CLOSURE REPORT

PHASE II RCRA FACILITY ASSESSMENT – SAMPLING VISIT INTERIM CORRECTIVE MEASURE: INACTIVE LINE ABANDONMENT Former Texaco Research Center Beacon, New York

SITE ID# 314004 RCRA PERMIT# 3-1330-00048/16-0

Prepared for:

Mr. Mark Hendrickson Chevron Environmental Management Company Chevron Bellaire Office Building 4800 Fournace Place , Room E534C Bellaire, Texas 77401

Prepared By:

PARSONS

290 Elwood Davis Road, Suite 312 Liverpool, NY 13088

October 2006

CERTIFICATION OF COMPLETION iv	Page
SECTION 1 INTRODUCTION1-1	
1.1 PROJECT BACKGROUND 1-1	
1.2 SITE DESCRIPTION 1-1	
1.3 PROJECT OBJECTIVES 1-3	
SECTION 2 ISS CLEANING AND INVESTIGATION2-1	
2.1 INDUSTRIAL SEWER SYSTEM LINE CLEANING	
2.2 INDUSTRIAL SEWER SYSTEM PERFORMANCE SAMPLING	
2.2 INDUSTRIAL SEWER SYSTEM INTEGRITY EVALUATION	
SECTION 3 PHASE II ISS RFA SOIL SAMPLING PROGRAM	
3.1 OVERVIEW	
3.2 PHASE I RFA FOLLOW-UP SOIL SAMPLING	
3.3 PHASE II RFA SOIL SAMPLING	
SECTION 4 ISS CLOSURE	
4.1 OVERVIEW	
4.2 WASTE CHARACTERIZATION AND DISPOSAL	
4.3 SITE RESTORATION	
4.4 CLOSURE DESCRIPTION 4-2 4.4.1 Line A (ISS-1) 4-2	
4.4.2 Line A (ISS-2)	
4.4.3 Line A (ISS-3)	
4.4.4 Line A (ISS-4)	
4.4.5 Line B (ISS-5)	
4.4.6 Line B (ISS-6)	
4.4.7 Line C (ISS-8)	
4.4.8 Line C (ISS-9)	
4.4.9 Line D (ISS-7)	SONS

TABLE OF CONTENTS

SECTION 5 SUMMARY AND CONCLUSIONS	
5.1 INTRODUCTION	5-1
5.2 SECTION SUMMARIES	
SECTION 6 REFERENCES	6-1

LIST OF FIGURES

Figure 1-1	Site Location Map
Figure 1-2	Site Plan A-Line
Figure 1-3	Site Plan B-Line

Figure 1-4 Site Plan C/D-Lines

LIST OF TABLES

Table 2-1 Performance Sampling Analytical Data SummaryTable 3-1 Soil Analytical Data Summary

LIST OF APPENDICES

Appendix A	Data Review Summary Report
Appendix B	ISS Cleaning/Evaluation Report
Appendix C	Complete Laboratory Analytical Data Report
Appendix D	Soil Disposal Manifests
Appendix E	Analytical Report – Backfill Materials
Appendix F	Photographic Log

ENGINEER'S CERTIFICATION

Certification of Completion

I certify that the Interim Corrective Measure has been completed as described in this document and in accordance with the Work Plan – Industrial Sewer System, Phase II Facility Assessment- Sampling Visit, Inactive Line Abandonment dated October 2005 and approved by the NYSDEC. This area was included in the Part 373 Hazardous Waste Management Permit (NYSDEC ID No. 3-1330-48/16-0; U.S. EPA Identification No. NYD091894899) held by Chevron.

Craig F Butter

October 11, 2006

Date

Craig F. Butler, P.E. New York, No. 080807 Parsons

SECTION 1

INTRODUCTION

1.1 PROJECT BACKGROUND

This report summarizes the Industrial Sewer System (ISS) closure activities conducted at the Chevron Corporation (Chevron, formerly Texaco, Inc.) Glenham, New York Research Center in accordance with the RCRA Facility Assessment (RFA) – Sampling Visit of the industrial sewer system. Chevron holds a Hazardous Waste Management Permit ("the Permit") for the Property from the New York State Department of Environmental Conservation (NYSDEC ID #3-1330-48/16-0). The closure activities were performed in accordance with the conditions of the Permit. Chevron completed Phase I of the ISS RFA in March, 2002, and submitted a report to the NYSDEC, which was accepted on June 5, 2003. In October 2005 the New York State Department of Environmental Conservation (NYSDEC) approved the Phase II Work Plan. (Parsons October 2005).

The Phase II work included cleaning, inspection, and investigation of potential leaks in the remaining sections of the ISS piping system, confirmation soil and rinse water sampling, as well as any follow-up activities recommended in the Phase I RFA Report.

This document presents a summary of the work completed under the Phase II work plan and presents the results of the sampling completed during that work.

1.2 SITE DESCRIPTION

Chevron Corporation (Chevron, formerly Texaco, Inc.) operated a Research Center in Glenham, New York from 1931 until its closure in 2003 (Figure 1-1). The Property is located on approximately 140 acres of land, and has been used as an on-shore, non-production, non-transportation laboratory complex engaged in research, development, and technical services related to petroleum products and energy. Petroleum, coal products, and solvents have been used at the Property in connection with the research functions. Wastes generated during the use of these products were transported to the facility industrial sewer system, treated and discharged in accordance with the facility's existing State Pollution Discharge Elimination System (SPDES) permit. Portions of the ISS have been in service since Texaco took ownership of the Property in the 1930's.

The ISS consists of four main branches with eleven operating sections, all of which flow to the ISS section of the waste water treatment plant (WWTP). The receiving basin of the ISS WWTP consists of the grit chamber and settling basins identified as Building 45. The ISS operating sections have been identified as ISS-1 thought ISS-11. A description of each of the operating sections is included below.

The ISS has been divided into four main branches;

The <u>A-line</u> branch services the western part of the property with all of the flows being directed to Manhole A-1 (MH-A1) prior to flowing to the WWTP (Figure 1-2). The A-line enters the grit chamber at the northwest corner. ISS sections that are part of the A-line include;

- ISS-1 services the shallow groundwater recovery piping to the east of Building 58, and the line from former drum disposal area within Building 83. This system drained to Tank 200 wherein the water was pumped through a force main to MH-A1.
- ISS-2 services Building 42 and gravity flows directly to MH-A1.
- ISS-3 includes the drainage from the tank farm for the boiler house tank farm (Building 26) and includes a small valve pit located between MH-A1 and Building 36.
- ISS-4 encompasses the sewer line from MH-A1 to Building 45 and the abandoned line from the base of the cliff below MH-A1 to the WWTP.

The <u>B-line</u> branch services the central part of the property (Figure 1-3). The "B" line consists of two separate main sewer lines that enter the grit chamber in the northeast corner. The B-line ISS sections include;

- ISS-5 which services the western side of the central part of the Property. Buildings within ISS-5 include: the boiler house (Building 26) and the containment basins for the fuel oil offloading area. The section of the ISS that was closed during the Phase I Work Plan included connections upstream of Manhole B-1 (MH-B1) and from MH-B1 to the southwest corner of Building 55. The "blowdown chamber" from the boiler house and the "3x3 vault" south Building 55 are also included in this ISS. From the "3x3 vault" the flow intercepts a pipe run that was formerly connected to Manhole B-2 (MH-B2). Use of this the upper part of this section was discontinued following the construction of facilities located in the northern part of the Site. From this junction, the sewer line goes down the hill and enters the grit chamber.
- ISS-6 consists of the new B-line and includes all of the ISS that flows into MH-B2. ISS-6 includes flows from Buildings 29, 56, 30, 70, 39, 37, 38, 40, 50 and 65. From MH-B2 all flows are directed into the northeast corner of the grit chamber.

The <u>C-line</u> branch services the eastern part of the property (Figure 1-4). All flows in this section flow through Manhole C-1 (MH-C1) and enter the grit chamber on the east side. The C-line ISS sections include;

- ISS-8 which extends from Manhole C-2 (MH-C2) to the grit chamber. Flow within this section includes any flows from ISS-9, ISS-10 and ISS-11, in addition to those from Buildings 1, and 6.
- ISS-9 consists of the transfer piping from the tank farm lift station, crossing the bridge over Fishkill Creek. ISS-9 flows into MH-C2 for transfer to the WWTP.

- ISS-10 was removed during the Phase I work. ISS-10 formerly served the central eastern part of the Property including Buildings 41, 51, and 57, and any flow directed from ISS-11. Flow from ISS-10 enters MH-C2.
- ISS-11 was closed during Phase I ISS closure work (IT Corp, 2002) ISS-11 formerly served the eastern part of the Property including Building 67, 68 and 74. Flows from ISS-11 drained to ISS-10 and MH-C2.

The <u>D-line</u> branch services Building 3 (Figure 1-4). Flow from the D-line enters the east side of the grit chamber through two separate PVC lines. The D-line ISS sections include;

• ISS-7 which is made up of two PVC solvent welded pipes installed in 1997. This section collects water from Building 3.

1.3 PROJECT OBJECTIVES

The goal of the proposed work is to complete the assessment of the ISS in accordance with the conditions of the Permit. Because the site is no longer operational, assessment objectives included achieving ISS closure in a manner that ensures that the system is no longer a conveyance for industrial wastes. An addition goal was to locations that may have been impacted by the former operation of the ISS.

This scope-of-work for the ISS closure is outlined in the Work Plan; ISS Phase II RFA-Sampling Visit, Interim Corrective Measure: Inactive Line Abandonment (Parsons, October 2005).

Tasks included in the scope-of-work included;

- Cleaning of the ISS piping to remove any residue and sludge.
- Completion of performance sampling from the ISS piping.
- Completion of an evaluation of the integrity of the ISS piping using remote video camera techniques
- Collection of soil samples beneath or adjacent to the ISS piping and manholes.
- Closure of the ISS to prevent further use of the piping as a conveyance.
- Removal of portions of the sewer system and associated soils where potential compromises in ISS integrity are observed.
- Completion of follow-up activities recommended in the Phase I RFA Report.

SECTION 2

ISS CLEANING AND INVESTIGATION

2.1 INDUSTRIAL SEWER SYSTEM LINE CLEANING

The initial step in the Phase II investigation was to utilize high pressure water to jet wash the internal surfaces of ISS piping. This step was necessary to clear the piping of any residual material and scaling, and to facilitate the access to the ISS with a video camera.

The water source used to conduct the sewer cleaning and flushing was the facility fire water protection system that utilizes water pumped from Fishkill Creek. At the start of field activities each day, hoses were attached to one of the active fire hydrants at the facility and a sufficient volume of water to complete the work planned for the day would be discharged to the holding tank on the cleaning/vacuum truck. The high pressure jetting nozzle would be inserted into the ISS piping section that was to be cleaned and inspected that day, and the nozzle would travel up the line to the desired endpoint, or to a point where a piping constriction occurred that prevented further nozzle advancement. All rinse water introduced to the pipeline during cleaning was either permitted to flow to the grit chamber or collected in a vacuum truck and later discharged to the WWTP. Water used to clean and rinse the ISS piping sections would be collected and returned to the pressure/vacuum truck using a vacuum hose that was placed into the entry point of the jetting nozzle.

2.2 INDUSTRIAL SEWER SYSTEM PERFORMANCE SAMPLING

Performance sampling from the cleaned ISS piping was completed to demonstrate that cleaning of the ISS had removed any residuals that would require management of these lines as listed hazardous waste. The performance criteria established by NYSDEC Solid and Hazardous Materials Division are that samples of rinseate water collected after the cleaning of the ISS must meet the NYS Part 703.5 drinking water standards as described in the Division of Water Technical and Operational Guidance Series 1.1.1 (1998) document. Results of the performance sampling have been included as Table 2-1.

A total of 24 rinseate samples were collected and analyzed for volatile organic compounds (VOCs) in accordance with the RFA Sampling Plan included in the Phase II ISS RFA work plan. The Data Review Summary Report has been included as Appendix A and a complete set of the laboratory data and documentation is included in Appendix C.

Performance sampling consisted of passing a flow of water through the piping run and collecting a sample of water at the discharge point. Water used for the cleaning of the line and the performance sampling was obtained from the facility fire control system. Fire water is obtained directly from an intake on Fishkill Creek. Two samples of the fire water supply were collected during the sampling period to provide background water quality documentation. None of the fire water samples contained measurable concentrations of VOCs or lead.

The procedures used to collect the rinse water samples were as follows:

- The sample container(s) were clearly labeled.
- The water was allowed to flow through the cleaned pipe and into the sample container, which was positioned at the lower end of the cleaned pipe section.
- The VOC sample was completed as a discrete grab sample in triplicate; i.e., three VOA vials were filled continuously until full.
- Teflon-lined caps were secured onto each of the three container(s).
- The sample containers were placed on ice in a cooler for transport to the laboratory.
- All Chain-of-Custody (COC) documentation was completed and recorded on the daily field report forms.

2.3 INDUSTRIAL SEWER SYSTEM INTEGRITY EVALUATION

Following the cleaning of the ISS piping, the lines were inspected using remote video camera techniques. Video inspection of the ISS was generally completed using the access points provided through existing manholes. When obstructions were found in the line, including joints and turns that prevented passage of the video equipment, additional excavations were completed to expose the piping and create access locations.

The results of the ISS piping integrity inspection program, as summarized below, indicated that the overwhelming majority of the pipe segments were in good condition with no breaches or structural deformities. A listing of the observed deficiencies in the ISS piping segments is as follows:

ISS – 1

UST 200 Catch Basin to Bldg 58 (4" Clay Pipe) ISS-1

- 1. 30' from catch basin- pipe cracked at 12 o'clock, minor damage
- 2. 50' from catch basin- slight rupture in pipe invert
- 3. 56' from catch basin break in top a pipe at 12 o'clock
- 4. Soil samples SS-031-ISS1 (2-6') and SS-032-ISS1 (2-6') collected in this area on 2-28-06

UST 200 Catch Basin to Bldg 83 (4" Steel Pipe) ISS-1

- 1. 32' from catch basin- slight rupture (small hole) between 4 and 5 o'clock (invert)
- 2. Soil sample # SS-030-ISS1 (3-7') collected near this location on February 27, 2006

ISS - 6

MH B-3 South (8" Cast Iron Pipe)

- 1. 46' from manhole a repaired spot approximately 12 inches wide between 12 and 5 o'clock
- 2. 58' from manhole root mass seen
- 3. Pipe observed to be in good condition with the exception of the repaired location at 46' and root mass found at 58'
- 4. A cutting blade was sent down the line and the root mass was removed, and the location was videoed again. A breach was found in the location of the root mass
- 5. Soil sample # SS-006-B3 (3–7') collected at this location on 2-21-06

MH B-4 East to Bldg 39 (8" Cast Iron Pipe)

- 1. 153' from manhole- 4" service connection at 12 o'clock (top), roots in pipe, poor connection
- 2. Soil sample #SS-011-B4 (4-7') collected at this location on 2-22-06

ISS - 8

MH C-2 to MH C-1 (6" Vitreous Clay Pipe)

- 1. 8' from manhole Crack in pipe at 12 o'clock
- 2. 27' from manhole Crack in pipe invert approx 6" long
- 3. 30' from manhole 2-3 inch hole in top of pipe, 1 o'clock
- 4. 58' from manhole Crack in pipe between 9 and 4 o'clock
- 5. 64' from manhole Crack in pipe between 9 and 2 o'clock
- 6. 82' from manhole Crack in pipe between 2 and 4 o'clock
- 7. 90' from manhole Crack in pipe at 12 o'clock
- 8. 100' from manhole Crack in pipe at 12 o'clock
- 9. 102' from manhole Crack in pipe at 12 o'clock
- 10. 111' from manhole Crack in pipe at 3 o'clock
- 11. 128' from manhole Evidence of repair on top of pipe

- 12. 133' from manhole Hole in top of pipe at 11 o'clock
- 13. 134' from manhole Hole in top of pipe at 12 o'clock
- 14. Soil samples SS-034 (2-6'), 035 (3-7'), 036 (3-7'), and 037 (3-7') were collected along this area on 2-28-06

The summary reports documenting the results of the ISS line video camera inspections are included in Appendix B of this report. Also included in Appendix B are the DVDs that provide the video camera results along with the audio narration of observations made by the National Water Main inspection technician.

SECTION 3 PHASE II ISS RFA SOIL SAMPLING PROGRAM

3.1 OVERVIEW

The Phase II soil sampling program consisted of two parts. The first was a follow up to the Phase I RFA. The second part was in support of the Phase II ISS assessment and closure activities. Sampling activities associated with each of these parts is described below.

3.2 PHASE I RFA FOLLOW-UP SOIL SAMPLING

During the Phase I ISS RFA, sections of the ISS were identified where the integrity of the ISS piping had potentially been compromised. Soil samples were required during the Phase II ISS assessment to determine the extent of any impacts that releases from the ISS could have had on the subsurface soil conditions.

The areas that were identified in the Phase I RFA included ISS-5 north of Building 42 and ISS-8 at the north corner of Building 3. The soil sampling locations are shown on the accompanying figures.

Three soil borings were completed in the vicinity of the ISS-5 line north of Building 42, between Building 42 and Building 26 [SS-020 (4-6'), SS-021 (4-6'), SS-022 (3-4')]. At each of these locations, subsurface soil samples were collected with a Geoprobe® utilizing macrocoresampling techniques. Soil samples were collected in accordance with the project Quality Assurance Project Plan (QAPP) and analyzed for the presence of VOCs, semivolatile organic compounds (SVOCs), and mercury. The results from the soil boring analytical samples are included on Table 3-1 and discussed by ISS in Section 4.

An attempt was made to locate the ISS section identified in the Phase I report as potentially being impacted near the northeast corner of Building 3. One soil sample was able to be collected in this area [SS-040 (4-8')]. Attempts were made to access this location by excavation; however the proximity of additional structures and the presence of multiple underground utilities in the area rendered this approach ineffective. The analytical results from this area are included on Table 3-1 and discussed in Section 4.

3.3 PHASE II RFA SOIL SAMPLING

The Phase II ISS RFA Soil Sampling Program included the collection of soil samples to support the in-place closure of the ISS piping. Soil samples were collected in accordance with the Work Plan and the project QAPP and analyzed for the presence of VOCs, SVOCs, and mercury.

A total of 48 soil sampling points were identified and sampled using a Geoprobe® equipped with macrocore-sampling equipment. Sampling points included each of the eleven manholes identified in the Work Plan. Borings were also completed adjacent to the ISS piping to depths

equal to the reported invert of the pipe. The locations of the soil borings are shown on Figures 1-2, 1-3, and 1-4.

The results from the soil boring analytical samples are included on Table 3-1 and discussed for each of the ISS branches in Section 4. A copy of the complete analytical data package is included as Appendix C.

SECTION 4

ISS CLOSURE

4.1 OVERVIEW

The 2005 Work Plan included a discussion of the variety of procedures that would be used to close the ISS. Options included excavation of the pipelines or closure in place by sealing the piping ends with cement based grout. It was intended that the method of closure would be based upon the accessibility of the pipe and the results of the integrity evaluation.

During the course of the investigation it was determined that the ISS piping observed was generally intact and in good condition. The results of the soil sampling indicated that there were no major impacts to the site soils as a result of deficiencies in the ISS piping.

During excavations to access the piping for video inspection, it was determined that the presence of other utilities would make excavation of the ISS piping difficult. A series of construction progress photographs documenting the original site construction was found and showed the location of utilities such as product lines, gas lines, water, sewer, and communication lines. In many cases the ISS piping was installed first with the other utility lines installed over the top of, or parallel to, the ISS pipe sections. Based on this information, the decision was made to close all of the ISS lines in place by completely grouting the lines with a cement/bentonite grout.

4.2 WASTE CHARACTERIZATION AND DISPOSAL

Soils were excavated for disposal from three locations during the closure of the ISS. The first excavation was for the removal of Tank 200, located at the west side of the Site. Tank 200 was used as a lift station to pump water collected from the Building 58 groundwater recovery system and from the Building 83 drum crushing area to Manhole A1. Tank 200 was removed following the procedures outlined in the work plan dated April 24, 2006 approved by the NYSDEC. A discussion of the Tank 200 removal has been included in a separate closure report submitted to the NYSDEC in September 2006.

Based on the information provided in the Phase I report and the results of the Phase II soil sampling, an attempt was made to excavate soils from the ISS-5 line between Building 42 and Building 26. During this attempt, it was determined that the ISS piping was located in a shallow trench along side an 8-inch diameter fire water line. Both of the pipes were placed inside of a narrow trench cut into the bedrock. There was no way to remove the line and the underlying soils without disrupting the fire line. As a result, only approximately 5 cubic yards of accessible soils were removed from this area.

An excavation of impacted soils was made in the grassed area located at the northeast corner of the ISS WWTP grit chamber (Building 45). Soils in this area generally consisted of fill material. The fill material was excavated to a depth of approximately 4 feet below grade until native soil

was encountered. Soils were removed to the overhead pipe bridge to the south and the roadway to the north. The extent of the excavation was limited by the grit chamber to the west and the presence of a concrete slab encountered at a depth of 1-foot below grade on the east. Approximately 10 cubic yards of soils were removed from this area. Two samples of the fill material under the slab were collected.

In order to prevent the contamination of clean areas with impacted soils, excavated material was loaded directly into covered rolloff containers and staged for removal. Soils were characterized as non-hazardous waste based on the results of Toxicity Characteristic Leaching Procedure (TCLP) samples collected from the vicinity of excavations made to access the piping for the integrity evaluation.

Rolloff containers were taken to the High Acres landfill operated by Waste Management in Fairport, New York for disposal. A copy of the disposal manifests for the soils disposed of as part of the ISS are included as Appendix D.

4.3 SITE RESTORATION

Following the excavation of the soils, the excavations were backfilled with material from an offsite source.

Material used for backfilling the excavations was obtained from Thalle Industries, Inc. from the quarry on Route 9, Fishkill, NY. Material used as backfill has been identified as 1-1/2 inch stone and Item 4 (New York State Department of Transportation classification). Backfill material was tested by ASTM method D422 for gradation, and analytical testing was completed for the presence of VOCs, SVOCs, pesticides, herbicides, polychlorinated biphenyls (PCBs), and metals. A copy of the gradation and analytical results are included as Appendix E.

4.4 CLOSURE DESCRIPTION

The ISS was permanently closed in accordance with the Line Abandonment Procedures included in the October 2005 Work Plan. This section includes a description of each ISS section, and a summary of the cleaning and performance sampling, integrity evaluation, soil sampling results and the final closure activities.

4.4.1 Line A (ISS-1)

Description

ISS-1 includes Tank 200, the shallow groundwater recover system the east of Building 58, and the line from former drum disposal area within Building 83 (Figure 1-2). This piping discharged to Tank 200. Tank 200 served as a lift station wherein the water was pumped through a force main to be discharged to MH-A1.

Cleaning/Performance Sampling

Three piping runs within ISS-1 were cleaned by flushing with a high pressure nozzle. Following flushing, the following performance sampling was completed.

- RW-018-A1 from MH-A1 back to Tank 200
- RW-020-58 from the 4-inch tile line from the Building 58 collection system into the catch basin located at the west end of Tank 200
- RW021-83; from the drum crushing area in Building B3 to Tank 200

There were no detectable concentrations of VOC compounds in the performance sampling exceeding the NYSDEC Class GA criteria.

Integrity Evaluation

With the exception of the four minor piping deficiencies described in Section 2, the piping was observed to be in good condition in the ISS-1 Branch, and there were no structural breaches in this segment of the piping.

Soil Sampling

Four soil samples were collected along the ISS-1 section to demonstrate that in-place closure of the ISS had not left unacceptable soil impacts.

Samples SS-030 (3-7'), SS-031 (2-6'), SS-032 (2-6') were located within the Building 58/83 AOC near the west end of the Site. Analytical results from these soil samples indicated that there is mercury and some SVOCs in the form of Polycyclic Aromatic Hydrocarbons (PAHs) present in the soils.

Samples SS-028 (3-7') and SS-029 (3-7') were located near the east end of the ISS-1 section. Analytical results show that there were some PAHs present. Mercury was also detected.

Closure

During the closure of ISS-1, underground storage Tank 200 and associated piping and catch basins were removed. This work was completed under the Work Plan approved by the NYSDEC in April 2006. Soil samples were collected from the tank sidewalls and the bottom of the tank excavation. The sample results have been reported to the NYSDEC in the Tank 200 Closure Report dated September 2006.

An attempt was made to access the line that was reportedly installed across the east side of Building 53. Two exploratory excavations were made but the reported line was not found. On this basis, it was concluded that the line had been previously removed.

To close ISS-1, the following lines were grouted with a cement/bentonite grout.

- From the former drum crushing area within Building 83 to Tank 200 (50 gallons of grout)
- From MH-A1 to Tank 200 (630 gallons of grout)

4.4.2 Line A (ISS-2)

Description

ISS-2 includes the piping entering into the concrete vault outside of the southwest corner of Building 42, and the discharge from the vault to MH-A1 (Figure 1-2)

Cleaning/Performance Sampling

The piping run extending to the east from the vault was back flushed and sampled (RW-015-42). The line from the vault to MH-A1 was flushed from the vault and a sample of the rinseate was collected at the manhole (RW-016-A1).

There were no detections of VOCs in the performance samples.

Integrity Evaluation

The piping was observed to be in good condition in the ISS-2 Branch, and there were no structural deficiencies or apparent breaches in this segment of the piping.

Soil Sampling

Three soil samples were collected along the ISS-2 section to demonstrate that in-place closure of the ISS had not left unacceptable soil impacts.

Samples SS-025(4-8'), SS-026(4-8') and SS-026(8-10') were located along the ISS line between Manhole A-1 and Building 42 (Figure 1-2). Analytical results from the SS-025 samples indicated that there are PAH compounds and mercury present in the soils with elevated concentrations.

Closure

During the closure of ISS-2, the concrete vault located outside of the southwest corner of Building 42 was closed by backfilling with stone. The roof drain from Building 42 was disconnected from the vault. The piping entering the vault from the east side was plugged at the vault and grouted from the north side with cement/bentonite grout (90 gallons of grout).

The piping run from the vault to MH-A1 was grouted (50 gallons of grout).

4.4.3 Line A (ISS-3)

Description

ISS-3 includes the ISS line that drains the above ground storage tank containment area. The last of the tanks within this containment was permanently closed in June 2006.

Cleaning/Performance Sampling

The ISS-3 line was flushed from the valve box to MH-A1. A rinseate sample was collected at MH-A1 and identified as RW-017-A1. There were no detections of VOCs in the performance sample exceeding the NYSDEC Class GA criteria.

Integrity Evaluation

The piping was observed to be in good condition in the ISS-3 Branch, and there were no structural deficiencies or apparent breaches in this segment of the piping.

Soil Sampling

Two soil samples were collected along the ISS-3 section to demonstrate that in-place closure of the ISS had not left unacceptable soil impacts.

Samples SS-023 (2-4) and SS-024 (2-4.5) were located along the ISS line between MH-A1 and the valve pit (Figure 1-2). No elevated concentrations of organic compounds are present in the soils. Elevated mercury concentrations were found in 2 soil samples.

Closure

To close the ISS-3 line, the drain from the tank containment area was disconnected from the ISS. The line was grouted from the valve pit to MH-A1 (200 gallons of grout).

4.4.4 Line A (ISS-4)

Description

ISS-4 includes MH-A1, the buried vault located directly north of the MH-A1, and the spill containment pad located northwest of MH-A1. This section also includes the line from MH-A1 to Building 45 (grit chamber) and the abandoned line from the base of the cliff below MH-A1 that formerly led to the WWTP.

Cleaning/Performance Sampling

The ISS-4 line was cleaned by jet washing from the grit chamber to MH-A1.

Two performance samples were collected. RW-001-A1 was collected from the section of the ISS-4 line from the base of the cliff to the grit chamber and RW-002-A1 was collected from MH-A1 to the grit chamber. There were no detectable concentrations of VOC compounds in the performance sampling exceeding the NYSDEC Class GA criteria.

Integrity Evaluation

The piping was observed to be in good condition in the ISS-4 branch, and there were no structural deficiencies or apparent breaches in this segment of the piping.

Soil Sampling

Three soil samples were collected from the ISS-4 section to demonstrate that in-place closure of the ISS had not left unacceptable soil impacts. Sample SS-027-A1 (3-7') was collected beside MH-A1, SS-043 (3-7') was located near Building 45, and SS-044 (3-7') is located beside the lower section near Building 85.

Analytical results from the SS-025 (4-8') samples indicated that there are PAH compounds and mercury present in the soils with elevated concentrations.

Closure

During the closure of ISS-4, the vault located north of MH-A1 was excavated and grouted. MH-A1 was backfilled with grout to the point at which all of the piping was covered. The upper part of the manhole was filled with stone. The ISS-4 line from the base of the cliff to the grit chamber was opened and backfilled with grout (340 gal). The former ISS pipeline from the base of the cliff was also grouted (100gal).

4.4.5 Line B (ISS-5)

Description

ISS-5 includes the all of the areas with flow to the WWTP originating from Buildings 70, 26, and 55 (Figure 1-3). All flow from this section enters the grit chamber through the line that formerly serviced the north part of the site from MH-B2.

During the Phase I RFA, ISS-5 was partially closed by grouting. The ISS-5 section includes the piping passing south of Building 26, including the spill containment system for the boiler house fuel-oil offloading area. The ISS-5 work completed in the Phase II work also included the section from MH-B1 that was not previously closed during the Phase 1 ISS investigation and the boiler house blowdown pit. These sections all flow into and through the "3x3 vault" that was identified near the south east corner of Building 55. Also included in ISS-5 is the floor drain/cleanout located in the bottom of the steps east of Building 55.

Cleaning/Performance Sampling

Piping runs within ISS-5 were cleaned by flushing with a high pressure nozzle. Following flushing, a performance samples was collected (RW-024).

There were no detections of VOCs in the performance sampling exceeding the NYSDEC Class GA criteria.

Integrity Evaluation

The piping was observed to be in good condition in the ISS-5 Branch, and there were no structural deficiencies or apparent breaches in this segment of the piping

Soil Sampling

Eight soil samples were collected along the ISS-5 section to demonstrate that in-place closure of the ISS had not left unacceptable soil impacts.

Samples SS-020 (4-6'), SS-021 (4-6'), and SS-022 (3-4') were located along the ISS-5 line between the boiler house (Building 26) and Building 42. This section was closed during the Phase I work. These samples were collected in response to recommendations from Phase I. PAH concentrations were elevated in the three samples. In the SS-021 sample, other SVOCs were detected and the concentrations of dibenzofuran and Indeno(1,2,3-cd)pyrene were elevated. The concentration of mercury in the SS-021 was 0.364 mg/kg.

Soil Sample SS-015 (4-7') was located along the former line to Building 70 at the northeast corner of Building 26. Soil samples from this location contained some elevated PAH concentrations. Mercury was detected at this location with a concentration of 0.211 mg/kg.

Soil Sample SS-016 (4-5') was located between Building 26 and the above ground storage tank (AST) containment area. This area was used for the offloading of fuel oil for use in the boilers. No organic compounds were detected and the mercury concentration was 0.15 mg/kg.

Samples SS-017 (8-12'), SS-018 (4-8') and SS-019 (4-8') were located along the ISS piping south of Building 55. PAHs and mercury were found in all three of these samples with elevated concentrations. In addition to the PAHs, the SVOC phenol was found to be elevated in sample SS-018 (4-8'). The concentration of mercury in the three soil samples ranged from 0.139 to 1.84 mg/kg.

Closure

During the closure of ISS-5, the vault previously identified as the "3x3 vault" located south of Building 55 was excavated for grouting. The section from the vault was grouted to the grit chamber and the vault was grouted full (300 gal). The section from the boiler house blow down chamber to the vault was also grouted (320 gal).

The floor drain/cleanout east of Building 55 to the ISS-5 line was sealed with 30 gallons of grout. The spill containment basins near the fuel oil unloading area for Building 26 were grouted to the top of the discharge piping (210 gal). The upper sections of the containment structures were backfilled with stone fill.

Based on the results of the soil samples an attempt was made to excavate soils in the vicinity of SS-020 and SS-021. The former ISS-5 line was exposed and was found to have been installed within a trench cut into the shallow bedrock at a depth of approximately 2.5 feet. Also within the trench was an 8-inch diameter freshwater fire line. The size of the trench and the need to keep the fire line intact prevented the excavation of any additional material in this area.

Former Texaco Research Center_Beacon_ISS Certification Report.doc October 11, 2006

4.4.6 Line B (ISS-6)

Description

ISS-6 includes all of the areas with flows passing through Manhole B2 to Building 45. This includes Buildings 28 (east end), 29, 30, 37, 38, 39, 40, 56, 65, 70, and manholes B2, B3, B4, B5, B6.

During the integrity evaluation an error in the site plan was identified. The drawings show that the Building 56 and Building 29 floor drains are connected to the old B-line sewer to the grit chamber that is included in ISS-5. The performance of dye testing showed that the drains are actually connected to MH-B2 through the former Building 30 service connection. This correction has been made to the plans (Figure 1-3).

Cleaning/Performance Sampling

All of the piping within ISS-6 was cleaned by flushing with a high pressure nozzle. Following flushing, the following performance sampling was completed.

