

PERIODIC REVIEW REPORT MARCH 2017 – MARCH 2020

SCHATZ FEDERAL BEARINGS POUGHKEEPSIE, NEW YORK 12601

NYSDEC Site No. 3-14-003 Work Assignment No. D007620-45

Prepared for:

NEW YORK STATE OF OPPORTUNITY. Environmental Conservation

Division of Environmental Remediation 625 Broadway, 12th Floor Albany, New York 12233 Prepared by:

TRC

TRC Engineers, Inc. 10 Maxwell Drive Clifton Park, New York 12065

SECTION

TABLE OF CONTENTS

Execu	utive Summaryiv
1.0	Introduction1
1.1	Site Location, Ownership, and Description2
1.2	Investigation/Remedial History2
1.3	Regulatory Requirements/Cleanup Goals
2.0	Institutional and Engineering Control Plan Compliance5
2.1	Institutional Controls5
2.2	Engineering Controls
3.0	Monitoring and Sampling Plan Compliance
3.1	Site Inspection
3.2 3	Groundwater Monitoring Summary
3	.2.2 Groundwater Monitoring
3	.2.3 Groundwater Analytical Results
3.3 3	Surface Water and Sediment Monitoring
3	.3.2 Surface Water Analytical Results
3	.3.3 Sediment Analytical Results
4.0	Cost Summary 15
5.0	Conclusions and Recommendations16
5.1	Conclusions
5.2	Recommendations17
6.0	Certification of Engineering and Institutional Controls
7.0	Future Site Activities

TABLE OF CONTENTS (CONT.)

LIST OF FIGURES

Figure 1	Site Location Map
----------	-------------------

- Figure 2 Site Layout Map
- Figure 3 Overburden Groundwater Surface Elevations and Flow Map September 23-26, 2019
- Figure 4 Bedrock Groundwater Surface Elevations and Flow Map September 23-26, 2019
- Figure 5 Summary of Detected Compounds Exceeding NYSDEC Groundwater Quality Standards/Guidance September 23-26, 2019
- Figure 6 Summary of Detected Compounds Exceeding NYSDEC Sediment and Surface Water Quality Standards/Guidance – September 23-26, 2019

LIST OF TABLES

- Table 1
 Summary of Depth to Water Measurements and Groundwater Elevations
- Table 2
 Summary of VOC Results in Groundwater September 2019
- Table 3
 Summary of Metals Results in Groundwater September 2019
- Table 4
 Summary of Emerging Contaminant Results in Groundwater September 2019
- Table 5
 Summary of VOC Results in Surface Water September 2019
- Table 6Summary of Metals and Total Suspended Solids in Surface Water Samples September2019
- Table 7Summary of PCBs, Metals, and Total Organic Carbon in Sediment September 2019
- Table 8
 Summary of VOC Results in Groundwater October 2000 to September 2019

LIST OF APPENDICES

- Appendix A Site History, Custodial Record and Well Summary
- Appendix B Site Inspection Form and Photographic Log
- Appendix C Groundwater Sampling Logs
- Appendix D Data Usability Summary Reports
- Appendix E Concentration Trend Line Graphs

LIST OF ACRONYMS AND ABBREVIATIONS

AMSL	Above Mean Sea Level
AROD	Amended Record of Decision
COCs	Contaminants of Concern
CY	Cubic Yard
DER	Division of Environmental Remediation
DUSRs	Data Usability Summary Reports
Eurofins/TestAmerica	Eurofins/TestAmerica Laboratories of Amherst, New York
GWMR	Groundwater Monitoring Report
HASP	Health and Safety Plan
ICs/ECs	Institutional Controls/Engineering Controls
IHWDS	Inactive Hazardous Waste Disposal Site
NYSDEC	New York State Department of Environmental Conservation
NYS	New York State
NYSDOH	New York State Department of Health
OM&M	Operation, Maintenance and Monitoring
PAHs	Polycyclic Aromatic Hydrocarbons
PCBs	Polychlorinated Biphenyls
PFAS	Per- and Polyfluoroalkyl Substances
PPM	Parts Per million
PRR	Periodic Review Report
QA/QC	Quality Assurance/Quality Control
QAPP	Quality Assurance Project Plan
RA	Remedial Action
RAOs	Remedial Action Objectives
Rev.	Revision
RI/FS	Remedial Investigation/Feasibility Study
ROD	Record of Decision
SIM	Selected Ion Monitoring
SMP	Site Management Plan
SMR	Site Management Report
TAL	Target Analyte List
TCL	Target Compound List
TRC	TRC Engineers, Inc.
TSS	Total Suspended Solids
USEPA	United States Environmental Protection Agency
VOCs	Volatile Organic Compounds
WA	Work Assignment

Executive Summary

Category	Summary/Results			
Engineering Controls	 Landfill cover system Perimeter fence Monitoring wells Groundwater interceptor trench 			
Institutional Controls	 ROD (1989) AROD (1994) SMP (2019) Groundwater- and land-use restriction 			
Site Classification	Class 4 IHWDS			
Site Management Plan	SMP Rev. No. 1 – April 2014 SMP Rev. No. 2 – April 2019			
Certification/Reporting Period	The SMP (2019) requires a GWMR every 5 th quarter and a PRR every 3 years. The date of the most recent GWMR April 2018. The most recent PRR was completed for the period March 2014 to March 2017.			
Inspection	Frequency			
Site Inspection	Semi-annual			
Monitoring	Frequency			
Groundwater, Surface Water and Sediment	Every 5 th quarter			
Prior PRR/GWMR Recommendations	The 2017 PRR recommended adding VOCs and filtered metals (to account for elevated turbidity) to the Site groundwater analyte list. The analytes were added to the Site monitoring program following issuance of the April 2019 SMP.			
Site Management Activities (March 2017 to December 2018) – AECOM Technical Services Northeast, Inc.	Based upon correspondence with the NYSDEC, site management activities from March 2017 through December 2018 were completed by AECOM Technical Services Northeast, Inc. During this time, three site inspections, one round of groundwater level measurements, and one groundwater sampling event were completed. Reports and correspondence regarding these activities have been submitted to the NYSDEC separately and have been incorporated into this PRR (sampling results only).			
	 03/21/2017: Site Inspection and Landfill Gas Monitoring Event. 09/20/2017: Site Inspection and Landfill Gas Monitoring Event. 04/25/2018: 14 monitoring wells were gauged. Twelve of the 14 monitoring wells were sampled. 05/03/2018: Site Inspection and Landfill Gas Monitoring Event. 			

Site Management Activities (January 2019 to March 2020) - TRC	 Site management activities from January 2019 to March 2020 included two Site inspections, one round of groundwater level measurements, and one sampling event. 03/21/2019: Site Inspection and Landfill Gas Monitoring Event. 09/24/2019: Site Inspection and Landfill Gas Monitoring Event. 09/24/2019: 14 monitoring wells were gauged. Eleven of the 14 monitoring wells were sampled. Additionally, six surface water and six sediment samples were collected from the ponded area, located on the west side of the Site.
Category	Summary/Results
Significant Findings or Concerns	1. Arsenic in monitoring well S-7 and lead in monitoring well S-1 were detected at concentrations above Class GA Values in the filtered groundwater samples.
	2. PFAS were detected at concentrations exceeding their guidance values in the downgradient co-located overburden/bedrock monitoring wells S-3/B-3.
	3. Metals were detected at elevated concentrations in the surface water and sediment samples submitted for analysis.
	4. PCBs were detected at concentrations slightly above Class B Freshwater Guidance Values in SED-3A and Class C Freshwater Guidance Values in the sediment sample collected from SED-3B.
Recommendations	 Site inspection frequency should be reduced from semi-annual to annual and following severe weather events (as needed) to certify that the ICs/ECs are functioning as intended. A site inspection report should be completed following each inspection event.
	2. Water level measurements should continue to be collected from the Site monitoring wells during the inspection and sampling events.
	3. Based on the elevated PFAS results in downgradient overburden and bedrock monitoring wells S-3 and B-3, PFAS should be included as an analyte in all monitoring wells for at least one future groundwater sampling event to confirm the presence/absence of PFAS at the Site.
	4. It is recommended that the groundwater, surface water and sediment sampling frequency be reduced from one sampling event every fifth quarter to one sampling event every three years.
	5. The GWMR requirement should be eliminated.
	 The April 2019 SMP should be revised to reflect the above changes/modifications, if the changes are acceptable to the NYSDEC.
Cost Evaluation	The total cost of TRC's site management activities for the period January 1, 2019 through March 31, 2020 was \$44,225.00. This cost includes engineering (e.g., labor and expense) and subcontractor costs (i.e., laboratory). It should be noted that this total does not include any direct costs incurred by the NYSDEC.

1.0 Introduction

This PRR has been prepared for the Schatz Federal Bearings Site (referred to as "the Site") and covers the period March 2017 through March 2020. This report was prepared in accordance with the NYSDEC DER WA No. D007620-45 Notice to Proceed dated October 11, 2018, the NYSDEC-approved amended Scope of Work dated February 26, 2020 (WA No. D007620-45.1) and NYSDEC DER-10, Technical Guidance for Site Investigation and Remediation (NYSDEC DER-10). This PRR discusses the Site management activities and results from those activities, performed by TRC from January 2019 to March 2020. Site Management Activities conducted from March 2017 to December 2018 were performed by others. Documents pertaining to activities completed by others were not available for review and are incorporated only by reference where applicable.

Site Information						
Site Name:	Schatz Federal Bearings	NYSDEC Site No:	3-14-003			
Site Location:	Van Wagner Road, Poughkeepsie, Dutchess County, NY	Remedial Program:	State Superfund Program			
Site Type:	Landfill	Classification:	04			
Parcel Identification(s):	134689-6262-03-101380-0000, Dutchess County Tax Map	Parcel Acreage / EE Acreage:	56.6 / Not Applicable			
Selected Remedy:	Landfill cover system, perimeter fence, groundwater monitoring, and groundwater interceptor trench		VOCsPCBsMetals			
Current Remedial Program Phase:			 ROD (1989) / AROD (1994) EN (2014) SMP (2019) 			
Post-Remediation Monitoring and Sampling Frequency:	Every 5 quarters - Groundwater, surface water, and sediment sampling Semi-annual - Site inspection	Engineering Controls:	Landfill cover system, perimeter fence, monitoring wells, and groundwater interceptor trench			
Monitoring Well Network:	9 overburden and 5 bedrock monitoring wells Bedrock monitoring wells (5)	Required Reporting	PRR – Every 3 years Groundwater Monitoring Report – Every 5 quarters or as part of the PRR.			

Site and applicable remedial program information is summarized below.

1.1 Site Location, Ownership, and Description

Environmental Conservation

Department of

NEW YORK

The Schatz Federal Bearings site is located at 223-247 Van Wagner Road, about two miles northeast of downtown Poughkeepsie, Dutchess County, New York. Refer to **Figure 1**, Site Location Map. The Site area consists of a \pm 22-acre portion of a 56.6-acre property identified on the Dutchess County Tax Maps as Section 6262, Block 03, Lot 101380 (tax parcel identification 134689-6262-03-101380-0000). The current owner of the property is listed as McKebe Corporation in the Dutchess County Tax Records. The Site is currently unoccupied, and there are no structures on the property.

The Site area was originally a wetland that was filled by waste disposal activities and transfer of soil from surrounding upland areas. Disposal activities occurred from 1935 to 1973 and included an estimated 125,000 cubic yards of municipal and industrial waste. A major contributor of the waste was Schatz Federal Bearing Co., which operated at the Site from 1949 until 1973. Manufacturing waste including cuttings oils, lubricants, grinding sludges, solvents, coolants and metal parts were disposed of at the Site. Historical photographs of the Site showed areas of solid waste, liquids and drums within the Site boundaries.

A remedial action, which included consolidating and capping the waste on the Site among other activities described in Section 1.2 below, was completed in 1997. The capped area comprises approximately 5-acres of the approximately 22-acre Site area and is surrounded by a drainage swale, gravel access road, and chain link fence. Access to the Site is from Van Wagner Road.

The Site rises from Van Wagner Road to a plateau surrounded by small hills, wetlands/ponded areas and forested areas. Abandoned railroad tracks run along the southwest border of the property, which have been redeveloped by the Rails-to-Trails Conservancy program into a paved bicycle/pedestrian path. The surrounding area is sparsely developed with mixed residential and commercial use. Three residences are adjacent to the Site, the nearest being approximately 100-feet east of the Site boundary. Businesses and homes adjacent to the Site are served by public water. Dutchess County Sanitation (FICA) landfill, a Class 04 IHWDS (Site No. 3-14-047), is located approximately 0.5 miles northeast of the Site. Refer to **Figure 2** for a Site Layout Map.

1.2 Investigation/Remedial History

A RI/FS was initiated at the Site by Metcalf & Eddy of New York, Inc. in July 1986 to determine the nature and extent of Site contamination. The RI was completed in April 1988 and reported the following:

- The Site contained an estimated 124,000 cubic yards of waste material from four primary waste areas including manufacturing waste (90,000 cy), municipal waste (24,000 cy), slag waste (5,000 cy), and sediment in on-site ponds (5,000 cy).
- Soil and on-site pond sediment were contaminated with VOCs, PAHs, PCBs, and metals including arsenic, cadmium, lead, barium, chromium, and zinc.
- The glacial soil aquifer was found to be contaminated with VOCs and metals including barium, chromium, and zinc.

- The bedrock aquifer was found to be contaminated with VOCs, PCBs, and metals including barium, cadmium, chromium, lead, mercury, and zinc.
- Contaminants may have migrated off-site via the bedrock aquifer and surface runoff. Groundwater movement is in a southerly direction, and some private wells both upgradient and downgradient of the Site were found to contain detectable concentrations of contaminants, possibly originating from the Site.

Remedial alternatives for the Site were screened and evaluated in Metcalf & Eddy of New York, Inc.'s September 1988 FS Report. Based on the results of the screening and evaluation process, a remedial alternative including on-site groundwater extraction and treatment (air stripping, carbon adsorption, and chemical precipitation); landfilling of municipal waste; and, stabilization/solidification and landfilling of manufacturing waste, slag waste and pond sediment was recommended for the Site. The NYSDEC subsequently issued a ROD in March 1989 which selected the recommended remedial alternative in the 1988 FS Report as the cleanup plan for the Site.

A Remedial Design Study was completed by Metcalf & Eddy of New York, Inc. in July 1992 to verify and design the selected remedial alternative as present in the 1989 ROD. Treatability studies and sampling performed as part of the Remedial Design Study indicated that portions of the selected remedial alternative were not applicable to the Site. As a result, a revised remedial alternative consisting of removal and off-site disposal of PCB waste above 500 ppm; stabilization/solidification of slag waste; waste consolidation; construction of a landfill cover; perimeter fencing and institutional controls; and, groundwater monitoring was selected in a March 1994 AROD. The remedy was completed in 1997.

Routine site maintenance, inspections, and environmental monitoring have been conducted at a frequency determined by the NYSDEC since 2000 to ensure the remedy remains effective. In April 2014, a SMP was developed and implemented to manage the Site's ICs/ECs. In April 2019, the SMP was revised (Rev. 2) to be consistent with the NYSDEC SMP template and incorporate a QAPP, HASP, additional groundwater sampling procedures and laboratory analytes, and requirements for sediment and surface water sampling.

A detailed Site history, including the dates and descriptions of significant events, and a Custodial Record detailing available Site reports, are included in **Appendix A**.

1.3 Regulatory Requirements/Cleanup Goals

The 1997 remedial action removed the highly contaminated waste and consolidated the remaining waste, impact sediment and impacted soil below an engineered cap. On-site groundwater periodically exhibits elevated levels of VOCs and metals. Surface water is monitored for metal exceedances.

The March 1994 AROD does not specify RAOs for the Site; however, the following RAOs are presented in the April 2019 SMP:

Groundwater

RAOs for Public Health Protection

- Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of, volatiles from contaminated groundwater.

RAOs for Environmental Protection

- Restore the groundwater aquifer to pre-disposal/pre-release conditions, to the extent practicable.
- Prevent the discharge of contaminants to surface water.

Soil/Waste Material under Landfill Cap

RAOs for Public Health Protection

- Prevent indigestion/direct contact with contaminated soil/waste material under the landfill cap.
- Prevent inhalation of or exposure from contaminants volatizing in soil/waste material under the landfill cap.

RAOs for Environmental Protection

- Prevent migration of contaminants that would result in the groundwater or surface water contamination.
- Prevent impacts to biota from ingestion/direct contact with soil/waste material causing toxicity or impacts from bioaccumulation through the terrestrial food chains.

2.0 Institutional and Engineering Control Plan Compliance

2.1 Institutional Controls

The Schatz Federal Bearing Site is managed under the New York State Superfund Program. The Site's inclusion on the Registry of IHWDS, ROD, AROD, EN and the SMP act as ICs.

The April 2019 SMP defines the following for the Site:

- OM&M procedures for the Site;
- The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Dutchess County Department of Health, to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the NYSDEC;
- Access to the Site must be provided to agents, employees, or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions; and,
- Restricts Site use to prohibit farming and vegetable gardens.

2.2 Engineering Controls

The Site EC's include the landfill cover, perimeter fence, monitoring well network, and a groundwater interceptor trench.

With regard to the groundwater interceptor trench, construction records could not be located to confirm construction details. The April 2019 SMP should be updated to include as-built details and monitoring methods to confirm its effectiveness when the records are located. The interceptor trench is believed to drain to the pond located west of the landfill as a buried pipe was located between the trench and pond. The approximate location of the groundwater interceptor trench can be found on **Figure 2**.

3.0 Monitoring and Sampling Plan Compliance

The April 2019 SMP was prepared to manage remaining on-site contamination and ensure that the remedy remains effective. The April 2019 SMP specifies the following Site monitoring and sampling activities:

Summary of April 2019 SMP Site Monitoring and Sampling Plan							
Site Management Activity	Frequency	Location	Laboratory Analysis				
Site Inspection	Semi-annual	Site property	Not Applicable				
Groundwater Sampling	Every 5 quarters	Bedrock Wells Overburden Wells • B-1 • S-1 • B-2 • S-2 • B-3 • S-3 • B-4 • S-4 • B-5 • S-5 • S-7 • S-8 • S-9 • S-10	 TCL VOCs by USEPA Method 8260 TAL Metals by USEPA Method 6010/7470 for total and dissolved fractions 				
Surface Water Sampling	Every 5 quarters	Six samples from locations adjacent to the landfill	 TCL VOCs by USEPA Method 8260 TAL Metals by USEPA Method 6010/7470 Total Suspended Solids by USEPA Method 160.2 				
Sediment Sampling	Every 5 quarters	Six samples from locations adjacent to the landfill	 PCBs by USEPA Method 8082 TAL Metals by USEPA Method 6010/7471 Total Organic Carbon by USEPA Method 415.1 				
Groundwater Monitoring Report	Every 5 quarters or included within the PRR	Not Applicable	Not Applicable				
PRR	Every 3 years	Not Applicable	Not Applicable				

3.1 Site Inspection

In March and September 2019, TRC performed semi-annual Site inspections in accordance with the SMP. The Site inspections included an evaluation of the current site use, condition of the landfill cover system, vegetation, monitoring wells, access gates, roads, etc. A semi-annual Site inspection could not be completed in March 2020 due to NYS Executive Order 202.6 and as directed by the NYSDEC in response to the 2019 Novel Coronavirus (COVID-19) outbreak. The inspection event will be rescheduled and completed upon resumption of field activities and included in the next PRR.

A summary of the March and September 2019 Site Management activities are provided in the table below:

Summary of Site Management Activities March and September 2019							
Site Management Activity	Summary of Results	Maintenance/Corrective Measure					
Landfill cover, access road and perimeter fence	During the March and September 2019 inspections, the landfill perimeter and cover appeared to be dry, and the soil stable, containing no visible erosion or seeps. Site access roads were in good condition, as were the perimeter fence and gates. An animal burrow was noted on the south portion of the landfill cap; however, no animals were observed at the time of the inspections.	No routine maintenance or corrective measures needed at this time.					
Drainage	During the March and September 2019 inspections, the Site drainage swales and culverts appeared to be in good condition, containing no vegetation that would inhibit stormwater flow. No noticeable areas of active erosion were observed.	No routine maintenance or corrective measures needed at this time.					
Monitoring Well Network	In September 2019, all 14 monitoring wells including protective casings and covers, were observed to be in good condition.	No routine maintenance or corrective measures needed at this time.					
Groundwater gauging and sampling	In September 2019, all 14 monitoring wells were gauged. Groundwater samples were collected from 11 of the 14 wells utilizing USEPA low-flow sampling methods. Overburden monitoring wells S-2, S-4, and S-5 were dry at the time of sampling, and therefore, groundwater samples were not collected.	No routine maintenance or corrective measures needed at this time.					
Surface water sampling	In September 2019, six surface water samples were collected from the ponded area located west of the landfill.	No routine maintenance or corrective measures needed at this time.					
Sediment sampling	In September 2019, six sediment samples were collected from the ponded area located west of the landfill.	No routine maintenance or corrective measures needed at this time.					

Field activity reports and photographic logs from March and September 2019 inspection activities can be found in **Appendix B**.

3.2 Groundwater Monitoring Summary

3.2.1 Groundwater Gauging

From September 23 to 24, 2019, prior to groundwater sample collection, all wells were gauged for depth to groundwater to determine potentiometric surface flow direction. For each hydrogeologic unit, the number of gauged monitoring wells, measured groundwater elevation range, and inferred groundwater flow direction is presented in the table below:

September 2019 Hydrogeologic Summary					
Overburden Aquifer	Bedrock Aquifer				
Number of Gauged Wells	Number of Gauged Wells				
9 (including 3 dry)	5				
Groundwater Elevation Range	Groundwater Elevation Range				
Lowest groundwater elevation: 150.22 feet AMSL (S-10) Highest groundwater elevation: 179.56 feet AMSL (S-1)	Lowest groundwater elevation: 159.08 feet AMSL (B-4) Highest groundwater elevation: 184.19 feet AMSL (B-2)				
Inferred Groundwater Flow Direction	Inferred Groundwater Flow Direction				
South	South				

A table summarizing the groundwater gauging measurements for all monitoring wells is provided in **Table 1**. Contour maps showing the groundwater flow directions for the overburden and bedrock aquifers are presented on **Figures 3** and **4**, respectively.

3.2.2 Groundwater Monitoring

TRC collected groundwater samples from 11 of the 14 monitoring wells utilizing USEPA low-flow sampling techniques. Overburden monitoring wells S-2, S-3, and S-5 were dry upon gauging, and therefore, groundwater samples could not be collected. Groundwater sampling logs are presented in **Appendix C**.

All 11 groundwater samples, in addition to QA/QC samples collected at the frequencies specified in TRC's April 2011 Generic QAPP, were submitted to Eurofins/TestAmerica Laboratories of Amherst, New York (Eurofins/TestAmerica) for analysis of VOCs and metals by USEPA Methods 8260 and 6010/7470, respectively. Additionally, groundwater samples from B-3, S-3, and S-1 were submitted for analysis of PFAS and 1,4-dioxane by USEPA Methods 537 modified and 8270 SIM, respectively. These three monitoring wells were selected based upon their distribution across the Site, historical groundwater flow direction (upgradient, on-site, downgradient), hydrogeologic zone, and historical analytical results. All monitoring wells were sampled in general accordance with the NYSDEC August 2018 Collection of Groundwater Samples for PFAS from Monitoring Wells Sample Protocol (Rev 1.2).

A summary of the monitoring well details and applicable groundwater sampling information is presented in the table below:

Γ

	Summary of Groundwater Monitoring and Sampling Activities September 2019							
		Well Details	Sept. 2019 Groundwater Sampling Event					
Well ID	Northing*	Easting*	Screen Zone (ft. bgs)	Unit Screened	DTW (ft. bgs)	SMP Analytes	Notes	
B-1	1048888.92	659261.09	26.5 - 52.5	Bedrock	11.15	VOCs and Metals		
В-2	1049192.04	658787.36	15.5 - 35.5	Bedrock	9.25	VOCs and Metals		
В-3	1048573.39	658797.73	40.5 - 121.7	Bedrock	20.60	VOCs and Metals	PFAS, 1,4- Dioxane	
B-4	1048363.64	658912.17	13.0 - 33.0	Bedrock	16.30	VOCs and Metals		
B-5	1048752.31	658488.73	29.5 - 122.0	Bedrock	16.30	VOCs and Metals		
S-1	1048884.31	659263.56	10.0 - 20.0	Overburden	10.90	VOCs and Metals	PFAS, 1,4- Dioxane	
S-2	1049190.76	658792.34	NA	Overburden	Dry	NS	Well was dry and not sampled.	
S-3	1048572.43	658792.10	23.5 - 33.5	Overburden	24.21	VOCs and Metals	PFAS, 1,4- Dioxane	
S-4	1048868.35	658613.02	20.0 - 30.0	Overburden	Dry	NS	Well was dry and not sampled.	
S-5	1048808.22	658863.53	47.0 - 52.0	Overburden	Dry	NS	Well was dry and not sampled	
S-7	1048750.12	658482.63	17.0 - 22.0	Overburden	13.72	VOCs and Metals		
S-8	1049011.99	658496.40	5.5 – 9.5	Overburden	8.16	VOCs and Metals		
S-9	1048521.01	659169.01	18.0 - 28.0	Overburden	9.95	VOCs and Metals		
S-10	1048597.24	659304.75	20.0 - 30.0	Overburden	18.00	VOCs and Metals		

Notes:

NS - Not sampled

NA - Not available, a well construction log for S-2 could not be located.

DTW - Depth to water

 $ft. \ bgs-feet \ below \ ground \ surface$

* – Horizontal Coordinate System: New York State Plane – East 3101; Vertical Datum NAD 1983 in US Survey Feet Monitoring wells B-3 and B-5 were reportedly deepened in 1990.

A table with well construction details is provided in **Appendix A**.

3.2.3 Groundwater Analytical Results

Environmental Conservation

Department of

A summary of groundwater analytical data for VOCs, metals, and PFAS can be found in **Tables 2, 3,** and **4**, respectively. The DUSRs (for the associated Analytical Services Protocol Category B laboratory reports) can be found in **Appendix D**. Detected compounds exceeding their respective NYSDEC Class GA Values and SCGs for the overburden and bedrock monitoring wells are illustrated on **Figure 5**. Concentration trend line graphs for metal analytes identified in the ROD and April 2019 SMP (arsenic, barium, cadmium, chromium, lead, mercury, and zinc) are provided in **Appendix E**.

An exceedance summary of the September 2019 groundwater analytical results is outlined below:

Exceedance Summary of Laboratory Analytical Results in Groundwater September 2019							
Constituent	Class GA Value*	Concentration Range (µg/L) Location with Highest Detection		Frequency Exceeding Class GA			
		Volatile Organic Compou	ınds				
	No Re.	sults above NYSDEC Class	GA Values				
		Metals, total					
Arsenic	25	ND - 29	S-7	1/11			
Iron	300 37 - 12,400 S-1		6/11				
Lead 25 ND - 30 S-1		S-1	1/11				
Manganese 300 22 - 11,500 S-7				4/11			
Sodium	20,000	2,100 - 47,000 B-1		3/11			
Metals, dissolved							
Manganese	300	ND - 10,800	S-7	3/11			
Sodium 20,000 2,500 - 49,900 B-1 4/11							

Notes

NEW YORK

ND – Not detected above the specified quantitation limit.

 $\mu g/L-micrograms \ per \ liter$

* - NYSDEC Ambient Water Quality Standards and Guidance Values for Class GA water, June 1998 with the April 2000 Addendum.

Additionally, the groundwater sample results from monitoring wells B-3, S-1, and S-3 that were analyzed for emerging contaminants are presented below:

Summary of Laboratory Analytical Results of Emerging Contaminants in Groundwater September 2019							
Constituent	SCG*	Concentration Range (ng/L)	Location with Highest Detection	Frequency Exceeding SCG*			
]	PFAS					
Perfluorooctanoic acid (PFOA)	Perfluorooctanoic acid (PFOA) 10 ND – 29.0 S-3 2/3						
6:2 Perfluorooctane Sulfonate (6:2 FTS)	100	ND - 900	В-3	2/3			
Total PFAS	500	ND - 915.39	В-3	2/3			
	1,4-	-Dioxane					
Constituent SCG** Concentration Range (µg/L) Location with Highest Detection Frequency Detected							
1,4-Dioxane	NS	ND - 42	S-3	2/3			

Notes

ND - Not detected above the specified quantitation limit

NS - No standard

 $\mu g/L-micrograms \ per \ liter$

ng/L - nanograms per liter

* - NYSDEC Recommended Values from the Guidelines for Sampling and Analysis of PFAS Under NYSDEC's Part 375 Remedial Programs, January 2020.

** - NYSDEC Ambient Water Quality Standards and Guidance Values for Class GA water, June 1998 with the April 2000 Addendum.

3.3 Surface Water and Sediment Monitoring

3.3.1 Surface Water and Sediment Sampling

On September 24, 2019, TRC collected six co-located surface water and sediment samples. The six surface water samples were submitted to Eurofins/TestAmerica for analysis of VOCs, metals, and total suspended solids by USEPA Methods 8260, 6010/7470, and 160.2, respectively. The six sediment samples were submitted for laboratory analysis of PCBs, metals, and total organic carbon by USEPA Methods 8082, 6010/7471, and 514.1, respectively.

A summary of the September surface water and sediment sampling activities is presented in the table below:

	Summary of Surface Water and Sediment Sampling Activities September 2019							
	Location Details		2019 Surface Water/Sediment Sampling Event					
Sample ID	Northing	Easting	SMP Analytes					
SW-1A	1048732.14	658410 6265	VOCs, Metals, Total Suspended Solids					
SED-1A	1010752.11	658410.6265 658428.05 658633.50	PCBs, Metals, Total Organic Carbon					
SW-1B	1048714.71	659429.05	VOCs, Metals, Total Suspended Solids					
SED-1B	1048/14./1	038428.03	PCBs, Metals, Total Organic Carbon					
SW-2A	1048600.15	658633 50	VOCs, Metals, Total Suspended Solids					
SED-2A	1048000.15	038033.30	PCBs, Metals, Total Organic Carbon					
SW-2B	1048580.23	658683.31	VOCs, Metals, Total Suspended Solids					
SED-2B	1048380.23	038083.51	PCBs, Metals, Total Organic Carbon					
SW-3A	1048547.86	658723.15	VOCs, Metals, Total Suspended Solids					
SED-3A	10.00.1,100		PCBs, Metals, Total Organic Carbon					
SW-3B	1048499.29	658760.51	VOCs, Metals, Total Suspended Solids					
SED-3B	1040477.27	056700.51	PCBs, Metals, Total Organic Carbon					

3.3.2 Surface Water Analytical Results

Surface water analytical data for VOCs, metals, and total suspended solids can be found in **Tables 5** and **6**, respectively. The DUSRs (for the associated Analytical Services Protocol Category B laboratory reports) can be found in **Appendix D**. Detected compounds exceeding their respective NYSDEC Class GA Values for each surface water sample location are illustrated on **Figure 6** and summarized in the table below:

NEW YORK

Exceedance Summary of Laboratory Analytical Results in Surface Water Samples								
		September 20	19					
Constituent	Class GA Value*	Concentration Range (µg/L)	Location with Highest Detection	Frequency Exceeding Class GA*				
		Volatile Organic Con	ipounds					
Chloroethane	5	ND - 13	SW-3B	1/6				
		Metals, total	·					
Arsenic	25	6.4 - 61	SW-2B	2/6				
Barium	1,000	160 - 1,900	SW-3A	2/6				
Beryllium	3	ND - 3.7	SW-2B	1/6				
Cadmium	5	ND - 28	SW-2B	3/6				
Chromium	50	ND - 150	SW-2B	2/6				
Copper	200	2.3 - 970	SW-2B	2/6				
Iron	300	22,200 - 174,000	SW-2B	6/6				
Lead	25	6.2 - 2,000	SW-2B	5/6				
Manganese	300	1,200 - 18,300	SW-2B	6/6				
Mercury	0.7	ND – 1.1	SW-2B	2/6				
Nickel	100	ND - 220	SW-2B	2/6				
Selenium	10	ND - 11	SW-2B	1/6				
Sodium	20,000	11,200 - 22,700	SW-1B	4/6				

Notes

ND - Not detected above the specified quantitation limit.

 $\mu g/L-micrograms \ per \ liter$

* - NYSDEC Ambient Water Quality Standards and Guidance Values for Class GA water, June 1998 with the April 2000 Addendum.

3.3.3 Sediment Analytical Results

A summary of the sediment analytical data for PCBs, metals/mercury, and total organic carbon can be found in **Table 7**. The DUSRs (for the associated Analytical Services Protocol Category B laboratory reports) can be found in **Appendix D**. Detected compounds exceeding their respective NYSDEC Freshwater Sediment Guidance values for each well are illustrated on **Figure 6** and are summarized on the table below:

	Exceedance Summary of Laboratory Analytical Results in Sediment Samples										
September 2019											
Constituent	FSGV Class A	FSGV Class B	FSGV Class C	Concentration Range (mg/kg)	Location with Highest Detection	Frequency within Class B	Frequency within Class C				
				PCB Aroclors							
PCBs, Total	<0.1	0.1 - 1.0	>1.0	ND - 1.1	SED-3B	1/6	1/6				
				Metals, total							
Arsenic	<10	10 - 33	>33	4.6 - 12.9	SED-1A	3/6	0/6				
Cadmium	<1	1 - 5	>5	ND - 4.6	SED-2A	3/6	0/6				
Copper	<32	32 - 150	>150	17.5 – 148	SED-2A	5/6	0/6				
Lead	<36	36 - 130	>130	21.2 - 362	SED-2A	4/6	1/6				
Mercury	<0.2	0.2 - 1	>1	0.065 - 0.21	SED-2A	1/6	0/6				
Nickel	<23	23 - 49	>49	21-43.7	SED-2A	4/6	0/6				
Zinc	<120	120 - 460	>460	137 – 351	SED-2A	6/6	0/6				

Notes

ND - Not detected above the specified quantitation limit.

mg/kg - milligrams per kilogram

FSGV – Freshwater Sediment Guidance Values from the NYSDEC Screening and Assessment of Contaminated Sediment, June 2014.

4.0 Cost Summary

The total estimated cost of TRC's site management activities for the period January 1, 2019 through March 31, 2020 is approximately \$44,225. Site management activities included semi-annual site inspections, groundwater monitoring, surface water and sediment sampling, and laboratory analysis of environmental samples as detailed in **Section 3.0**. The total includes engineering and subcontractor costs, as well as expenses associated with the project. It should be noted that the total does not include costs incurred by NYSDEC in support of the project. A summary of the site management costs is presented below:

Summary of Site Management Costs - TRC January 1, 2019 through March 31, 2020								
Cost Item	Amount Expended (January 1, 2019 through March 31, 2020)	Percent of Total Cost						
Engineering Support								
TRC	\$30,350	69%						
Subcontractors								
Eurofins/TestAmerica	\$10,925	25%						
Expenses		L						
TRC	\$2,950	6%						
Total Cost	\$44,225							

The following is included in each cost item indicated in the table above:

- Engineering support includes labor costs associated with project management (e.g., WA Package preparation, monthly invoicing, project scheduling and coordination, etc.), site inspections, groundwater, surface water and sediment sampling, and reporting (i.e., site inspection report, DUSR, electronic data deliverable preparation, and PRR).
- Subcontractors include analytical laboratory costs associated with the groundwater sampling event.

Expense costs include travel, equipment, and supplies in support of the site inspection, groundwater sampling event and routine site maintenance activities.

5.0 Conclusions and Recommendations

5.1 Conclusions

- Based on the groundwater elevation measurements collected in September 2019, groundwater flow in both the overburden and bedrock aquifers is to the south. This is consistent with historical reporting.
- The VOC COCs in groundwater at the Site are 1,1-dichloroethane, 1,1-dichloroethene, 1,1,1trichloroethane and vinyl chloride. Based on the information presented in **Table 8**, the following conclusions are made regarding concentrations of these contaminants in groundwater:
 - No VOCs were detected at concentrations above Class GA Values in the 11 groundwater samples collected during the September 2019 groundwater sampling event.
 - VOC COCs have not been detected at concentrations above Glass GA Values in overburden monitoring wells S-1 (cross gradient), S-2 (upgradient), S-9 (downgradient) and S-10 (downgradient) or bedrock monitoring wells B-1 (cross gradient), B-2 (upgradient) and B-4 (downgradient), since post-remediation monitoring began in 2000.
 - 1,1,1-Trichloroethane is the only VOC COC that has been detected at a concentration above Class GA Values in overburden monitoring wells S-7 (cross gradient) and S-8 (upgradient) and bedrock monitoring well B-5 (cross gradient) since post-remediation monitoring began in 2000. 1,1,1-Trichloroethane was detected at a concentration above its Class GA Value during one sampling event in October 2008 and has not been detected at a concentration above its Class GA Value since that time.
 - Concentrations of VOC COCs in overburden monitoring well S-3 (downgradient) and bedrock monitoring well B-3 (downgradient) show a declining trend and have not had concentrations above Class GA Values since the November 2005 and March 2016 sampling events, respectively.
- The metal COCs in groundwater at the Site are arsenic, barium, cadmium, chromium, lead, mercury, and zinc. Metal COCs were not detected at concentrations above Class GA Values in the 11 filtered groundwater samples collected during the September 2019 groundwater sampling event. Arsenic and lead were the only metal COCs detected at concentrations above Class GA Values in the 11 filtered groundwater samples collected during the September 2019 groundwater sampling event. Total arsenic was detected at a concentration slightly above its Class GA Value in overburden monitoring well S-7 (cross gradient). Total lead was detected at a concentration slightly above its Class GA Value in overburden monitoring well S-1 (cross gradient). Concentration verses time graphs for total metal COC results are presented in **Appendix E**. As shown on the graphs, total metal COC concentrations vary over time, but are generally below Class GA Values for most of the sampling events.
- PFAS including PFOA and 6:2 FTS were detected at concentrations above guidance values in downgradient overburden monitoring well S-3 and downgradient bedrock monitoring well B-3. No Site-related VOC or metal COCs were detected at concentrations above Class GA Values in the samples collected from these wells during the September 2019 sampling event. However, VOC COCs have been detected at concentrations above Class GA Values in both S-3 and B-3 as part of prior sampling events. As such, it is unclear if the PFAS detections are related to the Site.

- Metal COCs including arsenic, barium, cadmium, chromium, lead and mercury were detected in the September 2019 surface water samples at concentrations above guidance values. September 2019 metals concentrations were generally one order of magnitude higher than the March 2016 concentrations.
- Metal COCs including arsenic, cadmium, lead and mercury were detected in the September 2019 sediment samples at concentrations above guidance values. September 2019 metals concentrations were lower than the concentrations detected in March 2016 but were generally within the same order of magnitude.
- Total PCBs were detected in SED-3A and SED-3B, collected from the western portion of the Site, at concentrations of 0.78 mg/kg and 1.1 mg/kg, respectively. SED-3A exceeds the Class B Freshwater Sediment Guidance Values and SED-3B exceeds the Class C Freshwater Sediment Guidance Values. The NYSDEC cleanup goal for PCBs in surface soils and stream or pond sediments is 1 mg/kg.
- Site and groundwater use are consistent with the with the restrictions set forth in the AROD and the April 2019 SMP.
- The remedy continued to be protective of human health and the environment during this reporting period.
- 5.2 Recommendations
 - It is recommended that the site inspection frequency be reduced from semi-annual to annual and following severe weather events (as needed) to certify that the ICs/ECs are functioning as intended. A site inspection report should be completed following each inspection event.
 - Water level measurements should continue to be collected from the Site monitoring wells during the inspection and groundwater sampling events.
 - Based on the elevated PFAS results in downgradient overburden and bedrock monitoring wells S-3 and B-3, PFAS should be included as an analyte in all monitoring wells for at least one future groundwater sampling event to confirm the presence/absence of PFAS at the Site.
 - It is recommended that the groundwater, surface water and sediment sampling frequency be reduced from one sampling event every fifth quarter to one sampling event every three years.
 - The GWMR requirement should be eliminated.
 - The April 2019 SMP should be revised to reflect the above changes/modifications, if the changes are acceptable to the NYSDEC.

6.0 Certification of Engineering and Institutional Controls

For each institutional or engineering control identified for the Site, I certify that all of the following statements are true:

- The institutional and/or engineering control employed at this Site is unchanged from the date the control was put in place, or last approved by DER;
- Nothing has occurred that would impair the ability of such control to protect public health and the environment; and,
- Nothing has occurred that would constitute a violation or failure to comply with any Site Management Plan for this control.

TRC Engineers, Inc.

Prepared By

-gmp Reviewed By:

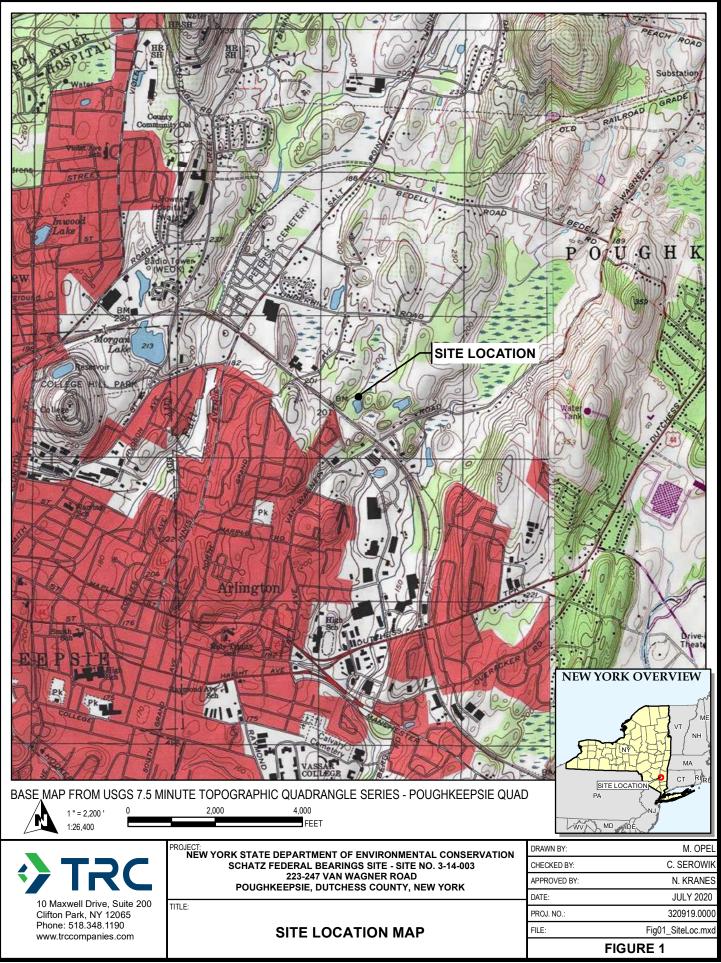
James J. Magda, P.G. Senior Technical Reviewer

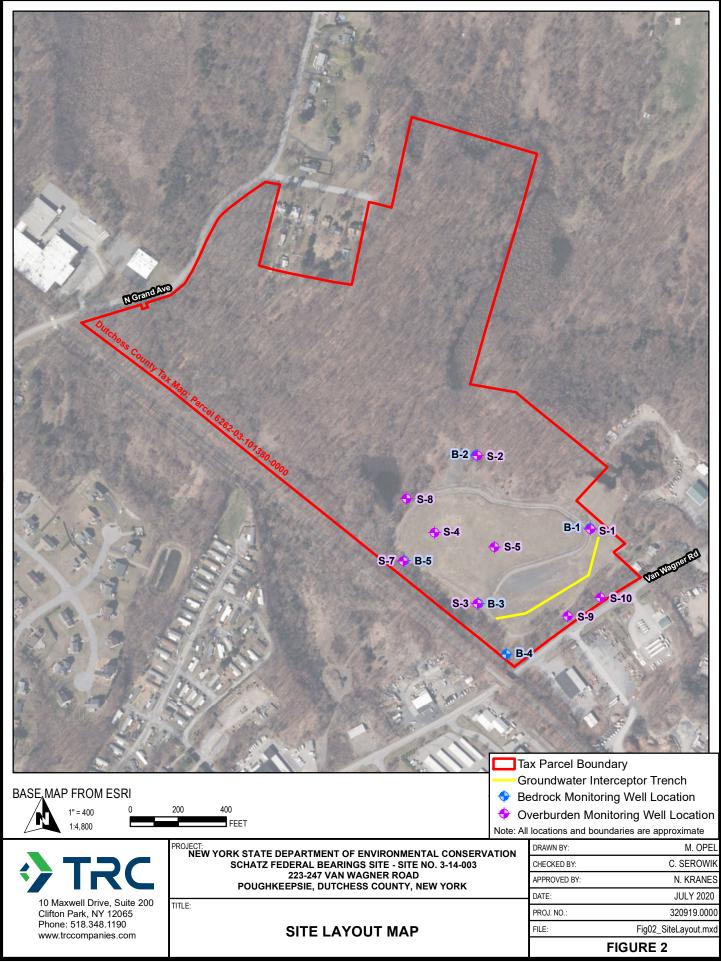
Nathan T. Kranes, P.G.

Project Manager

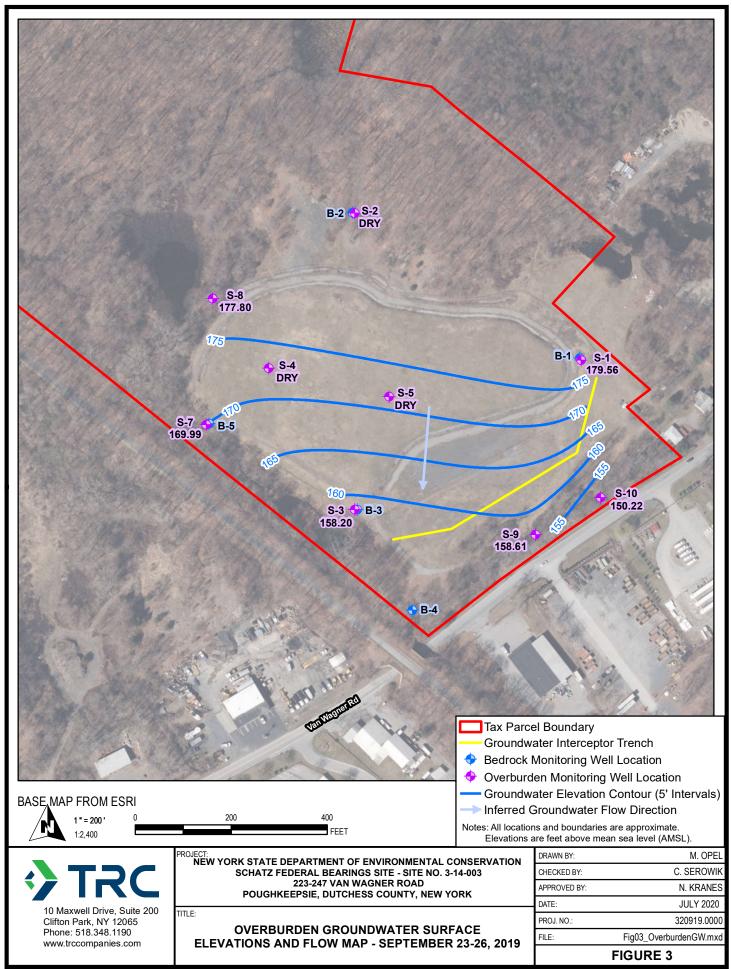
7.0 Future Site Activities

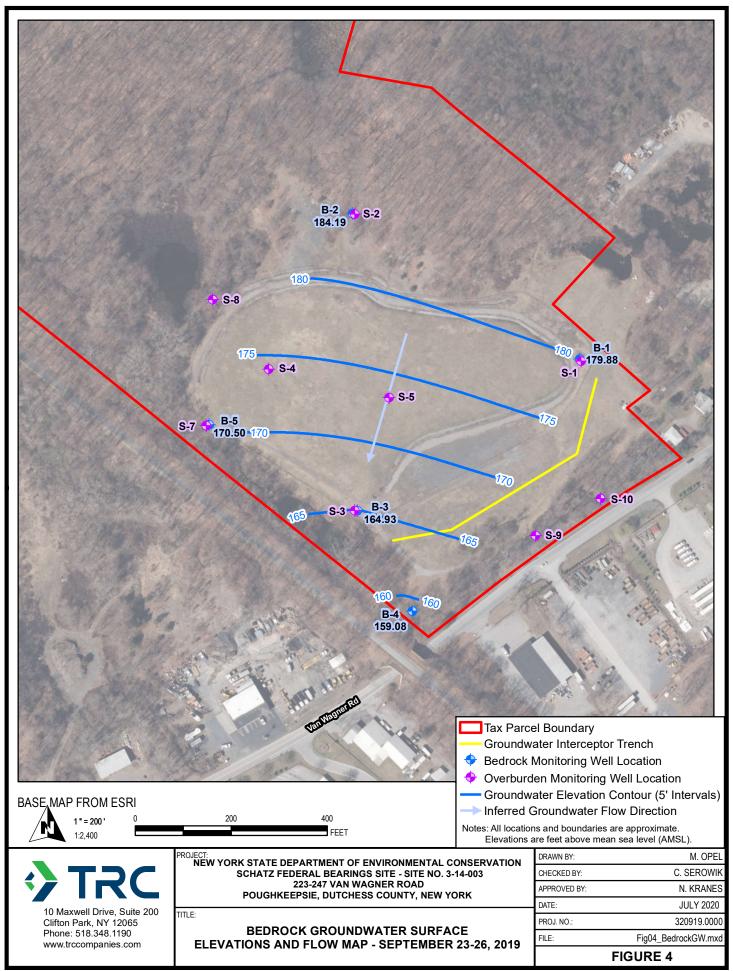
Based on the recommendations in Section 5.0, the following site management activities will be completed during the next reporting period (March 2020 to March 2023):

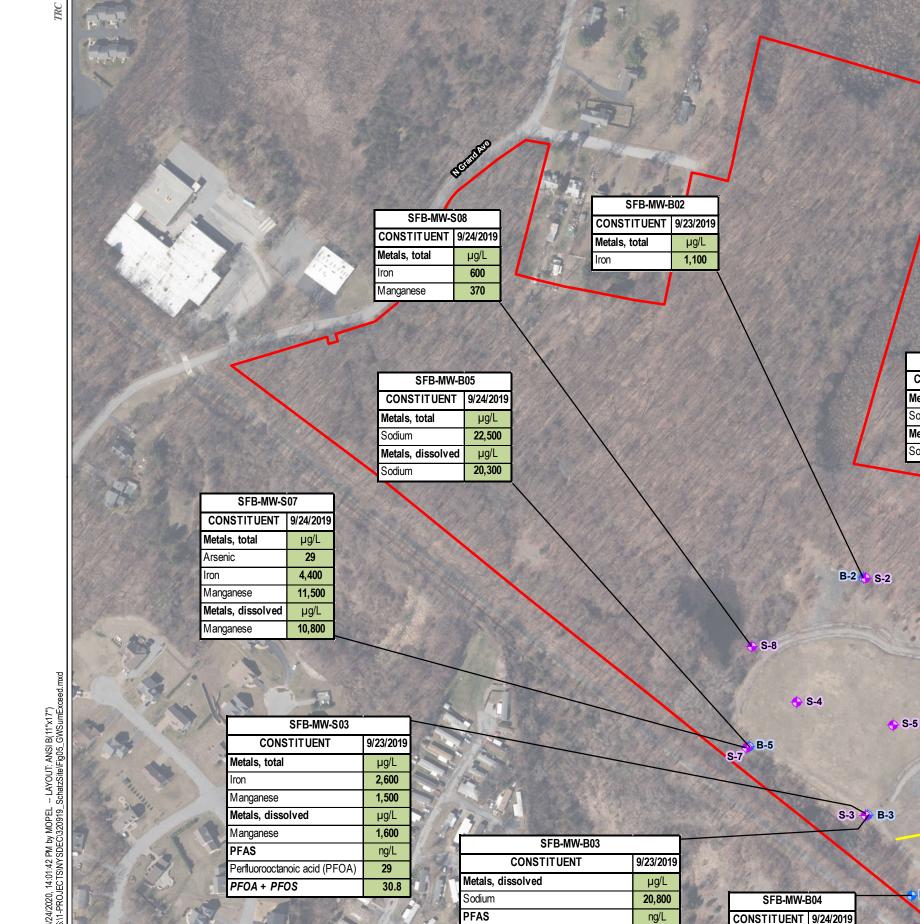

- Site Inspections Annual (next scheduled: Q2 2020, Q1 2021, Q1 2022, Q1 2023, Q1 2024 and Q1 2025)
- Groundwater Sampling Every 3 years (next scheduled: Q1 2022)
- Sediment Sampling Every 3 years (next scheduled: Q1 2022)
- Surface Water Sampling Every 3 years (next scheduled: Q1 2022)



FIGURES






S:\1-PROJECTS\NYSDEC\320919_SchatzSite\Fig01_SiteLoc.mxd -- Saved By: MOPEL on 4/24/2020, 13:21:06 PM

S:\1-PROJECTS\NYSDEC\320919_SchatzSite\Fig02_SiteLayout.mxd -- Saved By: MOPEL on 4/24/2020, 13:29:10 PM

6:2 Perfluorooctane Sulfonate (6:2 FTS)

Total PFAS

900

915.39

Metals, total

Iron

µg/L

910

µg/L

21,000

µg/L

20,600

SFB-MW-B01

CONSTITUENT 9/23/2019

µg/L 47,000

µg/L

49,900

B-1

S-9

S-

S-10

Sodium

Sodium

Metals, dissolved

Metals, total

Metals, dissolved

Sodium

Sodium

B-4

Sa ğ Tax Parcel Boundary

Groundwater Interceptor Trench

Bedrock Monitoring Well Location

Overburden Monitoring Well Location

CONSTITUENT	Class GA Value
Metals, total	µg/L
Arsenic	25
Iron	300
Lead	25
Manganese	300
Sodium	20,000
Metals, dissolved	µg/L
Manganese	300
Sodium	20,000
PFAS	ng/L
PFOA	10**
6:2 Perfluorooctane Sulfonate (6:2 FTS)	100**
PFOA + PFOS	10**
Total PFAS	500*

List of Acronyms:

µg/L - micrograms per liter ng/L - nanograms per liter PFAS - Per- and polyfluoroalkyl substances PFOA - Perfluorooctanoic acid PFOS - Perfluorooctanesulfonic acid

Notes:

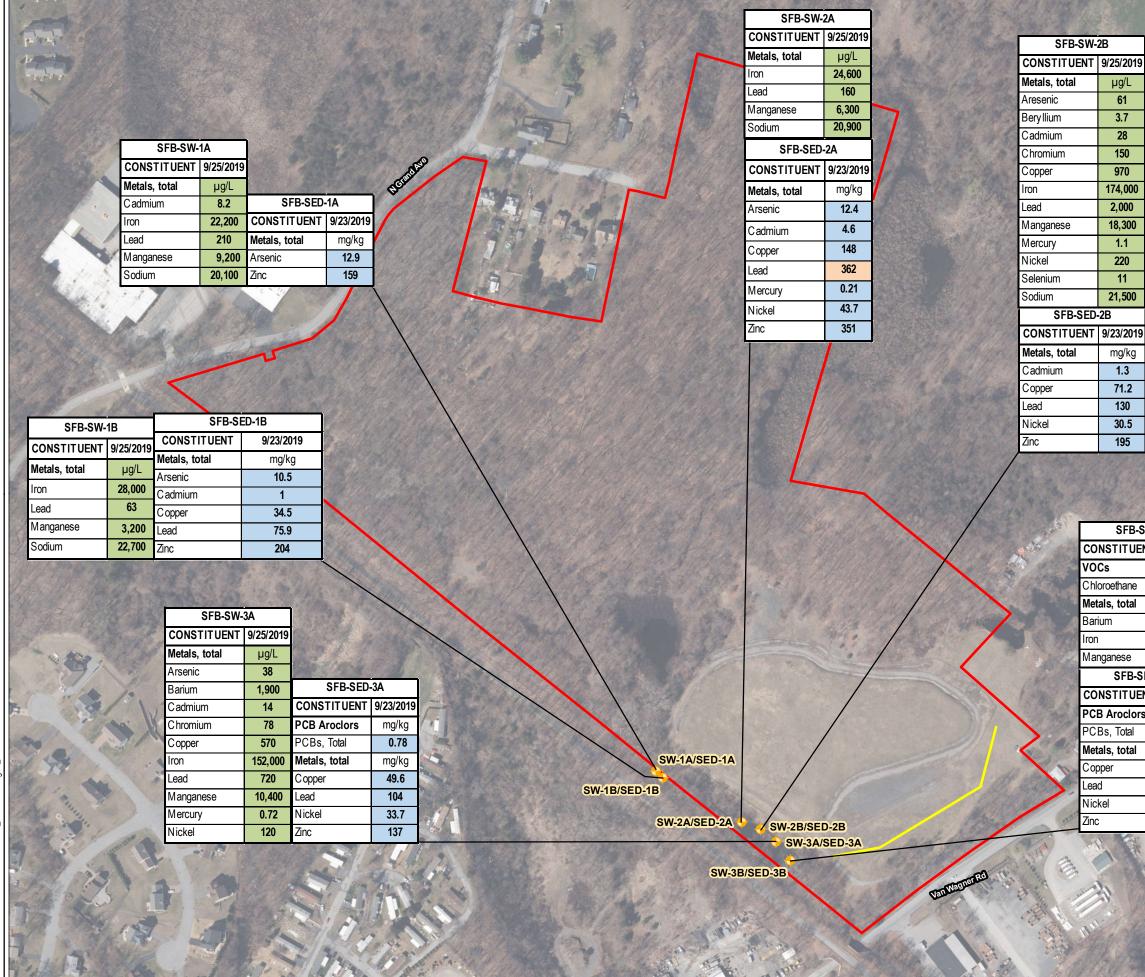
 \bullet

Shading indicates result above Class GA Value.

* - NYSDEC Ambient Water Quality Standards and Guidance Values for Class GA water. ** - Guidelines for Sampling and Analysis of PFAS, NYSDEC

Part 375 Remedial Programs, January 2020. All locations and boundaries are approximate.

Δ	0	200	400 Feet
		1 " = 250 ' 1:3,000	Feel
		1.0,000	


PROJECT: NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION SCHATZ FEDERAL BEARINGS SITE - SITE NO. 3-14-003 223-247 VAN WAGNER ROAD POUGHKEEPSIE, DUTCHESS COUNTY, NEW YORK

SUMMARY OF DETECTED COMPOUNDS EXCEEDING NYSDEC GROUNDWATER QUALITY STANDARDS/GUIDANCE -SEPTEMBER 23-26, 2019

DRAWN BY:	M. OPEL	PROJ NO.:	320919.0000
CHECKED BY:	C. SEROWIK		
APPROVED BY:	N. KRANES		FIGURE 5
DATE:	JULY 2020		
	тэс		10 MAXWELL DRIVE, SUITE 200 CLIFTON PARK, NY 12065

PHONE: 518.348.1190 WWW.TRCCOMPANIES.COM Fig05_GWSumExceed.mxd

X MALL		ax Parcel Bo	undar	/		
still.		Groundwater I			ench	
12-14-11	🔶 S	Surface Water	/ Sed	iment l	_ocatic	on
		CONSTITUE	NT Cla	<mark>ss GA V</mark> a μg/L	lue	
AL TS P						
		Metals, total Arsenic		μg/L 25		
My still Sill		Barium		1,000	°	
MARC / The		Beryllium Cadmium		3		
A HE KAN		Chromium Copper		50 200		
H Harris		Iron		300	?	
X ASMAS		Lead M anganese		25 300	v	
		M ercury Nickel		0.7 100		
1995 A.S. 1		Selenium		10		
		Sodium		20,000		
		CONSTITUENT PCB Aroclors	Class A* mg/kg	Class B* mg/kg	Class C* mg/kg	
A all all		PCBs, Total	< 0.1	0.1-1	>1	
		Metals, total Arsenic	mg/kg < 10	mg/kg 10-33	mg/kg > 33	
		Cadmium Copper	<1 <32	1-5 32-150	> 5 > 150	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Cadmium	< 1	1-5	>5	
all and		Lead M ercury	<36 <0.2	36-130 0.2-1	> 130 >1	
		Nickel Zinc	<23 <120	23-49 120-460	>49 >460	
			120	120 100	100	l
at the	List of Acro	ograms: per liter				
S. Star St.		igrams per kilogra	m			
1. A.S.		ychlorinated biphe				
	VOCs - Vola	atile Organic Com	pounds			
AL STREET	Notes:					
3B		wn in bold and g	reen sh	aded typ	e excee	d the listed
9/25/2019	Guidance v	value. k State Departmer	nt of Env	ironment	al Conse	rvation
100		Ambient Water C				
μg/L 13		Class GA water, Ju				
µg/L		State Departmen Freshwater Sedir				
1,200	, · · · · · ·	t of Contaminated				•
31,000		- indicates the res	ult is be	low the C	lass A Se	ediment
1,200	Guidance V	alues. g - indicates the re	ocult ic.c	have the	Class P	Sodimont
-3B	Guidance V	•	5011 15 6	bove the	Class D	Seument
9/23/2019		iding - indicates th	e result	is above f	the Class	C
1000		Buidance Values. licates the result	oxood	the ann	licable e	tandard
mg/kg			CALCEU	200		400
1.1		\				Feet
mg/kg 48.1				= 250 '		
45.6	PROJECT:			:3,000		
31.4		TATE DEPARTMEN				
183	PC	223-247 V DUGHKEEPSIE, DU				RK
105	TITLE:	· · · · · · · · · · · · · · · · · · ·				
Sert		F DETECTED COMF SURFACE WATER (SEPTEI	QUALITY			
2	DRAWN BY:	M. OPEL	PROJ NO.:			320919.0000
1	CHECKED BY:	C. SEROWIK N. KRANES	-	EIC		c
5	APPROVED BY: DATE:	JULY 2020	1		BURE	U
	?	IRC		(CLIFTON P PHONE	VE, SUITE 200 ARK, NY 12065 E: 518.348.1190 MPANIES.COM
Contraction of the second s					E:-00 014/0	

-X - 12 - 24	1, 15 P I P A P I P P					
8-SW-	3B	Nix				
JENT	9/25/2019	A PART				
	µg/L	1000				
e	13	の				
	µg/L	1 and a				
	1,200	Carl N				
	31,000	1000				
	1,200	00110				
-SED-3B JENT 9/23/2019						
JENT	9/23/2019					
ors	mg/kg	ALC: N				
	1.1	11.12				
	mg/kg	00000				
	48.1	N.K.				
	45.6	110				
	31.4	C. S. C.				
	183	1				
1	2	No.				

