	390 U	2000 J	520 U	550 U	370 U
Fluorene	100000	1000000	370 U	230 J	540 U	390 U	690 J	520 U	550 U	370 U
Hexachlorobenzene	1200	12000	370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Hexachlorobutadiene			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Hexachlorocyclopentadiene			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Hexachloroethane			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Indeno(1,2,3-cd)pyrene	500	11000	370 U	270 J	540 U	390 U	<u>600</u> <u>J</u>	520 U	550 U	370 U
Isophorone			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Naphthalene	100000	1000000	370 U	420 J	540 U	390 U	200 J	520 U	550 U	370 U
Nitrobenzene	15000	140000	370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
n-Nitroso-di-n-propylamine			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
n-Nitrosodiphenylamine			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Pentachlorophenol	6700	55000	370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Phenanthrene	100000	1000000	370 U	850 J	540 U	390 U	3000 D	520 U	550 U	370 U
Phenol	100000	1000000	370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Pyrene	100000	1000000	370 U	1000 J	540 U	390 U	2000 J	520 U	550 U	370 U
Total Semivolatile Compounds			370	9397.7	440	580	16600	960	780	590

Footnotes/Qualifiers:

ug/kg: Micrograms per kilogram --: No standard

BD: Blind duplicate Exceeded the Industrial Use SCO

U: Analyzed for but not detected
D: Reported from secondary dilution
J: Estimated value or detection limits

Exceeded the Restricted-Residential Use SCO

		Sample ID Sampling Date Start Depth (in Feet) End Depth (in Feet) Units	12 14	SB-04(3-5) 3/16/2016 3 5	SB-05(10-11) 3/16/2016 10 11 ug/kg	SB-05(10-11) BD 3/16/2016 10 11 ug/kg	SB-06(8-10) 3/17/2016 8 10 ug/kg	SB-07(12-14) 3/18/2016 12 14 ug/kg	SB-09(0-1) 3/18/2016 0 1 ug/kg
	NYCRR 6 Part 375 Restricted- Residential Use Soil Cleanup Objectives (SCO) ug/kg	NYCRR 6 Part 375 Industrial Use Soil Cleanup Objectives (SCO) ug/kg		35.115	<u></u>	.g.,,g	ugg	gg	<u></u>
PCBS Aroclor 1016 Aroclor 1221	1000	25000	21.2 U	20.8 UJ	20.5 U	20.1 UJ	22.3 UJ	23.4 UJ	20 U
	1000	25000	21.2 U	20.8 UJ	20.5 U	20.1 UJ	22.3 UJ	23.4 UJ	20 U
Aroclor 1232	1000	25000	21.2 U	20.8 UJ	20.5 U	20.1 UJ	22.3 UJ	23.4 UJ	20 U
Aroclor 1242	1000	25000	21.2 U	20.8 UJ	20.5 U	20.1 UJ	22.3 UJ	23.4 UJ	20 U
Aroclor 1248	1000	25000	21.2 U	20.8 UJ	20.5 U	20.1 UJ	22.3 UJ	23.4 UJ	20 U
Aroclor 1254	1000	25000	21.2 U	20.8 UJ	20.5 U	20.1 UJ	22.3 UJ	23.4 UJ	20 U
Aroclor 1260	1000	25000	21.2 U	20.8 UJ	20.5 U	20.1 UJ	22.3 UJ	23.4 UJ	20 U
Aroclor-1262	1000	25000	21.2 U	20.8 UJ	20.5 U	20.1 UJ	22.3 UJ	23.4 UJ	20 U
Aroclor-1268	1000	25000	21.2 U	20.8 UJ	20.5 U	20.1 UJ	22.3 UJ	23.4 UJ	20 U
Total PCBs	1000	25000	0	0	0	0	0	0	0

Footnotes/Qualifiers:

ug/kg: Micrograms per kilogram
U: Analyzed for but not detected

BD: Blind duplicate

J: Estimated value or detection limits

Table 4
Long Island Rail Road
Arch Street Yard RI
Subsurface Soil Samples
Polychlorinated Biphenyls (PCBs)

		Sample ID Sampling Date	SB-09(2-3) 3/18/2016	SB-09(4-5) 3/18/2016	SB-09(7-8) 3/18/2016	SB-10(0-1) 3/16/2016	SB-10(2-3) 3/18/2016	SB-10(4-5) 3/18/2016	SB-10(4-5) BD 3/18/2016
		Start Depth (in Feet)		4	7	0	2	4	4
		End Depth (in Feet)	3	5	8	1	3	5	5
		Units	ug/kg						
	NYCRR 6 Part 375	NYCRR 6 Part 375							
	Restricted-	Industrial							
	Residential	Use Soil							
	Use Soil Cleanup	Cleanup							
	Objectives (SCO)	Objectives (SCO)							
	ug/kg	ug/kg							
PCBS									
Aroclor 1016	1000	25000	21.8 U	20.4 UJ	20 U	18.8 U	21.4 UJ	21 U	21.7 U
Aroclor 1221	1000	25000	21.8 U	20.4 UJ	20 U	18.8 U	21.4 UJ	21 U	21.7 U
Aroclor 1232	1000	25000	21.8 U	20.4 UJ	20 U	18.8 U	21.4 UJ	21 U	21.7 U
Aroclor 1242	1000	25000	21.8 U	20.4 UJ	20 U	18.8 U	21.4 UJ	21 U	21.7 U
Aroclor 1248	1000	25000	21.8 U	20.4 UJ	20 U	18.8 U	21.4 UJ	21 U	21.7 U
Aroclor 1254	1000	25000	21.8 U	20.4 UJ	20 U	18.8 U	21.4 UJ	21 U	21.7 U
Aroclor 1260	1000	25000	21.8 U	20.4 UJ	20 U	61.6	21.4 UJ	21 U	21.7 U
Aroclor-1262	1000	25000	21.8 U	20.4 UJ	20 U	18.8 U	21.4 UJ	21 U	21.7 U
Aroclor-1268	1000	25000	21.8 U	20.4 UJ	20 U	18.8 U	21.4 UJ	21 U	21.7 U
Total PCBs	1000	25000	0	0	0	61.6	0	0	0

Footnotes/Qualifiers:

ug/kg: Micrograms per kilogram
U: Analyzed for but not detected

BD: Blind duplicate

J: Estimated value or detection limits

		Sample ID Sampling Date Start Depth (in Feet) End Depth (in Feet)	7	SB-11(0-1) 3/18/2016 0 1	SB-11(2-3) 3/18/2016 2 3	SB-11(4-5) 3/18/2016 4 5	SB-11(7-8) 3/18/2016 7 8	SB-12(0-1) 3/21/2016 0 1	SB-12(2-3) 3/21/2016 2 3
	NV000000000000000000000000000000000000	Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
	NYCRR 6 Part 375 Restricted-	NYCRR 6 Part 375 Industrial							
	Residential	Use Soil							
	Use Soil Cleanup	Cleanup							
	Objectives (SCO)	Objectives (SCO)							
	ug/kg	ug/kg							
PCBS									
Aroclor 1016	1000	25000	20.8 U	21.2 U	21.7 U	21.2 U	44.4 U	19.8 U	21.7 UJ
Aroclor 1221	1000	25000	20.8 U	21.2 U	21.7 U	21.2 U	44.4 U	19.8 U	21.7 UJ
Aroclor 1232	1000	25000	20.8 U	21.2 U	21.7 U	21.2 U	44.4 U	19.8 U	21.7 UJ
Aroclor 1242	1000	25000	20.8 U	21.2 U	21.7 U	21.2 U	44.4 U	19.8 U	21.7 UJ
Aroclor 1248	1000	25000	20.8 U	21.2 U	21.7 U	21.2 U	44.4 U	19.8 U	21.7 UJ
Aroclor 1254	1000	25000	20.8 U	21.2 U	21.7 U	21.2 U	44.4 U	19.8 U	21.7 UJ
Aroclor 1260	1000	25000	20.8 U	21.2 U	21.7 U	21.2 U	44.4 U	19.8 U	21.7 UJ
Aroclor-1262	1000	25000	20.8 U	21.2 U 21.2 U	21.7 U 21.7 U	21.2 U	44.4 U 44.4 U	19.8 U	21.7 UJ
Aroclor-1268	1000	25000	20.8 U	21.2 U	21.7 U	21.2 U	44.4 U	19.8 U	21.7 UJ
Total PCBs	1000	25000	0	0	0	0	0	0	0

Footnotes/Qualifiers:

ug/kg: Micrograms per kilogram
U: Analyzed for but not detected

BD: Blind duplicate

J: Estimated value or detection limits

	Sample ID Sampling Date Start Depth (in Feet) End Depth (in Feet)		5	SB-13(0-1) 3/21/2016 0 1	SB-13(2-3) 3/21/2016 2 3	SB-13(5-6) 3/21/2016 5 6	SB-13(5-6)BD 3/21/2016 5 6	SB-14(0-1) 3/16/2016 0 1	SB-14(2-3) 3/21/2016 2 3
		Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
	NYCRR 6 Part 375 Restricted- Residential Use Soil Cleanup Objectives (SCO) ug/kg	NYCRR 6 Part 375 Industrial Use Soil Cleanup Objectives (SCO) ug/kg							
PCBS									
Aroclor 1016	1000	25000	40.6 UJ	20.2 U	23 UJ	34.5 U	31.1 UJ	18.7 U	19.2 U
Aroclor 1221	1000	25000	40.6 UJ	20.2 U	23 UJ	34.5 U	31.1 UJ	18.7 U	19.2 U
Aroclor 1232	1000	25000	40.6 UJ	20.2 U	23 UJ	34.5 U	31.1 UJ	18.7 U	19.2 U
Aroclor 1242	1000	25000	40.6 UJ	20.2 U	23 UJ	34.5 U	31.1 UJ	18.7 U	19.2 U
Aroclor 1248	1000	25000	40.6 UJ	20.2 U	23 UJ	34.5 U	31.1 UJ	18.7 U	19.2 U
Aroclor 1254	1000	25000	40.6 UJ	32	23 UJ	34.5 U	31.1 UJ	310	19.2 U
Aroclor 1260	1000	25000	40.6 UJ	20.2 U	23 UJ	34.5 U	31.1 UJ	18.7 U	19.2 U
Aroclor-1262	1000	25000	40.6 UJ	20.2 U	23 UJ	34.5 U	31.1 UJ	18.7 U	19.2 U
Aroclor-1268	1000	25000	40.6 UJ	20.2 U	23 UJ	34.5 U	31.1 UJ	18.7 U	19.2 U
Total PCBs	1000	25000	0	32	0	0	0	310	0

Footnotes/Qualifiers:

ug/kg: Micrograms per kilogram
U: Analyzed for but not detected

BD: Blind duplicate

J: Estimated value or detection limits

		Sample ID Sampling Date Start Depth (in Feet) End Depth (in Feet) Units	5 6	SB-15(0-1) 3/18/2016 0 1 ug/kg	SB-15(2-3) 3/18/2016 2 3 ug/kg	SB-15(5-6) 3/18/2016 5 6 ug/kg	SB-16(0-1) 3/18/2016 0 1	SB-16(2-3) 3/18/2016 2 3 ug/kg	SB-16(5-6) 3/18/2016 5 6 ug/kg
	NYCRR 6 Part 375 Restricted- Residential Use Soil Cleanup Objectives (SCO) ug/kg	NYCRR 6 Part 375 Industrial Use Soil Cleanup Objectives (SCO) ug/kg	agring	ugwg	ugwg	ug/ng	ugng	ugng	ug,ng
PCBS Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor-1262	1000 1000 1000 1000 1000 1000 1000	25000 25000 25000 25000 25000 25000 25000 25000	18.8 U 18.8 U 18.8 U 18.8 U 18.8 U 18.8 U 18.8 U	20.1 UJ 20.1 UJ 20.1 UJ 20.1 UJ 20.1 UJ 10 J- 20.1 UJ 20.1 UJ	19.1 U 19.1 U 19.1 U 19.1 U 19.1 U 19.1 U 19.1 U 19.1 U	19.3 U 19.3 U 19.3 U 19.3 U 19.3 U 19.3 U 19.3 U 19.3 U	17.9 U 17.9 U 17.9 U 17.9 U 17.9 U 17.9 U 17.9 U	21 U 21 U 21 U 21 U 21 U 21 U 21 U 21 U	21.1 U 21.1 U 21.1 U 21.1 U 21.1 U 21.1 U 21.1 U 21.1 U
Aroclor-1268 Total PCBs	1000 1000	25000 25000	18.8 U 0	20.1 UJ 10	19.1 U 0	19.3 U 0	17.9 U 0	21 U 0	21.1 U 0

Footnotes/Qualifiers:

ug/kg: Micrograms per kilogram
U: Analyzed for but not detected

BD: Blind duplicate

J: Estimated value or detection limits

		Sample ID Sampling Date Start Depth (in Feet) End Depth (in Feet) Units	0 1	SB-17(2-3) 3/18/2016 2 3	SB-17(5-6) 3/18/2016 5 6	GW-01(13-15) 3/21/2016 13 15	GW-03(12-14) 3/21/2016 12 14	GW-04(12-14) 3/23/2016 12 14	GW-04(12-14)BD 3/23/2016 12 14
	NYCRR 6 Part 375 Restricted- Residential Use Soil Cleanup Objectives (SCO) ug/kg	NYCRR 6 Part 375 Industrial Use Soil Cleanup Objectives (SCO) ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
PCBS Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor-1262	1000 1000 1000 1000 1000 1000 1000	25000 25000 25000 25000 25000 25000 25000	19.5 U 19.5 U 19.5 U 19.5 U 19.5 U 44.4 19.5 U	21.9 UJ 21.9 UJ 21.9 UJ 21.9 UJ 21.9 UJ 21.9 UJ 21.9 UJ	19.5 U 19.5 U 19.5 U 19.5 U 19.5 U 19.5 U 19.5 U	20.2 UJ 20.2 UJ 20.2 UJ 20.2 UJ 20.2 UJ 20.2 UJ 20.2 UJ 20.2 UJ	27.9 UJ 27.9 UJ 27.9 UJ 27.9 UJ 27.9 UJ 27.9 UJ 27.9 UJ	26.9 U 26.9 U 26.9 U 26.9 U 26.9 U 26.9 U 26.9 U	28.6 U 28.6 U 28.6 U 28.6 U 28.6 U 28.6 U 28.6 U
Aroclor-1268 Total PCBs	1000 1000	25000 25000	19.5 U 44.4	21.9 UJ 0	19.5 U 0	20.2 UJ 0	27.9 UJ 0	26.9 U 0	28.6 U 0

Footnotes/Qualifiers:

ug/kg: Micrograms per kilogram
U: Analyzed for but not detected

BD: Blind duplicate

J: Estimated value or detection limits

Table 5
Long Island Rail Road
Arch Street Yard RI
Subsurface Soil Samples
TCL Pesticides

		Sample ID Sampling Date tart Depth (in Feet) End Depth (in Feet) Units	SB-03(12-14) 3/17/2016 12 14 ug/kg	SB-04(3-5) 3/16/2016 3 5 ug/kg	SB-05(10-11) 3/16/2016 10 11 ug/kg	SB-05(10-11) BD 3/16/2016 10 11 ug/kg	SB-06(8-10) 3/17/2016 8 10 ug/kg	SB-07(12-14) 3/18/2016 12 14 ug/kg	GW-01(13-15) 3/21/2016 13 15 ug/kg
	Restricted- Residential Use Soil Cleanup	NYCRR 6 Part 375 Industrial Use Soil Cleanup Objectives (SCO) ug/kg							
PESTICIDES									
4,4-DDD	13000	180000	2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
4,4-DDE	8900	120000	2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
4,4-DDT	7900	94000	2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
Aldrin	97	1400	2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
alpha-BHC	480	6800	2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
alpha-Chlordane	4200	47000	2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
beta-BHC	360	14000	2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
delta-BHC	100000	1000000	2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
Dieldrin	200	2800	2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
Endosulfan I	24000	920000	2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
Endosulfan II	24000	920000	2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
Endosulfan Sulfate	24000	920000	2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
Endrin	11000	410000	2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
Endrin aldehyde			2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
Endrin ketone			2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
gamma-BHC (Lindane)	1300	23000	2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
gamma-Chlordane	4200	47000	2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
Heptachlor	2100	29000	2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
Heptachlor epoxide			2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
Methoxychlor			2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
Toxaphene			21.2 U	20.8 U	20.5 U	20.1 U	22.3 U	23.3 U	20.2 U

Footnotes/Qualifiers:

ug/kg: Micrograms per kilogram
U: Analyzed for but not detected

BD: Blind duplicate
--: No standard

Table 5
Long Island Rail Road
Arch Street Yard RI
Subsurface Soil Samples
TCL Pesticides

		Sample ID	GW-03(12-14)	GW-04(12-14)	GW-04(12-14)BD
		Sampling Date	3/21/2016	3/23/2016	3/23/2016
	Si	art Depth (in Feet)	12	12	12
		ind Depth (in Feet)		14	14
		Units	ug/kg	ug/kg	ug/kg
	NYCRR 6 Part 375	NYCRR 6 Part 375			
	Restricted-	Industrial			
	Residential	Use Soil			
	Use Soil Cleanup	Cleanup			
	Objectives (SCO)	Objectives (SCO)			
	ug/kg	ug/kg			
PESTICIDES					
4,4-DDD	13000	180000	2.8 U	2.7 U	2.9 U
4,4-DDE	8900	120000	2.8 U	2.7 U	2.9 U
4,4-DDT	7900	94000	2.8 U	2.7 U	2.9 U
Aldrin	97	1400	2.8 U	2.7 U	2.9 U
alpha-BHC	480	6800	2.8 U	2.7 U	2.9 U
alpha-Chlordane	4200	47000	2.8 U	2.7 U	2.9 U
beta-BHC	360	14000	2.8 U	2.7 U	2.9 U
delta-BHC	100000	1000000	2.8 U	2.7 U	2.9 U
Dieldrin	200	2800	2.8 U	2.7 U	2.9 U
Endosulfan I	24000	920000	2.8 U	2.7 U	2.9 U
Endosulfan II	24000	920000	2.8 U	2.7 U	2.9 U
Endosulfan Sulfate	24000	920000	2.8 U	2.7 U	2.9 U
Endrin	11000	410000	2.8 U	2.7 U	2.9 U
Endrin aldehyde			2.8 U	2.7 U	2.9 U
Endrin ketone			2.8 U	2.7 U	2.9 U
gamma-BHC (Lindane)	1300	23000	2.8 U	2.7 U	2.9 U
gamma-Chlordane	4200	47000	2.8 U	2.7 U	2.9 U
Heptachlor	2100	29000	2.8 U	2.7 U	2.9 U
Heptachlor epoxide			2.8 U	2.7 U	2.9 U
Methoxychlor			2.8 U	2.7 U	2.9 U
Toxaphene			27.9 U	26.9 U	28.6 U

Footnotes/Qualifiers:

ug/kg: Micrograms per kilogram
U: Analyzed for but not detected

BD: Blind duplicate
--: No standard

Table 6 Long Island Rail Road Arch Street Yard RI Subsurface Soil Samples

TAL Metals

		Sample ID	SB-01(13-15)	SB-01(23-25)	SB-03(12-14)	SB-04(3-5)	SB-05(10-11)	SB-05(10-11)BD	SB-06(8-10)
		Sampling Date		3/16/2016	3/17/2016	3/16/2016	3/16/2016	3/16/2016	3/17/2016
		Start Depth	13	23	12	3	10	10	8
		End Depth Units	15 mg/kg	25 mg/kg	14 mg/kg	5 mg/kg	11 mg/kg	11 mg/kg	10 mg/kg
	NYCRR 6 Part 375	NYCRR 6 Part 375							
	Restricted-	Industrial							
	Residential	Use Soil							
	Use Soil Cleanup	Cleanup							
	Objectives (SCO)	Objectives (SCO)							
	mg/kg	mg/kg ´							
<u>Metals</u>									
Aluminum			14000	4260	9310	2220	7560	8920	3330
Antimony			3.62 UJ	2.3 UJ	2.6 UJ	1.43 J	2.55 UJ	2.53 UJ	2.79 UJ
Arsenic	16	16	9.37	1.21	2.66	8.17	5	2.43	8.7
Barium	400	10000	24.2 J	45.8 J	22.2 J	41.5 J	24.6 J	21.9 J	24.4 J
Beryllium	72	2700	0.982	0.353	0.526	0.72	0.486	0.496	0.611
Cadmium	4.3	60	0.44 U	0.28 U	0.31 U	0.31 U	0.31 U	0.3 U	0.34 U
Calcium			2130	5640	368	9980	1340 J	309 J	5700
Chromium	180	6800	26.3	11	12.5	5.91	16.1	12.6	8.35
Cobalt			12 J	7.16 J	6.09 J	4.71 J	9.18 J	5.74 J	7.27 J
Copper	270	10000	7.81 J	12.5 J	10.7 J	106 J	13.1 J	10.7 J	35.6 J
Iron			32500	14500	16600	51000 D	17400	15500	22800
Lead	400	3900	15.1	4.11	19.5	104	25.4	29.8	<u>483</u>
Magnesium			6010	4330	2480	2350	3790	2430	1420
Manganese	2000	10000	409	262	121	302	163	102	377
Mercury	0.81	5.7	0.206 J	0.033 J	0.039 J	0.135 J	0.047 J	0.161 J	0.199 J
Nickel	310	10000	26.7	11.7	13.8	12.7	14.2	13.4	14.1
Potassium			2730 J	1810 J	524 J	199 J	827 J	504 J	366 J
Selenium	180	6800	1.45 U	0.92 U	1.04 U	1.03 U	1.02 U	1.01 U	1.12 U
Silver	180	6800	0.73 U	0.46 U	0.52 U	0.52 U	0.51 U	0.51 U	0.56 U
Sodium			19000 J	2200 J	1390 J	208 J	2400 J	1290 J	428 J
Thallium			2.9 U	1.84 U	2.08 U	2.06 U	2.04 U	2.02 U	2.23 U
Vanadium			32.5	18.5	16.2	12.9	22.8	15.1	11.8
Zinc	10000	10000	77.1 J	31 J	42.1 J	135 J	42.5 J	40.4 J	36.5 J

Footnotes/Qualifiers:

mg/kg: Milligrams per kilogram

- U: Analyzed for but not detected
- D: Detected in the secondary dilution
- J: Estimated value or detection limits
- --: No standard or not analyzed

Exceeded the Restricted-Residential Use SCO

Table 6 Long Island Rail Road Arch Street Yard RI Subsurface Soil Samples

TAL Metals

		Sample ID	SB-07(12-14)	GW-01(13-15)	GW-03(12-14)	GW-04(12-14)	GW-04(12-14)BD
		Sampling Date		3/21/2016	3/21/2016	3/23/2016	3/23/2016
		Start Depth		13	12	12	12
		End Depth	14	15	14	14	14
		Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	NYCRR 6 Part 375	NYCRR 6 Part 375					
	Restricted-	Industrial					
	Residential	Use Soil					
	Use Soil Cleanup	Cleanup					
	Objectives (SCO)	Objectives (SCO)					
	mg/kg	mg/kg					
<u>Metals</u>							
Aluminum			11000	6940	13900	11800	12000
Antimony			2.93 UJ	2.51 UJ	3.48 UJ	3.26 UJ	3.46 UJ
Arsenic	16	16	5.87	2.79	9.47	4.86	5.73
Barium	400	10000	32.3 J	22 J	24.4 J	136 J	119 J
Beryllium	72	2700	0.573	0.453	0.983	0.708	0.704
Cadmium	4.3	60	0.751	0.3 U	0.141 J	0.795	1.02
Calcium			2040 J	821	2880	696	733
Chromium	180	6800	18.8 J	10.3	24.9	23.5 J	26.1 J
Cobalt			9.91	6.67	12.5	9.7	15.5
Copper	270	10000	17.9 J	8.72	5.27	8.05 J	10.3 J
Iron			22600	15800	35700	27300	23900
Lead	400	3900	37.8	13	14.5	11.9	12
Magnesium			3400 J	2220	5610	3070 J	3290 J
Manganese	2000	10000	262 J	211 J	433 J	293 J	290 J
Mercury	0.81	5.7	<u>0.949</u> <u>DJ</u>	0.052	0.159	0.015 J	0.03
Nickel	310	10000	19.2	12.1	27.8	17	19.5
Potassium			1440	511	2530	1900	2010
Selenium	180	6800	1.17 U	1 U	1.39 U	1.3 U	1.39 U
Silver	180	6800	2.61	0.5 UJ	0.7 UJ	3.11	2.72
Sodium			6990	1700	13600	3930	4170
Thallium			2.34 U	2.01 U	2.78 U	2.61 U	2.77 U
Vanadium			24	14.9	32	27.8	28.5
Zinc	10000	10000	62.7	35.5	76.5	54.2	59.7

Footnotes/Qualifiers:

mg/kg: Milligrams per kilogram

- U: Analyzed for but not detected
- D: Detected in the secondary dilution
- J: Estimated value or detection limits
- --: No standard or not analyzed

Exceeded the Restricted-Residential Use SCO

TCL Volatile Organic Compounds

Sample ID	GW-01S	GW-02S	GW-02D	GW-03	NYSDEC Class GA
Sampling Date		4/7/2016	4/7/2016	4/7/2016	Standard
					or Guidance Value
Units	ug/l	ug/l	ug/l	ug/l	ug/l
VOLATILE COMPOUNDS					
1,1,1-Trichloroethane	1 U	1 U	1 U	1 U	5
1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	1 U	5
1,1,2-Trichloroethane	1 U	1 U	1 U	1 U	1
1,1,2-Trichlorotrifluoroethane	1 U	1 U	1 U	1 U	5
1,1-Dichloroethane	1 U	1 U	1 U	1 U	5
1,1-Dichloroethene	1 U	3.9	<u>23.6</u>	1 U	5
1,2,3-Trichlorobenzene	1 U	1 U	1 U	1 U	5
1,2,4-Trichlorobenzene	1 U	1 U	1 U	1 U	5
1,2-Dibromo-3-Chloropropane	1 U	1 U	1 U	1 U	0.04
1,2-Dibromoethane	1 U	1 U	1 U	1 U	0.0006
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	3
1,2-Dichloroethane	1 U	1 U	1 U	1 U	0.6
1,2-Dichloropropane	1 U	1 U	1 U	1 U	1
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	3
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	3
2-Hexanone	5 U	5 U	5 U	5 U	50
Acetone	5 U	2.9 J	4.8 J	5 U	50
Benzene	1 U	1 U	0.38 J	1 U	1
Bromochloromethane	1 U	1 U	1 U	1 U	5
Bromodichloromethane	1 U	1 U	1 U	1 U	50
Bromoform	1 U	1 U	1 U	1 U	50
Bromomethane	1 U	1 U	1 U	1 U	5
Carbon Disulfide	1 U	1 U	1 U	1 U	60
Carbon Tetrachloride	1 U	1 U	1 U	1 U	5
Chlorobenzene Chloroethane	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	5 5
Chloroethane Chloroform	1 U	1 U	1 U	1 U	5 7
Chloromethane	1 U	1 U	1 U	1 U	, 5
Cis-1,2-Dichloroethylene	1 U	1700 D	8100 D	1 U	5
Cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	0.4
Cyclohexane	1 U	1 U	1 U	1 U	
Dibromochloromethane	1 U	1 U	1 U	1 U	50
Dichlorodifluoromethane	1 U	1 U	1 U	1 U	5
Ethylbenzene	1 U	1 U	1 U	1 U	5
Isopropylbenzene	1 U	1 U	1 U	1 U	5
m,p-Xylene	2 U	2 U	2 U	2 U	5
Methyl Ethyl Ketone	5 U	5 U	5 U	5 U	50
Methyl Isobutyl Ketone	5 U	5 U	5 U	5 U	
Methylene Chloride	1 U	1 U	1 U	1 U	5
Methyl Acetate	1 U	1 U	1 U	1 U	
Methylcyclohexane	1 U	1 U	1 U	1 U	
O-Xylene	1 U	1 U	1 U	1 U	5
Styrene	1 U	1 U	1 U	1 U	5
Tert-Butyl Methyl Ether	2.2	1 U	1 U	0.36 J	10
Tetrachloroethylene	1 U	<u>69.4</u> <u>J</u>	<u>5900</u> <u>DJ</u>	1 U	5
Toluene	1 U	1 U	0.38 J	1 U	5
Trans-1,2-Dichloroethene	1 U	<u>27.5</u>	<u>68.7</u>	1 U	5
Trans-1,3-Dichloropropene	1 U	1 U	1 U	1 U	0.4
Trichloroethylene	1 U	<u>25.3</u>	<u>1400</u> <u>D</u>	1 U	5
Trichlorofluoromethane	1 U	1 U	1 U	1 U	5
Vinyl Chloride	1 U	<u>1500</u> <u>D</u>	<u>5300</u> <u>D</u>	1 U	2
Total Volatile Compounds	2.2	3329	20798	0.36	

Footnotes/Qualifiers:

- ug/l: Micrograms per liter
 - --: No standard
- U: Analyzed for but not detected
- D: Detected in the secondary dilution
- J: Estimated value
- BD: Blind duplicate

TCL Volatile Organic Compounds

Sample ID	GW-04S	GW-04D	MW-1	MW-1 BD	NYSDEC Class GA
Sampling Date	4/7/2016	4/7/2016	4/7/2016	4/7/2016	Standard
					or Guidance Value
Units	ug/l	ug/l	ug/l	ug/l	ug/l
VOLATILE COMPOUNDS					
1,1,1-Trichloroethane	1 U	1 U	1 U	1 U	5
1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	1 U	5
1,1,2-Trichloroethane	1 U	1 U	1 U	1 U	1
1,1,2-Trichlorotrifluoroethane	1 U	1 U	1 U	1 U	5
1,1-Dichloroethane	1 U	1 U	1 U	1 U	5
1,1-Dichloroethene	1 U	1 U	1 U	1 U	5
1,2,3-Trichlorobenzene	1 U	1 U	1 U	1 U	5
1,2,4-Trichlorobenzene	1 U	1 U	1 U	1 U	5
1,2-Dibromo-3-Chloropropane	1 U	1 U	1 U	1 U	0.04
1,2-Dibromoethane	1 U	1 U	1 U	1 U	0.0006
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	3
1,2-Dichloroethane	1 U	1 U	1 U	1 U	0.6
1,2-Dichloropropane 1,3-Dichlorobenzene	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 3
1,3-Dichioropenzene 1.4-Dichiorobenzene	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	3
1,4-Dichioropenzene 2-Hexanone	1 U 5 U	1 U 5 U	1 U 5 U	1 U 5 U	3 50
2-Hexanone Acetone	5 U	5 U	5 U 5 U	5 U 5 U	50 50
Benzene	5 U 1 U	5 U 1 U	5 U 1 U	5 U 1 U	50 1
Bromochloromethane	1 U	1 U	1 U	1 U	5
Bromodichloromethane	1 U	1 U	1 U	1 U	5 50
Bromoform	1 U	1 U	1 U	1 U	50 50
Bromomethane	1 U	1 U	1 U	1 U	50 5
Carbon Disulfide	1 U	1 U	1 U	1 U	60
Carbon Tetrachloride	1 U	1 U	1 U	1 U	5
Chlorobenzene	1 U	1 U	1 U	1 U	5
Chloroethane	1 U	1 U	1 U	1 U	5
Chloroform	1 U	1 U	1 U	1 U	7
Chloromethane	1 U	1 U	1 U	1 U	5
Cis-1,2-Dichloroethylene	1 U	1 U	1 U	1 U	5
Cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	0.4
Cyclohexane	1 U	1 U	1 U	1 U	
Dibromochloromethane	1 U	1 U	1 U	1 U	50
Dichlorodifluoromethane	1 U	1 U	1 U	1 U	5
Ethylbenzene	1 U	1 U	1 U	1 U	5
Isopropylbenzene	1 U	1 U	1 U	1 U	5
m,p-Xylene	2 U	2 U	2 U	2 U	5
Methyl Ethyl Ketone	5 U	5 U	5 U	5 U	50
Methyl Isobutyl Ketone	5 U	5 U	5 U	5 U	
Methylene Chloride	1 U	1 U	1 U	1 U	5
Methyl Acetate	1 U	1 U	1 U	1 U	
Methylcyclohexane	1 U	1 U	1 U	1 U	
O-Xylene	1 U	1 U	1 U	1 U	5
Styrene	1 U	1 U	1 U	1 U	5
Tert-Butyl Methyl Ether	1.7	4	<u>26.2</u>	<u>29.5</u>	10
Tetrachloroethylene	1 U	1 U	1 U	1 U	5
Toluene	1 U	0.24 J	1 U	1 U	5
Trans-1,2-Dichloroethene	1 U	1 U	1 U	1 U	5
Trans-1,3-Dichloropropene	1 U	1 U	1 U	1 U	0.4
Trichloroethylene	1 U	1 U	1 U	1 U	5
Trichlorofluoromethane	1 U	1 U	1 U	1 U	5
Vinyl Chloride	0.37 J	1 U	1 U	1 U	2
Total Volatile Compounds	2.07	4.24	26.2	29.5	

Footnotes/Qualifiers:

- ug/l: Micrograms per liter
- --: No standard
- U: Analyzed for but not detected
- D: Detected in the secondary dilution
- J: Estimated value
- BD: Blind duplicate

TCL Volatile Organic Compounds

Sample ID	MW-2	MW-3	TRIP BLANK	TRIP BLANK	NYSDEC Class GA
Sampling Date	4/7/2016	4/7/2016	3/18/2016	3/23/2016	Standard
					or Guidance Value
Units	ug/l	ug/l	ug/l	ug/l	ug/l
VOLATILE COMPOUNDS					
1,1,1-Trichloroethane	1 U	1 U	1 U	1 U	5
1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	1 U	5
1,1,2-Trichloroethane	1 U	1 U	1 U	1 U	1
1,1,2-Trichlorotrifluoroethane	1 U	1 U	1 U	1 U	5
1,1-Dichloroethane	1 U	1 U	1 U	1 U	5
1,1-Dichloroethene	1 U	3.2	1 U	1 U	5
1,2,3-Trichlorobenzene	1 U	1 U	1 U	1 U	5
1,2,4-Trichlorobenzene	1 U	1 U	1 U	1 U	5
1,2-Dibromo-3-Chloropropane	1 U	1 U	1 U	1 U	0.04
1,2-Dibromoethane	1 U	1 U	1 U	1 U	0.0006
1,2-Dichlorobenzene	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	3 0.6
1,2-Dichloroethane 1,2-Dichloropropane	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	0.6 1
1,3-Dichloropropane	1 U	1 U	1 U	1 U	3
1.4-Dichlorobenzene	1 U	1 U	1 U	1 U	3
2-Hexanone	5 U	5 U	5 U	5 U	50
Acetone	4.1 J	1.9 J	5 U	5 U	50 50
Benzene	1 U	1 U	1 U	1 U	1
Bromochloromethane	1 U	1 U	1 U	1 U	5
Bromodichloromethane	1 U	1 U	1 U	1 U	50
Bromoform	1 U	1 U	1 U	1 U	50
Bromomethane	1 U	1 U	1 U	1 U	5
Carbon Disulfide	1.6	1 U	1 U	1 U	60
Carbon Tetrachloride	1 U	1 U	1 U	1 U	5
Chlorobenzene	1 U	1 U	1 U	1 U	5
Chloroethane	1 U	1 U	1 U	1 U	5
Chloroform	1 U	1 U	1 U	1 U	7
Chloromethane	1 U	1 U	1 U	1 U	5
Cis-1,2-Dichloroethylene	1 U	<u>510</u> <u>D</u>	1 U	1 U	5
Cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	0.4
Cyclohexane Dibromochloromethane	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	
Dichlorodifluoromethane	1 U	1 U	1 U	1 U	50 5
Ethylbenzene	1 U	1 U	1 U	1 U	5
Isopropylbenzene	1 U	1 U	1 U	1 U	5
m,p-Xylene	2 U	2 U	2 U	2 U	5
Methyl Ethyl Ketone	5 U	5 U	5 U	5 U	50
Methyl Isobutyl Ketone	5 U	5 U	5 U	5 U	
Methylene Chloride	1 U	1 U	1 U	1 U	5
Methyl Acetate	1 U	1 U	1 U	1 U	
Methylcyclohexane	1 U	1 U	1 U	1 U	
O-Xylene	1 U	1 U	1 U	1 U	5
Styrene	1 U	1 U	1 U	1 U	5
Tert-Butyl Methyl Ether	0.54 J	0.74 J	1 U	1 U	10
Tetrachloroethylene	0.5 J	<u>78.9</u> <u>J</u>	1 U	1 U	5
Toluene	1 U	1 U	1 U	1 U	5
Trans-1,2-Dichloroethene	1 U 1 U	2 1 U	1 U 1 U	1 U 1 U	5
Trans-1,3-Dichloropropene Trichloroethylene	1 U	34.8	1 U	1 U	0.4 5
Trichlorofluoromethane	1 U	<u>34.6</u> 1 U	1 U	1 U	5 5
Vinyl Chloride	0.31 J	240 D	1 U	1 U	2
					_
Total Volatile Compounds	7.05	872	0	0	

Footnotes/Qualifiers:

- ug/l: Micrograms per liter
- --: No standard
- U: Analyzed for but not detected
- D: Detected in the secondary dilution
- J: Estimated value
- BD: Blind duplicate

TCL Volatile Organic Compounds

Sample ID	TRIP BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	NYSDEC Class GA
Sample ID Sampling Date	4/7/2016	3/18/2016	3/23/2016	4/7/2016	Standard
Sampling Date	4///2016	3/10/2010	3/23/2016	4///2016	or Guidance Value
Units	ug/l	ug/l	ug/l	ug/l	ug/l
VOLATILE COMPOUNDS		. 3			. 3
1,1,1-Trichloroethane	1 U	1 U	1 U	1 U	5
1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	1 U	5
1,1,2-Trichloroethane	1 U	1 U	1 U	1 U	1
1,1,2-Trichlorotrifluoroethane	1 U	1 U	1 U	1 U	5
1,1-Dichloroethane	1 U	1 U	1 U	1 U	5
1,1-Dichloroethene	1 U	1 U	1 U	1 U	5
1,2,3-Trichlorobenzene	1 U	1 U	1 U	1 U	5
1,2,4-Trichlorobenzene	1 U	1 U	1 U	1 U	5
1,2-Dibromo-3-Chloropropane	1 U	1 U	1 U	1 U	0.04
1,2-Dibromoethane	1 U	1 U	1 U	1 U	0.0006
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	3
1,2-Dichloroethane	1 U	1 U	1 U	1 U	0.6
1,2-Dichloropropane	1 U	1 U	1 U	1 U	1
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	3
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	3
2-Hexanone	5 U	5 U	5 U	5 U	50
Acetone	5 U	5 U	5 U	5 U	50
Benzene	1 U	1 U	1 U	1 U	1
Bromochloromethane	1 U	1 U	1 U	1 U	5
Bromodichloromethane	1 U	1 U	1 U	1 U	50
Bromoform	1 U	1 U	1 U	1 U	50
Bromomethane	1 U	1 U	1 U	1 U	5
Carbon Disulfide	1 U	1 U	1 U	1 U	60
Carbon Tetrachloride	1 U	1 U	1 U	1 U	5
Chlorobenzene	1 U	1 U	1 U	1 U	5
Chloroethane	1 U	1 U	1 U	1 U	5
Chloroform	1 U	1 U	1 U	1 U	7
Chloromethane	1 U	1 U	1 U	1 U	5
Cis-1,2-Dichloroethylene	1 U	1 U	1 U	1 U	5
Cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	0.4
Cyclohexane	1 U	1 U	1 U	1 U	
Dibromochloromethane	1 U	1 U	1 U	1 U	50
Dichlorodifluoromethane	1 U	1 U	1 U	1 U	5
Ethylbenzene	1 U	1 U	1 U	1 U	5
Isopropylbenzene	1 U	1 U	1 U	1 U	5
m,p-Xylene	2 U	2 U	2 U	2 U	5
Methyl Ethyl Ketone	5 U	5 U	5 U	5 U	50
Methyl Isobutyl Ketone	5 U	5 U	5 U	5 U	
Methylene Chloride	1 U	1.8	1 U	1 U	5
Methyl Acetate	1 U	1 U	1 U	1 U	
Methylcyclohexane	1 U	1 U	1 U	1 U	
O-Xylene	1 U	1 U	1 U	1 U	5
Styrene	1 U	1 U	1 U	1 U	5
Tert-Butyl Methyl Ether	1 U	1 U	1 U	1 U	10
Tetrachloroethylene	1 U	1 U	1 U	1 U	5
Toluene	1 U	1 U	1 U	1 U	5
Trans-1,2-Dichloroethene	1 U	1 U	1 U	1 U	5
Trans-1,3-Dichloropropene	1 U	1 U	1 U	1 U	0.4
Trichloroethylene	1 U	1 U	1 U	1 U	5
Trichlorofluoromethane	1 U	1 U	1 U	1 U	5
Vinyl Chloride	1 U	1 U	1 U	1 U	2
Total Volatile Compounds	0	1.8	0	0	

Footnotes/Qualifiers:

- ug/l: Micrograms per liter
- --: No standard
- U: Analyzed for but not detected
- D: Detected in the secondary dilution
- J: Estimated value
- BD: Blind duplicate

TCL Semivolatile Organic Compounds

Sample ID	GW-01	GW-02S	GW-02D	GW-03	NYSDEC Class GA
Sampling Date	4/7/2016	4/7/2016	4/7/2016	4/7/2016	Standard or Guidance Value
Units	ug/l	ug/l	ug/l	ug/l	ug/l
SEMIVOLATILE COMPOUNDS					
1,2,4,5-Tetrachlorobenzene	10.1 UJ	10 U	10.1 U	10.2 U	5
1,4-Dioxane	10.1 UJ	10 UJ	10.1 UJ	10.2 UJ	
2,3,4,6-Tetrachlorophenol	10.1 UJ	10 U	10.1 U	10.2 U	
2,4,5-Trichlorophenol	10.1 UJ	10 U	10.1 U	10.2 U	1
2,4,6-Trichlorophenol	10.1 UJ	10 U	10.1 U	10.2 U	1
2,4-Dichlorophenol	10.1 UJ	10 U	10.1 U	10.2 U	5
2,4-Dimethylphenol 2,4-Dinitrophenol	10.1 UJ 10.1 UJ	10 U	10.1 U 10.1 U	10.2 U	50 10
2,4-Dinitrophenoi 2,4-Dinitrotoluene	10.1 UJ	10 U 10 U	10.1 U	10.2 U 10.2 U	5
2,4-Dinitrotoluene 2,6-Dinitrotoluene	10.1 UJ	10 U	10.1 U	10.2 U	5
2,6-Dillitrotoluene 2-Chloronaphthalene	10.1 UJ	10 U	10.1 U	10.2 U	10
2-Chlorophenol	10.1 UJ	10 U	10.1 U	10.2 U	10
2-Methylnaphthalene	10.1 UJ	10 U	10.1 U	10.2 U	
2-Methylphenol	10.1 UJ	10 U	10.1 U	10.2 U	1
2-Nitroaniline	10.1 UJ	10 U	10.1 U	10.2 U	5
2-Nitrophenol	10.1 UJ	10 U	10.1 U	10.2 U	1
3,3-Dichlorobenzidine	10.1 UJ	10 U	10.1 U	10.2 U	5
3-Nitroaniline	10.1 UJ	10 U	10.1 U	10.2 U	5
3+4-Methylphenols	10.1 UJ	10 UJ	10.1 UJ	10.2 UJ	1
4,6-Dinitro-2-methylphenol	10.1 UJ	10 U	10.1 U	10.2 U	1
4-Bromophenyl-phenylether	10.1 UJ	10 U	10.1 U	10.2 U	
4-Chloro-3-methylphenol	10.1 UJ	10 U	10.1 U	10.2 U	1
4-Chloroaniline	10.1 UJ	10 U	10.1 U	10.2 U	5
4-Chlorophenylphenyl ether	10.1 UJ	10 U	10.1 U	10.2 U	
4-Nitroaniline	10.1 UJ	10 U	10.1 U	10.2 U	5
4-Nitrophenol	10.1 UJ	10 U	10.1 U	10.2 U	1
Acenaphthene	10.1 UJ	10 U	10.1 U	10.2 U	20
Acenaphthylene	10.1 UJ	10 U	10.1 U	10.2 U	
Acetophenone	10.1 UJ	10 U	10.1 U	10.2 U	
Anthracene	10.1 UJ	10 U	10.1 U	10.2 U	50
Atrazine	10.1 UJ	10 U	10.1 U	10.2 U	7.5
Benzaldehyde	10.1 UJ	10 U	10.1 U	10.2 U	
Benzo(a)anthracene	10.1 UJ	10 U	10.1 U	10.2 U	0.002
Benzo(a)pyrene	10.1 UJ	10 U	10.1 U	10.2 U	ND
Benzo(b)fluoranthene	10.1 UJ	10 U	10.1 U	10.2 U	0.002
Benzo(ghi)perylene	10.1 UJ	10 U	10.1 U	10.2 U	
Benzo(k)fluoranthene	10.1 UJ	10 U	10.1 U	10.2 U	0.002
Benzyl butyl phthalate	10.1 UJ	10 U	10.1 U	10.2 U	50
Biphenyl	10.1 UJ	10 U	10.1 U	10.2 U	5
Bis(2-chloroethoxy)methane	10.1 UJ	10 U	10.1 U	10.2 U	5
Bis(2-chloroethyl)ether	10.1 UJ	10 U	10.1 U	10.2 U	1
Bis(2-chloroisopropyl)ether	10.1 UJ	10 U	10.1 U	10.2 U	
Bis(2-ethylhexyl)phthalate (BEHP)	10.1 UJ	10 U	10.1 U	10.2 U	5
Caprolactam	10.1 UJ	10 U	10.1 U	10.2 U	
Carbazole	10.1 UJ	10 U	10.1 U	10.2 U	
Chrysene	10.1 UJ	10 U	10.1 U	10.2 U	0.002
Dibenzo(a,h)anthracene Dibenzofuran	10.1 UJ	10 U	10.1 U	10.2 U	
Dienzoturan Diethyl phthalate	10.1 UJ 10.1 UJ	10 U 10 U	10.1 U 10.1 U	10.2 U 10.2 U	 50
Dimethyl phthalate	10.1 UJ 15.3 J-	10 U	4.9 J		50 50
Di-n-butyl phthalate	15.3 J- 10.1 UJ	10 U	4.9 J 10.1 U	2.6 J 10.2 U	50 50
Di-n-octyl phthalate	10.1 UJ	10 U	10.1 U	10.2 U	50
Fluoranthene	10.1 UJ	10 U	10.1 U	10.2 U	50
Fluorene	10.1 UJ	10 U	10.1 U	10.2 U	50
Hexachlorobenzene	10.1 UJ	10 U	10.1 U	10.2 U	0.04

See next page for Footnotes/Qualifers.

