POST-CLOSURE PERMIT 2006 ANNUAL REPORT HAZARDOUS WASTE MANAGEMENT PERMIT CHEVRON RESEARCH CENTER

6NYCRR PART 373 NYSDEC ID # 3-1330-48/16-0 EPA ID# 091894899

Prepared For:

Chevron Environment Management Company

Mr. Mark Hendrickson Chevron Bellaire Office Building 4800 Fournace Place, Room E-534C Bellaire, TX 77401

Prepared By:

PARSONS

290 Elwood Davis Road, Suite 312 Liverpool, New York 13088 Phone: (315) 451-9560 Fax: (315) 451-9570

Project Manager: Christ J. Ochten for craigh butterfor 6/13/07

Date

Technical Manager: Christ J. Ochten for store possello

Date

June 2007

TABLE OF CONTENTS

TABLE OF CONTENTS

LIST OF TABLES

Table 16	November 2006 Semiannual Groundwater Sampling Analysis Results for Well TF-5
Table 17	November 2006 Semiannual Groundwater Sampling Analysis Results for Well TF-105
Table 18	November 2006 Semiannual Groundwater Sampling Analysis Results for Well TF-23
Table 19	November 2006 Semiannual Groundwater Sampling Analysis Results for Well DB-8A $$
Table 20	November 2006 Semiannual Groundwater Sampling Analysis Results for Well DB-17
Table 21	November 2006 Semiannual Groundwater Sampling Analysis Results for Well OS-2
Table 22	November 2006 Semiannual Groundwater Sampling Analysis Results for Well OR-2
Table 23	November 2006 Semiannual Groundwater Sampling Analysis Results for Well OS-3
Table 24	November 2006 Semiannual Groundwater Sampling Analysis Results for Well OR-3

LIST OF FIGURES

- Figure 1 Site Map
- Figure 2 Groundwater Elevation Contour Map (June 2006)
- Figure 3 Groundwater Elevation Contour Map (November 2006)

LIST OF APPENDICES

APPENDIX A PARSONS GROUNDWATER SAMPLING RECORD LOGS

APPENDIX B PARSONS DATA REVIEW SUMMARY REPORTS

APPENDIX C LABORATORY ANALYTICAL RESULTS WITH CHAIN-OF-CUSTODIES (DATA PROVIDED ON DISK)

1.0 INTRODUCTION

This annual report is submitted in accordance with the requirements of the New York State Department of Environmental Conservation (NYSDEC) 6 NYCRR Part 373 Hazardous Waste Management Permit #3-1330-00048/16-0 (Permit) for the former Chevron Research and Development Center, located in Glenham, New York (See Figure 1). The Permit requires the collection of groundwater samples on a semiannual basis at the Recreation and Tank Farm Areas at the former Research and Development Center. This annual report contains a brief description of the calendar year 2006 groundwater monitoring and sampling event, along with a comparison of analytical results to the Groundwater Protection Concentrations (GPC) contained in the Permit. A brief discussion of groundwater flow within the Recreation Area and vicinity is also presented.

2.0 PROJECT SCOPE

The following monitoring wells located in the Recreation and Tank Farm Areas were sampled during the sampling event:

- DC-1
- DC-2
- TF-5
- TF-23
- DB-8A
- DB-17
- OS-2
- OR-2
- OS-3
- OR-3

The sampling events took place in June and November of 2006. The monitoring well locations are shown on Figure 2.

3.0 GROUNDWATER MONITORING

The groundwater monitoring events covered by this annual report occurred on June 6th through June 9th, 2006 and November 14th through November 16th, 2006.

During the sampling events the well condition, groundwater level, well depth, physical appearance, well evacuation information, and sampling parameters were documented on a Groundwater Sampling Record Log (see Appendix A). The sampling information recorded included the time and purge volume measurements. Samples were collected after these field parameters were recorded. Groundwater elevations obtained during the field events are presented in Tables 1 and 2.

In addition to each sample being collected, one (1) trip blank was analyzed per event. The samples were properly containerized and transported to Lancaster Laboratories in Lancaster, Pennsylvania for chemical analysis.

4.0 HYDROGEOLOGY

Prior to purging and sampling activities of the wells referenced above, depth to water was collected at each well location in order to determine ground flow direction and hydraulic gradient within the Recreation Area and surrounding vicinity. Depth to water was measured using an electrical contact probe and measured from the top edge of the permanent PVC casing. These reference points were re-surveyed (Fall 2006) for elevation and x-y coordinates. Vertical elevations were surveyed to an accuracy and precision of 0.01 feet, while horizontal coordinate accuracy was 0.10 feet or better. Coordinates were fixed to a nearby established benchmark. New York State Plane Coordinate System, East Zone (NAD -1983) system was used for the horizontal datum, while the vertical datum used the site vertical datum established by Texaco in 1957. This datum is 1.07 feet below NAVD 1988 Coordinate System. The work was performed by Badey and Watson Surveying and Engineering, P.C. of Cold Spring, New York, a New York State licensed land surveyor.

Groundwater was encountered at depths varying from 1.90 to 19.40 feet below surface and a groundwater divide was also observed to exist within the Recreation Area. The divide exists between wells DC-1 and DC-2 with groundwater flowing to the north to northwest north of well DC-2 under a general hydraulic gradient of 0.024 feet/foot, while groundwater flow south of well DC-2 is south to southeast under a general hydraulic gradient of 0.014 feet/foot. The groundwater north of the divide flows towards the Fishkill Creek, while groundwater south of the divide flows towards an unnamed creek located east of the Recreation Area. The unnamed creek flows to the northeast, based on topography, and eventually into the Fishkill Creek. The above information is based on two rounds of water level measurement (June 2006 and November 2006). Water level data from both groundwater monitoring rounds are presented in Tables 1 and 2 and graphically depicted in Figures 3 and 4.

5.0 ANALYSES OF GROUNDWATER SAMPLES

The groundwater samples were analyzed according to EPA Method 8260 for volatile organic compounds (VOCs), EPA Method 8270 for semivolatile organic compounds (SVOCs,) and lead by EPA Method 6010B. Duplicate samples (labeled DB-108A and TF-105) were collected from wells DB-8A (June 2006 sampling event) and TF-5 (November sampling event) and indicated acceptable precision according to EPA guidelines and Parsons' internal validation of the sample data from both sampling events. A validation of the groundwater sample results was performed by a Parsons chemist and validation reports were generated. A copy of the validation reports are provided in Appendix B and the summary of analytical results is presented in Tables 3 through 24.

Two of the ten groundwater monitoring wells sampled in June 2006 and three of the ten groundwater monitoring wells sampled in November 2006 contained constituents that exceeded the respective GPC's. In June 2006, concentrations of 1,2-Dichloroethene and Trichloroethene were observed in well DC-1 and Trichloroethene in well DB-8A exceeding GPC Criteria. In

November 2006, the same wells exhibited exceedances for the same parameters as in June 2006. An additional well, groundwater monitoring well OR-2 contained one constituent that exceeded its respective GPC. The constituent was 1,1-Dichloroethane at a concentration of 1.0 μ g/L. The compounds observed at wells DC-1 and DB-8A have historically exceeded GPC criteria, while the 1,1-Dichloroethane at well OR-2 has not. Even through 1,1-Dichloroethene at well OR-2 exceeded the RCRA permit criteria, it was well below the New York State Department of Environmental Conservation, Ambient Water Quality Standard of 5.00 μ g/L and should not be of concern. The results are presented in Tables 3 through 24 and the laboratory reports are included as Appendix C on disk. No other wells were observed as containing constituents that exceeded GPC criteria.

TABLES

Table 1
June 2006 Semiannual Groundwater Elevations
Recreation Area and Tank Farm, Chevron, Glenham, NY

	Top of Casing	June 2006 S	ampling Event
Well ID	Elevation (feet) ⁽¹⁾	Field Data	Groundwater Elevation
DC-1	229.30	3.70	225.60
DC-2	229.10	2.75	226.35
TF-5	207.58	6.80	200.78
TF-23	207.20	7.45	199.75
DB-8A	232.60	7.25	225.35
DB-17	231.77	8.15	223.62
OS-2	221.76	5.75	216.01
OR-2	221.92	6.30	215.62
OS-3	233.02	3.00	230.02
OR-3	233.23	19.10	213.83

Note: (1) Top of casing elevations derived from Badey and Watson, Surveying and Engineering, P.C. map dated January 27, 2007

Table 2 November 2006 Semiannual Groundwater Elevations Recreation Area and Tank Farm, Chevron, Glenham, NY

	Top of Casing	November 2006 Sampling Event	
Well ID	Elevation (feet) ⁽¹⁾	Field Data	Groundwater Elevation
DC-1	229.30	3.30	226.00
DC-2	229.10	2.23	226.87
TF-5	207.58	6.12	201.46
TF-23	207.20	7.12	200.08
DB-8A	232.60	6.30	226.30
DB-17	231.77	7.38	224.39
OS-2	221.76	5.50	216.26
OR-2	221.92	5.22	216.70
OS-3	233.02	1.90	231.12
OR-3	233.23	15.94	217.29

Note: (1) Top of casing elevations derived from Badey and Watson, Surveying and Engineering, P.C. map dated January 27, 2007

Table 3 June 2006 Semiannual Groundwater Sampling Analytical Results Recreation Area and Tank Farm, Chevron, Glenham, NY Well DC-1

Constituent (1)	GPC	June 2006
μg/L	GFC	Sampling Event Result
Trihalomethanes (total) (2)	100	ND
Benzene	1.0	ND
Bromodichloromethane	$50^{(2)}_{(2)}$	ND
Bromoform	50 ^{(2) (6)}	ND
Bromomethane	5 5 5 5 5 7 ⁽²⁾⁽⁶⁾	ND
Carbon Tetrachloride	5	ND
Chlorobenzene	5	ND
Chloroethane	5	ND
2-Chloroethylvinyl Ether	5	ND
Chloroform	$7^{(2)(6)}$	ND
Chloromethane	$50^{(2)(6)}$	ND
Dibromochloromethane	$50^{(2)(6)}$	ND
1,2-Dichlorobenzene	4.7	ND
1,3-Dichlorobenzene	5	ND
1,4-Dichlorobenzene	4.7	ND
1,1-Dichloroethane	0.4	ND
1,2-Dichloroethane	5	ND
1,1-Dichloroethene	5 5	ND
1,2-Dichloroethene (total) (3)		7.0
1,2-Dichloropropane	0.5	ND
cis-1,3-Dichloropropene	$0.4^{(4)}$	ND
trans-1,3-Dichloropropene	$0.4^{(4)}$	ND
Ethylbenzene	5	ND
Methylene Chloride	4.7	ND
1,1,2,2-Tetrachloroethane	1.8	ND
Tetrachloroethene	5	ND
Toluene	5	ND
1,1,1-Trichloroethane	5	ND
1,1,2-Trichloroethane	5	ND
Trichloroethene	5	11.0
Trichloroflouromethane	5 5 5 5 5 2	ND
Vinyl Chloride	2	ND
Xylene (total) Total VOCs (5)	5	ND
Total VOCs (5)	NA	18.0
Total SVOCs ⁽⁵⁾	NA	0.0
Lead, unfiltered	25	ND

- VOCs analyzed by EPA Method 8260, SVOCs were analyzes by EPA Method 8270, and lead was (1) analyzed by EPA Method 6010B. The units reported in μ g/L. Total of the trihalomethanes not to exceed 100 micrograms/liter. Total value is sum of bromoform,
- (2) chloroform, dibromochloromethane, and bromodichloromethane.
- 1,2-Dichloroethene is the sum of trans -1,2-dichloroethene and cis-1,2-dichloroethene. (3)
- (4) Total of the cis and trans -1,3-dichloropropene not to exceed 0.40 µg/L.
- Refer to Appendix C for details. (5)
- (6) New York State Ambient Water Quality, June 1998 Criteria.
- ND None Detected.
- No applicable standard or guidance value or not analyzed. NA
- **GPC** Groundwater Protection Concentration.
- **BOLD** Concentrations exceed GPC.

Table 4
June 2006 Semiannual Groundwater Sampling Analytical Results
Recreation Area and Tank Farm, Chevron, Glenham, NY
Well DC-2

Constituent (1)	GPC	June 2006
μg/L	GPC	Sampling Event Result
Trihalomethanes (total) (2)	100	ND
Benzene	1.0	ND
Bromodichloromethane	50 ^{(2) (6)}	ND
Bromoform	$50^{(2)(6)}$	ND
Bromomethane	5	ND
Carbon Tetrachloride	5	ND
Chlorobenzene	5	ND
Chloroethane	5	ND
2-Chloroethylvinyl Ether	5	ND
Chloroform	$7^{(2)(6)}$	ND
Chloromethane	$50^{(2)(6)}$	ND
Dibromochloromethane	$50^{(2)(6)}$	ND
1,2-Dichlorobenzene	4.7	ND
1,3-Dichlorobenzene	5	ND
1,4-Dichlorobenzene	4.7	ND
1,1-Dichloroethane	0.4	ND
1,2-Dichloroethane	5	ND
1,1-Dichloroethene	5	ND
1,2-Dichloroethene (total) (3)	5	ND
1,2-Dichloropropane	0.5	ND
cis-1,3-Dichloropropene	$0.4^{(4)}$	ND
trans-1,3-Dichloropropene	$0.4^{(4)}$	ND
Ethylbenzene	5	ND
Methylene Chloride	4.7	ND
1,1,2,2-Tetrachloroethane	1.8	ND
Tetrachloroethene	5	ND
Toluene	5	0.8 J
1,1,1-Trichloroethane	5	ND
1,1,2-Trichloroethane	5	ND
Trichloroethene	5 5 5	ND
Trichloroflouromethane	5	ND
Vinyl Chloride	2	ND
Xylene (total) Total VOCs (5)	5	ND
	NA	0.8 J
Total SVOCs ⁽⁵⁾	NA	0.0
Lead, unfiltered	25	ND

- VOCs analyzed by EPA Method 8260, SVOCs were analyzes by EPA Method 8270, and lead was analyzed by EPA Method 6010B. The units reported in μ g/L.
- (2) Total of the trihalomethanes not to exceed 100 micrograms/liter. Total value is sum of bromoform, chloroform, dibromochloromethane, and bromodichloromethane.
- (3) 1,2-Dichloroethene is the sum of trans -1,2-dichloroethene and cis-1,2-dichloroethene.
- (4) Total of the cis and trans -1,3-dichloropropene not to exceed 0.40 µg/L.
- (5) Refer to Appendix C for details.
- (6) New York State Ambient Water Quality, June 1998 Criteria.
- ND None Detected.
- NA No applicable standard or guidance value or not analyzed.
- GPC Groundwater Protection Concentration
- J Estimated value.

Table 5
June 2006 Semiannual Groundwater Sampling Analytical Results
Recreation Area and Tank Farm, Chevron, Glenham, NY
Well TF-5

Constituent (1)	GP.G	June 2006
μg/L	GPC	Sampling Event Result
Trihalomethanes (total) (2)	100	ND
Benzene	1.0	ND
Bromodichloromethane	50 ^{(2) (6)}	ND
Bromoform	50 ^{(2) (6)}	ND
Bromomethane	5	ND
Carbon Tetrachloride	5	ND
Chlorobenzene	5	ND
Chloroethane	5	ND
2-Chloroethylvinyl Ether	5	ND
Chloroform	$7^{(2)(6)}$	ND
Chloromethane	5	ND
Dibromochloromethane	50 ^{(2) (6)}	ND
1,2-Dichlorobenzene	4.7	ND
1,3-Dichlorobenzene	5	ND
1,4-Dichlorobenzene	4.7	ND
1,1-Dichloroethane	0.4	ND
1,2-Dichloroethane	5	ND
1,1-Dichloroethene	5	ND
1,2-Dichloroethene (total) (3)	5	ND
1,2-Dichloropropane	0.5	ND
cis-1,3-Dichloropropene	$0.4^{(4)}$	ND
trans-1,3-Dichloropropene	$0.4^{(4)}$	ND
Ethylbenzene	5	ND
Methylene Chloride	4.7	ND
1,1,2,2-Tetrachloroethane	1.8	ND
Tetrachloroethene	5	ND
Toluene	5	ND
1,1,1-Trichloroethane	5	ND
1,1,2-Trichloroethane	5	ND
Trichloroethene	5	ND
Trichloroflouromethane	5	ND
Vinyl Chloride	2 5	ND
Xylene (total)		ND
Total VOCs (5)	NA	0.0
Total SVOCs ⁽⁵⁾	NA	0.0
Lead, unfiltered	25	ND

- (1) VOCs analyzed by EPA Method 8260, SVOCs were analyzes by EPA Method 8270, and lead was analyzed by EPA Method 6010B. The units reported in μ g/L.
- (2) Total of the trihalomethanes not to exceed 100 micrograms/liter. Total value is sum of bromoform, chloroform, dibromochloromethane, and bromodichloromethane.
- (3) 1,2-Dichloroethene is the sum of trans -1,2-dichloroethene and cis-1,2-dichloroethene.
- (4) Total of the cis and trans -1,3-dichloropropene not to exceed 0.40 µg/L.
- (5) Refer to Appendix C for details.
- (6) New York State Ambient Water Quality, June 1998 Criteria.
- ND None Detected
- NA No applicable standard or guidance value or not analyzed.
- GPC Groundwater Protection Concentration.

Table 6
June 2006 Semiannual Groundwater Sampling Analytical Results
Recreation Area and Tank Farm, Chevron, Glenham, NY
Well TF-23

Constituent (1)	GPC	June 2006
μg/L		Sampling Event Result
Trihalomethanes (total) (2)	100	ND
Benzene	1.0	ND
Bromodichloromethane	$50^{(2)(6)}$ $50^{(2)(6)}$	ND
Bromoform		ND
Bromomethane	5	ND
Carbon Tetrachloride	5	ND
Chlorobenzene	5	ND
Chloroethane	5	ND
2-Chloroethylvinyl Ether	$\frac{5}{7^{(2)(6)}}$	ND
Chloroform	7(2)(0)	ND
Chloromethane	5	ND
Dibromochloromethane	50 ^{(2) (6)}	ND
1,2-Dichlorobenzene	4.7	ND
1,3-Dichlorobenzene	5	ND
1,4-Dichlorobenzene	4.7	ND
1,1-Dichloroethane	0.4	ND
1,2-Dichloroethane	5	ND
1,1-Dichloroethene	5	ND
1,2-Dichloroethene (total) (3)	5	ND
1,2-Dichloropropane	0.5	ND
cis-1,3-Dichloropropene	$0.4^{(4)}$	ND
trans-1,3-Dichloropropene	$0.4^{(4)}$	ND
Ethylbenzene	5	ND
Methylene Chloride	4.7	ND
1,1,2,2-Tetrachloroethane	1.8	ND
Tetrachloroethene	5	ND
Toluene	5	ND
1,1,1-Trichloroethane	5	ND
1,1,2-Trichloroethane	5	ND
Trichloroethene	5	ND
Trichloroflouromethane	5	ND
Vinyl Chloride	2 5	ND
Xylene (total)	5	ND
Total VOCs (5)	NA	0.0
Total SVOCs ⁽⁵⁾	NA	0.0
Lead, unfiltered	25	ND

- VOCs analyzed by EPA Method 8260, SVOCs were analyzes by EPA Method 8270, and lead was analyzed by EPA Method 6010B. The units reported in μg/L.
- (2) Total of the trihalomethanes not to exceed 100 micrograms/liter. Total value is sum of bromoform, chloroform, dibromochloromethane, and bromodichloromethane.
- (3) 1,2-Dichloroethene is the sum of trans -1,2-dichloroethene and cis-1,2-dichloroethene.
- (4) Total of the cis and trans -1,3-dichloropropene not to exceed 0.40 µg/L.
- (5) Refer to Appendix C for details.
- (6) New York State Ambient Water Quality, June 1998 Criteria.
- ND None Detected.
- NA No applicable standard or guidance value or not analyzed.
- GPC Groundwater Protection Concentration.

Table 7
June 2006 Semiannual Groundwater Sampling Analytical Results
Recreation Area and Tank Farm, Chevron, Glenham, NY
Well DB-8A

Constituent (1)	Well DD-0A	T 2006
μg/L	GPC	June 2006
		Sampling Event Result
Trihalomethanes (total) (2)	100	ND
Benzene	1.0	ND
Bromodichloromethane	50(2)(6)	ND
Bromoform	$50^{(2)(6)}$	ND
Bromomethane	5	ND
Carbon Tetrachloride	5	ND
Chlorobenzene	5	ND
Chloroethane	5	ND
2-Chloroethylvinyl Ether	5	ND
Chloroform	$7^{(2)(6)}$	ND
Chloromethane	5	ND
Dibromochloromethane	50 ^{(2) (6)}	ND
1,2-Dichlorobenzene	4.7	ND
1,3-Dichlorobenzene	5	ND
1,4-Dichlorobenzene	4.7	ND
1,1-Dichloroethane	0.4	ND
1,2-Dichloroethane	5	ND
1,1-Dichloroethene	5	ND
1,2-Dichloroethene (total) (3)	5	ND
1,2-Dichloropropane	0.5	ND
cis-1,3-Dichloropropene	$0.4^{(4)}$	ND
trans-1,3-Dichloropropene	$0.4^{(4)}$	ND
Ethylbenzene	5	ND
Methylene Chloride	4.7	ND
1,1,2,2-Tetrachloroethane	1.8	ND
Tetrachloroethene	5	ND
Toluene	5	ND
1,1,1-Trichloroethane	5	ND
1,1,2-Trichloroethane	5	ND
Trichloroethene	5	13.0
Trichloroflouromethane	5	NA
Vinyl Chloride	2	ND
Xylene (total)	5	ND
Total VOCs (5)	NA	13.0
Total SVOCs ⁽⁵⁾	NA	0.0
Leads, unfiltered	25	ND

- VOCs analyzed by EPA Method 8260, SVOCs were analyzes by EPA Method 8270, and lead was analyzed by EPA Method 6010B. The units reported in μg/L.
- (2) Total of the trihalomethanes not to exceed 100 micrograms/liter. Total value is sum of bromoform, chloroform, dibromochloromethane, and bromodichloromethane.
- (3) 1,2-Dichloroethene is the sum of trans -1,2-dichloroethene and cis-1,2-dichloroethene.
- (4) Total of the cis and trans -1,3-dichloropropene not to exceed 0.40 µg/L.
- (5) Refer to Appendix C for details.
- New York State Ambient Water Quality, June 1998 Criteria.
- ND None Detected.
- NA No applicable standard or guidance value or not analyzed.
- GPC Groundwater Protection Concentration.
- **BOLD** Concentrations exceed GPC.

Table 8
June 2006 Semiannual Groundwater Sampling Analytical Results
Recreation Area and Tank Farm, Chevron, Glenham, NY
Well DC-108A

(Duplicate Sample of Monitoring Well DC-8A)

(Duplicate Sample of Monitoring Well DC-8A)			
Constituent (1)	GPC	June 2006	
μg/L		Sampling Event Result	
Trihalomethanes (total) (2)	100	ND	
Benzene	1.0	ND	
Bromodichloromethane	50 ^{(2) (6)}	ND	
Bromoform	50 ^{(2) (6)}	ND	
Bromomethane	5	ND	
Carbon Tetrachloride	5	ND	
Chlorobenzene	5	ND	
Chloroethane	5	ND	
2-Chloroethylvinyl Ether	5	ND	
Chloroform	$7^{(2)(6)}$	ND	
Chloromethane	5	ND	
Dibromochloromethane	50 ^{(2) (6)}	ND	
1,2-Dichlorobenzene	4.7	ND	
1,3-Dichlorobenzene	5	ND	
1,4-Dichlorobenzene	4.7	ND	
1,1-Dichloroethane	0.4	ND	
1,2-Dichloroethane	5	ND	
1,1-Dichloroethene	5	ND	
1,2-Dichloroethene (total) (3)	5	ND	
1,2-Dichloropropane	0.5	ND	
cis-1,3-Dichloropropene	$0.4^{(4)}$	ND	
trans-1,3-Dichloropropene	$0.4^{(4)}$	ND	
Ethylbenzene	5	ND	
Methylene Chloride	4.7	ND	
1,1,2,2-Tetrachloroethane	1.8	ND	
Tetrachloroethene	5	ND	
Toluene	5	ND	
1,1,1-Trichloroethane	5	ND	
1,1,2-Trichloroethane	5	ND	
Trichloroethene	5	14.0	
Trichloroflouromethane	5	ND	
Vinyl Chloride	2	ND	
Xylene (total)	5	ND	
Total VOCs (5)	NA	14.0	
Total SVOCs ⁽⁵⁾	NA	0.0	
Lead, unfiltered	25	ND	

- (1) VOCs analyzed by EPA Method 8260, SVOCs were analyzes by EPA Method 8270, and lead was analyzed by EPA Method 6010B. The units reported in μ g/L.
- (2) Total of the trihalomethanes not to exceed 100 micrograms/liter. Total value is sum of bromoform, chloroform, dibromochloromethane, and bromodichloromethane.
- (3) 1,2-Dichloroethene is the sum of trans -1,2-dichloroethene and cis-1,2-dichloroethene.
- (4) Total of the cis and trans -1,3-dichloropropene not to exceed 0.40 µg/L.
- (5) Refer to Appendix C for details.
- (6) New York State Ambient Water Quality, June 1998 Criteria.
- ND None Detected.
- NA No applicable standard or guidance value or not analyzed.
- GPC Groundwater Protection Concentration. (Standard Value)
- **BOLD** Concentrations exceed GPC.

Table 9
June 2006 Semiannual Groundwater Sampling Analytical Results
Recreation Area and Tank Farm, Chevron, Glenham, NY
Well DB-17

Constituent (1)		June 2006
μg/L	GPC	Sampling Event Result
Trihalomethanes (total) (2)	100	ND
Benzene	1.0	ND
Bromodichloromethane	50 ^{(2) (6)}	ND
Bromoform	50 ^{(2) (6)}	ND
Bromomethane	5	ND
Carbon Tetrachloride	5	ND
Chlorobenzene	5 5	ND
Chloroethane		ND
2-Chloroethylvinyl Ether	5	ND
Chloroform	$7^{(2)(6)}$	ND
Chloromethane	5	ND
Dibromochloromethane	50 ^{(2) (6)}	ND
1,2-Dichlorobenzene	4.7	ND
1,3-Dichlorobenzene	5	ND
1,4-Dichlorobenzene	4.7	ND
1,1-Dichloroethane	0.4	ND
1,2-Dichloroethane	5	ND
1,1-Dichloroethene	5	ND
1,2-Dichloroethene (total) (3)	5	ND
1,2-Dichloropropane	0.5	ND
cis-1,3-Dichloropropene	$0.4^{(4)}$	ND
trans-1,3-Dichloropropene	$0.4^{(4)}$	ND
Ethylbenzene	5	ND
Methylene Chloride	4.7	ND
1,1,2,2-Tetrachloroethane	1.8	ND
Tetrachloroethene	5	ND
Toluene	5	ND
1,1,1-Trichloroethane	5 5	ND
1,1,2-Trichloroethane		ND
Trichloroethene	5 5	ND
Trichloroflouromethane		ND
Vinyl Chloride	2	ND
Xylene (total)	5	ND
Total VOCs (5)	NA	0
Total SVOCs ⁽⁵⁾	NA	0.0
Lead, unfiltered	25	ND

- (1) VOCs analyzed by EPA Method 8260, SVOCs were analyzes by EPA Method 8270, and lead was analyzed by EPA Method 6010B. The units reported in µg/L.
- (2) Total of the trihalomethanes not to exceed 100 micrograms/liter. Total value is sum of bromoform, chloroform, dibromochloromethane, and bromodichloromethane.
- (3) 1,2-Dichloroethene is the sum of trans -1,2-dichloroethene and cis-1,2-dichloroethene.
- Total of the cis and trans -1,3-dichloropropene not to exceed $0.40 \mu g/L$.
- (5) Refer to Appendix C for details.
- (6) New York State Ambient Water Quality, June 1998 Criteria.
- ND None Detected.
- NA No applicable standard or guidance value or not analyzed.
- GPC Groundwater Protection Concentration.

Table 10 June 2006 Semiannual Groundwater Sampling Analytical Results Recreation Area and Tank Farm, Chevron, Glenham, NY Well OS-2

Constituent (1)	GPC	June 2006
μg/L	GrC	Sampling Event Result
Trihalomethanes (total) (2)	100	ND
Benzene	1.0	ND
Bromodichloromethane	50 ^{(2) (6)}	ND
Bromoform	50 ^{(2) (6)}	ND
Bromomethane	5	ND
Carbon Tetrachloride	5	ND
Chlorobenzene	5	ND
Chloroethane	5	ND
2-Chloroethylvinyl Ether	5	ND
Chloroform	$7^{(2)(6)}$	ND
Chloromethane	5	ND
Dibromochloromethane	50 ^{(2) (6)}	ND
1,2-Dichlorobenzene	4.7	ND
1,3-Dichlorobenzene	5	ND
1,4-Dichlorobenzene	4.7	ND
1,1-Dichloroethane	0.4	ND
1,2-Dichloroethane	5	ND
1,1-Dichloroethene	5	ND
1,2-Dichloroethene (total) (3)	5	ND
1,2-Dichloropropane	0.5	ND
cis-1,3-Dichloropropene	$0.4^{(4)}$	ND
trans-1,3-Dichloropropene	$0.4^{(4)}$	ND
Ethylbenzene	5	ND
Methylene Chloride	4.7	ND
1,1,2,2-Tetrachloroethane	1.8	ND
Tetrachloroethene	5	ND
Toluene	5	ND
1,1,1-Trichloroethane	5	ND
1,1,2-Trichloroethane	5	ND
Trichloroethene	5	ND
Trichloroflouromethane	5	ND
Vinyl Chloride	2	ND
Xylene (total)	5	ND
Total VOCs (5)	NA	0.0
Total SVOCs ⁽⁵⁾	NA	0.0
Lead, unfiltered	25	ND

- VOCs analyzed by EPA Method 8260, SVOCs were analyzes by EPA Method 8270, and lead was analyzed by EPA Method 6010B. The units reported in $\mu g/L$. (1)
- Total of the trihalomethanes not to exceed 100 micrograms/liter. Total value is sum of bromoform, (2) chloroform, dibromochloromethane, and bromodichloromethane.
- 1,2-Dichloroethene is the sum of trans -1,2-dichloroethene and cis-1,2-dichloroethene. (3)
- Total of the cis and trans -1,3-dichloropropene not to exceed 0.40 µg/L. Refer to Appendix C for details.

 New York State Ambient Water Quality, June 1998 Criteria. (4)
- (5)
- (6)
- ND None Detected.
- NA No applicable standard or guidance value or not analyzed.
- **GPC** Groundwater Protection Concentration.

Table 11 June 2006 Semiannual Groundwater Sampling Analytical Results Recreation Area and Tank Farm, Chevron, Glenham, NY Well OR-2

Constituent (1)	GPC	June 2006
μg/L	GPC	Sampling Event Result
Trihalomethanes (total) (2)	100	ND
Benzene	1.0	ND
Bromodichloromethane	50 ^{(2) (6)}	ND
Bromoform	$50^{(2)(6)}$	ND
Bromomethane	5	ND
Carbon Tetrachloride	5	ND
Chlorobenzene	5	ND
Chloroethane	5	ND
2-Chloroethylvinyl Ether	5	ND
Chloroform	7 ⁽²⁾⁽⁶⁾	ND
Chloromethane	$50^{(2)(6)}$	ND
Dibromochloromethane	$50^{(2)(6)}$	ND
1,2-Dichlorobenzene	4.7	ND
1,3-Dichlorobenzene	5	ND
1,4-Dichlorobenzene	4.7	ND
1,1-Dichloroethane	0.4	ND
1,2-Dichloroethane	5	ND
1,1-Dichloroethene	5	ND
1,2-Dichloroethene (total) (3)	5	ND
1,2-Dichloropropane	0.5	ND
cis-1,3-Dichloropropene	$0.4^{(4)}$	ND
trans-1,3-Dichloropropene	$0.4^{(4)}$	ND
Ethylbenzene	5	ND
Methylene Chloride	4.7	ND
1,1,2,2-Tetrachloroethane	1.8	ND
Tetrachloroethene	5	ND
Toluene	5	ND
1,1,1-Trichloroethane	5	ND
1,1,2-Trichloroethane	5	ND
Trichloroethene	5	ND
Trichloroflouromethane	5	ND
Vinyl Chloride	2	ND
Xylene (total)	5	ND
Total VOCs (5)	NA	0.0
Total SVOCs ⁽⁵⁾	NA	0.0
Lead, unfiltered	25	ND

- VOCs analyzed by EPA Method 8260, SVOCs were analyzes by EPA Method 8270, and lead was (1) analyzed by EPA Method 6010B. The units reported in µg/L.
- Total of the trihalomethanes not to exceed 100 micrograms/liter. Total value is sum of bromoform, (2) chloroform, dibromochloromethane, and bromodichloromethane.
- 1,2-Dichloroethene is the sum of trans -1,2-dichloroethene and cis-1,2-dichloroethene.
- (4) Total of the cis and trans -1,3-dichloropropene not to exceed 0.40 $\mu g/L$.
- (5)
- Refer to Appendix C for details. New York State Ambient Water Quality, June 1998 Criteria. (6)
- None Detected. ŇĎ
- NA No applicable standard or guidance value or not analyzed.
- **GPC** Groundwater Protection Concentration.

Table 12
June 2006 Semiannual Groundwater Sampling Analytical Results
Recreation Area and Tank Farm, Chevron, Glenham, NY
Well OS-3

Constituent (1)		June 2006
μg/L	GPC	Sampling Event Result
Trihalomethanes (total) (2)	100	ND
Benzene	1.0	ND
Bromodichloromethane	50 ^{(2) (6)}	ND
Bromoform	50 ^{(2) (6)}	ND
Bromomethane	5	ND
Carbon Tetrachloride	5	ND
Chlorobenzene	5 5	ND
Chloroethane	5	ND
2-Chloroethylvinyl Ether	5	ND
Chloroform	$7^{(2)(6)}$	ND
Chloromethane	5	ND
Dibromochloromethane	50 ^{(2) (6)}	ND
1,2-Dichlorobenzene	4.7	ND
1,3-Dichlorobenzene	5	ND
1,4-Dichlorobenzene	4.7	ND
1,1-Dichloroethane	0.4	ND
1,2-Dichloroethane	5	ND
1,1-Dichloroethene	5	ND
1,2-Dichloroethene (total) (3)	5	ND
1,2-Dichloropropane	0.5	ND
cis-1,3-Dichloropropene	$0.4^{(4)}$	ND
trans-1,3-Dichloropropene	$0.4^{(4)}$	ND
Ethylbenzene	5	ND
Methylene Chloride	4.7	ND
1,1,2,2-Tetrachloroethane	1.8	ND
Tetrachloroethene	5	ND
Toluene	5 5 5	ND
1,1,1-Trichloroethane	5	ND
1,1,2-Trichloroethane	5	ND
Trichloroethene	5	ND
Trichloroflouromethane	5 5 2 5	ND
Vinyl Chloride	2	ND
Xylene (total)	-	ND
Total VOCs (5)	NA	0.0
Total SVOCs ⁽⁵⁾	NA	0.0
Lead, unfiltered	25	ND

- (1) VOCs analyzed by EPA Method 8260, SVOCs were analyzes by EPA Method 8270, and lead was analyzed by EPA Method 6010B. The units reported in μg/L.
- (2) Total of the trihalomethanes not to exceed 100 micrograms/liter. Total value is sum of bromoform, chloroform, dibromochloromethane, and bromodichloromethane.
- (3) 1,2-Dichloroethene is the sum of trans -1,2-dichloroethene and cis-1,2-dichloroethene.
- (4) Total of the cis and trans -1,3-dichloropropene not to exceed 0.40 μ g/L.
- (5) Refer to Appendix C for details.
- (6) New York State Ambient Water Quality, June 1998 Criteria.
- ND None Detected.
- NA No applicable standard or guidance value or not analyzed.
- GPC Groundwater Protection Concentration.

Table 13 June 2006 Semiannual Groundwater Sampling Analytical Results Recreation Area and Tank Farm, Chevron, Glenham, NY Well OR-3

	Well OK-3			
Constituent (1) µg/L	GPC	June 2006 Sampling Event Result		
Trihalomethanes (total) (2)	100	ND		
Benzene	1.0	ND		
Bromodichloromethane	50 ^{(2) (6)}	ND		
Bromoform	50 ^{(2) (6)}	ND		
Bromomethane	5	ND		
Carbon Tetrachloride	5	ND		
Chlorobenzene	5	ND		
Chloroethane	5	ND		
2-Chloroethylvinyl Ether	$\frac{5}{7^{(2)(6)}}$	ND		
Chloroform	$7^{(2)(6)}$	ND		
Chloromethane	5	ND		
Dibromochloromethane	50 ^{(2) (6)}	ND		
1,2-Dichlorobenzene	4.7	ND		
1,3-Dichlorobenzene	5	ND		
1,4-Dichlorobenzene	4.7	ND		
1,1-Dichloroethane	0.4	ND		
1,2-Dichloroethane	5	ND		
1,1-Dichloroethene	5	ND		
1,2-Dichloroethene (total) (3)	5	ND		
1,2-Dichloropropane	0.5	ND		
cis-1,3-Dichloropropene	$0.4^{(4)}$	ND		
trans-1,3-Dichloropropene	$0.4^{(4)}$	ND		
Ethylbenzene	5	ND		
Methylene Chloride	4.7	ND		
1,1,2,2-Tetrachloroethane	1.8	ND		
Tetrachloroethene	5	ND		
Toluene	5	ND		
1,1,1-Trichloroethane	5	ND		
1,1,2-Trichloroethane	5	ND		
Trichloroethene	5 5 5 5 5	ND		
Trichloroflouromethane	5	ND		
Vinyl Chloride	2 5	ND		
Xylene (total)		ND		
Total VOCs (5)	NA	0.0		
Total SVOCs ⁽⁵⁾	NA	0.0		
Lead, unfiltered	25	ND		

- (1) VOCs analyzed by EPA Method 8260, SVOCs were analyzes by EPA Method 8270, and lead was analyzed by EPA Method 6010B. The units reported in μ g/L.
- Total of the trihalomethanes not to exceed 100 micrograms/liter. Total value is sum of bromoform, (2) chloroform, dibromochloromethane, and bromodichloromethane.
- 1,2-Dichloroethene is the sum of trans -1,2-dichloroethene and cis-1,2-dichloroethene. (3)
- Total of the cis and trans -1,3-dichloropropene not to exceed 0.40 µg/L. (4)
- (5)
- Refer to Appendix C for details.

 New York State Ambient Water Quality, June 1998 Criteria. (6)
- ŇĎ None Detected.
- NA No applicable standard or guidance value or not analyzed.
- **GPC** Groundwater Protection Concentration.

Table 14 November 2006 Semiannual Groundwater Sampling Analytical Results Recreation Area and Tank Farm, Chevron, Glenham, NY Well DC-1

Constituent (1)	GPC	November 2006
μg/L	GPC	Sampling Event Result
Trihalomethanes (total) (2)	100	ND
Benzene	1.0	ND
Bromodichloromethane	50 ⁽²⁾ (6)	ND
Bromoform	50 ^{(2) (6)}	ND
Bromomethane	5 5	ND
Carbon Tetrachloride	5	ND
Chlorobenzene	5	ND
Chloroethane	5	ND
2-Chloroethylvinyl Ether	$ \begin{array}{c} 5 \\ 7^{(2)(6)} \end{array} $	ND
Chloroform		ND
Chloromethane	$50^{(2)(6)}$	ND
Dibromochloromethane		ND
1,2-Dichlorobenzene	4.7	ND
1,3-Dichlorobenzene	5	ND
1,4-Dichlorobenzene	4.7	ND
1,1-Dichloroethane	0.4	ND
1,2-Dichloroethane	5	ND
1,1-Dichloroethene	5	ND
1,2-Dichloroethene (total) (3)	5	7.0
1,2-Dichloropropane	0.5	ND
cis-1,3-Dichloropropene	$0.4^{(4)}$	ND
trans-1,3-Dichloropropene	$0.4^{(4)}$	ND
Ethylbenzene	5	ND
Methylene Chloride	4.7	ND
1,1,2,2-Tetrachloroethane	1.8	ND
Tetrachloroethene	5	ND
Toluene	5	ND
1,1,1-Trichloroethane	5	ND
1,1,2-Trichloroethane	5	ND
Trichloroethene	5	12.0
Trichloroflouromethane	5	NA
Vinyl Chloride	2	ND
Xylene (total) Total VOCs (5)	5	ND
	NA	19.0
Total SVOCs ⁽⁵⁾	NA	0.0
Lead, unfiltered	25	7.1 J

- VOCs analyzed by EPA Method 8260, SVOCs were analyzes by EPA Method 8270, and lead was analyzed by EPA Method 6010B. The units reported in μg/L.
- (2) Total of the trihalomethanes not to exceed 100 micrograms/liter. Total value is sum of bromoform, chloroform, dibromochloromethane, and bromodichloromethane.
- (3) 1,2-Dichloroethene is the sum of trans -1,2-dichloroethene and cis-1,2-dichloroethene.
- Total of the cis and trans -1,3-dichloropropene not to exceed 0.40 μ g/L.
- (5) Refer to Appendix C for details.
- (6) New York State Ambient Water Quality, June 1998 Criteria.
- ND None Detected.
- NA No applicable standard or guidance value or not analyzed.
- GPC Groundwater Protection Concentration.
- **BOLD** Concentrations exceed GPC.
- J Estimated value.

Table 15 November 2006 Semiannual Groundwater Sampling Analytical Results Recreation Area and Tank Farm, Chevron, Glenham, NY Well DC-2

Constituent (1)	GPC	November 2006
μg/L	GPC	Sampling Event Result
Trihalomethanes (total) (2)	100	ND
Benzene	1.0	ND
Bromodichloromethane	$50^{(2)}$ (6)	ND
Bromoform	50 ^{(2) (6)}	ND
Bromomethane	5	ND
Carbon Tetrachloride	5	ND
Chlorobenzene	5	ND
Chloroethane	5	ND
2-Chloroethylvinyl Ether	$ \begin{array}{c} 5 \\ 7^{(2)(6)} \end{array} $	ND
Chloroform	$7^{(2)(6)}$	ND
Chloromethane	5	ND
Dibromochloromethane	$50^{(2)(6)}$	ND
1,2-Dichlorobenzene	4.7	ND
1,3-Dichlorobenzene	5	ND
1,4-Dichlorobenzene	4.7	ND
1,1-Dichloroethane	0.4	ND
1,2-Dichloroethane	5	ND
1,1-Dichloroethene	5	ND
1,2-Dichloroethene (total) (3)	5	ND
1,2-Dichloropropane	0.5	ND
cis-1,3-Dichloropropene	$0.4^{(4)}$	ND
trans-1,3-Dichloropropene	$0.4^{(4)}$	ND
Ethylbenzene	5	ND
Methylene Chloride	4.7	ND
1,1,2,2-Tetrachloroethane	1.8	ND
Tetrachloroethene	5	ND
Toluene	5	ND
1,1,1-Trichloroethane	5	ND
1,1,2-Trichloroethane	5	ND
Trichloroethene	5	ND
Trichloroflouromethane	5	ND
Vinyl Chloride	2	ND
Xylene (total)	5	ND
Total VOCs (5)	NA	0.0
Total SVOCs ⁽⁵⁾	NA	0.0
Lead, unfiltered	25	ND

- VOCs analyzed by EPA Method 8260, SVOCs were analyzes by EPA Method 8270, and lead was analyzed by EPA Method 6010B. The units reported in μg/L.
- (2) Total of the trihalomethanes not to exceed 100 micrograms/liter. Total value is sum of bromoform, chloroform, dibromochloromethane, and bromodichloromethane.
- (3) 1,2-Dichloroethene is the sum of trans -1,2-dichloroethene and cis-1,2-dichloroethene.
- (4) Total of the cis and trans -1,3-dichloropropene not to exceed 0.40 µg/L.
- (5) Refer to Appendix C for details.
- (6) New York State Ambient Water Quality, June 1998 Criteria.
- ND None Detected.
- NA No applicable standard or guidance value or not analyzed.
- GPC Groundwater Protection Concentration.

Table 16 November 2006 Semiannual Groundwater Sampling Analytical Results Recreation Area and Tank Farm, Chevron, Glenham, NY Well TF-5

(1)		
Constituent (1) µg/L	GPC	November 2006
	100	Sampling Event Result
Trihalomethanes (total) (2)	100	ND
Benzene	1.0 50 ^{(2) (6)}	ND
Bromodichloromethane	50 ^{(2) (6)}	ND
Bromoform		ND
Bromomethane	5	ND
Carbon Tetrachloride	5	ND
Chlorobenzene	5	ND
Chloroethane	5	ND
2-Chloroethylvinyl Ether	$\frac{5}{7^{(2)(6)}}$	ND
Chloroform	$7^{(2)(0)}$	ND
Chloromethane	5	ND
Dibromochloromethane	50 ^{(2) (6)}	ND
1,2-Dichlorobenzene	4.7	ND
1,3-Dichlorobenzene	5	ND
1,4-Dichlorobenzene	4.7	ND
1,1-Dichloroethane	0.4	ND
1,2-Dichloroethane	5	ND
1,1-Dichloroethene	5	ND
1,2-Dichloroethene (total) (3)	5	ND
1,2-Dichloropropane	0.5	ND
cis-1,3-Dichloropropene	$0.4^{(4)}$	ND
trans-1,3-Dichloropropene	$0.4^{(4)}$	ND
Ethylbenzene	5	ND
Methylene Chloride	4.7	ND
1,1,2,2-Tetrachloroethane	1.8	ND
Tetrachloroethene	5	ND
Toluene	5	ND
1,1,1-Trichloroethane	5	ND
1,1,2-Trichloroethane	5	ND
Trichloroethene	5	ND
Trichloroflouromethane	5	ND
Vinyl Chloride	2	ND
Xylene (total)	5	ND
Total VOCs (5)	NA	0.0
Total SVOCs ⁽⁵⁾	NA	0.0
Lead, unfiltered	25	8.3 J

- VOCs analyzed by EPA Method 8260, SVOCs were analyzes by EPA Method 8270, and lead was analyzed by EPA Method 6010B. The units reported in μg/L.
- (2) Total of the trihalomethanes not to exceed 100 micrograms/liter. Total value is sum of bromoform, chloroform, dibromochloromethane, and bromodichloromethane.
- (3) 1,2-Dichloroethene is the sum of trans -1,2-dichloroethene and cis-1,2-dichloroethene.
- (4) Total of the cis and trans -1,3-dichloropropene not to exceed 0.40 µg/L.
- (5) Refer to Appendix C for details.
- (6) New York State Ambient Water Quality, June 1998 Criteria.
- ND None Detected.
- NA No applicable standard or guidance value or not analyzed.
- GPC Groundwater Protection Concentration.
- J Estimated value.

Table 17 November 2006 Semiannual Groundwater Sampling Analytical Results Recreation Area and Tank Farm, Chevron, Glenham, NY **Well TF-105**

(Duplicate Sample of Monitoring Well TF-5)

	pie of Monitoring	
Constituent (1)	GPC	November 2006
μg/L		Sampling Event Result
Trihalomethanes (total) (2)	100	ND
Benzene	1.0	ND
Bromodichloromethane	50(2)(6)	ND
Bromoform	50 ^{(2) (6)}	ND
Bromomethane	5	ND
Carbon Tetrachloride	5	ND
Chlorobenzene	5	ND
Chloroethane	5	ND
2-Chloroethylvinyl Ether	5	ND
Chloroform	$7^{(2)(6)}$	ND
Chloromethane	5	ND
Dibromochloromethane	50 ^{(2) (6)}	ND
1,2-Dichlorobenzene	4.7	ND
1,3-Dichlorobenzene	5	ND
1,4-Dichlorobenzene	4.7	ND
1,1-Dichloroethane	0.4	ND
1,2-Dichloroethane	5	ND
1,1-Dichloroethene	5	ND
1,2-Dichloroethene (total) (3)	5	ND
1,2-Dichloropropane	0.5	ND
cis-1,3-Dichloropropene	$0.4^{(4)}$	ND
trans-1,3-Dichloropropene	$0.4^{(4)}$	ND
Ethylbenzene	5	ND
Methylene Chloride	4.7	ND
1,1,2,2-Tetrachloroethane	1.8	ND
Tetrachloroethene	5	ND
Toluene	5	ND
1,1,1-Trichloroethane	5	ND
1,1,2-Trichloroethane	5	ND
Trichloroethene	5	ND
Trichloroflouromethane	5 5 5 5 2 5	ND
Vinyl Chloride	2	ND
Xylene (total)		ND
Total VOCs (5)	NA	0.0
Total SVOCs ⁽⁵⁾	NA	0.0
Lead, unfiltered	25	7.0 J

- VOCs analyzed by EPA Method 8260, SVOCs were analyzes by EPA Method 8270, and lead was (1) analyzed by EPA Method 6010B. The units reported in µg/L.
- Total of the trihalomethanes not to exceed 100 micrograms/liter. Total value is sum of bromoform, (2) chloroform, dibromochloromethane, and bromodichloromethane. 1,2-Dichloroethene is the sum of trans -1,2-dichloroethene and cis-1,2-dichloroethene.
- (3)
- Total of the cis and trans -1,3-dichloropropene not to exceed 0.40 µg/L. (4)
- (5) Refer to Appendix C for details.
- (6) New York State Ambient Water Quality, June 1998 Criteria.
- ND None Detected.
- No applicable standard or guidance value or not analyzed. NA
- Groundwater Protection Concentration. **GPC**
- J Estimated value.

Table 18 November 2006 Semiannual Groundwater Sampling Analytical Results Recreation Area and Tank Farm, Chevron, Glenham, NY Well TF-23

Well IT-23			
Constituent (1) µg/L	GPC	November 2006	
		Sampling Event Result	
Trihalomethanes (total) (2)	100	ND	
Benzene	1.0	ND	
Bromodichloromethane	50(2)(6)	ND	
Bromoform	50 ^{(2) (6)}	ND	
Bromomethane	5	ND	
Carbon Tetrachloride	5	ND	
Chlorobenzene	5	ND	
Chloroethane	5	ND	
2-Chloroethylvinyl Ether	5	ND	
Chloroform	$7^{(2)(6)}$	ND	
Chloromethane	5	ND	
Dibromochloromethane	50 ^{(2) (6)}	ND	
1,2-Dichlorobenzene	4.7	ND	
1,3-Dichlorobenzene	5	ND	
1,4-Dichlorobenzene	4.7	ND	
1,1-Dichloroethane	0.4	ND	
1,2-Dichloroethane	5	ND	
1,1-Dichloroethene	5	ND	
1,2-Dichloroethene (total) (3)	5	ND	
1,2-Dichloropropane	0.5	ND	
cis-1,3-Dichloropropene	$0.4^{(4)}$	ND	
trans-1,3-Dichloropropene	$0.4^{(4)}$	ND	
Ethylbenzene	5	ND	
Methylene Chloride	4.7	ND	
1,1,2,2-Tetrachloroethane	1.8	ND	
Tetrachloroethene	5	ND	
Toluene	5	ND	
1,1,1-Trichloroethane	5	ND	
1,1,2-Trichloroethane	5	ND	
Trichloroethene	5	ND	
Trichloroflouromethane	5	ND	
Vinyl Chloride	2	ND	
Xylene (total)	5	ND	
Total VOCs (5)	NA	0.0	
Total SVOCs ⁽⁵⁾	NA	0.0	
Leads, unfiltered	25	ND	

- VOCs analyzed by EPA Method 8260, SVOCs were analyzes by EPA Method 8270, and lead was analyzed by EPA Method 6010B. The units reported in μg/L.
- (2) Total of the trihalomethanes not to exceed 100 micrograms/liter. Total value is sum of bromoform, chloroform, dibromochloromethane, and bromodichloromethane.
- (3) 1,2-Dichloroethene is the sum of trans -1,2-dichloroethene and cis-1,2-dichloroethene.
- (4) Total of the cis and trans -1,3-dichloropropene not to exceed 0.40 µg/L.
- (5) Refer to Appendix C for details.
- (6) New York State Ambient Water Quality, June 1998 Criteria.
- ND None Detected.
- NA No applicable standard or guidance value or not analyzed.
- GPC Groundwater Protection Concentration.

Table 19 November 2006 Semiannual Groundwater Sampling Analytical Results Recreation Area and Tank Farm, Chevron, Glenham, NY Well DB-8A

Constituent (1)		November 2006
μg/L	GPC	Sampling Event Result
Trihalomethanes (total) (2)	100	ND
Benzene	1.0	ND
Bromodichloromethane	50 ^{(2) (6)}	ND
Bromoform	50 ^{(2) (6)}	ND
Bromomethane	5	ND
Carbon Tetrachloride	5	ND
Chlorobenzene	5	ND
Chloroethane	5	ND
2-Chloroethylvinyl Ether	5	ND
Chloroform	$7^{(2)(6)}$	1.0 J
Chloromethane	5	ND
Dibromochloromethane	50 ^{(2) (6)}	ND
1,2-Dichlorobenzene	4.7	ND
1,3-Dichlorobenzene	5	ND
1,4-Dichlorobenzene	4.7	ND
1,1-Dichloroethane	0.4	ND
1,2-Dichloroethane	5	ND
1,1-Dichloroethene	5	ND
1,2-Dichloroethene (total) (3)	5	ND
1,2-Dichloropropane	0.5	ND
cis-1,3-Dichloropropene	$0.4^{(4)}$	ND
trans-1,3-Dichloropropene	$0.4^{(4)}$	ND
Ethylbenzene	5	ND
Methylene Chloride	4.7	ND
1,1,2,2-Tetrachloroethane	1.8	ND
Tetrachloroethene	5	ND
Toluene	5	ND
1,1,1-Trichloroethane	5	ND
1,1,2-Trichloroethane	5	ND
Trichloroethene	5	11.0
Trichloroflouromethane	5	ND
Vinyl Chloride	2	ND
Xylene (total) Total VOCs (5)	5	ND
	NA	12.0
Total SVOCs ⁽⁵⁾	NA 25	6.0
Lead, unfiltered	25	ND

- VOCs analyzed by EPA Method 8260, SVOCs were analyzes by EPA Method 8270, and lead was (1) analyzed by EPA Method 6010B. The units reported in µg/L.
- Total of the trihalomethanes not to exceed 100 micrograms/liter. Total value is sum of bromoform, (2) chloroform, dibromochloromethane, and bromodichloromethane.
- 1,2-Dichloroethene is the sum of trans -1,2-dichloroethene and cis-1,2-dichloroethene.
- Total of the cis and trans -1,3-dichloropropene not to exceed 0.40 µg/L. (4)
- (5)
- Refer to Appendix C for details.

 New York State Ambient Water Quality, June 1998 Criteria. (6)
- ŇĎ None Detected.
- NA No applicable standard or guidance value or not analyzed.
- **GPC** Groundwater Protection Concentration.
- **BOLD** Concentrations exceed GPC.
- Estimated value.

Table 20 November 2006 Semiannual Groundwater Sampling Analytical Results Recreation Area and Tank Farm, Chevron, Glenham, NY Well DB-17

	Well DD-17	
Constituent (1)	GPC	November 2006
μg/L		Sampling Event Result
Trihalomethanes (total) (2)	100	ND
Benzene	1.0	ND
Bromodichloromethane	50(2)(6)	ND
Bromoform	50 ^{(2) (6)}	ND
Bromomethane	5	ND
Carbon Tetrachloride	5	ND
Chlorobenzene	5	ND
Chloroethane	5	ND
2-Chloroethylvinyl Ether	5	ND
Chloroform	$7^{(2)(6)}$	ND
Chloromethane	5	ND
Dibromochloromethane	50 ^{(2) (6)}	ND
1,2-Dichlorobenzene	4.7	ND
1,3-Dichlorobenzene	5	ND
1,4-Dichlorobenzene	4.7	ND
1,1-Dichloroethane	0.4	ND
1,2-Dichloroethane	5	ND
1,1-Dichloroethene	5	ND
1,2-Dichloroethene (total) (3)	5	ND
1,2-Dichloropropane	0.5	ND
cis-1,3-Dichloropropene	$0.4^{(4)}$	ND
trans-1,3-Dichloropropene	$0.4^{(4)}$	ND
Ethylbenzene	5	ND
Methylene Chloride	4.7	ND
1,1,2,2-Tetrachloroethane	1.8	ND
Tetrachloroethene	5	ND
Toluene	5	ND
1,1,1-Trichloroethane	5	ND
1,1,2-Trichloroethane	5	ND
Trichloroethene	5	ND
Trichloroflouromethane	5	ND
Vinyl Chloride	2	ND
Xvlene (total)	5	ND
Total VOCs (5)	NA	0.0
Total SVOCs ⁽⁵⁾	NA	0.0
Lead, unfiltered	25	ND

- (1) VOCs analyzed by EPA Method 8260, SVOCs were analyzes by EPA Method 8270, and lead was analyzed by EPA Method 6010B. The units reported in µg/L.
- (2) Total of the trihalomethanes not to exceed 100 micrograms/liter. Total value is sum of bromoform, chloroform, dibromochloromethane, and bromodichloromethane.
- (3) 1,2-Dichloroethene is the sum of trans -1,2-dichloroethene and cis-1,2-dichloroethene.
- (4) Total of the cis and trans -1,3-dichloropropene not to exceed 0.40 µg/L.
- (5) Refer to Appendix C for details.
- (6) New York State Ambient Water Quality, June 1998 Criteria.
- ND None Detected.
- NA No applicable standard or guidance value or not analyzed.
- GPC Groundwater Protection Concentration.

Table 21 November 2006 Semiannual Groundwater Sampling Analytical Results Recreation Area and Tank Farm, Chevron, Glenham, NY Well OS-2

Constituent (1)	G 77 G	November 2006
μg/L	GPC	Sampling Event Result
Trihalomethanes (total) (2)	100	ND
Benzene	1.0	ND
Bromodichloromethane	50 ^{(2) (6)}	ND
Bromoform	50 ^{(2) (6)}	ND
Bromomethane	5	ND
Carbon Tetrachloride	5	ND
Chlorobenzene	5	ND
Chloroethane	5	ND
2-Chloroethylvinyl Ether	5	ND
Chloroform	$7^{(2)(6)}$	ND
Chloromethane	5	ND
Dibromochloromethane	50 ^{(2) (6)}	ND
1,2-Dichlorobenzene	4.7	ND
1,3-Dichlorobenzene	5	ND
1,4-Dichlorobenzene	4.7	ND
1,1-Dichloroethane	0.4	ND
1,2-Dichloroethane	5	ND
1,1-Dichloroethene	5	ND
1,2-Dichloroethene (total) (3)	5	ND
1,2-Dichloropropane	0.5	ND
cis-1,3-Dichloropropene	$0.4^{(4)}$	ND
trans-1,3-Dichloropropene	$0.4^{(4)}$	ND
Ethylbenzene	5	ND
Methylene Chloride	4.7	ND
1,1,2,2-Tetrachloroethane	1.8	ND
Tetrachloroethene	5	ND
Toluene	5	ND
1,1,1-Trichloroethane	5	ND
1,1,2-Trichloroethane	5	ND
Trichloroethene	5	ND
Trichloroflouromethane	5 2	ND ND
Vinyl Chloride	5	ND
Xylene (total) Total VOCs (5)	5 NA	ND
		0.0
Total SVOCs ⁽⁵⁾	NA	0.0
Lead, unfiltered	25	ND

- (1) VOCs analyzed by EPA Method 8260, SVOCs were analyzes by EPA Method 8270, and lead was analyzed by EPA Method 6010B. The units reported in µg/L.
- (2) Total of the trihalomethanes not to exceed 100 micrograms/liter. Total value is sum of bromoform, chloroform, dibromochloromethane, and bromodichloromethane.
- (3) 1,2-Dichloroethene is the sum of trans -1,2-dichloroethene and cis-1,2-dichloroethene.
- (4) Total of the cis and trans -1,3-dichloropropene not to exceed 0.40 µg/L.
- (5) Refer to Appendix C for details.
- (6) New York State Ambient Water Quality, June 1998 Criteria.
- ND None Detected.
- NA No applicable standard or guidance value or not analyzed.
- GPC Groundwater Protection Concentration.