FILE NO.:

Fig06_SWSEDSumExceed.mxd

TABLES

 Table 1

 New York State Department of Environmental Conservation

 Schatz Federal Bearings (Site No. 3-14-003) - City of Poughkeepsie, NY

 Summary of Depth to Water Measurements and Groundwater Elevations

Well ID	Screened Formation	Coordinates (North/East)**	TOC Elevation (feet AMSL)	Gauge Date	Depth to Water (feet below TOC)	Depth to Bottom (feet below (ground surface)	Groundwater Elev. (feet AMSL)
B-1*	Bedrock	1048888.9190/ 659261.0900	191.03	9/23/2019	11.15	52.50	179.88
В-2	Bedrock	1049192.038/ 658787.357	193.44	9/23/2019	9.25	35.50	184.19
В-3	Bedrock	1048573.394/ 658797.73	185.53	9/23/2019	20.60	121.70	164.93
B-4	Bedrock	1048363.644/ 658912.171	175.38	9/24/2019	16.30	33.00	159.08
B-5	Bedrock	1048752.308/ 658488.727	186.80	9/24/2019	16.30	122.00	170.50
S-1	Overburden	1048884.311/ 659263.561	190.46	9/23/2019	10.90	20.00	179.56
S-2	Overburden	1049190.764/ 658792.338	193.61	9/23/2019	Dry	11.44	NM
S-3	Overburden	1048572.431/ 658792.104	182.41	9/23/2019	24.21	33.50	158.20
S-4	Overburden	1048868.35/ 658613.024	197.72	9/23/2019	Dry	30.00	NM
8-5	Overburden	1048808.217/ 658863.533	194.05	9/23/2019	Dry	52.00	NM
S-7	Overburden	1048750.117/ 658482.627	183.71	9/24/2019	13.72	22.00	169.99
S-8	Overburden	1049011.991/ 658496.396	185.96	9/24/2019	8.16	9.50	177.80
S-9	Overburden	1048521.006/ 659169.014	168.56	9/24/2019	9.95	28.00	158.61
S-10	Overburden	1048597.241/ 659304.745	168.22	9/24/2019	18.00	30.00	150.22

Notes

Elev.	: Elevation
AMSL	: Above Mean Sea Level
ID	: Identification
TOC	: Top of Casing
NM	: Not Measured
*	:Well measured from the top of riser
**	: Horizontal Coordinate System: New York State Plane - East 3101; Vertical Datum NAD 1983 (conus)

Table 2 New York State Department of Environmental Conservation Schatz Federal Bearings (Site No. 3-14-003) - City of Poughkeepsie, NY Summary of VOC Results in Groundwater - September 2019

	Sa	umple Location:	SFB-MW-B01	SFB-MW-B02	SFB-MW-B03	SFB-MW-B04	SFB-MW-B05	SFB-MW-S01	SFB-MW-S03	SFB-MW-S07	SFB-MW-S08	SFB-MW-S09	SFB-MW-S10
	I	ab Sample ID:	480-159638-4	480-159638-5	480-159638-1	480-159817-3	480-159817-5	480-159638-3	480-159638-2	480-159817-6	480-159817-1	480-159817-2	480-159817-4
	-	Sample Date:	09/23/2019	09/23/2019	09/23/2019	09/24/2019	09/24/2019	09/23/2019	09/23/2019	09/24/2019	09/24/2019	09/24/2019	09/24/2019
Voc	TT 2	Class GA	D I	D	D	D I	D 1	D I	D		D 1		D 1
VOCs	Unit	Value*	Results										
1,1,1-Trichloroethane	ug/L	5	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U					
1,1,2,2-Tetrachloroethane	ug/L	5	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U					
1,1,2-Trichloroethane	ug/L	1	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U					
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ug/L	5	1.0 UJ	1.0 UJ	1.0 UJ	1.0 U	1.0 U	1.0 UJ	2.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	ug/L	5	1.0 U 1.0 U	1.0 U 1.0 U	0.73 J	1.0 U	1.0 U	1.0 U	1.1 J 2.0 U	1.0 U 1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	ug/L	5			1.0 U	1.0 U	1.0 U	1.0 U			1.0 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene	ug/L	5	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U	1.0 U 1.0 U	1.0 U	2.0 U 2.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U
1,2-Dibromo-3-chloropropane	ug/L					1.0 U		1.0 U			-		1.0 U
1,2-Dibromoethane (Ethylene dibromide)	ug/L	0.0006	1.0 U	110 0	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichlorobenzene	ug/L	3	1.0 U 1.0 U	1.0 U	2.0 U 2.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U				
1,2-Dichloroethane	ug/L	0.6	1.0 U 1.0 U	2.0 U 2.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U						
1,2-Dichloropropane	ug/L	1	-		-	-	-			-			
1,3-Dichlorobenzene	ug/L	3	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U	1.0 U	1.0 U	1.0 U		1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U
1,4-Dichlorobenzene	ug/L	3 50			1.0 U	1.0 U 10 UJ	1.0 U 10 UJ	1.0 U		-		1.0 U 10 UJ	1.0 U 10 UJ
2-Butanone (MEK)	ug/L			10 0	10 U 5.0 U		-	10 U	20 0				
2-Hexanone	ug/L	50		5.0 U 5.0 U		5.0 U 5.0 U	5.0 U 5.0 U	5.0 U	10 U 10 U	5.0 U 5.0 U	5.0 U 5.0 U		5.0 U
4-Methyl-2-pentanone	ug/L ug/L	NC 50	5.0 U 10 U	5.0 U 10 U	5.0 U 10 U	5.0 U 10 UJ	5.0 U 10 UJ	5.0 U 10 U	10 U 20 U	5.0 U 10 UJ	5.0 U 10 UJ	5.0 U 10 UJ	5.0 U 10 UJ
Acetone	8	50	-		-	-							-
Benzene	ug/L ug/L	50	1.0 U 1.0 U	2.0 U 2.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U					
Bromodichloromethane Bromoform	0	50	1.0 U	2.0 U 2.0 U	1.0 U	1.0 U	1.0 U	-					
	ug/L	5	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U						
Bromomethane Carbon disulfide	ug/L ug/L	60	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U						
Carbon tetrachloride	ug/L ug/L	5	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U 1.0 U					
Chlorobenzene	ug/L ug/L	5	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U					
Chloroethane	ug/L ug/L	5	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U					
Chloroform	ug/L ug/L	7	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U					
Chloromethane	ug/L ug/L	5	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U					
Cvclohexane	ug/L ug/L	NC	1.0 UJ	1.0 UJ	1.0 UJ	1.0 U	1.0 U	1.0 UJ	2.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
Dibromochloromethane	ug/L ug/L	50	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U					
Dichlorodifluoromethane	ug/L ug/L	5	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 UJ	1.0 U	2.0 U	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ
Methylene chloride	ug/L ug/L	5	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 UJ	1.0 U	2.0 U	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ
Ethylbenzene	ug/L ug/L	5	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U					
Isopropylbenzene	ug/L ug/L	5	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U					
Methyl acetate	ug/L ug/L	NC	2.5 U	2.5 U	2.5 U	2.5 UJ	2.5 UJ	2.5 U	5.0 U	2.5 UJ	2.5 UJ	2.5 UJ	2.5 UJ
Methyl tert-butyl ether	ug/L ug/L	10	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U					
Methylcyclohexane	ug/L ug/L	NC	1.0 UJ	1.0 UJ	1.0 UJ	1.0 U	1.0 U	1.0 UJ	2.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
Styrene	ug/L	5	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U					
Tetrachloroethene	ug/L	5	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U					
Toluene	ug/L	5	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U					
Trichloroethene	ug/L	5	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U					
Trichlorofluoromethane	ug/L	5	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U					
Vinyl chloride	ug/L	2	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U					
cis-1,2-Dichloroethene	ug/L	5	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U					
trans-1.3-Dichloropropene	ug/L	0.4	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U					
trans-1,2-Dichloroethene	ug/L	5	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U					
cis-1,3-Dichloropropene	ug/L	0.4	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U					
Xvlenes, total	ug/L	5	2.0 U	4.0 U	2.0 U	2.0 U	2.0 U	2.0 U					
1.4-Dioxane	ug/L	NC	NA	NA	210 U	NA	NA	0.19 U	42 J	NA	NA	NA	NA
	8-2		- 14 4		J. 0				3				

Notes:

ug/L - micrograms per liter.

J - Estimated value.

NA - Sample not analyzed for the listed analyte. NC - No NYSDEC standards exist for this analyte.

U - Analyte was not detected at specified quantitation limit.

Values in **bold** indicate the analyte was detected.

Values shown in bold and shaded type exceed the listed Guidance value.

VOCs - Volatile Organic Compounds.

* - NYSDEC Ambient Water Quality Standards and Guidance Values for Class GA water, June 1998 with the April 2000 Addendum.

Table 3 New York State Department of Environmental Conservation Schatz Federal Bearings (Site No. 3-14-003) - City of Poughkeepsie, NY Summary of Metals Results in Groundwater - September 2019

	Sa	nple Location:	SFB-MW-B01	SFB-MW-B02	SFB-MW-B03	SFB-MW-B04	SFB-MW-B05	SFB-MW-S01	SFB-MW-S03	SFB-MW-S07	SFB-MW-S08	SFB-MW-S09	SFB-MW-S10
Lab Sample ID:		480-159638-4	480-159638-5	480-159638-1	480-159817-3	480-159817-5	480-159638-3	480-159638-2	480-159817-6	480-159817-1	480-159817-2	480-159817-4	
		Sample Date:	09/23/2019	09/23/2019	09/23/2019	09/24/2019	09/24/2019	09/23/2019	09/23/2019	09/24/2019	09/24/2019	09/24/2019	09/24/2019
	** *-	Class GA											
Metals, total	Unit	Value*	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results
Aluminum	ug/L	NC	200 U	730 J+	200 U	940	200 U	7,800 J+	200 U	67 J	910	130 J	200 U
Antimony	ug/L	3 25	20 U	20 U	20 U 15 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
Arsenic	ug/L		15 U	15 U		15 U	15 U	16	15 U	29	15 U	15 U	15 U
Barium	ug/L	1,000	130	18	100	21	130	140	80	130	11	320	85 2.0 IV
Beryllium	ug/L	3	2.0 U	0.40 J	2.0 U	2.0 U	2.0 U	0.66 J	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Cadmium	ug/L	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.50 J	2.0 U	2.0 U	0.98 J	2.0 U	0.76 J
Calcium	ug/L	NC	14,100	17,300	12,200	69,600	23,600	56,800	56,400	75,000	47,300	44,200	52,600
Chromium	ug/L	50	4.0 U	3.2 J	25	28	2.0 J	14	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U
Cobalt	ug/L	NC	4.0 U	0.67 J	4.0 U	4.0 U	0.79 J	3.8 J	4.0 U	4.0 U	0.65 J	4.0 U	4.0 U
Copper	ug/L	200	10 U	3.2 J	2.8 J	10 U	10 U	15	10 U	10 U	10 U	10 U	10 U
Iron	ug/L	300	37 J	1,100	73	910	240	12,400	2,600	4,400	600	210	280
Lead	ug/L	25	10 U	10 U	10 U	10 U	10 U	30	10 U	10 U	10 U	10 U	10 U
Magnesium	ug/L	35,000	2,600	5,100	9,300	13,300	11,400	16,700	11,500	13,700	8,900	8,000	13,400
Manganese	ug/L	300	52	190	22	44	110	4,100	1,500	11,500	370	89	100
Mercury	ug/L	0.7	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Nickel	ug/L	100	10 U	2.1 J	3.3 J	1.3 J	10 U	9.6 J	10 U	10 U	3.2 J	10 U	10 U
Potassium	ug/L	NC	2,400	870	3,900	890 J+	2,900	6,000	1,600	1,900	2,200	3,100	2,100
Selenium	ug/L	10	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U
Silver	ug/L	50	6.0 U	6.0 U	6.0 U	6.0 U	6.0 U	6.0 U	6.0 U	6.0 U	6.0 U	6.0 U	6.0 U
Sodium	ug/L	20,000	47,000	2,600	19,700	2,600	22,500	9,700	11,400	18,900	2,100	21,000	10,400
Thallium	ug/L	0.5	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
Vanadium	ug/L	NC	5.0 U	1.6 J	5.0 U	2.5 J	5.0 U	12	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Zinc	ug/L	2,000	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	49	10 U	10 U
Metals, dissolved	Unit	Class GA Value*	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results
Aluminum	ug/L	NC	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U
Antimony	ug/L ug/L	3	200 U 20 U	200 U 20 U	200 U 20 U	200 U 20 U	200 U 20 U	200 U 20 U	200 U 20 U	200 U 20 U	200 U 20 U	200 U 20 U	200 U 20 U
Arsenic	ug/L ug/L	25	15 U	15 U	6.3 J	15 U	15 U	15 U	15 U	10 J	15 U	15 U	15 U
Barium	ug/L ug/L	1,000	130	8.9		13 0	110	83	76	10 J	7.8	300	80
Beryllium	ug/L ug/L	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Cadmium		-								2.0 0	-	2.0 0	
	110/1	5	20 U	2.0 U	20 U	20 U	2.0 II	20 U	20 U	20 U	0.53 I	20 U	20 U
	ug/L	5 NC	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	0.53 J 47 500	2.0 U 43 400	2.0 U
Calcium	ug/L	NC	14,100	16,800	12,100	68,000	22,000	56,000	58,100	71,600	47,500	43,400	54,100
Calcium Chromium	ug/L ug/L	NC 50	14,100 4.0 U	16,800 4.0 U	12,100 24	68,000 25	22,000 4.0 U	56,000 4.0 U	58,100 4.0 U	71,600 4.0 U	47,500 4.0 U	43,400 4.0 U	54,100 4.0 U
Calcium Chromium Cobalt	ug/L ug/L ug/L	NC 50 NC	14,100	16,800 4.0 U 4.0 U	12,100 24 4.0 U	68,000 25 4.0 U	22,000 4.0 U 4.0 U	56,000 4.0 U 4.0 U	58,100 4.0 U 4.0 U	71,600 4.0 U 4.0 U	47,500 4.0 U 4.0 U	43,400 4.0 U 4.0 U	54,100 4.0 U 4.0 U
Calcium Chromium Cobalt Copper	ug/L ug/L ug/L ug/L	NC 50 NC 200	14,100 4.0 U 4.0 U 10 U	16,800 4.0 U	12,100 24	68,000 25 4.0 U 10 U	22,000 4.0 U 4.0 U 10 U	56,000 4.0 U 4.0 U 10 U	58,100 4.0 U 4.0 U 10 U	71,600 4.0 U 4.0 U 10 U	47,500 4.0 U	43,400 4.0 U 4.0 U 10 U	54,100 4.0 U 4.0 U 10 U
Calcium Chromium Cobalt	ug/L ug/L ug/L ug/L ug/L	NC 50 NC 200 300	14,100 4.0 U 4.0 U 10 U	16,800 4.0 U 4.0 U 10 U 50 U	12,100 24 4.0 U 1.6 J	68,000 25 4.0 U	22,000 4.0 U 4.0 U	56,000 4.0 U 4.0 U	58,100 4.0 U 4.0 U 10 U	71,600 4.0 U 4.0 U 10 U	47,500 4.0 U 4.0 U 3.2 J	43,400 4.0 U 4.0 U 10 U 50 U	54,100 4.0 U 4.0 U 10 U
Calcium Chromium Cobalt Copper Iron Lead	ug/L ug/L ug/L ug/L ug/L ug/L	NC 50 NC 200 300 25	14,100 4.0 U 4.0 U 10 U 50 U 10 U	16,800 4.0 U 4.0 U 10 U 50 U 3.2 J	12,100 24 4.0 U 1.6 J 50 U 10 U	68,000 25 4.0 U 10 U 50 U 10 U	22,000 4.0 U 4.0 U 10 U 50 U 10 U	56,000 4.0 U 4.0 U 10 U 50 U 10 U	58,100 4.0 U 4.0 U 10 U 50 U 10 U	71,600 4.0 U 4.0 U 10 U 50 U 10 U	47,500 4.0 U 4.0 U 3.2 J 50 U 10 U	43,400 4.0 U 4.0 U 10 U 50 U 10 U	54,100 4.0 U 4.0 U 10 U 50 U 10 U
Calcium Chromium Cobalt Copper Iron Lead Magnesium	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	NC 50 NC 200 300	14,100 4.0 U 4.0 U 10 U 50 U 10 U 2,600 U	16,800 4.0 U 4.0 U 10 U 50 U 3.2 J 4,600	12,100 24 4.0 U 1.6 J 50 U 10 U 9,500	68,000 25 4.0 U 10 U 50 U 10 U 50 U 10 U	22,000 4.0 U 4.0 U 10 U 50 U 10 U 10 U	56,000 4.0 U 4.0 U 10 U 50 U 10 U 10 U	58,100 4.0 U 4.0 U 10 U 50 U	71,600 4.0 U 4.0 U 10 U 50 U	47,500 4.0 U 4.0 U 3.2 J 50 U 10 U 8,800	43,400 4.0 U 4.0 U 10 U 50 U 10 U 7,700 U	54,100 4.0 U 4.0 U 10 U 50 U 10 U 50 U 10 U
Calcium Chromium Cobalt Copper Iron Lead	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	NC 50 NC 200 300 25 35,000	14,100 4.0 U 4.0 U 10 U 50 U 10 U	16,800 4.0 U 4.0 U 10 U 50 U 3.2 J	12,100 24 4.0 U 1.6 J 50 U 10 U 9,500	68,000 25 4.0 U 10 U 50 U 10 U	22,000 4.0 U 4.0 U 10 U 50 U 10 U	56,000 4.0 U 4.0 U 10 U 50 U 10 U	58,100 4.0 U 4.0 U 10 U 50 U 10 U 10 U	71,600 4.0 U 4.0 U 10 U 50 U 10 U 10 U	47,500 4.0 U 4.0 U 3.2 J 50 U 10 U	43,400 4.0 U 4.0 U 10 U 50 U 10 U	54,100 4.0 U 4.0 U 10 U 50 U 10 U
Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	NC 50 NC 200 300 25 35,000 300 100	14,100 4.0 U 4.0 U 10 U 50 U 10 U 2,600 36 10 U	16,800 4.0 U 4.0 U 10 U 50 U 3.2 J 4,600 1.9 10 U	12,100 24 4.0 U 1.6 J 50 U 10 U 9,500 3.0 U	68,000 25 4.0 U 10 U 50 U 10 U 110 U 10 U	22,000 4.0 U 4.0 U 10 U 50 U 10 U 10 U 10,400 55 10 U	56.000 4.0 U 4.0 U 10 U 50 U 10 U 14,200 3,700 10 U	58,100 4.0 U 4.0 U 10 U 50 U 10 U 110 U 110 U 110 U	71,600 4.0 U 4.0 U 10 U 50 U 10 U 12,900 10 10 U	47,500 4.0 U 4.0 U 3.2 J 50 U 10 U 8,800 130 3.2 J	43,400 4.0 U 4.0 U 10 U 50 U 10 U 700 72 10 U	54,100 4.0 U 4.0 U 10 U 50 U 10 U 10 U 10 U 10 U 110 U 10 U
Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	NC 50 NC 200 300 25 35,000 300	14,100 4.0 U 4.0 U 10 U 50 U 10 U 50 U 10 U 36 U	16,800 4.0 U 4.0 U 10 U 50 U 3.2 J 4,600 J	12,100 24 4.0 U 1.6 J 50 U 10 U 9,500 3.0 3.0 U 1.5 J	68,000 25 4.0 U 10 U 50 U 10 U 50 U 10 U 50 J	22,000 4.0 U 4.0 U 10 U 50 U 10 U 10,400 55	56,000 4.0 U 4.0 U 10 U 50 U 10 U 10 U 3,700 U	58,100 4.0 U 4.0 U 10 U 50 U 10 U 12,200 U	71,600 4.0 U 4.0 U 10 U 50 U 10 U 10,800 U	47,500 4.0 U 4.0 U 3.2 J 50 U 10 U 8,800 130	43,400 4.0 U 4.0 U 10 U 50 U 10 U 7,700 72	54,100 4.0 U 4.0 U 10 U 50 U 10 U 10 U 10 U 10 U 110 U
Calcium Chromium Chomium Cobalt Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	NC 50 NC 200 300 25 35,000 300 100 NC	14,100 4.0 U 4.0 U 10 U 50 U 10 U 2,600 36 10 U 2,600 36	16,800 4.0 U 4.0 U 10 U 50 U 3.2 J 4,600 J 1.9 J 10 U	12,100 24 4.0 U 1.6 J 50 U 10 U 9,500 U 3.0 U 1.5 J 4,100 U	68,000 25 4.0 U 10 U 50 U 10 U 730 U	22,000 4.0 U 4.0 U 10 U 50 U 10 U 10,400 55 10 U 2,700	56,000 4.0 U 4.0 U 10 U 50 U 10 U 10 U 10 U 10 U 10 U 14,200 3,700 10 U 4,300 25	58,100 4.0 U 4.0 U 10 U 50 U 10 U 12,200 Image: Comparison of the second sec	71,600 4.0 U 4.0 U 10 U 50 U 10 U 10 U 10 U 10 U 10 U 12,900 10 10 U 1,700 U	47,500 4.0 U 3.2 J 50 U 10 U 8,800 130 3.2 J 2,200 J	43,400 4.0 U 4.0 U 10 U 50 U 10 U 7,700 72 10 U 2,900 U	54,100 4.0 U 4.0 U 10 U 50 U 10 U 13,600 110 10 U
Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	NC 50 NC 200 300 25 35,000 300 100 NC 10	14,100 4.0 U 4.0 U 10 U 50 U 10 U 2,600 36 10 U 2,600 25	16,800 4.0 U 4.0 U 10 U 50 U 3.2 J 4,600 J 10 U 730 25	12,100 24 4.0 U 1.6 J 50 U 10 U 9,500 3.0 U 1.5 J 4,100 25 U	68,000 25 4.0 U 10 U 50 U 10 U 10 U 10,00 J 0,50 J 10 U 12,600 J 10 U 730 25	22.000 4.0 U 10 U 50 U 10 U 10,400 55 10 U 2,700 25 U	56,000 4.0 U 4.0 U 10 U 50 U 10 U 10 U 10 U 10 U 10 U 14,200 3,700 10 U 4,300 25	58,100 4.0 U 4.0 U 10 U 50 U 10 U 10 U 10 U 10 U 10 U 12,200 I 10 U 1,600 U 1,700 25	71,600 4.0 U 4.0 U 10 U 50 U 10 U 10 U 10 U 10 U 10,00 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U	47,500 4.0 U 4.0 U 3.2 J 50 U 10 U 8,800 130 3.2 J 2,200 25	43,400 4.0 U 4.0 U 10 U 50 U 10 U 7,700 72 10 U 2,900 25	54,100 4.0 U 4.0 U 10 U 50 U 10 U 13,600 110 10 U 2,000 25
Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	NC 50 NC 200 300 25 35,000 300 100 NC 10 50	14,100 4.0 U 4.0 U 0 U 50 U 10 U 2,600 36 10 U 2,600 25 25 U 6.0 U	16.800 4.0 U 4.0 U 10 U 50 U 3.2 J 4,600 I 1.9 J 10 U 730 25 6.0 U	12,100 24 4.0 1.6 30 9,500 3.0 1.5 4,100 25 0.0 6.0	68,000 25 4.0 U 10 U 50 U 10.0 U 12,600 0.50 9.50 J 10 U 730 25 2.5 U 6.0 U	22,000 4.0 U 4.0 U 10 U 50 U 10 U 55 10 2,700 25 25 U 6.0 U	56,000 4.0 U 4.0 U 10 U 50 U 10 U 14,200 3,700 10 U 4,300 25 6.0 U	58,100 4.0 U 4.0 U 10 U 50 U 10 U 12,200 I.600 10 U 1,700 2.5 2.5 U 6.0 U	71,600 4.0 U 4.0 U 10 U 50 U 10 U 12,900 10,800 10 U 1,700 25 25 U 6.0 U	47,500 4.0 U 4.0 U 3.2 J 50 U 10 U 8,800 3.2 3.2 J 2,200 25 25 U 6.0 U	43,400 4.0 U 4.0 U 10 U 50 U 10 U 7,700 72 10 U 2,900 25 25 U 6.0 U	54,100 4.0 U 4.0 U 10 U 50 U 10 U 13,600 110 10 U 2,000 25 25 U 6.0 U
Calcium Chromium Cobalt Copper Iron Lead Magnese Nickel Potassium Selenium Solenium Soleinium So	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	NC 50 NC 200 300 25 35,000 300 100 NC 10 50 20,000	14,100 4.0 U 4.0 U 4.0 U 10 U 50 U 10 U 2,600 36 10 U 2,600 25 25 U 6.0 U 49,900 49,900	16,800 4.0 U 4.0 U 10 U 50 U 3.2 J 4,600 I 1.9 J 10 U 730 25 2.5 U	12,100 24 4.0 U 1.6 J 50 U 10 U 9,500 3.0 U 1.5 J 4,100 25 U 6.0 U 20,800	68,000 25 4.0 U 10 U 50 U 10 U 12,600 0 0.50 J 10 U 730 25 4.0 U 2.500 U	22,000 4.0 U 4.0 U 10 U 50 U 10 U 10,400 55 10 U 2,700 25 U 6.0 U 20,300	56,000 4.0 U 4.0 U 10 U 50 U 10 U 14,200 3,700 10 U 4,300 25 25 U 6.0 U 10,000 10,000	58,100 4.0 U 4.0 U 4.0 U 10 U 50 U 10 U 12,200 Income 1,600 U 1,700 U 2,5 U 6.0 U 12,400 U	71,600 4.0 U 4.0 U 10 U 50 U 10 U 12,900 U 10 U 10,800 U 10 U 1,700 U 4,700 U 17,700 U	47,500 4.0 U 4.0 U 3.2 J 50 U 10 U 8,800 3.2 3.2 J 2,200 2.5 2,500 U 6.0 U	43,400 4.0 U 4.0 U 4.0 U 10 U 50 U 10 U 7700 72 10 U 2,900 25 6.0 U 20,600	54,100 4.0 U 4.0 U 10 U 50 U 10 U 13,600 U 10 U 2,000 U 2,5 U 6.0 U 9,700 U

Notes:

ug/L - micrograms per liter.

J - Estimated value.

J+ - Estimated value; biased high.

NC - No NYSDEC standards exist for this analyte.

ND - Not detected.

U - Analyte was not detected at specified quantitation limit.

Values in **bold** indicate the analyte was detected.

Values shown in bold and shaded type exceed the listed Guidance value.

* - NYSDEC Ambient Water Quality Standards and Guidance Values for Class GA water, June 1998 with the April 2000 Addendum.

Table 4 New York State Department of Environmental Conservation Schatz Federal Bearings (Site No. 3-14-003) - City of Poughkeepsie, NY Summary of Emerging Contaminant Results in Groundwater - September 2019

	Sa	mple Location:	SFB-MW-B01	SFB-MW-B02	SFB-MW-B03	SFB-MW-B04	SFB-MW-B05	SFB-MW-S01	SFB-MW-S03	SFB-MW-S07	SFB-MW-S08	SFB-MW-S09	SFB-MW-S10
	La	ab Sample ID:	480-159638-4	480-159638-5	480-159638-1	480-159817-3	480-159817-5	480-159638-3	480-159638-2	480-159817-6	480-159817-1	480-159817-2	480-159817-4
		Sample Date:	09/23/2019	09/23/2019	09/23/2019	09/24/2019	09/24/2019	09/23/2019	09/23/2019	09/24/2019	09/24/2019	09/24/2019	09/24/2019
		Class GA											
PFAS	Unit	Value**	Results										
Perfluorobutanoic acid (PFBA)	ng/L	100	NA	NA	1.7 J+	NA	NA	1.8 U	5 J+	NA	NA	NA	NA
Perfluoropentanoic acid (PFPeA)	ng/L	100	NA	NA	1.2 J	NA	NA	1.8 U	1.6 J	NA	NA	NA	NA
Perfluorohexanoic acid (PFHxA)	ng/L	100	NA	NA	2.3	NA	NA	1.8 U	3.2	NA	NA	NA	NA
Perfluoroheptanoic acid (PFHpA)	ng/L	100	NA	NA	1.5 J	NA	NA	1.8 U	1.8 U	NA	NA	NA	NA
Perfluorooctanoic acid (PFOA)	ng/L	10	NA	NA	2.2	NA	NA	1.8 U	29	NA	NA	NA	NA
Perfluorononanoic acid (PFNA)	ng/L	100	NA	NA	4.2	NA	NA	1.8 U	0.42 J	NA	NA	NA	NA
Perfluorodecanoic acid (PFDA)	ng/L	100	NA	NA	0.75 J	NA	NA	1.8 U	1.8 U	NA	NA	NA	NA
Perfluoroundecanoic acid (PFUnA)	ng/L	100	NA	NA	0.98 J	NA	NA	1.8 U	1.8 U	NA	NA	NA	NA
Perfluorododecanoic acid (PFDoA)	ng/L	100	NA	NA	1.7 U	NA	NA	1.8 U	1.8 U	NA	NA	NA	NA
Perfluorotridecanoic acid (PFTriA)	ng/L	100	NA	NA	1.7 U	NA	NA	1.8 U	1.8 U	NA	NA	NA	NA
Perfluorotetradecanoic acid (PFTeA)	ng/L	100	NA	NA	1.7 U	NA	NA	1.8 U	1.8 U	NA	NA	NA	NA
Perfluorobutanesulfonic acid (PFBS)	ng/L	100	NA	NA	1.7 U	NA	NA	1.8 U	1 J	NA	NA	NA	NA
Perfluorohexanesulfonic acid (PFHxS)	ng/L	100	NA	NA	1.7 U	NA	NA	1.8 U	1.8 U	NA	NA	NA	NA
Perfluoroheptanesulfonic acid (PFHpS)	ng/L	100	NA	NA	1.7 U	NA	NA	1.8 U	1.8 U	NA	NA	NA	NA
Perfluorooctanesulfonic acid (PFOS)	ng/L	10	NA	NA	0.56 J	NA	NA	1.8 U	1.8	NA	NA	NA	NA
Perfluorodecanesulfonic acid (PFDS)	ng/L	100	NA	NA	1.7 U	NA	NA	1.8 U	1.8 U	NA	NA	NA	NA
Perfluorooctane Sulfonamide (PFOSA)	ng/L	100	NA	NA	8.5 U	NA	NA	9.1 U	8.8 U	NA	NA	NA	NA
2-(N-methyl perfluorooctanesulfonamido) acetic acid (N-MeFOSAA)	ng/L	100	NA	NA	17 U	NA	NA	18 U	18 U	NA	NA	NA	NA
N-Ethyl-N-((heptadecafluorooctyl)sulphonyl) glycine (N-EtFOSAA)	ng/L	100	NA	NA	17 U	NA	NA	18 U	18 U	NA	NA	NA	NA
6:2 Perfluorooctane Sulfonate (6:2 FTS)	ng/L	100	NA	NA	900 J	NA	NA	18 U	14 J	NA	NA	NA	NA
8:2 Perfluorodecane Sulfonate (8:2 FTS)	ng/L	100	NA	NA	17 U	NA	NA	18 U	18 U	NA	NA	NA	NA
PFOA + PFOS	ng/L	10	NA	NA	2.76	NA	NA	ND	30.8	NA	NA	NA	NA
Total PFAS	ng/L	500	NA	NA	915.39	NA	NA	ND	56.02	NA	NA	NA	NA

Notes:

ng/L - nanograms per liter.

J - Estimated value.

J+ - Estimated value; biased high.

NA - Sample not analyzed for the listed analyte.

ND - Not detected.

U - Analyte was not detected at specified quantitation limit.

Values in **bold** indicate the analyte was detected.

Values shown in **bold** and shaded type exceed the listed Guidance value.

PFAS - Per- and polyfluoroalkyl substances.

** - Recommended Guidance Values from the Guidelines for Sampling and Analysis of PFAS Under NYSDEC's Part 375 Remedial Programs, January 2020.

		Sample Location:	SFB-SW-1A	SFB-SW-1B	SFB-SW-2A	SFB-SW-2B	SFB-SW-3A	SFB-SW-3B
		Sample Name:	SFB-SW-1A	SFB-SW-1B	SFB-SW-2A	SFB-SW-2B	SFB-SW-3A	SFB-SW-3B
		Lab Sample ID:	480-160007-1	480-160007-2	480-160007-3	480-160007-4	480-160007-5	480-160007-6
		Sample Date:	09/25/2019	09/25/2019	09/25/2019	09/25/2019	09/25/2019	09/25/2019
VOCs	Unit	Guidance Value*	Results	Results	Results	Results	Resuls	Results
1,1,1-Trichloroethane	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
1,1,2,2-Tetrachloroethane	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
1,1,2-Trichloroethane	ug/L	1	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
1,1,2-Trichloro- 1,2,2-trifluoroethane	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
1,1-Dichloroethane	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
1,1-Dichloroethene	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
1,2,4-Trichlorobenzene	ug/L	5	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	4.0 UJ	2.0 UJ
1,2-Dibromo-3-chloropropane	ug/L	0.04	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	4.0 UJ	2.0 UJ
1,2-Dibromoethane (Ethylene dibromide)	ug/L	0.0006	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
1,2-Dichlorobenzene	ug/L	3	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
1,2-Dichloroethane	ug/L	0.6	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
1,2-Dichloropropane	ug/L	1	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
1,3-Dichlorobenzene	ug/L	3	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
1,4-Dichlorobenzene	ug/L	3	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
2-Butanone (MEK)	ug/L	50	10 UJ	10 UJ	10 UJ	10 UJ	40 UJ	20 UJ
2-Hexanone	ug/L	50	5.0 U	5.0 U	5.0 U	5.0 U	20 U	10 U
4-Methyl-2-pentanone	ug/L	NC	5.0 U	5.0 U	5.0 U	5.0 U	20 U	10 U
Acetone	ug/L	50	5.7 J	10 U	15 J+	37	40 U	22
Benzene	ug/L	1	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
Bromodichloromethane	ug/L	50	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
Bromoform	ug/L	50	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
Bromomethane	ug/L	5	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	4.0 UJ	2.0 UJ
Carbon disulfide	ug/L	60	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
Carbon tetrachloride	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
Chlorobenzene	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
Chloroethane	ug/L	5	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	4.0 UJ	13 J
Chloroform	ug/L	7	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
Chloromethane	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
Cyclohexane	ug/L	NC	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
Dibromochloromethane	ug/L	50	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
Dichlorodifluoromethane	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
Methylene chloride	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
Ethylbenzene	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
Isopropylbenzene	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
Methyl acetate	ug/L	NC	2.5 UJ	2.5 UJ	2.5 UJ	2.5 UJ	10 UJ	5.0 UJ
Methyl tert-butyl ether	ug/L	10	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
Methylcyclohexane	ug/L	NC	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
Styrene	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
Tetrachloroethene	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
Toluene	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
Trichloroethene	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
Trichlorofluoromethane	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
Vinyl chloride	ug/L	2	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
cis-1,2-Dichloroethene	ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
trans-1,3-Dichloropropene	ug/L	0.4	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
trans-1,2-Dichloroethene	ug/L ug/L	5	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
cis-1,3-Dichloropropene	ug/L	0.4	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U
Xylenes, total	ug/L ug/L	5	2.0 U	2.0 U	2.0 U	2.0 U	8.0 U	4.0 U
	"g 2		2.0	2.0 0	2.0 0	2.0 0	0.0	

Notes:

ug/L - micrograms per liter.

J - Estimated value.

J+ - Estimated value; biased high. NC - No NYSDEC standards exist for this analyte. U - Analyte was not detected at specified quantitation limit.

UJ - Estimated non-detect.

Values shown in **bold** and shaded type exceed the listed Guidance value.

* - NYSDEC Ambient Water Quality Standards and Guidance Values for Class GA water,

June 1998 with the April 2000 Addendum.

Table 6 New York State Department of Environmental Conservation Schatz Federal Bearings (Site No. 3-14-003) - City of Poughkeepsie, NY Summary of Metals and Total Suspended Solids in Surface Water - September 2019

	C	. т	SFB-SW-	1 4	SFB-SW	1D	SFB-SW-2		SFB-SW-	20	SFB-SW-	2.4	SFB-SW-	210
	4	e Location:	SFB-SW-				SFB-SW-2 SFB-SW-2		SFB-SW- SFB-SW-		SFB-SW- SFB-SW-	-	SFB-SW- SFB-SW-	-
		nple Name:			SFB-SW							-		-
		Sample ID:	480-1600		480-1600		480-160007		480-16000		480-1600		480-16000	
	Sa	mple Date:	09/25/20	019	09/25/20)19	09/25/201	9	09/25/20	19	09/25/20	19	09/25/20	119
	TT 1.	Guidance												
Metals, total	Unit	Value*	Result		Result		Results		Result		Resuls		Results	
Aluminum	ug/L	NC	22,600	J	37,900		,	J	67,600	J	32,000	J	150	
Antimony	ug/L	3	20	U	20		-	U	20	UJ	20	UJ	20	
Arsenic	ug/L	25	15	U	7.3	J	-	J	61		38		6.4	J
Barium	ug/L	1,000	200		240	-	160		970		1,900		1,200	
Beryllium	ug/L	3	0.82	J	1.3	J	2	U	3.7		1.6	J	2.0	U
Cadmium	ug/L	5	8.2		1.5	J	2.4		28		14		2.0	U
Calcium	ug/L	NC	64,400		59,400		71,200		122,000		68,400		52,300	1
Chromium	ug/L	50	24		33		10		150		78		4.0	U
Cobalt	ug/L	NC	16		14		6.5		75		42		4.0	U
Copper	ug/L	200	96	J	32	J	74	J	970	J	570	J	2.3	J
Iron	ug/L	300	22,200	J	28,000	J	24,600	J	174,000	J	152,000	J	31,000	J
Lead	ug/L	25	210	J	63	J	160	J	2,000	J	720	J	6.2	J
Magnesium	ug/L	35,000	15,900		17,700		13,700		31,300		21,300		12,100	
Manganese	ug/L	300	9,200		3,200		6,300		18,300		10,400		1,200	
Mercury	ug/L	0.7	0.20	U	0.20	U	0.20	U	1.1		0.72		0.20	U
Nickel	ug/L	100	58		34		17		220		120		10	U
Potassium	ug/L	NC	4,500	J	4,800	J	6,000	J	20,000	J	11,900	J	6,600	J
Selenium	ug/L	10	25	U	25	U	25	U	11	J	25	U	25	U
Silver	ug/L	50	6.0	U	6.0	U	6.0	U	6.0	U	6.0	U	6.0	U
Sodium	ug/L	20,000	20,100		22,700		20,900		21,500	_	12,000		11,200	
Thallium	ug/L	0.5	20	U	20	U	20	U	20	U	20	U	20	U
Vanadium	ug/L	NC	31		46		8.6		110		56		5.0	U
Zinc	ug/L	2,000	290	J	150	J	140	J	1,900	J	1,000	J	14	J
Total Suspended Solids	ug/L	NC	20,000		21,600		136,000		182,000		686,000		164,000	

Notes:

ug/L - micrograms per liter.

J - Estimated value.

NC - No NYSDEC standards exist for this analyte.

U - Analyte was not detected at specified quantitation

limit.

Values shown in bold and shaded type exceed the listed Guidance value.

* - NYSDEC Ambient Water Quality Standards and Guidance Values for Class GA water,

June 1998 with the April 2000 Addendum.

Table 7 New York State Department of Environmental Conservation Schatz Federal Bearings (Site No. 3-14-003) - City of Poughkeepsie, NY Summary PCB, Metals and Total Organic Carbon in Sediment - September 2019

			Sam	ple Location:	SFB-SED-	1 A	SFB-SED	1B	SFB-SED-	2 ^	SFB-SED-	2B	SFB-SED	3 /	SFB-SED	1.3B
				ample Name:	SFB-SED-		SFB-SED		SFB-SED-		SFB-SED		SFB-SED		SFB-SED	
				o Sample ID:	480-160006		480-16000		480-16000		480-16000		480-16000	-	480-1600	-
				ample Depth:	0-0.5 ft	5-1	0-0.5 f	-	0-0.5 ft		0-0.5 ft		0-0.5 f		0-0.5 f	
				Sample Deptil:	09/23/201	9	09/23/20		09/23/202		09/23/20		09/23/20		09/23/20	
		~				/		-								
PCB Aroclors	Unit	Class A*	Class B*	Class C*	Results		Results	5	Results		Results		Results	3	Result	s
1 1016		NG	NG	NG	0.47		0.53		0.02		0.42		0.20		0.04	<u> </u>
Aroclor-1016	mg/kg	NC	NC	NC	0.47	U	0.53	U	0.92	UJ	0.42	U	0.30	U	0.24	_
Aroclor-1221	mg/kg	NC	NC	NC	0.47	U	0.53	U	0.92	UJ	0.42	U	0.30	U	0.24	-
Aroclor-1232	mg/kg	NC	NC	NC	0.47	U	0.53	U	0.92	UJ	0.42	U	0.30	U	0.24	
Aroclor-1242	mg/kg	NC	NC	NC	0.47	U	0.53	U	0.92	UJ	0.42	U	0.30	U	0.24	
Aroclor-1248	mg/kg	NC	NC	NC	0.47	U	0.53	U	0.92	UJ	0.42	U	0.30	U	0.24	-
Aroclor-1254	mg/kg	NC	NC	NC	0.47	U	0.53	U	0.92	UJ	0.42	U	0.78		1.1	_
Aroclor-1260	mg/kg	NC	NC	NC	0.47	U	0.53	U	0.92	UJ	0.42	U	0.30	U	0.24	_
PCBs, Total	mg/kg	< 0.1	0.1-1	> 1	0.47	U	0.53	U	0.92	UJ	0.42	U	0.78		1.1	
Metals, total	Unit	Class A*	Class B*	Class C*	Results		Results	5	Results		Results		Results	5	Result	s
Aluminum	mg/kg	NC	NC	NC	19,000	J	12,600	J	15,900	J	14,800	J	15,500	J	18,300) J
Antimony	mg/kg	NC	NC	NC	34.6	U	35.5	U	62.9	UJ	26.1	U	19	U	19.1	U
Arsenic	mg/kg	< 10	10-33	> 33	12.9		10.5		12.4	J	5.8		5.3	J+	4.6	5 J+
Barium	mg/kg	NC	NC	NC	80.6	J	114	J	158	J	80.6	J	68.2	J	121	J
Beryllium	mg/kg	NC	NC	NC	0.73	J+	0.64	J+	0.81	J	0.68	J+	0.73		0.69	,
Cadmium	mg/kg	< 1	1-5	> 5	0.46	U	1		4.6	J	1.3		0.39	J+	0.35	5 J+
Calcium	mg/kg	NC	NC	NC	2,940	J	7,950	J	8,600	J	2,670	J	1,730	J	2,080) J
Chromium	mg/kg	< 43	43-110	> 110	16.8		18		31	J	28.5		41.9		22.4	ţ
Cobalt	mg/kg	NC	NC	NC	17.1		9.3		18.1	J	14.1		13.6		14.6	j i
Copper	mg/kg	< 32	32-150	> 150	17.5	J	34.5	J	148	J	71.2	J	49.6	J	48.1	J
Iron	mg/kg	NC	NC	NC	41,300		28,700		42,100	J	24,200		31,400		31,500	,
Lead	mg/kg	< 36	36-130	> 130	21.2	J	75.9	J	362	J	130	J	104	J	45.6	5 J
Magnesium	mg/kg	NC	NC	NC	3,920		3,370		4,900	J	5,740		6,910		7,590	,
Manganese	mg/kg	NC	NC	NC	230		1,730		1,610	J	601		635		490	,
Mercury	mg/kg	< 0.2	0.2-1	>1	0.065		0.18		0.21	J	0.11		0.13		0.064	ţ
Nickel	mg/kg	< 23	23-49	> 49	22.7		21		43.7	J	30.5		33.7		31.4	í l
Potassium	mg/kg	NC	NC	NC	955	J	998	J	1,760	J	1,540	J	1,480	J	1630) J
Selenium	mg/kg	NC	NC	NC	9.2	UJ	9.5	UJ	16.8	UJ	7.0	UJ	5.1	UJ	5.1	UJ
Silver	mg/kg	< 1	1-2.2	> 2.2	1.4	U	1.4	U	2.5	UJ	1.0	U	0.76	U	0.76	5 U
Sodium	mg/kg	NC	NC	NC	323	U	332	U	587	UJ	244	U	177	U	178	3 U
Thallium	mg/kg	NC	NC	NC	13.8	UJ	14.2	UJ	25.1	UJ	0.71	J	7.6	UJ	7.6	5 UJ
Vanadium	mg/kg	NC	NC	NC	25.9		21.4		25.5	J	20.4		20.3		22.7	i
Zinc	mg/kg	< 120	120-460	> 460	159	J	204	J	351	J	195	J	137	J	183	8 J
General Chemistry	Unit	Class A*	Class B*	Class C*	Results		Results	5	Results		Results		Results	5	Result	.s
Total Organic Carbon	mg/kg	NC	NC	NC	2,570	J	4,220	J	3,090	J	2,270	J	7,740	J	8,480) J

Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm). J - Estimated value.

J+ - Estimated value; biased high.

NC - No NYSDEC standard exists for this analyte.

U - Analyte was not detected at specified quantitation limit.

UJ - Estimated non-detect.

Values in **bold** indicate the analyte was detected.

PCBs - Polychlorinated Biphenyls.

Shading indicates result above the corresponding listed values.

* - New York State Department of Environmental Conservation (NYSDEC), Freshwater Sediment Guidance

Values from NYSDEC "Screening and Assessment of Contaminated Sediment", June 24, 2014.

An	alyte	Vinyl Chloride	Chloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,1,1- Trichloroethane
Class	GA Value*	2	5	5	5	5
0.000	Oct-00	U	U	U	U	U
	Mar-01	U	U	U	U	U
	Jun-01	NA	NA	NA	NA	NA
	Sep-01	U	U	U	U	U
	Dec-01	U	U	Ŭ	Ŭ	U
	Apr-02	U	U	Ŭ	U	U
	Aug-02	U	U	Ŭ	U	U
	Nov-02	U	U	Ŭ	Ŭ	Ű
	Mar-03	U	Ű	Ű	Ű	Ŭ
B-1	May-05	U	U	Ŭ	Ŭ	Ű
	Nov-05	U	U	U	U	U
	Oct-08	U	U	Ŭ	Ŭ	U
	Mar-10	U	U	Ŭ	U	U
	May-11	<u> </u>	U	Ŭ	U	U
	Sep-13	U	U	Ŭ	Ŭ	U
	Dec-14	10 U	10 U	10 U	10 U	10 U
	Mar-16	10 U	10 U	10 U	10 U	10 U
	Apr-18	1 U	100	100	100	100
	Sep-19	10	10	10	10	10
	Oct-00	U	U	U	U	U
	Mar-01	U	U	U	U	U
	Jun-01	NA	NA	NA	NA	NA
	Sep-01	U	U	U	U	U
	Dec-01	U	U	U	U	U
	Apr-02	U	U	U	U	U
	Aug-02	U	U U	U	U	U
	Nov-02	U	U	U	U	U
	Mar-03	U	U U	U	U	U
B-2	May-05	U	U	U	U	U
D-2	Nov-05	U	U	U	U	U
	Oct-08	U	U	U	U	U
	Mar-10	U	U	U	U	U
	May-11	U	U	U	U	U
	Sep-13	U	U	U	U	U
	Dec-14	10 U	10 U	10 U	10 U	10 U
	Mar-16	10 U	10 U	10 U	10 U	10 U
	Apr-18	100	100	100	100	100
	Sep-19	10	10	10	10	10
	Oct-00	6	120D	330ED	4	40D
	Mar-01	2	65ED	83ED	4	400
	Jun-01	NA	NA	NA	NA	NA
	Sep-01	2	60E	35E	0.6J	U
	Dec-01	0.97J	32	18	U	U
	Apr-02	1	49D	40D	0.6J	1J
	Aug-02	2	49D 46E	38E	0.6J	3
	Nov-02	4	120D	130D	3	8
	Mar-03		63E	38E	0.8J	4
B-3	May-05	10	160	94	6.9	4.2J
0-0	Nov-05	2.1J	81	59	3.1J	4.2J 2.9J
	Oct-08	<u> </u>	47	59	U 3.13	2.95 U
	Mar-10	U	3	2.3	U	U
	Mar-10 May-11	U		0.99J	U	U
	Sep-13	U U	10Z	U.99J	U	U
	Dec-14	10 U	102 10 U	10 U	10 U	10 U
	Mar-16	10 U	10 0	2J	10 U	10 U
		100	18 1 U	2J 1U	100	100
	Apr-18	-	10	-		10
	Sep-19	1 U	10	0.73 J	1 U	10

Ana	alyte	Vinyl Chloride	Chloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,1,1- Trichloroethane
Class (GA Value*	2	5	5	5	5
	Oct-00	U	U	U	U	U
	Mar-01	Ű	Ŭ	Ŭ	U	U
	Jun-01	NA	NA	NA	NA	NA
	Sep-01	U	U	U	U	U
	Dec-01	U	U	U	U	U
	Apr-02	U	U	U	U	U
	Aug-02	U	U	U	U	U
	Nov-02	U	U	U	U	U
	Mar-03	U	U	U	U	U
B-4	May-05	U	U	U	U	U
	Nov-05	U	U	U	U	U
	Oct-08	-	-	-	-	-
	Mar-10	U	U	U	U	U
	May-11	U	U	1.7	U	U
	Sep-13	U	U	U	U	U
	Dec-14	10 U	10 U	10 U	10 U	10 U
	Mar-16	10 U	10 U	10 U	10 U	10 U
	Apr-18	1 U	1 U	1 U	1 U	1 U
	Sep-19	1 U	1 U	1 U	1 U	1 U
	Oct-00	U	U	U	U	U
	Mar-01	U	U	U	U	U
	Jun-01	NA	NA	NA	NA	NA
	Sep-01	U	U	U	U	U
	Dec-01	U	U	U	U	U
	Apr-02	U	U	U	U	U
	Aug-02	U	U	U	U	U
	Nov-02	U	U	U	U	U
	Mar-03	U	U	U	U	U
B-5	May-05	U	U	U	U	U
	Nov-05	U	U	U	U	U
	Oct-08	U	U	0.56J	1.1	52
	Mar-10	U	U	U	U	U
	May-11	U	U	U	U	U
	Sep-13	U	U	U	U	U
	Dec-14	10 U	10 U	10 U	10 U	10 U
	Mar-16	10 U	10 U	10 U	10 U	10 U
	Apr-18	1 U	10	1 U	10	10
	Sep-19	10	10	10	10	10
	Oct-00	U	U	U	U	U
	Mar-01	U	U	U	U	U
	Jun-01	NA	NA	NA	NA	NA
	Sep-01	U	U	U	U	U
	Dec-01	U	U	U	U	U
	Apr-02	U	U	U	U	U
	Aug-02 Nov-02	UU	UU	UUU	UUU	UU
		U	U	U	U	U
S-1	Mar-03 May-05	<u> </u>	U	U	U U	U
0-1	Nov-05	U	U	U	U	U
	Oct-08	-	-	-	-	-
	Mar-10	- U	- U	- U	- U	U
	Mar-10 May-11	U	U	U	U	U
	Sep-13	U	U	U	U	U
	Dec-14	10 U	10 U	10 U	10 U	10 U
	Mar-16	10 U	10 U	10 U	10 U	10 U
	Apr-18	100	100	100	100	100

An	alyte	Vinyl Chloride	Chloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,1,1- Trichloroethane
Class (GA Value*	2	5	5	5	5
	Oct-00	-	_	_	_	_
	Mar-01	U	U	U	U	U
	Jun-01	NA	NA	NA	NA	NA
	Sep-01	-	-	-	-	-
	Dec-01	-	-	_	-	-
	Apr-02	U	U	U	U	U
	Aug-02	-	-	-	-	-
	Nov-02	U	U	U	U	U
	Mar-03	U	U	U	U	U
S-2	May-05	U	U	Ŭ	U	U
• -	Nov-05	U	Ŭ	Ű	U	Ŭ
	Oct-08	-	-	-	-	-
	Mar-10	U	U	U	U	U
	May-11	U	U	Ŭ	U	U
	Sep-13	U	U	U	U	U
	Dec-14	10 U	10 U	10 U	10 U	10 U
	Mar-16	10 U	10 U	10 U	10 U	10 U
	Apr-18	100	100	100	100	1 U
	Sep-19	NS	NS	NS	NS	NS
	Oct-00	2	53D	4	U	U
	Mar-01	1	24D	5	0.7J	U
	Jun-01	NA	NA	NA	NA	NA
	Sep-01	2	24D	11	0.9J	2
	Dec-01	 U	240	13	1.1	4.8
	Apr-02	2	30D	13	0.9J	4.8 5D
		 U	18	13	0.9J	4
	Aug-02 Nov-02	U	10	9	U.9J	2
	Mar-03	U	12	5	0.6J	0.5J
S-3	May-05	U	U	U	U	U
3-3	Nov-05	U	15	3.8J	U	U
	Oct-08	U	U	2	U	U
	Mar-10	U	U	1.3	U	U
	May-11	U	U	1.5	U	U
	Sep-13	U	1JZ	U	U	U
	Dec-14	10 U	10 U	10 U	10 U	10 U
	Mar-16	10 U	10 U	10 U	10 U	10 U
	Apr-18	100	100	1.1	100 1 U	100
	Sep-19	2 U	20	1.1 J	2 U	2 U
	Oct-00	U	20	U	20	20
	Mar-01	2	U	U	U	U
	Jun-01	NA	NA	NA	NA	NA
	Sep-01	U	U	U	U	U
	Dec-01	U	U	U	U	U
	Apr-02	1	U	U	U	U
	Aug-02	0.9J	U	U	U	U
	Nov-02	0.33 0.7J	U	U	U	U
	Mar-03	U	U	U	U	U
S-7	May-05	U	U	U	U	2.8J
	Nov-05	1.0J	U	U	U	1.9J
	Oct-08	U	U	1.9	1.6	81
	Mar-10	<u> </u>	U	U	U	81U
	May-11	U	U	U	U	U
	Sep-13	U	U	U	U	U
	Dec-14	10 U	10 U	10 U	10 U	10 U
	Mar-16	10 U	10 U	10 U	10 U	10 U
	Apr-18	100	100	100	100 1 U	100
	Sep-19	1 U	1 U	1 U	1 U	1 U

	Value* Oct-00 Mar-01 Jun-01 Sep-01 Dec-01 Apr-02 Aug-02 Nov-02 Mar-03 May-05 Nov-05 Oct-08 Mar-10 May-11 Sep-13 Dec-14	Chloride 2 U - NA U	5 U - NA U U U U U U U U U U U U U	5 U - NA U U U U U U U U	5 U - NA U U U U U U U U	Trichloroethane 5 U NA U U U U U U U U U U U U U U U U
S-8 S-8 S-8 C Z Z Z Z Z Z Z Z Z Z	Oct-00 Mar-01 Jun-01 Sep-01 Dec-01 Apr-02 Aug-02 Nov-02 Mar-03 May-05 Nov-05 Oct-08 Mar-10 Mar-11 Sep-13	U - NA U U U U U U U U U U U U	U - NA U U U U U U - U U	U - NA U U U U U U U U U	U - NA U U U U U U	U - NA U U U U U
	Mar-01 Jun-01 Sep-01 Dec-01 Apr-02 Aug-02 Nov-02 Mar-03 May-05 Nov-05 Nov-05 Oct-08 Mar-10 May-11 Sep-13	- NA U U U U U U - U U U U U	- NA U U U U U U - U	- NA U U U U U U U	- NA U U U U U	- NA U U U U
J S S-8 Z S-8 Z S S S S	Jun-01 Sep-01 Dec-01 Apr-02 Aug-02 Nov-02 Mar-03 May-05 Nov-05 Oct-08 Mar-10 May-11 Sep-13	NA U U U U U U U U U U U	NA U U U U U U U U U	NA U U U U U U U	NA U U U U U	NA U U U U
S-8 X S-9 X S-9 X S-9 X S-9 X S-9 X S-9	Sep-01 Dec-01 Apr-02 Aug-02 Mar-03 May-05 Nov-05 Oct-08 Mar-10 May-11 Sep-13	U U U U U - U U U U	U U U U U - U U	U U U U U U	U U U U	U U U
	Dec-01 Apr-02 Aug-02 Nov-02 Mar-03 May-05 Nov-05 Oct-08 Mar-10 May-11 Sep-13	U U U - U U U	U U U U - U	U U U U	U U U	U U
S-8 X X X X X X X X X X X X X	Apr-02 Aug-02 Nov-02 Mar-03 May-05 Nov-05 Oct-08 Mar-10 May-11 Sep-13	U U - U U U	U U U - U	U U U	U U	U
S-8 N S-8 N	Aug-02 Nov-02 Mar-03 May-05 Nov-05 Oct-08 Mar-10 May-11 Sep-13	U U - U U U	U - U	U U	U	
S-8 M S-8 M S-8 M S S S S S S S S S S S S S S S S S S S	Nov-02 Mar-03 May-05 Nov-05 Oct-08 Mar-10 May-11 Sep-13	- U U U	- U		11	
S-8 M N N	Mar-03 May-05 Nov-05 Oct-08 Mar-10 May-11 Sep-13	U U U	U	-	U	U
	Nov-05 Oct-08 Mar-10 May-11 Sep-13	UUU			-	-
	Oct-08 Mar-10 May-11 Sep-13	U		U	U	U
	Mar-10 May-11 Sep-13	-	U	U	U	U
	May-11 Sep-13	U	U	U	U	33
	Sep-13		U	U	U	U
		U	U	U	U	U
	Dec-14	U	U	U	U	U
A S J J A A		10 U	10 U	10 U	10 U	10 U
S J S A A	Mar-16	10 U	10 U	10 U	10 U	10 U
U J J S D A A	Apr-18	1 U	1 U	1 U	1 U	1 U
M J S D A A	Sep-19	1 U	10	1 U	10	1 U
J S D A	Oct-00	-	-	-	-	-
S D A A	Mar-01	U	U	U	U	U
D A A	Jun-01	NA	NA	NA	NA	NA
A	Sep-01	U	U	U	U	U
A	Dec-01	U	U	U	U	U
	Apr-02	U	U	U	U	U
IN	Aug-02 Nov-02	U U	UU	UUU	UU	U U
N	Mar-03	U	U	U	U	U
	May-05	U	U	U	U	U
	Nov-05	U	U	U	U	U
	Oct-08	U	U	Ŭ	U	U
	Mar-10	U	U	Ű	U	U
	May-11	U	1.5	0.86J	U	U
	Sep-13	U	U	U	U	U
	Dec-14	10 U	10 U	10 U	10 U	10 U
	Mar-16	10 U	10 U	10 U	10 U	10 U
	Apr-18	1 U	1 U	1 U	1 U	1 U
	Sep-19	1 U	1 U	1 U	1 U	1 U
C	Oct-00	-	-	-	-	-
N	Mar-01	U	U	U	U	U
	Jun-01	NA	NA	NA	NA	NA
	Sep-01	U	U	U	U	U
	Dec-01	U	U	U	U	U
	Apr-02	U	U	U	U	U
	Aug-02	U	U	U	U	U
	Nov-02	U	U	U	U	U
	Mar-03	U	U	U	U	U
	May-05	U	U	U	U	U
	Nov-05	U	U	U	U	U
	Oct-08	U	U	U	U	U
	Mar-10	U	U	U	U	U
	May-11	U	U	0.88J	U	U
	Sep-13 Dec-14	U 10.11	U 10.11	U 10.11	U 10 U	U 10.11
		10 U	10 U	10 U		10 U
		10 U	10 U	10 U	10 U	10 U
S	Mar-16 Apr-18	1 U	1 U	1 U	1 U	1 U

Notes:

Analyte concentrations and Class GA Values are presented in micrograms per Liter (ug/L).

J - Estimated value.

U - Analyte was not detected at a concentration greater than the quantitation limit.

D - Result from a dilution of the original sample.

E - Exceeds calibration range.

NA - Not available.

Bold and shaded values exceed the Class GA Values.

* - NYSDEC Ambient Water Quality Standards and Guidance Values for Class GA Water, June 1998 with the April 2000 Addendum.

TRC

APPENDIX A

SITE HISTORY

SCHATZ FEDERAL BEARINGS SITE (NYSDEC SITE NO. 3-14-003)

Date Description

- 1935 1973 Approximately 125,000 yards of mixed industrial and municipal waste was deposited into the landfill located on 223-247 Van Wagner Road in Poughkeepsie, New York.
- 1949 1973 Schatz Federal Bearings deposited considerable amounts of waste, including grinding sludge, metal filings, broken grinding wheels, metal washers, twine, burlap, solvents, coolants, and oil saturated sorbent material into the landfill.
- 1986 Prior to the remedial investigation, several waste materials were visible and able to be identified throughout the site, such as rusted drums in onsite ponds.
- 1986 1988 A Remedial Investigation/Feasibility Study (RI/FS) was completed for the New York State Department of Environmental Conservation (NYSDEC). Elevated levels of volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and metals were detected in onsite soil and pond sediments. The overburden aquifer was found to be contaminated with VOCs, barium, chromium, and zinc. The bedrock aquifer was found to be contaminated with VOCs, PCBs, and metals. Contaminants were detected offsite in both upgradient and downgradient private wells.
- March 1989 The NYSDEC issued a Record of Decision (ROD) requesting extensive treatment of contaminated groundwater, excavation of municipal waste, installation of a liner system, landfill cap, and cover system. Groundwater monitoring wells were additionally installed.
- July 1992 Concentration of contaminants in groundwater samples were found to be significantly decreased from concentrations recorded in 1988.
- March 1994 The NYSDEC amended the ROD to include solidification and stabilization of slag wastes. Waste containing high levels of PCBs was removed and disposed of offsite. Site access controls, institutional controls, and long-term environmental monitoring was established.
- June 1997 Construction of the landfill cap was completed, and a site inspection and groundwater monitoring program were put in place.
- April 2014 A SMP was prepared to initiate an updated groundwater monitoring and site inspection schedule
- April 2019 The SMP was revised to include dissolved phase metals in the groundwater sampling program in addition to routine surface water and sediment sampling.

CUSTODIAL RECORD

PERTINENT SITE DOCUMENTS

SCHATZ FEDERAL BEARINGS (NYSDEC SITE NO. 3-14-003)

Metcalf & Eddy of New York, Inc., *Technical Proposal to Conduct a Remedial Investigation and Feasibility Study of the Schatz Federal Bearing Site in Dutchess County*, December 1985

Metcalf & Eddy of New York, Inc., *Contract Document for the Remedial Investigation and Feasibility Study of the Schatz Federal Bearing Site*, January 1986

Metcalf & Eddy of New York, Inc., Cost Proposal Resubmittal to Conduct a Remedial Investigation and Feasibility Study of the Schatz Federal Bearing Site in Dutchess County, March 1986

Metcalf & Eddy of New York, Inc., *Remedial Investigation Work Plan, Schatz Federal Bearing Site, Poughkeepsie, NY*, October 1986

Metcalf & Eddy of New York, Inc., *Remedial Investigation Report (Volume 1)*, Schatz Federal Bearings Site, April 1988

Metcalf & Eddy of New York, Inc., *Remedial Investigation Report (Volume 2)*, Schatz Federal Bearings Site, April 1988

Metcalf & Eddy of New York, Inc., *Feasibility Study Report, Schatz Federal Bearing Site, Poughkeepsie, New York,* September 1988

New York State Department of Environmental Conservation, *Schatz Federal Bearing Site Record of Decision*, March 1989

New York State Department of Environmental Conservation, Proposed Amendment to the Record of Decision, Schatz Federal Bearings Site, March 1994

AECOM Technical Services Northeast, Inc., Site Management Plan, Schatz Federal Bearings Site, April 2014

AECOM Technical Services Northeast, Inc., Site Management Plan, Schatz Federal Bearings Site, April 2019

New York State Department of Environmental Conservation Schatz Federal Bearings (Site No. 3-14-003) - City of Poughkeepsie, NY Monitoring Well Construction Summary

				Total			Screen			Elevation (j	feet AMSL)		Loca	tion
	Installation	Well Dia.		Depth		Тор	Bottom	Length	Casing	Ground	Scr	een		
Well ID	Date	(inches)	Well Material	(feet bgs)	Screened Formation	(feet bgs)	(feet bgs)	(feet)	Тор	Surface	Тор	Bottom	Northing	Easting
B-1	4/21/1987	4	Stainless Steel	52.5	Bedrock	26.50	52.50	26.00	191.03	186.93	163.40	137.40	1048888.919	659261.090
B-2	4/22/1987	4	Stainless Steel	35.5	Bedrock	15.50	35.50	20.00	193.44	191.49	176.90	156.90	1049192.038	658787.357
B-3	4/21/1987	4	PVC	121.7	Bedrock	40.50	121.70	18.50	179.03	178.20	137.70	119.20	1048573.394	658797.73
B-4	6/23/1987	4	Stainless Steel	33.0	Bedrock	13.00	33.00	20.00	175.90	173.50	160.50	140.55	1048363.644	658912.171
B-5	6/17/1987	4	PVC	122.0	Bedrock	29.50	122.00	20.50	183.36	182.50	153.00	132.50	1048752.308	658488.727
S-1	4/12/1987	2	PVC	20.2	Overburden	10.00	20.00	10.00	190.46	190.00	180.00	170.00	1048884.311	659263.561
S-2*	N/A	2	PVC	11.6	Overburden	N/A	N/A	N/A	193.61	191.61	N/A	N/A	1049190.764	658792.338
S-3	4/12/1987	2	PVC	35.0	Overburden	23.50	35.50	10.00	182.41	178.30	154.80	144.80	1048572.431	658792.104
S-4	4/13/1987	2	PVC	30.0	Overburden	20.00	30.00	10.00	197.72	182.90	162.90	152.90	1048868.35	658613.024
S-5	4/23/1987	2	PVC	52.5	Overburden	47.00	52.00	5.00	194.05	155.30	138.30	133.30	1048808.217	658863.533
S-7	6/22/1987	2	PVC	22.0	Overburden	17.00	22.00	5.00	183.71	182.20	165.20	160.20	1048750.117	658482.627
S-8	6/20/1987	2	PVC	10.0	Overburden	5.50	9.50	4.00	185.96	184.30	178.80	174.80	1049011.991	658496.396
S-9	6/19/1987	2	PVC	32.0	Overburden	18.00	28.00	10.00	168.56	166.40	148.40	138.40	1048521.006	659169.014
S-10	6/18/1987	2	PVC	32.0	Overburden	20.00	30.00	10.00	168.22	166.30	146.30	136.30	1048597.241	659304.745

Notes

AMSL : above mean sea level

feet bgs : feet below ground surface

PVC : polyvinyl chloride

N/A : Not Available

ID : Identification

Dia. : Diameter

* : well log for S-2 could not be located

Coordinate System: New York State Plane - East 3101; Vertical Datum: NAD 1983 (conus) through GPS observations

APPENDIX B

DATE: Wednesday, March 13, 2019

REPORT NO. 20190313

PAGE NO. 1 OF 2

PROJECT NO. 320919.0000.0000

LOGBOOK NO. -- PAGES -- to --

DAILY FIELD ACTIVITY REPORT

PROJECT	Former Scha	tz Federal	Bearings	WEATHER	TIME	TEMP.	PRECIP.	WIND (MPH)	WIND (DIR)
LOCATION	Poughkeepsie	e, New Yo	rk	Cloudy	17:30	40°F	None	0-5	SSE
ATTACHMENTS	Photo Log			Cloudy	20:30	40°F	None	0-5	SSE
SITE CONDITION	S: Clear								
WORK GOAL FOR	R DAY: Site in	spection a	and gas vent m	onitoring					
			PERSO	NNEL ON SIT	E:				
N	AME			AFFILIATION	[ARRI	VAL TIME	DEPAR	RT TIME
Martin MacDonald			TRC Engineers	s, Inc.		17:30		20:30	
Steve Nabozny			TRC Engineers	s, Inc.		17:30		20:30	
			EQUIP	MENT ON SIT	E:				
ТҮРЕ			MODEL		TYPE			MODEL	
PID		MiniRAE	3000	Not Applica	able		Not Appl	icable	
Landfill Gas Meter		GEM 2000) Plus						
Oil/Water Interface Prob	e	Heron							
			HEAL	TH & SAFETY	Y:				
PPE REQUIRED	: 🛛 LI	EVEL D	\Box LEVEL (C 🛛 LEVI	el B 🛛	LEVEL A	.]	HASP? YE	S
SITE SAFETY OFFIC									
H & S NOTES: Site v	vork performed i	in Level D	PPE						

DATE: Thursday, March 21, 2019 REPORT NO. 20190321 PAGE NO. 2 OF 2 PROJECT NO. 320919.0000.0000

DAILY FIELD ACTIVITY REPORT

DESCRIPTION OF WORK PERFORMED AND OBSERVED

TRC Engineers, Inc. (TRC) conducted a quarterly site inspection and landfill gas monitoring event on Wednesday, March 13, 2019 at the Former Schatz Federal Bearings Site (Site) located on Van Wagner Road approximately two miles northeast of downtown Poughkeepsie, NY. The objective of the site inspection was to document conditions of the landfill cap, perimeter drainage channel, drainage swales, groundwater monitoring wells, landfill gas vents, access roads, and fence lines.

TRC conducted a site walk and initial inspection while conducting the groundwater gauging event. All Site wells were in good condition. The landfill inspection included walking the perimeter of the landfill, random areas of the landfill cap. The landfill cap was dry and the soil stable, meaning no visible erosion, cracks, settlement or seeps were observed. The landfill cap is intact and in good condition. One animal burrow was noted on the southern portion of the cap. No animals were observed at the time of the inspection.