- RW-003-B2 from MH-B2 to Building 45
- RW-005-BG from former Building 30 service connection into MH-B2
- RW-006-B3 from piping north of MH-B3
- RW-007-B3 from piping north of MH-B3
- RW-008-B3 from Building 70 to MH-B3
- RW-009-B2 from MH-B3 to MH-B2
- RW-010-B6 from Building 38 to MH-B6
- RW-011-B5 from MH-B6 to MH-B5
- RW-012-B4 from Building 39 and Building 37 to MH-B4
- RW-013-B3 from MH-B4 through MH-B5 to MH-B2
- RW-014-B2 from Building 56 floor drain to MH-B2

Chlorobenzene was detected in samples that were collected in MH-B2 of water coming from the connection to the Building 29/56 floor drains (RW-005-BG). As a result of this flow, the sample from MH-B2 to the grit chamber also indicated detectable chlorobenzene concentrations. Following the collection of performance samples, it was noted that there was a continuous water flow entering MH-B2 from the former Building 30 service line. The source of this flow was identified as coming from a break in the connection coming from the Building 56 area.

Benzene was detected in the RW-005-BG sample in exceedance of the Class GA guidance. This water was found to originate from the groundwater in the Building 56 AOC.

Integrity Evaluation

There were several observed deficiencies during the video camera inspection of the ISS-6 branch piping, as summarized in Section 2. In addition to the deficiencies noted in the video inspection, there was an observed breach in a rubber "Fernco" piping connection near the Building 56 wash rack area. This breach created a gap in the piping sections and, as a result, groundwater infiltration continuously entered the ISS piping at that location. The remaining segments of the ISS–6 Branch were observed to be in good condition with no apparent structural deficiencies or breaches.

Soil Sampling

A total of fourteen soil samples were collected within the ISS-6 section to demonstrate that in-place closure of the ISS had not left unacceptable soil impacts. The locations of the soil samples are shown on Figure 1-3.

Samples SS-001-B20 (2-6') and SS-002-B3 (3-7') are located in the northern section of the Site north of MH-B3. No VOCs were detected; PAHs with slightly elevated concentrations were detected and elevated mercury was found in the SS-001-B20 (2-6') sample.

Samples SS-008-B6 (3-7') and SS-009-B6 (3-7') are located in the northern section of the Site south of MH-B6. No VOCs were detected, a number of SVOCs were detected, although the concentrations were not excessive. Mercury was found with slightly elevated levels.

Sample SS-011-B4 (4-7') was located east of MH-B4 on the service connection from Building 39. No VOCs were detected, and SVOC concentrations were not elevated. The concentration of mercury was 0.206 mg/kg.

Samples SS-014-MHB2 (4-8') and SS-014-MHB2 (8-11') were located beside Manhole B2. In the shallow sample, a number of SVOCs were detected and the mercury concentration was 0.366 mg/kg. In the deep sample, no SVOCs were detected and the mercury concentration was 0.025 mg/kg.

Closure

To complete the closure of the ISS-6, all of the lines upgradient of MH-B5 were grouted with cement. The section from MH-B5 through MH-B2 to the grit chamber was grouted with cement/bentonite grout. The section from Building 29 and Building 56 to MH-B2 was also grouted. Manholes were grouted to the top of the pipes and then the remainder was backfilled with stone.

4.4.7 Line C (ISS-8)

Description

ISS-8 includes piping from Manhole C-2, between Buildings 1 and 4, through Building 2 to Manhole C-1 to Building 45. ISS-8 was the trunk line that formerly carried flow from ISS-9, ISS-10 and ISS-11 (Figure 1-4).

Cleaning/Performance Sampling

The ISS-8 line and accessible service lines were cleaned by flushing with a high pressure nozzle. Following flushing, the following performance sampling was completed.

• RW-025-GC - from MH-C2 to Building 45

The results from this sample were all non-detect.

Integrity Evaluation

There were numerous deficiencies observed in the ISS-8 Branch piping during the video camera inspection activities. These deficiencies included cracks, holes, and ruptures to the pipe. These deficiencies were all relatively minor in nature, and there were no significant structural deformation or collapses of any of the piping segments. The video camera inspection also revealed that an apparent repair to the crown of the piping had been completed at some time in the past.

Soil Sampling

Nine soil samples were collected along the ISS-8 section to demonstrate that in-place closure of the ISS had not left unacceptable soil impacts.

Samples SS-034-MHC2 (2-6'), SS-035-ISS8 (3-7'), and SS-036-ISS8 (3-7') are located along the east end of the ISS-line. There were no detections of organic compounds or mercury with increased concentrations in these samples.

Soil samples SS-033-ISS8 (3-7'), SS-037-ISS8 (3-7'), SS-038-ISS8 (4-8'), SS-039-ISS8 (4-8'), and SS-40-ISS8 (4-8'), contained elevated concentrations of PAHs and mercury.

Sample SS-042-ISS8 (3-7') had elevated concentrations of PAHs, mercury, dibenzofuran and phenol.

Closure

To complete the closure of the ISS-8 the line from MH-C2 to the grit chamber and all accessible service lines were backfilled with a cement/bentonite grout. The "3x3 sewer pit" located between Building 1 and Building 4 just east of Building 2 was excavated in an attempt to remove the structure. The presence of other utilities including storm sewer and gas lines prevented the removal of this structure. The vault was backfilled with grout and topped off with stone.

MH-C1 and MH-C2 were grouted to the top of the piping and then the remainder was backfilled with stone.

4.4.8 Line C (ISS-9)

Description

ISS-9 includes the piping for the force main between the Washington Avenue Tank Farm and MH-C2.

Cleaning/Performance Sampling

The ISS-9 line was replaced in 1999 with a cast iron line. The section transiting Fishkill Creek was replaced with Sch. 40 PVC. In accordance with the approved Work Plan, no cleaning or performance sampling of the ISS-9 was completed during the Phase II work

Integrity Evaluation

In accordance with the approved Work Plan, an integrity evaluation was not completed on the ISS-9 section.

Soil Sampling

In accordance with the approved Work Plan, no soil sampling was completed along the ISS-9 section.

Closure

The ISS-9 section was closed by disconnecting the 3-inch PVC line across the bridge. This line was cut and capped. The pump in the Tank Farm lift station is currently out of service. The ISS-9 line was sealed within the main facility during the grouting of MH-C2 and the ISS-8 line.

4.4.9 Line D (ISS-7)

Description

ISS-7 was replaced in 1997 and consists of one 6-inch PVC line and one 4-inch PVC line running together from Building 3 to Building 45 (grit chamber). During excavation of impacted soils to the northeast of Building 45, the two PVC pipes were exposed.

Cleaning/Performance Sampling

In accordance with the approved Work Plan, no cleaning or performance sampling of this section was completed.

Integrity Evaluation

In accordance with the approved Work Plan, the integrity of this line was not further evaluated.

Soil Sampling

During the removal of soils from the northeast corner of Building 45 as a result of elevated SVOCs in SS-042 (3-7'), the two pipes from ISS-7 were uncovered. These pipes were found to be overlying a concrete slab. Soil in the area was removed and disposed of in a secure landfill. Two soil samples (SS-B45slabNorth, SS-B45slabSouth) were collected from underneath the slab. The results from these samples show the presence of elevated PAH concentrations.

Closure

The 4-inch PVC and the 6-inch PVC pipes that were uncovered between Building 3 and the grit chamber were disconnected from the grit chamber and removed back to the concrete slab. The piping was capped and left in place.

SECTION 5

SUMMARY AND CONCLUSIONS

5.1 INTRODUCTION

The ISS at the Chevron Beacon, New York Facility was permanently closed.

The 2005 Work Plan included a discussion of the variety of procedures that would be used to close the ISS. Options included excavation of the pipelines or closure in place by sealing the piping ends with cement based grout. It was intended that the method of closure would be based upon the accessibility of the pipe and the results of the integrity evaluation.

A review of the available site plans and as-built photographic documentation found that the majority of the ISS lines had been installed underneath other utilities. In addition, the ISS lines tended to have been installed at depths that would have required significant excavation to access and remove them. As a result of the difficulty of access, Chevron elected to complete the integrity evaluation and soil sampling first and then determine, based on the evaluation results, whether the lines needed to be removed or if closure in place by backfilling with a cement/bentonite grout would constituent an acceptable closure practice.

5.2 SECTION SUMMARIES

ISS-1

Tank 200 and the associated controls and piping were excavated and removed. Excavated soil was transported to the High Acres Landfill for disposal. The tank was cleaned and staged for future disposal. A separate report documenting the removal of Tank 200 was submitted to the NYSDEC.

The remainder of ISS-1 was closed in place and grouted. There were no detectable concentrations of VOCs in the performance samples.

Soil sampling indicated the presence of elevated concentrations of PAHs and mercury. Additional work will be completed in the vicinity of ISS-1 as part of the Building 58/83 AOC.

ISS-2

All of the piping segments within the ISS-2 Section were closed in place and filled with a cement/bentonite grout. There were no detections of VOCs in the performance samples.

Two soil samples were collected along the ISS-2 line. Analytical results indicate the presence of slightly elevated concentrations of PAHs and mercury.

ISS-2 is considered to be closed and no additional work is planned in this section.

ISS-3

ISS-3 was closed in place by filling with a cement/bentonite grout. This line was disconnected from the aboveground storage tank secondary containment system at the Boiler House Tank Farm. There were no detections of VOCs in the performance samples.

Soil analytical results indicate the presence of slightly elevated concentrations of mercury.

ISS-3 is considered to be closed and no additional work is planned in this section.

ISS-4

ISS-4 was closed in place by grouting MH-A1 and the sub-grade piping between MH-A1 and Building 45.

There were no detections of VOCs in the performance samples or the soil samples. PAHs and mercury were detected with elevated concentrations.

The class and concentrations of contaminants identified in the soils are consistent with the historical use of the Site and do not indicate that the impacts are a results of the ISS operations. ISS-4 is considered to be closed and no additional work is planned in this section.

ISS-5

ISS-5 was closed in place by filling with a cement/bentonite grout.

There were no detections of VOCs in the performance samples or the soil samples. PAHs and mercury were detected with elevated concentrations in the soil samples. The presence of shallow bedrock and underground utilities prevented the removal of additional soils as recommended in the Phase I report.

With the exception of the above mentioned inaccessible section, the class and concentrations of contaminants identified in the soils do not indicate that the impacts are a results of the ISS operations. ISS-5 is considered to be closed and no additional work is planned in this section.

ISS-6

ISS-6 was closed in place by filling with a cement/bentonite grout.

The source of the water that was sampled from MH-B2 during the performance sampling was identified as coming from a failed piping connection in the ISS piping in the area of the clean-out in the Building 29/56 courtyard. Additional work in this are will be included in the Building 56 AOC work plan. There were no VOCs detected in the performance samples from other ISS-6 piping. In the soil samples, PAHs and mercury were detected at elevated concetrations.

With the exception of the area within the Building 56 AOC, the class and concentrations of contaminants identified in the soils are consistent with the prior use of the Site and do not

indicate that the impacts are a results of the ISS operations. ISS-6 is considered to be closed and no additional work is planned in this section.

ISS-7

ISS-7 was closed by disconnecting the existing piping from the WWTP. During the piping removal, soils were excavated and disposed of at the High Acres Landfill. The soil samples collected from underneath the concrete slab that was uncovered indicate that PAH and metals exist with elevated concentrations.

The class and concentrations of contaminants identified in the soils are consistent with the prior use of the Site and do not indicate that the impacts are a results of the ISS operations. ISS-7 is considered to be closed and no additional work is planned in this section.

ISS-8

ISS-8 was closed in place by filling with a cement/bentonite grout. There were elevated concentrations of SVOCs and mercury in soil samples.

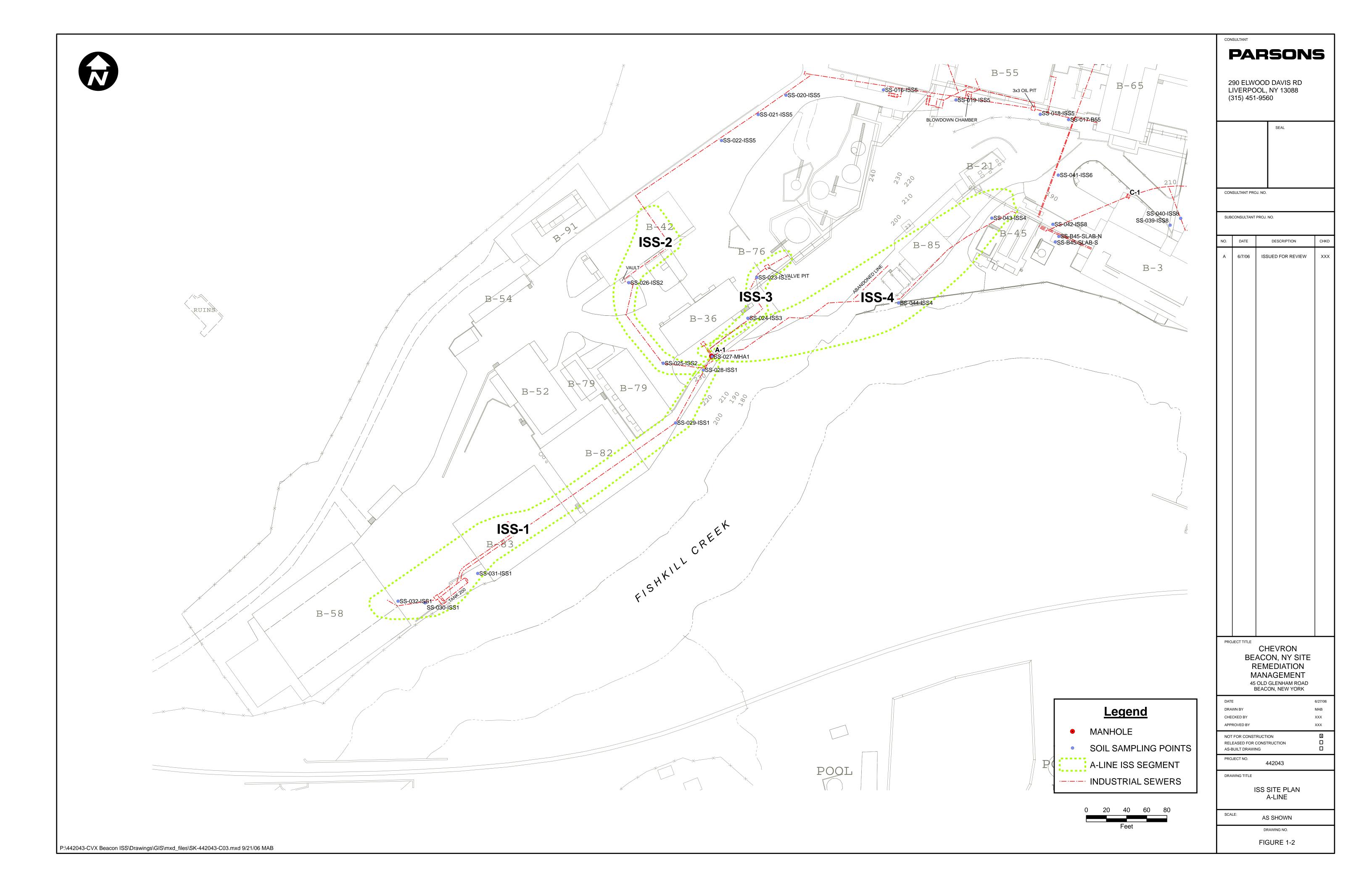
The class and concentrations of contaminants identified in the soils are consistent with the historical use of the Site and do not indicate that the impacts are a results of the ISS operations. ISS-8 is considered to be closed.

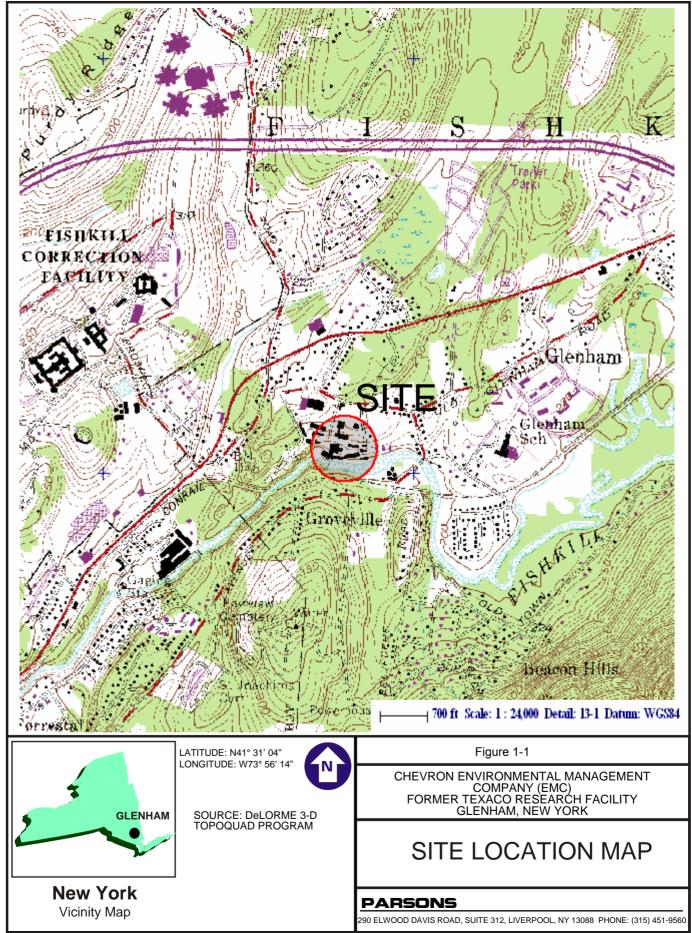
ISS-9

ISS-9 was permanently closed by grouting MH-C2. The piping across the walk bridge from the Tank Farm was disconnected and plugged. The lift station and pump in the Tank Farm have been placed out of service. ISS-9 is considered to be closed and no additional work is planned in this section.

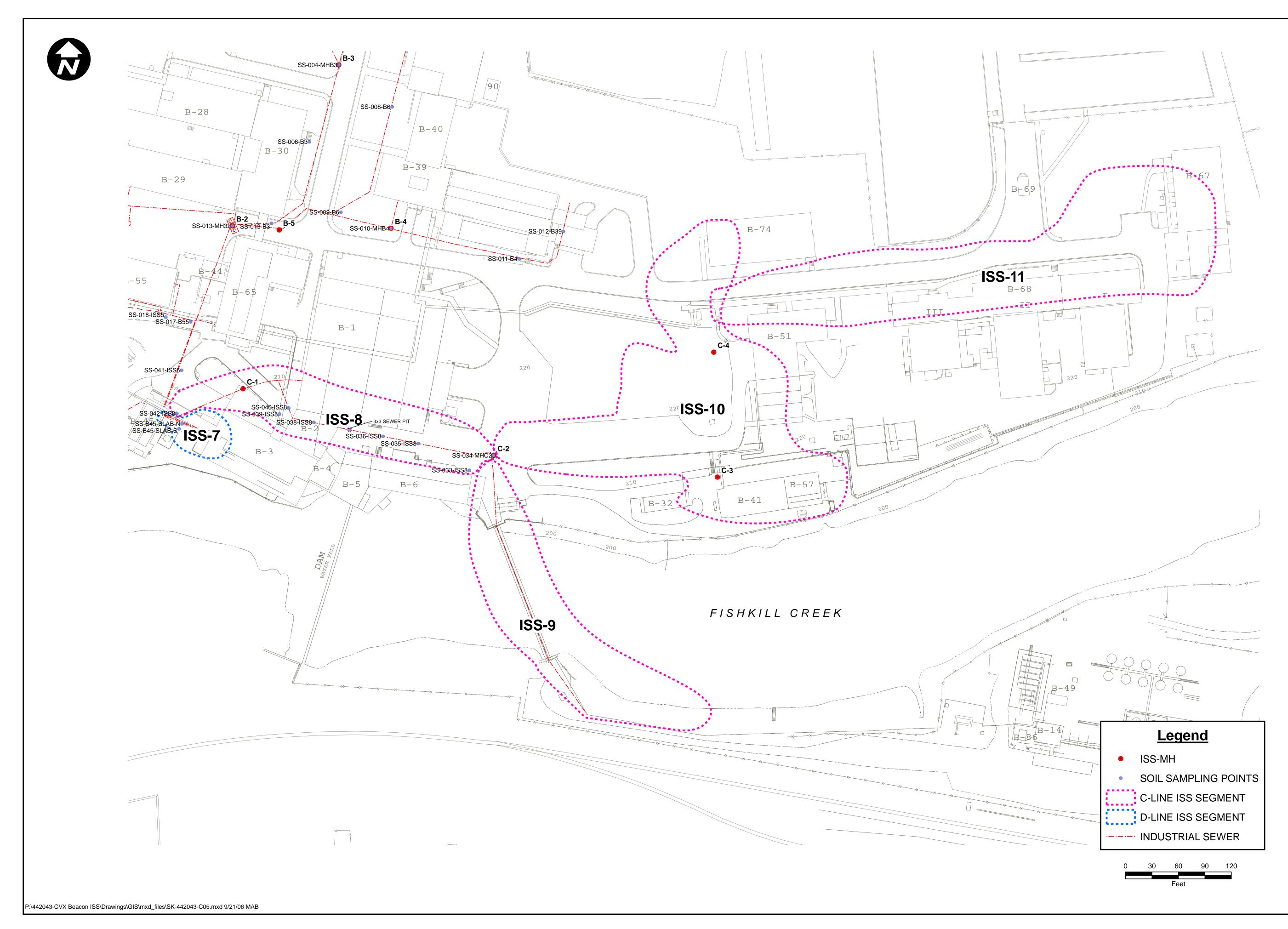
SECTION 6

REFERENCES


NYSDEC, 1998, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. Division of Water Technical And Operational Guidance Series (1.1.1), June 1998


Parsons, 2005 Work Plan- Industrial Sewer System, Phase II RCRA Facility Assessment – Sampling Visit, Inactive Line Abandonment, Former Texaco Research Center, Beacon, New York., October 2005.

IT Corporation, 2002 Industrial Sewer System Closure Report, ISS 1-6, 8,10 and 11, Texaco Research Center, Beacon New York., IT Corporation., March 2002



-~~~~		ISULTANT		
		PA	RSON	5
			OOD DAVIS RD	
	L L		DOL, NY 13088	
			SEAL	
	CON	ISULTANT PR	OJ. NO.	
	SUB	CONSULTAN	F PROJ. NO.	
			1	1
	NO.	DATE		СНКД
	A	6/7/06	ISSUED FOR REVIEW	XXX
* * *				
• • .				
SS-012-B39				
	PRO	JECT TITLE		
			CHEVRON ACON, NY SITE	
		Ν	REMEDIATION MANAGEMENT	
		45	5 OLD GLENHAM ROAD BEACON, NEW YORK	
Legend	DATI DRA	E WN BY		6/27/06 MAB
 ISS-MH 	CHE	CKED BY ROVED BY		xxx xxx
B-LINE ISS SEGMENT	NOT	FOR CONS	TRUCTION CONSTRUCTION	
	AS-E	BUILT DRAW	ING	
INDUSTRIAL SEWER			442043	
SOIL SAMPLING POINTS	DRA	WING TITLE	ISS SITE PLAN	
			B-LINE	
0 25 5 0 ⁰ 75 100	SCA	LE:	AS SHOWN	
Feet				
			FIGURE 1-3	

P:\442044 ChevronBeacon\Graphics\SITEMAP.PPT

		RSON	S							
LI	290 ELWOOD DAVIS RD LIVERPOOL, NY 13088									
(3	(315) 451-9560									
		SEAL								
CON	SULTANT PRC	JJ. NO.								
SUBC	CONSULTANT	PROJ. NO.	-							
NO.	DATE	DESCRIPTION	СНКО							
A	6/7/06	ISSUED FOR REVIEW	XXX							
	JECT TITLE									
PRO		CHEVRON ACON, NY SITE								
	R	REMEDIATION								
	45	IANAGEMENT OLD GLENHAM ROAD BEACON, NEW YORK								
DATE	:		6/27/06							
CHEC	WN BY CKED BY ROVED BY		MAB XXX XXX							
NOT	FOR CONST	RUCTION								
AS-B	UILT DRAWI	NG								
	WING TITLE	442043								
	I	SS SITE PLAN C & D-LINE								
SCAL	.E:	AS SHOWN								
		FIGURE 1-4								

TABLE 2-1

Performance Sampling Analytical Data Summary Industrial Sewer System Closure

Former Texaco Research Center Beacon, New York

Interim Corrective Measure		Field Sample ID	RW-001-A1	RW-002-A1	RW-003-B2	RW-004-BG	RW-005-BG	RW-006-B3	RW-007-B3	RW-008-B3
Industiral Sewer System		Location	MHA1	MHA1	MHB2	FIRE WATER	B56	MHB3	MHB3	MHB3
		Sample Date	2/9/2006	2/9/2006	2/9/2006	2/9/2006	2/9/2006	2/14/2006	2/14/2006	2/14/2006
		Sample Purpose	Regular sample	Regular sample	Regular sample	Background	Background	Regular sample	Regular sample	Regular sample
	Units	NYSDEC TOGS								
VOLATILE ORGANIC COMPOUNDS		Class GA								
1,1,1-Trichloroethane	ug/l	5	0.8 U	0.8 UJ	0.8 U	0.8 UJ	0.8 UJ	0.8 U	0.8 U	0.8 UJ
1,1,2,2-Tetrachloroethane	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	ug/l	1	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U
1,1-Dichloroethane	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethylene	ug/l	5	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U
1,2-Dichloroethane	ug/l	0.6	1 U	1 UJ	1 U	1 UJ	1 UJ	1 U	1 U	1 UJ
1,2-Dichloropropane	ug/l	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Hexanone	ug/l	50	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Acetone	ug/l	50	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
Benzene	ug/l	1	0.5 U	0.5 U	0.5 U	0.5 U	2 J	0.5 U	0.5 U	0.5 U
Bromodichloromethane	ug/l	50	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromoform	ug/l	50	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon disulfide	ug/l	60	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	ug/l	5	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 U	1 U	1 UJ
Chlorobenzene	ug/l	5	2 J	0.8 U	31	0.8 U	300	5	1 J	0.8 U
Chloroethane	ug/l	5	1 U	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U
Chloroform	ug/l	7	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U
cis-1,2-Dichloroethylene	ug/l	5	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U
cis-1,3-Dichloropropene	ug/l	0.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	ug/l	5	0.8 U	0.8 U	1 J	0.8 U	1 J	0.8 U	0.8 U	0.8 U
Methylene chloride	ug/l	10	2 U	2 U	2 U	2 U	2 U	2 U		2 U
Styrene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	ug/l	5	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U
trans-1,2-Dichloroethene	ug/l	5	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U
trans-1,3-Dichloropropene	ug/l	0.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethylene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	ug/l	2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylene (total)	ug/l	5	3 J	0.8 U	3 J	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U

Notes:

690 : Bold indicate concentration exceeding the NYSDEC Class GA Guidance

U : compound was not detected J: estimated value (the resultsis greater than the MDL and less than the LOQ) NYSDEC TOGS: Division of Water Technical Operation and Guidance Series (1.1.1)

NYSDEC: New York State Department of Environemtal Conservation

MDL: method detection limit

LOQ: limit of quantitation

ug/L: micrograms per Liter

TABLE 2-1

Performance Sampling Analytical Data Summary Industrial Sewer System Closure

Former Texaco Research Center Beacon, New York

Interim Corrective Measure		Field Sample ID	RW-009-B2	RW-010-B6 MHB6	RW-011-B5 MHB5	RW-012-B4 MHB4	RW-013-B2	RW-014-B2	RW-015-42	RW-016-A1 MHA1
Industiral Sewer System		Location	MHB2 2/14/2006	2/14/2006	2/14/2006	2/14/2006	MHB2 2/14/2006	MHB2 2/14/2006	B42 2/14/2006	2/15/2006
		Sample Date								
		Sample Purpose	Regular sample	Regular sample	Regular sample					
	Units	NYSDEC TOGS								
VOLATILE ORGANIC COMPOUNDS		Class GA								
1,1,1-Trichloroethane	ug/l	5	0.8 U							
1,1,2,2-Tetrachloroethane	ug/l	5	1 U	1 U	1 U		1 U	1 U		
1,1,2-Trichloroethane	ug/l	1	0.8 U							
1,1-Dichloroethane	ug/l	5	1 U	1 U	1 U			1 U		
1,1-Dichloroethylene	ug/l	5	0.8 U		0.8 U					
1,2-Dichloroethane	ug/l	0.6	1 U	1 U				1 U		
1,2-Dichloropropane	ug/l	1	1 U	1 U			1 U	1 U		
2-Hexanone	ug/l	50	3 U	3 U			3 U	3 U		
Acetone	ug/l	50	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
Benzene	ug/l	1	0.5 U	0.5 U	0.5 U					
Bromodichloromethane	ug/l	50	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromoform	ug/l	50	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon disulfide	ug/l	60	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chlorobenzene	ug/l	5	14	0.8 U	0.8 U	0.8 U	3 J	4 J	0.8 U	0.8 U
Chloroethane	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	ug/l	7	0.8 J	0.8 U	0.8 U	0.8 U				
cis-1,2-Dichloroethylene	ug/l	5	0.8 U	0.8 U	0.8 U					
cis-1,3-Dichloropropene	ug/l	0.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	ug/l	5	0.8 U	0.8 U	0.8 U					
Methylene chloride	ug/l	10	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Styrene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	ug/l	5	0.7 U	0.7 U	0.7 U					
trans-1,2-Dichloroethene	ug/l	5	0.8 U	0.8 U	0.8 U					
trans-1,3-Dichloropropene	ug/l	0.4	1 U	1 U	1 U	1 U	1 U	1 U		
Trichloroethylene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	ug/l	2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylene (total)	ug/l	5	0.8 U	0.8 U	0.8 U					

Notes:

690 : Bold indicate concentration exceeding the NYSDEC Class GA Guidance

U : compound was not detected

J: estimated value (the resultsis greater than the MDL and less than the LOQ) NYSDEC TOGS: Division of Water Technical Operation and Guidance Series (1.1.1)

NYSDEC: New York State Department of Environemtal Conservation

MDL: method detection limit

LOQ: limit of quantitation

ug/L: micrograms per Liter

TABLE 2-1

Performance Sampling Analytical Data Summary Industrial Sewer System Closure

Former Texaco Research Center Beacon, New York

Interim Corrective Measure		Field Sample ID	RW-017-A1	RW-018-A1	RW-019-BG	RW-020-58	RW-021-83	RW-024-GC	RW-025-GC	RW-027-BG
Industiral Sewer System		Location	MHA1	MHA1	FIRE WATER	B58	B83	B45	B45	BG
		Sample Date	2/15/2006	2/15/2006	2/15/2006	2/15/2006	2/15/2006	2/16/2006	2/16/2006	3/23/2006
		Sample Purpose	Regular sample	Regular sample	Background	Regular sample	Regular sample	Regular sample	Regular sample	Background
	Units	NYSDEC TOGS								
VOLATILE ORGANIC COMPOUNDS		Class GA								
1,1,1-Trichloroethane	ug/l	5	0.8 U	0.8 U	0.8 U	2 J	0.8 U	0.8 U	0.8 U	0.8 U
1,1,2,2-Tetrachloroethane	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	ug/l	1	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U
1,1-Dichloroethane	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethylene	ug/l	5	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U
1,2-Dichloroethane	ug/l	0.6	1 UJ	1 UJ	1 UJ	1 UJ		1 U	1 U	1 U
1,2-Dichloropropane	ug/l	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Hexanone	ug/l	50	3 UJ	3 UJ	3 UJ	3 UJ	3 UJ	3 UJ	3 UJ	3 U
Acetone	ug/l	50	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
Benzene	ug/l	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 J
Bromodichloromethane	ug/l	50	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromoform	ug/l	50	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 UJ
Carbon disulfide	ug/l	60	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 UJ
Chlorobenzene	ug/l	5	0.8 U	0.8 U	0.8 U	1 J	0.8 U	0.8 U	0.8 U	280
Chloroethane	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	ug/l	7	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U
cis-1,2-Dichloroethylene	ug/l	5	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U
cis-1,3-Dichloropropene	ug/l	0.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	ug/l	5	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	1 J
Methylene chloride	ug/l	10	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Styrene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	ug/l	5	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U
trans-1,2-Dichloroethene	ug/l	5	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U
trans-1,3-Dichloropropene	ug/l	0.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethylene	ug/l	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	ug/l	2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylene (total)	ug/l	5	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U

Notes:

690 : Bold indicate concentration exceeding the NYSDEC Class GA Guidance

U : compound was not detected

J: estimated value (the resultsis greater than the MDL and less than the LOQ) NYSDEC TOGS: Division of Water Technical Operation and Guidance Series (1.1.1)