Table 22 November 2006 Semiannual Groundwater Sampling Analytical Results Recreation Area and Tank Farm, Chevron, Glenham, NY Well OR-2

Constituent (1)	CDC	November 2006
μg/L	GPC	Sampling Event Result
Trihalomethanes (total) (2)	100	ND
Benzene	1.0	ND
Bromodichloromethane	50 ^{(2) (6)}	ND
Bromoform	50 ^{(2) (6)}	ND
Bromomethane	5	ND
Carbon Tetrachloride	5	ND
Chlorobenzene	5	ND
Chloroethane	5	ND
2-Chloroethylvinyl Ether	5	ND
Chloroform	$7^{(2)(6)}$	ND
Chloromethane	$50^{(2)(6)}$	ND
Dibromochloromethane	$50^{(2)(6)}$	ND
1,2-Dichlorobenzene	4.7	ND
1,3-Dichlorobenzene	5	ND
1,4-Dichlorobenzene	4.7	ND
1,1-Dichloroethane	0.4	1.0 J
1,2-Dichloroethane	5	ND
1,1-Dichloroethene	5	ND
1,2-Dichloroethene (total) (3)	5	ND
1,2-Dichloropropane	0.5	ND
cis-1,3-Dichloropropene	$0.4^{(4)}$	ND
trans-1,3-Dichloropropene	$0.4^{(4)}$	ND
Ethylbenzene	5	ND
Methylene Chloride	4.7	ND
1,1,2,2-Tetrachloroethane	1.8	ND
Tetrachloroethene	5	ND
Toluene	5	ND
1,1,1-Trichloroethane	5	ND
1,1,2-Trichloroethane	5	ND
Trichloroethene	5	ND
Trichloroflouromethane	5	ND
Vinyl Chloride	2	ND
Xylene (total)	5	ND
Total VOCs (5)	NA	1.0
Total SVOCs ⁽⁵⁾	NA	0.0
Lead, unfiltered	25	ND

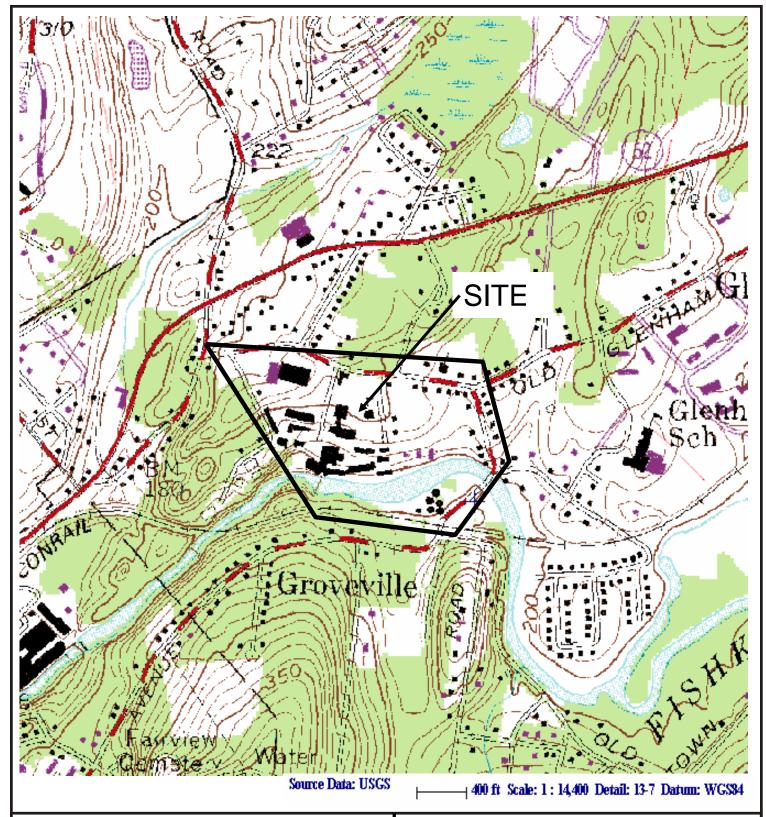
- VOCs analyzed by EPA Method 8260, SVOCs were analyzes by EPA Method 8270, and lead was (1) analyzed by EPA Method 6010B. The units reported in µg/L.
- Total of the trihalomethanes not to exceed 100 micrograms/liter. Total value is sum of bromoform, (2) chloroform, dibromochloromethane, and bromodichloromethane.
- 1,2-Dichloroethene is the sum of trans -1,2-dichloroethene and cis-1,2-dichloroethene.
- (4) Total of the cis and trans -1,3-dichloropropene not to exceed 0.40 $\mu g/L$.
- (5)
- Refer to Appendix C for details.

 New York State Ambient Water Quality, June 1998 Criteria. (6)
- ŇĎ None Detected.
- NA No applicable standard or guidance value or not analyzed.
- **GPC** Groundwater Protection Concentration.
- **BOLD** Concentrations exceed GPC.
- Estimated value.

Table 23 November 2006 Semiannual Groundwater Sampling Analytical Results Recreation Area and Tank Farm, Chevron, Glenham, NY Well OS-3

Constituent (1)	a a-	November 2006
μg/L	GPC	Sampling Event Result
Trihalomethanes (total) (2)	100	ND
Benzene	1.0	ND
Bromodichloromethane	50 ^{(2) (6)}	ND
Bromoform	50 ^{(2) (6)}	ND
Bromomethane	5	ND
Carbon Tetrachloride	5	ND
Chlorobenzene	5 5	ND
Chloroethane		ND
2-Chloroethylvinyl Ether	5	ND
Chloroform	$7^{(2)(6)}$	ND
Chloromethane	5	ND
Dibromochloromethane	50 ^{(2) (6)}	ND
1,2-Dichlorobenzene	4.7	ND
1,3-Dichlorobenzene	5	ND
1,4-Dichlorobenzene	4.7	ND
1,1-Dichloroethane	0.4	ND
1,2-Dichloroethane	5	ND
1,1-Dichloroethene	5	ND
1,2-Dichloroethene (total) (3)	5	ND
1,2-Dichloropropane	0.5	ND
cis-1,3-Dichloropropene	$0.4^{(4)}$	ND
trans-1,3-Dichloropropene	$0.4^{(4)}$	ND
Ethylbenzene	5	ND
Methylene Chloride	4.7	ND
1,1,2,2-Tetrachloroethane	1.8	ND
Tetrachloroethene	5	ND
Toluene	5 5 5	ND
1,1,1-Trichloroethane	5	ND
1,1,2-Trichloroethane	5	ND
Trichloroethene	5	ND
Trichloroflouromethane	5 5 2 5	ND
Vinyl Chloride	2	ND
Xylene (total)	_	ND
Total VOCs (5)	NA	0.0
Total SVOCs ⁽⁵⁾	NA	0.0
Lead, unfiltered	25	ND

- VOCs analyzed by EPA Method 8260, SVOCs were analyzes by EPA Method 8270, and lead was analyzed by EPA Method 6010B. The units reported in μg/L.
- (2) Total of the trihalomethanes not to exceed 100 micrograms/liter. Total value is sum of bromoform, chloroform, dibromochloromethane, and bromodichloromethane.
- (3) 1,2-Dichloroethene is the sum of trans -1,2-dichloroethene and cis-1,2-dichloroethene.
- (4) Total of the cis and trans -1,3-dichloropropene not to exceed 0.40 µg/L.
- (5) Refer to Appendix C for details.
- (6) New York State Ambient Water Quality, June 1998 Criteria.
- ND None Detected.
- NA No applicable standard or guidance value or not analyzed.
- GPC Groundwater Protection Concentration.


Table 24 November 2006 Semiannual Groundwater Sampling Analytical Results Recreation Area and Tank Farm, Chevron, Glenham, NY Well OR-3

Well OR-3			
Constituent (1) µg/L	GPC	November 2006 Sampling Event Result	
Trihalomethanes (total) (2)	100	ND	
Benzene	1.0	ND	
Bromodichloromethane	50 ^{(2) (6)}	ND	
Bromoform	$50^{(2)(6)}$	ND	
Bromomethane	5	ND	
Carbon Tetrachloride	5	ND	
Chlorobenzene	5	ND	
Chloroethane	5	ND	
2-Chloroethylvinyl Ether	5	ND	
Chloroform	$7^{(2)(6)}$	ND	
Chloromethane	5	ND	
Dibromochloromethane	50 ^{(2) (6)}	ND	
1,2-Dichlorobenzene	4.7	ND	
1,3-Dichlorobenzene	5	ND	
1,4-Dichlorobenzene	4.7	ND	
1,1-Dichloroethane	0.4	ND	
1,2-Dichloroethane	5	ND	
1,1-Dichloroethene	5	ND	
1,2-Dichloroethene (total) (3)	5	ND	
1,2-Dichloropropane	0.5	ND	
cis-1,3-Dichloropropene	$0.4^{(4)}$	ND	
trans-1,3-Dichloropropene	$0.4^{(4)}$	ND	
Ethylbenzene	5	ND	
Methylene Chloride	4.7	ND	
1,1,2,2-Tetrachloroethane	1.8	ND	
Tetrachloroethene	5	ND	
Toluene	5	ND	
1,1,1-Trichloroethane	5	ND	
1,1,2-Trichloroethane	5	ND	
Trichloroethene	5	ND	
Trichloroflouromethane	5	ND	
Vinyl Chloride	2	ND	
Xylene (total) Total VOCs (5)	5	ND	
	NA	0.0	
Total SVOCs ⁽⁵⁾	NA	0.0	
Lead, unfiltered	25	ND	

- VOCs analyzed by EPA Method 8260, SVOCs were analyzes by EPA Method 8270, and lead was (1) analyzed by EPA Method 6010B. The units reported in μ g/L.
- Total of the trihalomethanes not to exceed 100 micrograms/liter. Total value is sum of bromoform, (2) chloroform, dibromochloromethane, and bromodichloromethane.
- 1,2-Dichloroethene is the sum of trans -1,2-dichloroethene and cis-1,2-dichloroethene. (3)
- Total of the cis and trans -1,3-dichloropropene not to exceed 0.40 µg/L. (4)
- (5)
- Refer to Appendix C for details.

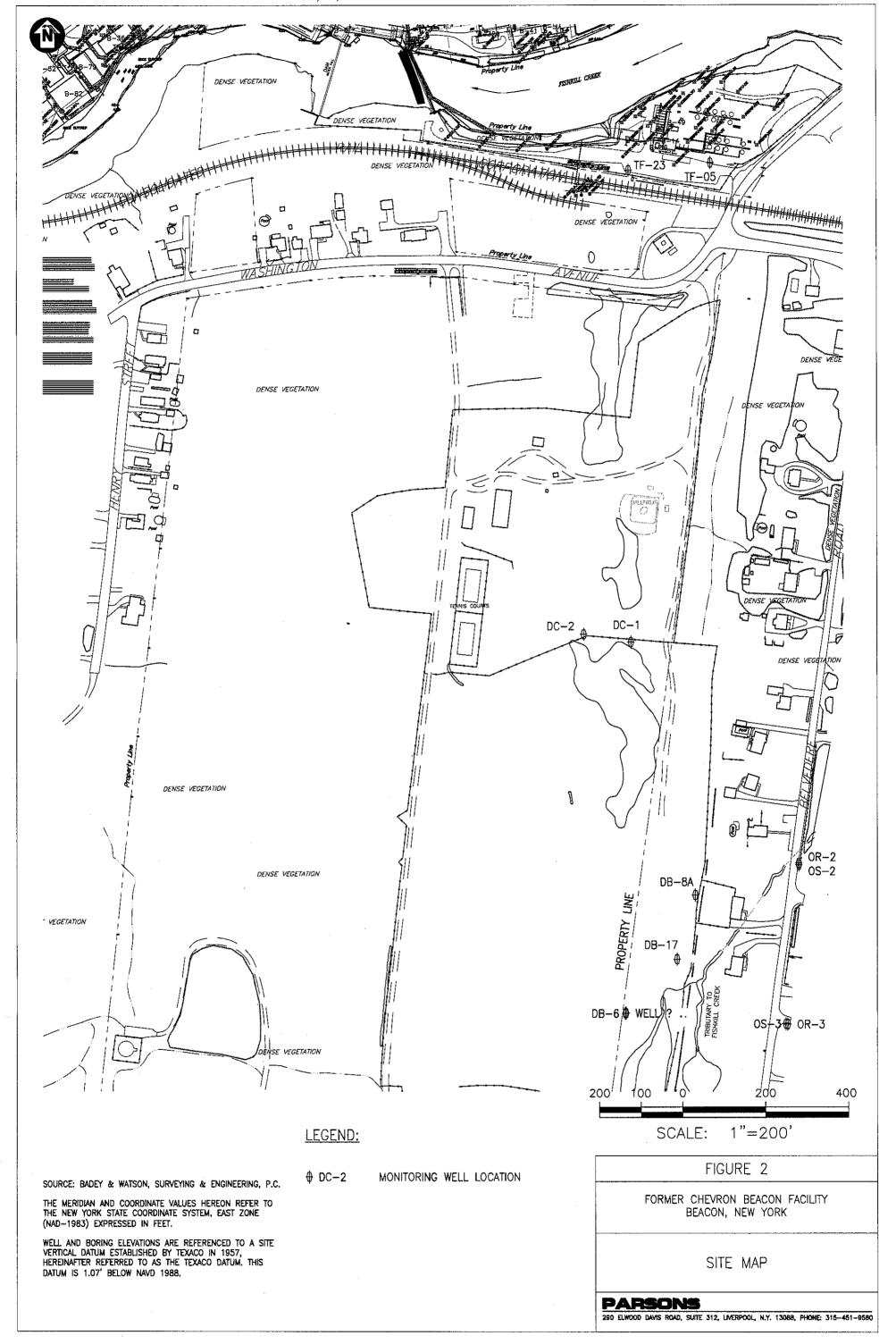
 New York State Ambient Water Quality, June 1998 Criteria. (6)
- ŇĎ None Detected.
- NA No applicable standard or guidance value or not analyzed.
- **GPC** Groundwater Protection Concentration.

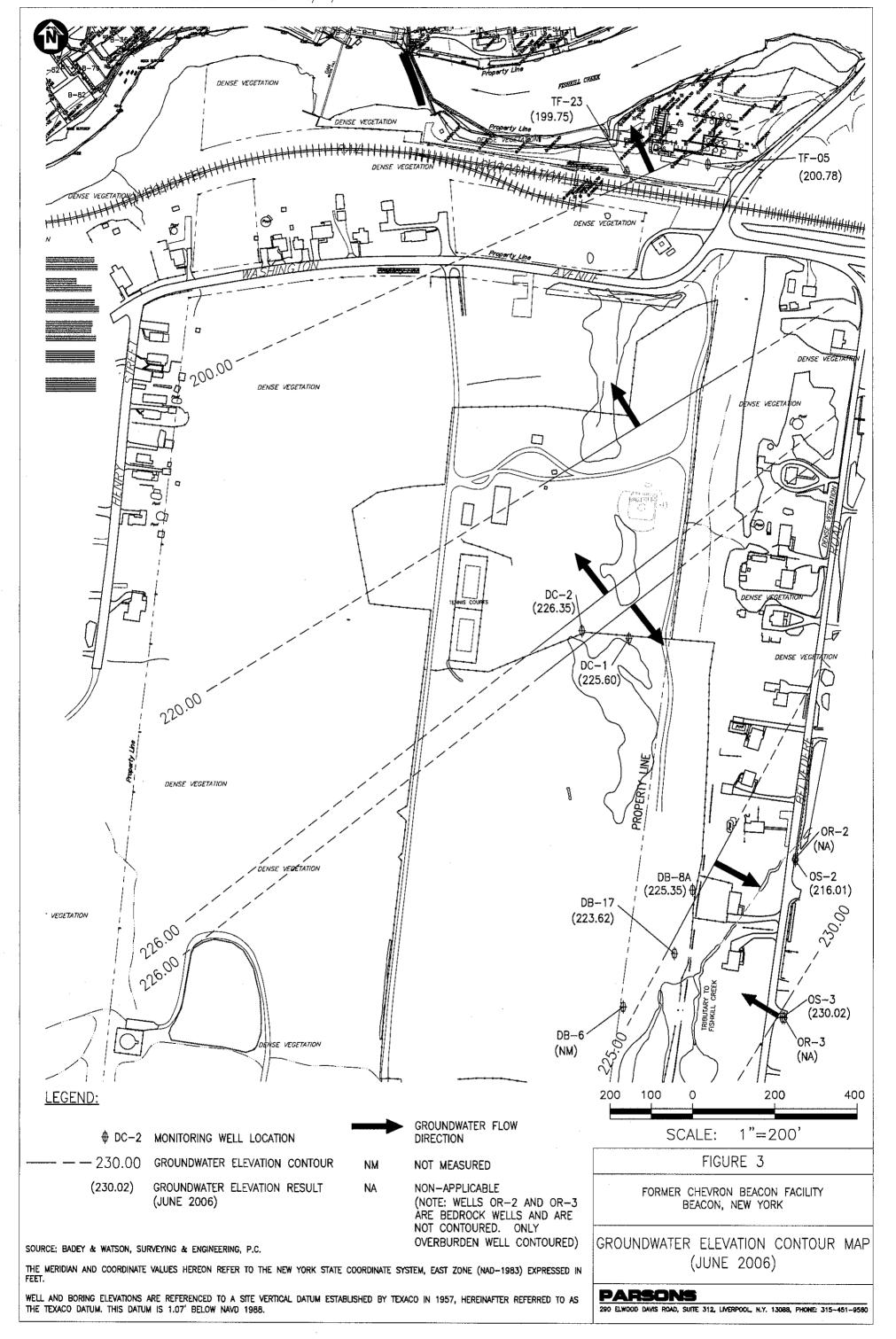
FIGURES

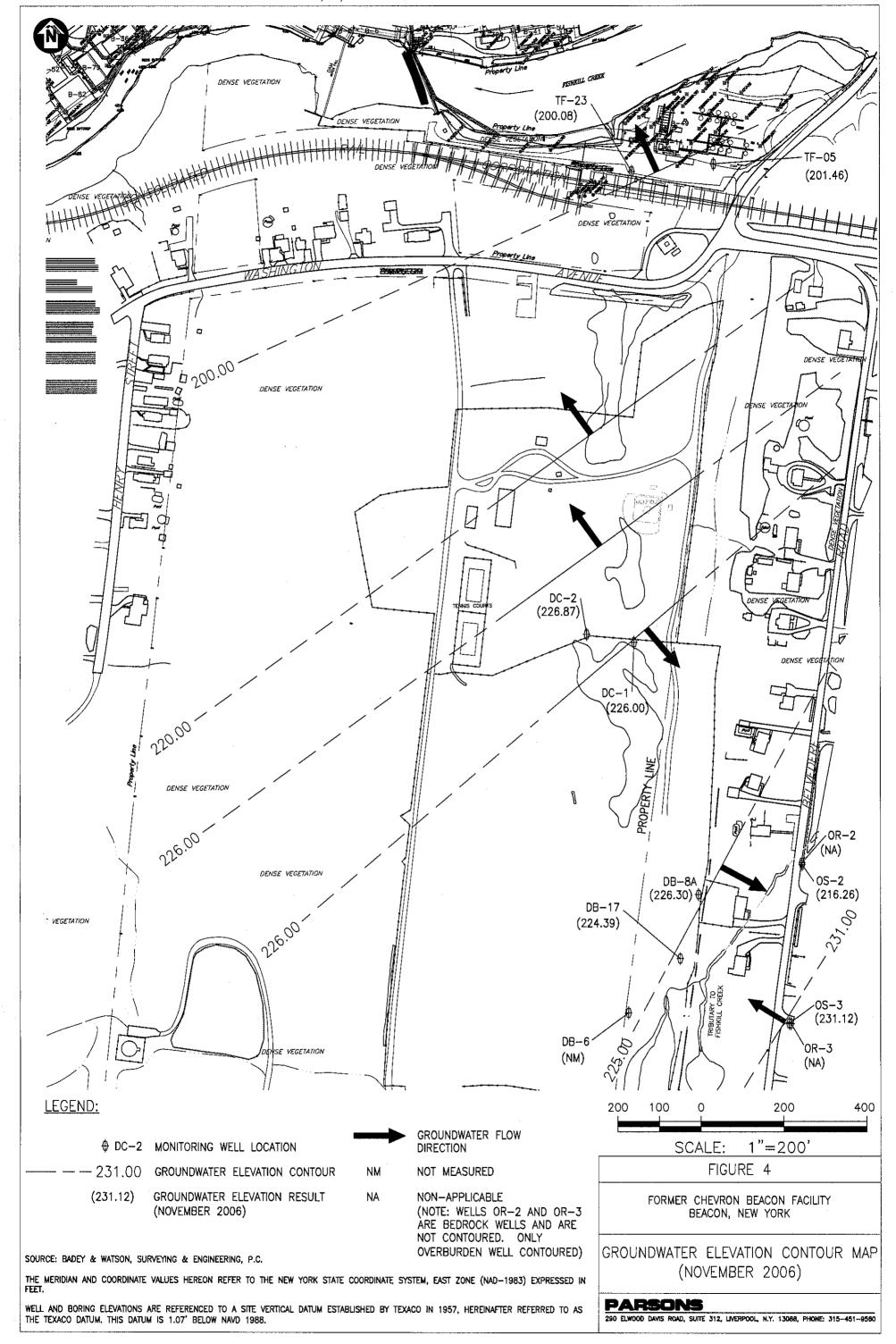
LATITUDE: N41° 31' 06" LONGITUDE: W73° 56' 13"

SOURCE: DeLORME 3-D TOPOQUAD PROGRAM FIGURE 1

Chevron


SITE LOCATION MAP


Chevron Beacon, New York


PARSONS

290 ELWOOD DAVIS ROAD, SUITE 312, LIVERPOOL, NY 13088 PHONE: (315) 451-9560

New York Quadrangle

APPENDIX A

PARSONS GROUNDWATER SAMPLING RECORD LOGS (JUNE 2006 AND NOVEMBER 2006)

SITE NAME: (UX - RCRA Parmit Sampling - Boacon, My
PROJECT NUMBER: 44 1859, 67 CC
SAMPLE NUMBER: DB-17 A WEATHER: Law - 65%
110/06
DATE: 677/00 TIME: /2-05
SAMPLERS: Ed Ashta of Parsons
of Parsons
DESCRIPTION OF SAMPLING POINT
Sample Location: Monitoring Well MAY- DB -/ 7 A
Screen/Sample Depth: 70 = 9.10
Sample Method: 50 me as flugly leave
GROUNDWATER PURGING ,
Initial Static Water Level: 665
One Well Volume: 3 Volumes
2-Inch Casing: U.S.T Feet of Water x 0.16 Gallons/Foot = 0.156 Gallons 0.470
3-Inch Casing: Feet of Water x 0.36 Gallons/Foot = Gallons
4-Inch Casing: Feet of Water x 0.65 Gallons/Foot = Gallons
· · · · · · · · · · · · · · · · · · ·
Volume of groundwater purged: Gallons
Purging Device: foly of 3 pascible basta and flory, reper Purge Water Disposition (e.g., contained): Ady, forth gad fransferral to a 450c
Purge Water Disposition (e.g., contained): foly, fort gul frantered to a 4 ste
SAMPLE DESCRIPTION (818/06 Sample coll-A)
Color: Lew full Ain
Odor: Nove
Other. wave
Sample Analyzed for: 8770, 826 - and 15 C GOLOB)
QC Samples at this Location:
QC Samples Analyzed for:
FIELD MEASUREMENTS
Temperature (C/F): 57,/95 Conductivity (polime/em): 0.27
pH: 7-91 Turbicity (NTU): 15.4
SAMPLE CUSTODY
Chain of Custody Number: Laboratory: Laboratory: Laboratory:
Shipped Via: Air bill Number:
COMMENTS Purpl by 4 of Cetting reckup
CV MICK

SITE NAME: CVX - ACRA from it Sampling - Barron, my
SITE NAME: CVX "FCFA PAMITY SAMPLY
PROJECT NUMBER: 44 (457, 0 7 Cac
SAMPLE NUMBER: DB-84 WEATHER: Law-657
DATE: 6/7/06 TIME: //30
SAMPLERS: Ed Asligan of Parsons
of Parsons
ATACCUTION OF ALARYING BONIT
DESCRIPTION OF SAMPLING POINT Sample Location: Monitoring Well MW- DB-84
Screen/Sample Depth: TD = 16-3 *
Sample Method: Same as Pariging Parice
GROUNDWATER PURGING ,
Initial Static Water Level: 725
One Well Volume: 3 Volumes
2-Inch Casing: See Feet of Water x 0.16 Gallons/Foot = 1.49 Gallons 447
3-Inch Casing: Feet of Water x 0.36 Gallons/Foot = Gallons
4-Inch Casing: Feet of Water x 0.65 Gallons/Foot = Gallons
70
Volume of groundwater purged: 20 Gallons Purging Device: VRASASCE GATA (104) 42 pon 192
Purge Water Disposition (e.g., contained): Noty Frank and Wans fewel to Grant
with front ment plant anside
SAMPLE DESCRIPTION 6/8/06 (oll att James)
Color: Clear
Odor
Other:
Sample Analyzed for: 826c 827c Sal 15 C 6c/CR1
QC Samples at this Location: B-(88A (Puglicula of DB-891)
QC Samples Analyzed for: Sum CS & Sume.
FIELD MEADIDESIGNTO
Temperature (C/F): Conductivity (polanis/cm): 0-93
Temperature (C/F): 15/9 Conductivity (polane/cm): 0. 93 pH: 7. 84 Turbidity (NTU): 9.70
pr
SAMPLE CUSTODY
Chain of Custody Number: Laboratory:
Shipped Via: Air bill Number:
COMMENTS
· · · · · · · · · · · · · · · · · · ·

SITE NAME: COX - RCRA fromit Sampling - Boscon, my
PROJECT NUMBER: 941859. 07 cm
SAMPLE NUMBER: DC -/ WEATHER: Fa.W-\$50F
DATE: 6/1/08 TIME: /040
SAMPLERS: For Ashita of Parsons
of Parsons
DESCRIPTION OF SAMPLING POINT
Sample Location: Monitoring Well MAF DC-/
Screen/Sample Depth: 70 = 12.0
Sample Method: Same as purpor Levice
GROUNDWATER PURGING
Initial Static Water Level: 3, 70
One Well Volume: 3 Volumes
2-Inch Casing: 8.30 Feet of Water x 0.16 Gallons/Foot = /36 Gallons 4/0
3-Inch Casing: Feet of Water x 0.36 Gallons/Foot = Gallons
4-Inch Casing: Feet of Water x 0.65 Gallons/Foot = Gallons
· · · · · · · · · · · · · · · · · · ·
Volume of groundwater purged: S Gattons
Purging Device: Signs able Saile (poly) and John rege.
Purge Water Disposition (e.g., contained): 105 fort aut transford furtile
wet featuret plat on side
SAMPLE DESCRIPTION (6/8/06 collected 54 mgl)
Color: At Lowb Med. two 2
Odor
Other
Sample Analyzed for: 8260 8270 and \$5 C 6doB)
QC Samples at this Location:
QC Samples Analyzed for:
FIELD MEASUREMENTS
Temperature (C/F): \$\int \text{F} \text{ Conductivity \(\frac{\text{polarise}}{\text{conductivity \(\frac{\text{conductivity \(\frac{\text{polarise}}{conductivity \(\frac{\text{conductivity \(\frac{\text{conductivity \(\frac{\text{conductivity \(\frac{\text{conductivity \(\frac{\text{conductivity \cdot\text{conductivity \(\frac{\text{conductivity \(\frac{\text{conductivity \(\frac{\text{conductivity \(\frac{\text{conductivity \(\frac{\text{conductivity \(\frac{\text{conductivity \(\frac{\text{conductivity \(\frac{\text{conductivity \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
ph; 2-7/ Turbidity (NTU): 7-7-9
SAMPLE CUSTODY
Chain of Custody Number: Laboratory: Laboratory: Laboratory:
Shipped Via: Air bill Number:
COMMENTS Purpl Syad letting reclaye
com in cart

SITE NAME: (VX - RCRA PRIMIT SAMPLING - BERCON, MY PROJECT NUMBER: 441859. 07 CM
PROJECT NUMBER: 441857, C7 Coo
SAMPLE NUMBER: DC-2 WEATHER: Rain - 65%
DATE: 6'17/06 TIME: 1000
SAMPLERS: EN ASUTA of Parsons
of Parsons
DESCRIPTION OF SAMPLING POINT
Sample Location: Monitoring Well MAY: DC - Z
Screen/Sample Depth: 70 = 17.5
Sample Method: Sene as purja derice
Serve of good of
GROUNDWATER PURGING
Initial Static Water Level: 2.75
One Well Votume: 3 Volumes
2-Inch Casing: 14-75 Feet of Water x 0.16 Gallons/Foot = 243 Gallons 7-30
3-inch Casing: Feet of Water x 0.36 Gallons/Foot = Gallons
4-Inch Casing: Feet of Water x 0.85 Gallons/Foot = Gallons
Volume of groundwater purged: Gallons
Purging Device: drype as the bailor cpoly) and puby rape
Purge Water Disposition (e.g., contained): pely face quel fransferol to waste with
SAMPLE DESCRIPTION 6/8/06 (clast of Sample)
Color Moderately fursid
Odor: Wink
Other: work
Sample Analyzed for: \$260 \$270 Gal Pb (6clos)
QC Samples at this Location:
QC Samples Analyzed for:
FIELD MEASUREMENTS
Temperature (C/F): 6/.5% Conductivity (polymer/cm): 0-28
pH: 793 *Turbidity (NTU): 89./
SAMPLE CUSTODY
Chain of Custody Number: Laboratory: Laboratory: Laboratory:
Shipped Via: Air bill Number.
COMMENTS + Wat collected was tired and was
First Sailor full offer bethy the well
Col were with often herrise of

SITE NAME: CVX-RCRAPSOMIT Squipling - BOACON, MY
PROJECT NUMBER: 44/859, C7 au
a to de way
SAMPLE NUMBER: TF-23 WEATHER: PTG-CFG -700
DATE: 6/5/06 TIME: 15-35
SAMPLERS: EV Aflitan of Parsons
of Parsons
DESCRIPTION OF SAMPLING POINT
Sample Location: Monitoring Well MAF 77-2-3
Screen/Sample Depth: TD = 12.7
Sample Method: Sam as purpice Lawice
GROUNDWATER PURGING
Initial Static Water Level: 7. 45
One Well Volume: 3 Volumes
2-Inch Casing: 1-27 Feet of Water x 0.18 Gallons/Foot = 2466 Gallons 2-59
3-Inch Casing: Feet of Water x 0.36 Gallons/Foot = Gallons
4-Inch Casing: Feet of Water x 0.65 Gallons/Foot = Gallons
10 0-8
Volume of groundwater purged: / O Gallons
Purging Device: 413 pasable baila (pob) collecty, repe
Purge Water Disposition (e.g., contained): poky tark and then transferred to was to with freshout plant ansiste
SAMPLE DESCRIPTION 617/06 Squild
Color: Mo Constelly for bid
Odor: were
Other:
Sample Analyzed for: \$2.60, \$2.70, c PS (60008)
QC Samples at this Location:
QC Samples Analyzed for:
FIELD MEASUREMENTS
Temperature (C/F):
pH:
SAMPLE CUSTODY
Chain of Custody Number: Laboratory: Laboratory: Laboratory:
Shipped Vla: Air bill Number:
COMMENTS Purpl by Gul letting rockage
even night

SITE NAME: CVX - RCRA Permit Sumpling - Beacon, My PROJECT NUMBER: 441857, 07 000
PROJECT NUMBER: 441859, 67 cm
SAMPLE NUMBER: TF-5 WEATHER: Pty Syng-709 DATE: 6/6/06 TIME: 15/5
SAMPLERS: ECLASITION of Parsons of Parsons
DESCRIPTION OF SAMPLING POINT Sample Location: Monitoring Well MW- 7F- J
Screen/Sample Depth: 70 = 9.5
Sample Method: Saml as purgo Serice
GROUNDWATER PURGING Initial Static Water Level: 6. Far'
One Well Volume: 3 Volumes
2-Inch Casing: 27 Feet of Water x 0.16 Gallons/Foot = 4445 Gallons (33
3-Inch Casing: Feet of Water x 0.36 Gallons/Foot = Gallons
4-Inch Casing: Feet of Water x 0.65 Gallons/Foot = Gallons
Volume of groundwater purged: 3 Gallons Purging Device: 4 Chestelle 6 & 8/on Chely.) and John. Take
Purge Water Disposition (e.g., contained): foly fault and flow fauston
Purge Water Disposition (e.g., contained): foly fault and flow faustom SAMPLE DESCRIPTION Collected 66006) I wenter to the fred rust ensite. plant
Purge Water Disposition (e.g., contained): foly fault and flow faustom SAMPLE DESCRIPTION Collected 66006) I wenter to the fred rust ensite. plant
Purge Water Disposition (e.g., contained): foly fault and flow faultern SAMPLE DESCRIPTION Collected COCOE) & waste with freedoms on site.
Purge Water Disposition (e.g., contained): foly fault and flow faustom SAMPLE DESCRIPTION Collected 6/6/06) I want with fred rust ensite. Color: Odor: Other: Other: Other: Other: One of the state of the s
Purge Water Disposition (e.g., contained): foly fault and flow faustion SAMPLE DESCRIPTION Collected GGOOD wester with freedoms on side. Color: Moderate & fausial Odor: wore Other: wore Sample Analyzed for: \$2.50 : \$2.70 : Pb. (60/0B)
Purge Water Disposition (e.g., contained): foly fault and flaw faustion SAMPLE DESCRIPTION Collected 66006 further to the freedom on the plant Color:
Purge Water Disposition (e.g., contained): foly fault and flow faustion SAMPLE DESCRIPTION Collected GGOOD wester with freedoms on side. Color: Moderate & fausial Odor: wore Other: wore Sample Analyzed for: \$2.50 : \$2.70 : Pb. (60/0B)
Purge Water Disposition (e.g., contained): foly fault and flaw faustion SAMPLE DESCRIPTION Collected Glob wester with freedoms and plant Color:
Purge Water Disposition (e.g., contained): foly fault and flow faustion SAMPLE DESCRIPTION Collected 6606 To weath with freedoms and plant Color:
Purge Water Disposition (e.g., contained): foly fault and flaw faustion SAMPLE DESCRIPTION Collected Glob wester with freedoms and plant Color:
Purge Water Disposition (e.g., contained): fully fault and flow faultern SAMPLE DESCRIPTION Collected Color fully fault
Purge Water Disposition (e.g., contained): fully fault and flow faultern SAMPLE DESCRIPTION Collected Color fully fault
Purge Water Disposition (e.g., contained): Foly Fault and flow Fault and flow Fault fault and flow fault
Purge Water Disposition (e.g., contained): Purge Water Disposition (e.g., contained): Purp Fault and flaw franchem Sample Description Collected 60000 The Color Purple of fauts Purple of fauts

SITE NAME: COX- CCAA Promit Sanding - Boar, my
PROJECT NUMBER: 44/559. C7 C00
SAMPLE NUMBER: 05-3 WEATHER: 14 C/4-63
DATE: 6/8/06 TIME: 13 40
SAMPLERS: Ed Astata of Parsons
of Parsons
DESCRIPTION OF SAMPLING POINT
Sample Location: Monitoring Well MW 45 3
Screen/Sample Depth: 7D = 15.0
Sample Method: drspasase same for rige.
GROUNDWATER PURGING
Initial Static Water Level: 3, cv
One Well Volume: 3 Volumes
2-Inch Casing: Feet of Water x 0.16 Gations/Foot = Gallons
3-inch Casing: Feet of Water x 0.36 Gallons/Foot = Gallons
4-Inch Casing: 120 Feet of Water x 0.63 Gallons/Foot = 2.99 Gallons 23.7
Volume of groundwater purged: Gallons
Purging Device: Susmasiable projections quel por took Colisparable
Purge Water Disposition (e.g., contained): Note take 42 from first of wrote water
treat ment plant on stole.
SAMPLE DESCRIPTION 6/8/06 SUMPLE COLLECTION
Color:Coo
Odor:
Other:
Sample Analyzed for: 8260 8270, a = 1 15 (6010B)
QC Samples at this Location:
QC Semples Analyzed for:
FIELD MEASUREMENTS
The second secon
pH: 5-6 Turbidity (NTU): 0-67
SAMPLE CUSTODY
Chain of Custody Number: Laboratory: Laboratory: Laboratory: Laboratory
Shipped Via: Faler Air bill Number:
COMMENTS
the state of the s

SITE NAME: CUX-FCRA femily Sampling - Boscon, W.	
PROJECT NUMBER: 44185% C7 CW	
SAMPLE NUMBER: 65-2 WEATHER: PHY CHY -65% DATE: 6/8/66 TIME: 09.00	
DATE: 6/8/06 TIME: 09.00	•
SAMPLERS: Ed Asatan of Persons	
SAMPLERS: FC HTWAL of Parsons of Parsons	
OIOI	
DESCRIPTION OF SAMPLING POINT	
Sample Location: Monitoring Well MW - CS - 2	
Screen/Sample Depth: 10 - 150	
Sample Method: dizposable Gater and poly roge.	1
GROUNDWATER PURGING ,	
Initial Static Water Level: 5.75	
One Well Volume: 3 Volumes	
2-Inch Casing: Feet of Water x 0.16 Gaillons/Foot = Gaillons	•
3-Inch Casing: Feet of Water x 0.36 Gallons/Foot = Gallons	
4-Inch Casing: 25 Feet of Water x 0.65 Gallons/Foot = 6.09 Gallons 12.28	
Volume of groundwater purged: 40 Gallons	
	n - CC
	ursay E
Purge Water Disposition (e.g., contained): for tark and fransford to wartered	*
SAMPLE DESCRIPTION 6/9/06 SAmple cellented	
Color: Cary.	
Odor: Norl	
Other:	
Sample Analyzed for: 8260, 8270, and \$6 (6008)	
QC Samples at this Location: CS-2 as C	
QC Samples Analyzed for: 5 g ave 65 a Save	•
FIELD MEASUREMENTS	
MJ.	
pH: 7.39 Turbidity (NTU): 5.36	
SAMPLE CUSTODY	
Chain of Custody Number: Laboratory: CqureN Las	
Shipped Via: Air bill Number:	
COMMENTS	

PARSONS GROUNDWATER SAMPLING RECORD SITE NAME: ABER: CR-Z WEATHER: 6/P/06 TIME: (. SAMPLE NUMBER: Parsons Parsons DESCRIPTION OF SAMPLING POINT Monitoring Well MIAF 4/2-2 Sample Location: Screen/Sample Depth: Sample Method: **GROUNDWATER PURGING** 6.30 Initial Static Water Level: One Well Volume: 3 Volumes 2-Inch Casing: Feet of Water x 0.16 Gallons/Foot = Gallons 3-Inch Casing: Feet of Water x 0.36 Gallons/Foot = Gallons 4-Inch Casing: 37-7 Feet of Water x 0.65 Gallons/Foot = 23.52 Gallons 70.5 Volume of groundwater purged: 80 Gallons fusion fusion Purging Device: Submissible personal paristaltic pump and polytone (disposable) 1 1 Now when the work was deviced to wrote was deviced to Purge Water Disposition (e.g., contained): foly fall god Wantersl to was Calor: Odor: Other: 8260 .8270 Sample Analyzed for: QC Samples at this Location: QC Samples Analyzed for: FIELD MEASUREMENTS Temperature (C/F): Conductivity (nohms/cm): Turbidity (NTU): SAMPLE CUSTODY Lange Ter Lass Chain of Custody Number: Shipped Via; Air bill Number: COMMENTS

SITE NAME: CX - ACAL Permit Sumpling - Boacan My PROJECT NUMBER: 441859 - 700
777637. 2730
SAMPLE NUMBER: 02 - 3 WEATHER: (16 - 709- DATE: 6/5/06 TIME: 09 30
SAMPLERS: Ed As Lita of Parsons
of Parsons
DESCRIPTION OF SAMPLING POINT
Sample Location: Monitoring Well MW- CF-3 Screen/Sample Depth: 79.0' Sample Method: Signal Start Sta
Screen/Sample Depth: 79.0
Sample Method: disposable bailer and poly repe
GROUNDWATER PURGING
Initial Static Water Level:
One Well Volume: 3 Volumes
2-Inch Casing: Feet of Water x 0.16 Gallons/Foot = Gallons
3-Inch Casing: Feet of Water x 0.36 Gallons/Foot = Gallons
4-Inch Casing: \$9.6 Feet of Water x 0.65 Gallons/Foot = 35.9 Gallons (67.9
Volume of groundwater purged: // O Gallons
Purging Device: 545 per 13956 per is talks pur of and file. fusing Chisques 160) Purge Water Disposition (e.g., contained): Nohn frank and frank and frank to contained
frest pent plant ansite
SAMPLE DESCRIPTION 6 (9/06 Sq mile collected)
Color: Can
Odor:
Other:
Sample Analyzed for: F26c F27c, 44l P5 (60/08)
QC Samples at this Location:
QC Samples Analyzed for:
FIELD MEASUREMENTS
Temperature (C/F): 36.49 Conductivity (pohrma/Ciff): 0.45 pH: 5-32 Turbidity (NTU): 5-35
pH: 5-32 Turbidity (NTU): 5-35
SAMPLE CUSTODY
Chain of Custody Number: Laboratory: Caucaster Case
Shipped Via: Fally Air bill Number:
COMMENTS

SITE NAME: CVX -RCRA PSINIT Sampling & Begin, my PROJECT NUMBER: 491859, 07 aco
SAMPLE NUMBER: 08 - 17 A WEATHER: Class 4 60% DATE: 11 115 108 TIME: 1120
SAMPLERS: Chuck Burkhardt of Parsons of Parsons
DESCRIPTION OF SAMPLING POINT Sample Location: Monitoring Well MVV- DB-17A Screen/Sample Depth: TD = 9.10 ' Sample Method: Sample Method: Sample Method: Sample Depth: Sample Method: S
Sample Method: Samo as purgues device GROUNDWATER PURGING
Initial Static Water Level: 7-38
One Well Volume: 2-Inch Casing: 172 Feet of Water x 0.16 Gallons/Foot = 2.75 Gallons 3-Inch Casing: Feet of Water x 0.36 Gallons/Foot = Gallons 4-Inch Casing: Feet of Water x 0.65 Gallons/Foot = Gallons Volume of groundwater purged: G. G. G. Gallons/Foot = Gallons Volume of groundwater purged: G. G. Gallons Purging Device: Phy. Variate able bailer and phy. Tape Purge Water Disposition (e.g., contained): Phy. Tapic and France of the water france of the wat
Odor: Nane Other: Nane
Sample Analyzed for: \$260,8270, 948 Pb C6010B)
QC Samples at this Location: QC Samples Analyzed for:
FIELD MEASUREMENTS Temperature (OF): 12-/1 Conductivity (µehme/em): 0.29 pH: 6.57 Turbidity (NTU):
SAMPLE CUSTODY Chain of Custody Number: Laboratory: Cq v (45 tv / Cq bu) Shipped Via: Air bill Number:
COMMENTS Purple on 1/114/06 428 Samples

SITE NAME: CUX-RCRA femit Sampling - Boscon, my
PROJECT NUMBER: 491 F59. 07 Cau
SAMPLE NUMBER: DR-SA WEATHER: Class by - Go-5 DATE: 1/15/66 TIME: 1/00
DATE: 1/15/08 TIME: 1/00
SAMPLERS: Chuck Bukhard of Parsons
of Parsons
DESCRIPTION OF SAMPLING POINT
Sample Location: Monitoring Well MW- UB - FA
Screen/Sample Depth: 70 = 16.3
Sample Method: Same as purging device
GROUNDWATER PURGING
Initial Static Water Level: 6, 2, 0
One Well Volume: 3 Volumes
2-Inch Casing: [C.] Feet of Water x 0.16 Gallons/Foot = [.6] Gallons 4.54
3-Inch Casing: Feet of Water x 0.36 Gallons/Foot = Gallons
4-Inch Casing: Feet of Water x 0.65 Gallons/Foot = Gallons
Purging Device: 450 Gallons faxed by Purging Device: 450 Gallons faxed by Purge Water Disposition (e.g., contained): poly take and fransferral to warde
Purging Device. V. Dipas able batter and poly tage
Purge Water Disposition (e.g., contained): poly to will and transferral to waste
water freet met plant onsite
SAMPLE DESCRIPTION
Color:
Odor:
Other: Nane
Sample Analyzed for: 826- 8270 qul Pb (Edel)
QC Samples at this Location:
QC Samples Analyzed for:
FIELD MEASUREMENTS
Temperature C/F): /3. 5 Conductivity (µohme/em): 0.57 pH: 6.97 Turbidity (NTU):
Temperature (C/F): 13.5 Conductivity (μομπε/επ): 0.52 pH: 6.97 Turbidity (NTU): -
SAMPLE CUSTODY
Chain of Custody Number: Laboratory: Law gtv has Shipped Via: Air bill Number:
Shipped Via: Air bill Number:
COMMENTS Rugalicall on 11/19/06 and
COMMENTS furgetuell on 11/19/06 and 5 graphed on 1/115/06.
- 7 · 1/1 · · · ·

SITE NAME: CNX - RCRA Parit Sampling - Boscon, my
PROJECT NUMBER: 4918 59. 07000
SAMPLE NUMBER: DC-/ WEATHER: Clarky - 60%
DATE: ///5/ds TIME: /030
•
SAMPLERS: Charle Burlehard of Parsons
of Parsons
DESCRIPTION OF SAMPLING POINT
Sample Location: Monitoring Well MAY DC - 1 Screen/Sample Depth: 70 = 12 - 0 f
Sample Method: same as purge device
GROUNDWATER PURGING Initial Static Water Level: 3.30
Initial Gado Video Lovo.
One Well Volume: 3 Volumes
2-Inch Casing: 8.70 Feet of Water x 0.16 Gallons/Foot = 1.39 Gallons 9.77
3-Inch Casing: Feet of Water x 0.36 Gallons/Foot = Gallons
4-Inch Casing: Feet of Water x 0.65 Gallons/Foot = Gallons Gallons
Volume of groundwater purged: 4-2 Gallons
Purging Device: Duby dispussable basiles and Duby see As
Purge Water Disposition (e.g. contained): Diff. task and transfer sell to wards
Purging Device: <u>John. disposable bailer and frantered</u> . Purge Water Disposition (e.g., contained): <u>John tank and tranferral to waster</u> Water Hadnet plant onsite
SAMPLE DESCRIPTION
Color: See
Odor: wave
Other:
Sample Analyzed for: \$260 \$270, 4nd PS (6010B)
QC Samples at this Location:
QC Samples Analyzed for:
FIELD MEASUREMENTS 12.9 5/cm
Temperature(CF): 6.4 Conductivity (µohms/em): 0.72
pH: 6-15 Turbidity (NTU): -
No for - 2.23 mV
SAMPLE CUSTODY
Chain of Custody Number: Laboratory: Lawcastar Lass
Shipped Via: Air bill Number:
COMMENTS furjal well on 11/14/06 and 5 angled on 11/15/06.
sampled an 11/15/06.

SITE NAME: CUX-RCRA PENITS a upling-Boscon, my
PROJECT NUMBER: 49 1859, c7eco
SAMPLE NUMBER: DC-2 WEATHER: C/aux - 60%
SAMPLE NUMBER: 10-2 WEATHER: 600 TIME: 1010
SAMPLERS: Chuck Berlehard of Parsons
of Parsons
DESCRIPTION OF SAMPLING POINT
Sample Location: Monitoring Well MAP D C - 2
Screen/Sample Depth: Nonitoring Well 1997 2 5
Sample Method: Sama as pergry deric
GROUNDWATER PURGING
Initial Static Water Level: 2.23
One Well Volume: 3 Volumes
2-Inch Casing: 1527 Feet of Water x 0.16 Gallons/Foot = 244 Gallons 7-32
3-Inch Casing: Feet of Water x 0.36 Gallons/Foot = Gallons
4-Inch Casing: Feet of Water x 0.65 Gallons/Foot = Gallons
Volume of groundwater purged: 7.20 Gallons Purjed Sry Purging Device: foly. dis pasable bailor and poly. Take Purge Water Disposition (e.g., contained): foly. Foods and transferred to write With first med anside
Purging Device: puly. disposable bailor and puly. Tope
Purge Water Disposition (e.g., contained): foly. Forte and transferse to write
with west ment and de
SAMPLE DESCRIPTION
Color: Joan
Odor: Wark
Other: prove
Sample Analyzed for: \$260 \$270 and \$5 (6010B)
QC Samples at this Location:
QC Samples Analyzed for:
FIELD MEASUREMENTS
Temperature (CF): Conductivity (µ chms/cm):
pH: Turbidity (NTU):
Temperature (CIF): // 5 Conductivity (µehms/em): 0.33 pH: 1 Conductivity (NTU): Ne day = 207 NV
SAMPLE CUSTODY
Chain of Custody Number: Laboratory: Law Caster Lab
Shipped Via: Air bill Number:
COMMENTS fuggl well on 11/19/06 and
COMMENTS fungel well on 1/1/1/06 and sampled on 1/1/5/06.
-

SITE NAME: CUX-RCRA Permit Sampling - BOACON, MY
PROJECT NUMBER: 44 18 59 67 GGO
DATE: 1/15/00 TIME: 0840
DATE: ///5706 TIME: 0840
SAMPLERS: Charle barely of Parsons
of Parsons
DESCRIPTION OF SAMPLING POINT
Sample Location: Monitoring Well MAY 1/- 23
Screen/Sample Depth: 7 8 = 12 - 7
Sample Location: Monitoring Well MAP /
GROUNDWATER PURGING
Initial Static Water Level: 7/2
One Well Volume: 3 Volumes
2-Inch Casing: 5.38 Feet of Water x 0.16 Gallons/Foot = 6.592 Gallons 2.67
3-Inch Casing: Feet of Water x 0.36 Gallons/Foot = Gallons
4-Inch Casing: Feet of Water x 0.65 Gallons/Foot = Gallons
Volume of groundwater purged: Gallons
Puraina Device: Nub dora salle hailes and nub rate
Purging Device: for disposition (e.g., contained): for tence and transfered to waste with
of contract plant onlike
SAMPLE DESCRIPTION
Color: Sagr.
Odor: Went
Other:vane
Sample Analyzed for: \$260, \$270, Gal \$5 (6408)
QC Samples at this Location:
QC Samples Analyzed for: Sq me as a Save
FIELD MEASUREMENTS
Temperature (C/F): /3.0 Conductivity (#ehms/cm): C-60 pH: Turbidity (NTU):
lo de = 255 av
SAMPLE CUSTODY
Chain of Custody Number: Laboratory: Law CS for LaS
Shipped Via: Air bill Number:
Squell a 11/15/06 4 xl
5 4 as play a 1/1/3/00

SITE NAME: CUX-ECRAPEMA Sampling - Barran, my
PROJECT NUMBER: 44/829 c7cco
SAMPLE NUMBER: TF-5 WEATHER: Class & - 60%
SAMPLE NUMBER: TF-5 WEATHER: Class - 60% DATE: 1/15/06 TIME: 0930
SAMPLERS: Church Burkhard of Parsons
of Parsons
DESCRIPTION OF SAMPLING POINT
Sample Location: Monitoring Well MAY: 77-5
Screen/Sample Depth: 70 = 9.5
Screen/Sample Depth: 10 = 9.5 Sample Method: 54 ml as parice
7 0
GROUNDWATER PURGING
Initial Static Water Level: 6-12
One Well Volume: 3 Volumes
2-Inch Casing: 33 Feet of Water x 0.16 Gallons/Foot = 0.540 Gallons 162
3-Inch Casing: Feet of Water x 0.36 Gallons/Foot = Gailons
4-Inch Casing: Feet of Water x 0.65 Gallons/Foot = Gallons
Volume of groundwater purged: 2 Gallons Purging Device: John, disposition (e.g., contained): pohy, tank and frank family Purge Water Disposition (e.g., contained): pohy, tank and frank family
Purging Device: John disposable bails and John fale
Purge Water Disposition (e.g., contained): poly, tank and have farel to
Washe wat west and plant mile
SAMPLE DESCRIPTION
Color: Clar
Odor: prone
Other:
Sample Analyzed for: \$260, \$270, Graf PS (Gorob)
QC Samples at this Location: Object CD= 105 et 0950
QC Samples Analyzed for: Stare as a Save
FIELD MEASUREMENTS
Temperature (CIF): /79 Conductivity (µehms/cm): /. 3 ²
pH:
Temperature (CF): 19 Conductivity (µehms/cm): 12 pH: 6-15 Turbidity (NTU): 490 (—) Meshay = 190 MV
SAMPLE CUSTODY
Chain of Custody Number: Laboratory: Lew Caste Las
Shipped Via: Air bill Number:
COMMENTS funged wall in 1/19/06 9 of sampled on 1/1/5/06.
sampled on 1/1/5/06.
$m{ u}$

SITE NAME: Oux - PCRA Parit Sampling - Basin, my
PROJECT NUMBER: 441859, 0700
SAMPLE NUMBER: 05-3 WEATHER: (100 4 - 60%) DATE: 1115/06 TIME: 1150
DATE: ///5/06 TIME: //50
SAMPLERS: Charce Burkbands of Parsons
of Parsons
DESCRIPTION OF SAMPLING POINT
Sample Location: Monitoring Well MAW 05-3 Screen/Sample Depth: 75-0
Sample Method: Same as fivije Levice
- Jan Jan Carlotte Control of the Carlotte Control of
GROUNDWATER PURGING
Initial Static Water Level: 6 9 0
One Well Volume: 3 Volumes
2-Inch Casing: Feet of Water x 0.16 Gallons/Foot = Gallons
3-Inch Casing: Feet of Water x 0.36 Gallons/Foot = Gallons
4-Inch Casing: 13/0 Feet of Water x 0.65 Gallons/Foot = 5.51 Gallons 25.5
2.7
Volume of groundwater purged: Gallons
Purging Device: fully disposable sailer and fully regle
Purging Device: poly disposable Sailer and poly rope Purge Water Disposition (e.g., contained): poly take and fransfered to waste with West must plant mist.
SAMPLE DESCRIPTION
Color: Class
Odor: Vane
Other:
Sample Analyzed for: \$200 \$270 and \$5 Couch
QC Samples at this Location:
QC Samples Analyzed for:
FIELD MEASUREMENTS 5/cm
Temperature C/F): 12. / Conductivity (µ chms/cr n): 0-29
Temperature CF : 12.1 Conductivity ($\mu \frac{chims/cm}{}$): 0-29 pH: Turbidity (NTU): $A = A + A + A + A + A + A + A + A + A + $
SAMPLE CUSTODY
Chain of Custody Number: Laboratory: Labor
Shipped Via: Faly Air bill Number:
COMMENTS Awardinal a (1/14/06 and sample)
COMMENTS further first on 1/1/4/06 and sampled
- Chilan

SITE NAME: COX- PCRA Pemit Sampling Sampling - Bracan my
PROJECT NUMBER: 44/659. 27 au
SAMPLE NUMBER: 05-2 WEATHER: ((a) a) - 60000 DATE: 1115/06 TIME: 1215
DATE: 1/15/c6 TIME: 12/5
SAMPLERS: Chuck Berkhards of Parsons
of Parsons
DESCRIPTION OF SAMPLING POINT
Sample Location: Monitoring Well MA - CS- 2
Screen/Sample Depth: 70 = 75 - 6
Sample Location: Monitoring Well MW - GS- 2 Screen/Sample Depth: D= G-G Sample Method: Fame as farge derice
GROUNDWATER PURGING
Initial Static Water Level: 5-5-
One Well Volume: 3 Volumes
2-Inch Casing: Feet of Water x 0.16 Gallons/Foot = Gallons
3-Inch Casing: Feet of Water x 0.36 Gallons/Foot = Gallons
4-Inch Casing: 20 Feet of Water x 0.65 Gallons/Foot = 6-/7 Gallons 1652
Volume of groundwater purged:
Volume of groundwater purged: Purging Device: Purge Water Disposition (e.g., contained): Purge Water Dispos
Purge vivater Disposition (e.g., contained): 10 mg Tank gall N 4 mg 1 8 g Col To Labor Sales
SAMPLE DESCRIPTION
Color: Coar
Odor:
Other:
Sample Analyzed for: 5260, 5270, 92 P3 (6010B)
QC Samples at this Location:
QC Samples Analyzed for:
FIELD MEASUREMENTS
Temperature (C/F): 12.6 Conductivity (pohrms/cm): $C_{2}39$ pH: $S_{2}40$ Turbidity (NTU): $S_{2}40$
pH: 5-40 Turbidity (NTU):
16 de - 727 m/
SAMPLE CUSTODY
Chain of Custody Number: Laboratory: Lact solve Lass
Shipped Via: Air bill Number:
COMMENTS funger were an 1/1/4/06 and 5 any left on 1/1/5/06.
Sangel on 11/15106.
• • • • • • • • • • • • • • • • • • • •

PROJECT NUMBER: 441859.07 Cas
PROJECT NUMBER: 441859.07 Cau
SAMPLE NUMBER: 02-2 WEATHER: Clarky - 604 DATE: 1/116/06 TIME: 1240
DATE: // 15/08 TIME: /240
SAMPLERS: Chuck Burkhard of Parsons
of Parsons
DESCRIPTION OF SAMPLING POINT
Sample Location: Monitoring Well MW- CA-2
Screen/Sample Depth: TD = 42, 08
Screen/Sample Depth: TD = 42. as Sample Method: Sispus 156 feb. bailer and pay repe
GROUNDWATER PURGING
Initial Static Water Level: 5 2 2
One Well Volume: 3 Volumes
2-Inch Casing: Feet of Water x 0.16 Gallons/Foot = Gallons
3-Inch Casing: Feet of Water x 0.36 Gallons/Foot = Gallons
4-Inch Casing: 36. 78 Feet of Water x 0.65 Gallons/Foot = 23.50 Gallons 71. 72
- 2
Volume of groundwater purged: 72 Gallons
Purging Device: fristalte purpul dispusable puly. tasing
Volume of groundwater purged: 72 Gallons Purging Device: fristalte fung gal disjusable pets. to sing Purge Water Disposition (e.g., contained): fety, take gall transferal in waste and
frestment plant on side
SAMPLE DESCRIPTION
Color: Sear
Odor: None
Other:
Sample Analyzed for: 5260, \$270, quel PS (640B)
QC Samples at this Location:
QC Samples Analyzed for:
FIFE D MEANINGTHENTS
FIELD MEASUREMENTS S/Con Conductivity (submodern)
Temperature (CF): 7/2 Conductivity (portmarch): 0-99
Temperature (C/F): 19.5 Conductivity (μοhms/em): 0.49 pH: 6.39 Turbidity (NTU): Palax = 214 mv
SAMPLE CUSTODY
Chain of Custody Number: Laboratory:
Shipped Via: Felix Air bill Number:
COMMENTS Purples of 59 mg les on 11/16/06.