The drainage swales, channels and culverts appear to be in good condition do not contain any obstructions which could potentially prohibit stormwater flow. Vegetation in the drainage channels is currently short and would not impede the flow of water. The swales and channels are stable with no noticeable areas of active erosion. Site access roads around the perimeter of the Site are in good condition, with no signs of erosion along the road. The perimeter fence is in good condition and the gates are secure. One short section of perimeter fencing had overgrowth on the north side of the site, however, the fence still appears to be in good condition.

The landfill gas venting system was inspected for signs of damage during the site inspection. The inspection was limited to visible portions of the system, and the ground surface over the gas collection lines. The passive landfill gas vents appeared in good condition, properly secured and functioning. The ground surface above the gas collection system lines and around the gas collection vents appeared to be in good condition without any evidence of settlement along lines or vent pipes. No animal borrows, or voids, were observed around the gas vents, and no gas odors or problems related to the gas venting system were observed during the site inspection. TRC conducted the gas monitoring event on all four gas vent stations (GVS).

PREPARED BY (OBSERVER):	REVIEWED BY:
PRINT NAME: Marty MacDonald	PRINT NAME: Nate Kranes

NYSDEC Former Schatz Federal Bearings Site Photograph Log Date: March 13, 2019

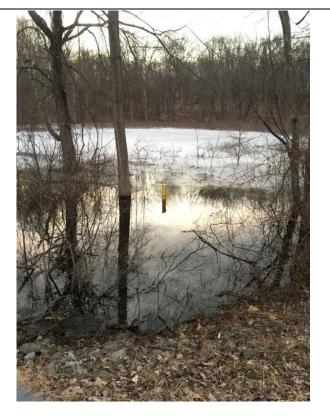

Photo 1: Looking northwest from the entry gate. View of the western side of the landfill and perimeter fence.

Photo 2: Monitoring wells S-3 and B-3 near the entrance gate on the south side of the landfill.

Photo 3: Looking southeast along the perimeter fence near monitoring well S-8.

Photo 4: Looking west at monitoring well S-8. View of the southeast slope of the landfill cap.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:	
320919.0000 .0000	Marty MacDonald	1 of 3	NYSDEC	Former Schatz Federal Bearings Poughkeepsie, NY	

NYSDEC Former Schatz Federal Bearings Site Photograph Log Date: March 13, 2019

Photo 5: Looking east from the west side of the landfill. View of drainage swales on the western side of the site.

Photo 6: Looking west at the bedrock outcrop on the northern side of the Site. View of drainage swale near north gate.

Photo 7: Looking north at north gate. View of monitoring wells S-2 and B-2.

Photo 8: Looking west near north gate on north portion of landfill. View of gas vent and western portion of landfill cap.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:	
320919.0000 .0000	Marty MacDonald	2 of 3	NYSDEC	Former Schatz Federal Bearings Poughkeepsie, NY	TRC

NYSDEC Former Schatz Federal Bearings Site Photograph Log Date: March 13, 2019

Photo 10: Monitoring wells S-1 and B-1.

Photo 11: Looking east towards monitoring wells S-1 and B-1. View of drainage swale and landfill cap with animal burrow.

Photo 12: Looking southwest towards site entrance gate. View of perimeter fence and access road.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:		
320919.0000 .0000	Marty MacDonald	3 of 3	NYSDEC	Former Schatz Federal Bearings Poughkeepsie, NY	1	TRC

DATE: Tuesday, September 24, 2019

REPORT NO. 20190924

PAGE NO. 1 OF 3

PROJECT NO. 320919.0000.0000

LOGBOOK NO. -- PAGES -- to --

DAILY FIELD ACTIVITY REPORT

WIND WIND WEATHER PRECIP. PROJECT Former Schatz Federal Bearings TIME TEMP. (MPH) (DIR) LOCATION Poughkeepsie, New York 07:00 61°F 5 W Sunny None 13:00 71°F None 8 NW ATTACHMENTS Photo Log Sunny SITE CONDITIONS: Dry, clear WORK GOAL FOR DAY: Site inspection, gas vent monitoring, groundwater, sediment and surface water sampling **PERSONNEL ON SITE:** NAME AFFILIATION ARRIVAL TIME DEPART TIME Sanjay Sharma TRC Engineers, Inc. 07:30 14:30 14:30 Andrew Fishman TRC Engineers, Inc. 08:00 **EQUIPMENT ON SITE:** TYPE MODEL ТҮРЕ MODEL PID RKI-GX-6000 Not Applicable Not Applicable Landfill Gas Meter GEM 2000 Plus Oil/Water Interface Probe Heron Water Quality meter YSI HEALTH & SAFETY: LEVEL D \Box LEVEL C LEVEL B LEVEL A **PPE REQUIRED:** HASP? YES SITE SAFETY OFFICER: Steve Johansson H & S NOTES: Site work performed in Level D PPE

DATE: Tuesday, September 24, 2019 REPORT NO. 20190924 PAGE NO. 2 OF 3

PROJECT NO. 320919.0000.0000

DAILY FIELD ACTIVITY REPORT

DESCRIPTION OF WORK PERFORMED AND OBSERVED

TRC Engineers, Inc. (TRC) conducted a semi-annual site inspection, landfill gas monitoring and annual groundwater, surface water and sediment sampling event on Tuesday, September 24, 2019 at the Former Schatz Federal Bearings Site (Site) located on Van Wagner Road approximately two miles northeast of downtown Poughkeepsie, NY. The objective of the site inspection was to document conditions of the landfill cap, perimeter drainage channel, drainage swales, groundwater monitoring wells, landfill gas vents, access roads, and fence lines.

TRC conducted a site walk and initial inspection while conducting the groundwater gauging event. All fourteen Site wells (B-1, B-2, B-3, B-4, B-5, S-1, S-2, S-3, S-4, S-5, S-7, S-8, S-9 and S-10) were in good condition. The landfill inspection included walking the perimeter of the landfill and random areas of the landfill cap. The landfill cap was dry and the soil stable, meaning no visible erosion, cracks, settlement or seeps were observed. The landfill cap was intact and in good condition.

The drainage swales, channels and culverts appeared to be in good condition and did not contain any obstructions which could potentially prohibit stormwater flow. Vegetation on the sides of the drainage channels was long but would not impede the flow of water. The swales and channels appeared stable with no noticeable areas of active erosion. Site access roads around the perimeter of the Site were in good condition. The perimeter fence was in good condition and the gates were secure. Many short sections of perimeter fencing had seasonal overgrowth on all the sides of the site; however, the fence still appeared to be in good condition.

The landfill gas venting system was inspected for signs of damage during the site inspection. The inspection was limited to visible portions of the system and the ground surface over the gas collection lines. The passive landfill gas vents appeared in good condition, properly secured and functioning. The ground surface above the gas collection system lines and around the gas collection vents appeared to be in good condition without any evidence of settlement along lines or vent pipes.

TRC collected groundwater samples from the 11 of the 14 Site monitoring wells (B-1, B-2, B-3, B-4, B-5, S-1, S-3, S-7, S-8, S-9 and S-10). Three monitoring wells (S-2, -S-4 and S-5) were dry at the time of the visit. Six sediment samples (SED-1A, SED-1B, SED-2A, SED-2B, SED-3A and SED-3B) and six surface water samples (SW-1A, SW-1B, SW-2A, SW-2B, SW-3A and SW 3B) were also collected from six locations (surface water and sediment locations are paired together). The six locations are located on the southwest side of the landfill and samples were collected from the stream and two ponded areas as per **Figure 3** – **Approximate Surface Water and Sediment Sample Locations (March 2016)** in the Site Management Plan .

Groundwater samples were submitted to TestAmerica Laboratories, Inc. for analysis using EPA Method 8260 for total VOCs, EPA method 6010C for Metals for both total and dissolved fractions and EPA method 7470A for Mercury for both total and dissolved fractions (i.e., 1 unfiltered sample and 1 lab-filtered sample were analyzed individually via EPA 6010C/EPA 7470A). Of the 11 monitoring wells, three groundwater samples were also collected from monitoring well B-3, S-3, and S-1 for analysis for emerging contaminants (i.e. PFAS and 1-4-dioxane) and were submitted for analysis using EPA method 537 modified for PFAS, Standard list of 21 and EPA method 8270 SIM for 1,4-dioxane.

 DATE: Tuesday, September 24, 2019

 REPORT NO. 20190924

 PAGE NO. 3 OF 3

 PROJECT NO. 320919.0000.0000

DAILY FIELD ACTIVITY REPORT

DESCRIPTION OF WORK PERFORMED AND OBSERVED

The surface water samples were submitted for analysis using EPA Method 8260 for total VOCs, EPA method 6010C for Metals, EPA method 7470A for Mercury, and EPA Method 160.2 for Total Suspended Solids. The sediment samples were submitted for analysis using EPA method 8082C for PCBs, EPA Method 6010C for Metals, EPA method 7471B for Mercury, and EPA Method 514.1 for Total Organic Carbon.

NYSDEC Former Schatz Federal Bearings Site Photograph Log Date: September 24, 2019

Photo 1: View of the landfill cap area from the southwest near monitoring wells B-3/S-3.

Photo 2: Monitoring wells B-3 and S-3 near the entrance gate on the south side and the western perimeter area of the landfill.

Photo 3: Looking southeastern towards the perimeter area from monitoring well B-3/S-3.

Photo 4: Looking north towards monitoring well S-8.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:	
320919.0000	Sanjay Sharma &	1 of 3	NYSDEC	Former Schatz Federal Bearings	
.0000	Andrew Fishman	1015	INT SELC	Poughkeepsie, NY	

NYSDEC Former Schatz Federal Bearings Site Photograph Log Date: September 24, 2019

Photo 5: Looking northeast from the west side of the landfill near monitoring wells B-5/S-7.

Photo 6: Looking southwest from the west side of landfill near monitoring wells B-5/S-7.

Photo 7: View of the northeast area of the landfill with bedrock outcrop in the background.

Photo 8: Thick vegetation around southern portion of landfill near entry gate.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:	
320919.0000	Sanjay Sharma & Andrew Fishman	2 of 3	NYSDEC	Former Schatz Federal Bearings Poughkeepsie, NY	

NYSDEC Former Schatz Federal Bearings Site Photograph Log Date: September 24, 2019

Photo 9: Looking south near north gate on the north portion of landfill. View of gas vent and landfill cap.

Photo 10: Thick vegetation around monitoring well B-5.

Photo 11: View of the ponded area to the southwest of monitoring well B-3/S-3.

Photo 12: Thick vegetation around monitoring well S-10. Approachable from Van Wagner Road only.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:	
320919.0000 .0000	Sanjay Sharma & Andrew Fishman	3 of 3	NYSDEC	Former Schatz Federal Bearings Poughkeepsie, NY	

APPENDIX C

			LOW	FLOW GR	ROUNDWA	ATER SAMPI	JING REC	CORD		
	PROJECT NAME	NYSDEC	C SMP A - Schatz Federal	l Bearings		OCATION ID	1	DATE]
	PROJECT NUMBI		320919.0000.0000	-	S 1	B1 TART TIME		9/23/2 END TIME		
	SAMPLE ID			, PLE TIME	SI	11:45 ITE NAME/NUMBER		13:2 PAGE	20	1
	-	SFB-MW-B1		13:10	l L			OF		
WELL DIAN	METER (INCHES)	1	2 X 4	6	8	OTHER				WELL INTEGRITY YES NO N/A
TUBING ID ((INCHES)	1/8	1/4 X 3/8	1/2	5/8	OTHER			CAP CASING LOCKED	$\frac{\frac{x}{x}}{x}$
MEASUREM	IENT POINT (MP)	X TOP OF	F RISER (TOR)	TOP OF CAS	ING (TOC)	OTHER			COLLAR	<u>X</u> <u>X</u>
INITIAL D' (BMP)	0 TW 11	1.15 FT	FINAL DTW (BMP)	13.07		ROT. CASING TICKUP (AGS)		FT	TOC/TOR DIFFERENCE	- FT
WELL DEF (BMP)	PTH 41	1.5 FT	SCREEN LENGTH			ID MBIENT AIR	0	PPM	REFILL TIME SETTING	ER - SEC
WATER COLUMN	30	0.35 FT	DRAWDOWN VOLUME (final DTW - initial DT	1.25952 FW X well diam. squ	GAL M	ID WELL IOUTH	1.7	PPM	DISCHARGE TIMER SETTI	ING - SEC
CALCULA GAL/VOL (column X w		GAL	TOTAL VOL. PURGED (mL per minute X total	5.525	GAL T	RAWDOWN/ OTAL PURGED	0.227967	421	PRESSURE TO PUMP	- PSI
	AMETERS WITH P DTW (FT)		ILIZATION CRITERIA	A (AS LISTED IN SP. CONDUCTAN	THE QAPP)	DISS. O2 (mg/L)	TURBIDITY ((ntu) REDOX (mv	PUMP	
3-5 Minutes	0.0-0.33 ft Drawdown	PURGE RATE (mL/min)	TEMP. (°C) (+/- 3 degrees)	(mS/cm) (+/- 3%)	pH (units) (+/- 0.1 unit		TURBIDITY ((+/- 10% <10 i			COMMENTS
1145	BEGIN PURG	JNG	, 				<u>r</u>			1
1150	11.86	250	16.4	2.514	8.36	0.54	0	70.4		
1200	12.45	250	16.4	2.495	8.29	0.18	0	61.1	ļ!	
1205	12.5	250	16.4	2.494	8.26	0.17	0	59.8	ļ!	
1210	12.8	250	16	2.492	8.29	0.13	0	62.2		
1215	13.05	250	15.9	2.489	8.29	0.11	0	41		
1220	13.14	250	15.9	2.487	8.29	0.11	0	35.1		
1225	13.2	250	15.9	2.486	8.29	0.1	0	28.3		
1230	13.15	250	16.7	2.497	8.28	0.12	0	15	ļ!	
1235	13.1	250	16.8	2.493	8.27	0.11	0	-0.5		
1240	13.08	250	16.7	2.497	8.27	0.11	0	-5.3	ļ!	
1245	13.05	250	16.6	2.492	8.26	0.1	0	-21.3		
1250	13.05	250	16.5	2.499	8.26	0.09	0	-35.6		
1255	13.06	250	16.4	2.494	8.26	0.09	0	-41.4		
1300	13.06	250	16.7	2.511	8.26	0.13	0	-65.9		
1305	13.06	250	16.9	2.51	8.25	0.1	0	-69.2	_	
1310	13.07	250	16.6	2.501	8.25	0.09	0	-73.2	TEMP.: nearest de	gree (ex. 10.1 = 10)
	FI	NAL STABILIZ	ZED FIELD PARA 17	METERS (to a	appropriate sig 8.3	nificant figures[SF	F]) 0	-73	COND.: 3 SF max (pH: nearest tenth (e DO: nearest tenth (e	(ex. 3333 = 3330, 0.696 = 0.696) ex. 5.53 = 5.5) ex. 3.51 = 3.5) nearest tenth (6.19 = 6.2, 101 = 101)
	DOCUMENTATIO		DECON FLUIDS USED		TURING	/PUMP/BLADDER MAT			•	44, 191 = 190) EQUIPMENT USED
X PERIST		X LI	IQUINOX DEIONIZED WATER		<u>TUBING</u> N TUBING N TUBING	S. STEE	<u>ERIALS</u> IL PUMP MATER IMP MATERIAL	IAL	X WL MET	TER Solinist MiniRAE 3000
BLADD		PC	OTABLE WATER ITRIC ACID	TEFLON HDPE T	N LINED TUBING WBING	GEOPR	OBE SCREEN N BLADDER		X WQ MET TURB. M	TER YSI Pro DSS IETER
WATTE OTHER	ι	M	IEXANE IETHANOL	X LDPE TO OTHER		OTHER OTHER			OTHER	Geotech Peri pump
OTHER ANALYTIC	AL PARAMETERS		THER	OTHER		OTHER		<u> </u>	FILTERS	
	PARAME		METHOD NUMB	BER FIELD			OLUME QUIRED	SAMPLE COLLECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
х	See Chain of	Custody					<u> </u>			
						<u> </u>				
	SERVATIONS				<u> </u>	SKETCH/NOTES				
PURGE WAT CONTAINER		S NO X	NUMBER OF GALLO GENERATED	NS 5.5	525					
NO-PURGE N UTILIZED	METHOD YES	S NO X	If yes, purged approximate to sampling or	ely 1 standing volume mL for this sample l						
Sampler Signa	ature:		Print Name:	Andrew Fishmar	n					
Checked By:	Steve Joha	insson	Date:	9/23/2019						
	TD	-						I OW F		NDWATER SAMPLING RECORD
	IRC	_						LOW H		well Drive, Suite 200, Clifton Park, NY 12065

			LOW	FLOW GRO	DUNDWA	FER SAMPI	LING REO	CORD		
	PROJECT NAME		C SMP A - Schatz Federa	al Bearings	LOC	CATION ID B2]	DATE 9/23/20	019]
	PROJECT NUMB	BER	320919.0000.0000)	STA	RT TIME 14:00]	END TIME 14:5		
	SAMPLE ID	SFB-MW-B2	SAM	PLE TIME 14:45	SIT	E NAME/NUMBER	L I	PAGE OF		
WELL DIAM	AETER (INCHES)	1	2 X 4	6	8	OTHER				WELL INTEGRITY YES NO N/A
TUBING ID ((INCHES)	1/8	1/4 X 3/8	1/2	5/8	OTHER			CAP CASING	<u>X</u>
MEASUREM	IENT POINT (MP)	X TOP 0	OF RISER (TOR)	TOP OF CASIN	G (TOC)	OTHER			LOCKED COLLAR	
INITIAL D' (BMP)	9. 9.	.25 FT	FINAL DTW (BMP)	9.56		OT. CASING CKUP (AGS)		FT	TOC/TOR DIFFERENCE	E FT
WELL DEF (BMP)	ртн 3	7.4 FT	SCREEN LENGTH		FT AM	BIENT AIR	0	PPM	REFILL TIMI SETTING	ERSEC
WATER COLUMN	28	3.15 FT	DRAWDOWN VOLUME	0.20336	GAL MO	WELL UTH	0	PPM	DISCHARGE TIMER SETT	-
CALCULA GAL/VOL	TED 18.46 well diameter squared	GAL	(final DTW - initial DT TOTAL VOL. PURGED (mL per minute X tota	2.925	GAL TO	AWDOWN/ FAL PURGED	0.069524	/80	PRESSURE TO PUMP	- PSI
			BILIZATION CRITER							
TIME 3-5 Minutes	DTW (FT) 0.0-0.33 ft Drawdown	PURGE RATE (mL/min)	E TEMP. (°C) (+/- 3 degrees)	SP. CONDUCTANCE (mS/cm) (+/- 3%)	E pH (units) (+/- 0.1 units)	DISS. O ₂ (mg/L) (+/- 10%)	TURBIDITY ((+/- 10% <10 n	ntu) REDOX (mv) ntu) (+/- 10 mv)	PUMP INTAKE DEPTH (ft)	COMMENTS
1400	BEGIN PURC	GING								
1405	9.4	250	15	1.103	7.38	4.31	2.55	39.9	35	
1410	10.06	250	14.9	1.106	7.27	3.28	2.44	46.3	35	
1415	10.48	250	14.6	1.097	7.2	2.36	0.2	53.9	35	
1420	9.48	250	14.5	1.088	7.13	2.32	1.31	65.1	35	
1425	9.5	250	13.8	1.082	7.11	2.31	3.03	71.1	35	
1430	9.55	250	13.7	1.083	7.08	2.3	0	78.6	35	
1435	9.53	250 250	13.9	1.083	7.04	2.29	0	83	35	
1440	9.56		13.6 IZED FIELD PARA					88.5	TEMP.: nearest de	gree (ex. 10.1 = 10) (ex. 3333 = 3330, 0.696 = 0.696)
	FL	NAL STADIL						00	pH: nearest tenth (e DO: nearest tenth (e	ex. 5.53 = 5.5) ex. 3.51 = 3.5)
EQUIPMENT	DOCUMENTATIO	DN	14	1.08	7	2.3	0		ORP : 2 SF (44.1 =	nearest tenth (6.19 = 6.2, 101 = 101) 44, 191 = 190)
T X PERIST	<u>TYPE OF PUMP</u> 'ALTIC :RSIBLE DER ERA		DECON FLUIDS USED LIQUINOX DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL OTHER	X SILICON T TEFLON T HDPE TUE X LDPE TUE OTHER OTHER	TUBING TUBING INED TUBING BING	PVC PU GEOPRO	L PUMP MATER MP MATERIAL OBE SCREEN N BLADDER	IAL	X WL MET X PID X WQ MET TURB. M	IETER Geotech Peri pump
ANALYTICA	AL PARAMETERS PARAME		METHOD	FIELD			OLUME	SAMPLE	QC	SAMPLE BOTTLE ID NUMBERS
X	See Chain of	Custody	NUMBER				QUIRED			NUMBERS
PURGE OBS PURGE WAT CONTAINER NO-PURGE N UTILIZED	RIZED	Х	NUMBER OF GALLO GENERATED If yes, purged approxima to sampling or	2.925	rior	KETCH/NOTES				
Sampler Signa	ature:		Print Name:	Andrew Fishman						
Checked By:	Steve Joha	ansson	Date:	9/23/2019						
<hr/>	TRO							LOW FL		NDWATER SAMPLING RECORI rell Drive, Suite 200, Clifton Park, NY 1206

			LOW	FLOW GRO	UNDWA	I EK SAMPI	AING RECU	JKD		
	PROJECT NAME		EC SMP A - Schatz Feder	al Bearings	LOC	CATION ID B3	DAT	ΓE 9/23/20	019	
	PROJECT NUMB	ER	320919.0000.000	0	STA	ART TIME 10:10	ENI	• TIME 11:1		
	SAMPLE ID	SFB-MW-B3	SAM	11:00	SIT	E NAME/NUMBER	PAC			
WELL DIAL			2 X 4			OTHER		01		WELL INTEGRITY YES NO N/A
WELL DIAN	METER (INCHES)		2 <u>X</u> 4	6	°	OTHER			CAP	X
TUBING ID		1/8	1/4 X 3/8	1/2	5/8	OTHER			CASING LOCKED	
MEASUREN	IENT POINT (MP)		OF RISER (TOR) FINAL DTW	TOP OF CASIN		OTHER			COLLAR TOC/TOR	<u> </u>
(BMP)	20	0.6 FT	(BMP)	23.45	FT STI	CKUP (AGS)		FT	DIFFERENCE	
WELL DEI (BMP)	PTH 10)1.1 FT	SCREEN LENGTH		FT AM	BIENT AIR	0	PPM	REFILL TIMI SETTING	- SEC
WATER COLUMN	80	0.5 FT	DRAWDOWN VOLUME	1.8696	GAL MO	WELL UTH	0	PPM	DISCHARGE TIMER SETT	_
CALCULA GAL/VOL	22.80	08 GAL	(final DTW - initial D' TOTAL VOL. PURGED	TW X well diam. squar 3.25	DRA	AWDOWN/ FAL PURGED	0.575261538		PRESSURE TO PUMP	- PSI
	well diameter squared			al minutes X 0.00026 g	-					
TIME	AMETERS WITH I DTW (FT) 0.0-0.33 ft	PURGE RAT	()	RIA (AS LISTED IN 1 SP. CONDUCTANCE (mS/cm)	E pH (units)	DISS. O ₂ (mg/L)	TURBIDITY (ntu)		PUMP INTAKE	COMMENTS
3-5 Minutes 1010	Drawdown BEGIN PURC	(mL/min)	(+/- 3 degrees)	(+/- 3%)	(+/- 0.1 units)	(+/- 10%)	(+/- 10% <10 ntu)	(+/- 10 mv)	DEPTH (ft)	
1020	20.49	250	14.6	1.878	8.93	6.47	0	17.2	98	
1030	21.73	250	14.3	1.863	8.98	6.44	0	30.3	98	
1035	22.15	250	13.9	1.86	8.95	6.45	0	36.7	98	
1040	22.79	250	14	1.861	8.95	6.49	0	40.1	98	
1045	23	250	14	1.861	8.95	6.5	0	44.5	98	
1050	23.45	250	13.8	1.859	8.94	6.53	0	47.4	98 TEMP.: nearest dep	gree (ex. 10.1 = 10)
	FII	NAL STABII	LIZED FIELD PARA	METERS (to app	oropriate signi	ificant figures[SF	F])	T	COND.: 3 SF max pH: nearest tenth (e DO: nearest tenth (e	
FOURMENT	DOCUMENTATIO	NVI	14	1.86	8.9	6.5	0	47		nearest tenth (6.19 = 6.2, 101 = 101)
	TYPE OF PUMP		DECON FLUIDS USED		TUBING/PU	JMP/BLADDER MATI	ERIALS			EQUIPMENT USED
X PERIST SUBME	TALTIC ERSIBLE	X X	LIQUINOX DEIONIZED WATER	X SILICON T TEFLON T			L PUMP MATERIAL MP MATERIAL			ER Solinist MiniRAE 3000
BLADE			POTABLE WATER	TEFLON L	INED TUBING	GEOPRO	OBE SCREEN		X WQ MET	TER YSI Pro DSS
WATTE	ERA	_ -	NITRIC ACID HEXANE	HDPE TUE X LDPE TUB		TEFLON OTHER	N BLADDER		TURB. M X PUMP	IETER Geotech Peri pump
OTHER OTHER		_ []	METHANOL OTHER	OTHER OTHER		OTHER OTHER			OTHER	NO. TYPE
	AL PARAMETERS	<u>L</u>	OTHER	OTHER		OTHER			FILTERS	NO. ITTE
	PARAME	ETER	METHOD NUMBER	FIELD FILTEREI				AMPLE LECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
х	See Chain of	Custody								
										·
PURGE OBS	SERVATIONS				SF	KETCH/NOTES				
PURGE WAT			NUMBER OF GALL	ONS 3.25						
CONTAINER NO-PURGE		X S NO	GENERATED	ataly 1 atandina yaluma n	ion					
UTILIZED		X	to sampling or	ately 1 standing volume pr mL for this sample loc						
Sampler Signa	ature:		Print Name:	Andrew Fishman						
Checked By:	Steve Joha	ansson	Date:	9/23/2019						
	TD							LOW FI	OW CROUN	NDWATER SAMPLING RECORI
								LOWIE		ell Drive, Suite 200, Clifton Park, NY 1206

			LOW	V FLOW GRO	UNDWA	TER SAMPI	JING RECO	JRD		
	PROJECT NAME		SMP A - Schatz Feder	al Bearings	LOG	CATION ID B4	D	ATE 9/24/2	019]
	PROJECT NUMB	ER	320919.0000.000	0	STA	RT TIME 9:35	E	ND TIME 10:4	15	
	SAMPLE ID	SFB-MW-B4	SAM	PLE TIME 10:40	SIT	E NAME/NUMBER	PA	AGE OF		
WELL DIAN	IETER (INCHES)	1	2 X 4	6	8	OTHER				J WELL INTEGRITY YES NO N/A
TUBING ID	. ,		1/4 X 3/8			OTHER			CAP CASING	Х
	IENT POINT (MP)	X TOP OF	·	TOP OF CASING				,	LOCKED	$\frac{\overline{x}}{\overline{x}}$ $\frac{\overline{x}}{\overline{x}}$ $\frac{\overline{x}}{\overline{x}}$
INITIAL D		A TOP OF	FINAL DTW	TOP OF CASING		OTHER	r		TOC/TOR	
(BMP)	12	2.15 FT	(BMP)	13.82	FT STI	CKUP (AGS)		FT	DIFFERENCE	
WELL DEI (BMP)	РТН 36	5.71 FT	SCREEN LENGTH		FT AM	BIENT AIR	0	PPM	REFILL TIME SETTING	ERSEC
WATER COLUMN	24	4.56 FT	DRAWDOWN VOLUME	1.09552 FW X well diam. square	GAL MO	WELL UTH	0	PPM	DISCHARGE TIMER SETTI	ING SEC
CALCULA GAL/VOL		I36 GAL	TOTAL VOL. PURGED	4.225	DRA	AWDOWN/ FAL PURGED	0.25929467	75	PRESSURE TO PUMP	- PSI
(column X v	vell diameter squared	X 0.041)	(mL per minute X tota	l minutes X 0.00026 gal	/mL)	THE FORGED			TOTEM	151
FIELD PARA	DTW (FT)	PROGRAM STABI	TEMP. (°C)	A (AS LISTED IN TH SP. CONDUCTANCE		DISS. O2 (mg/L)	TURBIDITY (nt) REDOX (mv)	PUMP	
3-5 Minutes	0.0-0.33 ft Drawdown	(mL/min)	(+/- 3 degrees)	(mS/cm) (+/- 3%)	(+/- 0.1 units)		(+/- 10% <10 nt		INTAKE DEPTH (ft)	COMMENTS
935	BEGIN PURG	SING			-		•			
940	12.41	250	14	2.972	7.93	7.11	4.97	37.6	34	
950	12.51	250	13.9	3.091	7.33	6.52	2.57	46.1	34	
955	12.57	250	13.8	3.099	7.32	5.91	1.64	59.4	34	
1000	13.15	250	13.7	3.095	7.28	5.38	1.08	72.8	34	
1005	13.21	250	13.9	3.095	7.28	5.56	0.94	93.6	34	
1010	13.24	250	14.1	3.156	7.26	5.28	1.04	100.6	34	
1015	13.32	250 250	14	3.225	7.25	5.01	0.81	107.5	34	
1025	13.63	250	14.1	3.313	7.25	4.69	0.6	112.9	34	
1030	13.75	250	14.1	3.47	7.24	4.08	0.62	116.1	34	
1035	13.82	250	14	3.474	7.24	4.14	0.6	117.6	34	
	F	INAL STABILIZ	ZED FIELD PARA	METERS (to appr	opriate signi	ficant figures[SF	D		TEMP.: nearest deg COND.: 3 SF max (pH: nearest tenth (ex	ex. 3333 = 3330, 0.696 = 0.696)
			14	3.47	7.2	4.1	0.6	120	DO: nearest tenth (et	ex. 3.51 = 3.5) tearest tenth (6.19 = 6.2, 101 = 101)
	DOCUMENTATIO				TUDDIC/D	UMP/BLADDER MATI	EDIALG	1		EQUIPMENT USED
X PERIST		X LI	ECON FLUIDS USED QUINOX	X SILICON TU TEFLON TU	JBING	S. STEE	<u>erials</u> L PUMP MATERIA MP MATERIAL	L	X WL MET	ER Solinist MiniRAE 3000
BLADD	ERSIBLE DER	PO	EIONIZED WATER DTABLE WATER	TEFLON LI	NED TUBING	GEOPRO	DBE SCREEN		X WQ MET	TER YSI Pro DSS
WATTE		HI	TRIC ACID EXANE	HDPE TUBI X LDPE TUBI		OTHER				Geotech Peri pump
OTHER OTHER			ETHANOL FHER	OTHER OTHER		OTHER OTHER			OTHER FILTERS	NO. TYPE
ANALYTICA	AL PARAMETERS		METHOD	FIELD	PRESER	VATION V	OLUME	SAMPLE	QC	SAMPLE BOTTLE ID
	PARAME See Chain of		NUMBER	FILTERED				OLLECTED	COLLECTED	NUMBERS
X	See chain of	Custody						<u> </u>		
										·
								<u> </u>		•
PURGE OBS	SERVATIONS				Sk	KETCH/NOTES				<u></u>
PURGE WAT CONTAINER		S NO	NUMBER OF GALLO GENERATED	ONS 4.225						
NO-PURGE M		S NO	If yes, purged approxima	tely 1 standing volume pric						
UTILIZED	L	Х	to sampling or	mL for this sample locat	noll.					
Sampler Signa	ature:		Print Name:	Andrew Fishman						
Checked By:	Steve Joha	insson	Date:	9/24/2019						
•	TRO							LOW F	LOW GROU	NDWATER SAMPLING RECORD
									10 Maxv	well Drive, Suite 200, Clifton Park, NY 12065

				LOW	FLOW GRO	UNDWAT	FER SAMPI	LING REC	ORD		
	PROJECT	Г NAME	NYSE	EC SMP A - Schatz Feder	al Bearings	LOC	CATION ID B5	D	ATE 9/24/2	019	
	PROJECT	Г NUMBF	ER	320919.0000.000	0	STA	RT TIME 11:40	E	ND TIME 12:5		
	SAMPLE	ID	SFB-MW-B5	SAM	12:40	SITI	E NAME/NUMBER	. P.	AGE OF		
WELL DIAM	IETER (IN	CHES)	1	2 X 4	6	8	OTHER				WELL INTEGRITY YES NO N/A
TUBING ID (INCHES)	Ī	1/8	1/4 X 3/8	1/2	5/8	OTHER			CAP CASING	X
MEASUREM	ENT POIN	NT (MP)	X TOP	OF RISER (TOR)	TOP OF CASING	i (TOC)	OTHER			LOCKED COLLAR	<u>x</u> <u>x</u>
INITIAL D' (BMP)	rw	16	5.3 FT	FINAL DTW (BMP)	16.75		OT. CASING CKUP (AGS)		FT	TOC/TOR DIFFERENCE	- FT
WELL DEP (BMP)	тн	48	8.3 FT	SCREEN LENGTH		FT AM	BIENT AIR	0	PPM	REFILL TIME SETTING	ERSEC
WATER COLUMN		3	2 FT	DRAWDOWN VOLUME	0.2952	GAL MO	WELL UTH	0	PPM	DISCHARGE TIMER SETTI	ING - SEC
CALCULA GAL/VOL	TED	20.992	2 GAL	(final DTW - initial D TOTAL VOL. PURGED	TW X well diam. square	DRA	AWDOWN/ FAL PURGED	0.08257342	27	PRESSURE TO PUMP	- PSI
(column X w			X 0.041)		al minutes X 0.00026 ga	l/mL)					
FIELD PARA TIME 3-5 Minutes	DTW 0.0-0.	(FT) 33 ft	PURGE RAT (mL/min)	E TEMP. (°C) (+/- 3 degrees)	SP. CONDUCTANCE (mS/cm)		DISS. O ₂ (mg/L) (+/- 10%)	TURBIDITY (nt (+/- 10% <10 nt		INTAKE	COMMENTS
1140	Drawe	lown V PURG		(ii 5 degrees)	(+/- 3%)	(**************************************	(1, 10,0)	(***************	u) (() 10 mil)	DEPTH (ft)	
1140	BEGI		250	13.5	2.357	8.14	1.27	9.45	98	46	
1200	16.	57	250	13.5	2.376	8.13	0.87	4.79	97.6	46	
1205	16.		250	13.2	2.391	8.13	0.54	0	96.5	46	
1210	16. 16.		250	13.3	2.399	8.14	0.42	0	95.6 93.7	46	
1210	16.		250	13.8	2.43	8.14	0.24	0	92.4	46	
1225	16	.7	250	13.9	2.439	8.15	0.17	0	91	46	
1230	16.	72	250	13.8	2.447	8.17	0.13	0	90.4	46	
1235	16.		250	13.6	2.447	8.17	0.17	0	90.1	46 TEMP.: nearest deg	gree (ex. 10.1 = 10)
		FI	NAL STABI	LIZED FIELD PARA	AMETERS (to app					COND.: 3 SF max (pH: nearest tenth (e: DO: nearest tenth (e:	(ex. 3333 = 3330, 0.696 = 0.696) x. 5.53 = 5.5) x. 3.51 = 3.5)
EQUIPMENT	DOCUME	NTATIO	N	14	2.45	8.2	0.2	0	90	TURB: 3 SF max, n ORP: 2 SF (44.1 = 4	earest tenth (6.19 = 6.2, 101 = 101) 44, 191 = 190)
<u> </u>	TYPE OF PU		v	<u>DECON FLUIDS USED</u> LIOUINOX	V SU ICON T		JMP/BLADDER MATI		T		EQUIPMENT USED
SUBME	RSIBLE		X	DEIONIZED WATER	X SILICON TU TEFLON TU	JBING	PVC PU	L PUMP MATERIA MP MATERIAL	L	X PID	ER Solinist MiniRAE 3000
BLADD				POTABLE WATER NITRIC ACID	HDPE TUBI			DBE SCREEN BLADDER		X WQ MET TURB. M	
WATTE OTHER				HEXANE METHANOL	X LDPE TUBI OTHER	NG	OTHER OTHER			X PUMP OTHER	Geotech Peri pump
OTHER				OTHER	OTHER		OTHER			FILTERS	NO. TYPE
ANALYTICA		IETERS PARAME	TER	METHOD NUMBER	FIELD FILTERED			DLUME QUIRED C	SAMPLE OLLECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
X	See	Chain of (Custody								
											·
								<u> </u>			
PURGE OBS	ERVATIO	NS				SK	XETCH/NOTES				<u> </u>
PURGE WAT	ER	YES	NO X	NUMBER OF GALL GENERATED	ONS 3.575						
CONTAINER		YES	NO		tely 1 standing volume prio	r					
UTILIZED			Х	to sampling or	mL for this sample locati						
Sampler Signa	ture:			Print Name:	Andrew Fishman						
Checked By:	S	steve Johar	nsson	Date:	9/24/2019						
•	Тг	20							LOW FI		NDWATER SAMPLING RECORD vell Drive, Suite 200. Clifton Park, NY 1206

				LOW	FLOW GRO	UNDWAT	FER SAMPI	LING REC	CORD		
	PROJEC	T NAME	NYSD	EC SMP A - Schatz Federa	al Bearings	LOC	CATION ID S1	D	ATE 9/23/2	019	
	PROJEC	T NUMBI	ER	320919.0000.000	0	STA	RT TIME 11:45	E	ND TIME 12:4		
	SAMPLE	E ID	SFB-MW-S1	SAM	12:30	SITI	E NAME/NUMBER	P	AGE		
WELL DIAM	ETER (IN	NCHES)	1 2	<u> </u>	6	8	OTHER				J WELL INTEGRITY YES NO N/A
TUBING ID (1/8	1/4 X 3/8	1/2	5/8	OTHER			CAP CASING	<u>X</u>
MEASUREM	<i>,</i>		·	OF RISER (TOR)	TOP OF CASING		OTHER			LOCKED COLLAR	
INITIAL DI (BMP)	гw	10).9 FT	FINAL DTW (BMP)	13.22		DT. CASING CKUP (AGS)		FT	TOC/TOR DIFFERENCE	- FT
WELL DEP (BMP)	VELL DEPTH 20.45 FT		.45 FT	SCREEN LENGTH		FT AM	BIENT AIR			REFILL TIME SETTING	ERSEC
WATER COLUMN		9.	55 _{FT}	DRAWDOWN VOLUME	0.38048		WELL UTH	0	PPM	DISCHARGE TIMER SETTI	ING SEC
CALCULAT GAL/VOL	ГED	1.566	² GAL	(final DTW - initial D TOTAL VOL. PURGED	TW X well diam. squar 5.85	DRA	AWDOWN/ FAL PURGED	0.065039316 PRESSURE		PRESSURE TO PUMP	- PSI
(column X w	ell diamet	er squared			l minutes X 0.00026 ga					1010.11	1.01
FIELD PARA TIME 3-5 Minutes	DTW 0.0-0	/ (FT) 0.33 ft	ROGRAM STA PURGE RATI (mL/min)	E TEMP. (°C) (+/- 3 degrees)	SP. CONDUCTANCE (mS/cm)		DISS. O ₂ (mg/L) (+/- 10%)	TURBIDITY (n (+/- 10% <10 nt		INTAKE	COMMENTS
1145		^{rdown} N PURG		(17-5 degrees)	(+/- 3%)	(17 0.1 units)	(17 1070)	(17 1070 410 11	(1/ 10 111)	DEPTH (ft)	<u> </u>
1145	BEGI		500	16.9	0.281	8	2.05	145.65	81.8	18	
1155	11	.55	500	16.7	0.278	9.71	1.64	103.67	77	18	
1200	11	.96	500	17.6	0.281	5.99	2.37	76.3	70.3	18	
1205		.33	500	17.1	0.274	5.1	0.72	46.69	60.3	18	
1210	12	.81	500	17	0.274	4.98	0.56	44.1	55.4 47.7	18	
1210		.00	500	17.1	0.274	4.84	0.44	39.65	48.3	18	
1225	13	.16	500	17.2	0.274	4.93	0.43	36.5	48.6	18	
1230	13	.22	500	17.2	0.274	4.92	0.44	33.8	48.5	18	
		FI	NAL STABII	LIZED FIELD PARA	METERS (to app	ropriate signi	ficant figures[SF	TD		TEMP.: nearest deg COND.: 3 SF max (pH: nearest tenth (e:	(ex. 3333 = 3330, 0.696 = 0.696)
				17	0.274	4.9	0.4	33.8	49	DO: nearest tenth (e	ex. 3.51 = 3.5) nearest tenth (6.19 = 6.2, 101 = 101)
EQUIPMENT I	DOCUME TYPE OF PU		N	DECON FLUIDS USED		TUDING/DI	JMP/BLADDER MATI	EDIALC			EQUIPMENT USED
X PERISTA	ALTIC		Х	LIQUINOX	X SILICON T	UBING	S. STEEL	L PUMP MATERIA	L	X WL MET	ER Solinist
SUBME BLADD			X	DEIONIZED WATER POTABLE WATER		NED TUBING	GEOPRO	MP MATERIAL OBE SCREEN		X WQ MET	
WATTE	RA			NITRIC ACID HEXANE	HDPE TUB		TEFLON OTHER	BLADDER		TURB. M X PUMP	ETER Geotech Peri pump
OTHER OTHER			_ □	METHANOL OTHER	OTHER OTHER		OTHER OTHER			OTHER	
ANALYTICA	L PARAM	METERS		OTHER	OTHER		OTHER			FILTERS	NO. TYPE
		PARAME e Chain of		METHOD NUMBER	FIELD FILTERED			OLUME QUIRED C	SAMPLE COLLECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
X		e chain or	Custody								·
											·
											·
PURGE OBS		DNS				SK	ETCH/NOTES				
PURGE WAT		YES	NO X	NUMBER OF GALLO GENERATED	DNS 5.85						
NO-PURGE M		YES	NO	If yes, purged approximat	tely 1 standing volume prio						
UTILIZED			Х	to sampling or	mL for this sample locat	ion.					
Sampler Signa	ture:			Print Name:	Andrew Fishman						
Checked By:	5	Steve Joha	nsson	Date:	9/23/2019						
$\mathbf{\dot{\mathbf{b}}}$	Гг	RC							LOW FI		NDWATER SAMPLING RECORD vell Drive, Suite 200, Clifton Park, NY 12063

10 Maxwell Drive, Suite 200, Clifton Park, NY 12065

			LOW	FLOW GF	ROUNDV	VATER SAMI	LING RI	ECORD		
	PROJECT NAM	E NYSDEC	SMP A - Schatz Federa	l Bearings		LOCATION ID		DATE]
	PROJECT NUMBER 320919.0000.0000				S2 START TIME		END TIME		-	
	SAMPLE ID SAMPLE TIME				SITE NAME/NUMBI	R	PAGE			
									OF	WELL INTEGRITY
WELL DIAMETER (INCHES) 1 X 2 4 6				8	OTHER	CAP	YES NO N/A X			
TUBING ID (INCHES) 1/8 1/4 X 3/8 1/2				5/8	OTHER			CASING LOCKED COLLAR		
MEASUREMENT POINT (MP) X TOP (F RISER (TOR)	TOP OF CAS	ING (TOC)	OTHER				<u>x</u>	
(BMP)		FT	(BMP)		FT	STICKUP (AGS)		FT	TOC/TOR DIFFERENC	
WELL DEF (BMP)	WELL DEPTH (BMP) FT		SCREEN LENGTH		FT	PID AMBIENT AIR	0	0 PPM		ER - SEC
WATER COLUMN		0 FT	DRAWDOWN VOLUME (final DTW - initial D	0 TW X well diam. s	GAL auared X 0.04	PID WELL MOUTH 1)		PPM		FING SEC
CALCULA GAL/VOL (column X v		GAL	TOTAL VOL. PURGED (mL per minute X tota		GAL	DRAWDOWN/ TOTAL PURGED	#DI	#DIV/0!		- PSI
FIELD PARA	DTW (FT)	PROGRAM STAL	TEMP. (°C)	SP. CONDUCTAN		<i>`</i>	TURBIDITY	(ntu) REDOX	(mv) PUMP	
3-5 Minutes	0.0-0.33 ft Drawdown	(mL/min)	(+/- 3 degrees)	(mS/cm) (+/- 3%)	(+/- 0.1		(+/- 10% <1			COMMENTS
	DRY, NO SA	MPLE	1							
			┼───┤							
		+								
	E	INAL STABILI	ZED FIELD PARA	METERS (to a	nnronriate	significant figures[(FI)		TEMP.: nearest de	grec (ex. 10.1 = 10) (ex. 3333 = 3330, 0.696 = 0.696)
	1								pH: nearest tenth (DO: nearest tenth (ex. 5.53 = 5.5) ex. 3.51 = 3.5) nearest tenth (6.19 = 6.2, 101 = 101)
1	DOCUMENTATI	1	DECON FLUIDS USED		TUBI	NG/PUMP/BLADDER MA				EQUIPMENT USED
	ERSIBLE	XI	IQUINOX DEIONIZED WATER	TEFLO	N TUBING N TUBING	PVC	EEL PUMP MAT PUMP MATERIA		X PID	TER Solinist MiniRAE 3000
BLADD		1	OTABLE WATER JITRIC ACID IEXANE	TEFLOI HDPE T X LDPE T			ROBE SCREEN ON BLADDER R		X WQ ME TURB. N X PUMP	TER YSI Pro DSS METER Geotech Peri pump
OTHER	t	N	METHANOL OTHER	OTHER		OTH	R		OTHER FILTERS	
	AL PARAMETER PARAM	ETER	METHOD NUMBER	FIELI FILTER) PR	ESERVATION	VOLUME EQUIRED	SAMPLE COLLECTED	QC COLLECTED	SAMPLE BOTTLE ID
X	See Chain o	or Custody								
									<u> </u>	
PURCE OPS	SERVATIONS					SKETCH/NOTES				
PURGE WAT CONTAINER	TER <u>YI</u>	S NO	NUMBER OF GALLO GENERATED	ONS)	SKETCH/NUTES				
NO-PURGE M UTILIZED			GENERATED If yes, purged approxima to sampling or	tely 1 standing volun mL for this sample						
Sampler Signa	ature:		Print Name:	Andrew Fishma	n					
Checked By:	Steve Joł	ansson	Date:							
•> -	TR							LOW		NDWATER SAMPLING RECORD rell Drive, Suite 200, Clifton Park, NY 12065

_			LOW	FLOW GRO	JUNDWA	TER SAMPI	JING RECO	JRD		
	PROJECT NAME NYSDEC SMP A - Schatz Federal Bearings				LOCATION ID S3			ATE 9/23/2	2019	
	PROJECT NUMBER 320919.0000.0000			ST	CART TIME 10:10	EN	ND TIME 11:			
	SAMPLE ID SFB-MW-S3 11:05				SI	TE NAME/NUMBER	PA	AGE		
								0F		WELL INTEGRITY
	IETER (INCHES)	1 X		6	8 OTHER CAP					YES NO N/A X X
TUBING ID ((INCHES) IENT POINT (MP)		1/4 X 3/8 F RISER (TOR)	1/2 TOP OF CASIN	5/8	OTHER			CASING LOCKED COLLAR	$\frac{\overline{x}}{\overline{x}}$ $\frac{\overline{x}}{\overline{x}}$ $\frac{\overline{x}}{\overline{x}}$
INITIAL D	TW	1.21 m	FINAL DTW	26.18					TOC/TOR	
(BMP) WELL DEI	оти —	FI	(BMP) SCREEN	20.18	FT STICKUP (AGS)		FT		DIFFERENCE REFILL TIME	
(BMP)	39	0.32 FT	LENGTH		FT A!	MBIENT AIR	0	PPM	SETTING	SEC
WATER COLUMN	15	5.11 FT	DRAWDOWN VOLUME (final DTW - initial DT	0.32308 W X well diam. squar	GAL M	D WELL OUTH	0	PPM	DISCHARGE TIMER SETTI	
CALCULA GAL/VOL	2.478	GAL	TOTAL VOL. PURGED	6.24	GAL TO	RAWDOWN/ DTAL PURGED	0.05177564	1	PRESSURE TO PUMP	- PSI
	vell diameter squared		(mL per minute X total							
TIME 3-5 Minutes	DTW (FT) 0.0-0.33 ft Drawdown	PURGE RATE (mL/min)	TEMP. (°C) (+/- 3 degrees)	SP. CONDUCTANC (mS/cm) (+/- 3%)		DISS. O ₂ (mg/L) s) (+/- 10%)	TURBIDITY (ntu (+/- 10% <10 ntu			COMMENTS
1005	BEGIN PURG	ING		(+/- 370)	_				DEF III (II)	<u> </u>
1010	24.9	500	14.4	0.273	8.12	1.87	71.59	34.2	37	
1015	25.62	500	13.9	0.265	5.38	0.5	66.58	29.4	37	
1020	25.75	500	13.8	0.264	5.06	0.35	64.41	26.4	37	
1025	25.95 26	500	13.6 13.72	0.264	4.71	0.2	63.75 67.55	11.6	37	
1035	26.21	500	13.8	0.264	4.62	0.08	71.33	9.2	37	
1040	26.19	300	13.82	0.265	4.59	0.2	74.38	19	37	
1045	26.18	300	13.9	0.265	4.59	0.05	76.77	8.8	37	
1050	26.21	300	14	0.266	4.52	0.04	82.78	7.4	37	
1055	26.2	300	13.95	0.265	4.55	0.04	63.3	7.65	37	
1100	26.19	300	13.98	0.265	4.53	0.04	61.5 58.3	7.58	37	
1105	26.18				appropriate significant figures[SF])			7.0	TEMP .: nearest deg	ree (ex. 10.1 = 10) (ex. 3333 = 3330, 0.696 = 0.696)
	1		14	0.264	4.6		5	7.6	pH: nearest tenth (ex DO: nearest tenth (ex	x. 5.53 = 5.5)
EQUIPMENT	DOCUMENTATIO	N	14	0.204	4.0	0	5	7.0	ORP: 2 SF (44.1 = 4	t4, 191 = 190)
X PERIST	<u>TYPE OF PUMP</u> ALTIC		DECON FLUIDS USED IQUINOX	X SILICON T		PUMP/BLADDER MATI S. STEE	<u>ERIALS</u> L PUMP MATERIAI	Ŀ		EQUIPMENT USED ER Solinist
SUBME BLADD	ERSIBLE		EIONIZED WATER OTABLE WATER	TEFLON T TEFLON I	TUBING .INED TUBING		MP MATERIAL OBE SCREEN		X PID	MiniRAE 3000 TER YSI Pro DSS
WATTE	ERA		ITRIC ACID EXANE	HDPE TUE X LDPE TUE		TEFLON OTHER	N BLADDER		TURB. M X PUMP	IETER Geotech Peri pump
OTHER OTHER			IETHANOL THER	OTHER OTHER		OTHER OTHER			OTHER FILTERS	NO. TYPE
ANALYTIC	AL PARAMETERS PARAME	TER	METHOD NUMBER	FIELD FILTEREI				SAMPLE	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
X	See Chain of	Custody	NUMBER	FILTEREI				DLLECTED		NUMBERS
										<u> </u>
										·
		<u></u>								
PURGE OBS PURGE WAT	ERVATIONS TER YES	5 NO	NUMBER OF GALLC	NS		SKETCH/NOTES				
CONTAINER	IZED	Х	GENERATED	6.24						
NO-PURGE N UTILIZED	METHOD YES	S NO X	If yes, purged approximat to sampling or	ely 1 standing volume p mL for this sample loc						
Sampler Signa	ature:		Print Name:	Andrew Fishman						
Checked By:	Steve Joha	insson	Date:	9/23/2019						
	TD				•			LOW	FLOW GROU	NDWATER SAMPLING RECORD
										well Drive, Suite 200, Clifton Park, NY 12065

10 Maxwell Drive, Suite 200, Clifton Park, NY 12065

			LOW	FLOW GF	OUND	VATER SA	MPI	JING RE	CORD		
	PROJECT NAM	IE NYSDE	SMP A - Schatz Federa	l Bearings		LOCATION ID	64	Ţ	DATE		
	PROJECT NUMBER 320919.0000.0000				START TIME	S4]	END TIME		-	
	SAMPLE ID					SITE NAME/NU	MBER	t 1	PAGE		
									O	,	WELL INTEGRITY
WELL DIAMETER (INCHES) 1 X 2 4 6				8	8 OTHER CAP					YES NO N/A X	
TUBING ID (INCHES) 1/8 1/4 X 3/8 1/2			5/8	LC				CASING LOCKED			
MEASUREMENT POINT (MP) X TOP		F RISER (TOR)	TOP OF CAS	ING (TOC)	OTHER OTHER				COLLAR TOC/TOR	<u> </u>	
(BMP)		FT	(BMP)		FT	STICKUP (AGS			FT	DIFFERENCI	- FT
WELL DEI (BMP)	WELL DEPTH (BMP) FT		SCREEN LENGTH		FT	PID AMBIENT AIR		0 PPM		REFILL TIM SETTING	ER - SEC
WATER COLUMN		0 FT	DRAWDOWN VOLUME (final DTW - initial D	0 TW X wall diam. c	GAL	PID WELL MOUTH			PPM	DISCHARGE TIMER SETT	
CALCULA GAL/VOL		0 GAL	(mar D1 w - muar D TOTAL VOL. PURGED (mL per minute X tota		GAL	DRAWDOWN/ TOTAL PURGED		#DIV/0!		PRESSURE TO PUMP	- PSI
-	AMETERS WIT		BILIZATION CRITER		N THE QAPF	?)		1		DI D (D	I
TIME 3-5 Minutes	DTW (FT) 0.0-0.33 ft Drawdown	PURGE RATE (mL/min)	TEMP. (°C) (+/- 3 degrees)	SP. CONDUCTAN (mS/cm) (+/- 3%)	pH (un (+/- 0.1			TURBIDITY ((+/- 10% <10 1	ntu) REDOX (m ntu) (+/- 10 mv		COMMENTS
	DRY, NO S	AMPLE			1			1	1	1	
									_		
		EINAL STADIL	ZED FIELD PARA	METERS (40.0		cionificant ficu	magici			TEMP.: nearest dep	gree (ex. 10.1 = 10) (ex. 3333 = 3330, 0.696 = 0.696)
		FINAL STABIL	ZED FIELD FARA	IVIETEKS (10 a	ppropriate	significant ligu	resisr			pH: nearest tenth (e DO: nearest tenth (e	x. 5.53 = 5.5) ex. 3.51 = 3.5) nearest tenth (6.19 = 6.2, 101 = 101)
	DOCUMENTAT		DECON FLUIDS USED		TUBI	NG/PUMP/BLADDE	<u>R M</u> AT	ERIALS	·		EQUIPMENT USED
X PERIST SUBME	TALTIC ERSIBLE	X X	LIQUINOX DEIONIZED WATER	TEFLO	N TUBING N TUBING		S. STEE PVC PU	L PUMP MATER MP MATERIAL	IAL	X WL MET X PID	TER Solinist MiniRAE 3000
BLADE			POTABLE WATER NITRIC ACID HEXANE	TEFLOI HDPE T X LDPE T				DBE SCREEN N BLADDER		TURB. N	TER YSI Pro DSS METER Geotech Peri pump
OTHER	<u>د</u>		METHANOL DTHER	OTHER			OTHER OTHER			OTHER FILTERS	
	AL PARAMETE		METHOD NUMBER	FIELI) PR	ESERVATION METHOD	V	DLUME	SAMPLE COLLECTED	QC COLLECTED	SAMPLE BOTTLE ID
X	See Chain	of Custody									
								<u> </u>			
				_		01					
PURGE WAT		TES NO	NUMBER OF GALLO	ONS)	SKETCH/NOT	IES				
CONTAINER NO-PURGE N UTILIZED	-	YES NO	GENERATED If yes, purged approxima	tely 1 standing volun	e prior						
UTILIZED	L	X	to sampling or	mL for this sample	rocation.	1					
Sampler Sign	ature:		Print Name:	Andrew Fishma	n						
Checked By:	Steve Jo	ohansson	Date:								
•	TR	C							LOW F		NDWATER SAMPLING RECORD rell Drive, Suite 200, Clifton Park, NY 12065

			LOW	FLOW GR	ROUNDV	VATER SAM	PLING I	RECO	RD		
	PROJECT NAM	E NYSDEC	SMP A - Schatz Federa	al Bearings		LOCATION ID		DATI	E		
	PROJECT NUMBER 320919.0000.0000				S5 START TIME		END TIME				
	SAMPLE ID SAMPLE TIME				SITE NAME/NUMI	ER	PAGI	E			
									OF		WELL INTEGRITY
WELL DIAMETER (INCHES) 1 X 2 4 6				8	8 OTHER CAP					YES NO N/A X	
TUBING ID (INCHES) 1/8 1/4 X 3/8 1/2				5/8	OTHER				CASING LOCKED	<u>x</u>	
MEASUREMENT POINT (MP) X TOP (F RISER (TOR) FINAL DTW	TOP OF CAS	ING (TOC)	OTHER				COLLAR TOC/TOR	<u> </u>	
(BMP)		FT	(BMP)		FT	STICKUP (AGS)			FT	DIFFERENCE	- FT
WELL DEF (BMP)	WELL DEPTH (BMP) FT		SCREEN LENGTH		FT	PID AMBIENT AIR	0	0 PPM		REFILL TIMI SETTING	ER - SEC
WATER COLUMN		0 FT	DRAWDOWN VOLUME (final DTW - initial D	0 TW X well diam. s	GAL auared X 0.04	PID WELL MOUTH 1)		PPM		DISCHARGE TIMER SETT	ING SEC
CALCULA GAL/VOL (column X v		GAL	TOTAL VOL. PURGED (mL per minute X tota		GAL	DRAWDOWN/ TOTAL PURGED	#.	#DIV/0!		PRESSURE TO PUMP	- PSI
FIELD PARA	DTW (FT)	PROGRAM STAL	TEMP. (°C)	IA (AS LISTED I SP. CONDUCTAN		<i>.</i>		ITV (ntu)	REDOX (mv)	PUMP	
3-5 Minutes	0.0-0.33 ft Drawdown	(mL/min)	(+/- 3 degrees)	(mS/cm) (+/- 3%)	(+/- 0.1		(+/- 10%		(+/- 10 mv)	INTAKE DEPTH (ft)	COMMENTS
	DRY, NO SA	MPLE									
		+					-				
	E	EINAL STABILI	ZED FIELD PARA	METERS (to a	nnronriate	significant figures	SFD			TEMP.: nearest deg	ree (ex. 10.1 = 10) (ex. 3333 = 3330, 0.696 = 0.696)
	1	INAL STADIE		INTETEKS (IV a			51)			pH: nearest tenth (er DO: nearest tenth (er	x. 5.53 = 5.5) x. 3.51 = 3.5) hearest tenth (6.19 = 6.2, 101 = 101)
1	DOCUMENTATI	1	DECON FLUIDS USED			NG/PUMP/BLADDER M					EQUIPMENT USED
X PERIST SUBME BLADD	ERSIBLE	XI	JQUINOX DEIONIZED WATER	TEFLO	N TUBING N TUBING	PVO	EEL PUMP M PUMP MATEI PROBE SCREI	RIAL		X PID	ER Solinist MiniRAE 3000
BLADD WATTE		1	POTABLE WATER NITRIC ACID HEXANE	TEFLON HDPE T X LDPE T			LON BLADDE			TURB. N	ER YSI Pro DSS IETER Geotech Peri pump
OTHER	t	1	METHANOL DTHER	OTHER			ER			OTHER FILTERS	
ANALYTIC/	AL PARAMETER PARAM	IETER	METHOD NUMBER	FIELI FILTER		ESERVATION METHOD	VOLUME REQUIRED		MPLE LECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
X	See Chain o	custouy						·			
											·
PURGE OPS	SERVATIONS					SKETCH/NOTES					
PURGE WAT CONTAINER	TER <u>YI</u>	ES NO	NUMBER OF GALLO GENERATED	ONS)						
NO-PURGE N UTILIZED		_	If yes, purged approxima to sampling or	tely 1 standing volum mL for this sample		-					
Sampler Signa	ature:		Print Name:	Andrew Fishma	n						
Checked By:	Steve Job	nansson	Date:								
•> -	TR								LOW FL		NDWATER SAMPLING RECORD ell Drive, Suite 200, Clifton Park, NY 12065

			LOW	FLOW GRO	DUNDWAT	FER SAMPI	LING RECO	RD		
	PROJECT NAME		DEC SMP A - Schatz Feder	al Bearings	LOC	CATION ID	DAT]
	PROJECT NUMB		320919.0000.000		STA	87 RT TIME 12:25	ENI	9/24/2 • TIME 13:2		
	SAMPLE ID		SAN	IPLE TIME	SITE NAME/NUMBER PAGE			20		
		SFB-MW-S7		13:10				OF		
WELL DIAN	METER (INCHES)	1	X 2 4	6	8	OTHER			CAD	WELL INTEGRITY YES NO N/A
TUBING ID ((INCHES)	1/8	1/4 X 3/8	1/2	5/8	OTHER			CAP CASING	<u>X</u>
MEASUREM	IENT POINT (MP)	X TOP	OF RISER (TOR)	TOP OF CASIN	G (TOC)	OTHER			LOCKED COLLAR	<u>X</u> <u>X</u>
INITIAL D (BMP)	TW 13	3.72 FT	FINAL DTW (BMP)	14.03	FT PROT. CASING FT STICKUP (AGS)		FT		TOC/TOR DIFFERENCE	- FT
WELL DEF (BMP)	РТН 24	4.38 FT	SCREEN LENGTH		PID FT AMBIENT AIR		0 PPM		REFILL TIME SETTING	ER - SEC
WATER COLUMN	10	0.66 FT	DRAWDOWN VOLUME	0.05084	GAL MO	WELL UTH	0 PPM		DISCHARGE TIMER SETT	ING SEC
CALCULA GAL/VOL	1.748	GAL	TOTAL VOL. PURGED	TW X well diam. squa 4.68	GAL TOT	AWDOWN/ FAL PURGED	0.010863248		PRESSURE TO PUMP	- PSI
	well diameter squared		(mL per minute X tota ABILIZATION CRITER	al minutes X 0.00026 g						
TIME 3-5 Minutes	DTW (FT) 0.0-0.33 ft Drawdown	PURGE RAT (mL/min)		SP. CONDUCTANC (mS/cm) (+/- 3%)		DISS. O ₂ (mg/L) (+/- 10%)	TURBIDITY (ntu) (+/- 10% <10 ntu)	REDOX (mv) (+/- 10 mv)	PUMP INTAKE DEPTH (ft)	COMMENTS
1225	BEGING PUR	RGING		(17-370)					DEI III (II)	
1230	13.89	500	14.8	0.337	13.14	1.95	6.55	148.5	22	
1235	14.12	500	13.8	0.339	9.46	1.12	13.4	144.6	22	
1240	14.38	500	13.3	0.338	6.6	0.33	13.64	102.1	22	
1245	14.33	500	13.3	0.337	6.21	0.24	15.38	85.1	22	
1250	14.21	300	13.2	0.332	5.91	0.13	16.55	64.7	22	
1255	14.18	300	13.5	0.333	5.59	0.09	15.35	46.7	22	
1300	14.21	300	13.5	0.338	5.58	0.06	9.92	48.3	22	
1305	14.16	300	13.4	0.338	5.59	0.07	10.77	47.8	22	
1310	14.03	300	13.5	0.338	5.58	0.06	9.72	48.3		gree (ex. 10.1 = 10)
	FI	INAL STABI	LIZED FIELD PAR			T		pH: nearest tenth (e DO: nearest tenth (e	ex. 3.51 = 3.5)	
FOLIPMENT	DOCUMENTATIO	N	14	0.338	5.6	0.1	9.7	48	TURB: 3 SF max, n ORP: 2 SF (44.1 =	nearest tenth (6.19 = 6.2, 101 = 101) 44, 191 = 190)
	TYPE OF PUMP		DECON FLUIDS USED	_		UMP/BLADDER MAT				EQUIPMENT USED
	ERSIBLE	X X	LIQUINOX DEIONIZED WATER	X SILICON T TEFLON T	UBING	PVC PU	L PUMP MATERIAL MP MATERIAL		X PID	ER Solinist MiniRAE 3000
BLADD	DER		POTABLE WATER NITRIC ACID	TEFLON L HDPE TUE	INED TUBING BING		OBE SCREEN NBLADDER		X WQ MET TURB. M	
WATTE OTHER		-	HEXANE METHANOL	X LDPE TUB OTHER	BING	OTHER OTHER			X PUMP OTHER	Geotech Peri pump
OTHER	1		OTHER	OTHER		OTHER			FILTERS	NO. TYPE
ANALYTIC	AL PARAMETERS PARAME		METHOD NUMBER	FIELD FILTEREI				AMPLE LECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
x	See Chain of	Custody								<u> </u>
										<u> </u>
PURGE OBS	SERVATIONS				SK	KETCH/NOTES				
PURGE WAT			NUMBER OF GALL	ONS 4.68						
CONTAINER NO-PURGE M		X S NO	GENERATED	tely 1 standing volume pri	or					
UTILIZED		X	to sampling or	mL for this sample loca						
Sampler Signa	ature:		Print Name:	Andrew Fishman						
Checked By:	Steve Joha	ansson	Date:	9/24/2019						
					I			LOWE		NDWATER SAMPLING RECORI
	TRO									vell Drive, Suite 200, Clifton Park, NY 1206