TCL Semivolatile Organic Compounds

Sample ID Sampling Date	GW-01 4/7/2016	GW-02S 4/7/2016	GW-02D 4/7/2016	GW-03 4/7/2016	NYSDEC Class GA Standard or Guidance Value
Units	ug/l	ug/l	ug/l	ug/l	ug/l
COMPOUNDS CONTINUED					
Hexachlorobutadiene	10.1 UJ	10 U	10.1 U	10.2 U	0.5
Hexachlorocyclopentadiene	10.1 UJ	10 U	10.1 U	10.2 U	5
Hexachloroethane	10.1 UJ	10 U	10.1 U	10.2 U	5
Indeno(1,2,3-cd)pyrene	10.1 UJ	10 U	10.1 U	10.2 U	0.002
Isophorone	10.1 UJ	10 U	10.1 U	10.2 U	50
Naphthalene	10.1 UJ	10 U	10.1 U	4.5 J	10
Nitrobenzene	10.1 UJ	10 U	10.1 U	10.2 U	0.4
N-Nitroso-di-n-propylamine	10.1 UJ	10 U	10.1 U	10.2 U	
N-Nitrosodiphenylamine	10.1 UJ	10 U	10.1 U	10.2 U	50
Pentachlorophenol	10.1 UJ	10 U	10.1 U	10.2 U	1
Phenanthrene	10.1 UJ	10 U	10.1 U	10.2 U	50
Phenol	10.1 UJ	10 U	10.1 U	10.2 U	1
Pyrene	10.1 UJ	10 U	10.1 U	10.2 U	50
Total Semivolatile Compounds	15.3	0	4.9	7.1	

Footnotes/Qualifiers:

ug/l: Micrograms per liter

--: No standard

U: Analyzed for but not detected

J: Estimated value

J-: Estimated bias low

BD: Blind duplicate

TCL Semivolatile Organic Compounds

Sample ID	GW-04S	GW-04D	MW-1	MW-1 BD	NYSDEC Class GA
Sampling Date	4/7/2016	4/7/2016	4/7/2016	4/7/2016	Standard
					or Guidance Value
Units	ug/l	ug/l	ug/l	ug/l	ug/l
SEMIVOLATILE COMPOUNDS	40.0.11	40.4.11	10.1 U	40.0.11	_
1,2,4,5-Tetrachlorobenzene 1,4-Dioxane	10.2 U 10.2 UJ	10.1 U 10.1 UJ	10.1 U 10.1 UJ	10.3 U 10.3 UJ	5
2,3,4,6-Tetrachlorophenol	10.2 U 10.2 U	10.1 UJ 10.1 U	10.1 UJ 10.1 U	10.3 U	
2,4,5-Trichlorophenol	10.2 U	10.1 U	10.1 U	10.3 U	1
2,4,6-Trichlorophenol	10.2 U	10.1 U	10.1 U	10.3 U	1
2,4-Dichlorophenol	10.2 U	10.1 U	10.1 U	10.3 U	5
2,4-Dimethylphenol	10.2 U	10.1 U	10.1 U	10.3 U	50
2,4-Dinitrophenol	10.2 U	10.1 U	10.1 U	10.3 U	10
2,4-Dinitrotoluene	10.2 U	10.1 U	10.1 U	10.3 U	5
2,6-Dinitrotoluene	10.2 U	10.1 U	10.1 U	10.3 U	5
2-Chloronaphthalene	10.2 U	10.1 U	10.1 U	10.3 U	10
2-Chlorophenol	10.2 U	10.1 U	10.1 U	10.3 U	1
2-Methylnaphthalene	10.2 U	10.1 U	10.1 U	10.3 U	
2-Methylphenol	10.2 U	10.1 U	10.1 U	10.3 U	1
2-Nitroaniline	10.2 U	10.1 U	10.1 U	10.3 U	5
2-Nitrophenol	10.2 U	10.1 U	10.1 U	10.3 U	1
3,3-Dichlorobenzidine	10.2 U	10.1 U	10.1 U	10.3 U	5
3-Nitroaniline	10.2 U	10.1 U	10.1 U	10.3 U	5
3+4-Methylphenols	10.2 UJ	10.1 UJ	10.1 UJ	10.3 UJ	1
4,6-Dinitro-2-methylphenol	10.2 U	10.1 U	10.1 U	10.3 U	1
4-Bromophenyl-phenylether	10.2 U	10.1 U	10.1 U	10.3 U	-
4-Chloro-3-methylphenol	10.2 U	10.1 U	10.1 U	10.3 U	1
4-Chloroaniline	10.2 U	10.1 U	10.1 U	10.3 U	5
4-Chlorophenylphenyl ether 4-Nitroaniline	10.2 U	10.1 U	10.1 U	10.3 U	
	10.2 U 10.2 U	10.1 U 10.1 U	10.1 U 10.1 U	10.3 U 10.3 U	5 1
4-Nitrophenol Acenaphthene	10.2 U	10.1 U	10.1 U	10.3 U	20
Acenaphthele Acenaphthylene	10.2 U	10.1 U	10.1 U	10.3 U	20
Acetophenone	10.2 U	10.1 U	10.1 U	10.3 U	
Anthracene	10.2 U	10.1 U	10.1 U	10.3 U	50
Atrazine	10.2 U	10.1 U	10.1 U	10.3 U	7.5
Benzaldehyde	10.2 U	10.1 U	10.1 U	10.3 U	
Benzo(a)anthracene	10.2 U	10.1 U	10.1 U	10.3 U	0.002
Benzo(a)pyrene	10.2 U	10.1 U	10.1 U	10.3 U	ND
Benzo(b)fluoranthene	10.2 U	10.1 U	10.1 U	10.3 U	0.002
Benzo(ghi)perylene	10.2 U	10.1 U	10.1 U	10.3 U	
Benzo(k)fluoranthene	10.2 U	10.1 U	10.1 U	10.3 U	0.002
Benzyl butyl phthalate	10.2 U	10.1 U	10.1 U	10.3 U	50
Biphenyl	10.2 U	10.1 U	10.1 U	10.3 U	5
Bis(2-chloroethoxy)methane	10.2 U	10.1 U	10.1 U	10.3 U	5
Bis(2-chloroethyl)ether	10.2 U	10.1 U	10.1 U	10.3 U	1
Bis(2-chloroisopropyl)ether	10.2 U	10.1 U	10.1 U	10.3 U	
Bis(2-ethylhexyl)phthalate (BEHP)	10.2 U	10.1 U	10.1 U	10.3 U	5
Carpolactam	10.2 U	10.1 U	10.1 U	10.3 U	
Carbazole Chrysene	10.2 U 10.2 U	10.1 U 10.1 U	10.1 U 10.1 U	10.3 U	0.002
Dibenzo(a,h)anthracene	10.2 U 10.2 U	10.1 U	10.1 U	10.3 U 10.3 U	0.002
Dibenzofuran	10.2 U	10.1 U	10.1 U	10.3 U	
Diethyl phthalate	10.2 U	10.1 U	10.1 U	10.3 U	50
Dimethyl phthalate	10.2 U	2.9 J	10.1 U	10.3 U	50
Di-n-butyl phthalate	10.2 U	10.1 U	10.1 U	10.3 U	50
Di-n-octyl phthalate	10.2 U	10.1 U	10.1 U	10.3 U	50
Fluoranthene	10.2 U	10.1 U	10.1 U	10.3 U	50
Fluorene	10.2 U	10.1 U	10.1 U	10.3 U	50
Hexachlorobenzene	10.2 U	10.1 U	10.1 U	10.3 U	0.04
Con next nego for Eastnetes/Qualifora					

See next page for Footnotes/Qualifers.

TCL Semivolatile Organic Compounds

Sample ID Sampling Date	GW-04S 4/7/2016	GW-04D 4/7/2016	MW-1 4/7/2016	MW-1 BD 4/7/2016	NYSDEC Class GA Standard or Guidance Value
Units	ug/l	ug/l	ug/l	ug/l	ug/l
COMPOUNDS CONTINUED					
Hexachlorobutadiene	10.2 U	10.1 U	10.1 U	10.3 U	0.5
Hexachlorocyclopentadiene	10.2 U	10.1 U	10.1 U	10.3 U	5
Hexachloroethane	10.2 U	10.1 U	10.1 U	10.3 U	5
Indeno(1,2,3-cd)pyrene	10.2 U	10.1 U	10.1 U	10.3 U	0.002
Isophorone	10.2 U	10.1 U	10.1 U	10.3 U	50
Naphthalene	10.2 U	10.1 U	10.1 U	10.3 U	10
Nitrobenzene	10.2 U	10.1 U	10.1 U	10.3 U	0.4
N-Nitroso-di-n-propylamine	10.2 U	10.1 U	10.1 U	10.3 U	
N-Nitrosodiphenylamine	10.2 U	10.1 U	10.1 U	10.3 U	50
Pentachlorophenol	10.2 U	10.1 U	10.1 U	10.3 U	1
Phenanthrene	10.2 U	10.1 U	10.1 U	10.3 U	50
Phenol	10.2 U	10.1 U	10.1 U	10.3 U	1
Pyrene	10.2 U	10.1 U	10.1 U	10.3 U	50
Total Semivolatile Compounds	0	2.9	0	0	

Footnotes/Qualifiers:

ug/l: Micrograms per liter

--: No standard

U: Analyzed for but not detected

BD: Blind duplicate

TCL Semivolatile Organic Compounds

Sample ID	MW-2	MW-3	FIELD BLANK	FIELD BLANK	NYSDEC Class GA
Sampling Date	4/7/2016	4/7/2016	3/18/2016	3/23/2016	Standard
					or Guidance Value
Units	ug/l	ug/l	ug/l	ug/l	ug/l
SEMIVOLATILE COMPOUNDS	10.1 U	10.2 U	10 U	10.2 U	-
1,2,4,5-Tetrachlorobenzene 1,4-Dioxane	10.1 UJ	10.2 UJ	10 UJ	10.2 UJ	5
2,3,4,6-Tetrachlorophenol	10.1 U	10.2 U	10 U	10.2 U	
2,4,5-Trichlorophenol	10.1 U	10.2 U	10 U	10.2 U	1
2,4,6-Trichlorophenol	10.1 U	10.2 U	10 U	10.2 U	1
2,4-Dichlorophenol	10.1 U	10.2 U	10 U	10.2 U	5
2,4-Dimethylphenol	10.1 U	10.2 U	10 U	10.2 U	50
2,4-Dinitrophenol	10.1 U	10.2 U	10 U	10.2 U	10
2,4-Dinitrotoluene	10.1 U	10.2 U	10 U	10.2 U	5
2,6-Dinitrotoluene	10.1 U	10.2 U	10 U	10.2 U	5
2-Chloronaphthalene	10.1 U	10.2 U	10 U	10.2 U	10
2-Chlorophenol	10.1 U	10.2 U	10 U	10.2 U	1
2-Methylnaphthalene	10.1 U	10.2 U	10 U	10.2 U	
2-Methylphenol	10.1 U	10.2 U	10 U	10.2 U	1
2-Nitroaniline	10.1 U	10.2 U	10 U	10.2 U	5
2-Nitrophenol	10.1 U	10.2 U	10 U	10.2 U	1
3,3-Dichlorobenzidine	10.1 U	10.2 U	10 U	10.2 U	5
3-Nitroaniline	10.1 U	10.2 U	10 U	10.2 U	5
3+4-Methylphenols	10.1 UJ	10.2 UJ	10 UJ	10.2 UJ	1
4,6-Dinitro-2-methylphenol	10.1 U	10.2 U	10 U	10.2 U	1
4-Bromophenyl-phenylether	10.1 U	10.2 U	10 U	10.2 U	
4-Chloro-3-methylphenol 4-Chloroaniline	10.1 U	10.2 U	10 U	10.2 U	1
	10.1 U 10.1 U	10.2 U 10.2 U	10 U 10 U	10.2 U 10.2 U	5
4-Chlorophenylphenyl ether 4-Nitroaniline	10.1 U	10.2 U	10 U	10.2 U	5
4-Nitrophenol	10.1 U	10.2 U	10 U	10.2 U	1
Acenaphthene	10.1 U	10.2 U	10 U	10.2 U	20
Acenaphthylene	10.1 U	10.2 U	10 U	10.2 U	
Acetophenone	10.1 U	10.2 U	10 U	10.2 U	
Anthracene	10.1 U	10.2 U	10 U	10.2 U	50
Atrazine	10.1 U	10.2 U	10 U	10.2 U	7.5
Benzaldehyde	10.1 U	10.2 U	10 U	10.2 U	
Benzo(a)anthracene	10.1 U	10.2 U	10 U	10.2 U	0.002
Benzo(a)pyrene	10.1 U	10.2 U	10 U	10.2 U	ND
Benzo(b)fluoranthene	10.1 U	10.2 U	10 U	10.2 U	0.002
Benzo(ghi)perylene	10.1 U	10.2 U	10 U	10.2 U	
Benzo(k)fluoranthene	10.1 U	10.2 U	10 U	10.2 U	0.002
Benzyl butyl phthalate	10.1 U	10.2 U	10 U	10.2 U	50
Biphenyl	10.1 U	10.2 U	10 U	10.2 U	5
Bis(2-chloroethoxy)methane	10.1 U	10.2 U	10 U	10.2 U	5
Bis(2-chloroethyl)ether	10.1 U 10.1 U	10.2 U 10.2 U	10 U 10 U	10.2 U	1
Bis(2-chloroisopropyl)ether Bis(2-ethylhexyl)phthalate (BEHP)	10.1 U 10.1 U	10.2 U 10.2 U	10 U	10.2 U 10.2 U	 5
Caprolactam	10.1 U	10.2 U	10 U	10.2 U	
Carbazole	10.1 U	10.2 U	10 U	10.2 U	
Chrysene	10.1 U	10.2 U	10 U	10.2 U	0.002
Dibenzo(a,h)anthracene	10.1 U	10.2 U	10 U	10.2 U	
Dibenzofuran	10.1 U	10.2 U	10 U	10.2 U	
Diethyl phthalate	10.1 U	10.2 U	10 U	10.2 U	50
Dimethyl phthalate	3.5 J	10.2 U	10 U	10.2 U	50
Di-n-butyl phthalate	10.1 U	10.2 U	10 U	10.2 U	50
Di-n-octyl phthalate	10.1 U	10.2 U	10 U	10.2 U	50
Fluoranthene	10.1 U	10.2 U	10 U	10.2 U	50
Fluorene	10.1 U	10.2 U	10 U	10.2 U	50
Hexachlorobenzene	10.1 U	10.2 U	10 U	10.2 U	0.04

See next page for Footnotes/Qualifers.

TCL Semivolatile Organic Compounds

Sample ID Sampling Date	MW-2 4/7/2016	MW-3 4/7/2016	FIELD BLANK 3/18/2016	FIELD BLANK 3/23/2016	NYSDEC Class GA Standard or Guidance Value
Units	ug/l	ug/l	ug/l	ug/l	ug/l
COMPOUNDS CONTINUED					
Hexachlorobutadiene	10.1 U	10.2 U	10 U	10.2 U	0.5
Hexachlorocyclopentadiene	10.1 U	10.2 U	10 U	10.2 U	5
Hexachloroethane	10.1 U	10.2 U	10 U	10.2 U	5
Indeno(1,2,3-cd)pyrene	10.1 U	10.2 U	10 U	10.2 U	0.002
Isophorone	10.1 U	10.2 U	10 U	10.2 U	50
Naphthalene	10.1 U	10.2 U	10 U	10.2 U	10
Nitrobenzene	10.1 U	10.2 U	10 U	10.2 U	0.4
N-Nitroso-di-n-propylamine	10.1 U	10.2 U	10 U	10.2 U	
N-Nitrosodiphenylamine	10.1 U	10.2 U	10 U	10.2 U	50
Pentachlorophenol	10.1 U	10.2 U	10 U	10.2 U	1
Phenanthrene	10.1 U	10.2 U	10 U	10.2 U	50
Phenol	10.1 U	10.2 U	10 U	10.2 U	1
Pyrene	10.1 U	10.2 U	10 U	10.2 U	50
Total Semivolatile Compounds	3.5	0	0	0	

Footnotes/Qualifiers:

ug/l: Micrograms per liter

--: No standard

U: Analyzed for but not detected

BD: Blind duplicate

TCL Semivolatile Organic Compounds

Sample ID	FIELD BLANK	NYSDEC Class GA
Sampling Date	4/7/2016	Standard
		or Guidance Value
Units	ug/l	ug/l
SEMIVOLATILE COMPOUNDS	40.11	F
1,2,4,5-Tetrachlorobenzene	10 U	5
1,4-Dioxane	10 UJ	
2,3,4,6-Tetrachlorophenol	10 U	
2,4,5-Trichlorophenol	10 U	1
2,4,6-Trichlorophenol	10 U	1
2,4-Dichlorophenol	10 U	5
2,4-Dimethylphenol	10 U	50
2,4-Dinitrophenol	10 U	10
2,4-Dinitrotoluene	10 U	5
2,6-Dinitrotoluene	10 U	5
2-Chloronaphthalene	10 U	10
2-Chlorophenol	10 U	1
2-Methylnaphthalene	10 U	
2-Methylphenol	10 U	1
2-Nitroaniline	10 U	5
2-Nitrophenol	10 U	1
3,3-Dichlorobenzidine	10 U	5
3-Nitroaniline	10 U	5
3+4-Methylphenols	10 UJ	1
4,6-Dinitro-2-methylphenol	10 U	1
4-Bromophenyl-phenylether	10 U	
4-Chloro-3-methylphenol	10 U	1
4-Chloroaniline	10 U	5
4-Chlorophenylphenyl ether	10 U	
4-Nitroaniline	10 U	5
4-Nitrophenol	10 U	1
Acenaphthene	10 U	20
Acenaphthylene	10 U	
Acetophenone	10 U	
Anthracene	10 U	50
Atrazine	10 U	7.5
Benzaldehyde	10 U	
Benzo(a)anthracene	10 U	0.002
Benzo(a)pyrene	10 U	ND
Benzo(b)fluoranthene	10 U	0.002
Benzo(ghi)perylene	10 U	
Benzo(k)fluoranthene	10 U	0.002
Benzyl butyl phthalate	10 U	50
Biphenyl	10 U	5
Bis(2-chloroethoxy)methane	10 U	5
Bis(2-chloroethyl)ether	10 U	1
Bis(2-chloroisopropyl)ether	10 U	
Bis(2-ethylhexyl)phthalate (BEHP)	10 U	5
Caprolactam	10 U	
Carbazole	10 U	
Chrysene	10 U	0.002
Dibenzo(a,h)anthracene	10 U	
Dibenzofuran	10 U	
Diethyl phthalate	10 U	50
Dimethyl phthalate	10 U	50
Di-n-butyl phthalate	10 U	50 50
Di-n-octyl phthalate	10 U	50 50
Fluoranthene		50 50
	10 U	
Fluorene	10 U	50
Hexachlorobenzene	10 U	0.04

See next page for Footnotes/Qualifers.

TCL Semivolatile Organic Compounds

Sample ID Sampling Date Units		NYSDEC Class GA Standard or Guidance Value ug/l
COMPOUNDS CONTINUED		
Hexachlorobutadiene	10 U	0.5
Hexachlorocyclopentadiene	10 U	5
Hexachloroethane	10 U	5
Indeno(1,2,3-cd)pyrene	10 U	0.002
Isophorone	10 U	50
Naphthalene	10 U	10
Nitrobenzene	10 U	0.4
N-Nitroso-di-n-propylamine	10 U	
N-Nitrosodiphenylamine	10 U	50
Pentachlorophenol	10 U	1
Phenanthrene	10 U	50
Phenol	10 U	1
Pyrene	10 U	50
Total Semivolatile Compounds	0	

Footnotes/Qualifiers:

ug/l: Micrograms per liter

--: No standard

U: Analyzed for but not detected

BD: Blind duplicate

TCL Pesticides and Polychlorinated Biphenyls (PCBs)

Sample ID	GW-02D	MW-3	FIELD BLANK	FIELD BLANK	FIELD BLANK	NYSDEC Class GA
Sampling Date	4/7/2016	4/7/2016	3/18/2016	3/21/2016	3/23/2016	Standard
Dilution Factor	_	_	_	_	_	or Guidance Value
Units	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
PESTICIDES						
Aldrin	0.05 U	0.05 U	0.05 U		0.05 U	ND
alpha BHC	0.05 U	0.05 U	0.05 U		0.05 U	0.01
alpha Endosulfan	0.05 U	0.05 U	0.05 U		0.05 U	
alpha-Chlordane	0.05 U	0.05 U	0.05 U		0.05 U	0.05
beta-BHC	0.05 U	0.05 U	0.05 U		0.05 U	0.04
beta-Endosulfan	0.05 U	0.05 U	0.05 U		0.05 U	
beta-Chlordane	0.05 U	0.05 U	0.05 U		0.05 U	0.05
delta-BHC	0.05 U	0.05 U	0.05 U		0.05 U	0.04
Dieldrin	0.05 U	0.05 U	0.05 U		0.05 U	0.004
Endosulfan sulfate	0.05 U	0.05 U	0.05 U		0.05 U	
Endrin	0.05 U	0.05 U	0.05 U		0.05 U	ND
Endrin aldehyde	0.05 U	0.05 U	0.05 U		0.05 U	5
Endrin ketone	0.05 U	0.05 U	0.05 U		0.05 U	5
gamma-BHC (Lindane)	0.05 U	0.05 U	0.05 U		0.05 U	0.05
Heptachlor	0.05 U	0.05 U	0.05 U		0.05 U	0.04
Heptachlor epoxide	0.05 U	0.05 U	0.05 U		0.05 U	0.03
Methoxychlor	0.05 U	0.05 U	0.05 U		0.05 U	35
P,P'-DDD	0.05 U	0.05 U	0.05 U		0.05 U	0.3
P,P'-DDE	0.05 U	0.05 U	0.05 U		0.05 U	0.2
P,P'-DDT	0.05 U	0.05 U	0.05 U		0.05 U	0.2
Toxaphene	0.51 U	0.5 U	0.51 U		0.52 U	0.06
PCBS						
Aroclor-1016	0.52 U	0.52 U	0.51 U	0.52 U	0.51 U	0.09
Aroclor-1221	0.52 U	0.52 U	0.51 U	0.52 U	0.51 U	0.09
Aroclor-1232	0.52 U	0.52 U	0.51 U	0.52 U	0.51 U	0.09
Aroclor-1242	0.52 U	0.52 U	0.51 U	0.52 U	0.51 U	0.09
Aroclor-1248	0.52 U	0.52 U	0.51 U	0.52 U	0.51 U	0.09
Aroclor-1254	0.52 U	0.52 U	0.51 U	0.52 U	0.51 U	0.09
Aroclor-1260	0.52 U	0.52 U	0.51 U	0.52 U	0.51 U	0.09
Aroclor-1262			0.51 U	0.52 U	0.51 U	0.09
Aroclor-1268			0.51 U	0.52 U	0.51 U	0.09
Total PCBs	0	0	0	0	0	0.09

Footnotes/Qualifiers:

ug/l: Micrograms per liter

--: No standard or not analyzed

U: Analyzed for but not detected

ND: Compound exceeds if detected

Sample II Sampling Date		MW-3 4/7/2016	FIELD BLANK 3/18/2016	FIELD BLANK 3/23/2016	NYSDEC Class GA Standard	
Unit	s ug/l	ug/l	ug/l	ug/l	or Guidance Value ug/l	
METALS						
Aluminum	211	72.7	8.32 J	15.2 J		
Antimony	25 U	25 U	25 U	25 U	3	
Arsenic	6.13 J	4.63 J	10 U	10 U	25	
Barium	158	101	50 U	50 U	1000	
Beryllium	3 U	3 U	3 U	3 U	3	
Cadmium	3 U	3 U	3 U	3 U	5	
Calcium	36100	92500	1000 U	133 J		
Chromium	2.3 J	4.04 J	5 U	5 U	50	
Cobalt	15 U	15 U	15 U	15 U		
Copper	10 U	10 U	10 U	10 U	200	
Iron	<u>11100</u>	<u>4860</u>	50 U	50 U	300	
Lead	4.97 J	6 U	6 U	6 U	25	
Magnesium	2770	5850	1000 U	1000 U	35000	
Manganese	<u>357</u>	148	10 U	10 U	300	
Mercury	0.2 U	0.2 U	0.2 U	0.2 U	0.7	
Nickel	20 U	20 U	20 U	20 U	100	
Potassium	9850	4840	1000 U	1000 U		
Selenium	10 U	10 U	10 U	10 U	10	
Silver	5 U	5 U	5 U	5 U	50	
Sodium	<u>1770000</u> <u>D</u>	<u>201000</u>	1000 U	92.8 J	20000	
Thallium	20 U	20 U	20 U	20 U	0.5	
Vanadium	20 U	20 U	20 U	20 U		
Zinc	6.81 J	20 U	20 U	12.7 J	2000	

Footnotes/Qualifiers:

- ug/l: Micrograms per liter
 - --: Not analyzed or no standard
 - U: Analyzed for but not detected
 - J: Estimated value or limit

ATTACHMENT 5 WATER LEVEL MEASUREMENTS AND WATER LEVEL CONTOUR MAPS

TABLE 11 LONG ISLAND RAIL ROAD ARCH STREET YARD

SUMMARY OF GROUNDWATER MEASUREMENTS

Well #	Total Depth of Well (ft)	Casing Elevation (ft msl)	Date	Approximate Tidal Stage	Depth to Water (ft)	Calculated Groundwater Elevation (ft msl)
MW-1				Low	3.83	4.20
			4/22/2016	Mid	3.83	4.20
	12.60	8.03		High	3.83	4.20
	12.00			Low	3.72	4.31
			4/27/2016	Mid	3.71	4.32
				High	3.71	4.32
MW-2	6.85	9.43	4/22/2016	Low	5.04	4.39
				Mid	5.04 5.04	4.39 4.39
			4/27/2016	High Low	4.98	4.45
				Mid	4.98	4.45
1			1/21/2010	High	4.98	4.45
				Low	5.50	4.39
			4/22/2016	Mid	5.51	4.38
MW-3	12.75	9.89		High	5.51	4.38
10100-3	12.75	9.09		Low	5.41	4.48
			4/27/2016	Mid	5.41	4.48
				High	5.41	4.48
			4/22/2016	Low	7.68	4.52
		12.20		Mid	7.70	4.50
GW-01	22.80			High	7.69	4.51
			4/27/2016	Low	7.65	4.55
				Mid	7.65	4.55
				High	7.64	4.56
			4/22/2016	Low Mid	10.68 10.70	0.37 0.35
GW-02D	22.80	11.05	4/22/2016	High	10.70	0.35
			4/27/2016	Low	10.71	0.34
				Mid	10.71	0.34
				High	10.70	0.35
		10.65	4/22/2016	Low	6.24	4.41
GW-02S	9.45			Mid	6.24	4.41
				High	6.24	4.41
			4/27/2016	Low	6.15	4.50
				Mid	6.15	4.50
				High	6.15	4.50
GW-03	20.10	10.41	4/22/2016 4/27/2016	Low	11.87	-1.46
				Mid	11.88	-1.47
				High	11.87	-1.46
				Low	12.13 12.12	-1.72 1.71
				Mid High	12.12 12.12	-1.71 -1.71
		+		Low	9.00	-1.88
GW-04D	19.35	7.12	4/22/2016	Mid	8.99	-1.87
				High	8.99	-1.87
			4/27/2016	Low	9.18	-2.06
				Mid	9.19	-2.07
				High	9.18	-2.06
GW-04S	7.85	7.01		Low	3.38	3.63
			4/22/2016	Mid	3.37	3.64
				High	3.37	3.64
				Low	3.28	3.73
			4/27/2016	Mid	3.28	3.73
				High	3.28	3.73

NOTES:

Measurements collected in feet below top of casing

NAPL was not detected in any groundwater monitoring well.

ATTACHMENT 6 TIDAL STUDY RESULTS

FIGURE 5 LONG ISLAND RAIL ROAD ARCH STREET YARD RI TIDAL SURVEY

FIGURE 6 LONG ISLAND RAIL ROAD ARCH STREET YARD RI TIDAL SURVEY

FIGURE 7 LONG ISLAND RAIL ROAD ARCH STREET YARD RI TIDAL SURVEY

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 2 47-40 21st Street, Long Island City, NY 11101 P: (718) 482-4995 www.dec.ny.gov

August 8, 2016

Gloria Russo
Director – Environmental Planning & Compliance
Corporate Safety Department
Long Island Rail Road
144-41 94th Avenue, Mail Code 1947, 7th Floor
Jamaica, NY 11435
ggrusso@lirr.org

Re: Arch Street Yards (LIRR) Site

NYSDEC Site No. V00733

Interim Remedial Investigation Report and Proposed Scope of Work

Dear Ms. Russo:

The New York State Department of Environmental Conservation (the Department), in consultation with the New York State Department of Health (NYSDOH), has completed its review of the August 5, 2016 Interim Remedial Investigation Report (Interim RIR) and Proposed Scope of Work, which were prepared by D&B Engineers and Architects, P.C. on behalf of Long Island Rail Road (the Volunteer). The August 5 document reflects revisions made based on comments provided by the Department on an earlier version.

The Interim RIR documents the results of previous soil and groundwater sampling. The Proposed Scope of Work consists of installation of six (6) soil vapor monitoring points (SV- 01 to SV-06) in the yard and one co-located sub-slab soil vapor and indoor air monitoring point in the LIRR Engineering Support Building.

The Department has determined that the Scope of Work is acceptable and is hereby approved.

In accordance with the requirements of the Voluntary Cleanup Agreement, the approved Interim RIR and Proposed Scope of Work, which constitute a modification to the previously approved Remedial Investigation Work Plan (RIWP), must be placed by the Volunteer in all publicly accessible repositories for the project within 5 business days. A certification that this documents have been placed in project repositories, and that the repositories are complete with all project documents, must be submitted to the NYSDEC project manager.

The Volunteer and its contractors are solely responsible for safe execution of all invasive and other field work performed under the modified RIWP. The Volunteer and its

Ms. Gloria Russo August 8, 2016 Page 2

contractors must obtain all local, state, and/or federal permits or approvals that may be required to perform work under the modified RIWP. Further, the Volunteer and its contractors are solely responsible for the identification of utilities that might be affected by work under this RIWP and, implementation of all required, appropriate, or necessary health and safety measures during performance of work under the modified RIWP.

According to the revised schedule you submitted via email on July 19, the field work to implement this modified RIWP could begin as early as August 16. Please notify me immediately if this schedule has changed. Please note that the Department requires at least 5 business day notice prior to implementing field work.

If you have any questions, please call me at (718) 482-4065 or email me at ioana.munteanu-ramnic@dec.ny.gov.

Sincerely,

Ioana Munteanu-Ramnic, P.E. Environmental Engineer II

ec:

J. O'Connell - NYSDEC

B. Boyd - NYSDOH

K. Green – LIRR

T. Fox, A. Caniano – D&B Engineers

APPENDIX B

MEMBRANE INTERFACE PROBE LOGS

EC (mS/m \times 10 3) XSD Max ($\mu V \times 10^4$) PID Max ($\mu V \times 10^5$) FID Max ($\mu V \times 10^7$) 3 0.9 3 1.4 3 0.0 0.5 1.0 0 -2 4 6 8 10 12 14 Depth (ft) 16 18 20 22 24 26 28 30 File: MIP1.MIP Company: Operator: Date: 10/9/2015 Mike Ryan Client:
D&B Engineers and Architects Project ID: Location: LIRR Arch Street Yard

EC (mS/m \times 10 4) XSD Max ($\mu V \times 10^6$) PID Max ($\mu V \times 10^7$) FID Max ($\mu V \times 10^7$) 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0 -2 3 4 5 6 7 8 9 10 11 Depth (ft) 12 13 14 15 16 17 18 19 20 21 22 23 24 File: MIP2.MIP Company: Date: Operator: MR 10/7/2015 ZTS Client:
D&B Engineers and Architects Project ID: Location: LIRR Arch Street Yard

EC (mS/m \times 10³) XSD Max ($\mu V \times 10^4$) PID Max ($\mu V \times 10^5$) FID Max ($\mu V \times 10^7$) 1.9 1.6 5 1 5 0.0 0.5 1.0 0 -2 3 5 6 7 -8 -9 10 11 Depth (ft) 12 13 14 15 16 17 18 19 20 21 22 23 24 25 File: MIP3.MIP Company: Operator: Date: 10/9/2015 Mike Ryan ZTS Client:
D&B Engineers and Architects Project ID: Location: LIRR Arch Street Yard

EC (mS/m \times 10 3) XSD Max ($\mu V \times 10^4$) PID Max ($\mu V \times 10^5$) FID Max ($\mu V \times 10^6$) 3.4 1.6 5 1.1 2 5 0 2 0 0 -1 2 3 4 5 6 7 8 9 10 11 12 Depth (ft) 13 14 15 16 17 18 19 20 21 22 -23 24 25 26 File: MIP4.MIP Company: Operator: Date: Mike Ryan 10/9/2015 ZTS Client:
D&B Engineers and Architects Project ID: Location: LIRR Arch Street Yard

EC (mS/m \times 10 3) XSD Max ($\mu V \times 10^4$) $PID~Max~(\mu V\!\times\!10^5)$ FID Max ($\mu V \times 10^7$) 3 1.7 5 1.2 1.5 2.0 2.5 0.0 0.5 1.0 0 -2 6 8 10 -12 Depth (ft) 16 18 20 -22 24 26 28 File: MIP5.MIP Company: Operator: Date: 10/9/2015 Mike Ryan Client:
D&B Engineers and Architects Project ID: Location: LIRR Arch Street Yard

EC (mS/m \times 10³) XSD Max ($\mu V \times 10^4$) PID Max ($\mu V \times 10^5$) FID Max ($\mu V \times 10^7$) 0 5 1.6 5 1.2 2 5 0.0 0.5 1.0 0 -6 -8 10 -12 -Depth (ft) 16 -18 -20 22 -24 26 File: MIP6.MIP Company: Operator: Date: 10/9/2015 Mike Ryan Client:
D&B Engineers and Architects Project ID: Location: LIRR Arch Street Yard

XSD Max ($\mu V \times 10^4$) PID Max ($\mu V \times 10^6$) FID Max ($\mu V \times 10^7$) EC (mS/m \times 10⁴) 0.0 0.5 1.0 3.2 5 0.2 0.5 1.0 0.0 0.5 1.0 0 — 2 3 4 5 6 7 8 9 10 11 Depth (ft) 12 13 14 15 16 -17 -18 19 20 21 22 23 24 25 File: MIP-07.MIP Company: Date: Operator: MR 10/29/2015 ZTS Client:
D&B Engineers and Architects

LIRR Arch Street Yard

Location:

Project ID:

XSD Max ($\mu V \times 10^4$) PID Max ($\mu V \times 10^6$) FID Max ($\mu V \times 10^7$) EC (mS/m \times 10⁴) 0.0 0.5 1.0 3.4 5 0.2 0.5 1.0 0.0 0.5 1.0 0 — 2 3 5 8 -9 -10 -Depth (ft) 11 12 13 14 15 16 17 18 -19 20 21 22 23 File: MIP 8.MIP Company: Date: Operator: MR 10/29/2015 ZTS Client:
D&B Engineers and Architects Project ID: Location:

LIRR Arch Street Yard

XSD Max ($\mu V \times 10^4$) PID Max ($\mu V \times 10^6$) FID Max ($\mu V \times 10^7$) EC (mS/m \times 10³) 5.0 0.2 6.6 3.7 4.0 4.5 0.5 1.0 0.0 0.5 1.0 0 -2 8 10 -12 14 Depth (ft) 18 20 22 24 26 28 30 31 File: MIP-9.MIP Company: Operator: Date: MR 10/29/2015 Client:
D&B Engineers and Architects Project ID: Location:

LIRR Arch Street Yard

XSD Max ($\mu V \times 10^4$) $PID~Max~(\mu V\!\times\!10^5)$ FID Max ($\mu V \times 10^6$) EC (mS/m \times 10³) 3 2.9 5 2.4 5 0.1 0 -1 2 3 4 5 -6 7 -8 9 Depth (ft) 10 11 12 13 14 -15 -16 -17 -18 19 -20 -21 File: MIP-10.MIP Date: Company: Operator: MR 10/29/2015 ZTS Client:
D&B Engineers and Architects Project ID: Location: LIRR Arch Street Yard

EC (mS/m \times 10³) XSD Max ($\mu V \times 10^4$) $PID~Max~(\mu V\!\times\!10^5)$ FID Max ($\mu V \times 10^7$) 1.8 3.9 7 1.9 5 0.0 0.5 1.0 0 -3 -4 -5 6 7 Depth (ft) 10 11 12 13 14 15 File: MIP-11.MIP Operator: Company: Date: MR 10/29/2015 Client:
D&B Engineers and Architects Project ID: Location: LIRR Arch Street Yard

APPENDIX C

BORING LOGS

Project No.: 3455-2 Project Name: LIRR – Arch Street Yard RI Boring No.: VB-01
Sheet 1 of 1
By: Carl Schmidlapp

Drill Rig: Geoprobe 6620DT **Date Started:** 10/30/15

Geologist: Carl Schmidlapp Drilling Method: Macrocore Drive Hammer Weight: N/A Date Completed: 10/30/15 Boring Completion Depth: 27' Ground Surface Elevation: ---

Boring Diameter: 2"

Soil sample VB-01 (13-15') and groundwater samples VB-

01 (15-16') and VB-01 (26-27') collected for VOC analysis.

		,		T = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	
Depth	NI.	T	Daa	PID Per 6"	Sample Description
(ft.)	No.	Туре	Rec.	(ppm)	
0'-5'	1	HA	60"	0.0	0-3": Bluestone
				0.7	3"-60": Dark brown, fine-medium SAND, some fine to medium subangular gravel, trace silt, concrete, medium dense, moist, no odor, no staining.
5'-10'	2	MC	38"	0.0 0.0	0-11": Dark brown to black, fine to medium SAND, trace subrounded gravel, moist, no odor, no staining.
				62	11"-24": Brown to light brown, medium to fine SAND, trace silt, wet, no odor, no staining.
				64	24"-38": Brown to dark brown, medium to fine SAND, trace silt, wet, no odor, no staining.
10'-15'	3	MC	57"	10 0.0	0-7": Black, fine SAND, trace subangular gravel, no odor, slight staining.
				0.0	7"-24": Dark brown to black, fine SAND, trace subangular gravel, wet, no odor, no staining.
				150 250	24"-36": Black/gray, fine SAND, trace clay, moist, hydrocarbon-like odor, no staining.
				40	36"-47": Gray, CLAY, slightly plastic, trace organics(shells), moist, no odor, no staining.
				0.0	47"-57": Gray, CLAY, dense, trace organics (shells), dense, moist, no odor, no staining.
15'-20'	4	MC	29"	0.0 0.0	0-12": Brown, fine SAND, trace SILT, trace fine subangular gravel, wet, loose, no odor, no staining.
				18	12"-24": Gray, CLAY, slightly plastic, dry, no odor, no staining.
				12.5	24"-29": Gray to black, CLAY, dense to slightly plastic, dry, no odor, no staining.
20'-25'	5	MC	28"	0.0	0-13": Green to brown, fine to medium SAND, trace medium to coarse
				0.0	gravel, dense, dry, no odor, no staining.
				0.0	13"-28": Green to brown, medium to coarse SAND, trace medium to coarse
				0.0	gravel, dense, moist, no odor, no staining.
25'-30	6	МС	24"	0.0	0-24": Brown to gray, fine to medium SAND, trace fine to medium subangular
				0.0	gravel, poorly sorted, moist, no odor, no staining.
Sample	Тур	es:			NOTES: Refusal encountered at 27'

HA = Hand Auger

Project No.: 3455-2 Project Name: LIRR – Arch Street Yard RI Sheet 1 of 1 By: Carl Schmidlapp

Drilling Contractor: Zebra **Drill Rig:** Geoprobe 6620DT **Date Started:** 10/30/15

Geologist: Carl Schmidlapp Drilling Method: Macrocore Drive Hammer Weight: N/A Date Completed: 10/30/15 **Boring Completion Depth:** 26.5' **Ground Surface Elevation:** ---

Boring Diameter: 2"

Soil sample VB-02 (12-14') and groundwater samples VB-

02 (5') and VB-02 (12-14') collected for VOC analysis.