SITE NAME: COX-RCPA Ponit Sampling-Barry, my
PROJECT NUMBER: 441857. 0700
•
SAMPLE NUMBER: Of 3 WEATHER: Clay 4-60% DATE: 1/1506 TIME: 65%
DATE: ///15/06 TIME: 0800
SAMPLERS: Chuck Burkharld of Parsons
of Parsons
DESCRIPTION OF SAMPLING POINT
DESCRIPTION OF SAMPLING POINT Sample I coation: Monitoring Well Mark CA - 3
Sample Location: Monitoring Well MW- 02-3 Screen/Sample Depth: 70 = 79-01
Sample Method: disperable poly. bailor and poly. refe
- State of the sta
GROUNDWATER PURGING
Initial Static Water Level: (5.94
One Well Volume: 3 Volumes
2-Inch Casing: Feet of Water x 0.16 Gallons/Foot = Gallons
3-Inch Casing: Feet of Water x 0.36 Gallons/Foot = Gallons
4-Inch Casing: \$\overline{\infty} 6 & Feet of Water x 0.65 Gallons/Foot = \overline{37.73} Gallons \(\bar{13.90} \)
114
Volume of groundwater purged: Gallons
Purging Device: Sas frightlic fumpant for dispersase 77514
Purging Device: sat pristable pump and por disposable taking Purge Water Disposition (e.g., contained): fully tank and transferred of an asdocata there and place more
SAMPLE DESCRIPTION
Color:
Odor: None
Other:
Sample Analyzed for: \$260 5870, gal \$5 (80108)
QC Samples at this Location:
QC Samples Analyzed for:
FIELD MEASUREMENTS
Temperature CP: Conductivity (µohmetom): 0, 60
pH: 6-63 Turbidity (NTU):
SAMPLE CUSTODY SAMPLE CUSTODY
Chain of Custody Number: Laboratory: Law after La G
Shipped Via: Fally Air bill Number:
COMMENTS Jugglusel in 1/1/5/06 4 ml
COMMENTS Jugglyself on 1/1/5/06 4 of 59 mples on 1/1/6/06.
,

APPENDIX B

PARSONS DATA REVIEW SUMMARY REPORTS FOR JUNE AND NOVEMBER 2006 GROUNDWATER SAMPLING EVENTS

DATA REVIEW SUMMARY REPORT for samples collected for RCRA PERMIT GROUNDWATER SAMPLING FORMER TEXACO RESEARCH CENTER BEACON, NY

Data Review by: Richard Cheatham Parsons - Denver, Colorado

INTRODUCTION

The following data review summary report covers groundwater samples and the associated field quality control (QC) samples collected as part of the RCRA permit groundwater sampling at the Former Texaco Research Center in Beacon, NY (Site ID#314004) on June 06-09, 2006. Field program quality control samples included field duplicate samples for ground waters and aqueous trip blank samples. All samples were collected by Parsons and analyzed by Lancaster Laboratories, Lancaster, PA (Lancaster) following the procedures outlined in the Addendum QAPP for Interim Corrective Action Measure, dated August 2005. Analytical results were reported in the following Lancaster Sample Delivery Group (SDG)/Sample Group, with sample groups associated with an SDG# being reported in a NYSDEC ASP Category B deliverables package: Sample Group 993100 (SDG CBN22). All samples were identified on the chain-of-custody record (COC) as being analyzed for "TCL-8260 (i.e. Volatile Organic Compounds by method SW-846 8260B), "TCL-8270 (SW846)" (i.e. Semivolatile Organic Compounds by method SW-846 8270C), and "Pb" (i.e. Lead by method SW-846 6010B). All samples were analyzed as specified on the COC. Samples were analyzed for a projectspecific list of 33 VOCs (including 2-Chloroethyl vinyl ether, Trichlorofluoromethane, MTBE), 3 SVOCs, and Lead.

Data validation was performed following the procedures of, and in accordance with the requirements of the Addendum QAPP for Interim Corrective Action Measure, dated August 2005, including the procedures and data quality criteria of the USEPA Region II SOP HW-6 (CLP Organics Data Review). Table 1 summarizes the sample data that has been reviewed. Data validation qualifications are summarized on Table 2. Field duplicate sample results are summarized on Table 3 of this report.

DATA REVIEW RESULTS SUMMARY

Each sample result for all analyses for the groundwater sample analyses is considered usable for project purposes. Laboratory QC sample analyses demonstrated acceptable precision and accuracy of associated sample results, with exceptions noted in sections following. Accuracy, precision (analytical and overall), representativeness, completeness, and comparability are considered acceptable for all analyses and all sample results for the groundwater samples.

The reported result for 2-Chloroethyl vinyl ether in sample OS-2 was qualified as estimated (J) due to non-compliant matrix spike/matrix spike duplicate (MS/MSD)

recovery relative percent difference (RPD) result. All other sample results were not qualified as a result of data review and data validation.

A trip blank sample was collected and submitted with the shipment of groundwater samples. One groundwater sample, DB-8A was collected as a field duplicate pair (DB-8A/DB-108A); samples DB-8A and DB-108A were mislabeled in the field on the COC record as "DB-8B" and DB-108B", respectively. Laboratory initially reported samples based on the sample identification numbers shown on the COC record; however, the laboratory provided a report revision to report the sample results using the corrected field sample IDs. Sample OS-2 was utilized for MS/MSD analyses.

EVALUATION CRITERIA

The data submitted by the laboratory has been reviewed and validated, as specified below, following the guidelines outlined in the Addendum QAPP for Interim Corrective Action Measure, dated August 2005.

Information reviewed and evaluated as part of the validation process included sample results; calibration information (initial calibration results, continuing calibration verification), laboratory control sample results (LCS); matrix spike/matrix spike duplicate (MS/MSD) results; parent/field duplicate (FD) results; trip blank field QC samples results; method blanks; "laboratory comments"; and chain-of-custody (COC) forms.

In addition, the summarized sample analysis results for groundwater samples and associated QC sample results and QA/QC data reported in the laboratory's "analytical report" for sample OS-2 in SDG CBN22 for VOCs by Method "TCL by 8260", for SVOCs by Method "TCL Semivolatiles by 8270", and Method "Lead" (by SW6010B) were verified from the "raw" analytical data. The data packages were evaluated for deliverables completeness with reference to the project QAPP requirements.

The analyses and findings presented in this report are based on the reviewed information, and whether requirements in the Addendum QAPP were met.

Accuracy

Accuracy was evaluated using the percent recovery (%R) obtained from LCSs (blank spikes), MS, and MSD, as well as of surrogate compound recoveries for each project sample.

Precision

Analytical Precision was evaluated based on the relative percent difference (%RPD) of MS/MSD sample analysis results and of internal laboratory duplicate results.

Overall Precision (of the sampling and analysis process) was evaluated based on the relative percent difference (%RPD) of sample/field duplicate results.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

Comparing the COC procedures to those described in the Addendum QAPP;

- Comparing actual analytical procedures to those described in the Addendum OAPP;
- Evaluating sample preservation and analytical holding times;
- Examining trip blanks for contamination of, or cross-contamination of, samples during sample handling and shipment;
- Examining laboratory blanks for cross contamination of samples during sample preparation and analysis;
- Evaluating instrument tuning and performance data;
- Evaluating initial calibration results;
- Evaluating continuing calibration verification results; and,
- Evaluating field duplicate sample results.

Completeness (laboratory completeness)

Laboratory completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data, calculating a "percent completeness" value, and comparing the "percent completeness" with the Addendum QAPP criterion of 90% for each type of analysis.

Comparability

Comparability has been evaluated by:

- Evaluating the sample analysis methods used; and,
- Confirming the use, by the laboratory, of standard reporting units and reporting formats, including for reporting of QC data.

EVALUATION RESULTS – GROUNDWATER SAMPLES

TCL VOCs

In addition, to the evaluation of accuracy, precision, representativeness, comparability, and completeness results presented in the sections following, which pertain to analyses of all groundwater samples, a "spot check" verification of the reported results for one of the groundwater samples was performed. The summarized sample analysis results for the groundwater sample OS-2 and associated QC sample results and QA/QC data reported in the laboratory's "analytical report" for SDG CBN22 "TCL by 8260" were verified from the "raw" analytical data.

Accuracy for all groundwater sample analyses is considered acceptable. Evaluation results are as follows:

Surrogate recoveries (%R) for all project samples for Sample Group 993100
were within laboratory control limits and also within Addendum QAPP control
limits for all groundwater samples.

- LCS recoveries (%R) for Sample Group 993100 were within applicable (laboratory) control limits.
- MS/MSD recoveries (%R) for Sample OS-2 analyzed in Sample Group 993100
 were within applicable were within laboratory control limits and also within
 Addendum QAPP control limits for water samples, with the exception of 2Chloroethyl vinyl ether for which the MSD recovery was low. Evaluation
 results are shown below.

Sample Group/	Sample	Analyte	MS/MSD	MS/MSD	Data
SDG	ID		%R	%RPD	Qualifier
993100/CBN22	OS-2	2-Chloroethyl vinyl ether	Ok/0	200	UJ

Analytical Precision is considered acceptable for all groundwater sample results.

Overall precision is considered acceptable for all groundwater sample results.

Evaluation results are as follows:

• MS/MSD RPD values (%R) for Sample OS-2 analyzed in Sample Group 993100 were within applicable were within laboratory control limits and also within Addendum QAPP control limits for water samples, with the exception of 2-Chloroethyl vinyl ether. Evaluation results are shown below.

Sample Group/ SDG	Sample ID	Analyte	MS/MSD %R	MS/MSD %RPD	Data Qualifier
993100/CBN22	OS-2	2-Chloroethyl vinyl ether	Ok/0	200	UJ

Field duplicate RPD values were within laboratory control limits and also within Addendum QAPP control limits for water samples. Sample DB-8A was collected as a field duplicate and analyzed in Sample Group 993100. Sample concentrations for the duplicate pair DB-8A/DB1108A were reported as less than the PQL for all analytes with the exception of Trichloroethene. Field duplicate results are summarized on Table 3.

Representativeness is considered acceptable for all groundwater sample results. Evaluation results are as follows:

- Sample preservation requirements, as specified in the Addendum QAPP were met for all groundwater samples; sample pH<2. Cooler temperature at time of sample receipt by laboratory <4°C.
- Analytical holding time for Sample Group 993100, as specified in the Addendum QAPP, was met for all groundwater sample analyses.
- Trip blank associated with Sample Group 993100 was free of any target analyte at a detectable concentration.
- The method blank associated with Sample Group 993100 was free of any target analyte at a detectable concentration.

- The samples were analyzed using the methods specified in the Addendum OAPP.
- GC/MS instrument performance check (BFB ion abundance criteria) met acceptance criteria.
- Internal standard area counts and retention times met acceptance criteria.
- Continuing calibration verification (CCV) results met the acceptance criterion of "<25%D".

Completeness is considered acceptable for all groundwater sample results. All sample results are considered as usable for project purposes in accordance with Addendum QAPP specifications.

Comparability is considered acceptable for all groundwater sample results. The samples were analyzed using the methods specified in the Addendum QAPP and data, including QC results, were reported using industry-standard reporting units and reporting formats.

TCL SEMIVOLATILES

In addition, to the evaluation of accuracy, precision, representativeness, comparability, and completeness results presented in the sections following, which pertain to analyses of all groundwater samples, verification of the reported results for the groundwater sample OS-2 was performed. The summarized sample analysis results for the groundwater sample OS-2 and associated QC sample results and QA/QC data reported in the laboratory's "analytical report" for SDG CBN22 for Semivolatiles by Method "TCL Semivolatile by 8270 were verified from the "raw" analytical data.

Accuracy for all groundwater sample analyses is considered acceptable. Evaluation results are as follows:

- Surrogate recoveries (%R) for all project samples for Sample Group 993100
 were within laboratory control limits and also within Addendum QAPP control
 limits for all groundwater samples.
- LCS recoveries (%R) for Sample Group 993100 were within applicable (laboratory) control limits.
- MS/MSD recoveries (%R) for Sample OS-2 analyzed in Sample Group 993100 were within applicable were within laboratory control limits and also within Addendum QAPP control limits for water samples.

Analytical Precision is considered acceptable for all groundwater sample results.

Overall precision is considered acceptable for all groundwater sample results.

Evaluation results are as follows:

- LCS/LCSD RPD values for Sample Group 993100 were within applicable laboratory control limits.
- MS/MSD RPD values for Sample OS-2 analyzed in Sample Group 993100 were within applicable were within laboratory control limits and also within Addendum QAPP control limits for water samples.
- Field duplicate RPD values were within laboratory control limits and also within Addendum QAPP control limits for water samples. Sample DB-8A was collected as a field duplicate and analyzed in Sample Group 993100. All sample concentrations for the duplicate pair DB-8A/DB-108A were reported as less than the POL. Field duplicate results are summarized on Table 3.

Representativeness is considered acceptable for all groundwater sample results. Evaluation results are as follows:

- Sample preservation requirements, as specified in the Addendum QAPP were met for all groundwater samples. Cooler temperature at time of sample receipt by laboratory <4°C.
- Analytical holding times for Sample Group 993100, as specified in the Addendum QAPP, were met for all groundwater sample analyses.
- The method blank associated with Sample Group 993100 was free of any target analyte at a detectable concentration.
- The samples were analyzed using the methods specified in the Addendum OAPP.
- GC/MS instrument performance check (DFTPP ion abundance criteria) met acceptance criteria.
- Internal standard area counts and retention times met acceptance criteria.
- Initial calibration met acceptance criteria.
- Initial calibration verification met acceptance criteria.
- Continuing calibration verification (CCV) results met the acceptance criterion of "<25%D".

Completeness is considered acceptable for all groundwater sample results. All sample results are considered as usable for project purposes in accordance with Addendum QAPP specifications.

Comparability is considered acceptable for all groundwater sample results. The samples were analyzed using the methods specified in the Addendum QAPP and data, including QC results, were reported using industry-standard reporting units and reporting

formats. The reported 4-methylphenol values are a combination of results of 3-Methylphenol and 4-Methylphenol, which cannot be resolved under the chromatographic conditions used for analysis.

LEAD

In addition, to the evaluation of accuracy, precision, representativeness, comparability, and completeness results presented in the sections following, which pertain to analyses of all groundwater samples, verification of the reported results for the groundwater sample OS-2 was performed. The summarized sample analysis results for the groundwater sample OS-2 and associated QC sample results and QA/QC data reported in the laboratory's "analytical report" for SDG CBN22 for Lead by Method 6010B were verified from the "raw" analytical data.

Accuracy for all groundwater sample analyses is considered acceptable. Evaluation results are as follows:

- LCS recoveries (%R) for Sample Group 993100 were within applicable (laboratory) control limits.
- MS/MSD recoveries (%R) for Sample OS-2 analyzed in Sample Group 993100 were within applicable were within laboratory control limits and also within Addendum QAPP control limits for water samples.

Analytical Precision is considered acceptable for all groundwater sample results.

Overall precision is considered acceptable for all groundwater sample results.

Evaluation results are as follows:

- MS/MSD RPD values for Sample OS-2 analyzed in Sample Group 993100 were within applicable were within laboratory control limits and also within Addendum QAPP control limits for water samples.
- Laboratory duplicate sample RPD value (59%) for Sample OS-2 analyzed in Sample Group 993100 was higher than laboratory control limit (20%), but the sample results were reported as "Not Detected" so sample/sample duplicate RPD result is not applicable.
- Field duplicate RPD values were within laboratory control limits and also within Addendum QAPP control limits for water samples. Sample DB-8A was collected as a field duplicate and analyzed in Sample Group 993100. The sample concentration for the duplicate pair DB-8A/DB-108A was reported as "Not Detected". Field duplicate results are summarized on Table 3.

Representativeness is considered acceptable for all groundwater sample results. Evaluation results are as follows:

- Sample preservation requirements, as specified in the Addendum QAPP were met for all groundwater samples. Cooler temperature at time of sample receipt by laboratory <4°C.
- Analytical holding time for Sample Group 993100, as specified in the Addendum QAPP, was met for all groundwater sample analyses.
- The method blank associated with Sample Group 993100 was free of any target analyte at a detectable concentration.
- The samples were analyzed using the methods specified in the Addendum OAPP.
- Initial calibration met acceptance criteria.
- Initial calibration verification met acceptance criteria.
- Continuing calibration verification (CCV) results met the acceptance criterion of "<25%D".

Completeness is considered acceptable for all groundwater sample results. All sample results are considered as usable for project purposes in accordance with Addendum QAPP specifications.

Comparability is considered acceptable for all groundwater sample results. The samples were analyzed using the methods specified in the Addendum QAPP and data, including QC results, were reported using industry-standard reporting units and reporting formats.

DELIVERABLES (DATA PACKAGE) COMPLETENESS AND COMPLIANCE

Deliverables Completeness is considered acceptable. The data for the groundwater samples were reported in NYSDEC ASP Category B (type) deliverables package identified as SDG CBN22. This package contained all sample COC forms, case narratives including sample/analysis summary forms, QA/QC summaries with supporting documentation, relevant calibration data, instrument and method performance data, documentation of the laboratories ability to attain the method detection limits for target analytes in required matrices, data report forms with examples of calculations, and raw data.

Deliverables Compliance is considered acceptable.

The data was produced and reported consistent with the amended QAPP and the requested data package deliverables, protocol-required QA/QC criteria were met, and problems encountered during the analytical process and actions taken to correct the problems were reported in the data packages.

TABLE 1 – VALIDATED SAMPLES AND ANALYSES PERFORMED

Parsons Field Sample ID	Sample Date	Lancaster Sample Group	Lancaster Sample #	Lancaster SDG# (NYSDEC ASP Category B Data Package)	VOCs (SW8260B)	TCL-VOCs (SW8260B)	TCL-SVOCs (SW8270C)	
TF-5	06/06/06	993100	4791555	CBN23	X	X	X	
TF-23	06/06/06	993100	4791555	CBN23	X	X	7-11-01	
TF-23	06/07/06	993100	4791557	CBN23			X	
DC-2	06/08/06	993100	4791558	CBN23	X	X	X	
DC-1	06/08/06	993100	4791559	CBN23	X	X	X	
DB-8A (misidentified on the COC record as "DB-8B")	06/08/06	993100	100 4791560 CB		X	X	X	
DB-108A (misidentified on the COC record as "DB-108B")	entified on the COC 06/08/06		4791561	CBN23	X	X	X	
DB-17A	06/08/06	993100	4791562	CBN23	Х	X	X	
OS-2	06/09/06	993100	993100 4791563 CBN23 X		X	X	X	
TRIP BLANK #1	_	993100	4791567	CBN23	х			
OR-2	06/09/06	993100	4791568	CBN23	X	X	X	
OS-3	06/09/06	993100	4791569	CBN23	X	X	X	
OR-3	06/09/06	993100	4791570	CBN23	X	X	X	

TABLE 2
DATA VALIDATION DATA QUALIFIERS AND DATA FLAG CHANGES

Sample ID	Sample Date	Sample Group/ SDG	Lab ID	ANALYTE	Reported Concentration (ug/L)	Old Flag (lab flag)	New Flag (Data Qualifier)	Final Q (summary)	Reason
OS-2	06/09/2006	993100/ CBN22	4791563	2-Chloroethyl vinyl ether	ND	ND	J	UJ	MSD %R/RPD

TABLE 3 – FIELD DUPLICATE SAMPLE RESULTS

Sample Matrix	Analyte	Collection Date	Field Sample ID	Field Sample Value	PQL*	Replicate Sample ID	Replicate Sample Value	RL	RPD**
GW	ALL ANALYTES, except TCE	06/08/06	DB-8A	ND		DB-108A	ND		n/a
GW	Trichloroethene	06/08/06	DB-8A	13		DB-108A	14		7.5
GW	ALL SVOC ANALYTES	06/08/06	DB-8A	ND		DB-108A	ND		n/a ·
GW	Lead	06/08/06	DB-8A	ND		DB-108A	ND		n/a

^{*}PQL = RL

**RPD calculated only if both results >PQL.

DATA REVIEW SUMMARY REPORT for samples collected for RCRA PERMIT GROUNDWATER SAMPLING FORMER TEXACO RESEARCH CENTER BEACON, NY

Data Review by: Richard Cheatham Parsons – Denver, Colorado

INTRODUCTION

The following data review summary report covers groundwater samples and the associated field quality control (QC) samples collected as part of the RCRA permit groundwater sampling at the Former Texaco Research Center in Beacon, NY (Site ID#314004) on November 15-16, 2006. Field program quality control samples included field duplicate samples for ground waters and aqueous trip blank samples. All samples were collected by Parsons and analyzed by Lancaster Laboratories, Lancaster, PA (Lancaster) following the procedures outlined in the Addendum QAPP for Interim Corrective Action Measure, dated August 2005. Analytical results were reported in the following Lancaster Sample Delivery Group (SDG)/Sample Group, with sample groups associated with an SDG# being reported in a NYSDEC ASP Category B deliverables package: Sample Group 1014759 (SDG CBN36). All samples were identified on the chain-of-custody record (COC) as being analyzed for "TCL-8260 (i.e. Volatile Organic Compounds by method SW-846 8260B), "TCL-8270 (SW846)" (i.e. Semivolatile Organic Compounds by method SW-846 8270C), and "Pb" (i.e. Lead by method SW-846 6010B). All samples were analyzed as specified on the COC. Samples were analyzed for a project-specific list of 33 VOCs (including 2-Chloroethyl vinyl ether, Trichlorofluoromethane, MTBE), 3 SVOCs, and Lead.

Data validation was performed following the procedures of, and in accordance with the requirements of the Addendum QAPP for Interim Corrective Action Measure, dated August 2005, including the procedures and data quality criteria of the USEPA Region II SOP HW-6 (CLP Organics Data Review). Table 1 summarizes the sample data that has been reviewed. Data validation qualifications are summarized on Table 2. Field duplicate sample results are summarized on Table 3 of this report.

DATA REVIEW RESULTS SUMMARY

Each sample result for all analyses for the groundwater sample analyses is considered usable for project purposes. Laboratory QC sample analyses demonstrated acceptable precision and accuracy of associated sample results, with exceptions noted in sections following. Accuracy, precision (analytical and overall), representativeness, completeness, and comparability are considered acceptable for all analyses and all sample results for the groundwater samples.

The reported result for 2-Chloroethyl vinyl ether in sample TF-23 was qualified as rejected (R) due to non-compliant matrix spike/matrix spike duplicate (MS/MSD) recovery (%R) results. Chloromethane and Chloroethane results were qualified as

estimated (J) in all groundwater samples due to non-compliant continuing calibration verification (CCV) percent difference (%D). Hexachlorobutadiene results were qualified as estimated (J) in all groundwater samples due to non-compliant continuing calibration verification (CCV) percent difference (%D). All other sample results were not qualified as a result of data review and data validation.

A trip blank sample and an equipment blank sample were collected and submitted with the shipment of groundwater samples. The trip blank was analyzed for VOCs only, whereas the equipment blank was analyzed for all parameters. One groundwater sample, DB-8A was collected as a field duplicate pair (TF-05/TF-105). Sample TF-23 was utilized for MS/MSD, analyses.

EVALUATION CRITERIA

The data submitted by the laboratory has been reviewed and validated, as specified below, following the guidelines outlined in the Addendum QAPP for Interim Corrective Action Measure, dated August 2005.

Information reviewed and evaluated as part of the validation process included sample results; calibration information (initial calibration results, continuing calibration verification), laboratory control sample results (LCS); matrix spike/matrix spike duplicate (MS/MSD) results; parent/field duplicate (FD) results; trip blank field QC samples results; method blanks; "laboratory comments"; and chain-of-custody (COC) forms.

In addition, the summarized sample analysis results for groundwater samples and associated QC sample results and QA/QC data reported in the laboratory's "analytical report" for sample OS-2 in SDG CBN22 for VOCs by Method "TCL by 8260", for SVOCs by Method "TCL Semivolatiles by 8270", and Method "Lead" (by SW6010B) were verified from the "raw" analytical data. The data packages were evaluated for deliverables completeness with reference to the project QAPP requirements.

The analyses and findings presented in this report are based on the reviewed information, and whether requirements in the Addendum QAPP were met.

Accuracy

Accuracy was evaluated using the percent recovery (%R) obtained from LCSs (blank spikes), MS, and MSD, as well as of surrogate compound recoveries for each project sample.

Precision

Analytical Precision was evaluated based on the relative percent difference (%RPD) of MS/MSD sample analysis results and of internal laboratory duplicate results.

Overall Precision (of the sampling and analysis process) was evaluated based on the relative percent difference (%RPD) of sample/field duplicate results.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

Comparing the COC procedures to those described in the Addendum QAPP;

- Comparing actual analytical procedures to those described in the Addendum OAPP;
- Evaluating sample preservation and analytical holding times;
- Examining trip blanks for contamination of, or cross-contamination of, samples during sample handling and shipment;
- Examining laboratory blanks for cross contamination of samples during sample preparation and analysis;
- Evaluating instrument tuning and performance data;
- Evaluating initial calibration results;
- Evaluating continuing calibration verification results; and,
- Evaluating field duplicate sample results.

Completeness (laboratory completeness)

Laboratory completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data, calculating a "percent completeness" value, and comparing the "percent completeness" with the Addendum QAPP criterion of 90% for each type of analysis.

Comparability

Comparability has been evaluated by:

- Evaluating the sample analysis methods used; and,
- Confirming the use, by the laboratory, of standard reporting units and reporting formats, including for reporting of QC data.

EVALUATION RESULTS – GROUNDWATER SAMPLES

TCL VOCs

In addition, to the evaluation of accuracy, precision, representativeness, comparability, and completeness results presented in the sections following, which pertain to analyses of all groundwater samples, a "spot check" verification of the reported results for one of the groundwater samples was performed. The summarized sample analysis results for the groundwater sample TF-23 and associated QC sample results and QA/QC data reported in the laboratory's "analytical report" for SDG CBN36 "TCL by 8260" were verified from the "raw" analytical data.

Accuracy for all groundwater sample analyses is considered acceptable. Evaluation results are as follows:

 Surrogate recoveries (%R) for all project samples for Sample Group 1014759 were within laboratory control limits and also within Addendum QAPP control limits for all groundwater samples.

- LCS recoveries (%R) for Sample Group 1014759 were within applicable (laboratory) control limits.
- MS/MSD recoveries (%R) for Sample TF-23 analyzed in Sample Group 1014759 were within applicable were within laboratory control limits and also within Addendum QAPP control limits for water samples, with the exception of 2-Chloroethyl vinyl ether for which the MSD recovery was low. Evaluation results are shown below.

Sample Group/	Sample	Analyte	MS/MSD	MS/MSD	Data
SDG	ID		%R	%RPD	Qualifier
1014759/CBN36	TF-23	2-Chloroethyl vinyl ether	0/0	n/a	R

Analytical Precision is considered acceptable for all groundwater sample results.

Overall precision is considered acceptable for all groundwater sample results.

Evaluation results are as follows:

- MS/MSD RPD values (%R) for Sample TF-23 analyzed in Sample Group 1014759 were within applicable were within laboratory control limits and also within Addendum QAPP control limits for water sample.
- Field duplicate RPD values were within laboratory control limits and also within Addendum QAPP control limits for water samples. Sample TF-105 was collected as a field duplicate of TF-05 and analyzed in Sample Group 1014759. Sample concentrations for the duplicate pair TF-05/TF-105 were reported as less than the PQL for all analytes with the exception of Trichloroethene. Field duplicate results are summarized on Table 3.

Representativeness is considered acceptable for all groundwater sample results. Evaluation results are as follows:

- Sample preservation requirements, as specified in the Addendum QAPP were met for all groundwater samples; sample pH<2. Cooler temperature at time of sample receipt by laboratory <4°C.
- Analytical holding time for Sample Group 1014759, as specified in the Addendum QAPP, was met for all groundwater sample analyses.
- Trip blank associated with Sample Group 993100 was free of any target analyte at a detectable concentration.
- Equipment blank associated with Sample Group 1014759 was free of any target analyte at a detectable concentration.
- The method blank associated with Sample Group1014759 was free of any target analyte at a detectable concentration.
- The samples were analyzed using the methods specified in the Addendum QAPP.
- GC/MS instrument performance check (BFB ion abundance criteria) met acceptance criteria.

Internal standard area counts and retention times met acceptance criteria.

• Continuing calibration verification (CCV) results met the acceptance criterion of "<20%D", with exceptions shown below.

Sample Group/SDG	Target Analyte	%D	Samples Affected	Data Qualifier
1014759/CBN36	Chloromethane	35	All, but TB	UJ
1014759/CBN36	Chloroethane	25	All, but TB	UJ

Completeness is considered acceptable for groundwater sample results. The completeness percentage is >99%. Sample results are considered as usable for project purposes in accordance with Addendum QAPP specifications, with the exception of 2-Chloroethyl vinyl ether in sample TF-23.

Comparability is considered acceptable for all groundwater sample results. The samples were analyzed using the methods specified in the Addendum QAPP and data, including QC results, were reported using industry-standard reporting units and reporting formats.

TCL SEMIVOLATILES

In addition, to the evaluation of accuracy, precision, representativeness, comparability, and completeness results presented in the sections following, which pertain to analyses of all groundwater samples, verification of the reported results for the groundwater sample TF-23 was performed. The summarized sample analysis results for the groundwater sample TF-23 and associated QC sample results and QA/QC data reported in the laboratory's "analytical report" for SDG CBN36 for Semivolatiles by Method "TCL Semivolatile by 8270 were verified from the "raw" analytical data.

Accuracy for all groundwater sample analyses is considered acceptable. Evaluation results are as follows:

- Surrogate recoveries (%R) for all project samples for Sample Group 1014759
 were within laboratory control limits and also within Addendum QAPP control
 limits for all groundwater samples.
- LCS recoveries (%R) for Sample Group 1014759 were within applicable (laboratory) control limits.
- MS/MSD recoveries (%R) for Sample TF-23 analyzed in Sample Group 1014759 were within applicable were within laboratory control limits and also within Addendum QAPP control limits for water samples.

Analytical Precision is considered acceptable for all groundwater sample results.

Overall precision is considered acceptable for all groundwater sample results.

Evaluation results are as follows:

• LCS/LCSD RPD values for Sample Group 1014759 were within applicable laboratory control limits.

- MS/MSD RPD values for Sample TF-23 analyzed in Sample Group 1014759 were within applicable were within laboratory control limits and also within Addendum OAPP control limits for water samples.
- Field duplicate RPD values were within laboratory control limits and also within Addendum QAPP control limits for water samples. Sample TF-105 was collected as a field duplicate of TF-05 and analyzed in Sample Group 1014759. All sample concentrations for the duplicate pair TF-05/TF-105 were reported as less than the PQL. Field duplicate results are summarized on Table 3.

Representativeness is considered acceptable for all groundwater sample results. Evaluation results are as follows:

- Sample preservation requirements, as specified in the Addendum QAPP were met for all groundwater samples. Cooler temperature at time of sample receipt by laboratory <4°C.
- Analytical holding times for Sample Group 1014759, as specified in the Addendum QAPP, were met for all groundwater sample analyses.
- Equipment blank associated with Sample Group 1014759 was free of any target analyte at a detectable concentration.
- The method blank associated with Sample Group 1014759 was free of any target analyte at a detectable concentration.
- The samples were analyzed using the methods specified in the Addendum OAPP.
- GC/MS instrument performance check (DFTPP ion abundance criteria) met acceptance criteria.
- Internal standard area counts and retention times met acceptance criteria.
- Initial calibration met acceptance criteria.
- Initial calibration verification met acceptance criteria.
- Continuing calibration verification (CCV) results met the acceptance criterion of "<20%D", with the exceptions shown below

Sample Group/SDG	Target Analyte	%D	Samples Affected	Data Qualifier
1014759/CBN36	Hexachlorocyclopentadiene	-31	All	UJ

Completeness is considered acceptable for all groundwater sample results. All sample results are considered as usable for project purposes in accordance with Addendum QAPP specifications.

Comparability is considered acceptable for all groundwater sample results. The samples were analyzed using the methods specified in the Addendum QAPP and data, including QC results, were reported using industry-standard reporting units and reporting formats. The reported 4-methylphenol values are a combination of results of 3-

Methylphenol and 4-Methylphenol, which cannot be resolved under the chromatographic conditions used for analysis.

LEAD

In addition, to the evaluation of accuracy, precision, representativeness, comparability, and completeness results presented in the sections following, which pertain to analyses of all groundwater samples, verification of the reported results for the groundwater sample TF-23 was performed. The summarized sample analysis results for the groundwater sample TF-23 and associated QC sample results and QA/QC data reported in the laboratory's "analytical report" for SDG CB36 for Lead by Method 6010B were verified from the "raw" analytical data.

Accuracy for all groundwater sample analyses is considered acceptable. Evaluation results are as follows:

- LCS recoveries (%R) for Sample Group 1014759 were within applicable (laboratory) control limits.
- MS/MSD recoveries (%R) for Sample TF-23 analyzed in Sample Group1014759 were within applicable were within laboratory control limits and also within Addendum QAPP control limits for water samples.

Analytical Precision is considered acceptable for all groundwater sample results.

Overall precision is considered acceptable for all groundwater sample results.

Evaluation results are as follows:

- MS/MSD RPD values for Sample TF-23 analyzed in Sample Group 1014759
 were within applicable were within laboratory control limits and also within
 Addendum QAPP control limits for water samples.
- Laboratory duplicate sample RPD value for Sample TF-23 analyzed in Sample Group 1014759 were within laboratory control limits and also within Addendum QAPP control limits for water samples.
- Field duplicate RPD values were within laboratory control limits and also within Addendum QAPP control limits for water samples. Sample TF-105 was collected as a field duplicate of TF-05 and analyzed in Sample Group 1014759 The sample concentration for the duplicate pair TF-05/TF-105 was reported as "Not Detected". Field duplicate results are summarized on Table 3.

Representativeness is considered acceptable for all groundwater sample results. Evaluation results are as follows:

- Sample preservation requirements, as specified in the Addendum QAPP were met for all groundwater samples. Cooler temperature at time of sample receipt by laboratory <4°C.
- Analytical holding time for Sample Group 1014759, as specified in the Addendum QAPP, was met for all groundwater sample analyses.

- Equipment blank associated with Sample Group 1014759 was free of any target analyte at a detectable concentration.
- The method blank associated with Sample Group 1014759 was free of any target analyte at a detectable concentration.
- The samples were analyzed using the methods specified in the Addendum OAPP.
- Initial calibration met acceptance criteria.
- Initial calibration verification met acceptance criteria.
- Continuing calibration verification (CCV) results met the acceptance criterion of "<20%D".

Completeness is considered acceptable for all groundwater sample results. All sample results are considered as usable for project purposes in accordance with Addendum QAPP specifications.

Comparability is considered acceptable for all groundwater sample results. The samples were analyzed using the methods specified in the Addendum QAPP and data, including QC results, were reported using industry-standard reporting units and reporting formats.

DELIVERABLES (DATA PACKAGE) COMPLETENESS AND COMPLIANCE

Deliverables Completeness is considered acceptable. The data for the groundwater samples were reported in NYSDEC ASP Category B (type) deliverables package identified as SDG CBN36. This package contained all sample COC forms, case narratives including sample/analysis summary forms, QA/QC summaries with supporting documentation, relevant calibration data, instrument and method performance data, documentation of the laboratories ability to attain the method detection limits for target analytes in required matrices, data report forms with examples of calculations, and raw data.

Deliverables Compliance is considered acceptable.

The data was produced and reported consistent with the amended QAPP and the requested data package deliverables, protocol-required QA/QC criteria were met, and problems encountered during the analytical process and actions taken to correct the problems were reported in the data packages.

TABLE 1 – VALIDATED SAMPLES AND ANALYSES PERFORMED

Parsons Field Sample ID	Sample Date	Lancaster Sample Group	Lancaster Sample #	Lancaster SDG# (NYSDEC ASP Category B Data Package)	VOCs (SW8260B)	TCL-VOCs (SW8260B)	TCL-SVOCs (SW8270C)
EQUBL	11/15/06	1014759	4919105	CBN36	X	X	X
TF-23	11/15/06	1014759	4919106	CBN36	X	X	
TF-05	11/15/06	1014759	4919110	CBN36			X
TF-105	11/15/06	1014759	4919111	CBN36	X	X	X
DC-02	11/15/06	1014759	4919112	CBN36	X	X	X
DC-01	11/15/06	1014759	4919113	CBN36	X	X	X
DB-8A	11/15/06	1014759	4919114	CBN36	X	X	X
DB-17	11/15/06	1014759	4919115	CBN36	Х	X	X
OS-3	11/15/06	1014759	4919116	CBN36	X	X	X
OS-2	11/15/06	1014759	4919117	CBN36	X	X	X
OR-2	11/16/06	1014759	4919118	CBN36	X	X	X
OR-3	11/16/06	1014759	4919119	CBN36	X	X	X
TRIP BLANK #1	-	1014759	4919120	CBN36	X	· · · · · ·	

TABLE 2
DATA VALIDATION DATA QUALIFIERS AND DATA FLAG CHANGES

Sample ID	Sample Date	Sample Group/ SDG	Lab ID	ANALYTE	Reported Concentration (ug/L)	Old Flag (lab flag)	New Flag (Data Qualifier)	Final Q (summary)	Reason
TF-23	11/15/2006	1014759/ CBN36	4919106	2-Chloroethyl vinyl ether	ND	ND	R	R	MSD %R/RPD
TF-23	11/15/06	1014759/ CBN36	4919106	Chloromethane	ND	ND	J	UJ	CCV %D
TF-05	11/15/06	1014759/ CBN36	4919110	Chloromethane	ND	ND	J	UJ	CCV %D
TF-105	11/15/06	1014759/ CBN36	4919111	Chloromethane	ND	ND	J	UJ	CCV %D
DC-02	11/15/06	1014759/ CBN36	4919112	Chloromethane	ND	ND	J	UJ	CCV %D
DC-01	11/15/06	1014759/ CBN36	4919113	Chloromethane	ND	ND	J	UJ	CCV %D
DB-8A	11/15/06	1014759/ CBN36	4919114	Chloromethane	ND	ND	J	UJ	CCV %D
DB-17	11/15/06	1014759/ CBN36	4919115	Chloromethane	ND	ND	J	UJ	CCV %D
OS-3	11/15/06	1014759/ CBN36	4919116	Chloromethane	ND	ND	J	UJ	CCV %D
OS-2	11/15/06	1014759/ CBN36	4919117	Chloromethane	ND	ND	J	UJ	CCV %D
OR-2	11/16/06	1014759/ CBN36	4919118	Chloromethane	ND	ND	J	UJ	CCV %D
OR-3	11/16/06	1014759/ CBN36	4919119	Chloromethane	ND	ND	J	UJ	CCV %D
TF-23	11/15/06	1014759/ CBN36	4919106	Chloroethane	ND	ND	J	UJ	CCV %D
TF-05	11/15/06	1014759/ CBN36	4919110	Chloroethane	ND	ND	J	UJ	CCV %D

11/15/06	CBN36	4919111	Chloroethane	ND	ND	J	UJ	CCV %D
11/15/06	CBN36	4919112	Chloroethane	ND	ND	J	UJ	CCV %D
11/15/06	CBN36	4919113	Chloroethane	ND	ND	J	UJ	CCV %D
11/15/06	CBN36	4919114	Chloroethane	ND	ND	J	UJ	CCV %D
11/15/06	CBN36	4919115	Chloroethane	ND	ND	J	UJ	CCV %D
11/15/06	CBN36	4919116	Chloroethane	ND	ND	J	UJ	CCV %D
11/15/06	CBN36	4919117	Chloroethane	ND	ND	J	UJ	CCV %D
11/16/06	CBN36	4919118	Chloroethane	ND	ND	J	UJ	CCV.%D
11/16/06	CBN36	4919119	Chloroethane	ND	ND	J	UJ	CCV %D
11/15/06	CBN36	4919106	Hexachlorocyclopentadiene	ND	ND	J	IJ	CCV %D
11/15/06	CBN36	4919110	Hexachlorocyclopentadiene	ND	ND	J	UJ	CCV %D
11/15/06	CBN36	4919111	Hexachlorocyclopentadiene	ND	ND	J	IJ	CCV %D
11/15/06	CBN36	4919112	Hexachlorocyclopentadiene	ND	ND	J	IJ	CCV %D
11/15/06	CBN36		Hexachlorocyclopentadiene	ND	ND	J	UJ	CCV %D
11/15/06	CBN36	4919114	Hexachlorocyclopentadiene	ND	ND	J	UJ	CCV %D
11/15/06	1014759/ CBN36	4919115	Hexachlorocyclopentadiene	ND	ND	J	UJ	CCV %D
11/15/06	1014759/ CBN36	4919116	Hexachlorocyclopentadiene	ND	ND	J	UJ	CCV %D
11/15/06	1014759/ CBN36	4919117	Hexachlorocyclopentadiene	ND	ND	J	UJ	CCV %D
	11/15/06 11/15/06 11/15/06 11/15/06 11/15/06 11/15/06 11/15/06 11/15/06 11/15/06 11/15/06 11/15/06 11/15/06 11/15/06 11/15/06	11/15/06 CBN36 11/15/06 CBN36 11/15/06 CBN36 CBN36	11/15/06 1014759/ CBN36 4919112 11/15/06 1014759/ CBN36 4919113 11/15/06 1014759/ CBN36 4919114 11/15/06 1014759/ CBN36 4919115 11/15/06 1014759/ CBN36 4919116 1014759/ CBN36 4919117 11/16/06 1014759/ CBN36 4919118 11/15/06 1014759/ CBN36 4919119 11/15/06 1014759/ CBN36 4919106 1014759/ CBN36 4919110 11/15/06 1014759/ CBN36 4919111 11/15/06 1014759/ CBN36 4919112 11/15/06 1014759/ CBN36 4919113 11/15/06 1014759/ CBN36 4919113 11/15/06 1014759/ CBN36 4919115 11/15/06 1014759/ CBN36 4919115 11/15/06 1014759/ CBN36 4919115 11/15/06 1014759/ CBN36 4919115 11/15/06 1014759/ CBN36 4919116 1014759/ CBN36 1014759/ CBN36 4919116 1014759/ CBN36 1014759/ CBN36 4919116 1014759/ CBN36 4919117 1014759/ CBN36 4919116 1014759/ CBN36 4919117 1014759/ CBN36 1014759/ 	11/15/06 CBN36 4919111 Chloroethane 11/15/06 1014759/ CBN36 4919113 Chloroethane 11/15/06 1014759/ CBN36 4919114 Chloroethane 11/15/06 1014759/ CBN36 4919115 Chloroethane 11/15/06 1014759/ CBN36 4919115 Chloroethane 11/15/06 1014759/ CBN36 4919116 Chloroethane 11/15/06 1014759/ CBN36 4919117 Chloroethane 11/16/06 1014759/ CBN36 4919118 Chloroethane 11/16/06 1014759/ CBN36 4919119 Chloroethane 11/15/06 1014759/ CBN36 4919110 Hexachlorocyclopentadiene 11/15/06 1014759/ CBN36 4919110 Hexachlorocyclopentadiene 11/15/06 1014759/ CBN36 4919111 Hexachlorocyclopentadiene 11/15/06 1014759/ CBN36 4919112 Hexachlorocyclopentadiene 11/15/06 1014759/ CBN36 4919113 Hexachlorocyclopentadiene 11/15/06 1014759/ CBN36 4919114 Hexachlorocyclopentadiene 11/15/06 1014759/ CBN36 4919115 Hexachlorocyclopentadiene 11/15/06 1014759/ CBN36 4919115 Hexachlorocyclopentadiene 11/15/06 1014759/ CBN36 4919115 Hexachlorocyclopentadiene 11/15/06 1014759/ CBN36 4919116 Hexachlorocyclopentadiene 11/15/06 1014759/ CBN36 4919116 Hexachlorocyclopentadiene 11/15/06 1014759/ CBN36 4919116 Hexachlorocyclopentadiene	11/15/06 CBN36 4919111 Chloroethane ND 11/15/06 CBN36 4919112 Chloroethane ND 11/15/06 CBN36 4919113 Chloroethane ND 11/15/06 CBN36 4919114 Chloroethane ND 11/15/06 CBN36 4919115 Chloroethane ND 11/15/06 CBN36 4919115 Chloroethane ND 11/15/06 CBN36 4919116 Chloroethane ND 11/15/06 CBN36 4919117 Chloroethane ND 11/15/06 CBN36 4919117 Chloroethane ND 11/16/06 CBN36 4919118 Chloroethane ND 11/16/06 CBN36 4919119 Chloroethane ND 11/15/06 CBN36 4919119 Chloroethane ND 11/15/06 CBN36 4919110 Hexachlorocyclopentadiene ND 11/15/06 CBN36 4919111 Hexachlorocyclopentadiene ND 11/15/06 CBN36 4919112 Hexachlorocyclopentadiene ND 11/15/06 CBN36 4919113 Hexachlorocyclopentadiene ND 11/15/06 CBN36 4919114 Hexachlorocyclopentadiene ND 11/15/06 CBN36 4919114 Hexachlorocyclopentadiene ND 11/15/06 CBN36 4919114 Hexachlorocyclopentadiene ND 11/15/06 CBN36 4919115 Hexachlorocyclopentadiene ND 11/15/06 CBN36 4919115 Hexachlorocyclopentadiene ND 11/15/06 CBN36 4919115 Hexachlorocyclopentadiene ND 11/15/06 CBN36 4919116 Hexachlorocyclopentadiene ND	11/15/06 CBN36 4919111 Chloroethane ND ND 11/15/06 1014759/ CBN36 4919112 Chloroethane ND ND 11/15/06 CBN36 4919113 Chloroethane ND ND 11/15/06 CBN36 4919114 Chloroethane ND ND 11/15/06 CBN36 4919115 Chloroethane ND ND 11/15/06 CBN36 4919115 Chloroethane ND ND 11/15/06 1014759/ CBN36 4919116 Chloroethane ND ND 11/15/06 1014759/ CBN36 4919117 Chloroethane ND ND 11/16/06 CBN36 4919118 Chloroethane ND ND 11/16/06 CBN36 4919118 Chloroethane ND ND 11/15/06 1014759/ CBN36 4919119 Chloroethane ND ND 11/15/06 1014759/ CBN36 4919110 Hexachlorocyclopentadiene ND ND 11/15/06 1014759/ CBN36 4919110 Hexachlorocyclopentadiene ND ND 11/15/06 1014759/ CBN36 4919111 Hexachlorocyclopentadiene ND ND 11/15/06 1014759/ CBN36 4919112 Hexachlorocyclopentadiene ND ND 11/15/06 1014759/ CBN36 4919113 Hexachlorocyclopentadiene ND ND 11/15/06 1014759/ CBN36 4919114 Hexachlorocyclopentadiene ND ND 11/15/06 1014759/ CBN36 4919114 Hexachlorocyclopentadiene ND ND 11/15/06 1014759/ CBN36 4919115 Hexachlorocyclopentadiene	11/15/06 1014759/ CBN36 4919112 Chloroethane ND ND J	11/15/06 CBN36 49/9/11 Chloroethane ND ND J UJ

OR-2	11/16/06	1014759/ CBN36 4919	116 Flexacinorocycropentaticne	ND	ND	J	UJ	CCV %D
OR-3	11/16/06	1014759/ CBN36 4919		ND	ND	J	Π1	CCV %D

TABLE 3 – FIELD DUPLICATE SAMPLE RESULTS

Sample Matrix	Analyte	Collection Date	Field Sample ID	Field Sample Value	PQL*	Replicate Sample ID	Replicate Sample Value	RL	RPD**
GW	ALL VOC analytes	11/15/06	TF-05	ND		TF-105	ND		n/a
GW	ALL SVOC ANALYTES	11/15/06	TF-05	ND		TF-105	ND		n/a
GW	Lead	11/15/06	TF-05	0.0083		TF-105	0.0070	0.0069 mg/L	n/a

^{*}PQL = RL

**RPD calculated only if both results >PQL.

APPENDIX C

LABORATORY ANALYTICAL RESULTS WITH CHAIN-OF-CUSTODIES (ANALYTICAL REPORTS ON DISK)

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

NYSDEC ASP Category B Data Package for Chevron Environmental Mgmt.

SDG# CBN23

Project: Beacon - NY
Water Samples
Collected on 06/06/06-06/09/06
Sample No. 4791555-4791570

PA Cert. # 36-037 NY Cert. # 10670 NJ Cert. # PA011 NC Cert. # 521

Prepared by_	Cananthat Canda
Reviewed by_	Shace Salm
Date	7-6-086

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Table of Contents for SDG# CBN23

1.	Sample Reference List 1
2.	Analysis Request, Field Chain-of-Custody Record 2
3.	Chain-of-Custody Record
4.	Methodology Summary/Reference 11
5.	Analysis Reports/Laboratory Chronicles
6.	Volatiles by GC/MS Data 45
	a. Case Narrative-Conformance/Nonconform. Summary 46
	b. QC Summary 51
	c. Sample Data63
	d. Standards Data 141
	e. Raw QC Data 213
	f. Preparation Logs 273
7.	Semivolatiles by GC/MS Data
	a. Case Narrative-Conformance/Nonconform. Summary 280
	b. QC Summary 285
	c. Sample Data 301
	d. Standards Data363
	e. Raw QC Data
	f. Extraction/Distillation/Digestion Logs

SDG# CBN23

8.	3. Metals Data		• • • • • • • •				• • • • •	. 486
	a. Case Na	.rrative-C	Conformanc	ce/Nonconfor	m. Summ	ary		. 487
	b. Sample	Data						. 490
	c. Quality	Control	Data					. 505
	d. Verific	ation of	Instrumer	nt Parameter:	s			. 518
	e. Prepara	tion and	Run Logs					. 524
	f. Raw Dat	a						. 528
	1. IC	P Data						. 529
	2. Ex	traction/	Distillat	ion/Digestic	on Logs			. 577

Sample Reference List for SDG Number CBN23 with a Data Package Type of NYSDEC B 11387 - Chevron Environmental Mgmt.

Project: Beacon - NY

Lab	Lab	
Sample	Sample	
<u>Number</u>	<u>Code</u>	Client Sample Description
4791555	-TF5-	TF-5 Grab Water Sample
4791556	-TF23	TF-23 Grab Water Sample
4791557	MTF23	TF-23 Grab Water Sample
4791558	-DC2-	DC-2 Grab Water Sample
4791559	-DC1-	DC-1 Grab Water Sample
4791560	DB8B-	DB-8B Grab Water Sample
4791561	DB108	DB-108B Grab Water Sample
4791562	DB17-	DB-17 Grab Water Sample
4791563	OS2	OS-2 Unspiked Grab Water Sample
4791564	OS2	OS-2_MS Matrix Spike Grab Water Sample
4791565	OS2	OS-2_MSD Matrix Spike Dup. Grab Water Sample
4791566	OS2	OS-2_DUP Dupticate Grab Water Sample
4791567	TB1RC	Trip_Blank #1 Water Sample
4791568	OR2	OR-2 Grab Water Sample
4791569	OS3	OS-3 Grab Water Sample
4791570	OR3	OR-3 Grab Water Sample

Analysis Request/ Environmental Services Chain of Custody

Lancaster

Acct. # 1|387 Group# 99 3|007 Semple # 4791555-70 COC # 0121883

φ For Lab Use Only temp 2.3-8.7; FSC: SCR# Please print. Instructions on reverse side correspond with circled numbers. W Swel bwsiD # Quote #: P.O.# Project Name/#: 2CAA Sangling CTA Name of state where samples were collected: Chara acoms, Project Manager.__ Sampler: Clent

Carrier Commence Commence		-	_						-,		(6)	٠
	167	noth										,
	ploase as - chlore -oth	Tis Harof Lyoranothan	in 87.60 odeles	A 150 m 12	}						Date	
(E)	1 C 6	100	0	3	LA							
Remarks §	27	100	77.6	0	M 26	1						
Rem	010	12	٤.	¥	1							
_				:	<u> </u>						주 영 영	
	<u> </u>	\vdash			-		<u> </u>				Time Received by:	
								_			E E	164
			_			_		-		-	Date	6/8/6 164
98	2		7	7	2	7	7	2	2			\ <u></u>
157	//	7		7	7	1	7	2	7			
5-126	19	~	-	5	8	9	0	6	5	7	'	\$
		/		2	7	7		7		7	ă	2
			,				3	7		7	Relinquished by:	J
6	1	2	/	2	7	7	7	7	2	1	200	
	15	2	8	· W	30	545	150	8	2	1	Rush	,
	/9/	9/	080	6 080	5	3	9	: 08 a	//	1	l l	narge.)
	91/3/3	8/1/18	9/1/19	6/8/16	6/5/18 4	6/8/06	48/ac	6/8/08	30/6/8	{		and surc
	3	9	9	8	A	9	V 3	\$	8		e circle	BACOdo
ollede o				;**							(pleas	E SELLOIF
were				·				'			d (TAT	r Labora
seld was										1	questa	
	الم	ا در	~ 			8	980	7		y,	ime Ra	
Stale	(زر	F-23	E- 23	20.2	1	08-88	08-1080	11-80	2-50	Trip black "	T pund	units an
Name of state where samples were collected:	1	4	TE	DC	00-1	108	04	90	0	E	Tumaround Time Requested (TAT) (please circle) Normal	(*************************************
	<u>, I</u>		- 1	- 1		1					(E)	

Relinquished by: Relinquished by 1000-Con Fax# 20-45/05/10 and Surcharge., E-mall address: od ward I. of Word Prope Rush results requested by (please circle): Phone #: 3/5-45/-5560 Date results are needed:

Relinquished by: Relinquished by: Internal Chain of Custody required? Yes No Other) (If yes, indicate QC sample and submit triplicate volume.) SDG Complete? Yes No GLP Site-specific QC required? Yes No Data Package Options (please circle if required) Type VI (Raw Data) Type III (NJ Red. Del.) Type II(Ther II) QC Summary Type (Ther !) 8

Car. 8 0 art Pack gr.
Lancaster Laboratodoc, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656/2300
Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the calent

Type IV (CLP)

2102.02

6/10/6c 1015

Lime

Date

Time | Received by

Date

Time

Date

Date | Time | Received by:

Time | Received by

Date

Eme

Time

Date

Time | Received by:

Date

Analysis Request/ Environmental Services Chain of Custody

Lancaster Laboratories

Acct. # 11387 Group# 99310C Sample # 4797555-70 COC # 0121884

Please print, instructions on reverse side correspond with circled rumbers.

10003-3-7 FSC. SCR.# Remarks 老 25/ 32 Charle PWSID #: Quote #: Care to But / & P.O.#: Claros 8/1/8 8/8/00 Sister Name of state where samples were collected: Client: Parsons/ Cherren. 2 M Z - 50 7 Project Manager____ Sampler.

Time | Received by: Time | Received by: Time | Received by: Time | Received by: Time | Received by Date Date Date Relinquished by: Relinquished by: Relinquished by: Relinquished by: Relinquished by: Offher (If yes, indicate QC sample and submit triplicate volume.) Internal Chain of Custody required? Yes No SDG Complete? Turnaround Time Requested (TAT) (please circle): (Normal) Rush E-mail GLP Site-specific QC required? Yes No (Rush TAT is subject to Lancaster Laboratories approval and surcharge.) Rush results requested by (please circle): Phone Data Package Options (please circle if required) Fax # 98 Type VI (Raw Data) Date results are needed: Type III (NJ Red. Del.) E-mail address: Phone # Day Type (Liftier II) Type IV (CLP) QC Suggmary Type ([Titler I) 9

Time (9)

Oate

Time

Date

Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client. Lancastar Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300

2102.02

5/10/p/p/2/5

Ē

Date

Zige Zige

Date

Time

Date

Environmental Sample Administration Receipt Documentation Log

Client/Project: YOUS	ns (NY)	Shipping C	ontainer Sealed (Y)/ N			
Date of Receipt: 6/10	06	Custody Seal Present N				
Time of Receipt:		Custody Seal Intact: (Y) / N / NA				
Source Code: 50-1		Package:	Chilled / Not Chilled			
	•	Unpacker Em	р. No.: <u>169С</u>			
	Temperature of Sh	nipping Contain	ers			
#1			, #2			
Thermometer ID: 479	987	Thermomete				
Temp/: 2.3°			2.1.			
Terrip. Bottle / Surface Terri		Temp.:	211			
	•		/ Surface Temp.			
VetToe / Dry Ice / Ice Par		_	y Ice / Ice Packs			
Ice Present? N	Loose / Bagged	Ice Present?	N Loose (Bagged)			
#3	2.1	#4				
Thermometer ID: 4/9	983	Thermometer ID: 479483				
Temp.: <u>3.7°</u>	·	Temp.: 215.				
Temp. Bottle / Surface Tem	p.	Jemp. Bottle	/ Surface Temp.			
Wet Ice / Dry Ice / Ice Pac	ks	Wet Ice / Dry Ice / Ice Packs				
ce Present? Y N	Loose / Cagged	Ice Present?				
Donous de Die		<i>77</i> . C				
Paperwork Discrepancy/Unp	acking Problems: _ط	# 1D3	on Containers			
		says D	B-8B cont. 08-8A			
	- Goc	- Says DE	3 108B cont. DB 108A			
	Sample Administration Int	emal Chain of	Custody			
Name	Date	Time	Reason for Trapsier			
Dayson bach	6/10/06	1345	Unpacking 7) 79%			
(YZ)	6/10/06	1350	Place in Storage of Entry)			
0			Remove from Storage			
			Place in Storage or Entry			
			Entry			

Chain-of-Custody Record

Client/Project: Chevron Beacon, NY

Preservative: HCI

Matrix: Water

SDG: CBN23

Sample # Range of Entry Group: 4791555-70

Bottle Type: (38c) 40 ml vial

Sample Number(s) in Custody	Released By	Received By	Date of Transfer	Time of Transfer	Reason for Change of Custody	Dist., Extr., or Digest Chain Created (X)
4791555-56,58- 65,68-70	(964)	VOA Fridge	06/10/06	1430	Entry to Storage	
4791555-56,58-65,68-8	Vou filde	1011532	6-11-06	21:55	forfres chening	
4791565-96, 68-65, 68-70	MM1632	JM1532 onuin Storage	6-12-06	04:00	ent (y to muin Stolage	
-						
						88 8€
:						}

Client/Project: Chevron Beacon, NY

Preservative: Na2S2O3

Matrix: Water

SDG: CBN23

Sample # Range of Entry Group: 4791555-70

Bottle Type: (45) 1000 ml amber glass

Sample Number(s) in Custody	Released By	Received By	Date of Transfer	Time of Transfer	Reason for Change of Custody	Dist., Extr., or Digest Chain Created (X)
4791555-56,58- 65,68-70	(964)	SA Storage	06/10/06	1430	Entry to Storage	
4791555-56,58-65,	CHAVARA	elv 1283	6/12/06	14:50	Preservation	
4791555-56,58-65,	elv. 1283	Main	6/12/06	14:51	Entry Into Main Storage Simi-prep Storage	
4791535-56,68-65	Stories	1709	4-12-06	15:30	semi-prep	\mathscr{S}
4791533-52,58-65	C. funtiogo	Main Stongs	6-12-00	18:45	Storage	
			·			
			_			
						00a7

Client/Project: Chevron Beacon, NY

Preservative: HCI

Matrix: Water

SDG: CBN23

Sample # Range of Entry Group: 4791555-70

Bottle Type: (38) 40 ml vial

Sample # Nange of Entry Cloup. 470 1000 70				Bottle Type: (66) To Till Vici		
Sample Number(s) in Custody	Released By	Received By	Date of Transfer	Time of Transfer	Reason for Change of Custody	Dist., Extr., or Digest Chain Created (X)
4791555-56,58- 65,68-70	(964)	VOA Fridge	06/10/06	1430	Entry to Storage	
4711555-56,58- GS.68-70	JOA SORE	12 (1958)	6/12/06	930	Entry to Deg 21 Storage	
441555-56,58-	TZ(1958)	Dept. 21 Storage	6/17/06	930	Entry to Dept.	
65,64-70 4791555-6,58-62,67	Dept. 21 Stivage	A. Sneeriuer 1731	6/13/06	1110	GCMS VOA analysis	
4791555-6,58-62,67	1.101	1518_	4/13/ae	1515	Shift change	
4791555-6,58-62,67	LMererio 1518	HPD9915 Archon	Ce[13]0L	2302	automated analysis	
4791555-6,58-62,19	HP09915 Autosampler	A. Sneerings 1731	6/14/06	0835	Shift change	
4791555-6,58-62,67	1 101 -			1000	analysis complete	-
47915563-65,68-70	A. Sneeriager 1731	Dept. 21 Purngerate	r 6/14/ca	1000	analysis complete	
		J			Ŭ	

				,		
						2578

* This group of samples was placed in the autosampler without accompanying COC. Showell 6/14/he

Client/Project: Chevron Beacon, NY

Preservative: HNO3

Matrix: Water

SDG: CBN23

Sample # Range of Entry Group: 4791555-70

Bottle Type: (08) 500 ml plastic

Sample Number(s) in Custody	Released By	Received By	Date of Transfer	Time of Transfer	Reason for Change of Custody	Dist., Extr., or Digest Chain Created (X)
4791555,57-66,68- 70	(164)	SA Storage	06/10/06	1430	Entry to Storage	
4791555, 57-66, 48-70	34 Storage	SBUSU SBUSU	4/14/a	9:15	pti check	
4791555,57-06,08-70	Beisel	sugge	1	9:25	Sterage	
4791555,57-4,68,20	Storoge	Dehalle	4/14/00 6/22/06	00:10	Storage metale Prep Storage	X
4791555,57-66	Leby School	mail Storage	6/22/06	05:30	Storage	
	//					
						6643

Department Storage Chain of Custody Metals

Client/Project: $\underline{\mathit{Ch}\varrho}$	rRON Beacon, Ny	/		
Sample # Range for Entry	Group: <u>4791555</u> ,	57-66,68,70	ِ SDG: ِ	CBN23
			-	
Digest Type (circle one):	Hg ICP ICP-MS	GF	Trial No:	(If not 1, fill in)
Batch No:	06173	184	8	001

Sample Number(s) in Custody	Released By	Received By	Date of Transfer	Time of Transfer	Reason for Change of Custody
4791555,57-66,68,70	Helen y Schaeffe	10 P LOCKED Storoge	6/22/2	06:15	ICP Locked Storoge
4791575,57-66,68,70	Ict Storage	47 Train 1242	06-22-06	15:30 16:01 317:41	ICP Analysis
4791555,57-66, 68,70	0471an 1242	Iohn 1496	06-22-06	16:20	shift change.
4791555, 57-66, 68,70	2 Hard 1484	Telsronne	6/2260	ipuo	STURME
4791563-66	10Petrage	JATE 1100	6-2304	10815	ICPanolysis
4791563-66	Vistato 100	Matrize.	62300	10:25	1CPEtrage)
4791563-66	tcp Locked STORAGE	EE67 420	6-27-06	61130	ICP Analysis
4791563-66	हिंद्रपं 420	TCP (OCKER)	6-27-06	01:55	ICP LOCKED STONAGE
					8816

METHODOLOGY SUMMARY/REFERENCE

6371 SW-846 8260 Special Compounds (water)

The water sample is purged and the volatile compounds are collected on a sorbent trap that is subsequently desorbed onto the GC/MS system for chromatographic and mass spectral analysis.