NYSDEC: New York State Department of Environemtal Conservation

MDL: method detection limit LOQ: limit of quantitation

ug/L: micrograms per Liter

Soil Analytical Data Summary

Industrial Sewer System Closure

Former Texaco Research Center

Beacon, New York

Industrial Sewer System	Field Sample ID	SS-001-B20 (2-6)	SS-002-B3 (3-7)	SS-003-B3 (3-4.5)	SS-004-B3 (3-7)	SS-005-B73 (2-6)	SS-006-B3 (3-7)	SS-007-MHB6 (4-7)	SS-008-B6 (3-7)	SS-009-B6 (3-7)	SS-010-MHB4 (3-7)	SS-011-B4 (4-7)	SS-012-B39 (3-7)	SS-013-B3 (3-7)
Phase II RFA	Location	B20-SS-001 2/20/2006	B3-SS-002 2/21/2006	B3-SS-003 2/21/2006	B3-SS-004 2/21/2006	B73-SS-005 2/21/2006	B3-SS-006 2/21/2006	MHB6-SS-007 2/21/2006	B6-SS-008 2/21/2006	B6-SS-009 2/21/2006	MHB4-SS-010 2/22/2006	B4-SS-011 2/22/2006	B29-SS-012 2/22/2006	B3-SS-013 2/22/2006
	Sample Date Sample Depth	2/20/2006 2-6 FT	3-7 FT	3-4.5 FT	3-7 FT	2-6 FT	3-7 FT	4-7 FT	3-7 FT	3-7 FT	3-7 FT	4-7 FT	3-7 FT	3-7 FT
	Sample Purpose	Regular sample	Regular sample	Regular sample	Regular sample	Regular sample	Regular sample	Regular sample	Regular sample	Regular sample	Regular sample	Regular sample	Regular sample	Regular sample
Parameter Name	Units			. 3		· y · · · · · · ·								
Volatile Organic Compounds														
1,1,1-Trichloroethane	ug/kg	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	ug/kg	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	ug/kg	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethylene	ug/kg	1 U 1 U	1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U	1 U	1 U	1 U 1 U	1 U 1 U	1 U	1 U 1 U	U 1 U
1,2-Dichloroethane Acetone	ug/kg ug/kg	8 U	1 U 8 U	8 U	8 U	8 U	1 U 8 U	1 U 8 U	1 U 8 U	8 U	8 U	1 U 43	8 U	8 U
Benzene	ug/kg	0.6 U	0.6 U	0.6 U	0.5 U	0.5 U	0.6 U	0.5 U	0.6 U	0.6 U	0.6 U	0.6 U	0.5 U	0.5 U
Carbon disulfide	ug/kg	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 J	1 U	1 U
Carbon tetrachloride	ug/kg	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chlorobenzene	ug/kg	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroethane	ug/kg	2 U	2 U	2 U	2 U	2 U	2 U	2 U 1 U	2 U	2 U	2 U	2 U	2 U 1 U	2 U 1 U
Chloroform cis-1,2-Dichloroethylene	ug/kg ug/kg	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	10	1 U 1 U
Ethylbenzene	ug/kg	1 U	10	1 U	1 U	10	10	1 U	1 U	10	1 U	2 J	1 U	1 J
Methylene chloride	ug/kg	2 U	5 J	2 U	2 U	3 J	2 U	2 U	4 J	5 J	2 U	2 U	2 U	2 U
Tetrachloroethylene	ug/kg	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	ug/kg	10	1 U	1 U	1 U	1 U	1 U	1 U	2 J	1 J	2 J	9	5 J	4 J
trans-1,2-Dichloroethene Trichloroethylene	ug/kg	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
Vinyl chloride	ug/kg ug/kg	10	1 U	10	1 U	10	10	10	1 U	10	10	10	10	1 U
Xylene (total)	ug/kg	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 J	1 U	1 J	10	6	6
Semivolatile Organic Compounds		00.11	10.11	07.11	00.11	00.11	07.11	00.11	00.11	00.11	07.11	00.11	07.11	07.11
1,2,4-Trichlorobenzene 2,4,5-Trichlorophenol	ug/kg ug/kg	39 U 77 U	40 U 81 U	37 U 74 U	36 U 72 U	36 U 72 U	37 U 74 U	36 U 72 U	39 U 78 U	38 U 76 U	37 U 74 U	39 U 78 U	37 U 74 U	37 U 73 U
2,4-Dichlorophenol	ug/kg	39 U	40 U	37 U	36 U	72 U 36 U	74 U 37 U	72 U 36 U	39 U	38 U	74 U 37 U	78 U 39 U	74 0 37 U	73 U 37 U
2,4-Dinitrophenol	ug/kg	770 U	810 U	740 U	720 U	720 U	740 U	720 U	780 U	760 U	740 U	780 U	740 U	730 U
2,6-Dinitrotoluene	ug/kg	39 U	40 U	37 U	36 U	36 U	37 U	36 U	39 U	38 U	37 U	39 U	37 U	37 U
2-Chlorophenol	ug/kg	39 U	40 U	37 U	36 U	36 U	37 U	36 U	39 U	38 U	37 U	39 U	37 U	37 U
2-Methylnaphthalene Acenaphthene ^p	ug/kg	39 U	120 J 40 U	37 U 37 U	36 U 36 U	36 U 36 U	37 U 37 U	36 U 36 U	39 U 39 U	38 U 38 U	37 U 37 U	39 U	37 U 37 U	37 U 37 U
Acenaphthylene	ug/kg ug/kg	39 U 62 J	40 U 48 J	37 U 37 U	36 U 36 U	36 U 36 U	37 U 37 U	36 U 36 U	39 U 39 U	38 U 38 U	37 U 37 U	39 U 39 U	37 U 37 U	37 U 37 U
Anthracene ^p	ug/kg	39 U	40 U	37 U	36 U	36 U	37 U	36 U	56 J	38 U	37 U	39 U	37 U	37 U
Benzo(a)anthracene ^p	ug/kg	180 J	140 J	37 U	36 U	36 U	39 J	36 U	130 J	66 J	53 J	78 J	37 U	37 U
Benzo(a)pyrene ^p	ug/kg	340	130 J	37 U	36 U	36 U	41 J	36 U	130 J	68 J	37 U	79 J	37 U	37 U
Benzo(b)fluoranthene ^p	ug/kg	560 J	210	37 U	36 U	36 U	56 J	36 U	160 J	76 J	44 J	81 J	37 U	37 U
Benzo(ghi)perylene ^p	ug/kg	420	160 J	37 U	36 U	36 U	45 J	36 U	89 J	40 J	37 U	59 J	37 U	37 U
Benzo(k)fluoranthene ^p	ug/kg	220	110 J	37 U	36 U	36 U	37 U	36 U	83 J	40 J	37 U	61 J	37 U	37 U
Bis(2-ethylhexyl)phthalate (BEHP)	ug/kg	77 U	180 J	120 J 74 U	72 U	72 U	130 J 74 U	72 U	200 J	76 U	74 U	170 J	74 U 74 U	73 U
Butyl benzyl phthalate Chrysene ^p	ug/kg ug/kg	77 U 250	81 U 140 J	74 U 37 U	72 U 36 U	72 U 36 U	74 U 48 J	72 U 36 U	78 U 130 J	76 U 66 J	74 U 53 J	78 U 80 J	74 U 37 U	73 U 37 U
Di-n-butyl phthalate	ug/kg	250 77 U	140 J 81 U	37 U 74 U	36 U 72 U	36 U 72 U	48 J 74 U	36 U 72 U	78 U	76 U	53 J 74 U	80 J 78 U	37 U 74 U	37 U 73 U
Di-n-octyl phthalate	ug/kg	77 U	81 U	74 U	72 U	72 U	74 U	72 U	78 U	76 U	74 U	78 U	74 U	73 U
Dibenzo(a,h)anthracene ^p	ug/kg	140 J	47 J	37 U	36 U	36 U	37 U	36 U	39 U	38 U	37 U	39 U	37 U	37 U
Dibenzofuran	ug/kg	39 U	40 U	37 U	36 U	36 U	37 U	36 U	39 U	38 U	37 U	39 U	37 U	37 U
Diethyl phthalate	ug/kg	77 U	81 U	74 U	72 U	72 U	74 U	72 U	78 U	76 U	74 U	78 U	74 U	73 U
Dimethyl phthalate	ug/kg	77 U	81 U	74 U	72 U	72 U	74 U	72 U	78 U	76 U	74 U	78 U	74 U	73 U
Fluoranthene ^P Fluorene	ug/kg ug/kg	110 J 39 U	190 J 40 U	37 U 37 U	36 U 36 U	36 U 36 U	59 J 37 U	36 U 36 U	260 39 U	110 J 38 U	88 J 37 U	140 J 39 U	37 U 37 U	37 U 37 U
Hexachlorobenzene	ug/kg	39 U	40 U	37 U	36 U	36 U	37 U	36 U	39 U	38 U 38 U	37 U 37 U	39 U 39 U	37 U 37 U	37 U
Indeno(1,2,3-cd)pyrene	ug/kg	360	130 J	37 U	36 U	36 U	37 U	36 U	83 J	45 J	37 U	54 J	37 U	37 U
Isophorone	ug/kg	39 U	40 U	37 U	36 U	36 U	37 U	36 U	39 U	38 U	37 U	39 U	37 U	37 U
Naphthalene ^p	ug/kg	39 U	52 J	37 U	36 U	36 U	37 U	36 U	39 U	38 U	37 U	39 U	37 U	37 U
Nitrobenzene	ug/kg	39 U	40 U	37 U	36 U	36 U	37 U	36 U	39 U	38 U	37 U	39 U	37 U	37 U
Phenanthrene ^p Phenol	ug/kg ug/kg	39 U 39 U	99 J 40 U	37 U 37 U	36 U 36 U	36 U 36 U	37 U 37 U	36 U 36 U	230 39 U	91 J 38 U	72 J 37 U	66 J 39 U	37 U 37 U	37 U 37 U
Pyrene ^p	ug/kg ug/kg	39 U 150 J	40 U 200 J	37 U 37 U	36 U 36 U	36 U 36 U	54 J	36 U 36 U	240	120 J	37 U 88 J	140 J	37 U 37 U	37 U 37 U
Mercury	mg/kg	6.29 J	0.0755 J	0.0133 J	0.0366 J	0.024 J	0.0349 J	0.0758 J	0.162	0.216	0.116	0.206	0.168	0.0822 J

Notes: U : compound was not detected J: estimated value (the resultsis greater than the MDL and less than the LOQ) ug/Kg : micrograms per Kilogram p - PAH compounds

Soil Analytical Data Summary Industrial Sewer System Closure

Former Texaco Research Center Beacon, New York

Industrial Sewer System	Field Sample ID	SS-014-MHB2 (4-8)	SS-014-MHB2 (8-11)	SS-015-B26 (4-7)	SS-016-ISS5 (4-5)	SS-017-B55 (8-12)	SS-018-ISS5 (4-8)	SS-019-ISS5 (4-8)	SS-020-ISS5 (4-6)	SS-021-ISS5 (4-6)	SS-022-ISS5 (3-4)	SS-023-ISS3 (2-4)	SS-024-ISS3 (2-4.5)	SS-025-ISS2 (4-8)
Phase II RFA	Location	MHB2-SS-014	MHB2-SS-014	B26-SS-015	ISS5-SS-016	B55-SS-017	ISS5-SS-018	ISS5-SS-019	ISS5-SS-020	ISS5-SS-021	ISS5-SS-022	ISS3-SS-023	ISS3-SS-024	ISS2-SS-025
	Sample Date Sample Depth	2/22/2006 4-8 FT	2/22/2006 8-11 FT	2/23/2006 4-7 FT	2/23/2006 4-5 FT	2/23/2006 8-12 FT	2/23/2006 4-8 FT	2/23/2006 4-8 FT	2/23/2006 4-6 FT	2/23/2006 4-6 FT	2/24/2006 3-4 FT	2/24/2006 2-4 FT	2/24/2006 2-4.5 FT	2/24/2006 4-8 FT
	Sample Purpose	Regular sample	Regular sample	Regular sample	Regular sample	Regular sample	Regular sample	Regular sample	Regular sample	Regular sample	Regular sample	Regular sample	Regular sample	Regular sample
Parameter Name	Units													
Volatile Organic Compounds														
1,1,1-Trichloroethane	ug/kg	1 U	1 U	140 U	1 U	1 U	1 U	1 U	1 U	150 U	1 U	1 U	1 U	150 U
1,1,2,2-Tetrachloroethane	ug/kg	1 U	10	140 U	1 U	1 U	10	1 U	10	150 U	10	10	1 U	150 U
1,1-Dichloroethane	ug/kg	1 U	1 U	140 U	1 U	1 U	1 U	1 U	1 U	150 U	1 U	1 U	1 U	150 U
1,1-Dichloroethylene	ug/kg	1 U	1 U	140 U	1 U	1 U	1 U	1 U	1 U	150 U	1 U	1 U	1 U	150 U
1,2-Dichloroethane Acetone	ug/kg ug/kg	1 U 8 U	1 U 8 U	140 U 1000 U	1 U 8 U	1 U 16 J	1 U 8 U	1 U 8 U	1 U 8 U	150 U 1100 U	1 U 7 U	1 U 8 U	1 U 8 U	150 U 1000 U
Benzene	ug/kg	0.6 U	0.6 U	72 U	0.6 U	0.6 U	17	0.6 U	0.6 U	77 U	0.5 U	0.5 U	0.6 U	74 U
Carbon disulfide	ug/kg	1 U	1 U	140 U	1 U	1 U	 1 U	1 U	1 U	150 U	1 U	1 U	1 U	150 U
Carbon tetrachloride	ug/kg	1 U	1 U	140 U	1 U	1 U	1 U	1 U	1 U	150 U	1 U	1 U	1 U	150 U
Chlorobenzene	ug/kg	1 U	1 U	1600	10	1 U	1 U	1 U	1 U	370 J	10	1 U	1 U	150 U
Chloroethane Chloroform	ug/kg	2 U 1 U	2 U 1 U	290 U 140 U	2 U 1 U	2 U 1 U	2 U 1 U	2 U 1 U	2 U 1 U	310 U 150 U	2 U 1 U	2 U 1 U	2 U 1 U	300 U 150 U
cis-1,2-Dichloroethylene	ug/kg ug/kg	1 U	10	140 U	10	10	10	10	10	150 U	10	10	1 U	150 U
Ethylbenzene	ug/kg	1 U	2 J	270 J	1 U	1 U	3 J	1 U	1 U	150 U	1 U	1 U	1 U	150 U
Methylene chloride	ug/kg	2 U	2 U	290 U	2 U	2 U	2 U	2 U	2 U	310 U	2 U	2 U	2 U	300 U
Tetrachloroethylene	ug/kg	1 U 4 J	1 U 5 J	140 U 140 U	1 U 3 J	1 U 1 U	1 U 20	1 U 4 J	1 U 3 J	150 U 150 U	1 U 1 U	1 U 1 U	1 U 1 U	150 U 150 U
Toluene trans-1,2-Dichloroethene	ug/kg ug/kg	4 J 1 U	5 J 1 U	140 U 140 U	3 J 1 U	1 U 1 U	20 1 U	4 J 1 U	3 J 1 U	150 U 150 U	1 U 1 U	1 U 1 U	1 U 1 U	150 U 150 U
Trichloroethylene	ug/kg	1 U	10	140 U	10	10	10	1 U	1 J	150 U	1 U	10	1 U	150 U
Vinyl chloride	ug/kg	1 U	1 U	140 U	1 U	1 U	1 U	1 U	1 U	150 U	1 U	1 U	1 U	150 U
Xylene (total)	ug/kg	3 J	15	270 J	3 J	1 J	30	2 J	4 J	150 U	5	1 U	1 U	150 U
Semivolatile Organic Compounds														
1,2,4-Trichlorobenzene	ug/kg	39 U	37 U	38 U	40 U	38 U	190 U	38 U	37 U	210 U	34 U	36 U	38 U	39 U
2,4,5-Trichlorophenol	ug/kg	77 U	74 U	77 U	80 U	76 U	380 U	76 U	75 U	410 U	68 U	72 U	77 U	79 U
2,4-Dichlorophenol	ug/kg	39 U	37 U	38 U	40 U	38 U	190 U	38 U	37 U	210 U	34 U	36 U	38 U	39 U
2,4-Dinitrophenol 2,6-Dinitrotoluene	ug/kg ug/kg	770 U 39 U	740 U 37 U	770 U 38 U	800 U 40 U	760 U 38 U	3800 U 190 U	760 U 38 U	750 U 37 U	4100 UJ 210 U	680 UJ 34 U	720 UJ 36 U	770 UJ 38 U	790 UJ 39 U
2-Chlorophenol	ug/kg	39 U	37 U	38 U	40 U	38 U	190 U	38 U	37 U	210 U	34 U	36 U	38 U	39 U
2-Methylnaphthalene	ug/kg	39 U	37 U	2500	40 U	38 U	18000	38 U	150 J	5800	34 U	36 U	38 U	730
Acenaphthene ^p	ug/kg	39 U	37 U	280	40 U	38 U	22000	38 U	330	15000	67 J	36 U	38 U	39 U
Acenaphthylene	ug/kg	50 J	37 U	160 J	40 U	38 U	18000	150 J	110 J	6800	34 U	36 U	38 U	60 J
Anthracene ^p	ug/kg	52 J	37 U	740 1600	40 U 40 U	67 J 140 J	54000 71000	250 900	610	42000	130 J	36 U 36 U	38 U	60 J 190 J
Benzo(a)anthracene ^p Benzo(a)pyrene ^p	ug/kg ug/kg	160 J 160 J	37 U 37 U	1400	40 U 40 U	140 J 130 J	64000	900 860	900 930	67000 46000	250 210	36 U 36 U	38 U 38 U	190 J 170 J
Benzo(b)fluoranthene ^p	ug/kg	210	37 U	1600	40 U	130 J	78000	970	980	56000	260	36 U	38 U	210
Benzo(ghi)perylene ^p	ug/kg	150 J	37 U	810	40 U	95 J	36000	530	580	21000	150 J	36 UJ	38 UJ	110 J
Benzo(k)fluoranthene ^p	ug/kg	84 J	37 U	690	40 U	56 J	32000	590	560	20000	110 J	36 U	38 U	120 J
Bis(2-ethylhexyl)phthalate (BEHP)	ug/kg	330 J	74 U	77 U	130 J	110 J	380 U	76 U	75 U	4200	720	110 J	81 J	79 U
Butyl benzyl phthalate	ug/kg	77 U	74 U	77 U	80 U	76 U	380 U	76 U	75 U	410 U	68 U	72 U 36 U	77 U	79 U
Chrysene ^p Di-n-butyl phthalate	ug/kg ug/kg	190 J 77 U	37 U 74 U	1600 77 U	40 U 80 U	130 J 76 U	69000 380 U	940 76 U	920 75 U	58000 410 U	230 68 U	36 U 72 U	38 U 77 U	180 J 79 U
Di-n-octyl phthalate	ug/kg	77 U	74 U	77 U	80 U	76 U	380 U	76 U	75 U	970 J	160 J	72 U	77 U	79 U
Dibenzo(a,h)anthracene ^p	ug/kg	43 J	37 U	270	40 U	38 U	4100	170 J	140 J	11000	45 J	36 U	38 U	39 J
Dibenzofuran	ug/kg	39 U	37 U	280	40 U	38 U	25000	38 U	260	15000	46 J	36 U	38 U	62 J
Diethyl phthalate Dimethyl phthalate	ug/kg ug/kg	77 U 77 U	74 U 74 U	77 U 77 U	80 U 80 U	76 U 76 U	380 U 380 U	76 U 76 U	75 U 75 U	410 U 410 U	68 U 68 U	72 U 72 U	77 U 77 U	79 U 79 U
Fluoranthene ^p	ug/kg ug/kg	270	74 U 37 U	3100	40 U	240	190000	1600	2000	140000	580	72 U 36 U	38 U	79 U 260
Fluorene	ug/kg	39 U	37 U	430	40 U	69 J	31000	56 J	350	22000	83 J	36 U	38 U	100 J
Hexachlorobenzene	ug/kg	39 U	37 U	38 U	40 U	38 U	190 U	38 U	37 U	210 U	34 U	36 U	38 U	39 U
Indeno(1,2,3-cd)pyrene	ug/kg	110 J	37 U	680	40 U	68 J	35000	510	540	22000	130 J	36 U	38 U	100 J
Isophorone Naphthalene ^p	ug/kg	39 U	37 U 37 U	38 U	40 U	38 U 38 U	190 U	38 U	37 U	210 U 8400	34 U	36 U 36 U	38 U	39 U 210
Naphthalene ^r Nitrobenzene	ug/kg ug/kg	39 U 39 U	37 U 37 U	860 38 U	40 U 40 U	38 U 38 U	59000 190 U	38 U 38 U	430 37 U	8400 210 U	34 U 34 U	36 U 36 U	38 U 38 U	210 39 U
Phenanthrene ^p	ug/kg	190	37 U	3600 JL	40 U	180 J	230000	1000	2500	170000	430	36 U	38 U	240
Phenol	ug/kg	39 U	37 U	38 U	40 U	38 U	1500	38 U	37 U	210 U	34 U	36 U	38 U	39 U
Pyrene ^p	ug/kg	290	37 U	3300 JL	40 J	300	150000	1700	2100	130000	590	36 U	38 U	270
Mercury	mg/kg	0.366	0.025 J	0.211	0.15	0.89	0.139	1.84	0.0508 J	0.364	0.0248 J	0.209	0.105 JH	0.404

Notes: U : compound was not detected J: estimated value (the resultsis greater than the MDL and less t ug/Kg : micrograms per Kilogram p - PAH compounds

Soil Analytical Data Summary Industrial Sewer System Closure

Former Texaco Research Center

Beacon, New York

Field Sample ID Location Sample Date Sample Depth Sample Purpose	SS-026-ISS2 (4-8) ISS2-SS-026 2/24/2006 4-8 FT Regular sample	SS-026-ISS2 (8-10) ISS2-SS-026 2/24/2006 8-10 FT Regular sample	SS-027-MHA1 (3-7) MHA1-SS-027 2/27/2006 3-7 FT Regular sample	SS-028-ISS1 (3-7) ISS1-SS-028 2/27/2006 3-7 FT Regular sample	SS-029-ISS1 (3-7) ISS1-SS-029 2/27/2006 3-7 FT Regular sample	SS-030-ISS1 (3-7) ISS1-SS-030 2/27/2006 3-7 FT Regular sample	SS-031-ISS1 (2-6) ISS1-SS-031 2/28/2006 2-6 FT Regular sample	SS-032-ISS1 (2-6) ISS1-SS-032 2/28/2006 2-6 FT Regular sample	SS-033-ISS8 (3-7) ISS8-SS-033 2/28/2006 3-7 FT Regular sample	SS-034-MHC2 (2-6) MHC2-SS-034 2/28/2006 2-6 FT Regular sample	SS-035-ISS8 (3-7) ISS8-SS-035 2/28/2006 3-7 FT Regular sample	SS-036-ISS8 (3-7) ISS8-SS-036 2/28/2006 3-7 FT Regular sample	SS-037-ISS8 (3-7) ISS8-SS-037 2/28/2006 3-7 FT Regular sample
Units													
nd/kd nd/kd nd/kd nd/kd nd/kd nd/kd nd/kd nd/kd nd/kd nd/kd nd/kd nd/kd nd/kd nd/kd nd/kd nd/kd nd/kd nd/kd	1 U 1 U 1 U 1 U 1 U 8 U 0.6 U 1 U 1 U 1 U 2 U 1 U 1 U 2 U 1 U 2 U 2 J 2 J	150 U 150 U	1 U 1 U 1 U 1 U 1 U 8 U 0.5 U 1	1 U 1 U 1 U 1 U 1 U 8 U 0.6 U 1 U 1 U 1 U 2 U 1 U 1 U 2 J 2 U 1 U 4 J	1 U 1 U 1 U 1 U 1 U 8 U 0.6 U 1 U 1 U 1 U 2 U 1 U 1 U 2 U 1 U 1 U 4 J	140 U 140 U 140 U 140 U 140 U 140 U 72 U 140 U	1 U 1 U 1 U 1 U 1 U 8 U 0.6 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 3 J 3 J	1 U 1 U 1 U 1 U 1 U 8 J 0.5 U 1	2 J 1 U 1 U 1 U 1 U 8 U 0.7 J 1 U 1 U 2 U 1 J 2 U 3 J 2 U 3 J 9	1 U 1 U 1 U 1 U 1 U 8 U 0.6 U 1 U 1 U 1 U 2 U 1 U 1 U 2 U 1 U 2 U 2 U 2 J 2 J	1 U 1 U 1 U 1 U 1 U 8 U 0.6 U 1 U 1 U 2 U 1 U 1 U 1 U 2 U 1 U 2 U 1 U 2 U 2 U 2 U 1 U	1 U 1 U 1 U 1 U 1 U 8 U 0.6 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 2 U 1 U 2 U 1 U 2 U 1 U 2 U 1 U	1 U 1 U 1 U 1 U 1 U 9 U 0.6 U 0.6 U 1 U 1 U 2 U 1 U 1 U 2 U 1 U 2 U 1 U 2 U 1 U 2 U 1 U
ug/kg ug/kg ug/kg ug/kg	1 U 5 J 1 U 2 J	150 U 150 U 150 U 150 U	1 U 1 U 1 U 1 U	1 U 1 U 1 U 3 J	1 U 1 U 1 U 5 J	140 U 140 U 140 U 140 U	1 U 8 1 U 1 U	1 U 1 U 1 U 4 J	1 U 1 U 1 U 11	1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U	1 U 1 U 1 J	1 U 1 U 1 U 1 U
ndiyka ndi ndiyka ndiyka ndiyka ndiyka ndiyka ndiyka ndiyka ndiyka ndiyk	39 U 78 U 39 U 780 UJ 39 U 39 U 39 U 39 U 39 U 39 U 39 U 39 U	40 U 80 U 40 U 800 UJ 40 U 40 U 40 U 40 U 40 U 40 U 40 U 40 U	36 U 72 U 36 U 72 O UJ 36 U 36 U 36 U 36 U 36 U 36 U 79 J 740 720 1000 500 490 72 U 72 U 72 U 72 U 72 U 72 U 72 U 72 U	39 U 78 U 39 U 39 U 39 U 39 U 39 U 39 U 39 U 39	36 U 73 U 36 U 730 U 36 U 36 U 36 U 100 J 36 U 110 J 360 280 410 190 73 U 73 U 73 U 73 U 73 U 73 U 73 U 73 U	38 U 77 U 38 U 770 U 38 U 38 U 380 480 190 J 300 480 260 400 170 J 160 J 760 77 U 470 77 U 470 77 U 470 77 U 77 U 38 U 430 77 U 77 U 38 U 38 U 38 U 38 U 38 U 38 U 38 U 38	37 U 74 U 37 U 740 UJ 37 U 37 U 37 U 220 250 740 1200 620 570 130 J 74 U 1200 620 570 130 J 74 U 1200 620 570 74 U 210 J 270 74 U 270 74 U 270 74 U 37 U 280 410 37 U 280 37 U 280 37 U 2900 37 U 2300	36 U 72 U 36 U 36 U 36 U 36 U 36 U 36 U 36 U 160 J 46 J 46 J 250 740 590 730 350 370 370 370 77 J 72 U 72 U 72 U 72 U 72 U 72 U 72 U 72 U	39 U 77 U 39 U 770 UJ 39 U 39 U 39 U 39 U 74 J 39 U 140 J 250 170 J 210 89 J 130 J 210 89 J 130 J 277 U 77 U 270 77 U 39 UJ 45 J 77 U 39 U 39 U 39 U 39 U 39 U 39 U	37 U 75 U 37 U 37 U 37 U 37 U 37 U 37 U 37 U 37	38 U 75 U 38 U 750 UJ 38 U 38 U 38 U 38 U 38 U 38 U 38 U 38 U	38 U 76 U 38 U 760 UJ 38 U 38 U 38 U 38 U 38 U 38 U 38 U 38 U	42 U 84 U 840 UJ 42 U 42 U 42 U 42 U 120 J 220 550 2100 1500 1500 1500 1800 730 970 84 U 84 U 84 U 84 U 84 U 200 J 58 J 84 U 84 U 84 U 200 J 58 J 84 U 84 U 200 J 258 J 84 U 84 U 200 J 258 J 84 U 84 U 200 J 250 S 2100 1500 1800 730 970 84 U 84 U 200 J 200 S 2100 1500 1800 730 970 84 U 84 U 200 J 200 S 2100 1500 1800 730 970 84 U 84 U 200 J 200 S 2100 100 100 100 100 100 100 100 100 10
mg/kg	0.931	0.0779 J	0.399	0.157	0.199	0.315	0.155	0.0149 J	0.0496 J	0.0161 J	0.0225 J	0.0317 J	0.717
	Location Sample Date Sample Depth Sample Purpose Units ug/kg	Location Sample Depth Sample Purpose ISS2-SS-026 2/24/2006 Units 4-8 FT Regular sample Units 1 ug/kg 0.6 ug/kg 1 ug/kg 1 ug/kg 1 ug/kg 1 ug/kg 1 ug/kg 1 ug/kg 2 ug/kg 1 ug/kg 2 ug/kg 1 ug/kg 2 ug/kg 2 ug/kg 3 ug/kg 3 <t< th=""><th>Location ISS2-SS-026 2/24/2006 ISS2-SS-026 2/24/2006 Sample Depth 4-8 FT Regular sample Units Regular sample Regular sample ug/kg 1 U 150 U ug/kg 2 J 150 U ug/kg 2 J 150 U ug/kg 3 U 40 U ug/kg 3 U 40 U ug/kg 3 U 40 U</th><th>Location ISS2-S5-026 ISS2-S5-026 MH41-S5-027 Sample Depth 4-8 FT Regular sample 22472006 3-7 FT Ints Regular sample Regular sample Regular sample Regular sample Units 1 1 1 1 1 ugrkg 1 1 150 1 1 ugrkg 0.6 76 0 1 1 ugrkg 1.0 150 1 1 1 ugrkg 1.0 150 1 1 1 ugrkg 1.0 150.0 1 1 1 ugrkg 2.0 300.0 2.0 1 1 ugrkg 2.0 300.0 2.0 1 1 ugrkg</th><th>Location ISS2-SS-026 ISS2-SS-026</th><th>Location Sample Depth ISS2-58-026 (4 + 0 FT) ISS2-58-026 (2 + 2020) <thiss2-58-026< th=""> <thiss2-58-026< th=""> ISS2-58-</thiss2-58-026<></thiss2-58-026<></th><th>Locator ISS2-65-026 ISS2-55-026 IMFA1-S5-027 ISS1-S5-028 ISS1-S5-029 ISS1-S5-039 2242/006 -497 1 2242/006 2247/006 2277/006</th><th>Lucente Sample Des Sample August Sample August Sa</th><th>Luccent BS:25:02/B BS:25:02/B MM:15:22/F BS:15:02/B DS:15:02/B <thds:15:02 b<="" th=""> DS:15:02/B DS:15:02/B<</thds:15:02></th><th>Lucards BSS-85.00 bayes MM-4.80/27 bayes BSS-85.00 bayes MM-4.80/27 bayes BSS-85.00 bayes BSS-85.00 bayes<</th><th>Luckas Bit Book Bit Book<th>Lorder Bistories Manual Lange August annie Begest annie Bege</th><th>Immedia Biologic Process Biologic Process District Process Distreprocess <thdistreprocess< th=""> <th< th=""></th<></thdistreprocess<></th></th></t<>	Location ISS2-SS-026 2/24/2006 ISS2-SS-026 2/24/2006 Sample Depth 4-8 FT Regular sample Units Regular sample Regular sample ug/kg 1 U 150 U ug/kg 2 J 150 U ug/kg 2 J 150 U ug/kg 3 U 40 U ug/kg 3 U 40 U ug/kg 3 U 40 U	Location ISS2-S5-026 ISS2-S5-026 MH41-S5-027 Sample Depth 4-8 FT Regular sample 22472006 3-7 FT Ints Regular sample Regular sample Regular sample Regular sample Units 1 1 1 1 1 ugrkg 1 1 150 1 1 ugrkg 0.6 76 0 1 1 ugrkg 1.0 150 1 1 1 ugrkg 1.0 150 1 1 1 ugrkg 1.0 150.0 1 1 1 ugrkg 2.0 300.0 2.0 1 1 ugrkg 2.0 300.0 2.0 1 1 ugrkg	Location ISS2-SS-026 ISS2-SS-026	Location Sample Depth ISS2-58-026 (4 + 0 FT) ISS2-58-026 (2 + 2020) ISS2-58-026 (2 + 2020) <thiss2-58-026< th=""> <thiss2-58-026< th=""> ISS2-58-</thiss2-58-026<></thiss2-58-026<>	Locator ISS2-65-026 ISS2-55-026 IMFA1-S5-027 ISS1-S5-028 ISS1-S5-029 ISS1-S5-039 2242/006 -497 1 2242/006 2247/006 2277/006	Lucente Sample Des Sample August Sample August Sa	Luccent BS:25:02/B BS:25:02/B MM:15:22/F BS:15:02/B DS:15:02/B DS:15:02/B <thds:15:02 b<="" th=""> DS:15:02/B DS:15:02/B<</thds:15:02>	Lucards BSS-85.00 bayes MM-4.80/27 bayes BSS-85.00 bayes MM-4.80/27 bayes BSS-85.00 bayes BSS-85.00 bayes<	Luckas Bit Book Bit Book <th>Lorder Bistories Manual Lange August annie Begest annie Bege</th> <th>Immedia Biologic Process Biologic Process District Process Distreprocess <thdistreprocess< th=""> <th< th=""></th<></thdistreprocess<></th>	Lorder Bistories Manual Lange August annie Begest annie Bege	Immedia Biologic Process Biologic Process District Process Distreprocess <thdistreprocess< th=""> <th< th=""></th<></thdistreprocess<>

Notes: U : compound was not detected J: estimated value (the resultsis greater than the MDL and less I ug/Kg : micrograms per Kilogram p - PAH compounds