Donth				PID Per 6"	Sample Description
Depth	No	Type	Poo		Sample Description
(ft.)	No.	Туре	Rec.	(ppm)	O COULDIA
0'-5'	1	HA	60"	0.0	0-36": Bluestone
				0.0, 0.0	36"-60": Dark brown, fine to medium SAND, trace concrete, trace silt, dense,
				0.0, 0.0	poorly sorted, moist, no odor, no staining.
5'-10'	2	MC	28"	0.0	0-5": Black-dark brown, medium to coarse SAND, some medium to coarse
					subangular gravel, moist, no odor, no staining.
				0.0	5"-19": Black-brown, medium to fine SAND, trace medium to coarse gravel,
				0.0	loose, moist, no odor, no staining.
				0.0	AON CON Disable as a series of a CANID decrease as a series of a s
				0.0	19"-23": Black-brown, medium to fine SAND, dense, moist, no odor, no staining.
				0.0	23"-28": Gray, fine to medium SAND, trace SILT, loose, dry, no odor, no
				0.0	staining.
10'-15'	3	MC	32"	0.0, 0.0	0"-22": Gray, CLAY, trace organics and peat, slightly plastic, moist, organic
				0.0, 0.0	odor, no staining.
				0.0	22"-32": Gray-brown, CLAY, some peat and organics, slightly dense, organic
				0.0	odor, no staining.
15'-20'	4	MC	41"	0.0	0-9": Dark gray, medium to fine SAND, trace silt, trace subangular medium-
					fine gravel, moist, no odor, no staining.
				0.0, 0.0	9"-27" Gray, CLAY, some peat and organics, plastic, loose, no odor, no
				0.0	staining.
				0.0	27"-36": Gray, medium to coarse SAND, some medium to coarse subangular
				0.0	gravel, rock fragments 34"-36", poorly sorted, dense, no odor, no staining.
				0.0	36"-41": Brown-green, medium to coarse SAND, some large rock fragments,
					dense, poorly sorted, dry, no odor, no staining.
20'-25'	5	MC	42"	0.0, 0.0	0-22": Green-brown, medium to fine SAND, trace subrounded gravel, dense,
				0.0, 0.0	well sorted, dry, no odor, no staining.
				0.0	22"-26": Brown-dark brown/green, medium to fine SAND, poorly sorted, dry,
					no odor, no staining.
				0.0	26"-42": Green to brown, fine to medium SAND, trace subangular gravel,
				0.0	trace rock fragments, well sorted, dense, dry, no odor, no staining.
25'-30'	6	MC	0"	N/A	No Recovery
Sample	Туре	es:			NOTES: Refusal encountered at 26.5'.
					10 "

\\dbfs1\Jobs_HazWaste\3455 (LIRR On-Call)\Task 2 (Arch Street)\Boring Logs\VB-02.doc

HA = Hand Auger

Arch Street

Sheet 1 of 1

By: Keith Robins

Drilling Contractor: AARCO Drill Rig: Geoprobe 7822DT Date Started: 3/15/16 Geologist: Keith Robins
Drilling Method: Macrocore
Drive Hammer Weight: N/A
Date Completed: 3/16/16

Boring Completion Depth: 25 Ground Surface Elevation: 7.48

Boring Diameter: 2"

Soil samples from 13'-15' and 23'-25' submitted for TCL

VOC and TCL SVOC analysis.

Depth (ft.)	No.	Туре	Rec.	PID Per 6" (ppm)	Sample Description
0'-6"	1	HA	6"	0.0	Bluestone.
6"-1'	2	НА	12"	0.0	Same as above.
1'-2'	3	НА	12"	0.0	Dark gray-brown, medium to coarse SAND and STONE and GRAVEL, trace brick, concrete and wood, dense.
2'-2.5'	4	НА	6"	0.0	Bluestone and felt barrier fabric.
2.5'-3'	5	НА	6"	0.1	Black, silty SAND, organic odor, water encountered at 3' bgs.
3'-5'	6	MC	16"	0.0	Black, fine to medium SAND, some silt, fine to medium gravel, trace slag, fabric, rock fragments, poorly sorted, loose, wet, no staining, organic odor.
5'-10'	7	МС	30"	0.1	0"-19": Black-dark gray, silty SAND, little fine gravel, poorly sorted, loose, wet, no staining, no odor.
				0.1	19"-30": Gray-brown, clayey SILT, firm-soft, wet-moist, no staining, organic odor.
10'-15'	8	MC	36"	0.0	0"-29": Dark gray, CLAY, trace organic material, slightly plastic-firm, moist, no staining, trace organic odor.
				0.0	29"-36": Dark brown-gray, CLAY, some organic material, soft, damp, no staining, organic odor.
15'-20'	9	МС	38"	0.0	0"-19": Gray-silver, silty CLAY, slightly plastic firm, moist.
				0.0	19"-28": Gray, fine silty SAND, wet.
				0.0	28"-38": Olive-brown, clayey SILT, trace fine sand, fine subrounded gravel, dense, no staining, no odor.
20'-25'	20'-25' 10	MC	34"	0.0	0"-24": Olive green-brown, fine to medium SAND, some silt, trace fine subrounded gravel, poorly sorted, medium dense, wet, no staining, no odor
				0.0	24"-34": Gray-light gray, fine SAND, trace silt, well sorted, wet, no staining, no odor.
Sample	Type	es:			NOTES:

HA = Hand Auger

Arch Street

Boring No.: SB-02 Sheet 1 of 1 By: Keith Robins

Drilling Contractor: AARCO **Drill Rig:** Geoprobe 7822DT **Date Started:** 3/14/16

Geologist: Keith Robins **Drilling Method:** Macrocore **Drive Hammer Weight:** N/A

Boring Diameter: 2"

Boring Completion Depth: 25°

Ground Surface Elevation: 8.60'

Date Completed: 3/17/16

Depth (ft.)	No.	Туре	Rec.	PID Per 6" (ppm)	Sample Description
0'-1'	1	HA	12"	0.0	Bluestone.
1'-2'	2	HA	12"	0.0	Gravel, brick, stone, cobbles, no odor, no staining.
2'-3'	3	HA	12"	0.0	Dark gray, fine to medium SAND, some brick, stone, cobbles, dense gravel, no staining, no odor. Water encountered at 3' bgs.
3'-5'	4	MC	24"	0.0	0"-6": CONCRETE.
				0.0	6"-24": Black, fine to medium SAND, some rock, stones, trace silt, fine gravel, trace yellow brick, slag and coal, poorly sorted, loose, wet, no staining, no odor.
5'-10'	5	MC	46"	0.0	0"-12": Black-brown, ASH, COAL, and Cinders, poorly sorted, loose, wet, no staining, no odor.
				0.0	12"-22": Olive-gray, fine to medium SAND, some rock, trace fine gravel, stones, poorly sorted, wet, no staining, no odor.
				0.0	22"-46": Olive-brown, fine to very fine SAND, little silt, trace fine gravel, well sorted, moist, no staining, no odor.
10'-15'	6	MC	44"	0.0	0"-10": Olive-brown, fine to medium SAND, trace silt, fine subrounded grave and stone, well sorted, wet, no staining, no odor.
				0.0	10"-18": Olive-brown, medium to coarse SAND, trace subrounded gravel, poorly sorted, loose, wet, no staining, no odor.
				0.0	18"-44": Gray, CLAY, some organic matter, trace shells, soft, damp-moist, no staining, organic odor.
15'-20'	7	MC	36"	0.0	0"-8": Brown, CLAY, trace sand, soft, moist, no staining, no odor.
				0.0	8"-22": Gray, CLAY, trace fine gravel, dense-firm, damp, no staining, no odor.
				0.0	22"-27": Brown-light red, fine SAND, well sorted, wet, no staining, no odor.
				0.0	27"-36": Olive-brown, SILT, trace clay, dense, damp.
20'-25'	8	MC	36"	0.0	0"-24": Brown-olive, silty fine SAND, trace fine gravel, poorly sorted, dense, moist, no staining, no odor.
				0.0	24"-36": Gray, fine to medium SAND, some silt, trace clay, subrounded gravel, rock, poorly sorted, wet, no staining, no odor.
Sample					NOTES:
$\mathbf{H} = \mathbf{A}\mathbf{f}$	and A	luaer			Soil samples from 13'-15' and 23'-25' submitted for TCL

HA = Hand Auger **MC** = Macrocore

Soil samples from 13'-15' and 23'-25' submitted for TCL VOC and TCL SVOC analysis.

Arch Street

Boring No.: SB-03
Sheet 1 of 1
By: Keith Robins

Drilling Contractor: AARCO **Drill Rig:** Geoprobe 7822DT **Date Started:** 3/14/16

Geologist: Keith Robins **Drilling Method:** Macrocore **Drive Hammer Weight:** N/A

Boring Diameter: 2"

Boring Completion Depth: 25°

Ground Surface Elevation: 8.72'

Date Completed: 3/17/16

Depth				PID Per 6"	Sample Description
(ft.)	No.	Туре	Rec.	(ppm)	·
0'-6"	1	HA	6"	0.0	Bluestone.
6"-2'	2	HA	1.5"	0.0	Dark gray, fine SAND, some stone, gravel, dense, no staining, no odor.
2'-5'	3	MC	25"	0.0	0"-16": Brown, medium to coarse SAND, some fine gravel, cinders, concrete, poorly sorted, loose, wet at 3' bgs, no staining, no odor.
				0.0	16"-25": Black, fine to medium SAND, some cinders, slag, angular gravel, trace ash, poorly sorted, loose, wet, no staining, no odor.
5'-10'	4	MC	36"	0.0	0"-18": Black, medium to coarse SAND and angular GRAVEL, trace angular rock, brick, poorly sorted, very loose, wet, no staining, no odor.
				0.0	18"-21": Black, fine silty SAND, some gravel, wet.
				0.0	21"-27": Wood.
				0.0	27"-36": Black-gray brown, fine to very fine SAND, trace silt, trace wood, wet, no staining, no odor.
10'-15'	5	MC	36"	0.0	0"-10": Black, coarse SAND and GRAVEL, loose, wet.
				0.0	10"-36": Brown, fine to very fine silty SAND, well sorted, loose, wet, no staining, no odor.
15'-20'	6	MC	39"	0.0	0"-14": Dark gray, CLAY, trace shells, soft, moist, no staining, organic odor.
				0.0	14"-27": Gray-light gray, SILT, trace clay, dense, damp, no staining, no odor.
				0.0	27"-39": Brown-olive, SILT, some fine sand, trace fine gravel, damp, dense, no staining, no odor.
20'-25'	7	MC	36"	0.0	0"-13": Brown, fine to medium SAND, trace silt, subrounded gravel, poorly sorted, medium dense, wet, no staining, no odor.
				0.0	13"-25": Olive-brown, very fine to fine SAND, trace silt, well sorted, moist, no staining, no odor.
				0.0	25"-36": Gray-brown, silty fine SAND, trace subrounded gravel, dense, moist, no staining, no odor.
Sample	Type	96.			NOTES:

Sample Types: HA = Hand Auger MC = Macrocore

Soil samples from 12'-14' and 18'-20' submitted for TCL VOC and TCL SVOC analysis. Soil sample from 12'-14' also submitted for analysis of TAL metals, TCL Pesticides and PCBs.

Arch Street

Boring No.: SB-04
Sheet 1 of 1
By: Keith Robins

Drilling Contractor: AARCO **Drill Rig:** Geoprobe 7822DT **Date Started:** 3/14/16

Geologist: Keith Robins
Drilling Method: Macrocore
Drive Hammer Weight: N/A
Date Completed: 3/16/16

Boring Completion Depth: 29 Ground Surface Elevation: 7.46

Boring Diameter: 2"

TCL VOC and TCL SVOC analysis. Soil sample from 3'-5' also submitted for analysis of TAL Metals, TCL

Pesticides and PCBs.

Depth (ft.)	No.	Туре	Rec.	PID Per 6" (ppm)	Sample Description
0'-6"	1	HA	6"	0.0	Bluestone.
6"-1'	2	НА	6"	0.0	Brown, medium to coarse SAND, some gravel, organic matter, trace silt, dry, no odor.
1'-2'	3	НА	12"	0.0	Gray-light black, medium to coarse SAND and GRAVEL, trace cobbles, stone, brick and concrete, very dense, no odor, no staining.
2'-3'	4	НА	12"	0.0	Black, SAND, ROCK and GRAVEL, dense, organic odor, water encountered at 3' bgs.
3'-5'	5	MC	5"	7.8	Black-dark gray, medium to coarse SAND, some fine to coarse gravel, trace silt, trace stone, concrete and rubber, poorly sorted, loose, wet, no staining, very slight sheen on water, petroleum odor.
5'-10'	6	MC	8"	2.3	Black, medium to coarse SAND and subangular GRAVEL, crushed ROCK, trace wood, poorly sorted, loose, wet, no staining, slight petroleum odor.
10'-15'	7	MC	42"	0.0	0"-33": Dark gray, CLAY, trace organic matter, trace shells, soft, slightly plastic, damp-moist, no staining, organic odor.
				0.0	33"-42": Dark gray-brown, silty CLAY, some organic matter, firm-dense, slightly plastic, no staining, organic odor, moist-wet.
15'-20'	8	MC	40"	0.0	0"-21": Gray, clayey SILT, trace fine gravel, organic matter, firm-dense, damp-moist, no staining, no odor.
				0.0	21"-40": Olive-brown, fine to medium SAND, some silt, subrounded gravel, trace rock, muscovite flakes, poorly sorted, dense-moist, no staining, no odor.
20'-25'	9	MC	6"	0.0	Olive-brown, fine to medium SAND, some silt, subrounded gravel, trace rock poorly sorted, dense, damp-moist, no staining, no odor. Note large stone stuck in tip of soil sampler.
25'-29'	10	MC	23"	0.0	Gray, fine to medium SAND, trace silt, fine gravel and rock fragments, shale/slate, poorly sorted, loose, wet, no staining, no odor. Encountered refusal at 29'.
Sample HA = Ha				<u>I</u>	NOTES: Soil samples from 3'-5', 10'-12' and 27'-29' submitted for

Arch Street

Boring No.: SB-05
Sheet 1 of 1
By: Keith Robins

Drilling Contractor: AARCO **Drill Rig:** Geoprobe 7822DT **Date Started:** 3/14/16

Geologist: Keith Robins
Drilling Method: Macrocore
Drive Hammer Weight: N/A
Date Completed: 3/16/16

Boring Diameter: 2"

Boring Completion Depth: 25°

Ground Surface Elevation: 7.94'

Depth				PID Per 6"	Sample Description
(ft.)	No.	Type	Rec.	(ppm)	·
0'-6"	1	HA	6"	0.0	Bluestone.
6"-2'	2	НА	18"	0.0	Gray, medium to coarse SAND and GRAVEL, dense, no staining, no odor.
2'-3'	3	НА	12"	0.0	Dark gray, fine SAND and BRICK, some gravel, no staining, no odor. Water encountered at 3' bgs.
3'-5'	4	MC	21"	0.0	Dark gray-black, medium to coarse SAND, some cinders, slag, brick, trace silt, brick, fine gravel, angular rock, poorly sorted, loose, wet, no staining, no odor.
5'-10'	5	MC	45"	0.0	0"-18": Black-dark gray, fine to medium SAND, some silt, trace fine gravel, poorly sorted, loose, wet, no staining, organic odor.
				0.0	18"-45": Gray-olive, silty fine SAND, well sorted, wet, no staining, organic odor.
10'-15'	6	MC	47"	250	0"-12": Black-dark gray, fine to medium SAND, trace silt, fine gravel, poorly sorted, loose, wet, no staining, trace solvent odor.
				0.0	12"-42": Gray, CLAY, soft-plastic, damp-moist, no staining, trace organic matter.
				0.0	42"-47": Dark gray-brown, CLAY, soft-slightly plastic, some organic matter, dry-damp, no staining.
15'-20'	7	MC	42"	0.0	0"-12": Light gray, CLAY, trace organic matter, dense, moist, no staining, no odor.
				0.0	12"-24": Gray-dark gray, silty SAND, wet, no staining, no odor.
				0.0	24"-42": Olive-brown, fine to medium SAND, some silt, subrounded gravel, trace clay, poorly sorted, dense, no odor, no staining.
20'-25'	8	MC	44"	0.0	0"-20": Brown-olive, CLAY, trace fine subrounded gravel, rock, dense, damp, no odor, no staining.
				0.0	20"-32": Olive-brown, silty SAND, some subrounded gravel, stones, poorly sorted, dense, moist, no staining, no odor.
				0.0	32"-44": Gray, fine SAND, trace silt, well sorted, wet, no staining, no odor.

Sample Types: HA = Hand Auger MC = Macrocore **NOTES:** Soil samples from 10'-11', 11'-13' submitted for TCL VOC and TCL SVOC analysis. Soil sample from 10'-11' also submitted for analysis of TAL metals, TCL Pesticides and PCBs.

Arch Street

Boring No.: SB-06
Sheet 1 of 1
By: Keith Robins

Drilling Contractor: AARCO **Drill Rig:** Geoprobe 7822DT **Date Started:** 3/14/16

Geologist: Keith Robins
Drilling Method: Macrocore
Drive Hammer Weight: N/A
Date Completed: 3/17/16

Boring Completion Depth: 25' **Ground Surface Elevation:** 9.23'

Boring Diameter: 2"

Donth	-			PID Per 6"	Sample Description
Depth (ft.)	No.	Туре	Rec.	(ppm)	Sample Description
0'-1"	1	HA	1"	0.0	Bluestone.
1"-3'	2	НА	35"	0.0	Dark gray, fine to medium SAND and BRICK, dense, no staining, no odor.
3'-5'	4	MC	13"	0.0	Black-brown, fine to coarse SAND and Stones, Concrete, Gravel, poorly sorted, loose, no staining, no odor. Water encountered at 4.5' bgs.
5'-10'	5	MC	31"	0.0	0"-19": Dark brown-black, medium to coarse SAND and CONCRETE, some rock, stone, gravel, trace brick, poorly sorted, loose, wet, no staining, no odor.
				25	19"-31": Dark black, silty fine SAND, trace fine gravel, well sorted, wet, no staining, no odor.
10'-15'	6	MC	21"	5.0	0"-4": Black, fine to coarse SAND, trace fine gravel, poorly sorted, wet, no staining, no odor.
				0.0	4"-16": Dark brown, fine SAND, trace silt, fine gravel, well sorted, wet, no staining, no odor.
				0.0	16"-21": Black-dark gray, fine SAND, trace silt, well sorted, wet, no staining, no odor.
15'-20'	7	MC	39"	0.0	0"-12": Dark gray, CLAY, some organic matter and shells, soft, moist, no staining, trace organic odor.
				0.0	12"-31": Light gray, SILT, trace clay, subrounded gravel, dense, moist, no staining, no odor.
				0.0	31"-39": Reddish-brown, silty fine SAND, well sorted, medium dense, wet, no staining, no odor.
20'-25'	8	MC	45"	0.0	0"-18": Olive-brown, CLAY and SILT, trace fine sand seams, dense, dampmoist, no staining, no odor.
				0.0	18"-34": Olive-brown, fine to medium SAND, some silt, trace rock, fine subrounded gravel, poorly sorted, dense, moist, no staining, no door.
				0.0	34"-45": Light gray-tan, fine SAND, some silt, trace clay, subrounded gravel, medium dense, damp-moist, no staining, no odor.
Sample HA = Ha MC = M	and A	uger			NOTES: Soil samples from 8'-10' and 11'-13' submitted for TCL VOC and TCL SVOC analysis. Soil sample from 8'-10' also submitted for analysis of TAL Metals, TCL Pesticides and PCBs.

Arch Street

Boring No.: SB-07
Sheet 1 of 1
By: Keith Robins

Drilling Contractor: AARCO **Drill Rig:** Geoprobe 7822DT **Date Started:** 3/14/16

Geologist: Keith Robins
Drilling Method: Macrocore
Drive Hammer Weight: N/A
Date Completed: 3/18/16

Boring Completion Depth: 25 Ground Surface Elevation: 8.10 3.10

Boring Diameter: 2"

Depth (ft.)	No.	Туре	Rec.	PID Per 6" (ppm)	Sample Description
0'-8"	1	НА	8"	0.0	Bluestone.
8"-20"	2	НА	12"	0.0	Gray-brown, medium to coarse SAND and GRAVEL, trace stone, poorly sorted, loose, moist.
20"-36"	3	НА	16"	0.0	Black-dark gray, SILT and SAND, some gravel, trace cobbles, trace metal, brick and slag, poorly sorted, loose, moist, no staining, no odor.
36"-42"	4	НА	6"	0.0	Gray-brown, SILT and SAND, some gravel, poorly sorted, loose, wet at 3.8' bgs.
3.5'-5'	5	MC	7"	0.0	Bluestone/gravel, wet, loose, no staining, no odor.
5'-10'	6	MC	42"	0.3	Gray-brown, fine to medium SAND, trace fine gravel, trace clayey silt, organic matter, poorly sorted, loose, wet, no staining, no odor.
10'-15'	7	MC	36"	0.2	0"-8": Gray-brown, fine to medium SAND, trace coarse sand and gravel, well sorted, loose, wet, no staining, no odor.
				0.3	8"-36": Dark gray, CLAY, some organic matter and shells, soft, damp, no staining, organic odor.
15'-20'	8	MC	34"	0.3	0"-22": Gray, SILT, trace rock, dense, damp-moist.
				0.3	22"-34": Brown-olive, silty fine SAND, trace rock and gravel, poorly sorted, dense, moist, no staining, no odor.
20'-25'	9	MC	35"	0.0	0"-19": Brown-olive, fine to medium SAND, some silt, trace rock, gravel, poorly sorted, dense, moist-wet, no staining, no odor.
				0.0	19"-35": Gray, fine to very fine SAND, trace fine gravel, well sorted, wet, no staining, no odor.
Sample	<u> </u>				NOTES:

Sample Types: HA = Hand Auger MC = Macrocore NOTES:

Soil samples from 12'-14' and 23'-25' submitted for TCL VOC and TCL SVOC analysis. Soil sample from 12'-14' also submitted for TAL Metals, TCL Pesticides and PCB analysis.

Arch Street

Boring No.: SB-08 Sheet <u>1</u> of <u>1</u> By: Keith Robins

Drilling Contractor: AARCO Drill Rig: Geoprobe 7822DT **Date Started: 3/14/16**

Geologist: Keith Robins **Drilling Method:** Macrocore Drive Hammer Weight: N/A

Date Completed: 3/17/16

Boring Completion Depth: 25° **Ground Surface Elevation:** 8.62'

Boring Diameter: 2"

Depth (ft.)	No.	Туре	Rec.	PID Per 6" (ppm)	Sample Description
0'-1'	1	HA	12"	0.0	Bluestone.
1'-4'	2	НА	36"	0.0	Dark gray-brown, fine to medium SAND and GRAVEL, no odor, no staining. Water encountered at 4' bgs.
4'-10'	3	MC	36"	56.0	0"-24": Black, medium to coarse SAND and fine GRAVEL, some stone, trace clay, coal, cinders, brick, poorly sorted, wet, loose.
				0.0	24"-36": Dark brown, medium to coarse SAND, Rock and Stones, some gravel, brick, poorly sorted, loose, wet, no staining, no odor.
10'-15'	4	MC	20"	0.0	0"-12": Black, medium to coarse SAND and fine to coarse angular GRAVEL, some rock, concrete, brick, poorly sorted, very loose, wet, no staining, no odor.
				0.0	12"-20": Dark brown-gray, silty SAND, some subrounded gravel, trace stone, poorly sorted, wet, no staining, no odor.
15'-20'	5	MC	52"	0.0	0"-12": Dark gray, CLAY, some organic matter, soft-firm, slightly plastic, moist, no staining, slight organic odor.
				0.0	12"-20": Dark gray-brown, silty CLAY, moist.
				0.0	20"-40": Light gray-blue, SILT, trace clay, dense, damp, no staining, no odor.
				0.0	40"-52": Reddish-olive, silty fine to medium SAND, some fine subrounded gravel, poorly sorted, dense, moist, no staining, no odor.
20'-25'	6	MC	40"	0.0	0"-16": Olive-brown, SILT, little sand, trace fine gravel, dense, damp, no staining, no odor.
					16"-40": Olive-brown, silty fine SAND, some subrounded gravel, trace weathered rock, poorly sorted, moist-damp, no staining, no odor.
Sample	Type	es:			NOTES:

HA = Hand Auger

MC = Macrocore

Soil samples from 4'-6', 6'-8' and 13'-15' submitted for TCL VOC and TCL SVOC analysis.

Arch Street

Sheet 1 of 1

By: Keith Robins

Drilling Contractor: AARCO **Drill Rig:** Geoprobe 7822DT **Date Started:** 3/18/16

Geologist: Keith Robins
Drilling Method: Macrocore
Drive Hammer Weight: N/A
Date Completed: 3/18/16

Boring Completion Depth: 8' **Ground Surface Elevation:** 7.10'*

Boring Diameter: 2"

Soil samples from 0'-1', 2'-3', 4'-5' and 7'-8' submitted for

Boring log begins approximately 2 ft. below bluestone. *Ground surface elevation is from top of bluestone.

Depth				PID Per 6"	Sample Description
(ft.)	No.	Type	Rec.	(ppm)	
0'-5'	1	MC	36"	0.3	0"-12": Brown, medium to coarse SAND, crushed ROCK and GRAVEL, poorly sorted, loose, damp to wet.
				0.0	12"-18": Dark gray, silty SAND and STONE, poorly sorted, loose, no staining, no odor.
				0.0	18"-21": Concrete, dry, no staining, no odor.
				0.0	21"-42": Black, fine SAND, SLAG and COAL, trace silt, lumber, poorly sorted, very loose, wet, no staining, no odor.
				0.0	42"-46": Olive-brown, fine SAND, some fine angular gravel, wet, no staining, no odor.
5'-8'	2	MC	34"	0.3	0"-21": Dark gray, fine to medium SAND, trace fine gravel, well sorted, wet, no staining, no odor.
				0.3	21"-30": Brown-olive, fine to medium SAND, trace fine gravel, wet, no staining, no odor.
				0.3	30"-34": Dark gray, very fine SAND, trace silt, wet, no staining, no odor.

NOTES:

PCBs analysis.

J:_HazWaste\3455 (LIRR On-Call)\Task 2 (Arch Street)\Boring Logs\SB-09.doc

Sample Types:

HA = Hand Auger

Arch Street

Boring No.: SB-10
Sheet 1 of 1
By: Keith Robins

Drilling Contractor: AARCO **Drill Rig:** Geoprobe 7822DT **Date Started:** 3/18/16

Geologist: Keith Robins
Drilling Method: Macrocore
Drive Hammer Weight: N/A
Date Completed: 3/18/16

Boring Completion Depth: 8' **Ground Surface Elevation:** 7.21'*

Boring Diameter: 2"

Depth (ft.)	No.	Туре	Rec.	PID Per 6" (ppm)	Sample Description
0'-1'	1	HA	12"	0.0	Dark gray, medium to fine SAND, some brick, rock, no staining, no odor.
1.5'-5'	2	НА	35"	0.3	0"-17": Black, medium to coarse SAND, SLAG and GRAVEL, poorly sorted loose, wet, no staining, no odor.
				0.3	17"-35": Black, fine to medium SAND and crushed ROCK, trace gravel, lumber, poorly sorted, wet, no staining, no odor.
5'-8'	3	MC	27"	0.2	0"-18": Black, medium to coarse SAND, fine GRAVEL, SLAG and COAL fragments, poorly sorted, loose, wet, no staining, no odor.
				0.2	18"-27": Olive-brown, fine SAND, wet, well sorted, wet, no staining, no odo

HA = Hand Auger **MC** = Macrocore

Sample Types:

NOTES:

Soil samples from 2'-3', 4'-5' and 7'-8' submitted for PCBs analysis.

Boring log begins approximately 18" below the bluestone. *Ground surface elevation is from top of bluestone.

Arch Street

Boring No.: SB-11
Sheet 1 of 1
By: Keith Robins

Drilling Contractor: AARCO **Drill Rig:** Geoprobe 7822DT **Date Started:** 3/18/16

Geologist: Keith Robins **Drilling Method:** Macrocore **Drive Hammer Weight:** N/A

Date Completed: 3/18/16

Boring Completion Depth: 8' **Ground Surface Elevation:** 7.39'*

Boring Diameter: 2"

			T	T = -= -	
Depth (ft.)	No.	Туре	Rec.	PID Per 6" (ppm)	Sample Description
0'-5'	1	MC	35"	0.2	0"-15": Black, medium to coarse SILT, GRAVEL and STONE, trace brick, poorly sorted, loose, wet, no staining, no odor.
				0.2	15"-35": Olive-brown, fine to medium SAND, some silt, crushed stone, rock, gravel, compacted, dense, wet, no staining, no odor.
5'-8'	2	MC	24"	0.6	0"-12": Black-dark gray, medium to coarse SAND, STONE, ROCK and GRAVEL, poorly sorted, loose, wet, no staining, no odor.
				0.6	12"-24": Brown-gray, organic CLAY and PEAT, damp, slightly plastic, soft, no staining, some organic odors.

NOTES:

PCBs analysis.

Soil samples from 0'-1', 2'-3', 4'-5' and 7'-8' submitted for

Boring log begins approximately 24" below bluestone. *Ground surface elevation is from top of bluestone.

J:_HazWaste\3455 (LIRR On-Call)\Task 2 (Arch Street)\Boring Logs\SB-11.doc

Sample Types:

HA = Hand Auger

Arch Street

Boring No.: SB-12
Sheet 1 of 1
By: Keith Robins

Drilling Contractor: AARCO Drill Rig: Geoprobe 7822DT Date Started: 3/21/16 Geologist: Keith Robins
Drilling Method: Macrocore
Drive Hammer Weight: N/A
Date Completed: 3/21/16

Boring Completion Depth: 6' **Ground Surface Elevation:** 6.89'*

Boring Diameter: 2"

_				T =	T
Depth	NI-	T	Des	PID Per 6"	Sample Description
(ft.)	No.	Туре	Rec.	(ppm)	O'! 40!! Orange I' as a see CAND ODANG! OTONICO (see a be'd
0'-5'	1	HA/ MC	44"	0.5	0"-16": Gray, medium-coarse SAND, GRAVEL, STONES, trace brick, concrete, poorly sorted, loose.
				0.5	16"-39": Black, fine to medium SAND, some slag, trace coal, cinders, gravel, poorly sorted, loose, wet, no staining, no odor.
				0.5	39"-44": Black-brown, fine to medium SAND, trace gravel, well sorted, wet, no staining, no odor.
5'-6'	2	МС	12"	0.5	Dark gray, organic CLAY, soft-slightly plastic, organic odor, moist.

Sample Types: HA = Hand Auger MC = Macrocore NOTES:

Soil samples from 0'-1', 2'-3' and 5'-6' submitted for PCBs analysis.

Boring log begins approximately 3" below bluestone. *Ground surface elevation is from top of bluestone.

Arch Street

Boring No.: SB-13
Sheet 1 of 1
By: Keith Robins

Drill Rig: Geoprobe 7822DT **Date Started:** 3/21/16

Geologist: Keith Robins **Drilling Method:** Macrocore **Drive Hammer Weight:** N/A

Date Completed: 3/21/16

Boring Completion Depth: 6' **Ground Surface Elevation:** 7.12'*

Boring Diameter: 2"

Depth (ft.)	No.	Туре	Rec.	PID Per 6" (ppm)	Sample Description
0'-5'	1	MC	50"	0.4	0"-12": Dark brown-gray, medium to coarse SAND and STONES, some angular gravel, trace concrete, poorly sorted, damp-moist, no staining, no odor.
				0.4	12"-29": Black, medium to coarse SAND, some coarse gravel, slag, poorly sorted, loose, wet, no staining, no odor.
				0.4	29"-50": Dark gray-olive, organic CLAY, soft-slightly plastic, moist, organic odor.
5'-6'	2	MC	10"	0.4	Gray, CLAY, some organic material, soft-slightly plastic, moist, no staining, no odor.

Sample Types: HA = Hand Auger MC = Macrocore NOTES:

Soil samples from 0'-1', 2'-3' and 5'-6' submitted for PCBs analysis.

Boring log begins approximately 24" below bluestone. *Ground surface elevation is from top of bluestone.

Arch Street

Boring No.: SB-14
Sheet 1 of 1
By: Keith Robins

Drilling Contractor: AARCO Drill Rig: Geoprobe 7822DT Date Started: 3/21/16 Geologist: Keith Robins
Drilling Method: Macrocore
Drive Hammer Weight: N/A

Date Completed: 3/21/16

Boring Completion Depth: 6' **Ground Surface Elevation:** 7.76'*

Boring Diameter: 2"

		1		T = -= -	
Depth	N.a	Tuma	Daa	PID Per 6"	Sample Description
(ft.) 0'-5'	NO.	HA/ MC	Rec. 35"	(ppm) 0.3	0"-17": Black-dark gray, medium to coarse SAND, some fine gravel, silt, slag, trace silt, brick, poorly sorted, loose, no staining, no odor.
				0.3	17"-35": Brown-light orange, medium SAND, trace fine gravel, well sorted, compacted, wet, no staining, no odor.
5'-6'	2	MC	10"	0.3	Light gray, fine to medium SAND, trace silt, gravel, well sorted, wet, no staining, no odor.
l					

Sample Types: HA = Hand Auger MC = Macrocore NOTES:

Soil samples from 0'-1', 2'-3' and 5'-6' submitted for PCBs analysis.

Boring log begins approximately 24 " below bluestone. *Ground surface elevation is from top of bluestone.

Arch Street

Boring No.: SB-15
Sheet 1 of 1
By: Keith Robins

Drilling Contractor: AARCO
Drill Rig: Geoprobe 7822DT
Date Started: 3/18/16

Geologist: Keith Robins
Drilling Method: Macrocore
Drive Hammer Weight: N/A
Date Completed: 3/18/16

Boring Completion Depth: 6' **Ground Surface Elevation:** 6.94'*

Boring Diameter: 2"

Depth (ft.)	No.	Туре	Rec.	PID Per 6" (ppm)	Sample Description
1'-5'	1	HA/ MC	36"	0.1	0"-31": Black-dark gray, medium to coarse SAND, some angular gravel, trace silt, cinders, slag, crushed rock poorly sorted, loose, wet, no staining, no odor.
				0.1	31"-36": Olive green-brown, fine to coarse SAND, trace subrounded-flat gravel, well sorted, wet, no staining, no odor.
5'-6'	2	MC	8"	0.1	Olive-brown, SILT, dense, moist, no staining, no odor.

Sample Types: HA = Hand Auger MC = Macrocore NOTES:

Soil samples from 0'-1', 2'-3' and 5'-6' submitted for PCBs analysis.

Boring log begins approximately 24" below bluestone. *Ground surface elevation is from top of bluestone.

Arch Street

Boring No.: SB-16
Sheet 1 of 1
By: Keith Robins

Drilling Contractor: AARCO Drill Rig: Geoprobe 7822DT Date Started: 3/18/16

Geologist: Keith Robins
Drilling Method: Macrocore
Drive Hammer Weight: N/A
Date Completed: 3/18/16

Boring Completion Depth: 6' **Ground Surface Elevation:** 7.13'*

Boring Diameter: 2"

Depth (ft.)	No.	Туре	Rec.	PID Per 6" (ppm)	Sample Description
(ft.) 0'-5'	1	HA/ MC	Rec. 31"	(ppm) 0.3	Black-light gray, fine to medium SAND, some silt, stones, concrete, trace brick, damp-moist, no staining, no odor.
5'-6'	2	MC	10"	0.3	Olive-light black, medium to coarse SAND, some gravel, poorly sorted, medium-loose, moist-wet, no staining, no odor.

Sample Types: HA = Hand Auger MC = Macrocore NOTES:

Soil samples from 0'-1', 2'-3' and 5'-6' submitted for PCBs analysis.

Boring log begins approximately 12" below bluestone. *Ground surface elevation is from top of bluestone.

Arch Street

Boring No.: SB-17
Sheet 1 of 1
By: Keith Robins

Drill Rig: Geoprobe 7822DT **Date Started:** 3/18/16

Geologist: Keith Robins
Drilling Method: Macrocore
Drive Hammer Weight: N/A
Date Completed: 3/18/16

Boring Completion Depth: 6' **Ground Surface Elevation:** 6.41'*

Boring Diameter: 2"

Depth (ft.)	No.	Туре	Rec.	PID Per 6" (ppm)	Sample Description
0'-1'	1	HA	12"	0.0	Black-dark brown, SAND and GRAVEL, trace brick, wet.
1'-2'	2	НА	12"	0.0	Black, SAND and GRAVEL, poorly sorted, wet.
2'-3'	3	НА	12"	0.0	Black, medium to coarse SAND and subangular GRAVEL, poorly sorted, loose, wet, no staining, no odor.
3'-5'	4	НА	24"	0.0	Black-dark gray, fine to medium SAND, trace gravel, wet, no staining, no odor.
5'-6'	5	НА	12"	0.0	Gray-brown, SILT, some fine to coarse sand, poorly sorted, wet, no staining, no odor.

Sample Types: HA = Hand Auger MC = Macrocore NOTES:

Soil samples from 0'-1', 2'-3' and 5'-6' submitted for PCBs analysis.

Boring log begins approximately 12" below bluestone. *Ground surface elevation is from top of bluestone.

Arch Street

Boring No.: GW-01 Sheet _ 1 of _1 By: Keith Robins

Drilling Contractor: AARCO

Drill Rig: Geoprobe **Date Started:** 3/15/16

Geologist: Keith Robins **Drilling Method:** Macrocore **Drive Hammer Weight:** N/A

Date Completed: 3/21/16

Boring Completion Depth: 20' Ground Surface Elevation: 9.85'

Boring Diameter: 2"

Depth (ft.)	No.	Туре	Rec.	PID Per 6" (ppm)	Sample Description
0'-6"	1	HA	6"	0.0	Bluestone.
6"-1'	2	НА	6"	0.0	Dark brown, medium to coarse SAND, GRAVEL and STONE, dry-damp.
1'-3'	3	НА	2"	0.0	Dark brown-brown, medium to coarse SAND, GRAVEL and STONE, trace brick, concrete, tile, wood, glass, poorly sorted, dense, no staining, no odor.
3'-5'	4	НА	24"	0.0	Black-dark brown, medium to coarse SAND, GRAVEL and STONE, trace silt, trace slag, cinders, poorly sorted, dense, no staining, no odor. Water encountered at 4.5' bgs.
5'-10'	5	МС	39"	0.4	0"-19": Black, medium to coarse SAND and SLAG, ASH, fine to coarse GRAVEL, trace brick, fill material, poorly sorted, very loose, wet, no staining, no odor.
				0.4	19"-39": Olive green-light black, fine to medium SAND, trace silt, rock fragments, trace fill material, poorly sorted, wet, no staining, no odor.
10'-15'	6	MC	43"	0.5	0"-11": Black, fine to medium SAND, trace silt, well sorted, no staining, no odor.
				0.5	11"-32": Olive-brown, clayey SILT, slightly firm-soft, slightly plastic, wet, no staining, no odor.
				0.5	32"-40": Olive green-brown, fine SAND, well sorted, wet.
				0.5	40"-43": Black, fine SAND, trace silt, well sorted, wet, no staining, no odor.
15'-20'	7	MC	42"	0.4	0"-16": Dark gray, CLAY, trace shells, slightly plastic, soft, damp-moist, no staining, no odor.
				0.4	16"-34": Gray-light gray, clayey SILT, trace fine subrounded gravel, firm-dense, moist.
				0.4	34"-42": Olive green-brown, silty fine SAND, trace fine gravel, poorly sorted, compacted-dense, moist-wet, no staining, no odor.
	l				110==0

MC = Macrocore

Sample Types: HA = Hand Auger NOTES:

Soil samples from 4'-5', 13'-15' and 18'-20' submitted for TCL VOC and TCL SVOC analysis.

Arch Street

Boring No.: GW-03
Sheet 1 of 1
By: Keith Robins

Drilling Contractor: AARCO

Drill Rig: Geoprobe **Date Started:** 3/15/16

Geologist: Keith Robins **Drilling Method:** Macrocore **Drive Hammer Weight:** N/A

Date Completed: 3/21/16

Boring Completion Depth: 20' **Ground Surface Elevation:** 8.23'

Boring Diameter: 2"

Depth	-			PID Per 6"	Sample Description
(ft.)	No.	Туре	Rec.	(ppm)	Sample Description
0'-1'	1	НА	12"	0.0	Bluestone.
1'-3'	2	HA	24"	0.0	Black-dark brown, medium to coarse SAND, STONE and GRAVEL, trace concrete, wood, poorly sorted, dense, no staining, no odor.
3'-5'	3	НА	29"	0.7	0"-12": Black, medium to coarse SAND, some gravel, trace silt, poorly sorted, loose, wet, no staining, no odor.
				0.7	12"-23": Black, fine to medium SAND, some fine to coarse angular gravel, rock, poorly sorted, very loose, wet, no staining, no odor.
				0.7	23"-29": Dark brown, medium SAND, trace fine gravel, well sorted, dense, wet, no staining, no odor.
5'-10'	4	МС	52"	0.6	Dark brown-gray, fine to medium SAND, trace silt, coarse subrounded gravel, well sorted, medium compaction, wet, no staining, no odor.
10'-15'	5	МС	52"	0.5	0"-5": Dark gray-brown, fine to medium SAND, trace fine gravel, coarse sand, poorly sorted, wet, no staining, no odor.
				2.2	5"-48": Dark gray, CLAY, some organic matter, trace shells, firm, slightly plastic, damp-moist, some organic odor.
				2.2	48"-52": Dark brown-red, Organic Clay and PEAT, slightly plastic, organic odor, damp.
15'-20'	6	MC	48"	0.6	0"-30": Gray, silty CLAY, trace subrounded gravel, soft-firm, slightly plastic, damp-moist.
				0.6	30"-48": Dark brown, SILT and fine SAND, trace black gravel, rock, muscovite flakes, poorly sorted, compacted, wet, no staining, no odor.
Cl-	Type	'	1	•	NOTES:

Sample Types:

HA = Hand Auger **MC** = Macrocore

NOTES:

Soil samples from 3'-4', 12'-14' and 18'-20' submitted for TCL VOC and TCL SVOC analysis.

Arch Street

Boring No.: GW-04D **Sheet** <u>1</u> **of** <u>1</u>

By: Keith Robins

Drilling Contractor: AARCO

Drill Rig: Geoprobe **Date Started:** 3/15/16

Geologist: Keith Robins
Drilling Method: Macrocore
Drive Hammer Weight: N/A
Date Completed: 3/23/16

Boring Completion Depth: 19' **Ground Surface Elevation:** 7.31'

Boring Diameter: 2"

Depth				PID Per 6"	Sample Description
(ft.)	No.	Туре	Rec.	(ppm)	
0'-2'	1	HA	24"	0.0	Bluestone. Encountered water at 2 feet.
2'-4'	2	НА	24"	0.0	0"-6": Dark gray, medium to coarse SAND, some silt, gravel and stone, poorly sorted, damp, no staining, no odor.
				0.0	6"-12": Black, fine to medium SAND, trace fine gravel, cobbles, trace brick, poorly sorted, damp-moist, no staining, no odor.
				0.0	12"-18": Olive-brown, medium SAND, well sorted, moist-wet.
				0.0	18"-24": Black, fine to medium SAND, some silt, trace gravel, poorly sorted, dense, moist-wet, no staining, no odor.
4'-5'	3	НА	12"	0.0	Olive green-brown, silty fine SAND, some fine gravel, compacted, well sorted, wet, no staining, no odor.
5'-10'	4	MC	48"	0.2	0"-19": Olive-dark brown, medium SAND, trace coarse sand, fine to coarse gravel, well sorted, wet, no staining, no odor.
				0.2	19"-40": Brown, SILT, trace fine sand, well sorted, compacted-dense, wet, no staining, no odor.
				0.2	40"-48": Dark gray, CLAY, some organic material, slightly plastic-soft, organic odor, moist.
10'-15'	5	МС	45"	0.2	0"-32": Gray, CLAY, some organic material, trace shells, firm, slightly plastic, no staining, organic odor.
				0.2	32"-45": Gray-light gray, clayey SILT, trace subrounded stone, slightly plastic-soft, wet-moist, no staining, no odor.
15'-19'	6	МС	48"	0.2	0"-40": Dark brown-light gray, medium to coarse SAND, well sorted, loose, wet, no staining, no odor.
				0.2	40"-48": Gray-brown, SILT, trace fine gravel, compact-dense, moist-wet, no staining, no odor.