Reference: Test Methods for Evaluating Solid Waste, SW-846, Method 8260B, Revision 2, December 1996

1163 GC/MS Volatiles Water Preparation

An undiluted aliquot of the water sample is purged and the volatile compounds are collected on a sorbent trap that is subsequently desorbed onto a gas chromatographic column.

Reference: Test Methods for Evaluating Solid Waste, SW-846, Method 5030B, Revision 2, December 1996

6291 TCL by 8260 (water)

The water sample is purged and the volatile compounds are collected on a sorbent trap that is subsequently desorbed onto the GC/MS system for chromatographic and mass spectral analysis.

Reference: Test Methods for Evaluating Solid Waste, SW-846, Method 8260B, Revision 2, December 1996

7055 Lead (water)

The solution resulting from the metals digestion is analyzed by Trace ICP.

Reference: Test Methods for Evaluating Solid Waste SW-846, Method 6010B, December 1996

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

1848 Metals Water Digestion

The sample is digested with nitric and hydrochloric acids.

Reference: Test Methods for Evaluating Solid Waste SW-846, Method 3005A, July 1992

4678 TCL Semivolatiles by 8270 (water)

The sample is solvent extracted and then analyzed by GC/MS for the target compound list.

Reference: Test Methods for Evaluating Solid Waste SW-846, Method 8270C, December 1996

ANALYTICAL RESULTS

Prepared for:

Chevron Environmental Mgmt. 4800 Fournace Place Bellaire TX 77401

713-219-5225

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 993100. Samples arrived at the laboratory on Saturday, June 10, 2006. The PO# for this group is 0015005957 and the release number is HENDRICKSON.

Client Description	Lancaster Labs Number
TF-5 Grab Water Sample	4791555
TF-23 Grab Water Sample	4791556
TF-23 Grab Water Sample	4791557
DC-2 Grab Water Sample	4791558
DC-1 Grab Water Sample	4791559
DB-8B Grab Water Sample	4791560
DB-108B Grab Water Sample	4791561
DB-17 Grab Water Sample	4791562
OS-2 Unspiked Grab Water Sample	4791563
OS-2_MS Matrix Spike Grab Water Sample	4791564
OS-2_MSD Matrix Spike Dup. Grab Water Sample	4791565
OS-2_DUP Duplicate Grab Water Sample	4791566
Trip_Blank #1 Water Sample	4791567
OR-2 Grab Water Sample	4791568
OS-3 Grab Water Sample	4791569
OR-3 Grab Water Sample	4791570

METHODOLOGY

The specific methodologies used in obtaining the enclosed analytical results are indicated on the laboratory chronicles.

ELECTRONIC

Parsons Engineering Science

Attn: Ed Ashton

COPY TO

ELECTRONIC Parsons

Attn: Craig Butler

3613

COPY TO 1 COPY TO

Data Package Group

Questions? Contact your Client Services Representative Wendy A Kozma at (717) 656-2300

Respectfully Submitted,

Max E. Snavelv

Senior Specialist

Page 1 of 2

Lancaster Laboratories Sample No. WW 4791555

TF-5 Grab Water Sample

Beacon - NY RCRA Sampling June 2006 Collected: 06/06/2006 16:15

Submitted: 06/10/2006 10:15 Reported: 06/26/2006 at 14:20 Discard: 09/10/2006

-TF5-SDG#: CBN23-01 Account Number: 11387

Chevron Environmental Mgmt.

4800 Fournace Place Bellaire TX 77401

				As Received	As Received		
CAT			As Received	Method		Dilution	
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor	
07055	Lead	7439-92-1	N.D.	0.0069	mg/1	1	
04678	TCL SW846 Semivolatiles/Waters						
03937	1,3-Dichlorobenzene	541-73-1	N.D.	1.	ug/l	1	
03938	1,4-Dichlorobenzene	106-46-7	N.D.	1.	ug/1	1	
03939	1,2-Dichlorobenzene	95-50-1	N.D.	1.	ug/l	1	
06291	TCL by 8260 (water)						
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1	
05385	Chloromethane	74-87-3	N.D.	1.	ug/l	1	
05386	Vinyl Chloride	75-01-4	N.D.	1.	ug/1	1	
05387	Bromomethane	74-83-9	N.D.	1.	ug/1	1	
05388	Chloroethane	75-00-3	N.D.	1.	ug/l	1	
05390	1,1-Dichloroethene	75-35-4	N.D.	0.8	ug/l	1	
05391	Methylene Chloride	75-09-2	N.D.	2.	ug/l	1	
05393	1,1-Dichloroethane	75-34-3	N.D.	1.	ug/l	1	
05396	Chloroform	67-66-3	N.D.	0.8	ug/l	1	
05398	1,1,1-Trichloroethane	71-55-6	N.D.	0.8	ug/1	1	
05399	Carbon Tetrachloride	56-23-5	N.D.	1.	ug/l	1	
05401	Benzene	71-43-2	N.D.	0.5	ug/l	1	
05402	1,2-Dichloroethane	107-06-2	N.D.	1.	ug/l	1	
05403	Trichloroethene	79-01-6	N.D.	1.	ug/l	1	
05404	1,2-Dichloropropane	78-B7-5	N.D.	1.	ug/l	1	
05406	Bromodichloromethane	75-27-4	N.D.	1.	ug/l	1	
05407	Toluene	108-08-3	N.D.	0.7	ug/l	1	
05408	1,1,2-Trichloroethane	79-00-5	N.D.	0.8	ug/l	1	
05409	Tetrachloroethene	127-18-4	N.D.	0.8	ug/l	1	
05411	Dibromochloromethane	124-48-1	N.D.	1.	ug/l	1	
05413	Chlorobenzene	108-90-7	N.D.	0.8	ug/l	1	
05415	Ethylbenzene	100-41-4	N.D.	0.8	ug/l	1	
05419	Bromoform	75-25-2	N.D.	1.	ug/l	1	
05421	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	1.	ug/l	1	
06306	trans-1,3-Dichloropropene	10061-02-6	N.D.	1.	ug/l	1	
06307	cis-1,3-Dichloropropene	10061-01-5	N.D.	1.	ug/l	1	
06310	Xylene (Total)	1330-20-7	N.D.	0.8	ug/l	1	

06371 8260 Special Cmpds for Waters

0015

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

Page 2 of 2

Lancaster Laboratories Sample No. WW 4791555

TF-5 Grab Water Sample

Beacon - NY RCRA Sampling June 2006 Collected:06/06/2006 16:15 by EA

Submitted: 06/10/2006 10:15 Reported: 06/26/2006 at 14:20

Discard: 09/10/2006

Account Number: 11387

Chevron Environmental Mgmt.

4800 Fournace Place Bellaire TX 7**7**401

-TF5- SDG#: CBN23-01

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
05654	2-Chloroethyl Vinyl Ether	110-75-8	N.D.	2.	ug/l	1
	2-Chloroethyl vinyl ether is ar recovered in an acid preserved		compound and may	not be		
05655	Trichlorofluoromethane	75-69-4	N.D.	2.	ug/l	1
06304	1,2-Dichloroethene (Total)	540-59-0	N.D.	0.8	ug/1	1
08171	1,3-Dichlorobenzene	541-73-1	N.D.	1.	ug/1	1
08172	1,4-Dichlorobenzene	106-46-7	N.D.	1.	ug/1	1
08173	1,2-Dichlorobenzene	95-50-1	N.D.	1.	ug/l	1

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT		Analysis						
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Pactor		
07055	Lead	SW-846 6010B	1	06/22/2006 16:51	John P Hook	1		
04678	TCL SW846 Semivolatiles/Waters	SW-846 8270C	1	06/15/2006 10:53	Ryan P Byrne	1		
06291	TCL by 8260 (water)	SW-846 8260B	1	06/13/2006 18:13	Angela D Sneeringer	1		
06371	8260 Special Cmpds for Waters	SW-846 8260B	1	06/13/2006 18:13	Angela D Sneeringer	1		
00813	BNA Water Extraction	SW-846 3510C	1	06/12/2006 16:15	Olivia I Santiago	1		
01163	GC/MS VOA Water Prep	SW-846 5030B	1	06/13/2006 18:13	Angela D Sneeringer	1		
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	06/22/2006 00:20	Helen L Schaeffer	1		

8616

Page 1 of 2

Lancaster Laboratories Sample No. WW 4791556

TF-23 Grab Water Sample

Beacon - NY RCRA Sampling June 2006 Collected:06/06/2006 16:45 by EA

Submitted: 06/10/2006 10:15 Reported: 06/26/2006 at 14:20

Discard: 09/10/2006

6 10:15 Chevron Environmental Mgmt.

4800 Fournace Place Bellaire TX 77401

Account Number: 11387

-TF23 SDG#: CBN23-02

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Units	Dilution Factor
04678	TCL SW846 Semivolatiles/Waters					
03937	1,3-Dichlorobenzene	541-73-1	N.D.	1.	ug/l	1
03938	1,4-Dichlorobenzene	106-46-7	N.D.	1.	ug/l	1
03939	1,2-Dichlorobenzene	95- 50-1	N.D.	1.	ug/l	1
06291	TCL by 8260 (water)					
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1
05385	Chloromethane	74-87-3	N.D.	1.	ug/l	1
05386	Vinyl Chloride	75-01-4	N.D.	1.	ug/l	1
05387	Bromomethane	74-83-9	N.D.	1.	ug/l	1
05388	Chloroethane	75-00-3	N.D.	1.	ug/l	1
05390	1,1-Dichloroethene	75-35-4	N.D.	0.8	ug/l	1
05391	Methylene Chloride	75-09-2	N.D.	2.	ug/l	1
05393	1,1-Dichloroethane	75-34-3	N.D.	1.	ug/l	1
05396	Chloroform	67-66-3	N.D.	0 . B	ug/l	1
05398	1,1,1-Trichloroethane	71-55-6	N.D.	0.8	ug/l	1
05399	Carbon Tetrachloride	56-23 - 5	N.D.	1.	ug/l	1
05401	Benzene	71-43-2	N.D.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	N.D.	1.	ug/l	1
05403	Trichloroethene	79-01-6	N.D.	1.	ug/l	1
05404	1,2-Dichloropropane	78-87-5	N.D.	1.	ug/l	1
05406	Bromodichloromethane	75-27-4	N.D.	1.	ug/l	1
05407	Toluene	108-88-3	N.D.	0.7	ug/l	1
05408	1,1,2-Trichloroethane	79-00-5	N.D.	0.0	ug/l	1
05409	Tetrachloroethene	127-18-4	N.D.	0.0	ug/1	1
05411	Dibromochloromethane	124-48-1	N.D.	1.	ug/l	1
05413	Chlorobenzene	108-90-7	N.D.	0.0	ug/l	1
05415	Ethylbenzene	100-41-4	N.D.	0.8	ug/l	1
05419	Bromoform	75 -25-2	N.D.	1.	ug/l	1
05421	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	1.	ug/l	1
06306	trans-1,3-Dichloropropene	10061-02-6	N.D.	1.	ug/l	1
06307	cis-1,3-Dichloropropene	10061-01-5	N.D.	1.	ug/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.8	ug/l	1
06371	8260 Special Cmpds for Waters					
05654	2-Chloroethyl Vinyl Ether	110-75-8	N.D.	2.	ug/l €	617

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

Page 2 of 2

Lancaster Laboratories Sample No. WW 4791556

TF-23 Grab Water Sample

Beacon - NY RCRA Sampling June 2006 Collected:06/06/2006 16:45 by EA

Submitted: 06/10/2006 10:15 Reported: 06/26/2006 at 14:20

Discard: 09/10/2006

Account Number: 11387

Chevron Environmental Mgmt.

4800 Fournace Place Bellaire TX 77401

-TF23 SDG#: CBN23-02

CAT			As Received	As Received Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
	2-Chloroethyl vinyl ether is a recovered in an acid preserved		compound and may	not be		
05655	Trichlorofluoromethane	75-69-4	N.D.	2.	ug/l	1
06304	1,2-Dichloroethene (Total)	540-59-0	N.D.	0.8	ug/l	1
08171	1,3-Dichlorobenzene	541-73-1	N.D.	1.	ug/l	1
08172	1,4-Dichlorobenzene	106-46-7	N.D.	1.	ug/l	1
08173	1,2-Dichlorobenzene	95-50-1	N.D.	1.	ug/1	1

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

			·			
CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Pactor
04678	TCL SW046 Semivolatiles/Waters	SW-846 8270C	1	06/15/2006 11:15	Ryan P Byrne	1
06291	TCL by 8260 (water)	SW-846 8260B	1	06/13/2006 10:36	Angela D Sneeringer	1
06371	8260 Special Cmpds for Waters	SW-846 8260B	1	06/13/2006 18:36	Angela D Sneeringer	1
00813	BNA Water Extraction	SW-846 3510C	1	06/12/2006 16:15	Olivia I Santiago	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	06/13/2006 18:36	Angela D Sneeringer	1

9818

mg/l

Page 1 of 1

Lancaster Laboratories Sample No. WW 4791557

TF-23 Grab Water Sample

Beacon - NY RCRA Sampling June 2006 Collected:06/07/2006 08:00 by EA

Submitted: 06/10/2006 10:15 Reported: 06/26/2006 at 14:20

Discard: 09/10/2006

07055 Lead

MTF23 SDG#: CBN23-03

Account Number: 11387

Chevron Environmental Mgmt.

4800 Fournace Place Bellaire TX 77401

0.0069

As Received

CAT As Received Method Dilution
No. Analysis Name CAS Number Result Detection Units Factor
Limit

7439-92-1

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

N.D.

CAT			_	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Pactor
07055	Lead	SW-846 6010B	1	06/22/2006 16:56	John P Hook	1
01848	WW SW846 ICP Digest (tot	SW-846 3005A	1	06/22/2006 00:20	Helen L Schaeffer	1
	rec)	•				

Page 1 of 2

Lancaster Laboratories Sample No. WW 4791558

DC-2 Grab Water Sample

Beacon - NY RCRA Sampling June 2006 Collected:06/08/2006 08:00 by EA

Submitted: 06/10/2006 10:15 Reported: 06/26/2006 at 14:20

Discard: 09/10/2006

Account Number: 11387

Chevron Environmental Mgmt.

4800 Fournace Place Bellaire TX 77401

-DC2- SDG#: CBN23-04

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
07055	Lead	7439-92-1	N.D.	0.0069	mg/l	1
04678	TCL SW846 Semivolatiles/Waters					
03937	1,3-Dichlorobenzene	541-73-1	N.D.	1.	ug/l	1
03938	1,4-Dichlorobenzene	106-46-7	N.D.	1.	ug/l	1
03939	1,2-Dichlorobenzene	95-50-1	N.D.	1.	ug/l	1
06291	TCL by 8260 (water)					
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1
05385	Chloromethane	74-87-3	N.D.	1.	ug/l	1
05386	Vinyl Chloride	75-01-4	N.D.	1.	ug/l	1
05387	Bromomethane	74-83-9	N.D.	1.	ug/l	1
05388	Chloroethane	75-00-3	N.D.	1.	ug/l	1
05390	1,1-Dichloroethene	75-35-4	N.D.	0.8	ug/l	1
05391	Methylene Chloride	75-09-2	N.D.	2.	ug/l	1
05393	1,1-Dichloroethane	75-34-3	N.D.	1.	ug/l	1
05396	Chloroform	67-66-3	N.D.	0.8	ug/l	1
05398	1,1,1-Trichloroethane	71-55-6	N.D.	0.8	ug/l	1
05399	Carbon Tetrachloride	56-23-5	N.D.	1.	ug/l	1
05401	Benzene	71-43-2	N.D.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	N.D.	1.	ug/l	1
05403	Trichloroethene	79-01-6	N.D.	1.	ug/l	1
05404	1,2-Dichloropropane	78-87-5	N.D.	1.	ug/l	1
05406	Bromodichloromethane	75-27-4	N.D.	1.	ug/l	1
05407	Toluene	108-88-3	0.8 J	0.7	ug/l	1
05408	1,1,2-Trichloroethane	79-00-5	N.D.	0.8	ug/l	1
05409	Tetrachloroethene	127-18-4	N.D.	0.8	ug/l	1
05411	Dibromochloromethane	124-48-1	N.D.	1.	ug/l	1
05413	Chlorobenzene	108-90-7	N.D.	0 . B	ug/l	1
05415	Ethylbenzene	100-41-4	N.D.	0 . B	ug/l	1
05419	Bromoform	75-25-2	N.D.	1.	ug/l	1
05421	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	1.	ug/l	1
06306	trans-1,3-Dichloropropene	10061-02-6	N.D.	1.	ug/l	1
06307	cis-1,3-Dichloropropene	10061-01-5	N.D.	1.	ug/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.B	ug/l	1

06371 8260 Special Cmpds for Waters

6828

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

Page 2 of 2

Lancaster Laboratories Sample No. WW 4791558

DC-2 Grab Water Sample

Beacon - NY RCRA Sampling June 2006 Collected:06/08/2006 08:00 by EA

Submitted: 06/10/2006 10:15 Reported: 06/26/2006 at 14:20

Discard: 09/10/2006

Account Number: 11387

Chevron Environmental Mgmt.

4800 Fournace Place Bellaire TX 77401

-DC2- SDG#: CBN23-04

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
05654	2-Chloroethyl Vinyl Ether	110-75-8	N.D.	2.	ug/1	1
	2-Chloroethyl vinyl ether is a recovered in an acid preserved		-			
05655	Trichlorofluoromethane	75-69-4	N.D.	2.	ug/l	1
06304	1,2-Dichloroethene (Total)	540-59-0	N.D.	0.8	ug/l	1
08171	1,3-Dichlorobenzene	541-73-1	N.D.	1.	ug/l	1
08172	1,4-Dichlorobenzene	106-46-7	N.D.	1.	ug/l	1
08173	1,2-Dichlorobenzene	95-50-1	N.D.	1.	ug/l	1

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT			4	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
07055	Lead	SW-846 6010B	1	06/22/2006 17:10	John P Hook	1
04678	TCL SW846	SW-846 8270C	1	06/15/2006 11:38	Ryan P Byrne	1
	Semivolatiles/Waters					
06291	TCL by 8260 (water)	SW-846 8260B	1	06/13/2006 18:59	Angela D Sneeringer	1
06371	8260 Special Cmpds for	SW-846 8260B	1	06/13/2006 18:59	Angela D Sneeringer	1
	Waters					
00813	BNA Water Extraction	SW-846 3510C	1	06/12/2006 16:15	Olivia I Santiago	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	06/13/2006 18:59	Angela D Sneeringer	1
01848	WW SW846 ICP Digest (tot	SW-846 3005A	1	06/22/2006 00:20	Helen L Schaeffer	1
	rec)					

8821

Page 1 of 2

4791559 Lancaster Laboratories Sample No. WW

DC-1 Grab Water Sample

Beacon - NY RCRA Sampling June 2006 Collected: 06/08/2006 08:30

Submitted: 06/10/2006 10:15 Reported: 06/26/2006 at 14:20

Discard: 09/10/2006

-DC1- SDG#: CBN23-05

Account Number: 11387

Chevron Environmental Mgmt.

4800 Fournace Place Bellaire TX 77401

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
07055	Lead	7439-92-1	N.D.	0.0069	mg/l	1
04678	TCL SW846 Semivolatiles/Waters					
03937	1,3-Dichlorobenzene	541-73-1	N.D.	1.	ug/l	1
03938	1,4-Dichlorobenzene	106-46-7	N.D.	1.	ug/l	1
03939	1,2-Dichlorobenzene	95-50-1	N.D.	1.	ug/l	1
06291	TCL by 8260 (water)					
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1
05385	Chloromethane	74 - 87 - 3	N.D.	1.	ug/l	1
05386	Vinyl Chloride	75-01- 4	N.D.	1.	ug/l	1
05387	Bromomethane	74-83-9	N.D.	1.	ug/l	1
05388	Chloroethane	75-00-3	N.D.	1.	ug/l	1
05390	1,1-Dichloroethene	75-35-4	N.D.	0.8	ug/l	1
05391	Methylene Chloride	75-09-2	N.D.	2.	ug/1	1
05393	1,1-Dichloroethane	75-34-3	N.D.	1.	ug/1	1
05396	Chloroform	67-66-3	N.D.	0.8	ug/l	1
05398	1,1,1-Trichloroethane	71-55-6	N.D.	0.8	ug/l	1
05399	Carbon Tetrachloride	56-23-5	N.D.	1.	ug/l	1
05401	Benzene	71-43-2	N.D.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	N.D.	1.	ug/l	1
05403	Trichloroethene	79-01-6	11.	1.	ug/l	1
05404	1,2-Dichloropropane	78-87-5	N.D.	1.	ug/l	1
05406	Bromodichloromethane	75-27-4	N.D.	1.	ug/l	1
05407	Toluene	108-88-3	N.D.	0.7	ug/l	1
05408	1,1,2-Trichloroethane	79-00-5	N.D.	0.8	ug/l	1
05409	Tetrachloroethene	127-18-4	N.D.	0.8	ug/l	1
05411	Dibromochloromethane	124-48-1	N.D.	1.	ug/l	1
05413	Chlorobenzene	108-90-7	N.D.	0.8	ug/l	1
05415	Ethylbenzene	100-41-4	N.D.	0.8	ug/l	1
05419	Bromoform	75-25-2	N.D.	1.	ug/l	1
05421	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	1.	ug/l	1
06306	trans-1,3-Dichloropropene	10061-02-6	N.D.	1.	ug/1	1
06307	cis-1,3-Dichloropropene	10061-01-5	N.D.	1.	ug/1	1
06310	Xylene (Total)	1330-20-7	N.D.	0.8	ug/l	1
06371	8260 Special Cmpds for Waters					8822

Page 2 of 2

4791559 Lancaster Laboratories Sample No. WW

DC-1 Grab Water Sample

Beacon - NY RCRA Sampling June 2006 Collected: 06/08/2006 08:30 by EA

Submitted: 06/10/2006 10:15 Reported: 06/26/2006 at 14:20 Discard: 09/10/2006

Account Number: 11387

Chevron Environmental Mgmt.

4800 Fournace Place Bellaire TX 77401

-DC1- SDG#: CBN23-05

-DCI-	SDG#: CBN23-05			As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
05654	2-Chloroethyl Vinyl Ether	110-75-8	N.D.	2.	ug/l	1
05655	2-Chloroethyl vinyl ether is a recovered in an acid preserved Trichlorofluoromethane		n.D.	not be	ug/l	1
06304	1,2-Dichloroethene (Total)	540-59-0	7.	0.8	ug/l	1
08171	1,3-Dichlorobenzene	541-73-1	N.D.	1.	ug/l	1
08172	1,4-Dichlorobenzene	106-46-7	N.D.	1.	ug/l	1
08173	1,2-Dichlorobenzene	95-50-1	N.D.	1.	ug/l	1

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

naporatory onronto								
CAT		_		Analysis		Dilution		
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor		
07055	Lead	SW-846 6010B	1	06/22/2006 17:15	John P Hook	1		
04678	TCL SW846 Semivolatiles/Waters	SW-846 8270C	1	06/15/2006 12:00	Ryan P Byrne	1		
06291	TCL by 8260 (water)	SW-846 8260B	1	06/13/2006 19:21	Angela D Sneeringer	1		
06371	8260 Special Cmpds for Waters	SW-846 8260B	1	06/13/2006 19:21	Angela D Sneeringer	1		
00813	BNA Water Extraction	SW-846 3510C	1	06/12/2006 16:15	Olivia I Santiago	1		
01163	GC/MS VOA Water Prep	SW-846 5030B	1	06/13/2006 19:21	Angela D Sneeringer	1		
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	06/22/2006 00:20	Helen L Schaeffer	1		

6553

Lancaster Laboratories Sample No. WW 4791560

DB-8B Grab Water Sample

Beacon - NY RCRA Sampling June 2006 Collected:06/08/2006 08:45 by EA

Submitted: 06/10/2006 10:15 Reported: 06/26/2006 at 14:20

Discard: 09/10/2006

DB8B- SDG#: CBN23-06

Account Number: 11387

Chevron Environmental Mgmt.

4800 Fournace Place Bellaire TX 77401

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
07055	Lead	7439-92-1	N.D.	0.0069	mg/l	1
04678	TCL SW846 Semivolatiles/Waters					
03937	1,3-Dichlorobenzene	541-73-1	N.D.	1.	ug/l	1
03938	1,4-Dichlorobenzene	106-46-7	N.D.	1.	ug/l	1
03939	1,2-Dichlorobenzene	95-50-1	N.D.	1.	ug/l	1
06291	TCL by 8260 (water)					
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1
05385	Chloromethane	74-87-3	N.D.	1.	ug/l	1
05386	Vinyl Chloride	75-01-4	N.D.	1.	ug/l	1
05387	Bromomethane	74-83-9	N.D.	1.	ug/l	1
05388	Chloroethane	75-00-3	N.D.	1.	ug/l	1
05390	1,1-Dichloroethene	75-35-4	N.D.	0.8	ug/l	1
05391	Methylene Chloride	75-09-2	N.D.	2.	ug/l	1
05393	1,1-Dichloroethane	75-34-3	N.D.	1.	ug/l	1
05396	Chloroform	67-66-3	N.D.	0.8	ug/l	1
05398	1,1,1-Trichloroethane	71-55-6	N.D.	0.8	ug/l	1
05399	Carbon Tetrachloride	56-23-5	N.D.	1.	ug/l	1
05401	Benzene	71-43-2	N.D.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	N.D.	1.	ug/l	1
05403	Trichloroethene	79-01-6	13.	1.	ug/l	1
05404	1,2-Dichloropropane	78-87-5	N.D.	1.	ug/l	1
05406	Bromodichloromethane	75-27-4	N.D.	1.	ug/l	1
05407	Toluene	100-88-3	N.D.	0.7	ug/l	1
05408	1,1,2-Trichloroethane	79-00-5	N.D.	0.8	ug/l	1
05409	Tetrachloroethene	127-18-4	N.D.	0.8	ug/l	1
05411	Dibromochloromethane	124-48-1	N.D.	1.	ug/l	1
05413	Chlorobenzene	108-90-7	N.D.	0.8	ug/l	1
05415	Ethylbenzene	100-41-4	N.D.	0.8	ug/1	1
05419	Bromoform	75-25-2	N.D.	1.	ug/l	1
05421	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	1.	ug/l	1
06306	trans-1,3-Dichloropropene	10061-02-6	N.D.	1.	ug/l	1
06307	cis-1,3-Dichloropropene	10061-01-5	N.D.	1.	ug/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.8	ug/l	1

06371 8260 Special Cmpds for Waters

8624

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

Lancaster Laboratories Sample No. WW 4791560

DB-8B Grab Water Sample

Beacon - NY RCRA Sampling June 2006 Collected: 06/08/2006 08:45 by EA

Account Number: 11387

Submitted: 06/10/2006 10:15 Reported: 06/26/2006 at 14:20 Chevron Environmental Mgmt.

Discard: 09/10/2006

4800 Fournace Place Bellaire TX 77401

DB8B- SDG#: CBN23-06

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
05654	2-Chloroethyl Vinyl Ether	110-75-8	N.D.	2.	ug/l	1
	2-Chloroethyl vinyl ether is a recovered in an acid preserved		compound and may	not be		
05655	Trichlorofluoromethane	75-69-4	N.D.	2.	ug/l	1
06304	1,2-Dichloroethene (Total)	540-59-0	N.D.	0.8	ug/l	1
08171	1,3-Dichlorobenzene	541-73-1	N.D.	1.	ug/l	1
08172	1,4-Dichlorobenzene	106-46-7	N.D.	1.	ug/1	1
08173	1,2-Dichlorobenzene	95-50-1	N.D.	1.	ug/1	1

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

		Laboratory	CILLO	HICIG		
CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
07055	Lead	SW-846 6010B	I	06/22/2006 17:20	John P Hook	1
04678	TCL SW846	SW-846 8270C	ı	06/15/2006 12:22	Ryan P Byrne	1
	Semivolatiles/Waters					
06291	TCL by 8260 (water)	SW-846 8260B	I	06/13/2006 19:44	Angela D Sneeringer	1
06371	8260 Special Cmpds for	SW-846 8260B	1	06/13/2006 19:44	Angela D Sneeringer	1
	Waters					
00813	BNA Water Extraction	SW-846 3510C	1	06/12/2006 16:15	Olivia I Santiago	1
01163	GC/MS VOA Water Prep	SW-846 5030B	I	06/13/2006 19:44	Angela D Sneeringer	1
01848	WW SW846 ICP Digest (tot	SW-846 3005A	1	06/22/2006 00:20	Helen L Schaeffer	1
	rec)					

Lancaster Laboratories Sample No. WW 4791561

DB-108B Grab Water Sample

Beacon - NY RCRA Sampling June 2006 Collected:06/08/2006 08:50 by EA

Submitted: 06/10/2006 10:15 Reported: 06/26/2006 at 14:21

Discard: 09/10/2006

Account Number: 11387

Chevron Environmental Mgmt.

4800 Fournace Place Bellaire TX 77401

DB108 SDG#: CBN23-07

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
07055	Lead	7439-92-1	N.D.	0.0069	mg/l	1
04678	TCL SW046 Semivolatiles/Waters					
03937	1,3-Dichlorobenzene	541-73-1	N.D.	1.	ug/l	1
03938	1,4-Dichlorobenzene	106-46-7	N.D.	1.	ug/l	1
03939	1,2-Dichlorobenzene	95-50-1	N.D.	1.	ug/l	1
06291	TCL by 8260 (water)					
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1
05385	Chloromethane	74-87-3	N.D.	1.	ug/l	1
05386	Vinyl Chloride	75-01-4	N.D.	1.	ug/l	1
05387	Bromomethane	74-83-9	N.D.	1.	ug/l	1
05388	Chloroethane	75-00-3	N.D.	1.	ug/l	1
05390	1,1-Dichloroethene	75-35-4	N.D.	0.8	ug/l	1
05391	Methylene Chloride	75-09-2	N.D.	2.	ug/l	1
05393	1,1-Dichloroethane	75-34-3	N.D.	1.	ug/l	1
05396	Chloroform	67-66-3	N.D.	0.B	ug/l	1
05398	1,1,1-Trichloroethane	71-55-6	N.D.	0.8	ug/l	1
05399	Carbon Tetrachloride	56-23-5	N.D.	1.	ug/l	1
05401	Benzene	71-43-2	N.D.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	N.D.	1.	ug/l	1
05403	Trichloroethene	79-01-6	14.	1.	ug/l	1
05404	1,2-Dichloropropane	78-87-5	N.D.	1.	ug/l	1
05406	Bromodichloromethane	75-27-4	N.D.	1.	ug/l	1
05407	Toluene	100-80-3	N.D.	0.7	ug/l	1
05408	1,1,2-Trichloroethane	79-00-5	N.D.	0.8	ug/l	1
05409	Tetrachloroethene	127-18-4	N.D.	0.8	ug/l	1
05411	Dibromochloromethane	124-48-1	N.D.	1.	ug/l	1
05413	Chlorobenzene	108-90-7	N.D.	0.8	ug/l	1
05415	Ethylbenzene	100-41-4	N.D.	0.8	ug/l	1
05419	Bromoform	75-25-2	N.D.	1.	ug/l	1
05421	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	1.	ug/l	1
06306	trans-1,3-Dichloropropene	10061-02-6	N.D.	1.	ug/l	1
06307	cis-1,3-Dichloropropene	10061-01-5	N.D.	1.	ug/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.8	ug/l	1

06371 8260 Special Cmpds for Waters

Lancaster Laboratories Sample No. WW 4791561

DB-108B Grab Water Sample

Beacon - NY RCRA Sampling June 2006 Collected:06/08/2006 08:50 by EA

Submitted: 06/10/2006 10:15 Reported: 06/26/2006 at 14:21

Discard: 09/10/2006

Account Number: 11387

Chevron Environmental Mgmt.

4800 Fournace Place Bellaire TX 7**74**01

DB108 SDG#: CBN23-07

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
05654	2-Chloroethyl Vinyl Ether	110-75-8	N.D.	2.	ug/l	1
	2-Chloroethyl vinyl ether is a recovered in an acid preserved		compound and may	not be		
05655	Trichlorofluoromethane	75-69-4	N.D.	2.	ug/l	1
06304	1,2-Dichloroethene (Total)	540-59-0	N.D.	8.0	ug/l	1
08171	1,3-Dichlorobenzene	541-73-1	N.D.	1.	ug/l	1
08172	1,4-Dichlorobenzene	106-46-7	N.D.	1.	ug/l	1
08173	1,2-Dichlorobenzene	95-50-1	N.D.	1.	ug/l	1

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

		Laboracory	CILLO.	IIICIC		
CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
07055	Lead	SW-846 6010B	1	06/22/2006 17:24	John P Hook	1
04678	TCL SW846	SW-846 8270C	1	06/15/2006 12:45	Ryan P Byrne	1
	Semivolatiles/Waters					
06291	TCL by 8260 (water)	SW-846 8260B	1	06/14/2006 01:21	Lauren C Marzario	1
06371	8260 Special Cmpds for	SW-846 8260B	1	06/14/2006 01:21	Lauren C Marzario	1
	Waters					
00813	BNA Water Extraction	SW-846 3510C	1	06/12/2006 16:15	Olivia I Santiago	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	06/14/2006 01:21	Lauren C Marzario	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	06/22/2006 00:20	Helen L Schaeffer	1

Lancaster Laboratories Sample No. WW 4791562

DB-17 Grab Water Sample

Beacon - NY RCRA Sampling June 2006 Collected:06/08/2006 09:00 by EA

Submitted: 06/10/2006 10:15 Reported: 06/26/2006 at 14:21

Discard: 09/10/2006

DB17- SDG#: CBN23-08

Account Number: 11387

Chevron Environmental Mgmt.

4800 Fournace Place Bellaire TX 77401

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
07055	Lead	7439-92-1	N.D.	0.0069	mg/l	1
04678	TCL SW846 Semivolatiles/Waters					
03937	1,3-Dichlorobenzene	541-73-1	N.D.	1.	ug/l	1
03938	1,4-Dichlorobenzene	106-46-7	N.D.	1.	ug/l	1
03939	1,2-Dichlorobenzene	95-50-1	N.D.	1.	ug/l	1
06291	TCL by 8260 (water)					
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/I	1
05385	Chloromethane	74-87-3	N.D.	1.	ug/l	1
05386	Vinyl Chloride	75-01-4	N.D.	1.	ug/l	1
05387	Bromomethane	74-83-9	N.D.	1.	ug/l	1
05388	Chloroethane	75-00-3	N.D.	1.	ug/l	1
05390	1,1-Dichloroethene	75-35-4	N.D.	0.8	ug/l	1
05391	Methylene Chloride	75-09-2	N.D.	2.	ug/l	1
05393	1,1-Dichloroethane	75-34-3	N.D.	1.	ug/l	1
05396	Chloroform	67-66-3	N.D.	0.8	ug/l	1
05398	1,1,1-Trichloroethane	71-55-6	N.D.	0.8	ug/I	1
05399	Carbon Tetrachloride	56-23-5	N.D.	1.	ug/l	1
05401	Benzene	71-43-2	N.D.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	N.D.	1.	ug/l	1
05403	Trichloroethene	79-01-6	N.D.	1.	ug/l	1
05404	1,2-Dichloropropane	78-87-5	N.D.	1.	ug/l	1
05406	Bromodichloromethane	75-27-4	N.D.	1.	ug/l	1
05407	Toluene	108-88-3	N.D.	0.7	ug/l	1
05408	1,1,2-Trichloroethane	79-00-5	N.D.	0.8	ug/l	1
05409	Tetrachloroethene	127-18-4	N.D.	0.8	ug/l	1
05411	Dibromochloromethane	124-48-1	N.D.	1.	ug/l	1
05413	Chlorobenzene	108-90-7	N.D.	0.8	ug/1	ı
05415	Ethylbenzene	100-41-4	N.D.	0.8	ug/l	1
05419	Bromoform	75-25-2	N.D.	1.	ug/1	1
05421	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	1.	ug/l	1
06306	trans-1,3-Dichloropropene	10061-02-6	N.D.	1.	ug/l	1
06307	cis-1,3-Dichloropropene	10061-01-5	N.D.	1.	ug/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.8	ug/l	1
06371	8260 Special Cmpde for Waters					

06371 8260 Special Cmpds for Waters

8028

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

Lancaster Laboratories Sample No. WW 4791562

DB-17 Grab Water Sample

Beacon - NY RCRA Sampling June 2006 Collected:06/08/2006 09:00 by EA

Submitted: 06/10/2006 10:15 Reported: 06/26/2006 at 14:21

Discard: 09/10/2006

Account Number: 11387

Chevron Environmental Mgmt.

4800 Fournace Place Bellaire TX **7**7401

DB17- SDG#: CBN23-08

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Pactor
05654	2-Chloroethyl Vin y l Ether	110-75-8	N.D.	2.	ug/l	1
	2-Chloroethyl vinyl ether is a recovered in an acid preserved		compound and may	not be		
05655	Trichlorofluoromethane	75-69-4	N.D.	2.	ug/l	1
06304	1,2-Dichloroethene (Total)	540-59-0	N.D.	0.8	ug/l	1
08171	1,3-Dichlorobenzene	541-73-1	N.D.	1.	ug/l	1
08172	1,4-Dichlorobenzene	106-46-7	N.D.	1.	ug/l	1
08173	1,2-Dichlorobenzene	95~50~1	N.D.	1.	ug/l	1

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

habotacory chronicic							
CAT				Analysis		Dilution	
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor	
07055	Lead	SW-846 6010B	1	06/22/2006 17:29	John P Hook	1	
04678	TCL SW846 Semivolatiles/Waters	SW-846 8270C	1	06/15/2006 13:07	Ryan P B y rne	1	
06291	TCL by 8260 (water)	SW-846 8260B	1	06/14/2006 01:43	Lauren C Marzario	1	
06371	8260 Special Cmpds for Waters	SW-846 8260B	1	06/14/2006 01:43	Lauren C Marzario	1	
00813	BNA Water Extraction	SW-846 3510C	1	06/12/2006 16:15	Olivia I Santiago	1	
01163	GC/MS VOA Water Prep	SW-846 5030B	1	06/14/2006 01:43	Lauren C Marzario	1	
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	06/22/2006 00:20	Helen L Schaeffer	1	

Lancaster Laboratories Sample No. WW 4791563

OS-2 Unspiked Grab Water Sample

Beacon - NY RCRA Sampling June 2006 Collected:06/09/2006 11:50 by EA

Submitted: 06/10/2006 10:15 Reported: 06/26/2006 at 14:21

Discard: 09/10/2006

Account Number: 11387

Chevron Environmental Mgmt.

4800 Fournace Place Bellaire TX 77401

OS2-- SDG#: CBN23-09BKG

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
07055	Lead	7439-92-1	N.D.	0.0069	mg/l	1
04678	TCL SW846 Semivolatiles/Waters					
03937	1,3-Dichlorobenzene	541-73-1	N.D.	1.	ug/l	1
03938	1,4-Dichlorobenzene	106-46-7	N.D.	1.	ug/l	1
03939	1,2-Dichlorobenzene	95-50-1	N.D.	1.	ug/l	1
06291	TCL by 8260 (water)					
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1
05385	Chloromethane	74-87-3	N.D.	1.	ug/l	1
05386	Vinyl Chloride	75-01-4	N.D.	1.	ug/l	1
05387	Bromomethane	74-83-9	N.D.	1.	ug/l	1
05388	Chloroethane	75-00-3	N.D.	1.	ug/l	1
05390	1,1-Dichloroethene	75-35-4	N.D.	0.8	ug/l	1
05391	Methylene Chloride	75-09-2	N.D.	2.	ug/l	1
05393	1,1-Dichloroethane	75-34-3	N.D.	1.	ug/l	1
05396	Chloroform	67-66-3	N.D.	0.8	ug/l	1
05398	1,1,1-Trichloroethane	71-55-6	N.D.	0.8	ug/1	1
05399	Carbon Tetrachloride	56-23-5	N.D.	1.	ug/l	1
05401	Benzene	71-43-2	N.D.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	N.D.	1.	ug/l	1
05403	Trichloroethene	79-01-6	N.D.	1.	ug/l	1
05404	1,2-Dichloropropane	78-87-5	N.D.	1.	ug/l	1
05406	Bromodichloromethane	75-27-4	N.D.	1.	ug/l	1
05407	Toluene	108-88-3	N.D.	0.7	ug/l	1
05408	1,1,2-Trichloroethane	79-00-5	N.D.	0.8	ug/l	1
05409	Tetrachloroethene	127-18-4	N.D.	0.8	ug/l	1
05411	Dibromochloromethane	124-48-1	N.D.	1.	ug/l	1
05413	Chlorobenzene	108-90-7	N.D.	0.8	ug/l	1
05415	Ethylbenzene	100-41-4	N.D.	0.8	ug/1	1
05419	Bromoform	75-25-2	N.D.	1.	ug/l	1
05421	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	1.	ug/l	1
06306	trans-1,3-Dichloropropene	10061-02-6	N.D.	1.	ug/l	1
06307	cis-1,3-Dichloropropene	10061-01-5	N.D.	1.	ug/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.8	ug/l	1

06371 8260 Special Cmpds for Waters

6636

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

Account Number: 11387

Page 2 of 2

Lancaster Laboratories Sample No. WW 4791563

OS-2 Unspiked Grab Water Sample

Beacon - NY RCRA Sampling June 2006 Collected: 06/09/2006 11:50

Chevron Environmental Mgmt. Submitted: 06/10/2006 10:15 Reported: 06/26/2006 at 14:21 4800 Fournace Place

Discard: 09/10/2006

Bellaire TX 77401

OS2-- SDG#: CBN23-09BKG

052	SDOW. CDM25 CADICO			As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
05654	2-Chloroethyl Vinyl Ether	110-75-8	N.D.	2.	ug/l	1
05655	2-Chloroethyl vinyl ether is a recovered in an acid preserved Trichlorofluoromethane		compound and may	not be	ug/l	1
05055		·	= :			т.
06304	1,2-Dichloroethene (Total)	540-59-0	N.D.	0.8	ug/l	1
08171	1,3-Dichlorobenzene	541-73-1	N.D.	1.	ug/l	1
08172	1,4-Dichlorobenzene	106-46-7	N.D.	1.	ug/l	1
08173	1,2-Dichlorobenzene	95-50-1	N.D.	l.	ug/l	1

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
07055	Lead	SW-846 6010B	ı	06/22/2006 16:23	John P Hook	1
04678	TCL SW846 Semivolatiles/Waters	SW-846 8270C	1	06/15/2006 05:21	Linda M Hartenstine	1
06291	TCL by 8260 (water)	SW-846 8260B	1	06/13/2006 22:43	Lauren C Marzario	1
06371	8260 Special Cmpds for Waters	SW-846 8260B	1	06/13/2006 22:43	Lauren C Marzario	1
00813	BNA Water Extraction	SW-846 3510C	1	06/12/2006 16:15	Olivia I Santiago	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	06/13/2006 22:43	Lauren C Marzario	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	06/22/2006 00:20	Helen L Schaeffer	1

Lancaster Laboratories Sample No. WW 4791564

OS-2_MS Matrix Spike Grab Water Sample

Beacon - NY RCRA Sampling June 2006 Collected:06/09/2006 11:50 by EA

Submitted: 06/10/2006 10:15 Reported: 06/26/2006 at 14:21

Discard: 09/10/2006

Account Number: 11387

Chevron Environmental Mgmt.

4800 Fournace Place Bellaire TX 77401

OS2-- SDG#: CBN23-09MS

			As Received		
CAT		As Received	Method		Dilution
No. Analysis Name	CAS Numbe	er Result	Detection Limit	Units	Factor
07055 Lead	7439-92-1	0.132	0.0069	mg/l	1
04678 TCL SW846 Semiv	olatiles/Waters				
03937 1,3-Dichloroben	zene 541-73-1	95.	1.	ug/l	1
03938 1,4-Dichloroben	zene 106-46-7	95.	1.	ug/l	1
03939 1,2-Dichloroben	zene 95-50-1	93.	1.	ug/l	1
06291 TCL by 8260 (wa	ter)				
02010 Methyl Tertiary	Butyl Ether 1634-04-4	19.	0.5	ug/l	1
05385 Chloromethane	74-87-3	22.	1.	ug/l	1
05386 Vinyl Chloride	75-01-4	22.	1.	ug/l	1
05387 Bromomethane	74-83-9	16.	1.	ug/l	1
05388 Chloroethane	75-00-3	17.	1.	ug/l	1
05390 1,1-Dichloroeth	iene 75-35-4	22.	0.8	ug/l	1
05391 Methylene Chlor	ide 75-09-2	20.	2.	ug/l	1
05393 1,1-Dichloroeth	nane 75-34-3	22.	1.	ug/l	1
05396 Chloroform	67-66-3	22.	0.8	ug/l	1
05398 1,1,1-Trichloro	ethane 71-55-6	22.	0.8	ug/l	1
05399 Carbon Tetrachl	oride 56-23-5.	22.	1.	ug/l	1
05401 Benzene	71-43-2	22.	0.5	ug/l	1
05402 1,2-Dichloroeth	nane 107-06-2	22.	1.	ug/l	1
05403 Trichloroethene	79-01-6	22.	1.	ug/l	1
05404 1,2-Dichloropro	pane 78-87-5	22.	1.	ug/l	1
05406 Bromodichlorome	thane 75-27-4	22.	1.	ug/1	1
05407 Toluene	108-88-3	21.	0.7	ug/l	1
05408 1,1,2-Trichloro	ethane 79-00-5	20.	0.8	ug/l	1
05409 Tetrachloroethe	ne 127-18-4	21.	0.8	ug/1	1
05411 Dibromochlorome	thane 124-48-1	19.	1.	ug/l	1
05413 Chlorobenzene	108-90-7	21.	0.0	ug/l	1
05415 Ethylbenzene	100-41-4	22.	0.8	ug/l	1
05419 Bromoform	75-25-2	18.	1.	ug/l	1
05421 1,1,2,2-Tetrach	loroethane 79-34-5	21.	1.	ug/l	1
06306 trans-1,3-Dichl		-6 21.	1.	ug/l	1
06307 cis-1,3-Dichlor		-5 20.	1.	ug/l	1
06310 Xylene (Total)	1330-20-7	7 63.	Ο.Θ	ug/l	1

06371 8260 Special Cmpds for Waters

8032

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

Lancaster Laboratories Sample No. WW 4791564

OS-2 MS Matrix Spike Grab Water Sample

Beacon - NY RCRA Sampling June 2006 Collected: 06/09/2006 11:50 by EA

Submitted: 06/10/2006 10:15 Reported: 06/26/2006 at 14:21

Discard: 09/10/2006

Account Number: 11387

Chevron Environmental Mgmt.

4800 Fournace Place Bellaire TX 77401

OS2-- SDG#: CBN23-09MS

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Pactor
05654	2-Chloroeth y l Vinyl Ether	110-75-8	2. J	2.	ug/l	1
05655	2-Chloroethyl vinyl ether is a recovered in an acid preserved Trichlorofluoromethane		compound and may	not be	ug/l	1
06304	1,2-Dichloroethene (Total)	540-59-0	43.	0.8	ug/l	1
08171	1,3-Dichlorobenzene	541-73-1	21.	1.	ug/l	1
08172	1,4-Dichlorobenzene	106-46-7	21.	1.	ug/l	1
08173	1,2-Dichlorobenzene	95-50-1	21.	1.	ug/l	1

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Pactor
07055	Lead	SW-846 6010B	1	06/22/2006 16:37	John P Hook	1
04678	TCL SW846 Semivolatiles/Waters	SW-846 8270C	1	06/15/2006 05:43	Linda M Hartenstine	1
06291	TCL by 8260 (water)	SW-846 8260B ·	1	06/13/2006 23:05	Lauren C Marzario	1
06371	8260 Special Cmpds for Waters	SW-846 8260B	1	06/13/2006 23:05	Lauren C Marzario	1
00813	BNA Water Extraction	SW-846 3510C	1	06/12/2006 16:15	Olivia I Santiago	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	06/13/2006 23:05	Lauren C Marzario	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	06/22/2006 00:20	Helen L Schaeffer	1

Lancaster Laboratories Sample No. WW 4791565

OS-2 MSD Matrix Spike Dup. Grab Water Sample

Beacon - NY RCRA Sampling June 2006 Collected:06/09/2006 11:50 by EA

Submitted: 06/10/2006 10:15 Reported: 06/26/2006 at 14:21

Discard: 09/10/2006

Account Number: 11387

Chevron Environmental Mgmt.

4800 Fournace Place Bellaire TX 77401

OS2~- SDG#: CBN23-09MSD

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
07055	Lead	7439-92-1	0.126	0.0069	mg/l	1
04678	TCL SW846 Semivolatiles/Waters					
03937	1,3-Dichlorobenzene	541-73-1	94.	1.	ug/l	1
03938	1,4-Dichlorobenzene	106-46-7	95.	1.	ug/l	1
03939	1,2-Dichlorobenzene	95-50-1	93.	1.	ug/l	1
06291	TCL by 8260 (water)					
02010	Methyl Tertiary Butyl Ether	1634-04-4	20.	0.5	ug/l	1
05385	Chloromethane	74-87-3	22.	1.	ug/l	1
05386	Vinyl Chloride	75-01-4	22.	1.	ug/l	1
05387	Bromomethane	74-83-9	16.	1.	ug/l	1
05388	Chloroethane	75-00-3	17.	1.	ug/l	1
05390	1,1-Dichloroethene	75-35-4	22.	0.8	ug/l	1
05391	Methylene Chloride	75-09+2	21.	2.	ug/l	1
05393	1,1-Dichloroethane	75-34-3	22.	1.	ug/l	1
05396	Chloroform	67-66-3	23.	0.8	ug/l	1
05398	1,1,1-Trichloroethane	71-55-6	22.	0.8	ug/l	1
05399	Carbon Tetrachloride	56-23-5	22.	1.	ug/l	1
05401	Benzene	71-43-2	23.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	22.	1.	ug/l	1
05403	Trichloroethene	79-01-6	22.	1.	ug/l	1
05404	1,2-Dichloropropane	78-87-5	22.	1.	ug/l	1
05406	Bromodichloromethane	75-27-4	22.	1.	ug/l	1
05407	Toluene	108-88-3	22.	0.7	ug/l	1
05408	1,1,2-Trichloroethane	79-00-5	21.	0.8	ug/l	1
05409	Tetrachloroethene	127-18-4	21.	0.8	ug/l	1
05411	Dibromochloromethane	124-48-1	20.	1.	ug/l	1
05413	Chlorobenzene	108-90-7	21.	0.8	ug/l	1
05415	Ethylbenzene	100-41-4	22.	0.8	ug/l	1
05419	Bromoform	75-25-2	19.	1.	ug/l	1
05421	1,1,2,2-Tetrachloroethane	79-34-5	21.	1.	ug/l	1
06306	trans-1,3-Dichloropropene	10061-02-6	22.	1.	ug/l	1
06307	cis-1,3-Dichloropropene	10061-01-5	21.	1.	ug/l	1
06310	Xylene (Total)	1330-20-7	65.	0.8	ug/l	1

06371 8260 Special Cmpds for Waters

Lancaster Laboratories Sample No. WW 4791565

OS-2 MSD Matrix Spike Dup. Grab Water Sample

Beacon - NY RCRA Sampling June 2006 Collected:06/09/2006 11:50 by EA

Submitted: 06/10/2006 10:15 Reported: 06/26/2006 at 14:21

Discard: 09/10/2006

Account Number: 11387

Chevron Environmental Mgmt.

4800 Fournace Place Bellaire TX 77401

OS2-- SDG#: CBN23-09MSD

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
05654	2-Chloroethyl Vinyl Ether	110-75-8	N.D.	2.	ug/l	1
	2-Chloroethyl vinyl ether is a recovered in an acid preserved	sample.	-		4-	
05655	Trichlorofluoromethane	75-69-4	24.	2.	ug/1	1
06304	1,2-Dichloroethene (Total)	540-59-0	44.	0.8	ug/l	1
08171	1,3-Dichlorobenzene	541-73-1	21.	1.	ug/l	1
08172	1,4-Dichlorobenzene	106-46-7	21.	1.	ug/l	1
08173	1,2-Dichlorobenzene	95-50-1	21.	1.	ug/l	1

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
07055	Lead	SW-846 6010B	1	06/22/2006 16:42	John P Hook	1
04678	TCL SW846 Semivolatiles/Waters	SW-846 8270C	1	06/15/2006 06:05	Linda M Hartenstine	1
06291	TCL by 8260 (water)	SW-846 8260B	1	06/13/2006 23:28	Lauren C Marzario	1
06371	8260 Special Cmpds for Waters	SW-846 8260B	1	06/13/2006 23:28	Lauren C Marzario	1
00813	BNA Water Extraction	SW-846 3510C	1	06/12/2006 16:15	Olivia I San tiago	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	06/13/2006 23:28	Lauren C Marzario	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	06/22/2006 00:20	Helen L Schaeffer	1

Lancaster Laboratories Sample No. WW 4791566

OS-2 DUP Duplicate Grab Water Sample

Beacon - NY RCRA Sampling June 2006 Collected: 06/09/2006 11:50 by EA

Submitted: 06/10/2006 10:15 Reported: 06/26/2006 at 14:21

Discard: 09/10/2006

OS2+- SDG#: CBN23-09DUP

Account Number: 11387

Chevron Environmental Mgmt.

4800 Fournace Place Bellaire TX 77401

As Received

Dilution Method As Received CAT Units Pactor Detection CAS Number Result No. Analysis Name Limit mg/107055 Lead 7439-92-1 N.D. 0.0069

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT		•	-	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
07055	Lead	SW-846 6010B	1	06/22/2006 16:32	John P Hook	1
01848	WW SW846 ICP Digest (tot	SW-846 3005A	1	06/22/2006 00:20	Helen L Schaeffer	1

Account Number: 11387

Chevron Environmental Mgmt.

Page 1 of 2

Lancaster Laboratories Sample No. WW 4791567

Trip_Blank #1 Water Sample

Beacon - NY RCRA Sampling June 2006

Collected: n.a.

Submitted: 06/10/2006 10:15 Reported: 06/26/2006 at 14:21

4800 Fournace Place Bellaire TX 77401

Discard: 09/10/2006

TB1RC SDG#: CBN23-10TB

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Units	Dilution Factor
06291	TCL by 8260 (water)					
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1
05385	Chloromethane	74-87-3	N.D.	1.	ug/l	1
05386	Vinyl Chloride	75-01-4	N.D.	1.	ug/l	1
05387	Bromomethane	74-83-9	N.D.	1.	ug/l	1
05388	Chloroethane	75-00-3	N.D.	1.	ug/l	1
05390	1,1-Dichloroethene	75-35-4	N.D.	0.8	ug/l	1
05391	Methylene Chloride	75-09-2	N.D.	2.	ug/l	1
05393	1,1-Dichloroethane	75-34-3	N.D.	1.	ug/l	1
05396	Chloroform	67-66-3	N.D.	0.8	ug/l	1
05398	1,1,1-Trichloroethane	71-55-6	N.D.	0.8	ug/l	1
05399	Carbon Tetrachloride	56-23-5	N.D.	.1.	ug/l	1
05401	Benzene	71-43-2	N.D.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	N.D.	1.	ug/l	1
05403	Trichloroethene	79-01-6	N.D.	1.	ug/l	1
05404	1,2-Dichloropropane	78-87-5	N.D.	1.	ug/l	1
05406	Bromodichloromethane	75-27-4	N.D.	1.	ug/l	1
05407	Toluene	108-88-3	N.D.	0.7	ug/l	1
05408	1,1,2-Trichloroethane	79-00-5	N.D.	0.8	ug/l	1
05409	Tetrachloroethene	127-18-4	N.D.	0.8	ug/l	1
05411	Dibromochloromethane	124-48-1	N.D.	1.	ug/l	1
05413	Chlorobenzene	108-90-7	N.D.	0.8	ug/l	1
05415	Ethylbenzene	100-41-4	N.D.	0.8	ug/l	1
05419	Bromoform	75-25-2	N.D.	1.	ug/l	1
05421	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	1.	ug/l	1
06306	trans-1,3-Dichloropropene	10061-02-6	N.D.	1.	ug/l	1
06307	cis-1,3-Dichloropropene	10061-01-5	N.D.	1.	ug/1	1
06310	Xylene (Total)	1330-20-7	N.D.	0.8	ug/l	1
06371	8260 Special Cmpds for Waters					
05654	2-Chloroethyl Vinyl Ether	110-75-8	N.D.	2.	ug/l	1
	2-Chloroethyl vinyl ether is an recovered in an acid preserved	sample.			/-	
05655	Trichlorofluoromethane	75-69-4	N.D.	2.	ug/l	1
06304	1,2-Dichloroethene (Total)	540-59-0	N.D.	0.8	ug/l	1
08171	1,3-Dichlorobenzene	541-73-1	N.D.	1.	ug/l	88 37
08172	1,4-Dichlorobenzene	106-46-7	N.D.	1.	ug/l	1
08173	1,2-Dichlorobenzene	95-50-1	N.D.	1.	ug/l	1

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

Lancaster Laboratories Sample No. WW 4791567

Trip Blank #1 Water Sample

Beacon - NY RCRA Sampling June 2006

Collected: n.a.

Submitted: 06/10/2006 10:15

Reported: 06/26/2006 at 14:21

Discard: 09/10/2006

Account Number: 11387

Chevron Environmental Mgmt.

4800 Fournace Place

Bellaire TX 77401

TB1RC SDG#: CBN23-10TB

As Received

CAT

As Received

Method

Dilution

No. Analysis Name CAS Number

Result

Detection Limit Units Factor

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT			•	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Pactor
06291	TCL by 8260 (water)	SW-846 8260B	1	06/13/2006 23:50	Lauren C Marzario	1
06371	8260 Special Cmpds for Waters	SW-846 8260B	1	06/13/2006 23:50	Lauren C Marzario	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	06/13/2006 23:50	Lauren C Marzario	1

Lancaster Laboratories Sample No. WW 4791568

OR-2 Grab Water Sample

Beacon - NY RCRA Sampling June 2006 Collected:06/09/2006 12:15 by EA

Submitted: 06/10/2006 10:15 Reported: 06/26/2006 at 14:21

Discard: 09/10/2006

OR2-- SDG#: CBN23-11

Account Number: 11387

Chevron Environmental Mgmt.