Soil Analytical Data Summary Industrial Sewer System Closure

Former Texaco Research Center

Beacon, New York

Industrial Sewer System Phase II RFA	Field Sample ID Location	SS-038-ISS8 (4-8) ISS8-SS-038	SS-039-ISS8 (4-8) ISS8-SS-039	SS-040-ISS8 (4-8) ISS8-SS-040	SS-041-ISS6 (4-8) ISS6-SS-041	SS-042-ISS8 (3-7) ISS8-SS-042	SS-043-ISS4 (3-7) ISS4-SS-043	SS-044-ISS4 (3-7) ISS4-SS-044	SS-045-ISS4 (3-7) ISS4-SS-045	SS-B45SLAB-NORTH B45	SS-B45SLAB-SOUTH B45
	Sample Date	2/28/2006	3/1/2006	3/1/2006	3/1/2006	3/1/2006	3/1/2006	3/1/2006	3/1/2006	5/10/2006	5/10/2006
	Sample Depth	4-8 FT	4-8 FT	4-8 FT	4-8 FT	3-7 FT	3-7 FT	3-7 FT	3-7 FT	2-3 ft	2-3 ft
Decemeter Neme	Sample Purpose Units	Regular sample	Regular sample	Regular sample							
Parameter Name Volatile Organic Compounds	Units										
volatile organic compounds											
1,1,1-Trichloroethane	ug/kg	1 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	ug/kg	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	ug/kg	1 U 1 U	1 U 1 U	1 U 1 U							
1,1-Dichloroethylene 1,2-Dichloroethane	ug/kg ug/kg	1 U 1 U	1 U 1 U	10	1 U 1 U	1 U 1 U	1 U 1 U				
Acetone	ug/kg	8 U	8 U	9 U	8 U	9 J	8 U	8 U	8 U	8 UJ	8 UJ
Benzene	ug/kg	0.6 U	0.7 J	0.6 U	0.5 U	0.6 U	0.6 U				
Carbon disulfide	ug/kg	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride Chlorobenzene	ug/kg	2 J 1 U	1 U 1 U	1 U 1 U							
Chloroethane	ug/kg ug/kg	1 U 2 U	2 U	2 U	2 U	2 U	1 U 2 U	1 U 2 U	2 U	2 U	2 U
Chloroform	ug/kg	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethylene	ug/kg	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	ug/kg	1 U	2 J	1 U	1 U	2 J	2 J	1 U	1 U	1 U	1 U
Methylene chloride Tetrachloroethylene	ug/kg	2 U 1 J	2 U 1 U	2 U 1 U	2 U 1 U	15 1 U	2 U 1 U	2 U 1 U	2 U 1 U	2 U 1 U	2 U 1 U
Toluene	ug/kg ug/kg	1 J 5 J	12	1 U 4 J	1 U 2 J	7	8	1 U 4 J	3 J	10	10
trans-1,2-Dichloroethene	ug/kg	1 U	1 U	1 U	2 0 1 U	, 1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethylene	ug/kg	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	ug/kg	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylene (total)	ug/kg	4 J	11	3 J	1 J	11	11	5 J	2 J	1 U	1 U
Semivolatile Organic Compounds											
1,2,4-Trichlorobenzene	ug/kg	41 U	40 U	41 U	37 U	190 U	38 U	37 U	38 U	38 U	37 U
2,4,5-Trichlorophenol	ug/kg	81 U	81 U	82 U	73 U	390 U	76 U	74 U	77 U	77 U	75 U
2,4-Dichlorophenol	ug/kg	41 U	40 U	41 U	37 U	190 U	38 U	37 U	38 U	38 U 770 U	37 U
2,4-Dinitrophenol 2,6-Dinitrotoluene	ug/kg ug/kg	810 UJ 41 U	810 UJ 40 U	820 U 41 U	730 U 37 U	3900 U 190 U	760 U 38 U	740 U 37 U	770 U 38 U	770 U 38 U	750 UJ 37 U
2-Chlorophenol	ug/kg	41 U	40 U	41 U	37 U	190 U	38 U	37 U	38 U	38 U	37 U
2-Methylnaphthalene	ug/kg	41 U	160 J	52 J	37 U	9900	360	230	73 J	62 J	540
Acenaphthene ^p	ug/kg	120 J	640	120 J	37 U	11000	1100	420	83 J	210	1400
Acenaphthylene	ug/kg	230	1000	390	75 J	6600	1300	370	120 J	390	500
Anthracene ^p	ug/kg	450	2600	570	110 J	22000	2800	1200	260	780	3200 J
Benzo(a)anthracene ^p	ug/kg	2100 1900	8400 7000	2200 2100	350 330	34000 27000	7300 6100	2100 1700	580 500	2200 2000	4100 J 3700
Benzo(a)pyrene ^p Benzo(b)fluoranthene ^p	ug/kg ug/kg	2600	9100	2800	410	31000	8200	2000	660	2000	4800
Benzo(ghi)perylene ^p	ug/kg	1300	4100	1400	190	15000	3800	910	320	1200	2700
Benzo(k)fluoranthene ^p	ug/kg	930	3400	1000	160 J	12000	2800	830	220	1200	2500
Bis(2-ethylhexyl)phthalate (BEHP)	ug/kg	81 U	81 U	82 U	130 J	390 U	76 U	74 U	77 U	77 U	75 U
Butyl benzyl phthalate	ug/kg	81 U	81 U	82 U	73 U	390 U	76 U	74 U	77 U	77 U	75 U
Chrysene ^p	ug/kg	2000	9000	2500	360	33000	7400	2200	630	2200	4100 J
Di-n-butyl phthalate Di-n-octyl phthalate	ug/kg ug/kg	81 U 81 U	81 U 81 U	82 U 82 U	73 U 73 U	390 U 390 U	76 U 76 U	74 U 74 U	77 U 77 U	77 U 77 U	75 U 75 U
Dibenzo(a,h)anthracene ^p	ug/kg	340 J	1300	410	73 U 61 J	4200	1000	290	100 J	410	860
Dibenzofuran	ug/kg	57 J	460	120 J	37 U	12000	890	370	90 J	150 J	1200
Diethyl phthalate	ug/kg	81 U	81 U	82 U	73 U	390 U	76 U	74 U	77 U	77 U	75 U
Dimethyl phthalate	ug/kg	81 U	81 U	82 U	73 U	390 U	76 U	74 U	77 U	77 U	75 U
Fluoranthene ^p	ug/kg	3700	17000 JL	4300	730	85000	17000	4900	1300	3900	9100 J
Fluorene Hexachlorobenzene	ug/kg ug/kg	95 J 41 U	630 40 U	120 J 41 U	37 U 37 U	14000 190 U	1200 38 U	430 37 U	100 J 38 U	230 38 U	1200 37 U
Indeno(1,2,3-cd)pyrene	ug/kg	1200	40 0 4700	1500	210	16000	4100	1000	320	1100	2500
Isophorone	ug/kg	41 U	40 U	41 U	37 U	190 U	38 U	37 U	38 U	38 U	37 U
Naphthalene ^p	ug/kg	45 J	280	120 J	37 U	29000	930	470	82 J	82 J	880
Nitrobenzene	ug/kg	41 U	40 U	41 U	37 U	190 U	38 U	37 U	38 U	38 U	37 U
Phenanthrene ^p	ug/kg	1800	10000 JL 40 U	2600	460 37 U	99000 830 J	14000	4100	1200	3100	10000 J 37 U
Phenol Pyrene ^p	ug/kg	41 U 3700	40 U 15000	41 U 3800	37 U 650	65000	38 U 14000	37 U 3800	38 U 1200	38 U 4400	37 U 8900 J
i yione	ug/kg	3700	10000	3000	UGØ	00060	14000	3000	1200	4400	0900 J
Mercury	mg/kg	1.66	0.321	1.22	0.252	1.27	0.381	0.0678 J	0.154	0.494	1.17

Notes: U : compound was not detected J: estimated value (the resultsis greater than the MDL and less / ug/Kg : micrograms per Kilogram p - PAH compounds

APPENDIX A

DATA REVIEW SUMMARY REPORT

DATA REVIEW SUMMARY REPORT for samples collected from INDUSTRIAL SEWER SYSTEM FORMER TEXACO RESEARCH CENTER BEACON, NY

Data Review by: Richard Cheatham Parsons – Denver, Colorado

1.0 INTRODUCTION

The following data review summary report covers soil samples, water samples, and the associated field quality control (QC) samples collected as part of the sampling associated with the Phase II RFA for the Industrial Sewer System at the Former Texaco Research Center in Beacon, NY (Site ID#314004) during the period of January 05 through May 08, 2006. Field program quality control samples included field duplicate samples for soils and waters, as well as aqueous trip blank samples. All samples were collected by Parsons and analyzed by Lancaster Laboratories, Lancaster, PA (Lancaster) following the procedures outlined in the Quality Assurance Project Plan for the Industrial Sewer System Phase II RCRA Facility Assessment – Sampling Visit, Interim Corrective Measure: Inactive Line Abandonment, dated October 2005 (i.e. project QAPP).

The data submitted by the laboratory has been reviewed and validated, as described below, following the guidelines outlined in the project QAPP to assess the precision, accuracy, representativeness, completeness, and comparability (PARCC) of the analytical data.

Analytical results were reported in the Lancaster Sample Delivery Groups (SDG)/Sample Groups identified on Table 1, with sample groups associated with an SDG# being reported in a NYSDEC ASP Category B deliverables package: Samples were analyzed, as identified on the chain-of-custody record (COC), for one or more of the following types of analyses: TCL VOCs, TCL SVOCs, Mercury, Metals, TCLP-VOCs, TCLP-SVOCs, TCLP-Metals, or TCLP Mercury.

Table 1 summarizes the sample data that has been reviewed. Table 2 summarizes the data validation qualifiers and qualification reasons. Field duplicate sample results are summarized on Table 3 of this report. Samples RW-006-B3, RW-016, RW-021-83, RW-024GC, SS-006-B3(3-7), SS-013-B3(3-7), SS-017-B55(8-12), SS-030-ISS1(3-7), and SS-041-ISS6(4-8) were collected as field duplicate pairs.

1.1 Sampling, Chain-of-Custody, and Sample Identification

The ISS samples were collected, properly preserved (with the exception of the samples for mercury analysis in sample group 980465), shipped under a COC record, and received at Lancaster within one or two days of sampling. All samples were received intact and in good condition at Lancaster. Sample documentation discrepancies, if any, were noted on the laboratory sample receipt log.

Sample SS-30-ISS1- (3-7) was incorrectly reported by Lancaster as being sample "SS-30-MHA1-(3-7)". Sample results were reported with the incorrect sample number in the analytical report for sample group 979838/SDG CBN11.

All samples in sample group 989015, SDG CBN20 were incorrectly reported by Lancaster as having sample identification numbers beginning with "1SS", rather then the correct "ISS" as shown on the COC records.

2.0 DATA REVIEW CRITERIA

Information reviewed and evaluated as part of the validation process included sample results; laboratory control sample results (LCS); matrix spike/matrix spike duplicate (MS/MSD) results; parent/field duplicate (FD) results; trip blank field QC samples results; method blanks; "laboratory comments"; and chain-of-custody (COC) forms.

In addition, the summarized sample analysis results for one soil sample (SS-001-B20(2-6) in sample group 97891/SDG CBN08 and for one water sample (RW-006-B3) in sample group 978129/CBN05, as well as the associated QC sample results and QA/QC data were verified from the "raw" analytical data as part of the raw data verification "spot check".

The data packages were evaluated for deliverables completeness with reference to the project QAPP requirements.

The analyses and findings presented in this report are based on the reviewed information, and whether requirements in the project QAPP were met.

2.1 Accuracy

Accuracy was evaluated using the percent recovery (%R) obtained from LCSs (blank spikes), MS, and MSD, as well as of surrogate compound recoveries for each project sample.

2.2 Precision

Analytical Precision was evaluated based on the relative percent difference (%RPD) of MS/MSD sample analysis results and of internal laboratory duplicate results.

Overall Precision (of the sampling and analysis process) was evaluated based on the relative percent difference (%RPD) of sample/field duplicate results.

2.3 Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the project QAPP;
- Comparing actual analytical procedures to those described in the Addendum QAPP;
- Evaluating analytical holding times;

- Examining trip blanks for contamination of, or cross-contamination of, samples during sample handling and shipment;
- Examining laboratory blanks for cross contamination of samples during sample preparation and analysis; and,
- Evaluating field duplicate sample results.

2.4 Completeness (laboratory completeness)

Laboratory completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data, calculating a "percent completeness" value, and comparing the "percent completeness" with the project QAPP criterion of 90% for each type of analysis.

2.5 Comparability

Comparability has been evaluated by:

- Evaluating the sample analysis methods used; and,
- Confirming the use, by the laboratory, of standard reporting units and reporting formats, including for reporting of QC data.

3.0 DELIVERABLES (DATA PACKAGE) COMPLETENESS AND COMPLIANCE

Deliverables Completeness is considered acceptable. The data for the ISS soil samples were reported in NYSDEC ASP Category B (type) deliverables packages identified as SDGs CBN02, CBN03, CBN05, CBN06, CBN08, CBN10, CBN11, CBN12, CBN13, CBN15, and CBN18. These packages contained all sample COC forms, case narratives including sample/analysis summary forms, QA/QC summaries with supporting documentation, relevant calibration data, instrument and method performance data, documentation of the laboratories ability to attain the method detection limits for target analytes in required matrices, data report forms with examples of calculations, and raw data.

Deliverables Compliance is considered acceptable. The data was produced and reported consistent with the project QAPP and the requested data package deliverables, protocol-required QA/QC criteria were met, and problems encountered during the analytical process and actions taken to correct the problems were reported in the data packages. NYSDEC ASP Category B data deliverables packages were requested and provided for all ISS samples.

4.0 PARCC ASSESSMENT SUMMARY – ISS SAMPLES

4.1 Accuracy

Accuracy for ISS sample analyses is considered acceptable for all analyses, with the exception that the accuracy for TCLP SVOC results for phenol analytes in sample SS-BLDG29-TCLP was impacted by non-compliant surrogate recoveries. Evaluation results are as follows:

- Surrogate compound recoveries (%R) for all non-TCLP ISS samples were within applicable (laboratory) control limits (and also within Addendum QAPP control limits for Soil and Water samples), with exceptions discussed in Section 5.0.
- LCS recoveries (%R) were within applicable (laboratory) control limits (and also within Addendum QAPP control limits for Soil and Water samples), with exceptions discussed in Section 5.0.
- MS/MSD recoveries (%R) were within applicable (laboratory) control limits (and also within Addendum QAPP control limits for Soil and Water samples), with exceptions discussed in Section 5.0.

4.2 Precision

Analytical Precision is considered acceptable for all ISS sample analyses. Evaluation results are as follows:

- MS/MSD RPD values were within applicable (laboratory) control limits (and also within Addendum QAPP control limits for Soil and Water samples), with exceptions discussed in Section 5.0.
- LCS/LCSD RPD value were within applicable (laboratory) control limits (and also within Addendum QAPP control limits for Soil and Water samples, with exceptions discussed in Section 5.0.
- Laboratory duplicate RPD values were within applicable (laboratory) control limits (and also within Addendum QAPP control limits for Soil and Water samples) for Mercury and metals analyses, with exceptions discussed in Section 5.0.

Overall Precision is considered acceptable for ISS sample analyses. Evaluation results are as follows:

- Sample results are not qualified based on field duplicate RPD results; they are advisory only. The project QAPP does not include a criterion for field duplicate RPD.
- Analysis results for the field duplicate pairs are summarized on Table 3.

4.3 Representativeness

Representativeness is considered acceptable for ISS sample analyses. Evaluation results are as follows:

• Analytical holding times, as specified in the Addendum QAPP were met for all sample analyses.

- The method blanks associated with each sample analysis were free of any target analyte at a reportable level.
- The trip blanks associated with the VOCs sample analysis were free of any target analyte at a reportable level.
- The samples were analyzed using the methods specified in the Addendum QAPP.

4.4 Completeness

Completeness is considered acceptable for all ISS sample analyses. Sample results are considered as usable for project purposes, with the exception of the results for five phenols from TCLP SVOC analysis of sample SS-BLDG29-TCLP that were qualified as rejected ("R") due to extremely low surrogate recovery.

4.5 Comparability

Comparability is considered acceptable for all ISS sample analyses. The samples were analyzed using the methods specified in the Addendum QAPP and data, including QC results, were reported using industry-standard reporting units and reporting formats. Sample results for soil samples are reported on a dry-weight basis.

5.0 DATA REVIEW RESULTS

5.1 SW8260B VOCs Analysis Data

The following items were reviewed for compliancy in the analysis by Lancaster using Method SW8260B and following NYSDEC Method 95-1 (10/95):

- Custody documentation;
- Sample preservation;
- Holding times;
- Initial calibration;
- GC/MS instrument performance (BFB ion abundance criteria);
- Initial calibration verification (ICV);
- Continuing calibration verification (CCV);
- Internal standard area counts and retention times;
- Surrogate recoveries;
- Matrix spike/matrix spike duplicate (MS/MSD) precision and accuracy;
- Laboratory control sample (LCS) recoveries;
- Laboratory control sample duplicate (LCSD), if required;
- Laboratory method blank contamination;
- Field duplicate precision;

- Field QC blank samples (trip blank) contamination;
- Sample result verification and identification;
- Analysis sequence;
- Quantitation limits;
- Sample quantitation; and,
- Data completeness.

For sample group 977407, SDG CBN02, these items were considered compliant and acceptable in accordance with the validation protocols, with the exception of MS/MSD RPD, and CCV %D. Sample SSBLDG56ISS-02-S was utilized for MS/MSD. A trip blank was not submitted with this sample group.

For sample group 977669, SDG CBN03, these items were considered compliant and acceptable in accordance with the validation protocols. Samples were prepared using TCLP extraction procedure. MS/MSD was performed on a sample from a different sample group. A trip blank was not submitted with this sample group.

For sample group 977672, SDG CBN05, these items were considered compliant and acceptable in accordance with the validation protocols, with the exception of matrix spike recovery, MS/MSD RPD, and CCV%D. Sample RW-003-B2 was utilized for MS/MSD.

For sample group 978129, SDG CBN05, these items were considered compliant and acceptable in accordance with the validation protocol, with the exception of surrogate recovery and CCV%D. MS/MSD was performed on a sample from a different sample group.

For sample group 978327, SDG CBN06, these items were considered compliant and acceptable in accordance with the validation protocols, with the exception of CCV%D.

For sample group 978484, SDG CBN06, these items were considered compliant and acceptable in accordance with the validation protocols, with the exception of CCV%D. Sample RW-025-GC was utilized for MS/MSD.

For sample group 978917, SDG CBN08, these items were considered compliant and acceptable in accordance with the validation protocols, with the exception of LCS%R. Sample SS-001-B20-(2-6) was utilized for MS/MSD. A trip blank was not submitted with this sample group.

For sample group 979131, SDG CBN08, these items were considered compliant and acceptable in accordance with the validation protocols, with the exception of CCV%D. MS/MSD was performed on a sample from a different sample group.

For sample group 979319, SDG CBN10, these items were considered compliant and acceptable in accordance with the validation protocols, with the exception of CCV%D. Sample SS-117-B55-(8-12) was utilized for MS/MSD.

For sample group 979489, SDG CBN10, these items were considered compliant and acceptable in accordance with the validation protocols, with the exception of CCV%D. Sample SS-024-ISS3-(2-4.5) was utilized for MS/MSD.

For sample group 979838, SDG CBN11, these items were considered compliant and acceptable in accordance with the validation protocols, with the exception of CCV%D. Sample SS-034-MHC2-(2-6') was utilized for MS/MSD.

For sample group 980024, SDG CBN12, these items were considered compliant and acceptable in accordance with the validation protocols, with the exception of LCS%R, Sample SS-039-ISS8-(4-8') was utilized for MS/MSD.

For sample group 982922, SDG CBN15, these items were considered compliant and acceptable in accordance with the validation protocols, with the exception of CCV%D. A sample from a different sample group was utilized for MS/MSD. A trip blank was not submitted with the sample shipment for this SDG.

For sample group 987350, SDG CBN18, these items were considered compliant and acceptable in accordance with the validation protocols, with the exception of CCV%D. MS/MSD was performed on a sample from a different sample group.

For sample group 989015, SDG CBN20, these items were considered compliant and acceptable in accordance with the validation protocols, with the exception of surrogate recovery, MS/MSD, and CCV%D. Sample ISS-T-200B was utilized for MS/MSD.

For sample group 989415, SDG CBN21, these items were considered compliant and acceptable in accordance with the validation protocols, with the exception of surrogate recovery, MS/MSD, and CCV%D. A non-project sample was utilized for MS/MSD.

Surrogate Compound Recovery

Surrogate compound recoveries were compliant, with the exceptions shown below. In instances where surrogate recoveries were above the upper control limit and sample concentrations were non-detect, the sample result was not required to be qualified. For samples ISS-T-200B, SS-B45_Slab-South Grab Soil Sample, and SS-B45_SLAB-North Grab Soil Sample, three of four surrogate recoveries were compliant with the recovery of the fourth surrogate compound being only marginally non-compliant (i.e. slightly low); therefore, the sample results were not qualified. Samples were reanalyzed with similar surrogate compound recoveries, thus indicating a matrix effect.

Sample Group/SDG	Sample ID	Surrogate (%R)	Compound Affected	Result (ug/kg)	Data Qualifier
978129/CBN05	RW-008-B3	DBF (123)	ALL	ND	None
989015/CBN20	ISS-T-200B	4-BFB (68%)	ALL	ND	None
989415/CBN21	SS- B45_SLAB- South Grab Soil Sample	4-BFB (69%)	ALL	ND	None

989415/CBN21	SS- B45_SLAB- South Grab Soil Sample	4-BFB (63%)	ALL	ND	None
989415/CBN21	SS- B45_SLAB- North Grab Soil Sample	4-BFB (62%)	ALL	ND	None
989415/CBN21	SS- B45_SLAB- North Grab Soil Sample	4-BFB (68%)	ALL	ND	None

LCS/LCSD Precision and Accuracy

LCS/LCSD precision (relative percent differences; RPDs) and accuracy (percent recoveries; %Rs) measurements were within QC acceptance limits and considered acceptable, with the exceptions noted below. Sample result qualification was not required if non-compliant LCS recoveries indicate potential high bias of results and associated sample results were reported as undetected ("U").

Sample Group/ SDG	Analytical Parameter	LCS ID	LCS %R	QC Batch ID	Affected Samples	Data Qualifier
978917/CBN08	1,2-Dichloroethane	LCSA15	127	A060551AA	ALL	None, high recovery, sample "ND"
980024/CBN12	Bromoform	LCSA21	112	A060652AA	ALL, except TB	None, high recovery, sample "ND"

MS/MSD Precision and Accuracy

MS/MSD precision (relative percent differences; RPDs) and accuracy (percent recoveries; %Rs) measurements were within QC acceptance limits and considered acceptable, with the exceptions noted below. Sample result qualification was not required if non-compliant MS/MSD recoveries indicate potential high bias of results and associated sample result was reported as undetected ("U").

Sample Group/ SDG	Sample ID	Analyte	MS/MSD %R	MS/MSD %RPD	Data Qualifier
977407/CBN02	SSBLDG56ISS-02-S	2-Hexanone	ok	37	UJ
977407/CBN02	SSBLDG56ISS-02-S	1,1,2- Trichloroethane	Ok/136		None
977407/CBN02	SSBLDG56ISS-02-S	Chlorobenzene	Ok/127		67J
977407/CBN02	SSBLDG56ISS-02-S	1,1,1,2- Tetrachloroethane	182/212		None
977672/CBN05	RW-003-B2	Chloroethane	Ok/159	31	J

Continuing Calibration Verifications

Sample Group/SDG	Target Analyte	%D	Samples Affected	Data Qualifier
977405/CBN01	4-Methyl-2-pentanone	31	ALL	UJ
977405/CBN01	2-Hexanone	23	ALL	UJ
977497/CBN02	Bromomethane	-22	SSBLDG56ISS-02-S	UJ
978129/CBN05	Chloromethane	22	RW-008-B3	UJ
978129/CBN05	Bromomethane	21	RW-008-B3	UJ
978129/CBN05	1,1,1-Trichloroethane	26	RW-008-B3	UJ
978129/CBN05	Carbon Tetrachloride	30	RW-008-B3	UJ
978129/CBN05	1,2-Dichloroethane	30	RW-008-B3	UJ
977672/CBN05	Carbon tetrachloride	26	RW-001-A1	UJ
977672/CBN05	Carbon tetrachloride	26	RW-003-B2	UJ
977672/CBN05	1,1,1-Trichloroethane	23	RW-002-A1	UJ
977672/CBN05	1,1,1-Trichloroethane	23	RW-004-BG	UJ
977672/CBN05	1,1,1-Trichloroethane	23	RW-005-BG	UJ
977672/CBN05	1,1,1-Trichloroethane	23	RW-005-BG (DL)	UJ
977672/CBN05	Carbon tetrachloride	28	RW-002-A1	UJ
977672/CBN05	Carbon tetrachloride	28	RW-004-BG	UJ
977672/CBN05	Carbon tetrachloride	28	RW-005-BG	UJ
977672/CBN05	Carbon tetrachloride	28	RW-005-BG (DL)	UJ
977672/CBN05	1,2-Dichloroethane	23	RW-002-A1	UJ
977672/CBN05	1,2-Dichloroethane	23	RW-004-BG	UJ
977672/CBN05	1,2-Dichloroethane	23	RW-005-BG	UJ
977672/CBN05	1,2-Dichloroethane	23	RW-005-BG (DL)	UJ
978327CBN06	1,2-Dichloroethane	21	All in sample group	UJ
978327CBN06	2-Hexanone	-23	All in sample group	UJ
978484/CBN06	4-Methyl-2-pentanone	36	All in sample group	UJ
978484/CBN06	2-Hexanone	45	All in sample group	UJ
979489/CBN10	4-Methyl-2-pentatone	29	SS-022-ISS5(3-4), SS-023-ISS3(2-4), S-026-ISS2(4-8)	UJ
979489/CBN10	3-Hexanone	25	SS-022-ISS5(3-4), SS-023-ISS3(2-4), S-026-ISS2(4-8)	UJ
979489/CBN10	Dibromochloromethane	21	SS-022-ISS5(3-4), SS-023-ISS3(2-4), S-026-ISS2(4-8)	UJ
979489/CBN10	Bromoform	31	SS-022-ISS5(3-4), SS-023-ISS3(2-4), S-026-ISS2(4-8)	UJ
979489/CBN10	4-Methyl-2-pentanone	-22	Trip Blank	UJ
979489/CBN10	Tetrachloroethene	-25	Trip Blank	UJ
979489/CBN10	2-Hexanone	-27	Trip Blank	UJ
979838/CBN11	2-Hexanone	25	Trip Blank	UJ
979838/CBN11	4-Methyl-2-pentanone	21	Trip Blank	UJ
982922/CBN15	Carbon tetrachloride	23	RW-027-BG	UJ
982922/CBN15	Bromoform	22	RW-027-BG	UJ

Continuing calibration verification compounds (all target analytes) were compliant with a maximum percent difference (%D) of $\pm 20\%$, with the exceptions shown below.

987350/CBN18	2-Hexanone	-26	Tank 200 Sump, Tank 200 water, Trip blank	UJ
989015/CBN20	Acetone	32	ALL	UJ
989415/CBN21	Acetone	32	ALL	UJ

5.2 SW8270C SVOCs Analysis Data

The following items were reviewed for compliancy in the analysis by Lancaster using Method Sw8270C:

- Custody documentation;
- Sample preservation;
- Holding times;
- Initial calibration;
- GC/MS instrument performance (DFTPP ion abundance criteria);
- Initial calibration verification (ICV);
- Continuing calibration verifications (CCV);
- Internal standard area counts and retention times;
- Surrogate recoveries;
- Matrix spike/matrix spike duplicate (MS/MSD) precision and accuracy;
- Laboratory control sample (LCS) recoveries;
- Laboratory control sample duplicate (LCSD);
- Laboratory method blank contamination;
- Field duplicate precision;
- Field QC blank samples (trip blank) contamination;
- Sample result verification and identification;
- Analysis sequence;
- Quantitation limits;
- Sample quantitation; and,
- Data completeness.

For sample group 977407, SDG CBN02, these items were considered compliant and acceptable in accordance with the validation protocols. MS/MSD was performed on a sample from a different sample group.

For sample group 977669, SDG CBN03, these items were considered compliant and acceptable in accordance with the validation protocols, with the exception of surrogate recovery. Samples were prepared using TCLP extraction procedure. Sample SS-BLDG-29-TCLP was utilized for MS/MSD.

For sample group 978917, SDG CBN08, these items were considered compliant and acceptable in accordance with the validation protocols, with the exception of MS/MSD RPD. Sample SS-001-B20-(2-6) was utilized for MS/MSD.

For sample group 979131, SDG CBN08, these items were considered compliant and acceptable in accordance with the validation protocols. Sample SS-010-MHB4-(3-7) was utilized for MS/MSD.

For sample group 979319, SDG CBN10, these items were considered compliant and acceptable in accordance with the validation protocols, with the exception of MSD %R and MS/MSD RPD, CCV%D. Sample SS-015-B26-(4-7) was utilized for MS/MSD.

For sample group 979489, SDG CBN10, these items were considered compliant and acceptable in accordance with the validation protocols, with the exception of CCV%D. Sample SS-024-ISS3-(2-4.5) was utilized for MS/MSD.

For sample group 979838, SDG CBN11, these items were considered compliant and acceptable in accordance with the validation protocols, with the exception of surrogate recovery, CCV%D and MS/MSD RPD. Sample SS-034-MHC2-(2-6') was utilized for MS/MSD.

For sample group 980024, SDG CBN12, these items were considered compliant and acceptable in accordance with the validation protocols, with the exception of MS%R and MS/MSD RPD. Sample SS-039-ISS8-(4-8') was utilized for MS/MSD.

For sample group 987350, SDG CBN18, these items were considered compliant and acceptable in accordance with the validation protocols. MS/MSD was performed on a sample from a different sample group.

For sample group 989015, SDG CBN20, these items were considered compliant and acceptable in accordance with the validation protocols, with the exception of method blank, LCS %R, ICV%D, and CCV%D. Samples were analyzed in two QC batches. MS/MSD for QC batch 05136SLD026 was performed on sample ISS-T-200B. MS/MSD for QC batch 06139SLA026 was performed utilizing a non-project sample.

For sample group 989415, SDG CBN21, these items were considered compliant and acceptable in accordance with the validation protocols, with the exception of MS/MSD %R and RPD, ICV%D, and CCV%D. MS/MSD was performed on sample SS-B45_SLAB-South Grab Soil Sample. Sample SS-B45_SLAB-South Grab Soil Sample was analyzed at both 1x and 10x dilutions; only one result for each analyte is reported.

Method Blank Contamination

For sample group 989015, SDG CBN20, a detectable amounts of bis(2ethylhexyl)phthalate) (130J ug/L) was detected in the method blank. However, all this analyte was not detected in all associated samples. No data were qualified based on method blank contamination.

Surrogate Compound Recovery

Surrogate compound recoveries were compliant, with the exceptions shown below. In instances where surrogate recoveries were above the upper control limit and sample concentrations were non-detect, the sample result was not required to be qualified. Data was not qualified based on a single marginal exceedance of recovery.

Sample Group/SDG	Sample ID	Surrogate (%R)	Compound Affected	Result (ug/kg)	Data Qualifier
977669/CBN03	SS-BLDG-29-TCLP	2FP (2), PHL (1), TBP (10)	All Phenols	All ND	R
977669/CBN03	SS-BLDG-29-TCLP (MS)	2FP (6), PHL (4), TBP (30)	All Phenols	All ND	N/A
977669/CBN03	SS-BLDG-29-TCLP (MSD)	2FP (4), PHL (3), TBP (25)	All Phenols	All ND	N/A
979838/CBN11	SS-034-MHC2-(2-6')	NBZ (137)	Pyrene	58	J
979838/CBN11	SS-034-MHC2-(2-6')	NBZ (137)	Phenanthrene	60	J
979838/CBN11	SS-034-MHC2-(2-6')	NBZ (137)	Butylbenzylpht halate	69	J

LCS/LCSD Precision and Accuracy

LCS/LCSD precision (relative percent differences; RPDs) and accuracy (percent recoveries; %Rs) measurements were within QC acceptance limits and considered acceptable, with the exceptions noted below. Sample result qualification was not required if non-compliant LCS recoveries indicate potential high bias of results and associated sample results were reported as undetected ("U").

Sample Group/ SDG	Analytical Parameter	LCS ID	LCS %R	QC Batch ID	Affected Samples	Data Qualifier
989015/CBN	Phenol		117	06136SLD026	All except ISS-T- 200D	None
989015/CBN	2-Chlorophenol		106	06136SLD026	All except ISS-T- 200D	None
989015/CBN	N-nitroso-di-n- propylamine		113	06136SLD026	All except ISS-T- 200D	None
989015/CBN	4-Methylphenol		118	06136SLD026	All except ISS-T- 200D	None

MS/MSD Precision and Accuracy

MS/MSD precision (relative percent differences; RPDs) and accuracy (percent recoveries; %Rs) measurements were within QC acceptance limits and considered acceptable, with the exceptions noted below. Sample result qualification was not required if non-compliant MS/MSD recovery indicates potential high bias of results and associated sample result was reported as undetected ("U").