Sample Types:

HA = Hand Auger **MC** = Macrocore

NOTES:

Soil samples from 2'-3', 12'-14' and 16'-18' submitted for TCL VOC and TCL SVOC analysis. Refusal at 19' below top of bluestone.

APPENDIX D

MONITORING WELL CONSTRUCTION LOGS

Site	LIR	R – Arch	n Street	Job Numb	er3	455	Well No.	GW-01
Total Depth	20'		Surface Elevation	12.57	Т	op Riser El	12.20'	
Water Levels (Depth, Date, Time)			7.65, 4/27	7/16, 0725		Date	Installed	3/22/16
Riser Screen	Dia Dia	1" 1"		PVC PVC	Length Length	12' 10'	Slot Size	0.010

LIRR – Arch	n Street	Job Numbe	r 3455	Well No.	GW-02S		
7'	Surface Elevation	11.15'	Top Riser	Elevation	10.65'		
Date, Time)	6.15', 4/27	7/16, 0726	Date Installed 3/22/16				
			·	 Slot Size	e 0.010		
	7' Date, Time) _ ia1"	Date, Time) 6.15', 4/27	7' Surface Elevation 11.15' Date, Time) 6.15', 4/27/16, 0726 ria. 1" Material PVC I	7' Surface Elevation 11.15' Top Riser Date, Time) 6.15', 4/27/16, 0726 Da via. 1" Material PVC Length 4'	7' Surface Elevation 11.15' Top Riser Elevation Date, Time) 6.15', 4/27/16, 0726 Date Installed Date 1'' Material PVC Length 4'		

Site	LIRR – Arcl	Street	Job Number	3455	Well No.	GW-02D
Total Depth	20'	Surface Elevation	11.49'	Top Riser E	levation	11.05'
Water Levels (Depth, Date, Time)		10.71', 4/27	7/16, 0726	Date	Installed	3/22/16
Riser Screen	Dia. 1"			ngth 12'	Slot Size	0.010

Site	LIR	R – Arch	Street	Job Numbe	er 3455	5 We	ell No	GW-03
Total Depth	19'		Surface Elevation	Top :	Riser Elevatio	on	10.41'	
Water Levels (Depth, Date, Time)			12.13', 4/27	7/16, 0730		Date Install	ed	3/21/16
Riser Screen	Dia Dia	1" 1"			Length	11' 10' S	Slot Size	0.010

Site	LIR	R – Arch	Street	Job Numb	er3	455	Well No.	GW-04S
Total Depth	8'		Surface Elevation	7.32'	To	op Riser Ele	evation	7.01'
Water Levels (Depth, Date, Time)			3.28', 4/27	/16, 0730		Date I	nstalled	3/23/16
Riser Screen	Dia Dia.	1" 1"			Length Length	3' 5'	Slot Size	0.010

Site	LIRR – Arcl	Street	Job Number	3455	Well No.	GW-04D
Total Depth	18'	Surface Elevation	7.32'	Top Riser E	levation	7.12'
Water Levels (Dep	th, Date, Time)	9.18', 4/27/	/16, 0728	Date	Installed	3/23/16
Riser Screen	Dia. 1" Dia. 1"			ngth 8'	Slot Size	0.010

APPENDIX E

REMEDIAL INVESTIGATION CHEMICAL DATA TABLES

Table E-1
Long Island Rail Road
Arch Street Yard RI
Subsurface Soil Samples
TCL Volatile Organic Compounds

Sample ID	VB-01(13-15)	VB-02(12-14)	SB-01(13-15)	SB-01(23-25)	SB-02(13-15)	SB-02(23-25)		NYCRR 6 Part 375	
Sampling Date Start Depth (in Feet)		10/30/15	3/16/2016	3/16/2016	3/17/2016	3/17/2016	Protection of Groundwater*	Restricted- Residential	Industrial Use Soil
End Depth (in Feet)		12	13 15	23 25	13 15	23 25	Soil Cleanup	Use Soil Cleanup	Cleanup
End Depth (in Feet)	15	14	15	25	15	25	Objectives (SCOs)		Objectives (SCO)
Units	ug/Kg	ug/kg	ug/kg						
VOLATILE COMPOUNDS									
1,1,1-Trichloroethane	66900 U	7.6 U	8.6 U	4.2 U	10.7 U	4.5 U	680	100000	1000000
1,1,2,2-Tetrachloroethane	66900 U	7.6 U	8.6 UJ	4.2 U	10.7 U	4.5 U	600		
1,1,2-Trichloroethane	66900 U	7.6 UJ	8.6 U	4.2 U	10.7 U	4.5 U			
1,1,2-Trichlorotrifluoroethane	66900 U	7.6 U	8.6 U	4.2 U	10.7 U	4.5 U			
1,1-Dichloroethane	66900 U	7.6 U	8.6 U	4.2 U	10.7 U	4.5 U	270	26000	480000
1,1-Dichloroethene	66900 U	7.6 U	8.6 U	4.2 U	10.7 U	4.5 U	330	100000	1000000
1,2,3-Trichlorobenzene	66900 U	7.6 UJ	8.6 UJ	4.2 U	10.7 U	4.5 U			
1,2,4-Trichlorobenzene	66900 U	7.6 UJ	8.6 UJ	4.2 U	10.7 U	4.5 U			
1,2-Dibromo-3-Chloropropane	66900 U	7.6 UJ	8.6 UJ	4.2 U	10.7 U	4.5 U			
1,2-Dibromoethane	66900 U	7.6 U	8.6 U	4.2 U	10.7 U	4.5 U			
1,2-Dichlorobenzene	66900 U	7.6 UJ	8.6 UJ	4.2 U	10.7 U	4.5 U		100000	1000000
1,2-Dichloroethane	66900 U	7.6 U	8.6 U	4.2 U	10.7 U	4.5 U	20	3100	60000
1,2-Dichloropropane	66900 U	7.6 U	8.6 U	4.2 U	10.7 U	4.5 U			
1,3-Dichlorobenzene	66900 U	7.6 UJ	8.6 UJ	4.2 U	10.7 U	4.5 U		49000	560000
1,4-Dichlorobenzene	66900 U	7.6 UJ	8.6 UJ	4.2 U	10.7 U	4.5 U		13000	250000
1,4-Dioxane	1338700 U	150 U						13000	250000
2-Butanone	334700 U	37.8 U	42.9 U	21.2 U	9.6 J	22.7 U		100000	1000000
2-Hexanone	334700 U	37.8 U	42.9 U	21.2 U	53.3 U	22.7 U			
4-Methyl-2-Pentanone	334700 U	37.8 U	42.9 U	21.2 U	53.3 U	22.7 U			
Acetone	334700 U	63.4	15.4 J	9.1 J	37.4 J	22.7 U		100000	1000000
Benzene	66900 U	7.6 U	8.6 U	4.2 U	10.7 U	4.5 U		4800	89000
Bromochloromethane	66900 U	7.6 U	8.6 U	4.2 U	10.7 U	4.5 U			
Bromodichloromethane	66900 U	7.6 U	8.6 U	4.2 U	10.7 U	4.5 U			
Bromoform	66900 U	7.6 U	8.6 U	4.2 U	10.7 U	4.5 U			
Bromomethane	66900 U	7.6 U	8.6 U	4.2 U	10.7 U	4.5 U			
Carbon Disulfide	66900 U	49.4	8.9 J	4.2 U	11.3 J	4.5 U			
Carbon Tetrachloride	66900 U	7.6 U	8.6 U	4.2 U	10.7 U	4.5 U	760	2400	44000
Chlorobenzene	66900 U	7.6 U	8.6 U	4.2 U	10.7 U	4.5 U		100000	1000000
Chloroethane	66900 U	7.6 U	8.6 U	4.2 U	10.7 U	4.5 U			
Chloroform	66900 U	7.6 U	8.6 U	4.2 U	10.7 U	4.5 U	370	49000	700000
Chloromethane	66900 U	7.6 U	8.6 U	4.2 U	10.7 U	4.5 U			- -
cis-1,2-Dichloroethene	66900 U	40.4	5 J	1.3 J	7.3 J	1.1 J	250	100000	1000000
cis-1,3-Dichloropropene	66900 U	7.6 U	8.6 U	4.2 U	10.7 U	4.5 U			
Cyclohexane	66900 U	7.6 U	8.6 U	4.2 U	10.7 U	4.5 U			
Dibromochloromethane	66900 U	7.6 U	8.6 U	4.2 U	10.7 U	4.5 U			
Dichlorodifluoromethane	66900 U	7.6 U	8.6 U	4.2 U	10.7 U	4.5 U			

Table E-1 Long Island Rail Road **Arch Street Yard RI Subsurface Soil Samples TCL Volatile Organic Compounds**

Sample ID Sampling Date Start Depth (in Feet) End Depth (in Feet) Units	13 15	VB-02(12-14) 10/30/15 12 14 ug/Kg	SB-01(13-15) 3/16/2016 13 15 ug/Kg	SB-01(23-25) 3/16/2016 23 25 ug/Kg	SB-02(13-15) 3/17/2016 13 15 ug/Kg	SB-02(23-25) 3/17/2016 23 25 ug/Kg	NYCRR 6 Part 375 Protection of Groundwater* Soil Cleanup Objectives (SCOs) ug/Kg	NYCRR 6 Part 375 Restricted- Residential Use Soil Cleanup Objectives (SCO) ug/kg	NYCRR 6 Part 3/5 Industrial Use Soil Cleanup Objectives (SCO) ug/kg
Ethyl Benzene	66900 U	7.6 U	8.6 U	4.2 U	10.7 U	4.5 U		41000	780000
Isopropylbenzene	66900 U	7.6 UJ	8.6 UJ	4.2 U	10.7 U	4.5 U			
m/p-Xylenes	133900 U	15.1 U	17.4 U	8.5 U	21.3 U	9.1 U		100000	1000000
Methyl Acetate	66900 U	7.6 U	8.6 U	4.2 U	10.7 U	4.5 U			
Methyl tert-butyl Ether	66900 U	6.5 J	2.5 J	4.2 U	51.3	4.5 U		100000	1000000
Methylcyclohexane	66900 U	7.6 U	8.6 U	4.2 U	10.7 U	4.5 U			
Methylene Chloride	66900 U	1.8 J	7.9 UB	4.2 U	10.7 U	4.5 U	50	100000	1000000
o-Xylene	66900 U	7.6 U	8.6 U	4.2 U	10.7 U	4.5 U		100000	1000000
Styrene	66900 U	7.6 U	8.6 U	4.2 U	10.7 U	4.5 U			
t-1,3-Dichloropropene	66900 U	7.6 U	8.6 U	4.2 U	10.7 U	4.5 U			
Tetrachloroethene	<u>1160900</u>	6	8.6 U	4.2 U	10.7 U	3 J	1,300	19000	300000
Toluene	66900 U	7.6 U	8.6 U	4.2 U	10.7 U	4.5 U		100000	1000000
trans-1,2-Dichloroethene	66900 U	2.2 J	8.6 U	4.2 U	10.7 U	4.5 U	190	100000	1000000
Trichloroethene	66900 U	2.7 J	8.6 U	4.2 U	10.7 U	4.5 U	470	21000	400000
Trichlorofluoromethane	66900 U	7.6 U	8.6 U	4.2 U	10.7 U	4.5 U			
Vinyl Chloride	66900 U	7.6 U	8.6 U	1.5 J	7.7 J	4.5 U	20	900	27000
Total Volatile Organic Compounds	1160900	172.4	39.7	12	125	4			

Footnotes/Qualifiers:

ug/kg: Micrograms per kilogram

BD: Blind duplicate

U: Analyzed for but not detected UB: Not detected based on blank results

J+: Estimated bias high

Reported from secondary dilution

E: Exceeded calibration range estimated value

J: Estimated value or detection limits

No standard

<u>Exceeds Protection of Groundwater SCO</u> (only compared to chlorinated VOCs per NYSDEC) Exceeded the Restricted-Residential Use SCO

Exceeded the Industrial Use SCO

Table E-1
Long Island Rail Road
Arch Street Yard RI
Subsurface Soil Samples
TCL Volatile Organic Compounds

		SB-03(18-20)	SB-04(3-5)	SB-04(10-12)		SB-05(10-11)		NYCRR 6 Part 375	NYCRR 6 Part 375	NYCRR 6 Part 375
Sampling Date		3/17/2016	3/16/2016	3/16/2016	3/16/2016	3/16/2016	3/16/2016	Protection of	Restricted-	Industrial
Start Depth (in Feet)		18	3	10	27	10	10	Groundwater*	Residential	Use Soil
End Depth (in Feet)	14	20	5	12	29	11	11	Soil Cleanup	Use Soil Cleanup	Cleanup
Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	Objectives (SCOs) ug/Kg	Objectives (SCO) ug/kg	Objectives (SCO) ug/kg
VOLATILE COMPOUNDS	ug/Ng	ug/Ng	ug/Ng	ug/Kg	ug/Ng	ug/Ng	ug/Rg	ug/Rg	ug/kg	ug/kg
1,1,1-Trichloroethane	5.7 U	4.8 U	5.5 U	10.1 U	5.1 U	5.3 U	5 U	680	100000	1000000
1,1,2,2-Tetrachloroethane	5.7 U	4.8 U	5.5 U 4.6 J+	10.1 U	5.1 U 5.1 U	5.3 U 5.3 U	5 U	600	100000	1000000
1,1,2-Trichloroethane	5.7 U	4.8 U	5.5 U	10.1 U	5.1 U	5.3 U	5 U			
1,1,2-Trichloroethane	5.7 U	4.8 U	5.5 U	10.1 U	5.1 U	5.3 U	5 U			
1.1-Dichloroethane	5.7 U	4.8 U	5.5 U	10.1 U	5.1 U	5.3 U	5 U	270	26000	480000
1.1-Dichloroethane	5.7 U	4.8 U	5.5 U	10.1 U	5.1 U	5.3 U	5 U	330	100000	100000
1,2,3-Trichlorobenzene	5.7 U	4.8 U	5.5 UJ	10.1 U	5.1 U 5.1 U	5.3 U 5.3 U	5 U		100000	100000
1,2,4-Trichlorobenzene	5.7 U	4.8 U	5.5 UJ	10.1 U	5.1 U	5.3 U	5 U			
1,2-Dibromo-3-Chloropropane	5.7 U	4.8 U	5.5 UJ	10.1 U	5.1 U	5.3 U	5 U			
1.2-Dibromoethane	5.7 U	4.8 U	5.5 U	10.1 U	5.1 U	5.3 U	5 U			
1.2-Dichlorobenzene	5.7 U	4.8 U	5.5 UJ	10.1 U	5.1 U	5.3 U	5 U		100000	1000000
1.2-Dichlorosethane	5.7 U	4.8 U	5.5 U	10.1 U	5.1 U	5.3 U	5 U	20	3100	60000
1,2-Dichloropropane	5.7 U	4.8 U	5.5 U	10.1 U	5.1 U	5.3 U	5 U			
1,3-Dichlorobenzene	5.7 U	4.8 U	5.5 UJ	10.1 U	5.1 U	5.3 U	5 U		49000	560000
1.4-Dichlorobenzene	5.7 U	4.8 U	5.5 UJ	10.1 U	5.1 U	5.3 U	5 U		13000	250000
1,4-Dioxane		4.0 0				0.0 0			13000	250000
2-Butanone	5.5 J	23.8 U	8.9 J	9.9 J	25.6 U	3.8 J	5.9 J		100000	1000000
2-Hexanone	28.7 U	23.8 U	27.7 U	50.4 U	25.6 U	26.6 U	25.1 U			
4-Methyl-2-Pentanone	28.7 U	23.8 U	27.7 U	50.4 U	25.6 U	26.6 U	25.1 U			
Acetone	40.3	12.6 J	57	68.7	25.6 U	15.8 J	27.4		100000	1000000
Benzene	5.7 U	4.8 U	1.4 J	10.1 U	5.1 U	5.3 U	5 U		4800	89000
Bromochloromethane	5.7 U	4.8 U	5.5 U	10.1 U	5.1 U	5.3 U	5 U			
Bromodichloromethane	5.7 U	4.8 U	5.5 U	10.1 U	5.1 U	5.3 U	5 U			
Bromoform	5.7 U	4.8 U	5.5 U	10.1 U	5.1 U	5.3 U	5 U			
Bromomethane	5.7 U	4.8 U	5.5 U	10.1 U	5.1 U	5.3 U	5 U			
Carbon Disulfide	5.7 U	2.6 J	5.5 U	10.1 U	5.1 U	5.3 U	6.2 J			
Carbon Tetrachloride	5.7 U	4.8 U	5.5 U	10.1 U	5.1 U	5.3 U	5 U	760	2400	44000
Chlorobenzene	5.7 U	4.8 U	5.5 U	10.1 U	5.1 U	5.3 U	5 U		100000	1000000
Chloroethane	5.7 U	4.8 U	5.5 U	10.1 U	5.1 U	5.3 U	5 U			
Chloroform	5.7 U	4.8 U	5.5 U	10.1 U	5.1 U	5.3 U	5 U	370	49000	700000
Chloromethane	5.7 U	4.8 U	5.5 U	10.1 U	5.1 U	5.3 U	5 U			
cis-1,2-Dichloroethene	5.7 U	4.8 U	12.5	43.4	5.1 U	880 JD	180 JD	250	100000	1000000
cis-1,3-Dichloropropene	5.7 U	4.8 U	5.5 U	10.1 U	5.1 U	5.3 U	5 U			
Cyclohexane	5.7 U	4.8 U	5.5 U	10.1 U	5.1 U	5.3 U	5 U			
Dibromochloromethane	5.7 U	4.8 U	5.5 U	10.1 U	5.1 U	5.3 U	5 U			
Dichlorodifluoromethane	5.7 U	4.8 U	5.5 U	10.1 U	5.1 U	5.3 U	5 U			

Table E-1 Long Island Rail Road **Arch Street Yard RI Subsurface Soil Samples TCL Volatile Organic Compounds**

Sample	D SB-03(12-14)	SB-03(18-20)	SB-04(3-5)	SB-04(10-12)	SB-04(27-29)	SB-05(10-11)	SB-05(10-11)BD	NYCRR 6 Part 375	NYCRR 6 Part 375	NYCRR 6 Part 375
Sampling Da	te 3/17/2016	3/17/2016	3/16/2016	3/16/2016	3/16/2016	3/16/2016	3/16/2016	Protection of	Restricted-	Industrial
Start Depth (in Fe	t) 12	18	3	10	27	10	10	Groundwater*	Residential	Use Soil
End Depth (in Fe	t) 14	20	5	12	29	11	11	Soil Cleanup	Use Soil Cleanup	Cleanup
								Objectives (SCOs)		Objectives (SCO)
Un	ts ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/kg	ug/kg
Ethyl Benzene	5.7 U	4.8 U	5.5 U	10.1 U	5.1 U	5.3 U	5 U		41000	780000
sopropylbenzene	5.7 U	4.8 U	4.8 J+	10.1 U	5.1 U	5.3 U	5 U			
m/p-Xylenes	11.5 U	9.5 U	11.1 U	20.2 U	10.2 U	10.6 U	10.1 U		100000	1000000
Methyl Acetate	5.7 U	4.8 U	5.5 U	10.1 U	5.1 U	5.3 U	5 U			
Methyl tert-butyl Ether	5.7 U	4.8 U	5.5 U	35.5	1.1 J	2.8 J	1.3 J		100000	1000000
Methylcyclohexane	5.7 U	4.8 U	5.5 U	10.1 U	5.1 U	5.3 U	5 U			
Methylene Chloride	5.7 U	4.8 U	5.5 U	10.1 U	5.1 U	5.3 U	5 U	50	100000	1000000
o-Xylene	5.7 U	4.8 U	1.4 J	10.1 U	5.1 U	5.3 U	5 U		100000	1000000
Styrene	5.7 U	4.8 U	5.5 U	10.1 U	5.1 U	5.3 U	5 U			
t-1,3-Dichloropropene	5.7 U	4.8 U	5.5 U	10.1 U	5.1 U	5.3 U	5 U			
Tetrachloroethene	5.7 U	4.8 U	19.6	10.5	1.1 J	20900 JD	<u>7000 JD</u>	1,300	19000	300000
Toluene	5.7 U	4.8 U	5.5 U	10.1 U	5.1 U	5.3 U	5 U		100000	1000000
rans-1,2-Dichloroethene	5.7 U	4.8 U	5.5 U	10.1 U	5.1 U	100 J	75.3 J	190	100000	1000000
Trichloroethene	5.7 U	4.8 U	2.9 J	10.1 U	5.1 U	400 JD	81 JD	470	21000	400000
Trichlorofluoromethane	5.7 U	4.8 U	5.5 U	10.1 U	5.1 U	5.3 U	5 U			
Vinyl Chloride	5.7 U	4.8 U	6	6.2 J	5.1 U	560 JD	<u>120</u> JD	20	900	27000
						l — —				
Total Volatile Organic Compounds	46	15	119.1	174.2	2.2	22862	7497			

Footnotes/Qualifiers:

ug/kg: Micrograms per kilogram

BD: Blind duplicate

U: Analyzed for but not detected UB: Not detected based on blank results

J+: Estimated bias high

Reported from secondary dilution

Exceeded calibration range estimated value

J: Estimated value or detection limits

No standard

Exceeds Protection of Groundwater SCO (only compared to chlorinated VOCs per NYSDEC) Exceeded the Restricted-Residential Use SCO

Exceeded the Industrial Use SCO

Table E-1
Long Island Rail Road
Arch Street Yard RI
Subsurface Soil Samples
TCL Volatile Organic Compounds

Sample ID		SB-06(8-10)	SB-06(11-13)	SB-07(12-14)	SB-07(23-25)	SB-08(4-6)	NYCRR 6 Part 375	NYCRR 6 Part 375	NYCRR 6 Part 375
Sampling Date	3/16/2016	3/17/2016	3/17/2016	3/18/2016	3/18/2016	3/17/2016	Protection of	Restricted-	Industrial
Start Depth (in Feet)	11	8	11	12	23	4	Groundwater*	Residential	Use Soil
End Depth (in Feet)	13	10	13	14	25	6	Soil Cleanup	Use Soil Cleanup	Cleanup
Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	Objectives (SCOs) ug/Kg	Objectives (SCO) ug/kg	Objectives (SCO) ug/kg
VOLATILE COMPOUNDS	ug/Ng	ug/Ng	ug/Rg	ug/Kg	ug/Kg	ug/Kg	ug/Ng	ug/kg	ug/kg
1,1,1-Trichloroethane	7.6 U	6.2 U	6.2 U	5.7 U	4.3 U	10.3 U	680	100000	1000000
1,1,2,2-Tetrachloroethane	7.6 UJ	6.2 U	6.2 U	5.7 U	4.3 U	10.3 UJ	600		
1,1,2-Trichloroethane	7.6 U	6.2 U	6.2 U	5.7 U	4.3 U	10.3 U			
1.1.2-Trichlorotrifluoroethane	7.6 U	6.2 U	6.2 U	5.7 U	4.3 U	10.3 U			
1.1-Dichloroethane	7.6 U	6.2 U	6.2 U	5.7 U	4.3 U	10.3 U	270	26000	480000
1.1-Dichloroethene	8.7	6.2 U	6.2 U	5.7 U	4.3 U	10.3 U	330	100000	1000000
1,2,3-Trichlorobenzene	7.6 UJ	6.2 U	6.2 U	5.7 U	4.3 U	10.3 UJ			
1,2,4-Trichlorobenzene	7.6 UJ	6.2 U	6.2 U	5.7 U	4.3 U	10.3 UJ			
1,2-Dibromo-3-Chloropropane	7.6 UJ	6.2 U	6.2 U	5.7 U	4.3 U	10.3 UJ			
1.2-Dibromoethane	7.6 U	6.2 U	6.2 U	5.7 U	4.3 U	10.3 U			
1.2-Dichlorobenzene	7.6 UJ	6.2 U	6.2 U	5.7 U	4.3 U	10.3 UJ		100000	1000000
1,2-Dichloroethane	7.6 U	6.2 U	6.2 U	5.7 U	4.3 U	10.3 U	20	3100	60000
1,2-Dichloropropane	7.6 U	6.2 U	6.2 U	5.7 U	4.3 U	10.3 U			
1,3-Dichlorobenzene	7.6 UJ	6.2 U	6.2 U	5.7 U	4.3 U	10.3 UJ		49000	560000
1.4-Dichlorobenzene	7.6 UJ	6.2 U	6.2 U	5.7 U	4.3 U	10.3 UJ		13000	250000
1,4-Dioxane								13000	250000
2-Butanone	15.1 J	4.4 J	5.2 J	28.7 U	21.7 U	51.5 U		100000	1000000
2-Hexanone	37.8 U	4 J	31 U	28.7 U	21.7 U	51.5 U			
4-Methyl-2-Pentanone	37.8 U	3.1 J	31 U	28.7 U	21.7 U	51.5 U			
Acetone	75	16.6 J	33.4	17.1 J	13.9 J	140		100000	1000000
Benzene	2.4 J	6.2 U	6.2 U	5.7 U	4.3 U	10.3 U		4800	89000
Bromochloromethane	7.6 U	6.2 U	6.2 U	5.7 U	4.3 U	10.3 U			
Bromodichloromethane	7.6 U	6.2 U	6.2 U	5.7 U	4.3 U	10.3 U			
Bromoform	7.6 U	6.2 U	6.2 U	5.7 U	4.3 U	10.3 U			
Bromomethane	7.6 U	6.2 U	6.2 U	5.7 U	4.3 U	10.3 U			
Carbon Disulfide	37.9 J	2.3 J	6.2 U	5.7 U	4.3 U	4.6 J			
Carbon Tetrachloride	7.6 U	6.2 U	6.2 U	5.7 U	4.3 U	10.3 U	760	2400	44000
Chlorobenzene	7.6 U	6.2 U	6.2 U	5.7 U	4.3 U	10.3 U		100000	1000000
Chloroethane	7.6 U	6.2 U	6.2 U	5.7 U	4.3 U	10.3 U			
Chloroform	7.6 U	6.2 U	6.2 U	5.7 U	4.3 U	10.3 U	370	49000	700000
Chloromethane	7.6 U	6.2 U	6.2 U	5.7 U	4.3 U	10.3 U			
cis-1,2-Dichloroethene	3400 JD	<u>1600</u> D	6.1 J	1.6 J	1.4 J	5.8 J	250	100000	1000000
cis-1,3-Dichloropropene	7.6 U	6.2 U	6.2 U	5.7 U	4.3 U	10.3 U			
Cyclohexane	7.6 U	6.2 U	6.2 U	5.7 U	4.3 U	10.3 U			
Dibromochloromethane	7.6 U	6.2 U	6.2 U	5.7 U	4.3 U	10.3 U			
Dichlorodifluoromethane	7.6 U	6.2 U	6.2 U	5.7 U	4.3 U	10.3 U			

Table E-1 Long Island Rail Road **Arch Street Yard RI Subsurface Soil Samples TCL Volatile Organic Compounds**

Sample ID Sampling Date Start Depth (in Feet) End Depth (in Feet)	3/16/2016 11 13	SB-06(8-10) 3/17/2016 8 10	SB-06(11-13) 3/17/2016 11 13	SB-07(12-14) 3/18/2016 12 14	SB-07(23-25) 3/18/2016 23 25	SB-08(4-6) 3/17/2016 4 6	NYCRR 6 Part 375 Protection of Groundwater* Soil Cleanup Objectives (SCOs)	NYCRR 6 Part 375 Restricted- Residential Use Soil Cleanup Objectives (SCO)	NYCRR 6 Part 375 Industrial Use Soil Cleanup Objectives (SCO)
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/kg	ug/kg
Ethyl Benzene	7.6 U	6.2 U	6.2 U	5.7 U	4.3 U	10.3 U		41000	780000
Isopropylbenzene	7.6 UJ	6.2 U	1.4 J	5.7 U	4.3 U	10.3 UJ			
m/p-Xylenes	15.1 U	12.5 U	12.4 U	11.5 U	8.7 U	17.4 U		100000	1000000
Methyl Acetate	7.6 U	6.2 U	6.2 U	5.7 U	4.3 U	10.3 U			
Methyl tert-butyl Ether	26.7	6.2 U	6.2 U	4.2 J	4.3 U	10.3 U		100000	1000000
Methylcyclohexane	7.6 U	6.2 U	6.2 U	5.7 U	4.3 U	10.3 U			
Methylene Chloride	7.6 U	6.2 U	6.2 U	5.7 UB	5.1 UB	35.2	50	100000	1000000
o-Xylene	7.6 U	6.2 U	6.2 U	5.7 U	4.3 U	10.3 U		100000	1000000
Styrene	7.6 U	6.2 U	6.2 U	5.7 U	4.3 U	10.3 U			
t-1,3-Dichloropropene	7.6 U	6.2 U	6.2 U	5.7 U	4.3 U	10.3 U			
Tetrachloroethene	<u>31300 D</u>	1300 D	2 J	2.8 J	2.1 J	10.3 U	1,300	19000	300000
Toluene	2.7 J	6.2 U	6.2 U	5.7 U	4.3 U	10.3 U		100000	1000000
trans-1,2-Dichloroethene	190 EJ	15.2 J	6.2 U	2.8 J	1.4 J	10.3 U	190	100000	1000000
Trichloroethene	2600 JD	22.2 J	6.2 U	1.9 J	4.3 U	10.3 U	470	21000	400000
Trichlorofluoromethane	7.6 U	6.2 U	6.2 U	5.7 U	4.3 U	10.3 U			
Vinyl Chloride	2200 JD	410 JD	2.2 J	5.7 U	4.3 U	10.3 U	20	900	27000
Total Volatile Organic Compounds	39669	3378	50.3	33.1	23.9	185.6			

Footnotes/Qualifiers:

ug/kg: Micrograms per kilogram

BD: Blind duplicate

U: Analyzed for but not detected UB: Not detected based on blank results

J+: Estimated bias high

Reported from secondary dilution

E: Exceeded calibration range estimated value

J: Estimated value or detection limits

No standard

Exceeds Protection of Groundwater SCO (only compared to chlorinated VOCs per NYSDEC) Exceeded the Restricted-Residential Use SCO

Exceeded the Industrial Use SCO

Table E-1
Long Island Rail Road
Arch Street Yard RI
Subsurface Soil Samples
TCL Volatile Organic Compounds

Sample ID	SB-08(6-8)	SB-08(13-15)	GW-01(4-5)	GW-01(13-15)	GW-01(18-20)	GW-03(3-4)	GW-03(12-14)	NYCRR 6 Part 375	NYCRR 6 Part 375	NYCRR 6 Part 375
Sampling Date	3/17/2016	3/17/2016	3/21/2016	3/21/2016	3/21/2016	3/21/2016	3/21/2016	Protection of	Restricted-	Industrial
Start Depth (in Feet)	6	13	4	13	18	3	12	Groundwater*	Residential	Use Soil
End Depth (in Feet)	8	15	5	15	20	4	14	Soil Cleanup	Use Soil Cleanup	Cleanup
								Objectives (SCOs)	Objectives (SCO)	Objectives (SCO)
Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/kg	ug/kg
VOLATILE COMPOUNDS										
1,1,1-Trichloroethane	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	9.2 U	680	100000	1000000
1,1,2,2-Tetrachloroethane	5 UJ	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 UJ	9.2 U	600		
1,1,2-Trichloroethane	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	9.2 U			
1,1,2-Trichlorotrifluoroethane	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	9.2 U			
1,1-Dichloroethane	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	9.2 U	270	26000	480000
1,1-Dichloroethene	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	9.2 U	330	100000	1000000
1,2,3-Trichlorobenzene	5 UJ	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 UJ	9.2 U			
1,2,4-Trichlorobenzene	5 UJ	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 UJ	9.2 U			
1,2-Dibromo-3-Chloropropane	5 UJ	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 UJ	9.2 U			
1,2-Dibromoethane	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	9.2 U			
1,2-Dichlorobenzene	5 UJ	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 UJ	9.2 U		100000	1000000
1,2-Dichloroethane	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	9.2 U	20	3100	60000
1,2-Dichloropropane	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	9.2 U			
1,3-Dichlorobenzene	5 UJ	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 UJ	9.2 U		49000	560000
1,4-Dichlorobenzene	5 UJ	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 UJ	9.2 U		13000	250000
1,4-Dioxane									13000	250000
2-Butanone	24.9 U	24.3 U	28.9 UJ	4.3 J	21.5 U	22.3 U	46.1 U		100000	1000000
2-Hexanone	24.9 U	24.3 U	28.9 UJ	24.7 U	21.5 U	22.3 U	46.1 U			
4-Methyl-2-Pentanone	24.9 U	24.3 U	10.9 J+	24.7 U	21.5 U	22.3 U	46.1 U			
Acetone	29.7	14.2 J	30.8 J+	22 J	12.4 J	20.0 J	60.7 J		100000	1000000
Benzene	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	1.6 J	9.2 U		4800	89000
Bromochloromethane	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	9.2 U			
Bromodichloromethane	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	9.2 U			
Bromoform	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 UJ	9.2 U			
Bromomethane	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	9.2 U			
Carbon Disulfide	1.3 J	1.2 J	5.8 UJ	4.9 U	4.3 U	4.5 U	43.5			
Carbon Tetrachloride	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	9.2 U	760	2400	44000
Chlorobenzene	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 UJ	9.2 U		100000	1000000
Chloroethane	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	9.2 U			
Chloroform	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	9.2 U	370	49000	700000
Chloromethane	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	9.2 U			
cis-1,2-Dichloroethene	4.6 J	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	9.2 U	250	100000	1000000
cis-1,3-Dichloropropene	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	9.2 U			
Cyclohexane	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	9.2 U			
Dibromochloromethane	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	9.2 U			
Dichlorodifluoromethane	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	9.2 U			

Table E-1 Long Island Rail Road **Arch Street Yard RI Subsurface Soil Samples TCL Volatile Organic Compounds**

Sample ID	SB-08(6-8)	SB-08(13-15)	GW-01(4-5)	GW-01(13-15)	GW-01(18-20)	GW-03(3-4)	GW-03(12-14)	NYCRR 6 Part 375	NYCRR 6 Part 375	NYCRR 6 Part 375
Sampling Date	3/17/2016	3/17/2016	3/21/2016	3/21/2016	3/21/2016	3/21/2016	3/21/2016	Protection of	Restricted-	Industrial
Start Depth (in Feet)	6	13	4	13	18	3	12	Groundwater*	Residential	Use Soil
End Depth (in Feet)	8	15	5	15	20	4	14	Soil Cleanup	Use Soil Cleanup	Cleanup
								Objectives (SCOs)	Objectives (SCO)	Objectives (SCO)
Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/kg	ug/kg
Ethyl Benzene	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	0.97 J+	9.2 U		41000	780000
Isopropylbenzene	5 UJ	4.9 U	5.8 UJ	4.9 U	4.3 U	1.4 J+	9.2 U			
m/p-Xylenes	10 U	9.7 U	11.8 UJ	9.9 U	8.6 U	3.1 J+	18.4 U		100000	1000000
Methyl Acetate	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	9.2 U			
Methyl tert-butyl Ether	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	9.2 U		100000	1000000
Methylcyclohexane	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	8	9.2 U			
Methylene Chloride	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	9.2 U	50	100000	1000000
o-Xylene	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	2.9 J+	9.2 U		100000	1000000
Styrene	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 UJ	9.2 U			
t-1,3-Dichloropropene	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	9.2 U			
Tetrachloroethene	3.6 J	4.9 U	5.8 UJ	4.9 U	4.3 U	3.0 J+	9.2 U	1,300	19000	300000
Toluene	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	2.4 J	9.2 U		100000	1000000
trans-1,2-Dichloroethene	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	9.2 U	190	100000	1000000
Trichloroethene	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	9.2 U	470	21000	400000
Trichlorofluoromethane	5 U	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	9.2 U			
Vinyl Chloride	4.8 J	4.9 U	5.8 UJ	4.9 U	4.3 U	4.5 U	9.2 U	20	900	27000
Total Volatile Organic Compounds	44	15.4	41.7	26.3	12.4	43.37	104.2			

Footnotes/Qualifiers:

ug/kg: Micrograms per kilogram

BD: Blind duplicate

U: Analyzed for but not detected UB: Not detected based on blank results

J+: Estimated bias high

Reported from secondary dilution

Exceeded calibration range estimated value

J: Estimated value or detection limits

No standard

Exceeds Protection of Groundwater SCO (only compared to chlorinated VOCs per NYSDEC) Exceeded the Restricted-Residential Use SCO

Exceeded the Industrial Use SCO

Table E-1
Long Island Rail Road
Arch Street Yard RI
Subsurface Soil Samples
TCL Volatile Organic Compounds

Sample ID	GW-03(18-20)	GW-04(2-3)	GW-04(12-14)	GW-04(12-14)BD	GW-04(16-18)	NYCRR 6 Part 375	NYCRR 6 Part 375	NYCRR 6 Part 375
Sampling Date	3/21/2016	3/23/2016	3/23/2016	3/23/2016	3/23/2016	Protection of	Restricted-	Industrial
Start Depth (in Feet)	18	2	12	12	16	Groundwater*	Residential	Use Soil
End Depth (in Feet)	20	3	14	14	18	Soil Cleanup	Use Soil Cleanup	Cleanup
Huita						Objectives (SCOs)	Objectives (SCO)	Objectives (SCO)
Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/kg	ug/kg
VOLATILE COMPOUNDS 1,1,1-Trichloroethane	5.1 U	4.9 U	6.5 U	7 U	4.5 U	680	100000	1000000
1,1,2,2-Tetrachloroethane	5.1 U 5.1 U	4.9 UJ	6.5 U	7 U	4.5 U 4.5 U	600	100000	1000000
1,1,2-Trichloroethane	5.1 U	4.9 U	6.5 U	7 U	4.5 U			
1,1,2-Trichloroethane	5.1 U	4.9 U	6.5 U	7 U	4.5 U			
1.1-Dichloroethane	5.1 U	4.9 U	6.5 U	7 U	4.5 U	270	26000	480000
1.1-Dichloroethene	5.1 U	4.9 U	6.5 U	7 U	4.5 U	330	100000	100000
1,2,3-Trichlorobenzene	5.1 U	4.9 UJ	6.5 U	7 U	4.5 U		100000	
1,2,4-Trichlorobenzene	5.1 U	4.9 UJ	6.5 U	7 U	4.5 U			
1,2-Dibromo-3-Chloropropane	5.1 U	4.9 UJ	6.5 U	7 U	4.5 U			
1,2-Dibromoethane	5.1 U	4.9 U	6.5 U	7 U	4.5 U			
1,2-Dichlorobenzene	5.1 U	4.9 UJ	6.5 U	7 U	4.5 U		100000	1000000
1.2-Dichloroethane	5.1 U	4.9 U	6.5 U	7 U	4.5 U	20	3100	60000
1,2-Dichloropropane	5.1 U	4.9 U	6.5 U	7 U	4.5 U			
1,3-Dichlorobenzene	5.1 U	4.9 UJ	6.5 U	7 U	4.5 U		49000	560000
1.4-Dichlorobenzene	5.1 U	4.9 UJ	6.5 U	7 U	4.5 U		13000	250000
1,4-Dioxane							13000	250000
2-Butanone	25.4 U	24.3 U	32.5 U	35.2 U	22.4 U		100000	1000000
2-Hexanone	25.4 U	24.3 U	32.5 U	35.2 U	22.4 U			
4-Methyl-2-Pentanone	25.4 U	24.3 U	32.5 U	35.2 U	22.4 U			
Acetone	28.5 J	22.7 J	14.1 J	18.7 J	9.7 J		100000	1000000
Benzene	5.1 U	4.9 U	6.5 U	7 U	4.5 U		4800	89000
Bromochloromethane	5.1 U	4.9 U	6.5 U	7 U	4.5 U			
Bromodichloromethane	5.1 U	4.9 U	6.5 U	7 U	4.5 U			
Bromoform	5.1 U	4.9 UJ	6.5 U	7 U	4.5 U			
Bromomethane	5.1 U	4.9 U	6.5 U	7 U	4.5 U			
Carbon Disulfide	5.1 U	4.9 U	3.2 J	10.2 J	2.7 J			
Carbon Tetrachloride	5.1 U	4.9 U	6.5 U	7 U	4.5 U	760	2400	44000
Chlorobenzene	5.1 U	4.9 UJ	6.5 U	7 U	4.5 U		100000	1000000
Chloroethane	5.1 U	4.9 U	6.5 U	7 U	4.5 U			
Chloroform	5.1 U	4.9 U	6.5 U	7 U	4.5 U	370	49000	700000
Chloromethane	5.1 U	4.9 U	6.5 U	7 U	4.5 U		400000	
cis-1,2-Dichloroethene	5.1 U	4.9 U	6.5 U	7 U	4.5 U	250	100000	1000000
cis-1,3-Dichloropropene	5.1 U	4.9 U	6.5 U	7 U	4.5 U			
Cyclohexane	5.1 U	4.9 U	6.5 U	7 U	4.5 U			
Dibromochloromethane Dichlorodifluoromethane	5.1 U 5.1 U	4.9 U 4.9 U	6.5 U 6.5 U	7 U 7 U	4.5 U 4.5 U			
See next nego for Ecotnotes/Qualifiers	5.1 U	4.9 U	0.5 U	7 0	4.5 U			

Table E-1 Long Island Rail Road **Arch Street Yard RI Subsurface Soil Samples TCL Volatile Organic Compounds**

Sample ID Sampling Date Start Depth (in Feet) End Depth (in Feet) Units	3/21/2016 18 20	GW-04(2-3) 3/23/2016 2 3 ug/Kg	GW-04(12-14) 3/23/2016 12 14 ug/Kg	GW-04(12-14)BD 3/23/2016 12 14 ug/Kg	GW-04(16-18) 3/23/2016 16 18 ug/Kg	NYCRR 6 Part 375 Protection of Groundwater* Soil Cleanup Objectives (SCOs) ug/Kg	NYCRR 6 Part 375 Restricted- Residential Use Soil Cleanup Objectives (SCO) ug/kg	NYCRR 6 Part 3/5 Industrial Use Soil Cleanup Objectives (SCO) ug/kg
Ethyl Benzene	5.1 U	4.9 U	6.5 U	7 U	4.5 U		41000	780000
Isopropylbenzene	5.1 U	4.9 U	6.5 U	7 U	4.5 U			
m/p-Xylenes	10.2 U	9.7 U	13 U	14.1 U	9 U		100000	1000000
Methyl Acetate	5.1 U	4.9 U	6.5 U	7 U	4.5 U			
Methyl tert-butyl Ether	5.1 U	4.9 U	6.5 U	7 U	4.5 U		100000	1000000
Methylcyclohexane	5.1 U	4.9 U	6.5 U	7 U	4.5 U			
Methylene Chloride	5.1 U	3.3 J	7.5	7 U	5.1	50	100000	1000000
o-Xylene	5.1 U	4.9 U	6.5 U	7 U	4.5 U		100000	1000000
Styrene	5.1 U	4.9 UJ	6.5 U	7 U	4.5 U			
t-1,3-Dichloropropene	5.1 U	4.9 U	6.5 U	7 U	4.5 U			
Tetrachloroethene	5.1 U	4.9 U	6.5 U	7 U	4.5 U	1,300	19000	300000
Toluene	5.1 U	4.9 U	6.5 U	7 U	4.5 U		100000	1000000
trans-1,2-Dichloroethene	5.1 U	4.9 U	6.5 U	7 U	4.5 U	190	100000	1000000
Trichloroethene	5.1 U	4.9 U	6.5 U	7 U	4.5 U	470	21000	400000
Trichlorofluoromethane	5.1 U	4.9 U	6.5 U	7 U	4.5 U			
Vinyl Chloride	5.1 U	4.9 U	6.5 U	7 U	4.5 U	20	900	27000
Total Volatile Organic Compounds	28.5	26	24.8	28.9	17.5			