			LOW	FLOW GRC	DUNDWA	TER SAMPI	LING REO	CORD		
	PROJECT NAME		C SMP A - Schatz Federa	l Bearings	LO	CATION ID S8	I	DATE 9/24/2	019	
	PROJECT NUMB	ER	320919.0000.0000		ST	ART TIME 9:00	I	END TIME 9:50	0	
	SAMPLE ID	SFB-MW-S8	SAM	PLE TIME 9:40	SIT	'E NAME/NUMBER	٤ I	PAGE OF		
WELL DIAN	METER (INCHES)	1 X	2 4	6	8	OTHER				WELL INTEGRITY YES NO N/A
TUBING ID	(INCHES)	1/8	1/4 X 3/8	1/2	5/8	OTHER			CAP CASING	<u>X</u>
MEASUREN	IENT POINT (MP)	X TOP O	F RISER (TOR)	TOP OF CASIN	G (TOC)	OTHER			LOCKED COLLAR	
INITIAL E (BMP)	NTW 8.	.16 FT	FINAL DTW (BMP)	9.08		OT. CASING CKUP (AGS)		FT	TOC/TOR DIFFERENCE	- FT
WELL DE (BMP)	PTH 11	.68 FT	SCREEN LENGTH		FT AM) IBIENT AIR	0	PPM	REFILL TIMI SETTING	ERSEC
WATER COLUMN	3.	.52 _{FT}	DRAWDOWN VOLUME	0.15088	GAL MO) WELL DUTH	0	PPM	DISCHARGE TIMER SETT	-
CALCULA GAL/VOL	0.577.	GAL	(final DTW - initial DT TOTAL VOL. PURGED	4.16	GAL TO	AWDOWN/ TAL PURGED	0.0362692	231	PRESSURE TO PUMP	- PSI
	well diameter squared		(mL per minute X tota BILIZATION CRITER							
TIME 3-5 Minutes	DTW (FT) 0.0-0.33 ft Drawdown	PURGE RATE (mL/min)		SP. CONDUCTANCE (mS/cm) (+/- 3%)		DISS. O ₂ (mg/L) (+/- 10%)	TURBIDITY (1 (+/- 10% <10 r	tu) REDOX (mv) (+/- 10 mv)	PUMP INTAKE DEPTH (ft)	COMMENTS
900	BEGING PUF	RGING								
905	8.57	500	16.3	0.209	8.67	2.14	5.97	110.3	10	
910	8.81	500	16	0.2	6.28	0.89	4.84	126.2	10	
915	8.9	350	15.8	0.195	5.85	0.48	4.04	131.4	10	
920	8.96	350	15.8	0.194	5.63	0.44	3.88	131.4	10	
925	9	350	16.1	0.196	5.21	0.37	3.83	128.4	10	
930	9.16	300	16	0.192	5.28	0.42	3.83	129.3	10	
935	9.13	300	16.1	0.193	5.27	0.4	3.83	129	10	
940	9.08	300	16	0.191	5.29	0.39	3.81	128.9	10 TEMP : nearest det	gree (ex. 10.1 = 10)
	FI	NAL STABILI	ZED FIELD PARA	METERS (to app	oropriate sign	ificant figures[SI	F])		COND.: 3 SF max pH: nearest tenth (e	(ex. 3333 = 3330, 0.696 = 0.696) ex. 5.53 = 5.5)
FOLIDMENT	DOCUMENTATIC)N	16	0.191	5.3	0.4	3.8	130	DO: nearest tenth (6 TURB: 3 SF max, r ORP: 2 SF (44.1 =	nearest tenth (6.19 = 6.2, 101 = 101)
X PERIST	ERA R		DECON FLUIDS USED JQUINOX DEIONIZED WATER VOTABLE WATER NITRIC ACID IEXANE METHANOL DTHER	X SILICON T TEFLON T HDPE TUE X LDPE TUE OTHER	TUBING TUBING INED TUBING BING	PVC PU GEOPR	L PUMP MATERI MP MATERIAL OBE SCREEN N BLADDER	AL	X WL MET X PID X WQ MET TURB. M	IETER Geotech Peri pump
ANALYTIC	AL PARAMETERS PARAME		METHOD NUMBER	FIELD			OLUME	SAMPLE	QC	SAMPLE BOTTLE ID NUMBERS
х	See Chain of	Custody	NOMBER	FILTERED			QUIRED (COLLECTED	COLLECTED	NUMBERS
PURGE OB	SERVATIONS				s	KETCH/NOTES	<u> </u>			<u> </u>
PURGE WA' CONTAINEI NO-PURGE UTILIZED	TER YES	Х	NUMBER OF GALLO GENERATED If yes, purged approximat to sampling or	4.16	rior					
Sampler Sign	ature:		Print Name:	Andrew Fishman						
Checked By:	Steve Joha	ansson	Date:	9/24/2019						
	TRO							LOW FL		NDWATER SAMPLING RECORI vell Drive, Suite 200, Clifton Park, NY 1206

					L	OW F	LOW GR	ROU	NDW	/AT	ER SA	MPI	LING RE	COR	D						
	PROJECT	NAME	NYS	DEC SMI	P A - Schatz	Federal Be	earings]		LOC	ATION ID	S9		DATE	9/24/2	019]			
	PROJECT	NUMBI	ER		320919.000	0.0000				STAF	RT TIME	0:00		END T							
	SAMPLE	ID	SFB-MW-S9			SAMPLI	E TIME 10:45			SITE	NAME/NU	MBER		PAGE	OF						
WELL DIAM	ETER (INC	CHES)	1	X 2		4	6	:	8		OTHER							WELL I	I NTEGRITY S NO	N/A	
TUBING ID (INCHES)	1	1/8	1/4	X	3/8	1/2		5/8		OTHER						CAP CASING	X			
MEASUREM	ENT POIN	T (MP)	X TC	P OF RISI	ER (TOR)		TOP OF CAS	ING (1	TOC)		OTHER						LOCKED COLLAR	Х	X	Ξ	
INITIAL DI (BMP)	rw	9.	95 FT		AL DTW AP)		14.98	I			T. CASING XUP (AGS)			F	Т		C/TOR FERENCI	E	-	FI	ŗ
WELL DEP (BMP)	тн	30).4 FT		REEN NGTH			I		PID AMB	BIENT AIR		0	PP	М		ILL TIMI TING	ER	-	SEG	c
WATER COLUMN	[20	.45 FT	vo	AWDOWN LUME		0.82492		AL	PID V MOU	WELL JTH		0	PP	М		CHARGE ER SETT	ING	-	SEG	c
CALCULA GAL/VOL	ſED	3.353	8 GAI	то	al DTW - ini TAL VOL. RGED	tial DTW	X well diam. sq 4.9725				WDOWN/ AL PURGE	D	0.16589	643	7		SSURE PUMP		-	PS	SI
(column X w			X 0.041)	(mL	-		nutes X 0.00026	6 gal/m	ıL)	-											-
FIELD PARA TIME	DTW ((FT)	ROGRAM ST PURGE RA		TEMP. (°C	SP	S LISTED IN		QAPP) pH (uni	ts)	DISS. O ₂ (r	ng/L)	TURBIDITY	(ntu) R	EDOX (mv)		PUMP				
3-5 Minutes	0.0-0.3 Drawd	own	(mL/min		(+/- 3 degree		(mS/cm) (+/- 3%)	((+/- 0.1 u		(+/- 109		(+/- 10% <10	· /	+/- 10 mv)	11	NTAKE EPTH (ft)		COM	MENTS	
1000	BEGIN															1		1			
1005	11.6		500		14.3		0.224		10.98		4.46		5.85		130.3	-	28				
1010	12.3		500		13.6		0.221		12.47 7.98		2.72		5.06		130.6		28 28				
1013	13.0		500		13.9		0.221		7.59		2.5		4.69		127.4	-	28				
1025	14.7		500		13.6		0.221		7.42		2.51		3.06		117.3		28				
1030	16.3	8	350		13.5		0.22		7.35		2.53		3.35		111.4		28				
1035	15.9	8	350		13.3		0.22		7.41		2.51		4		110.3	1	28				
1040	15.2	28	350		13.2		0.22		7.38		2.52		5.84		110.8		28				
1045	14.9	8	350		13.2		0.22		7.39		2.52		5.76		110.4	TEM	28 P.: nearest de	araa (ar. 10	1 - 10)		
		FI	NAL STAB	ILIZED	FIELD P	ARAM	ETERS (to a	ppro	priate s	ignif	ïcant figuı	es[SF	D			CON pH: n	D.: 3 SF max earest tenth (e	(ex. 3333 = ex. 5.53 = 5.	3330, 0.696 = 0 5)	696)	
					13		0.22		7.4		2.5		5.8		110	TURE	earest tenth (3: 3 SF max, n 2 SF (44.1 =	nearest tenth	(6.19 = 6.2, 10	= 101)	
EQUIPMENT I	DOCUMEN		N	DECO	N FLUIDS US	ED			TUBIN	IG/PUI	MP/BLADDE	R MATI	ERIALS					EQUIPMI	ENT USED		
X PERISTA SUBME			X X	LIQUIN	JOX IZED WATEF	1	X SILICON TEFLON						L PUMP MATER MP MATERIAL	IAL		X X	WL MET PID	ER <u>Soli</u> MiniRAE			
BLADD	ER			POTAB NITRIC	LE WATER		TEFLON HDPE T		D TUBING	3			DBE SCREEN BLADDER			х	WQ ME1 TURB. M		Pro DSS		
WATTE OTHER	RA			HEXAN METHA			X LDPE TO OTHER					OTHER OTHER				Х	PUMP OTHER	Geotech F	eri pump		
OTHER				OTHER			OTHER			_		OTHER					FILTERS	NO	TYP	3	
ANALYTICA		ETERS 'ARAME'	TER		METI NUM		FIELI FILTER			ESERV METH	VATION HOD		OLUME QUIRED	SAM COLLE		COI	QC LECTED			BOTTLE IE IBERS)
Х	See	Chain of	Custody	-																	
				-																	
				-																	
				-							<u> </u>		·								
				-																	
PURGE OBS										SK	ETCH/NOT	ES									
PURGE WAT		YES	NO X		MBER OF G NERATED	ALLONS	4.9	725													
NO-PURGE M UTILIZED	IETHOD	YES	NO X		es, purged appr ampling or		standing volume														
Sampler Signa	ture:				Print Name	:	Andrew Fishma	m													
		ave Ich	necon																		
Checked By:		teve Johan			Date:		9/24/2019			[
	Гг														LOW FI	LOW			FER SAM		

				LOW	/ FLOW GRO	UNDWAT	FER SAMPI	LING RECO	ORD		
	PROJECT	NAME	NYSI	DEC SMP A - Schatz Feder	al Bearings	LOC	CATION ID S10	DA	TE 9/24/2	019	
	PROJECT	NUMBE	ER	320919.0000.000	0	STA	RT TIME 11:25	EN	D TIME 12:2		
	SAMPLE I		SFB-MW-S10		12:10	SITI	E NAME/NUMBER	РА			
WELL DIAM	ETER (INC	CHES)	1	X 2 4	6		OTHER				J WELL INTEGRITY YES NO N/A
TUBING ID (I		,	1/8	1/4 X 3/8	1/2	5/8	OTHER			CAP CASING	<u>X</u>
MEASUREM		T (MP)		OF RISER (TOR)	TOP OF CASING		OTHER			LOCKED COLLAR	<u>x</u> <u>x</u>
INITIAL DI (BMP)	гw	1	8 FT	FINAL DTW (BMP)	18.94		DT. CASING CKUP (AGS)		FT	TOC/TOR DIFFERENCE	- FT
WELL DEP (BMP)	тн	32.	.14 FT	SCREEN LENGTH		FT AM	BIENT AIR	0	PPM	REFILL TIME SETTING	ER SEC
WATER COLUMN	Γ	14.	.14 FT	DRAWDOWN VOLUME	0.15416		WELL UTH	0	PPM	DISCHARGE TIMER SETT	ING - SEC
CALCULAT GAL/VOL	FED	2.3189	96 GAL	(final DTW - initial D TOTAL VOL. PURGED	TW X well diam. square 4.68	DRA	AWDOWN/ FAL PURGED	0.03294017	l	PRESSURE TO PUMP	- PSI
(column X w	ell diameter	squared			al minutes X 0.00026 ga		TAL FURGED]	TOPUMP	131
TIME	METERS V DTW (0.0-0.3	FT)	PURGE RAT		A (AS LISTED IN TH SP. CONDUCTANCE (mS/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu		PUMP INTAKE	COMMENTS
3-5 Minutes	Drawdo	own	(mL/min)	(+/- 3 degrees)	(+/- 3%)	(+/- 0.1 units)	(+/- 10%)	(+/- 10% <10 ntu)) (+/- 10 mv)	DEPTH (ft)	COMMENTS
1125	BEGIN										
1130	19.2		500	14.8	0.255	13.34	3.45	4.25	140.5	30 30	
1140	19.6		500	13.1	0.244	7.76	0.52	3.68	146.3	30	
1145	19.3	8	500	13.2	0.244	7.2	0.42	3.03	145.2	30	
1150	19.4	4	500	13.7	0.239	6.46	0.38	2.55	142.3	30	
1155	19.0	5	300	13.9	0.239	6.48	0.39	2.06	142.6	30	
1200	18.9	5	300	14.01	0.24	6.44	0.41	1.98	143	30	
1205	18.9	3	300	13.9	0.242	6.42	0.39	1.55	142.8	30	
1210	18.9	4	300	13.9	0.241	6.45	0.4	1.39	141.9	30 TEMP.: nearest deg	zree (ex. 10.1 = 10)
		FI	NAL STABI	LIZED FIELD PARA	AMETERS (to app	ropriate signi	ficant figures[SF	'D		COND.: 3 SF max (pH: nearest tenth (e DO: nearest tenth (e	(ex. 3333 = 3330, 0.696 = 0.696) (x. 5.53 = 5.5)
EQUIPMENT I	DOCUMEN	TATIO	N	14	0.241	6.5	0.4	1.4	140		nearest tenth (6.19 = 6.2, 101 = 101)
<u> </u>	TYPE OF PUN		·	DECON FLUIDS USED	_		JMP/BLADDER MATI				EQUIPMENT USED
X PERISTA SUBME	RSIBLE		X X	LIQUINOX DEIONIZED WATER	X SILICON TU TEFLON TU	JBING	PVC PU	L PUMP MATERIAL MP MATERIAL		X PID	ER Solinist MiniRAE 3000
BLADDI				POTABLE WATER NITRIC ACID	TEFLON LII HDPE TUBI	NED TUBING NG		DBE SCREEN I BLADDER		X WQ MET TURB. M	ETER
WATTEI OTHER	RA			HEXANE METHANOL	X LDPE TUBE OTHER	NG	OTHER OTHER			X PUMP OTHER	Geotech Peri pump
OTHER				OTHER	OTHER		OTHER			FILTERS	NO. TYPE
ANALYTICA		ETERS ARAME	TER	METHOD NUMBER	FIELD FILTERED				SAMPLE ILLECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
x	See (Chain of (Custody								
											·
PURGE OBSI	ERVATION	NS				SK	ETCH/NOTES				
PURGE WAT		YES	NO X	NUMBER OF GALL GENERATED	ONS 4.68						
CONTAINERI		YES	NO	If yes, purged approxima	tely 1 standing volume prior						
UTILIZED			Х	to sampling or	mL for this sample locati	ion.					
Sampler Signat	ture:			Print Name:	Andrew Fishman						
Checked By:	St	eve Johar	nsson	Date:	9/24/2019						
		20					_	_	LOW FI		NDWATER SAMPLING RECORD vell Drive, Suite 200, Clifton Park, NY 1206;

10 Maxwell Drive, Suite 200, Clifton Park, NY 12065

APPENDIX D

Data Usability Summary Report

Site:Schatz Federal BearingsLaboratory:Eurofins TestAmerica Buffalo – Amherst, NYSDG No.:480-159638-1 and 480-159817-1Parameters:Volatile Organic Compounds (VOCs); 1,4-Dioxane by Selective Ion Monitoring (SIM)Data Reviewer:Amy Bass/TRCPeer Reviewer:Elizabeth Denly/TRCDate:January 9, 2020

Samples Reviewed and Evaluation Summary

<u>480-159638-1</u> : 5 Groundwater Samples:	SFB-MW-B3*, SFB-MW-S3*, SFB-MW-S1*, SFB-MW-B1,
1 Trip Blank:	SFB-MW-B2 SFB-TB-09232019
480-159817-1:	
6 Groundwater Samples:	SFB-MW-S8, SFB-MW-S9, SFB-MW-B4, SFB-MW-S10,
	SFB-MW-B5, SFB-MW-S7
1 Trip Blank:	SFB-TB-09242019

* Analyzed for VOCs and 1,4-dioxane

The above-listed groundwater samples were collected on September 23-24, 2019, and were analyzed for one or more of the following parameters:

- VOCs by SW-846 Method 8260C
- 1,4-Dioxane by SW-846 Method 8270D SIM

The data validation was performed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review (EPA-540-R-017-002), January 2017, modified for the SW-846 methodologies utilized.

The data were evaluated based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- Data Completeness
- Holding Times and Sample Preservation
- Gas Chromatography/Mass Spectrometry (GC/MS) Tunes
- Initial and Continuing Calibrations
- * Blanks
- Surrogate Recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- * Internal Standards
- Laboratory Control Sample (LCS) Results
- NA Field Duplicate Results
 - Sample Results and Reported Quantitation Limits (QLs)
- Target Compound Identification

* - All criteria were met.

NA - A field duplicate pair was not associated with this sample set.

Overall Evaluation of Data and Potential Usability Issues

All results are usable for project objectives. Qualifications applied to the data as a result of sampling error were not required. Qualifications applied to the data as a result of analytical error are discussed below.

- Potential uncertainty exists for select VOC results that were below the lowest calibration standard and QL. These results were qualified as estimated (J) in the associated samples. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.
- The nondetect results for select VOCs in all samples were qualified as estimated (UJ) due to continuing calibration nonconformances. These results can be used for project objectives as nondetects with estimated QLs, which may have a minor impact on the data usability.
- The positive results for 1,4-dioxane in samples SFB-MW-B3 and SFB-MW-S3 were qualified as estimated (J) due to a calibration range exceedance. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.

Data Completeness

The data package was a complete Level IV data deliverable package with some exceptions, as described below.

- The laboratory did not report LCS and MS/MSD percent recoveries (%Rs), relative percent differences (RPDs), or laboratory acceptance criteria for total xylenes on the summary forms. The %Rs and RPDs were calculated during validation, and the laboratory acceptance limits were provided by the laboratory; no validation actions were taken on this basis.
- The laboratory did not report the results for the initial calibration verification (ICV) analyses. The run logs noted that ICV analyses were performed after each calibration sequence, but the ICV results were not provided. Since the ICV analyses are not used to qualify sample data, no further action was required.
- The Chain-of-Custody (CoC) form for the 480-159817-1 data set indicated only metals analysis (6010C and 7470A) for the trip blank (SFB-TB-09242019); however, the laboratory analyzed that sample for VOCs only. No communication records or relevant comments were included to indicate this was a requested revision from the client. This discrepancy is noted, but no validation actions were required on this basis.

Holding Times and Sample Preservation

All holding time and sample preservation method criteria were met.

GC/MS Tunes

All method acceptance criteria were met.

Initial and Continuing Calibrations

VOCs

All correlation coefficients, percent relative standard deviations (%RSDs), and relative response factors (RRFs) were within the method acceptance criteria in the initial calibrations (ICs) associated with the samples.

The following table summarizes the percent differences or percent drifts (%Ds) that did not meet the acceptance criteria in the continuing calibration (CC) standards associated with the samples in this data set, the associated samples, and the validation actions. All RRFs were within acceptance criteria in the CC standards.

CC	Compound	%D	Validation Actions					
Data Group: 480	Data Group: 480-159638-1							
10/01/2019	1,1,2-Trichloro-1,2,2-trifluoroethane	-20.5	The nondetect results for these VOCs were					
@08:14	Cyclohexane	-24.1	qualified as estimated (UJ) in the associated					
HP5973N	Methylcyclohexane	-26.8	samples.					
Associated samples: SFB-MW-B3, SFB-MW-S3, SFB-MW-S1, SFB-MW-B1, SFB-MW-B2, SFB-TB-09232019								
Data Group: 480	-159817-1							
	Dichlorodifluoromethane	-25.1						
10/04/2019	Methylene chloride	24.4	The nondetect results for these VOCs were					
@09:16	2-Butanone	30.9	qualified as estimated (UJ) in the associated					
HP5973S	Acetone	27.7	samples.					
Methyl acetate 27.6								
Associated samples: SFB-MW-S8, SFB-MW-S9, SFB-MW-B4, SFB-MW-S10, SFB-MW-B5, SFB-MW-S7, SFB-TB-09242019								

1,4-Dioxane

The %RSDs and RRFs were within the method acceptance criteria in the IC associated with the samples. All %Ds and RRFs were within the acceptance criteria in the associated CC standards.

<u>Blanks</u>

Target analytes were not detected in the laboratory method blanks for the VOC and 1,4-dioxane analyses. The trip blanks (SFB-TB-09232019 and SFB-TB-09242019) were analyzed for VOCs only; no analytes were detected.

Surrogate Recoveries

The surrogate %Rs met the laboratory acceptance criteria in the VOC and 1,4-dioxane analyses.

MS/MSD Results

MS/MSD analyses were performed on sample SFB-MW-S1 for VOCs and 1,4-dioxane. All criteria were met.

Note that the laboratory did not report MS/MSD %Rs and RPDs for total xylenes. The %Rs and RPDs were calculated during validation and were within the laboratory's acceptance criteria (%R within 76-122%, and RPD \leq 16%).

Internal Standards

All internal standards met the method acceptance criteria in the VOC and 1,4-dioxane analyses.

LCS Results

An LCS was analyzed with each daily VOC batch and each 1,4 dioxane preparation batch. All LCS %Rs were within the laboratory acceptance criteria.

Note that the laboratory did not report LCS %R for total xylenes. The LCS %R was calculated during validation and was within the laboratory's acceptance criteria (76-122%).

Field Duplicate Results

No field duplicate pairs were submitted with this sample set.

Sample Results and Reported QLs

Sample calculations were spot-checked, and no errors were noted.

The following table summarizes the dilutions performed for the VOC and 1,4-dioxane analyses; QLs were elevated accordingly by the laboratory.

Parameter	Sample ID	Dilution	Reason for Dilution			
Data Group: 48	0-159638-1					
VOCs	SFB-MW-S3	2-fold	Sample was diluted due to foaming in the initial analysis.			
1.4 Diavana	SFB-MW-B3	10-fold	Samples were diluted due to the concentration			
1,4-Dioxane	SFB-MW-S3	20-fold	of 1,4-dioxane, which exceeded the calibration range in the diluted analyses.			

The 1,4-dioxane concentrations in samples SFB-MW-B3 and SFB-MW-S3 were both reported from diluted analyses; however, the results still exceeded the calibration range. No further dilution was performed to bring the results into the calibration range; the concentrations were reported by the laboratory qualified "E" to indicate the calibration range was exceeded. The 1,4-dioxane results in these samples were qualified as estimated (J) since the results exceeded the calibration range.

Select VOC results were reported below the lowest calibration standard level and QL. These results were qualified as estimated (J) in the associated samples by the laboratory.

Target Compound Identification

All criteria were met for the VOC and 1,4-dioxane analyses.

QUALIFIED FORM 1s

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-159638-1					
SDG No.:						
Client Sample ID: SFB-MW-B3	Lab Sample ID: 480-159638-1					
Matrix: Water	Lab File ID: N6716.D					
Analysis Method: 8260C	Date Collected: 09/23/2019 11:00					
Sample wt/vol: 5(mL)	Date Analyzed: 10/01/2019 12:16					
Soil Aliquot Vol:	Dilution Factor: 1					
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)					
% Moisture:	Level: (low/med) Low					
Analysis Batch No.: 495083	Units: ug/L					

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	-ND-	UJ	1.0	0.31
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
75-34-3	1,1-Dichloroethane	0.73	J	1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
78-93-3	2-Butanone (MEK)	ND		10	1.3
591-78-6	2-Hexanone	ND		5.0	1.2
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	ND		1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
75-00-3	Chloroethane	ND		1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	ND	UJ	1.0	0.18
124-48-1	Dibromochloromethane	ND		1.0	0.32
75-71-8	Dichlorodifluoromethane	ND		1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74
98-82-8	Isopropylbenzene	ND		1.0	0.79

Job No.: <u>480-159638-1</u>						
Lab Sample ID: 480-159638-1						
Lab File ID: N6716.D						
Date Collected: 09/23/2019 11:00						
Date Analyzed: 10/01/2019 12:16						
Dilution Factor: 1						
GC Column: ZB-624 (20) ID: 0.18(mm)						
Level: (low/med) Low						
Units: ug/L						

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	ND		2.5	1.3
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	-ND	UJ	1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND		1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	102		77-120
460-00-4	4-Bromofluorobenzene (Surr)	109		73-120
1868-53-7	Dibromofluoromethane (Surr)	103		75-123
2037-26-5	Toluene-d8 (Surr)	103		80-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-159638-1					
SDG No.:						
Client Sample ID: SFB-MW-S3	Lab Sample ID: 480-159638-2					
Matrix: Water	Lab File ID: N6717.D					
Analysis Method: 8260C	Date Collected: 09/23/2019 11:05					
Sample wt/vol: 5(mL)	Date Analyzed: 10/01/2019 12:41					
Soil Aliquot Vol:	Dilution Factor: 2					
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)					
% Moisture:	Level: (low/med) Low					
Analysis Batch No.: 495083	Units: ug/L					

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		2.0	1.6
79-34-5	1,1,2,2-Tetrachloroethane	ND		2.0	0.42
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	-ND-	UJ	2.0	0.62
79-00-5	1,1,2-Trichloroethane	ND		2.0	0.46
75-34-3	1,1-Dichloroethane	1.1	J	2.0	0.76
75-35-4	1,1-Dichloroethene	ND		2.0	0.58
120-82-1	1,2,4-Trichlorobenzene	ND		2.0	0.82
96-12-8	1,2-Dibromo-3-Chloropropane	ND		2.0	0.78
106-93-4	1,2-Dibromoethane	ND		2.0	1.5
95-50-1	1,2-Dichlorobenzene	ND		2.0	1.6
107-06-2	1,2-Dichloroethane	ND		2.0	0.42
78-87-5	1,2-Dichloropropane	ND		2.0	1.4
541-73-1	1,3-Dichlorobenzene	ND		2.0	1.6
106-46-7	1,4-Dichlorobenzene	ND		2.0	1.7
78-93-3	2-Butanone (MEK)	ND		20	2.6
591-78-6	2-Hexanone	ND		10	2.5
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		10	4.2
67-64-1	Acetone	ND		20	6.0
71-43-2	Benzene	ND		2.0	0.82
75-27-4	Bromodichloromethane	ND		2.0	0.78
75-25-2	Bromoform	ND		2.0	0.52
74-83-9	Bromomethane	ND		2.0	1.4
75-15-0	Carbon disulfide	ND		2.0	0.38
56-23-5	Carbon tetrachloride	ND		2.0	0.54
108-90-7	Chlorobenzene	ND		2.0	1.5
75-00-3	Chloroethane	ND		2.0	0.64
67-66-3	Chloroform	ND		2.0	0.68
74-87-3	Chloromethane	ND		2.0	0.70
156-59-2	cis-1,2-Dichloroethene	ND		2.0	1.6
10061-01-5	cis-1,3-Dichloropropene	ND		2.0	0.72
110-82-7	Cyclohexane	ND	UJ	2.0	0.36
124-48-1	Dibromochloromethane	ND		2.0	0.64
75-71-8	Dichlorodifluoromethane	ND		2.0	1.4
100-41-4	Ethylbenzene	ND		2.0	1.5
98-82-8	Isopropylbenzene	ND		2.0	1.6

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-159638-1			
SDG No.:				
Client Sample ID: SFB-MW-S3	Lab Sample ID: 480-159638-2			
Matrix: Water	Lab File ID: N6717.D			
Analysis Method: 8260C	Date Collected: 09/23/2019 11:05			
Sample wt/vol: 5(mL)	Date Analyzed: 10/01/2019 12:41			
Soil Aliquot Vol:	Dilution Factor: 2			
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 495083	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	ND		5.0	2.6
1634-04-4	Methyl tert-butyl ether	ND		2.0	0.32
108-87-2	Methylcyclohexane	ND	UJ	2.0	0.32
75-09-2	Methylene Chloride	ND		2.0	0.88
100-42-5	Styrene	ND		2.0	1.5
127-18-4	Tetrachloroethene	ND		2.0	0.72
108-88-3	Toluene	ND		2.0	1.0
156-60-5	trans-1,2-Dichloroethene	ND		2.0	1.8
10061-02-6	trans-1,3-Dichloropropene	ND		2.0	0.74
79-01-6	Trichloroethene	ND		2.0	0.92
75-69-4	Trichlorofluoromethane	ND		2.0	1.8
75-01-4	Vinyl chloride	ND		2.0	1.8
1330-20-7	Xylenes, Total	ND		4.0	1.3

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	101		77-120
460-00-4	4-Bromofluorobenzene (Surr)	107		73-120
1868-53-7	Dibromofluoromethane (Surr)	98		75-123
2037-26-5	Toluene-d8 (Surr)	100		80-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-159638-1			
SDG No.:				
Client Sample ID: SFB-MW-S1	Lab Sample ID: 480-159638-3			
Matrix: Water	Lab File ID: N6718.D			
Analysis Method: 8260C	Date Collected: 09/23/2019 12:30			
Sample wt/vol: 5(mL)	Date Analyzed: 10/01/2019 13:05			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 495083	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	-ND	UJ	1.0	0.31
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
78-93-3	2-Butanone (MEK)	ND		10	1.3
591-78-6	2-Hexanone	ND		5.0	1.2
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	ND		1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
75-00-3	Chloroethane	ND		1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane		UJ	1.0	0.18
124-48-1	Dibromochloromethane	ND		1.0	0.32
75-71-8	Dichlorodifluoromethane	ND		1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74
98-82-8	Isopropylbenzene	ND		1.0	0.79

Job No.: 480-159638-1			
Lab Sample ID: 480-159638-3			
Lab File ID: N6718.D			
Date Collected: 09/23/2019 12:30			
Date Analyzed: 10/01/2019 13:05			
Dilution Factor: 1			
GC Column: ZB-624 (20) ID: 0.18(mm)			
Level: (low/med) Low			
Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	ND		2.5	1.3
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	-ND-	UJ	1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND		1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	104		77-120
460-00-4	4-Bromofluorobenzene (Surr)	105		73-120
1868-53-7	Dibromofluoromethane (Surr)	101		75-123
2037-26-5	Toluene-d8 (Surr)	100		80-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-159638-1			
SDG No.:				
Client Sample ID: SFB-MW-B1	Lab Sample ID: 480-159638-4			
Matrix: Water	Lab File ID: N6719.D			
Analysis Method: 8260C	Date Collected: 09/23/2019 13:10			
Sample wt/vol: 5(mL)	Date Analyzed: 10/01/2019 13:29			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 495083	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND	UJ	1.0	0.31
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
78-93-3	2-Butanone (MEK)	ND		10	1.3
591-78-6	2-Hexanone	ND		5.0	1.2
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	ND		1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
75-00-3	Chloroethane	ND		1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	ND-	UJ	1.0	0.18
124-48-1	Dibromochloromethane	ND		1.0	0.32
75-71-8	Dichlorodifluoromethane	ND		1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74
98-82-8	Isopropylbenzene	ND		1.0	0.79

Job No.: 480-159638-1				
ab Sample ID: 480-159638-4				
Lab File ID: N6719.D				
Date Collected: 09/23/2019 13:10				
Date Analyzed: 10/01/2019 13:29				
Dilution Factor: 1				
C Column: ZB-624 (20) ID: 0.18(mm)				
Level: (low/med) Low				
Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	ND		2.5	1.3
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	-ND	UJ	1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND		1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	105		77-120
460-00-4	4-Bromofluorobenzene (Surr)	107		73-120
1868-53-7	Dibromofluoromethane (Surr)	103		75-123
2037-26-5	Toluene-d8 (Surr)	99		80-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-159638-1				
SDG No.:					
Client Sample ID: SFB-MW-B2	Lab Sample ID: 480-159638-5				
Matrix: Water Lab File ID: N6720.D					
Analysis Method: 8260C	Date Collected: 09/23/2019 14:45				
Sample wt/vol: 5(mL)	Date Analyzed: 10/01/2019 13:53				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 495083	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND-	UJ	1.0	0.31
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
78-93-3	2-Butanone (MEK)	ND		10	1.3
591-78-6	2-Hexanone	ND		5.0	1.2
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	ND		1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
75-00-3	Chloroethane	ND		1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	NÐ	UJ	1.0	0.18
124-48-1	Dibromochloromethane	ND		1.0	0.32
75-71-8	Dichlorodifluoromethane	ND		1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74
98-82-8	Isopropylbenzene	ND		1.0	0.79

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: <u>480-159638-1</u>				
SDG No.:					
Client Sample ID: SFB-MW-B2	Lab Sample ID: 480-159638-5				
Matrix: <u>Water</u> Lab File ID: <u>N6720.D</u>					
Analysis Method: 8260C	Date Collected: 09/23/2019 14:45				
Sample wt/vol: 5(mL)	Date Analyzed: 10/01/2019 13:53				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 495083 Units: ug/L					

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	ND		2.5	1.3
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	-ND-	UJ	1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND		1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	107		77-120
460-00-4	4-Bromofluorobenzene (Surr)	109		73-120
1868-53-7	Dibromofluoromethane (Surr)	104		75-123
2037-26-5	Toluene-d8 (Surr)	103		80-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-159638-1				
SDG No.:					
Client Sample ID: SFB-TB-09232019	Lab Sample ID: 480-159638-6				
Matrix: <u>Water</u> Lab File ID: <u>N6721.D</u>					
Analysis Method: 8260C	Date Collected: 09/23/2019 00:00				
Sample wt/vol: 5(mL)	Date Analyzed: 10/01/2019 14:17				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 495083	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND	UJ	1.0	0.31
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
78-93-3	2-Butanone (MEK)	ND		10	1.3
591-78-6	2-Hexanone	ND		5.0	1.2
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	ND		1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
75-00-3	Chloroethane	ND		1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	ND	UJ	1.0	0.18
124-48-1	Dibromochloromethane	ND		1.0	0.32
75-71-8	Dichlorodifluoromethane	ND		1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74
98-82-8	Isopropylbenzene	ND		1.0	0.79

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: <u>480-159638-1</u>					
SDG No.:						
Client Sample ID: SFB-TB-09232019	Lab Sample ID: <u>480-159638-6</u>					
Matrix: <u>Water</u> Lab File ID: <u>N6721.D</u>						
Analysis Method: 8260C	Date Collected: 09/23/2019 00:00					
Sample wt/vol: 5(mL)	Date Analyzed: 10/01/2019 14:17					
Soil Aliquot Vol:	Dilution Factor: 1					
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)					
% Moisture:	Level: (low/med) Low					
Analysis Batch No.: 495083	Units: ug/L					

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	ND		2.5	1.3
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	- ND-	UJ	1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND		1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	100		77-120
460-00-4	4-Bromofluorobenzene (Surr)	105		73-120
1868-53-7	Dibromofluoromethane (Surr)	103		75-123
2037-26-5	Toluene-d8 (Surr)	102		80-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-159638-1
SDG No.:	
Client Sample ID: SFB-MW-B3	Lab Sample ID: 480-159638-1
Matrix: Water	Lab File ID: U33153160.D
Analysis Method: 8270D SIM ID	Date Collected: 09/23/2019 11:00
Extract. Method: 3510C	Date Extracted: 09/26/2019 08:12
Sample wt/vol: 1020(mL)	Date Analyzed: 10/04/2019 02:04
Con. Extract Vol.: 1(mL)	Dilution Factor: 10
Injection Volume: 1(uL)	Level: (low/med) Low
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 495533	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	21	J	2.0	0.98

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
17647-74-4	1,4-Dioxane-d8	29		15-110

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-159638-1
SDG No.:	
Client Sample ID: SFB-MW-S3	Lab Sample ID: 480-159638-2
Matrix: Water	Lab File ID: U33153161.D
Analysis Method: 8270D SIM ID	Date Collected: 09/23/2019 11:05
Extract. Method: 3510C	Date Extracted: 09/26/2019 08:12
Sample wt/vol: 1050(mL)	Date Analyzed: 10/04/2019 02:27
Con. Extract Vol.: 1(mL)	Dilution Factor: 20
Injection Volume: 1(uL)	Level: (low/med) Low
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 495533	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	42	J J	3.8	1.9

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
17647-74-4	1,4-Dioxane-d8	25		15-110

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-159638-1
SDG No.:	
Client Sample ID: SFB-MW-S1	Lab Sample ID: 480-159638-3
Matrix: Water	Lab File ID: U33153014.D
Analysis Method: 8270D SIM ID	Date Collected: 09/23/2019 12:30
Extract. Method: 3510C	Date Extracted: 09/26/2019 08:12
Sample wt/vol: 1050(mL)	Date Analyzed: 09/30/2019 13:36
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: 1(uL)	Level: (low/med) Low
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 494350	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	ND		0.19	0.095

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
17647-74-4	1,4-Dioxane-d8	30		15-110

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-159817-1			
SDG No.:				
Client Sample ID: SFB-MW-S8	Lab Sample ID: 480-159817-1			
Matrix: Water	Lab File ID: S0081.D			
Analysis Method: 8260C	Date Collected: 09/24/2019 09:40			
Sample wt/vol: 5(mL)	Date Analyzed: 10/04/2019 12:31			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 495892	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	ND		1.0	0.31
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
78-93-3	2-Butanone (MEK)	-ND-	UJ	10	1.3
591-78-6	2-Hexanone	ND		5.0	1.2
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND-	UJ	10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	ND		1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
75-00-3	Chloroethane	ND		1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	ND		1.0	0.18
124-48-1	Dibromochloromethane	ND		1.0	0.32
75-71-8	Dichlorodifluoromethane	-ND-	UJ	1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74
98-82-8	Isopropylbenzene	ND		1.0	0.79

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-159817-1				
SDG No.:					
Client Sample ID: SFB-MW-S8	Lab Sample ID: 480-159817-1				
Matrix: Water	Lab File ID: S0081.D				
Analysis Method: 8260C	Date Collected: 09/24/2019 09:40				
Sample wt/vol: 5(mL)	Date Analyzed: 10/04/2019 12:31				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 495892	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	- <u>ND</u> -	UJ	2.5	1.3
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	-ND-	UJ	1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND		1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	101		77-120
460-00-4	4-Bromofluorobenzene (Surr)	103		73-120
1868-53-7	Dibromofluoromethane (Surr)	102		75-123
2037-26-5	Toluene-d8 (Surr)	103		80-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: <u>480-159817-1</u>		
SDG No.:			
Client Sample ID: SFB-MW-S9	Lab Sample ID: 480-159817-2		
Matrix: <u>Water</u> Lab File ID: <u>S0082.D</u>			
Analysis Method: <u>8260C</u> Date Collected: <u>09/24/2019</u> 10:45			
Sample wt/vol: 5(mL)	Date Analyzed: 10/04/2019 12:54		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 495892	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND		1.0	0.31
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
78-93-3	2-Butanone (MEK)	-ND-	UJ	10	1.3
591-78-6	2-Hexanone	ND		5.0	1.2
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND-	UJ	10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	ND		1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
75-00-3	Chloroethane	ND		1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	ND		1.0	0.18
124-48-1	Dibromochloromethane	ND		1.0	0.32
75-71-8	Dichlorodifluoromethane	-ND-	UJ	1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74
98-82-8	Isopropylbenzene	ND		1.0	0.79

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-159817-1		
SDG No.:			
Client Sample ID: SFB-MW-S9	Lab Sample ID: 480-159817-2		
Matrix: Water	Lab File ID: S0082.D		
Analysis Method: 8260C	Date Collected: 09/24/2019 10:45		
Sample wt/vol: 5(mL)	Date Analyzed: 10/04/2019 12:54		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 495892	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	-ND	UJ	2.5	1.3
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	-ND-	UJ	1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND		1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	111		77-120
460-00-4	4-Bromofluorobenzene (Surr)	112		73-120
1868-53-7	Dibromofluoromethane (Surr)	113		75-123
2037-26-5	Toluene-d8 (Surr)	112		80-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: <u>480-159817-1</u>		
SDG No.:			
Client Sample ID: SFB-MW-B4	Lab Sample ID: 480-159817-3		
Matrix: <u>Water</u> Lab File ID: <u>S0083.D</u>			
Analysis Method: 8260C	Date Collected: 09/24/2019 10:40		
Sample wt/vol: 5(mL)	Date Analyzed: 10/04/2019 13:17		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 495892	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND		1.0	0.31
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
78-93-3	2-Butanone (MEK)	ND-	UJ	10	1.3
591-78-6	2-Hexanone	ND		5.0	1.2
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	-ND-	UJ	10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	ND		1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
75-00-3	Chloroethane	ND		1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	ND		1.0	0.18
124-48-1	Dibromochloromethane	ND		1.0	0.32
75-71-8	Dichlorodifluoromethane	ND-	UJ	1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74
98-82-8	Isopropylbenzene	ND		1.0	0.79

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-159817-1				
SDG No.:					
Client Sample ID: SFB-MW-B4	Lab Sample ID: 480-159817-3				
Matrix: <u>Water</u> Lab File ID: <u>S0083.D</u>					
Analysis Method: 8260C	Date Collected: 09/24/2019 10:40				
Sample wt/vol: 5(mL)	Date Analyzed: 10/04/2019 13:17				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 495892	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate		UJ	2.5	1.3
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	-ND-	UJ	1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND		1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	114		77-120
460-00-4	4-Bromofluorobenzene (Surr)	111		73-120
1868-53-7	Dibromofluoromethane (Surr)	120		75-123
2037-26-5	Toluene-d8 (Surr)	110		80-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: <u>480-159817-1</u>		
SDG No.:			
Client Sample ID: SFB-MW-S10	Lab Sample ID: 480-159817-4		
Matrix: Water	Lab File ID: S0084.D		
Analysis Method: 8260C	Date Collected: 09/24/2019 12:10		
Sample wt/vol: 5(mL)	Date Analyzed: 10/04/2019 13:40		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 495892	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND		1.0	0.31
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
78-93-3	2-Butanone (MEK)	-ND-	UJ	10	1.3
591-78-6	2-Hexanone	ND		5.0	1.2
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	-ND-	UJ	10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	ND		1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
75-00-3	Chloroethane	ND		1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	ND		1.0	0.18
124-48-1	Dibromochloromethane	ND		1.0	0.32
75-71-8	Dichlorodifluoromethane	*D	UJ	1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74
98-82-8	Isopropylbenzene	ND		1.0	0.79

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-159817-1		
SDG No.:			
Client Sample ID: SFB-MW-S10	Lab Sample ID: 480-159817-4		
Matrix: Water	Lab File ID: S0084.D		
Analysis Method: 8260C	Date Collected: 09/24/2019 12:10		
Sample wt/vol: 5(mL)	Date Analyzed: 10/04/2019 13:40		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 495892	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	-NĐ-	UJ	2.5	1.3
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	-ND-	UJ	1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND		1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	112		77-120
460-00-4	4-Bromofluorobenzene (Surr)	112		73-120
1868-53-7	Dibromofluoromethane (Surr)	118		75-123
2037-26-5	Toluene-d8 (Surr)	113		80-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: <u>480-159817-1</u>		
SDG No.:			
Client Sample ID: SFB-MW-B5	Lab Sample ID: 480-159817-5		
Matrix: Water	Lab File ID: S0085.D		
Analysis Method: 8260C	Date Collected: 09/24/2019 12:40		
Sample wt/vol: 5(mL)	Date Analyzed: 10/04/2019 14:03		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 495892	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND		1.0	0.31
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
78-93-3	2-Butanone (MEK)	-ND-	UJ	10	1.3
591-78-6	2-Hexanone	ND		5.0	1.2
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	-ND-	UJ	10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	ND		1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
75-00-3	Chloroethane	ND		1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	ND		1.0	0.18
124-48-1	Dibromochloromethane	ND		1.0	0.32
75-71-8	Dichlorodifluoromethane	ND	UJ	1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74
98-82-8	Isopropylbenzene	ND		1.0	0.79

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: <u>480-159817-1</u>		
SDG No.:			
Client Sample ID: SFB-MW-B5	Lab Sample ID: 480-159817-5		
Matrix: Water	Lab File ID: S0085.D		
Analysis Method: 8260C	Date Collected: 09/24/2019 12:40		
Sample wt/vol: 5(mL)	Date Analyzed: 10/04/2019 14:03		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 495892	Units: ug/L		
Analysis Balon No.: 495892	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	- ND	UJ	2.5	1.3
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	-ND	UJ	1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND		1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	114		77-120
460-00-4	4-Bromofluorobenzene (Surr)	110		73-120
1868-53-7	Dibromofluoromethane (Surr)	114		75-123
2037-26-5	Toluene-d8 (Surr)	112		80-120

Lab Name: Eurofins TestAmerica, Buffalo	.ca, Buffalo Job No.: <u>480-159817-1</u>					
SDG No.:						
Client Sample ID: SFB-MW-S7	Lab Sample ID: 480-159817-6					
Matrix: Water	Lab File ID: S0086.D					
Analysis Method: 8260C	Date Collected: 09/24/2019 13:10					
Sample wt/vol: 5(mL)	Date Analyzed: 10/04/2019 14:26					
Soil Aliquot Vol:	Dilution Factor: 1					
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)					
% Moisture:	Level: (low/med) Low					
Analysis Batch No.: 495892	Units: ug/L					

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND		1.0	0.31
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
78-93-3	2-Butanone (MEK)	-ND-	UJ	10	1.3
591-78-6	2-Hexanone	ND		5.0	1.2
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND•	UJ	10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	ND		1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
75-00-3	Chloroethane	ND		1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	ND		1.0	0.18
124-48-1	Dibromochloromethane	ND		1.0	0.32
75-71-8	Dichlorodifluoromethane	-ND-	UJ	1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74
98-82-8	Isopropylbenzene	ND		1.0	0.79

Job No.: <u>480-159817-1</u>				
Lab Sample ID: 480-159817-6				
Lab File ID: S0086.D				
Date Collected: 09/24/2019 13:10				
Date Analyzed: 10/04/2019 14:26				
Dilution Factor: 1				
GC Column: ZB-624 (20) ID: 0.18(mm)				
Level: (low/med) Low				
Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	NĐ-	UJ	2.5	1.3
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	ND-	UJ	1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND		1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	111		77-120
460-00-4	4-Bromofluorobenzene (Surr)	114		73-120
1868-53-7	Dibromofluoromethane (Surr)	116		75-123
2037-26-5	Toluene-d8 (Surr)	114		80-120

Lab Name: Eurofins TestAmerica, Buffalo	D Job No.: 480-159817-1				
SDG No.:					
Client Sample ID: SFB-TB-09242019	Lab Sample ID: 480-159817-7				
Matrix: Water	Lab File ID: S0087.D				
Analysis Method: 8260C	Date Collected: 09/24/2019 00:00				
Sample wt/vol: 5(mL)	Date Analyzed: 10/04/2019 14:49				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 495892	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	ND		1.0	0.31
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
78-93-3	2-Butanone (MEK)	-ND-	UJ	10	1.3
591-78-6	2-Hexanone	ND		5.0	1.2
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND-	UJ	10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	ND		1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
75-00-3	Chloroethane	ND		1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	ND		1.0	0.18
124-48-1	Dibromochloromethane	ND		1.0	0.32
75-71-8	Dichlorodifluoromethane	ND-	UJ	1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74
98-82-8	Isopropylbenzene	ND		1.0	0.79

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-159817-1				
SDG No.:					
Client Sample ID: SFB-TB-09242019	Lab Sample ID: 480-159817-7				
Matrix: Water	Lab File ID: S0087.D				
Analysis Method: 8260C	Date Collected: 09/24/2019 00:00				
Sample wt/vol: 5(mL)	Date Analyzed: 10/04/2019 14:49				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 495892	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	-NP	UJ	2.5	1.3
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	-ND-	UJ	1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND		1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	113		77-120
460-00-4	4-Bromofluorobenzene (Surr)	109		73-120
1868-53-7	Dibromofluoromethane (Surr)	112		75-123
2037-26-5	Toluene-d8 (Surr)	112		80-120

QC NONCONFORMANCE DOCUMENTATION

FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name:	Eurofins TestAmerica,	Buffalo	Job No.: <mark>480-159638-1</mark>
SDG No.:			
Lab Sample	e ID: <mark>CCVIS 480-495083</mark>	<mark>/3</mark>	Calibration Date: 10/01/2019 08:14
Instrument	ID: HP5973N		Calib Start Date: 09/19/2019 14:50
GC Column	ZB-624 (20)	ID: 0.18(mm)	Calib End Date: 09/19/2019 17:40
Lab File I	D: <u>N6707.D</u>		Conc. Units: <u>ug/L</u> Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	1.375	1.210	0.1000	22.0	25.0	-12.0	50.0
Chloromethane	Ave	1.985	1.943	0.1000	24.5	25.0	-2.1	20.0
Butadiene	Ave	2.033	1.777		21.9	25.0	-12.6	20.0
Vinyl chloride	Ave	1.453	1.412	0.1000	24.3	25.0	-2.8	20.0
Bromomethane	Ave	0.9764	0.9712	0.1000	24.9	25.0	-0.5	50.0
Chloroethane	Ave	1.031	0.9299	0.1000	22.6	25.0	-9.8	50.0
Dichlorofluoromethane	Ave	2.147	2.124		24.7	25.0	-1.1	20.0
Trichlorofluoromethane	Ave	2.084	1.945	0.1000	23.3	25.0	-6.7	20.0
Ethyl ether	Ave	1.514	1.588		26.2	25.0	4.9	20.0
Acrolein	Ave	0.3027	0.3133		129	125	3.5	50.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	1.246	0.9908	0.1000	19.9	25.0	<mark>-20.5</mark> *	20.0
1,1-Dichloroethene	Ave	1.156	1.026	0.1000	22.2	25.0	-11.3	20.0
Acetone	Ave	0.6099	0.6656	0.1000	136	125	9.1	50.0
Iodomethane	Ave	2.395	2.485		25.9	25.0	3.7	20.0
Carbon disulfide	Ave	3.877	3.337	0.1000	21.5	25.0	-13.9	20.0
Allyl chloride	Ave	3.274	3.063		23.4	25.0	-6.4	20.0
Methyl acetate	Ave	1.832	1.787	0.1000	48.8	50.0	-2.5	50.0
Methylene Chloride	Lin1		1.477	0.1000	27.1	25.0	8.4	20.0
2-Methyl-2-propanol	Ave	0.1427	0.1479		259	250	3.7	50.0
Methyl tert-butyl ether	Ave	4.074	4.218	0.1000	25.9	25.0	3.5	20.0
trans-1,2-Dichloroethene	Ave	1.360	1.283	0.1000	23.6	25.0	-5.7	20.0
Acrylonitrile	Ave	0.8480	0.8960		264	250	5.7	20.0
Hexane	Ave	2.478	1.773		17.9	25.0	-28.5*	20.0
1,1-Dichloroethane	Ave	2.669	2.550	0.2000	23.9	25.0	-4.4	20.0
Vinyl acetate	Ave	4.181	3.759		45.0	50.0	-10.1	20.0
2,2-Dichloropropane	Ave	1.415	1.284		22.7	25.0	-9.3	20.0
cis-1,2-Dichloroethene	Ave	1.461	1.464	0.1000	25.0	25.0	0.2	20.0
2-Butanone (MEK)	Ave	0.9939	1.048	0.1000	132	125	5.4	20.0
Chlorobromomethane	Ave	0.8688	0.9017		25.9	25.0	3.8	20.0
Tetrahydrofuran	Ave	0.7302	0.7417		50.8	50.0	1.6	20.0
Chloroform	Ave	2.609	2.375	0.2000	22.8	25.0	-9.0	20.0
1,1,1-Trichloroethane	Ave	2.069	1.863	0.1000	22.5	25.0	-10.0	20.0
Cyclohexane	Ave	2.955	2.244	0.1000	19.0	25.0	<mark>-24.1</mark> *	20.0
Carbon tetrachloride	Ave	1.875	1.600	0.1000	21.3	25.0	-14.7	20.0
1,1-Dichloropropene	Ave	1.773	1.476		20.8	25.0	-16.8	20.0
Benzene	Ave	5.158	4.969	0.5000	24.1	25.0	-3.7	20.0
Isobutyl alcohol	Ave	0.0747	0.0687		575	625	-8.0	50.0
1,2-Dichloroethane	Ave	2.345	2.354	0.1000	25.1	25.0	0.4	20.0
n-Heptane	Ave	2.868	2.133		18.6	25.0	-25.6*	20.0
Trichloroethene	Ave	1.338	1.268	0.2000	23.7	25.0	-5.3	20.0

FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: <u>480-159638-1</u>
SDG No.:	
Lab Sample ID: <u>CCVIS 480-495083/3</u>	Calibration Date: 10/01/2019 08:14
Instrument ID: HP5973N	Calib Start Date: 09/19/2019 14:50
GC Column: <u>ZB-624 (20)</u> ID: <u>0.18</u>	(mm) Calib End Date: 09/19/2019 17:40
Lab File ID: N6707.D	Conc. Units: ug/L Heated Purge: (Y/N) N
Instrument ID: HP5973N GC Column: <u>ZB-624 (20)</u> ID: <u>0.18</u>	(mm) Calib Start Date: 09/19/2019 14:50 (mm) Calib End Date: 09/19/2019 17:40

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Methylcyclohexane	Ave	2.337	1.710	0.1000	18.3	25.0	<mark>-26.8</mark> *	20.0
1,2-Dichloropropane	Ave	1.365	1.387	0.1000	25.4	25.0	1.6	20.0
Dibromomethane	Ave	0.8751	0.8828	0.1000	25.2	25.0	0.9	20.0
1,4-Dioxane	Lin1		0.0026		505	500	1.0	50.0
Bromodichloromethane	Ave	1.691	1.683	0.2000	24.9	25.0	-0.5	20.0
2-Chloroethyl vinyl ether	Ave	0.8523	0.8919		26.2	25.0	4.6	20.0
cis-1,3-Dichloropropene	Ave	1.878	1.904	0.2000	25.3	25.0	1.4	20.0
4-Methyl-2-pentanone (MIBK)	Ave	0.1801	0.1889	0.1000	131	125	4.9	20.0
Toluene	Ave	0.8294	0.7918	0.4000	23.9	25.0	-4.5	20.0
trans-1,3-Dichloropropene	Ave	0.4397	0.4358	0.1000	24.8	25.0	-0.9	20.0
Ethyl methacrylate	Ave	0.3896	0.3820		24.5	25.0	-1.9	20.0
1,1,2-Trichloroethane	Ave	0.2383	0.2419	0.1000	25.4	25.0	1.5	20.0
Tetrachloroethene	Ave	0.3856	0.3548	0.2000	23.0	25.0	-8.0	20.0
1,3-Dichloropropane	Ave	0.4689	0.4688		25.0	25.0	-0.0	20.0
2-Hexanone	Ave	0.3654	0.3635	0.1000	124	125	-0.5	20.0
Dibromochloromethane	Ave	0.3157	0.3343	0.1000	26.5	25.0	5.9	20.0
1,2-Dibromoethane	Ave	0.3065	0.3103		25.3	25.0	1.2	20.0
Chlorobenzene	Ave	0.9193	0.9508	0.5000	25.9	25.0	3.4	20.0
Ethylbenzene	Ave	1.442	1.421	0.1000	24.6	25.0	-1.4	20.0
1,1,1,2-Tetrachloroethane	Ave	0.3463	0.3728		26.9	25.0	7.7	20.0
m,p-Xylene	Ave	0.6022	0.5997	0.1000	24.9	25.0	-0.4	20.0
o-Xylene	Ave	0.6149	0.6314	0.3000	25.7	25.0	2.7	20.0
Styrene	Ave	0.9710	1.009	0.3000	26.0	25.0	3.9	20.0
Bromoform	Ave	0.2067	0.2092	0.1000	25.3	25.0	1.2	50.0
Isopropylbenzene	Ave	2.958	2.748	0.1000	23.2	25.0	-7.1	20.0
Bromobenzene	Ave	0.7919	0.8055		25.4	25.0	1.7	20.0
1,1,2,2-Tetrachloroethane	Ave	0.7496	0.7216	0.3000	24.1	25.0	-3.7	20.0
N-Propylbenzene	Ave	3.281	2.961		22.6	25.0	-9.8	20.0
1,2,3-Trichloropropane	Ave	0.2410	0.2557		26.5	25.0	6.1	20.0
trans-1,4-Dichloro-2-butene	Ave	0.2988	0.2881		24.1	25.0	-3.6	50.0
2-Chlorotoluene	Ave	0.7295	0.7395		25.3	25.0	1.4	20.0
1,3,5-Trimethylbenzene	Ave	2.424	2.294		23.7	25.0	-5.4	20.0
4-Chlorotoluene	Ave	1.977	1.980		25.0	25.0	0.1	20.0
tert-Butylbenzene	Ave	0.5755	0.5199		22.6	25.0	-9.7	20.0
1,2,4-Trimethylbenzene	Ave	2.420	2.403		24.8	25.0	-0.7	20.0
sec-Butylbenzene	Ave	3.092	2.725		22.0	25.0	-11.9	20.0
1,3-Dichlorobenzene	Ave	1.468	1.457	0.6000	24.8	25.0	-0.8	20.0
4-Isopropyltoluene	Ave	2.758	2.544		23.1	25.0	-7.8	20.0
1,4-Dichlorobenzene	Ave	1.518	1.475	0.5000	24.3	25.0	-2.8	20.0
n-Butylbenzene	Ave	2.248	1.958		21.8	25.0	-12.9	20.0
1,2-Dichlorobenzene	Ave	1.511	1.521	0.4000	25.2	25.0	0.7	20.0

FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: Eurofins TestAmerica,	Buffalo	Job No.: <mark>(480-159817-1</mark>)					
SDG No.:							
Lab Sample ID: CCVIS 480-495892	/ 3	Calibration Date: <u>10/04/2019</u> 09:16					
Instrument ID: HP5973S		Calib Start Date: 09/10/2019 14:39					
GC Column: <u>ZB-624 (20)</u>	ID: 0.18(mm)	Calib End Date: 09/10/2019 17:20					
Lab File ID: S0074.D		Conc. Units: <u>ug/L</u> Heated Purge: (Y/N) <u>N</u>					

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	1.766	1.322	0.1000	18.7	25.0	-25.1	50.0
Chloromethane	Ave	1.971	1.862	0.1000	23.6	25.0	-5.5	20.0
Butadiene	Ave	1.897	2.281		30.1	25.0	20.2*	20.0
Vinyl chloride	Ave	1.650	1.701	0.1000	25.8	25.0	3.1	20.0
Bromomethane	Ave	1.167	1.103	0.1000	23.6	25.0	-5.5	50.0
Chloroethane	Ave	1.105	1.138	0.1000	25.8	25.0	3.0	50.0
Trichlorofluoromethane	Ave	2.275	2.366	0.1000	26.0	25.0	4.0	20.0
Dichlorofluoromethane	Ave	2.390	2.354		24.6	25.0	-1.5	20.0
Ethyl ether	Ave	1.340	1.668		31.1	25.0	24.4*	20.0
Acrolein	Ave	0.2245	0.2574		143	125	14.7	50.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	1.255	1.449	0.1000	28.9	25.0	15.5	20.0
1,1-Dichloroethene	Ave	1.228	1.359	0.1000	27.7	25.0	10.7	20.0
Acetone	Ave	0.5189	0.6627	0.1000	160	125	<mark>27.7</mark>	50.0
Iodomethane	Ave	2.337	2.692		28.8	25.0	15.2	20.0
Carbon disulfide	Ave	4.017	4.519	0.1000	28.1	25.0	12.5	20.0
Allyl chloride	Ave	2.451	2.789		28.5	25.0	13.8	20.0
Methyl acetate	Ave	1.239	1.582	0.1000	63.8	50.0	<mark>27.6</mark>	50.0
Methylene Chloride	Lin1		1.723	0.1000	31.1	25.0	<mark>24.4</mark> *	20.0
2-Methyl-2-propanol	Ave	0.1059	0.1868		441	250	76.4*	50.0
Methyl tert-butyl ether	Ave	4.030	4.449	0.1000	27.6	25.0	10.4	20.0
trans-1,2-Dichloroethene	Ave	1.397	1.570	0.1000	28.1	25.0	12.3	20.0
Acrylonitrile	Ave	0.6239	0.7960		319	250	27.6*	20.0
Hexane	Ave	2.260	2.464		27.3	25.0	9.0	20.0
1,1-Dichloroethane	Ave	2.503	2.904	0.2000	29.0	25.0	16.0	20.0
Vinyl acetate	Ave	3.731	4.314		57.8	50.0	15.6	20.0
2,2-Dichloropropane	Ave	1.469	1.622		27.6	25.0	10.4	20.0
cis-1,2-Dichloroethene	Ave	1.539	1.717	0.1000	27.9	25.0	11.6	20.0
<mark>2-Butanone</mark> (MEK)	Ave	0.7507	0.9823	0.1000	164	125	<mark>30.9</mark> *	20.0
Chlorobromomethane	Ave	0.8090	0.9675		29.9	25.0	19.6	20.0
Tetrahydrofuran	Ave	0.5409	0.6659		61.6	50.0	23.1*	20.0
Chloroform	Ave	2.503	2.611	0.2000	26.1	25.0	4.3	20.0
1,1,1-Trichloroethane	Ave	2.110	2.225	0.1000	26.4	25.0	5.5	20.0
Cyclohexane	Ave	2.628	2.985	0.1000	28.4	25.0	13.6	20.0
Carbon tetrachloride	Ave	1.889	2.071	0.1000	27.4	25.0	9.6	20.0
1,1-Dichloropropene	Ave	1.900	2.055		27.0	25.0	8.1	20.0
Benzene	Ave	5.604	6.408	0.5000	28.6	25.0	14.4	20.0
Isobutyl alcohol	Ave	0.0613	0.0860		876	625	40.1	50.0
1,2-Dichloroethane	Ave	2.192	2.233	0.1000	25.5	25.0	1.9	20.0
n-Heptane	Ave	2.853	2.690		23.6	25.0	-5.7	20.0
Trichloroethene	Ave	1.447	1.619	0.2000	28.0	25.0	11.8	20.0

Data Usability Summary Report

Site: Schatz Federal Bearings Laboratory: Eurofins TestAmerica Buffalo – Amherst, NY SDG Nos.: 480-159638-1 and 480-159817-1 Parameters: Metals (6010C and 7470A) Data Reviewer: Amy Bass/TRC Peer Reviewer: Elizabeth Denly/TRC January 2, 2020 Date:

Sample Reviewed and Evaluation Summary

480-159638-1:

5 Groundwater Samples: SFB-MW-B3, SFB-MW-S3, SFB-MW-S1, SFB-MW-B1, SFB-MW-B2

480-159817-1:

6 Groundwater Samples: SFB-MW-S8, SFB-MW-S9, SFB-MW-B4, SFB-MW-S10, SFB-MW-B5, SFB-MW-S7

The above-listed groundwater samples were collected on September 23-24, 2019, and were analyzed for the following parameters:

Total and Dissolved Metals by SW-846 Methods 6010C/7470A

The data validation was performed in accordance with USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review (EPA-540-R-2017-001), January 2017, modified for the SW-846 methodologies utilized.

The data were evaluated based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- Data Completeness
- Holding Times and Sample Preservation
- Initial and Continuing Calibrations
- Interference Check Sample (ICS) Results
- Blanks
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Duplicate Results NA
- Inductively Coupled Plasma (ICP) Serial Dilution Results
- Laboratory Control Sample (LCS) Results
- Field Duplicate Results NA
- Total and Dissolved Results
- Sample Results and Reported Quantitation Limits (QLs)
- All criteria were met.
- NA Field duplicates and laboratory duplicates were not associated with this sample set.

Overall Evaluation of Data and Potential Usability Issues

All results are usable for the project objectives. Qualifications applied to the data as a result of sampling error were not required. Qualifications applied to the data as a result of analytical error are discussed below.

- Potential uncertainty exists for select metals results that were detected between the method detection limit (MDL) and QL. These results were qualified as estimated (J) in the associated samples. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.
- The positive results for total and dissolved zinc in samples SFB-MW-B3, SFB-MW-S3, SFB-MW-B1, SFB-MW-B2, SFB-MW-S9, SFB-MW-B4, SFB-MW-B5, and SFB-MW-S7 were qualified as nondetect (U) at the QL due to method blank contamination. These results can be used for project objectives as nondetects, which may have a minor impact on the data usability.
- The positive results for total and dissolved beryllium in samples SFB-MW-S8, SFB-MW-S9, SFB-MW-B4, SFB-MW-S10, SFB-MW-B5, and SFB-MW-S7 were qualified as nondetect (U) at the QL due to method blank contamination. These results can be used for project objectives as nondetects, which may have a minor impact on the data usability
- The positive results for total zinc in sample SFB-MW-S10 and dissolved zinc in sample SFB-MW-S8 were qualified as nondetect (U) at the QL due to method blank contamination. These results can be used for project objectives as nondetects, which may have a minor impact on the data usability.
- The positive results for dissolved zinc in samples SFB-MW-S1 and SFB-MW-S10 were qualified as estimated (J+) with a potential high bias due to method blank contamination. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.
- The positive results for total copper in samples SFB-MW-S8, SFB-MW-S9, SFB-MW-B4, SFB-MW-S10, and SFB-MW-S7 were qualified as nondetect (U) at the QL due to calibration blank contamination. These results can be used for project objectives as nondetects, which may have a minor impact on the data usability.
- The positive result for total potassium in sample SFB-MW-B4 was qualified as estimated (J+) with a potential high bias due to calibration blank contamination. This result can be used for project objectives as an estimated value, which may have a minor impact on the data usability.
- The positive results for total aluminum were qualified as estimated (J+) with a potential high bias in samples SFB-MW-S1 and SFB-MW-B2 due to high MS/MSD recoveries. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.

Data Completeness

The data package was a complete Level IV data deliverable package, with the following exceptions.

 In data group 480-159638-1, no post-digestion spike (PDS) analysis was performed for total metals (only for dissolved metals). MS/MSD recoveries for total aluminum were above the acceptance limits; therefore, analysis of a corresponding PDS sample was required. The validation action for the high MS/MSD recovery was made without consideration of PDS results since this analysis was not included.