4800 Fournace Place Bellaire TX 77401

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection	Units	Factor
07055	Lead	7439-92-1	N.D.	Limit 0.0069	mg/l	1
04678	TCL SW846 Semivolatiles/Waters					
03937	1,3-Dichlorobenzene	541-73-1	N.D.	1.	ug/l	1
03938	1,4-Dichlorobenzene	106-46-7	N.D.	1.	ug/l	1
03939	1,2-Dichlorobenzene	95-50-1	N.D.	1.	ug/l	1
06291	TCL by 8260 (water)					
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1
05385	Chloromethane	74-87-3	N.D.	1.	ug/l	1
05386	Vinyl Chloride	75-01-4	N.D.	1.	ug/l	1
05387	Bromomethane	74-83-9	N.D.	1.	ug/l	1
05388	Chloroethane	75-00-3	N.D.	1.	ug/l	1
05390	1,1-Dichloroethene	75-35 -4	N.D.	0.8	ug/l	1
05391	Methylene Chloride	75-09-2	N.D.	2.	ug/l	1
05393	1,1-Dichloroethane	75-34-3	N.D.	1.	ug/1	1
05396	Chloroform	67-66-3	N.D.	0.8	ug/l	1
05398	1,1,1-Trichloroethane	71-55-6	N.D.	0.8	ug/l	ı
05399	Carbon Tetrachloride	56-23-5	N.D.	1.	ug/l	1
05401	Benzene	71-43-2	N.D.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	N.D.	1.	ug/l	1
05403	Trichloroethene	79-01-6	N.D.	1.	ug/l	1
05404	1,2-Dichloropropane	78-87-5	N.D.	1.	ug/l	1
05406	Bromodichloromethane	75-27-4	N.D.	1.	ug/l	1
05407	Toluene	108-88-3	N.D.	0.7	ug/l	1
05408	1,1,2-Trichloroethane	79-00-5	N.D.	0.8	ug/l	1
05409	Tetrachloroethene	127-18-4	N.D.	0.8	ug/l	1
05411	Dibromochloromethane	124-48-1	N.D.	1.	ug/l	1
05413	Chlorobenzene	108-90-7	N.D.	0.8	ug/l	1
05415	Ethylbenzene	100-41-4	N.D.	0.8	ug/l	1
05419	Bromoform	75-25-2	N.D.	1.	ug/l	1
05421	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	1.	ug/l	1
06306	trans-1,3-Dichloropropene	10061-02-6	N.D.	1.	ug/l	1
06307	cis-1,3-Dichloropropene	10061-01-5	N.D.	1.	ug/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.8	ug/l	1
06277	22.00 Canadal Canda for Mohana					56 55

06371 8260 Special Cmpds for Waters

Lancaster Laboratories Sample No. WW 4791568

OR-2 Grab Water Sample

Beacon - NY RCRA Sampling June 2006 Collected:06/09/2006 12:15 by EA

Submitted: 06/10/2006 10:15 Reported: 06/26/2006 at 14:21

Discard: 09/10/2006

Account Number: 11387

Chevron Environmental Mgmt.

4800 Fournace Place Bellaire TX 77401

OR2-- SDG#: CBN23-11

SDG#. CDN25-11			As Received		
		As Received	Method		Dilution
Analysis Name	CAS Number	Result	Detection Limit	Units	Pactor
2-Chloroethyl Vinyl Ether	110-75-8	N.D.	2.	ug/l	1
		compound and may	not be	ug/l	1
1,2-Dichloroethene (Total)	540-59-0	N.D.	0.8	ug/l	1
1,3-Dichlorobenzene	541-73-1	N.D.	1.	ug/1	1
1,4-Dichlorobenzene	106-46-7	N.D.	1.	ug/l	1
1,2-Dichlorobenzene	95-50-1	N.D.	1.	ug/l	1
	Analysis Name 2-Chloroethyl Vinyl Ether 2-Chloroethyl vinyl ether is a recovered in an acid preserved Trichlorofluoromethane 1,2-Dichloroethene (Total) 1,3-Dichlorobenzene 1,4-Dichlorobenzene	Analysis Name 2-Chloroethyl Vinyl Ether 2-Chloroethyl vinyl ether is an acid labile of recovered in an acid preserved sample. Trichlorofluoromethane 75-69-4 1,2-Dichloroethene (Total) 1,3-Dichlorobenzene 541-73-1 1,4-Dichlorobenzene 106-46-7	Analysis Name CAS Number 2-Chloroethyl Vinyl Ether 110-75-8 N.D. 2-Chloroethyl vinyl ether is an acid labile compound and may recovered in an acid preserved sample. Trichlorofluoromethane 75-69-4 1,2-Dichloroethene (Total) 1,3-Dichlorobenzene 541-73-1 N.D. 1,4-Dichlorobenzene 106-46-7 N.D.	As Received Analysis Name CAS Number 2-Chloroethyl Vinyl Ether 110-75-8 N.D. 2-Chloroethyl vinyl ether is an acid labile compound and may not be recovered in an acid preserved sample. Trichlorofluoromethane 75-69-4 1,2-Dichloroethene (Total) 540-59-0 N.D. 2. 1,3-Dichlorobenzene 541-73-1 N.D. 1. 1,4-Dichlorobenzene 106-46-7 N.D. 1.	As Received As Received As Received Method Analysis Name CAS Number 2-Chloroethyl Vinyl Ether 110-75-8 N.D. 2. ug/l 2-Chloroethyl vinyl ether is an acid labile compound and may not be recovered in an acid preserved sample. Trichlorofluoromethane 75-69-4 N.D. 2. ug/l 1,2-Dichloroethene (Total) 540-59-0 N.D. 0.8 ug/l 1,3-Dichlorobenzene 541-73-1 N.D. 1. ug/l 1,4-Dichlorobenzene 106-46-7 N.D. 1.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
07055	Lead	SW-846 6010B	1	06/22/2006 17:34	John P Hook	1
04678	TCL SW846 Semivolatiles/Waters	SW-846 8270C	1	06/15/2006 13:29	Ryan P Byrne	1
06291	TCL by B260 (water)	SW-846 8260B	1	06/14/2006 00:13	Lauren C Marzario	1
06371	8260 Special Cmpds for Waters	SW-846 8260B	1	06/14/2006 00:13	Lauren C Marzario	1
00813	BNA Water Extraction	SW-846 3510C	1	06/12/2006 16:15	Olivia I Santiago	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	06/14/2006 00:13	Lauren C Marzario	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	06/22/2006 00:20	Helen L Schaeffer	1

Lancaster Laboratories Sample No. WW 4791569

OS-3 Grab Water Sample

Beacon - NY RCRA Sampling June 2006 Collected: 06/09/2006 09:00 by EA

Submitted: 06/10/2006 10:15 Reported: 06/26/2006 at 14:21

Discard: 09/10/2006

OS3-- SDG#: CBN23-12

Account Number: 11387

Chevron Environmental Mgmt.

4800 Fournace Place Bellaire TX 77401

				As Received		
CAT			As Received	Method	Dilution	
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
07055	Lead	7439-92-1	N.D.	0.0069	mg/l	1
04678	TCL SW846 Semivolatiles/Waters					
03937	1,3-Dichlorobenzene	541-73-1	N.D.	1.	ug/l	1
03938	1,4-Dichlorobenzene	106-46-7	N.D.	1.	ug/l	1
03939	1,2-Dichlorobenzene	95-50-1	N.D.	1.	ug/l	1
06291	TCL by 8260 (water)					
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1
05385	Chloromethane	74-87-3	N.D.	1.	ug/l	1
05386	Vinyl Chloride	75-01-4	N.D.	1.	ug/l	1
05387	Bromomethane	74-83-9	N.D.	1.	ug/l	1
05388	Chloroethane	75-00-3	N.D.	1.	ug/1	1
05390	1,1-Dichloroethene	75-35-4	N.D.	0.8	ug/l	1
05391	Methylene Chloride	75-09-2	N.D.	2.	ug/l	1
05393	1,1-Dichloroethane	75-34-3	N.D.	1.	ug/l	1
05396	Chloroform	67-66-3	N.D.	0.8	ug/l	1
05398	1,1,1-Trichloroethane	71-55-6	N.D.	0.8	ug/1	1
05399	Carbon Tetrachloride	56-23-5	N.D.	.1.	ug/l	1
05401	Benzene	71-43-2	N.D.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	N.D.	1.	ug/l	1
05403	Trichloroethene	79-01-6	N.D.	1.	ug/l	1
05404	1,2-Dichloropropane	78-87-5	N.D.	1.	ug/l	1
05406	Bromodichloromethane	75-27-4	N.D.	1.	ug/l	1
05407	Toluene	108-88-3	N.D.	0.7	ug/l	1
05408	1,1,2-Trichloroethane	79-00-5	N.D.	0.8	ug/l	1
05409	Tetrachloroethene	127-18-4	N.D.	0.8	ug/l	1
05411	Dibromochloromethane	124-48-1	N.D.	1.	ug/l	1
05413	Chlorobenzene	108-90-7	N.D.	0.8	ug/l	1
05415	Ethylbenzene	100-41-4	N.D.	0.8	ug/l	1
05419	Bromoform	75-25-2	N.D.	1.	ug/l	1
05421	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	1.	ug/l	1
06306	trans-1,3-Dichloropropene	10061-02-6	N.D.	1.	ug/l	1
06307	cis-1,3-Dichloropropene	10061-01-5	N.D.	1.	ug/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.8	ug/l	1
06371	8260 Special Cmpds for Waters					0041

Lancaster Laboratories, Inc. 2425 New Holland Pike PQ Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

Lancaster Laboratories Sample No. WW 4791569

OS-3 Grab Water Sample

Beacon - NY RCRA Sampling June 2006 Collected: 06/09/2006 09:00 by EA

Account Number: 11387

Submitted: 06/10/2006 10:15 Reported: 06/26/2006 at 14:21 Chevron Environmental Mgmt.

Discard: 09/10/2006

4800 Fournace Place Bellaire TX 77401

OS3-- SDG#: CBN23-12

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
05654	2-Chloroethyl Vinyl Ether	110-75-8	N.D.	2.	ug/l	1
	2-Chloroethyl vinyl ether is a recovered in an acid preserved		compound and may	not be		
05655	Trichlorofluoromethane	75-69-4	N.D.	2.	ug/l	1
06304	1,2-Dichloroethene (Total)	540-59-0	N.D.	0.8	ug/l	1
08171	1,3-Dichlorobenzene	541-73-1	N.D.	1.	ug/l	1
08172	1,4-Dichlorobenzene	106-46-7	N.D.	1.	ug/l	1
08173	1,2-Dichlorobenzene	95 -50- 1	N.D.	1.	ug/l	1

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

		Laboracory	CILLO	111010		
CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
07055	Lead	SW-846 6010B	1	06/22/2006 17:39	John P Hook	1
04678	TCL SW846	SW-846 8270C	1	06/15/2006 13:52	Ryan P B yr ne	1
	Semivolatiles/Waters					
06291	TCL by 8260 (water)	SW-846 8260B	1	06/14/2006 00:36	Lauren C Marzario	1
06371	8260 Special Cmpds for	SW-846 8260B	1	06/14/2006 00:36	Lauren C Marzario	1
	Waters					
00813	BNA Water Extraction	\$W-846 3510C	1	06/12/2006 16:15	Olivia I Santiago	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	06/14/2006 00:36	Lauren C Marzario	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	06/22/2006 00:20	Helen L Schaeffer	1

96€Z

4791570 Lancaster Laboratories Sample No. WW

OR-3 Grab Water Sample

Beacon - NY RCRA Sampling June 2006 Collected: 06/09/2006 12:45 by EA

Submitted: 06/10/2006 10:15 Reported: 06/26/2006 at 14:21

Discard: 09/10/2006

OR3-- SDG#: CBN23-13*

Account Number: 11387

Chevron Environmental Mgmt.

4800 Fournace Place Bellaire TX 77401

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
0705 5	Lead	7439-92-1	N.D.	0.0069	mg/l	1
04678	TCL SW846 Semivolatiles/Waters					
03937	1,3-Dichlorobenzene	541-73-1	N.D.	1.	ug/l	1
03938	1,4-Dichlorobenzene	106-46-7	N.D.	1.	ug/l	1
03939	1,2-Dichlorobenzene	95-50-1	N.D.	1.	ug/l	1
06291	TCL by 8260 (water)					
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1
05385	Chloromethane	74-87-3	N.D.	1.	ug/l	1
05386	Vinyl Chloride	75-01-4	N.D.	1.	ug/l	1
05387	Bromomethane	74-83-9	N.D.	1.	ug/l	1
05388	Chloroethane	75-00-3	N.D.	1.	ug/l	1
05390	1,1-Dichloroethene	75-35-4	N.D.	0.8	ug/1	1
05391	Methylene Chloride	75-09-2	N.D.	2.	ug/l	1
05393	1,1-Dichloroethane	75-34-3	N.D.	1.	ug/l	1
0539 6	Chloroform	67-66-3	N.D.	0.8	ug/l	1
05398	1,1,1-Trichloroethane	71-55-6	N.D.	0.8	ug/1	1
05399	Carbon Tetrachloride	56-23-5	N.D.	1.	ug/1	1
05401	Benzene	71-43-2	N.D.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	N.D.	1.	ug/1	1
05403	Trichloroethene	79-01-6	N.D.	1.	ug/1	1
05404	1,2-Dichloropropane	78-87-5	N.D.	1.	ug/l	1
05406	Bromodichloromethane	75-27-4	N.D.	1.	ug/1	1
05407	Toluene	108-88-3	N.D.	0.7	ug/1	1
05408	1,1,2-Trichloroethane	79-00-5	N.D.	0.8	ug/1	1
05409	Tetrachloroethene	127-18-4	N.D.	0.8	ug/1	1
05411	Dibromochloromethane	124-48-1	N.D.	1.	ug/1	1
05413	Chlorobenzene	108-90-7	N.D.	0.8	ug/1	1
05415	Ethylbenzene	100-41-4	N.D.	0.8	ug/l	1
05419	Bromoform	75-25-2	N.D.	1.	ug/l	1
05421	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	1.	ug/l	1
06306	trans-1,3-Dichloropropene	10061-02-6	N.D.	1.	ug/l	1
06307	cis-1,3-Dichloropropene	10061-01-5	N.D.	1.	ug/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.8	ug/l	1
06371	8260 Special Compde for Waters					6843

06371 8260 Special Cmpds for Waters

Lancaster Laboratories Sample No. WW 4791570

OR-3 Grab Water Sample

Beacon - NY RCRA Sampling June 2006 Collected: 06/09/2006 12:45 by EA

Submitted: 06/10/2006 10:15 Reported: 06/26/2006 at 14:21

Discard: 09/10/2006

Account Number: 11387

Chevron Environmental Mgmt.

4800 Fournace Place Bellaire TX 77401

OR3 -- SDG#: CBN23-13*

			As Received		
		As Received	Method		Dilution
Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
2-Chloroethyl Vinyl Ether	110-75-8	N.D.	2.	ug/l	1
recovered in an acid preserved	l sample.			45	_
Trichlorofluoromethane	75-69-4	N.D.	2.	ug/l	1
1,2-Dichloroethene (Total)	540-59-0	N.D.	0.8	ug/l	1
1,3-Dichlorobenzene	541-73-1	N.D.	1.	ug/l	1
1,4-Dichlorobenzene	106-46-7	N.D.	1.	ug/l	1
1,2-Dichlorobenzene	95-50-1	N.D.	1.	ug/l	1
	2-Chloroethyl Vinyl Ether 2-Chloroethyl vinyl ether is a recovered in an acid preserved Trichlorofluoromethane 1,2-Dichloroethene (Total) 1,3-Dichlorobenzene 1,4-Dichlorobenzene	2-Chloroethyl Vinyl Ether 110-75-8 2-Chloroethyl vinyl ether is an acid labile of recovered in an acid preserved sample. Trichlorofluoromethane 75-69-4 1,2-Dichloroethene (Total) 540-59-0 1,3-Dichlorobenzene 541-73-1 1,4-Dichlorobenzene 106-46-7	Analysis Name CAS Number Result 2-Chloroethyl Vinyl Ether 110-75-8 N.D. 2-Chloroethyl vinyl ether is an acid labile compound and may recovered in an acid preserved sample. Trichlorofluoromethane 75-69-4 N.D. 1,2-Dichloroethene (Total) 540-59-0 N.D. 1,3-Dichlorobenzene 541-73-1 N.D. 1,4-Dichlorobenzene 106-46-7 N.D.	Analysis Name CAS Number Result Detection Limit 2-Chloroethyl Vinyl Ether 110-75-8 N.D. 2. 2-Chloroethyl vinyl ether is an acid labile compound and may not be recovered in an acid preserved sample. Trichlorofluoromethane 75-69-4 N.D. 2. 1,2-Dichloroethene (Total) 540-59-0 N.D. 0.8 1,3-Dichlorobenzene 541-73-1 N.D. 1. 1,4-Dichlorobenzene 106-46-7 N.D. 1.	Analysis Name CAS Number Result Detection Limit 2-Chloroethyl Vinyl Ether 110-75-8 N.D. 2. chloroethyl vinyl ether is an acid labile compound and may not be recovered in an acid preserved sample. Trichlorofluoromethane 75-69-4 N.D. 2. ug/l 1,2-Dichloroethene (Total) 540-59-0 N.D. 0.8 ug/l 1,3-Dichlorobenzene 541-73-1 N.D. 1. ug/l 1,4-Dichlorobenzene 106-46-7 N.D. 1.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Pactor
07055	Lead	SW-846 6010B	1	06/22/2006 17:43	John P Hook	1
04678	TCL SW846 Semivolatiles/Waters	SW-846 8270C	1	06/15/2006 14:14	Ryan P Byrne	1
06291	TCL by 8260 (water)	SW-846 8260B	1	06/14/2006 00:58	Lauren C Marzario	1
06371	8260 Special Cmpds for Waters	SW-846 8260B	1	06/14/2006 00:58	Lauren C Marzario	1
00813	BNA Water Extraction	SW-846 3510C	1	06/12/2006 16:15	Olivia I Santiago	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	06/14/2006 00:58	Lauren C Marzario	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	06/22/2006 00:20	Helen L Schaeffer	1

ยิซิจ์จ์

Volatiles by GC/MS Data

Case Narrative Conformance/Nonconformance Summary

CASE NARRATIVE

Client: Chevron Environmental Mgmt.

SDG#: CBN23

LANCASTER LABORATORIES VOLATILES BY GC/MS

SAMPLE NUMBER(S):

	•	Matrix	
LL #'s	Sample Code	<u>Water</u>	<u>Comments</u>
4791555	-TF5-	X	
4791556	-TF23	X	
4791558	-DC2-	Х	
4791559	-DC1-	X	
4791560	DB8B-	X	
4791561	DB108	X	
4791562	DB17-	X	
4791563	OS2	Х	Unspiked
4791564	OS2MS	X	Matrix Spike
4791565	OS2MSD	X	Matrix Spike Dup
4791567	TB1RC	Χ	Client Blank
4791568	OR2	X	
4791569	OS3	Х	
4791570	OR3	X	

LABORATORY SUBMITTED QC:

VBLKL28	VBLKL28	X	Method Blank
VBLKL29	VBLKL29	Χ	Method Blank
LCSL28	LCSL28	Χ	Lab Control Sample

SAMPLE PREPARATION:

No sample preparation was necessary for the VOA fraction.

ANALYSIS:

The method used for analysis was 8260B.

The pH value for all samples was < 2.

No problems were encountered during the analysis of these samples.

QUALITY CONTROL and NONCONFORMANCE SUMMARY:

Only client requested compounds are addressed in this narrative.

The relative percent difference (RPD) for 2-chloroethyl vinyl ether between OS2--MS and OS2--MSD was outside QC limits. RPDs are laboratory advisory limits only for this method.

The percent recovery for 2-chloroethyl vinyl ether in OS2--MSD was outside QC limits. This compound met recovery criteria in the LCS analysis, indicating a matrix effect.

All other QC was within specifications.

DATA INTERPRETATION:

The instrument performance check using 4-bromofluorobenzene was evaluated using the criteria in the NYSDEC method.

At the time of data package review it was determined that the original GC/MS volatile laboratory internal chain of custody for samples 4791555-56, 58-65, 67-70 was not completely filled out. See the chain of custody form for further information.

No further interpretation is necessary for the data submitted.

CALCULATIONS:

1. Relative response factor (RRF)

Where:

Ax = Area of the characteristic ion for the compound to be measured.

Ais = Area of the characteristic ion for the specific internal standard to be measured.

Cis = Concentration of the internal standard.

Cx = Concentration of the compound to be measured.

Page 3 of 4

2. % Relative Standard Deviation (%RSD)

3. % Difference (%D)

Where:

RRFc=Relative response factor from continuing calibration standard. RRFi = Mean relative response factor from the initial calibration.

4. Concentration

Where:

Ax, Ais, RRF are as given in 1. above.

Is = Concentration of internal standard added in parts per billion (ug/l)

Df = Dilution factor

5. % Recovery (%Rec)

Where:

SSR = Spiked sample result

SR = Sample result SA = Spike added

6. Relative Percent Difference (RPD)

Where:

MSR = Matrix spike recovery

MSDR = Matrix spike duplicate recovery

Page 4 of 4

Case Narrative reviewed and approved by:

John F. Morton, M.S., GC/MS Volatiles

Date 1/5/06

ฮิฮิริติ

QC Summary

2A WATER VOLATILE SURROGATE RECOVERY

Lab	Name:	Lancaster	Laboratories	Contract:	
Lab	Code:	(Case No.:	SAS No.:	SDG No.:CBN23

								_
]	EPA	S1	S2	S 3	S4	TOT	ı
ĺ	LL #'s	SAMPLE NO.	(DBF)#	(DCA)#	(TOL)#	(BFB)#	OUT	
	========	========	=====	=====	=====	=====	== =	ı
01	4791555	-TF5-	92	90	89	80	0	
02	4791556	-TF23	92	89	89	80	0	
03	4791558	-DC2-	92	91	89	79	0	ĺ
04	4791559	-DC1-	93	89	89	79	0	
05	4791560	DB8B-	93	90	90	79	0	l
06	4791561	DB108	94	91	89	79	0	Ì
07	4791562	DB17-	93	90	90	79	0	
08	4791563	O\$2	92	90	90	80	0	
09	4791564	OS2MS	92	89	92	84	0	ı
10	4791565	OS2MSD	92	90	92	84	0	İ
11	4791567	TB1RC	93	91	90	80	0	
12	4791568	OR2	92	88	90	80	0	
13	4791569	OS3	93	89	89	79	0	
14	4791570	OR3	93	90	90	80	0	
15	VBLKL28	VBLKL28	93	89	90	7 9	0	İ
16	VBLKL29	VBLKL29	92	91	90	80	0	ĺ
17	LCSL28	LCSL28	92	90	92	84	0	ŀ
j			ll					ĺ

			QC LIMITS
\$1	(DBF)	= Dibromofluoromethane	(80-116)
\$2	(DCA)	= 1,2-Dichloroethane-d4	(77-113)
\$3	(TOL)	= Toluene-d8	(80-113)
\$4	(BFB)	= 4-Bromofluorobenzene	(78-113)

Column to be used to flag recovery values

page 1 of 1

^{*} Values outside of contract required QC limits

D Surrogate diluted out

Lancaster Laboratories, Inc. GC/MS Volatiles Matrix Spike/Spike Duplicate Recoveries

Unspiked: lu13s30.d OS2-- 4791563 Method: SW-846 8260B

Instrument: HP09915

Matrix Spike: lu13s31.d OS2--MS 4791564

Matrix/Level: WL Dilution Factor: 1.00 Spike Duplicate: lu13s32.d OS2--MSD 4791565 Batch: L061642AB

COMPOUND NAME	MS SPIKE	MSD Spike	US CONC UG/L	MS CONC UG/L	MSD CONC UG/L	MS REC %	MSD REC %	Range LOWER-UPPER	INSPEC	RPD %	RPD Max
Chloromethane	20.0	20.0	ND	21.5	21.7	108	109	59-148	YES	1	30
Vinyl Chloride	20.0	20.0	ND	22.3	22.5	111	112	67-142	YES	1	30
Bromomethane	20.0	20.0	ND	16.0	16.1	80	80	52-141	YES	0	3 0
Chloroethane	20.0	20.0	ND	17.4	17.4	87	87	63-142	YES	0	30
Trichlorofluoromethane	20.0	20.0	ND	24.2	24.0	121	120	75 - 163	YES	1	30
1.1-Dichloroethene	20.0	20.0	ND	21.5	21.9	108	109	87-145	YES	1	30
Methylene Chloride	20.0	20.0	ND	20.1	20.6	101	103	79-133	YES	2	30
trans-1,2-Dichloroethene	20.0	20.0	ND	21.2	21.8	106	109	82-133	YES	3	30
Methyl Tertiary Butyl Ether	20.0	20.0	ND	19.4	19.7	97	99	69-127	YES	2	30
1.2-Dichloroethene (total)	40.0	40.0	ND	43.0	43.9	108	110	83-126	YES	2	30
1.1-Dichloroethane	20.0	20.0	ND	21.9		110	111	85 - 135	YES	1	3 0
cis-1,2-Dichloroethene	20.0	20.0	ND	21.8	22.1	109	110	83-126	YES	1	30
Chloroform	20.0	20.0	ND	22.3	22.6	112	113	82-131	YES	1	30
1,1,1-Trichloroethane	20.0	20.0	ND	22.2	22.2	111	111	81-142	YES	0	30
Carbon Tetrachloride	20.0	20.0	ND	21.8	22.0	109	110	79-155	YES	1	30
Benzene	20.0	20.0	ND	22.1	22.6	110	113	83-128	YES	2	30
1.2-Dichloroethane	20.0	20.0	ND	21.8	22.2	109	111	70-143	YES	2	30
Trichloroethene	20.0	20.0	ND	21.9		110	111	83-136	YES	1	30
1,2-Dichloropropane	20.0	20.0	ND	22.1	22.4	110	112	83-129	YES	2	30
Bromodichloromethane	20.0	20.0	ND	21.9		110	111	80-129	YES	1	30
2-Chloroethyl Vinyl Ether	20.0	20.0	ND	2.41	ND	12	0	1 -172	NO	200	30
cis-1,3-Dichtaropropene	20.0	20.0	ND	20.3	20.6	101	103	80-126	YES	2	30
Toluene	20.0	20.0	ND	21.4	21.8	107	109	83-127	YES	2	30
trans-1,3-Dichloropropene	20.0	20.0	ND	21.5	21.8	107	109	77-123	YES	1	30
1,1,2-Trichloroethane	20.0	20.0	ND	20.3	21.1	102	106	77-125	YES	4	30
Tetrachloroethene	20.0	20.0	ND	20.7		103	104	78-133	YES	0	30
Dibromochloromethane	20.0	20.0	ND	19.3		96	98	82-119	YES	2	30
Chlorobenzene	20.0	20.0	ND	20.9		105	107	83-120	YES	2	30
Ethylbenzene	20.0	20.0	ND	21.7	22.0	108	110	82-129	YES	2	30
m+p-Xylene	40.0	40.0	ND	42.5	43.5	106	109	82-130	YES	2	30
Xylene (Total)	60.0	60.0	ND	63.5	65.0	106	108	82-130	YES	2	30
o-Xylene	20.0	20.0	ND	21.0		105	107	82-130	YES	3	30
o-xytene Bromoform	20.0	20.0	ND	17.9		89	93	64-119	YES	4	30
1,1,2,2-Tetrachloroethane	20.0	20.0	ND	20.7	21.0	104	105	69-128	YES	1	30
1,1,2,2-Tetrachtoroethane 1.3-Dichlorobenzene	20.0	20.0	ND	20.9		104	105	79-123	YES	1	30
•	20.0	20.0	ND	20.6		103	104	81-122	YES	1	30
1,4-Dichlorobenzene 1.2-Dichlorobenzene	20.0	20.0	ND	20.5	20.8	103	104	82-117	YES	1	30

Lab Chronicle:	N/C = Could not caaिcige (€ Ent. by		
	Ver. by		

Lancaster Laboratories, Inc. GC/MS Volatiles Laboratory Control Sample Recovery

File: lu13l03.d Inst: HP09915 Dilution Factor: 1.0 Injected: 06/13/06 at 17:33

Sample: LCSL28

Method: SW-846 8260B Matrix/Level: WL Batch: L061642AA

COMPOUND	SPIKE	LCS CONC	LCS REC	Range	INSPEC
NAME	LEVEL	UG/L	x	LOWER-UPPER	
77.51	20.00	21.63	108	39-160	YES
Dichlorodifluoromethane	20.00	20.36	102	56-134	YES
Chloromethane			105	62-123	YES
/inyl Chloride	20.00	20.97	89	47-129	YES
3romomethan e	20.00	17.76	94	57-125	YES
Chloroethane	20.00	18.72		67-136	YES
Trichlorofluoromethane	20.00	22.52	113		YES
thyl Ether	20.00	20.10	101	27-151	YES
Acrolein	150.00	149.86	100	35-139	
1,1-Dichloroethene	20.00	20 .7 9	104	79-130	YES
Freon 113	20.00	20.64	103	64-134	YES
Acetone	150.00	196.64	131	21-226	YES
Methyl Iodide	20.00	18.97	95	71-123	YES
	150.00	162.19	108	36-1 55	YES
2-Propanol	20.00	19.12	96	63-133	YES
Carbon Disulfide	20.00	20.67	103	51-139	YES
Allyi Chloride		21.57	108	55-148	YES
Methyl Acetate	20.00	20.94	105	85-120	YES
Methylene Chloride	20.00		94	69-127	YES
t-Butyl Alcohol	200.00	188.92		67-128	YES
Acrylonitrile	100.00	103.91	104		YES
trans-1,2-Dichloroethene	20.00	21.26	106	83-117	YES
Methyl Tertiary Butyl Ether	20.00	19 .7 4	99	73-119	
n-Hexane	20.00	21.18	106	54-152	YES
1,2-Dichloroethene (total)	40.00	42.83	107	84-117	YES
1,1-Dichtoroethane	20.00	21.12	106	83-127	YES
di-Isopropyl Ether	20.00	20.84	104	67-130	YES
2-Chloro-1,3-Butadiene	20.00	21,10	106	60-158	YES
•	20.00	19.81	99	74-120	YES
Ethyl t-Butyl Ether	20.00	21.57	108	84-117	YES
cis-1,2-Dichloroethene		171.67	114	52-163	YES
2-Butanone	150.00	20.46	102	74-130	YES
2,2-Dichloropropane	20.00		112	68-137	YES
Propionitrile	150.00	167.35	113	72-126	YES
Methacrylonitrile	150.00	169.81		73-126	YES
Bromochloromethane	20.00	21.09	105	57-134	YES
Tetrahydrofuran	100.00	109.50	109		YES
Chloroform	20.00	22.17	111	86-124	YES
1,1,1-Trichloroethane	20.00	21.31	107	83-127	
Cyclohexane	20.00	21.23	106	73-134	YES
1,1-Dichloropropene	20.00	21.86	109	84-1 <u>1</u> 6	YES
Carbon Tetrachloride	20.00	21.13	106	77-13 0	YES
Isobutyl Alcohol	500.00	545.75	109	48-144	YES
	20.00	21.69	108	85-117	YES
Benzene 1.2-Dichloroethane	20.00	22.28	111	<i>7</i> 7-132	YES
	20.00	20.09	100	79-113	YES
t-Amyl Methyl Ether	20.00	21.34	107	61-142	YES
n-Heptane	1000.00	1059.51	106	53-139	YES
n-Butanol			108	87-117	YES
Trichloroethene	20.00	21.59		80-117	YES
1,2-Dichtoropropane	20.00	21.68	108	51-149	YES
Methylcyclohexane	20.00	22.81	114	72-121	YES
Methyl Methacrylate	20.00	20.45	102		YES
Dibromomethane	20.00	21.54	108	87-117 17	YES
1,4-Dioxane	500.00	569.95	114	43-147	
Bromodichtoromethane	20.00	21.97	110	83-121	YES
2-Nitropropane	20.00	18.87	94	52-135	YES
2-Chloroethyl Vinyl Ether	20.00	20.79	104	73-122	YES
cis-1,3-Dichloropropene	20.00	20.71	104	78-114	YES
•	100.00	102.84	103	70-130	YES
4-Methyl-2-Pentanone		20.79	104	85-115	YES
Toluene	20.00		108	79-114	YES
trans-1,3-Dichloropropene	20.00	21.57	100		

Lab Chronicle:	Ent.	by _	
		ьу.	

Lancaster Laboratories, Inc. GC/MS Volatiles Laboratory Control Sample Recovery

File: lu13l03.d Inst: HP09915 Dilution Factor: 1.0 Injected: 06/13/06 at 17:33 Sample: LCSL28

Method: SW-846 8260B Matrix/Level: WL Batch: L061642AA

COMPOUND	SPIKE	LCS CONC	LCS REC	Range LOWER-UPPER	INSPE
NAME	LEVEL	UG/L	Ъ	LOWER OFFER	
Ethyl Methacrylate	20.00	20.51	103	77-118	YES
	20.00	20.62	103	86-113	YES
1,1,2-Trichloroethane	20.00	20.48	102	74-125	YES
Tetrachloroethene	20.00	21.13	106	84-119	YES
1,3-Dichloropropane	100.00	93.82	94	61-140	YES
2-Hexanone	20.00	19.88	99	78-119	YES
Dibromochloromethane	20.00	20.58	103	81-114	YES
1,2-Dibromoethane	20.00	20.74	104	85-115	YES
Chlorobenzene	_	20.46	102	83-114	YES
1,1,1,2-Tetrachloroethane	20.00	21.03	105	82-119	YES
Ethylbenzene	20.00	42.10	105	83-113	YES
m+p-Xylene	40.00		105	83-113	YES
Xylene (Total)	60.00	62.95	104	83-113	YES
o-Xylene	20.00	20.85	104	82-111	YES
Styrene	20.00	20.79		69-118	YES
Bromoform	20.00	19.13	96	80-120	YES
Isopropylbenzene	20.00	20.86	104	7 -157	YES
Cyclohexanone	500.00	729.38	146	72-119	YES
1,1,2,2-Tetrachloroethane	20.00	20.84	104	40-141	YES
trans-1,4-Dichloro-2-Butene	100.00	97.40	97		YES
Bromobenzene	20.00	20.40	102	82-110 70-117	YE:
1,2,3-Trichloropropane	20.00	21.48	107	78-117	YES
n-Propylbenzene	20.00	20 .89	104	78-119	YE
2-Chlorotoluene	20.00	20.53	103	78-115	
1,3,5-Trimethylbenzene	20.00	20.78	104	78-116	YES
4-Chlorotoluene	20.00	20.26	101	80-112	YE
tert-Butylbenzene	20.00	20.90	104	74-114	YES
Pentachloroethane	20.00	19.56	98	63-116	YE
1,2,4-Trimethylbenzene	20.00	2 1.29	106	78-117	YE
sec-Butylbenzene	20.00	21.30	107	72-120	YE
p-Isopropyltoluene	20.00	21.29	106	72-118	YE
1.3-Dichlorobenzene	20.00	20.44	102	81-114	YE
1.4-Dichlorobenzene	20.00	20.39	102	84-116	YE
1,2,3-Trimethylbenzene	20.00	20.10	100	7 4-117	YE
	20.00	19.39	97	71-120	YE
Benzyl Chloride	20.00	19.96	100	68-121	YE
1,3-Diethylbenzene	20.00	20.22	101	68-121	YE
1,4-Diethylbenzene	20.00	21.57	108	69-128	YE
n-Butylbenzene	20.00	20.13	101	81-112	YE
1,2-Dichlorobenzene	20.00	19.81	99	68-121	YE
1,2-Diethylbenzene		19.01	95	55-127	YE
1,2-Dibromo-3-Chloropropane	20.00	19.36	97	65-114	YE
1,2,4-Trichlorobenzene	20.00		97	56-120	YE
Hexachlorobutadiene	20.00	19.38	97	61-116	YE
Naphthalene	20.00	19.36	96	67-114	YE
1,2,3-Trichlorobenzene	20.00	19.25	100	68-121	YE
Diethylbenzene (total)	60.00	59 .99	100	00 121	

	N/C = Could not calculate Ent. by
Lab Chronicle:	Ver. by

4A VOLATILE METHOD BLANK SUMMARY

Lab	Name:	Lancaster	Laboratories	Contract:

Lab Code: LANCAS Case No.:____ SAS No.:___ SDG No.:____

Lab File ID: lul3b03.d Lab Sample ID: VBLKL28

Date Analyzed: 06/13/06 Time Analyzed: 16:42

Matrix (soil/water) WATER Level: (low/med) LOW

Instrument ID: HP09915

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

1	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
ľ	=========	=========	=======================================	=========
01	LCSL28	LCSL28	lu13103.d	17:33
02	-TF5-	4791555	lu13s16.d	18:13
03	-TF23	4791556	lu13s17.d	18:36
04	-DC2-	4791558	lu13s18.d	18:59
05	-DC1-	4791559	lu13s19.d	19:21
06	DB8B-	4791560	lu13s20.d	19:44
-				

COMMENTS:	L061642AA					
		 	<u> </u>	 		88 56

4A VOLATILE METHOD BLANK SUMMARY

Lab Name: Lancaster Laboratories Contract:	
--	--

Lab Code: LANCAS Case No.: SDG No.: SDG No.:

Lab File ID: lu13b05.d

Lab Sample ID: VBLKL29

Date Analyzed: 06/13/06

Time Analyzed: 21:57

Matrix (soil/water) WATER

Level: (low/med) LOW

Instrument ID: HP09915

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

1	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
·	========	=======================================	=======================================	=======
01	OS2	4791563	lu13s30.d	22:43
02	OS2MS	4791564	lu13s31.d	23:05
03	OS2MSD	4791565	lu13s32.d	23:28
04	TB1RC	4791567	lu13s33.d	23:50
05	OR2	4791568	lu13s34.d	00:13
06	OS3	4791569	lu13s35.d	00:36
07	OR3	4791570	lu13s36.d	00:58
08	DB108	4791561	lu13s37.d	01:21
09	DB17-	4791562	lu13s38.d	01:43

COMMENTS:	L061642AB	
		-
		6657

5A

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab	Name:	Lancaster	Laboratories	Contract:	_ _
Lab	Code:	LANCAS	Case No.:	SAS No.:	SDG No.:

BFB Injection Date: 06/06/06 Lab File ID: lu06t03.d

BFB Injection Time: 16:40 Instrument ID: HP09915

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

	. 	·	
. —		% RELATIVE	
] ,	ION ABUNDANCE CRITERIA	ABUNDANCE	
m/e	TON ABUNDANCE CRITERIA	=======================================	
=====	=======================================	20.6	
50	15.0 - 40.0% of mass 95	50.2	
75	30.0 - 60.0% of mass 95	100.0	
95	Base peak, 100% relative abundance	6.9	
96	5.0 - 9.0% of mass 95	0.4 (0.5)1	
173	Less than 2.0% of mass 174	76.5	
174	Greater than 50.0% of mass 95	5.4 (7.1)1	
175	5.0 - 9.0% of mass 174	74.6 (97.3)1	
176	Greater than 95.0%, but less than 101.0% of mass 174	5.0 (6.7)2	
177	5.0 - 9.0% of mass 176	1 3.0 (0.7/-1	
ĺ		II	
· 	1-Value is % mass 174 2-Value is % mass	G 1/0	

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01 VSTD100 02 VSTD050 03 VSTD020 04 VSTD004 05 VSTD001 06 VSTD300 07 VSTD010	====================================	lu06i02.d lu06i03.d lu06i04.d lu06i06.d lu06m01.d lu06i07.d lu06i08.d	06/06/06 06/06/06 06/06/06 06/06/06 06/06/06 06/06/06	17:25 17:47 18:10 18:55 19:18 19:40 20:30

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: Lancaster Laboratories Contract:	—
--	---

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Lab File ID: lu13t01.d BFB Injection Date: 06/13/06

Instrument ID: HP09915 BFB Injection Time: 08:05

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

		% RELATIVE ABUNDANCE	
m/e	ION ABUNDANCE CRITERIA	========	
=====	=======================================		
50	15.0 - 40.0% of mass 95	20.9	
75	30.0 - 60.0% of mass 95	50.2	
95	Base peak, 100% relative abundance	100.0	
96	5.0 - 9.0% of mass 95	6.7	
173	Less than 2.0% of mass 174	0.6 (0.7)1	
174	Greater than 50.0% of mass 95	77.1	
175	5.0 - 9.0% of mass 174	5.9 (7.6)1	
176	Greater than 95.0%, but less than 101.0% of mass 174	74.2 (96.3)1	
177	5.0 - 9.0% of mass 176	4.8 (6.4)2	

1-Value is % mass 174 2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
i	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=======================================	=========	=======================================	=======	=======
01	VSTD050	VSTD050	lu13c01.d	06/13/06	08:28
02	VBLKL28	VBLKL28	lu13b03.d	06/13/06	16:42
03	LCSL28	LCSL28	lu13103.d	06/13/06	17:33
04	-TF5-	4791555	lu13s16.d	06/13/06	18:13
05	-TF23	4791556	lu13s17.d	06/13/06	18:36
06	-DC2-	4791558	lu13s18.d	06/13/06	18:59
07	-DC1-	4791559	lu13s19.d	06/13/06	19:21
0.8	DB8B-	4791560	lu13s20.d	06/13/06	19:44
30					l
		l	l	· 	

5A

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab	Name:	Lancaster	Laboratories	Contract:
-----	-------	-----------	--------------	-----------

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Lab File ID: lu13t04.d BFB Injection Date: 06/13/06

Instrument ID: HP09915 BFB Injection Time: 20:50

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
=====	_======================================	=======
50	15.0 - 40.0% of mass 95	19.4
75	30.0 - 60.0% of mass 95	48.8
95	Base peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	7.1
173	Less than 2.0% of mass 174	0.5 (0.7)1
174	Greater than 50.0% of mass 95	75.4
175	5.0 - 9.0% of mass 174	5.3 (7.1)1
176	Greater than 95.0%, but less than 101.0% of mass 174	73.3 (97.2)1
177	5.0 - 9.0% of mass 176	5.1 (6.9)2
Ï		

1-Value is % mass 174 2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
į	==	=========		========	========
01	VSTD100	VSTD100	lu13c02.d	06/13/06	21:12
02	VBLKL29	VBLKL29	lu13b05.d	06/13/06	21:57
03	OS2	4791563	lu13s30.d	06/13/06	22:43
04	OS2MS	4791564	lu13s31.d	06/13/06	23:05
05	OS2MSD	4791565	lu13s32.d	06/13/06	23:28
06	TB1RC	479156 7	lu13s33.d	06/13/06	23:50
07	OR2	4791568	lu13s34.d	06/14/06	00:13
08	OS3	4791569	lu13s35.d	06/14/06	00:36
09	OR3	4791570	lu13s36.d	06/14/06	00:58
10	DB108	4791561	lu13s37.d	06/14/06	01:21
11	DB17-	4791562	lu13s38.d	06/14/06	01:43

8A VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: Lancaster Laboratories Contract:

Lab File ID (Standard): lu13c01.d Date Analyzed: 06/13/06

Instrument ID: HP09915 Time Analyzed: 08:28

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

1	i	IS1(TBA)		IS2(FBZ)		IS3 (CBZ)		IS4 (DCB)	
i	İ	AREA #	RT #	AREA #	RT #	AREA #	RT #	AREA #	RT #
i	=======================================	========	======	z=======	======	=======================================	======	========	======
i	12 HOUR STD	243347	4.067	1042855	7.558	786650	11.060	452541	12.941
i	UPPER LIMIT	486694	4.567	2085710	8.058	1573300	11.560	905082	13.441
i	LOWER LIMIT	121674	3.567	521428	7.058	393325	10.560	226270	12.441
i	_========	========	======	========	======	========	======	========	======
i	EPA SAMPLE								
i	NO.								
ĺ	_=====================================	========	======	========	======	======	======	=======	======
01	VBLKL28	219917	4.076	1057177	7.559	802022	11.063	433965	12.941
02	LCSL28	257058	4.083	1106791	7.562	838670	11.060	480301	12.941
03	-TF5-		İ	1120109	7.558	853314	11.060	468860	12.941
04	-TF23		İ	1077846	7.562	816490	11.063	449255	12.941
05	-DC2-			1035653	7.559	787069	11.060	429175	12.941
06	-DC1-		Ì	1020049	7.562	771746	11.063	423377	12.941
07 I	DB8B-			984107	7.559	750326	11.063	403617	12.941
		İ	İ						

IS1 (TBA) =t-Butyl Alcohol-d10

IS2 (FBZ)=Fluorobenzene

IS3 (CBZ) = Chlorobenzene - d5

IS4 (DCB) =1,4-Dichlorobenzene-d4

UPPER LIMIT = + 100%

of internal standard area.

LOWER LIMIT = - 50%

of internal standard area.

8661

[#] Column used to flag values outside QC limits with an asterisk

^{*} Values outside of QC limits.

8A VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: Lancaster Laboratories Contract:_____

Lab File ID (Standard): lu13c02.d D

Date Analyzed: 06/13/06

Instrument ID: HP09915 Time Analyzed: 21:12

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

- 1		IS1 (TBA)		IS2 (FBZ)		IS3 (CBZ)		IS4 (DCB)	
i		AREA #	RT #	AREA #	RT #	AREA #	RT #	AREA #	RT #
j	=========		=====	=========	======	=========	======		======
i	12 HOUR STD	243900	4.070	1070164	7.562	814406	11.063	473061	12.941
j	UPPER LIMIT	487800	4.570	2140328	8.062	1628812	11.563	946122	13.441
i	LOWER LIMIT	121950	3.570	535082	7.062	407203	10.563	236530	12.441
j	==============	========	======	=======================================	======		======		======
į	EPA SAMPLE								
Ì	NO.								ļ
į	=======================================	========	======	=======	======	=======	======	=======	======
01	VBLKL29	217603	4.083	1025769	7.562	771848	11.063	419397	12.938
02	OS2		i	1003004	7.562	757740	11.063	408538	12.941
03	OS2MS			1039822	7.565	783690	11.063	440106	12.941
04	OS2MSD			1068628	7.558	805867	11.060	456702	12.941
05	TB1RC	!	ļ .	1009526	7.565	764486	11.063	415581	12.941
06	OR2			981275	7.562	740064	11.063	401000	12.941
07	OS3			969339	7.565	736559	11.063	396106	12.941
08	OR3			940238	7.562	708188	11.063	379295	12.938
09	DB108			908036	7.562	693644	11.063	374354	12.941
10	DB17-	!		896131	7.565	679404	11.063	364640	12.941
Ì			<u></u>				<u></u>	<u> </u>	

IS1 (TBA)=t-Butyl Alcohol-d10

IS2 (FBZ)=Fluorobenzene

IS3 (CBZ) = Chlorobenzene - d5

IS4 (DCB)=1,4-Dichlorobenzene-d4

UPPER LIMIT = + 100%

of internal standard area.

LOWER LIMIT = - 50%

of internal standard area.

866Z

[#] Column used to flag values outside QC limits with an asterisk

^{*} Values outside of QC limits.

Sample Data

-TF5-

EPA SAMPLE NO.

Lah	Name ·	Lancaster	Laboratories
LaD	Name:	Lancascer	<u> </u>

Contract:____

Case No.:_____ SAS No.:____

SDG No : ____

Matrix: (soil/water) WATER

Lab Sample ID: 4791555

Sample wt/vol: 5.00 (g/mL) mL

Lab File ID: HP09915.i/06jun13a.b/lu13s16.d

Level: (low/med) LOW

Lab Code: LANCAS

Date Received: 06/10/06

Moisture: not dec. _____

Date Analyzed: 06/13/06

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

(ug/L or ug/Kg) ug/L CAS NO. COMPOUND U 74-87-3-----Chloromethane ĺυ 5 75-01-4------Vinyl Chloride 5 l u 74-83-9-----Bromomethane ļυ 5 |.75-00-3-----Chloroethane l U 75-69-4----Trichlorofluoromethane 5 l tJ | 75-35-4-----1,1-Dichloroethene 5 75-09-2-----Methylene Chloride įυ 5 1634-04-4-----Methyl Tertiary Butyl Ether 5 75-34-3-----1,1-Dichloroethane 5 lυ 540-59-0----1,2-Dichloroethene (total) 5 ΙU 67-66-3-----Chloroform 5 | U 71-55-6-----1,1,1-Trichloroethane 5 l U | 56-23-5-----Carbon Tetrachloride 5 lυ 71-43-2----Benzene | U 5 107-06-2----1,2-Dichloroethane 5 ΙU 79-01-6-----Trichloroethene 5 ŀυ 78-87-5----1,2-Dichloropropane 5 U 75-27-4-----Bromodichloromethane lu | 110-75-8----2-Chloroethyl Vinyl Ether 10 5 ΙU 10061-01-5----cis-1,3-Dichloropropene lυ 5 108-88-3-----Toluene 5 U 10061-02-6----trans-1,3-Dichloropropene 5 ΙU 79-00-5-----1,1,2-Trichloroethane 5 U. 127-18-4-----Tetrachloroethene 5 lυ 124-48-1-----Dibromochloromethane U 5 108-90-7-----Chlorobenzene 5 lυ 100-41-4-----Ethylbenzene

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.:____ SAS No.:___ SDG No.:____

Matrix: (soil/water) WATER

Lab Sample ID: 4791555

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09915.i/06jun13a.b/lu13s16.d

Level: (low/med) LOW Date Received: 06/10/06

Moisture: not dec. _____

Date Analyzed: 06/13/06

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) ug/L

<u>.</u>			_
1330-20-7Xylene (Total)	5	Ŭ	
75-25-2Bromoform	5	U	
79-34-51,1,2,2-Tetrachloroethane	5	U	
541-73-11,3-Dichlorobenzene	5	ט	
106-46-71,4-Dichlorobenzene	j 5	U	
95-50-11,2-Dichlorobenzene	, 5	U	
1	j	Ì	

Lancaster Laboratories Quantitation Report GC/MS Volatiles 4791555

File: /chem/HP09915.i/06jun13a.b/lu13s16.d

Sample: -TF5-;4791555;1;0;;;;;lul3b03 Injected At:13-JUN-2006 18:13

Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m Blank Reference: lu13b03.d Sublist: CHEVENV

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Batch: L061642AA

Analyst:ADS01731

Instrument ID: HP09915.i

Standard Reference: lu13c01.d

Prep Factor:1.00

Units: ug/L

Matrix: WATER Level: Low

Sample Wt./Vol.: 5.0000 ml (Vo)

Volume Purged: 5.0 ml (Vt)

Bottle Code: 038A

Internal Standards	RT(+/-RT)	Scan	QIon	Area(+/- %Area)	Conc(ext)	QC Flag
	2 550 (0 000)	1859	96	1120109(7)	50.00	
70) Fluorobenzene	7.559(0.000)	1033	90			
101) Chlorobenzene-d5	11.060(0.000)	294B	117	853314(8)	50.00	
132) 1,4-Dichlorobenzene-d4	12.941(0.000)	3533	152	468860(4)	50.00	

= RETENTION TIME OUT OF RANGE

* = INTERNAL STANDARD OUT OF RANGE NC = NOT ABLE TO CALCULATE

	I.S.			Conc.	QC	
Surrogate Standards	Ref. RT (+/-RRT)	Qlon	Area	(on column)	*Rec. flags	QC Limits
=======================================		======	==========	=======================================		*******
51) Dibromofluoromethane	(1) 6.633(0.000)	113	284858	46.167	92%	80 - 116
- - · · · · · · · · · · · · · · · · · ·	(1) 7.099(-0.001)	102	63638	45.102	90%	77 - 113
	.=,	9.8	1104059	44.616	89%	80 - 113
***	•=• •		438991	39.850	80%	78 - 113
62) 1,2-Dichloroethane-d4 89) Toluene-d8	(1) 7.099(-0.001) (2) 9.600(0.000) (2) 12.057(0.000)	98 95	1104059 438991		89%	

= RELATIVE RETENTION TIME OUT OF RANGE * = PERCENT REC.OUT OF RANGE

D = DILUTED OUT

NC = NOT ABLE TO CALCULATE

	I.S.					Conc.	Conc.	Blank	1	Reporting	Ī
Target Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
	======	====:	=========		**=====			=======		======	======
2) Chloromethane	(1)					ND	ND			1.00	5.00
3) Vinyl Chloride	(1)					ND	DИ			1.00	5.00
6) Bromomethane	(1)					ND	ND			1.00	5.00
7) Chloroethane	(1)					מא	מא			1.00	5.00
8) Trichlorofluoromethane	(1)					ND	ND			2.00	5.00
16) 1,1-Dichloroethene	(1)					ND	ND			0.80	5.00
26) Methylene Chloride	(1)					ND	ממ			2.00	5.00
30) trans-1,2-Dichloroethene	(1)					МD	ND			0.80	5.00
31) Methyl Tertiary Butyl Ether	(1)					ND	ND			0.50	5.00
40) 1.2-Dichloroethene (total)	(1)					מא	ИD			0.80	5.00
36) 1.1-Dichloroethane	(1)					ND	ND			1.00	5.00
42) cis-1,2-Dichloroethene	(1)					ND	ND			0.80	5.00
49) Chloroform	(1)					ND	ND			0.80	5.00
54) 1,1,1-Trichloroethane	(1)					ND	ND			0.80	5.00
59) Carbon Tetrachloride	(1)					ND	ND			1.00	5.00
63) Benzene	(1)					ND	ND			0.50	5.00
64) 1.2-Dichloroethane	(1)					ND	ND			1.00	5.00
73) Trichloroethene	(1)					ND	ND			1.00	5.00
77) 1,2-Dichloropropane	(1)					ИD	ND			1.00	5.00
82) Bromodichloromethane	(1)					ND	ND			1.00	5.00
84) 2-Chloroethyl Vinyl Ether	(1)					ND	ND			2.00	10.00
85) cis-1,3-Dichloropropene	(1)					ND	ND			1.00	5.00
90) Toluene	(2)					ND	ND			0.70	5.00
91) trans-1,3-Dichloropropene	(2)					ND	ND			1.00	5.00
yi, clans-i, y-bichiolopiopene	`-'										

E = CONC. OUT OF CAL. RANGE

^{# =} RELATIVE RETENTION TIME OUT OF RANGE

-TF5-

Lancaster Laboratories Quantitation Report GC/MS Volatiles 4791555

File: /chem/HP09915.i/06jun13a.b/lu13s16.d

Sample: -TF5-;4791555;1;0;;;;;lu13b03

Injected At: 13-JUN-2006 18:13

Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m Blank Reference: lul3b03.d Sublist: CHEVENV

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Batch: L061642AA

Analyst:ADS01731

Instrument ID: HP09915.i

Standard Reference: lul3c01.d

Prep Factor:1.00

Units: ug/L

Matrix: WATER

Level: Low

Sample Wt./Vol.: 5.0000 ml (Vo)

Volume Purged: 5.0 ml (Vt)

Bottle Code: 038A

	I.S.					Conc.	Conc.	Blank		Reporting	
Target Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
	*=====	=====	=======	*****		******	=======================================		======		
3) 1,1,2-Trichloroethane	(2)					ND	ND			0.80	5.0
(4) Tetrachloroethene	(2)					ND	ND			0.80	5.0
98) Dibromochloromethane	(2)					ND	ND			1.00	5.0
(2) Chlorobenzene	(2)					ND	ND			0.80	5.0
04) Ethylbenzene	(2)					ND	ND			0.80	5.
os) m+p-Xylene	(2)					ND	ND			0.80	5 .
O6) Xylene (Total)	(2)					ND	ND			0.80	5.
07) o-Xylene	(2)					ИD	ND			0.80	5.
09) Bromoform	(2)					ND	ND			1.00	5.
(6) 1,1,2,2-Tetrachloroethane	(3)					ND	ND			1.00	5.
31) 1,3-Dichlorobenzene	(3)					ND	ND			1.00	5.
33) 1.4-Dichlorobenzene	(3)					ND	ND			1.00	5.
39) 1,2-Dichlorobenzene	(3)					ND	ND			1.00	5 .

Comments:	
Analyst:	100/ Date: 10/13/45
Auditor Why	Date: (d/4/0)

Page 2 of 2

Y (x10^6) 3.2 4.6-4 5 8 0 1 + 2 0 - 1 - 1 Sample Info: -TF5-;4791555;1;0;;;;;;lu13b03 Client ID: -TF5-Date : 13-JUN-2006 18:13 Data File: /chem/HP09915.i/06jun13a.b/lu13s16.d Column phase: DB-624 Purge Volume: 5.0 S ~Bibromofluoromethane /chem/HP09915.i/06jun13a.b/lu13s16.d -1,2-Dichloroethane-d4 - -Fluorobenzene+ Operator: ADS01731 Column diameter: 0.25 Instrument: HP09915.i - -Toluene-d8+ 5 1, - -Chlorobenzene-d5 15 -4-Bromofluorobenzeme+ -1,4-Dichlorobenzene-d4+ 13 ថិទីច់ចិ Page 1

ш

¢

Min.

Quant Report

Target Revision 3.5

Data File: /chem/HP09915.i/06jun13a.b/lu13s16.d Instrument ID: HP09915.i Injection date and time: 13-JUN-2006 18:13 Analyst ID: ADS01731

Method used: /chem/HP09915.i/06jun13a.b/L8260W.m Sublist used: CHEVENV

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 13-Jun-2006 19:41 lcm01518

Sample Name: -TF5-

Lab Sample ID: 4791555

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
#=====================================	======	======	====	1100100	50.000
70)*Fluorobenzene	(1)	7.559	96	1120109	- - · · · ·
101) *Chlorobenzene-d5	(2)	11.060	117	853314	50.000
132) *1,4-Dichlorobenzene-d4	(3)	12.941	152	468860	50.000
51) \$Dibromofluoromethane	(1)	6.633	113	284858	46.167
62) \$1,2-Dichloroethane-d4	(1)	7.099	102	63638	45.102
	(2)	9.600	98	1104059	44.616
89) \$Toluene-d8	1 1		95	438991	39.850
113)\$4-Bromofluorobenzene	(2)	12.057	95	430331	39.030

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

-TF23

EPA SAMPLE NO.

.ab Name:	Lancaster	Laboratories	

Taboratories Contract:____

Lab Code: LANCAS Case No.:____ SAS No.:___ SDG No.:___

Matrix: (soil/water) WATER Lab Sample ID: 4791556

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09915.i/06jun13a.b/lu13s17.d

Level: (low/med) LOW

Date Received: 06/10/06

Moisture: not dec. ____ Date Analyzed: 06/13/06

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug	g/L or ug/Kg) ug/I		Q
74-87-3	Chloromethane		5	U
75-01-4	Vinyl Chloride		5	U
	Bromomethane		5	บ
	Chloroethane	į	5	ט
75-69-4	Trichlorofluoromet	hane	5	ט
	1,1-Dichloroethene	i	5	U
	Methylene Chloride	i	5	U
	Methyl Tertiary Bu		5	U
	1,1-Dichloroethane		5	U
	1, 2-Dichloroethene		5	U
	Chloroform		5	U
	1,1,1-Trichloroeth	nane	5	U
	Carbon Tetrachlor		5	U
	Benzene	j	5	ับ
,	1, 2-Dichloroethane	e İ	5	ט
	Trichloroethene	j	5	ע
	1,2-Dichloropropar	ne	5	U
	Bromodichlorometha		5	U
	2-Chloroethyl Viny		10	υ
	cis-1,3-Dichlorop		5	U
	Toluene		5	υ
	trans-1,3-Dichlore	opropene	5	ប
	1,1,2-Trichloroeth	1	5	ប
	Tetrachloroethene		5	ָ ט
	Dibromochlorometha	ane	5	ָ ט
	Chlorobenzene		5	l U
100-30-/	Chiolopenzene		-	1 77

100-41-4-----Ethylbenzene

EPA SAMPLE NO.