Footnotes/Qualifiers:

ug/kg: Micrograms per kilogram

BD: Blind duplicate

U: Analyzed for but not detected

UB: Not detected based on blank results

Estimated bias high

Reported from secondary dilution

E: Exceeded calibration range estimated value

J: Estimated value or detection limits

No standard

Exceeds Protection of Groundwater SCO (only compared to chlorinated VOCs per NYSDEC) Exceeded the Restricted-Residential Use SCO

Exceeded the Industrial Use SCO

Subsurface Soil Samples TCI Semivolatile Organic Compounds

Sampling Date Start Depth (in Feet) 163 23 133 23 133 23 12 25 14 20 20 20 20 20 20 20 2	TCL Semivolatile Organic Compounds										
Start Depth (in Feet) 15 25 15 25 14 20 15 25 14 20 15 25 15 25 15 25 15 25 14 20 15 25 15 25 15 25 14 20 15 25 15 25 15 25 14 20 15 25 15 25 15 25 15 25 15 25 15 25 14 20 15 25 25 25 25 25 25 25										SB-04(3-5)	
NYCRR 6 Part 375 NYCRR 6 Part 375 Restricted-Rest										3/16/2016	
NYCRR 6 Part 375 Restricted-Residential Use Soil Cleanup Objectives (SCO) ug/kg									18	3	
NYCRR 6 Part 375 Restricted Residential Use Soil Cleanup Objectives (SCO) ug/kg		En								5	
Restricted Residential Use Soil Cleanup Objectives (SCO)			Units	ug/Kg							
Residential Use Soil Cleanup Objectives (SCO) ug/kg											
SEMIVOLATILE COMPOUNDS 1,1-Bipheny		Restricted-	Industrial								
SEMIVOLATILE COMPOUNDS 1,1-Bipheny		Residential	Use Soil								
SEMIVOLATILE COMPOUNDS 1,1-Biphenyl											
SEMIVOLATILE COMPOUNDS 1,1-Biphenyl											
1,1-Biphenyl 550 U 370 U 580 U 380 U 410 U 380 U 300 1,2,4,5-Tetrachlorobenzene 550 U 370 U 580 U 380 U 410 U 380 U 400 2,2-oxybis(1-Chloropropane) 550 U 370 U 580 U 380 U 410 U 380 U 400 2,3,4,6-Tetrachlorophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4,5-Tichlorophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4-5-Tichlorophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4-Dientrophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4-Dimitrophenol 550 U 370 U 580 U 380 U 410 U		ug/kg	ug/kg								
1,2,4,5-Tetráchlorobenzene 550 U 370 U 580 U 380 U 410 U 380 U 400 1,4-Dioxane 13000 250000 550 U 370 U 580 U 380 U 410 U 380 U 400 2,2-oxybis(1-Chloropropane) 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4,5-Trichlorophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4,5-Trichlorophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4,6-Trichlorophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4,6-Trichlorophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4-Dinitroflorophenol 550 U 370 U 580 U 380 U 410 U 380 U 400	MIVOLATILE COMPOUNDS										
1,4-Dioxane 13000 250000 550 U 370 U 580 U 380 U 410 U 380 U 400 2,2-xybis(1-Chloropropane) 550 U 370 U 580 U 380 U 410 U 380 U 400 2,3,4-Fricklorophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4,5-Tricklorophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4-Dichlorophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4-Dimethylphenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4-Dinitrophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4-Dinitrophenol 550 U 370 U 580 U 380 U 410 U 380 UJ	I-Biphenyl			550 U			380 U	410 U		300 J	
2,2-oxybis(1-Chloropropane) 550 U 370 U 580 U 380 U 410 U 380 U 400 2,3,4,6-Tetrachlorophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4,5-Trichlorophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4-Dichlorophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4-Dinethylphenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4-Dinitrophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4-Dinitrophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4-Dinitrotoluene 550 U 370 U 580 U 380 U 410 U 380 U 400	2,4,5-Tetrachlorobenzene			550 U	370 U	580 U	380 U	410 U	380 U	400 U	
2,3,4,6-Tetrachlorophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4,5-Trichlorophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4-Dirichlorophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4-Dichlorophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4-Dinitrophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4-Dinitrophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4-Dinitrophenol 550 U 370 U 580 U 380 U 410 U 380 UJ 400 2,4-Dinitrophenol 550 U 370 U 580 U 380 U 410 U 380 U	1-Dioxane	13000	250000	550 U	370 U	580 U	380 U	410 U	380 U	400 U	
2,4,5-Trichlorophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4,6-Trichlorophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4-Dindrophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4-Dinitrophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4-Dinitrophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4-Dinitrotoluene 550 U 370 U 580 U 380 U 410 U 380 U 400 2,6-Dinitrotoluene 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Chlorophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Methylpheno	2-oxybis(1-Chloropropane)			550 U	370 U	580 U	380 U	410 U	380 U	400 U	
2,4,6-Trichlorophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4-Dichlorophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4-Dimitrophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4-Dinitrophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4-Dinitrophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4-Dinitrotoluene 550 U 370 U 580 U 380 U 410 U 380 U 400 2,6-Dinitrotoluene 550 U 370 U 580 U 380 U 410 U 380 U 400 2,6-Chlorophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Methylphenol 100000 100	3,4,6-Tetrachlorophenol			550 U	370 U	580 U	380 U	410 U	380 U	400 U	
2,4-Dichlorophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4-Dimethylphenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4-Dinitrotoluene 550 U 370 U 580 U 380 U 410 U 380 U 400 2,6-Dinitrotoluene 550 U 370 U 580 U 380 U 410 U 380 U 400 2,6-Dinitrotoluene 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Chlorophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Methylnaphthalene 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Methylphenol 100000 100000 550 U 370 U 580 U 380 U 410 U 380 U 400	1,5-Trichlorophenol			550 U	370 U	580 U	380 U	410 U	380 U	400 U	
2,4-Dichlorophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4-Dimethylphenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2,4-Dinitrophenol 550 UJ 370 U 580 UJ 380 UJ 410 UJ 380 UJ 400 2,6-Dinitrotoluene 550 U 370 U 580 U 380 U 410 U 380 U 400 2,6-Dinitrotoluene 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Chlorophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Methylnaphthalene 550 U 370 U 580 U 380 U 410 U 380 U 900 2-Methylphenol 100000 100000 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Nitroaniline 550 U 370 U 580 U 380 U <th></th> <th></th> <th></th> <th>550 U</th> <th>370 U</th> <th>580 U</th> <th>380 U</th> <th>410 U</th> <th>380 U</th> <th>400 U</th>				550 U	370 U	580 U	380 U	410 U	380 U	400 U	
2,4-Dinitrophenol 550 UJ 370 UJ 580 UJ 380 UJ 410 UJ 380 UJ 400 2,4-Dinitrotoluene 550 U 370 U 580 U 380 U 410 U 380 U 400 2,6-Dinitrotoluene 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Chloronaphthalene 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Methylnaphthalene 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Methylphenol 100000 1000000 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Nitrophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Nitrophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Nitrophenol 550 U 370 U 580 U 380 U 410 U				550 U	370 U	580 U	380 U	410 U	380 U	400 U	
2,4-Dinitrotoluene 550 U 370 U 580 U 380 U 410 U 380 U 400 2,6-Dinitrotoluene 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Chloronaphthalene 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Methylnaphthalene 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Methylphenol 100000 1000000 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Nitrophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Nitrophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Nitrophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 3,3-Dichlorobenzidine 550 U 370 U 580 U 380 U	4-Dimethylphenol			550 U	370 U	580 U	380 U	410 U	380 U	100 J	
2,4-Dinitrotoluene 550 U 370 U 580 U 380 U 410 U 380 U 400 2,6-Dinitrotoluene 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Chloronaphthalene 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Methylnaphthalene 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Methylphenol 100000 1000000 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Nitrophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Nitrophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Nitrophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 3,3-Dichlorobenzidine 550 U 370 U 580 U 380 U	1-Dinitrophenol			550 UJ	370 UJ	580 UJ	380 UJ	410 UJ	380 UJ	400 UJ	
2,6-Dinitrotoluene 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Chloronaphthalene 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Chlorophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Methylnaphthalene 550 U 370 U 580 U 380 U 410 U 380 U 990 2-Methylphenol 100000 1000000 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Nitrophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Nitrophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 3,3-Dichlorobenzidine 550 U 370 U 580 U 380 U 410 U 380 U 400 3-Nitroaniline 550 U 370 U 580 U 380 U <	•			550 U	370 U	580 U	380 U	410 U	380 U	400 U	
2-Chloronaphthalene 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Chlorophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Methylnaphthalene 550 U 370 U 580 U 380 U 410 U 380 U 990 2-Nitroaniline 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Nitrophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Nitrophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 3,3-Dichlorobenzidine 550 U 370 U 580 U 380 U 410 U 380 U 400 3-Witroaniline 550 U 370 U 580 U 380 U 410 U 380 U 400 3-Nitroaniline 550 U 370 U 580 U 380 U 410 U				550 U	370 U			410 U		400 U	
2-Chlorophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Methylnaphthalene 550 U 370 U 580 U 380 U 410 U 380 U 990 2-Methylphenol 100000 1000000 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Nitrophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Nitrophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 3,3-Dichlorobenzidine 550 U 370 U 580 U 380 U 410 U 380 U 400 3-4-Methylphenols 100000 1000000 550 U 370 U 580 U 380 U 410 U 380 U 400 3-Nitroaniline 550 U 370 U 580 U 380 U 410 U 380 U 400 4,6-Dinitro-2-methylphenol 550 U 370 U 580 U<				550 U	370 U		380 U	410 U	380 U	400 U	
2-Methylnaphthalene 550 U 370 U 580 U 380 U 410 U 380 U 990 2-Methylphenol 100000 1000000 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Nitrophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 3,3-Dichlorobenzidine 550 U 370 U 580 U 380 U 410 U 380 U 400 3+4-Methylphenols 100000 1000000 550 U 370 U 580 U 380 U 410 U 380 U 400 3-Nitroaniline 550 U 370 U 580 U 380 U 410 U 380 U 400 4,6-Dinitro-2-methylphenol 550 U 370 U 580 U 380 U 410 U 380 U 400										400 U	
2-Methylphenol 100000 1000000 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Nitrophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 3,3-Dichlorobenzidine 550 U 370 U 580 U 380 U 410 U 380 U 400 3+4-Methylphenols 100000 1000000 550 U 370 U 580 U 380 U 410 U 380 U 400 3-Nitroaniline 550 U 370 U 580 U 380 U 410 U 380 U 400 4,6-Dinitro-2-methylphenol 550 U 370 U 580 U 380 U 410 U 380 U 400	• • • • • • • • • • • • • • • • • • •			550 U	370 U	580 U	380 U	410 U	380 U	990	
2-Nitroaniline 550 U 370 U 580 U 380 U 410 U 380 U 400 2-Nitrophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 3,3-Dichlorobenzidine 550 U 370 U 580 U 380 U 410 U 380 U 400 3+4-Methylphenols 100000 1000000 550 U 370 U 580 U 380 U 410 U 380 U 400 3-Nitroaniline 550 U 370 U 580 U 380 U 410 U 380 U 400 4,6-Dinitro-2-methylphenol 550 U 370 U 580 U 380 U 410 U 380 U 400		100000	1000000	550 U	370 U			410 U		400 U	
2-Nitrophenol 550 U 370 U 580 U 380 U 410 U 380 U 400 3,3-Dichlorobenzidine 550 U 370 U 580 U 380 U 410 U 380 U 400 3+4-Methylphenols 100000 1000000 550 U 370 U 580 U 380 U 410 U 380 U 400 3-Nitroaniline 550 U 370 U 580 U 380 U 410 U 380 U 400 4,6-Dinitro-2-methylphenol 550 U 370 U 580 U 380 U 410 U 380 U 400										400 U	
3,3-Dichlorobenzidine 550 U 370 U 580 U 380 U 410 U 380 U 400 3+4-Methylphenols 100000 1000000 550 U 370 U 580 U 380 U 410 U 380 U 400 3-Nitroaniline 550 U 370 U 580 U 380 U 410 U 380 U 400 4,6-Dinitro-2-methylphenol 550 U 370 U 580 U 380 U 410 U 380 U 400										400 U	
3+4-Methylphenols 100000 1000000 550 U 370 U 580 U 380 U 410 U 380 U 400 3-Nitroaniline 550 U 370 U 580 U 380 U 410 U 380 U 400 4,6-Dinitro-2-methylphenol 550 U 370 U 580 U 380 U 410 U 380 U 400										400 U	
3-Nitroaniline 550 U 370 U 580 U 380 U 410 U 380 U 400 4,6-Dinitro-2-methylphenol 550 U 370 U 580 U 380 U 410 U 380 U 400		100000	1000000		370 U					400 U	
4,6-Dinitro-2-methylphenol 550 U 370 U 580 U 380 U 410 U 380 U 400										400 U	
										400 U	
4-Bromophenyl-phenylether 550 U 370 U 580 U 380 U 410 U 380 U 400	Bromophenyl-phenylether			550 U	370 U	580 U	380 U	410 U	380 U	400 U	
										400 U	
										400 U	
										400 U	
										400 U	
										400 U	
Acenaphthene 100000 1000000 550 U 370 U 580 U 380 U 410 U 380 U 2300		100000	1000000								
	· · · · · · · · · · · · · · · · · · ·									400 U	
										400 U	
		100000	1000000							5600 D	
										400 U	
										400 U	
		1000	11000							5300 D	
Benzo(a)pyrene 1000 1100 550 U 370 U 580 U 380 U 410 U 380 U 2900	• •										
	· · · ·									4000 D	
Benzo(g,h,i)perylene 100000 1000000 550 U 370 U 580 U 410 U 380 U 1500										1500	

Subsurface Soil Samples TCL Semivolatile Organic Compounds

		Committee In	CD 04/40 45\	CD 04/02 05\	CD 00/40 45\	CD 00/00 05\	CD 00/40 44\	OD 00/40 00\	CD 04/2 E
		Sample ID	SB-01(13-15)	SB-01(23-25)	SB-02(13-15)	SB-02(23-25)	SB-03(12-14)	SB-03(18-20)	SB-04(3-5)
		Sampling Date	3/16/2016	3/16/2016	3/17/2016	3/17/2016	3/17/2016	3/17/2016	3/16/2016
		Start Depth (in Feet)	13	23	13	23	12	18	3
		End Depth (in Feet)	15	25	15	25	14	20	5
	NIVARRA A R A R	Units	ug/Kg						
	NYCRR 6 Part 375								
	Restricted-	Industrial							
	Residential	Use Soil							
	Use Soil Cleanup	Cleanup							
	Objectives (SCO)	Objectives (SCO)							
	ug/kg	ug/kg							
COMPOUNDS CONTINUED									
Benzo(k)fluoranthene	3900	110000	550 U	370 U	580 U	380 U	410 U	380 U	1100
bis(2-Chloroethoxy)methane			550 U	370 U	580 U	380 U	410 U	380 U	400 U
bis(2-Chloroethyl)ether			550 U	370 U	580 U	380 U	410 U	380 U	400 U
Bis(2-ethylhexyl)phthalate			550 U	370 U	580 U	380 U	410 U	380 U	400 U
Butylbenzylphthalate			550 U	370 U	580 U	380 U	410 U	380 U	400 U
Caprolactam			550 U	370 U	580 U	380 U	410 U	380 U	400 U
Carbazole			550 U	370 U	580 U	380 U	410 U	380 U	1600
Chrysene	3900	110000	550 U	370 U	580 U	380 U	410 U	380 U	3800 JD
Dibenzo(a,h)anthracene	330	1100	550 U	370 U	580 U	380 U	410 U	380 U	<u>430</u>
Dibenzofuran	59000	1000000	550 U	370 U	580 U	380 U	410 U	380 U	1900
Diethylphthalate			550 U	370 U	580 U	380 U	410 U	380 U	400 U
Dimethylphthalate			1000	550	1000	620	660	620	520
Di-n-butylphthalate			550 U	370 U	580 U	380 U	410 U	380 U	400 U
Di-n-octyl phthalate			550 U	370 U	580 U	380 U	410 U	380 U	400 U
Fluoranthene	100000	1000000	550 U	370 U	580 U	380 U	410 U	380 U	10000 D
Fluorene	100000	1000000	550 U	370 U	580 U	380 U	410 U	380 U	2700
Hexachlorobenzene	1200	12000	550 U	370 U	580 U	380 U	410 U	380 U	400 U
Hexachlorobutadiene			550 U	370 U	580 U	380 U	410 U	380 U	400 U
Hexachlorocyclopentadiene			550 U	370 U	580 U	380 U	410 U	380 U	400 U
Hexachloroethane			550 U	370 U	580 U	380 U	410 U	380 U	400 U
Indeno(1,2,3-cd)pyrene	500	11000	550 U	370 U	580 U	380 U	410 U	380 U	<u>1900</u>
Isophorone	 100000	100000	550 U	370 U	580 U	380 U	410 U	380 U	400 U
Naphthalene		1000000	550 U	370 U	580 U	380 U	410 U	380 U	1400
Nitrobenzene	15000	140000	550 U	370 U	580 U	380 U	410 U	380 U	400 U 400 U
n-Nitroso-di-n-propylamine			550 U	370 U	580 U	380 U	410 U	380 U	
n-Nitrosodiphenylamine	 6700	 FF000	550 U	370 U 370 U	580 U	380 U 380 U	410 U 410 U	380 U	400 U 400 U
Pentachlorophenol Phenanthrene	100000	55000 1000000	550 U 550 U	370 U 370 U	580 U 580 U	380 U 380 U	410 U 410 U	380 U 380 U	400 U 17100 D
				370 U 370 U	580 U 580 U	380 U 380 U	410 U 410 U	380 U 380 U	400 U
Phenol	100000 100000	1000000 1000000	550 U 550 U	370 U 370 U	580 U 580 U	380 U 380 U	410 U 410 U	380 U 380 U	400 U 7500 D
Pyrene	100000	1000000	55U U	3/0 0	580 U	380 U	410 0	380 U	7500 D
Total Comingletile Commerce to			1000	FFO	1000	620	660	620	72040
Total Semivolatile Compounds Footnotes/Qualifiers:			1000	550	1000	620	660	620	72940

Footnotes/Qualifiers:

ug/kg: Micrograms per kilogram --:

: No standard

BD: Blind duplicate

Exceeded the Industrial Use SCO

U: Analyzed for but not detected
D: Reported from secondary dilution
J: Estimated value or detection limits

Exceeded the Restricted-Residential Use SCO

Table E-2 Long Island Rail Road Arch Street Yard RI Subsurface Soil Samples

TCI Semivolatile Organic Compounds

TCL Semivolatile Organic Compounds									
		Sample ID	SB-04(10-12)	SB-04(27-29)	SB-05(10-11)	SB-05(10-11) BD	SB-05(11-13)	SB-06(8-10)	SB-06(11-13)
		Sampling Date	3/16/2016	3/16/2016	3/16/2016	3/16/2016	3/16/2016	3/17/2016	3/17/2016
		Start Depth (in Feet)	10	27	10	10	11	8	11
		End Depth (in Feet)	12	29	11	11	13	10	13
		Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
		NYCRR 6 Part 375							
	Restricted-	Industrial							
	Residential	Use Soil							
	Use Soil Cleanup	Cleanup							
	Objectives (SCO)	Objectives (SCO)							
	ug/kg	ug/kg							
SEMIVOLATILE COMPOUNDS									
1,1-Biphenyl			570 U	370 U	400 U	390 U	490 U	430 U	380 U
1,2,4,5-Tetrachlorobenzene			570 U	370 U	400 U	390 U	490 U	430 U	380 U
1,4-Dioxane	13000	250000	570 U	370 U	400 U	390 U	490 U	430 U	380 U
2,2-oxybis(1-Chloropropane)			570 U	370 U	400 U	390 U	490 U	430 U	380 U
2,3,4,6-Tetrachlorophenol			570 U	370 U	400 U	390 U	490 U	430 U	380 U
2,4,5-Trichlorophenol			570 U	370 U	400 U	390 U	490 U	430 U	380 U
2,4,6-Trichlorophenol			570 U	370 U	400 U	390 U	490 U	430 U	380 U
2,4-Dichlorophenol			570 U	370 U	400 U	390 U	490 U	430 U	380 U
2,4-Dimethylphenol			570 U	370 U	400 U	390 U	490 U	430 U	380 U
2,4-Dinitrophenol			570 UJ	370 UJ	400 UJ	390 UJ	490 UJ	430 UJ	380 UJ
2,4-Dinitrotoluene			570 U	370 U	400 U	390 U	490 U	430 U	380 U
2,6-Dinitrotoluene			570 U	370 U	400 U	390 U	490 U	430 U	380 U
2-Chloronaphthalene			570 U	370 U	400 U	390 U	490 U	430 U	380 U
2-Chlorophenol			570 U	370 U	400 U	390 U	490 U	430 U	380 U
2-Methylnaphthalene			570 U	370 U	400 U	390 U	490 U	430 U	380 U
2-Methylphenol	100000	1000000	570 U	370 U	400 U	390 U	490 U	430 U	380 U
2-Nitroaniline			570 U	370 U	400 U	390 U	490 U	430 U	380 U
2-Nitrophenol			570 U	370 U	400 U	390 U	490 U	430 U	380 U
3,3-Dichlorobenzidine			570 U	370 U	400 U	390 U	490 U	430 U	380 U
3+4-Methylphenols	100000	1000000	570 U	370 U	400 U	390 U	490 U	430 U	380 U
3-Nitroaniline			570 U	370 U	400 U	390 U	490 U	430 U	380 U
4,6-Dinitro-2-methylphenol			570 U	370 U	400 U	390 U	490 U	430 U	380 U
4-Bromophenyl-phenylether			570 U	370 U	400 U	390 U	490 U	430 U	380 U
4-Chloro-3-methylphenol			570 U	370 U	400 U	390 U	490 U	430 U	380 U
4-Chloroaniline			570 U	370 U	400 U	390 U	490 U	430 U	380 U
4-Chlorophenyl-phenylether			570 U	370 U	400 U	390 U	490 U	430 U	380 U
4-Nitroaniline			570 U	370 U	400 U	390 U	490 U	430 U	380 U
4-Nitrophenol	400000	4000000	570 U	370 U	400 U	390 U	490 U	430 U	380 U
Acenaphthene	100000	1000000	570 U	370 U	400 U	390 U	490 U	430 U	380 U
Acenaphthylene	100000	1000000	570 U	370 U	400 U	390 U	490 U	430 U	380 U
Acetophenone		4000000	570 U	370 U	400 U	390 U	490 U	430 U	380 U
Anthracene	100000	1000000	570 U	370 U	400 U	390 U	490 U	430 U	380 U
Atrazine			570 U	370 U	400 U	390 U	490 U	430 U	380 U
Benzaldehyde			570 U	370 U	400 U	390 U	490 U	430 U	380 U
Benzo(a)anthracene	1000	11000	570 U	370 U	400 U	390 U	490 U	92.3 J	380 U
Benzo(a)pyrene	1000	1100	570 U	370 U	400 U	390 U	490 U	430 U	380 U
Benzo(b)fluoranthene	1000	11000	570 U	370 U	400 U	390 U	490 U	430 U	380 U
Benzo(g,h,i)perylene	100000	1000000	570 U	370 U	400 U	390 U	490 U	430 U	380 U

Subsurface Soil Samples TCL Semivolatile Organic Compounds

Sample ID SB-04(10-12) SB-04(27-29) SB-05(10-11) SB-05(11-13) SB-06(8-10) SB-06(10-11) SB-05(10-11) SB-05(10-11) SB-05(11-13) SB-06(8-10) SB-06(11-13) SB-06(11-13									
		Sample ID	3/16/2016	3/16/2016	3/16/2016	3/16/2016	3/16/2016	3/17/2016	SB-06(11-13) 3/17/2016
	_								
		Start Depth (in Feet)	10 12	27 29	10 11	10 11	11 13	8	11 13
		End Depth (in Feet) Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	10 ug/Kg	ug/Kg
	NVCDD 6 Dort 275	NYCRR 6 Part 375	ug/Ng	ug/Ng	ug/Ng	ug/Ng	ug/Rg	ug/Ng	ug/Rg
	Restricted-	Industrial							
	Residential	Use Soil							
	Use Soil Cleanup	Cleanup							
	Objectives (SCO)	Objectives (SCO)							
	ug/kg	ug/kg							
COMPOUNDS CONTINUED	ug/kg	ug/kg							
	2000	440000	570 H	070 11	400 11	200 11	400 11	400 11	200 11
Benzo(k)fluoranthene	3900	110000	570 U 570 U	370 U 370 U	400 U 400 U	390 U 390 U	490 U 490 U	430 U 430 U	380 U 380 U
bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether			570 U 570 U	370 U 370 U	400 U 400 U	390 U 390 U	490 U 490 U	430 U 430 U	380 U 380 U
			570 U 570 U	370 U 370 U		390 U 390 U	490 U 490 U	430 U 430 U	380 U 380 U
Bis(2-ethylhexyl)phthalate				370 U 370 U	400 U				
Butylbenzylphthalate Caprolactam			570 U 570 U	370 U 370 U	400 U 400 U	390 U 390 U	490 U 490 U	430 U 430 U	380 U 380 U
Caprolactam Carbazole			570 U 570 U	370 U 370 U	400 U 400 U	390 U 390 U	490 U 490 U	430 U 430 U	380 U 380 U
	 3900	110000	570 U 570 U	370 U 370 U	400 U 400 U	390 U 390 U	490 U 490 U	430 U 430 U	380 U 380 U
Chrysene	3900		570 U 570 U						
Dibenzo(a,h)anthracene Dibenzofuran		1100 1000000	570 U 570 U	370 U 370 U	400 U 400 U	390 U 390 U	490 U 490 U	430 U 430 U	380 U 380 U
	59000		570 U 570 U	370 U 370 U	400 U 400 U	390 U 390 U	490 U 490 U	430 U 430 U	380 U 380 U
Diethylphthalate			570 U 890	580	400 U 660	680 680	490 U 860	430 U 550	380 U 610
Dimethylphthalate			890 570 U	370 U	400 U	390 U	490 U	430 U	380 U
Di-n-butylphthalate					400 U				
Di-n-octyl phthalate	100000	1000000	570 U 570 U	370 U 370 U	400 U 84.3 J	390 U 390 U	490 U 490 U	430 U 170 J	380 U 380 U
Fluoranthene Fluorene	100000	1000000	570 U 570 U	370 U 370 U	84.3 J 400 U	390 U 390 U	490 U 490 U	430 U	380 U 380 U
Hexachlorobenzene	1200	12000	570 U 570 U	370 U 370 U	400 U 400 U	390 U 390 U	490 U 490 U	430 U 430 U	380 U 380 U
Hexachlorobutadiene	1200	12000	570 U	370 U 370 U	400 U	390 U	490 U	430 U 430 U	380 U
			570 U	370 U 370 U	400 U	390 U	490 U	430 U 430 U	380 U
Hexachlorocyclopentadiene Hexachloroethane			570 U 570 U	370 U 370 U	400 U 400 U	390 U 390 U	490 U 490 U	430 U 430 U	380 U 380 U
Indeno(1,2,3-cd)pyrene	500	11000	570 U	370 U	400 U 400 U	390 U	490 U	430 U	380 U
Indeno(1,2,3-cd)pyrene Isophorone	500		570 U	370 U	400 U 400 U	390 U	490 U	430 U	380 U
Naphthalene	100000	1000000	570 U	370 U	400 U 400 U	390 U	490 U	430 U 160 J	380 U
Nitrobenzene	15000	140000	570 U	370 U	400 U	390 U	490 U	430 U	380 U
n-Nitroso-di-n-propylamine	15000	140000	570 U	370 U 370 U	400 U	390 U	490 U	430 U 430 U	380 U
n-Nitroso-di-n-propylamine n-Nitrosodiphenylamine			570 U	370 U	400 U 400 U	390 U	490 U	430 U 430 U	380 U
Pentachlorophenol	6700	55000	570 U	370 U	400 U	390 U	490 U	430 U 430 U	380 U
Phenanthrene	100000	1000000	570 U	370 U	400 U	390 U	490 U	180 J	380 U
Phenol	100000	1000000	570 U	370 U	400 U	390 U	490 U	430 U	380 U
Pyrene	100000	1000000	570 U	370 U	91.6 J	390 U	490 U	190 J	380 U
i yiene	100000	1000000	370 0	370 0	31.03	390 0	430 U	190 3	300 0
Total Semivolatile Compounds			890	580	835.9	680	860	1342.3	610
Footnotes/Qualifiers:			UBU	300	000.5	000	000	1042.0	010

Footnotes/Qualifiers:

ug/kg: Micrograms per kilogram --: No standard

BD: Blind duplicate Exceeded the Industrial Use SCO

U: Analyzed for but not detected
D: Reported from secondary dilution
J: Estimated value or detection limits

Exceeded the Restricted-Residential Use SCO

Subsurface Soil Samples TCI Semivolatile Organic Compounds

				olatile Organic Co	_				
		Sample ID	SB-07(12-14)	SB-07(23-25)	SB-08(4-6)	SB-08(6-8)	SB-08(13-15)	GW-01(4-5)	GW-01(13-15)
		Sampling Date	3/18/2016	3/18/2016	3/17/2016	3/17/2016	3/17/2016	3/21/2016	3/21/2016
		Start Depth (in Feet)	12	23	4	6	13	4	13
		End Depth (in Feet)	14	25	6	8	15	5	15
		Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
	NYCRR 6 Part 375								
	Restricted-	Industrial							
	Residential	Use Soil							
	Use Soil Cleanup	Cleanup							
	Objectives (SCO)	Objectives (SCO)							
051411/01/4711 5 001/1901/11/90	ug/kg	ug/kg							
SEMIVOLATILE COMPOUNDS									
1,1-Biphenyl			450 U	360 U	660 U	380 U	380 U	400 U	390 U
1,2,4,5-Tetrachlorobenzene			450 U	360 U	660 U	380 U	380 U	400 U	390 U
1,4-Dioxane	13000	250000	450 U	360 U	660 U	380 U	380 U	400 U	390 U
2,2-oxybis(1-Chloropropane)			450 U	360 U	660 U	380 U	380 U	400 U	390 U
2,3,4,6-Tetrachlorophenol			450 U	360 U	660 U	380 U	380 U	400 U	390 U
2,4,5-Trichlorophenol			450 U	360 U	660 U	380 U	380 U	400 U	390 U
2,4,6-Trichlorophenol			450 U	360 U	660 U	380 U	380 U	400 U	390 U
2,4-Dichlorophenol			450 U	360 U	660 U	380 U	380 U	400 U	390 U
2,4-Dimethylphenol			450 U	360 U	660 U	380 U	380 U	400 U	390 U
2,4-Dinitrophenol			450 U	360 U	660 UJ	380 UJ	380 U	400 U	390 U
2,4-Dinitrotoluene			450 U	360 U	660 U	380 U	380 U	400 U	390 U
2,6-Dinitrotoluene			450 U	360 U	660 U	380 U	380 U	400 U	390 U
2-Chloronaphthalene			450 U	360 U	660 U	380 U	380 U	400 U	390 U
2-Chlorophenol			450 U	360 U	660 U	380 U	380 U	400 U	390 U
2-Methylnaphthalene			450 U	360 U	290 J	380 U	380 U	400 U	390 U
2-Methylphenol	100000	1000000	450 U	360 U	660 U	380 U	380 U	400 U	390 U
2-Nitroaniline			450 U	360 U	660 U	380 U	380 U	400 U	390 U
2-Nitrophenol			450 U	360 U	660 U	380 U	380 U	400 U	390 U
3,3-Dichlorobenzidine			450 U	360 U	660 U	380 U	380 U	400 U	390 U
3+4-Methylphenols	100000	1000000	450 U	360 U	660 U	380 U	380 U	400 U	390 U
3-Nitroaniline			450 U	360 U	660 U	380 U	380 U	400 U	390 U
4,6-Dinitro-2-methylphenol			450 U	360 U	660 U	380 U	380 U	400 U	390 U
4-Bromophenyl-phenylether			450 U	360 U	660 U	380 U	380 U	400 U	390 U
4-Chloro-3-methylphenol			450 U	360 U	660 U	380 U	380 U	400 U	390 U
4-Chloroaniline			450 U	360 U	660 U	380 U	380 U	400 U	390 U
4-Chlorophenyl-phenylether			450 U	360 U	660 U	380 U	380 U	400 U	390 U
4-Nitroaniline			450 U	360 U	660 U	380 U	380 U	400 U	390 U
4-Nitrophenol	400000	4000000	450 U	360 U	660 U	380 U	380 U	400 U	390 U
Acenaphthene	100000	1000000	450 U	360 U	660 U	380 U	380 U	400 U	390 U
Acenaphthylene	100000	1000000	450 U	360 U	660 U	380 U	380 U	400 U	390 U
Acetophenone	400000	4000000	450 U	360 U	660 U	380 U	380 U	400 U	390 U
Anthracene	100000	1000000	450 U	360 U	230 J	100 J	380 U	90.4 J	390 U
Atrazine			450 U	360 U	660 U	380 U	380 U	400 U	390 U
Benzaldehyde	1000		450 U	360 U	660 U	380 U	380 U	400 U	390 U
Benzo(a)anthracene	1000	11000	450 U	360 U	590 J	220 J	380 U 380 U	330 J	390 U
Benzo(a)pyrene	1000	1100	450 U	360 U	520 J	190 J		250 J	390 U
Benzo(b)fluoranthene	1000	11000	450 U	360 U	680	260 J	380 U	340 J	390 U
Benzo(g,h,i)perylene	100000	1000000	450 U	360 U	320 J	120 J	380 U	140 J	390 U

Subsurface Soil Samples TCL Semivolatile Organic Compounds

Sample ID SB-07(12-14) SB-07(23-25) SB-08(4-6) SB-08(13-15) GW-01(4-5) GW-01(13-15) GW-01(13-15)										
		Sample ID			SB-08(4-6)	SB-08(6-8)	SB-08(13-15)		GW-01(13-15)	
		Sampling Date	3/18/2016	3/18/2016	3/17/2016	3/17/2016	3/17/2016	3/21/2016	3/21/2016	
		Start Depth (in Feet)	12	23	4	6	13	4	13	
		End Depth (in Feet)	14	25	6	8	15	5	15	
		Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	
	NYCRR 6 Part 375									
	Restricted-	Industrial								
	Residential	Use Soil								
	Use Soil Cleanup	Cleanup								
	Objectives (SCO)	Objectives (SCO)								
	ug/kg	ug/kg								
COMPOUNDS CONTINUED										
Benzo(k)fluoranthene	3900	110000	450 U	360 U	300 J	100 J	380 U	180 J	390 U	
bis(2-Chloroethoxy)methane			450 U	360 U	660 U	380 U	380 U	400 U	390 U	
bis(2-Chloroethyl)ether			450 U	360 U	660 U	380 U	380 U	400 U	390 U	
Bis(2-ethylhexyl)phthalate			450 U	360 U	290 J	140 J	380 U	130 J	390 U	
Butylbenzylphthalate			450 U	360 U	660 U	380 U	380 U	400 U	390 U	
Caprolactam			450 U	360 U	660 U	380 U	380 U	400 U	390 U	
Carbazole			450 U	360 U	660 U	380 U	380 U	400 U	390 U	
Chrysene	3900	110000	450 U	360 U	630 J	220 J	380 U	280 J	390 U	
Dibenzo(a,h)anthracene	330	1100	450 U	360 U	660 U	380 U	380 U	400 U	390 U	
Dibenzofuran	59000	1000000	450 U	360 U	660 U	380 U	380 U	400 U	390 U	
Diethylphthalate			450 U	360 U	660 U	380 U	380 U	400 U	390 U	
Dimethylphthalate			800	600	970	450	750	590 J	660 J	
Di-n-butylphthalate			450 U	360 U	660 U	380 U	380 U	400 U	390 U	
Di-n-octyl phthalate			450 U	360 U	660 U	380 U	380 U	400 U	390 U	
Fluoranthene	100000	1000000	450 U	360 U	1100	410	380 U	430 J	390 U	
Fluorene	100000	1000000	450 U	360 U	660 U	380 U	380 U	400 U	390 U	
Hexachlorobenzene	1200	12000	450 U	360 U	660 U	380 U	380 U	400 U	390 U	
Hexachlorobutadiene			450 U	360 U	660 U	380 U	380 U	400 U	390 U	
Hexachlorocyclopentadiene			450 U	360 U	660 U	380 U	380 U	400 U	390 U	
Hexachloroethane			450 U	360 U	660 U	380 U	380 U	400 U	390 U	
Indeno(1,2,3-cd)pyrene	500	11000	450 U	360 U	240 J	91.5 J	380 U	170 J	390 U	
Isophorone			450 U	360 U	660 U	380 U	380 U	400 U	390 U	
Naphthalene	100000	1000000	450 U	360 U	300 J	88.9 J	380 U	400 U	390 U	
Nitrobenzene	15000	140000	450 U	360 U	660 U	380 U	380 U	400 U	390 U	
n-Nitroso-di-n-propylamine			450 U	360 U	660 U	380 U	380 U	400 U	390 U	
n-Nitrosodiphenylamine			450 U	360 U	660 U	380 U	380 U	400 U	390 U	
Pentachlorophenol	6700	55000	450 U	360 U	660 U	380 U	380 U	400 U	390 U	
Phenanthrene	100000	1000000	450 U	360 U	820	340 J	380 U	300 J	390 U	
Phenol	100000	1000000	450 U	360 U	660 U	380 U	380 U	400 U	390 U	
Pyrene	100000	1000000	450 U	360 U	950	400	380 U	370 J	390 U	
Total Semivolatile Compounds			800	600	8230	3130.4	750	3600.4	660	
Footnotes/Qualifiers:										

Footnotes/Qualifiers:

ug/kg: Micrograms per kilogram --: No standard

BD: Blind duplicate Exceeded the Industrial Use SCO

U: Analyzed for but not detected
D: Reported from secondary dilution
J: Estimated value or detection limits

Exceeded the Restricted-Residential Use SCO

Subsurface Soil Samples TCL Semivolatile Organic Compounds

Sample ID GW-01(18-20) GW-03(3-4) GW-03(18-20) GW-04(2-3) GW-04(12-14) GW-04(12-14)BD										OM 04/40 401
		Sample ID	GW-01(18-20)	GW-03(3-4)	GW-03(12-14)	GW-03(18-20)	GW-04(2-3)	GW-04(12-14)	`	GW-04(16-18)
	<u>-</u>	Sampling Date	3/21/2016	3/21/2016	3/21/2016	3/21/2016	3/23/2016	3/23/2016	3/23/2016	3/23/2016
		start Depth (in Feet)	18	3	12	18	2	12	12	16
		End Depth (in Feet)	20	4	14	20	3	14	14	18
	NVODD O D OZE	Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
	NYCRR 6 Part 375									
	Restricted-	Industrial								
	Residential	Use Soil								
	Use Soil Cleanup	Cleanup								
	Objectives (SCO)	Objectives (SCO)								
	ug/kg	ug/kg								
SEMIVOLATILE COMPOUNDS										
1,1-Biphenyl			370 U	77.7 J	540 U	390 U	370 U	520 U	550 U	370 U
1,2,4,5-Tetrachlorobenzene			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
1,4-Dioxane	13000	250000	370 U	360 U	540 U	390 U	370 UJ	520 UJ	550 UJ	370 UJ
2,2-oxybis(1-Chloropropane)			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
2,3,4,6-Tetrachlorophenol			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
2,4,5-Trichlorophenol			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
2,4,6-Trichlorophenol			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
2,4-Dichlorophenol			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
2,4-Dimethylphenol			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
2,4-Dinitrophenol			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
2,4-Dinitrotoluene			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
2,6-Dinitrotoluene			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
2-Chloronaphthalene			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
2-Chlorophenol			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
2-Methylnaphthalene			370 U	310 J	540 U	390 U	110 J	520 U	550 U	370 U
2-Methylphenol	100000	1000000	370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
2-Nitroaniline			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
2-Nitrophenol			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
3,3-Dichlorobenzidine			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
3+4-Methylphenols	100000	1000000	370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
3-Nitroaniline			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
4,6-Dinitro-2-methylphenol			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
4-Bromophenyl-phenylether			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
4-Chloro-3-methylphenol			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
4-Chloroaniline			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
4-Chlorophenyl-phenylether			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
4-Nitroaniline			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
4-Nitrophenol			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Acenaphthene	100000	1000000	370 U	280 J	540 U	390 U	660 J	520 U	550 U	370 U
Acenaphthylene	100000	1000000	370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Acetophenone			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Anthracene	100000	1000000	370 U	540 J	540 U	390 U	1200 J	520 U	550 U	370 U
Atrazine			370 U	540 J	540 U	390 U	370 U	520 U	550 U	370 U
Benzaldehyde			370 U	360 U	540 U	390 U	370 UJ	520 UJ	550 UJ	370 UJ
Benzo(a)anthracene	1000	11000	370 U	610 J	540 U	390 U	1200 J	520 U	550 U	370 U
Benzo(a)pyrene	1000	1100	370 U	370 J	540 U	390 U	810 J	520 U	550 U	370 U
Benzo(b)fluoranthene	1000	11000	370 U	580 J	540 U	390 U	950 J	520 U	550 U	370 U
Benzo(g,h,i)perylene	100000	1000000	370 U	190 J	540 U	390 U	430 J	520 U	550 U	370 U