The 480-159817-1 Chain-of-Custody (CoC) indicated metals analysis (6010C and 7470A) for the trip blank included with these samples (SFB-TB-09242019). The sample was analyzed for VOCs only (and therefore is not included in the header for this memo). Trip blanks typically are analyzed only for VOCs (as was requested on the 480-159638-1 CoC); however, there were no communication records or comment included to indicate this discrepancy was based on client request. No validation action is required on this basis.

Holding Times and Sample Preservation

All holding time method criteria were met. The CoC forms indicated acid preservation was included with the samples for total metals, but no acid preservation was used with the samples designated to be lab filtered for dissolved metals analysis. Inquiry was made, and the laboratory responded that the dissolved samples from both data sets were acid preserved on 09/27/2019. Sample analyses for dissolved metals were performed more than 24 hours afterward (on 09/30/2019, 10/01/2019, and 10/02/2019); therefore, all sample preservation criteria were met.

Initial and Continuing Calibrations

All initial calibration correlation coefficients for the metals analyses were >0.995. The initial calibration verification percent recoveries (%Rs) for the metals analyses met the method acceptance limits (90-110%). The following table presents the continuing calibration verification (CCV) standards that exhibited %Rs outside the acceptance range, the associated samples, and the resulting validation actions.

CCV ID	Analyte	%R	Associated Samples	Validation Actions
Data Group: 4	80-159683-1			
CCV 480- 495091/24	Selenium (dissolved)	111	SFB-MW-B3, SFB-MW-S3, SFB-MW-B1, SFB-MW-B2	Qualification was not required since dissolved selenium was nondetect in the
CCV 480- 495091/34	Selenium (dissolved)	112	SFB-MW-B1, SFB-MW-B2	associated samples.

The following table summarizes the low-level continuing calibration (CCL) samples with %Rs outside the acceptance limits (70-130%), the associated samples, and the resulting validation actions.

CCL ID	Analyte	Standard Level	%R	Validation Actions				
Data Group: 480-159817-1								
CCL 480- 495330/19	Beryllium (dissolved)	0.00200 mg/L	142	Qualification was not required on the basis of the CCL nonconformances since the positive results for dissolved beryllium in the associated samples were qualified as nondetect (U) due to method blank contamination.				
CCL 480- 495330/27	Iron (dissolved)	0.0500 mg/L	132	Qualification was not required since dissolved iron was nondetect in the associated samples.				
Associated S	Associated Samples: SFB-MW-S8, SFB-MW-S9, SFB-MW-B4, SFB-MW-S10, SFB-MW-B5, SFB-MW-S7							

ICS Results

All analytes recovered within the acceptance limits in the ICSAB sample analyses.

Several analytes (antimony, barium, chromium, cobalt, copper, manganese, nickel, selenium, silver, vanadium, and zinc) were detected as positive and/or negative interference in the ICSA analyses, at levels exceeding the MDL but below the QL. Interferents (aluminum, calcium, iron, and magnesium)

were detected in all samples at concentrations less than 50% of the concentrations spiked into the ICSA; thus, ICS interferences were not a concern, and further evaluation was not needed. No validation actions were required on this basis.

<u>Blanks</u>

The following table summarizes the metals detected in the associated laboratory method blanks, the concentrations detected, and the resulting validation actions.

Method Blank ID	Analyte	Blank Concentration (mg/L)	Validation Actions				
<u>480-159638-1</u> : MB 480- 494102/1-A	Zinc (total)	0.00236 J	The positive results for total zinc in samples SFB-MW-B3, SFB-MW-S3, SFB-MW-B1, and SFB-MW-B2 were qualified as nondetect (U) at the QL since these results were <10x the blank concentration and < the QL. Qualification was not required for sample SFB-MW-S1 since the total zinc concentration was >10x the blank concentration.				
Associated sam	Associated samples: SFB-MW-B3, SFB-MW-S3, SFB-MW-S1, SFB-MW-B1, SFB-MW-B2						
<u>480-159638-1</u> : MB 480- 494130/1-B	Zinc (dissolved)	0.00403 J	The positive results for dissolved zinc in samples SFB-MW-B3, SFB-MW-S3, SFB-MW-B1, and SFB-MW-B2 were qualified as nondetect (U) at the QL since these results were <10x the blank concentration and < the QL. The positive result for dissolved zinc in sample SFB-MW-S1 was qualified as estimated (J+) with a potential high bias since the concentration was > the QL and <10x the blank concentration.				
Associated sam	ples: SFB-M	N-B3, SFB-MW-S	3, SFB-MW-S1, SFB-MW-B1, SFB-MW-B2				
	Beryllium (total)	0.000420 J	The positive results for total beryllium in the associated samples were qualified as nondetect (U) at the QL since these results were <10x the blank concentration and < the QL.				
<u>480-159817-1</u> :	Manganese (total)	0.000550 J	Qualification was not required since the total manganese concentrations in the associated samples were >10x the blank concentration.				
494469/1-A	MB 480- 494469/1-A Zinc (total) 0.00306 C		The positive results for total zinc in samples SFB-MW-S9, SFE MW-B4, SFB-MW-S10, SFB-MW-B5, and SFB-MW-S7 wer qualified as nondetect (U) at the QL since these results were <10 the blank concentration and < the QL. Qualification was no required for sample SFB-MW-S8 since the total zinc concentratio was >10x the blank concentration.				
Associated sam	ples: SFB-M	N-S8, SFB-MW-S	9, SFB-MW-B4, SFB-MW-S10, SFB-MW-B5, SFB-MW-S7				
	Beryllium (dissolved)	0.000610 J	The positive results for dissolved beryllium in the associated samples were qualified as nondetect (U) at the QL since these results were <10x the blank concentration and < the QL.				
<u>480-159817-1</u> : MB 480-	Chromium (dissolved)	0.00149 J	Qualification was not required since dissolved chromium was nondetect in samples SFB-MW-S8, SFB-MW-S9, SFB-MW-S10, SFB-MW-B5, and SFB-MW-S7; and the detected result in sample SFB-MW-B4 was >10× the blank concentration.				
MB 480- 494536/1-B Zinc (dissolved)		0.00662 J	The positive results for dissolved zinc in samples SFB-MW-S8, SFB-MW-S9, SFB-MW-B4, SFB-MW-B5, and SFB-MW-S7 were qualified as nondetect (U) at the QL since these results were <10x the blank concentration and < the QL. The positive result for dissolved zinc in sample SFB-MW-S10 was qualified as estimated (J+) with a potential high bias since the concentration was > the QL and <10x the blank concentration.				
Associated sam	ples: SFB-M	N-S8, SFB-MW-S	9, SFB-MW-B4, SFB-MW-S10, SFB-MW-B5, SFB-MW-S7				

The following table lists the analytes that were detected in the calibration blanks that were not

already qualified based on the preparation (method) blank. The maximum initial or continuing calibration blank (ICB/CCB) concentration was used to qualify the results for all samples in this data set (bracketing approach was not used). The following table summarizes the metal contaminants in the relevant instrument calibration blanks by analysis batch, the maximum blank concentration, the associated samples, and the resulting validation actions.

Analyte	Maximum Blank Result (mg/L)	Validation Actions				
480-159638-1 / /	Analysis Batch - Bla	anks: 495192 - CCB/25				
Beryllium (dissolved)	0.000350 J	Qualification was not required since dissolved beryllium was nondetect in the associated sample.				
Associated san	nple: SFB-MW-S1					
480-159817-1 /	Analysis Batch - Bla	anks: 495112 – CCB/55, CCB/60				
Copper (total)	0.000179 J	The positive results for total copper in samples SFB-MW-S8, SFB-MW-S9, SFB-MW-B4, SFB-MW-S10, and SFB-MW-S7 were qualified as nondetect (U) at the QL since these results were < the QL. Qualification was not required for sample SFB-MW-B5 since total copper was nondetect in this sample.				
Potassium (total)	0.106 J	The positive result for total potassium in sample SFB-MW-B4 was qualified as estimated (J+) with a potential high bias since the concentration was > the QL and <10x the blank concentration. Qualification was not required in the other associated samples since the total potassium concentrations in these samples were >10x the blank concentration				
Associated san	Associated samples: SFB-MW-S8, SFB-MW-S9, SFB-MW-B4, SFB-MW-S10, SFB-MW-B5, SFB-MW-S7					
480-159817-1 /	480-159817-1 / Analysis Batch - Blanks: 495330 – CCB/18					
Iron (dissolved)	0.0221 J	Qualification was not required since dissolved iron was nondetect in the associated samples.				
Associated san	nples: SFB-MW-S8,	SFB-MW-S9, SFB-MW-B4, SFB-MW-S10, SFB-MW-B5, SFB-MW-S7				

MS/MSD Results

MS/MSD analyses for metals (total and dissolved) and the post digestion spike (PDS) analysis (dissolved metals only) were performed on sample SFB-MW-S1. Qualification of the data is not required in the case of nonconformances when the sample concentration is >4x the spike concentration; thus, these results were not evaluated or summarized in this report. The following table summarizes the MS/MSD %Rs that were outside the acceptance limits, the associated samples, and the resulting validation actions.

MS/MSD Parent Sample ID	Analyte	MS %R	MSD %R	MS/MSD RPD	PDS %R	Validation Action		
SFB-MW- S1	Aluminum (total)	144	144	-	**	The positive results for total aluminum in samples SFB-MW-S1 and SFB-MW-B2 were qualified as estimated (J+) with a potential high bias. Qualification of the data was not required in the remaining samples since total aluminum was not detected in these samples.		
Associated samples: SFB-MW-B3, SFB-MW-S3, SFB-MW-S1, SFB-MW-B1, SFB-MW-B2								
	-: Met criteria ** PDS analysis was performed only for the dissolved metals; not applicable for the total metals results.							

MS/MSD analyses for mercury (dissolved only) were performed on sample SFB-MW-B4, and MS/MSD analyses for the other metals (total only) were performed on sample SFB-MW-S7. All %Rs and RPDs for these MS/MSD analyses were within the laboratory acceptance limits. No PDS

analysis was required since the MS/MSD results were all within control limits, but a PDS analysis was performed on sample SFB-MW-S7 for total metals (other than mercury). The PDS %R for calcium was below the acceptance limits; however, qualification was not required since the corresponding MS/MSD results were within the control limits.

Laboratory Duplicate Results

Laboratory duplicate analyses were not performed on any samples in this data set.

ICP Serial Dilution Results

The ICP serial dilution analysis in data group 480-159638-1 was performed on sample SFB-MW-S1 for dissolved metals and for total and dissolved mercury; no analysis was performed for total metals. All percent differences (%Ds) for analytes reported at >25× the QL in sample SFB-MW-S1 were within the acceptance criteria (\leq 10%). No qualifications were required.

ICP serial dilution analysis in data group 480-159817-1 was performed on sample SFB-MW-S7 for total metals (no analysis for dissolved metals) and on sample SFB-MW-B4 for dissolved mercury (no analysis for total mercury). All %Ds for analytes reported at >25× the QL were within the acceptance criteria. No qualifications were required.

LCS Results

LCS analyses were included for all methods (total and dissolved). The LCS %Rs in both data groups met the laboratory-provided acceptance criteria.

Field Duplicate Results

No field duplicate pairs were submitted with this sample set.

Total and Dissolved Results

Total and dissolved results were reviewed to identify instances in which the dissolved metals concentration exceeded the corresponding total metals concentration by >20% when the results were >5x the QL. All criteria were met.

Sample Results and Reported Quantitation Limits

Select metal results were reported between the MDL and QL in the associated samples. These results were qualified as estimated (J) by the laboratory.

Sample calculations were spot-checked, and there were no errors noted.

No dilutions were performed in the metals analyses.

QUALIFIED FORM 1s

Client Sample ID: SFB-MW-B3 Lab Sample ID: 480-159638-1 Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-159638-1 SDG ID.: Matrix: Water Date Sampled: 09/23/2019 11:00 Reporting Basis: WET Date Received: 09/24/2019 10:00 CAS No. MDL Units С DIL Method Analyte Result. RT. Q 7429-90-5 Aluminum ND 0.20 0.060 mg/L 1 6010C 7440-36-0 Antimony ND 0.020 0.0068 1 6010C mg/L 7440-38-2 0.015 0.0056 6010C ND Arsenic mg/L 1 7440-39-3 Barium 0.10 0.0020 0.00070 6010C mg/L 1 7440-41-7 Beryllium 0.00030 6010C ND 0.0020 mg/L 1 7440-43-9 Cadmium ND 0.0020 0.00050 mg/L 1 6010C 7440-70-2 Calcium 12.2 0.50 0.10 6010C mg/L 1 7440-47-3 0.0040 0.0010 6010C Chromium 0.025 mg/L 1 7440-48-4 0.0040 0.00063 6010C Cobalt ND mg/L 1 0.0016 7440-50-8 Copper 0.0028 0.010 mq/L J 6010C 1 7439-89-6 Iron 0.073 0.050 0.019 mq/L 1 6010C 7439-92-1 Lead ND 0.010 0.0030 6010C mg/L 1 7439-95-4 Magnesium 9.3 0.20 0.043 mg/L 1 6010C 7439-96-5 0.0030 0.00040 6010C 0.022 Manganese mg/L 1 7440-02-0 Nickel 0.0033 0.010 0.0013 6010C mg/L J 1 0.50 7440-09-7 0.10 6010C Potassium 3.9 mg/L 1 7782-49-2 Selenium 0.025 0.0087 6010C ND mg/L 1 7440-22-4 Silver 0.0017 6010C ND 0.0060 mg/L 1 7440-23-5 Sodium 6010C 19.7 1.0 0.32 mq/L 1 7440-28-0 Thallium 0.020 0.010 6010C ND mg/L 1 7440-62-2 Vanadium ND 0.0050 0.0015 ma/L 1 6010C 7440-66-6 ND 0.0051 Zinc 0.010 0.0015 mq/L 1 6010C T U P 7439-97-6 Mercury ND 0.00020 0.00012 7470A mg/L 1

Client Sample ID: SFB-MW-B3 Lab Sample ID: 480-159638-1 Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-159638-1 SDG ID.: Matrix: Water Date Sampled: 09/23/2019 11:00 Reporting Basis: WET Date Received: 09/24/2019 10:00 CAS No. MDL Units С DIL Method Analyte Result. RT. Q 7429-90-5 Aluminum ND 0.20 0.060 mg/L 1 6010C 7440-36-0 Antimony ND 0.020 0.0068 1 6010C mg/L 7440-38-2 0.015 0.0056 6010C 0.0063 Arsenic mg/L J 1 7440-39-3 Barium 0.098 0.0020 0.00070 6010C mg/L 1 Beryllium 0.00030 6010C 7440-41-7 ND 0.0020 mg/L 1 7440-43-9 Cadmium ND 0.0020 0.00050 mq/L 1 6010C 7440-70-2 Calcium 0.50 0.10 6010C 12.1 mg/L 1 7440-47-3 0.0040 0.0010 6010C Chromium 0.024 mg/L 1 7440-48-4 0.0040 0.00063 6010C Cobalt ND mg/L 1 0.0016 7440-50-8 Copper 0.0016 0.010 mq/L J 6010C 1 7439-89-6 Iron ND 0.050 0.019 mq/L 1 6010C 7439-92-1 Lead ND 0.010 0.0030 6010C mg/L 1 7439-95-4 Magnesium 9.5 0.20 0.043 mg/L 1 6010C 7439-96-5 0.0030 0.00040 6010C ND Manganese mg/L 1 7440-02-0 Nickel 0.0015 0.010 0.0013 6010C mg/L J 1 7440-09-7 0.50 0.10 6010C Potassium 4.1 mg/L 1 7782-49-2 Selenium 0.025 0.0087 6010C ND mg/L 1 1 0.0017 7440-22-4 Silver 6010C ND 0.0060 mg/L 1 7440-23-5 Sodium 6010C 20.8 1.0 0.32 mq/L 1 7440-28-0 Thallium 0.020 0.010 6010C ND mg/L 1 7440-62-2 Vanadium ND 0.0050 0.0015 mg/L 1 6010C 7440-66-6 0.0015 Zinc 0.0063 0.010 mg/L 1 6010C S U P ND 7439-97-6 Mercury ND 0.00020 0.00012 7470A mg/L 1

Client Sample ID: SFB-MW-S3 Lab Sample ID: 480-159638-2 Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-159638-1 SDG ID.: Matrix: Water Date Sampled: 09/23/2019 11:05 Reporting Basis: WET Date Received: 09/24/2019 10:00 CAS No. MDL Units С DIL Method Analyte Result. RT. Q 7429-90-5 Aluminum ND 0.20 0.060 mg/L 1 6010C 7440-36-0 Antimony ND 0.020 0.0068 1 6010C mg/L 7440-38-2 0.015 0.0056 6010C ND Arsenic mg/L 1 7440-39-3 Barium 0.080 0.0020 0.00070 6010C mg/L 1 Beryllium 0.00030 6010C 7440-41-7 ND 0.0020 mg/L 1 7440-43-9 Cadmium ND 0.0020 0.00050 mg/L 1 6010C 7440-70-2 Calcium 0.50 0.10 6010C 56.4 mg/L 1 7440-47-3 0.0040 0.0010 6010C Chromium ND mg/L 1 7440-48-4 0.0040 0.00063 6010C Cobalt ND mg/L 1 0.0016 7440-50-8 Copper ND 0.010 mg/L 1 6010C 7439-89-6 Iron 2.6 0.050 0.019 mq/L 1 6010C 7439-92-1 Lead ND 0.010 0.0030 mg/L 6010C 1 7439-95-4 Magnesium 11.5 0.20 0.043 mg/L 1 6010C 7439-96-5 0.0030 0.00040 6010C 1.5 Manganese mg/L 1 7440-02-0 Nickel ND 0.010 0.0013 6010C mg/L 1 0.50 7440-09-7 1.6 0.10 6010C Potassium mg/L 1 7782-49-2 Selenium 0.025 0.0087 6010C ND mg/L 1 7440-22-4 Silver 0.0017 6010C ND 0.0060 mg/L 1 7440-23-5 Sodium 6010C 11.4 1.0 0.32 mq/L 1 7440-28-0 Thallium 0.020 0.010 6010C ND mg/L 1 7440-62-2 Vanadium ND 0.0050 0.0015 ma/L 1 6010C 7440-66-6 Zinc 0.0026 0.010 0.0015 mq/L 1 6010C ND 8 U ø 7439-97-6 Mercury ND 0.00020 0.00012 7470A mg/L 1

Client Sample ID: SFB-MW-S3 Lab Sample ID: 480-159638-2 Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-159638-1 SDG ID.: Matrix: Water Date Sampled: 09/23/2019 11:05 Reporting Basis: WET Date Received: 09/24/2019 10:00 CAS No. MDL Units С DIL Method Analyte Result. RT. Q 7429-90-5 Aluminum ND 0.20 0.060 mq/L 1 6010C 7440-36-0 Antimony ND 0.020 0.0068 1 6010C mg/L 7440-38-2 0.015 0.0056 6010C ND Arsenic mg/L 1 7440-39-3 Barium 0.076 0.0020 0.00070 6010C mg/L 1 Beryllium 0.00030 6010C 7440-41-7 ND 0.0020 mg/L 1 7440-43-9 Cadmium ND 0.0020 0.00050 mg/L 1 6010C 7440-70-2 Calcium 0.50 0.10 6010C 58.1 mg/L 1 7440-47-3 0.0040 0.0010 6010C Chromium ND mg/L 1 7440-48-4 0.0040 0.00063 6010C Cobalt ND mg/L 1 0.0016 7440-50-8 Copper ND 0.010 mg/L 6010C 1 7439-89-6 Iron ND 0.050 0.019 mg/L 1 6010C 7439-92-1 Lead ND 0.010 0.0030 mg/L 6010C 1 7439-95-4 Magnesium 12.2 0.20 0.043 mg/L 1 6010C 7439-96-5 0.0030 0.00040 6010C Manganese 1.6 mg/L 1 7440-02-0 Nickel ND 0.010 0.0013 6010C mg/L 1 0.50 7440-09-7 1.7 0.10 1 6010C Potassium mg/L 7782-49-2 Selenium 0.025 0.0087 6010C ND mg/L 1 0.0017 7440-22-4 Silver 6010C ND 0.0060 mg/L 1 7440-23-5 Sodium 6010C 12.4 1.0 0.32 mq/L 1 7440-28-0 Thallium 0.020 0.010 6010C ND mg/L 1 7440-62-2 Vanadium ND 0.0050 0.0015 ma/L 1 6010C 7440-66-6 Zinc 0.0025 0.010 0.0015 mg/L 1 6010C ND J ø U 7439-97-6 Mercury ND 0.00020 0.00012 7470A mg/L 1

Client Sample ID: SFB-MW-S1 Lab Sample ID: 480-159638-3 Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-159638-1 SDG ID.: Matrix: Water Date Sampled: 09/23/2019 12:30 Reporting Basis: WET Date Received: 09/24/2019 10:00 CAS No. MDL Units С DIL Method Analyte Result. RT. Q 7429-90-5 Aluminum 7.8 0.20 0.060 mq/L FI 1 6010C J+ 7440-36-0 Antimony ND 0.020 0.0068 1 6010C mg/L 7440-38-2 0.015 0.0056 6010C 0.016 Arsenic mg/L 1 7440-39-3 Barium 0.14 0.0020 0.00070 6010C mg/L 1 7440-41-7 Beryllium 0.00030 6010C 0.00066 0.0020 mg/L J 1 7440-43-9 Cadmium 0.00050 0.0020 0.00050 mg/L J 1 6010C 7440-70-2 Calcium 56.8 0.50 0.10 6010C mg/L 1 7440-47-3 0.014 0.0040 0.0010 6010C Chromium mg/L 1 7440-48-4 0.0038 0.0040 0.00063 6010C Cobalt mg/L J 1 0.0016 7440-50-8 Copper 0.015 0.010 mg/L 1 6010C 7439-89-6 Iron 12.4 0.050 0.019 mq/L 1 6010C 7439-92-1 Lead 0.030 0.010 0.0030 mg/L 6010C 1 7439-95-4 Magnesium 16.7 0.20 0.043 mg/L 1 6010C 7439-96-5 0.0030 0.00040 6010C 4.1 Manganese mg/L 1 7440-02-0 Nickel 0.0096 0.010 0.0013 6010C mg/L J 1 0.50 7440-09-7 6.0 0.10 6010C Potassium mg/L 1 7782-49-2 Selenium 0.025 0.0087 6010C ND mg/L 1 0.0017 7440-22-4 Silver 6010C ND 0.0060 mg/L 1 7440-23-5 Sodium 6010C 9.7 1.0 0.32 mq/L 1 7440-28-0 Thallium 0.020 0.010 6010C ND mg/L 1 7440-62-2 Vanadium 0.012 0.0050 0.0015 ma/L 1 6010C 7440-66-6 0.0015 Zinc 0.041 0.010 mg/L 1 6010C Ð 0.00020 7439-97-6 ND 0.00012 7470A Mercury ma/L 1

Client Sample ID: SFB-MW-S1 Lab Sample ID: 480-159638-3 Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-159638-1 SDG ID.: Matrix: Water Date Sampled: 09/23/2019 12:30 Reporting Basis: WET Date Received: 09/24/2019 10:00 CAS No. MDL Units С DIL Method Analyte Result. RT. Q 7429-90-5 Aluminum ND 0.20 0.060 mq/L 1 6010C 7440-36-0 Antimony ND 0.020 0.0068 1 6010C mg/L 7440-38-2 0.015 0.0056 6010C ND Arsenic mg/L 1 7440-39-3 Barium 0.083 0.0020 0.00070 6010C mg/L 1 Beryllium 0.00030 6010C 7440-41-7 ND 0.0020 mg/L 1 7440-43-9 Cadmium ND 0.0020 0.00050 mg/L 1 6010C 7440-70-2 Calcium 0.50 0.10 6010C 56.0 mg/L 1 7440-47-3 0.0040 0.0010 6010C Chromium ND mg/L 1 7440-48-4 0.0040 0.00063 6010C Cobalt ND mg/L 1 0.0016 7440-50-8 Copper ND 0.010 mg/L 6010C 1 7439-89-6 Iron ND 0.050 0.019 mg/L 1 6010C 7439-92-1 Lead ND 0.010 0.0030 mg/L 6010C 1 7439-95-4 Magnesium 14.2 0.20 0.043 mg/L 1 6010C 7439-96-5 3.7 0.0030 0.00040 6010C Manganese mg/L 1 7440-02-0 Nickel ND 0.010 0.0013 6010C mg/L 1 0.50 7440-09-7 4.3 0.10 1 6010C Potassium mg/L 7782-49-2 Selenium 0.025 0.0087 6010C ND mg/L 1 0.0017 7440-22-4 Silver 6010C ND 0.0060 mg/L 1 7440-23-5 Sodium 10 6010C 1.0 0.32 mq/L 1 7440-28-0 Thallium 0.020 0.010 6010C ND mg/L 1 7440-62-2 Vanadium ND 0.0050 0.0015 ma/L 1 6010C 7440-66-6 Zinc 0.014 0.010 0.0015 mq/L 1 6010C P J+ 7439-97-6 ND 0.00020 0.00012 7470A Mercury mg/L 1

Client Sample ID: SFB-MW-B1 Lab Sample ID: 480-159638-4 Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-159638-1 SDG ID.: Matrix: Water Date Sampled: 09/23/2019 13:10 Reporting Basis: WET Date Received: 09/24/2019 10:00 CAS No. MDL Units С DIL Method Analyte Result. RT. Q 7429-90-5 Aluminum ND 0.20 0.060 mg/L 1 6010C 7440-36-0 Antimony ND 0.020 0.0068 1 6010C mg/L 7440-38-2 0.015 0.0056 6010C ND Arsenic mg/L 1 7440-39-3 Barium 0.13 0.0020 0.00070 6010C mg/L 1 7440-41-7 Beryllium 0.00030 6010C ND 0.0020 mg/L 1 7440-43-9 Cadmium ND 0.0020 0.00050 mg/L 1 6010C 7440-70-2 Calcium 0.50 0.10 6010C 14.1 mg/L 1 7440-47-3 0.0040 0.0010 6010C Chromium ND mg/L 1 7440-48-4 0.0040 0.00063 6010C Cobalt ND mg/L 1 0.0016 7440-50-8 Copper ND 0.010 mg/L 1 6010C 7439-89-6 Iron 0.037 0.050 0.019 mg/L J 1 6010C 7439-92-1 Lead 0.010 0.0030 6010C ND mg/L 1 7439-95-4 Magnesium 2.6 0.20 0.043 mg/L 1 6010C 7439-96-5 0.0030 0.00040 6010C 0.052 Manganese mg/L 1 7440-02-0 Nickel ND 0.010 0.0013 6010C mg/L 1 0.50 7440-09-7 2.4 0.10 6010C Potassium mg/L 1 7782-49-2 Selenium 0.025 0.0087 6010C ND mg/L 1 7440-22-4 Silver 0.0017 6010C ND 0.0060 mg/L 1 7440-23-5 Sodium 47.0 6010C 1.0 0.32 mq/L 1 7440-28-0 Thallium 0.020 0.010 6010C ND mg/L 1 7440-62-2 Vanadium ND 0.0050 0.0015 ma/L 1 6010C 7440-66-6 0.0015 Zinc 0.0031 0.010 mq/L U ß 1 6010C Ĵ ND 7439-97-6 Mercury ND 0.00020 0.00012 7470A mg/L 1

Client Sample ID: SFB-MW-B1 Lab Sample ID: 480-159638-4 Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-159638-1 SDG ID.: Matrix: Water Date Sampled: 09/23/2019 13:10 Reporting Basis: WET Date Received: 09/24/2019 10:00 CAS No. MDL Units С DIL Method Analyte Result. RT. Q 7429-90-5 Aluminum ND 0.20 0.060 mq/L 1 6010C 7440-36-0 Antimony ND 0.020 0.0068 1 6010C mg/L 7440-38-2 0.015 0.0056 6010C ND Arsenic mg/L 1 7440-39-3 Barium 0.13 0.0020 0.00070 6010C mg/L 1 Beryllium 0.00030 6010C 7440-41-7 ND 0.0020 mg/L 1 7440-43-9 Cadmium ND 0.0020 0.00050 mq/L 1 6010C 7440-70-2 Calcium 0.50 0.10 6010C 14.1 mg/L 1 7440-47-3 0.0040 0.0010 6010C Chromium ND mg/L 1 7440-48-4 0.0040 0.00063 6010C Cobalt ND mg/L 1 0.0016 7440-50-8 Copper ND 0.010 mg/L 1 6010C 7439-89-6 Iron ND 0.050 0.019 mg/L 1 6010C 7439-92-1 Lead ND 0.010 0.0030 mg/L 6010C 1 7439-95-4 Magnesium 2.6 0.20 0.043 mg/L 1 6010C 7439-96-5 0.0030 0.00040 6010C 0.036 Manganese mg/L 1 7440-02-0 Nickel ND 0.010 0.0013 6010C mg/L 1 0.50 7440-09-7 2.6 0.10 1 6010C Potassium mg/L 7782-49-2 Selenium 0.025 0.0087 6010C ND mg/L 1 0.0017 7440-22-4 Silver 6010C ND 0.0060 mg/L 1 7440-23-5 Sodium 49.9 6010C 1.0 0.32 mq/L 1 7440-28-0 Thallium 0.020 0.010 6010C ND mg/L 1 7440-62-2 Vanadium ND 0.0050 0.0015 mg/L 1 6010C 7440-66-6 0.0093 0.0015 Zinc 0.010 mg/L 1 6010C ₿ ND U 7439-97-6 Mercury ND 0.00020 0.00012 7470A mg/L 1

Client Sample ID: SFB-MW-B2 Lab Sample ID: 480-159638-5 Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-159638-1 SDG ID.: Matrix: Water Date Sampled: 09/23/2019 14:45 Reporting Basis: WET Date Received: 09/24/2019 10:00 CAS No. MDL Units С DIL Method Analyte Result. RT. Q 7429-90-5 Aluminum 0.73 0.20 0.060 mg/L 1 6010C J+ 7440-36-0 Antimony ND 0.020 0.0068 1 6010C mg/L 7440-38-2 ND 0.015 0.0056 6010C Arsenic mg/L 1 7440-39-3 Barium 0.018 0.0020 0.00070 6010C mg/L 1 0.00040 7440-41-7 Beryllium 0.00030 6010C 0.0020 mg/L J 1 7440-43-9 Cadmium ND 0.0020 0.00050 mg/L 1 6010C 7440-70-2 Calcium 17.3 0.50 0.10 6010C mg/L 1 7440-47-3 0.0032 0.0040 0.0010 6010C Chromium mq/L 1 J 7440-48-4 0.00067 0.0040 0.00063 6010C Cobalt mg/L J 1 0.0016 7440-50-8 Copper 0.0032 0.010 mq/L J 1 6010C 7439-89-6 Iron 1.1 0.050 0.019 mq/L 1 6010C 7439-92-1 ND 0.010 0.0030 6010C Lead mg/L 1 7439-95-4 Magnesium 5.1 0.20 0.043 mg/L 1 6010C 7439-96-5 0.0030 0.00040 6010C 0.19 Manganese mg/L 1 7440-02-0 Nickel 0.0021 0.010 0.0013 6010C mg/L J 1 7440-09-7 0.87 0.50 0.10 6010C Potassium mg/L 1 7782-49-2 Selenium 0.025 0.0087 6010C ND mg/L 1 7440-22-4 Silver 0.0017 6010C ND 0.0060 mg/L 1 7440-23-5 Sodium 6010C 2.6 1.0 0.32 mq/L 1 7440-28-0 Thallium 0.020 0.010 6010C ND mg/L 1 7440-62-2 Vanadium 0.0016 0.0050 0.0015 mq/L J 1 6010C 7440-66-6 0.0015 Zinc 0.0068 0.010 mq/L 1 6010C J U P ND 0.00020 7439-97-6 Mercury ND 0.00012 7470A ma/L 1

Client Sample ID: SFB-MW-B2 Lab Sample ID: 480-159638-5 Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-159638-1 SDG ID.: Matrix: Water Date Sampled: 09/23/2019 14:45 Reporting Basis: WET Date Received: 09/24/2019 10:00 CAS No. MDL Units С DIL Method Analyte Result. RT. Q 7429-90-5 Aluminum ND 0.20 0.060 mg/L 1 6010C 7440-36-0 Antimony ND 0.020 0.0068 1 6010C mg/L 7440-38-2 0.015 0.0056 mg/L 6010C ND Arsenic 1 7440-39-3 Barium 0.0089 0.0020 0.00070 6010C mg/L 1 Beryllium 0.00030 6010C 7440-41-7 ND 0.0020 mg/L 1 7440-43-9 Cadmium ND 0.0020 0.00050 mq/L 1 6010C 7440-70-2 Calcium 0.50 0.10 6010C 16.8 mg/L 1 7440-47-3 0.0040 0.0010 6010C Chromium ND mg/L 1 7440-48-4 0.0040 0.00063 6010C Cobalt ND mg/L 1 0.0016 7440-50-8 Copper ND 0.010 mg/L 1 6010C 7439-89-6 Iron ND 0.050 0.019 mg/L 1 6010C 7439-92-1 Lead 0.0032 0.010 0.0030 6010C mg/L 1 J 7439-95-4 Magnesium 4.6 0.20 0.043 mg/L 1 6010C 7439-96-5 0.0019 0.0030 0.00040 6010C Manganese mg/L J 1 7440-02-0 Nickel ND 0.010 0.0013 6010C mg/L 1 0.73 0.50 7440-09-7 0.10 6010C Potassium mg/L 1 7782-49-2 Selenium 0.025 0.0087 6010C ND mg/L 1 0.0017 7440-22-4 Silver 6010C ND 0.0060 mg/L 1 7440-23-5 Sodium 2.5 6010C 1.0 0.32 mq/L 1 7440-28-0 Thallium 0.020 0.010 6010C ND mg/L 1 7440-62-2 Vanadium ND 0.0050 0.0015 mg/L 1 6010C 7440-66-6 0.0090 0.0015 Zinc 0.010 mq/L 1 6010C ß U ND 7439-97-6 Mercury ND 0.00020 0.00012 7470A mg/L 1

Client Sample ID: SFB-MW-S8 Lab Sample ID: 480-159817-1 Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-159817-1 SDG ID.: Matrix: Water Date Sampled: 09/24/2019 09:40 Reporting Basis: WET Date Received: 09/25/2019 09:30 CAS No. MDL Units С DIL Method Analyte Result. RT. Q 7429-90-5 Aluminum 0.91 0.20 0.060 mg/L 1 6010C 7440-36-0 Antimony ND 0.020 0.0068 1 6010C mg/L 7440-38-2 ND 0.015 0.0056 6010C Arsenic mg/L 1 7440-39-3 Barium 0.011 0.0020 0.00070 6010C mg/L 1 7440-41-7 Beryllium ND 0.00050 0.00030 6010C 0.0020 mg/L 1 1 U B 7440-43-9 Cadmium 0.00098 0.0020 0.00050 mg/L J 1 6010C 7440-70-2 Calcium 0.50 0.10 6010C 47.3 mg/L 1 7440-47-3 0.0010 6010C Chromium ND 0.0040 mg/L 1 7440-48-4 0.00065 0.0040 0.00063 6010C Cobalt mg/L J 1 7440-50-8 Copper 0.0069 0.010 0.0016 mq/L 1 6010C ß ND U 7439-89-6 Iron 0.60 0.050 0.019 mq/L 1 6010C 7439-92-1 ND 0.010 0.0030 6010C Lead mg/L 1 7439-95-4 Magnesium 8.9 0.20 0.043 mg/L 1 6010C 7439-96-5 0.37 0.0030 0.00040 6010C Manganese mg/L 1 B 7440-02-0 Nickel 0.0032 0.010 0.0013 6010C mg/L J 1 7440-09-7 2.2 0.50 0.10 6010C Potassium mg/L 1 7782-49-2 Selenium 0.025 0.0087 6010C ND mg/L 1 0.0017 7440-22-4 Silver 6010C ND 0.0060 mg/L 1 7440-23-5 Sodium 6010C 2.1 1.0 0.32 mq/L 1 7440-28-0 Thallium 0.020 0.010 6010C ND mg/L 1 7440-62-2 Vanadium ND 0.0050 0.0015 ma/L 1 6010C 7440-66-6 0.0015 Zinc 0.049 0.010 mg/L 1 6010C ø 0.00020 7439-97-6 ND 0.00012 7470A Mercury ma/L 1

Client Sample ID: SFB-MW-S8 Lab Sample ID: 480-159817-1 Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-159817-1 SDG ID.: Matrix: Water Date Sampled: 09/24/2019 09:40 Reporting Basis: WET Date Received: 09/25/2019 09:30 CAS No. MDL Units С DIL Method Analyte Result. RT. Q 7429-90-5 Aluminum ND 0.20 0.060 mq/L 1 6010C 7440-36-0 Antimony ND 0.020 0.0068 1 6010C mg/L 7440-38-2 0.015 0.0056 6010C ND Arsenic mg/L 1 7440-39-3 Barium 0.0078 0.0020 0.00070 6010C mg/L 1 Beryllium 0.00030 6010C 7440-41-7 0.00061 0.0020 mg/L ß P 1 ND U 7440-43-9 Cadmium 0.00053 0.0020 0.00050 mg/L J 1 6010C 7440-70-2 Calcium 0.50 0.10 6010C 47.5 mg/L 1 7440-47-3 0.0010 6010C Chromium ND 0.0040 mg/L 1 7440-48-4 0.0040 0.00063 6010C Cobalt ND mg/L 1 0.0016 7440-50-8 Copper 0.0032 0.010 mq/L J 6010C 1 7439-89-6 Iron ND 0.050 0.019 mq/L 1 6010C 7439-92-1 ND 0.010 0.0030 6010C Lead mg/L 1 7439-95-4 Magnesium 8.8 0.20 0.043 mg/L 1 6010C 7439-96-5 0.13 0.0030 0.00040 6010C Manganese mg/L 1 7440-02-0 Nickel 0.0032 0.010 0.0013 6010C mg/L J 1 7440-09-7 2.2 0.50 0.10 6010C Potassium mg/L 1 7782-49-2 Selenium 0.025 0.0087 6010C ND mg/L 1 0.0017 6010C 7440-22-4 Silver ND 0.0060 mg/L 1 7440-23-5 Sodium 2.0 6010C 1.0 0.32 mq/L 1 7440-28-0 Thallium 0.020 0.010 6010C ND mg/L 1 7440-62-2 Vanadium ND 0.0050 0.0015 ma/L 1 6010C 7440-66-6 Zinc 0.0099 0.010 0.0015 mg/L 1 6010C ND 1 U ₽ 0.00020 7439-97-6 Mercury ND 0.00012 7470A ma/L 1

Client Sample ID: SFB-MW-S9 Lab Sample ID: 480-159817-2 Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-159817-1 SDG ID.: Matrix: Water Date Sampled: 09/24/2019 10:45 Reporting Basis: WET Date Received: 09/25/2019 09:30 CAS No. MDL Units С DIL Method Analyte Result. RT. Q 7429-90-5 Aluminum 0.13 0.20 0.060 mg/L ιT 1 6010C 7440-36-0 Antimony ND 0.020 0.0068 1 6010C mg/L 7440-38-2 ND 0.015 0.0056 6010C Arsenic mg/L 1 7440-39-3 Barium 0.32 0.0020 0.00070 6010C mg/L 1 7440-41-7 Beryllium ND 9.00048 0.00030 6010C 0.0020 mg/L U 1 1 ß 7440-43-9 Cadmium ND 0.0020 0.00050 mg/L 1 6010C 7440-70-2 Calcium 44.2 0.50 0.10 6010C mg/L 1 7440-47-3 0.0040 0.0010 6010C Chromium ND mq/L 1 7440-48-4 0.0040 0.00063 6010C Cobalt ND mg/L 1 0.0023 0.0016 7440-50-8 Copper 0.010 mq/L 1 6010C 1 ND U 7439-89-6 Iron 0.21 0.050 0.019 mq/L 1 6010C 7439-92-1 ND 0.010 0.0030 6010C Lead mg/L 1 7439-95-4 Magnesium 8.0 0.20 0.043 mg/L 1 6010C 7439-96-5 0.0030 0.00040 6010C 0.089 Manganese mg/L 1 ₿ 7440-02-0 Nickel ND 0.010 0.0013 6010C mg/L 1 7440-09-7 3.1 0.50 0.10 6010C Potassium mg/L 1 7782-49-2 Selenium 0.025 0.0087 6010C ND mq/L 1 0.0017 7440-22-4 Silver 6010C ND 0.0060 mg/L 1 7440-23-5 Sodium 21.0 6010C 1.0 0.32 mq/L 1 7440-28-0 Thallium 0.020 0.010 6010C ND mg/L 1 7440-62-2 Vanadium ND 0.0050 0.0015 ma/L 1 6010C 7440-66-6 0.0015 Zinc 0.0062 0.010 mq/L 1 6010C ß ND U 0.00020 7439-97-6 Mercury ND 0.00012 7470A ma/L 1

Client Sample ID: SFB-MW-S9 Lab Sample ID: 480-159817-2 Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-159817-1 SDG ID.: Matrix: Water Date Sampled: 09/24/2019 10:45 Reporting Basis: WET Date Received: 09/25/2019 09:30 CAS No. MDL Units С DIL Method Analyte Result. RT. Q 7429-90-5 Aluminum ND 0.20 0.060 mg/L 1 6010C 7440-36-0 Antimony ND 0.020 0.0068 1 6010C mg/L 7440-38-2 0.015 0.0056 6010C ND Arsenic mg/L 1 7440-39-3 Barium 0.30 0.0020 0.00070 6010C mg/L 1 Beryllium 0.00030 6010C 7440-41-7 ND -0.00060 0.0020 mg/L JU ß 1 7440-43-9 Cadmium ND 0.0020 0.00050 mq/L 1 6010C 7440-70-2 Calcium 0.50 0.10 6010C 43.4 mg/L 1 7440-47-3 0.0040 0.0010 6010C Chromium ND mg/L 1 7440-48-4 0.0040 0.00063 6010C Cobalt ND mg/L 1 0.0016 7440-50-8 Copper ND 0.010 mg/L 6010C 1 7439-89-6 Iron ND 0.050 0.019 mq/L 1 6010C 2 7439-92-1 ND 0.010 0.0030 mg/L 6010C Lead 1 7439-95-4 Magnesium 7.7 0.20 0.043 mg/L 1 6010C 7439-96-5 0.072 0.0030 0.00040 6010C Manganese mg/L 1 7440-02-0 Nickel ND 0.010 0.0013 6010C mg/L 1 7440-09-7 2.9 0.50 0.10 6010C Potassium mg/L 1 7782-49-2 Selenium 0.025 0.0087 6010C ND mg/L 1 0.0017 7440-22-4 Silver 6010C ND 0.0060 mg/L 1 7440-23-5 Sodium 6010C 20.6 1.0 0.32 mq/L 1 7440-28-0 Thallium 0.020 0.010 6010C ND mg/L 1 7440-62-2 Vanadium ND 0.0050 0.0015 ma/L 1 6010C 7440-66-6 0.0073 Zinc 0.010 0.0015 mq/L 1 6010C ND U ø 0.00020 7439-97-6 Mercury ND 0.00012 7470A ma/L 1

Client Sample ID: SFB-MW-B4 Lab Sample ID: 480-159817-3 Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-159817-1 SDG ID.: Matrix: Water Date Sampled: 09/24/2019 10:40 Reporting Basis: WET Date Received: 09/25/2019 09:30 CAS No. MDL Units С DIL Method Analyte Result. RT. Q 7429-90-5 Aluminum 0.94 0.20 0.060 mg/L 1 6010C 7440-36-0 Antimony ND 0.020 0.0068 1 6010C mg/L 7440-38-2 ND 0.015 0.0056 6010C Arsenic mg/L 1 7440-39-3 Barium 0.021 0.0020 0.00070 6010C mg/L 1 7440-41-7 Beryllium ND 0.00058 0.00030 6010C 0.0020 mg/L U Z 1 J 7440-43-9 Cadmium ND 0.0020 0.00050 mg/L 1 6010C 7440-70-2 Calcium 0.50 0.10 6010C 69.6 mg/L 1 7440-47-3 0.028 0.0040 0.0010 6010C Chromium mq/L 1 7440-48-4 0.0040 0.00063 6010C Cobalt ND mg/L 1 7440-50-8 Copper 0.0043 0.010 0.0016 mq/L 6010C S 1 ND IJ 7439-89-6 Iron 0.91 0.050 0.019 mq/L 1 6010C 7439-92-1 ND 0.010 0.0030 6010C Lead mg/L 1 7439-95-4 Magnesium 13.3 0.20 0.043 mg/L 1 6010C 7439-96-5 0.0030 0.00040 6010C 0.044 Manganese mg/L 1 ß 7440-02-0 Nickel 0.0013 0.010 0.0013 6010C mg/L J 1 7440-09-7 0.89 0.50 0.10 6010C Potassium mg/L 1 J+ 7782-49-2 Selenium 0.025 0.0087 6010C ND mg/L 1 0.0017 7440-22-4 Silver 6010C ND 0.0060 mg/L 1 7440-23-5 Sodium 6010C 2.6 1.0 0.32 mq/L 1 7440-28-0 Thallium 0.020 0.010 6010C ND mg/L 1 7440-62-2 Vanadium 0.0025 0.0050 0.0015 ma/L J 1 6010C 7440-66-6 0.0015 Zinc ND 0.0077 0.010 mq/L 1 6010C 8 U Z 0.00020 7439-97-6 Mercury ND 0.00012 7470A ma/L 1

Client Sample ID: SFB-MW-B4 Lab Sample ID: 480-159817-3 Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-159817-1 SDG ID.: Matrix: Water Date Sampled: 09/24/2019 10:40 Reporting Basis: WET Date Received: 09/25/2019 09:30 CAS No. MDL Units С DIL Method Analyte Result. RT. Q 7429-90-5 Aluminum ND 0.20 0.060 mq/L 1 6010C 7440-36-0 Antimony ND 0.020 0.0068 1 6010C mg/L 7440-38-2 0.015 0.0056 6010C ND Arsenic mg/L 1 7440-39-3 Barium 0.017 0.0020 0.00070 6010C mg/L 1 7440-41-7 Beryllium 0.00072 0.00030 6010C ND 0.0020 mg/L ν U B 1 7440-43-9 Cadmium ND 0.0020 0.00050 mq/L 1 6010C 7440-70-2 Calcium 0.50 0.10 6010C 68.0 mg/L 1 7440-47-3 0.0040 0.0010 6010C Chromium 0.025 mg/L 1 ß 7440-48-4 0.0040 0.00063 6010C Cobalt ND mg/L 1 0.0016 7440-50-8 Copper ND 0.010 mg/L 1 6010C 7439-89-6 Iron ND 0.050 0.019 mq/L 1 6010C ſ 7439-92-1 ND 0.010 0.0030 mg/L 6010C Lead 1 7439-95-4 Magnesium 12.6 0.20 0.043 mg/L 1 6010C 7439-96-5 0.00050 0.0030 0.00040 6010C Manganese mg/L J 1 7440-02-0 Nickel ND 0.010 0.0013 6010C mg/L 1 0.73 7440-09-7 0.50 0.10 6010C Potassium mg/L 1 7782-49-2 Selenium 0.025 0.0087 6010C ND mg/L 1 7440-22-4 Silver 0.0017 6010C ND 0.0060 mg/L 1 7440-23-5 Sodium 2.5 6010C 1.0 0.32 mq/L 1 7440-28-0 Thallium 0.020 0.010 6010C ND mg/L 1 7440-62-2 Vanadium ND 0.0050 0.0015 ma/L 1 6010C 7440-66-6 0.0015 Zinc 0.0084 0.010 mq/L 1 6010C U P ND 0.00020 7439-97-6 Mercury ND 0.00012 7470A ma/L 1

Client Sample ID: SFB-MW-S10 Lab Sample ID: 480-159817-4 Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-159817-1 SDG ID.: Matrix: Water Date Sampled: 09/24/2019 12:10 Reporting Basis: WET Date Received: 09/25/2019 09:30 CAS No. MDL Units С DIL Method Analyte Result. RT. Q 7429-90-5 Aluminum ND 0.20 0.060 mg/L 1 6010C 7440-36-0 Antimony ND 0.020 0.0068 1 6010C mg/L 7440-38-2 0.015 0.0056 6010C ND Arsenic mg/L 1 7440-39-3 Barium 0.085 0.0020 0.00070 6010C mg/L 1 7440-41-7 Beryllium 0.00030 6010C 0.00044 0.0020 mg/L B 1 ND J U 7440-43-9 Cadmium 0.00076 0.0020 0.00050 mg/L J 1 6010C 7440-70-2 Calcium 52.6 0.50 0.10 6010C mg/L 1 7440-47-3 0.0040 0.0010 6010C Chromium ND mq/L 1 7440-48-4 0.0040 0.00063 6010C Cobalt ND mg/L 1 0.0020 0.0016 7440-50-8 Copper 0.010 mq/L 6010C J 1 ND Ū 7439-89-6 Iron 0.28 0.050 0.019 mq/L 1 6010C 7439-92-1 ND 0.010 0.0030 6010C Lead mg/L 1 7439-95-4 Magnesium 13.4 0.20 0.043 mg/L 1 6010C 7439-96-5 0.0030 0.00040 6010C 0.10 Manganese mg/L B 1 7440-02-0 Nickel ND 0.010 0.0013 6010C mg/L 1 7440-09-7 2.1 0.50 0.10 6010C Potassium mg/L 1 7782-49-2 Selenium 0.025 0.0087 6010C ND mg/L 1 0.0017 7440-22-4 Silver 6010C ND 0.0060 mg/L 1 7440-23-5 Sodium 6010C 10.4 1.0 0.32 mq/L 1 7440-28-0 Thallium 0.020 0.010 6010C ND mg/L 1 7440-62-2 Vanadium ND 0.0050 0.0015 ma/L 1 6010C 7440-66-6 0.0059 0.0015 Ţ Zinc 0.010 mq/L 1 6010C U ø ND 0.00020 7439-97-6 Mercury ND 0.00012 7470A ma/L 1

Client Sample ID: SFB-MW-S10 Lab Sample ID: 480-159817-4 Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-159817-1 SDG ID.: Matrix: Water Date Sampled: 09/24/2019 12:10 Reporting Basis: WET Date Received: 09/25/2019 09:30 CAS No. MDL Units С DIL Method Analyte Result. RT. Q 7429-90-5 Aluminum ND 0.20 0.060 mq/L 1 6010C 7440-36-0 Antimony ND 0.020 0.0068 1 6010C mg/L 7440-38-2 0.015 0.0056 6010C ND Arsenic mg/L 1 7440-39-3 Barium 0.080 0.0020 0.00070 6010C mg/L 1 Beryllium 0.00030 6010C 7440-41-7 0.00056 0.0020 mg/L 1 ND 🗡 U B 7440-43-9 Cadmium ND 0.0020 0.00050 mq/L 1 6010C 7440-70-2 Calcium 0.50 0.10 6010C 54.1 mg/L 1 7440-47-3 0.0040 0.0010 6010C Chromium ND mg/L 1 7440-48-4 0.0040 0.00063 6010C Cobalt ND mg/L 1 0.0016 7440-50-8 Copper ND 0.010 mg/L 6010C 1 7439-89-6 Iron ND 0.050 0.019 mg/L 1 6010C 7439-92-1 Lead ND 0.010 0.0030 mg/L 6010C 1 7439-95-4 Magnesium 13.6 0.20 0.043 mg/L 1 6010C 7439-96-5 0.0030 0.00040 6010C 0.11 Manganese mg/L 1 7440-02-0 Nickel ND 0.010 0.0013 6010C mg/L 1 0.50 7440-09-7 2.0 0.10 1 6010C Potassium mg/L 7782-49-2 Selenium 0.025 0.0087 6010C ND mg/L 1 0.0017 7440-22-4 Silver 6010C ND 0.0060 mg/L 1 7440-23-5 Sodium 6010C 9.7 1.0 0.32 mq/L 1 7440-28-0 Thallium 0.020 0.010 6010C ND mg/L 1 7440-62-2 Vanadium ND 0.0050 0.0015 ma/L 1 6010C 7440-66-6 0.0015 Zinc 0.012 0.010 mq/L 1 6010C В J+ 0.00020 7439-97-6 ND 0.00012 7470A Mercury mq/L 1

Client Sample ID: SFB-MW-B5 Lab Sample ID: 480-159817-5 Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-159817-1 SDG ID.: Matrix: Water Date Sampled: 09/24/2019 12:40 Reporting Basis: WET Date Received: 09/25/2019 09:30 CAS No. MDL Units С DIL Method Analyte Result. RT. Q 7429-90-5 Aluminum ND 0.20 0.060 mg/L 1 6010C 7440-36-0 Antimony ND 0.020 0.0068 1 6010C mg/L 7440-38-2 0.015 0.0056 6010C ND Arsenic mg/L 1 7440-39-3 Barium 0.13 0.0020 0.00070 6010C mg/L 1 7440-41-7 Beryllium ND 0.00052 0.00030 6010C 0.0020 mg/L У U Z 1 7440-43-9 Cadmium ND 0.0020 0.00050 mg/L 1 6010C 7440-70-2 Calcium 23.6 0.50 0.10 6010C mg/L 1 7440-47-3 0.0040 0.0010 6010C Chromium 0.0020 mq/L 1 J 7440-48-4 0.00079 0.0040 0.00063 6010C Cobalt mg/L J 1 0.0016 7440-50-8 Copper ND 0.010 mg/L 6010C 1 7439-89-6 Iron 0.24 0.050 0.019 mq/L 1 6010C 7439-92-1 ND 0.010 0.0030 mg/L 6010C Lead 1 7439-95-4 Magnesium 11.4 0.20 0.043 mg/L 1 6010C 7439-96-5 0.0030 0.00040 6010C 0.11 Manganese mg/L Z 1 7440-02-0 Nickel ND 0.010 0.0013 6010C mg/L 1 7440-09-7 2.9 0.50 0.10 6010C Potassium mg/L 1 7782-49-2 Selenium 0.025 0.0087 6010C ND mg/L 1 0.0017 7440-22-4 Silver 6010C ND 0.0060 mg/L 1 7440-23-5 Sodium 22.5 6010C 1.0 0.32 mq/L 1 7440-28-0 Thallium 0.020 0.010 6010C ND mg/L 1 7440-62-2 Vanadium ND 0.0050 0.0015 ma/L 1 6010C 7440-66-6 0.0043 0.0015 Zinc 0.010 mq/L 1 6010C ß 1 U ND 7439-97-6 Mercury ND 0.00020 0.00012 7470A ma/L 1

Client Sample ID: SFB-MW-B5 Lab Sample ID: 480-159817-5 Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-159817-1 SDG ID.: Matrix: Water Date Sampled: 09/24/2019 12:40 Reporting Basis: WET Date Received: 09/25/2019 09:30 CAS No. MDL Units С DIL Method Analyte Result. RT. Q 7429-90-5 Aluminum ND 0.20 0.060 mg/L 1 6010C 7440-36-0 Antimony ND 0.020 0.0068 1 6010C mg/L 7440-38-2 0.015 0.0056 6010C ND Arsenic mg/L 1 7440-39-3 Barium 0.11 0.0020 0.00070 6010C mg/L 1 Beryllium 0.00030 6010C 7440-41-7 0.00053 0.0020 mg/L ß 1 ND J U 7440-43-9 Cadmium ND 0.0020 0.00050 mq/L 1 6010C 7440-70-2 Calcium 22.0 0.50 0.10 6010C mg/L 1 7440-47-3 0.0040 0.0010 6010C Chromium ND mg/L 1 7440-48-4 0.0040 0.00063 6010C Cobalt ND mg/L 1 0.0016 7440-50-8 Copper ND 0.010 mg/L 6010C 1 7439-89-6 Iron ND 0.050 0.019 mq/L 1 6010C 7439-92-1 ND 0.010 0.0030 6010C Lead mg/L 1 7439-95-4 Magnesium 10.4 0.20 0.043 mg/L 1 6010C 7439-96-5 0.055 0.0030 0.00040 6010C Manganese mg/L 1 7440-02-0 Nickel ND 0.010 0.0013 6010C mg/L 1 7440-09-7 2.7 0.50 0.10 6010C Potassium mg/L 1 7782-49-2 Selenium 0.025 0.0087 6010C ND mg/L 1 0.0017 7440-22-4 Silver 6010C ND 0.0060 mg/L 1 7440-23-5 Sodium 6010C 20.3 1.0 0.32 mq/L 1 7440-28-0 Thallium 0.020 0.010 6010C ND mg/L 1 7440-62-2 Vanadium ND 0.0050 0.0015 ma/L 1 6010C 7440-66-6 Zinc 0.0062 0.010 0.0015 mq/L 1 6010C Y P U ND 7439-97-6 Mercury ND 0.00020 0.00012 7470A mg/L 1

1A-IN INORGANIC ANALYSIS DATA SHEET METALS

Client Sample ID: SFB-MW-S7 Lab Sample ID: 480-159817-6 Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-159817-1 SDG ID.: Matrix: Water Date Sampled: 09/24/2019 13:10 Reporting Basis: WET Date Received: 09/25/2019 09:30 CAS No. MDL Units С DIL Method Analyte Result. RT. Q 7429-90-5 Aluminum 0.067 0.20 0.060 mg/L ιT 1 6010C 7440-36-0 Antimony ND 0.020 0.0068 1 6010C mg/L 7440-38-2 0.029 0.015 0.0056 6010C Arsenic mg/L 1 7440-39-3 Barium 0.13 0.0020 0.00070 6010C mg/L 1 7440-41-7 Beryllium 0.00030 6010C 0.00052 0.0020 mg/L ø 1 ND J U 7440-43-9 Cadmium ND 0.0020 0.00050 mg/L 1 6010C 7440-70-2 Calcium 75.0 0.50 0.10 6010C mg/L 1 7440-47-3 0.0040 0.0010 6010C Chromium ND mq/L 1 7440-48-4 0.0040 0.00063 6010C Cobalt ND mg/L 1 0.0019 0.0016 7440-50-8 Copper 0.010 mq/L 1 6010C J ND U 7439-89-6 Iron 4.4 0.050 0.019 mq/L 1 6010C 7439-92-1 ND 0.010 0.0030 6010C Lead mg/L 1 7439-95-4 Magnesium 13.7 0.20 0.043 mg/L 1 6010C 7439-96-5 0.0030 0.00040 6010C 11.5 Manganese mg/L ø 1 7440-02-0 Nickel ND 0.010 0.0013 6010C mg/L 1 7440-09-7 1.9 0.50 0.10 6010C Potassium mg/L 1 7782-49-2 Selenium 0.025 0.0087 6010C ND mg/L 1 0.0017 7440-22-4 Silver 6010C ND 0.0060 mg/L 1 7440-23-5 Sodium 18.9 6010C 1.0 0.32 mq/L 1 7440-28-0 Thallium 0.020 0.010 6010C ND mg/L 1 7440-62-2 Vanadium ND 0.0050 0.0015 ma/L 1 6010C 7440-66-6 0.0062 0.0015 Zinc 0.010 mq/L 1 6010C 7 P U ND 7439-97-6 Mercury ND 0.00020 0.00012 7470A mg/L 1

1A-IN INORGANIC ANALYSIS DATA SHEET METALS - DISSOLVED

Client Sample ID: SFB-MW-S7 Lab Sample ID: 480-159817-6 Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-159817-1 SDG ID.: Matrix: Water Date Sampled: 09/24/2019 13:10 Reporting Basis: WET Date Received: 09/25/2019 09:30 CAS No. MDL Units С DIL Method Analyte Result. RT. Q 7429-90-5 Aluminum ND 0.20 0.060 mg/L 1 6010C 7440-36-0 Antimony ND 0.020 0.0068 1 6010C mg/L 7440-38-2 0.015 0.0056 6010C 0.010 Arsenic mg/L J 1 7440-39-3 Barium 0.11 0.0020 0.00070 6010C mg/L 1 Beryllium 0.00030 6010C 7440-41-7 0.00052 0.0020 mg/L U 1 ND 1 7440-43-9 Cadmium ND 0.0020 0.00050 mq/L 1 6010C 7440-70-2 Calcium 0.50 0.10 6010C 71.6 mg/L 1 7440-47-3 0.0040 0.0010 6010C Chromium ND mg/L 1 7440-48-4 0.0040 0.00063 6010C Cobalt ND mg/L 1 0.0016 7440-50-8 Copper ND 0.010 mg/L 6010C 1 7439-89-6 Iron ND 0.050 0.019 mg/L 1 6010C 7439-92-1 ND 0.010 0.0030 6010C Lead mg/L 1 7439-95-4 Magnesium 12.9 0.20 0.043 mg/L 1 6010C 7439-96-5 0.0030 0.00040 6010C 10.8 Manganese mg/L 1 7440-02-0 Nickel ND 0.010 0.0013 6010C mg/L 1 7440-09-7 1.7 0.50 0.10 1 6010C Potassium mg/L 7782-49-2 Selenium 0.025 0.0087 6010C ND mg/L 1 0.0017 7440-22-4 Silver 6010C ND 0.0060 mg/L 1 7440-23-5 Sodium 6010C 17.7 1.0 0.32 mq/L 1 7440-28-0 Thallium 0.020 0.010 6010C ND mg/L 1 7440-62-2 Vanadium ND 0.0050 0.0015 ma/L 1 6010C 7440-66-6 Zinc 0.0081 0.010 0.0015 mq/L 1 6010C J P ND U 0.00020 7439-97-6 Mercury ND 0.00012 7470A ma/L 1

QC NONCONFORMANCE DOCUMENTATION

2A-IN CALIBRATION VERIFICATIONS METALS

Lab Name: Eurofins TestAmerica, Buffalo

Job No.: 480-159638-1

SDG No.:

ICV Source: MEI_MSS_ICV_00021

Concentration Units: mg/L

CCV Source: MEI_MSS_STD2_00043

	ICV 09/30		-495091/5 019 09:0 ⁻				-495091/1 ⁻)19 22:18		<mark>(CCV 4</mark> 09/30		<mark>-495091/24</mark> 019 23:05	
Analyte	Found	С	True	%R	Found	С	True	%R	Found	С	True	%R
Aluminum	37.83		37.5	101	48.92		50.0	98	48.56		50.0	97
Antimony	0.797		0.750	106	1.05		1.00	105	1.06		1.00	106
Arsenic	0.745		0.750	99	1.08		1.00	108	1.09		1.00	109
Barium	0.757		0.750	101	0.984		1.00	98	0.977		1.00	98
Beryllium	0.753		0.750	100	1.01		1.00	101	1.01		1.00	101
Cadmium	0.754		0.750	101	1.05		1.00	105	1.06		1.00	106
Calcium	37.66		37.5	100	48.38		50.0	97	48.23		50.0	96
Chromium	0.758		0.750	101	0.967		1.00	97	0.960		1.00	96
Cobalt	0.740		0.750	99	0.975		1.00	98	0.978		1.00	98
Copper	0.718		0.750	96	0.968		1.00	97	0.965		1.00	97
Iron	38.28		37.5	102	50.63		50.0	101	50.81		50.0	102
Lead	0.738		0.750	98	0.985		1.00	99	0.984		1.00	98
Magnesium	37.47		37.5	100	48.69		50.0	97	48.64		50.0	97
Manganese	0.765		0.750	102	1.03		1.00	103	1.03		1.00	103
Nickel	0.749		0.750	100	1.00		1.00	100	1.00		1.00	100
Potassium	36.93		37.5	98	50.18		50.0	100	50.17		50.0	100
Selenium	0.739		0.750	99	1.10		1.00	110	1.11		1.00	111
Silver	0.742		0.750	99	0.957		1.00	96	0.954		1.00	95
Sodium	37.01		37.5	99	50.03		50.0	100	49.85		50.0	100
Thallium	0.753		0.750	100	1.02		1.00	102	1.02		1.00	102
Vanadium	0.751		0.750	100	1.02		1.00	102	1.01		1.00	101
Zinc	0.781		0.750	104	0.979		1.00	98	0.973		1.00	97

Note! Calculations are performed before rounding to avoid round-off errors in calculated results. Italicized analytes were not requested for this sequence.

2A-IN CALIBRATION VERIFICATIONS METALS

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-159638-1

SDG No.:

ICV Source: MEI_MSS_ICV_00021

Concentration Units: mg/L

CCV Source: MEI_MSS_STD2_00043

			<mark>-495091/34</mark>)19 23:50									
Analyte	Found	С	True	%R	Found	С	True	%R	Found	С	True	%R
Aluminum	48.93		50.0	98								
Antimony	1.06		1.00	106								
Arsenic	1.10		1.00	110								
Barium	0.985		1.00	98								
Beryllium	1.01		1.00	101								
Cadmium	1.07		1.00	107								
Calcium	48.16		50.0	96								
Chromium	0.966		1.00	97								
Cobalt	0.974		1.00	97								
Copper	0.964		1.00	96								
Iron	50.91		50.0	102								
Lead	0.980		1.00	98								
Magnesium	48.55		50.0	97								
Manganese	1.03		1.00	103								
Nickel	1.00		1.00	100								
Potassium	50.22		50.0	100								
Selenium	1.12		1.00	<mark>112</mark>								
Silver	0.955		1.00	96								
Sodium	50.27		50.0	101								
Thallium	1.02		1.00	102								
Vanadium	1.03		1.00	103								
Zinc	0.979		1.00	98								

Note! Calculations are performed before rounding to avoid round-off errors in calculated results. Italicized analytes were not requested for this sequence.