Sample Group/ SDG	Sample ID	Analyte	MS/MSD %R	MS/MSD %RPD	Data Qualifier
978917/CBN08	SS-001-B20-(2-6)	4-Chloroaniline	ok	49	UJ
978917/CBN08	SS-001-B20-(2-6)	Benzo(b)fluoranthene	ok	31	UJ
979319/CBN10	SS-015-B26-(4-7)	Phenanthrene	37/34		J/UJ
979319/CBN10	SS-015-B26-(4-7)	Pyrene	Ok/31	43	J/UJ
979838/CBN11	SS-034-MHC2-(2-6')	2,2'-oxybis(1- chloropropane)	ok	74	UJ
980024/CBN12	SS-039-ISS8-(4-8')	2,4-Dinitrophenol	ok	32	UJ
980024/CBN12	SS-039-ISS8-(4-8')	Phenanthrene	18/89	133	UJ
980024/CBN12	SS-039-ISS8-(4-8')	Fluoranthene	18/92	134	UJ
989415/CBN21	SS-B45_SLAB- South Grab Soil Sample	Pyrene	-21/-5		J
989415/CBN21	SS-B45_SLAB- South Grab Soil Sample	2,4-Dinitrophenol	Ok/ok	34	UJ
989415/CBN21	SS-B45_SLAB- South Grab Soil Sample	Phenanthrene	-112/-91		J
989415/CBN21	SS-B45_SLAB- South Grab Soil Sample	Anthracene	34/33		J
989415/CBN21	SS-B45_SLAB- South Grab Soil Sample	Fluoranthene	-64/-43		J
989415/CBN21	SS-B45_SLAB- South Grab Soil Sample	Benzo(a)anthracene	47/ok		J
989415/CBN21	SS-B45_SLAB- South Grab Soil Sample	Chrysene	44/ok		J

Initial Calibration Verification

Initial calibration verification compounds (all target analytes) were compliant with a maximum percent difference (%D) of $\pm 20\%$, with the exceptions shown below.

Sample Group/SDG	Target Analyte	%D	Samples Affected	Data Qualifier
989015/CBN20	2,2'-oxybis(1-Chloropropane)	30	ISS-T-200D	UJ
989015/CBN20	Hexachlorocyclopentadiene	-29	ISS-T-200D	UJ
989015/CBN20	2-Chloronaphthalene	-21	ISS-T-200D	UJ
989015/CBN20	2,2'-oxybis(1-Chloropropane)	38	ISS-T-200B	UJ
989415/CBN21	2,2'-oxybis(1-Chloropropane)	30	ALL	UJ
989415/CBN21	Hexachlorocyclopentadiene	-29	ALL	UJ
989415/CBN21	2-Chloronaphthalene	-21	ALL	UJ

Continuing Calibration Verifications

Continuing calibration verification compounds (all target analytes) were compliant with a maximum percent difference (%D) of $\pm 20\%$, with the exceptions shown below.

Sample Group/SDG	Target Analyte	%D	Samples Affected	Data Qualifier
978479/CBN07	4-Chloroaniline	-27	ALL	UJ
979489/CBN10	2,4-Dinitrophenol	23	4717530-4717539	J/UJ
979489/CBN10	2-Chloronaphthalene	-27	4717530-4717539	J/UJ
979489/CBN10	Benzo(g,h,i)perylene	21	4717530-4717539	J/UJ
979489/CBN10	2,4-Dinitrophenol	26	4717530DL	J/UJ
979838/CBN11	2,4-Dinitrophenol	22	4719325-4719334	UJ
979838/CBN11	Dibenz(a,h)anthracene	22	4719325-4719334	J/UJ
980840/CBN13	2,4-Dinitrophenol	-38	ALL	UJ
989015/CBN20	2-Chloronaphthalene	30	ISS-T-200D	UJ
989015/CBN20	4-Methylphenol	27	ISS-T-200B	UJ
989015/CBN20	4-Nitrophenol	31	ISS-T-200B	UJ
989015/CBN20	Fluorene	23	ISS-T-200B	UJ
989415/CBN21	2-Chloronaphthalene	30	ALL	UJ

5.3 SW7471A Mercury Analysis Data

The following items were reviewed for compliancy in the Mercury analysis by Lancaster using Method SW7471A:

- Custody documentation;
- Sample preservation;
- Holding times;
- Initial calibration;
- Continuing calibration verifications;
- Initial and continuing calibration blanks;
- Method blanks;
- Matrix spike/matrix spike duplicate recoveries;
- Duplicate sample analyses;
- Laboratory control sample (LCS);
- Sample result verification and identification;
- Analysis sequence;
- Quantitation limits; and,
- Data completeness.

For sample group 977669, SDG CBN03, these items were considered compliant and acceptable in accordance with the validation protocols. Sample was prepared using TCLP extraction procedure. Sample SS-BLDG-29-TCLP was utilized for MS/MSD analyses and for sample duplicate.

For sample group 978917, SDG CBN08, these items were considered compliant and acceptable in accordance with the validation protocols, with exception of MS/MSD RPD. Sample SS-001-B20-(2-6) was utilized for MS/MSD and for sample duplicate.

For sample group 979131, SDG CBN08, these items were considered compliant and acceptable in accordance with the validation protocols. Sample SS-010-MHB3-(3-7) was utilized for MS/MSD and for sample duplicate.

For sample group 979319, SDG CBN10, these items were considered compliant and acceptable in accordance with the validation protocols, with the exception of MSD %R and MS/MSD RPD. Sample SS-024-ISS3-(2-4.5) was utilized for MS/MSD and for sample duplicate.

For sample group 979489, SDG CBN10, these items were considered compliant and acceptable in accordance with the validation protocols, with the exception of CCV%D. Sample SS-024-ISS3-(2-4.5) was utilized for MS/MSD and for sample duplicate.

For sample group 979838, SDG CBN11, these items were considered compliant and acceptable in accordance with the validation protocols, with exception of duplicate RPD. Sample SS-034-MHC2-(2-6') was utilized for MS/MSD and for sample duplicate.

For sample group 980024, SDG CBN12, these items were considered compliant and acceptable in accordance with the validation protocols, with exception of duplicate RPD. Sample SS-045-ISS4-(3-7) was utilized for MS/MSD and for sample duplicate.

For sample group 980465, SDG CBN13, these items were considered compliant and acceptable in accordance with the validation protocols, with the exception of sample preservation. A sample from a different sample group was utilized for MS/MSD analyses and for sample duplicate.

For sample group 987350, CBN18 these items were considered compliant and acceptable in accordance with the validation protocols. A non-project sample was utilized for MS/MSD and for sample duplicate.

For sample group 989015, CBN20 these items were considered compliant and acceptable in accordance with the validation protocols. Sample ISS-T-200B was utilized for MS/MSD and for sample duplicate.

For sample group 989415, CBN21 these items were considered compliant and acceptable in accordance with the validation protocols. A non-project sample was utilized for MS/MSD and for sample duplicate.

Sample Preservation

For sample group 980465, SDG CBN13, all soil samples (SS-WS4, SS-WS5, SS-WS6) were received with sample temperature of 13.8°C; sample results qualification is not required based on soil sample temperature.

MS/MSD Precision and Accuracy

MS/MSD precision (relative percent differences; RPDs) and accuracy (percent recoveries; %Rs) measurements were within QC acceptance limits and considered

acceptable, with the exceptions noted below. Sample results were not qualified if MS/MSD %R or RPD was non-compliant but sample concentration was <4x spike amount.

Sample Group/ SDG	Sample ID	Analyte	MS/MSD %R	MS/MSD %RPD	Data Qualifier
978917/CBN08	SS-001-B20-(2-6)	Mercury	Ok	31	J
979838/CBN10	SS-024-ISS3(2-4.5')	Mercury	170/Ok	41	J

Duplicate Sample

Duplicate sample analysis precision (relative percent differences; RPDs) measurements were within QC acceptance limits and considered acceptable, with the exceptions noted below. Sample results were not qualified if results <reporting limit.

Sample Group/ SDG	Sample ID	Analyte	Dup RPD	Result >RL?	Data Qualifier
979838/CBN10	SS-024-ISS3(2-4.5')	Mercury	Ok	No	None
979489/CBN11	SS-034-MHC2-(2-6')	Mercury	Ok	No	None

5.4 SW6010B Metals Analysis

The following items were reviewed for compliancy in the metals analysis by Lancaster using Method SW6010A:

- Custody documentation;
- Sample preservation;
- Holding times;
- Initial calibration;
- Continuing calibration verifications;
- Initial and continuing calibration blanks;
- Method blanks;
- Matrix spike/matrix spike duplicate recoveries;
- Replicate analyses;
- Laboratory control sample (LCS);
- Interference check sample (ICS);
- Serial dilution results;
- Post-digestion spike results;
- Sample result verification and identification;
- Analysis sequence;
- Quantitation limits; and,
- Data completeness.

For sample group 977669, SDG CBN03, these items were considered compliant and acceptable in accordance with the validation protocols. Sample was prepared using TCLP extraction procedure. Sample SS-BLDG-29-TCLP was utilized for MS/MSD analyses.

For sample group 987350, SDG CBN18, these items were considered compliant and acceptable in accordance with the validation protocols. A sample from a different sample group was utilized for MS/MSD and for sample duplicate.

For sample group 989015, SDG CBN20, these items were considered compliant and acceptable in accordance with the validation protocols, with the exception of method blank and MS/MSD. Sample ISS-T-200B was utilized for MS/MSD and for sample duplicate.

For sample group 989415, CBN21 these items were considered compliant and acceptable in accordance with the validation protocols. The concentration of calcium (24.8 ug/L) exceeded the reporting limit; however sample results were greater than 20x blank amount so data qualification was not required. A non-project sample was utilized for MS/MSD and for sample duplicate.

Method Blank Contamination

For sample group 989015, SDG CBN20, detectable amounts of Aluminum (7.97J mg/kg) and Calcium (14.8J mg/kg) were detected in the method blank. However, all sample results were greater than 5x the blank amount so data qualification was not required.

For sample group 989415, SDG CBN21, detectable amounts of Calcium (24.8J mg/kg), Magnesium (5.37J mg/kg), Sodium (39.4J mg/kg), Barium (0.170J mg/kg), and Manganese (0.0880J mg/kg) were detected in the method blank. However, all sample results were greater than 5x the blank amount so data qualification was not required.

MS/MSD Precision and Accuracy

MS/MSD precision (relative percent differences; RPDs) and accuracy (percent recoveries; %Rs) measurements were within QC acceptance limits and considered acceptable, with the exceptions noted below. Sample results were not qualified if MS/MSD %R or RPD was non-compliant but sample concentration was <4x spike amount.

Sample Group/ SDG	Sample ID	Analyte	MS/MSD %R	MS/MSD %RPD	Data Qualifier
989015/CBN	ISS-T-200B	Potassium	390/395		J
989015/CBN	ISS-T-200B	Antimony	46/48		UJ
989015/CBN	ISS-T-200B	Copper	Ok/135		J
989015/CBN	ISS-T-200B	Lead	147/161		J
989015/CBN	ISS-T-200B	Zinc	51/73		J

TABLE 1 – VALIDATED SAMPLES AND ANALYSES PERFORMED

CVX-Beacon, NY

ISS Project

Lancaster Sample Group/ SDG	Lancaster Sample No.	Parsons Field Sample ID	Sample Date	Matrix	VOCs (SW8260B)	SVOCs (SW8270C)	Metals (SW6010B)	Mercury (SW7471A)
977407/CBN02	4705887	SSBLDG56ISS-01-B	02/07/06	Soil	Х	Х	-	-
977407/CBN02	4705888	SSBLDG56ISS-02-S	02/07/06	Soil	Х	Х	-	-
977669/CBN03	4707342	SS-BLDG29-TCLP	02/09/06	Soil	TCLP	TCLP	TCLP	TCLP
977672/CBN05	4707352	RW-001-A1	02/09/06	Water	Х	-	-	-
977672/CBN05	4707353	RW-002-A1	02/09/06	Water	Х	-	-	-
977672/CBN05	4707354	RW-003-B2	02/09/06	Water	Х	-	-	-
977672/CBN05	4707357	RW-004-BG	02/09/06	Water	Х	-	-	-
977672/CBN05	4707358	RW-005-BG	02/09/06	Water	Х	-	-	-
977672/CBN05	4707359	TB-001	02/09/06	Water	Х	-	-	-
978129/CBN05	4710001	RW-006-B3	02/14/06	Water	Х	-	-	-
978129/CBN05	4710002	RW-1006-B3	02/14/06	Water	Х	-	-	-
978129/CBN05	4710003	RW-007-B3	02/14/06	Water	Х	-	-	-
978129/CBN05	4710004	RW-008-B3	02/14/06	Water	Х	-	-	-
978129/CBN05	4710005	RW-009-B2	02/14/06	Water	Х	-	-	-
978129/CBN05	4710006	RW-010-B6	02/14/06	Water	Х	-	-	-
978129/CBN05	4710007	RW-011-B5	02/14/06	Water	Х	-	-	-
978129/CBN05	4710008	RW-012-B4	02/14/06	Water	Х	-	-	-
978129/CBN05	4710009	RW-013-B2	02/14/06	Water	Х	-	-	-
978129/CBN05	4710010	RW-014-B2	02/14/06	Water	Х	-	-	-
978129/CBN05	4710011	TB-002	02/14/06	Water	Х	-	-	-
978129/CBN05	4710012	RW-015-42	02/14/06	Water	Х	-	-	-
978327/CBN06	4710926	TB-003	02/15/06	Water	Х	_	-	-
978327/CBN06	4710927	RW-016-A1	02/15/06	Water	Х	_	-	-
978327/CBN06	4710928	RW-1016-A1	02/15/06	Water	Х	_	-	-
978327/CBN06	4710929	RW-017-A1	02/15/06	Water	Х	-	-	-
978327/CBN06	4710930	RW-018-A1	02/15/06	Water	Х	-	-	-

978327/CBN06	4710931	RW-019-BG	02/15/06	Water	X	-	-	-
978327/CBN06	4710932	RW-020-58	02/15/06	Water	X	-	-	-
978327/CBN06	4710933	RW-021-83	02/15/06	Water	X	-	-	-
978327/CBN06	4710934	RW-1021-83	02/15/06	Water	Х	-	-	-
978484/CBN06	4711802	TB-004	02/16/06	Water	Х	-	-	-
978484/CBN06	4711803	RW-024-GC	02/16/06	Water	X	-	-	-
978484/CBN06	4711804	RW-1024-GC	02/16/06	Water	Х	-	-	-
978484/CBN06	4711805	RW-025-GC	02/16/06	Water	X	-	-	-
978484/CBN06	4711808	RW-026-WB	02/16/06	Water	X	-	-	-
978917/CBN08	4714331	SS-001-B20 (2-6)	02/20/06	Soil	Х	Х	-	Х
978917/CBN08	4714335	SS-002-B3 (3-7)	02/21/06	Soil	Х	Х	-	Х
978917/CBN08	4714336	SS-003-B3 (3-4.5)	02/21/06	Soil	Х	Х	-	Х
978917/CBN08	4714337	SS-004-B3 (3-7)	02/21/06	Soil	Х	Х	-	Х
978917/CBN08	4714338	SS-005-B73 (2-6)	02/21/06	Soil	Х	Х	-	Х
978917/CBN08	4714339	SS-006-B3 (3-7)	02/21/06	Soil	Х	Х	-	Х
978917/CBN08	4714340	SS-106-B3 (3-7)	02/21/06	Soil	Х	Х	-	Х
978917/CBN08	4714341	SS-007-MHB6 (4-7)	02/21/06	Soil	Х	Х	-	Х
978917/CBN08	4714342	SS-008-B6 (3-7)	02/21/06	Soil	Х	Х	-	Х
978917/CBN08	4714343	SS-009-B6 (3-7)	02/21/06	Soil	Х	Х	-	Х
979131/CBN08	4715535	SS-011-B4 (4-7)	02/22/06	Soil	Х	Х	-	Х
979131/CBN08	4715538	SS-010-MHB4 (3-7)	02/22/06	Soil	Х	Х	-	Х
979131/CBN08	4715540	SS-012-B39 (3-7)	02/22/06	Soil	Х	Х	-	Х
979131/CBN08	4715541	SS-013-B3 (3-7)	02/22/06	Soil	Х	Х	-	Х
979131/CBN08	4715542	SS-113-B3 (3-7)	02/22/06	Soil	Х	Х	-	Х
979131/CBN08	4715543	SS-014-MHB2 (4-8)	02/22/06	Soil	Х	Х	-	Х
979131/CBN08	4715544	SS-014-MHB2 (8-11)	02/22/06	Soil	Х	Х	-	Х
979131/CBN08	4715545	TB-005	02/22/06	Water	Х	-	-	-
979319/CBN10	4716641	SS-015-B26 (4-7)	02/23/06	Soil	Х	Х	-	Х
979319/CBN10	4716642	SS-016-ISS5 (4-5)	02/23/06	Soil	X	Х	-	Х
979319/CBN10	4716643	SS-017-B55 (8-12)	02/23/06	Soil	X	Х	-	Х
979319/CBN10	4716644	SS-117-B55 (8-12)	02/23/06	Soil	Х	Х	-	Х
979319/CBN10	4716645	SS-018-ISS5 (4-8)	02/23/06	Soil	X	Х	-	Х
979319/CBN10	4716646	SS-019-ISS5 (4-8)	02/23/06	Soil	Х	Х	-	Х
979319/CBN10	4716647	SS-020-ISS5 (4-6)	02/23/06	Soil	X	Х	-	Х
979319/CBN10	4716648	TB-006	02/23/06	Water	X	-	-	-

979489/CBN10	4717529	TB-007	02/24/06	Water	X	-	-	-
979489/CBN10	4717530	SS-021-ISS5 (4-6)	02/23/06	Soil	Х	Х	-	Х
979489/CBN10	4717531	SS-022-ISS5 (3-4)	02/24/06	Soil	Х	Х	-	Х
979489/CBN10	4717532	SS-023-ISS3 (2-4)	02/24/06	Soil	Х	Х	-	Х
979489/CBN10	4717533	SS-024-ISS3 (2-4.5)	02/24/06	Soil	Х	Х	-	Х
979489/CBN10	4717537	SS-025-ISS2 (4-8)	02/24/06	Soil	Х	Х	-	X
979489/CBN10	4717538	SS-026-ISS2 (4-8)	02/24/06	Soil	Х	Х	-	X
979489/CBN10	4717539	SS-026-ISS2 (8-10)	02/24/06	Soil	Х	Х	-	Х
979838/CBN11	4719325	SS-034-MHC2 (2-6)	02/28/06	Soil	Х	Х	-	Х
979838/CBN11	4719326	SS-033-ISS8 (3-7)	02/28/06	Soil	Х	Х	-	Х
979838/CBN11	4719327	SS-031-ISS1 (2-6)	02/28/06	Soil	Х	Х	-	Х
979838/CBN11	4719328	SS-032-ISS1 (2-6)	02/28/06	Soil	Х	Х	-	Х
979838/CBN11	4719329	SS-035-ISS8 (3-7)	02/28/06	Soil	Х	Х	-	Х
979838/CBN11	4719330	SS-036-ISS8 (3-7)	02/28/06	Soil	Х	Х	-	Х
979838/CBN11	4719331	SS-037-ISS8 (3-7)	02/28/06	Soil	Х	Х	-	Х
979838/CBN11	4719332	SS-038-ISS8 (4-8)	02/28/06	Soil	Х	Х	-	Х
979838/CBN11	4719333	SS-027-MHA1 (3-7)	02/27/06	Soil	Х	Х	-	Х
979838/CBN11	4719334	SS-028-ISS1 (3-7)	02/27/06	Soil	Х	Х	-	Х
979838/CBN11	4719335	SS-029-ISS1 (3-7)	02/27/06	Soil	Х	Х	-	Х
		SS-030-ISS1 (3-7)						
979838/CBN11	4719336	[reported incorrectly by lab as	02/27/06	Soil	Х	Х	-	Х
		"SS-30-MHA1-(3-7')]						
979838/CBN11	4719337	SS-130-ISS1 (3-7)	02/27/06	Soil	Х	Х	-	Х
979838/CBN11	4719338	TB-008	02/27/06	Water	Х	-	-	-
980024/CBN12	4720219	SS-039-ISS8 (4-8)	03/01/06	Soil	Х	Х	-	Х
980024/CBN12	4720220	SS-040-ISS8 (4-8)	03/01/06	Soil	Х	Х	-	Х
980024/CBN12	4720221	SS-041-ISS6 (4-8)	03/01/06	Soil	Х	Х	-	X
980024/CBN12	4720222	SS-141-ISS6 (4-8)	03/01/06	Soil	Х	Х	-	Х
980024/CBN12	4720223	SS-042-ISS8 (3-7)	03/01/06	Soil	Х	Х	-	Х
980024/CBN12	4720224	SS-043-ISS4 (3-7)	03/01/06	Soil	Х	Х	-	Х
980024/CBN12	4720225	SS-044-ISS4 (3-7)	03/01/06	Soil	Х	Х	-	Х
980024/CBN12	4720226	SS-045-ISS4 (3-7)	03/01/06	Soil	Х	Х	-	Х
980024/CBN12	4720227	TB-009	03/01/06	Water	Х	-	-	-
980465/CBN13	4722308	SS-WS4	03/06/06	Soil	-	-	-	Х
980465/CBN13	4722309	SS-WS5	03/06/06	Soil	-	-	-	X
980465/CBN13	4722310	SS-WS6	03/06/06	Soil	-	-	-	Х

		1						
982922/CBN15	4735808	RW-027-BG	03/23/06	Water	Х	-	-	-
987350/CBN18	4759614	TANK 200 SUMP GRAB	04/27/2006	Water	Х	Х	Х	Х
987350/CBN18	4759615	TANK 200 WATER GRAB	04/27/2006	Water	Х	Х	Х	Х
987350/CBN18	4759616	Trip Blank	04/27/2006	Water	Х			
989015/CBN20	4768576	ISS-T-200A (reported by lab as "1SS-T- 200A)	05/08/06	Soil	Х	Х	X	Х
989015/CBN20	4768577	ISS-T-200B (reported by lab as "1SS-T- 200B)	05/08/06	Soil	Х	Х	Х	Х
989015/CBN20	4768581	ISS-T-200C (reported by lab as "1SS-T- 200C)	05/08/06	Soil	Х	Х	X	Х
989015/CBN20	4768582	ISS-T-200D (reported by lab as "1SS-T- 200D)	05/08/06	Soil	Х	Х	X	Х
989015/CBN20	4768583	ISS-T-200E (reported by lab as "1SS-T- 200E)	05/08/06	Soil	Х	Х	X	Х
989015/CBN20	4768584	ISS-T-200F (reported by lab as "1SS-T- 200F)	05/08/06	Soil	Х	Х	Х	Х
989415/CBN21	4770845	SS-B45_SLAB_South Grab Soil Sample	05/10/06	Soil	Х	Х	X	Х
989415/CBN21	4770846	SS-B45_SLAB-North Grab Soil Sample	05/10/06	Soil	Х	Х	X	Х

TABLE 2

DATA VALIDATION DATA QUALIFIERS AND DATA FLAG CHANGES

CVX-Beacon, NY

ISS Project

Sample Group/SDG	Lab ID	Sample ID	ANALYTE	Reported Concentration (ug/kg)	Old Flag (lab flag)	New Flag (Data Qualifier)	Final Q (summary)	Reason
977407/CBN02	4705887	SSBLDG56ISS-02-S	2-Hexanone	ND		J	UJ	MS RPD
977407/CBN02	4705888	SSBLDG56ISS-02-S	Bromomethane	ND		J	UJ	CCV %D
977407/CBN02	4705888	SSBLDG56ISS-02-S	Chlorobenzene	490		J	JH	MS %R
977669/CBN03	4707342	SS-BLDG29-TCLP	2,4,5-Trichlorophenol	ND		R	R	Surrogate %R
977669/CBN03	4707342	SS-BLDG29-TCLP	2,4,6-Trichlorophenol	ND		R	R	Surrogate %R
977669/CBN03	4707342	SS-BLDG29-TCLP	2-Methylphenol	ND		R	R	Surrogate %R
977669/CBN03	4707342	SS-BLDG29-TCLP	4-Methylphenol	ND		R	R	Surrogate %R
977669/CBN03	4707342	SS-BLDG29-TCLP	Pentachlorophenol	ND		R	R	Surrogate %R
977672/CBN05	4707352	RW-001-A1	Carbon tetrachloride	ND		J	UJ	CCV %D
977672/CBN05	4707353	RW-002-A1	1,1,1-Trichloroethane	ND		J	UJ	CCV %D
977672/CBN05	4707353	RW-002-A1	1,2-Dichloroethane	ND		J	UJ	CCV %D
977672/CBN05	4707353	RW-002-A1	Carbon tetrachloride	ND		J	UJ	CCV %D
977672/CBN05	4707354	RW-003-B2	Carbon tetrachloride	ND		J	UJ	CCV %D
977672/CBN05	4707354	RW-003-B2	Chloroethane	ND		J	UJ	MSD RPD
977672/CBN05	4707357	RW-004-BG	1,1,1-Trichloroethane	ND		J	UJ	CCV %D
977672/CBN05	4707357	RW-004-BG	1,2-Dichloroethane	ND		J	UJ	CCV %D
977672/CBN05	4707357	RW-004-BG	Carbon tetrachloride	ND		J	UJ	CCV %D
977672/CBN05	4707358	RW-005-BG	1,1,1-Trichloroethane	ND		J	UJ	CCV %D
977672/CBN05	4707358	RW-005-BG (DL)	1,1,1-Trichloroethane	ND		J	UJ	CCV %D
977672/CBN05	4707358	RW-005-BG	1,2-Dichloroethane	ND		J	UJ	CCV %D
977672/CBN05	4707358	RW-005-BG (DL)	1,2-Dichloroethane	ND		J	UJ	CCV %D
977672/CBN05	4707358	RW-005-BG	Carbon tetrachloride	ND		J	UJ	CCV %D
977672/CBN05	4707358	RW-005-BG (DL)	Carbon tetrachloride	ND		J	UJ	CCV %D
978129/CBN05	4710004	RW-008-B3	1,1,1-Trichloroethane	ND		J	UJ	CCV %D

978129/CBN05	4710004	RW-008-B3	1,2-Dichloroethane	ND	J	UJ	CCV %D
978129/CBN05	4710004	RW-008-B3	Bromomethane	ND	J	UJ	CCV %D
978129/CBN05	4710004	RW-008-B3	Carbon Tetrachloride	ND	J	UJ	CCV %D
978129/CBN05	4710004	RW-008-B3	Chloromethane	ND	J	UJ	CCV %D
978327CBN06	4710926	TB-003	1,2-Dichloroethane	ND	J	UJ	CCV %D
978327CBN06	4710926	TB-003	2-Hexanone	ND	J	UJ	CCV %D
978327CBN06	4710927	RW-016-A1	1,2-Dichloroethane	ND	J	UJ	CCV %D
978327CBN06	4710927	RW-016-A1	2-Hexanone	ND	J	UJ	CCV %D
978327CBN06	4710928	RW-1016-A1	1,2-Dichloroethane	ND	J	UJ	CCV %D
978327CBN06	4710928	RW-1016-A1	2-Hexanone	ND	J	UJ	CCV %D
978327CBN06	4710929	RW-017-A1	1,2-Dichloroethane	ND	J	UJ	CCV %D
978327CBN06	4710929	RW-017-A1	2-Hexanone	ND	J	UJ	CCV %D
978327CBN06	4710930	RW-018-A1	1,2-Dichloroethane	ND	J	UJ	CCV %D
978327CBN06	4710930	RW-018-A1	2-Hexanone	ND	J	UJ	CCV %D
978327CBN06	4710931	RW-019-BG	1,2-Dichloroethane	ND	J	UJ	CCV %D
978327CBN06	4710931	RW-019-BG	2-Hexanone	ND	J	UJ	CCV %D
978327CBN06	4710932	RW-020-58	1,2-Dichloroethane	ND	J	UJ	CCV %D
978327CBN06	4710932	RW-020-58	2-Hexanone	ND	J	UJ	CCV %D
978327CBN06	4710933	RW-021-83	1,2-Dichloroethane	ND	J	UJ	CCV %D
978327CBN06	4710933	RW-021-83	2-Hexanone	ND	J	UJ	CCV %D
978327CBN06	4710934	RW-1021-83	1,2-Dichloroethane	ND	J	UJ	CCV %D
978327CBN06	4710934	RW-1021-83	2-Hexanone	ND	J	UJ	CCV %D
978484/CBN06	4711802	TB-004	2-Hexanone	ND	J	UJ	CCV %D
978484/CBN06	4711802	TB-004	4-Methyl-2-pentanone	ND	J	UJ	CCV %D
978484/CBN06	4711803	RW-024-GC	2-Hexanone	ND	J	UJ	CCV %D
978484/CBN06	4711803	RW-024-GC	4-Methyl-2-pentanone	ND	J	UJ	CCV %D
978484/CBN06	4711804	RW-1024-GC	2-Hexanone	ND	J	UJ	CCV %D
978484/CBN06	4711804	RW-1024-GC	4-Methyl-2-pentanone	ND	J	UJ	CCV %D
978484/CBN06	4711805	RW-025-GC	2-Hexanone	ND	J	UJ	CCV %D
978484/CBN06	4711805	RW-025-GC	4-Methyl-2-pentanone	ND	J	UJ	CCV %D
978484/CBN06	4711808	RW-026	2-Hexanone	ND	 J	UJ	CCV %D
978484/CBN06	4711808	RW-026	4-Methyl-2-pentanone	ND	J	UJ	CCV %D
978917/CBN08	4714331	SS-001-B20-(2-6)	4-Chloroaniline	ND	J	UJ	MSRPD
978917/CBN08	4714331	SS-001-B20-(2-6)	Benzo(b)fluoranthene	560	J	J	MSRPD
978917/CBN08	4714331	SS-001-B20-(2-6)	Mercury	6290	J	J	MSRPD

979319/CBN10	4716641	SS-015-B26 (4-7)	Phenanthrene	3600		J	JL	MSD %R, RPD
979319/CBN10	4716641	SS-015-B26 (4-7)	Pyrene	3300		J	JL	MSD%R, RPD
979489/CBN10	4717529	TB-007	2-Hexanone	ND		J	UJ	CCV %D
979489/CBN10	4717529	TB-007	4-Methyl-2-pentanone	ND		J	UJ	CCV %D
979489/CBN10	4717529	TB-007	Tetrachloroethene	ND		J	UJ	CCV %D
979489/CBN10	4717530	SS-021-ISS5 (4-6)	2,4-Dinitrophenol	ND		J	UJ	CCV %D
979489/CBN10	4717530	SS-021-ISS5 (4-6)	2-Chloronaphthalene	ND		J	UJ	CCV %D
979489/CBN10	4717530	SS-021-ISS5 (4-6)	Benzo(g,h,i)perylene	21000		J	J	CCV %D
979489/CBN10	4717531	SS-022-ISS5 (3-4)	2,4-Dinitrophenol	ND		J	UJ	CCV %D
979489/CBN10	4717531	SS-022-ISS5 (3-4)	2-Chloronaphthalene	ND		J	UJ	CCV %D
979489/CBN10	4717531	SS-022-ISS5 (3-4)	2-Hexanone	ND		J	UJ	CCV %D
979489/CBN10	4717531	SS-022-ISS5 (3-4)	4-Methyl-2-pentanone	ND		J	UJ	CCV %D
979489/CBN10	4717531	SS-022-ISS5 (3-4)	Benzo(g,h,i)perylene	150	J	J	J	CCV %D
979489/CBN10	4717531	SS-022-ISS5 (3-4)	Bromoform	ND		J	UJ	CCV %D
979489/CBN10	4717531	SS-022-ISS5 (3-4)	Dibromochloromethane	ND		J	UJ	CCV %D
979489/CBN10	4717532	SS-023-ISS3 (2-4)	2,4-Dinitrophenol	ND		J	UJ	CCV %D
979489/CBN10	4717532	SS-023-ISS3 (2-4)	2-Chloronaphthalene	ND		J	UJ	CCV %D
979489/CBN10	4717532	SS-023-ISS3 (2-4)	2-Hexanone	ND		J	UJ	CCV %D
979489/CBN10	4717532	SS-023-ISS3 (2-4)	4-Methyl-2-pentnone	ND		J	UJ	CCV %D
979489/CBN10	4717532	SS-023-ISS3 (2-4)	Benzo(g,h,i)perylene	ND		J	UJ	CCV %D
979489/CBN10	4717532	SS-023-ISS3 (2-4)	Bromoform	ND		J	UJ	CCV %D
979489/CBN10	4717532	SS-023-ISS3 (2-4)	Dibromochloromethane	ND		J	UJ	CCV %D
979489/CBN10	4717533	SS-024-ISS3 (2-4.5)	2,4-Dinitrophenol	ND		J	UJ	CCV %D
979489/CBN10	4717533	SS-024-ISS3 (2-4.5)	2-Chloronaphthalene	ND		J	UJ	CCV %D
979489/CBN10	4717533	SS-024-ISS3 (2-4.5)	Benzo(g,h,i)perylene	ND		J	UJ	CCV %D
979489/CBN10	4717533	SS-024-ISS3-(2-4.5)	Mercury	105	J	J	JH	MS%R, RPD
979489/CBN10	4717537	SS-025-ISS2 (4-8)	2,4-Dinitrophenol	ND		J	UJ	CCV %D
979489/CBN10	4717537	SS-025-ISS2 (4-8)	2-Chloronaphthalene	ND		J	UJ	CCV %D
979489/CBN10	4717537	SS-025-ISS2 (4-8)	Benzo(g,h,i)perylene	110	J	J	J	CCV %D
979489/CBN10	4717538	SS-026-ISS2 (4-8)	2,4-Dinitrophenol	ND		J	UJ	CCV %D
979489/CBN10	4717538	SS-026-ISS2 (4-8)	2-Chloronaphthalene	ND		J	UJ	CCV %D
979489/CBN10	4717538	SS-026-ISS2 (4-8)	2-Hexanone	ND		J	UJ	CCV %D
979489/CBN10	4717538	SS-026-ISS2 (4-8)	4-Methyl-2-pentanone	ND		J	UJ	CCV %D
979489/CBN10	4717538	SS-026-ISS2 (4-8)	Benzo(g,h,i)perylene	ND		J	UJ	CCV %D