-TF23	

Lab Name: Lancaster Laboratories Contract:_____

Matrix: (soil/water) WATER

Lab Sample ID: 4791556

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09915.i/06jun13a.b/lul3s17.d

Level: (low/med) LOW Date Received: 06/10/06

Moisture: not dec. ____ Date Analyzed: 06/13/06

Column: (pack/cap) CAP

Dilution Factor: 1.0

CAS NO.	COMPOUND	CONCENTRAI	rion units: 'Kg) ug/L		Q
75-25-2 79-34-5	Xylene (Tot Bromoform 1,1,2,2-Tet	rachloroethane		5 5 5	U U U
106-46-7	1,3-Dichlor	obenzene		5 5	บ บ บ

-TF23

Lancaster Laboratories Quantitation Report GC/MS Volatiles 4791556

File: /chem/HP09915.i/06junl3a.b/lul3s17.d

Sample: -TF23;4791556;1;0;;;;;lu13b03

Injected At:13-JUN-2006 18:36 Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m Blank Reference: lul3b03.d

Sublist: CHEVENV

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Matrix: WATER Batch:L061642AA

Analyst: ADS01731

Instrument ID: HP09915.1

Standard Reference: lul3c01.d

Prep Factor:1.00

Units: ug/L

Level: Low

Sample Wc./Vol.: 5.0000 ml (Vo)

Volume Purged: 5.0 ml (Vt)

Bottle Code:038A

RT (+/-RT)	Scan	Qlon	Area(+/- %Area)	Conc (ext)	QC Flag
=======	# ≠ = =	===≠	克拉尔克尔尔克 医脊髓 医二二丁	=======================================	=======
7.562(-0.003)	1860	96	1077846(3)	50.00	
11.063(-0.003)	2949	117	816490(4)	50.00	
12.941(0.000)	3533	152	449255(-1)	50.00	
	7.562(-0.003) 11.063(-0.003)	7.562(-0.003) 1860 11.063(-0.003) 2949	7.562(-0.003) 1860 96 11.063(-0.003) 2949 117	7.562(-0.003) 1860 96 1077846(3) 11.063(-0.003) 2949 117 816490(4)	7.562(-0.003) 1860 96 1077846(3) 50.00 11.063(-0.003) 2949 117 816490(4) 50.00

= RETENTION TIME OUT OF RANGE

* = INTERNAL STANDARD OUT OF RANGE

NC = NOT ABLE TO CALCULATE

	I.S.			Conc.	QC	
Surrogate Standards	Ref. RT (+/-RRT)	QIon	Area	(on column)	%Rec. flags	QC Limits
	********	====##	=========		=======================================	* ******
51) Dibromofluoromethane	(1) 6.639(-0.001)	113	273241	46.021	92%	80 - 116
62; 1,2-Dichloroethane-d4	(1) 7.099(-0.001)	102	60175	44.320	89%	77 - 113
89) Toluene-d9	(2) 9.600(0.000)	98	1058168	44.690	89%	80 - 113
113: 4-Bromofluorobenzene	(2) 12.057(0.000)	95	420754	39.917	80%	78 - 113

= RELATIVE RETENTION TIME OUT OF RANGE * = PERCENT REC.OUT OF RANGE

D = DILUTED OUT

NC = NOT ABLE TO CALCULATE

	I.S.					Conc.	Conc.	Blank	1	Reporting	ľ
Target Compounds	Ref.	RŤ	(+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
18:9CC		=====		======	ED=======						======
2) Chloromethane	(1)					ND	ND			1.00	5.00
3) Vinyl Chloride	(1)					מא	ND			1.00	5.00
6) Bromomethane	(1)					ND	DИ			1.00	5.00
7) Chloroethane	(1)					ND	ND			1.00	5.00
B) Trichlorofluoromethane	(1)					ND	ДИ			2.00	5.00
16) 1,1-Dichloroethene	(1)					ND	ND			0.80	5.00
26) Methylene Chloride	(1)					ND	ND			2.00	5.00
30) trans-1,2-Dichloroethene	(1)					ND	ND			0.80	5.00
31) Methyl Tertiary Butyl Ether	(1)					ND	ND			0.50	5.00
40) 1.2-Dichloroethene (total)	(1)					ND	ND			0.80	5.00
36) 1.1-Dichloroethane	(1)					ND	ND			1.00	5.00
42) cis-1,2-Dichloroethene	(1)					ND	ND			0.80	5.00
49) Chloroform	(1)					ND	ND			0.80	5.00
54) 1,1,1-Trichloroethane	(1)					ND	ND			0.80	5.00
59) Carbon Tetrachloride	(1)					ИD	ND			1.00	5.00
63) Benzene	(1)					ND	ND			0.50	5.00
64) 1,2-Dichloroethane	(1)					ND	ND			1.00	5.00
73) Trichloroethene	(1)					ND	ND			1.00	5.00
77) 1.2-Dichloropropane	(1)					ND	ND			1.00	5.00
82) Bromodichloromethane	(1)					ND	ND			1.00	5.00
84) 2-Chloroethyl Vinyl Ether	(1)					ND	ND			2.00	10.00
85) cis-1,3-Dichloropropene	(1)					ND	ND			1.00	5.00
90) Toluene	(2)					ND	ND			0.70	5.00
91) trans-1,3-Dichloropropene	(2)					ND	ND			1.00	5.00
91, Clams-1,3-Dichiolopropene	/										

E = CONC. OUT OF CAL. RANGE

^{# =} RELATIVE RETENTION TIME OUT OF RANGE

-TF23

Lancaster Laboratories Quantitation Report GC/MS Volatiles 4791556

File: /chem/HP09915.i/06jun13a.b/lu13s17.d

Sample: -TF23;4791556;1;0;;;;;lul3b03

Injected At:13-JUN-2006 18:36 Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m Blank Reference: lu13b03.d

Sublist: CHEVENV

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Batch:L061642AA

Analyst: ADS01731

Instrument ID: HP09915.i

Standard Reference: lul3c01.d

Prep Pactor:1.00

Units: ug/L

Matrix: WATER

Level: Low

Sample Wt./Vol.: 5.0000 ml (Vo)

Volume Purged: 5.0 ml (Vt)

Bottle Code: 038A

	I.S.					Conc.	Conc.	Blank	1	Reporting	
Target Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
-	=====	=====				=======================================	==========	******	======	****===	
93) 1,1,2-Trichloroethane	(2)					ND	ND			0.80	5.0
94) Tetrachloroethene	(2)					ND	ND			0.80	5.
98) Dibromochloromethane	(2)					ND	ND			1.00	5.
02) Chlorobenzene	(2)					ND	ND			0.80	5.
04) Ethylbenzene	(2)					ND	ND			0.80	5.
05) m*p-Xylene	(2)					ND	ND			0.80	5.
06) Xylene (Total)	(2)					ND	ND			0.80	5.
07; o-Xylene	(2)					ND	ND			0.80	5.
09) Bromoform	(2)					ND	ND			1.00	5.
16) 1,1,2,2-Tetrachloroethane	(3)					ND	ND			1.00	5.
31) 1,3-Dichlorobenzene	(3)					ND	ND			1.00	5.
33) 1,4-Dichlorobenzene	(3)					ND	ND			1.00	5.
39) 1,2-Dichlorobenzene	(3)					ND	ND			1.00	5.
= CONC. OUT OF CAL. RANGE	# ==	RELAT	IVE RETENT	ION TIM	E OUT OF R	ANGE					

Commencs:		
Analyst:	amh	Date: 6/13/160
Auditor: White		Date: 6140

Page 2 of 2

Y (x10^6) Client ID: -TF23 Date : 13-JUN-2006 18:36 Data File: /chem/HP09915.i/06jun13a.b/lu13s17.d Sample Info: -TF23;4791556;1;0;;;;;;lu13b03 Column phase: DB-624 Purge Volume: 5.0 N ω Ç. g, -Dibromofluoromethane /chem/HP09915.i/06jun13a.b/lu13s17.d -1,2-Bichloroethane-d4+ -Fluorobenzene+ ω Column diameter: 0.25 Operator: ADS01731 Instrument: HP09915.i ی -Toluene-d8+ 10 -Chlorobenzene-d5 12 - -4-Bromofluorobenzene+ - -1,4-Dichlorobenzene-d4 13 4 6674 Page 1 15

E.

Quant Report

Target Revision 3.5

Data File: /chem/HP09915.i/06jun13a.b/lu13s17.d Instrument ID: HP09915.i Injection date and time: 13-JUN-2006 18:36 Analyst ID: ADS01731

Method used: /chem/HP09915.i/06jun13a.b/L8260W.m Sublist used: CHEVENV

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 13-Jun-2006 19:42 lcm01518

Sample Name: -TF23 Lab Sample ID: 4791556

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
70) *Fluorobenzene 101) *Chlorobenzene-d5 132) *1,4-Dichlorobenzene-d4 51) \$Dibromofluoromethane 62) \$1,2-Dichloroethane-d4 89) \$Toluene-d8 113) \$4-Bromofluorobenzene	(1)	7.562	96	1077846	50.000
	(2)	11.063	117	816490	50.000
	(3)	12.941	152	449255	50.000
	(1)	6.639	113	273241	46.021
	(1)	7.099	102	60175	44.320
	(2)	9.600	98	1058168	44.690
	(2)	12.057	95	420754	39.917

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

-DC2-

EPA SAMPLE NO.

Lab	Name:	Lancaster	Laboratories
-----	-------	-----------	--------------

Contract: ____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 4791558

Sample wt/vol: 5.00 (g/mL) mL

Lab File ID: HP09915.i/06jun13a.b/lu13s18.d

Level: (low/med) LOW

Date Received: 06/10/06

Moisture: not dec. ____ Date Analyzed: 06/13/06

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L

74-87-3Chloromethane	5	U
75-01-4Vinyl Chloride	5	U
74-83-9Bromomethane	5	U
75-00-3Chloroethane	5	U
75-69-4Trichlorofluoromethane	5	U
75-35-41,1-Dichloroethene	5	U
75-09-2Methylene Chloride	5	U
1634-04-4Methyl Tertiary Butyl Ether	5	U
75-34-31,1-Dichloroethane	5	U
540-59-01,2-Dichloroethene (total)	j 5	U
67-66-3Chloroform	5	Ŭ
71-55-61,1,1-Trichloroethane	5	Ŭ
56-23-5Carbon Tetrachloride	5	Ŭ
71-43-2Benzene	5	Ŭ
107-06-21,2-Dichloroethane	5	U
79-01-6Trichloroethene	5	U
78-87-51,2-Dichloropropane	5	U
75-27-4Bromodichloromethane	5	Ū
110-75-82-Chloroethyl Vinyl Ether	10	Ū
10061-01-5cis-1,3-Dichloropropene	5	U
108-88-3Toluene	0.8	J
10061-02-6trans-1,3-Dichloropropene	5	U
79-00-51,1,2-Trichloroethane	5	U
127-18-4Tetrachloroethene	j 5	υ
124-48-1Dibromochloromethane	5	Ŭ
108-90-7Chlorobenzene	5	Ū
100-41-4Ethylbenzene	5	υ
	İ	

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:______

Matrix: (soil/water) WATER

Lab Sample ID: 4791558

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09915.i/06jun13a.b/lu13s18.d

Level: (low/med) LOW Date Received: 06/10/06

Moisture: not dec. _____

Date Analyzed: 06/13/06

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) ug/L Q

1330-20-7Xylene (Total)	5	U
75-25-2Bromoform	5	l n
79-34-51,1,2,2-Tetrachloroethane	5	U
541-73-11,3-Dichlorobenzene	5	U
106-46-71,4-Dichlorobenzene	5	U
95-50-11,2-Dichlorobenzene	5	U
		.

Lancaster Laboratories Quantitation Report GC/MS Volatiles 4791558

File: /chem/HP09915.i/06jun13a.b/lu13s18.d

Sample: -DC2-;4791558;1;0;;;;;lu13b03

Injected At:13-JUN-2006 18:59 Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m Blank Reference: lul3b03.d

Sublist: CHEVENV

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Batch: L061642AA

Analyst:ADS01731

Instrument ID: RP09915.1

Standard Reference: lul3c01.d

Prep Factor:1.00

Units: ug/L

Macrix: WATER

Level: Low

Sample Wt./Vol.: 5.0000 ml (Vo)

Volume Purged: 5.0 ml (Vt)

Bottle Code:038A

RT(+/-RT)	Scan	QIon	Area(+/- %Area)	Conc (ext)	QC Flag
****		====	****	====#===	
7.559(0.000)	1859	96	1035653(-1)	50.00	
11.060(0.000)	2948	117	7 87069(0)	50.00	
12.941(0.000)	3533	152	429175(-5)	50.00	
	7.559(0.000) 11.060(0.000)	7.559(0.000) 1859 11.060(0.000) 2948	7.559(0.000) 1859 96 11.060(0.000) 2948 117	7.559(0.000) 1859 96 1035653(-1) 11.060(0.000) 2948 117 787069(0)	7.559(0.000) 1859 96 1035653(-1) 50.00 11.060(0.000) 2948 117 787069(0) 50.00

= RETENTION TIME OUT OF RANGE

* = INTERNAL STANDARD OUT OF RANGE

NC = NOT ABLE TO CALCULATE

	I.S.			Conc.	QC	
Surrogate Standards	Ref. RT (+/-RRT)	QIon	Area	(on column)	%Rec. flags	QC Limits
			E22200777532	==========	=======================================	2445#2====
51) Dibromofluoromethane	(1) 6.633(0.000)	113	262531	46.018	92%	80 - 116
62) 1.2-Dichloroethane-d4	(1) 7.099(-0.001)	102	59278	45.438	91%	77 - 113
89) Toluene-d8	(2) 9,600(0.000)	98	1020081	44.692	89%	80 - 113
113) 4-Brownfluorobenzene	(2) 12.057(0.000)	95	402484	39.611	79%	78 - 113

NC = NOT ABLE TO CALCULATE

		I.S.					Conc.	Conc.	Blank	ī	Reporting	3
Target Com	nounds	Ref.	RT	(+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
1419EC CO	=		25-==				*******		******			======
2) Chlorom		(1)					ND	ND			1.00	5.00
3: Vinvl C		(1)					ND	ND			1.00	5.00
6) Bromome		(1)					ND	ND			1.00	5.00
7) Chloroe	thane	(1)					ND	Фи			1.00	5.00
	rofluoromethane	(1)					ND	ИD			2.00	5.00
16) 1.1-Dic	hloroethene	(1)					ND	ND			0.80	5.00
26) Methyle	ne Chloride	(1)					ND	ND			2.00	5.00
•	,2-Dichloroethene	(1)					ND	ND			0.80	5.00
	Tertiary Butyl Ether	(1)					ND	ND			0.50	5.00
40) 1.2-Dic	hloroethene (total)	(1)					ND	ND			0.80	5.00
36) 1.1-Dic	hloroethane	(1)					ND	ND			1.00	5.00
42) cis-1.2	-Dichloroethene	(1)					ND	ND			0.80	5.00
49) Chlorof	orm	(1)					ND	ND			0.80	5.00
54) 1.1.1-T	richloroethane	(1)					ND	ND			0.80	5.00
59; Carbon	Tetrachloride	(1)					ND	ND			1.00	5.00
63) Benzene		(1)					ND	ND			0.50	5.00
64) 1.2-Dic	hloroethane	(1)					ND	ND			1.00	5.00
73) Trichlo	roethene	(1)					ND	ND			1.00	5.00
77) 1.2-Dic	hloropropane	(1)					ND	סא			1.00	5.00
	chloromethane	(1)					ND	ND			1.00	5.00
84) 2-Chlor	oethyl Vinyl Ether	(1)					ND	ND			2.00	10.00
	-Dichloropropene	(1)					ND	ND			1.00	5.00
90) Toluene		(2)	9.67	B (0.000)	92	10862	0.817	0.82		J	0.70	5.00
91) trans-1	,3-Dichloropropene	(2)					ND	ND			1.00	5.00

E = CONC. OUT OF CAL. RANGE

^{# =} RELATIVE RETENTION TIME OUT OF RANGE

Lancaster Laboratories Quantitation Report GC/MS Volatiles 4791558

File: /chem/HP09915.i/06jun13a.b/lu13s18.d

Sample: -DC2-;4791558;1;0;;;;;lu13b03

Injected At:13-JUN-2006 18:59

Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m Blank Reference: lu13b03.d

Sublist: CHEVENV

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Batch: L061642AA

Analyst:ADS01731

Instrument ID: HP09915.1

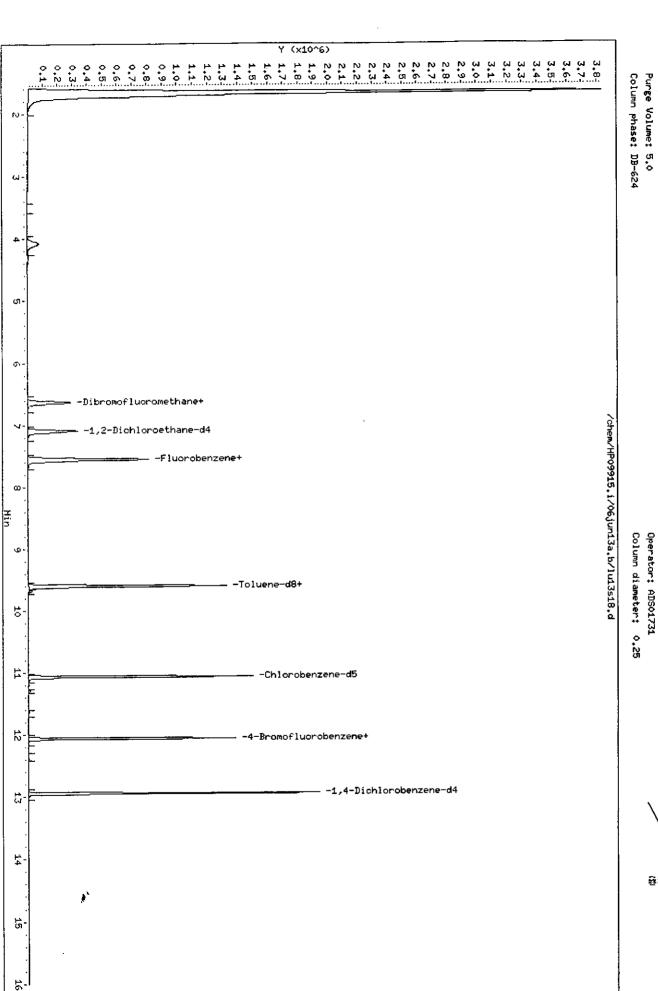
Standard Reference: lul3c01.d

Prep Factor:1.00

Units: ug/L

Matrix: WATER

Level: Low


Sample Wt./Vol.: 5.0000 ml (Vo)

Volume Purged: 5.0 ml (Vt)

Bottle Code: 038A

I.S. Ref.					Conc.	Conc.	Blank		Reporting	2
ver.	RT	(+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
========	====	=======	=====		CE#ESSSSEES	=======================================	****	=======	=======	=====
(2)					ND	ИD			0.80	5.0
(2)					ND	ND			0.80	5.0
(2)					ND	ND			1.00	5.0
(2)					ND	ND			0.80	5.0
(2)					ND	ND			0.80	5.0
(2)					ND	ND			0.80	5.0
(2)					ND	ИD			0.80	5.0
(2)					ND	ND			0.80	5.0
(2)					ND	ND			1.00	5.0
(3)					ND	ND			1.00	5.0
					ND	ND			1.00	5.0
					NĎ	ND			1.00	5.0
(3)					ND	ND			1.00	5.0
	(2) (2) (2) (2) (2) (2) (2) (2) (2) (3) (3)	(2) (2) (2) (2) (2) (2) (2) (2) (2) (3) (3)	(2) (2) (2) (2) (2) (2) (2) (2) (2) (3) (3)	(2) (2) (2) (2) (2) (2) (2) (2) (3) (3)	(2) (2) (2) (2) (2) (2) (2) (2) (2) (3) (3)	(2) ND (2) ND (2) ND (2) ND (2) ND (2) ND (2) ND (2) ND (2) ND (3) ND (3) ND	(2) ND ND ND (2) (2) ND ND ND (2) (2) ND ND ND (2) (2) ND ND ND (2) (2) ND ND ND (2) (2) ND ND ND (2) (3) ND ND ND (3) (3) ND ND ND ND (3)	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	(2) ND ND 0.80 (2) ND ND ND 1.00 (2) ND ND ND 0.80 (2) ND ND ND 0.80 (2) ND ND ND 0.80 (2) ND ND ND 0.80 (2) ND ND ND 0.80 (2) ND ND ND 0.80 (2) ND ND ND 1.00 (3) ND ND ND 1.00 (3) ND ND ND 1.00 (3) ND ND ND 1.00 (3) ND ND ND 1.00

Page 2 of 2

Molska

Instrument: HP09915.i

9688

Sample Info: -DC2-;4791558;1;0;;;;;lu13b03

Client ID: -DC2-

Date : 13-JUN-2006 18:59

Data File: /chem/HP09915.i/06jun13a.b/lu13s18.d

Page 1

Quant Report

Target Revision 3.5

Data File: /chem/HP09915.i/06jun13a.b/lu13s18.d Instrument ID: HP09915.i Injection date and time: 13-JUN-2006 18:59 Analyst ID: ADS01731

Method used: /chem/HP09915.i/06jun13a.b/L8260W.m Sublist used: CHEVENV

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 13-Jun-2006 19:43 lcm01518

Sample Name: -DC2- Lab Sample ID: 4791558

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
=======================================	=====	======	======	========	=======================================
70)*Fluorobenzene	(1)	7.559	96	1035653	50.000
90) Toluene	(2)	9.678	92	10862	0.817
101) *Chlorobenzene-d5	(2)	11.060	117	787069	50.000
132) *1,4-Dichlorobenzene-d4	(3)	12.941	152	429175	50.000
51) \$Dibromofluoromethane	(1)	6.633	113	262531	46.018
62)\$1,2-Dichloroethane-d4	(1)	7.099	102	59278	45.438
89) \$Toluene-d8	(2)	9.600	98	1020081	44.692
113) \$4-Bromofluorobenzene	(2)	12.057	95	402484	39.611

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Toluene

9.678 92.0

2518

10862 0.8169

Compound Number

Retention Time (minutes)

Concentration (ug/L)

Compound Name

Scan Number

Quant Ion Area (flag

0062

EPA SAMPLE NO.

-DC1-

			 1
Lab	Name:	Lancaster	Laboratories

Contract:____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 4791559

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09915.i/06jun13a.b/lu13s19.d

Level: (low/med) LOW

Date Received: 06/10/06

Moisture: not dec. ____ Date Analyzed: 06/13/06

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg) ug/L		Q
74-87-3	Chloromethane			5	U
75-01-4	Vinyl Chloride			5	ן ט
74-83-9	Bromomethane			5	ן ט
75-00-3	Chloroethane	ļ		5	ט
75-69-4	Trichlorofluoro	methane		5	บ
75-35-4	1,1-Dichloroeth	iene		5	ט
75-09-2	Methylene Chlor	ide		5	ן ט
1634-04-4	Methyl Tertiary	Butyl Ether		5	ט
75-34-3	1,1-Dichloroeth	ane		5	บ
540-59-0	1,2-Dichloroeth	ene (total)		7	
67-66-3	Chloroform	ĺ		5	υ
71-55-6	1,1,1-Trichloro	ethane		5	υ
56-23-5	Carbon Tetrachl	oride		5	ן טן
71-43-2	Benzene	ĺ		5	ן ט
107-06-2	1,2-Dichloroeth	ane		5	ן טן
79-01-6	Trichloroethene	·		11	
78-87-5	1,2-Dichloropro	pane		5	ן ט
75-27-4	Bromodichlorome	thane		5	ן ט
110-75-8	2-Chloroethyl V	inyl Ether		10	ן ט
10061-01-5	cis-1,3-Dichlor	opropene		5	ן ט
108-88-3	Toluene	ļ		5	ן ט
10061-02-6	trans-1,3-Dichl	oropropene		5	ן ט
79-00-5	1,1,2-Trichlord	ethane		5	ן ט
127-18-4	Tetrachloroethe	ne	-	5	ן ט
124-48-1	Dibromochlorome	thane		5	ן ט
108-90-7	Chlorobenzene	İ		5	ן ט
100-41-4	Ethylbenzene	j		5	ט [
	<u>.</u>	i			

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:_____

Matrix: (soil/water) WATER Lab Sample ID: 4791559

Sample wt/vol: 5.00 (g/mL) mL

Lab File ID: HP09915.i/06jun13a.b/lu13s19.d

Level: (low/med) LOW

Date Received: 06/10/06

Moisture: not dec. ____ Date Analyzed: 06/13/06

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L Q

1330-20-7Xylene (Total)		5	U
75-25-2Bromoform		5	U
79-34-51,1,2,2-Tetrachloroethane		5	U
541-73-11,3-Dichlorobenzene		5	U
106-46-71,4-Dichlorobenzene		5	U
95-50-11,2-Dichlorobenzene		5	U
	_		

Lancaster Laboratories Quantitation Report GC/MS Volatiles 4791559

File: /chem/HP09915.i/06junl3a.b/lul3s19.d

Sample: -DC1-;4791559;1;0;;;;;lu13b03

Injected At:13-JUN-2006 19:21 Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m

Blank Reference: lu13b03.d Sublist: CHEVENV

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Batch: L061642AA

Analyst: ADS01731

Instrument ID: HP09915.1

Standard Reference: lul3c01.d

Prep Factor:1.00

Units: ug/L

Matrix: WATER

Level: Low

Sample Wt./Vol.: 5.0000 ml (Vo)

Volume Purged: 5.0 ml (Vt)

Bottle Code:038A

Internal Standards	RT(+/-RT)	Scan	QIon	Area(+/- %Area)	Conc(ext)	QC Flag
	========		====	**********	=======	****
70) Fluorobenzene	7.562(-0.003)	1860	96	1020049(-2)	50.00	
101) Chlorobenzene-d5	11.063(-0.003)	2949	117	771746(-2)	50.00	
132) 1,4-Dichlorobenzene-d4	12.941(0.000)	3533	152	423377(-6)	50.00	

= RETENTION TIME OUT OF RANGE * = INTERNAL STANDARD OUT OF RANGE

NC = NOT ABLE TO CALCULATE

	I.S.			Conc.	QC	
Surrogate Standards	Ref. RT (+/-RRT)	QIon	Area	(on column)	*Rec. flags	QC Limits
		======	E=====================================	_ ===========	*******	****======
51) Dibromofluoromethane	(1) 6.639(-0.001)	113	260497	46.360	93∜	80 - 116
62) 1,2-Dichloroethane-d4	(1) 7.102(-0.001)	102	56971	44.338	89%	77 - 113
89) Toluene-d8	(2) 9.600(0.000)	98	1000123	44.688	89%	80 - 113
113) 4-Bromofluorobenzene	(2) 12.060(0.000)	95	392058	39.351	79%	78 - 113

= RELATIVE RETENTION TIME OUT OF RANGE * = PERCENT REC.OUT OF RANGE

D = DILUTED OUT

NC = NOT ABLE TO CALCULATE

		I.S.					Conc.			Reporting	Ī	
Tai	rget Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
	=======================================	=====	****		=====	**======	*===========	=======================================			=======	
2)	Chloromethane	(1)					ND	ND			1.00	5.00
	Vinyl Chloride	(1)					ND	ND			1.00	5.00
6)	Bromomethane	(1)					ND	ND			1.00	5.00
7)	Chloroethane	(1)					ND	ND			1.00	5.00
8)	Trichlorofluoromethane	(1)					ND	ND			2.00	5.00
16)	1,1-Dichloroethene	(1)					ND	ND			0.80	5.00
26)	Methylene Chloride	(1)					ND	ND			2.00	5.00
30)	trans-1,2-Dichloroethene	(1)					ND	ND			0.80	5.00
31)	Methyl Tertiary Butyl Ether	(1)					ND	ND			0.50	5.00
40)	1,2-Dichloroethene (total)	(1)			96	38189	7.270	7.27			0.80	5.00
36)	1,1-Dichloroethane	(1)					ND	ND			1.00	5.00
42)	cis-1,2-Dichloroethene	(1)	5.96	(-0.001)	96	38189	7.270	7.27			0.80	5.00
49)	Chloroform	(1)					DN	ND			0.80	5.00
54)	1,1,1-Trichloroethane	(1)					ND	DN			0.80	5.00
59)	Carbon Tetrachloride	(1)					ND	DN			1.00	5.00
63)	Benzene	(1)					ND	ND			0.50	5.00
64)	1,2-Dichloroethane	(1)					ND	ND			1.00	5.00
73)	Trichloroethene	(1)	8.05	(0.000)	95	60226	11.255	11.26			1.00	5.00
77)	1,2-Dichloropropane	(1)					ND	ND			1.00	5.00
82)	Bromodichloromethane	(1)					ND	ND			1.00	5.00
84)	2-Chloroethyl Vinyl Ether	(1)					ND	ND			2.00	10.00
85)	cis-1,3-Dichloropropene	(1)					ND	ИD			1.00	5.00
90)	Toluene	(2)					ND	ND			0.70	5.00
91)	trans-1,3-Dichloropropene	(2)					ND	ND			1.00	5.00

E = CONC. OUT OF CAL. RANGE

= RELATIVE RETENTION TIME OUT OF RANGE

Page 1 of 2

Lancaster Laboratories Quantitation Report GC/MS Volatiles 4791559

File: /chem/HP09915.i/06junl3a.b/lul3s19.d

Sample: -DC1-;4791559;1;0;;;;;lu13b03

Injected At:13-JUN-2006 19:21

Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m Blank Reference: lu13b03.d

Sublist: CHEVENV

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Batch: L061642AA

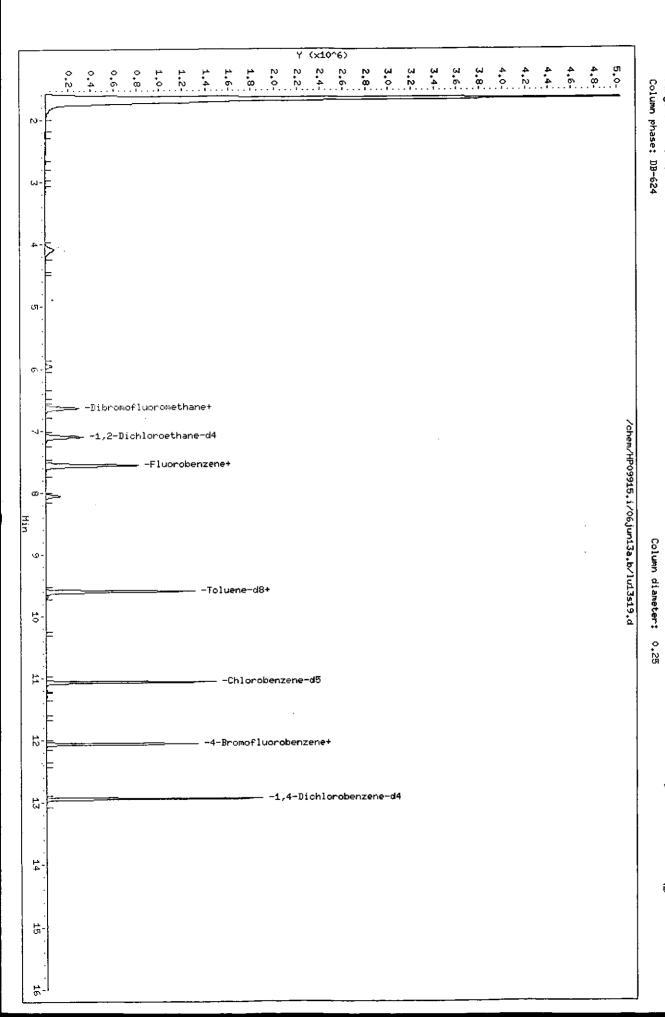
Matrix: WATER Level: Low

Analyst:ADS01731 Instrument ID: HP09915.1

Standard Reference: lul3c01.d

Sample Wt./Vol.: 5.0000 ml (Vo) Volume Purged: 5.0 ml (Vt)

Prep Factor:1.00


Units: ug/L

Bottle Code:038A

RT	(+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
	:========	£2225	=========	==========	***********				
						===	E======		
				ND	ND			0.80	5.0
				ND	ND			0.80	5.
				ND	ИD			1.00	5.
				ND	ND			0.80	5.
				ND	ND			0.80	5.
				ND	ND			0.80	5.
				ND	ND			0.80	5.
				ИD	ND			0.80	5.
				ND	ND			1.00	5.
				ND	ND			1.00	5.
				ND	ND			1.00	5.
				ND	ND			1.00	5.
				ND	ND			1.00	5.
					ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND 0.80 ND ND 0.80 ND ND 0.80 ND ND 0.80 ND ND 1.00 ND ND 1.00 ND ND 1.00 ND ND 1.00 ND ND 1.00

Page 2 of 2

Client ID: -DC1-Date : 13-JUN-2006 19:21 Purge Volume: 5.0 Sample Info: -DC1-;4791559;1;0;;;;;;lu13b03 Data File: /chem/HP09915.i/06jun13a.b/lu13s19.d Operator: ADS01731 Instrument: HP09915.i 5687 Page 1

Quant Report

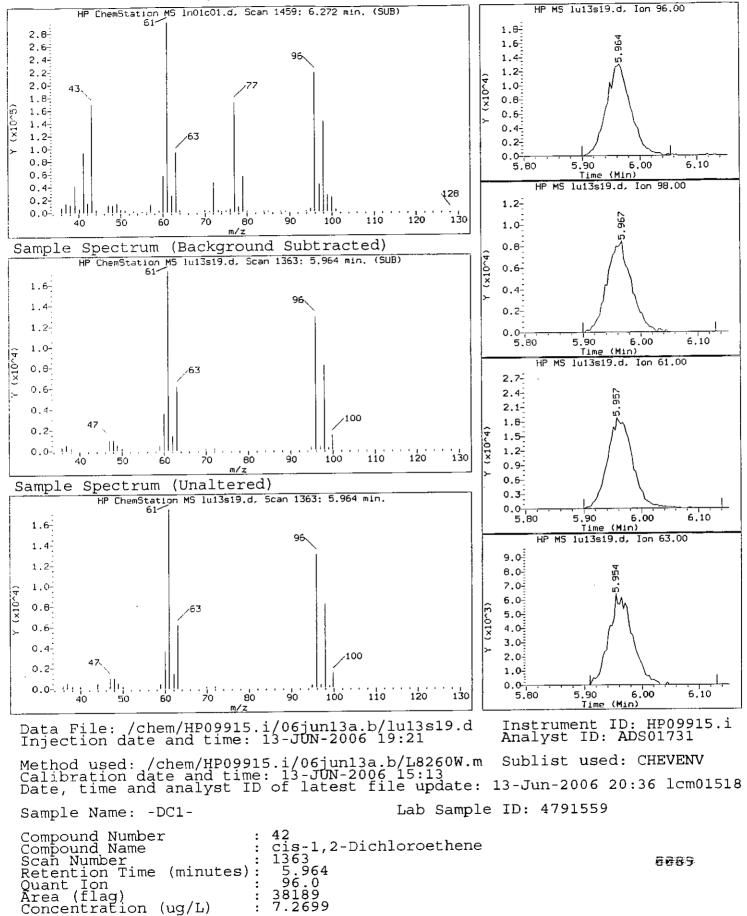
Target Revision 3.5

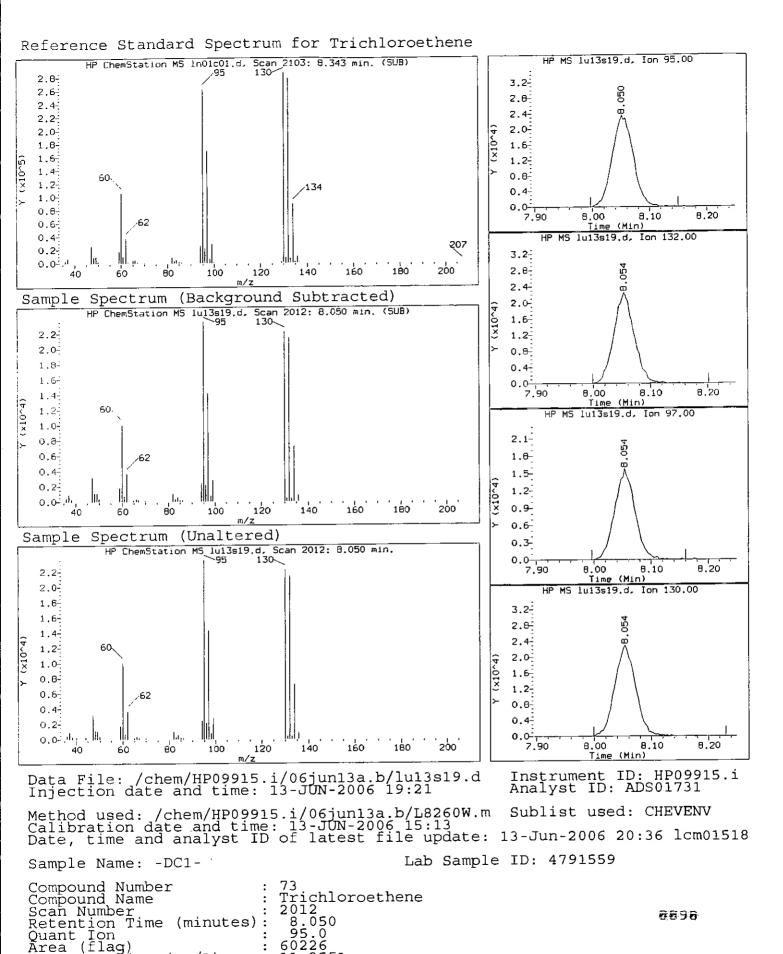
Data File: /chem/HP09915.i/06jun13a.b/lu13s19.d Instrument ID: HP09915.i Injection date and time: 13-JUN-2006 19:21 Analyst ID: ADS01731

Method used: /chem/HP09915.i/06jun13a.b/L8260W.m Sublist used: CHEVENV

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 13-Jun-2006 20:36 lcm01518


Sample Name: -DC1- Lab S


Lab Sample ID: 4791559

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
=======================================	=====	=====	=====	=========	=======================================
40) 1,2-Dichloroethene (total)	(1)		96	38189	7.270
42) cis-1,2-Dichloroethene	(1)	5.964	96	38189	7.270
70) *Fluorobenzene	(1)	7.562	96	1020049	50.000
73) Trichloroethene	(1)	8.050	95	60226	11.255
101) *Chlorobenzene-d5	(2)	11.063	117	771746	50.000
132) *1,4-Dichlorobenzene-d4	(3)	12.941	152	423377	50.000
51) \$Dibromofluoromethane	(1)	6.639	113	260497	46.360
62) \$1,2-Dichloroethane-d4	(1)	7.102	102	56971	44.338
89) \$Toluene-d8	(2)	9.600	98	1000123	44.688
113) \$4-Bromofluorobenzene	(2)	12.060	95	392058	39.351

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

11.2551

Concentration (ug/L)

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:_____

Matrix: (soil/water) WATER Lab Sample ID: 4791560

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09915.i/06jun13a.b/lu13s20.d

Level: (low/med) LOW Date Received: 06/10/06

Moisture: not dec. ____ Date Analyzed: 06/13/06

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug	g/Kg) ug/L		Q
The state of the s	Chloromethane		5	U
75-01-4	Vinyl Chloride		5	ן ש
•	Bromomethane		5	ן ט
•	Chloroethane		5	ן ט'ן
	Trichlorofluoromethane		5	U
	1,1-Dichloroethene	1	5	U
	Methylene Chloride		5	ן ט
	Methyl Tertiary Butyl Ethe	er	5	ן ט
	1,1-Dichloroethane		5	U
540-59-0	1,2-Dichloroethene (total))]	5	ן טן
67-66-3	Chloroform	1	5	ן ט
71-55-6	1,1,1-Trichloroethane	İ	5	ן ט
56-23-5	Carbon Tetrachloride		5	ן טן
71-43-2	Benzene	ĺ	5	ן ט
107-06-2	1,2-Dichloroethane		5	U
79-01-6	Trichloroethene		13	1 1
78-87-5	1,2-Dichloropropane	Ì	5	ן ט
	Bromodichloromethane	Í	5	ן ט
110-75-8	2-Chloroethyl Vinyl Ether		10	ן ט ן
10061-01-5	cis-1,3-Dichloropropene	1	5	U
108-88-3	Toluene	İ	5	ן ט ן
10061-02-6-	trans-1,3-Dichloropropene		5	ן ט ן
79-00-5	1,1,2-Trichloroethane	İ	5	ן טן
127-18-4	Tetrachloroethene	j	5	U
124-48-1	Dibromochloromethane	1	5	ט
108-90-7	Chlorobenzene		5	ָן ט ן
100-41-4	Ethylbenzene	Ì	5	ט
l		_		

EPA SAMPLE NO.

1		
1	DB8B-	
Į		

Lab Name: Lancaster Laboratories Contract:____

Matrix: (soil/water) WATER Lab Sample ID: 4791560

Sample wt/vol: 5.00 (g/mL) mL

Lab File ID: HP09915.i/06jun13a.b/lu13s20.d

Level: (low/med) LOW

Date Received: 06/10/06

Moisture: not dec. ____ Date Analyzed: 06/13/06

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) ug/L

Q

106-46-71,4-Dichlorobenzene 5 1	1330-20-7Xylene (Total) 75-25-2Bromoform 79-34-51,1,2,2-Tetrachloroethane 541-73-11,3-Dichlorobenzene	5 5 5	บ บ บ
	106-46-71,4-Dichlorobenzene 95-50-11,2-Dichlorobenzene	5	U I tr

Sublist: CHEVENV

Quantitation Report GC/MS Volatiles 4791560

File: /chem/HP09918.i/06jun13a.b/lu13s20.d Sample: DB8B-;4791560;1;0;;;;;lu13b03

Injected At:13-JUN-2006 19:44

Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m Blank Reference: 1u13b03.d Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Batch: L061642AA Matrix: WATER

Analyst:ADS01731 Level: Low Sample Wt./Vol.: 5.0000 ml (Vo) Instrument ID: HP09915.1

Volume Purged: 5.0 ml (Vt) Standard Reference: lul3c01.d Prep Factor:1.00

Bottle Code:038A Units: ug/L

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Area)	Conc(ext)	QC Flag
35	========	====	====	======================================		======
70) Fluorobenzene	7.559(0.000)	1859	96	984107(-6)	50.00	
101) Chlorobenzene-d5	11.063(-0.003)	2949	117	750326(-5)	50.00	
132) 1,4-Dichlorobenzene-d4	12.941(0.000)	3533	152	403617(-11)	50.00	

= RETENTION TIME OUT OF RANGE

* = INTERNAL STANDARD OUT OF RANGE

NC = NOT ABLE TO CALCULATE

	1.5.				Conc.	QC	
Surrogate Standards	Ref.	RT (+/-RRT)	QIon	Area	(on column)	%Rec. flags	QC Limits
*****	====	=======================================				=======================================	
51) Dibromofluoromethane	(1)	6.633(0.000)	113	251301	46.357	93%	80 - 116
62: 1,2-Dichloroethane-d4	(1)	7.092(0.000)	102	55905	45.097	90%	77 - 113
39) Toluene-d8	(2)	9.600(0.000)	98	974185	44.771	90%	80 - 113
113) 4-Bromofluorobenzene	(2)	12.057(0.000)	95	382290	39.465	79%	79 - 113

D = DILUTED OUT

NC = NOT ABLE TO CALCULATE

		1.S.					Conc.	Conc.	Blank	F	Reporting	3
Ta	rget Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
====					=====				******			
2)	Chloromethane	(1)					ND	ND			1.00	5.00
3)	Vinyl Chloride	(1)					ND	ND			1.00	5.00
6)	Bromomethane	(1)					ND	ND			1.00	5.00
7)	Chloroethane	(1)					ND	ND			1.00	5.00
8)	Trichlorofluoromethane	(1)					ND	ND			2.00	5.00
16)	1,1-Dichloroethene	(1)					ND	ND			0.80	5.00
26)	Methylene Chloride	(1)					ND	ND			2.00	5.00
30)	trans-1,2-Dichloroethene	(1)					ND	ND			0.80	5.00
31)	Methyl Tertiary Butyl Ether	(1)					ND	ND			0.50	5.00
40)	1,2-Dichloroethene (total)	(1)					ND	ND			0.80	5.00
36)	1,1-Dichloroethane	(1)					ND	ND			1.00	5.00
42)	cis-1,2-Dichloroethene	(1)					ND	ND			0.80	5.00
49)	Chloroform	(1)					ND	ND			0.90	5.00
54)	1,1,1-Trichloroethane	(1)					ND	ND			0.80	5.00
59)	Carbon Tetrachloride	(1)					ND	ND			1.00	5.00
63)	Benzene	(1)					ND	ND			0.50	5.00
64)	1,2-Dichloroethane	(1)					ND	ND			1.00	5.00
73)	Trichloroethene	(1)	8.044	(0.000)	95	65257	12.641	. 12.64			1.00	5.00
77)	1,2-Dichloropropane	(1)					ND	ND			1.00	5.00
82)	Bromodichloromethane	(1)					ND	ND			1.00	5.00
84)	2-Chloroethyl Vinyl Ether	(1)					ND	ND			2.00	10.00
85)	cis-1,3-Dichloropropene	(1)					ND	ND			1.00	5.00
90)	Toluene	(2)					ND	ND			0.70	5.00
91)	trans-1,3-Dichloropropene	(2)					ND	ND			1.00	5.00

E = CONC. OUT OF CAL. RANGE

= RELATIVE RETENTION TIME OUT OF RANGE

Page 1 of 2

DB8B-

Quantitation Report GC/MS Volatiles 4791560

File: /chem/HP09915.i/06jun13a.b/lu13s20.d

Sample: DB8B-;4791560;1;0;;;;;lu13b03

Injected At:13-JUN-2006 19:44

Calibration Time: 06-JUN-2006 17:02

Target Method: 18260W.m Blank Reference: lul3b03.d

Sublist: CHEVENV

Comments:

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Batch:L061642AA

Analyst:ADS01731

Instrument ID: HP09915.1

Standard Reference: lul3c01.d

Prep Factor:1.00

Units: ug/L

Matrix: WATER

Level: Low

Sample Wt./Vol.: 5.0000 ml (Vo)

Volume Purged: 5.0 ml (Vt)

Bottle Code:038A

	1.5.					Conc.	Conc.	Blank	1	Reporting	ŧ
Target Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOO
=======================================	======	=====					***=3888228882		======		=====
93) 1,1,2-Trichloroethane	(2)					ND	ND			0.80	5.
94; Tetrachloroethene	(2)					ND	ND			0.80	5.
98) Dibromochloromethane	(2)					ND	ND			1.00	۶.
02) Chlorobenzene	(2)					ND	ND			0.80	S.
04) Ethylbenzene	(2)					ND	ND			0.80	5.
05) m+p-Xylene	(2)					NĎ	ND			0.80	5.
06) Xylene (Total)	(2)					ND	ND			0.80	5.
07) o∽Xylene	(2)		•			ND	ND			0.80	5.
09) Bromoform	(2)					ND	ND			1.00	5.
16) 1,1,2,2-Tetrachloroethane	(3)					ИD	ND			1.00	5.
31) 1,3-Dichlorobenzene	(3)					ND	ND			1.00	5.
33) 1,4-Dichlorobenzene	(3)					ND	ND			1.00	5.
39: 1,2-Dichlorobenzene	(3)					ND	ND			1.00	5.

Analyst:	Unh	Date: 6/13/W
MMW doilb		Date OHO

Page 2 of 2

Y (x10^6) 2,2-2.0 1.8 1.8 1.6 1.2 1.2 0.6 0.6 Client ID: DB8B-Data File: /chem/HP09915.i/06jun13a.b/lu13s20.d Column phase: DB-624 Sample Info: DB8B-;4791560;1;0;;;;;1u13b03 Date : 13-JUN-2006 19:44 Purge Volume: 5.0 σı· σ -Dibromofluoromethane+ /chem/HP09915.1/06jun13a.b/1u13s20.d -1,2-Dichloroethane-d4+ -Fluorobenzene+ ω Column diameter: 0.25 Operator: ADS01731 Instrument: HP09915.i ৩ -Toluene-d8+ 5 Ë -Chlorobenzene-d5 13 -4-Bromofluorobenzene+ Umm 6/13/w - -1,4-Dichlorobenzene-d4 13 4 6695 Page 1 녆.

냚.

Quant Report

Target Revision 3.5

Data File: /chem/HP09915.i/06jun13a.b/lu13s20.d Instrument ID: HP09915.i Injection date and time: 13-JUN-2006 19:44 Analyst ID: ADS01731

Method used: /chem/HP09915.i/06jun13a.b/L8260W.m Sublist used: CHEVENV

Calibration date and time: 06-JUN-2006 17:02


Date, time and analyst ID of latest file update: 13-Jun-2006 20:37 lcm01518

Sample Name: DB8B- Lab Sample ID: 4791560

	I.S.				Conc.
Compounds	Ref.	RT	QIon	Area	(on column)
	=====	=====	=====	========	=======================================
70)*Fluorobenzene	(1)	7.559	96	984107	50.000
73) Trichloroethene	(1)	8.044	95	65257	12.641
101) *Chlorobenzene-d5	(2)	11.063	117	750326	50.000
132) *1,4-Dichlorobenzene-d4	(3)	12.941	152	403617	50.000
51) \$Dibromofluoromethane	(1)	6.633	113	251301	46.357
62)\$1,2-Dichloroethane-d4	(1)	7.092	102	55905	45.097
89) \$Toluene-d8	(2)	9.600	98	974185	44.771
113) \$4-Bromofluorobenzene	(2)	12.057	95	382280	39.465

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

EPA SAMPLE NO. DB108

ah	Name ·	Lancaster	Laboratories
Jau	TV CHILLES I	nancaster	Taboracorico

Contract:____

Matrix: (soil/water) WATER Lab Sample ID: 4791561

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09915.i/06jun13b.b/lu13s37.d

Level: (low/med) LOW

Date Received: 06/10/06

Moisture: not dec. ____ Date Analyzed: 06/14/06

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCEMPRATION INITES.

			CONCER.	TKATTOM	OMITID.	
CAS	NO.	COMPOUND	(ug/L or	ug/Kg)	ug/L	Q

CAS NO.	COMPOUND (dg/L OI dg/R	9, 49, 5	×
74-87-3	Chloromethane	5	U
75-01-4	Vinyl Chloride	5	U
74-83-9	Bromomethane	5	ប
75-00-3	Chloroethane	5	ប
75-69-4	Trichlorofluoromethane	5	ן טן
75-35-4	1,1-Dichloroethene	5	U
75-09-2	Methylene Chloride	5	ן ט ן
1634-04-4	Methyl Tertiary Butyl Ether	5	ן ט
75-34-3	1,1-Dichloroethane	5	U
540-59-0	1,2-Dichloroethene (total)	5	ן ט ן
67-66-3	Chloroform	5	U
71-55-6	1,1,1-Trichloroethane	5	U
56-23-5	Carbon Tetrachloride	5	U
71-43-2	Benzene	5	ן ט
107-06-2	1,2-Dichloroethane	5	U
79-01-6	Trichloroethene	14	1
78-87-5	1,2-Dichloropropane	5	U
75-27-4	Bromodichloromethane	5	ן ט ן
110-75-8	2-Chloroethyl Vinyl Ether	10	U
10061-01-5	cis-1,3-Dichloropropene	5	ע
108-88-3	Toluene	5	U
10061-02-6	trans-1,3-Dichloropropene	5	ן ט
79-00-5	1,1,2-Trichloroethane	5	ן ט ן
127-18-4	Tetrachloroethene	5	ן ט ן
124-48-1	Dibromochloromethane	5	ן ט ן
108-90-7	Chlorobenzene	5	ן ט ן
100-41-4	Ethylbenzene	5	ן ען
	•		_ii
	· · · · · · · · · · · · · · · · · · ·	· · 	- · - - · · · · · · · · · · · · · · · ·

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 4791561

Sample wt/vol: 5.00 (g/mL) mL

Lab File ID: HP09915.i/06jun13b.b/lu13s37.d

Level: (low/med) LOW

Date Received: 06/10/06

Moisture: not dec. ____ Date Analyzed: 06/14/06

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/	/Kg) ug/L		Q	
1330-20-7-	Xylene (Tota	11)		5	บ	_
75-25-2	Bromoform			5	บ	
79-34-5	1,1,2,2-Tetr	achloroethane		5	บ	
541-73-1	1,3-Dichloro	benzene	Ì	5	บ	
106-46-7	1,4-Dichloro	benzene	1	5	บ	
95-50-1	1,2-Dichlord	benzene	1	5	ប	
		<u></u>				

DB108

Lancaster Laboratories Quantitation Report GC/MS Volatiles 4791561

File: /chem/HP09915.i/06junl3b.b/lul3s37.d

Sample: DB108;4791561;1;0;;; Injected At:14-JUN-2006 01:21

Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m Blank Reference: lul3b05.d Sublist: CHEVENV

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Batch: L061642AB Matrix: WATER Analyst:LCM01518

Instrument ID: HP09915.1

Standard Reference: lul3c02.d

Prep Factor:1.00

Units: ug/L

Level: Low

Sample Wt./Vol.: 5.0000 ml (Vo)

Volume Purged: 5.0 ml (Vt)

Bottle Code:038A

						
Internal Standards	RT(+/-RT)	Scan	QIon	Area(+/- %Area)	Conc(ext)	QC Flag
	*****	====	====		=======	======
70) Fluorobenzene	7.562(0.000)	1860	96	908036(-15)	50.00	
101) Chlorobenzene-d5	11.063(0.000)	2949	117	693644(-15)	50.00	
132) 1,4-Dichlorobenzene-d4	12.941(0.000)	3533	152	374354(-21)	50.00	

= RETENTION TIME OUT OF RANGE

* = INTERNAL STANDARD OUT OF RANGE NC = NOT ABLE TO CALCULATE

		1.5.					Conc.		QC	
Su	rrogate Standards	Ref.	RT (4	-/-RRT)	QIon	Area	(on column)	%Rec.	flags	QC Limits
	=======================================	=====	**=====		****	=======================================	===========	=======	======	=======================================
51)	Dibromofluoromethane	(1)	6.633(0.000)	113	234357	46.853	94%		80 - 116
52)	1,2-Dichloroethane-d4	(1)	7.102(0.000)	102	51944	45.412	91%		77 - 113
891	Toluene-d8	(2)	9.600(0.000)	98	899062	44.695	89%		80 - 113
113)	4-Bromofluorobenzene	(2)	12.060(0.000)	95	354459	39.583	79%		78 - 113

= RELATIVE RETENTION TIME OUT OF RANGE * = PERCENT REC.OUT OF RANGE

D = DILUTED OUT

NC = NOT ABLE TO CALCULATE

		I.S.					Conc.	Conc.	Blank		Reporting	9
Ta	rget Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
	=======================================	======					=======================================			======		****
2)	Chloromethane	(1)					ND	ND			1.00	5.00
3 }	Vinyl Chloride	(1)					ND	ND			1.00	5.00
6)	Bromomethane	(1)					ND	ND			1.00	5.00
7)	Chloroethane	(1)					ND	ND			1.00	5.00
8)	Trichlorofluoromethane	(1)					ND	ИD			2.00	5.00
16)	1,1-Dichloroethene	(1)					ND	ND			0.80	5.00
26)	Methylene Chloride	(1)					ND	ИD			2.00	5.00
30)	trans-1,2-Dichloroethene	(1)					ND	ND			0.80	5.00
31)	Methyl Tertiary Butyl Ether	(1)					ND	ND			0.50	5.00
40)	1,2-Dichloroethene (total)	(1)					ND	ND			0.80	5.00
36)	1,1-Dichloroethane	(1)					ND	ND			1.00	5.00
42)	cis-1,2-Dichloroethene	(1)					ND	ND			0.80	5.00
49)	Chloroform	(1)					DИ	ND			0.80	5.00
54)	1,1,1-Trichloroethane	(1)					ND	ND			0.80	5.00
59)	Carbon Tetrachloride	(1)					ND	ND			1.00	5.00
63)	Benzene	(1)					ND	ND			0.50	5.00
64)	1,2-Dichloroethane	(1)					ND	ND			1.00	5.00
73)	Trichloroethene	(1)	8.04	7(0.000)	95	64319	13.503	13.50			1.00	5.00
77)	1,2-Dichloropropane	(1)					ND	ND			1.00	5.00
82)	Bromodichloromethane	(1)					ND	ND			1.00	5.00
84)	2-Chloroethyl Vinyl Ether	(1)					ND	ND			2.00	10.00
85)	cis-1,3-Dichloropropene	(1)					ND	ND			1.00	5.00
90)	Toluene	(2)					ND	ND			0.70	5.00
91)	trans-1,3-Dichloropropene	(2)					ИД	ИО			1.00	5.00

E = CONC. OUT OF CAL. RANGE

= RELATIVE RETENTION TIME OUT OF RANGE

Page 1 of 2

DB108

Lancaster Laboratories Quantitation Report GC/MS Volatiles 4791561

File: /chem/HP09915.i/06jun13b.b/lu13s37.d

Sample: DB108;4791561;1;0;;;; Injected At:14-JUN-2006 01:21

Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m Blank Reference: lul3b05.d

Sublist: CHEVENV

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Batch:L061642AB

Analyst:LCM01518

Instrument ID: HP09915.1

Standard Reference: lu13c02.d

Prep Factor:1.00

Units: ug/L

Matrix: WATER

Level: Low

Sample Wt./Vol.: 5.0000 ml (Vo)

Volume Purged: 5.0 ml (Vt)

Bottle Code: 038A

·	I.S.					Conc.	Conc.	Blank		Reporting	1
Target Compounds	Ref.	RT	(+/-RRT)	Qlon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	POÖ
*======================================	=====		===###=##		=======	=3885555588	=========	======	======	======	
93) 1,1,2-Trichloroethane	(2)					ИD	ND			0.80	5.0
94) Tetrachloroethene	(2)					ND	ND			0.80	5.0
98) Dibromochloromethane	(2)					ND	ND			1.00	5.0
102) Chlorobenzene	(2)					ND	ND			0.80	5.0
104) Ethylbenzene	(2)					ИD	ND			0.80	5.0
105) m+p-Xylene	(2)					ND	ND			0.80	5.0
106) Xylene (Total)	(2)					ND	ND			0.80	5.0
107) o-Xylene	(2)					ND	ND			0.80	5.0
109) Bromoform	(2)					ND	ND			1.00	5.0
116) 1,1,2,2-Tetrachloroethane	(3)					ND	ND			1.00	5.0
131) 1,3-Dichlorobenzene	(3)					ND	ND			1.00	5.0
(33) 1,4-Dichlorobenzene	.(3)					ND	ND			1.00	5.0
	(3)					ИД	ND			1.00	5.0
139) 1,2-Dichlorobenzene	(3)					ND	DИ			1.00	

Comments:	
Analyst: AMN71	Dace: 6/14/ae
Auditol: Whn	Date: 0/14/06

Page 2 of 2

Client ID: DB108

Instrument: HP09915.i

Page 1

Date : 14-JUN-2006 01:21

Data File: /chem/HP09915.i/06jun13b.b/lu13s37.d

Sample Info: DB108;4791561;1;0;;;;

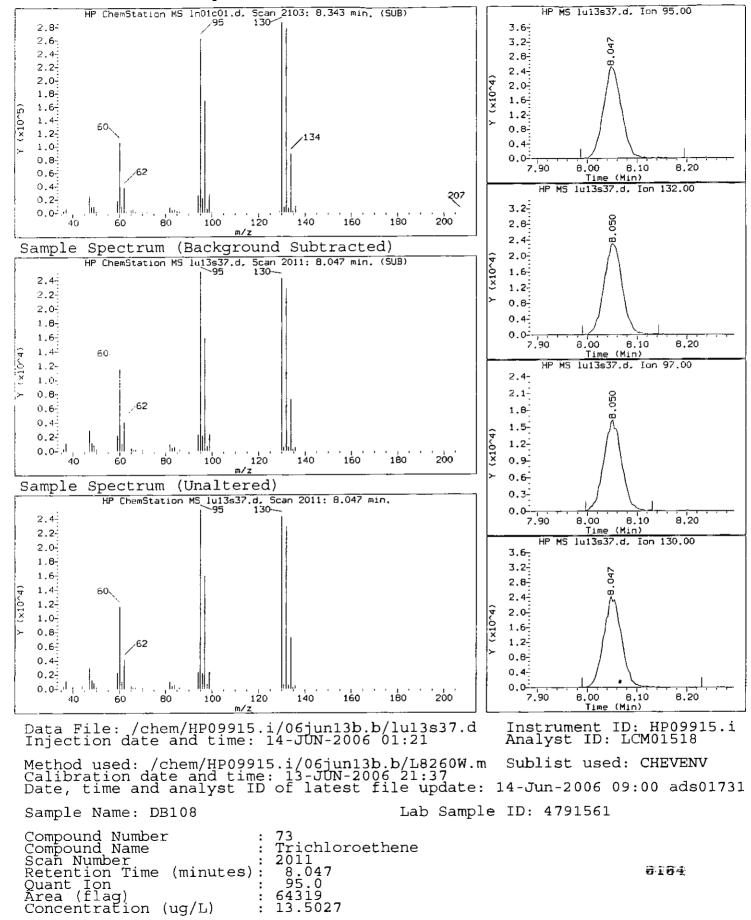
Quant Report

Target Revision 3.5

Data File: /chem/HP09915.i/06jun13b.b/lu13s37.d Instrument ID: HP09915.i Injection date and time: 14-JUN-2006 01:21 Analyst ID: LCM01518

Method used: /chem/HP09915.i/06jun13b.b/L8260W.m Sublist used: CHEVENV

Calibration date and time: 06-JUN-2006 17:02


Date, time and analyst ID of latest file update: 14-Jun-2006 09:00 ads01731

Sample Name: DB108 Lab Sample ID: 4791561

	I.S.				Conc.
Compounds	Ref.	RT	QIon	Area	(on column)
#=====================================	=====	====	======	========	==========
70)*Fluorobenzene	(1)	7.562	96	908036	50.000
73) Trichloroethene	(1)	8.047	95	64319	13.503
101) *Chlorobenzene-d5	(2)	11.063	117	693644	50.000
132) *1,4-Dichlorobenzene-d4	(3)	12.941	152	374354	50.000
51) SDibromofluoromethane	(1)	6.633	113	234357	46.853
62)\$1,2-Dichloroethane-d4	(1)	7.102	102	51944	45.412
89) \$Toluene-d8	(2)	9.600	98	899062	44.695
113)\$4-Bromofluorobenzene	(2)	12.060	95	354459	39.583

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

EPA SAMPLE NO.