2A-IN CALIBRATION VERIFICATIONS METALS

Lab Name: Eurofins TestAmerica, Buffalo

Job No.: <mark>480-159817-1</mark>

SDG No.:

ICV Source: MEI_10_CCVL_00277

Concentration Units: mg/L

CCV Source: MEI_10_CCVL_00277

	-)-495330/ [*])19 09:00		<mark>CCVL</mark> 10/02		<mark>-495330/1</mark>)19 00:15		CCVL 10/02		<mark>-495330/2</mark> 019 00:59	
Analyte	Found	С	True	%R	Found	С	True	%R	Found	С	True	%R
Aluminum	0.173	J	0.200	86	0.176	J	0.200	88	0.172	J	0.200	86
Antimony	0.0200		0.0200	100	0.0197	J	0.0200	99	0.0214		0.0200	107
Arsenic	0.0175		0.0150	116	0.0147	J	0.0150	98	0.0143	J	0.0150	95
Barium	0.00221		0.00200	111	0.00213		0.00200	107	0.00216		0.00200	108
Beryllium	0.00225		0.00200	113	0.00284		0.00200	142	0.00252		0.00200	126
Cadmium	0.00212		0.00200	106	0.00212		0.00200	106	0.00208		0.00200	104
Calcium	0.535		0.500	107	0.544		0.500	109	0.541		0.500	108
Chromium	0.00429		0.00400	107	0.00432		0.00400	108	0.00425		0.00400	106
Cobalt	0.00390	J	0.00400	98	0.00398	J	0.00400	100	0.00391	J	0.00400	98
Copper	0.00875	J	0.0100	88	0.00955	J	0.0100	96	0.0103		0.0100	103
Iron	0.0574		0.0500	115	0.0584		0.0500	117	0.0658		0.0500	<mark>132</mark>
Lead	0.00938	J	0.0100	94	0.0115		0.0100	115	0.0112		0.0100	112
Magnesium	0.214		0.200	107	0.214		0.200	107	0.209		0.200	105
Manganese	0.00288	J	0.00300	96	0.00297	J	0.00300	99	0.00288	J	0.00300	96
Nickel	0.0103		0.0100	103	0.0100		0.0100	100	0.0105		0.0100	105
Potassium	0.392	J	0.500	78	0.436	J	0.500	87	0.429	J	0.500	86
Selenium	0.0239	J	0.0250	96	0.0221	J	0.0250	88	0.0251		0.0250	100
Silver	0.00553	J	0.00600	92	0.00551	J	0.00600	92	0.00609		0.00600	102
Sodium	0.896	J	1.00	90	0.933	J	1.00	93	0.921	J	1.00	92
Thallium	0.0207		0.0200	103	0.0201		0.0200	101	0.0201		0.0200	101
Vanadium	0.00523		0.00500	105	0.00495	J	0.00500	99	0.00527		0.00500	105
Zinc	0.0116		0.0100	116	0.0126		0.0100	126	0.0127		0.0100	127

Note! Calculations are performed before rounding to avoid round-off errors in calculated results. Italicized analytes were not requested for this sequence.

Lab	Name•	Eurofins	TestAmerica,	Buffal
Lav	name.	EUTOTTUS	IESCAMELICA,	DULLAL

a, Buffalo Job No.: 480-159638-1

SDG No.:

Lab Sample ID: <mark>ICSA 480-495091/8</mark>

Lab File ID: i1093019a-12.asc

Instrument ID: ICAP1

ICS Source: MEI_MSS_ICSA 00008

Concentration Units: mg/L

	True	Found	
			Percent
Analyte	Solution A	Solution A	Recovery
Aluminum	500	533	107
Antimony		<mark>-0.0121</mark>	
Arsenic		0.0008	
Barium		<mark>0.0017</mark>	
Beryllium		0.0001	
Cadmium		-0.0003	
Calcium	500	499	100
Chromium		<mark>0.0031</mark>	
Cobalt		<mark>-0.0007</mark>	
Copper		<mark>-0.0037</mark>	
Iron	200	198	99
Lead		0.0017	
Magnesium	500	525	105
Manganese		<mark>-0.0020</mark>	
Nickel		<mark>-0.0046</mark>	
Potassium		0.0009	
Selenium		0.0033	
Silver		0.0001	
Sodium		0.195	
Thallium		-0.0016	
Vanadium		<mark>-0.0024</mark>	
Zinc		0.0031	
Boron		0.0002	
Lithium		0.0039	
Molybdenum		-0.0003	
Silicon		0.0108	
Strontium		-0.0094	
Sulfur		-0.101	
Tin		0.0002	
Titanium		0.0004	

	Lab	Name:	Eurofins	TestAmerica,	Buffalo
--	-----	-------	----------	--------------	---------

Lab File ID: I2092719A-5.asc

Buffalo Job No.: <u>480-</u>159638-1

SDG No.:

Lab Sample ID: <mark>ICSA 480-494676/8</mark>

Instrument ID: ICAP2

ICS Source: MEI MSS ICSA 00007

Concentration Units: mg/L

	True	Found	
			Percent
Analyte	Solution A	Solution A	Recovery
Aluminum	500	511	102
Antimony		0.0050	
Arsenic		-0.0008	
Barium		0.0013	
Beryllium		-0.0003	
Cadmium		-0.0003	
Calcium	500	484	97
Chromium		-0.0005	
Cobalt		-0.0004	
Copper		-0.0012	
Iron	200	193	96
Lead		0.0025	
Magnesium	500	519	104
Manganese		<mark>0.0009</mark>	
Nickel		0.0000	
Potassium		-0.0476	
Selenium		0.0068	
Silver		<mark>-0.0020</mark>	
Sodium		0.201	
Thallium		-0.0047	
Vanadium		<mark>-0.0018</mark>	
Zinc		<mark>0.0028</mark>	
Boron		-0.0011	
Lithium		-0.0103	
Molybdenum		-0.0015	
Silicon		0.0264	
Strontium		-0.0087	
Sulfur		0.0005	
Tin		0.0047	
Titanium		0.0001	

Lab Name: Eurofins TestAmerica, Buffal
--

Lab File ID: I2100119A-6.asc

Buffalo Job No.: <u>480-159638-1</u>

SDG No.:

_

Lab Sample ID: <mark>ICSA 480-495192/8</mark>

Instrument ID: ICAP2

ICS Source: MEI MSS ICSA 00008

Concentration Units: mg/L

	True	Found	
			Percent
Analyte	Solution A	Solution A	Recovery
Aluminum	500	507	101
Antimony		<mark>0.0127</mark>	
Arsenic		-0.0032	
Barium		<mark>0.0017</mark>	
Beryllium		-0.0002	
Cadmium		0.0005	
Calcium	500	493	99
Chromium		-0.0010	
Cobalt		-0.0002	
Copper		0.0016	
Iron	200	194	97
Lead		-0.0016	
Magnesium	500	515	103
Manganese		<mark>-0.0019</mark>	
Nickel		-0.0003	
Potassium		-0.0570	
Selenium		<mark>0.0117</mark>	
Silver		-0.0016	
Sodium		0.199	
Thallium		-0.0035	
Vanadium		<mark>-0.0017</mark>	
Zinc		0.0034	
Boron		-0.0018	
Lithium		-0.0049	
Molybdenum		-0.0014	
Silicon		-0.0401	
Strontium		-0.0090	
Sulfur		-0.0098	
Tin		0.0046	
Titanium		-0.0001	

Lab 1	Name:	Eurofins	TestAmerica,	Buffalo	
		=======	100011001104/	Dallaro	

Lab File ID: I2093019A-6.asc

Job No.: <mark>480-159817-1</mark>

SDG No.:

_

Lab Sample ID: <mark>ICSA 480-495112/13</mark>

Instrument ID: ICAP2

ICS Source: MEI_MSS_ICSA 00008

Concentration Units: mg/L

	True	Found	
			Percent
Analyte	Solution A	Solution A	Recovery
Aluminum	500	503	101
Antimony		<mark>0.0109</mark>	
Arsenic		-0.0053	
Barium		<mark>0.0017</mark>	
Beryllium		-0.0002	
Cadmium		0.0005	
Calcium	500	488	98
Chromium		-0.0010	
Cobalt		-0.0004	
Copper		0.0010	
Iron	200	191	95
Lead		0.0014	
Magnesium	500	515	103
Manganese		<mark>-0.0016</mark>	
Nickel		-0.0011	
Potassium		0.0148	
Selenium		0.0048	
Silver		0.0005	
Sodium		0.207	
Thallium		-0.0029	
Vanadium		<mark>-0.0018</mark>	
Zinc		<mark>0.0033</mark>	
Boron		-0.0002	
Lithium		-0.0010	
Molybdenum		-0.0028	
Silicon		0.0140	
Strontium		-0.0089	
Sulfur		-0.0070	
Tin		0.0034	
Titanium		-0.0004	

Lab	Name:	Eurofins	TestAmerica,	Buffalo
-----	-------	----------	--------------	---------

Job No.: <u>480-159817-1</u>

SDG No.:

Lab Sample ID: <mark>ICSA 480-495330/8</mark>

Lab File ID: i2100119a-14.asc

Instrument ID: ICAP2

ICS Source: MEI MSS ICSA 00008

Concentration Units: mg/L

	True	Found	
			Percent
Analyte	Solution A	Solution A	Recovery
Aluminum	500	507	101
Antimony		<mark>0.0127</mark>	
Arsenic		-0.0032	
Barium		<mark>0.0017</mark>	
Beryllium		-0.0002	
Cadmium		0.0005	
Calcium	500	493	99
Chromium		-0.0010	
Cobalt		-0.0002	
Copper		0.0016	
Iron	200	194	97
Lead		-0.0016	
Magnesium	500	515	103
Manganese		<mark>-0.0019</mark>	
Nickel		-0.0003	
Potassium		-0.0570	
Selenium		<mark>0.0117</mark>	
Silver		-0.0016	
Sodium		0.199	
Thallium		-0.0035	
Vanadium		<mark>-0.0017</mark>	
Zinc		<mark>0.0034</mark>	
Boron		-0.0018	
Lithium		-0.0049	
Molybdenum		-0.0014	
Silicon		-0.0401	
Strontium		-0.0090	
Sulfur		-0.0098	
Tin		0.0046	
Titanium		-0.0001	

3-IN METHOD BLANK METALS

Lab 1	Name:	Eurofins	TestAmerica,	Buffalo	Job No.:	480-159638-1	

SDG No.:

Concentration Units: mg/L

Instrument Code: ICAP2

Lab Sample ID: MB 480-494102/1-A

Batch No.: <mark>494676</mark>

CAS No.	Analyte	Concentration	С	Q	Method
7429-90-5	Aluminum	ND			6010C
7440-36-0	Antimony	ND			6010C
7440-38-2	Arsenic	ND			6010C
7440-39-3	Barium	ND			6010C
7440-41-7	Beryllium	ND			6010C
7440-43-9	Cadmium	ND			6010C
7440-70-2	Calcium	ND			6010C
7440-47-3	Chromium	ND			6010C
7440-48-4	Cobalt	ND			6010C
7440-50-8	Copper	ND			6010C
7439-89-6	Iron	ND			6010C
7439-92-1	Lead	ND			6010C
7439-95-4	Magnesium	ND			6010C
7439-96-5	Manganese	ND			6010C
7440-02-0	Nickel	ND			6010C
7440-09-7	Potassium	ND			6010C
7782-49-2	Selenium	ND			6010C
7440-22-4	Silver	ND			6010C
7440-23-5	Sodium	ND			6010C
7440-28-0	Thallium	ND			6010C
7440-62-2	Vanadium	ND			6010C
7440-66-6	Zinc	0.00236	J		6010C

3-IN METHOD BLANK METALS - DISSOLVED

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-159638-1

SDG No.:

Concentration Units: mg/L

Instrument Code: ICAP1

Lab Sample ID: MB 480-494130/1-B

Batch No.: 495091

CAS No.	Analyte	Concentration	С	Q	Method
7429-90-5	Aluminum	ND			6010C
7440-36-0	Antimony	ND			6010C
7440-38-2	Arsenic	ND			6010C
7440-39-3	Barium	ND			6010C
7440-41-7	Beryllium	ND			6010C
7440-43-9	Cadmium	ND			6010C
7440-70-2	Calcium	ND			6010C
7440-47-3	Chromium	ND			6010C
7440-48-4	Cobalt	ND			6010C
7440-50-8	Copper	ND			6010C
7439-89-6	Iron	ND			6010C
7439-92-1	Lead	ND			6010C
7439-95-4	Magnesium	ND			6010C
7439-96-5	Manganese	ND			6010C
7440-02-0	Nickel	ND			6010C
7440-09-7	Potassium	ND			6010C
7782-49-2	Selenium	ND		^	6010C
7440-22-4	Silver	ND			6010C
7440-23-5	Sodium	ND			6010C
7440-28-0	Thallium	ND			6010C
7440-62-2	Vanadium	ND			6010C
7440-66-6	Zinc	0.00403	J		6010C

3-IN METHOD BLANK METALS

Lab	Name:	Eurofins	TestAmerica,	Buffalo	Job	No.:	480-1

SDG No.:

Concentration Units: mg/L

Instrument Code: ICAP2

<mark>159817-1</mark>

Lab Sample ID: MB 480-494469/1-A

Batch No.: 495112

CAS No.	Analyte	Concentration	С	Q	Method
7429-90-5	Aluminum	ND			6010C
7440-36-0	Antimony	ND			6010C
7440-38-2	Arsenic	ND			6010C
7440-39-3	Barium	ND			6010C
7440-41-7	Beryllium	0.000420	J		6010C
7440-43-9	Cadmium	ND			6010C
7440-70-2	Calcium	ND			6010C
7440-47-3	Chromium	ND			6010C
7440-48-4	Cobalt	ND			6010C
7440-50-8	Copper	ND			6010C
7439-89-6	Iron	ND			6010C
7439-92-1	Lead	ND			6010C
7439-95-4	Magnesium	ND			6010C
7439-96-5	Manganese	0.000550	J		6010C
7440-02-0	Nickel	ND			6010C
7440-09-7	Potassium	ND			6010C
7782-49-2	Selenium	ND			6010C
7440-22-4	Silver	ND			6010C
7440-23-5	Sodium	ND			6010C
7440-28-0	Thallium	ND			6010C
7440-62-2	Vanadium	ND			6010C
7440-66-6	Zinc	0.00306	J		6010C

3-IN METHOD BLANK METALS - DISSOLVED

Lah	Name ·	Eurofins	TestAmerica,	Buffal
Lab	Name.	EULOLIUS	restamerica,	DULLAI

Lica, Buffalo Job No.: <u>480-159817-1</u>

SDG No.:

Concentration Units: mg/L

Instrument Code: ICAP2

Lab Sample ID: <mark>MB 480-494536/1-B</mark>

Batch No.: 495330

CAS No.	Analyte	Concentration	С	Q	Method
7429-90-5	Aluminum	ND			6010C
7440-36-0	Antimony	ND			6010C
7440-38-2	Arsenic	ND			6010C
7440-39-3	Barium	ND			6010C
7440-41-7	Beryllium	0.000610	J	^	6010C
7440-43-9	Cadmium	ND			6010C
7440-70-2	Calcium	ND			6010C
7440-47-3	Chromium	0.00149	J		6010C
7440-48-4	Cobalt	ND			6010C
7440-50-8	Copper	ND			6010C
7439-89-6	Iron	ND		^	6010C
7439-92-1	Lead	ND			6010C
7439-95-4	Magnesium	ND			6010C
7439-96-5	Manganese	ND			6010C
7440-02-0	Nickel	ND			6010C
7440-09-7	Potassium	ND			6010C
7782-49-2	Selenium	ND			6010C
7440-22-4	Silver	ND			6010C
7440-23-5	Sodium	ND			6010C
7440-28-0	Thallium	ND			6010C
7440-62-2	Vanadium	ND			6010C
7440-66-6	Zinc	0.00662	J		6010C

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-159638-1

SDG No.:

Concentration Units: mg/L

		ICB 480-49519 10/01/2019 0		CCB 480-495192/19 10/01/2019 10:33		CCB 480-49519		CCB 480-495192/31 10/01/2019 12:01	
Analyte	RL	Found	С	Found	С	Found	С	Found	С
Aluminum	0.20	ND		ND		ND		ND	
Antimony	0.020	ND		ND		ND		ND	
Arsenic	0.015	ND		ND		ND		ND	
Barium	0.0020	ND		ND		ND		ND	
Beryllium	0.0020	ND		ND		0.000350	J	ND	
Cadmium	0.0020	ND		ND		ND		ND	
Calcium	0.50	ND		ND		ND		ND	
Chromium	0.0040	ND		ND		ND		ND	
Cobalt	0.0040	ND		ND		ND		ND	
Copper	0.010	ND		ND		ND		ND	
Iron	0.050	ND		ND		ND		ND	
Lead	0.010	ND		ND		ND		ND	
Magnesium	0.20	ND		ND		ND		ND	
Manganese	0.0030	ND		ND		ND		ND	
Nickel	0.010	ND		ND		ND		ND	
Potassium	0.50	ND		ND		ND		ND	
Selenium	0.025	ND		ND		ND		ND	
Silver	0.0060	ND		ND		ND		ND	
Sodium	1.0	ND		ND		ND		ND	
Thallium	0.020	ND		ND		ND		ND	
Vanadium	0.0050	ND		ND		ND		ND	
Zinc	0.010	ND		ND		ND		ND	

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-159817-1

SDG No.:

Concentration Units: mg/L

		ICB 480-49511	$\frac{2}{11}$	CCB 480-49511	2/23	CCB 480-49511	$\frac{2}{21}$	CCB 480-495112	2/13
		09/30/2019 0		09/30/2019 1		09/30/2019 2		09/30/2019 2	
		09/30/2019 0	9.33	09/30/2019 1	9.37	09/30/2019 2	0.22	09/30/2019 2.	1.07
Analyte	RL	Found	С	Found	С	Found	С	Found	С
Aluminum	0.20	ND		ND		ND		ND	
Antimony	0.020	ND		ND		ND		ND	
Arsenic	0.015	ND		ND		ND		ND	
Barium	0.0020	ND		ND		ND		ND	
Beryllium	0.0020	ND		0.000440	J	0.000430	J	<mark>0.000500</mark>	J
Cadmium	0.0020	ND		ND		ND		ND	
Calcium	0.50	ND		ND		ND		ND	
Chromium	0.0040	ND		ND		ND		ND	
Cobalt	0.0040	ND		ND		ND		ND	
Copper	0.010	ND		ND		ND		ND	
Iron	0.050	ND		ND		ND		ND	
Lead	0.010	ND		ND		ND		ND	
Magnesium	0.20	ND		ND		ND		ND	
Manganese	0.0030	ND		ND		ND		ND	
Nickel	0.010	ND		ND		ND		ND	
Potassium	0.50	ND		ND		ND		ND	
Selenium	0.025	ND		ND		ND		ND	
Silver	0.0060	ND		ND		ND		ND	
Sodium	1.0	ND		ND		ND		ND	
Thallium	0.020	ND		ND		ND		ND	
Vanadium	0.0050	ND		ND		ND		ND	
Zinc	0.010	<mark>0.00152</mark>	J	ND		ND		ND	

Lab Name: Eurofins TestAmerica, Buffalo Job No.: <u>480-159817-1</u>

SDG No.:

Concentration Units: mg/L

			o / = =		<u> </u>				
		CCB 480-49511		CCB 480-49511					
		09/30/2019 2	1:51	09/30/2019 2	2:35				
Analyte	RL	Found	С	Found	С	Found	С	Found	С
Aluminum	0.20	ND		ND					
Antimony	0.020	ND		ND					
Arsenic	0.015	ND		ND					
Barium	0.0020	ND		ND					
Beryllium	0.0020	0.000490	J	0.000450	J				
Cadmium	0.0020	ND		ND					
Calcium	0.50	ND		ND					
Chromium	0.0040	ND		ND					
Cobalt	0.0040	ND		ND					
Copper	0.010	ND		<mark>0.00179</mark>	J				
Iron	0.050	ND		ND					
Lead	0.010	ND		ND					
Magnesium	0.20	ND		ND					
Manganese	0.0030	ND		ND					
Nickel	0.010	ND		ND					
Potassium	0.50	0.106	J	ND					
Selenium	0.025	ND		ND					
Silver	0.0060	ND		ND					
Sodium	1.0	ND		ND					
Thallium	0.020	ND		ND					
Vanadium	0.0050	ND		ND					
Zinc	0.010	ND		ND					

Lab Name: Eurofins TestAmerica, Buffalo Job No.: <u>480-159817-1</u>

SDG No.:

Concentration Units: mg/L

		ICB 480-49533	30/6	CCB 480-49533	0/18	CCB 480-49533	0/26	CCB 480-49533	0/38
		10/01/2019 0		10/02/2019 0		10/02/2019 0		10/02/2019 03	
Analyte	RL	Found	С	Found	С	Found	С	Found	С
Aluminum	0.20	ND		ND		ND		ND	
Antimony	0.020	ND		ND		ND		ND	
Arsenic	0.015	ND		ND		ND		ND	
Barium	0.0020	ND		ND		ND		ND	
Beryllium	0.0020	ND		0.000530	J	0.000420	J	0.000660	J
Cadmium	0.0020	ND		ND		ND		ND	
Calcium	0.50	ND		ND		ND		ND	
Chromium	0.0040	ND		ND		ND		ND	
Cobalt	0.0040	ND		ND		ND		ND	
Copper	0.010	ND		ND		ND		ND	
Iron	0.050	ND		0.0221	J	ND		ND	
Lead	0.010	ND		ND		ND		ND	
Magnesium	0.20	ND		ND		ND		ND	
Manganese	0.0030	ND		ND		ND		ND	
Nickel	0.010	ND		ND		ND		ND	
Potassium	0.50	ND		ND		ND		ND	
Selenium	0.025	ND		ND		ND		ND	
Silver	0.0060	ND		ND		ND		ND	
Sodium	1.0	ND		ND		ND		ND	
Thallium	0.020	ND		ND		ND		ND	
Vanadium	0.0050	ND		ND		ND		ND	
Zinc	0.010	ND		ND		ND		ND	

Lab Name: Eurofins TestAmerica, Buffalo Job No.: <u>480-159817-1</u>

SDG No.:

Concentration Units: mg/L

		CCB 480-49533							
Analyte	RL	Found	С	Found	С	Found	С	Found	С
Aluminum	0.20	ND							
Antimony	0.020	ND							
Arsenic	0.015	ND							
Barium	0.0020	ND							
Beryllium	0.0020	0.000520	J						
Cadmium	0.0020	ND							
Calcium	0.50	ND							
Chromium	0.0040	ND							
Cobalt	0.0040	ND							
Copper	0.010	ND							
Iron	0.050	ND							
Lead	0.010	ND							
Magnesium	0.20	ND							
Manganese	0.0030	ND							
Nickel	0.010	ND							
Potassium	0.50	ND							
Selenium	0.025	ND							
Silver	0.0060	ND							
Sodium	1.0	ND							
Thallium	0.020	ND							
Vanadium	0.0050	ND							
Zinc	0.010	ND							

5A-IN MATRIX SPIKE SAMPLE RECOVERY METALS

Client ID: SFB-MW-S1 MS

Lab ID: <mark>480-159638-3 MS</mark>

Lab Name: Eurofins TestAmerica, Buffalo

Job No.: 480-159638-1

SDG No.:

Matrix: Water

Concentration Units: mg/L

% Solids:

Analyte	SSR	Sample Result (SF	R) C	Spike Added (SA)	۶R	Control Limit %R	Q	Method
Aluminum	22.24	7.8		10.0	144	75-125	F1	6010C
Antimony	0.222	ND		0.200	111	75-125		6010C
Arsenic	0.223	0.016		0.200	103	75-125		6010C
Barium	0.385	0.14		0.200	121	75-125		6010C
Beryllium	0.202	0.00066	J	0.200	101	75-125		6010C
Cadmium	0.205	0.00050	J	0.200	102	75-125		6010C
Calcium	70.93	56.8		10.0	141	75-125	4	6010C
Chromium	0.215	0.014		0.200	100	75-125		6010C
Cobalt	0.198	0.0038	J	0.200	97	75-125		6010C
Copper	0.222	0.015		0.200	103	75-125		6010C
Iron	24.05	12.4		10.0	117	75-125		6010C
Lead	0.228	0.030		0.200	99	75-125		6010C
Magnesium	28.31	16.7		10.0	116	75-125		6010C
Manganese	4.56	4.1		0.200	232	75-125	4	6010C
Nickel	0.213	0.0096	J	0.200	102	75-125		6010C
Potassium	17.57	6.0		10.0	116	75-125		6010C
Selenium	0.203	ND		0.200	102	75-125		6010C
Silver	0.0504	ND		0.0500	101	75-125		6010C
Sodium	19.64	9.7		10.0	99	75-125		6010C
Thallium	0.202	ND		0.200	101	75-125		6010C
Vanadium	0.225	0.012		0.200	107	75-125		6010C
Zinc	0.245	0.041		0.200	102	75-125		6010C
Mercury	0.00668	ND		0.00667	100	80-120		7470A

SSR = Spiked Sample Result

5A-IN MATRIX SPIKE DUPLICATE SAMPLE RECOVERY METALS

Client ID: SFB-MW-S1 MSD

Lab ID: <mark>480-159638-3 MSD</mark>

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-159638-1

SDG No.:

Matrix: <u>Water</u> Concentration Units: <u>mg/L</u>

% Solids:

Analyte	(SDR) C	Spike Added (SA)	%R	Control Limit %R	RPD	RPD Limit	Q	Method
Aluminum	22.26	10.0	144	75-125	0	20	F1	6010C
Antimony	0.218	0.200	109	75-125	2	20		6010C
Arsenic	0.217	0.200	100	75-125	3	20		6010C
Barium	0.375	0.200	115	75-125	3	20		6010C
Beryllium	0.197	0.200	98	75-125	3	20		6010C
Cadmium	0.200	0.200	100	75-125	2	20		6010C
Calcium	67.82	10.0	110	75-125	4	20	4	6010C
Chromium	0.208	0.200	97	75-125	3	20		6010C
Cobalt	0.193	0.200	95	75-125	2	20		6010C
Copper	0.215	0.200	100	75-125	3	20		6010C
Iron	23.73	10.0	114	75-125	1	20		6010C
Lead	0.223	0.200	96	75-125	2	20		6010C
Magnesium	27.50	10.0	108	75-125	3	20		6010C
Manganese	4.37	0.200	136	75-125	4	20	4	6010C
Nickel	0.208	0.200	99	75-125	2	20		6010C
Potassium	17.02	10.0	110	75-125	3	20		6010C
Selenium	0.196	0.200	98	75-125	4	20		6010C
Silver	0.0478	0.0500	96	75-125	5	20		6010C
Sodium	19.04	10.0	93	75-125	3	20		6010C
Thallium	0.196	0.200	98	75-125	3	20		6010C
Vanadium	0.220	0.200	104	75-125	2	20		6010C
Zinc	0.239	0.200	99	75-125	3	20		6010C
Mercury	0.00718	0.00667	108	80-120	7	20		7470A

SDR = Sample Duplicate Result

Data Usability Summary Report

Site:Schatz Federal Bearings SiteLaboratory:Eurofins TestAmerica Buffalo –Burlington, VTSDG No.:480-159638-1Parameters:Per- and Poly-fluoroalkyl SubstancesData Reviewer:Kristen Morin/TRCPeer Reviewer:Elizabeth Denly/TRCDate:January 31, 2020

Samples Reviewed and Evaluation Summary

3 Groundwater Samples: SFB-MW-B3, SFB-MW-S1, SFB-MW-S3

The above-listed groundwater samples were collected on September 23, 2019 and were analyzed for Per- and Poly-fluoroalkyl substances (PFAS) (21 target analytes) based on EPA Method 537.1 (modified) using Test America – Burlington, VT standard operating procedure (SOP) BR-LC-009, revision 4.0, effective date 04/12/19.

The data validation was performed in accordance with the following USEPA guidance, modified for the methodologies utilized:

- USEPA National Functional Guidelines for High Resolution Superfund Methods Data Review (EPA-542-B-16-001), April 2016
- USEPA Data Review and Validation Guidelines for Perfluoroalkyl Substances (PFASs) Analyzed Using EPA Method 537 (EPA 910-R-18-001), November 2018
- New York State Department of Environmental Conservation Data Review Guidelines for Analysis of PFAS in Non-Potable Water and Solids, January 2020

The data were evaluated based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- Data Completeness
- Holding Times and Sample Preservation
 - Initial and Continuing Calibrations
 - Blanks
- Isotopically Labeled Surrogate Results
- NA Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
 - Laboratory Control Sample (LCS) Results
 - Internal Standards
- NA Field Duplicate Results
 - Sample Results and Reported Quantitation Limits (QLs)
 - Target Compound Identification
- * All criteria were met.
- NA Field duplicates and MS/MSD analyses were not associated with this sample set.

Overall Evaluation of Data and Potential Usability Issues

All results are usable for project objectives. There were no qualifications applied to the data because of sampling error. Qualifications applied to the data because of analytical error are

discussed below.

- Potential uncertainty exists for select PFAS results that were below the lowest calibration standard and QL. These results were qualified as estimated (J) in the associated samples. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.
- The positive results for PFBA in samples SFB-MW-B3 and SFB-MW-S3 were qualified as estimated (J+) with a potential high bias due to method blank contamination. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.
- The positive result for PFBA in sample SFB-MW-S1 was qualified as nondetect (U) at the QL due to method blank contamination. This result can be used as a nondetect result, which may have a minor impact on the data usability.
- The positive result for 6:2 FTS in sample SFB-MW-B3 was qualified as estimated (J) due to high internal standard recovery. This result can be used for project objectives as an estimated value, which may have a minor impact on the data usability.
- The positive result for PFBS in sample SFB-MW-S3 was qualified as estimated (J) due to the ratio between the two precursor/product ion transitions being outside the acceptance limits and detection below the QL. This result can be used for project objectives as an estimated value, which may have a minor impact on the data usability.

Data Completeness

The data package was a complete Level IV data deliverable with one exception. The case narrative incorrectly stated that the internal standard recovery for the diluted analysis of sample SFB-MW-B3 was within the acceptance criteria. A revised case narrative was not requested during validation and this sample was qualified accordingly (refer to internal standard section below).

Holding Times and Sample Preservation

All holding time and sample preservation criteria were met.

Initial and Continuing Calibrations

The percent relative standard deviations and correlation coefficients in the initial calibration were within the method acceptance criteria. The percent differences met the acceptance criteria in the continuing calibration standards.

<u>Blanks</u>

The following table summarizes the PFAS compounds found in the laboratory method blank, the concentration detected, and the resulting validation actions.

Blank ID	Compound	Result (ng/L)	Validation Action		
MB 200- 147840/1-A	PFBA	1.07 J	The positive results for PFBA in samples SFB-MW-B3 and SFB-MW-S3 were qualified as estimated (J+) with a potential high bias. The positive result for PFBA in sample SFB-MW-S1 was qualified as nondetect (U) at the QL.		
Associated samples: SFB-MW-B3, SFB-MW-S1, SFB-MW-S3					
Criteria:					

• If concentration in sample <QL, replace result with QL flagged with "U"

• If concentration in sample ≥QL and <10x blank concentration, qualify result as estimated, biased high (J+)

Isotopically Labeled Surrogate Results

Seventeen isotopically labeled surrogate were spiked into the samples prior to extraction for isotope dilution quantitation. The %Rs were within the acceptance limits (50-150%).

Due to a shortage in the marketplace for the isotopically labeled surrogate 13C3-PFBS, the target analyte PFBS could not be quantitated against 13C3-PFBS (its labeled variant) as listed in the SOP. PFBS was quantitated versus 18O2-PFHxS instead. The laboratory was contacted during validation and confirmed this. No validation actions were required on this basis.

MS/MSD Results

MS/MSD analyses were not performed on a sample in this data set.

LCS Results

The LCS %Rs were within the laboratory acceptance criteria.

Internal Standards

The isotopically labeled internal standard 13C2 PFOA was added to each sample prior to injection to monitor for ion suppression/enhancement at the instrument level. The %Rs were within the laboratory acceptance limits of 50-150% with one exception. The %R of 13C2 PFOA (156%) was above the laboratory acceptance limits in the 5-fold diluted analysis of sample SFB-MW-B3. Therefore, the positive result for 6:2 FTS was qualified as estimated (J) in sample SFB-MW-B3.

Field Duplicate Results

There were no field duplicates associated with this data set.

Sample Results and Reported Quantitation Limits

Sample calculations were spot-checked; there were no errors noted. Select PFAS results were below the lowest calibration standard level and QL. These results were qualified as estimated (J) by the laboratory.

The following table summarizes the PFAS dilution performed on one of the samples in this data set.

Sample ID	Dilution	Reason for Dilution
SFB-MW-B3	5-fold	A 5-fold dilution was performed due to the concentration of 6:2 FTS that exceeded the calibration range in the undiluted analysis. The laboratory combined results of the undiluted and diluted analyses in order to report all results within the calibration range and the lowest possible QLs.

Target Compound Identification

Extracted ion chromatograms were reviewed to verify the target compound identifications. The laboratory manually integrated several peaks to ensure the inclusion of linear and branched isomers for PFOA, PFOS, NEtFOSAA, NMeFOSAA, and/or PFHxS; and/or to ensure proper integration of all PFAS.

Two precursor/product ion transitions were used for identification for all compounds except for PFBA, PFPeA, PFOSA, NMeFOSAA, NEtFOSAA, 6:2 FTS, and 8:2 FTS which only used one precursor/product ion transition for identification.

The following table summarizes the ratio between the two precursor/product ion transitions that did not meet the laboratory acceptance criteria and the validation actions.

Sample ID	Compound	Ratio	Ratio QC Limits	Validation Actions
SFB-MW-S3	PFBS	3.06	1.02-3.05	The positive result for PFBS in sample SFB-MW- S3 was detected below the QL and the laboratory qualified the results as estimated (J); therefore, no further validation action was required.

QUALIFIED FORM 1s

Lab Name: Eurofins TestAmerica, Burlington	Job No.: 480-159638-1
SDG No.:	
Client Sample ID: SFB-MW-B3	Lab Sample ID: 480-159638-1
Matrix: Water	Lab File ID: SC092819A018.d
Analysis Method: 537 (modified)	Date Collected: 09/23/2019 11:00
Extraction Method: 3535	Date Extracted: 09/27/2019 12:17
Sample wt/vol: 294.7(mL)	Date Analyzed: 09/28/2019 16:16
Con. Extract Vol.: 10(mL)	Dilution Factor: 1
Injection Volume: 20(uL)	GC Column: <u>C-18</u> ID: 4.6(mm)
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 147869	Units: <u>hg/L</u>

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	1.7	15+	1.7	0.85
2706-90-3	Perfluoropentanoic acid (PFPeA)	1.2	J	1.7	0.53
307-24-4	Perfluorohexanoic acid (PFHxA)	2.3		1.7	0.64
375-85-9	Perfluoroheptanoic acid (PFHpA)	1.5	J	1.7	0.77
335-67-1	Perfluorooctanoic acid (PFOA)	2.2		1.7	0.69
375-95-1	Perfluorononanoic acid (PFNA)	4.2		. 1.7	0.23
335-76-2	Perfluorodecanoic acid (PFDA)	0.75	J	1.7	0.65
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.98	J	1.7	0.66
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		1.7	0.50
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND		1.7	0.51
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.78
375-73-5	Perfluorobutanesulfonic acid (PFBS)	ND		1.7	0.42
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	ND		1.7	0.68
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.7	0.81
1763-23-1	Perfluorooctanesulfonic acid (PFOS) •	0.56	J	1.7	0.52
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		1.7	0.76
754-91-6	Perfluorooctanesulfonamide (PFOSA)	ND		8.5	8.5
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		17	1.4
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		17	1.3
39108-34-4	1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	ND		17	2.5

Lab Name: Eurofins TestAmerica, Burlington	Job No.: 480-159638-1
SDG No.:	
Client Sample ID: SFB-MW-B3	Lab Sample ID: 480-159638-1
Matrix: Water	Lab File ID: SC100719A007.d
Analysis Method: 537 (modified)	Date Collected: 09/23/2019 11:00
Extraction Method: 3535	Date Extracted: 09/27/2019 12:17
Sample wt/vol: 294.7(mL)	Date Analyzed: 10/07/2019 17:27
Con. Extract Vol.: 10(mL)	Dilution Factor: 5
Injection Volume: 20(uL)	GC Column: <u>C-18</u> ID: 4.6(mm)
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 148176	Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
27619-97-2	1H,1H,2H,2H-perfluorooctanesulfonic • •acid (6:2)	900	51	85	23
CAS NO.	ISOTOPE DILUTION		%REC	Q	LIMITS
STL02279	M2-6:2 FTS		69		25-150

Lab Name: Eurofins TestAmerica, Burlington	Job No.: 480-159638-1
SDG No.:	
Client Sample ID: SFB-MW-S3	Lab Sample ID: 480-159638-2
Matrix: Water	Lab File ID: SC092819A020.d
Analysis Method: 537 (modified)	Date Collected: 09/23/2019 11:05
Extraction Method: 3535	Date Extracted: 09/27/2019 12:17
Sample wt/vol: 284(mL)	Date Analyzed: 09/28/2019 16:32
Con. Extract Vol.: 10(mL)	Dilution Factor: 1
Injection Volume: 20(uL)	GC Column: C-18 ID: 4.6(mm)
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 147869	Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA) •	5.0	15+	1.8	0.88
2706-90-3	Perfluoropentanoic acid (PFPeA)	, 1.6	J	1.8	0.55
307-24-4	Perfluorohexanoic acid (PFHxA)	3.2		1.8	0.67
375-85-9	Perfluoroheptanoic acid (PFHpA)	'ND		1.8	0.80
335-67-1	Perfluorooctanoic acid (PFOA)	29		1.8	0.71
375-95-1	Perfluorononanoic acid (PFNA)	0.42	J	1.8	0.24
335-76-2	Perfluorodecanoic acid (PFDA)	ND		1.8	0.68
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.69
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		1.8	0.52
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND		1.8	0.53
376-06-7.	Perfluorotetradecanoic acid (PFTeA) .	ND		1.8	0.81
375-73-5	Perfluorobutanesulfonic acid (PFBS)	1.0	J	1.8	0.43
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.70
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.8	0.84
1763-23-1	Perfluorooctanesulfonic acid (PFOS) •	1.8		1.8	0.54
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		1.8	0.79
754-91-6	Perfluorooctanesulfonamide (PFOSA)	ND		8.8	8.8
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		18	1.5
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		18	1.3
27619-97-2	1H,1H,2H,2H-perfluorooctanesulfonic .	14	J	18	4.8
39108-34-4	1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	ND		18	2.6

Lab Name: Eurofins TestAmerica, Burlington	on Job No.: 480-159638-1			
SDG No.:				
Client Sample ID: SFB-MW-S1	Lab Sample ID: 480-159638-3			
Matrix: Water	Lab File ID: SC092819A021.d			
Analysis Method: 537 (modified)	Date Collected: 09/23/2019 12:30			
Extraction Method: 3535	Date Extracted: 09/27/2019 12:17			
Sample wt/vol: 274.5(mL)	Date Analyzed: 09/28/2019 16:41			
Con. Extract Vol.: 10(mL)	Dilution Factor: 1			
Injection Volume: 20(uL)	GC Column: <u>C-18</u> ID: <u>4.6(mm)</u>			
% Moisture:	GPC Cleanup:(Y/N) N			
Analysis Batch No.: 147869	Units: ng/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	1 4	LB.	KI 1.8	0.91
2706-90-3	Perfluoropentanoic acid (PFPeA)	ND		1.8	0.57
307-24-4	Perfluorohexanoic acid (PFHxA)	ND.		1.8	0.69
375-85-9	Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.83
335-67-1	Perfluorooctanoic acid (PFOA)	ND	3	1.8	0.74
375-95-1	Perfluorononanoic acid (PFNA)	ND .	2	1.8	0.25
335-76-2	Perfluorodecanoic acid (PFDA)	ND		1.8	0.70
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.71
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		1.8	0.54
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND		1.8	0.55
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.84
375-73-5	Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.45
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.73
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.8	0.87
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.56
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		1.8	0.82
754-91-6	Perfluorooctanesulfonamide (PFOSA)	ND		9.1	9.1
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		18	1.5
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		18	1.4
27619-97-2	1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	ND		18	5.0
39108-34-4	1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	ND		18	2.6

QC NONCONFORMANCE DOCUMENTATION

Lab Name: Eurofins TestAmerica, Burlington	Job No.: 480-159638-1			
SDG No.:				
Client Sample ID:	Lab Sample ID: MB 200-147840/1-A			
Matrix: Water	Lab File ID: SC092819A007.d			
Analysis Method: 537 (modified)	Date Collected:			
Extraction Method: 3535	Date Extracted: 09/27/2019 12:17			
Sample wt/vol: 250(mL)	Date Analyzed: 09/28/2019 14:46			
Con. Extract Vol.: 10(mL)	Dilution Factor: 1			
Injection Volume: 20(uL)	GC Column: C-18 ID: 4.6(mm)			
% Moisture:	GPC Cleanup:(Y/N) N			
Analysis Batch No.: 147869	Units: ng/L			

CAS NO.	CAS NO. COMPOUND NAME		Q	RL	MDL	
375-22-4	Perfluorobutanoic acid (PFBA)	1.07	J	2.0	1.0	
2706-90-3	Perfluoropentanoic acid (PFPeA)	ND		2.0	0.63	
307-24-4	Perfluorohexanoic acid (PFHxA)	ND		2.0	0.76	
375-85-9	Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.91	
335-67-1	Perfluorooctanoic acid (PFOA)	ND		2.0	0.81	
375-95-1	Perfluorononanoic acid (PFNA)	ND		2.0	0.27	
335-76-2	Perfluorodecanoic acid (PFDA)	. ND		2.0	0.77	
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		2.0	0.78	
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		2.0	0.59	
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND		2.0	0.60	
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.92	
375-73-5	Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.49	
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.80	
375-92-8	Perfluoroheptanesulfonic Acid (PFHoS)	ND		2.0	0.95	
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.61	
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		2.0	. 0.90	
754-91-6	Perfluorooctanesulfonamide (PFOSA)	ND		10	10	
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		20	1.7	
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		20	1.5	
27619-97-2	1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	ND		20	5.5	
39108-34-4	1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	ND		20	2.9	

FORM VIII LCMS INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: Eurofins TestAmerica, Burlington	Job No.: <u>480-159638-1</u>	
SDG No.:		
Sample No.: CCVIS 200-148176/6	Date Analyzed: 10/07/2019 1	7:19
Instrument ID: LC812	GC Column: C-18	ID: 4.6(mm)
Lab File ID (Standard): SC100719A006.d	Heated Purge: $(Y/N) N$	
Calibration ID: 42414		

		13PF0	A				
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		2767755	3.41				
UPPER LIMIT		4151633	3.61				
LOWER LIMIT		1383878	3.21				
LAB SAMPLE ID	CLIENT SAMPLE ID					12	
480-159638-1	SFB-MW-B3	864614*	3.41				
CCV 200-148176/20		2836892	3.40				

864,614*5=4,323,070 (4,323,070/2,767,755)*100 = 156%

13PFOA = 13C2 PFOA

Area Limit = 50%-150% of internal standard area RT Limit = \pm 0.2 minutes of internal standard RT

Column used to flag values outside QC limits

FORM VIII 537 (MODIFIED)

30-Sep-2019 11:58:29

Eurofins TestAmerica, Burlington Target Compound Quantitation Report

Data File: Lims ID: Client ID: Sample Type:	\\ChromNA\Burlington\ChromData\L 480-159638-E-2-A <mark>SFB-MW-S3</mark> Client	_C812\20190928-37	996.b\SC092819A020.d	
Inject. Date: Injection Vol: Sample Info: Misc. Info.: Operator ID:	28-Sep-2019 16:32:59 20.0 ul 480-159638-E-2-A 200-0037996-020 Plate: 1 Rack: 2 lc812tech	ALS Bottle#: Dil. Factor: Instrument ID:	17 Worklist Smp 1.0000	o#: 20
Method: Limit Group: Last Update:	\\ChromNA\Burlington\ChromData\L LC_PFC_ICAL 30-Sep-2019 14:21:10	.C812\20190928-37 Calib Date:		
Integrator: Quant Method: Last ICal File:	Picker Isotopic Dilution \\ChromNA\Burlington\ChromData\L	Quant By: .C812\20190924-37	Initial Calibration	
Column 1 : Process Host:	C-18 (4.60 mm) CTX0331		Det: EXP1	

Date:

First Level Reviewer: deannd Ratio Calibration: Initial Calibration Level: 4

EXP DLT REL Amount Signal RT RT RT RT Response Ratio(Limits) ng/ml %Rec S/N Flags D 113C4 PFBA 217.00 > 172.00 1.917 1.926 -0.009 0.565 2382084 1.59 63.7 10017 2 Perfluorobutanoic acid M 212.90 > 169.00 1.917 1.926 -0.009 1.000 119276 0.1410 5.4 M D 3 13C5 PFPeA 267.90 > 223.00 2.257 2.271 -0.014 0.665 2075052 1.75 70.1 1173 4 Perfluoropentanoic acid M 262.90 > 219.00 2.257 2.271 -0.014 1.000 43789 0.0452 0.4 Μ 5 Perfluorobutanesulfonic acid RM 298.90 > 80.00 2.285 2.298 -0.013 0.756 27976 0.0297 Target=2.04 0.9 RM 298.90 > 99.00 2.298 2.298 0.0 0.761 9133 3.06(1.02-3.05) 1.0 Μ D 713C2 PFHxA 315.00 > 270.00 2.636 2.648 -0.012 0.776 2217498 1.76 70.5 2182 6 Perfluorohexanoic acid M 313.00 > 269.002.636 2.648 -0.012 1.000 78426 0.0897 Target=12.90 1.1 Μ 313.00 > 119.00 2.636 2.648 -0.012 1.000 8302 9.45(6.45-19.36) 3.3 Μ 8 Perfluorohexanesulfonic acid Μ 399.00 > 80.00 3.021 3.021 0.0 1.000 11669 0.005436 Target=3.78 0.9 M 399.00 > 99.003.021 3.021 0.0 1.000 3471 3.36(1.89-5.67) 1.6 Μ D 11 1802 PFHxS 403.00 > 84.00 3.021 3.021 0.0 0.890 1635263 1.74 73.6 5159 D 913C4 PFHpA 367.00 > 322.00 3.021 3.032 -0.011 0.890 2189241 1.80 71.9 3168 13 1H,1H,2H,2H-perfluorooctanesulfoni 427.00 > 407.00 3.386 3.386 0.0 1.003 68699 0.4023 542 D 12 M2-6:2 FTS 429.00 > 81.00 3.376 3.386 -0.010 0.994 322009 2.1188.9 84.6

Page 372 of 3378

Data Usability Summary Report

Site:Schatz Federal BearingsLaboratory:Eurofins TestAmerica Buffalo – Amherst, NYSDG No.:480-160007-1Parameters:Volatile Organic Compounds (VOCs)Data Reviewer:Amy Bass/TRCPeer Reviewer:Elizabeth Denly/TRCDate:January 7, 2020

Samples Reviewed and Evaluation Summary

6 Surface Water Samples: SFB-SW-1A, SFB-SW-1B, SFB-SW-2A, SFB-SW-2B, SFB-SW-3A, SFB-SW-3B

The above-listed surface water samples were collected on September 25, 2019, and were analyzed for the following parameter:

• VOCs by SW-846 Method 8260C

The data validation was performed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review (EPA-540-R-017-002), January 2017, modified for the SW-846 methodology utilized.

The data were evaluated based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- Data Completeness
- Holding Times and Sample Preservation
 - Gas Chromatography/Mass Spectrometry (GC/MS) Tunes
- Initial and Continuing Calibrations
- Blanks
 - Surrogate Recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Internal Standards
- Laboratory Control Sample (LCS) Results
- NA Field Duplicate Results
- Sample Results and Reported Quantitation Limits (QLs)
- * Target Compound Identification
- * All criteria were met.
- NA A field duplicate pair was not associated with this sample set.

Overall Evaluation of Data and Potential Usability Issues

All results are usable for project objectives. Qualifications applied to the data as a result of sampling error were not required. Qualifications applied to the data as a result of analytical error are discussed below.

• Potential uncertainty exists for select VOC results that were below the lowest calibration standard and QL. These results were qualified as estimated (J) by the laboratory. These

results can be used for project objectives as estimated values, which may have a minor impact on the data usability.

- The nondetect results for select VOCs in all samples were qualified as estimated (UJ) due to continuing calibration nonconformances. These results can be used for project objectives as nondetects with estimated QLs, which may have a minor impact on the data usability.
- The positive result for chloroethane in sample SFB-SW-3B was qualified as estimated (J) due to a continuing calibration nonconformance and low recovery in the LCS analysis. This result can be used for project objectives as an estimated value, which may have a minor impact on the data usability.
- The positive result for acetone in sample SFB-SW-2A was qualified as estimated (J+) with a
 potential high bias due to high surrogate recoveries in this sample. This result can be used
 for project objectives as an estimated value, which may have a minor impact on the data
 usability.
- The nondetect results for chloroethane samples SFB-SW-1A, SFB-SW-1B, SFB-SW-2A, SFB-SW-2B, and SFB-SW-3A were qualified as estimated (UJ) due to low recovery in the LCS analysis. These results can be used for project objectives as nondetects with estimated QLs, which may have a minor impact on the data usability.

Data Completeness

The data package was a complete Level IV data deliverable package with some exceptions, as described below.

- The laboratory did not report LCS and MS/MSD recoveries, relative percent differences (RPDs), or laboratory acceptance criteria for total xylenes on the summary forms. The recoveries and RPDs were calculated during validation, and the laboratory acceptance limits were provided by the laboratory; no validation actions were taken on this basis.
- The laboratory did not report the results for the initial calibration verification (ICV) analyses. The run logs noted that ICV analyses were performed after each calibration sequence, but the ICV results were not provided. Since the ICV analyses are not used to qualify sample data, no further action was required.
- The Chain-of-Custody (CoC) form for the 480-159817-1 data set indicated only metals analysis (6010C and 7470A) for the trip blank (SFB-TB-09242019); however, the laboratory analyzed that sample for VOCs only. No communication records or relevant comments were included to indicate this was a requested revision from the client. This discrepancy is noted, but no validation actions were required on this basis.

Holding Times and Sample Preservation

All holding time and sample preservation method criteria were met.

GC/MS Tunes

All method acceptance criteria were met.

Initial and Continuing Calibrations

All correlation coefficients, percent relative standard deviations, and relative response factors (RRFs) were within the method acceptance criteria in the initial calibrations associated with this data set.

The following table summarizes the percent differences or percent drifts (%Ds) that did not meet the acceptance criteria in the continuing calibration (CC) standards, the associated samples, and the validation actions. All RRFs were within the acceptance criteria in the CC standards.

CC	Compound	%D	Validation Actions	
	1,2-Dibromo-3-chloropropane	-22.7		
	1,2,4-Trichlorobenzene10/06/20192-Butanone		The positive result for chloroethane in sample	
			SFB-SW-3B was qualified as estimated (J).	
@19:39 HP5973S	Bromomethane	-36.4	The nondetect results for these VOCs were qualified as estimated (UJ) in the associated	
	Chloroethane	-39.3	samples.	
Methyl acetate 22.6				
Associated samples: SFB-SW-1A, SFB-SW-1B, SFB-SW-2A, SFB-SW-2B, SFB-SW-3A, SFB-SW-3B				

<u>Blanks</u>

Target analytes were not detected in the laboratory method blank.

Surrogate Recoveries

The surrogate percent recoveries (%Rs) met the laboratory acceptance criteria in the sample analyses, with the exception of one sample. The following table summarizes surrogate recoveries outside the acceptance criteria in sample SFB-SW-2A and the resulting validation actions.

Sample ID	Surrogate	%R	%R QC Limits	Validation Action
SFB-SW-	Toluene-d8	135	80-120	The positive result for acetone in sample SFB-SW- 2A was gualified as estimated (J+) with a potential
2A	4-Bromofluorobenzene	135	73-120	high bias. Qualification was not required for the other analytes since they were nondetect.

The laboratory narrative made no statement regarding reanalysis of this sample. However, surrogate recoveries were also outside the acceptance criteria in the related MS, MSD, and CC samples; no validation actions were taken on this basis.

MS/MSD Results

MS/MSD analyses were performed on sample SFB-SW-2A. The following table summarizes the MS/MSD results that did not meet the acceptance criteria, the associated sample, and the resulting validation actions.

MS/MSD Sample ID	Compound	MS %R	MSD %R	RPD	MS/MSD %R/RPD QC Limits	Validation Action
SFB-SW-2A	1,1-Dichloroethane	-	133	-	77-120 / 20	Qualification was not required

MS/MSD Sample ID	Compound	MS %R	MSD %R	RPD	MS/MSD %R/RPD QC Limits	Validation Action
	1,2-Dichloropropane	-	128	-	76-120 / 20	since the noted analytes
	Benzene	-	125	-	71-124 / 13	were nondetect in sample SFB-MW-2A.
	Chloromethane	-	132	18	68-124 / 15	
	cis-1,2-Dichloroethene	-	129	-	74-124 / 15	
	Methylene Chloride	-	134	-	75-124 / 15	
	trans-1,2- Dichloroethene	-	133	-	73-127 / 20	
	Trichloroethene	-	127	-	74-123 / 16	

Note that the laboratory did not report MS/MSD %Rs and RPD for total xylenes. The %Rs and RPD were calculated during validation and were within the laboratory's acceptance criteria (%R within 76-122% and RPD \leq 16%).

Internal Standards

All internal standards met the method acceptance criteria.

LCS Results

An LCS was analyzed with the VOC analysis batch. The following table summarizes the LCS %R that was outside the acceptance criteria, the associated samples, and the resulting validation actions.

Analyte	LCS %R	LCS %R QC Limits	Validation Actions	
Chloroethane	54	69-136	The positive and nondetect results for chloroethane in the associated samples were qualified as estimated (J/UJ). Low bias was not applied to the positive result in sample SFB-SW-3B since this result was also qualified as estimated (J) due to a CC nonconformance; the overall qualification is estimated (J) with no bias for chloroethane in this sample.	
Associated samples: SFB-SW-1A, SFB-SW-1B, SFB-SW-2A, SFB-SW-2B, SFB-SW-3A, SFB-SW-3B				

Note that the laboratory did not report LCS %R for total xylenes. The LCS %R was calculated during validation and was within the laboratory's acceptance criteria (76-122%).

Field Duplicate Results

No field duplicate pairs were submitted with this sample set.

Sample Results and Reported QLs

Sample calculations were spot-checked, and no errors were noted.

The following table summarizes the dilutions performed for the VOC analyses. QLs were elevated accordingly by the laboratory.

Parameter	Sample ID	Dilution	Reason for Dilution
VOCa	SFB-SW-3A	4-fold	Samples were diluted due to foaming in the
VOCs	SFB-SW-3B	2-fold	initial analysis.

Select VOC results were reported below the lowest calibration standard level and QL. These results were qualified as estimated (J) by the laboratory.

Target Compound Identification

All criteria were met.

QUALIFIED FORM 1s

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-160007-1				
SDG No.:					
Client Sample ID: SFB-SW-1A	Lab Sample ID: 480-160007-1				
Matrix: Water	Lab File ID: S0229.D				
Analysis Method: 8260C	Date Collected: 09/25/2019 11:20				
Sample wt/vol: 5(mL)	Date Analyzed: 10/06/2019 23:29				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 496235	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	ND		1.0	0.31
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	-ND-	UJ	1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	-NĐ-	UJ	1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
78-93-3	2-Butanone (MEK)	-ND-	UJ	10	1.3
591-78-6	2-Hexanone	ND		5.0	1.2
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	5.7	J	10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	-ND-	UJ	1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
75-00-3	Chloroethane	-ND	🖊 UJ	1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	ND		1.0	0.18
124-48-1	Dibromochloromethane	ND		1.0	0.32
75-71-8	Dichlorodifluoromethane	ND		1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74
98-82-8	Isopropylbenzene	ND		1.0	0.79

b Name: Eurofins TestAmerica, Buffalo	Job No.: 480-160007-1				
G No.:					
ient Sample ID: SFB-SW-1A	Lab Sample ID: 480-160007-1				
trix: Water	Lab File ID: S0229.D				
alysis Method: 8260C	Date Collected: 09/25/2019 11:20				
mple wt/vol: 5(mL)	Date Analyzed: 10/06/2019 23:29				
il Aliquot Vol:	Dilution Factor: 1				
il Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)				
Moisture:	Level: (low/med) Low				
alysis Batch No.: 496235	Units: ug/L				
<pre>mple wt/vol: 5(mL) il Aliquot Vol: il Extract Vol.: Moisture:</pre>	Date Analyzed: 10/06/2019 23:29 Dilution Factor: 1 GC Column: ZB-624 (20) ID: 0.18 (mm) Level: (low/med) Low				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	-ND	UJ	2.5	1.3
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND		1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	113		77-120
460-00-4	4-Bromofluorobenzene (Surr)	114		73-120
1868-53-7	Dibromofluoromethane (Surr)	118		75-123
2037-26-5	Toluene-d8 (Surr)	111		80-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-160007-1				
SDG No.:					
Client Sample ID: SFB-SW-1B	Lab Sample ID: 480-160007-2				
Matrix: Water	Lab File ID: S0230.D				
Analysis Method: 8260C	Date Collected: 09/25/2019 11:30				
Sample wt/vol: 5(mL)	Date Analyzed: 10/06/2019 23:52				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 496235	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND		1.0	0.31
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	-ND-	UJ	1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	-ND-	UJ	1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
78-93-3	2-Butanone (MEK)	-ND	UJ	10	1.3
591-78-6	2-Hexanone	ND		5.0	1.2
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	-ND-	UJ	1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
75-00-3	Chloroethane	ND	/ UJ	1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	ND		1.0	0.18
124-48-1	Dibromochloromethane	ND		1.0	0.32
75-71-8	Dichlorodifluoromethane	ND		1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74
98-82-8	Isopropylbenzene	ND		1.0	0.79

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: <u>480-160007-1</u>				
SDG No.:					
Client Sample ID: SFB-SW-1B	Lab Sample ID: 480-160007-2				
Matrix: Water	Lab File ID: S0230.D				
Analysis Method: 8260C	Date Collected: 09/25/2019 11:30				
Sample wt/vol: 5(mL)	Date Analyzed: 10/06/2019 23:52				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 496235	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	ND-	UJ	2.5	1.3
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND		1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	116		77-120
460-00-4	4-Bromofluorobenzene (Surr)	111		73-120
1868-53-7	Dibromofluoromethane (Surr)	114		75-123
2037-26-5	Toluene-d8 (Surr)	114		80-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-160007-1				
SDG No.:					
Client Sample ID: SFB-SW-2A	Lab Sample ID: 480-160007-3				
Matrix: Water	Lab File ID: S0231.D				
Analysis Method: 8260C	Date Collected: 09/25/2019 12:45				
Sample wt/vol: 5(mL)	Date Analyzed: 10/07/2019 00:15				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 496235	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND		1.0	0.31
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
75-34-3	1,1-Dichloroethane	ND	F1	1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	-ND-	UJ	1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	- ND	UJ	1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND	F1	1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
78-93-3	2-Butanone (MEK)	-ND-	UJ	10	1.3
591-78-6	2-Hexanone	ND		5.0	1.2
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	15	J+	10	3.0
71-43-2	Benzene	ND	-F1	1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	-ND-	UJ	1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
75-00-3	Chloroethane		🖌 UJ	1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND	<u>F2 F1</u>	1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND	F1	1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	ND		1.0	0.18
124-48-1	Dibromochloromethane	ND		1.0	0.32
75-71-8	Dichlorodifluoromethane	ND		1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74
98-82-8	Isopropylbenzene	ND		1.0	0.79

ame: Eurofins TestAmerica, Buffalo	Job No.: 480-160007-1				
o.:					
t Sample ID: SFB-SW-2A	Lab Sample ID: 480-160007-3				
x: Water	Lab File ID: S0231.D				
sis Method: 8260C	Date Collected: 09/25/2019 12:45				
e wt/vol: 5(mL)	Date Analyzed: 10/07/2019 00:15				
Aliquot Vol:	Dilution Factor: 1				
Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)				
sture:	Level: (low/med) Low				
sis Batch No.: <u>496235</u>	Units: ug/L				
sis Method: 8260C e wt/vol: 5(mL) Aliquot Vol: Extract Vol.: sture:	Date Collected: 09/25/2019 12:45 Date Analyzed: 10/07/2019 00:15 Dilution Factor: 1 GC Column: ZB-624 (20) ID: 0.18(mm) Level: (low/med) Low				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	-ND-	UJ	2.5	1.3
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	ND	<u>F1</u>	1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND	-P1	1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND	F1	1.0	0.46
75-69-4	Trichlorofluoromethane	ND		1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	114		77-120
460-00-4	4-Bromofluorobenzene (Surr)	135	Х	73-120
1868-53-7	Dibromofluoromethane (Surr)	118		75-123
2037-26-5	Toluene-d8 (Surr)	135	Х	80-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-160007-1				
SDG No.:					
Client Sample ID: SFB-SW-2B	Lab Sample ID: 480-160007-4				
Matrix: Water	Lab File ID: S0232.D				
Analysis Method: 8260C	Date Collected: 09/25/2019 12:30				
Sample wt/vol: 5(mL)	Date Analyzed: 10/07/2019 00:38				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 496235	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	ND		1.0	0.31
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND	UJ	1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	- ND -	UJ	1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
78-93-3	2-Butanone (MEK)	-ND-	UJ	10	1.3
591-78-6	2-Hexanone	ND		5.0	1.2
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	37		10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	-ND-	UJ	1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
75-00-3	Chloroethane	-ND-	7 UJ	1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	ND		1.0	0.18
124-48-1	Dibromochloromethane	ND		1.0	0.32
75-71-8	Dichlorodifluoromethane	ND		1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74
98-82-8	Isopropylbenzene	ND		1.0	0.79

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: <u>480-160007-1</u>				
SDG No.:					
Client Sample ID: SFB-SW-2B	Lab Sample ID: 480-160007-4				
Matrix: Water	Lab File ID: S0232.D				
Analysis Method: 8260C	Date Collected: 09/25/2019 12:30				
Sample wt/vol: 5(mL)	Date Analyzed: 10/07/2019 00:38				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 496235	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	-ND-	UJ	2.5	1.3
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND		1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	107		77-120
460-00-4	4-Bromofluorobenzene (Surr)	112		73-120
1868-53-7	Dibromofluoromethane (Surr)	114		75-123
2037-26-5	Toluene-d8 (Surr)	112		80-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: <u>480-160007-1</u>			
SDG No.:				
Client Sample ID: SFB-SW-3A	Lab Sample ID: 480-160007-5			
Matrix: Water	Lab File ID: S0233.D			
Analysis Method: 8260C	Date Collected: 09/25/2019 12:10			
Sample wt/vol: 5(mL)	Date Analyzed: 10/07/2019 01:01			
Soil Aliquot Vol:	Dilution Factor: 4			
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 496235	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		4.0	3.3
79-34-5	1,1,2,2-Tetrachloroethane	ND		4.0	0.84
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND		4.0	1.2
79-00-5	1,1,2-Trichloroethane	ND		4.0	0.92
75-34-3	1,1-Dichloroethane	ND		4.0	1.5
75-35-4	1,1-Dichloroethene	ND		4.0	1.2
120-82-1	1,2,4-Trichlorobenzene	-ND-	UJ	4.0	1.6
96-12-8	1,2-Dibromo-3-Chloropropane	• ND	UJ	4.0	1.6
106-93-4	1,2-Dibromoethane	ND		4.0	2.9
95-50-1	1,2-Dichlorobenzene	ND		4.0	3.2
107-06-2	1,2-Dichloroethane	ND		4.0	0.84
78-87-5	1,2-Dichloropropane	ND		4.0	2.9
541-73-1	1,3-Dichlorobenzene	ND		4.0	3.1
106-46-7	1,4-Dichlorobenzene	ND		4.0	3.4
78-93-3	2-Butanone (MEK)	- ND	UJ	40	5.3
591-78-6	2-Hexanone	ND		20	5.0
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		20	8.4
67-64-1	Acetone	ND		40	12
71-43-2	Benzene	ND		4.0	1.6
75-27-4	Bromodichloromethane	ND		4.0	1.6
75-25-2	Bromoform	ND		4.0	1.0
74-83-9	Bromomethane	-ND-	UJ	4.0	2.8
75-15-0	Carbon disulfide	ND		4.0	0.76
56-23-5	Carbon tetrachloride	ND		4.0	1.1
108-90-7	Chlorobenzene	ND		4.0	3.0
75-00-3	Chloroethane	ND	UJ	4.0	1.3
67-66-3	Chloroform	ND		4.0	1.4
74-87-3	Chloromethane	ND		4.0	1.4
156-59-2	cis-1,2-Dichloroethene	ND		4.0	3.2
10061-01-5	cis-1,3-Dichloropropene	ND		4.0	1.4
110-82-7	Cyclohexane	ND		4.0	0.72
124-48-1	Dibromochloromethane	ND		4.0	1.3
75-71-8	Dichlorodifluoromethane	ND		4.0	2.7
100-41-4	Ethylbenzene	ND		4.0	3.0
98-82-8	Isopropylbenzene	ND		4.0	3.2

Job No.: 480-160007-1			
Lab Sample ID: 480-160007-5			
Lab File ID: S0233.D			
Date Collected: 09/25/2019 12:10			
Date Analyzed: 10/07/2019 01:01			
Dilution Factor: 4			
GC Column: ZB-624 (20) ID: 0.18(mm)			
Level: (low/med) Low			
Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	-ND-	UJ	10	5.2
1634-04-4	Methyl tert-butyl ether	ND		4.0	0.64
108-87-2	Methylcyclohexane	ND		4.0	0.64
75-09-2	Methylene Chloride	ND		4.0	1.8
100-42-5	Styrene	ND		4.0	2.9
127-18-4	Tetrachloroethene	ND		4.0	1.4
108-88-3	Toluene	ND		4.0	2.0
156-60-5	trans-1,2-Dichloroethene	ND		4.0	3.6
10061-02-6	trans-1,3-Dichloropropene	ND		4.0	1.5
79-01-6	Trichloroethene	ND		4.0	1.8
75-69-4	Trichlorofluoromethane	ND		4.0	3.5
75-01-4	Vinyl chloride	ND		4.0	3.6
1330-20-7	Xylenes, Total	ND		8.0	2.6

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	112		77-120
460-00-4	4-Bromofluorobenzene (Surr)	99		73-120
1868-53-7	Dibromofluoromethane (Surr)	118		75-123
2037-26-5	Toluene-d8 (Surr)	114		80-120