Table E-2 Long Island Rail Road Arch Street Yard RI Subsurface Soil Samples

TCL Semivolatile Organic Compounds

Sample ID GW-01(18-20) GW-03(3-4) GW-03(12-14) GW-03(18-20) GW-04(2-3) GW-04(12-14) GW-04(12-14)BD GW-04										OM 04/40 40)
		Sample ID	GW-01(18-20)	GW-03(3-4) 3/21/2016			GW-04(2-3) 3/23/2016	GW-04(12-14)		GW-04(16-18) 3/23/2016
	_	Sampling Date	3/21/2016		3/21/2016	3/21/2016		3/23/2016	3/23/2016	
		tart Depth (in Feet)	18	3	12	18	2	12	12	16
		End Depth (in Feet)	20	4	14	20	3	14	14	18
		Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
	NYCRR 6 Part 375									
	Restricted-	Industrial								
	Residential	Use Soil								
	Use Soil Cleanup	Cleanup								
	Objectives (SCO)	Objectives (SCO)								
	ug/kg	ug/kg								
COMPOUNDS CONTINUED										
Benzo(k)fluoranthene	3900	110000	370 U	270 J	540 U	390 U	290 J	520 U	550 U	370 U
bis(2-Chloroethoxy)methane			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
bis(2-Chloroethyl)ether			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Bis(2-ethylhexyl)phthalate			370 U	120 J	540 U	390 U	370 U	520 U	550 U	370 U
Butylbenzylphthalate			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Caprolactam			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Carbazole			370 U	360 U	540 U	390 U	410 J	520 U	550 U	370 U
Chrysene	3900	110000	370 U	660 J	540 U	390 U	990 J	520 U	550 U	370 U
Dibenzo(a,h)anthracene	330	1100	370 U	360 U	540 U	390 U	120 J	520 U	550 U	370 U
Dibenzofuran	59000	1000000	370 U	340 J	540 U	390 U	430 J	520 U	550 U	370 U
Diethylphthalate			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Dimethylphthalate			370 J	240 J	440 J	580 J	510 J	960 J	780 J	590 J
Di-n-butylphthalate			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Di-n-octyl phthalate			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Fluoranthene	100000	1000000	370 U	1500 J	540 U	390 U	2000 J	520 U	550 U	370 U
Fluorene	100000	1000000	370 U	230 J	540 U	390 U	690 J	520 U	550 U	370 U
Hexachlorobenzene	1200	12000	370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Hexachlorobutadiene			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Hexachlorocyclopentadiene			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Hexachloroethane			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Indeno(1,2,3-cd)pyrene	500	11000	370 U	270 J	540 U	390 U	<u>600</u> <u>J</u>	520 U	550 U	370 U
Isophorone			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Naphthalene	100000	1000000	370 U	420 J	540 U	390 U	200 J	520 U	550 U	370 U
Nitrobenzene	15000	140000	370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
n-Nitroso-di-n-propylamine			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
n-Nitrosodiphenylamine			370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Pentachlorophenol	6700	55000	370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Phenanthrene	100000	1000000	370 U	850 J	540 U	390 U	3000 D	520 U	550 U	370 U
Phenol	100000	1000000	370 U	360 U	540 U	390 U	370 U	520 U	550 U	370 U
Pyrene	100000	1000000	370 U	1000 J	540 U	390 U	2000 J	520 U	550 U	370 U
Total Combinatella Com			070	2007.7	440	500	40000	000	700	500
Total Semivolatile Compounds			370	9397.7	440	580	16600	960	780	590

Footnotes/Qualifiers:

ug/kg: Micrograms per kilogram --: No standard

BD: Blind duplicate Exceeded the Industrial Use SCO

U: Analyzed for but not detected
D: Reported from secondary dilution
J: Estimated value or detection limits

Exceeded the Restricted-Residential Use SCO

Table E-3
Long Island Rail Road
Arch Street Yard RI
Subsurface Soil Samples
Polychlorinated Biphenyls (PCBs)

	Sample ID Sampling Date Start Depth (in Feet) End Depth (in Feet) Units			SB-04(3-5) 3/16/2016 3 5	SB-05(10-11) 3/16/2016 10 11	SB-05(10-11) BD 3/16/2016 10 11	SB-06(8-10) 3/17/2016 8 10	SB-07(12-14) 3/18/2016 12 14	SB-09(0-1) 3/18/2016 0 1
	NYCRR 6 Part 375 Restricted- Residential Use Soil Cleanup Objectives (SCO) ug/kg	NYCRR 6 Part 375 Industrial Use Soil Cleanup Objectives (SCO) ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
PCBS Aroclor 1016 Aroclor 1221 Aroclor 1232	1000	25000	21.2 U	20.8 UJ	20.5 U	20.1 UJ	22.3 UJ	23.4 UJ	20 U
	1000	25000	21.2 U	20.8 UJ	20.5 U	20.1 UJ	22.3 UJ	23.4 UJ	20 U
	1000	25000	21.2 U	20.8 UJ	20.5 U	20.1 UJ	22.3 UJ	23.4 UJ	20 U
Aroclor 1242	1000	25000	21.2 U	20.8 UJ	20.5 U	20.1 UJ	22.3 UJ	23.4 UJ	20 U
Aroclor 1248	1000	25000	21.2 U	20.8 UJ	20.5 U	20.1 UJ	22.3 UJ	23.4 UJ	20 U
Aroclor 1254	1000	25000	21.2 U	20.8 UJ	20.5 U	20.1 UJ	22.3 UJ	23.4 UJ	20 U
Aroclor 1260	1000	25000	21.2 U	20.8 UJ	20.5 U	20.1 UJ	22.3 UJ	23.4 UJ	20 U
Aroclor-1262	1000	25000	21.2 U	20.8 UJ	20.5 U	20.1 UJ	22.3 UJ	23.4 UJ	20 U
Aroclor-1268 Total PCBs	1000	25000	21.2 U	20.8 UJ	20.5 U	20.1 UJ	22.3 UJ	23.4 UJ	20 U
	1000	25000	0	0	0	0	0	0	0

ug/kg: Micrograms per kilogram
U: Analyzed for but not detected

BD: Blind duplicate

J: Estimated value or detection limits

J-: Estimated bias low

Table E-3
Long Island Rail Road
Arch Street Yard RI
Subsurface Soil Samples
Polychlorinated Biphenyls (PCBs)

	Sample ID Sampling Date Start Depth (in Feet) End Depth (in Feet)			SB-09(4-5) 3/18/2016 4 5	SB-09(7-8) 3/18/2016 7 8	SB-10(0-1) 3/16/2016 0 1	SB-10(2-3) 3/18/2016 2 3	SB-10(4-5) 3/18/2016 4 5	SB-10(4-5) BD 3/18/2016 4 5
		Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
	NYCRR 6 Part 375 Restricted- Residential Use Soil Cleanup Objectives (SCO) ug/kg	NYCRR 6 Part 375 Industrial Use Soil Cleanup Objectives (SCO) ug/kg							
PCBS									
Aroclor 1016	1000	25000	21.8 U	20.4 UJ	20 U	18.8 U	21.4 UJ	21 U	21.7 U
Aroclor 1221	1000	25000	21.8 U	20.4 UJ	20 U	18.8 U	21.4 UJ	21 U	21.7 U
Aroclor 1232	1000	25000	21.8 U	20.4 UJ	20 U	18.8 U	21.4 UJ	21 U	21.7 U
Aroclor 1242	1000	25000	21.8 U	20.4 UJ	20 U	18.8 U	21.4 UJ	21 U	21.7 U
Aroclor 1248	1000	25000	21.8 U	20.4 UJ	20 U	18.8 U	21.4 UJ	21 U	21.7 U
Aroclor 1254	1000	25000	21.8 U 21.8 U	20.4 UJ	20 U	18.8 U 61.6	21.4 UJ	21 U 21 U	21.7 U 21.7 U
Aroclor 1260 Aroclor-1262	1000 1000	25000 25000	21.8 U 21.8 U	20.4 UJ 20.4 UJ	20 U 20 U	18.8 U	21.4 UJ 21.4 UJ	21 U	21.7 U 21.7 U
Aroclor-1268	1000	25000 25000	21.8 U	20.4 UJ	20 U	18.8 U	21.4 UJ 21.4 UJ	21 U	21.7 U 21.7 U
Total PCBs	1000	25000	0	0	0	61.6	0	0	0

ug/kg: Micrograms per kilogram
U: Analyzed for but not detected

BD: Blind duplicate

J: Estimated value or detection limits

J-: Estimated bias low

Table E-3 Long Island Rail Road Arch Street Yard RI Subsurface Soil Samples Polychlorinated Biphenyls (PCBs)

Sample ID Sampling Date Start Depth (in Feet) End Depth (in Feet)			7	SB-11(0-1) 3/18/2016 0 1	SB-11(2-3) 3/18/2016 2 3	SB-11(4-5) 3/18/2016 4 5	SB-11(7-8) 3/18/2016 7 8	SB-12(0-1) 3/21/2016 0 1	SB-12(2-3) 3/21/2016 2 3
		Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
	NYCRR 6 Part 375 Restricted- Residential Use Soil Cleanup Objectives (SCO) ug/kg	NYCRR 6 Part 375 Industrial Use Soil Cleanup Objectives (SCO) ug/kg							
PCBS									
Aroclor 1016	1000	25000	20.8 U	21.2 U	21.7 U	21.2 U	44.4 U	19.8 U	21.7 UJ
Aroclor 1221	1000	25000	20.8 U	21.2 U	21.7 U	21.2 U	44.4 U	19.8 U	21.7 UJ
Aroclor 1232	1000	25000	20.8 U	21.2 U	21.7 U	21.2 U	44.4 U	19.8 U	21.7 UJ
Aroclor 1242	1000	25000	20.8 U	21.2 U	21.7 U	21.2 U	44.4 U	19.8 U	21.7 UJ
Aroclor 1248 Aroclor 1254	1000 1000	25000 25000	20.8 U 20.8 U	21.2 U 21.2 U	21.7 U 21.7 U	21.2 U 21.2 U	44.4 U 44.4 U	19.8 U 19.8 U	21.7 UJ 21.7 UJ
Aroclor 1254 Aroclor 1260	1000	25000 25000	20.8 U	21.2 U 21.2 U	21.7 U 21.7 U	21.2 U 21.2 U	44.4 U 44.4 U	19.8 U	21.7 UJ 21.7 UJ
Aroclor-1262	1000	25000	20.8 U	21.2 U	21.7 U	21.2 U	44.4 U	19.8 U	21.7 UJ
Aroclor-1268	1000	25000	20.8 U	21.2 U	21.7 U	21.2 U	44.4 U	19.8 U	21.7 UJ
Total PCBs	1000	25000	0	0	0	0	0	0	0

Footnotes/Qualifiers:

ug/kg: Micrograms per kilogram
U: Analyzed for but not detected

BD: Blind duplicate

J: Estimated value or detection limits

J-: Estimated bias low

Table E-3
Long Island Rail Road
Arch Street Yard RI
Subsurface Soil Samples
Polychlorinated Biphenyls (PCBs)

	Sample ID Sampling Date Start Depth (in Feet) End Depth (in Feet)		5 6	SB-13(0-1) 3/21/2016 0 1	SB-13(2-3) 3/21/2016 2 3	SB-13(5-6) 3/21/2016 5 6	SB-13(5-6)BD 3/21/2016 5 6	SB-14(0-1) 3/16/2016 0 1	SB-14(2-3) 3/21/2016 2 3
		Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
	NYCRR 6 Part 375 Restricted-	NYCRR 6 Part 375							
	Restricted- Residential	Industrial Use Soil							
	Use Soil Cleanup	Cleanup							
	Objectives (SCO)	Objectives (SCO)							
	ug/kg	ug/kg)							
PCBS									
Aroclor 1016	1000	25000	40.6 UJ	20.2 U	23 UJ	34.5 U	31.1 UJ	18.7 U	19.2 U
Aroclor 1221	1000	25000	40.6 UJ	20.2 U	23 UJ	34.5 U	31.1 UJ	18.7 U	19.2 U
Aroclor 1232	1000	25000	40.6 UJ	20.2 U	23 UJ	34.5 U	31.1 UJ	18.7 U	19.2 U
Aroclor 1242 Aroclor 1248	1000 1000	25000 25000	40.6 UJ 40.6 UJ	20.2 U 20.2 U	23 UJ 23 UJ	34.5 U 34.5 U	31.1 UJ 31.1 UJ	18.7 U 18.7 U	19.2 U 19.2 U
Aroclor 1248 Aroclor 1254	1000	25000	40.6 UJ	32	23 UJ	34.5 U	31.1 UJ	310	19.2 U
Aroclor 1254 Aroclor 1260	1000	25000	40.6 UJ	20.2 U	23 UJ	34.5 U	31.1 UJ	18.7 U	19.2 U
Aroclor-1262	1000	25000	40.6 UJ	20.2 U	23 UJ	34.5 U	31.1 UJ	18.7 U	19.2 U
Aroclor-1268	1000	25000	40.6 UJ	20.2 U	23 UJ	34.5 U	31.1 UJ	18.7 U	19.2 U
Total PCBs	1000	25000	0	32	0	0	0	310	0

ug/kg: Micrograms per kilogram
U: Analyzed for but not detected

BD: Blind duplicate

J: Estimated value or detection limits

J-: Estimated bias low

Table E-3 Long Island Rail Road Arch Street Yard RI Subsurface Soil Samples Polychlorinated Biphenyls (PCBs)

	Sample ID Sampling Date Start Depth (in Feet) End Depth (in Feet)			SB-15(0-1) 3/18/2016 0 1	SB-15(2-3) 3/18/2016 2 3	SB-15(5-6) 3/18/2016 5 6	SB-16(0-1) 3/18/2016 0 1	SB-16(2-3) 3/18/2016 2 3	SB-16(5-6) 3/18/2016 5 6
		Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
	NYCRR 6 Part 375 Restricted- Residential Use Soil Cleanup Objectives (SCO) ug/kg	NYCRR 6 Part 375 Industrial Use Soil Cleanup Objectives (SCO) ug/kg		0.0	0.0	5 5	5 5	5 5	5 5
PCBS									
Aroclor 1016	1000	25000	18.8 U	20.1 UJ	19.1 U	19.3 U	17.9 U	21 U	21.1 U
Aroclor 1221	1000	25000	18.8 U	20.1 UJ	19.1 U	19.3 U	17.9 U	21 U	21.1 U
Aroclor 1232	1000	25000	18.8 U	20.1 UJ	19.1 U	19.3 U	17.9 U	21 U	21.1 U
Aroclor 1242	1000	25000	18.8 U	20.1 UJ	19.1 U	19.3 U	17.9 U	21 U	21.1 U
Aroclor 1248	1000	25000	18.8 U	20.1 UJ	19.1 U	19.3 U	17.9 U	21 U	21.1 U
Aroclor 1254 Aroclor 1260	1000 1000	25000 35000	18.8 U 18.8 U	10 J- 20.1 UJ	19.1 U 19.1 U	19.3 U 19.3 U	17.9 U 17.9 U	21 U 21 U	21.1 U 21.1 U
Aroclor-1262	1000	25000 25000	18.8 U	20.1 UJ 20.1 UJ	19.1 U	19.3 U	17.9 U 17.9 U	21 U	21.1 U 21.1 U
Aroclor-1268	1000	25000	18.8 U	20.1 UJ	19.1 U	19.3 U	17.9 U	21 U	21.1 U
Total PCBs	1000	25000	0	10	0	0	0	0	0

Footnotes/Qualifiers:

ug/kg: Micrograms per kilogram
U: Analyzed for but not detected

BD: Blind duplicate

J: Estimated value or detection limits

J-: Estimated bias low

Table E-3
Long Island Rail Road
Arch Street Yard RI
Subsurface Soil Samples
Polychlorinated Biphenyls (PCBs)

Sample ID Sampling Date Start Depth (in Feet) End Depth (in Feet)		0 1	SB-17(2-3) 3/18/2016 2 3	SB-17(5-6) 3/18/2016 5 6	GW-01(13-15) 3/21/2016 13 15	GW-03(12-14) 3/21/2016 12 14	GW-04(12-14) 3/23/2016 12 14	GW-04(12-14)BD 3/23/2016 12 14	
		Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
	NYCRR 6 Part 375 Restricted- Residential Use Soil Cleanup Objectives (SCO)	NYCRR 6 Part 375 Industrial Use Soil Cleanup Objectives (SCO)							
	ug/kg	ug/kg							
PCBS									
Aroclor 1016	1000	25000	19.5 U	21.9 UJ	19.5 U	20.2 UJ	27.9 UJ	26.9 U	28.6 U
Aroclor 1221	1000	25000	19.5 U	21.9 UJ	19.5 U	20.2 UJ	27.9 UJ	26.9 U	28.6 U
Aroclor 1232	1000	25000	19.5 U	21.9 UJ	19.5 U	20.2 UJ	27.9 UJ	26.9 U	28.6 U
Aroclor 1242	1000	25000	19.5 U	21.9 UJ	19.5 U	20.2 UJ	27.9 UJ	26.9 U	28.6 U
Aroclor 1248	1000	25000	19.5 U	21.9 UJ	19.5 U	20.2 UJ	27.9 UJ	26.9 U	28.6 U
Aroclor 1254	1000	25000	19.5 U	21.9 UJ	19.5 U	20.2 UJ	27.9 UJ	26.9 U	28.6 U
Aroclor 1260	1000	25000	44.4	21.9 UJ	19.5 U	20.2 UJ	27.9 UJ	26.9 U	28.6 U
Aroclor-1262	1000	25000	19.5 U	21.9 UJ	19.5 U	20.2 UJ	27.9 UJ	26.9 U	28.6 U
Aroclor-1268	1000	25000	19.5 U	21.9 UJ	19.5 U	20.2 UJ	27.9 UJ	26.9 U	28.6 U
Total PCBs	1000	25000	44.4	0	0	0	0	0	0

ug/kg: Micrograms per kilogram
U: Analyzed for but not detected

BD: Blind duplicate

J: Estimated value or detection limits

J-: Estimated bias low

Table E-4
Long Island Rail Road
Arch Street Yard RI
Subsurface Soil Samples
TCL Pesticides

		Sample ID Sampling Date tart Depth (in Feet) End Depth (in Feet) Units	SB-03(12-14) 3/17/2016 12 14 ug/kg	SB-04(3-5) 3/16/2016 3 5 ug/kg	SB-05(10-11) 3/16/2016 10 11 ug/kg	SB-05(10-11) BD 3/16/2016 10 11 ug/kg	SB-06(8-10) 3/17/2016 8 10 ug/kg	SB-07(12-14) 3/18/2016 12 14 ug/kg	GW-01(13-15) 3/21/2016 13 15 ug/kg
	Restricted- Residential Use Soil Cleanup	•							
PESTICIDES									
4,4-DDD	13000	180000	2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
4,4-DDE	8900	120000	2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
4,4-DDT	7900	94000	2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
Aldrin	97	1400	2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
alpha-BHC	480	6800	2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
alpha-Chlordane	4200	47000	2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
beta-BHC	360	14000	2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
delta-BHC	100000	1000000	2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
Dieldrin	200	2800	2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
Endosulfan I	24000	920000	2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
Endosulfan II	24000	920000	2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
Endosulfan Sulfate	24000	920000	2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
Endrin	11000	410000	2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
Endrin aldehyde			2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
Endrin ketone			2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
gamma-BHC (Lindane)	1300	23000	2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
gamma-Chlordane	4200	47000	2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
Heptachlor	2100	29000	2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
Heptachlor epoxide			2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
Methoxychlor			2.1 U	2.1 U	2 U	2 U	2.2 U	2.3 U	2 U
Toxaphene			21.2 U	20.8 U	20.5 U	20.1 U	22.3 U	23.3 U	20.2 U

ug/kg: Micrograms per kilogram
U: Analyzed for but not detected

BD: Blind duplicate
--: No standard

Table E-4
Long Island Rail Road
Arch Street Yard RI
Subsurface Soil Samples
TCL Pesticides

		Sample ID	GW-03(12-14)	GW-04(12-14)	GW-04(12-14)BD
		Sampling Date	3/21/2016	3/23/2016	3/23/2016
	St	art Depth (in Feet)	12	12	12
		ind Depth (in Feet)		14	14
		Units	ug/kg	ug/kg	ug/kg
	NYCRR 6 Part 375	NYCRR 6 Part 375			
	Restricted-	Industrial			
	Residential	Use Soil			
	Use Soil Cleanup	Cleanup			
	Objectives (SCO)	Objectives (SCO)			
	ug/kg	ug/kg			
PESTICIDES					
4,4-DDD	13000	180000	2.8 U	2.7 U	2.9 U
4,4-DDE	8900	120000	2.8 U	2.7 U	2.9 U
4,4-DDT	7900	94000	2.8 U	2.7 U	2.9 U
Aldrin	97	1400	2.8 U	2.7 U	2.9 U
alpha-BHC	480	6800	2.8 U	2.7 U	2.9 U
alpha-Chlordane	4200	47000	2.8 U	2.7 U	2.9 U
beta-BHC	360	14000	2.8 U	2.7 U	2.9 U
delta-BHC	100000	1000000	2.8 U	2.7 U	2.9 U
Dieldrin	200	2800	2.8 U	2.7 U	2.9 U
Endosulfan I	24000	920000	2.8 U	2.7 U	2.9 U
Endosulfan II	24000	920000	2.8 U	2.7 U	2.9 U
Endosulfan Sulfate	24000	920000	2.8 U	2.7 U	2.9 U
Endrin	11000	410000	2.8 U	2.7 U	2.9 U
Endrin aldehyde			2.8 U	2.7 U	2.9 U
Endrin ketone			2.8 U	2.7 U	2.9 U
gamma-BHC (Lindane)	1300	23000	2.8 U	2.7 U	2.9 U
gamma-Chlordane	4200	47000	2.8 U	2.7 U	2.9 U
Heptachlor	2100	29000	2.8 U	2.7 U	2.9 U
Heptachlor epoxide			2.8 U	2.7 U	2.9 U
Methoxychlor			2.8 U	2.7 U	2.9 U
Toxaphene			27.9 U	26.9 U	28.6 U

ug/kg: Micrograms per kilogram
U: Analyzed for but not detected

BD: Blind duplicate
--: No standard

Table E-5 Long Island Rail Road Arch Street Yard RI Subsurface Soil Samples

TAL Metals

		Sample ID	SB-01(13-15)	SB-01(23-25)	SB-03(12-14)	SB-04(3-5)	SB-05(10-11)	SB-05(10-11)BD	SB-06(8-10)
		Sampling Date	3/16/2016	3/16/2016	3/17/2016	3/16/2016	3/16/2016	3/16/2016	3/17/2016
		Start Depth	13	23	12	3	10	10	8
		End Depth	15	25	14	5	11	11	10
	AUVODD O D 1 OFF	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	NYCRR 6 Part 375	NYCRR 6 Part 375							
	Restricted-	Industrial							
	Residential	Use Soil							
	Use Soil Cleanup	Cleanup							
	Objectives (SCO)	Objectives (SCO)							
	mg/kg	mg/kg							
Metals									
Aluminum			14000	4260	9310	2220	7560	8920	3330
Antimony			3.62 UJ	2.3 UJ	2.6 UJ	1.43 J	2.55 UJ	2.53 UJ	2.79 UJ
Arsenic	16	16	9.37	1.21	2.66	8.17	5	2.43	8.7
Barium	400	10000	24.2 J	45.8 J	22.2 J	41.5 J	24.6 J	21.9 J	24.4 J
Beryllium	72	2700	0.982	0.353	0.526	0.72	0.486	0.496	0.611
Cadmium	4.3	60	0.44 U	0.28 U	0.31 U	0.31 U	0.31 U	0.3 U	0.34 U
Calcium			2130	5640	368	9980	1340 J	309 J	5700
Chromium	180	6800	26.3	11	12.5	5.91	16.1	12.6	8.35
Cobalt			12 J	7.16 J	6.09 J	4.71 J	9.18 J	5.74 J	7.27 J
Copper	270	10000	7.81 J	12.5 J	10.7 J	106 J	13.1 J	10.7 J	35.6 J
Iron			32500	14500	16600	51000 D	17400	15500	22800
Lead	400	3900	15.1	4.11	19.5	104	25.4	29.8	<u>483</u>
Magnesium			6010	4330	2480	2350	3790	2430	1420
Manganese	2000	10000	409	262	121	302	163	102	377
Mercury	0.81	5.7	0.206 J	0.033 J	0.039 J	0.135 J	0.047 J	0.161 J	0.199 J
Nickel	310	10000	26.7	11.7	13.8	12.7	14.2	13.4	14.1
Potassium			2730 J	1810 J	524 J	199 J	827 J	504 J	366 J
Selenium	180	6800	1.45 U	0.92 U	1.04 U	1.03 U	1.02 U	1.01 U	1.12 U
Silver	180	6800	0.73 U	0.46 U	0.52 U	0.52 U	0.51 U	0.51 U	0.56 U
Sodium			19000 J	2200 J	1390 J	208 J	2400 J	1290 J	428 J
Thallium			2.9 U	1.84 U	2.08 U	2.06 U	2.04 U	2.02 U	2.23 U
Vanadium			32.5	18.5	16.2	12.9	22.8	15.1	11.8
Zinc	10000	10000	77.1 J	31 J	42.1 J	135 J	42.5 J	40.4 J	36.5 J

Footnotes/Qualifiers:

mg/kg: Milligrams per kilogram

- U: Analyzed for but not detected
- D: Detected in the secondary dilution
- J: Estimated value or detection limits
- --: No standard or not analyzed

Exceeded the Restricted-Residential Use SCO

Table E-5 Long Island Rail Road Arch Street Yard RI Subsurface Soil Samples

TAL Metals

		Sample ID	SB-07(12-14)	GW-01(13-15)	GW-03(12-14)	GW-04(12-14)	GW-04(12-14)BD
		Sampling Date		3/21/2016	3/21/2016	3/23/2016	3/23/2016
		Start Depth	12	13	12	12	12
		End Depth	14	15	14	14	14
		Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	NYCRR 6 Part 375	NYCRR 6 Part 375					
	Restricted-	Industrial					
	Residential	Use Soil					
	Use Soil Cleanup	Cleanup					
	Objectives (SCO)	Objectives (SCO)					
	mg/kg	mg/kg					
<u>Metals</u>							
Aluminum			11000	6940	13900	11800	12000
Antimony			2.93 UJ	2.51 UJ	3.48 UJ	3.26 UJ	3.46 UJ
Arsenic	16	16	5.87	2.79	9.47	4.86	5.73
Barium	400	10000	32.3 J	22 J	24.4 J	136 J	119 J
Beryllium	72	2700	0.573	0.453	0.983	0.708	0.704
Cadmium	4.3	60	0.751	0.3 U	0.141 J	0.795	1.02
Calcium			2040 J	821	2880	696	733
Chromium	180	6800	18.8 J	10.3	24.9	23.5 J	26.1 J
Cobalt			9.91	6.67	12.5	9.7	15.5
Copper	270	10000	17.9 J	8.72	5.27	8.05 J	10.3 J
Iron			22600	15800	35700	27300	23900
Lead	400	3900	37.8	13	14.5	11.9	12
Magnesium			3400 J	2220	5610	3070 J	3290 J
Manganese	2000	10000	262 J	211 J	433 J	293 J	290 J
Mercury	0.81	5.7	<u>0.949</u> <u>DJ</u>	0.052	0.159	0.015 J	0.03
Nickel	310	10000	19.2	12.1	27.8	17	19.5
Potassium			1440	511	2530	1900	2010
Selenium	180	6800	1.17 U	1 U	1.39 U	1.3 U	1.39 U
Silver	180	6800	2.61	0.5 UJ	0.7 UJ	3.11	2.72
Sodium			6990	1700	13600	3930	4170
Thallium			2.34 U	2.01 U	2.78 U	2.61 U	2.77 U
Vanadium			24	14.9	32	27.8	28.5
Zinc	10000	10000	62.7	35.5	76.5	54.2	59.7

Footnotes/Qualifiers:

mg/kg: Milligrams per kilogram

- U: Analyzed for but not detected
- D: Detected in the secondary dilution
- J: Estimated value or detection limits
- --: No standard or not analyzed

Exceeded the Restricted-Residential Use SCO

Table E-6 Long Island Rail Road Arch Street Yard RI Groundwater Samples TCL Volatile Organic Compounds

Sample ID Sampling Date	VB-01(15-16) 10/30/15	VB-01(26-27) 10/30/15	VB-02(5) 10/30/15	VB-02(12-14) 10/30/15	NYSDEC Class GA Standard
Gampinig Said	10/00/10	10/00/10	10/00/10	10,00,10	or Guidance Value
Units	ug/l	ug/l	ug/l	ug/l	ug/l
VOLATILE COMPOUNDS	000 11	400.11	4.11	4.11	_
1,1,1-Trichloroethane	200 U	100 U	1 U	1 U	5
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	200 U 200 U	100 U 100 U	1 U 1 U	1 U 1 U	5 1
1,1,2-Trichloroethane	200 U	100 U	1 U	1 U	5
1,1-Dichloroethane	200 U	100 U	1 U	1 U	5
1,1-Dichloroethene	200 U	100 U	1 U	1 U	5
1,2,3-Trichlorobenzene	200 U	100 U	1 U	1 U	5
1,2,4-Trichlorobenzene	200 U	100 U	1 U	1 U	5
1,2-Dibromo-3-Chloropropane	200 U	100 U	1 U	1 U	0.04
1,2-Dibromoethane	200 U	100 U	1 U	1 U	0.0006
1,2-Dichlorobenzene	200 U	100 U	1 U	1 U	3
1,2-Dichloroethane	200 U	100 U	1 U	1 U	0.6
1,2-Dichloropropane	200 U	100 U	1 U	1 U	1
1,3-Dichlorobenzene	200 U	100 U	1 U	1 U	3
1,4-Dichlorobenzene	200 U	100 U	1 U	1 U	3
1,4-Dioxane	20000 U	10000 U	100 U	100 U	
2-Hexanone	1000 U	500 U	5 U	5 U	50
Acetone Benzene	1000 U 200 U	500 U 100 U	5 U 1 U	5 U 1 U	50 1
Bromochloromethane	200 U	100 U	1 U	1 U	5
Bromodichloromethane	200 U	100 U	1 U	1 U	50
Bromoform	200 U	100 U	1 U	1 U	50
Bromomethane	200 U	100 U	1 U	1 U	5
Carbon Disulfide	200 U	100 U	1 U	1 U	60
Carbon Tetrachloride	200 U	100 U	1 U	1 U	5
Chlorobenzene	200 U	100 U	1 U	1 U	5
Chloroethane	200 U	100 U	1 U	1 U	5
Chloroform	200 U	100 U	1 U	1 U	7
Chloromethane	200 U	100 U	1 U	1 U	5
Cis-1,2-Dichloroethylene	<u>6900</u>	<u>1800</u>	<u>36</u>	1.2	5
Cis-1,3-Dichloropropene	200 U	100 U	1 U	1 U	0.4
Cyclohexane	200 U	100 U	1 U	1 U	
Dibromochloromethane Dichlorodifluoromethane	200 U 200 U	100 U 100 U	1 U 1 U	1 U 1 U	50 5
Ethylbenzene	200 U	100 U	1 U	1 U	5
Isopropylbenzene	200 U	100 U	1 U	1 U	5
m,p-Xylene	400 U	200 U	2 U	2 U	5
Methyl Ethyl Ketone	1000 U	500 U	5 U	5 U	50
Methyl Isobutyl Ketone	1000 U	500 U	5 U	5 U	
Methylene Chloride	200 U	100 U	1 U	1 U	5
Methyl Acetate	200 U	100 U	1 U	1 U	
Methylcyclohexane	200 U	100 U	1 U	1 U	
O-Xylene -	200 U	100 U	1 U	1 U	5
Styrene	200 U	100 U	1 U	1 U	5
Tert-Butyl Methyl Ether	200 U	100 U	1.6	1.6	10
Tetrachloroethylene Toluene	<u>17600</u>	<u>4500</u>	0.71 J	1.5	5
Trans-1,2-Dichloroethene	200 U 200 U	100 U 100 U	1 U 2.5	1 U 1 U	5 5
Trans-1,3-Dichloropropene	200 U	100 U	2.5 1 U	1 U	0.4
Trichloroethylene	1000	1100	2.2	0.93 J	5
Trichlorofluoromethane	200 U	100 U	1 U	1 U	5
Vinyl Chloride	<u>4900</u>	<u>560</u>	<u>17.9</u>	1 U	2
Total Volatile Compounds	30400	7960	61	5.2	

Footnotes/Qualifiers:

ug/l: Micrograms per liter

--: No standard or not analyzed

- U: Analyzed for but not detected
- D: Detected in the secondary dilution
- J: Estimated value

BD: Blind duplicate

Exceeded Class GA value

Table E-6 Long Island Rail Road Arch Street Yard RI Groundwater Samples

TCL Volatile Organic Compounds

Sample ID	GW-01	GW-02S	GW-02D	GW-03	NYSDEC Class GA
Sampling Date	4/7/2016	4/7/2016	4/7/2016	4/7/2016	Standard
					or Guidance Value
Units	ug/l	ug/l	ug/l	ug/l	ug/l
VOLATILE COMPOUNDS 1,1,1-Trichloroethane	1 U	1 U	1 U	1 U	5
1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	1 U	5
1,1,2-Trichloroethane	1 U	1 U	1 U	1 U	1
1,1,2-Trichlorotrifluoroethane	1 U	1 U	1 U	1 U	5
1,1-Dichloroethane	1 U	1 U	1 U	1 U	5
1,1-Dichloroethene	1 U	3.9	23.6	1 U	5
1,2,3-Trichlorobenzene	1 U	1 U	1 U	1 U	5
1.2.4-Trichlorobenzene	1 U	1 U	1 U	1 U	5
1,2-Dibromo-3-Chloropropane	1 U	1 U	1 U	1 U	0.04
1,2-Dibromoethane	1 U	1 U	1 U	1 U	0.0006
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	3
1,2-Dichloroethane	1 U	1 U	1 U	1 U	0.6
1,2-Dichloropropane	1 U	1 U	1 U	1 U	1
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	3
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	3
1,4-Dioxane					
2-Hexanone	5 U	5 U	5 U	5 U	50
Acetone	5 U	2.9 J	4.8 J	5 U	50
Benzene	1 U	1 U	0.38 J	1 U	1
Bromochloromethane	1 U	1 U	1 U	1 U	5
Bromodichloromethane	1 U	1 U	1 U	1 U	50
Bromoform	1 U	1 U	1 U	1 U	50
Bromomethane	1 U	1 U	1 U	1 U	5
Carbon Disulfide	1 U	1 U	1 U	1 U	60
Carbon Tetrachloride	1 U	1 U	1 U	1 U	5
Chlorobenzene	1 U	1 U	1 U	1 U	5
Chloroethane	1 U	1 U	1 U	1 U	5
Chloroform	1 U	1 U	1 U	1 U	7
Chloromethane	1 U	1 U	1 U	1 U	5
Cis-1,2-Dichloroethylene	1 U	<u>1700</u> <u>D</u>	<u>8100</u> <u>D</u>	1 U	5
Cis-1,3-Dichloropropene	1 U 1 U	1 U 1 U	1 U	1 U	0.4
Cyclohexane Dibromochloromethane	1 U	1 U	1 U 1 U	1 U 1 U	
Dichlorodifluoromethane	1 U	1 U	1 U	1 U	50 5
Ethylbenzene	1 U	1 U	1 U	1 U	5
Isopropylbenzene	1 U	1 U	1 U	1 U	5
m,p-Xylene	2 U	2 U	2 U	2 U	5
Methyl Ethyl Ketone	5 U	5 U	5 U	5 U	50
Methyl Isobutyl Ketone	5 U	5 U	5 U	5 U	
Methylene Chloride	1 U	1 U	1 U	1 U	5
Methyl Acetate	1 U	1 U	1 U	1 U	
Methylcyclohexane	1 U	1 U	1 U	1 U	
O-Xylene	1 U	1 U	1 U	1 U	5
Styrene	1 U	1 U	1 U	1 U	5
Tert-Butyl Methyl Ether	2.2	1 U	1 U	0.36 J	10
Tetrachloroethylene	1 U	<u>69.4</u> <u>J</u>	<u>5900</u> <u>DJ</u>	1 U	5
Toluene	1 U	1 U	0.38 J	1 U	5
Trans-1,2-Dichloroethene	1 U	<u>27.5</u>	<u>68.7</u>	1 U	5
Trans-1,3-Dichloropropene	1 U	1 U	1 U	1 U	0.4
Trichloroethylene	1 U	<u>25.3</u>	<u>1400</u> <u>D</u>	1 U	5
Trichlorofluoromethane	1 U	1 U	1 U	1 U	5
Vinyl Chloride	1 U	<u>1500</u> <u>D</u>	<u>5300</u> <u>D</u>	1 U	2
Total Volatile Compounds	2.2	3329	20798	0.36	
	۷.۷	3323	20130	0.50	

Footnotes/Qualifiers:

ug/l: Micrograms per liter

--: No standard or not analyzed

U: Analyzed for but not detected

D: Detected in the secondary dilution

J: Estimated value

BD: Blind duplicate

Table E-6 Long Island Rail Road Arch Street Yard RI Groundwater Samples

TCL Volatile Organic Compounds

Sample ID	GW-04S	GW-04D	MW-1	MW-1 BD	NYSDEC Class GA
Sample ID Sampling Date	4/7/2016	4/7/2016	4/7/2016	4/7/2016	Standard
Sampling Date	4/1/2010	4/1/2010	4/1/2010	4/1/2010	or Guidance Value
Units	ug/l	ug/l	ug/l	ug/l	ug/l
VOLATILE COMPOUNDS			_		
1,1,1-Trichloroethane	1 U	1 U	1 U	1 U	5
1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	1 U	5
1,1,2-Trichloroethane	1 U	1 U	1 U	1 U	1
1,1,2-Trichlorotrifluoroethane	1 U	1 U	1 U	1 U	5
1,1-Dichloroethane	1 U	1 U	1 U	1 U	5
1,1-Dichloroethene	1 U	1 U	1 U	1 U	5
1,2,3-Trichlorobenzene	1 U	1 U	1 U	1 U	5
1,2,4-Trichlorobenzene 1,2-Dibromo-3-Chloropropane	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	5 0.04
1,2-Dibromoethane	1 U	1 U	1 U	1 U	0.006
1.2-Dishomoethane	1 U	1 U	1 U	1 U	3
1,2-Dichloroethane	1 U	1 U	1 U	1 U	0.6
1,2-Dichloropropane	1 U	1 U	1 U	1 U	1
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	3
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	3
1,4-Dioxane					
2-Hexanone	5 U	5 U	5 U	5 U	50
Acetone	5 U	5 U	5 U	5 U	50
Benzene	1 U	1 U	1 U	1 U	1
Bromochloromethane	1 U	1 U	1 U	1 U	5
Bromodichloromethane	1 U	1 U	1 U	1 U	50
Bromoform	1 U	1 U	1 U	1 U	50
Bromomethane	1 U	1 U	1 U	1 U	5
Carbon Disulfide	1 U	1 U	1 U	1 U	60
Carbon Tetrachloride	1 U	1 U	1 U	1 U	5
Chlorobenzene	1 U	1 U	1 U	1 U	5
Chloroethane Chloroform	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	5 7
Chloromethane	1 U	1 U	1 U	1 U	, 5
Cis-1,2-Dichloroethylene	1 U	1 U	1 U	1 U	5
Cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	0.4
Cyclohexane	1 U	1 U	1 U	1 U	
Dibromochloromethane	1 U	1 U	1 U	1 U	50
Dichlorodifluoromethane	1 U	1 U	1 U	1 U	5
Ethylbenzene	1 U	1 U	1 U	1 U	5
Isopropylbenzene	1 U	1 U	1 U	1 U	5
m,p-Xylene	2 U	2 U	2 U	2 U	5
Methyl Ethyl Ketone	5 U	5 U	5 U	5 U	50
Methyl Isobutyl Ketone	5 U	5 U	5 U	5 U	
Methylene Chloride	1 U	1 U	1 U	1 U	5
Methyl Acetate	1 U	1 U	1 U	1 U	
Methylcyclohexane	1 U	1 U	1 U	1 U	
O-Xylene	1 U	1 U	1 U	1 U	5
Styrene Tert-Butyl Methyl Ether	1 U 1.7	1 U 4	1 U 26.2	1 U 29.5	5 10
Tetrachloroethylene	1.7 1 U	4 1 U	<u>26.2</u> 1 U	<u>29.5</u> 1 U	5
Toluene	1 U	0.24 J	1 U	1 U	5
Trans-1,2-Dichloroethene	1 U	1 U	1 U	1 U	5
Trans-1,3-Dichloropropene	1 U	1 U	1 U	1 U	0.4
Trichloroethylene	1 U	1 U	1 U	1 U	5
Trichlorofluoromethane	1 U	1 U	1 U	1 U	5
Vinyl Chloride	0.37 J	1 U	1 U	1 U	2
Total Valatila Carrie simila					
Total Volatile Compounds	2.07	4.24	26.2	29.5	

Footnotes/Qualifiers:

ug/l: Micrograms per liter

--: No standard or not analyzed

U: Analyzed for but not detected

D: Detected in the secondary dilution

J: Estimated value

BD: Blind duplicate

Table E-6 Long Island Rail Road Arch Street Yard RI Groundwater Samples TCL Volatile Organic Compounds

Sample ID	MW-2	MW-3	TRIPBLANK	TRIP BLANK	TRIP BLANK	NYSDEC Class GA
Sampling Date	4/7/2016	4/7/2016	10/30/15	3/18/2016	3/23/2016	Standard or Guidance Value
Units	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
VOLATILE COMPOUNDS						
1,1,1-Trichloroethane	1 U	1 U	1 U	1 U	1 U	5
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	5 1
1,1,2-Trichloroethane	1 U	1 U	1 U	1 U	1 U	5
1,1-Dichloroethane	1 U	1 U	1 U	1 U	1 U	5
1,1-Dichloroethene	1 U	3.2	1 U	1 U	1 U	5
1,2,3-Trichlorobenzene	1 U	1 U	1 U	1 U	1 U	5
1,2,4-Trichlorobenzene	1 U	1 U	1 U	1 U	1 U	5
1,2-Dibromo-3-Chloropropane	1 U	1 U	1 U	1 U	1 U	0.04
1,2-Dibromoethane	1 U	1 U	1 U	1 U	1 U	0.0006
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U	3
1,2-Dichloroethane	1 U	1 U	1 U	1 U	1 U	0.6
1,2-Dichloropropane	1 U	1 U	1 U	1 U	1 U	1
1,3-Dichlorobenzene 1,4-Dichlorobenzene	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	3 3
1,4-Dictriorobenzene			100 U			
2-Hexanone	5 U	5 U	5 U	5 U	5 U	50
Acetone	4.1 J	1.9 J	5 U	5 U	5 U	50
Benzene	1 U	1 U	1 U	1 U	1 U	1
Bromochloromethane	1 U	1 U	1 U	1 U	1 U	5
Bromodichloromethane	1 U	1 U	1 U	1 U	1 U	50
Bromoform	1 U	1 U	1 U	1 U	1 U	50
Bromomethane	1 U	1 U	1 U	1 U	1 U	5
Carbon Disulfide	1.6	1 U	1 U	1 U	1 U	60
Carbon Tetrachloride	1 U	1 U	1 U	1 U	1 U	5
Chlorobenzene	1 U	1 U	1 U	1 U	1 U	5
Chloroethane Chloroform	1 U 1 U	1 U 1 U	1 U 1 U	1 U	1 U	5 7
Chloromethane	1 U	1 U	1 U	1 U 1 U	1 U 1 U	, 5
Cis-1,2-Dichloroethylene	1 U	510 D	1 U	1 U	1 U	5
Cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U	0.4
Cyclohexane	1 U	1 U	1 U	1 U	1 U	
Dibromochloromethane	1 U	1 U	1 U	1 U	1 U	50
Dichlorodifluoromethane	1 U	1 U	1 U	1 U	1 U	5
Ethylbenzene	1 U	1 U	1 U	1 U	1 U	5
Isopropylbenzene	1 U	1 U	1 U	1 U	1 U	5
m,p-Xylene	2 U	2 U	2 U	2 U	2 U	5
Methyl Ethyl Ketone Methyl Isobutyl Ketone	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	50
Methylisobutyl Retorie Methylene Chloride	1 U	1 U	1 U	1 U	1 U	5
Methyl Acetate	1 U	1 U	1 U	1 U	1 U	
Methylcyclohexane	1 U	1 U	1 U	1 U	1 U	
O-Xylene	1 U	1 U	1 U	1 U	1 U	5
Styrene	1 U	1 U	1 U	1 U	1 U	5
Tert-Butyl Methyl Ether	0.54 J	0.74 J	1 U	1 U	1 U	10
Tetrachloroethylene	0.5 J	<u>78.9</u> <u>J</u>	1 U	1 U	1 U	5
Toluene	1 U	1 U	1 U	1 U	1 U	5
Trans-1,2-Dichloroethene	1 U	2	1 U	1 U	1 U	5
Trans-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U	0.4
Trichloroethylene Trichlorofluoromethane	1 U 1 U	<u>34.8</u> 1 U	1 U 1 U	1 U 1 U	1 U 1 U	5 5
Vinyl Chloride	0.31 J	240 <u>D</u>	1 U	1 U	1 U	2
						2
Total Volatile Compounds	7.05	872	0	0	0	