DB17-

Lab Name: Lancaster Laboratories Contract:_____

Matrix: (soil/water) WATER Lab Sample ID: 4791562

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09915.i/06jun13b.b/lu13s38.d

Level: (low/med) LOW

Date Received: 06/10/06

Moisture: not dec. ____ Date Analyzed: 06/14/06

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L

CAS NO.	COMPOUND (ug/L or ug/l	Kg) ug/L		Q
74-87-3	Chloromethane		5	l ū
75-01-4	Vinyl Chloride	1	5	υ
74-83-9	Bromomethane	İ	5	υ
75-00-3	Chloroethane		5	i U
75-69-4	Trichlorofluoromethane		5	ט
75-35-4	1,1-Dichloroethene	ĺ	5	υ
75-09-2	Methylene Chloride	į	5	Üυ
1634-04-4	Methyl Tertiary Butyl Ether	Ì	5	iυ
75-34-3	1,1-Dichloroethane	İ	5	υ
540-59-0	1,2-Dichloroethene (total)		5	Üΰ
67-66-3	Chloroform	Ì	5	υ
71- 5 5-6	l,1,1-Trichloroethane	İ	5	U
56-23-5	Carbon Tetrachloride	İ	5	U
	Benzene	į	5	ĺυ
107-06-2	1,2-Dichloroethane	j	5	ĺυ
79-01-6	Trichloroethene	j	5	ָוֹ U
78-87-5	1,2-Dichloropropane	i	5	ט
75-27-4	Bromodichloromethane	i	5	U
110-75-8	2-Chloroethyl Vinyl Ether	į	10	l U
10061-01-5	cis-1,3-Dichloropropene	ĺ	5	U
108-88-3	Toluene	İ	5	U
10061-02-6	trans-1,3-Dichloropropene	ĺ	5	, <u> </u>
79-00-5	1,1,2-Trichloroethane	j	5	י ו ט
127-18-4	Tetrachloroethene		5	lυ
124-48-1	~Dibromochloromethane		5	lυ
108~90-7	Chlorobenzene		5	U
100~41-4	Ethylbenzene		5	บ บ
•	- 		ا د	U

EPA SAMPLE NO.

DB17-

Lab Name: Lancaster Laboratories Contract:____

Lab Code: LANCAS Case No.:____ SAS No.:___ SDG No.:____

Matrix: (soil/water) WATER

Lab Sample ID: 4791562

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09915.i/06junl3b.b/lu13s38.d

Level: (low/med) LOW

Date Received: 06/10/06

Moisture: not dec. ____ Date Analyzed: 06/14/06

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) ug/L

			~
1330-20-7Xylene (Total)			1 11
75-25-2Bromoform	İ	5	ט
79-34-51,1,2,2-Tetrachloroethane	j	5	ָ ט
541-73-11,3-Dichlorobenzene		5	U
106-46-71,4-Dichlorobenzene 95-50-11,2-Dichlorobenzene		5	U
33 30-11,2-Dichlorobenzene	İ	5	ט
	_		l

Quantitation Report GC/MS Volatiles 4791562

File: /chem/HP09915.i/06jun13b.b/lu13s38.d

Sample: DB17-;4791562;1;0;;; Injected At:14-JUN-2006 01:43

Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m Blank Reference: lul3b05.d

Sublist: CHEVENV

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Batch:L061642AB

Analyst:LCM01518

Instrument ID: HP09915.i

Standard Reference: lul3c02.d

Prep Factor:1.00

Units: ug/L

Matrix: WATER

Level: Low

Sample Wt./Vol.: 5.0000 ml (Vo)

Volume Purged: 5.0 ml (Vt)

Bottle Code: 038A

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Area)	Conc(ext)	QC Flag
AR====================================	========	====	====	=======================================	=======	======
70) Fluorobenzene	7.565(-0.003)	1861	96	896131(-16)	50.00	
101) Chlorobenzene-d5	11.063(0.000)	2949	117	679404(-17)	50.00	
132) 1,4-Dichlorobenzene-d4	12.941(0.000)	3533	152	364640(-23)	50.00	

= RETENTION TIME OUT OF RANGE

* = INTERNAL STANDARD OUT OF RANGE

NC = NOT ABLE TO CALCULATE

		I.S.				Conc.		QC	
Su	rrogate Standards	Ref.	RT (+/-RRT)	QIon	Area	(on column)	%Rec.	flags	QC Limits
====		****		22222		=======================================		======	==========
51;	Dibromofluoromethane	(1)	6.639(0.000)	113	229167	46.424	93%		80 - 116
6.2	1,2-Dichloroethane-d4	(1)	7.102(0.000)	102	50977	45.159	90%		77 - 113
39	Toluene d8	(2)	9.600(0.000)	98	885714	44.955	90%		80 - 113
113	4-Bromofluorobenzene	(2)	12.057(0.000)	95	345814	39.427	79%		78 - 113

= RELATIVE RETENTION TIME OUT OF RANGE

* = PERCENT REC.OUT OF RANGE

D = DILUTED OUT

NC = NOT ABLE TO CALCULATE

_	ec Compounds	Ref.	RT								Reporting	
	-		R I	(+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
		======	* = = = = = :			*****			======	======================================		*****
2) Cl	hloromethane	(1)					ND	ND			1.00	5.00
3) V	inyl Chloride	(1)					ND	ND			1.00	5.00
6 : B1	romomethane	(1)					ND	ND			1.00	5.00
7) Ch	hloroethane	(1)					ND	ND			1.00	5.00
8 Tı	richlorofluoromethane	(1)					ND	ND			2.00	5.00
16: 1,	,1 Dichloroetheme	(1)					ND	ND			0.80	5.00
26 / Me	ethylene Chloride	(1)					ND	ND			2.00	5.00
30) tr	rans-1,2-Dichloroethene	(1)					ND	ND			0.80	5.00
31) Ms	ethyl Tertiary Butyl Ether	(1)					ND	ND			0.50	5.00
40) 1,	,2-Dichloroethene (total)	(1)					ОИ	ND			0.80	5.00
36) 1,	,1-Dichloroethane	(1)					ND	ND			1.00	5.00
42) ci	is-1,2-Dichloroethene	(1)					ND	ND			0.80	5.00
49) Ch	hloroform	(1)					ND	ND			0.80	5.00
54) 1,	,1,1-Trichloroethane	(1)					ND	ND			0.80	5.00
59) Ca	arbon Tetrachloride	(1)					ИD	ИD			1.00	5.00
63) B∈	enzene	(1)					ИD	ND			0.50	5.00
64) 1,	,2-Dichloroethane	(1)					ND	ND			1.00	5.00
73) Tı	richloroethene	(1)					ND	ВD			1.00	5.00
77) 1,	,2-Dichloropropane	(1)					ND	DИ			1.00	5.00
82) Br	romodichloromethane	(1)					ND	ND			1.00	5.00
84) 2-	-Chloroethyl Vinyl Ether	(1)					ND	ND			2.00	10.00
85) ci	is-1,3-Dichloropropene	(1)					ND	ND			1.00	5.00
90) To	oluene	(2)					ND	ND			0.70	5.00
91) tr	rans-1,3-Dichloropropene	(2)					ND	ND			1.00	5.00

E = CONC. OUT OF CAL. RANGE

= RELATIVE RETENTION TIME OUT OF RANGE

Page 1 of 2

DB17-

Quantitation Report GC/MS Volatiles 4791562Lancaster Laboratories

File: /chem/HP09915.i/06jun13b.b/lu13s38.d

Sample: DB17-;4791562;1;0;;;; Injected At:14-JUN-2006 01:43

Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m Blank Reference: lu13b05.d

Sublist: CHEVENV

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Batch: L061642AB

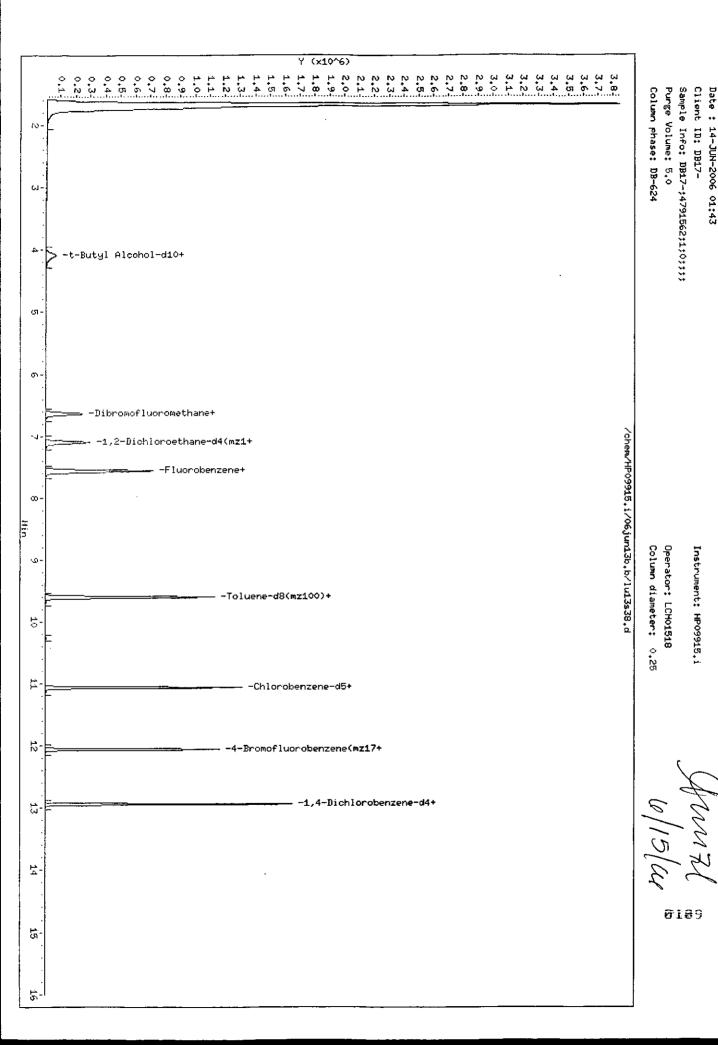
Analysc:LCM01518

Matrix: WATER Level: Low

Instrument ID: HP09915.i

Standard Reference: lul3c02.d

Sample Wt./Vol.: 5.0000 ml (Vo) Volume Purged: 5.0 ml (Vt)


Prep Factor:1.00 Units: ug/L

Bottle Code: 038A

	I.S.					Conc.	Conc.	Blank		Reporting	J
Target Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
=======================================	======	=====	========	=====		==========	#=====================================	=======		======	======
93) 1,1,2-Trichloroethane	(2)					ND	ND			0.80	5.0
94) Tetrachloroethene	(2)					ND	ND			0.80	5.0
93) Dibromochloromethane	(2)					ND	ND			1.00	5.0
02: Chlorobenzene	(2)					ND	ND			0.80	5.0
04) Ethylbenzene	(2)					ND	ИÐ			0.80	5.0
05. m+p-Xylen e	(2)					ND	ND			0.80	5.0
06) Xylene (Total)	(2)					ND	ND			0.80	5.0
07) o-Xylene	(2)					ND	ND			0.80	5.0
09) Bromoform	(2)					ND	ND			1.00	5.0
16) 1,1,2,2-Tetrachloroethane	(3)					ND	ND			1.00	
31, 1,3-Dichlorobenzene	(3)					ND	ND				5.00
33 1,4 Dichlorobenzene	(3)					ND	ND			1.00	5.00
39) 1,2-Dichlorobenzene	(3)					ND	ND DN			1.00	5. 0 0
	,					MD	שא			1.00	5.00
= CONC. OUT OF CAL. RANGE	# _ =	DI NT	IVE RETENTI	ON MINE		wan					

Comments:	
Analyst: Jun71	Date: 6/15/40
Auditor	Date: Ollow

Page 2 of 2

Data File: /chem/HP09915.i/06jun13b.b/1u13s38.d

Quant Report

Target Revision 3.5

Data File: /chem/HP09915.i/06jun13b.b/lu13s38.d Instrument ID: HP09915.i Injection date and time: 14-JUN-2006 01:43 Analyst ID: LCM01518

Method used: /chem/HP09915.i/06jun13b.b/L8260W.m Sublist used: CHEVENV

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 15-Jun-2006 08:56 ads01731

Sample Name: DB17- Lab Sample ID: 4791562

Compounds	I.S. Ref. =====	RT	QIon	Area	Conc. (on column)
70)*Fluorobenzene	(1)	7.565	96	896131	50.000
101) *Chlorobenzene-d5	(2)	11.063	117	679404	50.000
132) *1,4-Dichlorobenzene-d4	(3)	12.941	152	364640	50.000
51) \$Dibromofluoromethane	(1)	6.639	113	229167	46.424
62)\$1,2-Dichloroethane-d4	(1)	7.102	102	50977	45.159
89) \$Toluene-d8	(2)	9.600	98	885714	44.955
113) \$4-Bromofluorobenzene	(2)	12.057	95	345814	39.427

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

OS2 - -

EPA SAMPLE NO.

Táb	Mamo.	Langacter	Laboratories
цар.	Name	Hancaster	Paporarories

Contract:_____

Matrix: (soil/water) WATER Lab Sample ID: 4791563

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09915.i/06jun13b.b/lu13s30.d

Level: (low/med) LOW

Date Received: 06/10/06

Moisture: not dec. ____ Date Analyzed: 06/13/06

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/	L or ug/Kg) ug/L	ı	Q
74-87-3	Chloromethane		5	ט
75-01-4	Vinyl Chloride		5	ן ט
74-83-9	Bromomethane		5	ט
75-00-3	Chloroethane	1	5	ן ט
75-69-4	Trichlorofluorometh	ane	5	ט
75-35-4	1,1-Dichloroethene		5	ן ט
75-09-2	Methylene Chloride		5	U
1634-04-4	Methyl Tertiary But	yl Ether	5	ן ט
75-34-3	1,1-Dichloroethane	İ	5	U
540-59-0	1,2-Dichloroethene	(total)	5	U
	Chloroform	j	5	U
71-55-6	1,1,1-Trichloroetha	ne	5	U
56-23-5	Carbon Tetrachlorid	e İ	5	U
71-43-2	Benzene	j	5	บ
107-06-2	1,2-Dichloroethane	İ	5	U
79-01-6	Trichloroethene	ĺ	5	บ
78-87-5	1,2-Dichloropropane	į	5	U
75-27-4	Bromodichloromethan	.e	5	U
	2-Chloroethyl Vinyl		10	U
10061-01-5	cis-1,3-Dichloropro	pene	5	บ
108-88-3		ĺ	5	U
10061-02-6	trans-1,3-Dichlorop	ropene	5	ָ ט
79-00-5	1,1,2-Trichloroetha	ne	5	U
	Tetrachloroethene	ĺ	5	ָ ט
	Dibromochloromethan	e İ	5	<u>ี</u> บ
	Chlorobenzene	j	5	υ

GILL

j		
į	00	, ,

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:_______

Lab Code: LANCAS Case No.:____ SAS No.:___ SDG No.:____

Matrix: (soil/water) WATER Lab Sample ID: 4791563

Sample wt/vol: 5.00 (g/mL) mL

Lab File ID: HP09915.i/06jun13b.b/lu13s30.d

Level: (low/med) LOW

Date Received: 06/10/06

Moisture: not dec. ____ Date Analyzed: 06/13/06

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L Q

1330-20-7Xylene (Total)] 5	U
75-25-2Bromoform	5	ן ט
79-34-51,1,2,2-Tetrachloroethane	5	U
541-73-11,3-Dichlorobenzene	5	U
106-46-71,4-Dichlorobenzene	5	U
95-50-11,2-Dichlorobenzene	j 5	U

Quantitation Report GC/MS Volatiles 4791563

File: /chem/HP09915.i/06jun13b.b/lu13s30.d

Sample: OS2--;4791563:1;0;;;; Injected At:13-JUN-2006 22:43

Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m Blank Reference: lul3b05.d

Sublist: CHEVENV

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Batch:L061642AB

Analyst:LCM01518

Level: Low

Matrix: WATER

Instrument ID: HP09915.i

Standard Reference: lul3c02.d

Sample Wt./Vol.: 5.0000 ml (Vo) Volume Purged: 5.0 ml (Vt)

Prep Factor:1.00

Units: ug/L

Bottle Code:038A

Internal Standards	RT(+/-RT)	Scan	QIon	Area(+/- %Area)	Conc(ext)	· QC Flag
	=======		====	=============		*****
70) Fluorobenzene	7.562(0.000)	1860	96	1003004(-6)	50.00	
101) Chlorobenzene-dS	11.063(0.000)	2949	117	757740(-7)	50.00	
132) 1,4-Dichlorobenzene-d4	12.941(0.000)	3533	152	408538(-14)	50.00	

= RETENTION TIME OUT OF RANGE

* = INTERNAL STANDARD OUT OF RANGE

NC = NOT ABLE TO CALCULATE

	I.S.			Conc.	QC	
Surrogate Standards	Ref. RT (+/-RR	T) QIon	Area	(on column)	%Rec. flags	QC Limits
TB*F====#84x==#BBBBBBB	=======================================	=== =====			##====## ##=####	
S1; Dibromofluoromethane	(1) 6.639(0.00	0) 113	255035	46.159	92%	80 - 116
62) 1,2-Dichloroethane-d4	(1) 7.102(0.00	0) 102	56597	44.795	90%	77 - 113
89) Toluene-d8	(2) 9.604 (0.00	0) 98	985980	44.870	90%	80 - 113
113) 4-Bromofluorobenzene	(2) 12.057(0.00	0) 95	389350	39.802	80%	78 - 113

= RELATIVE RETENTION TIME OUT OF RANGE * = PERCENT REC.OUT OF RANGE D = DILUTED OUT

NC = NOT ABLE TO CALCULATE

		I.S.					Conc.	Conc.	Blank	1	Reporting	9
Ta	rget Compounds	Ref.	RT	(+/-RRT)	Qlon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
====		=====		*****		=======	======================================	*========	=======	*=====	*=====	
2)	Chloromethane	(1)					ND	ND			1.00	5.00
3)	Vinyl Chloride	(1)					ND	ND			1.00	5.00
6)	Bromomethane	(1)					ND	ND			1.00	5.00
71	Chloroethane	(1)					ND	ND			1.00	5.00
8)	Trichlorofluoromethane	(1)					ND	ND			2.00	5.00
16)	1,1-Dichloroethene	(1)					ND	ND			0.80	5.00
26)	Methylene Chloride	(1)					ND	ND			2.00	5.00
30)	trans-1,2-Dichloroethene	(1)					ND	ND			0.80	5.00
31)	Methyl Tertiary Butyl Ether	(1)					ND	ND			0.50	5.00
40)	1,2-Dichloroethene (total)	(1)					ND	ND			0.B0	5.00
36)	1,1-Dichloroethane	(1)					ND	ND			1.00	5.00
42)	cis-1,2-Dichloroethene	(1)					МD	ND			0.80	5.00
49)	Chloroform	(1)					ND	ND			0.80	5.00
54)	1,1,1-Trichloroethane	(1)					ND	ND			0.80	5.00
59)	Carbon Tetrachloride	(1)					ND	ND			1.00	5.00
63)	Benzene	(1)					ND	ND			0.50	5.00
64)	1,2-Dichloroethane	(1)					ND	ND			1.00	5.00
73)	Trichloroethene	(1)					ND	ND			1.00	5.00
77)	1,2-Dichloropropane	(1)					ND	ИD			1.00	5.00
82)	Bromodichloromethane	(1)					ND	ND			1.00	5.00
B4)	2-Chloroethyl Vinyl Ether	(1)					МD	ND			2.00	10.00
85)	cis-1,3-Dichloropropene	(1)					ND	ND			1.00	5.00
90)	Toluene	(2)					ND	ND			0.70	5.00
91)	trans-1,3-Dichloropropene	(2)					ND	ND			1.00	5.00

E = CONC. OUT OF CAL. RANGE

^{# *} RELATIVE RETENTION TIME OUT OF RANGE

OS2--

Lancaster Laboratories Quantitation Report GC/MS Volatiles 4791563

File: /chem/HP09915.i/06jun13b.b/lu13s30.d

Sample: OS2--;4791563;1;0;;;; Injected At: 13-JUN-2006 22:43

Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m Blank Reference: lul3b05.d

Sublist: CHEVENV

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Batch:L061642AB

Matrix: WATER Level: Low

Analyst:LCM01518

Instrument ID: HP09915.1

Sample Wt./Vol.: 5.0000 ml (Vo)

Standard Reference: lul3c02.d

Volume Purged: 5.0 ml (Vt)

Prep Factor:1.00

Units: ug/L

Bottle Code:038A

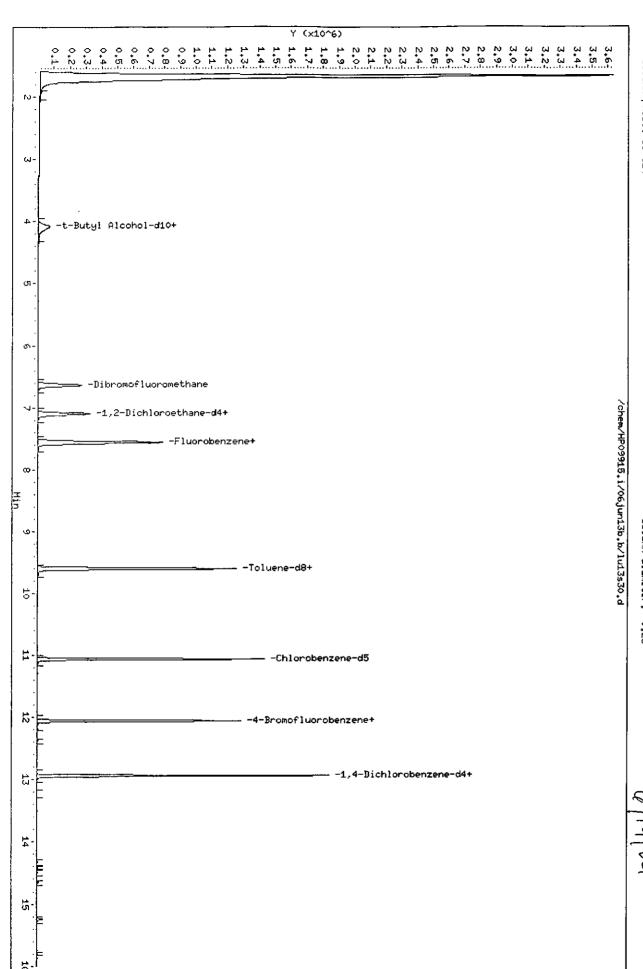
	I.S.					Conc.	Conc.	Blank		Reporting	j
Target Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
	=====		******		=======	=======================================	=======================================	*****	======	****	
93) 1,1,2-Trichloroethane	(2)					ND	ND			0.80	5.0
94; Tetrachloroethene	(2)					ND	ND			0.80	5.0
98) Dibromochloromethane	(2)					ND	ND			1.00	5.0
02; Chlorobenzene	(2)					ND	ND			0.80	5.0
04; Ethylbenzene	(2)					ND	ND			0.80	5.0
05) m+p-Xylene	(2)					ND	ND			0.80	5.0
06) Xylene (Total)	(2)					ND	ND			0.80	5.0
07? o-Xylene	(2)					ND	ND			0.80	5.0
09) Bromoform	(2)					ND	ND			1.00	5.0
16) 1,1,2,2-Tetrachloroethane	(3)					ND	ND			1.00	5.0
31) 1,3-Dichlorobenzene	(3)					ND	ND			1.00	5.0
33) 1,4-Dichlorobenzene	(3)					ND	ND			1.00	5.0
39) 1,2-Dichlorobenzene	(3)					ND	ND			1.00	5.0
⇒ CONC, OUT OF CAL. RANGE	# =		IVE RETENT:	TON TIME		TANCE					

Comments:	
Analyst: AM71	Date: 6/14/Cy
Auditor USh Pr	Date: 01140

Page 2 of 2

Date : 13-JUN-2006 22:43

Client ID: 0S2--


Sample Info: 0S2--;4791563;1;0;;;;

Purge Volume: 5.0 Column phase: DB-624

Instrument: HP09915.i

Operator: LCM01518 Column diameter: 0,25

ANN XX

Quant Report

Target Revision 3.5

Data File: /chem/HP09915.i/06jun13b.b/lu13s30.d Instrument ID: HP09915.i Injection date and time: 13-JUN-2006 22:43 Analyst ID: LCM01518

Method used: /chem/HP09915.i/06jun13b.b/L8260W.m Sublist used: CHEVENV

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 14-Jun-2006 08:50 ads01731

Sample Name: OS2-- Lab Sample ID: 4791563

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
70)*Fluorobenzene	(1)	7.562	96	1003004	50.000
101) *Chlorobenzene-d5	(2)	11.063	117	757740	50.000
132)*1,4-Dichlorobenzene-d4	(3)	12.941	152	408538	50.000
51)\$Dibromofluoromethane	(1)	6.639	113	255035	46.159
62)\$1,2-Dichloroethane-d4	(1)	7.102	102	56597	44.795
89)\$Toluene-d8	(2)	9.604	98	985980	44.870
113)\$4-Bromofluorobenzene	(2)	12.057	95	389350	39.802

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

EPA SAMPLE NO.

TB1RC

Lab Name: Lancaster Laboratories Contract:____

Matrix: (soil/water) WATER Lab Sample ID: 4791567

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09915.i/06jun13b.b/lu13s33.d

Level: (low/med) LOW

Date Received: 06/10/06

Moisture: not dec. ____ Date Analyzed: 06/13/06

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L

	. 3.	J	
74-87-3	Chloromethane	5	U
75-01-4	Vinyl Chloride	5	U
74-83-9	Bromomethane	5	U
75-00-3	Chloroethane	5	U
75-69-4	Trichlorofluoromethane	5	U
75-35-4	1,1-Dichloroethene	5	U
75-09-2	Methylene Chloride	5	U
1634-04-4	Methyl Tertiary Butyl Ether	5	U
75-34-3	1,1-Dichloroethane	5	U
540-59-0	1,2-Dichloroethene (total)	5	บ
67-66-3	Chloroform	5	U
71-55-6	1,1,1-Trichloroethane	5	U
56-23-5	Carbon Tetrachloride	5	U
71-43-2	Benzene	5	U
107-06-2	1,2-Dichloroethane	5	ט
79-01-6	Trichloroethene	5	U
78-87-5	1,2-Dichloropropane	5	U
75-27-4	Bromodichloromethane	5	U
110-75-8	2-Chloroethyl Vinyl Ether	10	์ บ
10061-01-5	cis-1,3-Dichloropropene	5	์ บ
108-88-3	Toluene	5	U
10061-02-6	trans-1,3-Dichloropropene	5	U
79-00-5	1,1,2-Trichloroethane	5	U
127-18-4	Tetrachloroethene	5	U
124-48-1	Dibromochloromethane	5	U
108-90-7	Chlorobenzene	5	ט
100-41-4	Ethylbenzene	5	์ บ
	-	Í	İ

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.: SDG No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 4791567

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09915.i/06jun13b.b/lu13s33.d

Level: (low/med) LOW

Date Received: 06/10/06

Moisture: not dec. ____ Date Analyzed: 06/13/06

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg) ug/I	, L	Q	
1330-20-7-	Xylene (Tota	al) [5	υ	_
75-25-2	Bromoform		5	U	
79-34-5	1,1,2,2-Tet:	rachloroethane	5	U	
541-73-1	1,3-Dichloro	obenzene	5	บ	
106-46-7	1,4-Dichlore	obenzene	5	ן ט	
95-50-1	1,2-Dichlore	obenzene	5	ט	- [
Ì		1			- 1

TB1RC

Quantitation Report GC/MS Volatiles 4791567

File: /chem/HP09915.i/06jun13b.b/lu13s33.d

Sample: TB1RC;4791567;1;0;;; Injected At:13-JUN-2006 23:50

Calibration Time: 06-JUN-2006 17:02

farget Method: L8260W.m Blank Reference: 1u13b05.d

Sublist: CHEVENV

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Batch:L061642AB

Analyst:LCM01518

Instrument ID: HP09915.1

Standard Reference: lul3c02.d

Prep Factor:1.00

Units: ug/L

Matrix: WATER

Level: Low

Sample Wt./Vol.: 5.0000 ml (Vo)

Volume Purged: 5.0 ml (Vt)

Bottle Code:038A

Internal Standards	RT(+/-RT)	Scan	QIon	Area(+/- %Area)	Conc(ext)	QC Flag
;	222***	# # # #	====	======================================	=======	======
70) Fluorobenzene	7.565(-0.003)	1861	96	1009526(-6)	50.00	
101) Chlorobenzene-d5	11.063(0.000)	2949	117	764486(-6)	50.00	
132) 1,4-Dichlorobenzene-d4	12.941(0.000)	3533	152	415581(-12)	50.00	

* RETENTION TIME OUT OF RANGE

* = INTERNAL STANDARD OUT OF RANGE

NC = NOT ABLE TO CALCULATE

	I.S.			Conc.	QC	
Surrogate Standards	Ref. RT (+/-RRT)	QIon	Area	(on column)	%Rec. flags	QC Limits
	==**=***	=====	===========	=============		
51) Dibromofluoromethane	(1) 6.642(0.000)	113	257458	46.297	93%	80 - 116
62) 1,2-Dichloroethane-d4	(1) 7.105(0.000)	102	57682	45.359	91%	77 - 113
89) Toluene-d8	(2) 9.600(0.000)	98	995920	44.923	90%	80 - 113
113) 4-Bromofluorobenzene	(2) 12.057(0.000)	95	393810	39.902	80%	78 - 113

= RELATIVE RETENTION TIME OUT OF RANGE

* * PERCENT REC.OUT OF RANGE

D = DILUTED OUT

NC = NOT ABLE TO CALCULATE

	I.S.					Conc.	Conc.	Blank	1	Reporting	3
Target Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
	======	***			========						E====#
2) Chloromethane	(1)					ND	ND			1.00	5.00
Vinyl Chloride	(1)					ИD	ND			1.00	5.00
6) Bromomethane	(1)					ND	ND			1.00	5.00
7) Chloroethane	(1)					ND	ND			1.00	5.00
8) Trichlorofluoromethane	(1)					ND	ND			2.00	5.00
16) 1,1-Dichloroethene	(1)					ND	ND			0.80	5.00
26) Methylene Chloride	(1)					ND	ND			2.00	5.00
30) trans-1,2-Dichloroethene	(1)					ND	ND			0.80	5.00
31) Methyl Tertiary Butyl Ether	(1)					ND	ND			0.50	5.00
40) 1,2-Dichloroethene (total)	(1)					ND	ND			0.80	5.00
36) 1,1-Dichloroethane	(1)					ND	NTD			1.00	5.00
42) cis-1,2-Dichloroethene	(1)					ND	ND			0.80	5.00
49) Chloroform	(1)					ND	ND			0.80	5.00
54) 1,1,1-Trichloroethane	(1)					ND	ND			0.80	5.00
59) Carbon Tetrachloride	(1)					ND	ND			1.00	5.00
63) Benzene	(1)					ND	ND			0.50	5.00
64) 1,2-Dichloroethane	(1)					ND	ИD			1.00	5.00
73) Trichloroethene	(1)					ND	ND			1.00	5.00
77) 1,2-Dichloropropane	(1)					ND	ND			1.00	5.00
82) Bromodichloromethane	(1)					ND	ND			1.00	5.00
84) 2-Chloroethyl Vinyl Ether	(1)					ND	ND			2.00	10.00
85) cis-1,3-Dichloropropene	(1)					ND	ND			1.00	5.00
90) Toluene	(2)					ND	DИ			0.70	5.00
91) trans-1,3-Dichloropropene	(2)					ND	ND			1.00	5.00

E = CONC. OUT OF CAL. RANGE

= RELATIVE RETENTION TIME OUT OF RANGE

Page 1 of 2

TB1RC

Lancaster Laboratories Quantitation Report GC/MS Volatiles 4791567

File: /chem/HP09915.i/06jun13b.b/lu13s33.d

Gample: TB1RC;4791567;1;0;;;; Injected At:13-JUN-2006 23:50

Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m Blank Reference: lul3b05.d

Sublist: CHEVENV

Sample Concentration Formula: On-Column Amount * (Vt/Vo) Matrix: WATER

Batch: L061642AB

Analyst:LCM01518

Level: Low

Instrument ID: HP09915.1

Standard Reference: lul3c02.d

Sample Wt./Vol.: 5.0000 ml (Vo) Volume Purged: 5.0 ml (Vt)

Prep Factor:1.00

Units: ug/L

Bottle Code: 038A

	I.\$.					Conc.	Conc.	Blank		Reporting	ı
Target Compounds	Ref.	RT	(+/-RRT)	Qion	Area	(on column)	(in sample)	Conc.	Qual.	Limit	TOO
:==######=====########		====		=====	=======		=======================================	======		======	******
93) 1,1,2-Trichloroethane	(2)					ND	ND			0.80	5.00
94) Tetrachloroethene	(2)					ND	ND			0.80	5.00
98) Dibromochloromethane	(2)					ND	מא			1.00	5.00
102) Chlorobenzene	(2)					ND	ND			0.80	5.00
(04) Ethylbenzene	(2)					ND	ND			0.80	5.00
105) m+p-Xylene	(2)					ND	ND			0.80	5.00
106) Xylene (Total)	(2)					ND	ND			0.80	5.00
107) o-Xylene	(2)					ND	ND			0.80	5.00
109) Bromoform	(2)					ND	ND			1.00	5.00
(16) 1,1,2,2-Tetrachloroethane	(3)					ND	ND			1.00	5.00
[31] 1,3-Dichlorobenzene	(3)					ND	ND			1.00	5.00
133) 1,4-Dichlorobenzene	(3)					ND	ND			1.00	5.00
139) 1,2-Dichlorobenzene	(3)					ND	ND			1.00	5.00
E = CONC. OUT OF CAL. RANGE	# = :	RELAT	IVE RETENT	ION TIM	E OUT OF	RANGE					

Page 2 of 2

Y (x10^6) 9. Column phase: DB-624 Purge Volume: 5.0 Sample Info: TB1RC;4791567;1;0;;;; Client ID: TB1RC Date : 13-JUN-2006 23:50 Data File: /chem/HP09915.i/06jun13b.b/lu13s33.d -t-Butyl Alcohol-d10+ SI. ijλ.· -Dibromofluoromethane+ /chem/HP09915.i/06.jun13b.b/1u13s33.d -1,2-Dichloroethane-d4(mz1+ -Fluorobenzene+ ω Column diameter: 0.25 Operator: LCM01518 Instrument: HP09915.i -Toluene-d8(mz100)+ 6 11 -Chlorobenzene-d5+ 12 4-Bromofluorobenzene(mz17+ 13 1,4-Dichlorobenzene-d4+ 14 6121 Page 1

Quant Report

Target Revision 3.5

Data File: /chem/HP09915.i/06jun13b.b/lu13s33.d Instrument ID: HP09915.i Injection date and time: 13-JUN-2006 23:50 Analyst ID: LCM01518

Method used: /chem/HP09915.i/06jun13b.b/L8260W.m Sublist used: CHEVENV

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 14-Jun-2006 09:00 ads01731

Sample Name: TB1RC Lab Sample ID: 4791567

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
70)*Fluorobenzene 101)*Chlorobenzene-d5 132)*1,4-Dichlorobenzene-d4 51)\$Dibromofluoromethane 62)\$1,2-Dichloroethane-d4 89)\$Toluene-d8 113)\$4-Bromofluorobenzene	(1) (2) (3) (1) (1) (2)	7.565 11.063 12.941 6.642 7.105 9.600 12.057	96 117 152 113 102 98 95	1009526 764486 415581 257458 57682 995920 393810	50.000 50.000 50.000 46.297 45.359 44.923 39.902

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

EPA SAMPLE NO.

	OR
--	----

Lab Name: Lancaster Laboratories Contract:_____

Matrix: (soil/water) WATER Lab Sample ID: 4791568

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09915.i/06jun13b.b/lu13s34.d

Level: (low/med) LOW

Date Received: 06/10/06

Moisture: not dec. ____ Date Analyzed: 06/14/06

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug	/L or ug/Kg)	ug/L	Q	
74-87-3	Chloromethane		5	U	
75-01-4	Vinyl Chloride	1	5	U	
74-83-9	Bromomethane	1	5	U	
75-00-3	Chloroethane		5	U	
75-69-4	Trichlorofluoromet	hane	5	U	
75-35-4	1,1-Dichloroethene		5	U	1
75-09-2	Methylene Chloride		5	U	
1634-04-4	Methyl Tertiary Bu	tyl Ether	5	U	
75-34-3	1,1-Dichloroethane		5	U	
540-59-0	1,2-Dichloroethene	(total)	5	U	
67-66-3	Chloroform		5	U	
71-55-6	1,1,1-Trichloroeth	ane	5	U	
56-23-5	Carbon Tetrachlori	de	5	ן ט	
71-43-2	Benzene		5	U	
107-06-2	1,2-Dichloroethane		5	ט	
79-01-6	Trichloroethene		5	U	
78-87-5	1,2-Dichloropropan	e	5	U	
75-27-4	Bromodichlorometha	ne	5	ן ט	
110-75-8	2-Chloroethyl Viny	l Ether	10	U	
10061-01-5-	cis-1,3-Dichloropr	opene	5	U	
108-88-3	Toluene	•	5	บ	
10061-02-6-	trans-1,3-Dichloro	propene	5	U	
79-00-5	1,1,2-Trichloroeth	ane	5	U	
127-18-4	Tetrachloroethene	İ	5	U	
124-48-1	Dibromochlorometha	ne	5	U	1
108-90-7	Chlorobenzene		5	U	
100-41-4	Ethylbenzene	Ì	5	U	
l		_		l	

EPA SAMPLE NO.

OR2

Lab Name: Lancaster Laboratories Contract:

Matrix: (soil/water) WATER Lab Sample ID: 4791568

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09915.i/06jun13b.b/lu13s34.d

Level: (low/med) LOW

Date Received: 06/10/06

Moisture: not dec. ____ Date Analyzed: 06/14/06

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L

1330-20-7Xylene (Total)	5	U
75-25-2Bromoform	5	ן ע
79-34-51,1,2,2-Tetrachloroethane	5	U
541-73-11,3-Dichlorobenzene	j 5	ប
106-46-71,4-Dichlorobenzene	5	ប
95-50-11,2-Dichlorobenzene	5	ប
	İ	

Quantitation Report GC/MS Volatiles 4791568

File: /chem/HP09915.i/06jun13b.b/lu13s34.d

Sample: OR2--;4791568;1;0;;;; Injected At:14-JUN-2006 00:13

Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m Blank Reference: lul3b05.d

Sublist: CHEVENV

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Batch: L061642AB

Analyst:LCM01518

Instrument ID: HP09915.1

Standard Reference: lul3c02.d

Prep Factor:1.00

Units: ug/L

Matrix: WATER

Level: Low

Sample Wt./Vol.: 5.0000 ml (Vo)

Volume Purged: 5.0 ml (Vt)

Bottle Code:038A

Internal Standards	RT(+/-RT)	Scan	QIon	Area(+/- %Area)	Conc(ext)	QC Flag
*============	========	====	====	222222222222		*===###
70) Fluorobenzene	7.562(0.000)	1860	96	981275(-8)	50.00	
101) Chlorobenzene-d5	11.063(0.000)	2949	117	740064(-9)	50.00	
132) 1,4-Dichlorobenzene-d4	12.941(0.000)	3533	152	401000(-15)	50.00	

= RETENTION TIME OUT OF RANGE

* = INTERNAL STANDARD OUT OF RANGE

NC = NOT ABLE TO CALCULATE

	I.S.		Conc.	QC	
Surrogate Standards	Ref. RT (+/-RRT)	QIon Area	(on column)	%Rec. flags	QC Limits
*======================================		***====================================		=======================================	==========
Dibromofluoromethane	(1) 6.639(0.000)	113 247414	45.772	92%	80 - 116
62) 1,2-Dichloroethane-d4	(1) 7.105(-0.001)	102 54262	43.898	88%	77 - 113
89) Toluene-d8	(2) 9.600(0.000)	98 964411	44.937	90%	80 - 113
113) 4-Bromofluorobenzene	(2) 12.057(0.000)	95 383 20 3	40.109	80%	78 - 113

NC = NOT ABLE TO CALCULATE

		I.S.					Conc.	Conc.	Blank	1	Reporting	1
Ta	rget Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
		======	====	*=====	=====				=======	======		======
2)	Chloromethane	(1)					ND	ND			1.00	5.00
3)	Vinyl Chloride	(1)					ND	ND			1.00	5.00
6)	Bromomethane	(1)					ND	ND			1.00	5.00
7)	Chloroethane	(1)					ND	ND			1.00	5.00
8)	Trichlorofluoromethane	(1)					ND	ND			2.00	5.00
16)	1,1-Dichloroethene	(1)					ND	ND			0.80	5.00
26)	Methylene Chloride	(1)					ND	ND			2.00	5.00
30)	trans-1,2-Dichloroethene	(1)					ND	ND			0.80	5.00
31;	Methyl Tertiary Butyl Ether	(1)					ND	ND	•		0.50	5.00
40)	1,2-Dichloroethene (total)	(1)					ND	ND			0.80	5.00
363	1,1-Dichloroethane	(1)					ND	ND			1.00	5.00
42}	cis-1,2-Dichloroethene	(1)					ND	ND			0.80	5.00
49)	Chloroform	(1)					ND	ND			0.80	5.00
54)	1,1,1-Trichloroethane	(1)					ND	ND			0.80	5.00
59)	Carbon Tetrachloride	(1)					ND	ND			1.00	5.00
63)	Benzene	(1)					ND	ND			0.50	5.00
64)	1,2-Dichloroethane	(1)					ND	ND			1.00	5.00
73)	Trichloroethene	(1)					ND	ND			1.00	5.00
77)	1,2-Dichloropropane	(1)					ND	ND			1.00	5.00
82)	Bromodichloromethane	(1)					ND	ND			1.00	5.00
84)	2-Chloroethyl Vinyl Ether	(1)					ND	ND			2.00	10.00
85)	cis-1,3-Dichloropropene	(1)					ND	ND			1.00	5.00
90)	Toluene	(2)					ND CIN	ND			0.70	5.00
91)	trans-1,3-Dichloropropene	(2)					ND	ND			1.00	5.00

E = CONC. OUT OF CAL. RANGE

^{# =} RELATIVE RETENTION TIME OUT OF RANGE

OR2 - -

Quantitation Report GC/MS Volatiles 4791568

Standard Reference: lul3c02.d

File: /chem/HP09915.i/06junl3b.b/lul3s34.d

Sample: OR2--;4791568;1;0;;;; Injected At:14-JUN-2006 00:13

Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m Blank Reference: lu13b05.d

Sublist: CHEVENV

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Batch: L061642AB

Matrix: WATER

Analyst:LCM01518

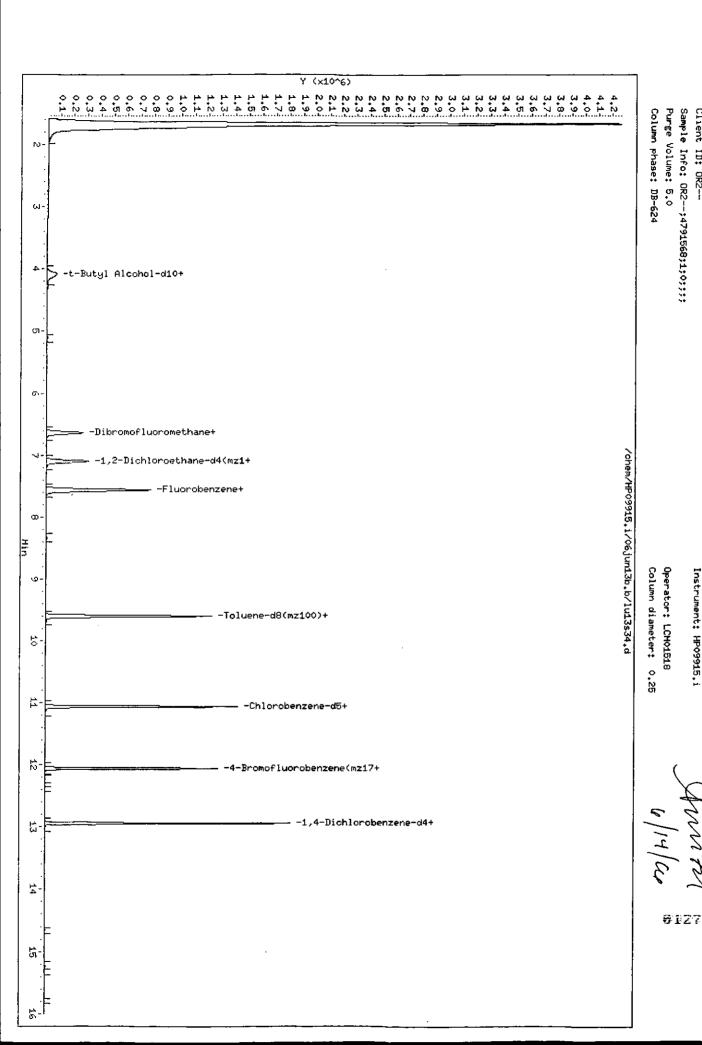
Level: Low

Bottle Code: 038A

Instrument ID: HP09915.i

Sample Wt./Vol.: 5.0000 ml (Vo)

Prep Factor:1.00


Units: ug/L

Volume Purged: 5.0 ml (Vt)

Target Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc.	Conc. (in sample)	Blank Conc.	Qual.	Reporting Limit	LOQ
	=====	:===	=======	=====	========		*****	========	======		=====
93) 1,1,2-Trichloroethane	(2)					ND	ND			0.80	5.0
94) Tetrachloroethene	(2)					ND	ND			0.80	5.0
98) Dibromochloromethane	(2)					ND	ND			1.00	5.0
.02) Chlorobenzene	(2)					ND	ND			0.80	5.0
104) Ethylbenzene	(2)					ND	ND			0.80	5.0
.05) m+p-Xylene	(2)					ND	ND			0.80	5.0
.06) Xylene (Total)	(2)					ND	ND			0.80	5.0
107: o-Xylene	(2)					ND	DИ			0.80	5.0
09: Bromoform	(2)					ND	מא			1.00	5.0
16) 1,1,2,2-Tetrachloroethane	(3)					ND	ND			1.00	5.0
31' 1,3-Dichlorobenzene	(3)					ND	ND			1.00	5.0
33) 1,4-Dichlorobenzene	(3)					ND	ND			1.00	5.0
139) 1,2-Dichlorobenzene	(3)					ND	ND			1.00	5.0

Comments:		
Church		10/14/0
Analyst: SWN7L	Date:	ajilia
Auditor:	Date:	C014/04

Page 2 of 2

Page 1

Instrument: HP09915.i

Client ID; OR2--

Date : 14-JUN-2006 00:13

Data File: /chem/HP09915.i/06jun13b.b/lu13s34.d

Quant Report

Target Revision 3.5

Data File: /chem/HP09915.i/06jun13b.b/lu13s34.d Instrument ID: HP09915.i Injection date and time: 14-JUN-2006 00:13 Analyst ID: LCM01518

Method used: /chem/HP09915.i/06jun13b.b/L8260W.m Sublist used: CHEVENV

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 14-Jun-2006 09:02 ads01731

Sample Name: OR2-- Lab Sample ID: 4791568

	I.S.				Conc.
Compounds	Ref.	RT	QIon	Area	(on column)
=======================================	=====	======	======	=======================================	==========
70)*Fluorobenzene	(1)	7.562	96	981275	50.000
101)*Chlorobenzene-d5	(2)	11.063	117	740064	50.000
132)*1,4-Dichlorobenzene-d4	(3)	12.941	152	401000	50.000
51) \$Dibromofluoromethane	(1)	6.639	113	247414	45.772
62)\$1,2-Dichloroethane-d4	(1)	7.105	102	54262	43.898
89)\$Toluene-d8	(2)	9.600	98	964411	44.937
113)\$4-Bromofluorobenzene	(2)	12.057	95	383203	40.109

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

EPA SAMPLE NO.

Lab	Name:	Lancaster	Laboratories	Contract:	

Matrix: (soil/water) WATER Lab Sample ID: 4791569

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09915.i/06jun13b.b/lu13s35.d

Level: (low/med) LOW Date Received: 06/10/06

Moisture: not dec. ____ Date Analyzed: 06/14/06

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND (us	g/L or ug/Kg) ug	/L	Q
74-87-3	Chloromethane		5	Ŭ
75-01-4	Vinyl Chloride	<u> </u>	5	U
74-83-9	Bromomethane		5	U
75-00-3	Chloroethane		5	ע
75-69-4	Trichlorofluorome	thane	5	U
75-35-4	1,1-Dichloroethen	e	5	U
75-09-2	Methylene Chloride	e	5	U
1634-04-4	Methyl Tertiary B	utyl Ether	5	U
75-34-3	1,1-Dichloroethan	e	5	U
540-59-0	1,2-Dichloroethene	e (total)	5	U
67-66-3	Chloroform		5	U
71-55-6	1,1,1-Trichloroet	nane	5	U
56-23-5	Carbon Tetrachlor:	ide	5	U
71-43-2	Benzene		5	U
107-06-2	1,2-Dichloroethane	e	5	U
79-01-6	Trichloroethene		5	U
78-87-5	1,2-Dichloropropar	ne	5	U
75-27-4	Bromodichlorometha	ane	5	U
110-75-8	2-Chloroethyl Ving	yl Ether	10	U
10061-01-5-	cis-1,3-Dichloropa	ropene	5	U
108-88-3	Toluene	Ì	5	U
10061-02-6-	trans-1,3-Dichlore	opropene	5	U.
79-00-5	1,1,2-Trichloroeth	nane	5	U
127-18-4	Tetrachloroethene		5	U
124-48-1	Dibromochlorometha	ane	5	Ū
108-90-7	Chlorobenzene	į	5	U
100-41-4	Ethylbenzene	į	5	U

	<u> </u>	
1		
İ	OS3	ĺ
i		i

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:____

Lab Code: LANCAS Case No.: ____ SDG No.: ____

Matrix: (soil/water) WATER Lab Sample ID: 4791569

Sample wt/vol: 5.00 (g/mL) mL

Lab File ID: HP09915.i/06jun13b.b/lu13s35.d

Level: (low/med) LOW

Date Received: 06/10/06

Moisture: not dec. ____ Date Analyzed: 06/14/06

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L Q 5 U 1330-20-7-----Xylene (Total) 75-25-2----Bromoform 5 | U

5 U 79-34-5----1,1,2,2-Tetrachloroethane 5 U | 541-73-1-----1,3-Dichlorobenzene 106-46-7----1,4-Dichlorobenzene 5 U 5 | U 95-50-1-----1,2-Dichlorobenzene

Quantitation Report GC/MS Volatiles 4791569

File: /chem/HP09915.i/06jun13b.b/lu13s35.d

Sample: OS3--;4791569;1;0;;;; Injected At:14-JUN-2006 00:36

Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m Blank Reference: lul3b05.d

Sublist: CHEVENV

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Matrix: WATER Batch:L061642AB

Analyst:LCM01518

Instrument ID: HP09915.1

Standard Reference: lul3c02.d

Prep Factor:1.00

Units: ug/L

Level: Low

Sample Wt./Vol.: 5.0000 ml (Vo)

Volume Purged: 5.0 ml (Vt)

Bottle Code: 038A

Internal Standards	RT(+/-RT)	Scan	QIon	Area(+/- %Area)	Conc(ext)	QC Flag	
*****	*****	===	====	= = = = = = = = = = = = = = = = = = =	**======	****	
70) Fluorobenzene	7.565(-0.003)	1861	96	969339(-9)	50.00		
101) Chlorobenzene-d5	11.063(0.000)	2949	117	736559(-10)	50.00		
132) ·1,4-Dichlorobenzene-d4	12.941(0.000)	3533	152	396106(-16)	50.00		

= RETENTION TIME OUT OF RANGE

* = INTERNAL STANDARD OUT OF RANGE

NC = NOT ABLE TO CALCULATE

		I.S.				Conc.		QC	
Su	rrogate Standards	Ref.	RT (+/-RRT)	QIon	Area	(on column)	%Rec.	flags	QC Limits
T===	# # # # # # # # # # # # # # # # # # #		==========		==========	*****	****==================================		
51;	Dibromofluoromethane	(1)	6.639(0.000)	113	247261	46.307	93%		80 - 116
62)	1,2-Dichloroethane-d4	(1)	7.092(0.001)	102	54401	44.552	89%		77 - 113
89)	Toluene-d8	(2)	9.600(0.000)	98	955198	44.719	89%		80 - 113
113)	4-Bromofluorobenzene	(2)	12.057(0.000)	95	377085	39.656	79%		78 - 113

= RELATIVE RETENTION TIME OUT OF RANGE * = PERCENT REC.OUT OF RANGE

D = DILUTED OUT

NC = NOT ABLE TO CALCULATE

		I.S.					Conc.	Conc.	Blank	F	Reporting	3
Target Compounds		Ref.	RT	(+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
		===	=====		=====			E=====================================	=======		*===	======
2)	Chloromethane	(1)					ND	ND			1.00	5.00
3.1	Vinyl Chloride	(1)					NĎ	ND			1.00	5.00
6)	Bromomethane	(1)					ND	ND			1.00	5.00
7)	Chloroethane	(1)					ND	ND			1.00	5.00
8)	Trichlorofluoromethane	(1)					ND	ND			2.00	5.00
16)	1,1-Dichloroethene	(1)					ND	ND			0.80	5.00
26)	Methylene Chloride	(1)					ND	ND			2.00	5.00
30)	trans-1,2-Dichloroethene	(1)					ND	ND			0.80	5.00
31)	Methyl Tertiary Butyl Ether	(1)					ND	ND			0.50	5.00
40)	1,2-Dichloroethene (total)	(1)					ND	ND			0.80	5.00
36)	1,1-Dichloroethane	(1)					ND	ИД			1.00	5.00
42)	cis-1,2-Dichloroethene	(1)					ND	ND			0.80	5.00
49)	Chloroform	(1)					ND	ND			0.80	5.00
54)	1,1,1-Trichloroethane	(1)					ND	ND			0.80	5.00
59)	Carbon Tetrachloride	(1)					ND	ND			1.00	5.00
63)	Benzene	(1)					ND	ND			0.50	5.00
64)	1,2-Dichloroethane	(1)					ND	ND			1.00	5.00
73)	Trichloroethene	(1)					ND	ND			1.00	5.00
77)	1,2-Dichloropropane	(1)					ND	ИD			1.00	5.00
82)	Bromodichloromethane	(1)					ND	ND			1.00	5.00
84)	2-Chloroethyl Vinyl Ether	(1)					ND	ND			2.00	10.00
, 85)	cis-1,3-Dichloropropene	(1)					ND	ND			1.00	5.00
90)	Toluene	(2)					ND	ND			0.70	5.00
91)	trans-1,3-Dichloropropene	(2)					ND	ND			1.00	5.00

E = CONC. OUT OF CAL. RANGE

^{# =} RELATIVE RETENTION TIME OUT OF RANGE

Quantitation Report GC/MS Volatiles 4791569

File: /chem/HP09915.i/06jun13b.b/lu13s35.d

Sample: OS3--;4791569;1;0;;;;

Injected At:14-JUN-2006 00:36

Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m Blank Reference: lu13b05.d

Sublist: CHEVENV

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Batch:L061642AB

Matrix: WATER

Analyst:LCM01518

Level: Low

Instrument ID: HP09915.1

Sample Wt./Vol.: 5.0000 ml (Vo)

Bottle Code: 038A

Standard Reference: lul3c02.d

Volume Purged: 5.0 ml (Vt)

Prep Factor:1.00

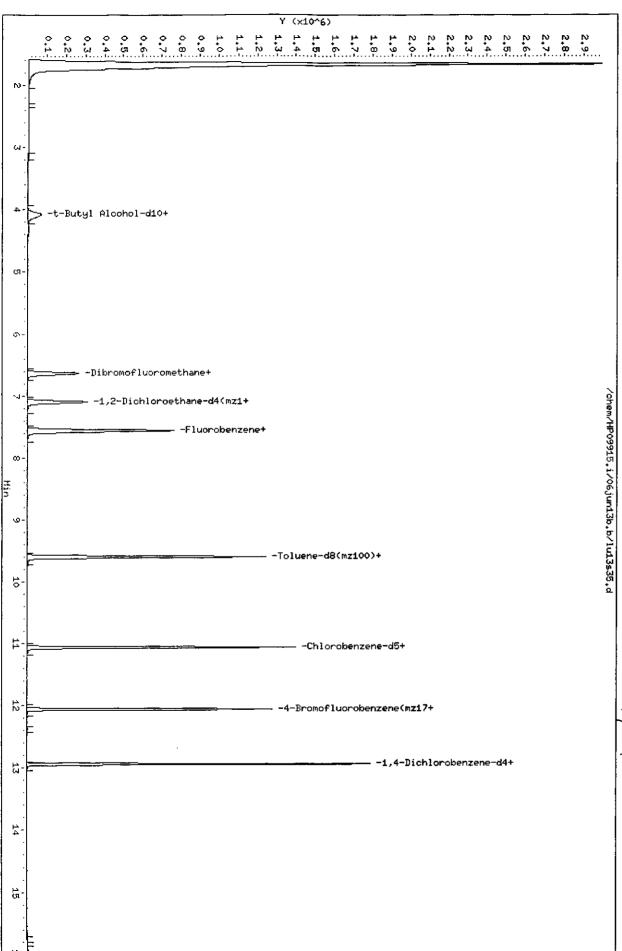
Units: ug/L

	I.S.					Conc.	Conc.	Blank		Reporting	
Target Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
	≠ ≠===≠		========	=====	=======	======================================	=======================================	E======		=======	
93) 1,1,2-Trichloroethane	(2)					ND	ND			0.80	5.0
94) Tetrachloroethene	(2)					ND	ИD			0.80	5.0
98) Dibromochloromethane	(2)					ND	ИD			1.00	5.0
02) Chlorobenzene	(2)					ND	ИD			0.80	5.0
04) Ethylbenzene	(2)					ND	ND			0.80	5.0
05) m+p-Xylene	(2)					ND	ND			0.80	5.0
06) Xylene (Total)	(2)					ND	ND			0.80	5.0
07) o-Xylene	(2)					ND	ИД			0.80	5.0
09) Bromoform	(2)					ND	ИD			1.00	5.0
16) 1,1,2,2-Tetrachloroethane	(3)					ИD	ИD			1.00	5.0
31) 1,3-Dichlorobenzene	(3)					ND	ND			1.00	5.0
.33) 1,4-Dichlorobenzene	(3)					ND	ND			1.00	5.0
139) 1,2-Dichlorobenzene	(3)				•	ND	ND			1.00	5.0
= CONC. OUT OF CAL. RANGE	# =	RELAT	IVE RETENT	ON TIM	E OUT OF R	ANGE					

Commences:		
Analyst: GMM7U	Date: 6//	4/a
Auditor: White	Date: Q	44

Page 2 of 2

Client ID: 083--Date : 14-JUN-2006 00:36


Sample Info: 053--;4791569;1;0;;;;
Purge Volume: 5.0

Column phase: DB-624

Instrument: HP09915.i

Operator: LCM01518
Column diameter: 0,25

6133

Target Revision 3.5

Data File: /chem/HP09915.i/06jun13b.b/lu13s35.d Instrument ID: HP09915.i Injection date and time: 14-JUN-2006 00:36 Analyst ID: LCM01518

Method used: /chem/HP09915.i/06jun13b.b/L8260W.m Sublist used: CHEVENV

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 14-Jun-2006 09:06 ads01731

Sample Name: OS3-- Lab Sample ID: 4791569

	I.S.			*	Conc.
Compounds	Ref.	RT	QIon	Area	(on column)
=======================================	=====	======	=====	=========	========
70)*Fluorobenzene	(1)	7.565	96	969339	50.000
101) *Chlorobenzene-d5	(2)	11.063	117	736559	50.000
132) *1,4-Dichlorobenzene-d4	(3)	12.941	152	396106	50.000
51) \$Dibromofluoromethane	(1)	6.639	113	247261	46.307
62)\$1,2-Dichloroethane-d4	(1)	7.092	102	54401	44.552
89)\$Toluene-d8	(2)	9.600	9 8	955198	44.719
113)\$4-Bromofluorobenzene	(2)	12.057	95	377085	39.656

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO. OR3 - -

Lab	Name:	Lancaster	Laboratories
-----	-------	-----------	--------------

Contract:

Lab Code: LANCAS

Case No.:_____ SAS No.:____

SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 4791570

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09915.i/06jun13b.b/lu13s36.d

Level: (low/med) LOW

Date Received: 06/10/06

Moisture: not dec.