979489/CBN10	4717538	SS-026-ISS2 (4-8)	Bromoform	ND		J	UJ	CCV %D
979489/CBN10	4717538	SS-026-ISS2 (4-8)	Dibromochloromethane	ND		J	UJ	CCV %D
979489/CBN10	4717539	SS-026-ISS2 (8-10)	2,4-Dinitrophenol	ND		J	UJ	CCV %D
979489/CBN10	4717539	SS-026-ISS2 (8-10)	2-Chloronaphthalene	ND		J	UJ	CCV %D
979489/CBN10	4717539	SS-026-ISS2 (8-10)	Benzo(g,h,i)perylene	ND		J	UJ	CCV %D
979838/CBN11	4719325	SS-034-MHC2-(2-6')	2,2'-oxybis(1- chloropropane)	ND		J	UJ	MSRPD
979838/CBN11	4719325	SS-034-MHC2 (2-6)	2,4-Dinitrophenol	ND		J	UJ	CCV %D
979838/CBN11	4719325	SS-034-MHC2 (2-6)	Butylbenzylphthalate	ND		J	UJL	Surrogate %R
979838/CBN11	4719325	SS-034-MHC2 (2-6)	Dibenz(a,h)anthracene	ND		J	UJ	CCV %D
979838/CBN11	4719325	SS-034-MHC2 (2-6)	Phenanthrene	60	J	J	JL	Surrogate %R
979838/CBN11	4719325	SS-034-MHC2 (2-6)	Pyrene	58	J	J	JL	Surrogate %R
979838/CBN11	4719326	SS-033-ISS8 (3-7)	2,4-Dinitrophenol	ND		J	UJ	CCV %D
979838/CBN11	4719326	SS-033-ISS8 (3-7)	Dibenz(a,h)anthracene	ND		J	UJ	CCV %D
979838/CBN11	4719327	SS-031-ISS1 (2-6)	2,4-Dinitrophenol	ND		J	UJ	CCV %D
979838/CBN11	4719327	SS-031-ISS1 (2-6)	Dibenz(a,h)anthracene	210		J	J	CCV %D
979838/CBN11	4719328	SS-032-ISS1 (2-6)	2,4-Dinitrophenol	ND		J	UJ	CCV %D
979838/CBN11	4719328	SS-032-ISS1 (2-6)	Dibenz(a,h)anthracene	79	J	J	J	CCV %D
979838/CBN11	4719329	SS-035-ISS8 (3-7)	2,4-Dinitrophenol	ND		J	UJ	CCV %D
979838/CBN11	4719329	SS-035-ISS8 (3-7)	Dibenz(a,h)anthracene	ND		J	UJ	CCV %D
979838/CBN11	4719330	SS-036-ISS8 (3-7)	2,4-Dinitrophenol	ND		J	UJ	CCV %D
979838/CBN11	4719330	SS-036-ISS8 (3-7)	Dibenz(a,h)anthracene	ND		J	UJ	CCV %D
979838/CBN11	4719331	SS-037-ISS8 (3-7)	2,4-Dinitrophenol	ND		J	UJ	CCV %D
979838/CBN11	4719331	SS-037-ISS8 (3-7)	Dibenz(a,h)anthracene	200	J	J	J	CCV %D
979838/CBN11	4719332	SS-038-ISS8 (4-8)	2,4-Dinitrophenol	ND		J	UJ	CCV %D
979838/CBN11	4719332	SS-038-ISS8 (4-8)	Dibenz(a,h)anthracene	340		J	J	CCV %D
979838/CBN11	4719333	SS-027-MHA1 (3-7)	2,4-Dinitrophenol	ND		J	UJ	CCV %D
979838/CBN11	4719333	SS-027-MHA1 (3-7)	Dibenz(a,h)anthracene	170	J	J	J	CCV %D
979838/CBN11	4719334	SS-028-ISS1 (3-7)	2,4-Dinitrophenol	ND		J	UJ	CCV %D
979838/CBN11	4719334	SS-028-ISS1 (3-7)	Dibenz(a,h)anthracene	ND		J	UJ	CCV %D
979838/CBN11	4719338	TB-008	2-Hexanone	ND		J	UJ	CCV %D
979838/CBN11	4719338	TB-008	4-Methyl-2-pentanone	ND		J	UJ	CCV %D
980024/CBN12	4720219	SS-039-ISS8-(4-8')	2,4-Dinitrophenol	ND		J	UJ	MSRPD
980024/CBN12	4720219	SS-039-ISS8 (4-8)	Fluoranthene	10000		J	JL	MS%R, RPD

980024/CBN12	4720219	SS-039-ISS8 (4-8)	Phenanthrene	17000	J	JL	MS%R, RPD
982922/CBN15	4735808	RW-027-BG	Bromoform	ND	J	UJ	CCV %D
982922/CBN15	4735808	RW-027-BG	Carbon tetrachloride	ND	J	UJ	CCV %D
987350/CBN18	4759614	Tank 200 Sump	2-Hexanone	ND	J	UJ	CCV %D
987350/CBN18	4759615	Tank 200 Water	2-Hexanone	ND	J	UJ	CCV %D
987350/CBN18	4759616	Trip blank	2-Hexanone	ND	J	UJ	CCV %D
989015/CBN20	4768577	ISS-T-200B	Potassium	1250	J	J	MS %R
989015/CBN20	4768577	ISS-T-200B	Antimony	ND	J	UJ	MS %R
989015/CBN20	4768577	ISS-T-200B	Copper	22300	J	J	MS %R
989015/CBN20	4768577	ISS-T-200B	Lead	20400	J	J	MS %R
989015/CBN20	4768577	ISS-T-200B	Zinc	109000	J	J	MS %R
989015/CBN20	4768576	ISS-T-200A	Acetone	ND	J	UJ	CCV%D
989015/CBN20	4768577	ISS-T-200B	Acetone	ND	J	UJ	CCV%D
989015/CBN20	4768581	ISS-T-200C	Acetone	ND	J	UJ	CCV%D
989015/CBN20	4768582	ISS-T-200D	Acetone	ND	J	UJ	CCV%D
989015/CBN20	4768583	ISS-T-200E	Acetone	ND	J	UJ	CCV%D
989015/CBN20	4768584	ISS-T-200F	Acetone	ND	J	UJ	CCV%D
989015/CBN20	4768582	ISS-T-200D	2,2'-oxybis(1- Chloropropane)	ND	J	UJ	ICV%D
989015/CBN20	4768582	ISS-T-200D	Hexachlorocyclopentadiene	ND	J	UJ	ICV%D
989015/CBN20	4768582	ISS-T-200D	2-Chloronaphthalene	ND	J	UJ	ICV%D
989015/CBN20	4768582	ISS-T-200D	2-Chloronaphthalene	ND	J	UJ	CCV%D
989015/CBN20	4768577	ISS-T-200B	2,2'-oxybis(1- Chloropropane)	ND	J	UJ	ICV%D
989015/CBN20	4768577	ISS-T-200B	4-Methylphenol	ND	J	UJ	CCV%D
989015/CBN20	4768577	ISS-T-200B	4-Nitrophenol	ND	J	UJ	CCV%D
989015/CBN20	4768577	ISS-T-200B	Fluorene	ND	J	UJ	CCV%D
989415/CBN21	4770845	SS-B45_SLAB- South Grab Soil Sample	Acetone	ND	J	UJ	CCV%D
989415/CBN21	4770846	SS-B45_SLAB- North Grab Soil Sample	Acetone	ND	J	UJ	CCV%D
989415/CBN21	4770845	SS-B45_SLAB- South Grab Soil Sample	Pyrene	8900	J	J	MS%R

989415/CBN21	4770845	SS-B45_SLAB- South Grab Soil Sample	2,4-Dinitrophenol	ND	J	UJ	MS/MSD RPD
989415/CBN21	4770845	SS-B45_SLAB- South Grab Soil Sample	Phenanthrene	10000	J	J	MS%R
989415/CBN21	4770845	SS-B45_SLAB- South Grab Soil Sample	Anthracene	3200	J	J	MS%R
989415/CBN21	4770845	SS-B45_SLAB- South Grab Soil Sample	Fluoranthene	9100	J	J	MS%R
989415/CBN21	4770845	SS-B45_SLAB- South Grab Soil Sample	Benzo(a)anthracene	4100	J	J	MS%R
989415/CBN21	4770845	SS-B45_SLAB- South Grab Soil Sample	Chrysene	4100	J	J	MS%R
989415/CBN21	4770845	SS-B45_SLAB- South Grab Soil Sample	2,2'-oxybis(1- Chloropropane)	ND	J	UJ	ICV%D
989415/CBN21	4770845	SS-B45_SLAB- South Grab Soil Sample	Hexachlorocyclopentadiene	ND	J	UJ	ICV%D
989415/CBN21	4770845	SS-B45_SLAB- South Grab Soil Sample	2-Chloronaphthalene	ND	J	UJ	ICV%D
989415/CBN21	4770846	SS-B45_SLAB- North Grab Soil Sample	2,2'-oxybis(1- Chloropropane)	ND	J	UJ	ICV%D
989415/CBN21	4770846	SS-B45_SLAB- North Grab Soil Sample	Hexachlorocyclopentadiene	ND	J	UJ	ICV%D
989415/CBN21	4770846	SS-B45_SLAB- North Grab Soil Sample	2-Chloronaphthalene	ND	J	UJ	ICV%D

989415/CBN21	4770845	SS-B45_SLAB- South Grab Soil Sample	2-Chloronaphthalene	ND	J	UJ	CCV%D
989415/CBN21	4770846	SS-B45_SLAB- North Grab Soil Sample	2-Chloronaphthalene	ND	J	UJ	CCV%D

TABLE 3 – FIELD DUPLICATE SAMPLE RESULTS

CVX-Beacon, NY

ISS Project

Sample Matrix	Analyte	Collection Date	Field Sample ID	Field Sample Value (ug/kg)	RL*	Replicate Sample ID	Replicate Sample Value	RL	RPD**
Water	Chlorobenzene	02/14/06	RW-006-B3	5 ug/L	0.8	RW-1006-B3	6 ug/L	0.8	18
Water	ALL ND	02/15/06	RW-000-B3 RW-021-83	5 ug/L	0.0	RW-1000-B5 RW-1021-83	0 ug/L	0.0	N/A
Water	All ND	02/16/06	RW-016			RW-1021-05			N/A
Water	All ND	02/16/06	RW-024			RW-1010			N/A
Soil	Mercury	02/21/06	SS-006-B3 (3-7)	34.9J	2.8	SS-106-B3 (3-7)	33.6J	0.0028	N/A
Soil	Pyrene	02/21/06	SS-006-B3 (3-7)	54J	37	SS-106-B3 (3-7)	70J	37	N/A
Soil	Fluoranthene	02/21/06	SS-006-B3 (3-7)	59J	37	SS-106-B3 (3-7)	63J	37	N/A
Soil	Benzo(a)anthracene	02/21/06	SS-006-B3 (3-7)	39J	37	SS-106-B3 (3-7)	56J	37	N/A
Soil	Chrysene	02/21/06	SS-006-B3 (3-7)	48J	37	SS-106-B3 (3-7)	69J	37	N/A
Soil	Bis(2- ethylhexyl)phthalate	02/21/06	SS-006-B3 (3-7)	130J	74	SS-106-B3 (3-7)	ND	37	N/A
Soil	Benzo(b)fluoranthene	02/21/06	SS-006-B3 (3-7)	56J	37	SS-106-B3 (3-7)	79J	37	N/A
Soil	Benzo(a)pyrene	02/21/06	SS-006-B3 (3-7)	41J	37	SS-106-B3 (3-7)	110J	37	N/A
Soil	Indeno(1,2,3- cd)pyrene	02/21/06	SS-006-B3 (3-7)	ND	37	SS-106-B3 (3-7)	39J	37	N/A
Soil	Benzo(g,h,i)perylene	02/21/06	SS-006-B3 (3-7)	45J	37	SS-106-B3 (3-7)	56J	37	N/A
Soil	Methylene chloride	02/21/06	SS-006-B3 (3-7)	ND	2	SS-106-B3 (3-7)	4J	2	N/A
Soil	Benzene	02/21/06	SS-006-B3 (3-7)	ND	1	SS-106-B3 (3-7)	2J	1	N/A
Soil	Xylenes	02/21/06	SS-006-B3 (3-7)	ND	1	SS-106-B3 (3-7)	2J	1	N/A
Soil	Mercury	02/22/06	SS-013-B3 (3-7)	82.2J	2.8	SS-113-B3 (3-7)	80.4J	0.0028	1
Soil	Toluene	02/22/06	SS-013-B3 (3-7)	4J	1	SS-113-B3 (3-7)	3J	1	1

Soil	Ethylbenzene	02/22/06	SS-013-B3 (3-7)	2J	1	SS-113-B3 (3-7)	1J	1	1
Soil	Xylenes	02/22/06	SS-013-B3 (3-7)	6	1	SS-113-B3 (3-7)	5J	1	18
Soil	Mercury	02/23/06	SS-017-B55 (8-12)	8.90	2.9	SS-117-B55 (8-12)	77.4	0.0029	14
Soil	Pyrene	02/23/06	SS-017-B55 (8-12)	300	38	SS-117-B55 (8-12)	100J	37	N/A
Soil	Fluorene	02/23/06	SS-017-B55 (8-12)	69J	38	SS-117-B55 (8-12)	58J	37	N/A
Soil	Phenanthrene	02/23/06	SS-017-B55 (8-12)	180J	38	SS-117-B55 (8-12)	52J	37	N/A
Soil	Anthracene	02/23/06	SS-017-B55 (8-12)	67J	38	SS-117-B55 (8-12)	ND	37	N/A
Soil	Fluoranthene	02/23/06	SS-017-B55 (8-12)	240	38	SS-117-B55 (8-12)	50J	37	N/A
Soil	Benzo(a)anthracene	02/23/06	SS-017-B55 (8-12)	140J	38	SS-117-B55 (8-12)	38J	37	N/A
Soil	Chrysene	02/23/06	SS-017-B55 (8-12)	130J	38	SS-117-B55 (8-12)	44J	37	N/A
Soil	Bis(2- ethylhexyl)phthalate	02/23/06	SS-017-B55 (8-12)	110J	76	SS-117-B55 (8-12)	ND	75	N/A
Soil	Benzo(b)fluoranthene	02/23/06	SS-017-B55 (8-12)	140J	38	SS-117-B55 (8-12)	ND	37	N/A
Soil	Benzo(k)fluoranthene	02/23/06	SS-017-B55 (8-12)	56J	38	SS-117-B55 (8-12)	ND	37	N/A
Soil	Benzo(a)pyrnene	02/23/06	SS-017-B55 (8-12)	130J	38	SS-117-B55 (8-12)	ND	37	N/A
Soil	Indeno(1,2,3- cd)pyrene	02/23/06	SS-017-B55 (8-12)	68J	38	SS-117-B55 (8-12)	ND	37	N/A
Soil	Benzo(g,h,i)perylene	02/23/06	SS-017-B55 (8-12)	95J	38	SS-117-B55 (8-12)	ND	37	N/A
Soil	Acetone	02/23/06	SS-017-B55 (8-12)	16J	8	SS-117-B55 (8-12)	ND	37	N/A
Soil	Xylenes	02/23/06	SS-017-B55 (8-12)	1J	1	SS-117-B55 (8-12)	ND	37	N/A
Soil	Mercury	02/27/06	SS-030-ISS1 (3-7)	315	3.0	SS-130-ISS1 (3-7)	504	0.0031	46
Soil	1,4-Dichlorobernzene	02/27/06	SS-030-ISS1 (3-7)	210	38	SS-130-ISS1 (3-7)	ND	41	N/A
Soil	Acenaphthene	02/27/06	SS-030-ISS1 (3-7)	480	38	SS-130-ISS1 (3-7)	490	41	2.1
Soil	2,4-Dinitrotoluene	02/27/06	SS-030-ISS1 (3-7)	ND	38	SS-130-ISS1 (3-7)	570	81	N/A
Soil	Pyrene	02/27/06	SS-030-ISS1 (3-7)	1000	38	SS-130-ISS1 (3-7)	2400	41	82
Soil	Naphthalene	02/27/06	SS-030-ISS1 (3-7)	680	38	SS-130-ISS1 (3-7)	540	41	23
Soil	Acenaphthylene	02/27/06	SS-030-ISS1 (3-7)	190J	38	SS-130-ISS1 (3-7)	280	41	38
Soil	Fluorene	02/27/06	SS-030-ISS1 (3-7)	890	38	SS-130-ISS1 (3-7)	820	41	84
Soil	N-nitrodiphenylamine	02/27/06	SS-030-ISS1 (3-7)	ND	38	SS-130-ISS1 (3-7)	1000	41	N/A
Soil	Phenanthrene	02/27/06	SS-030-ISS1 (3-7)	2000	38	SS-130-ISS1 (3-7)	3300	41	50
Soil	Anthracene	02/27/06	SS-030-ISS1 (3-7)	300	38	SS-130-ISS1 (3-7)	760	41	87
Soil	Fluoranthene	02/27/06	SS-030-ISS1 (3-7)	1100	38	SS-130-ISS1 (3-7)	2300	41	71
Soil	Benzo(a)anthracene	02/27/06	SS-030-ISS1 (3-7)	380	38	SS-130-ISS1 (3-7)	990	41	88
Soil	Chrysene	02/27/06	SS-030-ISS1 (3-7)	470	38	SS-130-ISS1 (3-7)	1000	41	64
Soil	Bis(2- ethylhexyl)phthalate	02/27/06	SS-030-ISS1 (3-7)	760	77	SS-130-ISS1 (3-7)	ND	81	N/A

Soil	Benzo(b)fluoranthene	02/27/06	SS-030-ISS1 (3-7)	400	38	SS-130-ISS1 (3-7)	920	41	79
Soil	Benzo(k)fluoranthene	02/27/06	SS-030-ISS1 (3-7)	160	38	SS-130-ISS1 (3-7)	440	41	93
Soil	Benzo(a0pyrene	02/27/06	SS-030-ISS1 (3-7)	260	38	SS-130-ISS1 (3-7)	720	41	94
Soil	Indeno(1,2,3- cd)pyrene	02/27/06	SS-030-ISS1 (3-7)	180	38	SS-130-ISS1 (3-7)	370	41	68
Soil	Dibenz(a,h)anthracene	02/27/06	SS-030-ISS1 (3-7)	ND	38	SS-130-ISS1 (3-7)	140	41	N/A
Soil	Benzo(g,h,i)perylene	02/27/06	SS-030-ISS1 (3-7)	170	38	SS-130-ISS1 (3-7)	470	41	94
Soil	2-Methylnaphthalene	02/27/06	SS-030-ISS1 (3-7)	3700	38	SS-130-ISS1 (3-7)	4800	41	26
Soil	Dibenzofuran	02/27/06	SS-030-ISS1 (3-7)	430	38	SS-130-ISS1 (3-7)	480	41	11
Soil	Carbazole	02/27/06	SS-030-ISS1 (3-7)	ND	38	SS-130-ISS1 (3-7)	270	41	N/A
Soil	Mercury	03/01/06	SS-041-ISS6 (4-8)	252	2.9	SS-141-ISS6 (4-8)	93.6J	2.9	173
Soil	Pyrene	03/01/06	SS-041-ISS6 (4-8)	650	37	SS-141-ISS6 (4-8)	410	37	23
Soil	Acenaphthylene	03/01/06	SS-041-ISS6 (4-8)	75	37	SS-141-ISS6 (4-8)	47J	37	46
Soil	Phenanthrene	03/01/06	SS-041-ISS6 (4-8)	460	37	SS-141-ISS6 (4-8)	260	37	56
Soil	Anthracene	03/01/06	SS-041-ISS6 (4-8)	110J	37	SS-141-ISS6 (4-8)	59J	37	N/A
Soil	Fluoranthene	03/01/06	SS-041-ISS6 (4-8)	730	37	SS-141-ISS6 (4-8)	460	37	45
Soil	Benzo(a)anthracene	03/01/06	SS-041-ISS6 (4-8)	350	37	SS-141-ISS6 (4-8)	220	37	46
Soil	Chrysene	03/01/06	SS-041-ISS6 (4-8)	360	37	SS-141-ISS6 (4-8)	240	37	40
Soil	Bis(2- ethylhexyl)phthalate	03/01/06	SS-041-ISS6 (4-8)	130J	73	SS-141-ISS6 (4-8)	120J	75	N/A
Soil	Benzo(b)fluoranthene	03/01/06	SS-041-ISS6 (4-8)	410	37	SS-141-ISS6 (4-8)	260	37	45
Soil	Benzo(k)fluoranthene	03/01/06	SS-041-ISS6 (4-8)	160J	37	SS-141-ISS6 (4-8)	110J	37	N/A
Soil	Benzo(a)pyrene	03/01/06	SS-041-ISS6 (4-8)	330	37	SS-141-ISS6 (4-8)	200	37	50
Soil	Indeno(1,2,3- cd)pyrene	03/01/06	SS-041-ISS6 (4-8)	210	37	SS-141-ISS6 (4-8)	130J	37	47
Soil	Dibenz(a,h)anthracene	03/01/06	SS-041-ISS6 (4-8)	61J	37	SS-141-ISS6 (4-8)	ND	37	N/A
Soil	Benzo(g,h,i)perylene	03/01/06	SS-041-ISS6 (4-8)	190	37	SS-141-ISS6 (4-8)	120J	37	45
Soil	Carbazole	03/01/06	SS-041-ISS6 (4-8)	44J	37	SS-141-ISS6 (4-8)	ND	37	N/A
Soil	Toluene	03/01/06	SS-041-ISS6 (4-8)	2J	1	SS-141-ISS6 (4-8)	3J	1	N/A
Soil	Ethylbenzene	03/01/06	SS-041-ISS6 (4-8)	ND	1	SS-141-ISS6 (4-8)	1	1	N/A
Soil	Xylenes	03/01/06	SS-041-ISS6 (4-8)	1J	1	SS-141-ISS6 (4-8)	5J	1	N/A

*RL = MDL (reported on dry-weight basis) **RPD calculated only if both results are detected and one is >RL. N/A = not applicable.

APPENDIX B

ISS CLEANING/EVALUATION REPORT

APPENDIX C

COMPLETE LABORATORY ANALYTICAL DATA REPORT

A complete copy of the laboratory analytical data has been included on the attached disk

APPENDIX D

SOIL DISPOSAL MANIFESTS

_	 	
		1.1.5.4

	NON-HAZARDOUS	1. Generator's	US EPA ID No.	Manifest Doc. No.	2. Pag	e l			
	WASTE MANIFEST	1. Stoplatte	5.041.011.	• <u> </u>					
ļ	3. Generator's Name and Mailing Address CHEVRON REDEARCH CENTER 45 OLD GLENHAN RUAD				WN	NNH	010	001	
	BEACON BY 12527								
	4. Generator's Phone () 5. Transporter I Company Name		z 115 FP4	ID Number	A Tran	sporter's	Phone		
	HORNITH TRISZ		1PA.D. 1.4.6	.71.4.8.3.8		10.20		110	
	7. Transporter 2 Company Name	<u>~ (</u>	8. US EPA	ID Number		sporter's			
	9. Designated Facility Name and Site Address		10. US EPA	ID Number	C. Facî	lity's Phor		E-12 . 1 21	
	MM of NEW YORM & HIGH ACRES LAND 425 FERINTON PARKWAY FAIRPORT N (14450	FILL.	1				•	565)223-41122	
	11. Waste Shipping Name and Description				•	12. Cont No.	ainers Type	13. Total Quantity	14. Unit Wt/Vol
	· HALANAELALATEL MATERIAL								1.1,7,7,7,7
						ب			
	<u>'arminin 'arminin 'a</u>					201	< >	.j./	
G	b.							-	
EN					:				
ER	C.					• •	·	••••	
A T			·						
T O									
R	d.	· · · ·	······································						
					1				
						• •	-	• • • •	
	D. Additional Descriptions for Materials Listed Ab a V154(121) - Som				3m) 310114	unng Cou		astes Listed Abo	¥5
			·						
	15. Special Handling Instructions and Additional	Information							
	WEIGHT IS ESTIMATED						Fina	19.27	┖
				·····					
	16. GENERATOR'S CERTIFICATION: Per DOT reg shipping name and are classified, packed, marked an government regulations.	d labeled, and are in	all respects in proper cond	lition for transport by his	phway acco	ording to c	pplicable	escribed above by international and	r proper national
	In addition, I certify the materials described above on th	is manifest are not sub		r røporting proper dispos	al of Hazar	dous Wast	e, ·-		
	Printed/Typed Name		Signature					Month Day	/ Yeor
T R	17 Tauna 1 A.L	. 6 . 14	- DI M					<u> </u>	/I. ₹.
A N	17. Transporter 1 Acknowledgement of Receipt of Printed/Typed Name		Signature ,	· `>				Month Day	/ Year
S	TEPPY 1 ALOPEN	\leq	la la	and the second	a the area and a second	,		10.517.	AD.K
	18. Transporter 2 Acknowledgement of Receipt a	of Materials		60016	-	£			212 2
T	Printed/Typed Name		Signature					Month Day	v Year
E R									
Ţ	19. Discrepancy Indication Space								
F									
A									
	20. Facility Owner or Operator: Certification of r	eraint of writte mat	arials covered by the m	saifast excent or noted	is Itam 10	•			
	To runny owner or operator: Certification of t	ecentri or waste mat	enna vorei eg py mis me	90180 677851 02 10180	.s± (10¢(\$} Í)	F I			
T Y	Printed/Typed Name		Signature					Month Day	r Year
].].],
ţ,			5					1	
			GENERATOR'S	COPY					
						5 852	2361	37	
						- سور مي		- Anna	

:

								€ w/A
		i i	ç .					
	NON-HAZARDOUS	1. Generator's L		Manifest Doc. No.	2. Page 1			
	WASTE MANIFEST	100 .1	1. ⁶² 10 19	••••	of			
1	3. Generator's Name and Mailing Address CHEVRON RESEARCH CENTER				WMNH	010	1002	
	I 45 OLD GLENHAM ROAD BEACCON NY 12527				**/****		1002	
	4. Generator's Phone () 7 20 **	2052						
	5. Transporter 1 Company Name		6. US EPA	ID Number	A. Transporter			
	7. Transporter 2 Company Name		174.D	1.1.1.0.19	610 - 2k B. Transporter		40	
			1			3 T 80/810		
	9. Designated Facility Name and Site Address		IO. US EPA	ID Number	C. Facility's Ph		4.26N772.0710.1	
	WAT OT NEW YORK OF HIGH ACRES LAND	FILL				3	585)223-0152	
	FAIRFORT IN 14450							
	11. Waste Shipping Name and Description				12. Ca	ntainers]3.	14.
					No.	Туре	Total Quantity	Unit Wt/Vol
	. NON-REGULATED MATERIAL						•	
	the second second				e 21	6 -1		7
6	b.	·····	·			· ·		
G E N								
ER						<u>·</u>		
A								
T O								
R	d.							
	D. Additional Descriptions for Materials Listed Abo	ove	·		E. Handling C	odes for V	/astes Listed Abo	ve
	a -204020 - ລາກi							
			فالمعاقبة معاكمة					
	·							
	15. Special Handling Instructions and Additional	Intermation				·		·
	WENHI IS ESTIMATED		, v <i>∽,</i> ≹		۰.	Fre	1 21.26	T)
						~		
	· ·		· · · ·					
~~~~	16. GENERATOR'S CERTIFICATION Per DOT reg shipping name and are classified, packed, marked are	gulation 49CFR 172.20 d labeled, and are in	)4, i hereby declare that the all respects in proper condi	contents of this consign tion for transport by hig	ment are fully and ihway according to	accurately applicable	described above by international and	proper national
	government regulations. In addition, I certify the materials described above on th	is manifest are not subj	ect to federal regulations for	reporting proper dispose	al of Hazardous Wi	ssl <del>o</del>		
T	Printed/Typed Name		Signature				Month Day	Year
Ť	-al a contra c		$p_{2\lambda}$				<u> </u>  //:	66
TRANSPORTER	17. Transporter 1 Acknowledgement of Receipt a Printed/Typed Name	of Materials	Signature	-			Month Day	Year
S P	JERRY L. ANORINS		- Low	7.a.C.	ger Marri Migramanian -		0511	04
R	18. Transporter 2 Acknowledgement of Receipt a	of Materials	Contraction of the second s					
E	Printed/Typed Name		Signature				Month Day	Year
<u>л</u>	19. Discrepancy Indication Space						• •	•
F	· · · · · · · · · · · · · · · · · · ·							
A C								
Î L	20. Facility Owner or Operator: Certification of r	action of warts mate	viale covered by this ma	nifert except or poted	in Ham 10			
I T		ocospi or music strate	unus anterou ny titis ma		121 43W364 2 <i>F</i> ,			
Ý	Printed/Typed Name		Signature				Month Day	Year
			GENERATOR'S C	OPY				
						s tar 6	.2 ~	
					£ 1		N 2	

-----

-

.....

.

.

1.1

	NON-HAZARDOUS WASTE MANIFEST	1. Generator's U	IS EPA ID No.	Manifest Doc. No.	2. Page 1 of									
	3. Generator's Name and Mailing Address Sold, Show Art Shown as the Main The call of the Island Access Dear Sona and Show		··/ y <u>· · × × · ·</u>		WMNH 010003									
	4. Generator's Phone ( ) 5. ( ) 5. ( ) 5. Transporter 1 Company Name			ID Number 7.7.67.54.7.54	A. Transport									
	7. Transporter 2 Company Name		<u>///././////////////</u> 8. US EPA	ID Number	B. Transport	er's Phone								
	9. Designated Facility Name and Site Address MEM OF MENY ROOM AT HIGH ACRES LAND 427. FCRUTTRE FACERARY F MREATER FOR 14400		0. US EPA	ID Number	C. Facility's		(500)2220102							
	11. Waste Shipping Name and Description				12. ( No	Containers Type	13. Total Quantity	14. Unit Wt/Vol						
	^e Normal Cale Aleo MA <b>teria</b> 1975 -				.4	•		7						
G E N	ь.													
E R A T	<b>c</b> .													
0 R	đ.				· · ·	· ·								
	D. Additional Descriptions for Materials Listed Abo	pve			E. Handling	Codes for \	Wastes Listed Abo	ve						
	in sensering all includes		1					-						
	15. Special Handling Instructions and Additional vvt.ncd (1 not 4.5) Heles 같은	Information				F	inal 13.0	otr.						
	16. GENERATOR'S CERTIFICATION: Per DOT reg shipping name and are classified, packed, marked and government regulations. In addition, I certify the materials described above on thi	l labeled, and are in (	all respects in proper condi	lion for transport by hig	shway according	to applicab	described above by le international and	r proper national						
T	Printed/Typed Name		Signature				Month Doy	Year						
TRANSPOR	17. Transporter 1 Acknowledgement of Receipt of Printed/Typed Name	ws	Signature		****		Manth Day	/ Year 2/20						
TER	Printed/Typed Name		Signature			· · · ·	Month Day	Yeor						
F A C I	<ol> <li>Discrepancy Indication Space</li> <li>20. Facility Owner or Operator: Certification of re</li> </ol>	angles of sugar and an	viale anyoned has this or a		in here 10									
L T Y	20. racility Owner or Operator: Certification of r	eceipt of waste mate	Signature	nifesi except as noted	i)Rint¢fΩi)Υ.									
	FURDAR I TRING						Month Day	Year						
			T/S/D/F COPY				λ. − <b>1</b> (*)							

( vyivii

			-4							
	NON-HAZARDOUS WASTE MANIFEST	1. Generator's	US EPA ID No.	Manifest Doc. No	. 2. Pag	e 1				
	3. Generator's Name and Mailing Address Unit visions PESEARCIN COMEN- AS ULD UNITAM READ				WI	NNH	010	0004		
	A.J. NY L1 (254)     A. Generator's Phone ( )     A.J     S. Transporter 1 Company Name	2685	6. 1	IS EPA ID Number	A Tra	nsporter's	Phone			
	7. Transporter 2 Company Name	······································		9.2.7.19.3.7 <b>8</b> IS EPA ID Number	1. 16		1 - 1	<u>-</u>		
	9. Designated Facility Name and Site Address		<u>ι</u>	IS EPA ID Number	C. Faci	lity*s Pho				
	MM RINEW YORK ALKI <b>GH ACPES LAND</b> 420 FERUNTUM PARTSYAY FAREORY INT 14450	FILL	]				ļ	inflikasi.	i}¢≵	
	11. Waste Shipping Name and Description	**** *********************************				12. Con No.	ainers Type	13. Total Quanti		14. Unit Wt/Vol
	• INHERE SULARICI MATERIAL ∛7/14 - 17 - 17 - 18 - 5					1	ر. با	././.		
GEN	b.					<u> </u>		• * • * •	*	
E R	c.					* *	•	• • •	•	
A T O								• · · ·		
R	d.									
	D. Additional Descriptions for Materials Listed Ab	NOV&			E. Han	dling Cod	es for W	/astes Listed	Above	9
										•
	15. Special Handling Instructions and Additional	Information						<u> </u>	···	
	2 mil 2001 - 102 201 1000 - 21 22					Ľ	-	- 1.62	/4.7	18 101
	16. GENERATOR'S CERTIFICATION Per DOT re	gulation 49CFR 172,2	04, i hereby declare	that the contents of this consign	ument ore fi	ily and a	curately (	se 47 d	ove by p	proper
	shipping name and are classified, packed, marked an government regulations. In addition, I certify the materials described above on the		ject to federal regula	tions for reporting proper dispos	•••	•	••	international	and n	shonal
TR	Printed/Typed Name	<b></b>	Signatu					Month	Day	Year
A N S	17. Transporter 1 Acknowledgement of Receipt of Printed/Typed Name	of Materials	Signatu	Stranger and a series				Month 0.51	Day	Year
PORTER	18. Transporter 2 Acknowledgement of Receipt Printed/Typed Name	of Materials	Signatur					Month	Doy	Year
R	19. Discrepancy Indication Space			uunan kakuunan käään käynä kuunkuu kuunan	••••••••••••••••••••••••••••••••••••••				•	<u> </u>
FAC						·				
	20. Facility Owner or Operator: Certification of	receipt of waste mat	erials covered by	his manifest except as noted	in Item 1	9.				
Y	Printed/Typed Name		Signatur	ð				Month	Day •	Year
			T/S/D/F COI	γ						

0000

·····

Castell

	NON-HAZARDOUS WASTE MANIFEST		s US EPA ID No.	Manifest Doc. No.	2. Pc o				
	3. Generator's Name and Mailing Address CriEVRON RESEARCH CENTER 45 OLD GLENHAM ROAD BEACON NY 12527				W	MNH	010	005	
	4. Generator's Phone ( )     3       5. Transporter 1 Company Name     5	······································	6. US E	PA ID Number		ansporter's	Phone		
	7. Transporter 2 Company Name	fre	<u> </u>	PA ID Number	1	( / / ) Insporter's	Phone	÷ .	
			1			-			
~~~~~	9. Designated Facility Name and Site Address MAL & NEVY YORK & HIGH ACRES LANK 425 FERLITON FARMWAY FAIRFORT NY 14450	FILL	I	A ID Number	С. <b>г</b> а	cility's Phor		<b>635)223-</b> 6102	
*****	11. Waste Shipping Name and Description					12. Coni No.	ainers Type	13. Total Quantity	14. Unit W1/Vol
	• NON-REGULATED MATERIAL	D. S.				4		e J	7
G	b .	·······	· · · · · · · · · · · · · · · · · · ·			• •	•	• • • •	
ENER						• •	,	* * * *	
A T	с.								
0 R 	d.		,				•	* • • •	
	D. Additional Descriptions for Materials Listed Al a v154026 - God	0000			E. Ha	ndling Cod	es for W	astes Listed Abo	ve
	15. Special Handling Instructions and Additiona -VEIGHT IS ESTIMATED	l Information	XR89611(1	PH)			Fi	1215	7 Ton.
	16. GENERATOR'S CERTIFICATION: Per DOT re shipping name and are classified, packed, marked a government regulations. In addition, I certify the materials described above on I	nd labeled, and are	in all respects in proper of	indition for transport by hig	hway ac	cording to a	pplicable	lescribed above by international and	r proper national
T	Printed/Typed Name		Signature	ig f Butt	L.			Month Day	Year
Ř A N S	17. Transporter 1 Acknowledgement of Receipt Printed/Typed Name	of Materials	Signature	/ / / / / / / / / / / / / / / / / / / 					
P	hein trits			all H				Month Day	Z C
R T E R	18. Transporter 2 Acknowledgement of Receipt Printed/Typed Name	of Malerials	Signature	1			<u></u>	Month Day	Year
F	19. Discrepancy Indication Space								<u>·</u>
A C I L I	20. Facility Owner or Operator: Certification of	receipt of waste m	aterials covered by this	manifest except as noted	in Item	19.			
† Y	Printed/Typed Name		Signature			· ·····		Month Day	Year
				······					
			GENERATOR'S	COPY					