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: <u>480-160007-1</u>			
SDG No.:				
Client Sample ID: SFB-SW-3B	Lab Sample ID: 480-160007-6			
Matrix: Water	Lab File ID: S0234.D			
Analysis Method: 8260C	Date Collected: 09/25/2019 12:00			
Sample wt/vol: 5(mL)	Date Analyzed: 10/07/2019 01:24			
Soil Aliquot Vol:	Dilution Factor: 2			
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 496235	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		2.0	1.6
79-34-5	1,1,2,2-Tetrachloroethane	ND		2.0	0.42
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND		2.0	0.62
79-00-5	1,1,2-Trichloroethane	ND		2.0	0.46
75-34-3	1,1-Dichloroethane	ND		2.0	0.76
75-35-4	1,1-Dichloroethene	ND		2.0	0.58
120-82-1	1,2,4-Trichlorobenzene	ND	UJ	2.0	0.82
96-12-8	1,2-Dibromo-3-Chloropropane	ND	UJ	2.0	0.78
106-93-4	1,2-Dibromoethane	ND		2.0	1.5
95-50-1	1,2-Dichlorobenzene	ND		2.0	1.6
107-06-2	1,2-Dichloroethane	ND		2.0	0.42
78-87-5	1,2-Dichloropropane	ND		2.0	1.4
541-73-1	1,3-Dichlorobenzene	ND		2.0	1.6
106-46-7	1,4-Dichlorobenzene	ND		2.0	1.7
78-93-3	2-Butanone (MEK)	-ND-	UJ	20	2.6
591-78-6	2-Hexanone	ND		10	2.5
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		10	4.2
67-64-1	Acetone	22		20	6.0
71-43-2	Benzene	ND		2.0	0.82
75-27-4	Bromodichloromethane	ND		2.0	0.78
75-25-2	Bromoform	ND		2.0	0.52
74-83-9	Bromomethane	-MD-	UJ	2.0	1.4
75-15-0	Carbon disulfide	ND		2.0	0.38
56-23-5	Carbon tetrachloride	ND		2.0	0.54
108-90-7	Chlorobenzene	ND		2.0	1.5
75-00-3	Chloroethane	13	† J	2.0	0.64
67-66-3	Chloroform	ND		2.0	0.68
74-87-3	Chloromethane	ND		2.0	0.70
156-59-2	cis-1,2-Dichloroethene	ND		2.0	1.6
10061-01-5	cis-1,3-Dichloropropene	ND		2.0	0.72
110-82-7	Cyclohexane	ND		2.0	0.36
124-48-1	Dibromochloromethane	ND		2.0	0.64
75-71-8	Dichlorodifluoromethane	ND		2.0	1.4
100-41-4	Ethylbenzene	ND		2.0	1.5
98-82-8	Isopropylbenzene	ND		2.0	1.6

Job No.: 480-160007-1			
Lab Sample ID: 480-160007-6			
Lab File ID: S0234.D			
Date Collected: 09/25/2019 12:00			
Date Analyzed: 10/07/2019 01:24			
Dilution Factor: 2			
GC Column: ZB-624 (20) ID: 0.18(mm)			
Level: (low/med) Low			
Units: ug/L			
-			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate		UJ	5.0	2.6
1634-04-4	Methyl tert-butyl ether	ND		2.0	0.32
108-87-2	Methylcyclohexane	ND		2.0	0.32
75-09-2	Methylene Chloride	ND		2.0	0.88
100-42-5	Styrene	ND		2.0	1.5
127-18-4	Tetrachloroethene	ND		2.0	0.72
108-88-3	Toluene	ND		2.0	1.0
156-60-5	trans-1,2-Dichloroethene	ND		2.0	1.8
10061-02-6	trans-1,3-Dichloropropene	ND		2.0	0.74
79-01-6	Trichloroethene	ND		2.0	0.92
75-69-4	Trichlorofluoromethane	ND		2.0	1.8
75-01-4	Vinyl chloride	ND		2.0	1.8
1330-20-7	Xylenes, Total	ND		4.0	1.3

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	115		77-120
460-00-4	4-Bromofluorobenzene (Surr)	109		73-120
1868-53-7	Dibromofluoromethane (Surr)	113		75-123
2037-26-5	Toluene-d8 (Surr)	111		80-120

QC NONCONFORMANCE DOCUMENTATION

FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name:	Eurofins TestAmerica	, Buffalo	Job No.: <mark>480-160007-1</mark>
SDG No.:			
Lab Sample	e ID: <mark>CCVIS 480-49623</mark>	5/3	Calibration Date: (10/06/2019 19:39)
Instrument	ID: HP5973S		Calib Start Date: 09/10/2019 14:39
GC Column	ZB-624 (20)	ID: 0.18(mm)	Calib End Date: 09/10/2019 17:20
Lab File I	ID: <u>S0219.D</u>		Conc. Units: $\underline{ug/L}$ Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	1.766	1.445	0.1000	20.5	25.0	-18.1	50.0
Chloromethane	Ave	1.971	1.921	0.1000	24.4	25.0	-2.5	20.0
Butadiene	Ave	1.897	1.937		25.5	25.0	2.1	20.0
Vinyl chloride	Ave	1.650	1.412	0.1000	21.4	25.0	-14.4	20.0
Bromomethane	Ave	1.167	0.7429	0.1000	15.9	25.0	<mark>-36.4</mark>	50.0
Chloroethane	Ave	1.105	0.6701	0.1000	15.2	25.0	<mark>-39.3</mark>	50.0
Dichlorofluoromethane	Ave	2.390	1.623		17.0	25.0	-32.1*	20.0
Trichlorofluoromethane	Ave	2.275	1.839	0.1000	20.2	25.0	-19.2	20.0
Ethyl ether	Ave	1.340	1.067		19.9	25.0	-20.4*	20.0
Acrolein	Ave	0.2245	0.2038		113	125	-9.2	50.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	1.255	1.162	0.1000	23.1	25.0	-7.4	20.0
1,1-Dichloroethene	Ave	1.228	1.100	0.1000	22.4	25.0	-10.4	20.0
Acetone	Ave	0.5189	0.5357	0.1000	129	125	3.2	50.0
Iodomethane	Ave	2.337	2.329		24.9	25.0	-0.3	20.0
Carbon disulfide	Ave	4.017	3.715	0.1000	23.1	25.0	-7.5	20.0
Allyl chloride	Ave	2.451	2.370		24.2	25.0	-3.3	20.0
Methyl acetate	Ave	1.239	1.520	0.1000	61.3	50.0	<mark>22.6</mark>	50.0
Methylene Chloride	Lin1		1.485	0.1000	26.7	25.0	6.7	20.0
2-Methyl-2-propanol	Ave	0.1059	0.1717		405	250	62.1*	50.0
Methyl tert-butyl ether	Ave	4.030	3.965	0.1000	24.6	25.0	-1.6	20.0
trans-1,2-Dichloroethene	Ave	1.397	1.454	0.1000	26.0	25.0	4.1	20.0
Acrylonitrile	Ave	0.6239	0.7382		296	250	18.3	20.0
Hexane	Ave	2.260	2.115		23.4	25.0	-6.4	20.0
1,1-Dichloroethane	Ave	2.503	2.594	0.2000	25.9	25.0	3.6	20.0
Vinyl acetate	Ave	3.731	3.559		47.7	50.0	-4.6	20.0
2,2-Dichloropropane	Ave	1.469	1.327		22.6	25.0	-9.7	20.0
cis-1,2-Dichloroethene	Ave	1.539	1.629	0.1000	26.5	25.0	5.9	20.0
<mark>2-Butanone</mark> (MEK)	Ave	0.7507	0.9039	0.1000	151	125	<mark>20.4</mark> *	20.0
Chlorobromomethane	Ave	0.8090	0.8830		27.3	25.0	9.1	20.0
Tetrahydrofuran	Ave	0.5409	0.5907		54.6	50.0	9.2	20.0
Chloroform	Ave	2.503	2.385	0.2000	23.8	25.0	-4.7	20.0
1,1,1-Trichloroethane	Ave	2.110	1.953	0.1000	23.1	25.0	-7.4	20.0
Cyclohexane	Ave	2.628	2.639	0.1000	25.1	25.0	0.4	20.0
Carbon tetrachloride	Ave	1.889	1.797	0.1000	23.8	25.0	-4.9	20.0
1,1-Dichloropropene	Ave	1.900	1.844		24.3	25.0	-3.0	20.0
Benzene	Ave	5.604	5.773	0.5000	25.8	25.0	3.0	20.0
Isobutyl alcohol	Ave	0.0613	0.0847		863	625	38.0	50.0
1,2-Dichloroethane	Ave	2.192	1.973	0.1000	22.5	25.0	-10.0	20.0
n-Heptane	Ave	2.853	2.334		20.4	25.0	-18.2	20.0
Trichloroethene	Ave	1.447	1.457	0.2000	25.2	25.0	0.7	20.0

FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: Eurofins TestAmerica, Buffalo			Job No.: <u>480-160007-1</u>					
SDG No.:								
Lab Sample	e ID: <u>CCVIS 480-49623</u>	5/3	Calibration Date:	10/06/2019 19:39				
Instrument	ID: HP5973S		Calib Start Date:	09/10/2019 14:39				
GC Column	: ZB-624 (20)	ID: 0.18(mm)	Calib End Date: 09	9/10/2019 17:20				
Lab File I	ID: <u>S0219.D</u>		Conc. Units: ug/L	Heated Purge: (Y/N) N				

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dibromo-3-Chloropropane	Ave	0.1612	0.1246	0.0500	19.3	25.0	<mark>-22.7</mark>	50.0
1,2,4-Trichlorobenzene	Ave	1.142	0.6690	0.2000	14.6	25.0	<mark>-41.4</mark> *	20.0
Hexachlorobutadiene	Ave	0.4956	0.2786		14.1	25.0	-43.8*	20.0
Naphthalene	Ave	2.984	1.548		13.0	25.0	-48.1*	20.0
1,2,3-Trichlorobenzene	Ave	1.033	0.5702		13.8	25.0	-44.8*	20.0
Dibromofluoromethane (Surr)	Ave	1.268	1.413		27.9	25.0	11.4	20.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.7981	0.8561		26.8	25.0	7.3	20.0
Toluene-d8 (Surr)	Ave	2.476	3.184		32.2	25.0	28.6*	20.0
4-Bromofluorobenzene (Surr)	Ave	0.8963	1.061		29.6	25.0	18.4	20.0

FORM II GC/MS VOA SURROGATE RECOVERY

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-160007-1

SDG No.:

Matrix: <u>Water</u> Level: Low

GC Column (1): ZB-624 (20) ID: 0.18(mm)

Client Sample ID	Lab Sample ID	dbfm #	DCA #	TOL #	BFB #
SFB-SW-1A	480-160007-1	118	113	111	114
SFB-SW-1B	480-160007-2	114	116	114	111
SFB-SW-2A	480-160007-3	118	114	<mark>135</mark> X	<mark>135</mark> X
SFB-SW-2B	480-160007-4	114	107	112	112
SFB-SW-3A	480-160007-5	118	112	114	99
SFB-SW-3B	480-160007-6	113	115	111	109
	MB 480-496235/7	100	94	115	115
	LCS 480-496235/5	113	108	115	112
SFB-SW-2A MS	480-160007-3 MS	117	108	121 X	114
SFB-SW-2A MSD	480-160007-3 MSD	130 X	117	115	114

	QC LIMITS
DBFM = Dibromofluoromethane (Surr)	75-123
DCA = 1, 2-Dichloroethane-d4 (Surr)	77-120
TOL = Toluene-d8 (Surr)	80-120
BFB = 4-Bromofluorobenzene (Surr)	73-120

FORM II 8260C

FORM III GC/MS VOA MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-160007-1

SDG No.:

Matrix: Water Level: Low Lab File ID: <u>S0243.D</u>

Lab ID: 480-160007-3 MSD Client ID: SFB-SW-2A MSD

	SPIKE	MSD	MSD	-	QC LI	IMITS	
COMPOUND	ADDED (ug/L)	CONCENTRATION (ug/L)	% REC	% RPD	RPD	REC	#
1,1,1-Trichloroethane	25.0	31.2	125			73-126	
1,1,2,2-Tetrachloroethane	25.0	25.3	101		15	76-120	
1,1,2-Trichloro-1,2,2-trifluor	25.0	28.4	114			61-148	1
oethane	20.0				20	01 110	
1,1,2-Trichloroethane	25.0	26.3	105	3	15	76-122	
1,1-Dichloroethane	25.0	33.1	133	10	20	77-120	F1
1,1-Dichloroethene	25.0	30.4	122	11	16	66-127	
1,2,4-Trichlorobenzene	25.0	22.1	89		20	79-122	
1,2-Dibromo-3-Chloropropane	25.0	19.0	76			56-134	
1,2-Dibromoethane	25.0	25.6	102	3	15	77-120	
1,2-Dichlorobenzene	25.0	26.7	107	1	20	80-124	
1,2-Dichloroethane	25.0	26.8	107	8		75-120	
1,2-Dichloropropane	25.0	32.0	<mark>128</mark>	· · · · · · · · · · · · · · · · · · ·	-	76-120	
1,3-Dichlorobenzene	25.0	26.8	107	3	20	77-120	
1,4-Dichlorobenzene	25.0	26.0	104	1	20	78-124	
2-Butanone (MEK)	125	170	136	11	20	57-140	
2-Hexanone	125	121	97	1	15	65-127	
4-Methyl-2-pentanone (MIBK)	125	124	99	7	35	71-125	
Acetone	125	157	113	13	15	56-142	
Benzene	25.0	31.3	<mark>125</mark>	9	13	71-124	F1
Bromodichloromethane	25.0	29.1	116	9	15	80-122	
Bromoform	25.0	25.9	103	1	15	61-132	
Bromomethane	25.0	20.9	84	8	15	55-144	
Carbon disulfide	25.0	31.2	125	11	15	59-134	
Carbon tetrachloride	25.0	31.3	125	13	15	72-134	
Chlorobenzene	25.0	28.0	112	1		80-120	
Chloroethane	25.0	21.0	84	12		69-136	
Chloroform	25.0	30.1	120	12	20	73-127	
Chloromethane	25.0	33.0	<mark>132</mark>	<mark>18</mark>	15		F1 F2
cis-1,2-Dichloroethene	25.0	32.4	<mark>129</mark>	10		74-124	
cis-1,3-Dichloropropene	25.0	26.9	107	6	15	74-124	
Cyclohexane	25.0	29.8	119	10	20	59-135	
Dibromochloromethane	25.0	26.7	107	3		75-125	
Dichlorodifluoromethane	25.0	21.7	87	9		59-135	
Ethylbenzene	25.0	27.7	111			77-123	
Isopropylbenzene	25.0	27.1	108			77-122	
Methyl acetate	50.0	63.8	128			74-133	
Methyl tert-butyl ether	25.0	29.5	118			77-120	
Methylcyclohexane	25.0	25.7	103		-	68-134	
Methylene Chloride	25.0	33.6	<mark>134</mark>	· · · · · · · · · · · · · · · · · · ·		75-124	1
Styrene	25.0	25.7	103	2	20	80-120	
Tetrachloroethene	25.0	30.4	122	3	20	74-122	

Column to be used to flag recovery and RPD values

FORM III 8260C

FORM III GC/MS VOA MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-160007-1 SDG No.: Matrix: Water Level: Low Lab File ID: S0243.D Lab ID: 480-160007-3 MSD Client ID: SFB-SW-2A MSD MSD MSD QC LIMITS SPIKE ADDED CONCENTRATION % 90 # COMPOUND (ug/L) (ug/L) REC RPD RPD REC Toluene 25.0 28.1 113 15 80-122 4 33.3 133 12 73-127 trans-1,2-Dichloroethene 25.0 20 F1 25.0 25.1 15 80-120 trans-1,3-Dichloropropene 101 3

31.7

25.5

29.9

25.0

25.0

25.0

Trichloroethene

Vinyl chloride

Trichlorofluoromethane

15

19

11

16 74-123

62-150

65-133

20

15

F1

127

102

120

FORM III GC/MS VOA LAB CONTROL SAMPLE RECOVERY

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-160007-1

SDG No.:

Matrix: Water Level: Low Lab File ID: S0221.D

Lab ID: LCS 480-496235/5 Client ID:

	SPIKE ADDED	LCS CONCENTRATION	LCS	QC LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	π
1,1,1-Trichloroethane	25.0	21.8	87		
1,1,2,2-Tetrachloroethane	25.0	23.2	93		
1,1,2-Trichloro-1,2,2-trifluor	25.0	22.9	91		
oethane	20.0			01 110	
1,1,2-Trichloroethane	25.0	23.2	93	76-122	
1,1-Dichloroethane	25.0	24.4	98	77-120	
1,1-Dichloroethene	25.0	22.7	91	66-127	
1,2,4-Trichlorobenzene	25.0	20.6	83	79-122	
1,2-Dibromo-3-Chloropropane	25.0	17.8	71	56-134	
1,2-Dibromoethane	25.0	23.1	92	77-120	
1,2-Dichlorobenzene	25.0	23.7	95	80-124	
1,2-Dichloroethane	25.0	22.0	88	75-120	
1,2-Dichloropropane	25.0	25.3	101	76-120	
1,3-Dichlorobenzene	25.0	23.6	94	77-120	
1,4-Dichlorobenzene	25.0	23.2	93	80-120	
2-Butanone (MEK)	125	147	118	57-140	
2-Hexanone	125	119	95	65-127	
4-Methyl-2-pentanone (MIBK)	125	121	97	71-125	
Acetone	125	133	106	56-142	
Benzene	25.0	24.3	97	71-124	
Bromodichloromethane	25.0	22.8	91	80-122	
Bromoform	25.0	22.2	89	61-132	
Bromomethane	25.0	16.7	67	55-144	
Carbon disulfide	25.0	23.0	92		
Carbon tetrachloride	25.0	22.2	89	72-134	
Chlorobenzene	25.0	23.8	95		
Chloroethane	25.0	13.6	<mark>54</mark>		
Chloroform	25.0	22.5	90		
Chloromethane	25.0	22.5	90		
cis-1,2-Dichloroethene	25.0	24.5	98		
cis-1,3-Dichloropropene	25.0	22.1	88		
Cyclohexane	25.0	23.4	94		
Dibromochloromethane	25.0	23.4	94		
Dichlorodifluoromethane	25.0	19.8	79		
Ethylbenzene	25.0	23.6	95		
Isopropylbenzene	25.0	22.5	90		
Methyl acetate	50.0	54.1	108		
Methyl tert-butyl ether	25.0	23.4	94		
Methylcyclohexane	25.0	21.8	87		
Methylene Chloride	25.0	25.4	101		
Styrene	25.0	23.7	95		
Tetrachloroethene	25.0	24.1	97	74-122	

Column to be used to flag recovery and RPD values

FORM III 8260C

Data Usability Summary Report

Site:Schatz Federal BearingsLaboratory:Eurofins TestAmerica Buffalo – Amherst, NYSDG No.:480-160007-1Parameters:Metals and Total Suspended SolidsData Reviewer:Amy Bass/TRCPeer Reviewer:Elizabeth Denly/TRCDate:January 10, 2020

Sample Reviewed and Evaluation Summary

6 Surface Water Samples:	SFB-SW-1A, SFB-SW-1B, SFB-SW-2A, SFB-SW-2B,
	SFB-SW-3A, SFB-SW-3B

The above-listed surface water samples were collected on September 25, 2019, and were analyzed for the following parameters:

- Total Metals by SW-846 Methods 6010C/7470A
- Total Suspended Solids (TSS) by Standard Method 2540D

The data validation was performed in accordance with USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review (EPA-540-R-2017-001), January 2017, modified for the methodologies utilized.

The data were evaluated based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- * Data Completeness
- Holding Times and Sample Preservation
- Initial and Continuing Calibrations
 - Interference Check Sample (ICS) Results
 - Blanks
 - Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- NA Laboratory Duplicate Results
- * Inductively Coupled Plasma (ICP) Serial Dilution Results
- * Laboratory Control Sample (LCS) Results
- NA Field Duplicate Results
- * Sample Results and Reported Quantitation Limits (QLs)
- * All criteria were met.
- NA Field duplicates and laboratory duplicates were not associated with this sample set.

Overall Evaluation of Data and Potential Usability Issues

All results are usable for the project objectives. Qualifications applied to the data as a result of sampling error were not required. Qualifications applied to the data as a result of analytical error are discussed below.

• Potential uncertainty exists for select metals results that were detected between the method detection limit (MDL) and QL. These results were qualified as estimated (J) by the

laboratory. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.

- The nondetect results for antimony in samples SFB-SW-2B and SFB-SW-3A were qualified as estimated (UJ) due to negative interference in the interference check sample. These results can be used for project objectives as nondetects with estimated QLs, which may have a minor impact on the data usability.
- The positive result for zinc in sample SFB-SW-3B was qualified as estimated (J) due to method blank contamination. This result can be used for project objectives as an estimated value, which may have a minor impact on the data usability
- The positive results for aluminum, copper, iron, lead, potassium and zinc were qualified as estimated (J) in al surface water samples due to MS/MSD nonconformances. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.

Data Completeness

The data package was a complete Level IV data deliverable package.

Holding Times and Sample Preservation

All holding time and sample preservation criteria were met.

Initial and Continuing Calibrations

All initial calibration correlation coefficients for the metals analyses were >0.995. The initial calibration verification and continuing calibration verification percent recoveries (%Rs) for the metals analyses met the method acceptance limits (90-110%), and the low-level continuing calibration verification %Rs were within the method acceptance limits of 70-130%.

ICS Results

All analytes recovered within the acceptance limits in the ICSAB sample analyses.

Several analytes (antimony, barium, chromium, cobalt, copper, manganese, nickel, and vanadium) were detected as positive or negative interference in the ICSA analysis, at levels exceeding the MDL but below the QL. Interferents (aluminum, calcium, iron, and magnesium) were detected in samples SFB-SW-1A, SFB-SW-1B, SFB-SW-2A, and SFB-SW-3B at concentrations less than 50% of the concentrations spiked into the ICSA; thus, ICS interferences were not evaluated for these samples. The interferent iron was detected in samples SFB-SW-2B and SFB-SW-3A at levels comparable to the ICSA spike concentration; therefore, the relevant analytes were evaluated for potential interference in these samples.

- The nondetect results for antimony in samples SFB-SW-2B and SFB-SW-3A were qualified as estimated (UJ) due to the negative interference.
- All other relevant analytes were detected in these samples at concentrations exceeding the estimated interference levels, or they were detected at concentrations greater than 10x the negative interference in the associated ICSA. No further validation actions were required.

<u>Blanks</u>

The following table summarizes the metals detected in the associated laboratory method blanks, the concentrations detected, and the resulting validation actions.

Method Blank ID	Analyte	Blank Concentration (mg/L)	Validation Actions				
	Manganese	0.00204 J	Qualification was not required since the positive results for manganese in the associated samples exceeded 10x the blank concentration.				
MB 480- 495380/1-A	Zinc	0.00177 J	The positive result for zinc in sample SFB-SW-3B was qualified as estimated (J) since the result was > the QL and <10x the blank concentration. High bias was not applied since this result was also qualified as estimated (J) due to low MS recovery and MS/MSD variability; therefore, the overall qualifier is estimated (J) with no bias. Qualification was not required for the remaining zinc results since these results exceeded 10x the blank concentration.				
Associated sam	Associated samples: SFB-SW-1A, SFB-SW-1B, SFB-SW-2A, SFB-SW-2B, SFB-SW-3A, SFB-SW-3B						

No analytes were detected in the instrument calibration blanks for the metals analyses, and the TSS method blank was nondetect.

MS/MSD Results

MS/MSD analyses for metals and the post digestion spike (PDS) analysis were performed on sample SFB-SW-2A. Qualification of the data is not required in the case of nonconformances when the sample concentration is >4x the spike concentration; thus, these results were not evaluated or summarized in this report. The following table summarizes the MS/MSD %Rs and relative percent differences (RPDs) that were outside the acceptance limits (75-125% for %R; ≤20% for RPD), the associated samples, and the resulting validation actions. Acceptance limits are 80-120% for the PDS %R.

MS/MSD Parent Sample ID	Analyte	MS %R	MSD %R	MS/MSD RPD	PDS %R	Validation Action		
	Aluminum	-	136	35	-			
	Copper	-	-	21	-			
SFB-SW-	Iron	-22	-	47	-	The positive results for these analytes in the approximated complex were qualified on		
2A	Lead	55	-	40	-	the associated samples were qualified as estimated (J).		
	Potassium	-	131	-	-			
	Zinc	63	-	36	-			
Associated	Associated samples: SFB-SW-1A, SFB-SW-1B, SFB-SW-2A, SFB-SW-2B, SFB-SW-3A, SFB-SW-3B							
-: Met criteria	a							

The PDS %R for calcium was below the acceptance limits; however, qualification was not required since the corresponding MS/MSD and serial dilution results were within the acceptance limits.

Laboratory Duplicate Results

Laboratory duplicate analyses were not performed on any samples in this data set.

ICP Serial Dilution Results

The ICP serial dilution analysis was performed on sample SFB-SW-2A for metals (including mercury). All percent differences (%Ds) for analytes that were reported at >25x the QL in sample SFB-SW-2A were within the acceptance criteria (\leq 10%). No qualifications were required.

LCS Results

LCS analyses were included for the metals and TSS analyses. The LCS %Rs and RPDs met the laboratory-provided acceptance criteria.

Field Duplicate Results

No field duplicate pairs were submitted with this sample set.

Sample Results and Reported Quantitation Limits

Select metal results were reported between the MDL and QL in the associated samples. These results were qualified as estimated (J) by the laboratory.

Sample calculations were spot-checked and no errors were noted.

No dilutions were performed for the metals or TSS analyses.

QUALIFIED FORM 1s

Client Sample ID: SFB-SW-1A Lab Sample ID: 480-160007-1 Job No.: 480-160007-1 Lab Name: Eurofins TestAmerica, Buffalo SDG ID.: Matrix: Water Date Sampled: 09/25/2019 11:20 Reporting Basis: WET Date Received: 09/27/2019 10:00 CAS No. MDL Units С DIL Method Analyte Result. RT. Q 7429-90-5 Aluminum 22.6 0.20 0.060 mg/L 1 6010C J 7440-36-0 Antimony ND 0.020 0.0068 1 6010C mg/L 7440-38-2 ND 0.015 0.0056 6010C Arsenic mg/L 1 7440-39-3 Barium 0.20 0.0020 0.00070 6010C mg/L 1 7440-41-7 Beryllium 0.00030 6010C 0.00082 0.0020 mg/L J 1 7440-43-9 Cadmium 0.0082 0.0020 0.00050 mq/L 1 6010C 7440-70-2 Calcium 64.4 0.50 0.10 6010C mg/L 1 7440-47-3 0.024 0.0040 0.0010 6010C Chromium mg/L 1 7440-48-4 0.016 0.0040 0.00063 6010C Cobalt mg/L 1 0.0016 7440-50-8 Copper 0.096 0.010 mg/L 1 6010C J 7439-89-6 Iron 22.2 0.050 0.019 mq/L 1 6010C J 7439-92-1 0.21 0.010 0.0030 mg/L 6010C Lead 1 J 7439-95-4 Magnesium 15.9 0.20 0.043 mg/L 1 6010C 7439-96-5 9.2 0.0030 0.00040 6010C Manganese mg/L B 1 7440-02-0 Nickel 0.058 0.010 0.0013 6010C mg/L 1 7440-09-7 4.5 0.50 0.10 6010C Potassium mg/L 1 J 7782-49-2 Selenium 0.025 0.0087 6010C ND mg/L 1 7440-22-4 Silver 0.0017 6010C ND 0.0060 mg/L 1 7440-23-5 Sodium 6010C 20.1 1.0 0.32 mq/L 1 7440-28-0 Thallium 0.020 0.010 6010C ND mg/L 1 7440-62-2 Vanadium 0.031 0.0050 0.0015 mg/L 1 6010C 7440-66-6 0.29 0.0015 Zinc 0.010 mq/L × 1 6010C J 0.00020 7439-97-6 Mercury ND 0.00012 7470A mq/L 1

Client Sample ID: SFB-SW-1B Lab Sample ID: 480-160007-2 Job No.: 480-160007-1 Lab Name: Eurofins TestAmerica, Buffalo SDG ID.: Matrix: Water Date Sampled: 09/25/2019 11:30 Reporting Basis: WET Date Received: 09/27/2019 10:00 CAS No. MDL Units С DIL Method Analyte Result. RT. Q 7429-90-5 Aluminum 37.9 0.20 0.060 mq/L 1 6010C J 7440-36-0 Antimony ND 0.020 0.0068 1 6010C mg/L 7440-38-2 0.0073 0.015 0.0056 6010C Arsenic mg/L J 1 7440-39-3 Barium 0.24 0.0020 0.00070 6010C mg/L 1 7440-41-7 Beryllium 0.00030 6010C 0.0013 0.0020 mq/L J 1 7440-43-9 Cadmium 0.0015 0.0020 0.00050 mq/L J 1 6010C 7440-70-2 Calcium 59.4 0.50 0.10 6010C mg/L 1 7440-47-3 0.033 0.0040 0.0010 6010C Chromium mg/L 1 7440-48-4 0.014 0.0040 0.00063 6010C Cobalt mg/L 1 0.0016 7440-50-8 Copper 0.032 0.010 mg/L 1 6010C J 7439-89-6 Iron 28.0 0.050 0.019 mg/L 1 6010C J 7439-92-1 0.063 0.010 0.0030 mg/L 6010C Lead 1 J 7439-95-4 Magnesium 17.7 0.20 0.043 mg/L 1 6010C 7439-96-5 3.2 0.0030 0.00040 6010C Manganese mg/L K 1 7440-02-0 Nickel 0.034 0.010 0.0013 6010C mg/L 1 7440-09-7 4.8 0.50 0.10 6010C Potassium mg/L 1 J 7782-49-2 Selenium 0.025 0.0087 6010C ND mg/L 1 7440-22-4 Silver 0.0017 6010C ND 0.0060 mg/L 1 7440-23-5 Sodium 6010C 22.7 1.0 0.32 mq/L 1 7440-28-0 Thallium 0.020 0.010 6010C ND mg/L 1 7440-62-2 Vanadium 0.046 0.0050 0.0015 mg/L 1 6010C 7440-66-6 0.0015 Zinc 0.15 0.010 mq/L B 1 6010C J 0.00020 7439-97-6 Mercury ND 0.00012 7470A mq/L 1

Client Sample ID: SFB-SW-2A Lab Sample ID: 480-160007-3 Job No.: 480-160007-1 Lab Name: Eurofins TestAmerica, Buffalo SDG ID.: Matrix: Water Date Sampled: 09/25/2019 12:45 Reporting Basis: WET Date Received: 09/27/2019 10:00 CAS No. MDL Units С DIL Method Analyte Result. RT. Q 7429-90-5 Aluminum 4.7 0.20 0.060 mg/L F1 F2 1 6010C J 7440-36-0 Antimony ND 0.020 0.0068 1 6010C mg/L 7440-38-2 0.015 0.0056 6010C 0.0080 Arsenic mg/L ιT 1 7440-39-3 Barium 0.16 0.0020 0.00070 6010C mg/L 1 7440-41-7 0.00030 6010C Beryllium ND 0.0020 mq/L 1 7440-43-9 Cadmium 0.0024 0.0020 0.00050 mq/L 1 6010C 7440-70-2 Calcium 71.2 0.50 0.10 6010C mg/L 1 7440-47-3 0.0040 0.0010 6010C Chromium 0.010 mg/L 1 7440-48-4 0.0065 0.0040 0.00063 6010C Cobalt mg/L 1 0.0016 7440-50-8 Copper 0.074 0.010 mg/L <u>F2</u> 6010C 1 J 7439-89-6 Iron 24.6 0.050 0.019 mq/L F1 F2 1 6010C J 7439-92-1 0.16 0.010 0.0030 mg/L 6010C Lead F1 F2 1 J 7439-95-4 Magnesium 13.7 0.20 0.043 mg/L 1 6010C 7439-96-5 0.0030 0.00040 6010C 6.3 R F2 Manganese mg/L 1 7440-02-0 Nickel 0.017 0.010 0.0013 6010C mg/L 1 7440-09-7 Potassium 6.0 0.50 0.10 6010C mg/L F1 1 J 7782-49-2 Selenium 0.025 0.0087 6010C ND mg/L 1 7440-22-4 Silver 0.0017 6010C ND 0.0060 mg/L 1 7440-23-5 Sodium 20.9 0.32 6010C 1.0 mq/L 1 7440-28-0 Thallium 0.020 0.010 6010C ND mg/L 1 7440-62-2 Vanadium 0.0086 0.0050 0.0015 ma/L 1 6010C 7440-66-6 6010C Zinc 0.14 0.010 0.0015 mg/L B F1 1 J F2 7439-97-6 ND 0.00020 0.00012 7470A Mercury mq/L 1

Client Sample ID: SFB-SW-2B Lab Sample ID: 480-160007-4 Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-160007-1 SDG ID.: Matrix: Water Date Sampled: 09/25/2019 12:30 Reporting Basis: WET Date Received: 09/27/2019 10:00 CAS No. MDL Units С DIL Method Analyte Result. RT. Q 7429-90-5 Aluminum 67.6 0.20 0.060 mq/L 1 6010C J. 7440-36-0 Antimony ND 0.020 0.0068 1 6010C mg/L UJ 7440-38-2 0.015 0.0056 6010C 0.061 Arsenic mg/L 1 7440-39-3 Barium 0.97 0.0020 0.00070 6010C mg/L 1 7440-41-7 Beryllium 0.00030 6010C 0.0037 0.0020 mq/L 1 7440-43-9 Cadmium 0.028 0.0020 0.00050 mg/L 1 6010C 7440-70-2 Calcium 122 0.50 0.10 6010C mg/L 1 7440-47-3 0.15 0.0040 0.0010 6010C Chromium mg/L 1 7440-48-4 0.075 0.0040 0.00063 6010C Cobalt mg/L 1 0.0016 7440-50-8 Copper 0.97 0.010 mg/L 6010C 1 J 7439-89-6 Iron 174 0.050 0.019 mq/L 1 6010C J 7439-92-1 2.0 0.010 0.0030 mg/L 6010C Lead 1 J 7439-95-4 Magnesium 31.3 0.20 0.043 mg/L 1 6010C 7439-96-5 0.0030 0.00040 6010C 18.3 Manganese mg/L 1 B 7440-02-0 Nickel 0.22 0.010 0.0013 6010C mg/L 1 7440-09-7 20.0 0.50 0.10 6010C Potassium mg/L 1 7782-49-2 Selenium 0.011 0.025 0.0087 6010C mg/L J 1 7440-22-4 Silver 0.0017 6010C ND 0.0060 mg/L 1 7440-23-5 Sodium 21.5 6010C 1.0 0.32 mq/L 1 7440-28-0 Thallium 0.020 0.010 6010C ND mg/L 1 7440-62-2 Vanadium 0.11 0.0050 0.0015 mg/L 1 6010C 7440-66-6 0.0015 Zinc 1.9 0.010 mq/L 1 6010C ß J 7439-97-6 0.0011 0.00020 0.00012 7470A Mercury ma/L 1

Client Sample ID: SFB-SW-3A Lab Sample ID: 480-160007-5 Job No.: 480-160007-1 Lab Name: Eurofins TestAmerica, Buffalo SDG ID.: Matrix: Water Date Sampled: 09/25/2019 12:10 Reporting Basis: WET Date Received: 09/27/2019 10:00 CAS No. MDL Units С DIL Method Analyte Result. RT. Q 7429-90-5 Aluminum 32.0 0.20 0.060 mq/L 1 6010C J. 7440-36-0 Antimony ND 0.020 0.0068 1 6010C mg/L UJ 7440-38-2 0.015 0.0056 6010C 0.038 Arsenic mg/L 1 7440-39-3 Barium 1.9 0.0020 0.00070 6010C mg/L 1 7440-41-7 Beryllium 0.00030 6010C 0.0016 0.0020 mq/L J 1 7440-43-9 Cadmium 0.014 0.0020 0.00050 mq/L 1 6010C 7440-70-2 Calcium 68.4 0.50 0.10 6010C mg/L 1 7440-47-3 0.078 0.0040 0.0010 6010C Chromium mg/L 1 7440-48-4 0.042 0.0040 0.00063 6010C Cobalt mg/L 1 0.0016 7440-50-8 Copper 0.57 0.010 mg/L 1 6010C J 7439-89-6 Iron 152 0.050 0.019 mq/L 1 6010C .1 7439-92-1 0.72 0.010 0.0030 mg/L 6010C Lead 1 J 7439-95-4 Magnesium 21.3 0.20 0.043 mg/L 1 6010C 7439-96-5 0.0030 0.00040 6010C 10.4 Manganese mg/L K 1 7440-02-0 Nickel 0.12 0.010 0.0013 6010C mg/L 1 7440-09-7 11.9 0.50 0.10 6010C Potassium mg/L 1 J 7782-49-2 Selenium 0.025 0.0087 6010C ND mg/L 1 7440-22-4 Silver 0.0017 6010C ND 0.0060 mg/L 1 7440-23-5 Sodium 12.0 6010C 1.0 0.32 mq/L 1 7440-28-0 Thallium 0.020 0.010 6010C ND mg/L 1 7440-62-2 Vanadium 0.056 0.0050 0.0015 mg/L 1 6010C 7440-66-6 0.0015 Zinc 1.0 0.010 mq/L 1 6010C P J 7439-97-6 Mercury 0.00072 0.00020 0.00012 7470A ma/L 1

Client Sample ID: SFB-SW-3B Lab Sample ID: 480-160007-6 Job No.: 480-160007-1 Lab Name: Eurofins TestAmerica, Buffalo SDG ID.: Matrix: Water Date Sampled: 09/25/2019 12:00 Reporting Basis: WET Date Received: 09/27/2019 10:00 CAS No. MDL Units С DIL Method Analyte Result. RT. Q 7429-90-5 Aluminum 0.15 0.20 0.060 mg/L ZJ 1 6010C 7440-36-0 Antimony ND 0.020 0.0068 1 6010C mg/L 7440-38-2 0.015 0.0056 6010C 0.0064 Arsenic mg/L J 1 7440-39-3 Barium 1.2 0.0020 0.00070 6010C mg/L 1 7440-41-7 Beryllium 0.00030 6010C ND 0.0020 mq/L 1 7440-43-9 Cadmium ND 0.0020 0.00050 mg/L 1 6010C 7440-70-2 Calcium 52.3 0.50 0.10 6010C mg/L 1 7440-47-3 0.0040 0.0010 6010C Chromium ND mg/L 1 7440-48-4 0.0040 0.00063 6010C Cobalt ND mg/L 1 J 0.0016 7440-50-8 Copper 0.0023 0.010 mq/L 1 6010C 7439-89-6 Iron 31.0 0.050 0.019 mq/L 1 6010C J 7439-92-1 0.0062 0.010 0.0030 6010C Lead mg/L ل 🖌 1 7439-95-4 Magnesium 12.1 0.20 0.043 mg/L 1 6010C 7439-96-5 1.2 0.0030 0.00040 ¥ 6010C Manganese mg/L 1 7440-02-0 Nickel ND 0.010 0.0013 6010C mg/L 1 7440-09-7 Potassium 6.6 0.50 0.10 6010C mg/L 1 J. 7782-49-2 Selenium 0.025 0.0087 6010C ND mg/L 1 7440-22-4 Silver 0.0017 6010C ND 0.0060 mg/L 1 7440-23-5 Sodium 11.2 6010C 1.0 0.32 mq/L 1 7440-28-0 Thallium 0.020 0.010 6010C ND mg/L 1 7440-62-2 Vanadium ND 0.0050 0.0015 mg/L 1 6010C 7440-66-6 0.0015 Zinc 0.014 0.010 mq/L 1 6010C ₿ J 0.00020 7439-97-6 Mercury ND 0.00012 7470A mq/L 1

Client Sample	ID: SFB-SW-1A			Lab Sample ID: 480-160007-1							
Lab Name: Eu	rofins TestAmerica, Buf	falo		Job No.: 480-160007-1							
SDG ID.:											
Matrix: Water				Date Sampl	ed: 09/25	/2019	11:20				
Reporting Basi	s: WET			Date Recei	ved: 09/2	27/2019	10:00				
CAS No.	Analyte	Result	RL		Units	С	Q	DIL	Method		
	Total Suspended Solids	20.0	4.0		mg/L			1	SM 2540D		

Client Sample	ID: SFB-SW-1B			Lab Sample ID:							
Lab Name: Eu	rofins TestAmerica, Buf	falo		Job No.: 480-160007-1							
SDG ID.:	DG ID.:										
Matrix: Water				Date Sampl	ed: 09/25	/2019	11:30				
Reporting Basi	is: WET			Date Recei	ved: 09/2	27/2019	10:00				
CAS No.	Analyte	Result	RL		Units	С	Q	DIL	Method		
	Total Suspended Solids	21.6	4.0		mg/L			1	SM 2540D		

Client Sample	ID: SFB-SW-2A			Lab Sample ID: 480-160007-3							
Lab Name: Eu	rofins TestAmerica, Buf	falo		Job No.: 480-160007-1							
SDG ID.:	DG ID.:										
Matrix: Water				Date Sampl	ed: 09/25	/2019	12:45				
Reporting Basi	is: WET			Date Recei	ved: 09/2	7/2019	10:00				
CAS No.	Analyte	Result	RL		Units	С	Q	DIL	Method		
	Total Suspended Solids	136	4.0		mg/L			1	SM 2540D		

Client Sample	ID: SFB-SW-2B		Lab Sample	ID: 480-	160007-	4			
Lab Name: Eu	rofins TestAmerica, Buf	falo		Job No.:	480-160007	-1			
SDG ID.:			_						
Matrix: Water	ſ			Date Sample	ed: 09/25	/2019	12:30		
Reporting Bas	is: WET			Date Receiv	ved: 09/2	7/2019	10:00		
CAS No.	Analyte	Result	RL		Units	С	Q	DIL	Method
	Total Suspended Solids	182	4.0		mg/L			1	SM 2540D

Client Sample	ID: SFB-SW-3A			Lab Sample	ID: 480-	160007-	5			
Lab Name: Eu	rofins TestAmerica, Buf	falo		Job No.: 480-160007-1						
SDG ID.:										
Matrix: Water				Date Sample	ed: 09/25	/2019 1	12:10			
Reporting Bas:	is: WET			Date Receiv	ved: 09/2	7/2019	10:00			
CAS No.	Analyte	Result	RL		Units	С	Q	DIL	Method	
	Total Suspended Solids	686	4.0		mg/L			1	SM 2540D	

Client Sample	Client Sample ID: SFB-SW-3B			Lab Sample ID: 480-160007-6							
Lab Name: Eu	rofins TestAmerica, Buf	falo		Job No.: 480-160007-1							
SDG ID.:	DG ID.:										
Matrix: Water				Date Sampl	ed: 09/25	/2019 1	L2:00				
Reporting Bas:	is: WET			Date Recei	ved: 09/2	7/2019	10:00				
CAS No.	Analyte	Result	RL		Units	С	Q	DIL	Method		
	Total Suspended Solids	164	4.0		mg/L			1	SM 2540D		

QC NONCONFORMANCE DOCUMENTATION

4A-IN INTERFERENCE CHECK STANDARD METALS

Lah	Name ·	Eurofins	TestAmerica,	Buffal
Lav	name.	EUTOTTUS	IESCAMELICA,	Dullar

Lab File ID: I1100719A-1.asc

a, Buffalo Job No.: <mark>480-160007-1</mark>

SDG No.:

Lab Sample ID: <mark>ICSA 480-496414/8</mark>

Instrument ID: ICAP1

ICS Source: MEI_MSS_ICSA 00008

Concentration Units: mg/L

	True	Found	
			Percent
Analyte	Solution A	Solution A	Recovery
Aluminum	500	499	100
Antimony		<mark>-0.0136</mark>	
Arsenic		-0.0038	
Barium		<mark>0.0016</mark>	
Beryllium		0.0000	
Cadmium		0.0001	
Calcium	500	475	95
Chromium		<mark>0.0032</mark>	
Cobalt		<mark>-0.0007</mark>	
Copper		<mark>-0.0031</mark>	
Iron	200	189	94
Lead		0.0001	
Magnesium	500	500	100
Manganese		<mark>0.0023</mark>	
Nickel		<mark>-0.0028</mark>	
Potassium		0.0132	
Selenium		-0.0007	
Silver		0.0003	
Sodium		0.184	
Thallium		0.0016	
Vanadium		<mark>-0.0016</mark>	
Zinc		0.0011	
Boron		-0.0004	
Lithium		0.0029	
Molybdenum		0.0010	
Silicon		0.0285	
Strontium		-0.0091	
Sulfur		-0.0923	
Tin		-0.0017	
Titanium		0.0008	

3-IN METHOD BLANK METALS

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-160007-1

SDG No.:

Concentration Units: mg/L

Instrument Code: ICAP1

Lab Sample ID: <mark>MB 480-495380/1-A</mark>

Batch No.: 496414

CAS No.	Analyte	Concentration	С	Q	Method
7429-90-5	Aluminum	ND			6010C
7440-36-0	Antimony	ND			6010C
7440-38-2	Arsenic	ND			6010C
7440-39-3	Barium	ND			6010C
7440-41-7	Beryllium	ND			6010C
7440-43-9	Cadmium	ND			6010C
7440-70-2	Calcium	ND			6010C
7440-47-3	Chromium	ND			6010C
7440-48-4	Cobalt	ND			6010C
7440-50-8	Copper	ND			6010C
7439-89-6	Iron	ND			6010C
7439-92-1	Lead	ND			6010C
7439-95-4	Magnesium	ND			6010C
7439-96-5	Manganese	0.00204	J		6010C
7440-02-0	Nickel	ND			6010C
7440-09-7	Potassium	ND			6010C
7782-49-2	Selenium	ND			6010C
7440-22-4	Silver	ND			6010C
7440-23-5	Sodium	ND			6010C
7440-28-0	Thallium	ND			6010C
7440-62-2	Vanadium	ND			6010C
7440-66-6	Zinc	0.00177	J		6010C

5A-IN MATRIX SPIKE SAMPLE RECOVERY METALS

Client ID: SFB-SW-2A MS

Lab ID: <u>480</u>-160007-3 MS

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-160007-1

SDG No.:

Matrix: Water

Concentration Units: mg/L

% Solids:

Analyte	SSR	Sample Result (SR	() C	Spike Added (SA)	%R	Control Limit %R	Q	Method
Aluminum	12.78	4.7		10.0	81	75-125		6010C
Antimony	0.244	ND		0.200	122	75-125		6010C
Arsenic	0.234	0.0080	J	0.200	113	75-125		6010C
Barium	0.340	0.16		0.200	89	75-125		6010C
Beryllium	0.224	ND		0.200	112	75-125		6010C
Cadmium	0.228	0.0024		0.200	113	75-125		6010C
Calcium	80.07	71.2		10.0	88	75-125	4	6010C
Chromium	0.218	0.010		0.200	104	75-125		6010C
Cobalt	0.212	0.0065		0.200	103	75-125		6010C
Copper	0.236	0.074		0.200	81	75-125		6010C
Iron	22.31	24.6		10.0	<mark>-22</mark>	75-125	F1	6010C
Lead	0.273	0.16		0.200	<mark>55</mark>	75-125	F1	6010C
Magnesium	24.02	13.7		10.0	103	75-125		6010C
Manganese	5.85	6.3		0.200	-205	75-125	4	6010C
Nickel	0.226	0.017		0.200	105	75-125		6010C
Potassium	16.48	6.0		10.0	104	75-125		6010C
Selenium	0.217	ND		0.200	109	75-125		6010C
Silver	0.0538	ND		0.0500	108	75-125		6010C
Sodium	31.85	20.9		10.0	109	75-125		6010C
Thallium	0.215	ND		0.200	108	75-125		6010C
Vanadium	0.223	0.0086		0.200	107	75-125		6010C
Zinc	0.269	0.14		0.200	<mark>63</mark>	75-125	F1	6010C
Mercury	0.00720	ND		0.00667	108	80-120		7470A

SSR = Spiked Sample Result

5A-IN MATRIX SPIKE DUPLICATE SAMPLE RECOVERY METALS

Client ID: SFB-SW-2A MSD

Lab ID: <u>480-</u>160007-3 MSD

Lab Name:Eurofins TestAmerica, BuffaloJob No.:480-160007-1

SDG No.:

Matrix: Water Concentration Units: mg/L

% Solids:

Analyte	(SDR) C	Spike Added (SA)	%R	Control Limit %R	RPD	RPD Limit	Q	Method
Aluminum	18.24	10.0	136	75-125	<mark>35</mark>	20	F1 F2	6010C
Antimony	0.230	0.200	115	75-125	6	20		6010C
Arsenic	0.234	0.200	113	75-125	0	20		6010C
Barium	0.412	0.200	125	75-125	19	20		6010C
Beryllium	0.212	0.200	106	75-125	5	20		6010C
Cadmium	0.219	0.200	108	75-125	4	20		6010C
Calcium	79.31	10.0	81	75-125	1	20	4	6010C
Chromium	0.218	0.200	104	75-125	0	20		6010C
Cobalt	0.209	0.200	101	75-125	2	20		6010C
Copper	0.291	0.200	109	75-125	21	20	F2	6010C
Iron	36.19	10.0	116	75-125	<mark>47</mark>	20	F2	6010C
Lead	0.411	0.200	124	75-125	40	20	F2	6010C
Magnesium	24.23	10.0	105	75-125	1	20		6010C
Manganese	7.26	0.200	501	75-125	22	20	4 F2	6010C
Nickel	0.230	0.200	107	75-125	2	20		6010C
<mark>Potassium</mark>	19.11	10.0	<mark>131</mark>	75-125	15	20	F1	6010C
Selenium	0.218	0.200	109	75-125	0	20		6010C
Silver	0.0515	0.0500	103	75-125	4	20		6010C
Sodium	30.18	10.0	93	75-125	5	20		6010C
Thallium	0.205	0.200	103	75-125	5	20		6010C
Vanadium	0.225	0.200	108	75-125	1	20		6010C
Zinc	0.387	0.200	122	75-125	<mark>36</mark>	20	F2	6010C
Mercury	0.00700	0.00667	105	80-120	3	20		7470A

SDR = Sample Duplicate Result

5B-IN POST DIGESTION SPIKE SAMPLE RECOVERY METALS

Client ID: SFB-SW-2A PDS

Lab ID: 480-160007-3 PDS

Lab Name: Eurofins TestAmerica, Buffalo

Job No.: 480-160007-1

SDG No.:

Matrix: Water

Concentration Units: mg/L

Analyte	SSR	Sample Result (SR)		%R	Control Limit %R	Q	Method
Aluminum	14.78	4.7	10.0	101	80-120		6010C
Antimony	0.236	ND	0.200	118	80-120		6010C
Arsenic	0.232	0.0080 3	J 0.200	112	80-120		6010C
Barium	0.367	0.16	0.200	103	80-120		6010C
Beryllium	0.214	ND	0.200	107	80-120		6010C
Cadmium	0.220	0.0024	0.200	109	80-120		6010C
Calcium	76.75	71.2	10.0	<mark>55</mark>	80-120	W	6010C
Chromium	0.215	0.010	0.200	102	80-120		6010C
Cobalt	0.208	0.0065	0.200	101	80-120		6010C
Copper	0.274	0.074	0.200	100	80-120		6010C
Iron	33.37	24.6	10.0	88	80-120		6010C
Lead	0.362	0.16	0.200	99	80-120		6010C
Magnesium	23.41	13.7	10.0	97	80-120		6010C
Manganese	6.11	6.3	0.200	NC	80-120		6010C
Nickel	0.227	0.017	0.200	105	80-120		6010C
Potassium	15.83	6.0	10.0	98	80-120		6010C
Selenium	0.222	ND	0.200	111	80-120		6010C
Silver	0.0527	ND	0.0500	105	80-120		6010C
Sodium	29.92	20.9	10.0	90	80-120		6010C
Thallium	0.208	ND	0.200	104	80-120		6010C
Vanadium	0.219	0.0086	0.200	105	80-120		6010C
Zinc	0.343	0.14	0.200	100	80-120		6010C

SSR = Spiked Sample Result

Data Usability Summary Report

Site:Schatz Federal BearingsLaboratory:Eurofins TestAmerica Buffalo – Amherst, NYSDG No's:480-160006-1Parameters:Polychlorinated Biphenyls (PCBs)Data Reviewer:Amy Bass/TRCPeer Reviewer:Elizabeth Denly/TRCDate:January 14, 2020

Samples Reviewed and Evaluation Summary

6 Sediment Samples: SFB-SED-1A, SFB-SED-1B, SFB-SED-2A, SFB-SED-2B, SFB-SED-3A, SFB-SED-3B

The above-listed sediment samples were collected on September 25, 2019, and were analyzed for the following parameter:

• PCB Aroclors by EPA SW-846 Method 8082A

The data validation was performed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review (EPA-540-R-017-002), January 2017, modified for the SW-846 methodology utilized.

The data were evaluated based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- Data Completeness
- Holding Times and Sample Preservation
- Initial and Continuing Calibrations
- Blanks
 - Surrogate Recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Internal Standards
- Laboratory Control Sample (LCS) Results
- NA Field Duplicate Results
 - Percent Solids
 - Sample Results and Reported Quantitation Limits (QLs)
 - Target Compound Identification
- * All criteria were met.
- NA A field duplicate pair was not associated with this sample set.

Overall Evaluation of Data and Potential Usability Issues

All results are usable for project objectives. Qualifications applied to the data as a result of sampling error are discussed below.

 Nondetect results for the Aroclors in sample SFB-SED-2A were qualified as estimated (UJ) due to low percent solids. These results can be used for project objectives as nondetects with estimated QLs, which may have a minor impact on the data usability.

Qualifications applied to the data as a result of analytical error were not required.

Data Completeness

The data package was a complete Level IV data deliverable package with two exceptions.

- The laboratory did not report the results for the initial calibration verification (ICV) analyses. The run logs indicated ICV analyses were performed after each calibration sequence, but the results were not provided. Since ICV analyses are not used to qualify sample data, no further action was required.
- The laboratory logged the samples in using the wrong collection date (9/23/19 instead of 9/25/19). Upon request during validation, the laboratory submitted a revised report to reflect the correct date.

Holding Times and Sample Preservation

All holding time and sample preservation method criteria were met for the PCB analyses.

Initial and Continuing Calibrations

All percent relative standard deviations and correlation coefficients were within the method acceptance criteria in the initial calibrations associated with these samples.

The following table summarizes the percent differences or percent drifts (%Ds) that did not meet the acceptance criteria in the continuing calibration (CC) standards, the associated samples, and the validation actions.

сс	Compound	Column 1 %D**	Column 2 %D**	Associated Samples*	Validation Action		
10/07/19 @14:19 HP6890-6	Aroclor 1221 Peak 1	30.6	-				
/	Aroclor 1232 Peak 1	34.4	-				
10/07/19 @14:32	Aroclor 1232 Peak 2	30.9	-	SFB-SED-1A,	Qualification was not required since		
HP6890-6	Aroclor 1232 Peak 4	26.5	-	SFB-SED-1B,	the %Ds on column 2 were		
	Aroclor 1232 Peak 5	30.5	-	SFB-SED-2A, SFB-SED-2B,	acceptable, and the affected		
10/07/19	Aroclor 1242 Peak 1	26.9	-	SFB-SED-3A,	Aroclors were not detected in the associated samples.		
@14:45 HP6890-6	Aroclor 1242 Peak 2	23.1	-	SFB-SED-3B	associated samples.		
10/07/19	Aroclor 1248 Peak 2	24.1	-				
@14:58	Aroclor 1248 Peak 3	26.1	-				
HP6890-6	Aroclor 1248 Peak 4	23.8	-				
	Aroclor 1260 Peak 1	-	-35.5	SFB-SED-1A,	Qualification was not required since		
10/07/19 @20:16	Aroclor 1260 Peak 2	-	-28.2	SFB-SED-1B,	the %Ds on column 1 were acceptable and Aroclor 1260 was		
HP6890-6	Aroclor 1260 Peak 3	-	-24.5	SFB-SED-2A,	not detected in the associated		
	Aroclor 1260 Peak 5	-	-34.3	SFB-SED-2B	samples.		
	Aroclor 1260 Peak 1	-	-31.0		Qualification was not required since		
10/08/19 @00:57	Aroclor 1260 Peak 2	-	-24.6	SFB-SED-3A,	Aroclor 1260 was nondetect and		
HP6890-6	Aroclor 1260 Peak 3	-	-23.2	SFB-SED-3B	the average %D on column 1 was		
	Aroclor 1260 Peak 4	22.9	-		<20%.		

сс	Compound	Column 1 %D**	Column 2 %D**	Associated Samples*	Validation Action		
	Aroclor 1260 Peak 5	-	-34.2				
-: Met criteria * Bracketing CCVs were not used to qualify the samples since an internal standard was used for quantitation; thus, bracketing CCVs are not required. **Column 1 = ZB-35; Column 2 = ZB-5.							

<u>Blanks</u>

Target analytes were not detected in the laboratory method blank.

Surrogate Recoveries

The table below summarizes the surrogate percent recoveries (%Rs) that were outside of the laboratory acceptance limits, the associated samples, and the validation actions.

Sample ID	Dilution	Surrogate	Column 1 %R**	Column 2 %R**	Validation Action		
SFB-SED-1A	None	DCBP	60	-	Qualification was not required since PCB		
SFB-SED-2A	None	DCBP	52	-	Aroclors were not detected in these samples, and the surrogate recovery on column 2 was		
SFB-SED-2B	None	DCBP	60	-	within the acceptance criteria.		
DCBP: Decachlorobiphenyl; %R QC Limits = 65-174% TCMX: Tetrachloro-m-xylene; %R QC Limits = 60-154% -: Met criteria **Column 1 = ZB-35; Column 2 = ZB-5.							

MS/MSD Results

MS/MSD analyses were performed on sample SFB-SED-2A. The MS/MSD samples were spiked with Aroclor 1016 and Aroclor 1260 only. The MS/MSD %Rs and relative percent differences (RPDs) were within the laboratory acceptance criteria.

Internal Standards

All internal standards met the method acceptance criteria.

LCS Results

All laboratory acceptance criteria were met in the LCS analyses.

Field Duplicate Results

A field duplicate pair was not submitted with this sample set.

Percent Solids

Sample SFB-SED-2A contained <30% solids (22.5%). The nondetect results for all Aroclors in this sample were qualified as estimated (UJ).

Sample Results and Reported QLs

Sample calculations were spot-checked, and no errors were observed.

No dilutions were performed on samples in this data set. However, the laboratory used the medium/high concentration extraction procedure and thus used a 2-gram rather than a 30-gram aliquot which is typically used for a low concentration extraction procedure. The QLs were elevated accordingly, but there was no impact on meeting the project action limits.

Target Compound Identification

The dual column RPDs were within the acceptance limits (≤40%) in the PCB analyses.

The laboratory reported the lower result from the dual column analysis for PCB analyses with the exception of Aroclor 1254 in sample SFB-SED-3A. These results were changed on the Form I to reflect the lower result from the dual column analysis.

The laboratory reported a detection of Aroclor 1254 in sample SFB-SED-2B at a concentration below the QL. In this sample, Aroclor 1254 was only detected above the MDL on one of the columns and, therefore, was not confirmed. The result for Aroclor 1254 in this sample was changed during validation to a nondetect result. This revision is noted on the Form I.