Footnotes/Qualifiers:

ug/I: Micrograms per liter

--: No standard or not analyzed

U: Analyzed for but not detected

D: Detected in the secondary dilution

J: Estimated value

BD: Blind duplicate

Table E-6 Long Island Rail Road Arch Street Yard RI Groundwater Samples

TCL Volatile Organic Compounds

Sample ID	TRIP BLANK	FIELD BLANK	FIELD BLANK	FIELD BLANK	NYSDEC Class GA
Sampling Date	4/7/2016	3/18/2016	3/23/2016	4/7/2016	Standard
					or Guidance Value
Units	ug/l	ug/l	ug/l	ug/l	ug/l
VOLATILE COMPOUNDS					_
1,1,1-Trichloroethane	1 U	1 U	1 U	1 U	5
1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	1 U	5
1,1,2-Trichloroethane	1 U	1 U	1 U	1 U	1
1,1,2-Trichlorotrifluoroethane	1 U	1 U	1 U	1 U	5
1,1-Dichloroethane	1 U	1 U	1 U	1 U	5
1,1-Dichloroethene	1 U	1 U	1 U	1 U	5
1,2,3-Trichlorobenzene	1 U	1 U	1 U	1 U	5
1,2,4-Trichlorobenzene	1 U	1 U	1 U	1 U	5
1,2-Dibromo-3-Chloropropane	1 U	1 U	1 U	1 U	0.04
1,2-Dibromoethane	1 U	1 U	1 U	1 U	0.0006
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	3
1,2-Dichloroethane	1 U	1 U	1 U	1 U	0.6
1,2-Dichloropropane	1 U	1 U	1 U	1 U	1
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	3
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	3
1,4-Dioxane					
2-Hexanone	5 U	5 U	5 U	5 U	50
Acetone	5 U	5 U	5 U	5 U	50
Benzene	1 U	1 U	1 U	1 U	1
Bromochloromethane	1 U	1 U	1 U	1 U	5
Bromodichloromethane	1 U	1 U	1 U	1 U	50
Bromoform	1 U	1 U	1 U	1 U	50
Bromomethane	1 U	1 U	1 U	1 U	5
Carbon Disulfide	1 U	1 U	1 U	1 U	60
Carbon Tetrachloride	1 U	1 U	1 U	1 U	5
Chlorobenzene	1 U	1 U	1 U	1 U	5
Chloroethane	1 U	1 U	1 U	1 U	5
Chloroform	1 U	1 U	1 U	1 U	7
Chloromethane	1 U	1 U	1 U	1 U	5
Cis-1,2-Dichloroethylene	1 U	1 U	1 U	1 U	5
Cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	0.4
Cyclohexane	1 U	1 U	1 U	1 U	
Dibromochloromethane	1 U	1 U	1 U	1 U	50
Dichlorodifluoromethane	1 U	1 U	1 U	1 U	5
Ethylbenzene	1 U	1 U	1 U	1 U	5
Isopropylbenzene	1 U	1 U	1 U	1 U	5
m,p-Xylene	2 U	2 U	2 U	2 U	5
Methyl Ethyl Ketone	5 U	5 U	5 U	5 U	50
Methyl Isobutyl Ketone	5 U	5 U	5 U	5 U	
Methylene Chloride	1 U	1.8	1 U	1 U	5
Methyl Acetate	1 U	1 U	1 U	1 U	
Methylcyclohexane	1 U	1 U	1 U	1 U	
O-Xylene	1 U	1 U	1 U	1 U	5
Styrene	1 U	1 U	1 U	1 U	5
Tert-Butyl Methyl Ether	1 U	1 U	1 U	1 U	10
Tetrachloroethylene	1 U	1 U	1 U	1 U	5
Toluene	1 U	1 U	1 U	1 U	5
Trans-1,2-Dichloroethene	1 U	1 U	1 U	1 U	5
Trans-1,3-Dichloropropene	1 U	1 U	1 U	1 U	0.4
Trichloroethylene	1 U	1 U	1 U	1 U	5
Trichlorofluoromethane	1 U	1 U	1 U	1 U	5
Vinyl Chloride	1 U	1 U	1 U	1 U	2
Total Valatila Carrie sure de	_	4.0	_	_	
Total Volatile Compounds	0	1.8	0	0	

Footnotes/Qualifiers:

ug/I: Micrograms per liter

--: No standard or not analyzed

U: Analyzed for but not detected

D: Detected in the secondary dilution

J: Estimated value

BD: Blind duplicate

Table E-7 Long Island Rail Road Arch Street Yard RI **Groundwater Samples TCL Semivolatile Organic Compounds**

Sample ID Sampling Date	GW-01 4/7/2016	GW-02S 4/7/2016	GW-02D 4/7/2016	GW-03 4/7/2016	GW-04S 4/7/2016	GW-04D 4/7/2016	NYSDEC Class GA Standard
Sampling Date	4///2016	4///2010	4///2010	4///2010	4///2010	4///2016	or Guidance Value
Units	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
SEMIVOLATILE COMPOUNDS							
1,2,4,5-Tetrachlorobenzene	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	5
1,4-Dioxane	10.1 UJ	10 UJ	10.1 UJ	10.2 UJ	10.2 UJ	10.1 UJ	
2,3,4,6-Tetrachlorophenol	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	
2,4,5-Trichlorophenol	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	1
2,4,6-Trichlorophenol	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	1
2,4-Dichlorophenol	10.1 UJ 10.1 UJ	10 U 10 U	10.1 U 10.1 U	10.2 U 10.2 U	10.2 U 10.2 U	10.1 U 10.1 U	5
2,4-Dimethylphenol	10.1 UJ 10.1 UJ	10 U	10.1 U 10.1 U	10.2 U	10.2 U 10.2 U	10.1 U 10.1 U	50 10
2,4-Dinitrophenol 2,4-Dinitrotoluene	10.1 UJ	10 U	10.1 U 10.1 U	10.2 U	10.2 U	10.1 U	5
2,6-Dinitrotoluene	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	5
2-Chloronaphthalene	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	10
2-Chlorophenol	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	10
2-Methylnaphthalene	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	
2-Methyliphenol	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	1
2-Metriyipherioi 2-Nitroaniline	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	5
2-Nitrophenol	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	1
3,3-Dichlorobenzidine	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	5
3-Nitroaniline	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	5
3+4-Methylphenols	10.1 UJ	10 UJ	10.1 UJ	10.2 UJ	10.2 UJ	10.1 UJ	1
4,6-Dinitro-2-methylphenol	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	1
4-Bromophenyl-phenylether	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	·
4-Chloro-3-methylphenol	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	1
4-Chloroaniline	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	5
4-Chlorophenylphenyl ether	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	
4-Nitroaniline	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	5
4-Nitrophenol	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	1
Acenaphthene	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	20
Acenaphthylene	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	
Acetophenone	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	
Anthracene	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	50
Atrazine	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	7.5
Benzaldehyde	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	
Benzo(a)anthracene	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	0.002
Benzo(a)pyrene	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	ND
Benzo(b)fluoranthene	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	0.002
Benzo(ghi)perylene	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	
Benzo(k)fluoranthene	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	0.002
Benzyl butyl phthalate	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	50
Biphenyl Bis(2-chloroethoxy)methane	10.1 UJ 10.1 UJ	10 U 10 U	10.1 U 10.1 U	10.2 U 10.2 U	10.2 U 10.2 U	10.1 U 10.1 U	5 5
Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether	10.1 UJ 10.1 UJ	10 U	10.1 U 10.1 U	10.2 U	10.2 U 10.2 U	10.1 U 10.1 U	5 1
Bis(2-chloroisopropyl)ether	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	
Bis(2-ethylhexyl)phthalate (BEHP)	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	5
Caprolactam	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	
Carbazole	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	
Chrysene	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	0.002
Dibenzo(a,h)anthracene	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	
Dibenzofuran	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	
Diethyl phthalate	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	50
Dimethyl phthalate	15.3 J-	10 U	4.9 J	2.6 J	10.2 U	2.9 J	50
Di-n-butyl phthalate	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	50
Di-n-octyl phthalate	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	50
Fluoranthene	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	50
Fluorene	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	50
Hexachlorobenzene	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	0.04

See next page for Footnotes/Qualifers.

Table E-7 Long Island Rail Road Arch Street Yard RI Groundwater Samples

TCL Semivolatile Organic Compounds

Sample ID Sampling Date	GW-01 4/7/2016	GW-02S 4/7/2016	GW-02D 4/7/2016	GW-03 4/7/2016	GW-04S 4/7/2016	GW-04D 4/7/2016	NYSDEC Class GA Standard or Guidance Value
Units	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
COMPOUNDS CONTINUED							
Hexachlorobutadiene	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	0.5
Hexachlorocyclopentadiene	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	5
Hexachloroethane	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	5
Indeno(1,2,3-cd)pyrene	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	0.002
Isophorone	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	50
Naphthalene	10.1 UJ	10 U	10.1 U	4.5 J	10.2 U	10.1 U	10
Nitrobenzene	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	0.4
N-Nitroso-di-n-propylamine	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	
N-Nitrosodiphenylamine	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	50
Pentachlorophenol	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	1
Phenanthrene	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	50
Phenol	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	1
Pyrene	10.1 UJ	10 U	10.1 U	10.2 U	10.2 U	10.1 U	50
Total Semivolatile Compounds	15.3	0	4.9	7.1	0	2.9	

Footnotes/Qualifiers:

ug/l: Micrograms per liter

--: No standard

U: Analyzed for but not detected

J: Estimated value

J-: Estimated bias low

BD: Blind duplicate

Table E-7 Long Island Rail Road Arch Street Yard RI Groundwater Samples

TCL Semivolatile Organic Compounds

Sampling Date 4/7/2016 4/7/2016 4/7/2016 4/7/2016 3/18/2016 3/23/2016 Units ug/l ug/l	4/7/2016 ug/l	Standard or Guidance Value
10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U 10.	ug/l	or Guidance Value
10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	ug/i	
1,2,4,5-Tetrachlorobenzene 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U 1,4-Dioxane 10.1 UJ 10.3 UJ 10.1 UJ 10.2 UJ 10 UJ 10.2 UJ 2,3,4,6-Tetrachlorophenol 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U 2,4,5-Trichlorophenol 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U 2,4,6-Trichlorophenol 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U 2,4-Dichlorophenol 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U 2,4-Dimethylphenol 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U 2,4-Dinitrophenol 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U		ug/l
1,4-Dioxane 10.1 UJ 10.3 UJ 10.1 UJ 10.2 UJ 10 UJ 10.2 UJ 2,3,4,6-Tetrachlorophenol 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U 2,4,5-Trichlorophenol 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U 2,4,6-Trichlorophenol 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U 2,4-Dichlorophenol 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U 2,4-Dimethylphenol 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U 2,4-Dinitrophenol 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 U	5
2,3,4,6-Tetrachlorophenol 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U 2,4,5-Trichlorophenol 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U 2,4,6-Trichlorophenol 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U 2,4-Dichlorophenol 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U 2,4-Dimethylphenol 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U 2,4-Dinitrophenol 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 UJ	
2,4,6-Trichlorophenol 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U 2,4-Dichlorophenol 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U 2,4-Dimethylphenol 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U 2,4-Dinitrophenol 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 U	
2,4-Dichlorophenol 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U 2,4-Dimethylphenol 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U 2,4-Dinitrophenol 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 U	1
2,4-Dimethylphenol 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U 2,4-Dinitrophenol 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 U	1
2,4-Dinitrophenol 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 U	5
	10 U	50
	10 U	10
2,4-Dinitrotoluene 10.1 U 10.3 U 10.1 U 10.2 U 10.2 U 10.2 U	10 U	5
2,6-Dinitrotoluene 10.1 U 10.3 U 10.1 U 10.2 U 10.0 U 10.2 U	10 U	5
2-Chloronaphthalene 10.1 U 10.3 U 10.1 U 10.2 U 10.2 U 10.2 U	10 U	10
2-Chlorophenol 10.1 U 10.3 U 10.1 U 10.2 U 10.2 U 10.2 U	10 U	1
2-Methylnaphthalene 10.1 U 10.3 U 10.1 U 10.2 U 10.2 U 10.2 U 2-Methylphenol 10.1 U 10.3 U 10.1 U 10.2 U 10.2 U 10.2 U	10 U	 1
2-Methylphenol 10.1 U 10.3 U 10.1 U 10.2 U 10.U 10.2 U 2-Nitroaniline 10.1 U 10.3 U 10.1 U 10.2 U 10.2 U 10.2 U	10 U 10 U	1 5
2-Nitrophenol 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U 2-Nitrophenol 10.1 U 10.3 U 10.1 U 10.2 U 10.2 U	10 U	5 1
3,3-Dichlorobenzidine 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 U	5
3-Nitroaniline 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U 10.0 U	10 U	5
3+4-Methylphenols 10.1 UJ 10.3 UJ 10.1 UJ 10.2 UJ 10 UJ 10.2 UJ	10 UJ	1
4,6-Dinitro-2-methylphenol 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 U	1
4-Bromophenyl-phenylether 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 U	
4-Chloro-3-methylphenol 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 U	1
4-Chloroaniline 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 U	5
4-Chlorophenylphenyl ether 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 U	
4-Nitroaniline 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 U	5
4-Nitrophenol 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U 10.2 U	10 U	1
Acenaphthene 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 U	20
Acenaphthylene 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 U	
Acetophenone 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 U	
Anthracene 10.1 U 10.3 U 10.1 U 10.2 U 10.2 U 10.2 U	10 U	50
Atrazine 10.1 U 10.3 U 10.1 U 10.2 U	10 U	7.5
Benzaldehyde 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U Benzo(a)anthracene 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 U 10 U	0.002
Benzo(a)pyrene 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U 10.2 U	10 U	0.002 ND
Benzo(b)fluoranthene 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 U	0.002
Benzo(ghi)perylene 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 U	
Benzo(k)fluoranthene 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 U	0.002
Benzyl butyl phthalate 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 U	50
Biphenyl 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 U	5
Bis(2-chloroethoxy)methane 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 U	5
Bis(2-chloroethyl)ether 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 U	1
Bis(2-chloroisopropyl)ether 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 U	
Bis(2-ethylhexyl)phthalate (BEHP) 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 U	5
Caprolactam 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 U	
Carbazole 10.1 U 10.3 U 10.1 U 10.2 U 10.2 U 10.2 U	10 U	
Chrysene 10.1 U 10.3 U 10.1 U 10.2 U 10.2 U 10.2 U 10.2 U 10.2 U 10.3 U	10 U	0.002
Dibenzo(a,h)anthracene 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U Dibenzofuran 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 U 10 U	
Diethyl phthalate 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 U	50
Dimethyl phthalate 10.1 U 10.3 U 10.7 U 10.2 U 10 U 10.2 U	10 U	50 50
Di-n-butyl phthalate 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 U	50 50
Di-n-octyl phthalate 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 U	50
Fluoranthene 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 U	50
Fluorene 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 U	50
Hexachlorobenzene 10.1 U 10.3 U 10.1 U 10.2 U 10 U 10.2 U	10 U	0.04

See next page for Footnotes/Qualifers.

Table E-7 Long Island Rail Road Arch Street Yard RI Groundwater Samples

TCL Semivolatile Organic Compounds

Sample ID Sampling Date	MW-1 4/7/2016	MW-1 BD 4/7/2016	MW-2 4/7/2016	MW-3 4/7/2016	FIELD BLANK 3/18/2016	FIELD BLANK 3/23/2016	FIELD BLANK 4/7/2016	NYSDEC Class GA Standard
Units	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	or Guidance Value ug/l
COMPOUNDS CONTINUED								
Hexachlorobutadiene	10.1 U	10.3 U	10.1 U	10.2 U	10 U	10.2 U	10 U	0.5
Hexachlorocyclopentadiene	10.1 U	10.3 U	10.1 U	10.2 U	10 U	10.2 U	10 U	5
Hexachloroethane	10.1 U	10.3 U	10.1 U	10.2 U	10 U	10.2 U	10 U	5
Indeno(1,2,3-cd)pyrene	10.1 U	10.3 U	10.1 U	10.2 U	10 U	10.2 U	10 U	0.002
Isophorone	10.1 U	10.3 U	10.1 U	10.2 U	10 U	10.2 U	10 U	50
Naphthalene	10.1 U	10.3 U	10.1 U	10.2 U	10 U	10.2 U	10 U	10
Nitrobenzene	10.1 U	10.3 U	10.1 U	10.2 U	10 U	10.2 U	10 U	0.4
N-Nitroso-di-n-propylamine	10.1 U	10.3 U	10.1 U	10.2 U	10 U	10.2 U	10 U	
N-Nitrosodiphenylamine	10.1 U	10.3 U	10.1 U	10.2 U	10 U	10.2 U	10 U	50
Pentachlorophenol	10.1 U	10.3 U	10.1 U	10.2 U	10 U	10.2 U	10 U	1
Phenanthrene	10.1 U	10.3 U	10.1 U	10.2 U	10 U	10.2 U	10 U	50
Phenol	10.1 U	10.3 U	10.1 U	10.2 U	10 U	10.2 U	10 U	1
Pyrene	10.1 U	10.3 U	10.1 U	10.2 U	10 U	10.2 U	10 U	50
Total Semivolatile Compounds	0	0	3.5	0	0	0	0	

Footnotes/Qualifiers:

ug/l: Micrograms per liter

--: No standard

U: Analyzed for but not detected

J: Estimated value

J-: Estimated bias low

BD: Blind duplicate

Table E-8 Long Island Rail Road Arch Street Yard RI Groundwater Samples

TCL Pesticides and Polychlorinated Biphenyls (PCBs)

Sample ID	GW-02D	MW-3	FIELD BLANK	FIELD BLANK	FIELD BLANK	NYSDEC Class GA
Sampling Date Dilution Factor	4/7/2016	4/7/2016	3/18/2016	3/21/2016	3/23/2016	Standard or Guidance Value
Units	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
PESTICIDES	g		g	g ,.	g.,	g/.
Aldrin	0.05 U	0.05 U	0.05 U		0.05 U	ND
alpha BHC	0.05 U	0.05 U	0.05 U		0.05 U	0.01
alpha Endosulfan	0.05 U	0.05 U	0.05 U		0.05 U	
alpha-Chlordane	0.05 U	0.05 U	0.05 U		0.05 U	0.05
beta-BHC	0.05 U	0.05 U	0.05 U		0.05 U	0.04
beta-Endosulfan	0.05 U	0.05 U	0.05 U		0.05 U	
beta-Chlordane	0.05 U	0.05 U	0.05 U		0.05 U	0.05
delta-BHC	0.05 U	0.05 U	0.05 U		0.05 U	0.04
Dieldrin	0.05 U	0.05 U	0.05 U		0.05 U	0.004
Endosulfan sulfate	0.05 U	0.05 U	0.05 U		0.05 U	
Endrin	0.05 U	0.05 U	0.05 U		0.05 U	ND
Endrin aldehyde	0.05 U	0.05 U	0.05 U		0.05 U	5
Endrin ketone	0.05 U	0.05 U	0.05 U		0.05 U	5
gamma-BHC (Lindane)	0.05 U	0.05 U	0.05 U		0.05 U	0.05
Heptachlor	0.05 U	0.05 U	0.05 U		0.05 U	0.04
Heptachlor epoxide	0.05 U	0.05 U	0.05 U		0.05 U	0.03
Methoxychlor	0.05 U	0.05 U	0.05 U		0.05 U	35
P,P'-DDD	0.05 U	0.05 U	0.05 U		0.05 U	0.3
P,P'-DDE	0.05 U	0.05 U	0.05 U		0.05 U	0.2
P,P'-DDT	0.05 U	0.05 U	0.05 U		0.05 U	0.2
Toxaphene	0.51 U	0.5 U	0.51 U		0.52 U	0.06
PCBS						
Aroclor-1016	0.52 U	0.52 U	0.51 U	0.52 U	0.51 U	0.09
Aroclor-1221	0.52 U	0.52 U	0.51 U	0.52 U	0.51 U	0.09
Aroclor-1232	0.52 U	0.52 U	0.51 U	0.52 U	0.51 U	0.09
Aroclor-1242	0.52 U	0.52 U	0.51 U	0.52 U	0.51 U	0.09
Aroclor-1248	0.52 U	0.52 U	0.51 U	0.52 U	0.51 U	0.09
Aroclor-1254	0.52 U	0.52 U	0.51 U	0.52 U	0.51 U	0.09
Aroclor-1260	0.52 U	0.52 U	0.51 U	0.52 U	0.51 U	0.09
Aroclor-1262			0.51 U	0.52 U	0.51 U	0.09
Aroclor-1268			0.51 U	0.52 U	0.51 U	0.09
Total PCBs	0 Factnotes/Qualifi	0	0	0	0	0.09

Footnotes/Qualifiers:

ug/I: Micrograms per liter

--: No standard or not analyzed

U: Analyzed for but not detected

ND: Compound exceeds if detected

Table E-9 Long Island Rail Road Arch Street Yard RI Groundwater Samples TAL Metals

					1111/05/20 01
Sample ID		MW-3	FIELD BLANK	FIELD BLANK	NYSDEC Class GA
Sampling Date	4/7/2016	4/7/2016	3/18/2016	3/23/2016	Standard
					or Guidance Value
Units	ug/l	ug/l	ug/l	ug/l	ug/l
METALS					
Aluminum	211	72.7	8.32 J	15.2 J	
Antimony	25 U	25 U	25 U	25 U	3
Arsenic	6.13 J	4.63 J	10 U	10 U	25
Barium	158	101	50 U	50 U	1000
Beryllium	3 U	3 U	3 U	3 U	3
Cadmium	3 U	3 U	3 U	3 U	5
Calcium	36100	92500	1000 U	133 J	
Chromium	2.3 J	4.04 J	5 U	5 U	50
Cobalt	15 U	15 U	15 U	15 U	
Copper	10 U	10 U	10 U	10 U	200
Iron	<u>11100</u>	<u>4860</u>	50 U	50 U	300
Lead	4.97 J	6 U	6 U	6 U	25
Magnesium	2770	5850	1000 U	1000 U	35000
Manganese	<u>357</u>	148	10 U	10 U	300
Mercury	0.2 U	0.2 U	0.2 U	0.2 U	0.7
Nickel	20 U	20 U	20 U	20 U	100
Potassium	9850	4840	1000 U	1000 U	
Selenium	10 U	10 U	10 U	10 U	10
Silver	5 U	5 U	5 U	5 U	50
Sodium	<u>1770000</u> <u>D</u>	<u>201000</u>	1000 U	92.8 J	20000
Thallium	20 U	20 U	20 U	20 U	0.5
Vanadium	20 U	20 U	20 U	20 U	
Zinc	6.81 J	20 U	20 U	12.7 J	2000

Footnotes/Qualifiers:

ug/l: Micrograms per liter

--: Not analyzed or no standard

U: Analyzed for but not detected

J: Estimated value or limit

Table E-10 Long Island Rail Road Arch Street Yard RI Summary of Ambient Air Analytical Results Volatile Organic Compounds

Sampling Date Location Units Sampling Date Location Units Sampling Date Units Sa	Sample ID	AA-01	IA-01	
Location Units	· · · · · · · · · · · · · · · · · · ·			NYSDOH Air
Units Unit				
1,1,2,2-Tetrachloroethane 3.43 U 3.43 U	Units	ug/m3	ug/m3	Value ug/m3
1,1,2,2-Tetrachloroethane	1.1.1-Trichloroethane (TCA)	0.16 U	0.16 U	
1,1,2-Trichloroethane 2.73 U 2.73 U -1.1,2-Trichlorotrifluoroethane 1,1,2-Trichlorotrifluoroethane 3.83 U 3.83 U		3.43 U	3.43 U	
1,1,2-Trichlorotrifluoroethane 3.83 U 3.83 U				
1,1-Dichloroethane 2.02 U 2.02 U	* *			
1,1-Dichloroethene 1.98 U 1.98 U 1,2,4-Trichlorobenzene 3.71 U 3.71 U 1,2-Dibromoethane 3.84 U 3.84 U 1,2-Dichlorobenzene 3.01 U 3.01 U 1,2-Dichloropropane 2.31 U 2.31 U 1,3-Frimethylbenzene 2.46 U 0.49 J 1,3-Butadiene 1.11 U 1.11 U 1,3-Dichlorobenzene 3.01 U 3.01 U 3.01 U 1,4-Dioxane 1.8 U 1.8 U 2,2,4-Trimethylpentane 2.7 J 1.03 J 2-Butanone 1.12 J 1.68 2-Chlorotoluene 2.59 U 2.59 U 4-Ethyltoluene 2.46 U 0.59 J 4-Methyl-2-Pentanone 2.05 U 2.05 U Acetone 7.6 22.8 Allyl Chloride 1.57 U 1.57 U Bromodichloromethane 3.35 U 3.35 U Bromodorm 5.17 U 5.17 U <				
1,2,4-Trichlorobenzene 3.71 U 3.71 U				
1,2,4-Trimethylbenzene 0.98 J 1.57 J 1,2-Dibromoethane 3.84 U 3.84 U 1,2-Dichlorobenzene 3.01 U 3.01 U 1,2-Dichloropropane 2.31 U 2.31 U 1,3-Dichloropropane 2.31 U 2.31 U 1,3-Butadiene 1.11 U 1.11 U 1,3-Dichlorobenzene 3.01 U 3.01 U 1,4-Dichlorobenzene 3.01 U 3.01 U 1,4-Dioxane 1.8 U 1.8 U 2,2,4-Trimethylpentane 0.7 J 1.03 J 2-Butanone 1.12 J 1.68 2-Chlorotoluene 2.59 U 2.59 U 4-Ethyltoluene 2.46 U 0.59 J 4-Methyl-2-Pentanone 2.05 U 2.05 U Acetone 7.6 22.8 Allyl Chloride 1.57 U 1.57 U Bromodichloromethane 3.35 U 3.35 U Bromoform 5.17 U 5.17 U				
1,2-Dibromoethane 3.84 U 3.84 U 1,2-Dichlorobenzene 3.01 U 3.01 U 1,2-Dichloropropane 2.31 U 1,3-Dichloropropane 2.31 U 1,3-Timethylbenzene 2.46 U 0.49 J 1,3-Dichlorobenzene 3.01 U 3.01 U 3.01 U 1,4-Dichlorobenzene 3.01 U 3.01 U 1,4-Pichlorobenzene 1.12 J 1.88 U 2,2,4-Trimethylpentane 0.7 J 1.03 J 2-Butanone 1.12 J 1.68 2-Chlorotoluene 2.59 U 2.59 U 4-Ethyltoluene 2.46 U 0.59 J 4-Methyl-2-Pentanone 2.05 U 2.05 U Acetone 7.6 22.8 Allyl Chloride 1.57 U 1.57 U Bromodichloromethane 3.35 U 3.35 U Bromoethene 2.19 U 2.19 U Bromoform 5.17 U 5.17 U				
1,2-Dichlorobenzene 3.01 U 3.01 U	•			
1,2-Dichloroethane 2.02 U 2.02 U				
1,2-Dichloropropane 2.31 U 2.31 U				
1,3,5-Trimethylbenzene 2.46 U 0.49 J				
1,3-Butadiene 1.11 U 1.11 U 3.01 U				
1,3-Dichlorobenzene 3.01 U 3.01 U				
1,4-Dichlorobenzene 3.01 U 3.01 U		_		
1,4-Dioxane 1.8 U 1.8 U	,,			
2,2,4-Trimethylpentane 0.7 J 1.03 J 2-Butanone 1.12 J 1.68 2-Chlorotoluene 2.59 U 2.59 U 4-Ethyltoluene 2.46 U 0.59 J 4-Methyl-2-Pentanone 2.05 U 2.05 U Acetone 7.6 22.8 Allyl Chloride 1.57 U 1.57 U Benzene 0.45 J 0.64 J Bromodichloromethane 3.35 U 3.35 U Bromoform 5.17 U 5.17 U Bromoform 5.17 U 5.17 U Bromoform 5.17 U 5.17 U Bromoform 1.94 U 1.94 U Carbon Disulfide 1.56 U 1.56 U Carbon Tetrachloride 0.44 0.38 Chlorobenzene 2.3 U 2.3 U Chloroform 2.44 U 2.44 U Chloroethane 1.98 U 1.98 U Cis-1,3-Dichloroethylene 1.98 U<				
2-Butanone 2-Chlorotoluene 2-59 U 2-59 U 2-59 U 2-59 U 3-59 U 3-64 U 3-59 U 3-74 U 4-Methyl-2-Pentanone 2-05 U 3-76	,			
2-Chlorotoluene 2.59 U 2.59 U		• • • • • • • • • • • • • • • • • • • •		
4-Ethyltoluene 2.46 U 0.59 J 4-Methyl-2-Pentanone 7.6 22.8 Acetone 7.6 22.8 Allyl Chloride 1.57 U 1.57 U Benzene 0.45 J 0.64 J Bromodichloromethane 3.35 U 3.35 U Bromoethene 2.19 U 2.19 U Bromoform 5.17 U 5.17 U Bromomethane 1.94 U 1.94 U Carbon Disulfide 1.56 U 1.56 U Carbon Tetrachloride 0.44 0.38 Chlorobenzene 2.3 U 2.3 U Chloroethane 1.32 U 1.32 U Chloroform 2.44 U 2.44 U Chloromethane 0.93 J 1.01 J cis-1,2-Dichloroethylene 1.98 U 1.98 U cis-1,3-Dichloropropene 2.27 U 2.27 U Cyclohexane 1.72 U 0.48 J Dichlorotetrafluoroethane <th></th> <th>_</th> <th></th> <th></th>		_		
4-Methyl-2-Pentanone 2.05 U 2.05 U Acetone 7.6 22.8 Allyl Chloride 1.57 U 1.57 U Benzene 0.45 J 0.64 J Bromodichloromethane 3.35 U 3.35 U Bromoethene 2.19 U 2.19 U Bromoform 5.17 U 5.17 U Bromomethane 1.94 U 1.94 U Carbon Disulfide 1.56 U 1.56 U Carbon Tetrachloride 0.44 0.38 Chlorobenzene 2.3 U 2.3 U Chlorotethane 1.32 U 1.32 U Chloroform 2.44 U 2.44 U Chloromethane 0.93 J 1.01 J cis-1,2-Dichloroethylene 1.98 U 1.98 U cis-1,3-Dichloropropene 2.27 U 2.27 U Cyclohexane 1.72 U 0.48 J Dichlorodifluoromethane 0.79 J 0.79 J Dichlorotetraf				
Acetone 7.6 22.8 Allyl Chloride 1.57 U 1.57 U Benzene 0.45 J 0.64 J Bromodichloromethane 3.35 U 3.35 U Bromoethene 2.19 U 2.19 U Bromoform 5.17 U 5.17 U Bromomethane 1.94 U 1.94 U Carbon Disulfide 1.56 U 1.56 U Carbon Tetrachloride 0.44 0.38 Chlorobenzene 2.3 U 2.3 U Chloroethane 1.32 U 1.32 U Chloroform 2.44 U 2.44 U Chloromethane 0.93 J 1.01 J cis-1,2-Dichloroethylene 1.98 U 1.98 U cis-1,3-Dichloropropene 2.27 U 2.27 U Cyclohexane 1.72 U 0.48 J Dibromochloromethane 0.79 J 0.79 J Dichlorotetrafluoroethane 3.49 UJ 3.49 UJ Ethylbenzen				
Allyl Chloride 1.57 U 1.57 U Benzene 0.45 J 0.64 J Bromodichloromethane 3.35 U 3.35 U Bromoethene 2.19 U 2.19 U Bromoform 5.17 U 5.17 U Bromomethane 1.94 U 1.94 U Carbon Disulfide 1.56 U 1.56 U Carbon Tetrachloride 0.44 0.38 Chlorobenzene 2.3 U 2.3 U Chloroethane 1.32 U 1.32 U Chloroethane 1.32 U 1.32 U Chloromethane 0.93 J 1.01 J cis-1,2-Dichloroethylene 1.98 U 1.98 U cis-1,3-Dichloropropene 2.27 U 2.27 U Cyclohexane 1.72 U 0.48 J Dichlorodifluoromethane 0.79 J 0.79 J Dichlorotetrafluoroethane 3.49 UJ 3.49 UJ Ethylbenzene 1.04 J 1.95 J				
Benzene 0.45 J 0.64 J Bromodichloromethane 3.35 U 3.35 U Bromoethene 2.19 U 2.19 U Bromoform 5.17 U 5.17 U Bromomethane 1.94 U 1.94 U Carbon Disulfide 1.56 U 1.56 U Carbon Tetrachloride 0.44 0.38 Chlorobenzene 2.3 U 2.3 U Chlorobenzene 2.3 U 2.3 U Chloroform 2.44 U 2.44 U Chloroform 2.44 U 2.44 U Chloromethane 0.93 J 1.01 J cis-1,2-Dichloroethylene 1.98 U 1.98 U Cyclohexane 1.72 U 0.48 J Dibromochloromethane 4.26 U 4.26 U Dichlorotetrafluoroethane 3.49 UJ 3.49 UJ Ethylbenzene 1.04 J 1.95 J		_	_	
Bromodichloromethane 3.35 U 3.35 U				
Bromoethene 2.19 U 2.19 U Bromoform 5.17 U 5.17 U Bromomethane 1.94 U 1.94 U Carbon Disulfide 1.56 U 1.56 U Carbon Tetrachloride 0.44 0.38 Chlorobenzene 2.3 U 2.3 U Chloroethane 1.32 U 1.32 U Chloroform 2.44 U 2.44 U Chloromethane 0.93 J 1.01 J cis-1,2-Dichloroethylene 1.98 U 1.98 U cis-1,3-Dichloropropene 2.27 U 2.27 U Cyclohexane 1.72 U 0.48 J Dibromochloromethane 4.26 U 4.26 U Dichlorotetrafluoroethane 3.49 UJ 3.49 UJ Ethylbenzene 1.04 J 1.95 J Hexane 1.76 U 1.73 J Hexane 1.76 U 1.73 J <td< th=""><th></th><th></th><th></th><th></th></td<>				
S.17 U S.18 U S				
1.94 U				
Carbon Disulfide 1.56 U 1.56 U Carbon Tetrachloride 0.44 0.38 Chlorobenzene 2.3 U 2.3 U Chloroethane 1.32 U 1.32 U Chloroform 2.44 U 2.44 U Chloromethane 0.93 J 1.01 J cis-1,2-Dichloroethylene 1.98 U 1.98 U cis-1,3-Dichloropropene 2.27 U 2.27 U Cyclohexane 1.72 U 0.48 J Dibromochloromethane 4.26 U 4.26 U Dichlorodifluoromethane 0.79 J 0.79 J Dichlorotetrafluoroethane 3.49 UJ 3.49 UJ Ethylbenzene 1.04 J 1.95 J Heptane 0.49 J 0.98 J Hexane 1.76 U 1.73 J m,p-Xylenes 3.47 J 5.65 Methyl Methacrylate 2.05 U 2.05 U				
Carbon Tetrachloride 0.44 0.38 Chlorobenzene 2.3 U 2.3 U Chloroethane 1.32 U 1.32 U Chloroform 2.44 U 2.44 U Chloromethane 0.93 J 1.01 J cis-1,2-Dichloroethylene 1.98 U 1.98 U cis-1,3-Dichloropropene 2.27 U 2.27 U Cyclohexane 1.72 U 0.48 J Dibromochloromethane 4.26 U 4.26 U Dichlorodifluoromethane 0.79 J 0.79 J Dichlorotetrafluoroethane 3.49 UJ 3.49 UJ Ethylbenzene 1.04 J 1.95 J Heptane 0.49 J 0.98 J Hexachloro-1,3-Butadiene 5.33 U 5.33 U Hexane 1.76 U 1.73 J m,p-Xylenes 3.47 J 5.65 Methyl Methacrylate 2.05 U 2.05 U				
Chlorobenzene 2.3 U 2.3 U Chloroethane 1.32 U 1.32 U Chloroform 2.44 U 2.44 U Chloromethane 0.93 J 1.01 J cis-1,2-Dichloroethylene 1.98 U 1.98 U cis-1,3-Dichloropropene 2.27 U 2.27 U Cyclohexane 1.72 U 0.48 J Dibromochloromethane 4.26 U 4.26 U Dichlorodifluoromethane 0.79 J 0.79 J Dichlorotetrafluoroethane 3.49 UJ 3.49 UJ Ethylbenzene 1.04 J 1.95 J Heptane 0.49 J 0.98 J Hexachloro-1,3-Butadiene 5.33 U 5.33 U Hexane 1.76 U 1.73 J m,p-Xylenes 3.47 J 5.65 Methyl Methacrylate 2.05 U 2.05 U				
Chloroethane 1.32 U 1.32 U Chloroform 2.44 U 2.44 U Chloromethane 0.93 J 1.01 J cis-1,2-Dichloroethylene 1.98 U 1.98 U cis-1,3-Dichloropropene 2.27 U 2.27 U Cyclohexane 1.72 U 0.48 J Dibromochloromethane 4.26 U 4.26 U Dichlorodifluoromethane 0.79 J 0.79 J Dichlorotetrafluoroethane 3.49 UJ 3.49 UJ Ethylbenzene 1.04 J 1.95 J Heptane 0.49 J 0.98 J Hexachloro-1,3-Butadiene 5.33 U 5.33 U Hexane 1.76 U 1.73 J m,p-Xylenes 3.47 J 5.65 Methyl Methacrylate 2.05 U 2.05 U				
Chloroform 2.44 U 2.44 U Chloromethane 0.93 J 1.01 J cis-1,2-Dichloroethylene 1.98 U 1.98 U cis-1,3-Dichloropropene 2.27 U 2.27 U Cyclohexane 1.72 U 0.48 J Dibromochloromethane 4.26 U 4.26 U Dichlorodifluoromethane 0.79 J 0.79 J Dichlorotetrafluoroethane 3.49 UJ 3.49 UJ Ethylbenzene 1.04 J 1.95 J Heptane 0.49 J 0.98 J Hexachloro-1,3-Butadiene 5.33 U 5.33 U Hexane 1.76 U 1.73 J m,p-Xylenes 3.47 J 5.65 Methyl Methacrylate 2.05 U 2.05 U				
Chloromethane 0.93 J 1.01 J cis-1,2-Dichloroethylene 1.98 U 1.98 U cis-1,3-Dichloropropene 2.27 U 2.27 U Cyclohexane 1.72 U 0.48 J Dibromochloromethane 4.26 U 4.26 U Dichlorodifluoromethane 0.79 J 0.79 J Dichlorotetrafluoroethane 3.49 UJ 3.49 UJ Ethylbenzene 1.04 J 1.95 J Heptane 0.49 J 0.98 J Hexachloro-1,3-Butadiene 5.33 U 5.33 U Hexane 1.76 U 1.73 J m,p-Xylenes 3.47 J 5.65 Methyl Methacrylate 2.05 U 2.05 U				
cis-1,2-Dichloroethylene 1.98 U 1.98 U cis-1,3-Dichloropropene 2.27 U 2.27 U Cyclohexane 1.72 U 0.48 J Dibromochloromethane 4.26 U 4.26 U Dichlorodifluoromethane 0.79 J 0.79 J Dichlorotetrafluoroethane 3.49 UJ 3.49 UJ Ethylbenzene 1.04 J 1.95 J Heptane 0.49 J 0.98 J Hexachloro-1,3-Butadiene 5.33 U 5.33 U Hexane 1.76 U 1.73 J m,p-Xylenes 3.47 J 5.65 Methyl Methacrylate 2.05 U 2.05 U		_		
cis-1,3-Dichloropropene 2.27 U 2.27 U Cyclohexane 1.72 U 0.48 J Dibromochloromethane 4.26 U 4.26 U Dichlorodifluoromethane 0.79 J 0.79 J Dichlorotetrafluoroethane 3.49 UJ 3.49 UJ Ethylbenzene 1.04 J 1.95 J Heptane 0.49 J 0.98 J Hexachloro-1,3-Butadiene 5.33 U 5.33 U Hexane 1.76 U 1.73 J m,p-Xylenes 3.47 J 5.65 Methyl Methacrylate 2.05 U 2.05 U				
Cyclohexane 1.72 U 0.48 J Dibromochloromethane 4.26 U 4.26 U Dichlorodifluoromethane 0.79 J 0.79 J Dichlorotetrafluoroethane 3.49 UJ 3.49 UJ Ethylbenzene 1.04 J 1.95 J Heptane 0.49 J 0.98 J Hexachloro-1,3-Butadiene 5.33 U 5.33 U Hexane 1.76 U 1.73 J m,p-Xylenes 3.47 J 5.65 Methyl Methacrylate 2.05 U 2.05 U				
Dibromochloromethane 4.26 U 4.26 U Dichlorodifluoromethane 0.79 J 0.79 J Dichlorotetrafluoroethane 3.49 UJ 3.49 UJ Ethylbenzene 1.04 J 1.95 J Heptane 0.49 J 0.98 J Hexachloro-1,3-Butadiene 5.33 U 5.33 U Hexane 1.76 U 1.73 J m,p-Xylenes 3.47 J 5.65 Methyl Methacrylate 2.05 U 2.05 U		_		
Dichlorodifluoromethane 0.79 J 0.79 J Dichlorotetrafluoroethane 3.49 UJ 3.49 UJ Ethylbenzene 1.04 J 1.95 J Heptane 0.49 J 0.98 J Hexachloro-1,3-Butadiene 5.33 U 5.33 U Hexane 1.76 U 1.73 J m,p-Xylenes 3.47 J 5.65 Methyl Methacrylate 2.05 U 2.05 U				
Dichlorotetrafluoroethane 3.49 UJ Ethylbenzene 1.04 J 1.95 J Heptane 0.49 J 0.98 J Hexachloro-1,3-Butadiene 5.33 U 5.33 U Hexane 1.76 U 1.73 J m,p-Xylenes 3.47 J 5.65 Methyl Methacrylate 2.05 U 2.05 U				
Ethylbenzene 1.04 J 1.95 J Heptane 0.49 J 0.98 J Hexachloro-1,3-Butadiene 5.33 U 5.33 U Hexane 1.76 U 1.73 J m,p-Xylenes 3.47 J 5.65 Methyl Methacrylate 2.05 U 2.05 U				
Heptane 0.49 J 0.98 J Hexachloro-1,3-Butadiene 5.33 U 5.33 U Hexane 1.76 U 1.73 J m,p-Xylenes 3.47 J 5.65 Methyl Methacrylate 2.05 U 2.05 U				
Hexachloro-1,3-Butadiene 5.33 U Hexane 1.76 U 1.73 J m,p-Xylenes 3.47 J 5.65 Methyl Methacrylate 2.05 U 2.05 U				
Hexane 1.76 U 1.73 J m,p-Xylenes 3.47 J 5.65 Methyl Methacrylate 2.05 U 2.05 U	•			
m,p-Xylenes 3.47 J 5.65 Methyl Methacrylate 2.05 U 2.05 U	•			
Methyl Methacrylate 2.05 U 2.05 U				
	1.5			
Methyl tert-Butyl Ether (MTBE) 1.8 U 1.8 U				

See next page for qualfiers and notes.