į

· · ·

12.11

⊂ VvIvit

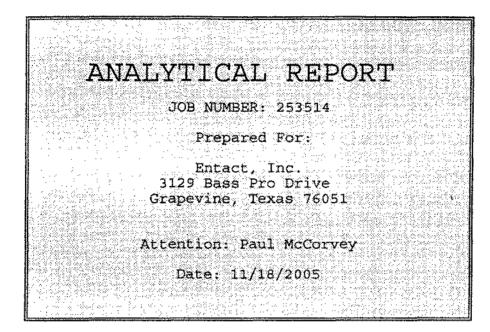
APPENDIX E

ANALYTICAL REPORT BACKFILL MATERIALS

PARSONS

PARSL					Letter	of Transmittal
TO: Entac	rt, Inc			Dat	e: 11/29/2005	Job No.: 442044
3129	Bass Pro Drive			RE	CVX R	ecreation Area
Grap	pevine, Texas 76	051			Tran	smittal No. 2
					Backfill Mate	erial Analytical Data
WE ARE SEN	DING YOU TH	E FOLLOW	/ING ITEMS:		·····	
G Shop drawing	ngs	C Attache	ed Q Under sepa	arate cover via		the following items:
Copy of Let	ter	C Prints		ns	G Samples	Specifications
Dated:		Change	• Order 🖌 Sub	mittal #2		
COPIES	DATE	NO.		DI	SCRIPTION	
	11/21/2005	2	Analytical results fro	m proposed borr		
				<u> </u>		\$
	<u></u>			<u></u>		······································
				······································		
					······································	
THESE ARE T	RANSMITED a	s checked b	elow:			
G For approval		G For cl		🛛 Resubmit	copies for ap	proval
G For your use		🗹 Appro	oved as submitted	Design on	y, not for construct	ion
G For review a	nd comment		ved as noted	🛛 Return	corrected prin	ts
For your acti	on	🛛 Returi	ned for corrections	🖸 Resubmit i	tems noted	
REMARKS: the	e 4" Thalle Back	fill is appro	ved based on analytical	results, please n	ote that one more s	et of analytical results will be
required during	backfilling oper	rations.				
		1	w++++			
	442044, distribu	ation				

SIGNED: Jeffing Poular


If enclosures are not as noted, please notify us at once. C:\Documents and Settings\p0040069\Desktop\Chevron\Submittals\S

SUBMITTAL FORM

					Subm	ittal No. 🏞	
TO:					Date:	11-21-05	Job No.: 442044
PARSONS					RE:	Chevron Recrea	ition Area
180 Lawrend	ce Bell Dr.						
Williamsvill	e NY 14221						
Attn Jeff Po	ulsen	·····					
WE ARE SE	NDING YOU TH	E FOLLOW	ING ITEMS:				
Shop drav	wings	C Attache	d OUnder :	separate cover v	/ia		the following items:
Copy of L	Letter	C Prints		Plans			Specifications
Dated		Change	Order 🗹	Analytic,	. / Dx	TA, UNOFFIC	SINL
COPIES	DATE	NO.			DES	CRIPTION	
1	11-21-05	1	Analytical	presults -		PROPOSED BE	orew LARA
						۴.	
				······································			
	· · · · · · · · · · · · · · · · · · ·					·	
			-, 4, , , , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u></u>			
			······································				
			······································				
			······································	······			
	TRANSMITED 2						
For approv		G For ch	-			copies for appr	
G For your u			ved as submitted	_		not for construction	D
	and comment	* -	ved as noted			corrected prints	
G For your a			ed for corrections	LJ			······································
REMARKS:							<u>, , , , , , , , , , , , , , , , , , , </u>
			-+ -//	<u> </u>			
	· <u>· · , , , , , , , , , , , , , , , , , </u>	** ************************************	***************************************			······································	
						······································	······································
		*					
<u></u>						· · · · · · · · · · · · · · · · · · ·	nnnnnnnnnnnn,ng,u, u, g, , , , , , , , , , , , , , , ,
	11.1.1.	F., +++					n, and an and a set of a second s
COPY TO:	Nel Cope,	KNIACT			_) <i>a i</i>	
				SIGNED:	The	PMG-	

Paul Malorof, Entret STERVICES

If enclasures are not as noted, please notify us at once. C:\Documents and Settings\p0040069\Desktop\Construction forms\submittal form.doc

Signature

Name: Richard E. Bayer

NYSOOH 10142

Title: Project Manager

E-Mail: rickbayer@stl-inc.com

NJDEP 73016

18 POU 2005 Date

315 Fullerton Avenue Newburgh, NY 12550

PHONE: (845) 562-0890 FAX..: (845) 562-0841

M-NY049

TELNI STL

STL Newburgh is a part of Severn Trent Laboratories, Inc.

CTDOHS PH-0564

STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 562-0690 Fax (845) 562-0641

EPA NY049

PA 68-378

USTOMER NA		5.5	A	c8 <		···· ·························· ········				1	RE	EPO	RT	TY	PE			TU	RN	AR	ou	ND						Lab Us		
DORESS		-												ISR						AL					ϵ_{2}		36			
***					·····						REG		a ("		CLP		M	່ດບ	ІІСК					SAM		EMP		17. Nr.		C.C.
SZA DE	TACT				DHO	ראו ⊏ א ר	(63)	24		Į.	HER			· Lî	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					NL				SAN	Rege	ECI	ÇK	CE C		
hul M	a Gi	ver	/m	KC SI	HPAUE	. 9	35-9	513		[-DHC CHD	DEINE	ARE	ŝ			
NUECT LOC	ation S lung	ma d	ίε.	BEI	read	N.	ې ,								M	atri	x							REV		羻Y			42.0	
OUECT NUN	BER / PC	NO.				- j			v	w					WAT	EA	[™] S⊯∶ DGE					WATI		N	Y PU	BLI	C W	ATER		
OTE: S			TF		- BAT								7					<u>-7</u> -	<u> </u>					SOUF						
					ST BE				· / ¥		18	1	. 81			*/ *	133	1		13		./*	8	ELRP						
						1946 - "E						N. N									/~8	1	1	FEDE	RAL II)	····	······································		
STL#	DATE	UNG TIME AM PM	COMF GRAB	MATRIX	•	CLIEN		/	1	[]	3	~	8	~`/]	1708	*/	*/	$\lfloor \rfloor$		*3	(ANAL	YSI	SR		TED	
	11/05	- iace	X	\$	4"-	- 7	ALLE	a											·				VO	<u> </u>	<u> </u>		8	260	8	
<u>}-</u>																							SV	oc s	5	<u>भ</u>	8	270	C	:
E																							Pc	ßs	6	1	8	083	L	•••
																								that	des	6.		8081	A	
																		-					hei	hai	les	6.		8151	A	
<u></u>																							M1# 7	ALS		K. 1	t i	olo B	1	51A.
	İ						۸۸		1						-			1			1			*					1	· · ·
N.							<u> </u>	15	n	ľ	e	<u>- V</u>	4		C	¢	'n	7	G				$\underline{\mathcal{L}}$	31	1		` 			
																	:													
				1																						·····				
toronomi un concertor en recuere tor	 	ļ										Ì]		·····	······			······		
																					~								<u></u>	2 4 2
MPLES SUE	101	ØOR AN	ALYS				D THE ST	TL TERM	IS AN	D CON	IDITIC	INS O	FSA	LE (Si					ALTE	RNA	E TE	RMS	ARE A	GREED	IN WRIT	ING.				
	° Hy	earl			MPANY KI A.	Stol.		1194	755	•	TIME / (057	>					A	1	P	1		S ⁸	PP		/	1/4	7165	ľ	<u>t:S</u>
MPCEDBY	. Xr	A. S. S.	-	C NA	MEANY T ASS	iac.		11/4/	TE 0,1	•	TIME	30	10	00	REC	CEIVI	ED BY						-00	MPÄNY			T	DATE		IME
ELINQUISHE	o Ba			cc	MPANY			' DA	TE		TIME	8			82	F1.1	COBY						60	MPANY				DATE	1	E
						BUL BULLEY 199710					w en Addinator			,/	&													₽= b - ₽= 2 - 1, 9₽4 ±- 40 ⁴ 0-±-40		
omments _										·····											+		,,,,,, ,, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,			<u></u>				

SANPLE INEORMATION Date: 11/13/2005 Job Number.: 253514 Project Number....: 20001655

Customer...: Entact, Inc. Attn....: Paul McCorvey Project Number.....: 20001655 Customer Project ID...: CVX-47 Project Description...:

Laboratory Sample ID	Customer Sample ID	Sample Matrix	Date Sampled	Time Sampled	Date Received	Time Received
253514-1	4" Thalle Backfill	Soil	11/09/2005	10:00	11/09/2005	10:50
					1	
				-		
	STL Newburgh is a r	and the severn Tren	t Laboratories, Inc	l		STL Newburg 315 Fullerion Avenue
EVERN ST	L	IS PH-0564	EPA NYO49	PA 68-378	M-NY049	Newburgh, NY 1255 Tel (845) 562-089 Fax (845) 562-084

:

LABORATORY TEST RESULTS

Date: 11/18/2005

CUSTOMER: Entact, Inc. PROJECT: CVX-47 ATTN: Paul McCorvey

Customer Sample ID: 4" Thalle Backfill Date Sampled.....: 11/09/2005 Time Sampled.....: 10:00 Sample Matrix....: Soil

Job Number: 253514

Laboratory Sample ID: 253514-1 Date Received.....: 11/09/2005 Time Received.....: 10:50

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAG	S REPORTING LIMIT	UNITS	ANALYZED	-
W846 7471A	Mercury (Hg)	0.045	u	0.045	mg/Kg	11/13/05	()
w846 35508	Ultrasonic Extraction	Complete		4 		17-1	a
w846 35508	Ultrasonic Extraction	Complete					a
W846 9010B	Cyanide, Total	1.0	U	1.0	mg/Kg	11/10/05	Þ
W846 8081A	Organochlorine Pesticide Analysis						
	alpha-BHC	1.6	U	1.6	ug/Kg	11/15/05	
	beta-BHC	1.6	U	1.6	ug/Kg	11/15/05	
	delta-BHC	1.6	U	1.6	ug/Kg	11/15/05	
	gamma-BHC (Lindane)	1.6	U]	1.6	ug/Kg	11/15/05	
	Heptachior	1.6	U	1.6	ug/Kg	11/15/05	
	Aldrin	1.6	U	1.6	ug/Kg	11/15/05	
	Reptachlor epoxide	1.6	ย	1.6	ug/Kg	11/15/05	
	Endosulfan I	3.3	U	3.3	ug/Kg	11/15/05	
	Dieldrin	3.3	U	3.3	ug/Kg	11/15/05	
	4,4'-DDE	3.3	U	3.3	ug/Kg	11/15/05	
	Endrin	3.3	U.	3.3	ug/Kg	11/15/05	
	Endosulfan II	3.3	U	3.3	ug/Kg	11/15/05	
	4,4'-DDD	3.3	U.	3.3	ug/Kg ug/Kg	11/15/05	
	Endosulfan sulfate	3.3	U U	3.3	ug/Kg	11/15/05	
	4,4'-DDT	3.3	UUU	16	ug/Kg	11/15/05	Ľ
	Methoxychlor	16 33	U	33	ug/Kg	11/15/05	1,
	Toxaphene	3.3	Ů	3.3	ug/Kg	11/15/05	
	Endrin aldehyde Technical Chlordane	16	U	16	ug/Kg	11/15/05	
\$W846 8082	PCB Analysis					11/15/05	
	Aroclor 1016	16	U	16	ug/Kg	11/15/05	
	Aroclor 1221	16	U	16 16	ug/Kg	11/15/05	
	Aroclor 1232	16	U	16	ug/Kg ug/Kg	11/15/05	Ι,
	Aroclor 1242	16	U	16	ug/kg	11/15/05	I,
	Aroclor 1248	16 33	U	33	ug/Kg	11/15/05	
	Aroclor 1254 Aroclor 1260	33	U	33	ug/Kg	11/15/05	
W846 6010B	Metals Analysis (ICAP)	6470~		40.0	mg/Kg	11/16/05	
	Aluminum (Al) - SID	12.0	U	12.0	mg/Kg	11/16/05	
	Antimony (Sb)	2.3	L L	2.0	mg/Kg	11/16/05	
	Arsenic (As) - 7.5	40.0	U	40.0	mg/Kg	11/16/05	
	Barium (Ba)	1.0	U	1.0	mg/Kg	11/16/05	Į,
	Beryllium (Be)	1.0	U	1.0	mg/Kg	11/16/05	Į,
	Cadmium (Cd)	24300		100	mg/Kg	11/16/05	
	Calcium (Ca) - Su	12.8		2.0	mg/Kg	11/16/05	
	Chromium (Cr) ~ 10.75 \sim	10.0	U	10.0	mg/Kg	11/16/05	1
	Cobalt (Co)	10.0	141	,		1.14.104.44	Ľ

* In Description = Dry Wgt.

STL Newburgh is a part of Severn Trent Laboratories, Inc.

STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tet (845) 552-0890 Fax (845) 552-0841

STATEN STL						
JRENT OT D	NY800H 10142	NJDEP 73015	CTDOHS PH-0654	EPA NY049	PA 68-378	NI-NY049

						1.21.2.1.5	1
USTOMER: Enta	et, Inc. PROJEC	T: CVX-47		ATTN: Paul I	tcCorvey		
Date Sam Time Sam	Sample ID: 4" Thalle Backfill mpled: 11/09/2005 mpled: 10:00 Matrix: Soil			Laboratory Sampi Date Received Time Received	: 11/0	9/2005	
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FL/	NGS REPORTING LIMIT	UNITS	ANALYZED	TE
	Copper (Cu) - 25 /53	22.4		5.0	mg/Kg	11/16/05	ma
	Iron (Fe) - 2011/55	6300		20,0	mg/Kg	11/16/05	
	Lead (Pb) - SB	8.3		1.0 \	mg/Kg	11/16/05	
	Magnesium (Mg)-53	13100		100	mg/Kg	11/16/05	ma
	Manganese (Mn) = 5 3	413		2.0	mg/Kg	11/16/05	m
	Nickel (Ni) 13/55	11.9		8.0	mg/Kg	11/16/05	ļma
	Potassium (K)- 5马	732		100	mg/Kg	11/16/05	
	Selenium (Se)	2.0	U	2.0	mg/Kg	11/16/05	
	Sodium (Na)- S/>	653		100	mg/Kg	11/16/05	
	Silver (Ag)	2.0	U	2.0	ing/Kg	11/16/05	
	Thallium (TL)	2.0	U	2.0	mg/Kg	11/16/05	
	Vanadium (V)= 756/343	16.3		10.0 4.0	mg/Kg	11/16/05	
	Zinc (2n) = 20,303	47.3		4.0	mg/Kg	11/10/05	104
W846 8270C	Semivolatile Organics						ł
	n-Nitrosodimethylamine	330	U	330	ug/Kg	11/15/05	
	Phenol	330	U	330	ug/Kg	11/15/05	
	Bis(2-chloroethyl)ether	330	U	330	ug/Kg	11/15/05	
	1,3-Dichlorobenzene	330	υ	330	ug/Kg	11/15/05	
	1,4-Dichlorobenzene	330 330	ม บ	330 330	ug/Kg	11/15/05	
	1,2-Dichlorobenzene Benzył alcohol	330	U	330	ug/Kg ug/Kg	11/15/05	
	2-Methylphenol (o-cresol)	330	U	330	ug/Kg	11/15/05	
	2,2-oxybis (1-chloropropane)	330	Ŭ	330	ug/Kg	11/15/05	
	n-Nitroso-di-n-propylamine	330	Ū	330	ug/Kg	11/15/05	
	Hexachloroethane	330	U	330	ug/Kg	11/15/05	
	4-Methylphenol (m/p-cresol)	330	υ	330	ug/Kg	11/15/05	ca
	2-Chlorophenol	330	U	330	ug/Kg	11/15/05	
	Nitrobenzene	330	υ	330	ug/Kg	11/15/05	
	Bis(2-chloroethoxy)methane	330	υ	330	ug/Kg	11/15/05	
	1,2,4-Trichlorobenzene	330	U	330	ug/Kg	11/15/05	
	Benzoic acid	810	Ų	810	ug/Kg	11/15/05	
	Isophorone	330	U	330	ug/Kg	11/15/05	
	2,4-Dimethylphenol	330	U	330 330	ug/Kg	11/15/05	
	Hexachlorobutadiene	330	U	330	ug/Kg	11/15/05	ca ca
	Naphthalene 2,4-Dichlorophenol	330 330	U U	330	ug/Kg ug/Kg	11/15/05	ca
	4-Chloroaniline		Ŭ	330	ug/Kg	11/15/05	
	2,4,6~Trichlorophenol		U	330	ug/Kg	11/15/05	
	2,4,5-Trichlorophenol		ũ l	810	ug/Kg	11/15/05	
	Hexachlorocyclopentadiene		Ū	330	ug/Kg	11/15/05	
	2-Methylnaphthalene	330	U	330	ug/Kg	11/15/05	
	2-Nitroaniline		υ	810	ug/Kg	11/15/05	
	2-Chloronaphthalene		U	330	ug/Kg	11/15/05	
	4-Chloro-3-methylphenol		U	330	ug/Kg	11/15/05	
	2,6-Dinitrotoluene		U	330	ug/Kg	11/15/05	
	2-Nitrophenol		U	330	ug/Kg	11/15/05	
	3-Nitroaniline		U	810	ug/Kg	11/15/05	
	Dimethyl phthalate	330	U.	330	ug/Kg	11/15/05	CD

STL Newburgh is a part of Severn Trent Laboratories, Inc.

STL, Newburgh 315 Fullenton Avenue Newburgh, NY 12550 Tel (845) 562-0890 Fax (845) 562-0841

•

5 2 A B 1A IS							315 Fullerton Aven
STATES STL							Newburgh, NY 125
							Tel (845) 562-08
E BORE NOR	NYSDOH 10142	NJDEP 73015	CTDOHS PH-0554	EPA NY049	PA 55-378	M-NY049	
							Fex (845) 582-08

IEST METHOD				Time Received	: 10:5	9/2005 0	
	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	REPORTING LIMIT	UNITS	ANALYZED	TE
	2.4-Dinitrophenol	810	υ	810	ug/Kg	11/15/05	
	Acenaphthylene	330	U	330	ug/Kg	11/15/05	
	2,4-Dinitrotoluene	330	U	330 📢	ug/Kg	11/15/05	
	Acenaphthene	330	U	330	ug/Kg	11/15/05	
	Dibenzofuran	330	U	330	ug/Kg	11/15/05	
	4-Nitrophenol	810	U	810	ug/Kg	11/15/05	
	Fluorene	330	U	330	ug/Kg	11/15/05	ce
	4-Nitroaniline	810	U	810	ug/Kg	11/15/05	CE
	4-Bromophenyl phenyl ether	330	U	330	ug/Kg	11/15/05	
	HexachLorobenzene	330	U	330	ug/Kg	11/15/05	
	Diethyl phthalate	330	U	330	ug/Kg	11/15/05	
	4-Chlorophenyl phenyl ether	330	U	330	ug/Kg	11/15/05	
	Pentachlorophenol	810	U	810	ug/Kg	11/15/05	Ci
	n-Nitrosodiphenylamine	330	U	330	ug/Kg	11/15/05	
	4,6-Dinitro-2-methylphenol	810	U	810	ug/Kg	11/15/05	
	Phenanthrene 50490	57	J-	330	ug/Kg	11/15/05	
	Anthracene	330	U	330	ug/Kg	11/15/05	
	Di-n-butyl phthalate	330	U	330	ug/Kg	11/15/05	
	Fluoranthene	330	U	330	ug/Kg	11/15/05	
	Pyrene 50000	210	J-	330	ug/Kg	11/15/05	
	Butyl benzyl phthalate	330	U	330	ug/Kg	11/15/05	
	Benzo(a)anthracene 224	35	JL	330	ug/Kg	11/15/05	
	Chrysene 400	58	1	330	ug/Kg	11/15/05	
	3,3-Dichlorobenzidine	330	U	330	ug/Kg		
	Bis(2-ethylhexyl)phthalate	330	U	330	ug/Kg	11/15/05	
	Di-n-octyl phthalate	330	U	330	ug/Kg	11/15/05	
	Benzo(b)fluoranthene 100	67	J.	330 330	ug/Kg	11/15/05	
	Benzo(k)fluoranthene	330	U	330	ug/Kg	11/15/05	
	Benzo(a)pyrene	330	U	330	ug/Kg ug/Kg	11/15/05	
	Indeno(1,2,3-cd)pyrene	330		330		11/15/05	
	Dibenzo(a, h)anthracene	330	U U	330	ug/Kg ug/Kg	11/15/05	
	Benzo(ghi)perylene	330	U	330	44174	117 (2)02	1
W846 8260B	Volatile Organics	1.0	U	1.0	ug/Kg	11/15/05	e
	Dichlorodifluoromethane	1.0	Ŭ	1.0	ug/Kg	11/15/05	
	Chloromethane	1.0	U I	1.0		11/15/05	
	Vinyl chloride	1.0	lül	1.0	ug/Kg	11/15/05	
	Bromomethane	1.0	Ŭ	1.0	ug/Kg	11/15/05	
	Chloroethane Trichlorofluoromethane	1.0	Ũ	1.0	ug/Kg	11/15/05	
	1,1-Dichloroethene		Ū	1.0	ug/Kg	11/15/05	e
	Methylene chloride	1.4		1.0	ug/Kg	11/15/05	e
	trans-1,2-Dichloroethene	1.0	U	1.0	ug/Kg	11/15/05	
	1,1-Dichloroethane	1.0	U	1.0	ug/Kg	11/15/05	
	2,2-Dichloropropane	1.0	U.	1.0	ug/Kg	11/15/05	e
	cis-1,2-Dichloroethene	1.0	U	1.0	ug/Kg	11/15/05	
	Bromochloromethane	1.0	U	1.0	ug/Kg	11/15/05	e
	Chloroform	1.0	U	1.0	ug/Kg	11/15/05	
	1,1,1-Trichloroethane	1.0	U	1.0	ug/Kg	11/15/05	e

LABORATORY

TEST RESULTS

EST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	REPORTING LIMIT	UNITS	ANALYZED	TEC
	1.1-Dichloropropene	1.0	lu	1.0	ug/Kg	11/15/05	eca
	Carbon tetrachloride	1.0	U I	1.0	ug/Kg	11/15/05	
	Benzene	1.0	U	1.0 ,	ug/Kg	11/15/05	
	1,2-Dichloroethane	1.0	U	1.0	ug/Kg	11/15/05	
	Trichloroethene	1.0	U U	1.0	ug/Kg ug/Kg	11/15/05	
	1,2-Dichloropropane Dibromomethane	1.0	Ŭ	1.0	ug/Kg	11/15/05	
	Bromodichloromethane	1.0	U	1.0	ug/Kg	11/15/05	ec
	cis-1,3-Dichloropropene	1.0	U	1.0	ug/Kg	11/15/05	ec
	Totuene	1.0	U	1.0	ug/Kg	11/15/05	ec
	trans-1,3-Dichioropropene	1.0	U	1.0	ug/Kg	11/15/05	
	1,1,2-Trichloroethane	1.0	u	1.0	ug/Kg	11/15/05	
	Tetrachioroethene 740 0	1.2		1.0	ug/Kg	11/15/05	
	1,3-Dichloropropane	1.0	U	1.0	ug/Kg	11/15/05	
	Dibromochloromethane	1.0	U	1.0	ug/Kg ug/Kg	11/15/05	60
	1,2-Dibromoethane (EDB)	1.0	U	1.0	ug/Kg ug/Kg	11/15/05	ec
	Chlorobenzene	1.0	U	1.0	ug/Kg	11/15/05	
	1,1,1,2-Tetrachloroethane	1.0	Ŭ	1.0	ug/Kg	11/15/05	
	Ethylbenzene m&p-Xylenes	1.0	10	1.0	ug/Kg	11/15/05	
	o-Xylene	1.0	U	1.0	ug/Kg	11/15/05	
	Styrene	1.0	U	1.0	ug/Kg	11/15/05	
	Bromoform	1.0	U	1.0	ug/Kg	11/15/05	ec
	Isopropylbenzene	1.0	U	1.0	ug/Kg	11/15/05	
	Bromobenzene	1.0	U	1.0	ug/Kg	11/15/05	ec
	1,1,2,2-Tetrachloroethane	1.0	U	1.0	ug/Kg	11/15/05	80
	1,2,3-Trichloropropane	1.0	บ ป	1.0	ug/Kg ug/Kg	11/15/05	00 00
	n-Propylbenzene	1.0	U	1.0	ug/Kg	11/15/05	lec
	2-Chlorotoluene	1.0	Ú.	1.0	ug/Kg	11/15/05	
	1,3,5-Trimethylbenzene 4-Chlorotoluene	1.0	Ŭ	1.0	ug/Kg	11/15/05	ec
	tert-Butylbenzene	1.0	101	1.0	ug/Kg	11/15/05	ec
	1,2,4-Trimethylbenzene	1.0	U	1.0	ug/Kg	11/15/05	
	sec-Butylbenzene	1.0	U	1.0	ug/Kg	11/15/05	1
	1,3-Dichlorobenzene	1.0	U	1.0	ug/Kg	11/15/05	
	p-isopropyltoluene	1.0	u	1.0	ug/Kg	11/15/05	
	1,4-Dichlorobenzene	1.0	U	1.0	ug/Kg	11/15/05	
	n-Butylbenzene	1.0	U U	1.0 1.0	ug/Kg ug/Kg	11/15/05	
	1,2-Dichlorobenzene	1.0		1.0	ug/Kg	11/15/05	
	1,2-Dibromo-3-chloropropane	1.0		1.0	ug/Kg	11/15/05	ec
	1,2,4-Trichlorobenzene	1.0	Ŭ	1.0	ug/Kg	11/15/05	ec
	Hexachlorobutadiene Naphthalene	1.0	lū.	1.0	ug/Kg	11/15/05	
	1,2,3-Trichlorobenzene	1.0	U	1.0	ug/Kg	11/15/05	
	Freon 113	1.0	U	1.0	ug/Kg	11/15/05	eq
·····		Page 5			·····.	<u> </u>	J

LABORATORY TEST RESULTS

Date: 11/18/2005

Job Number: 253514

CUSTOMER: Entact, Inc. PROJECT: CVX-47 ATTN: Paul McCorvey

Customer Sample ID: 4" Thalle Backfill

Laboratory Sample ID: 253514-1

·····		
Date: 11/18/2005	STL NEWBURGH	Rept: AN0565
Time: 11:26:49	ANALYTICAL RESULTS/CHRONOLOGY	Page: 1
		•**

SDG: 253514	Job Number & Lai	: Sample ID: Sample ID: Sample Date:	A05-C898 A5C89801		•
	Extraction Analysis		11/14/2005 07:00 YES 11/16/2005 01:19 YES		
Analyte	(UG/KG)	RL.	Result	· ·	
METHOD 8151 - HERBICIDES 2,4-D 2,4,5-TP (Slivex) 2,4,5-T SURROGATES Dichlorophenyl Acetic Acid	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	240 34 30 29-124	250 U 36 U 32 U 79		

4م,

* Indicates Result is Outside QC Limits NA = Not Applicable

.. ...

STL Buffalo

___.

Date: 11/18/2005	STL NEWBURGH	Rept: AN0565
Time: 11:26:49	QC ANALYTICAL RESULTS/CHRONOLOGY	Page: 2

SDG: 253514	Job Number & Lab		Matrix Spike A05-C898 A58							
	Extraction Da Analysis Da		11/14/2005 0 11/15/2005 21			2:49 YES				
Analyte	(UG/KG)	RL	Resul	t	Resul	t .	Resu	lt	-	
HETHOD 8151 - HERBICIDES 2,4-D 2,4,5-TP (Silvex) 2,4,5-T SIRROGATES Dichlorophenyl Acetic Acid		240 34 30 29-124	59 54 35 87	J	60 52 33 87	ţ	240 34 30 86	U U U	anna a cash ann an ann an ann ann ann ann ann ann	

* Indicates Result is Outside QC Limits NA = Not Applicable

STL Buffalo

.