QUALIFIED FORM 1s

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-160006-1
SDG No.:	
Client Sample ID: SFB-SED-1A	Lab Sample ID: 480-160006-1
Matrix: Solid	Lab File ID: 6_039-128.D
Analysis Method: 8082A	Date Collected: 09/23/2019 11:15
Extraction Method: 3550C	Date Extracted: 10/05/2019 06:06
Sample wt/vol: 2.43(g)	Date Analyzed: 10/08/2019 00:19
Con. Extract Vol.: 10(mL)	Dilution Factor: 1
Injection Volume: 1(uL)	GC Column: ZB-35 ID: 0.53(mm)
% Moisture: 56.0	GPC Cleanup:(Y/N) N
Analysis Batch No.: 496358	Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
12674-11-2	PCB-1016	ND		0.47	0.091
11104-28-2	PCB-1221	ND		0.47	0.091
11141-16-5	PCB-1232	ND		0.47	0.091
53469-21-9	PCB-1242	ND		0.47	0.091
12672-29-6	PCB-1248	ND		0.47	0.091
11097-69-1	PCB-1254	ND		0.47	0.22
11096-82-5	PCB-1260	ND		0.47	0.22

CAS NO.	SURROGATE	%REC	Q	LIMITS
877-09-8	Tetrachloro-m-xylene	90		60-154
2051-24-3	DCB Decachlorobiphenyl	60	Х	65-174

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-160006-1		
SDG No.:			
Client Sample ID: SFB-SED-1B	Lab Sample ID: 480-160006-2		
Matrix: Solid	Lab File ID: 6_039-129.D		
Analysis Method: 8082A	Date Collected: 09/23/2019 11:20		
Extraction Method: 3550C	Date Extracted: 10/05/2019 06:06		
Sample wt/vol: 2.24(g)	Date Analyzed: 10/08/2019 00:32		
Con. Extract Vol.: 10(mL)	Dilution Factor: 1		
Injection Volume: 1(uL)	GC Column: ZB-35 ID: 0.53(mm) .		
% Moisture: 58.0	GPC Cleanup:(Y/N) N		
Analysis Batch No.: 496358	Units: mg/Kg		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
12674-11-2	PCB-1016	ND		0.53	0.10
11104-28-2	PCB-1221	ND		0.53	0.10
11141-16-5	PCB-1232	ND		0.53	0.10
53469-21-9	PCB-1242	ND		0.53	0.10
12672-29-6	PCB-1248	ND		0.53	0.10
11097-69-1	PCB-1254	ND		0.53	0.25
11096-82-5	PCB-1260	ND		0.53	0.25

CAS NO.	SURROGATE	%REC	Q	LIMITS
877-09-8	Tetrachloro-m-xylene	94		60-154
2051-24-3	DCB Decachlorobiphenyl	68		65-174

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-160006-1			
SDG No.:				
Client Sample ID: SFB-SED-2A	Lab Sample ID: 480-160006-	-3		
Matrix: Solid	Lab File ID: 6_039-121.D			
Analysis Method: 8082A	Date Collected: 09/23/2019 12:45			
Extraction Method: 3550C	Date Extracted: 10/05/201	9 06:06		
Sample wt/vol: 2.41(g)	Date Analyzed: 10/07/2019	22:49		
Con. Extract Vol.: 10(mL)	Dilution Factor: 1			
Injection Volume: 1(uL)	GC Column: ZB-35	ID: 0.53(mm)		
<pre>% Moisture: 77.4 %Solids = 22.5%</pre>	GPC Cleanup:(Y/N) N			
Analysis Batch No.: 496358	Units: mg/Kg			

CAS NO.	COMPOUND NAME •	RESULT	Q	RL	MDL
12674-11-2	PCB-1016	-ND	UJ	0.92	0.18
11104-28-2	PCB-1221	ND	UJ	0.92	0.18
11141-16-5	PCB-1232	ND	UJ	0.92	0.18
53469-21-9	PCB-1242	-ND-	UJ	0.92	0.18
12672-29-6	PCB-1248	ND-	UJ	0.92	0.18
11097-69-1	PCB-1254	ND-	UJ	0.92	0.43
11096-82-5	PCB-1260	ND-	UJ	0.92	0.43

CAS NO.	SURROGATE	%REC	Q	LIMITS
877-09-8	Tetrachloro-m-xylene	83		60-154
2051-24-3	DCB Decachlorobiphenyl	52	Х	65-174

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-160006-1				
SDG No.:					
Client Sample ID: SFB-SED-2B	Lab Sample ID: 480-160006-4				
Matrix: Solid	Lab File ID: 6_039-130.D				
Analysis Method: 8082A	Date Collected: 09/23/2019 12:30				
Extraction Method: 3550C	Date Extracted: 10/05/2019 06:06				
Sample wt/vol: 2.05(g)	Date Analyzed: 10/08/2019 00:45				
Con. Extract Vol.: 10(mL)	Dilution Factor: 1				
Injection Volume: 1(uL)	GC Column: ZB-35 ID: 0.53(mm)				
% Moisture: 41.6	GPC Cleanup:(Y/N) N				
Analysis Batch No.: 496358	Units: mg/Kg				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
12674-11-2	PCB-1016	ND		0.42	0.082
11104-28-2	PCB-1221	ND		0.42	0.082
11141-16-5	PCB-1232	ND		0.42	0.082
53469-21-9	PCB-1242	ND		0.42	0.082
12672-29-6	PCB-1248	ND		0.42	0.082
11097-69-1	PCB-1254	ND -0.28	J	0.42	0.20
11096-82-5	PCB-1260	ND		0.42	0.20

CAS NO.	SURROGATE	%REC	Q	LIMITS
877-09-8	Tetrachloro-m-xylene	87		60-154
2051-24-3	DCB Decachlorobiphenyl	60	Х	65-174

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-160006-1				
SDG No.:					
Client Sample ID: SFB-SED-3A	Lab Sample ID: 480-160006-5				
Matrix: Solid	Lab File ID: 6_039-133.D				
Analysis Method: 8082A	Date Collected: 09/23/2019 12:05				
Extraction Method: 3550C	Date Extracted: 10/05/2019 06:06				
Sample wt/vol: 2.15(g)	Date Analyzed: 10/08/2019 01:23				
Con. Extract Vol.: 10(mL)	Dilution Factor: 1				
Injection Volume: 1(uL)	GC Column: ZB-35 ID: 0.53(mm)				
% Moisture: 21.4	GPC Cleanup:(Y/N) N				
Analysis Batch No.: 496358	Units: mg/Kg				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
12674-11-2	PCB-1016	ND		0.30	0.058
11104-28-2	PCB-1221	ND		0.30	0.058
11141-16-5	PCB-1232	ND		0.30	0.058
53469-21-9	PCB-1242	ND		0.30	0.058
12672-29-6	PCB-1248	ND		0.30	0.058
11097-69-1	PCB-1254	0.78 0.83	_	0.30	0.14
11096-82-5	PCB-1260	ND		0.30	0.14

CAS NO.	SURROGATE	%REC	Q	LIMITS
877-09-8	Tetrachloro-m-xylene	92		60-154
2051-24-3	DCB Decachlorobiphenyl	70		65-174

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-160006-1				
SDG No.:					
Client Sample ID: SFB-SED-3B	Lab Sample ID: 480-160006-6				
Matrix: Solid	Lab File ID: 6_039-134.D				
Analysis Method: 8082A	Date Collected: 09/23/2019 11:55				
Extraction Method: 3550C	Date Extracted: 10/05/2019 06:06				
Sample wt/vol: 2.64(g)	Date Analyzed: 10/08/2019 01:36				
Con. Extract Vol.: 10(mL)	Dilution Factor: 1				
Injection Volume: 1(uL)	GC Column: ZB-35 ID: 0.53(mm)				
% Moisture: 20.4	GPC Cleanup:(Y/N) N				
Analysis Batch No.: 496358	Units: mg/Kg				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
12674-11-2	PCB-1016	ND		0.24	0.047
11104-28-2	PCB-1221	ND		0.24	0.047
11141-16-5	PCB-1232	ND		0.24	0.047
53469-21-9	PCB-1242	ND		0.24	0.047
12672-29-6	PCB-1248	ND		0.24	0.047
11097-69-1	PCB-1254	1.1		0.24	0.11
11096-82-5	PCB-1260	ND		0.24	0.11

CAS NO.	SURROGATE	%REC	Q	LIMITS
877-09-8	Tetrachloro-m-xylene			60-154
2051-24-3	DCB Decachlorobiphenyl	74		65-174

QC NONCONFORMANCE DOCUMENTATION

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-160006-1
SDG No.:	
Lab Sample ID: CCV 480-496358/4	Calibration Date: 10/07/2019 14:19
Instrument ID: HP6890-6	Calib Start Date: 06/11/2019 17:23
GC Column: (ZB-35) ID: 0.53(mm) Calib End Date: 06/11/2019 17:49
Lab File ID: <u>6_039-084.D</u>	Conc. Units: ng/uL
ANALYTE CURVE AVE BR	F BRF MIN BRF CALC SPIKE &D MAX

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
PCB-1221 Peak 1	Lin1		0.0098		0.653	0.500	<mark>30.6</mark> *	20.0
PCB-1221 Peak 2	Lin1		0.0151		0.573	0.500	14.5	20.0
PCB-1221 Peak 3	Lin1		0.0095		0.584	0.500	16.8	20.0
PCB-1221 Peak 4	Lin1		0.0346		0.582	0.500	16.5	20.0
PCB-1254 Peak 1	Ave	0.0530	0.0554		0.523	0.500	4.5	20.0
PCB-1254 Peak 2	Ave	0.0888	0.0895		0.504	0.500	0.8	20.0
PCB-1254 Peak 3	Ave	0.0891	0.0975		0.547	0.500	9.4	20.0
PCB-1254 Peak 4	Ave	0.0483	0.0525		0.544	0.500	8.8	20.0
PCB-1254 Peak 5	Ave	0.0734	0.0800		0.544	0.500	8.9	20.0

1221 average = 19.6

Lab Name: Eurofins Te	b Name: Eurofins TestAmerica, Buffalo			Job No.: <u>480-160006-1</u>					
SDG No.:									
Lab Sample ID: CCV 48	0-496358/5		Calibr	ration Date:	10/07/2	2019 14:	<mark>32</mark>		
Instrument ID: HP6890	-6		Calib	Start Date:	06/11/2	2019 18:	15		
GC Column: <mark>ZB-35</mark>	II	D: 0.53(mm)	Calib	End Date: 0	6/11/201	9 18:40			
Lab File ID: 6_039-085.D			Conc.	Units: ng/u	L				
	CUDVE	AVE DDE	DDF	MIN DDF	CALC	ODIVE	<u>م</u> ه	MAY	

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
PCB-1232 Peak 1	Lin1		0.0309		0.672	0.500	<mark>34.4</mark> *	20.0
PCB-1232 Peak 2	Lin1		0.0279		0.654	0.500	<mark>30.9</mark> *	20.0
PCB-1232 Peak 3	Ave	0.0456	0.0516		0.566	0.500	13.2	20.0
PCB-1232 Peak 4	Lin1		0.0136		0.633	0.500	<mark>26.5</mark> *	20.0
PCB-1232 Peak 5	Lin1		0.0238		0.653	0.500	<mark>30.5</mark> *	20.0
PCB-1262 Peak 1	Ave	0.0514	0.0678		0.659	0.500	31.8*	20.0
PCB-1262 Peak 2	Ave	0.0702	0.0970		0.691	0.500	38.2*	20.0
PCB-1262 Peak 3	Ave	0.0578	0.0759		0.657	0.500	31.4*	20.0
PCB-1262 Peak 4	Ave	0.1162	0.1578		0.679	0.500	35.8*	20.0
PCB-1262 Peak 5	Linl		0.0429		0.642	0.500	28.4*	20.0

1232 average = 27.1

Lab Name: Euro	Eurofins TestAmerica, Buffalo			Job Nc	Job No.: 480-160006-1							
SDG No.:												
Lab Sample ID: CCV 480-496358/6					Calibration Date: 10/07/2019 14:45							
Instrument ID:	strument ID: HP6890-6			Calib	Calib Start Date: 06/11/2019 19:06							
GC Column: ZB-	umn: (ZB-35) ID: 0.53(mm)			Calib	Calib End Date: 06/11/2019 19:32							
ab File ID: 6_039-086.D				Conc.	Conc. Units: ng/uL							
		CUDVE			MIN DDE	CALO	ODTVE	° D	MAX			

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
PCB-1242 Peak 1	Linl		0.0202		0.635	0.500	<mark>26.9</mark> *	20.0
PCB-1242 Peak 2	Lin1		0.0413		0.615	0.500	<mark>23.1</mark> *	20.0
PCB-1242 Peak 3	Ave	0.0802	0.0839		0.523	0.500	4.7	20.0
PCB-1242 Peak 4	Lin1		0.0330		0.600	0.500	20.0	20.0
PCB-1242 Peak 5	Linl		0.0220		0.592	0.500	18.4	20.0
PCB-1268 Peak 1	Ave	0.1197	0.1559		0.651	0.500	30.3*	20.0
PCB-1268 Peak 2	Ave	0.1112	0.1251		0.563	0.500	12.6	20.0
PCB-1268 Peak 3	Ave	0.0865	0.0893		0.516	0.500	3.2	20.0
PCB-1268 Peak 4	Ave	0.2981	0.2813		0.472	0.500	-5.7	20.0
PCB-1268 Peak 5	Lin1		0.0552		0.460	0.500	-7.9	20.0

1242 average = 18.6

Lab Name: Eurofins TestAmerica, Buffalo				Job No.: 480-160006-1							
SDG No.:											
Lab Sample ID: CCV	480-496358/7	Calibr	Calibration Date: 10/07/2019 14:58								
Instrument ID: HP6890-6				Calib Start Date: 06/11/2019 19:57							
GC Column: <mark>ZB-35</mark>	I	D: 0.53(mm)	Calib	Calib End Date: 06/11/2019 20:23							
Lab File ID: 6_039	-087.D	Conc.	Conc. Units: ng/uL								
ANALYTE	CURVE	AVE RRF	RRF	MIN RRF	CALC	SPIKE	۶D	MAX			

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
PCB-1248 Peak 1	Lin1		0.0534		0.571	0.500	14.2	20.0
PCB-1248 Peak 2	Linl		0.0384		0.621	0.500	<mark>24.1</mark> *	20.0
PCB-1248 Peak 3	Lin1		0.0516		0.630	0.500	<mark>26.1</mark> *	20.0
PCB-1248 Peak 4	Linl		0.0404		0.619	0.500	<mark>23.8</mark> *	20.0
PCB-1248 Peak 5	Ave	0.0457	0.0541		0.592	0.500	18.4	20.0

1248 average = 21.3

Lab Name: Eurofins TestAmerica, Bu	ffalo	Job No.: 480-160006-1						
SDG No.:								
Lab Sample ID: <u>CCV 480-496358/29</u>		Calibration Date: <mark>10/07/2019 20:16</mark>						
nstrument ID: HP6890-6		Calib Start Date: 06/11/2019 14:50						
GC Column: ZB-5 ID:	0.53(mm)	Calib End Date: 06/11/2019 16:07						
Lab File ID: 6_039-109.D		Conc. Units: ng/uL						

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
PCB-1016 Peak 1	Ave	0.0933	0.0819		0.438	0.500	-12.3	20.0
PCB-1016 Peak 2	Lin1		0.0317		0.526	0.500	5.1	20.0
PCB-1016 Peak 3	Lin1		0.0223		0.524	0.500	4.8	20.0
PCB-1016 Peak 4	Lin1		0.0251		0.567	0.500	13.3	20.0
PCB-1016 Peak 5	Lin1		0.0246		0.454	0.500	-9.3	20.0
PCB-1260 Peak 1	Ave	0.0507	0.0327		0.322	0.500	<mark>-35.5</mark> *	20.0
PCB-1260 Peak 2	Ave	0.0545	0.0391		0.359	0.500	<mark>-28.2</mark> *	20.0
PCB-1260 Peak 3	Ave	0.0654	0.0493		0.377	0.500	<mark>-24.5</mark> *	20.0
PCB-1260 Peak 4	Ave	0.0798	0.0680		0.426	0.500	-14.8	20.0
PCB-1260 Peak 5	Ave	0.0404	0.0265		0.329	0.500	<mark>-34.3</mark> *	20.0
Tetrachloro-m-xylene	Ave	1.246	1.179		0.0118	0.0125	-5.4	20.0
DCB Decachlorobiphenyl	Ave	0.6177	0.4967		0.0101	0.0125	-19.6	20.0

1260 average = -27.5

Lab Name: Eurofins TestAmerica, Buf	falo	Job No.: <u>480-160006-1</u>						
SDG No.:								
Lab Sample ID: <u>CCV 480-496358/51</u>		Calibration Date: <mark>10/08/2019 00:57</mark>						
Instrument ID: HP6890-6		Calib Start Date: 06/11/2019 14:50						
GC Column: (ZB-5) ID:	0.53 (mm)	Calib End Date: 06/11/2019 16:07						
Lab File ID: 6_039-131.D		Conc. Units: ng/uL						

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
PCB-1016 Peak 1	Ave	0.0933	0.0843		0.451	0.500	-9.7	20.0
PCB-1016 Peak 2	Lin1		0.0325		0.540	0.500	8.0	20.0
PCB-1016 Peak 3	Lin1		0.0229		0.540	0.500	7.9	20.0
PCB-1016 Peak 4	Lin1		0.0226		0.507	0.500	1.4	20.0
PCB-1016 Peak 5	Lin1		0.0255		0.471	0.500	-5.8	20.0
PCB-1260 Peak 1	Ave	0.0507	0.0350		0.345	0.500	<mark>-31.0</mark> *	20.0
PCB-1260 Peak 2	Ave	0.0545	0.0411		0.377	0.500	<mark>-24.6</mark> *	20.0
PCB-1260 Peak 3	Ave	0.0654	0.0502		0.384	0.500	<mark>-23.2</mark> *	20.0
PCB-1260 Peak 4	Ave	0.0798	0.0671		0.420	0.500	-15.9	20.0
PCB-1260 Peak 5	Ave	0.0404	0.0266		0.329	0.500	<mark>-34.2</mark> *	20.0
Tetrachloro-m-xylene	Ave	1.246	1.124		0.0113	0.0125	-9.8	20.0
DCB Decachlorobiphenyl	Ave	0.6177	0.4926		0.00997	0.0125	-20.3*	20.0
±	-							

1260 average = -25.8

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: <u>480-160006-1</u>
SDG No.:	
Lab Sample ID: CCV 480-496358/51	Calibration Date: 10/08/2019 00:57
Instrument ID: HP6890-6	Calib Start Date: 06/11/2019 14:50
GC Column: (ZB-35) ID: 0.53	3(mm) Calib End Date: 06/11/2019 16:07
Lab File ID: 6_039-131.D	Conc. Units: ng/uL

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
PCB-1016 Peak 1	Ave	0.0981	0.1056		0.538	0.500	7.6	20.0
PCB-1016 Peak 2	Ave	0.0386	0.0412		0.533	0.500	6.6	20.0
PCB-1016 Peak 3	Ave	0.0261	0.0275		0.527	0.500	5.5	20.0
PCB-1016 Peak 4	Ave	0.0474	0.0461		0.486	0.500	-2.7	20.0
PCB-1016 Peak 5	Ave	0.0349	0.0327		0.468	0.500	-6.4	20.0
PCB-1260 Peak 1	Ave	0.0566	0.0605		0.534	0.500	6.9	20.0
PCB-1260 Peak 2	Ave	0.0655	0.0744		0.568	0.500	13.5	20.0
PCB-1260 Peak 3	Ave	0.0538	0.0578		0.537	0.500	7.4	20.0
PCB-1260 Peak 4	Ave	0.0983	0.1208		0.614	0.500	<mark>22.9</mark> *	20.0
PCB-1260 Peak 5	Ave	0.0594	0.0695		0.585	0.500	17.0	20.0
Tetrachloro-m-xylene	Ave	1.367	1.440		0.0132	0.0125	5.3	20.0
DCB Decachlorobiphenyl	Ave	0.9765	0.6652		0.00851	0.0125	-31.9*	20.0

1260 average = 13.5

FORM II PCBS SURROGATE RECOVERY

Lab Name: Eurofin	s TestAmerica,	Buffalo		Job No.	: 480-1	60006-1	
SDG No.:							
Matrix: Solid				Level:	Low		
GC Column (1): ZB	-35 ID:	0.53 (mm)	GC Colu	mn (2):	ZB-5	ID: 0.53(mm)
Client Sample ID	Lab Sample ID	TCX1 #	TCX2 #	DCBP1 #	DCBP2 #		
SFB-SED-1A	480-160006-1	90	108	60 X	83		
SFB-SED-1B	480-160006-2	94	110	68	88		
SFB-SED-2A	480-160006-3	83	102	52 X	65		
SFB-SED-2B	480-160006-4	87	101	60 X	77		
SFB-SED-3A	480-160006-5	92	109	70	104		
SFB-SED-3B	480-160006-6	93	111	74	101		
	MB 480-496089/1-A	90	83	64 X	70		
	LCS 480-496089/2-A	122	144	76	96		
SFB-SED-2A MS	480-160006-3 MS	103	127	73	94	1	
SFB-SED-2A MSD	480-160006-3 MSD	101	136	75	103]	

	QC LIMITS
TCX = Tetrachloro-m-xylene	60-154
DCBP = DCB Decachlorobiphenyl	65-174

 $\ensuremath{\texttt{\#}}$ Column to be used to flag recovery values

FORM X IDENTIFICATION SUMMARY

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: <u>480-160006-1</u>			
SDG No.:				
Client Sample ID: SFB-SED-3A Lab Sample ID: 480-160006-5				
Instrument ID (1): HP6890-6	Instrument ID (2): HP6890-6			
Date Analyzed (1): 10/08/2019 01:23	Date Analyzed (2): 10/08/2019 01:23			
GC Column (1): <u>ZB-35</u> ID: <u>0.53(mm)</u>	GC Column (2): <u>ZB-5</u> ID: <u>0.53(mm)</u>			

ANALYTE	COL	PEAK	AK RT	RT WINDOW		CONCENTRATION		RPD
		COL	FLAN	KI .	FROM	TO	PEAK	MEAN
PCB-1254	1	1	3.57	3.56	3.59	0.443	0 <mark>.83</mark>	7.0
		2	3.95	3.93	3.96	0.820		
		3	4.10	4.07	4.10	0.662		
		4	4.40	4.37	4.40	0.697		
		5	4.52	4.50	4.53	1.55	\frown	
	2	1	3.89	3.88	3.91	0.591	0.78	
		2	4.07	4.05	4.08	0.371		
		3	4.37	4.36	4.39	0.775		
		4	4.56	4.56	4.59	0.657		
		5	4.98	4.96	4.99	1.49		

The laboratory-reported value is highlighted. This result was revised to the lower value (circled).

The ID Summary page for sample SFB-SED-2B / 480-160006-4 was omitted. "Col 1" (ZB-35) Result was 0.28 J mg/Kg (reported) "Col 2" (ZB-5) Result was ND (0.18 mg/Kg < MDL [0.20 mg/Kg]) This result was revised to the lower result (ND).

Data Usability Summary Report

Site:Schatz Federal BearingsLaboratory:Eurofins TestAmerica Buffalo – Amherst, NY, and Burlington, VTSDG No.:480-160006-1Parameters:Metals, Total Organic Carbon (TOC)Data Reviewer:Amy Bass/TRCPeer Reviewer:Elizabeth Denly/TRCDate:January 15, 2020

Sample Reviewed and Evaluation Summary

6 Sediment Samples: SFB-SED-1A, SFB-SED-1B, SFB-SED-2A, SFB-SED-2B, SFB-SED-3A, SFB-SED-3B

The above-listed sediment samples were collected on September 25, 2019, and were analyzed for the following parameters:

- Metals by SW-846 Methods 6010C/7471B
- TOC by EPA Lloyd Kahn Method

The data validation was performed in accordance with USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review (EPA-540-R-2017-001), January 2017, modified for the methodologies utilized.

The data were evaluated based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- * Data Completeness
- Holding Times and Sample Preservation
- Initial and Continuing Calibrations
 - Interference Check Sample (ICS) Results
 - Blanks
 - Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- NA Laboratory Duplicate Results
- Inductively Coupled Plasma (ICP) Serial Dilution Results
- * Laboratory Control Sample (LCS) Results
- NA Field Duplicate Results
- Percent Solids
- * Sample Results and Reported Quantitation Limits (QLs)
- * All criteria were met.
- NA Field duplicates and laboratory duplicates were not associated with this sample set.

Overall Evaluation of Data and Potential Usability Issues

All results are usable for the project objectives. Qualifications applied to the data as a result of sampling error are discussed below.

• The positive and nondetect results for metals were qualified as estimated (J/UJ), and the positive result for TOC was qualified as estimated (J) in sample SFB-SED-2A due to low

percent solids. These results can be used for project objectives as estimated values and nondetects with estimated QLs, which may have a minor impact on the data usability.

Qualifications applied to the data as a result of analytical error are discussed below.

- Potential uncertainty exists for select metals results that were detected between the method detection limit (MDL) and QL. These results were qualified as estimated (J) by the laboratory. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.
- The positive result for thallium in sample SFB-SED-2B was qualified as estimated (J) due to negative interference in the ICSA analysis and detection below the QL. This result can be used for project objectives as an estimated value, which may have a minor impact on the data usability.
- The nondetect results for thallium in samples SFB-SED-1A, SFB-SED-1B, SFB-SED-2A, SFB-SED-3A, and SFB-SED-3B were qualified as estimated (UJ) due to negative interference in the ICSA analysis. These results can be used for project objectives as nondetects with estimated QLs, which may have a minor impact on the data usability.
- The positive results for antimony and sodium in all samples; cadmium in sample SFB-SED-1A; and selenium in samples SFB-SED-1A, SFB-SED-1B, SFB-SED-2A, SFB-SED-3A, and SFB-SED-3B were qualified as nondetect (U) at the QL due to positive interference in the ICS analysis. The positive results for sodium in all samples were also qualified as nondetect (U) at the QL due to method blank or instrument blank contamination. These results can be used for project objectives as nondetects, which may have a minor impact on the data usability.
- The positive results for arsenic and cadmium in samples SFB-SED-3A and SFB-SED-3B were qualified as estimated (J+) with a potential high bias due to positive interference in the ICS analysis. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability
- The positive results for beryllium in samples SFB-SED-1A, SFB-SED-1B, and SFB-SED-2B were qualified as estimated (J+) with a potential high bias, and the positive result for beryllium in sample SFB-SED-2A was qualified as estimated (J) due to instrument blank contamination. High bias was not applied to the qualification in sample SFB-SED-2A since that result was also qualified as estimated (J) due to low percent solids; the overall qualification is estimated (J) with no bias. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.
- The positive results for TOC in all samples were qualified as estimated (J) due to low MS recovery and high MS/MSD variability. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.
- The positive results for aluminum, barium, calcium, copper, lead, potassium, and zinc in all samples were qualified as estimated (J) due to MS/MSD recovery or precision outside the acceptance limit, with post digestion spike recovery within criteria. The positive results for zinc were also qualified as estimated (J) in all samples due to serial dilution nonconformances. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.

• The nondetect results for selenium in all samples were qualified as estimated (UJ) due to low MS/MSD recovery. These results can be used for project objectives as nondetects with estimated QLs, which may have a minor impact on the data usability.

Data Completeness

The data package was a complete Level IV data deliverable package.

Holding Times and Sample Preservation

All holding time and sample preservation method criteria were met.

Initial and Continuing Calibrations

All initial calibration coefficients were >0.995 for the metals analyses. The initial calibration verification (ICV) and continuing calibration verification (CCV) percent recoveries (%Rs) met the method acceptance limits of 90-110%, and the low-level check standard %Rs met the QC acceptance limits of 70-130% for the metals analyses.

The initial calibration coefficient was >0.995 for the TOC analyses. The ICV and CCV %Rs met the method acceptance limits of 75-125% for the TOC analyses.

ICS Results

All analytes recovered within the acceptance limits in the ICSAB sample analyses.

Several analytes (antimony, arsenic, barium, cadmium, manganese, selenium, sodium, thallium, and vanadium) were detected as positive and/or negative interference in the ICSA analyses, at levels exceeding the MDL but below the QL. The interferent iron was detected in each of the samples at levels comparable to the ICSA solutions; therefore, the noted analytes were evaluated for potential interference in all samples.

- The nondetect results for thallium in samples SFB-SED-1A, SFB-SED-1B, SFB-SED-2A, SFB-SED-3A, and SFB-SED-3B were qualified as estimated (UJ) since the negative interferent concentration of thallium in the relevant ICSA analysis exceeded the MDL.
- The positive result for thallium in samples SFB-SED-2B was qualified as estimated (J) since the negative contaminant level for thallium in the associated ISCA analysis exceeded the MDL and the sample concentration was <10x the negative ICS concentration. Low bias was not applied since the result was also qualified as estimated (J) due to detection below the QL; the overall qualification is estimated (J) with no bias.
- The positive results for antimony and sodium in all samples; cadmium in sample SFB-SED-1A; and selenium in samples SFB-SED-1A, SFB-SED-1B, SFB-SED-2A, SFB-SED-3A, and SFB-SED-3B were qualified as nondetect (U) at the QL since the results were < the QL and the estimate of interference was >10% of the detected result.
- The positive results for arsenic and cadmium in samples SFB-SED-3A and SFB-SED-3B were qualified as estimated (J+) with a potential high bias since the results were >QL and the estimates of interference were >10% of the detected results for these analytes.
- All other relevant analytes were either nondetect, detected at concentrations exceeding the

estimated interference levels, or detected at concentrations greater than 10× the negative interference in the associated samples; no further validation actions were required.

<u>Blanks</u>

TOC was not detected in the method blank associated with this data set. The following table summarizes the reported metal contaminants in associated laboratory method blanks, the concentrations detected, and the resulting validation actions.

Method Blank ID	Analyte	Blank Concentration (mg/Kg)	Validation Actions				
MB 480-	Calcium	3.87 J	Qualification was not required since the calcium and manganese				
495748/1-A	Manganese	0.0550 J	results in the associated samples were >10x the blar concentrations.				
Associated sa	mples: SFB-SI	ED-1A, SFB-SED-	1B, SFB-SED-2A, SFB-SED-2B, SFB-SED-3A, SFB-SED-3B				
MB 480-	Potassium	28.74 J	Qualification was not required since the potassium results in the associated samples were >10× the blank concentration.				
495748/1-A	Sodium	32.87 J	The positive results for sodium in the associated samples we qualified as nondetect (U) at the QL since these results were < th QL.				
Associated sa	mples: SFB-SI	ED-1A, SFB-SED-	1B, SFB-SED-2A				

The following table lists the analytes detected in the calibration blanks that were not already qualified based on the preparation (method) blank. The maximum ICB/CCB concentration was used to qualify the results for all samples in this data set when the metal was detected in all calibration blanks. The following table summarizes the metal contaminants in the relevant instrument calibration blanks by analysis batch, the maximum blank concentration, the associated samples, and the resulting validation actions.

Analyte	Maximum Blank Result (mg/L)	Validation Actions					
Analysis Batch - Blanks: 496113 - CCB/18, 29, 50							
Beryllium	0.00051 J	The positive results for beryllium in samples SFB-SED-1A, SFB-SED-1B, and SFB-SED-2B were qualified as estimated (J+) with a potential high bias since these results were >QL and <10x the blank concentration. The positive result for beryllium in sample SFB-SED-2A was qualified as estimated (J) since the result was >QL and <10x the blank concentration; however, high bias was not applied since this result was also qualified as estimated (J) due to low percent solids, and the overall qualification is estimated (J) with no bias. Qualification of the beryllium results was not required for the remaining samples since the values were >10x the blank concentration.					
Associated san	nples: SFB-SED-1A,	SFB-SED-1B, SFB-SED-2A, SFB-SED-2B, SFB-SED-3A, SFB-SED-3B					
Potassium	0.357 J	Qualification was not required for potassium in the associated samples since these results were >10x the blank concentration.					
Sodium	0.585 J	The positive results for sodium in the associated samples were qualified as nondetect (U) at the QL since these results were <ql.< td=""></ql.<>					
Associated san	nples: SFB-SED-2B	, SFB-SED-3A, SFB-SED-3B					

MS/MSD Results

MS/MSD and post digestion spike (PDS) analyses for metals and MS/MSD analyses for TOC were performed on sample SFB-SED-2A. The following table summarizes the %Rs and relative percent differences (RPDs) that did not meet acceptance criteria (75-125% for MS/MSD and PDS %R,

 \leq 20% for RPD), and the resulting validation actions. Qualification of the data is not required in the case of nonconformances when the sample concentration is >4x the spike concentration; thus, these results were not evaluated or summarized in this report.

MS/MSD Parent Sample ID	Analyte	MS %R	MSD %R	MS/MSD RPD	PDS %R	Validation Action
	Aluminum	277	208	-	-	
	Barium	160	-	-	-	
	Calcium	-	65	22	-	
	Copper	-	72	-	-	The positive results for these metals were gualified as estimated (J) in all samples.
SFB-SED-	Lead	145	63	26	-	qualified as estimated (3) in all samples.
2A	Potassium	163	138	-	-	
	Zinc	-	69	-	-	
	Selenium	61	49	-	-	The nondetect results for selenium in all samples were qualified as estimated (UJ).
	тос	74	-	28	No	The positive results for TOC in all
	100	/4 -		20	PDS	samples were qualified as estimated (J).
-: Met criteria	l					

The PDS %R for manganese was below the acceptance limits; however, no qualification was required since the sample concentration was >4x the MS/MSD spike concentration.

Laboratory Duplicate Results

Laboratory duplicate analyses were not performed on any samples in this data set.

ICP Serial Dilution Results

The ICP serial dilution analysis was performed on sample SFB-SED-2A. The following table summarizes the percent differences (%Ds) that exceeded the acceptance criteria (\leq 10%), the resulting validation actions, and the associated samples.

Serial Dilution Sample ID	Analyte	%D	Validation Actions					
SFB-SED-2A	Zinc	13	The positive results for zinc in the associated samples were qualified as estimated (J).					
Associated sa	Associated samples: SFB-SED-1A, SFB-SED-1B, SFB-SED-2A, SFB-SED-2B, SFB-SED-3A, SFB-SED-3B							

LCS Results

The LCS/LCSD %Rs and RPDs for metals and the LCS %R for TOC met the laboratory acceptance criteria.

Field Duplicate Results

No field duplicate pairs were submitted with this sample set.

Percent Solids

The percent solids for the soil samples in this data set were >30%, with the exception of sample SFB-SED-2A (22.6%). The positive and nondetect results for metals were qualified as estimated

(J/UJ), and the positive result for TOC was qualified as estimated (J) in sample SFB-SED-2A due to the low percent solids.

Sample Results and Reported Quantitation Limits

Select metals results were reported between the MDL and QL. These results were qualified as estimated (J) by the laboratory.

Sample calculations were spot-checked, and there were no errors noted.

No dilutions were performed for metals or TOC analyses on samples in this data set.

QUALIFIED FORM 1s

Client Sample ID: SFB-SED-1A	Lab Sample ID: 480-160006-1
Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-160006-1
SDG ID.:	
Matrix: Solid	Date Sampled: 09/23/2019 11:15
Reporting Basis: DRY	Date Received: 09/27/2019 10:00
% Solids: 44.0	

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7429-90-5	Aluminum	19000	23.1	10.2	mg/Kg	J		1	6010C
7440-36-0	Antimony	ND - 3.1	34.6	0.92	mg/Kg	-3-		1	6010C
7440-38-2	Arsenic	12.9	4.6	0.92	mg/Kg			1	6010C
7440-39-3	Barium	80.6	1.2	0.25	mg/Kg	J		1	6010C
7440-41-7	Beryllium	0.73	0.46	0.065	mg/Kg	J+		1	6010C
7440-43-9	Cadmium	ND -0.22-	0.46	0.069	mg/Kg	1		1	6010C
7440-70-2	Calcium	2940	115	7.6	mg/Kg	J	B -	1	6010C
7440-47-3	Chromium	16.8	1.2	0.46	mg/Kg			1	6010C
7440-48-4	Cobalt	17.1	1.2	0.12	mg/Kg			1	6010C
7440-50-8	Copper	17.5	2.3	0.48	mg/Kg	J		1	6010C
7439-89-6	Iron	41300	23.1	8.1	mg/Kg			1	6010C
7439-92-1	Lead	21.2	2.3	0.55	mg/Kg	J		1	6010C
7439-95-4	Magnesium	3920	46.1	2.1	mg/Kg			1	6010C
7439-96-5	Manganese	230	0.46	0.074	mg/Kg		-B-	1	6010C
7440-02-0	Nickel	22.7	11.5	0.53	mg/Kg			1	6010C
7440-09-7	Potassium	955	69.2	46.1	mg/Kg	J	B -	1	6010C
7782-49-2	Selenium	ND -1-5	9.2	0.92	mg/Kg	⊿ UJ		1	6010C
7440-22-4	Silver	ND	1.4	0.46	mg/Kg			1	6010C
7440-23-5	Sodium	ND 122	323	30.0	mg/Kg	8	₽-	1	6010C
7440-28-0	Thallium	ND	13.8	0.69	mg/Kg	UJ		1	6010C
7440-62-2	Vanadium	25.9	1.2	0.25	mg/Kg			1	6010C
7440-66-6	Zinc	159	4.6	1.5	mg/Kg	J		1	6010C
7439-97-6	Mercury	0.065	0.046	0.019	mg/Kg	-		1	7471B

Client Sample ID: SFB-SED-1B	Lab Sample ID: 480-160006-2
Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-160006-1
SDG ID.:	
Matrix: Solid	Date Sampled: 09/23/2019 11:20
Reporting Basis: DRY	Date Received: 09/27/2019 10:00
% Solids: 42.0	-

CAS No.	Analyte	Result	RL	MDL	Units	C	Q	DIL	Method
7429-90-5	Aluminum	12600	23.7	10.4	mg/Kg	J		1	6010C
7440-36-0	Antimony	ND 2.8-	35.5	0.95	mg/Kg	8		1	6010C
7440-38-2	Arsenic	10.5	4.7	0.95	mg/Kg			1	6010C
7440-39-3	Barium	114	1.2	0.26	mg/Kg	J		1	6010C
7440-41-7	Beryllium	0.64	0.47	0.066	mg/Kg	J+		1	6010C
7440-43-9	Cadmium	1.0	0.47	0.071	mg/Kg			1	6010C
7440-70-2	Calcium	7950	118	7.8	mg/Kg	J	₽	1	6010C
7440-47-3	Chromium	18.0	1.2	0.47	mg/Kg			1	6010C
7440-48-4	Cobalt	9.3	1.2	0.12	mg/Kg			1	6010C
7440-50-8	Copper	34.5	2.4	0.50	mg/Kg	J		1	6010C
7439-89-6	Iron	28700	23.7	8.3	mg/Kg			1	6010C
7439-92-1	Lead	75.9	2.4	0.57	mg/Kg	J		1	6010C
7439-95-4	Magnesium	3370	47.4	2.2	mg/Kg			1	6010C
7439-96-5	Manganese	1730	0.47	0.076	mg/Kg		B	1	6010C
7440-02-0	Nickel	21.0	11.8	0.55	mg/Kg			1	6010C
7440-09-7	Potassium	998	71.1	47.4	mg/Kg	J	×	1	6010C
7782-49-2	Selenium	ND 4.0	9.5	0.95	mg/Kg	[⊿] UJ		1	6010C
7440-22-4	Silver	ND	1.4	0.47	mg/Kg			1	6010C
7440-23-5	Sodium	ND 178	. 332	30.8	mg/Kg	1	2	1	6010C
7440-28-0	Thallium	-ND-	14.2	0.71	mg/Kg	UJ		1	6010C
7440-62-2	Vanadium	21.4	1.2	0.26	mg/Kg			1	6010C
7440-66-6	Zinc	204	4.7	1.5	mg/Kg	J		1	6010C
7439-97-6	Mercury	0.18	0.047	0.019	mg/Kg	-		1	7471B

Client Sample ID: SFB-SED-2A	Lab Sample ID: 480-160006-3
Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-160006-1
SDG ID.:	
Matrix: Solid	Date Sampled: 09/23/2019 12:45
Reporting Basis: DRY	Date Received: 09/27/2019 10:00
% Solids: 22.6 <30%	

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7429-90-5	Aluminum	15900	41.9	18.4	mg/Kg	J	-Fil	1	6010C
7440-36-0	Antimony	ND 4.8	62.9	1.7	mg/Kg	- - ∪J		1	6010C
7440-38-2	Arsenic	12.4	8.4	1.7	mg/Kg	J		1	6010C
7440-39-3	Barium	158	2.1	0.46	mg/Kg	J	ملت	1	6010C
7440-41-7	Beryllium	0.81	0.84	0.12	mg/Kg	J		1	6010C
7440-43-9	Cadmium	4.6	0.84	0.13	mg/Kg	J		1	6010C
7440-70-2	Calcium	8600	210	13.8	mg/Kg	J	B F1 F2	1	6010C
7440-47-3	Chromium	31.0	2.1	0.84	mg/Kg	J		1	6010C
7440-48-4	Cobalt	18.1	2.1	0.21	mg/Kg	J		1	6010C
7440-50-8	Copper	148	4.2	0.88	mg/Kg	J	<u>-F1</u>	1	6010C
7439-89-6	Iron	42100	41.9	14.7	mg/Kg	J	F2	1	6010C
7439-92-1	Lead	362	4.2	1.0	mg/Kg	J	<u>F1 F2</u>	1	6010C
7439-95-4	Magnesium	4900	83.8	3.9	mg/Kg	J		1	6010C
7439-96-5	Manganese	1610	0.84	0.13	mg/Kg	J	BF2	1	6010C
7440-02-0	Nickel	43.7	21.0	0.96	mg/Kg	J		1	6010C
7440-09-7	Potassium	1760	126	83.8	mg/Kg	J	B F1	1	6010C
7782-49-2	Selenium	ND 1-8	16.8	1.7	mg/Kg	🚽 UJ	FI	1	6010C
7440-22-4	Silver	-ND-	2.5	0.84	mg/Kg	UJ		1	6010C
7440-23-5	Sodium	ND -91-2-	587	54.5	mg/Kg	J → UJ		1	6010C
7440-28-0	Thallium	-ND-	25.1	1.3	mg/Kg	UJ		1	6010C
7440-62-2	Vanadium	25.5	2.1	0.46	mg/Kg	J		1	6010C
7440-66-6	Zinc	351	8.4	2.7	mg/Kg	J	- <u>P1</u> -	1	6010C
7439-97-6	Mercury	0.21	0.074	0.030	mg/Kg	J		1	7471B

Client Sample ID: SFB-SED-2B	Lab Sample ID:
Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-160006-1
SDG ID.:	
Matrix: Solid	Date Sampled: 09/23/2019 12:30
Reporting Basis: DRY	Date Received: 09/27/2019 10:00
% Solids: 58.4	

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7429-90-5	Aluminum	14800	17.4	7.7	mg/Kg	J		1	6010C
7440-36-0	Antimony	ND 2.4	26.1	0.70	mg/Kg	1		1	6010C
7440-38-2	Arsenic	5.8	3.5	0.70	mg/Kg			1	6010C
7440-39-3	Barium	80.6	0.87	0.19	mg/Kg	J		1	6010C
7440-41-7	Beryllium	0.68	0.35	0.049	mg/Kg	J+		1	6010C
7440-43-9	Cadmium	1.3	0.35	0.052	mg/Kg			1	6010C
7440-70-2	Calcium	2670	87.0	5.7	mg/Kg	J	B	1	6010C
7440-47-3	Chromium	28.5	0.87	0.35	mg/Kg			1	6010C
7440-48-4	Cobalt	14.1	0.87	0.087	mg/Kg			1	6010C
7440-50-8	Copper	71.2	1.7	0.37	mg/Kg	J		1	6010C
7439-89-6	Iron	24200	17.4	6.1	mg/Kg			1	6010C
7439-92-1	Lead	130	1.7	0.42	mg/Kg	J		1	6010C
7439-95-4	Magnesium	5740	34.8	1.6	mg/Kg			1	6010C
7439-96-5	Manganese	601	0.35	0.056	mg/Kg		- B-	1	6010C
7440-02-0	Nickel	30.5	8.7	0.40	mg/Kg			1	6010C
7440-09-7	Potassium	1540	52.2	34.8	mg/Kg	J		1	6010C
7782-49-2	Selenium	ND	7.0	0.70	mg/Kg	UJ		1	6010C
7440-22-4	Silver	ND	1.0	0.35	mg/Kg			1	6010C
7440-23-5	Sodium	ND 104	244	22.6	mg/Kg	7	- B-	1	6010C
7440-28-0	Thallium	0.71	10.4	0.52	mg/Kg	1 J		1	6010C
7440-62-2	Vanadium	20.4	0.87	0.19	mg/Kg			1	6010C
7440-66-6	Zinc	195	3.5	1.1	mg/Kg	J		1	6010C
7439-97-6	Mercury	0.11	0.027	0.011	mg/Kg			1	7471B

Client Sample ID: SFB-SED-3A	Lab Sample ID: 480-160006-5
Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-160006-1
SDG ID.:	
Matrix: Solid	Date Sampled: 09/23/2019 12:05
Reporting Basis: DRY	Date Received: 09/27/2019 10:00
% Solids: 78.6	-

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7429-90-5	Aluminum	15500	12.7	5.6	mg/Kg	J		1	6010C
7440-36-0	Antimony	ND -2-4	19.0	0.51	mg/Kg	7		1	6010C
7440-38-2	Arsenic	5.3	2.5	0.51	mg/Kg	J+		1	6010C
7440-39-3	Barium	68.2	0.63	0.14	mg/Kg	J		1	6010C
7440-41-7	Beryllium	0.73	0.25	0.035	mg/Kg			1	6010C
7440-43-9	Cadmium	0.39	0.25	0.038	mg/Kg	J+		1	6010C
7440-70-2	Calcium	1730	63.3	4.2	mg/Kg	J	₽	1	6010C
7440-47-3	Chromium	41.9	0.63	0.25	mg/Kg			1	6010C
7440-48-4	Cobalt	13.6	0.63	0.063	mg/Kg			1	6010C
7440-50-8	Copper	49.6	1.3	0.27	mg/Kg	J		1	6010C
7439-89-6	Iron	31400	12.7	4.4	mg/Kg			1	6010C
7439-92-1	Lead	104	1.3	0.30	mg/Kg	J		1	6010C
7439-95-4	Magnesium	6910	25.3	1.2	mg/Kg			1	6010C
7439-96-5	Manganese	635	0.25	0.041	mg/Kg		B	1	6010C
7440-02-0	Nickel	33.7	6.3	0.29	mg/Kg			1	6010C
7440-09-7	Potassium	1480	38.0	25.3	mg/Kg	J		1	6010C
7782-49-2	Selenium	ND -1.1-	5.1	0.51	mg/Kg	∕ UJ		1	6010C
7440-22-4	Silver	ND	0.76	0.25	mg/Kg			1	6010C
7440-23-5	Sodium	ND 70.9	177	16.5	mg/Kg	8	B	1	6010C
7440-28-0	Thallium	ND-	7.6	0.38	mg/Kg	UJ		1	6010C
7440-62-2	Vanadium	20.3	0.63	0.14	mg/Kg			1	6010C
7440-66-6	Zinc	137	2.5	0.81	mg/Kg	J		1	6010C
7439-97-6	Mercury	0.13	0.025	0.010	mg/Kg	-		1	7471B

Client Sample ID: SFB-SED-3B	Lab Sample ID: 480-160006-6
Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-160006-1
SDG ID.:	
Matrix: Solid	Date Sampled: 09/23/2019 11:55
Reporting Basis: DRY	Date Received: 09/27/2019 10:00
% Solids: 79.6	

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7429-90-5	Aluminum	18300	12.7	5.6	mg/Kg	J		1	6010C
7440-36-0	Antimony	ND 2.3	19.1	0.51	mg/Kg	8		1	6010C
7440-38-2	Arsenic	4.6	2.5	0.51	mg/Kg	J+		1	6010C
7440-39-3	Barium	121	0.64	0.14	mg/Kg	J		1	6010C
7440-41-7	Beryllium	0.69	0.25	0.036	mg/Kg			1	6010C
7440-43-9	Cadmium	0.35	0.25	0.038	mg/Kg	J+		1	6010C
7440-70-2	Calcium	2080	63.6	4.2	mg/Kg	J	B-	1	6010C
7440-47-3	Chromium	22.4	0.64	0.25	mg/Kg			1	6010C
7440-48-4	Cobalt	14.6	0.64	0.064	mg/Kg			1	6010C
7440-50-8	Copper	48.1	1.3	0.27	mg/Kg	J		1	6010C
7439-89-6	Iron	31500	12.7	4.5	mg/Kg			1	6010C
7439-92-1	Lead	45.6	1.3	0.31	mg/Kg	J		1	6010C
7439-95-4	Magnesium	7590	25.5	1.2	mg/Kg			1	6010C
7439-96-5	Manganese	490	0.25	0.041	mg/Kg		₽	1	6010C
7440-02-0	Nickel	31.4	6.4	0.29	mg/Kg			1	6010C
7440-09-7	Potassium	1630	38.2	25.5	mg/Kg	J		1	6010C
7782-49-2	Selenium	ND -1-1	5.1	0.51	mg/Kg	⊿ UJ		1	6010C
7440-22-4	Silver	ND	0.76	0.25	mg/Kg			1	6010C
7440-23-5	Sodium	ND -64.0-	178	16.5	mg/Kg	7	B	1	6010C
7440-28-0	Thallium	-ND	7.6	0.38	mg/Kg	UJ		1	6010C
7440-62-2	Vanadium	22.7	0.64	0.14	mg/Kg			1	6010C
7440-66-6	Zinc	183	2.5	0.81	mg/Kg	J		1	6010C
7439-97-6	Mercury	0.064	0.025	0.010	mg/Kg	-		1	7471B

Client Sample	Client Sample ID: SFB-SED-1A			Lab Sample ID: 480-160006-1					
Lab Name: Eu:	rofins TestAmerica, Bur	lington		Job No.: 480-160006-1					
SDG ID.:									
Matrix: Solid				Date Sampl	ed: 09/23	/2019	L1:15		
Reporting Basi	s: WET			Date Recei	ved: 09/2	27/2019	10:00		
CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7440-44-0	Total Organic Carbon	2570	1000	684	mg/Kg	J		1	Lloyd Kahn

Client Sample	Client Sample ID: SFB-SED-1B			Lab Sample ID: 480-160006-2					
Lab Name: Eu:	rofins TestAmerica, Bur	lington		Job No.: 480-160006-1					
SDG ID.:									
Matrix: Solid				Date Sampl	ed: 09/23	/2019	11:20		
Reporting Basi	s: WET			Date Recei	ved: 09/2	27/2019	10:00		
CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7440-44-0	Total Organic Carbon	4220	1000	684	mg/Kg	J		1	Lloyd Kahn

Client Sample	Client Sample ID: SFB-SED-2A			Lab Sample ID: 480-160006-3						
Lab Name: Eu	rofins TestAmerica, Bur	lington		Job No.: 480-160006-1						
SDG ID.:										
Matrix: Solid	l			Date Sampl	ed: 09/23	/2019	12:45			
Reporting Bas:	s: WET			Date Recei	ved: 09/2	27/2019	10:00			
CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method	
7440-44-0	Total Organic Carbon	3090	1000	684	mg/Kg	J	F2 F1	1	Lloyd Kahn	

Client Sample	Client Sample ID: SFB-SED-2B			Lab Sample ID: 480-160006-4					
Lab Name: Eu:	rofins TestAmerica, Bur	lington		Job No.: 480-160006-1					
SDG ID.:									
Matrix: Solid				Date Sampl	ed: 09/23	/2019	12:30		
Reporting Basi	s: WET			Date Recei	ved: 09/2	27/2019	10:00		
CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7440-44-0	Total Organic Carbon	2270	1000	684	mg/Kg	J		1	Lloyd Kahn

Client Sample	Client Sample ID: SFB-SED-3A			Lab Sample ID: 480-160006-5					
Lab Name: Eu:	rofins TestAmerica, Bur	lington		Job No.: 480-160006-1					
SDG ID.:									
Matrix: Solid				Date Sampl	ed: 09/23	/2019 1	12:05		
Reporting Basi	s: WET			Date Recei	ved: 09/2	27/2019	10:00		
CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7440-44-0	Total Organic Carbon	7740	1000	684	mg/Kg	J		1	Lloyd Kahn

Client Sample	Client Sample ID: SFB-SED-3B			Lab Sample	ID: 480-	6			
Lab Name: Eu	rofins TestAmerica, Bur	lington		Job No.: 480-160006-1					
SDG ID.:									
Matrix: Solid	l			Date Sampl	ed: 09/23	/2019	11 : 55		
Reporting Basi	US: WET			Date Recei	ved: 09/2	27/2019	10:00		
CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7440-44-0	Total Organic Carbon	8480	1000	684	mg/Kg	J		1	Lloyd Kahn

QC NONCONFORMANCE DOCUMENTATION

4A-IN INTERFERENCE CHECK STANDARD METALS

Lab	Name:	Eurofins	TestAmerica,	Buffald
цаю	rianic .	DUTOTINO	repermierrou,	Durrure

a, Buffalo Job No.: 480-160006-1

SDG No.:

_

Lab Sample ID: <mark>ICSA 480-496499/8</mark>

Lab File ID: i1100719a-12.asc

Instrument ID: ICAP1

ICS Source: MEI MSS ICSA 00008

Concentration Units: mg/L

	True	Found	
Analyte	Solution A	Solution A	Percent Recovery
Aluminum	500	499	100
Potassium		0.0132	
Sodium		<mark>0.184</mark>	
Zinc		0.0011	
Antimony		-0.0136	
Arsenic		-0.0038	
Barium		0.0016	
Beryllium		0.0000	
Boron		-0.0004	
Cadmium		0.0001	
Calcium	500	475	95
Chromium		0.0032	
Cobalt		-0.0007	
Copper		-0.0031	
Iron	200	189	94
Lead		0.0001	
Lithium		0.0029	
Magnesium	500	500	100
Manganese		0.0023	
Molybdenum		0.0010	
Nickel		-0.0028	
Selenium		-0.0007	
Silver		0.0003	
Strontium		-0.0091	
Thallium		0.0016	
Tin		-0.0017	
Titanium		0.0008	
Vanadium		-0.0016	

4A-IN INTERFERENCE CHECK STANDARD METALS

Lab	Name:	Eurofins	TestAmerica,	Buffalo	

Job No.: 480-160006-1

SDG No.:

Lab Sample ID: ICSA 480-496113/8

Instrument ID: ICAP2

Lab File ID: i2100419a-16.asc

ICS Source: MEI_MSS_ICSA_00008

Concentration Units: mg/L

	True	Found	
			Percent
Analyte	Solution A	Solution A	Recovery
Aluminum	500	513	103
Antimony		<mark>0.0095</mark>	
Arsenic		<mark>0.0045</mark>	
Barium		<mark>0.0016</mark>	
Beryllium		-0.0002	
Cadmium		<mark>0.0006</mark>	
Calcium	500	501	100
Chromium		-0.0004	
Cobalt		-0.0002	
Copper		0.0014	
Iron	200	196	98
Lead		0.0015	
Magnesium	500	524	105
Manganese		<mark>-0.0012</mark>	
Nickel		-0.0007	
Potassium		0.0183	
Selenium		<mark>0.0051</mark>	
Silver		-0.0013	
Sodium		<mark>0.211</mark>	
Thallium		<mark>-0.0031</mark>	
Vanadium		<mark>-0.0020</mark>	
Zinc		0.0032	
Boron		-0.0006	
Lithium		-0.0082	
Molybdenum		-0.0012	
Strontium		-0.0092	
Tin		0.0029	
Titanium		-0.0001	

3-IN METHOD BLANK METALS

Lab Name: Eurofins TestAmerica, Buffalo Job No.: <u>480-160006-1</u>

SDG No.:

Concentration Units: mg/Kg

Lab Sample ID: MB 480-495748/1-A

Instrument Code: ICAP2

Batch No.: 496113

CAS No.	Analyte	Concentration	С	Q	Method
7440-36-0	Antimony	ND			6010C
7440-38-2	Arsenic	ND			6010C
7440-39-3	Barium	ND			6010C
7440-41-7	Beryllium	ND			6010C
7440-43-9	Cadmium	ND			6010C
7440-70-2	Calcium	3.87	J		6010C
7440-47-3	Chromium	ND			6010C
7440-48-4	Cobalt	ND			6010C
7440-50-8	Copper	ND			6010C
7439-89-6	Iron	ND			6010C
7439-92-1	Lead	ND			6010C
7439-95-4	Magnesium	ND			6010C
7439-96-5	Manganese	0.0550	J		6010C
7440-02-0	Nickel	ND			6010C
7782-49-2	Selenium	ND			6010C
7440-22-4	Silver	ND			6010C
7440-28-0	Thallium	ND			6010C
7440-62-2	Vanadium	ND			6010C

3-IN METHOD BLANK METALS

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-160006-1
SDG No.:	
Concentration Units: mg/Kg	Lab Sample ID: <mark>MB 480-495748/1-A</mark>
Instrument Code: ICAP1	Batch No.: 496499

CAS No.	Analyte	Concentration	С	Q	Method
7429-90-5	Aluminum	ND			6010C
7440-09-7	Potassium	28.74	J		6010C
7440-23-5	Sodium	32.87	J		6010C
7440-66-6	Zinc	ND			6010C

3-IN INSTRUMENT BLANKS METALS

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-160006-1

SDG No.:

Concentration Units: mg/L

		ICB 480-49611 10/04/2019 03				CCB 480-49611 10/04/2019 2		CCB 480-496113/41 10/04/2019 23:10	
Analyte	RL	Found	С	Found	С	Found	С	Found	С
Aluminum	0.20	ND		ND		ND		ND	
Antimony	0.020	ND		ND		ND		ND	
Arsenic	0.015	ND		ND		ND		ND	
Barium	0.0020	ND		ND		ND		ND	
Beryllium	0.0020	ND		0.000510	J	0.000340	J	ND	
Cadmium	0.0020	ND		ND		ND		ND	
Calcium	0.50	ND		ND		ND		ND	
Chromium	0.0040	ND		ND		ND		ND	
Cobalt	0.0040	ND		ND		ND		ND	
Copper	0.010	ND		ND		ND		ND	
Iron	0.050	ND		ND		ND		ND	
Lead	0.010	ND		ND		ND		ND	
Magnesium	0.20	ND		ND		ND		ND	
Manganese	0.0030	ND		ND		ND		ND	
Nickel	0.010	ND		ND		ND		ND	
Potassium	0.50	ND		<mark>0.357</mark>	J	ND		ND	
Selenium	0.025	ND		ND		ND		ND	
Silver	0.0060	ND		ND		ND		ND	
Sodium	1.0	ND		<mark>0.585</mark>	J	ND		ND	
Thallium	0.020	ND		ND		ND		ND	
Vanadium	0.0050	ND		ND		ND		ND	
Zinc	0.010	ND		ND		ND		ND	

Italicized analytes were not requested for this sequence.

3-IN INSTRUMENT BLANKS METALS

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-160006-1

SDG No.:

Concentration Units: mg/L

		CCB 480-49611	<mark>3/50</mark>						
		10/04/2019 23:54							
Analyte	RL	Found	С	Found	С	Found	С	Found	С
Aluminum	0.20	ND							
Antimony	0.020	ND							
Arsenic	0.015	ND							
Barium	0.0020	ND							
Beryllium	0.0020	0.000470	J						
Cadmium	0.0020	ND							
Calcium	0.50	ND							
Chromium	0.0040	ND							
Cobalt	0.0040	ND							
Copper	0.010	ND							
Iron	0.050	ND							
Lead	0.010	ND							
Magnesium	0.20	ND							
Manganese	0.0030	ND							
Nickel	0.010	ND							
Potassium	0.50	ND							
Selenium	0.025	ND							
Silver	0.0060	ND							
Sodium	1.0	ND							
Thallium	0.020	ND							
Vanadium	0.0050	ND							
Zinc	0.010	ND							

Italicized analytes were not requested for this sequence.

5A-IN MATRIX SPIKE SAMPLE RECOVERY METALS

Client ID: SFB-SED-2A MS

Lab ID: 480-160006-3 MS

Job No.: 480-160006-1

Lab Name: Eurofins TestAmerica, Buffalo

SDG No.:

Matrix: Solid

Concentration Units: mg/Kg

% Solids: 22.6

Analyte	SSR	Sample Result (SF	२) C	Spike Added (SA)	%R	Control Limit %R	Q	Method
Aluminum	39570	15900		8540	277	75-125	F1	6010C
Antimony	161.1	4.8	J	171	91	75-125		6010C
Arsenic	174.7	12.4		171	95	75-125		6010C
Barium	430.8	158		171	<mark>160</mark>	75-125	F1	6010C
Beryllium	153.6	0.81	J	171	89	75-125		6010C
Cadmium	167.1	4.6		171	95	75-125		6010C
Calcium	17720	8600		8540	107	75-125		6010C
Chromium	208.5	31.0		171	104	75-125		6010C
Cobalt	188.6	18.1		171	100	75-125		6010C
Copper	326.6	148		171	105	75-125		6010C
Iron	55910	42100		8540	162	75-125	4	6010C
Lead	610.0	362		171	<mark>145</mark>	75-125	F1	6010C
Magnesium	14540	4900		8540	113	75-125		6010C
Manganese	1893	1610		171	167	75-125	4	6010C
Nickel	222.7	43.7		171	105	75-125		6010C
Potassium	15720	1760		8550	<mark>163</mark>	75-125	F1	6010C
Selenium	105.4	1.8	J	171	<mark>61</mark>	75-125	F1	6010C
Silver	39.45	ND		42.7	92	75-125		6010C
Sodium	8187	91.2	J	8550	95	75-125		6010C
Thallium	166.6	ND		171	98	75-125		6010C
Vanadium	215.3	25.5		171	111	75-125		6010C
Zinc	560.4	351		171	123	75-125		6010C
Mercury	1.77	0.21		1.48	105	80-120		7471B

SSR = Spiked Sample Result

Calculations are performed before rounding to avoid round-off errors in calculated results. Note - Results and Reporting Limits have been adjusted for dry weight.

5A-IN MATRIX SPIKE DUPLICATE SAMPLE RECOVERY METALS

Client ID: SFB-SED-2A MSD

Lab ID: 480-160006-3 MSD

Job No.: 480-160006-1

Lab Name: Eurofins TestAmerica, Buffalo

SDG No.:

Matrix: Solid

Concentration Units: mg/Kg

% Solids: 22.6

Analyte	(SDR) C	Spike Added (SA)	%R	Control Limit %R	RPD	RPD Limit	Q	Method
Aluminum	33840	8630	208	75-125	16	20	F1	6010C
Antimony	142.7	173	80	75-125	12	20		6010C
Arsenic	155.6	173	83	75-125	12	20		6010C
Barium	360.5	173	117	75-125	18	20		6010C
Beryllium	136.6	173	79	75-125	12	20		6010C
Cadmium	149.2	173	84	75-125	11	20		6010C
Calcium	14240	8630	65	75-125	22	20	F1 F2	6010C
Chromium	183.3	173	88	75-125	13	20		6010C
Cobalt	164.3	173	85	75-125	14	20		6010C
Copper	271.4	173	<mark>72</mark>	75-125	18	20	F1	6010C
Iron	45140	8630	36	75-125	21	20	4 F2	6010C
Lead	471.0	173	<mark>63</mark>	75-125	26	20	F1 F2	6010C
Magnesium	12760	8630	91	75-125	13	20		6010C
Manganese	1498	173	-64	75-125	23	20	4 F2	6010C
Nickel	193.9	173	87	75-125	14	20		6010C
Potassium	13680	8630	<mark>138</mark>	75-125	14	20	F1	6010C
<mark>Selenium</mark>	86.09	173	<mark>49</mark>	75-125	20	20	F1	6010C
Silver	35.80	43.1	83	75-125	10	20		6010C
Sodium	7314	8640	84	75-125	11	20		6010C
Thallium	148.4	173	86	75-125	12	20		6010C
Vanadium	188.1	173	94	75-125	13	20		6010C
Zinc	471.0	173	<mark>69</mark>	75-125	17	20	F1	6010C
Mercury	1.66	1.41	103	80-120	6	20		7471B

SDR = Sample Duplicate Result

Calculations are performed before rounding to avoid round-off errors in calculated results. Note - Results and Reporting Limits have been adjusted for dry weight.

5B-IN POST DIGESTION SPIKE SAMPLE RECOVERY METALS

Client ID: SFB-SED-2A PDS

Lab ID: 480-160006-3 PDS

Job No.: 480-160006-1

Lab Name: Eurofins TestAmerica, Buffalo

SDG No.:

Matrix: Solid

Concentration Units: mg/Kg

Analyte	SSR	Sample Result (SR	2) C	Spike Added (SA)	%R	Control Limit %R	Q	Method
Aluminum	23940	15900		8380	96	80-120		6010C
Antimony	181.9	4.8	J	168	106	80-120		6010C
Arsenic	177.2	12.4		168	98	80-120		6010C
Barium	308.5	158		168	90	80-120		6010C
Beryllium	160.3	0.81	J	168	95	80-120		6010C
Cadmium	170.1	4.6		168	99	80-120		6010C
Calcium	16410	8600		8380	93	80-120		6010C
Chromium	195.9	31.0		168	98	80-120		6010C
Cobalt	186.8	18.1		168	101	80-120		6010C
Copper	305.3	148		168	94	80-120		6010C
Iron	48800	42100		8380	80	80-120		6010C
Lead	521.0	362		168	95	80-120		6010C
Magnesium	12910	4900		8380	96	80-120		6010C
<mark>Manganese</mark>	1705	1610		168	<mark>58</mark>	80-120	W	6010C
Nickel	217.3	43.7		168	104	80-120		6010C
Potassium	9767	1760		8380	96	80-120		6010C
Selenium	158.5	1.8	J	168	94	80-120		6010C
Silver	40.39	ND		41.9	96	80-120		6010C
Sodium	8030	91.2	J	8390	95	80-120		6010C
Thallium	167.0	ND		168	100	80-120		6010C
Vanadium	191.6	25.5		168	99	80-120		6010C
Zinc	517.8	351		168	99	80-120		6010C

SSR = Spiked Sample Result

Calculations are performed before rounding to avoid round-off errors in calculated results. Note - Results and Reporting Limits have been adjusted for dry weight.

5-IN MATRIX SPIKE SAMPLE RECOVERY GENERAL CHEMISTRY

Lab Name: Eurofins TestAmerica, Burlington Job No.: 480-160006-1

SDG No.:

Matrix: Solid

Method Lab Sample	e ID Analyte	Result	C Unit	Spike Amount		Limits	RPD RPD Limit	Q
Batch ID: 148226	Date: 10/08/2019 15:50							
Lloyd 480-160006 Kahn	5-3 Total Organic Carbon	3090	mg/Kg					F2 F1
Lloyd <mark>480-160006</mark> Kahn <mark>MS</mark>	5-3 Total Organic Carbon	26640	mg/Kg	31800	74	75-125		F1

5-IN MATRIX SPIKE DUPLICATE SAMPLE RECOVERY GENERAL CHEMISTRY

Lab Name: Eurofins TestAmerica, Burlington Job No.: 480-160006-1

SDG No.:

Matrix: Solid

Method Lab Sample ID Analyte	Result C Unit	Spike Pct. Amount Rec.	Limits	RPD RPD Limit	Q
Batch ID: 148226 Date: 10/08/2019 15:54 Lloyd <mark>480-160006-3</mark> Total Organic Carbon Kahn MSD	35140 mg/Kg	32400 99	75-125	<mark>28</mark> 20	F2

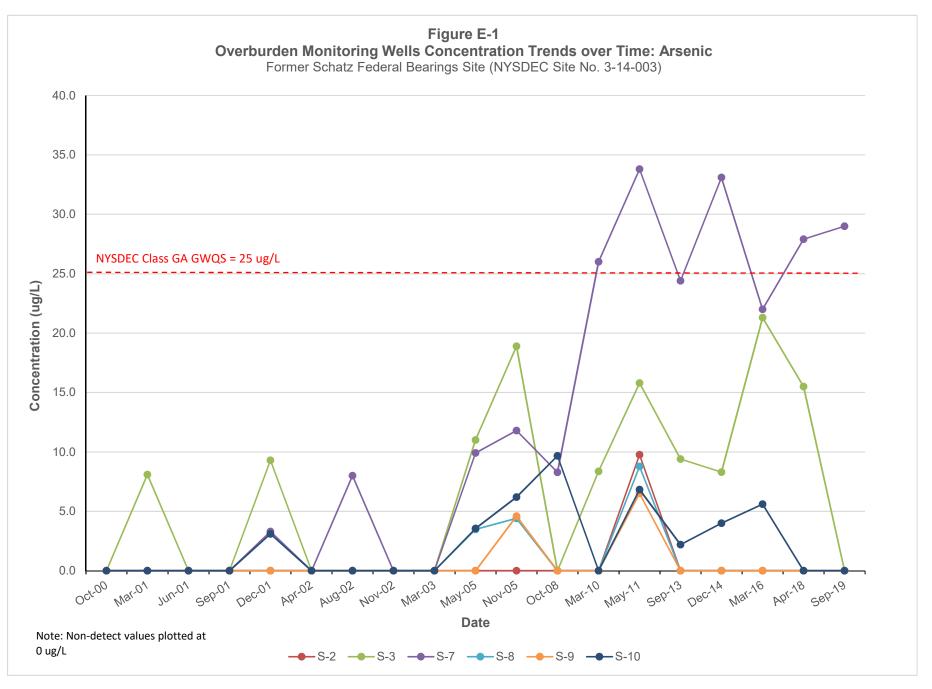
8-IN ICP-AES AND ICP-MS SERIAL DILUTIONS METALS

Lab ID: 480-160006-3

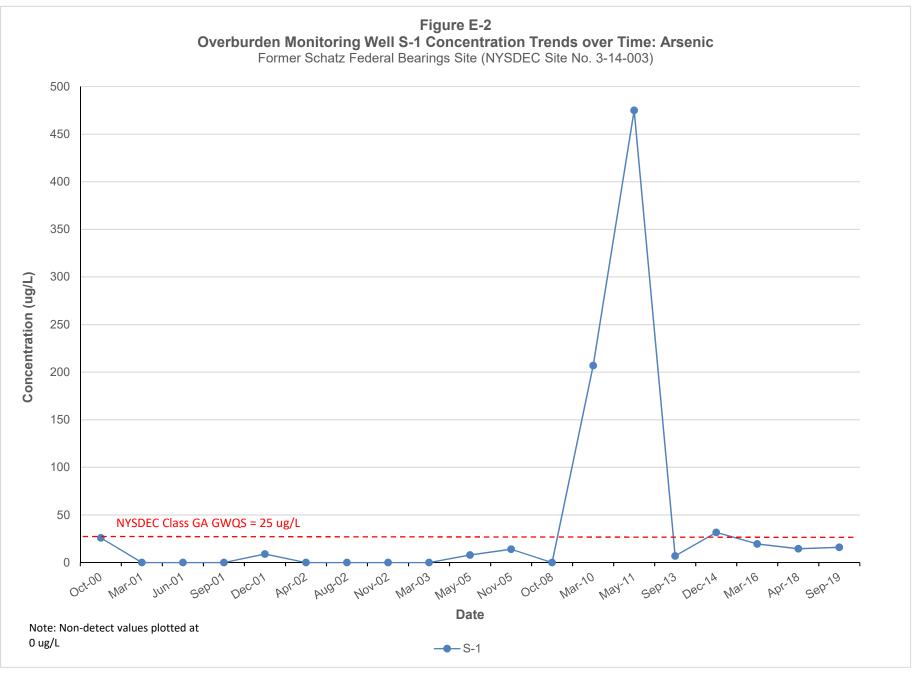
SDG No:

Lab Name: Eurofins TestAmerica, Buffalo Job No: 480-160006-1

Matrix: Solid


Concentration Units: mg/Kg

Analyte	Initial Samp Result (I)	le C	Serial Dilution Result (S)	С	% Difference	Q	Method
Aluminum	15900		17180		8.1		6010C
Antimony	4.8	J	ND		NC		6010C
Arsenic	12.4		9.37	J	NC		6010C
Barium	158		162.2		2.5		6010C
Beryllium	0.81	J	1.34	J	NC		6010C
Cadmium	4.6		4.27		6.7		6010C
Calcium	8600		8889		3.4		6010C
Chromium	31.0		32.37		4.3		6010C
Cobalt	18.1		17.89		1.1		6010C
Copper	148		148.8		0.81		6010C
Iron	42100		43030		2.3		6010C
Lead	362		361.3		0.33		6010C
Magnesium	4900		5242		7.0		6010C
Manganese	1610		1677		4.3		6010C
Nickel	43.7		42.70	J	2.4		6010C
Potassium	1760		1975		NC		6010C
Selenium	1.8	J	ND		NC		6010C
Silver	ND		ND		NC		6010C
Sodium	91.2	J	ND		NC		6010C
Thallium	ND		ND		NC		6010C
Vanadium	25.5		25.94		1.6		6010C
Zinc	351		395.3		13	V	6010C



APPENDIX E