Table E-10 Long Island Rail Road Arch Street Yard RI Summary of Ambient Air Analytical Results Volatile Organic Compounds

Sample ID Sampling Date Location Units	outdoor	IA-01 08/17/16 indoor office area ug/m3	NYSDOH Air Guideline Value ug/m3
Methylene Chloride	1.11 UB	1.42 UB	60
Naphthalene	2.62 UJ	2.62 UJ	
o-Xylene	1.17 J	1.87 J	
Styrene	2.13 U	0.81 J	
t-1,3-Dichloropropene	2.27 U	2.27 U	
tert-Butyl alcohol	1.52 U	1.52 U	
Tetrachloroethylene (PCE)	2.17	0.61	30
Tetrahydrofuran	1.47 U	1.47 U	
Toluene	6.03	12.1	
trans-1,2-Dichloroethene	1.98 U	1.98 U	
Trichloroethylene (TCE)	0.16 U	0.16 U	2
Trichlorofluoromethane	1.18 J	1.35 J	
Vinyl Chloride	0.08 U	0.08 U	

Qualifiers:

U: Analyzed but not detected Notes:

J: Estimated value ug/m3: Micrograms per cubic meter

UB: Qualified as non detect based on method blanks --: No guideline value

Table E-11 Long Island Rail Road Arch Street Yard RI Summary of Soil Vapor Analytical Results Volatile Organic Compounds

Commis ID	SV-01	SV-02	SV-03	SV-04	SV-05	SV-06	
Sample ID Sampling Date	08/17/16	08/17/16	08/17/16	08/17/16	08/17/16	08/17/16	
Sampling Date Sample depth top	2.2'	3.9'	4.3'	3.9'	4'	06/17/16	
	2.7'	3.9 4.4'	4.3 4.8'	3.9 4.4'	4.5'		NYSDOH
Sample depth bottom							Air Guideline
Location Units	outside ug/m3	outside ug/m3	outside ug/m3	outside ug/m3	outside ug/m3	sub-slab ug/m3	Value ug/m3
Units	ug/mo	ug/III3	ug/iiio	ug/III3	ug/iiio	ug/III3	ug/iiis
1,1,1-Trichloroethane (TCA)	1.42	7.64	0.16	1.04	7.09	0.16 U	
1,1,2,2-Tetrachloroethane	3.43 U						
1,1,2-Trichloroethane	2.73 U						
1,1,2-Trichlorotrifluoroethane	3.83 U	0.92 J	2.15 J	3.83 U	0.92 J	0.69 J	
1,1-Dichloroethane	2.02 U	2.02 U	2.02 U	0.89 J	3.36	0.97 J	
1,1-Dichloroethene	65 JD	49.6	1.98 U	1.43 J	2.02	1.98 U	
1,2,4-Trichlorobenzene	3.71 U						
1,2,4-Trimethylbenzene	25.6	35.4	1.52 J	29.5	34.4	20.2	
1,2-Dibromoethane	3.84 U						
1,2-Dichloropenzene	3.01 U						
1,2-Dichloroethane	2.02 U	2.02 U	2.79 2.31 U	23.9	2.02 U	2.02 U	
1,2-Dichloropropane 1,3,5-Trimethylbenzene	2.31 U 8.36	2.31 U 13.3	2.31 U 0.74 J	2.31 U 10.8	2.31 U 14.3	2.31 U 7.37	
1,3,5-1 rimethylbenzene 1.3-Butadiene	8.36 1.11 U	13.3 1.11 U	0.74 J 1.11 U	10.8 1.11 U	14.3 1.11 U	7.37 1.11 U	
1,3-Dutadiene 1,3-Dichlorobenzene	3.01 U						
1,4-Dichlorobenzene	2.4 J	3.01 U					
1,4-Dioxane	1.8 U						
2,2,4-Trimethylpentane	1.0 O	2.34 U	2.29 J	9.34	23.8	9.34	
2-Butanone	20.9	530 D	129 D	412 D	501 D	142 D	
2-Chlorotoluene	2.59 U						
4-Ethyltoluene	8.36	12.8	1.13 J	10.8	12.8	7.37	
4-Methyl-2-Pentanone	2.05 U	2.05 U	3.81	6.15	2.05 U	2.05 U	
Acetone	1.19 U	261 D	68.4 D	136 D	153 D	1.19 U	
Allyl Chloride	1.57 U						
Benzene	14.7	47.9	5.43	20.8	47.6 D	90.1 D	
Bromodichloromethane	3.35 U						
Bromoethene	2.19 U						
Bromoform	5.17 U						
Bromomethane	1.94 U						
Carbon Disulfide	37.4 JD	62.3 JD	12.8	31.8	72.9 D	59.5 D	
Carbon Tetrachloride	1.07	0.94	0.38	0.88	0.82	0.25	
Chlorobenzene	2.3 U						
Chloroethane	1.32 U	10.6	1.32 U	1.21 J	1.27 J	0.87 J	
Chloroform	16.6	54.7	2.83	26.9	19	3.86	
Chloromethane	1.22	2.07	1.32	1.42	1.3	1.16	
cis-1,2-Dichloroethylene	261 D	2894 D	1.43 J	46.4	36.1	3.29	
cis-1,3-Dichloropropene	2.27 U						
Cyclohexane	86.7 D	149 D	10.3	44.1	91.6 D	171 D	
Dibromochloromethane	4.26 U						
Dichlorodifluoromethane	4.3 J	1.09 J	1.24 J	0.74 J	1.34 J	3.91 J	
Dichlorotetrafluoroethane	3.49 UJ						
Ethylbenzene	8.25	17.4	6.95	16.1	19.1	12.2	
Heptane	12.3	22.1	4.1	18.4	48	32.8	
Hexachloro-1,3-Butadiene	5.33 U						
Hexane	19.4	26.4	7.05	18.3	51.1 D	58.9 D	
m,p-Xylenes	32.6	58.6	20	53.9	59.5	41.3	
Methyl Methacrylate	2.05 U						
Methyl tert-Butyl Ether (MTBE) See next page for gualfiers and notes.	167 D	1.8 U	1.8 U	1.8 U	43.3 JD	1.8 U	

See next page for qualfiers and notes.

Table E-11 Long Island Rail Road Arch Street Yard RI Summary of Soil Vapor Analytical Results Volatile Organic Compounds

Sample ID	SV-01	SV-02	SV-03	SV-04	SV-05	SV-06	
Sampling Date	08/17/16	08/17/16	08/17/16	08/17/16	08/17/16	08/17/16	
Sample depth top	2.2'	3.9'	4.3'	3.9'	4'		NYSDOH
Sample depth bottom	2.7'	4.4'	4.8'	4.4'	4.5'		Air Guideline
Location	outside	outside	outside	outside	outside	sub-slab	Value
Units	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3
Methylene Chloride	2.85 UB	3.82 UB	11.8	7.3	12.2	5.91	60
Naphthalene	8.91 J	13.1 J	2.62 UJ	8.39 J	5.77 J	2.83 J	
o-Xylene	16.5	30.4	7.38	26.5	30.8	23.5	
Styrene	49.4	77.9 D	8.09	71.5 D	39.2 JD	46	
t-1,3-Dichloropropene	2.27 U	2.27 U	2.27 U	2.27 U	2.27 U	2.27 U	
tert-Butyl alcohol	1.64	10.9	8.49	7.58	54.6 D	6.97	
Tetrachloroethylene (PCE)	<u>317</u> <u>D</u>	<u>881</u> <u>D</u>	7.46	<u>58.3</u>	<u>120</u> <u>D</u>	23.1	30
Tetrahydrofuran	4.13	10.3	1.74	7.96	9.44	6.78	
Toluene	23.7	45.2 JD	32.4	54.6	53.1	81 D	
trans-1,2-Dichloroethene	193 D	911 D	0.95 J	8.33	15.5	1.23 J	
Trichloroethylene (TCE)	<u>223</u> <u>D</u>	<u>859</u> <u>D</u>	2.04	<u>28.5</u>	<u>50.5</u>	<u>5</u>	2
Trichlorofluoromethane	11.8	5.28	2.3 J	14	175 D	1.74 J	
Vinyl Chloride	562 D	511 D	0.41	24.3	6.9	0.51	

Qualifiers:

U: Analyzed but not detected

J: Estimated value

UB: Qualified as non detect based on method blanks

D: Reported from secondary dilution

Exceeds NYSDOH Air Guideline Values

Notes:

ug/m3: Micrograms per cubic meter

-- : No guideline value

Table E-12 Long Island Rail Road Arch Street Yard RI Heating Season

Summary of Air Sample Analytical Results Volatile Organic Compounds

Sample ID AA-01(R) IA-01(R) SV-06(R) NIVEDOLA 6:								
Sample 15 Sampling Date	• • •	02/22/17	02/22/17	NYSDOH Air				
Location	outdoor	indoor office area	sub-slab	Guideline				
Units	ug/m3	ug/m3	ug/m3	Value ug/m3				
1,1,1-Trichloroethane (TCA)	0.16 U	0.16 U	0.16 U					
1,1,2,2-Tetrachloroethane	3.43 U	3.43 U	3.43 U					
1,1,2-Trichloroethane	2.73 U	2.73 U	2.73 U					
1,1,2-Trichlorotrifluoroethane	3.83 U	3.83 U	3.83 U					
1,1-Dichloroethane	2.02 U	2.02 U	2.02 U					
1,1-Dichloroethene	1.98 U	1.98 U	1.98 U					
1,2,4-Trichlorobenzene	3.71 U	3.71 U	3.71 U					
1,2,4-Trimethylbenzene	2.46 U	0.79 J	1.72 J					
1,2-Dibromoethane	3.84 U	3.84 U	3.84 U					
1,2-Dichlorobenzene	3.01 U	3.01 U	3.01 U					
1,2-Dichloroethane	2.02 U	2.02 U	2.02 U					
1,2-Dichloropropane	2.31 U	2.31 U	2.31 U					
1,3,5-Trimethylbenzene	2.46 U	2.46 U	0.69 J					
1,3-Butadiene	1.11 U	1.11 U	1.11 U					
1,3-Dichlorobenzene	3.01 U	3.01 U	3.01 U					
1.4-Dichlorobenzene	3.01 U	3.01 U	3.01 U					
1,4-Dioxane	1.8 U	1.8 U	1.8 U					
2,2,4-Trimethylpentane	0.61 J	1.17 J	0.98 J					
2-Butanone	1.53	1.47	16.8					
2-Chlorotoluene	2.59 U	2.59 U	2.59 U					
4-Ethyltoluene	2.46 U	2.46 U	2.46 U					
4-Methyl-2-Pentanone	2.05 U	2.05 U	4.92					
Acetone	14.2	19.5	237 D					
Allyl Chloride	1.57 U	1.57 U	1.57 U					
Benzene	1.09 J	1.57 J	1.82					
Bromodichloromethane	3.35 U	3.35 U	1.14 J					
Bromoethene	2.19 U	2.19 U	2.19 U					
Bromoform	5.17 U	5.17 U	5.17 U					
Bromomethane	0.62 J	0.54 J	0.78 J					
Carbon Disulfide	1.56 U	1.56 U	6.54					
Carbon Tetrachloride	0.31	0.38	0.19 U					
Chlorobenzene	2.3 U	2.3 U	2.3 U					
Chloroethane	1.32 U	1.32 U	1.32 U					
Chloroform	2.44 U	2.44 U	12.2					
Chloromethane	1.36	1.12	1.3					
cis-1,2-Dichloroethylene	1.98 U	1.98 U	1.98 U					
cis-1,3-Dichloropropene	2.27 U	2.27 U	2.27 U					
Cyclohexane	1.72 U	1.38 J	28.9					
Dibromochloromethane	4.26 U	4.26 U	4.26 U					
Dichlorodifluoromethane	1.04 J	1.04 J	2.82 J					
Dichlorotetrafluoroethane	3.49 U	3.49 U	3.49 U					
Ethyl benzene	2.17 U	0.74 J	0.61 J					
Heptane	2.05 U	0.94 J	2.05 U					
Hexachloro-1,3-Butadiene	5.33 U	5.33 U	5.33 U					
Hexane	2.19	4.23	4.23					
m,p-Xylene	1.3 J	2.61 J	1.78 J					
Methyl Methacrylate	2.05 U	2.05 U	2.05 U					
Methyl tert-Butyl Ether (MTBE)	1.8 U	1.8 U	1.8 U					

See next page for qualfiers and notes.

Table E-12 Long Island Rail Road Arch Street Yard RI Heating Season

Summary of Air Sample Analytical Results Volatile Organic Compounds

Sample ID Sampling Date Location Units	outdoor	IA-01(R) 02/22/17 indoor office area ug/m3	02/22/17 sub-slab	NYSDOH Air Guideline Value ug/m3
Methylene Chloride	4.17	5.91	6.95	60
Naphthalene	2.62 U	2.62 U	2.62 U	
o-Xylene	0.48 J	0.83 J	0.91 J	
Styrene	2.13 U	0.72 J	3.24	
t-1,3-Dichloropropene	2.27 U	2.27 U	2.27 U	
tert-Butyl alcohol	1.52 U	1.52 U	1.52 U	
Tetrachloroethylene (PCE)	4.34	2.85	2.58	30
Tetrahydrofuran	1.47 U	1.47 U	5.6	
Toluene	4.52	7.16	3.73	
trans-1,2-Dichloroethene	1.98 U	1.98 U	1.98 U	
Trichloroethylene (TCE)	0.16 U	0.16 U	0.16 U	2
Trichlorofluoromethane	1.52 J	1.24 J	1.4 J	
Vinyl Chloride	0.08 U	0.08 U	0.08 U	

Qualifiers:

U: Analyzed but not detected

J: Estimated value

D: Reported from secondary dilution

Notes:

ug/m3: Micrograms per cubic meter

-- : No guideline value

APPENDIX F

INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's NameGlott	1 Russo		_ Date/Time Pr	repared <u>8</u> /	17/16
Preparer's Affiliation LTI	RR Corp Sat	ety	Phone No.	347-494-	-6034
Purpose of Investigation S	oil vapors	sampling to	or chloring	ited solve	its.
1. OCCUPANT:					
Interviewed: Y/N					
Last Name: Kalista	F	irst Name:	Ony	,	
Address: Hdg. there			. /		
County: Queens	-				
Home Phone:	Office	Phone:			
Number of Occupants/persons	s at this location	Y Age	e of Occupants	Adults	
2. OWNER OR LANDLOR	D: (Check if sar	ne as occupant	.).		
Interviewed: YN	`		/		,
Last Name:	Fi	irst Name:			
Address:					
County:					
Home Phone:	Office	Phone:			
3. BUILDING CHARACTE	RISTICS				
Type of Building: (Circle app	propriate respons	e)			
Residential Industrial	School Church	Commercial Other:	/Multi-use	-	

			nse)		
Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporar Apartment H Log Home	ouse Town		· ·	
If multiple units, how	many?				
If the property is com	amercial, type?				
Business Type(s)_	Railroad				
Does it include res	idences (i.e., multi-use)? Y/N)	If yes, how man	y?	
Other characteristics:	:				
Number of floors		Building age_			
Is the building insu	ılated? Y /N	How air tight?	Tight / Average	/ Not Tight	
4. AIRFLOW Use air current tubes Airflow between floors		aluate airflow pa	atterns and qualit	atively describe	: ;
•					
Airflow near source		:			

	3		•	·
5. BASEMENT AND CONSTRU	CTION CHARAC	TERISTICS	(Circle all that a	pply)
a. Above grade construction:	wood frame	concrete	stone	brick
b. Basement type:	full	crawlspace	slab	other
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovered	covered	covered with	·
e. Concrete floor:	unsealed	sealed	sealed with	
f. Foundation walls:	poured	block	stone	when corrugated metal
g. Foundation walls:	unsealed	sealed	sealed with	
h. The hasement is:	wet	damp	dry	moldy
i. The basement is:	finished	unfinished	partially finish	ned
j. Sump present?	Y/N			
k. Water in sump? Y/N	/ not applicable			
Basement/Lowest level depth below	grade: O (f	eet)		
Identify potential soil vapor entry p Multiple slab (nelt)	oints and approxim	±	\ A	
6. HEATING, VENTING and AIR	CONDITIONING	G (Circle all th	at apply)	
Type of heating system(s) used in th	is building: (circle	all that apply	– note primary)
Hot air circulation Space Heaters Electric baseboard	Heat pump Stream radiation Wood stove	Radiar	ater baseboard at floor or wood boiler	Other
The primary type of fuel used is:				
Natural Gas Electric Wood	Fuel Oil Propane Coal	Kerose Solar	ene	
Domestic hot water tank fueled by:	•	•		•

Outdoors

Window units

Basement

Central Air

Main Floor

Open Windows

None

Boiler/furnace located in:

Air conditioning:

j. Has painting/st	aining been done	in the last 6 m	onths? Y /🕅	Where & W	Then?
k. Is there new ca	rpet, drapes or o	ther textiles?	Y /	Where & W	Then?
I. Have air freshe	ners been used r	ecently?	(Ý) N	When & Ty	pe? Ballwoons
m. Is there a kitcl	nen exhaust fan?	•	· Y/🔯	If yes, wher	e vented?
n. Is there a bath	room exhaust fa	n?			e vented?
o. Is there a cloth	es dryer?		Y /(Ñ	If yes, is it	vented outside? Y / N
p. Has there been	a pesticide appli	cation?	Y / 🔯	When & Ty	pe?
Are there odors in If yes, please des			Y /🕥		· · · · · · · · · · · · · · · · · · ·
Do any of the buildi (e.g., chemical manu- boiler mechanic, pest	facturing or laboration,	atory, auto mech cosmetologist	anic or auto bod	y shop, paintin	- -
If yes, what types of	of solvents are use	ed?			· · · · · · · · · · · · · · · · · · ·
If yes, are their clo	thes washed at wo	ork?	Y/N		
Do any of the buildi	ng occupants reg	ularly use or w	ork at a dry-cle	aning service	? (Circle appropriate
Yes, use dry-	cleaning regularly cleaning infreque a dry-cleaning ser	ntly (monthly or	· less)	Unknown	
Is there a radon mit Is the system active		r the building/s Active/Passive		Date of Insta	ıllation:
9. WATER AND SE	WAGE				-
Water Supply:	Public Water	Drilled Well	Driven Well	Dug Well	Other:
Sewage Disposal:	Public Sewer	Septic Tank	Leach Field	Dry Well	Other:
10. RELOCATION	INFORMATION	(for oil spill r	esidential emerg	ency)	
a. Provide reason	ns why relocation	ı is recommend	ed:		
b. Residents choo	ose to: remain in	nome reloca	ate to friends/fam	ily reloc	ate to hotel/motel
c. Responsibility	for costs associa	ted with reimb	ursement explai	ned? Y/N	1
d. Relocation page	ckage provided a	nd explained to	residents?	Y/N	1

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used:	DOD RAE	

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N
B+B Depot	ABC hidde the Ext.	20105	NO		83ppb)
ESB-2	(Ri 3-36 lube	1)075	U	petro. distillates, conson dioxide	85 ppb	1
	ABC Kiddle Fire Ext.	26106	NO		ROppb	y
	Rainbow insat repel.	6025	N (Bunits)	DEET	90 ppb	<i>y</i>
V	Sika pio-select sealant	29025	no	Disoderyl phtalates, titanim dioxide xylene, etnyl betzene	ROPPL	ý
Shop	ABC Kiddle Fire Ext,	20/0s	ИО	, , , , , , , , , , , , , , , , , , , ,	19ppb	y
	Polan Pro Snow Howers	Stins	Ц	fasoline	25ppb	y
	Westinghouse generator	lanit	U	Gasslire	48 ppb	ý
	CRC 3-36 Lube	llors	Va (Gunts)	petro. distilles, combon dioxide	80ppb	y
	CRC Ire-off	202	Wind (3)	methonol, curbon diaxide, propriee	80 ppb	<i>y</i>
	coratee N 1263 primer	5gal	W (2-units)		80 ppb	<i>'</i> y
	Hercules gear cutting oil	Igal	И	Lubeoil, olefin sulfide	50ppb	Y
	Inst × flor/pation	3991	U (2-itlens)	Acrylic polymen, thanium dioxide, nephelane syrante, kaolin	8 Jap	V
	Benjamen Moore latex	2ga)	U	(alicim corbonate, acryliz polime) titanium dioxide, etnylone glycol titanium dioxide, propare-1/2	83ppb	y
	General Coatings floor J enome	1901	U	titanium dioxide, propare-1/2 2021-trimethyl-1,3 pantane diol	80ppb	<i>y</i>
		U	•	monoisobuty ate, calcium carbonate	,,	
Annual second	sherwin Will u ns S e nifloss Motornedic starting fluid	Igal	V 1	mineral spirits, ethyl benzene	80 ppb	y
Agricon and a second a second and a second a	Motornedic starting fluid	lloz	N	Heptane, diethyl ether, petro.oil Carbon Maxide	80ppb	ý
. 1	Rainbow insert repellent	2061	u (5-itens)	DEET	79 ppb	<i>y</i>

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

89

13. PRODUCT INVENTORY FORM

(Page #7)
Make & Model of field instrument used:

DPB RAE

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N
Shop Continued	(RC wasp + homet	1402	u	Tetramethrin, phenothin	84 ppb	<i>y</i>
	Racor diesel additive	1602	U (2-itens)	petro, distillates	80 ppb	V
	gasolihe contamens	10991	U (3-units)		383pb	Y
	Sitaflex 1a construction seabort	10.102	y/uo units)	Transm dioxide, xylone, ethylborzene, aromatic polyiso (vanates,	alppb	y
<u> </u>				4,4 methylene diphene dissocyanates		,
Storage	Shermin williams industrial	120 oz	U(7items)	minoral spirits, soya alk. polyners, etnylbenzene	103ppb	У
	shewin willows semigloss	120 oz	U(2-Hens)	sareas above, plus nepherone syerete, minoral spirits	100 ppb	ý
	CPD Elastimont	6gal.	И		looppb	y
	Devran 229 H, acrylic Semigless	Gats.	u (2-itans)	totale, formula hyde, phenol,	100 ppb	1
The same and				nexamil, aretate, totanium diexide		
	Shamin willows DTM ACTY TIC	bate.	U(6-HONS)	acrylic paymer, 2 Inethoxetroxy -ethanol, trimethy) partanediol	99 ppb	y
	· '			isobutyrate,		'
	130 Hany floor tile odlesive	5gal	u(3-itoms)	Asphitt (Hos), rosin	IN ppb	V
- COLORA DE LA CALLA DE LA CAL	Hornweld latex bonding agent Songguard basecoat	5gal	N	Vynyl acetate copalymer	iooppb	γ
	Songuard busecoat	Los	N (6-Hans).	Stoddard solvent, tolume-1,4diisogite toluene-2-6-dii soryanate	191ppb	y
	Kidde ABC fire Ext.	acibs	uo (13-items)	7	89pbb	y
V					<i>y</i> •	
Storage Room#O	kidde ABC fire ext.	20lbs.	WO.		80 ppb	Y
-						

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name	Gloria Rus	50	Date/Time	Prepared	2/14/12
Preparer's Affiliation_	LFRR Corp	Safety	Phone No	347-	494-6034
Purpose of Investigatio					
1. OCCUPANT:			,		
Interviewed: Y/N					(8
Last Name:		First Name:			
Address:					
County:					
Home Phone:	Offic	ce Phone:			
Number of Occupants/p	persons at this location	n A	ge of Occupant	ts	
2. OWNER OR LAND	DLORD: (Check if s	ame as occupa	nt)	ts.	
Last Name:		First Name:			
Address:					
County:					
Home Phone:	Offi	ce Phone:			
3. BUILDING CHARA Type of Building: (Circ		nsc)			
Residential	School Church		al/Multi-use		

If the property is residentia	al, type? (Circle appropria	ate response)	
Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment House Log Home		
If multiple units, how many	y?		
If the property is commercial	14 D		
Business Type(s)	ilroad		
Does it include residence	es (i.e., multi-use)? Y	If yes, how many?	
Other characteristics:			
Number of floors	Build	ling age	
Is the building insulated?	Y/N How	air tight? Tight / Average / Not Tight	
4. AIRFLOW Use air current tubes or tra Airflow between floors	cer smoke to evaluate a	irflow patterns and qualitatively describe:	
Airflow near source			
Outdoor air infiltration			
Infiltration into air ducts			

		3)		
5.	BASEMENT AND CONSTRUC	TION CHARA	CTERISTICS (Circle all that ap	pply)
	a. Above grade construction:	wood frame	concrete	stone	brick
	b. Baseprent type:	full	crawlspace	slab	other
	c. Basemont floor:	concrete	dirt	stone	other
	d. Basement floor:	uncovered	covered	covered with_	
	e. Concrete floor:	unscaled	sealed	sealed with	=:
	f. Foundation walls:	poured	block	stone	the corrupted met
	g. Foundation walls:	unsealed	sealed	sealed with	· · · · · · · · · · · · · · · · · · ·
	h. The basement is:	wet	damp	dry	moldy
	i. The basement is:	finished	unfinished	partially finish	ed
	j. Sump present?	Y/N			
	k. Water in sump? Y/N	not applicable			
Ba	sement/Lowest level depth below g	grade:	(feet)		
Ide	entify potential soil vapor entry po ultiple slub (1945,	dains/p	imate size (e.g.,	, cracks, utility bathrooms	ports, drains)
6.	HEATING, VENTING and AIR	CONDITIONIN	NG (Circle all th	at apply)	
Ty _]	pe of heating system(s) used in this	s building: (circ	le all that apply	– note primar	y)
	Hot air circulation Space Heaters Electric baseboard	Heat pump Stream radiation Wood stove	on Radiar	ater baseboard nt floor or wood boiler	Other
Th	e primary type of fuel used is:				
	Natural Gas Electric Wood	Fuel Oil Propane Coal	Kerose Solar	ene	
Do	mestic hot water tank fueled by: _			_	

Main Floor

Open Windows

None

Boiler/furnace located in:

Air conditioning:

Basement

Central Air

Outdoors

Window units

Are there air distribution ducts present?

OIN But not utilized	N/N	Bat	not	utilizee
----------------------	-----	-----	-----	----------

Describe the supply and cold air return ductwork, and its there is a cold air return and the tightness of duct joints. I diagram.	
7. OCCUPANCY	
Is basement/lowest level occupied? Full-time Occ	asionally Seldom Almost Never
Level General Use of Each Floor (e.g., familyro	om, bedroom, laundry, workshop, storage)
Basement 1st Floor 2nd Floor 3rd Floor 4th Elbor	s and office areas
8. FACTORS THAT MAY INFLUENCE INDOOR AIR	QUALITY
a. Is there an attached garage?	Y/N
b. Does the garage have a separate heating unit?	Y/N/NA
c. Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car)	Y/N/N/N/Please specify
d. Has the building ever had a fire?	Y When?
e. Is a kerosene or unvented gas space heater present?	Y N Where?
f. Is there a workshop or hobby/craft area?	ON Where & Type? Throughout building
g. Is there smoking in the building?	Y / N How frequently?
h. Have cleaning products been used recently?	Y / (N) When & Type?
i. Have cosmetic products been used recently?	Y / N When & Type?

j. Has painting/stai	ning been done in the	e last 6 mont	ths? Y/	Where & Whe	n?	
k. Is there new car	pet, drapes or other t	extiles?	Y /(\$)	Where & Whe	n?	
l. Have air freshen	ers been used recently	y?	⊘ /N	When & Type	? Bathrooms	
m. Is there a kitche	en exhaust fan?		Y/M	If yes, where v	vented?	
n. Is there a bathr	oom exhaust fan?	If yes, where vented?				
o. Is there a clothes	dryer?		Y / 🗑	If yes, is it ven	ted outside? Y / N	
p. Has there been a	pesticide application	1?	Y /	When & Type	?	
Are there odors in If yes, please descr	the building?		Y 🕟			
Do any of the buildin (e.g., chemical manufa boiler mechanic, pestion	ecturing or laboratory, cide application, cosmo	auto mechan etologist	ic or auto body			
If yes, what types of	solvents are used?					
If yes, are their cloth	nes washed at work?		Y/N			
_	g occupants regularly	y use or wor	k at a dry-clea	ning service? (Circle appropriate	
response) Yes, use dry-c Yes, use dry-c	g occupants regularly leaning regularly (wee leaning infrequently (r dry-cleaning service	ekly)		ning service? (Unknown	Circle appropriate	
Yes, use dry-c Yes, use dry-c Yes, use dry-c Yes, work at a	leaning regularly (wee leaning infrequently (r dry-cleaning service	kly) nonthly or le	ess)	Unknown		
Yes, use dry-c Yes, use dry-c Yes, use dry-c Yes, work at a Is there a radon mitig	leaning regularly (wee leaning infrequently (redry-cleaning service gation system for the reassive? Acti	ekly) monthly or le building/str e	ess)	Unknown		
Yes, use dry-c Yes, use dry-c Yes, use dry-c Yes, work at a Is there a radon mitig Is the system active o	leaning regularly (wee leaning infrequently (redry-cleaning service gation system for the repassive? Action	ekly) monthly or le building/str e	ucture? Y	Unknown		
Yes, use dry-c	leaning regularly (wee leaning infrequently (redry-cleaning service gation system for the reassive? Action	ckly) monthly or le building/stre ive/Passive	ucture? Y	Unknown Date of Install	ation:	
Yes, use dry-c Yes, use dry-c Yes, use dry-c Yes, work at a Is there a radon mitig Is the system active o 9. WATER AND SEV	leaning regularly (wee leaning infrequently (r dry-cleaning service gation system for the r passive? Acti VAGE Public Water Dril Public Sewer Sept	bkly) monthly or le building/stra ive/Passive	ess) ucture? Y Driven Well Leach Field	Unknown Date of Install Dug Well Dry Well	ation:	
Yes, use dry-c Yes, use dry-c Yes, use dry-c Yes, work at a Is there a radon mitig Is the system active o 9. WATER AND SEV Water Supply: Sewage Disposal:	leaning regularly (wee leaning infrequently (r dry-cleaning service gation system for the r passive? Acti VAGE Public Water Dril Public Sewer Sept	ekly) monthly or le building/stru ive/Passive led Well tic Tank	ess) ucture? Y / (\tilde{\text{T}}) Driven Well Leach Field dential emerge	Unknown Date of Install Dug Well Dry Well ency)	other:	
Yes, use dry-c Yes, use dry-c Yes, use dry-c Yes, use dry-c Yes, work at a Is there a radon mitig Is the system active o 9. WATER AND SEV Water Supply: Sewage Disposal: 10. RELOCATION II a. Provide reason	leaning regularly (wee leaning infrequently (r dry-cleaning service gation system for the r passive? Acti VAGE Public Water Dril Public Sewer Sept	bkly) monthly or le building/stri ive/Passive led Well tic Tank oil spill resi	ess) ucture? Y / (\tilde{\text{T}}) Driven Well Leach Field dential emerge	Unknown Date of Install Dug Well Dry Well ency)	other:	
Yes, use dry-c Yes, use dry-c Yes, use dry-c Yes, use dry-c Yes, work at a Is there a radon mitig Is the system active o 9. WATER AND SEV Water Supply: Sewage Disposal: 10. RELOCATION II a. Provide reason b. Residents choose	leaning regularly (wee leaning infrequently (r dry-cleaning service gation system for the r passive? Acti VAGE Public Water Dril Public Sewer Sept NFORMATION (for s why relocation is re	bkly) monthly or le building/stra ive/Passive led Well tic Tank oil spill residecommended relocate	Driven Well Leach Field dential emerge	Unknown Date of Install Dug Well Dry Well ency)	Other:	

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

First Floor:

mens wom B.R. B.K			Storage Room
B.R. B.K			1 + 42
	# SVOGR	Shop	
B+B	1 DIA-OIR		Charges
Dept.	FCB-J		Storage
	ESB-2 Structures		

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: DDD RAE

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N
B+BDepot	ARC Kiddle Fire Ext.	aolbs (2)	UD		21	Y
ESB-2	ARChidde Five 15th.	adbs	NO		33	y
	Sita prosdet sealant	29025	UO	Disoderyl ontalistes, titanium diaride Xylene, ethyl benzene	53	y
Shop	AR Kiddethe Ext.	201bs	uo		27	Y
U.	Westinghouse generator	<u>Junit</u>	U	gardine	152	y
	(RL Ice-off	1202	10 stems	methanol, carbon dioxide, propylene, glycol	107	Y
	Corotec U 1263 Primer	5-901	Waunts)	1111111111	110	y
	Hercules gear oil	Igal	И	Lube oil, o letin sulfide	89	'y
	Dist-X floor-patro coatily	3ga	4(2 Hens)	Acrylle paymer, transma diorde, peptelene syemite, kaolin Adylle polymer, transma side ethylene glycol transma laxade, propane-lid sortrinetryl-ly3 periane	139	Y
	Ben-moore latex marking	agral	U	a dylre polymer, totanim divide	160	ý
	General Coatings florenand	[gal	U	trianun dioxide, propare-1,2	127	<i>y</i>
				Monoisobut gate, Calcium carbonale		/
	Motormedic Stanting fluid	1025	U	Heptone, diethyl ether, petro. oil	129	y
	Gasoline Containers	logal	4 (3units)		182	Y
	Sika 14 construct, sobbat	10025	(10-units)	titanim dioxide, xylene, ethylhensee arona hz poly iso cyanates	[6]	Y
				**************************************		ī
				1		
				-		

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

13. PRODUCT INVENTORY FORM (page #3)

Make & Model of field instrument used: _____ Opb RAE

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N
Stolage	Sherwin willows industrial ename	120625	(Z#tens)	mnemi spirits, soya, alk, polymers, eth yl benzene	106	Y
Room	stermin willams semigloss	100025	U (Zitans)	same as above, plus: hephelene,	172	y
	CPD Elastimont.	6gal.	И		109	y
	Devian 229H Acryliz semigloss	Egts,	u (21toms)	Etny herzene, 2-hojotore, 2010 ponol acetate, formulyde, phehol	156	Y
	V			nexanol, acetate, titanundinade		,
	Shemin Williams DTM	6gts.	U (6 Haw)	Acryliz polymen, 2-2 methoxethoxy, ethonolytrinkthylpentandiol	141	y
	E 12 100			Isobutyrate		<i>C</i>
	130 Henry floor tile adlesive	5991	11(3-Items)	Asphatt (Has), rasin	152	Y
	Hornweld latex bondingujut	5gal	N	vynyl aetate oopolymer	129	Ý
	1/ -	5gal	U(GFtons)	Stoddard solvent, tolvene	129	Ý
	V	U		24 disparter tolune 26 dispayante	129	/
	Kidde ABC Fire Ext.	30lbs	40 (Wittens)		132	У
	Castrol Multi-White growse	5gal	u		129	<i>y</i>
Sbrage	Kidde ABCFire Ext.	20lbs	И		108	y
#2						

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

APPENDIX G

WASTE MANIFESTS

11 Concretor ID Number	2: Emorganeti D	Dhorn	4. Manifest		CONTRACTOR OF THE PARTY OF THE	OMB No.	2000-00
WASTE MANIFEST N V P O C O 1 1 1 1 0 3 9 3	3. Emergency Response 347-494-6927 Generator's Site Address		00	661	299	3 F	LE
LONG ISLAND RAIL ROAD 148-01 ARCHER AVENUE, MAIL CODE 1428 (F&A BLDG.)	LIRR - ARCH S 46-30 21ST STF LONG ISLAND	TREET Y	/ARD			SI A	
Transporter 1 Company Name			U.S. EPA ID I			. 7	
AGENCY COMPANY Name DISPOSH CONSULTANT	SERVICE	s LL	U.S. EPAID	Number R Co	000	636	7
NORTHLAND ENVIRONMENTAL 275 ALLENS AVENUE PROVIDENCE RI 02905 Facility's Phone:			2	15 M			
acility's Phone: 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, and Packing Group (if any))	10. Contai	петя Туре	11. Total Quantity	12. Unit Wt./Vol.	13.	Waste Cod	5 2
NA3082, HAZARDOUS WASTE, LIQUID, N.O.S. (VINYL CHLORIDE), A, POIII (RQ: D043)		1	Sar S		D043	B *	Tin.
2.	004	DM	01837	P		6.	1
						7	
3,			10 %				
4							
			2 45	Sam S	1.3		
1)(E) ERG#171 768 6A2	and y	on the Ki	PAR	le #	139	400	25
GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment marked and labeled/placarded, and are in all respects in proper condition for transport according to applic	are fully and accurately de cable international and na	escribed above	JAZ a by the proper sinental regulations	4 hipping nam	//25 e, and are cla	48 assified, par	kaged,
5. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment a marked and labeled/placarded, and are in all respects in proper condition for transport according to applic Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknow I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator's/Qlferor's Printed/Typed Name	are fully and accurately de cable international and na ledgment of Consent. erator) or (b) (if I am a.sm nature	tional governn	nental regulations	4 hipping nam	//25 e, and are cla hipment and	assified, par I am the Pri	ckaged, mary
5. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment is marked and labeled/placarded, and are in all respects in proper condition for transport according to applic Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowl I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator's/Qfferor's Printed/Typed Name 6. International Shipments	are fully and accurately de cable international and na ledgment of Consent, erator) or (b) (if I am a.sm nature	all quantity ge	nental regulations	4 hipping nam	//25 e, and are cla hipment and	assified, par I am the Pri	ckaged, mary
5. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment a marked and labeled/placarded, and are in all respects in proper condition for transport according to applic Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowl I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator's/Qlferor's Printed/Typed Name Sig 6. International Shipments	are fully and accurately de cable international and na ledgment of Consent, erator) or (b) (if I am a sminature	all quantity ge	nental regulations	4 hipping nam	e, and are cla hipment and Mo	assified, par I am the Pri	Kaged, mary
5. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment in marked and labeled/placarded, and are in all respects in proper condition for transport according to applic Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknow I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator's/Qiferor's Printed/Typed Name Signature (International Shipments Import to U.S. Export from the statement of Receipt of Materials Signature (International Shipment of Receipt of Materials Shipment of Receipt of Shipment of S	are fully and accurately decable international and natledgment of Consent, erator) or (b) (if I am a.sm nature U.S. Port of e	all quantity ge	nental regulations	4 hipping nam	e, and are cla hipment and Mo	assified, par I am the Pri	Kaged, mary ay Ye
5. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment a marked and labeled/placarded, and are in all respects in proper condition for transport according to applic Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowl I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator's/Qlferor's Printed/Typed Name Sig 6. International Shipments	are fully and accurately decable international and na ledgment of Consent. erator) or (b) (if I am a.sm nature U.S. Port of e Date lear	all quantity ge	nental regulations	4 hipping nam	e, and are cla hipment and Mo	assified, par I am the Pri	Kaged, mary
5. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment a marked and labeled/placarded, and are in all respects in proper condition for transport according to applic Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknow I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator's/Qiferor's Printed/Typed Name Signalure (for exports only): 7. Transporter Acknowledgment of Receipt of Materials ransporter 1 Printed/Typed Name Signaporter 2 Printed/Typed Name Signaporter 2 Printed/Typed Name Signaporter 2 Printed/Typed Name	are fully and accurately decable international and na ledgment of Consent. erator) or (b) (if I am a sminature U.S. Port of e Date lear	all quantity ge	nental regulations	hipping nams, If export si	e, and are cla hipment and Mo	assified, part am the Pri	ay Y
5. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment is marked and labeled/placarded, and are in all respects in proper condition for transport according to applic Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowl I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator's/Qlferor's Printed/Typed Name Sig 6. International Shipments	are fully and accurately decable international and na ledgment of Consent. erator) or (b) (if I am a sminature) U.S. Port of e Date lear	all quantity ge	nental regulations	hipping nams, If export si	e, and are cla hipment and Mo	assified, part am the Pri	Kaged, mary
5. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment a marked and labeled/placarded, and are in all respects in proper condition for transport according to applic Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledge in the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator's/Qfferor's Printed/Typed Name Signalure (for exports only): 7. Transporter signalure (for exports only): 7. Transporter Acknowledgment of Receipt of Materials ransporter 1 Printed/Typed Name Signalure (for exports only): 9. Discrepancy Indication Space Quantity Type 8b. Alternate Facility (or Generator) Facility's Phone:	are fully and accurately decable international and na ledgment of Consent. erator) or (b) (if I am a sminature U.S. Port of e Date lear	all quantity ge	nental regulations inerator) is true.	hipping nams, If export si	e, and are clahipment and	assified, paral am the Pri	iy Y
15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment a marked and labeled/placarded, and are in all respects in proper condition for transport according to applic Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowled in the certify that the waste minimization statement identified in 40 GFR 262.27(a) (if I am a large quantity gen Generator's/Qlferor's Printed/Typed Name Sig 16. International Shipments	are fully and accurately decable international and na ledgment of Consent. erator) or (b) (if I am a.sm nature U.S. Port of e Date leavenature Residue Manifest Reference	all quantity ge	nental regulations inerator) is true.	hipping nams, If export si	e, and are clahipment and	assified, paral am the Pri	ekaged, mary
5. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment marked and labeled/placarded, and are in all respects in proper condition for transport according to applic Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowl I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity gen Generator's/Qlferor's Printed/Typed Name Signature (for exports only): 16. International Shipments	are fully and accurately decable international and na ledgment of Consent, erator) or (b) (if I am a sm nature U.S. Port of e Date lear nature Manifest Reference Manifest Reference	all quantity ge	nental regulations inerator) is true.	hipping nams, If export si	e, and are clahipment and	assified, paral am the Pri	ekaged, mary
5. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment imarked and labeled/placarded, and are in all respects in proper condition for transport according to applic Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknown I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator's/Qlferor's Printed/Typed Name 6. International Shipments	are fully and accurately decable international and na ledgment of Consent, erator) or (b) (if I am a sm nature U.S. Port of e Date lear nature Manifest Reference Manifest Reference	all quantity ge	nental regulations inerator) is true.	hipping nams, If export si	e, and are clahipment and	assified, part am the Pri	kaged, mary

UNIF	nt or type. (Form designed for use on elite (12-pitch) typewriter.) ORM HAZARDOUS WASTE MANIFEST (Continuation Sheet) enerator's Name	22. Page 2	23. Manife	st Tracking Nun 0066	12996F	Approved.		
#C1: 04	LONG ISLAND RAILROAD			U.S. EPA ID N	lumbor	-		
25, 1	ransporter 3 Company Name REPUBLIC ENV 8Y8 (TRANS GROUP) LLC			U.S. EPAID	PAD982	\$61381		
26. T	ransporter Company Name			U.S. EPA ID N	lumber	-		
		28. Contair	ers	29, Total	30. Unit	24.16	Vanta Cadaa	_
27a. HM	27b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, and Packing Group (if any))	4 : No. 5		Quantity	WL/Vol. A	31; V	Vaste Codes	

					Υ.			
		No View			. 1			
6 B								
					i i i yaya		Lall'G	
			W1			100	with the	West.
		e Carrie	B 1,	ne Section		14.6		-
					1 10	315	3 1	-
4 10 10					14.3	0 1	2.72	: 18
		and the second	transport of the	energy whose	Active is a	Marca to estima	ust estrayed	Straid
	The state of the s	21	P					_
			-	8	-	00 S		
i de la composição de l	Some and the second of the sec	A. The Tally		14 TEN	75.00	one Secret	or your	
		-			7.7%		79	Tarre
1		E		100			ST 24	-
					999,00		7	
								-
32	Special Handling Instructions and Additional Information	L	Ŀ			-		
1 550	Section of the sectio	6				U.		
			,12				X	
33.	Transporter 3 Acknowledgment of Receipt of Materials ted/Typed Name Signature		-	11	/	7	onth_ Da	y · Y
34. Prin	ted/Typed Name Anthony Klocks	Al	m	16 1	4		5 18	4
34.	Transporter Acknowledgment of Receipt of Materials Signature Signature		: /: ·			M	onth Da	iy .
Prin	ted/Typed Name Signature	7		5 v		. 9	11 1	8
35.	Discrepancy	471		N.		700	101	, (
36.						N		4)
200	if Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and	recycling systems			7 1			The No.
36.	nazarous waste report management werrou codes (i.e., codes for nazarous waste dealinem, disposal, and							
777						i it		