۶eq	test results in this report meet all NELAP requirements for parameters for which accreditation is uired or available. Any exceptions to NELAP requirements will be noted in a case narrative. ort Comments
1)	All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.
2)	Soil, sediment and sludge sample results are reported on a "dry weight" basis.
3)	Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable.
	Glossary of flags and qualifiers.
ħ	norganic Qualifiers (Q-Column)
U J B D E RE	Indicates that the compound was analyzed for but not detected. Result fails applicable drinking water standards. Duplicate analysis not within control limits. Spiked sample recovery not within control limits. Indicates an estimated value because of the presence of interferences. Post digestion spike for furnace AA analysis is out of the control limits (85-115%) while sample absorbance is less than 50% of spike absorbance. Correlation coefficient for the MSA is less than 0.995 The reported value is less than the Contract Required Detection Limit (CRDL), but greater than the Instrument Detection Limit (IDL). ganic Qualifiers (Q-Column) Indicates that the compound was analyzed for but not detected. Indicates an estimated value. This compound meets the identification criteria, but the result is less than the specified detection limit. Indicates that the analyte was found in both the sample and its associated laboratory blank. Indicates that the analyte in an analysis at a secondary dilution factor. Indicates are-analyzed sample
Surr comp surr matr Poor Matr comp appr prep Inte and to e star	ssary of Terms regates (Surrogate Standards) - an organic compound which is similar to the target analyte(s) in chemical position and behavior in the analytical process. For semi-volatiles, volatiles and pesticides/Arochlors, regate compounds are added to every blank, sample, matrix sample, matrix spike, matrix sample duplicate, rix spike blank, and standard. These are used to evaluate analytical efficiency by measuring recovery. • surrogate recovery may indicate a problem with the sample composition. • surrogate recovery may indicate a problem with the sample composition. • surrogate analytes) and subjected to the entire analytical procedure in order to indicate the • opriateness of the method for the matrix by measuring recovery. The spiking occurs prior to sample meration and analysis. Poor spike recovery may indicate a problem with the sample composition. • real Standards - an organic compound which is similar to the target analyte(s) in chemical composition behavior in the analytical process. For GC/MS semi-volatiles and volatiles, internal standards are added every blank, sample, matrix spike, matrix spike duplicate, matrix spike blank, and standard. Internal idard responses outside of established limits will adversely affect the quantitation and final entration of target compounds.

STL Newburgh is a part will sovern Trent Laboratories, Inc.

PA 68-378

STL Newburgh 315 Fullerton Avenue Newburgh, NY 12550 Tel (845) 582-080 Fax (845) 582-0841

i.

M-NY049

LABORATORY CHRONICLE

Date: 11/18/2005

ab ID: 253514-1	Client ID: 4" Thalle Backfill	Date Re	cvd: 11/	09/2005	Sample	e Date: 11/09/	2005	
METHOD	DESCRIPTION	RUN#	BATCH#	PREP BT	#(S)	DATE/TIME	ANALYZED	DILUTIO
SW846 5030 (5g	5030 Soil(5g)Prep	1	101115					
SW846 30508	Acid Digestion (ICP) Solids	1	100873			11/14/2005	1200	
SW846 90108	Cyanide, Total	1	100962			11/10/2005	0730	
SW846 3550B	Extraction Ultrasonic (Chior.Pest.)	1	100789					
SW846 3550B	Extraction Ultrasonic (PCBs)	1	100790					
SW846 35508	Extraction Ultrasonic (SVOC)	1	100788					
8151A Subcon	Herbicides	1						
SW846 7471A	Mercury (CVAA) Solids	1	100926	100921		11/13/2005	1213	
SW846-7471	Mercury Soil Digestion	1	100921			11/11/2005	0800	
SW846 6010B	Metals Analysis (ICAP)	1	101017	100873		11/16/2005	1208	
SW846 8081A	Organochlorine Pesticide Analysis	1	100977			11/15/2005	0000	
SW846 8082	PCB Analysis	1	100976			11/15/2005	0000	
SW846 8270C	Semivolatile Organics	1	101142			11/15/2005	0000	0.978
SW846 82608	Volatile Organics	1	101085			11/15/2005	0000	

EREN E STL NYSDOH 10142

Job Number: 253514

NJDEP 73016 CTOOHS PH-0554 PA 68-378

STL Newburgh is a papage Severn Trent Laboratories, Inc.

STL Newburgh 315 Futlerich Avenue Newburgh, NY 12550 Tel (845) 562-0690 Fax (845) 562-0641

M-NYD49

ł

·

PARSONS

						Letter c	of Transmittal			
TO: Enta	ct, Inc				Date:	3/23//2006	Job No.; 442044			
312	9 Bass Pro Drive				RE:	CVX Re	creation Area			
Gra	pevine, Texas 76	051	······································		,	Subn	nittal No. 7			
							······································			
	······································	·····								
WE ARE SET	NDING YOU TH	IE FOLLOW	/ING ITEMS:							
G Shop draw	ings	C Attache	ed D Under sepa	rate cover v	via		the following items:			
Copy of La	etter	C Prints		ns		Samples	Specifications			
Dated:	1.12 P.1.1.2.1.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Change	e Order 🖌 Sub	mittal #7						
COPIES	DATE	NO.		DESCRIPTION						
1	3/23/2006	7	Analytical results for	topsoil sou	гсе					
			-	-			<u> </u>			
					,		· · ·			
	······						······································			
							·····			
THESE ARE	TRANSMITED	as checked b	elow:							
G For approv	al	G For c	hecking	Resubmit copies for approval						
G For your u	se	🗹 Appr	oved as submitted	🗖 Desią	gn only,	not for construct	ion			
G For review	and comment	DAppro	oved as noted	🖸 Retu	m	corrected prin	ts			
G For your ac	ction	🖸 Retu	med for corrections	🗖 Resu	esubmit items noted					
REMARKS:	····									
	ile 442044, distri	hution					······································			
001110.0	uv 772077, UDUI	UMUIVII								

SIGNED: Jeffry Ponton

.

If enclosures are not as noted, please notify us at once. C:\Documents and Settings\p0040069\Desktop\Chevron\Submittals\Submittal No. 7.doc

SUBMITTAL FORM

					Submit	tal No. 7	
TO: Par	sons				Date:	3/23/2006	Job No.: 442044
180) Lawrence Bell D	<u>r</u>			RE:	CVX Re	creation Area
Wi	illiamsville, NY 1	4221				7	`opsoil
			······································				
WE ARE SE	NDING YOU TH	IE FOLLOW	ING ITEMS:				
C Shop drav	vings	C Attache	d Q Under sepa	urate cover v	via		the following items:
Copy of L	.etter	C Prints	Q Pla	ns	I	Samples	Specifications
Dated	·	Change	Order 🗸 Sub	mittal #7			
CODING	1 1 A 13777						
COPIES	DATE	<u>NO.</u>				RIPTION	
1	<u>3/2/23/2006</u>	7	Analytical results fro	m topsoil sc	nirce		
						<u> </u>	1111L 1012.11111L L.0101.0000. L.100
<u>+</u>	₩.st			····			
				•••••	·	··· ···	
THESE ARE	TRANSMITED	as checked b	elow:				
G For approv		🖸 For c		🛛 Resu	bmit	copies for ap	croval
G For your u			oved as submitted			not for constructi	
G For review	v and comment		ved as noted	🗆 Retu	m	corrected prim	ts
G For your a	ction	🛛 Retur	ned for corrections	🗆 Resu	bmit iter	ns noted	
REMARKS:							
							₩₩ [₩] ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
	····						
COPY TO:							
			······································				

SIGNED: Paul McCorvey

SEVERN STL

٤

ANALYTICAL REPORT

Job Number: 420-2515-1

Job Description: Entact Beacon CVX-47

For: Entact Environmental Services, LLC 3129 Bass Pro Drive Grapevine, TX 76051

Attention: Mr. Paul McCorvey

Eric C Andersen Project Manager I eandersen@stl-inc.com 03/23/2006

Project Manager: Eric C Andersen

Severn Trent Laboratories, Inc. STL Newburgh 315 Fullerton Avenue, Newburgh, NY 12550 Tel (845) 562-0890 Eav (845) 562-0841 Juney et Line com

METHOD SUMMARY

Client: Entact Environmental Services, LLC

Descripti	on	Lab Location	Method	Preparation Method
Matrix:	Solid			
Volatile Or	ganic Compounds by GC/MS	STL-NEW	SW846 8260E	}
	Purge-and-Trap	STL-NEW		SW846 5030B
	e Compounds by Gas Chromatography/Mass try (GC/MS)	STL-NEW	SW846 82700	;
· •	Últrasonic Extraction	STL-NEW		SW846 3550B
Organochl	orine Pesticides by Gas Chromatography	STL-NEW	SW846 8081A	k *
	Ultrasonic Extraction	STL-NEW		SW846 3550B
Polychlorin	ated Biphenyls (PCBs) by Gas Chromatography	STL-NEW	SW846 8082	
	Ultrasonic Extraction	STL-NEW		SW846 3550B
Inductively	Coupled Plasma - Atomic Emission Spectrometry	STL-NEW	SW846 6010B	1
	Acid Digestion of Sediments, Sludges, and Soils	STL-NEW		SW846 3050B
Mercury in Technique	Solid or Semisolid Waste (Manual Cold Vapor	STL-NEW	SW846 7471A	
i comique,	Mercury in Solid or Semi-Solid Waste (Manual	STL-NEW		SW846 7471A
Percent Mo	pisture	STL-NEW	EPA 160.3	
Herbicide t	by 8151	STL-NEW	8151	

LAB REFERENCES:

STL-NEW = STL-Newburgh

METHOD REFERENCES:

EPA - US Environmental Protection Agency

SW846 - "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: Entact Environmental Services, LLC

Job Number: 420-2515-1

۴. :

.

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
420-2515-1	Beacon-CVX-47 Top Soil	Solid	03/08/2006 0920	03/08/2006 0920

STL Newburgh

315 Fullerton Avenue Newburgh, NY 12550

Chain of Custody Record

Severn Trent Laboratories, Inc.

Phone (845) 562-0890 Fax (845) 562-0841																						Severn Tr		ratorio	es, inc.
Client Contact	Project Ma	anager: A	ndersen, E	Fric C		Site	e C	onta	ct:					Da	te:							ICOC No: 4			
Shipping/Receiving@ Severn Trent Laborat	Tel/Fax:					Lat	b C	onta	ct:					Ca	rrier	No:						Job Numbe	: 420-25	15-1	
10 Hazelwood Drive,		Analys	is Due Dal	e	اجتلطيوه بلصله الا	Π	đ	Π	ŀ	T	T	T	T			T	Т	I	T						
Amherst. NY 14228-2298	I		20/2006	·····		11	bic			1							ļ		1						
Phone: 716-691-2600		Shipped with	Order No: 42	0-514			her						ļ	l			ļ			ļ					
Fax: 716-691-7991							₽							l			.		ł	[
Project Name: Entact Beacon CVX-47							815						1	ł											
Site:							E											ļ							
PO #:						E	RA			1				Į											
WO #:	1					ŝ	EN O							1											
Sample Identification	Sample Date	Sample Time	Sample Type	Matrix	# of Cont.	Filered Sample	SUBC															Spec	al Instruc	tions/N	ote:
420-2515-1	3/8/06	9:20		Solid	1	Π	x	Π		T										Ī					
						╋┥		1			+				+				+	-	+				
			ļ	ļ			X			_					<u> </u>			_		<u> </u>		ļ			
										1															
anne eile anne ang ang ang anne ga and anne anne an anne an anne an anne an anne an						Π		Π		-					Ī								··········		
						Π		Π		1			-		1			Ť	Τ	1			··	<u> </u>	
nest			[ſ				\square		1	1			1	1		1		1	l					
a a a a a a a a a a a a a a a a a a a	1			1		П		-		Ť	1		T		1		-		1	T	1	<u> </u>			
		 	· · · · · ·	†						T	-				1			-		1	1	<u> </u>			
Mallennen Malleten den en angest Million Annen en av Million Annen en angest den en angest den en angest de se		<u> </u>	1		 		–	1							1				+	1	1	1		<u> </u>	
			<u> </u>		<u> </u>			+	╋	1	╈				\top				-	╎	†			,	
			+			-	┢	1	╆╌╌┢┈	+	1				-	 		-+-		-	1	<u> </u>			
			<u> </u>	-	ļ	-		+	┢──┢──	-	-				-					-		<u> </u>			
		L	<u> </u>	ļ	<u>[</u>	L	┞	-		-				<u>.</u>		<u> </u>				+-					
Possible Hazard Identification							ς.		A Dien		1/ 1	لمسل	<u> </u>	Ko as	enet	o d é	fear	, da	-		lina	l d longer the	a 1 mon	51	
Non-Hazard Flammable	Skin Irrita	nt 🗀	Poison B		Jnknov				Return				C		spos	al By	lab	ipne:		An	chive	e For		nths	
Special Instructions/QC Requirements:				·	·				<u></u>						<u></u>	<u> </u>							······	/	
Relinquishée by:	Company	:		**************		<u> </u>	Dal	e/Tin	ne;	R	egey	igd b	y:(7	7	abla			<u>_</u>	7			Company:	67/1	1.	
	5				3	stc	26	₂) te/Tin	630	4	(J	h	<u>لم</u>	4	ćo	<u>5</u>		\mathcal{N}			···		<u>03/H</u>	86	1100
Relinquished by:	Company			·····	ļ					-1	eden		•		<u> </u>						·····	Company:			
Relinquished by:	Company	•				1	Dat	te/Tin	ne:		eceiv	ved b	y:		/							Company:			
Comments:	·				• • • • • • • • • • • • • • • • • • • •										Ť	Σ	6.0	U U	···· ⁄	\		- <u>F</u>			
					······.			<u>.</u>	* •						4		<u> </u>	' C	4	/					
						P	'ag	e1o	1						~ \			_	and the second s						

STL NEWBURGH ANALYTICAL RESULTS/CHRONOLOGY

Rept: AN0565 Page: 1

SDG: 420240	Job Number & Lab	Sample ID: Sample ID: ample Date:	A06-2535 A6	253501		
	Extraction D Analysis D		03/13/2006 0 03/15/2006 1			
Analyte	(UG/KG)	RL	Resul	t		
METHOD 8151 - HERBICIDES 2,4-D 2,4,5-TP (Si(vex) 2,4,5-T SURROGATES Dichlorophenyl Acetic Acid		240 34 30 10-147	280 40 36 86	บ บ บ		

.....

.

STL NEWBURGH QC ANALYTICAL RESULTS/CHRONOLOGY

Rept: ANO565 Page: 2

SDG: 420240	Job Number & Lab		A06-2535 A6		Matrix Spike Bl ADG-2535 A6B15			1510903	
	Extraction Da Analysis D		03/13/2006 0 03/15/2006 1	6:32 YES	03/13/2006 07:0 03/15/2006 17:2 1.0	22 YES			
Anaiyte	(UG/KG)	RL	Resul	t ·	Result		Result		
METHOD 8151 - HERBICIDES 2,4-D 2,4,5-TP (Silvex) 2,4,5-T	an frankrigen fan Stear (fan Stear fan St	240 34 30	68 52 51	j	72 67 68	Ŀ	240 34 30	ប ប ប	
SURROGATES Dichlorophenyl Acetic Acid		10-147	76		98		97		

... به

Client: Entact Environmental Services, LLC

Job Number: 420-2515-1

Client Sample ID:	Beacon-CVX-47 Top Soil
-------------------	------------------------

Lab Sample ID: Client Matrix:	420-2515-1 Solid	% Moisture:	11.7		Date Sampled: Date Received:	03/08/2006 0920 03/08/2006 0920
		8260B Volatile Orga	nic Compounds b	y GC/MS		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8260B 5030B 1.0 03/21/2006 173 03/21/2006 173	34	s Batch: 420-3898	Lat	trument ID; HP > File ID; Y03 ial Weight/Volume: al Weight/Volume:	-
Analyte	I	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	RL	RL
1,1,1,2-Tetrachlor 1,1,1-Trichloroeth			1.1 1.1	UU	1,1	1.1 1.1

I, I, I,Z-I etrachioroethane	1.1	0	1.1	4.4
1,1,1-Trichloroethane	1.1	U	1.1	1.1
1,1,2,2-Tetrachloroethane	1.1	U	1.1	1.1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.1	U	1.1	1.1
1,1,2-Trichloroethane	1.1	U	1.1	1.1
1,1-Dichloroethane	1.1	U	1.1	1.1
1,1-Dichloroethene	1.1	υ	1.1	1,1
1,1-Dichloropropene	1.1	U	1.1	1.1
1,2,3-Trichlorobenzene	1.1	U	1.1	1.1
1,2,3-Trichloropropane	1.1	U	1.1	1.1
1,2,4-Trichlorobenzene	1.1	Ų	1.1	1.1
1,2,4-Trimethylbenzene	1.1	Ų	1.1	1.1
1,2-Dibromo-3-Chloropropane	1.1	U	1.1	1.1
1,2-Dichlorobenzene	1.1	U	1.1	1.1
1,2-Dichloroethane	1.1	U	1.1	1.1
1,2-Dichloroethene, Total	1.1	U	1,1	1.1
1,2-Dichloropropane	1.1	U	1.1	1.1
1,3,5-Trimethylbenzene	1.1	U	1.1	1,1
1,3-Dichlorobenzene	1.1	U	1.1	1,1
1,3-Dichloropropane	1,1	U	1.1	1.1
1,4-Dichlorobenzene	1.1	U	1.1	1.1
2,2-Dichloropropane	1.1	U	1.1	1.1
2-Chioroethyl vinyl ether	1.1	U	1,1	1.1
2-Chlorotoluene	1.1	υ	1.1	1.1 -
4-Chlorotoluene	1.1	U	1.1	1.1
4-Isopropyltoluene	1.1	U	1,1	1.1
Benzene	1,1	U	1.1	1.1
Benzyl chloride	1.1	U	1.1	1.1
Bromobenzene	1.1	U	1.1	1.1
Bromoform	1.1	U	1.1	1,1
Bromomethane	1.1	U	1.1	1.1
Carbon disulfide	1.1	U	1.1	1.1
Carbon tetrachloride	1.1	U	1.1	1.1
Chlorobenzene	1.1	U	1.1	1.1
Chlorobromomethane	1.1	U	1.1	1.1
Chlorodibromomethane	1,1	U	1.1	1.1
Chloroethane	1.1	U	1.1	1.1
Chloroform	1.1	U	1.1	1.1
Chloromethane	1.1	U	1.1	1.1
cis-1,2-Dichloroethene	1,1	U	1.1	1.1
cis-1,3-Dichloropropene	1.1	U	1.1	1,1
Dibromomethane	1.1	U	1,1	1.1
Dichlorobromomethane	1.1	U	1,1	1.1

Client: Entact Environmental Services, LLC

Job Number: 420-2515-1

Client Sample ID): Beacon-	-CVX-47 Top Soil				
Lab Sample ID: Client Matrix:	420-251: Solid	5-1 % Moisture:	11.7		Date Sampled: Date Received:	03/08/2006 0920 03/08/2006 0920
		8260B Volatile Orga	inic Compounds by	GC/MS		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8260B 5030B 1.0 03/21/2006 03/21/2006	1734	s Batch: 420-3898		Instrument ID: HP Lab File ID: Y03 Initial Weight/Volume: Final Weight/Volume:	-
Analyte		DryWt Corrected: Y	Result (ug/Kg)	Qualifie	r RL	RL
Dichlorodifluorom	ethane		1.1	U	1.1	1.1
Ethylbenzene			1.1	U	1.1	1.1
lexachlorobutadi			1.1	U	1.1	1.1
sopropylbenzene			1.1	U	1.1	1.1
n-Xylene & p-Xyle			1.1	U	1.1	1.1
lethylene Chlorid	e		1.1	U	1.1	1.1
-Butylbenzene			1.1	U	1.1	1.1
I-Propylbenzene			1.1	U	1.1	1.1
laphthalene			1.1	U	1.1	1.1
-Xylene			1.1	U	1.1	1.1
ec-Butylbenzene			1.1	U	1.1	1.1
ityrene			1,1	U	1.1	1.1
ert-Butylbenzene			1.1	U	1,1	1.1
ylenes, Total			1.1	U	1.1	1.1
inyl chloride			1.1	U	1.1	1.1
inyl acetate			1.1	U	1.1	1.1
richlorofluoromet	hane		1.1	U	1.1	1.1
richloroethene			1.1	U	1.1	1.1
ans-1,4-Dichloro			1.1	U	1.1	1,1
ans-1,3-Dichloro			1.1	U	1.1	1.1
ans-1,2-Dichloro	ethene		1.1	U	1.1	1.1
oluene			1.1	U	1.1	1.1
etrachloroethene			1.1	U	1.1	1.1
2,4,5-Tetrameth	yibenzene		1.1	U	1.1	1.1
Heptane			1.1	U	1.1	1.1
-Ethyltoluene			1.1	U	1.1	1.1
,2-Dibromoethan	e		1.1	U	1.1	1.1

4

Client: Entact Environmental Services, LLC

Job Number: 420-2515-1

I ah Camala ID.	100 0545	= 4			Data Complexit	02/00/2000 0000
Lab Sample ID: Client Matrix:	420-2515 Solid	≻ı % Moisture:	11.7		Date Sampled: Date Received:	03/08/2006 0920 03/08/2006 0920
827()C Semivolat	ile Compounds by Gas	Chromatography/	Mass Spectro	ometry (GC/MS)	
Method:	8270C	Analysi	s Batch: 420-3753	Inst	trument ID: Hev	vlett Packard 5890
Preparation:	3550B	Prep Ba	atch: 420-3661	Lat	File ID: S35	935.D
Dilution:	1.0			Initi	ial Weight/Volume:	30.81 g
Date Analyzed:	03/16/2006	0546		Fin	al Weight/Volume:	1 mL
Date Prepared:	03/13/2006	1620			ction Volume:	
Analyte		DryWt Corrected: Y	Result (ug/Kg)	Qualifier	RL	RL
1,2,4-Trichloroben	7000	·····	360	U	360	360
1,2-Dichlorobenze			360	Ŭ	360	360
1,2-Diphenylhydra			3600	U	3600	3600
,3-Dichlorobenze			360	Ŭ	360	360
,3-Dichlorobenze			360	Ŭ	360	360
2,4-Dichloropheno			360	U	360	360
2,4,6-Trichlorophe			360	U	360	360
2,4,5-Trichlorophe			360	U	360	360
2,4.5- methylphen			360	U	360	360
2,4-Dinitrotoluene	21		360	U	360	360
-Chloronaphthale	20		360	U	360	360
2-Chlorophenol			360	U	360	360
-Methylnaphthale	~ ~		360	U	360	360
2-Methylphenol			360	U	360	360
2-Nitroaniline			920	U	920	920
			920 360	U	360	360
2-Nitrophenol	dima				360	
3,3'-Dichlorobenzi	1116		360	U		360
3-Nitroaniline	د م م استان		920	U	920	920
1,6-Dinitro-2-meth			920	U	920	920
-Bromophenyl ph			360	U	360	360
-Chloro-3-methyl	NIGUOI		360	U	360 360	360
-Chloroaniline	and ather		360	U		360
I-Chlorophenyl ph	enyi ether		360	ป บ	360 920	360
I-Nitrophenol			920 360	U U	360 •	920 360
				-	+ + +	
Acenaphthylene			360	U	360	360
Anthracene Benzidine			360	U	360 360	360
· · · ·			360	U		360
Benzo[a]anthracer	ic		360	U	360	360
Benzo[a]pyrene			360	U	360	360
Benzo[b]fluoranthe			360	U	360	360
Senzo[g,h,i]perylei			360	U	360	360
Senzo[k]fluoranthe	iii¢		360	U	360	360
Senzyl alcohol			360	U	360	360
lis(2-chloroethoxy			360	U	360	360
lis(2-chloroethyl)e			360	U	360	360
lis(2-ethylhexyl) p			360	U	360	360
utyl benzyl phtha	ale		360	U	360	360
Carbazole			360	U	360	360
hrysene			360	U	360	360
i-n-octyl phthalate			360	U	360	360
i-n-butyl phthalati			360	U	360	360
ibenz(a,h)anthrac	ene		360	U	360	360

Client: Entact Environmental Services, LLC

18. C.

Job Number: 420-2515-1

(<u>an wamne</u> s r	420-2515	51			Date Sampled:	03/08/2006 0920
Lab Sample ID: Client Matrix:	Solid	% Moisture:	11.7		· · ·	03/08/2006 0920
	ÇQAQ		· · · · · · · · · · · · · · · · · · ·			
8270	C Semivolat	ile Compounds by Gas	Chromatography	/Mass Spec	trometry (GC/MS)	
Method:	8270C	-	s Batch: 420-3753			ett Packard 5890
Preparation:	3550B	Prep Ba	atch: 420-3661	Ĺ	ab File ID: \$359	35.D
Dilution:	1.0			li	nitial Weight/Volume:	30.81 g
Date Analyzed:	03/16/2006	0546		F	Final Weight/Volume:	1 mL.
Date Prepared:	03/13/2006	1620		H	njection Volume:	
Analyte		DryWt Corrected: Y	Result (ug/Kg)	Qualifier	RL	RL
Dibenzofuran	~~~~~~~~~~~		360	U	360	360
Dimethyl phthalate			360	Ű	360	360
luoranthene			360	U	360	360
luorene			360	U	360	360
lexachlorobenzen	9		360	U	360	360
lexachlorobutadie	ne		360	U	360	360
lexachlorocyclope	ntadiene		360	U	360	360
lexachloroethane			360	U	360	360
ndeno[1,2,3-cd]pyr	ene		360	U	360	360
sophorone			360	U	360	360
I-Nitrosodi-n-propy			360	U	360	360
I-Nitrosodimethyla	mine		360	U	360	360
I-Nitrosodiphenyla	mine		360	U	360	360
laphthalene			360	U	360	360
litrobenzene			360	U	360	360
entachlorophenol			920	U	920	920
henol			360	U	360	360
yridine			360	U	360	360
,4-Dinitrophenol			920	U	920	920
,6-Dinitrotoluene			360	U	360	360
yrene			360	U	360	360
-Nitroaniline			920	U	920	920
-Methylphenol			360	U	360	360
iethyl phthalate			360	U	360	360
henanthrene			360	U	360	360

Client: Entact Environmental Services, LLC

Job Number: 420-2515-1

Client Sample ID: Beacon-CVX-47 Top Soil

Lab Sample ID: Client Matrix:	420-2515-1 Solid	% Moisture:	11.7		te Sampled: te Received:	03/08/2006 0920 03/08/2006 0920	
	6010B	Inductively Co	upled Plasma - Atomic	Emission Spec	trometry		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 03/15/2006 2009 03/13/2006 1130			Instrument ID: Lab File ID; Initial Weight/Volume: Final Weight/Volume:		+	
Analyte	DryWt C	prrected: Y	Result (mg/Kg)	Qualifier	RL	RL	
Ag			2.2	U	2.2	2.2	
AI			12000		44 ·	44	
As			7.0		2.2	2.2	
Ba			45		44	44	
Be			1.1	U	1.1	1.1	
Ca			20000		110	110	
Cd			1.1	U	1.1	1.1	
Co			13		11	11	
Cr			13		2.2	2.2	
Cu			38		5.5	5.5	
Fe			27000		22	22	
K			1200		110	110	
Mg			14000		110	110	
Mn			940	* *	2.2	2.2	
Na			110	U	110	110	
Ni			24		8.9	8.9	
Pb Sb			17	U	2.2 13	2.2 13	
Se			13 2.2	U	13	2.2	
Se Tl			2.2	U	2.2	2.2	
V			15	0	z.z 11	11	
v Zn			74		4,4	4.4	

7471A Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)

Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A 7471A 1.0 03/10/2006 0913 03/09/2006 1115	Analysis Batch: 420-3587 Prep Batch: 420-3593	Lab File Initial W	Instrument ID; Lab File ID: Initial Weight/Volume: Final Weight/Volume:		AA
Analyte	DryWt Correcte	d: Y Result (mg/Kg)	Qualifier	RL	RL	
Hg		0.11	U	0.11	0.11	

Analytical Data

Client: Entact Environmental Services, LLC					Job Number: 420-2515-			
Client Sample ID	: Beacon-CVX-	47 Top Soil						
Lab Sample ID: Client Matrix:	420-2515-1 Solid	% Moisture:	11.7		Date Sample Date Receiv			
	8081A O	rganochiorine Pe	sticides by Gas Ch	romatograp	hy			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A N/A 1.0 03/17/2006 1621 N/A	Analysis Batch: 420-3752		La Init Fin Inje	Instrument ID: Hewlett Packard 5890 Dual Lab File ID: 2HP6094.D Initial Weight/Volume: Final Weight/Volume: Injection Volume: Column ID: PRIMARY			
Analyte	Dr	yWt Corrected: Y	Result (ug/Kg)	Qualifier	RL	RL		
alpha-BHC	······		5.6	UH	5.6	5.6		
gamma-BHC (Linc	lane)		5.6	UH	5.6	5.6		
beta-BHC			5.6	UH	5.6	5.6		
Heptachlor			5.6	UH	5.6	5.6		
delta-BHC			5.6	UΗ	5.6	5.6		
Aldrin			5.6	UΗ	5.6	5.6		
Heptachlor epoxide			5.6	UH	5.6	5.6		
gamma-Chlordane			57	UH	57	57		
alpha-Chlordane			57	UH	57	57		
4,4'-DDE			11	UH	11	11		
Endosulfan I			11	UH	11	11		
Dieldrin			11	UH	11	11		
Endrin			11	UH	11	11		
4,4'-DDD			11	UH	11	11		
Endosulfan II			11	UH	11	11		
1,4'-DDT			11	UH	11	11		
Endrin aldehyde			23	UH	23	23		
Endosulfan sulfate	2		11	UН	11	11		
Methoxychlor			5.6	UH	5.6	5.6		
Endrin ketone			11	UH	11 110	11 110		
Toxaphene Chlordane (technical)			110 57	UH UH	57	57		

Client: Entact I	rvices, LLC	Job Number: 420-2515-1					
Client Sample ID	: Beacon-CVX-	47 Top Soil					
Lab Sample ID: Client Matrix:	420-2515-1 Solid	% Moisture:	11.7		Date Sample Date Receiv		
	8082 Polyci	lorinated Biphen	yls (PCBs) by Gas	Chromatogr	aphy		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8082 N/A 1.0 03/17/2006 1621 N/A	Analysi	Analysis Batch: 420-3752		Instrument ID: Hewlett Packard 5890 Dua Lab File ID: 2HP6094.D Initial Weight/Volume: Final Weight/Volume: Injection Volume: Column ID: PRIMARY		
Analyte	Dr	yWt Corrected: Y	Result (ug/Kg)	Qualifier	RL	RL	
PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260			56 56 56 56 56 110 110	U H U H U H U H U H U H U H	56 56 56 56 56 110 110	56 56 56 56 56 56 110 110	

Analytical Data

Analytical Data

Job Number: 420-2515-1

		General Chemi	stry			
Client Sample ID:	Beacon-CVX-47 Top S	oil				
Lab Sample ID: Client Matrix:	420-2515-1 Solid			Date Samp Date Rece		/08/2006 0920 /08/2006 0920
Analyte	Result	Qual Units	RL	RL	Dil	Method
Percent Moisture	12 Anly Batch: 420-3646	% Date Analyzed 03/1	0.10 1/2006 1125	0.10	1.0	160.3
Percent Solids	88 Anly Batch: 420-3646	% Date Analvzed 03/1	0.10 1/2006 1125	0.10	1.0	160.3

DATA REPORTING QUALIFIERS

Client: Entact Environmental Services, LLC

Lab Section	Qualifier	Description
GC/MS VOA		
	U	Analyte was not detected at or above the reporting limit.
GC/MS Semi VOA		i a contra co
	U	Analyte was not detected at or above the reporting limit.
GC Semi VOA		
	H	Sample was prepped or analyzed beyond the specified holding time
	U	Analyte was not detected at or above the reporting limit.
Metals		
	U	Analyte was not detected at or above the reporting limit.

APPENDIX F

PHOTOGRAPHIC LOG

PICT0646: Completing geoprobe borings near Building 31

DSCN0310: Mixing Grout.

DSCN0084: Manhole A-1.

DSCN0321: Vault north of Manhole A-1.

DSCN0318: Excavating vault north of Manhole A-1.

DSNC0356: Vault at southwest corner of Building 42 (A-line)

DSCN0359: Backfilling Building 42 vault (A-line).

DSCN0370: Grouting valve pit from ASTs to ISS-3.

DSCN0299: Location of excavation of ISS-5 line

DSCN0371: ISS-5 attempted soil excavation.

DSCN0378: ISS-5 excavation grouted.

DSCN0366: Grouting spill containment basin for boiler house ASTs. (ISS-5)

DSNC353: Grouting the 3x3 vault south of Building 55. (ISS-5, B-line)

DSCN0078: Manhole B-2.

DSCN0303: Plugged outlets to the grit chamber. ISS-5, ISS-6, ISS-8.

DSCN0304: Plugged outlet tothe grit chamber. A-line.


DSCN0346: Excavation of area northeast of the grit chamber.

DSCN0349: Plugged PVC lines from ISS-7.

DSCN0380: 3x3 sewer pit on ISS-8 line.

DSCN0364: 3x3 sewer pit on ISS-8 line (looking downstream). (C-line)

DSCN0384: Manhole C-2 (north to top).

DSCN0386: Disconnected and plugged ISS-9 across the walk bridge.

DSCN0117: Excavation of Building 56 cleanout

DSCN0281: Failed connection from Building 56 wash rack area.

DSCN0293: Failed joint in ISS line from Building 56 area.

DSCN0309: Building 56 excavation with groundwater.

DSCN0122: Building 56 cleanout assembly

DSCN0218: Grouting manho-Line