Date Analyzed: 06/14/06

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

(ug/L or ug/Kg) ug/L CAS NO. COMPOUND 74-87-3-----Chloromethane U 5 75-01-4-----Vinyl Chloride 5 U 74-83-9-----Bromomethane 5 1 11 75-00-3-----Chloroethane 5 U 75-69-4-----Trichlorofluoromethane 5 lυ 75-35-4-----1,1-Dichloroethene 5 75-09-2-----Methylene Chloride 1634-04-4-----Methyl Tertiary Butyl Ether 5 U 5 75-34-3-----1,1-Dichloroethane 1 11 540-59-0----1,2-Dichloroethene (total) ט ו 5 67-66-3-----Chloroform 71-55-6----1,1,1-Trichloroethane 5 lυ lυ 5 56-23-5-----Carbon Tetrachloride 71-43-2-----Benzene 5 lυ 1 17 107-06-2----1,2-Dichloroethane 5 5 | 79-01-6-----Trichloroethene 5 lυ | 78-87-5----1,2-Dichloropropane 5 lυ 75-27-4-----Bromodichloromethane ΙU | 110-75-8----2-Chloroethyl Vinyl Ether 10 5 U | 10061-01-5----cis-1,3-Dichloropropene 5 lυ | 108-88-3----Toluene lυ 5 10061-02-6----trans-1,3-Dichloropropene 5 U | 79-00-5----1,1,2-Trichloroethane 5 lυ 127-18-4----Tetrachloroethene 5 lυ 124-48-1-----Dibromochloromethane lυ 108-90-7-----Chlorobenzene 5 lυ 100-41-4-----Ethylbenzene

VOLATILE ORGANICS ANALYSIS DATA SHEET

OR3 --

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 4791570

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09915.i/06jun13b.b/lu13s36.d

Level: (low/med) LOW

Date Received: 06/10/06

Moisture: not dec. ____ Date Analyzed: 06/14/06

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) ug/L

1330-20-7Xylene (Total)		5	υ
75-25-2Bromoform	i	5	υ
79-34-51,1,2,2-Tetrachloroethane	ĺ	5	υ
541-73-11,3-Dichlorobenzene	ĺ	5	υ
106-46-71,4-Dichlorobenzene	1	5	ן ט
95-50-11,2-Dichlorobenzene	1	5	U

Quantitation Report GC/MS Volatiles 4791570

File: /chem/HP09915.i/06jun13b.b/lu13s36.d

Sample: OR3--;4791570;1;0;;; Injected At:14-JUN-2006 00:58

Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m Blank Reference: lul3b05.d

Sublist: CHEVENV

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Matrix: WATER Batch:L061642AB

Analyst:LCM01518

Instrument ID: HP09915.i Standard Reference: lul3c02.d

Prep Factor:1.00

Units: ug/L

Level: Low

Sample Wt./Vol.: 5.0000 ml (Vo)

Volume Purged: 5.0 ml (Vt)

Bottle Code:038A

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Area)	Conc(ext)	QC Flag
	========	====	====	**********	*=======	22====
70) Fluorobenzene	7.562(0.000)	1860	96	940238(-12)	50.00	
101) Chlorobenzene-d5	11.063(0.000)	2949	117	708188(-13)	50.00	
132) 1,4-Dichlorobenzene-d4	12.938(0.003)	3532	152	379295 (-20)	50.00	

= RETENTION TIME OUT OF RANGE

* * INTERNAL STANDARD OUT OF RANGE NC = NOT ABLE TO CALCULATE

	I.S.			Conc.	QC	
Surrogate Standards	Ref. RT (+/-RRT)	QIon	Area	(on column)	%Rec. flags	QC Limits
	==== = = = = = = = = = = = = = = = = =	=====	# * * * E = = = = = = = = = = = = = = = =	****	********	=======================================
51. Dibromofluoromethane	(1) 6.639(0.000)	113	240432	46.421	93%	80 - 116
62. 1.2-Dichloroethane-d4	(1) 7.096(0.000)	102	53286	44.990	90%	77 - 113
39: Toluene-d8	(2) 9.600 (0.000)	98	926209	45.099	90%	80 - 113
113: 4-Bromofluorobenzene	(2) 12.057(0.000)	95	366804	40.121	80%	78 - 113

= RELATIVE RETENTION TIME OUT OF RANGE

* = PERCENT REC.OUT OF RANGE D = DILUTED OUT

NC = NOT ABLE TO CALCULATE

		I.S.					Conc.	Conc.	Blank	1	Reporting	J
Ta:	rget Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
		======				== 46F ====	*	=======================================	z w d & * = * =		======	======
2)	Chloromethane	(1)					ND	ND			1.00	5.00
3)	Vinyl Chloride	(1)					ND	ND			1.00	5.00
6)	Bromomethane	(1)					ND	ND			1.00	5.00
7)	Chloroethane	(1)					ND	ND			1.00	5.00
8)	Trichlorofluoromethane	(1)					ND	ND			2.00	5.00
16)	1,1-Dichloroethene	(1)					ND	ND			0.80	5.00
26)	Methylene Chloride	(1)					ND	ИD			2.00	5.00
30}	trans-1,2-Dichloroethene	(1)					ND	ND			0.BO	5.00
31)	Methyl Tertiary Butyl Ether	(1)					ИD	ND			0.50	5.00
40)	1,2-Dichloroethene (total)	(1)					ND	ND			0.80	5.00
36)	1,1-Dichloroethane	(1)					ND	ND			1.00	5.00
42)	cis-1,2-Dichloroethene	(1)					ND	ND			0.80	5.00
49)	Chloroform	(1)					ND	ND	•		0.80	5.00
54)	1,1,1-Trichloroethane	(1)					מא	מא			0.80	5.00
59)	Carbon Tetrachloride	(1)					ND	ND			1.00	5.00
63)	Benzene	(1)					ND	ND			0.50	5.00
64)	1,2-Dichloroethane	(1)					ND	ND			1.00	5.00
73)	Trichloroethene	(1)					ND	ND			1.00	5.00
77)	1,2-Dichloropropane	(1)					ND	ND			1.00	5.00
82)	Bromodichloromethane	(1)					ND	ND			1.00	5.00
84)	2-Chloroethyl Vinyl Ether	(1)					ND	ND			2.00	10.00
85)	cis-1,3-Dichloropropene	(1)					ND	ND			1.00	5.00
90)	Toluene	(2)					ND	ND			0.70	5.00
91)	trans-1,3-Dichloropropene	(2)					ND	ND			1.00	5.00

E - CONC. OUT OF CAL. RANGE

= RELATIVE RETENTION TIME OUT OF RANGE

Page 1 of 2

Lancaster Laboratories Quantitation Report GC/MS Volatiles 4791570

File: /chem/HP09915.i/06jun13b.b/lu13s36.d

Sample: OR3--;4791570;1;0;;; Injected At: 14-JUN-2006 00:58

Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m Blank Reference: lul3b05.d

Sublist: CHEVENV

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Batch:L061642AB

Analyst:LCM01518

Instrument ID: HP09915.1

Standard Reference: lul3c02.d

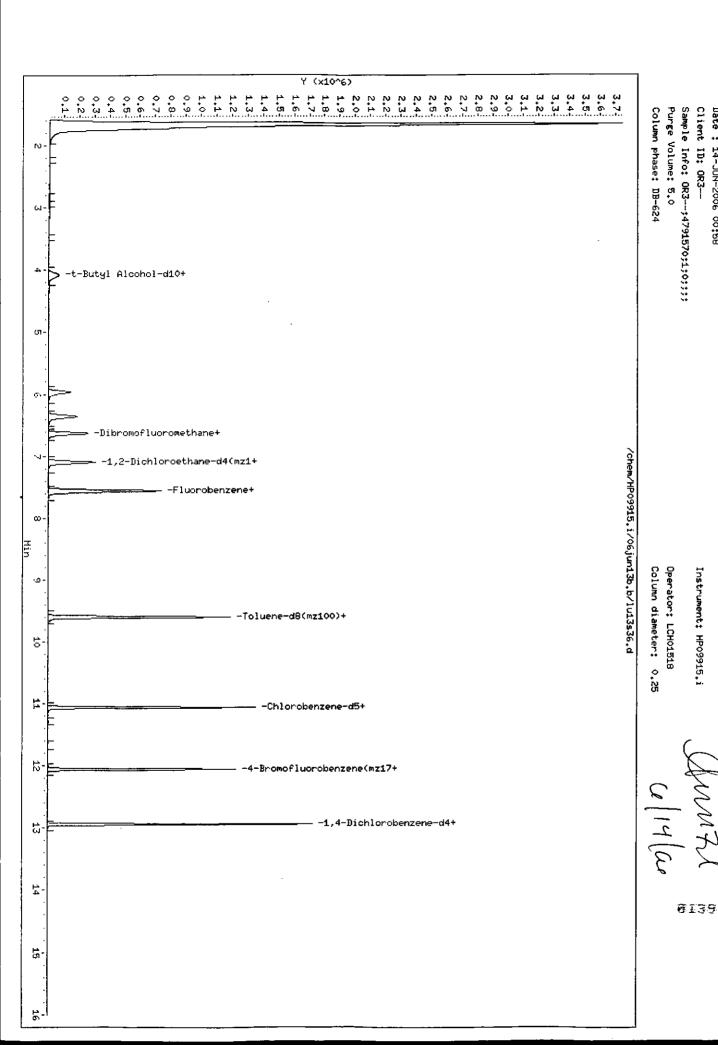
Prep Factor:1.00

Units: ug/L

Matrix: WATER

Level: Low

Sample Wt./Vol.: 5.0000 ml (Vo)


Volume Purged: 5.0 ml (Vt)

Bottle Code: 038A

	I.S.					Conc.	Conc.	Blank		Reporting	j
Target Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
	======	-	===========	E=====	========	3888888888		======	======	======	=====
93) 1,1,2-Trichloroethane	(2)					ND	ND			0.80	5.0
94) Tetrachloroethene	(2)					ND	ND			0.80	5.0
98) Dibromochloromethane	(2)					ND	ND			1.00	5.0
02) Chlorobenzene	(2)					ND	ND			0.80	5.0
04) Ethylbenzene	(2)					ND	ND			0.80	5.0
05) m+p-Xylene	(2)					ND	ND			0.80	5.0
06) Xylene (Total)	(2)					ND	ND			0.80	5.
07) o-Xylene	(2)					ND	ND			0.80	5.0
09) Bromoform	(2)					ND	ND			1.00	5.
16) 1,1,2,2-Tetrachloroethane	(3)					ND	ND			1.00	5.0
31: 1,3-Dichlorobenzene	(3)					ND	ND			1.00	5.
33) 1.4-Dichlorobenzene	(3)					ND	ND			1.00	5.
39) 1,2-Dichlorobenzene	(3)					ND	ND			1.00	5.
= CONC. OUT OF CAL. RANGE	# = 1	יית. זים כ	IVE RETENT	אוד ארן	E OUT OF E	ANGE					

Comments:	
Analyst: Jun7a	Date: 6/14/a
Auditor: Why	Date: 01400

Page 2 of 2

Date : 14-JUN-2006 00:58

Data File: /chem/HP09915.i/06jun13b.b/lu13s36.d

Page 1

Target Revision 3.5

Data File: /chem/HP09915.i/06jun13b.b/lu13s36.d Instrument ID: HP09915.i Injection date and time: 14-JUN-2006 00:58 Analyst ID: LCM01518

Method used: /chem/HP09915.i/06jun13b.b/L8260W.m Sublist used: CHEVENV

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 14-Jun-2006 09:10 ads01731

Sample Name: OR3-- Lab Sample ID: 4791570

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
=======================================	======	=====	=====	========	======================================
70)*Fluorobenzene	(1)	7.562	96	940238	50.000
101) *Chlorobenzene-d5	(2)	11.063	117	708188	50.000
132) *1,4-Dichlorobenzene-d4	(3)	12.938	152	379295	50.000
51) \$Dibromofluoromethane	(1)	6.639	113	240432	46.421
62)\$1,2-Dichloroethane-d4	(1)	7.096	102	53286	44.990
89) \$Toluene-d8	(2)	9.600	98	926209	45.099
113)\$4-Bromofluorobenzene	(2)	12.057	95	366804	40.121

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Standards Data

VOLATILE ORGANICS INITIAL CALIBRATION DATA

Contract:___ Lab Name: Lancaster Laboratories

Case No.:_____ SAS No.:____ SDG No.:___ Lab Code: LANCAS

Calibration Date(s): 06/06/06 Instrument ID: HP09915

06/06/06

20:30

Heated Purge: (Y/N) Y Calibration Times: 17:25 Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .25

LAB FILE ID: RRF 4 = lu06106.d RRF 10= lu06108.d RRF 20= lu06104.d

	1 1								%	CAL.
COMPOUND	RRF 4	RRF 10	RRF 20	RRF 50	RRF100	RRF300	RRF	RRF	RSD	METHOD
=======================================	0.3466	====== ^ 7 7 51	0.7/59	====== 0 3636	0 3611	0.3121		0.3507	6	AVG
ichlorodifluoromethane	#0.3475	0.3/21:	0.3430	0.3630	0.3426	0.3175		0.3404	3	AVG
AT COLONIC CITES TO	*0.3209	0.3441	0.3432	0.3467	0.3423	0.2835		0.3101	5	AVG
inity contact	0.2152	0.3207	0.3054	0.3142	0.2028	0.1780		0.2015	6	AVG
Bromomethane	0.2132	0.2070	0.1653	0.1646	0.1594	0.1374		0.1626	8	AVG
Chloroethane	0.1740	0.1741	0.3586	0 3702	0.3709	0.3233		0.3617	6	AVG
Trichlorofluoromethane	0.3001	0.3012	0.1951	0.2137	0.2117	0.1802		0.2032	6	AVG
Ethyl Ether	0.2002	0.2123	0.0804	0.273	0.0812	0.0616	ļ	0.0769	14	AVG
Acrolein	*0.2194	0.0737	0.0004	0 2285	0.2261	0.2286		0.2194	5	AVG
1,1-Dichloroethene	10.2194	0.2143	0.2099	0.2504	0.2360	0.2464	1	0.2298	7	AVG
Freon 113	0.2201	0.2130	0.0434	0.2365	0.0447	0.0422		0.0446	4	AVG
Acetone .	0.0437	0.0470	0.3770	0.6301	0.4232	0.4381		0.4103	6	AVG
Methyl Iodide	0.3700	0.3714	0.3778	0.4301	0.0311	0.0307	ŀ	0.0315	4	AVG
2-Propanol	0.0300	0.0341	7362	0.8572	0.8487	0.8632		0.8134	6	AVG
Carbon Disulfide	0.7047	0.1901	0.7502	0.5122	0.4780	0.4582	1	0.4721	5	AVG
Allyl Chloride	0.4808	0.4232	0.4301	0.3122	0.3453	0.3189	ĺ	0.3383	6	AVG
Methyl Acetate	0.3003	0.3291	0.3147	0.3548	0.2617	0.2647	1	0.2687	7	AVG
Methylene Chloride	0.3043	1 2025	1 12/1	1 1411	1.1645	1.1031	ł	1.1407	3	AVG
t-Butyl Alcohol	0.1721	1 1 2023	0 1680	0 1750	0.1711	0.1643		0.1717	3	AVG
Acrylonitrile	0.1/21	0.1001	0.1000	0.1750	0.2492	0.2528	1	0.2408	6	AVG
trans-1,2-Dichloroethene	0.2331	0.2334	0.2207	0.2308	0.8331	0.8381		0.7895	6	AVG
trans-1,2-Dichloroethene Methyl Tertiary Butyl Ethe	r U. / 202	0.7403	0.7437	n 3052	0.3548	0.4041		0.3627	10	AVG
n-Hexane	10.3762					0.2623		0.2491	6	AVG
1,2-Dichloroethene (total)	10.2400	0.2397	10.2277	0.2030	0 4886	0.4929		0.4722	5	AVG
1,1-Dichloroethane	#0.4687	0.4343	0104	1 0204	1 0241	1.0199	1	0.9704	6	AVG
di-Isopropyl Ether	0.9130	0.925	7576	10 /210	10 4180	0.4255		0.3901	9	AVG
2-Chloro-1,3-Butadiene	0.3627	0.3207	7548	0.421	10.8515	0.8653		0.8002	8	AVG
Ethyl t-Butyl Ether	0.7346	0.740	10.7340	0.0372	267	7 0.2717	•]	0.2575	6	AVG
cis-1,2-Dichloroethene	0.2481	0.2400	10.2374	0.272	0.0564	4 0.0536	, i	0.0550	5	AVG
2-Butanone	0.0501	0.039	210.0330	0.033	7 0 3650	0.3733		0.3411	9	
2,2-Dichloropropane	0.3173	0.510	(10.066	0.300	0.567	7 0.067		0.0661	2	
Propionitrile	0.0644	0.0054	4 0.0040	162	5 0 163	3 0.1603		0.1585	3	AVG
Methacrylonitrile	0.1552	10.1200	0 0 1270	1/50	0 136	6 0.1316	3	0.1348	5	AVG
Bromochloromethane	0.1357	0.133	10.127	10.143	0 168	8 0.160	íl –	0.1651	4	AVG
Tetrahydrofuran	0.1561	0.174	4 0 1020	0.100	8 0 448	9 0.4569	SI .	0.4328		AVG
Chloroform	*0.416/	0.4170	0 0 770	2 0 301	5 0 384	6 0.401	<u> </u>	0.3683		AVG
1,1,1-Trichloroethane	0.3510	0.342	2 0 . 3334	710.371	610.363	4 0.507	<u>.</u>	0.4553		AVG
Cyclohexane	0.4393	10.416	5 U.4U/	4 0.497	Z 0.403	9 0.359	<u>{</u>	0.3410		AVG
1,1-Dichloropropene	0.3314	0.322	4 0.310	3 0 351	8 0 343	6 0.366	5	0.3297		AVG
Carbon Tetrachloride	0.3109	10.302	2 0.303	210.331	7 0 021	2 0.019	5]	0.0201		AVG
Isobutyl Alcohol	0.018	10.021	7 0.020	1 1 070	7 1 0.021	8 1.055	۱	1.0207		AVG
Benzene	1.001	0.997	7 0.924	0 0 611	1 0 407	2 0.407	۲)	0.3917	_	AVG
1,2-Dichloroethane	0.383	3 0 . 3 / 3	9 0.307	10.411	0 751	3 0.772	R	0.7018		
t-Amyl Methyl Ether	0.627	\$10.650	5 0.000	110.743	4 O DAZ	8 0 052	7	0.0481		AVG
n-Heptane	0.053	10.044	1 0 044	210.030	B D 014	8 0.052 4 0.015	.l	0.0153		
n-Butanol	[0.013	0.015	4 0.015	0.014	2 0 249	2 0.276	اه	0.2623	_	
Trichloroethene	0.258	/ 10.248	1 0.246	7 0 700	0.200	1 0 707	ŏ	0.2914		
1.2-Dichloropropane	*0.278	3 0.273	4 0.2/2	310.309	0 0 307	1 0.307	ńΙ	0.3890		
Methylcyclohexane	0.364	1 0.369	6 0.360	4 0 430	7 0 293	0.411	ŏ	0.2603		
Methyl Methacrylate	0.226	1 0.242	9 0.252	1 0.2//	7 0.280	0.282	<u>.</u>	0.1814		AVG
Dibromomethane	0.174	7 0.172	2 0.168	5 0.188	910.790	5 0.193		0.0040	. 1	AVG
1.4-Dioxane	0.003	8 0.004	2 0.003	9 0.004	0 0 .004	1 0.004	1	0.3267		
Bromodichloromethane	10.291	8 0.300	3 0.303	5 0.348	S J U . 350	J4 U . 300	11	10.320	'1 '`	1 ""

6142

Minimum RRF for SPCC(#) = 0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %RSD for CCC(*) = 30%

6A VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.: ____ SAS No.:____ SDG No.:____

Heated Purge: (Y/N) Y Calibration Times: 17:25 20:30

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .25

LAB FILE ID: RRF 4 = \u06106.d RRF 10= \u06108.d RRF 20= \u06104.d RRF 50= \u06103.d RRF100= \u06102.d RRF300= \u06107.d RRF =

RRF 50= lu06i03.d RRF100=	1 406104	2.0	RRF300=	LUOGIO		RRF =				
COMPOUND	RRF 4	RRF 10	RRF 20	RRF 50	RRF100	RRF300		RRF	% RSD	CAL. METHOD
	0.1005		0.1200	ľ	0.1340	0 1220	=====	0.1199	8	AVG
2-Nitropropane			0.2181				[0.2259	8	AVG
2-Chloroethyl Vinyl Ether							ŀ	0.4367	10	AVG
cis-1,3-Dichloropropene			0.4102					0.5323	11	i e
4-Methyl-2-Pentanone	10.4569	0.6324	0.5490	0.5211	0.3444	0.4099]		5	AVG
	÷0.8072	0.8026	0.8033	0.9050	0.8/14	0.8785	ŀ	0.8447		AVG
trans-1,3-Dichloropropene	0.4537						ŀ	0.5304	11	AVG
Ethyl Methacrylate	0.4824	0.5385	0.5785	0.6487	0.6563	0.6442		0.5914	12	AVG
1,1,2-Trichloroethane	0.3174	0.3171	0.3177	0.3453	0.3452	0.3441		0.3311	5	AVG
Tetrachloroethene	0.3745	0.3426	0.3284	0.3830	0.3591	0.3915	ļ	0.3632	7	AVG
1,3-Dichloropropane	0.5813	0.5738	0.5858	0.6450	0.6334	0.6071	ŀ	0.6044	5	AVG
2-Hexanone	0.4720	0.7347	0.5878	0.5501	0.5997	0.5095		0.5756	16	2NDDEG
Dibromochloromethane			0.3494				1	0.3704	12	AVG
1,2-Dibromoethane	0.3453	0.3537	0.3622	0.3976	0.3988	0.3991	İ	0.3761	7	AVG
Chlorobenzene	#0.9461	0.9272	0.9313	1.0261	0.9892	0.9979		0.9696	4	AVG
1,1,1,2-Tetrachloroethane	0.3003	0.3065	0.3217	0.3617	0.3538	0.3685		0.3354	9	AVG
	÷1.5945							1.6297	5	AVG
m+p-Xylene			0.6078					0.6389	6	AVG
Xylene (Total)	0.5919	0.5926	0.5985	0.6768	0.6352	0.6526		0.6246	6	AVG
o-Xylene			0.5893					0.6103	6	AVG
Styrene			0.9967					1.0239	9	AVG
Bromoform	#0.2281	0.7690	0.2732	0 3096	0.3187	0.3419		0.2869	15	AVG
	11.5102							1.5433	6	AVG
Isopropylbenzene			0.0227				!	0.0253	6	AVG
Cyclohexanone	#0.9686	0.0247	1 0/17	1 0677	1 0440	0.0257		1.0138	4	AVG
1,1,2,2-Tetrachloroethane trans-1,4-Dichloro-2-Butene	#U.7000	0.7704	0 3477	0.3770	0 3472	0.7070		0.3582	7	AVG
	0.3391	0.3070	0.7298	0.3777	0.3072	0.3103		0.7443	4	AVG
Bromobenzene								0.2781	4	AVG
1,2,3-Trichloropropane			0.2861				i	0.7955	5	AVG
n-Propylbenzene			0.7630					0.6993	4	•
2-Chlorotoluene			0.6749						5	AVG
1,3,5-Trimethylbenzene			1.1049					1.1532		AVG
4-Chlorotoluene			0.7029					0.7378	4	AVG
tert-Butylbenzene	0.5173	0.4666	0.4719	0.5411	0.4826	0.5307	i	0.5017	6	AVG
Pentachloroethane	0.4411	0.4406	0.4401	0.5184	0.4911	0.4901		0.4702	7	AVG
1,2,4-Trimethylbenzene			2.3324					2.4202	5	AVG
sec-Butyl benzene			0.5356				1	0.5688	7	AVG
p-Isopropyltoluene	0.7065	0.5984	0.6327	0.7115	0.6306	0.7119		0.6653	8	AVG
1,3-Dichlorobenzene			1.3438					1.4057	4	AVG
1.4-Dichlorobenzene			1.4301					1.4831	3	AVG
1,2,3-Trimethylbenzene	1.1024	1.0929	1.0682	1.2230	1.1152	1.0727		1.1124	5	AVG
Benzyl Chloride	1.6274	1.7776	1.9771	2.1887	2.1901	2.1592		1.9867	12	AVG
1,3-Diethylbenzene	1.5244	1.5218	1.4839	1.7066	1.5177	1.4866		1.5401	5	AVG
1,4-Diethylbenzene			1.5465				i	1.6084	5	AVG
n-Butylbenzene	1.3705	1.1634	1.1752	1.3208	1.1464	1.2367		1.2355	7	AVG
1,2-Dichlorobenzene	1.3828	1.3600	1.3344	1.4545	1.3613	1.4337		1.3878	3	AVG
1,2-Diethylbenzene	1.3082	1.2814	1.2503	1.4366	1.2856	1.2554	1	1.3029	5	AVG
1,2-Dibromo-3-Chloropropane	0.2174	0.2234	0.2370	0.2458	0.2503	0.2415	l	0.2359		AVG
1,2,4-Trichlorobenzene	1 0500	0.9780	0.9881	1.0742	0.9881	1.0747	1	1.0191	5	AVG
Hexachlorobutadiene	0.0554	0.7552	0.3842	0 4100	0 3557	0.4012		0.3952	10	AVG
	2 0774	מבבני.	3.0829	3 2724	3 1537	2 9547	!	3.0623	5	AVG
Naphthalene			0.9692					0.9856	4	AVG
1,2,3-Trichlorobenzene			=====					=====		======
	0 2027	0 2729	0.3070	0 2727	0 24/5	0 2532	-	0.2754	7	AVG
Dibromofluoromethane	0.2823	10.2728	10.3070	10.2121	0.2043	0.2552]	0.2754	'	74.0
	1	l	I	I	i	l	1	I		l

6143

Minimum RRF for SPCC(#) = 0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %RSD for CCC(*) = 30%

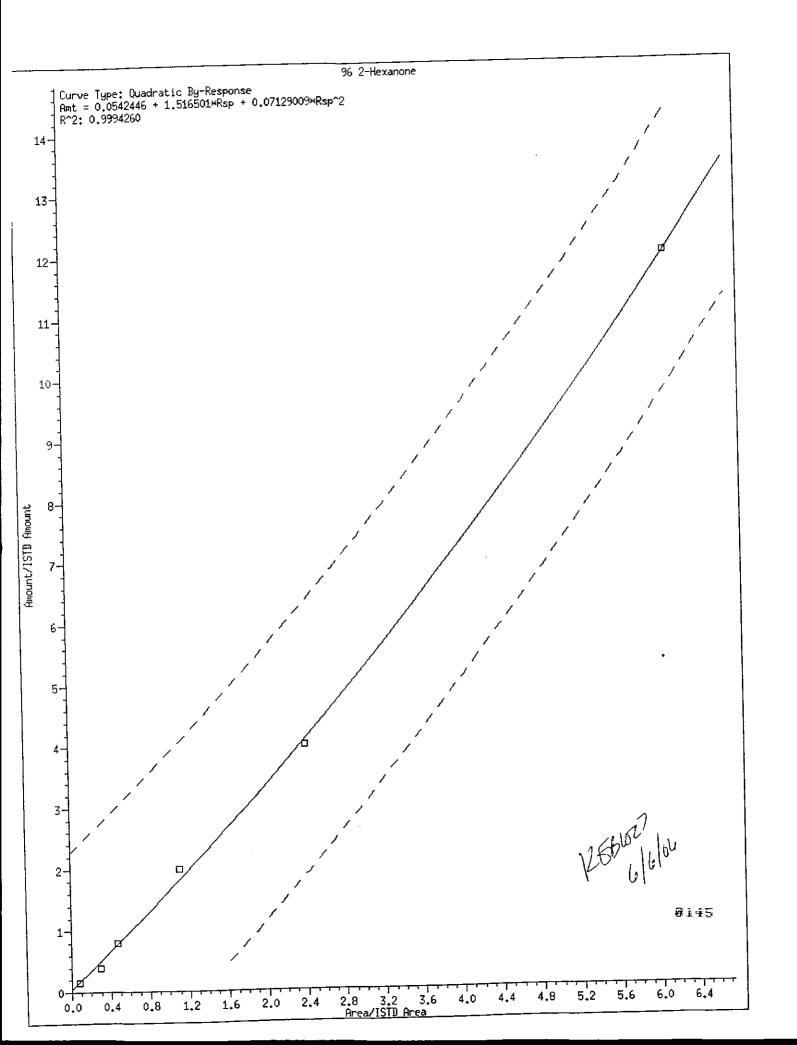
VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lap	Name:	Lancaster	Laboratories	Contract:		
Lab	Code:	LANCAS	Case No.:	SAS No.:	SDG No •	

Instrument ID: HP09915 . Calibration Date(s): 06/06/06

06/06/06

Heated Purge: (Y/N) Y Calibration Times: 17:25 20:30


Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .25

RRF 50= lu06i03.d RRF100= lu06i02.d RRF300= lu06i07.d RRF =

RRF 4	RRF 10	RRE 20	DDE 60		l <u></u>			%	CAL.
	•			RRF1UQ	RRF300	RRF	RRF	RSD	METHOD
		======		=====	======	=====	=====	=====	======
).2856	0.2824	0.3107	0.2788	0.2702	0.2592		0.2812	6	AVG
).0656	0.0659	0.0680	0.0614	0.0600	0.0571		0.0630	7	AVG
).0406	0.0416	0.0433	0.0389	0.0381	0.0365		0.0398	6	AVG
1.4986	1.4842	1.6120	1.4526	1.3822	1.2702		1.4500	яl	AVG
).9261	0.9335	1.0200	0.9120	0.8735	0.8088		0.9123	8	AVG
.5956	0.7554	0.7214	0.6876	0.5967	0.5161			14	AVG
.4872	0.6075	0.5817	0.5510	0.4791	0.4329			13	AVG
֝֝֝֝֝֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	0.0656 0.0406 1.4986 0.9261 0.5956	0.0656 0.0659 0.0406 0.0416 1.4986 1.4842 0.9261 0.9335 0.5956 0.7554	0.0656 0.0659 0.0680 0.0406 0.0416 0.0433 1.4986 1.4842 1.6120 0.9261 0.9335 1.0200 0.5956 0.7554 0.7214	0.0656 0.0659 0.0680 0.0614 0.0406 0.0416 0.0433 0.0389 1.4986 1.4842 1.6120 1.4526 0.9261 0.9335 1.0200 0.9120 0.5956 0.7554 0.7214 0.6876	0.0656 0.0659 0.0680 0.0614 0.0600 0.0406 0.0416 0.0433 0.0389 0.0381 1.4986 1.4842 1.6120 1.4526 1.3822 0.9261 0.9335 1.0200 0.9120 0.8735 0.5956 0.7554 0.7214 0.6876 0.5967	0.0656 0.0659 0.0680 0.0614 0.0600 0.0571 0.0406 0.0416 0.0433 0.0389 0.0381 0.0365 1.4986 1.4842 1.6120 1.4526 1.3822 1.2702 0.9261 0.9335 1.0200 0.9120 0.8735 0.8088 0.5956 0.7554 0.7214 0.6876 0.5967 0.5161	0.0406 0.0416 0.0433 0.0389 0.0381 0.0365 0.4986 1.4842 1.6120 1.4526 1.3822 1.2702 0.9261 0.9335 1.0200 0.9120 0.8735 0.8088 0.5956 0.7554 0.7214 0.6876 0.5967 0.5161	0.0656 0.0659 0.0680 0.0614 0.0600 0.0571 0.0630 0.0406 0.0416 0.0433 0.0389 0.0381 0.0365 0.0398 0.4986 1.4842 1.6120 1.4526 1.3822 1.2702 1.4500 0.9261 0.9335 1.0200 0.9120 0.8735 0.8088 0.9123 0.5956 0.7554 0.7214 0.6876 0.5967 0.5161 0.6455	0.0656 0.0659 0.0680 0.0614 0.0600 0.0571 0.0630 7 0.0406 0.0416 0.0433 0.0389 0.0381 0.0365 0.0398 6 1.4986 1.4842 1.6120 1.4526 1.3822 1.2702 1.4500 8 0.9261 0.9335 1.0200 0.9120 0.8735 0.8088 0.9123 8

6144

Minimum RRF for SPCC(#) = 0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %RSD for CCC(*) = 30%

Internal Standard Area and Retention Time Summary

Initial Calibration Standards:

```
/chem/HP09915.i/06jun06b.b/lu06i02.d VSTD100
/chem/HP09915.i/06jun06b.b/lu06i03.d VSTD050
/chem/HP09915.i/06jun06b.b/lu06i04.d VSTD020
/chem/HP09915.i/06jun06b.b/lu06i06.d VSTD004
/chem/HP09915.i/06jun06b.b/lu06i07.d VSTD300
/chem/HP09915.i/06jun06b.b/lu06i08.d VSTD010
```

Area Summary

File ID:

========

	_		lu06i04.d	1u06i06.d	lu06i07.d	lu06i08.d	Avg. Area	%RSD	In Spec
Internal Standard Name	lu06i02.d	100103.4			###=#=##=##	========	=========	======	======================================
=======================================	=======================================				270779	268963	266527	3	Yes
t-Butyl Alcohol-d10	268922	264534	275347	250616		1301000	1297164	2	Yes
Fluorobenzene	1300752	1287617	1334178	1264451	1294988	946264	947972	2	Yes
Chlorobenzene-d5	943665	933726	973594	919754	970826	•	538915	4	Yes
	537769	526370	545338	513004	579026	531981	228212	7	
1,4-Dichlorobenzene-d4	337703								

RRSD of internal standard area is flagged out of spec if greater than 30.

RT Summary

File ID:

Internal Standard Name lu06i02.d lu06i03.d lu06i04.d lu06i06.d lu06i07.d lu06i08.d Avg. RT

t-Butyl Alcohol-dl0 4.086 4.083 4.089 4.080 4.086 4.076 4.083

Fluorobenzene 7.562 7.562 7.565 7.562 7.562 7.562 7.562

Chlorobenzene-d5 11.063 11.063 11.063 11.063 11.063 11.063

1,4-Dichlorobenzene-d4 12.941 12.941 12.938 12.941 12.941 12.941 12.940

^{*} indicates the retention time is greater than 30 seconds from the average RT.

Y (x10^7) 2 2 2 4 2.3 5 1.7 1,8 1,2 μ Έ 1.0 ٠. 4. ្ 0.3 Client ID: VSTD300 Column phase: DB-624 Purge Volume: 5.0 Sample Info: VSTD300;VSTD300;1;1;;; -t-Butyl Alcohol-d10+ -Dibromofluoromethane(mz11+ /chem/HP09915.i/06jun06b.b/lu06107.d <u>-1,2-Dichloroethane-d4(mz1+</u> -Fluorobenzene+ Φ Operator: KEB01027 Column diameter: 0.25 ø -Toluene-d8(mz100)+ 10 -Chlorobenzene-d5+ # -4-Bromofluorobenzene(mz17+ 14 15-E

Min

Variation 1/2

Instrument: HP09915.i

Date : 06-JUN-2006 19:40

Data File: /chem/HP09915.i/06jun06b.b/lu06i07.d

Target Revision 3.5

Instrument ID: HP09915.i hata File: /chem/HP09915.i/06jun06b.b/lu06i07.d Analyst ID: KEB01027 injection date and time: 06-JUN-2006 19:40

1ethod used: /chem/HP09915.i/06jun06b.b/L8260W.m Sublist used: 8260WI+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 06-Jun-2006 20:04 keb01027

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
		===== 1.877	=== = = 85	2425345	262.839
1) Dichlorodifluoromethane	(1)	2.044	50	2466663	272.695
2) Chloromethane	(1)	2.044	62	2202835	270.475
3) Vinyl Chloride	(1)		94	1383194	259.580
6) Bromomethane	(1)	2.478	64	1067496	249.799
7) Chloroethane	(1)	2.572	101	2511832	263.394
8) Trichlorofluoromethane	(1)	2.880	59	1400037	271.149
10) Ethyl Ether	(1)	3.134	5 <i>5</i>	4782861	2400.019
15) Acrolein	(1)	3.289	96	1776448	311.750
16) 1,1-Dichloroethene	(1)	3.424	101	1914265	320.305
17) Freon 113	(1)	3.449 3.462	58	655857	557.281
18) Acetone	(1)		142	3403812	317.517
20) Methyl Iodide	(1)	3.617	45	1192700M	1412.009
21) 2-Propanol	(1)	3.633 3.713	76	6706663	316.971
22) Carbon Disulfide	(1)	3.713	41	3559940	287.557
23) Allyl Chloride	(1)		43	2478129	280.674
25) Methyl Acetate	(1)	3.896 4.044	84	2057009	291 .7 99
26) Methylene Chloride	(1)	4.044	65	270779	250.000
27)*t-Butyl Alcohol-d10	(4)	4.195	59	1792099	1400.024
28) t-Butyl Alcohol	(4)	4.195	53	1276527	283.519
29) Acrylonitrile	(1)	4.452	96	1964594	312.559
30) trans-1,2-Dichloroethene	(1)	4.452	73	6512300	309.747
31) Methyl Tertiary Butyl Ether	(1)	4.465	, 5 57	3140005	331.840
33) n-Hexane	(1	4.00/	96	4076053	623.849
40) 1,2-Dichloroethene (total)	(1)	5.096	63	3829431	309.654
36) 1,1-Dichloroethane	(1)	5.218	45	7924216	308.411
37) di-Isopropyl Ether	(1)	5.210	53	3305818	324.230°
39) 2-Chloro-1,3-Butadiene	(1)	5.761	59	6723628	315,567
41) Ethyl t-Butyl Ether	(1)	5.957	96	2111459	311.290
42) cis-1,2-Dichloroethene	(1)	5.970	72	832701	566.748
43) 2-Butanone	(1)	5.960	77	2900425	323.674
44) 2,2-Dichloropropane	(1)			2610273	1477.818
45) Propionitrile	(1)	6.054 6.279		3113249	739.804
46) Methacrylonitrile	(1)	6.279		1022575	289.790
47) Bromochloromethane	(1)	0,290	120		

M = Compound was manually integrated.

^{*} = Compound is an internal standard.

Target Revision 3.5

Data File: /chem/HP09915.i/06jun06b.b/lu06i07.d Instrument ID: HP09915.i injection date and time: 06-JUN-2006 19:40 Analyst ID: KEB01027

fethod used: /chem/HP09915.i/06jun06b.b/L8260W.m Sublist used: 8260WI+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 06-Jun-2006 20:04 keb01027

	I.S.				Conc.
Compounds	Ref.	RT	QIon	Area	(on column)
======================================	======	=====	==== =	=========	=======================================
48) Tetrahydrofuran	(1)	6.359	42	2487158	566.466
49) Chloroform	(1)	6.417	83	3549948	311.032
54) 1,1,1-Trichloroethane	(1)	6.674	97	3116248	323.005
55) Cyclohexane	(1)	6.764	5 6	3943841	334.085
58) 1,1-Dichloropropene	(1)	6.903	75	2792999	314.108
59) Carbon Tetrachloride	(1)	6.909	117	2848039	331.189
60) Isobutyl Alcohol	(1)	7.076	41	1932637	3559.898
	(1)	7.186	78	8200714	306.702
	(1)	7.205	62	3164356	303.919
	(1)	7.353	73	6004247	319.399
	(1)	7.568	100	409221	329.488
69) n-Heptane 70)*Fluorobenzene	(1)	7.562	96	1294988	50.000
	(1)	7.970	56	3096003	7464.885
72) n-Butanol 73) Trichloroethene	(1)	8.050	95	2149125	312.432
<u>_</u>	(1)	8.340	63	2392098	309.916
77) 1,2-Dichloropropane	(1)	8.314	83	3193597	311.373
74) Methylcyclohexane	(1)	8.507	69	2198325	310.944
80) Methyl Methacrylate 79) Dibromomethane	(1)	8.491	93	1505557	309.569
	(1)	8.513	88	392318M	3630.242
81) 1,4-Dioxane 82) Bromodichloromethane	(1)	8.700	83	2844681	326.452
•	(1)	8.993	41	1909601	591.301
83) 2-Nitropropane 84) 2-Chloroethyl Vinyl Ether	(1)	9.099	63	1838995	310.919
	(1)	9.279	75	3785847	324.789
·	(1)	9.468	43	7612200	529.053
	(2)	9.677	92	5117247	306.623
90) Toluene 91) trans-1,3-Dichloropropene	(2)	9.919	75	3410499	318.213
91) trans-1,3-Dichloropropene	(2)	10.028	69	3752237	308.325
92) Ethyl Methacrylate 93) 1,1,2-Trichloroethane	(2)	10.111	97	2004161	297.917
93) 1,1,2-Trichloroethane	(2)	10.269		2280724	321.021
94) Tetrachloroethene	(2)	10.285		3536091	289.012
95) 1,3-Dichloropropane	(2)	10.372		5935319	510.194
96) 2-Hexanone	(2)	10.513		2450057	325.878
98) Dibromochloromethane	(2)	10.626	107	2324729	304.884
100) 1,2-Dibromoethane	(2)	11.063	117	970826	50.000
101) *Chlorobenzene-d5	(2)	11.000	<u> </u>	3,0020	

M = Compound was manually integrated.

^{* =} Compound is an internal standard.

Target Revision 3.5

Instrument ID: HP09915.i Data File: /chem/HP09915.i/06jun06b.b/lu06i07.d Analyst ID: KEB01027 injection date and time: 06-JUN-2006 19:40

1ethod used: /chem/HP09915.i/06jun06b.b/L8260W.m Sublist used: 8260WI+CYC

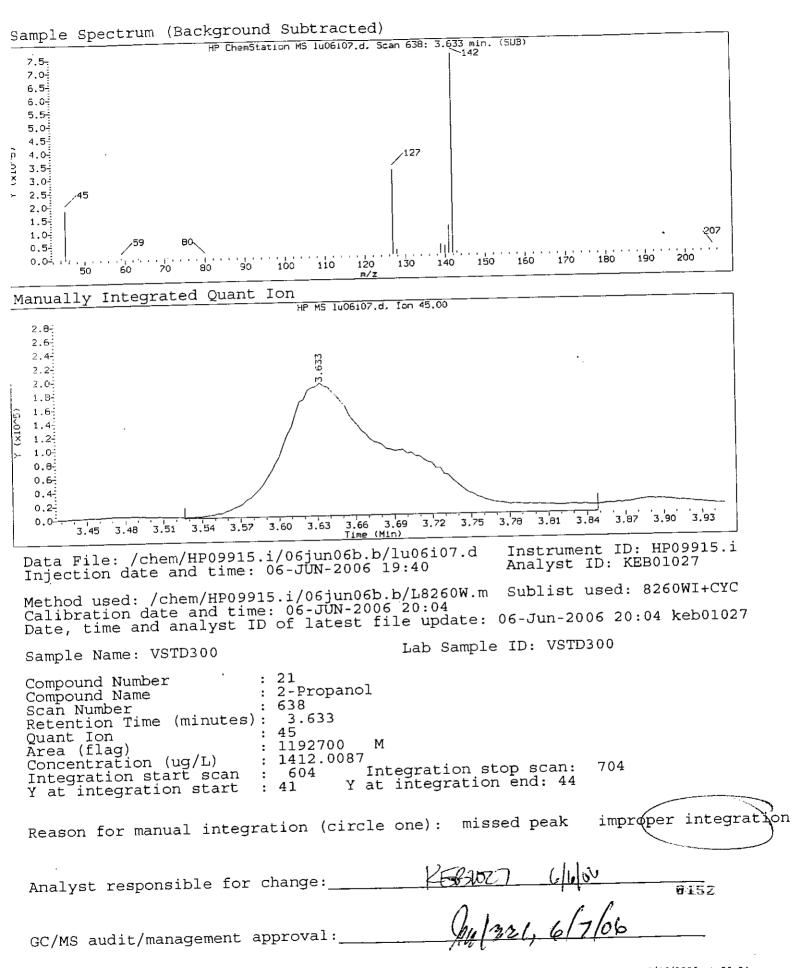
Calibration date and time: 06-JUN-2006 17:02

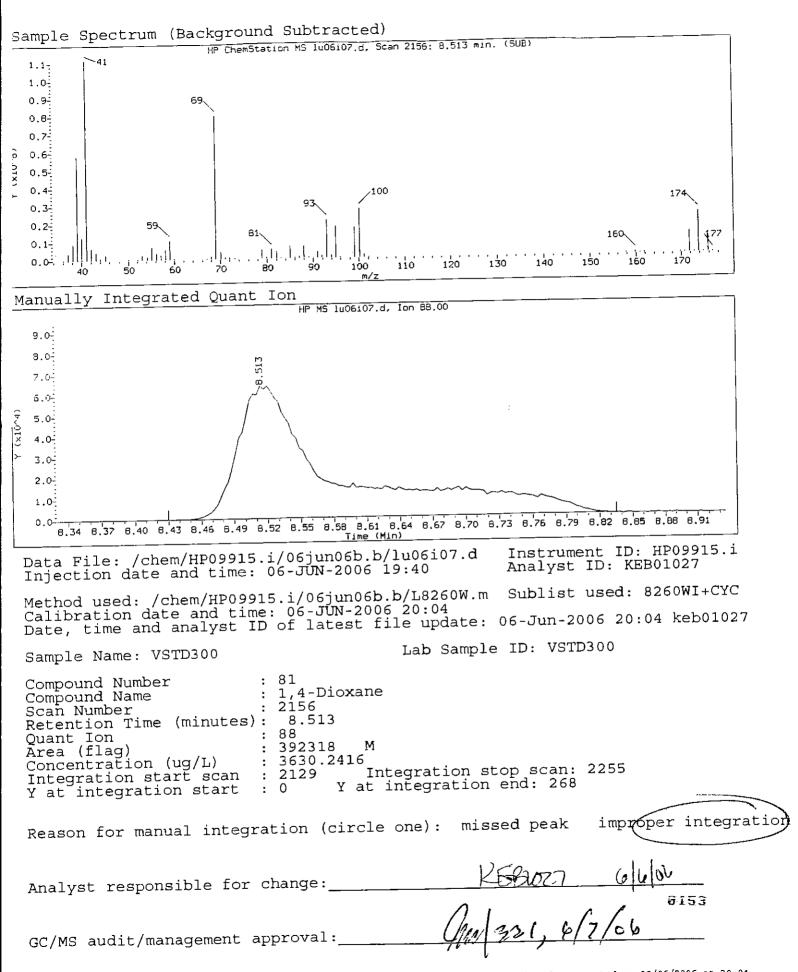
Date, time and analyst ID of latest file update: 06-Jun-2006 20:04 keb01027

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
Compounds ====================================		11.089 11.163 11.189 11.291 11.632 11.642 11.796 11.935 12.012 12.163 12.208 12.185 12.201 12.262 12.336 12.391 12.417 12.642 12.664 12.664 12.906 12.906 12.941 12.960 12.989 13.118 13.179 13.198 13.230 13.266		### ### ### ### ### ### ### ### ### ##	300.955 317.802 301.145 313.141 615.735 302.593 308.869 337.459 313.023 3887.384 267.229 630.363 296.578 263.192 300.105 306.761 296.685 311.749 304.918 293.373 318.836 315.215 300.796 50.000 300.196 284.329 308.100 285.733 282.289 294.765 301.256 284.634
141) 1,2-Dibromo-3-Chloropropane	(3)	13.767	75	839013	287.942

Target Revision 3.5

Data File: /chem/HP09915.i/06jun06b.b/lu06i07.d Instrument ID: HP09915.i injection date and time: 06-JUN-2006 19:40 Analyst ID: KEB01027


fethod used: /chem/HP09915.i/06jun06b.b/L8260W.m Sublist used: 8260WI+CYC


Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 06-Jun-2006 20:04 keb01027

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
	=====	=====	=====	==========	=======================================
142) 1,2,4-Trichlorobenzene	(3)	14.327	180	3733786	304.953
143) Hexachlorobutadiene	(3)	14.426	225	1393883	296.103
	(3)	14.494	128	10265215	276.378
144) Naphthalene 145) 1,2,3-Trichlorobenzene	(3)	14.651	180	3420477	288.435
145) 1,2,3-111CH1O1ODeH2CHC	(1)	6.632	113	1967582	264.052
51) \$Dibromofluoromethane	(1)	6.632	111	2013768	264.624
52) \$Dibromofluoromethane(mz111)	(1)	7.099	102	443329	261.488
62)\$1,2-Dichloroethane-d4	• •	7.095	104	283729	264.899
61) \$1,2-Dichloroethane-d4 (mz104)	(1)		98	7398946	251.390
89)\$Toluene-d8	(2)	9.603		4711085	254.618
88)\$Toluene-d8(mz100)	(2)	9.603	100		227.681
113)\$4-Bromofluorobenzene	(2)	12.060	95	3006369	
112) \$4-Bromofluorobenzene (mz174)	(2)	12.060	174	2521637	235.835

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Instrument ID: HP09915.i Data File: /chem/HP09915.i/06jun06b.b/lu06i02.d Analyst ID: KEB01027 injection date and time: 06-JUN-2006 17:25

fethod used: /chem/HP09915.i/06jun06b.b/L8260W.m Sublist used: 8260WI+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 06-Jun-2006 18:12 keb01027

	I.S. Ref.	RТ	QIon	Area	Conc. (on column)
Compounds	======			========	==========
=======================================	(1)	1.884	85	939289	101.198
1) Dichlorodifluoromethane	(1)	2.038	50	891187	100.682
2) Chloromethane	(1)	2.170	62	795269	100.530
3) Vinyl Chloride	(1)	2.478	94	527609	105.711
6) Bromomethane	(1)	2.572	64	414573	104.275
7) Chloroethane	(1)	2.835	101	964877	102.099
8) Trichlorofluoromethane	(1)	3.141	59	550663	102.463
10) Ethyl Ether	(1)	3.289	56	2113089	1150.066
15) Acrolein	(1)	3.427	96	588237	99.297
16) 1,1-Dichloroethene	(1)	3.456	101	614049	96.219
17) Freon 1 13	(1)	3.475	58	232766	201.400
18) Acetone	(1)	3.623	142	1100930	100.099
20) Methyl Iodide	(1)	3.633	45	404441	498.627
21) 2-Propanol	(1)	3.720	76	2207769	99.045
22) Carbon Disulfide	(1)	3.887	41	1243537	96.929
23) Allyl Chloride	(1)	3.900	43	898397	98.77 4
25) Methyl Acetate	(1)	4.051	84	680690	99.262
26) Methylene Chloride	(4)	4.086	65	268922	250.000
27) *t-Butyl Alcohol-d10	(4)	4.195	59	626344	508.248
28) t-Butyl Alcohol	(1)	4.398	53	444998	100.490
29) Acrylonitrile	(1)	4.462	96	648380	99.190
30) trans-1,2-Dichloroethene		4.465	73	2167301	100.214
31) Methyl Tertiary Butyl Ether	(1)	4.896	57	922953	91.457
33) n-Hexane	(1)		96	1344929	198.709
40) 1,2-Dichloroethene (total)	(1)	5.099	63	1271146M	99.034
36) 1,1-Dichloroethane	(1)	5.221	45	2664305	99.347
37) di-Isopropyl Ether	(1)	5.244	53	1087319	98.351
39) 2-Chloro-1,3-Butadiene	(1)	5.761	59	2215109	99.401
41) Ethyl t-Butyl Ether	(1)	5.961	96	696549	99.519
42) cis-1,2-Dichloroethene	(1)	5.973	72	293630	205.583
43) 2-Butanone	(1)	5.967		949523	99.109
44) 2,2-Dichloropropane	(1)	6.054		880555	498.316
45) Propionitrile	(1)	6.276		1062162	250.164
46) Methacrylonitrile	(1)	6.295		355237	98.284
47) Bromochloromethane	(+)	0.200			

M = Compound was manually integrated.

^{* =} Compound is an internal standard.

Target Revision 3.5

Instrument ID: HP09915.i hata File: /chem/HP09915.i/06jun06b.b/lu06i02.d Analyst ID: KEB01027 Injection date and time: 06-JUN-2006 17:25

fethod used: /chem/HP09915.i/06jun06b.b/L8260W.m Sublist used: 8260WI+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 06-Jun-2006 18:12 keb01027

	I.S.	RT	QIon	Area	Conc. (on column)
Compounds	Ref.	K1 =≠====	-	=======================================	=======================================
======================================	====== (1)	6.359	42	878197	203.027
48) Tetrahydrofuran	(1)	6.414	83	1167904	98.862
49) Chloroform	(1)	6.681	9 7	1000666	97.853
54) 1,1,1-Trichloroethane	(1)	6.764	56	1205664	93.507
55) Cyclohexane	(1)	6.906	75	915559	97.629
58) 1,1-Dichloropropene	(1)	6.909	117	893924	96.928
59) Carbon Tetrachloride	(1)	7.073	41	687939	1282.769
60) Isobutyl Alcohol	(1)	7.186	78	2718099	98.841
63) Benzene		7.202	62	1059228	98.989
64) 1,2-Dichloroethane	(1) (1)	7.353	73	1954516	99.419
67) t-Amyl Methyl Ether	(1)	7.568	100	114006	88.871
69) n-Heptane	(1)	7.562	96	1300752	50.000
70) *Fluorobenzene	(1)	7.967	56	1064572	2577.176
72) n-Butanol	(1)	8.054	95	697718	97.918
73) Trichloroethene		8.340	63	799046	99.216
77) 1,2-Dichloropropane	(1)	8.311	83	1022691	93.398
74) Methylcyclohexane	(1) (1)	8.504	69	729329	99.356
80) Methyl Methacrylate	(1)	8.488	93	495555	99.420
79) Dibromomethane	(1)	8.520	88	134474	1256.674
81) 1,4-Dioxane	(1)	8.700	83	911457	98.453
82) Bromodichloromethane	(1)	8.989	41	660443	203.326
83) 2-Nitropropane	(1)	9.099	63	636994	99,220
84) 2-Chloroethyl Vinyl Ether		9.279	75	1228726	98.969
85) cis-1,3-Dichloropropene	(1)	9.468	43	2832583	209.661
87) 4-Methyl-2-Pentanone	(1)	9.400	92	1644686	98.509
90) Toluene	(2)	9.915	75	1109585	100.245
91) trans-1,3-Dichloropropene	(2)	10.025	69	1238658	100.460
92) Ethyl Methacrylate	(2)	10.023	97	651566	100.185
93) 1,1,2-Trichloroethane	(2)	10.112	166	677649	96.325
94) Tetrachloroethene	(2)	10.285	76	1195446	100.477
95) 1,3-Dichloropropane	(2)	10.265		2263790	217.168
96) 2-Hexanone	(2)	10.513	129	763553	99.482
98) Dibromochloromethane	(2)	10.513		752752	100.041
100) 1,2-Dibromoethane	(2)	11.063		943665	50.000
101) *Chlorobenzene-d5	(2)	11.003	11/	713003	

⁰¹⁵⁶

Target Revision 3.5

Instrument ID: HP09915.i Data File: /chem/HP09915.i/06jun06b.b/lu06i02.d Analyst ID: KEB01027 Injection date and time: 06-JUN-2006 17:25

Method used: /chem/HP09915.i/06jun06b.b/L8260W.m Sublist used: 8260WI+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 06-Jun-2006 18:12 keb01027

Lab Sample ID: VSTD100 Sample Name: VSTD100

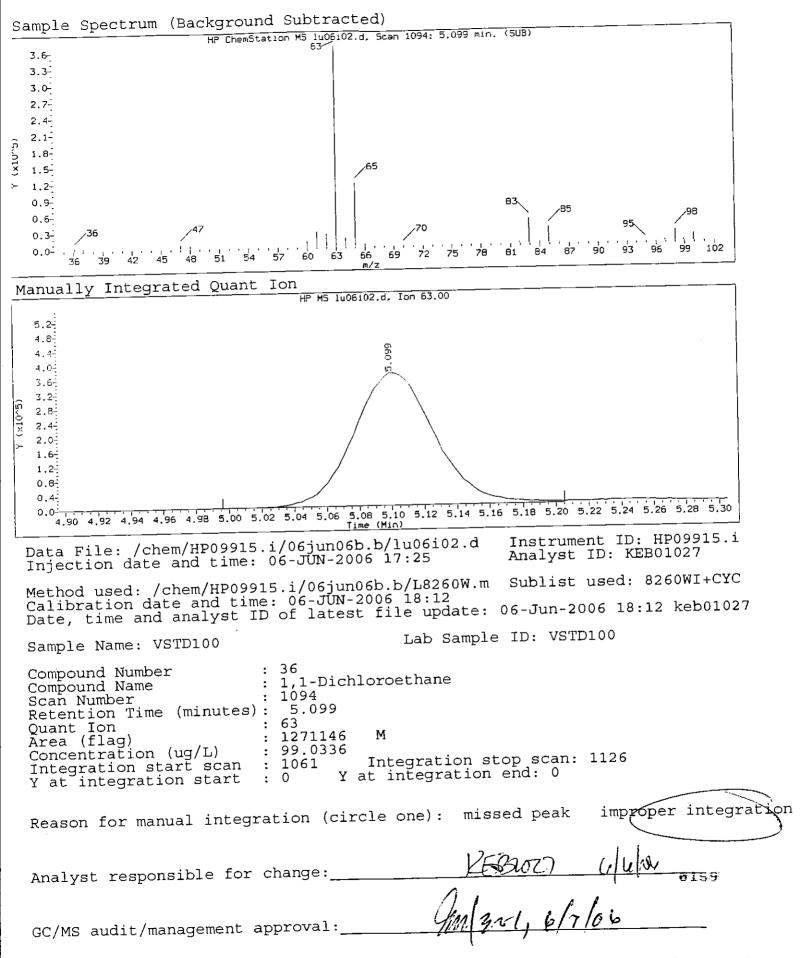
Ref. RT QIon Area (on column)		I.S.				Conc.
102) Chlorobenzene (2) 11.089 112 1867024 98.869 103) 1,1,1,2-Tetrachloroethane (2) 11.163 131 667799 98.220 104 Ethylbenzene (2) 11.189 91 3113261 97.593 105 m+p-Xylene (2) 11.292 106 1219761 96.575 106 Xylene (Total) (2) 11.632 106 2397853 194.750 107) o-Xylene (2) 11.632 106 1178092 98.175 107) o-Xylene (2) 11.642 104 2052528 99.330 108 Styrene (2) 11.642 104 2052528 99.330 109 110	ada		RT	QIon	Area	(on column)
102 Chlorobenzene (2) 11.089 112 1867024 98.869 103 1,1,1,2-Tetrachloroethane (2) 11.163 131 667799 98.220 104 Ethylbenzene (2) 11.189 91 3113261 97.593 105 105 106 2397853 194.750 106 2397853 194.750 107 0-Xylene (2) 11.632 106 1178092 98.175 107 0-Xylene (2) 11.642 104 2052528 99.330 108 Styrene (2) 11.796 173 601544 99.110 109 Bromoform (2) 11.796 173 601544 99.110 109				=====		
102) Chlorobelizeric 103) 1,1,1,2-Tetrachloroethane 104) Ethylbenzene 105) m+p-Xylene 106) Xylene (Total) 107) o-Xylene 108) Styrene 109) Bromoform 110 Isopropylbenzene 111) Cyclohexanone 112) Cyclohexanone 113) Cyclohexanone 114) trans-1,4-Dichloro-2-Butene 115) Isomobenzene 117) Bromobenzene 119) 1,2,3-Trichloropropane 120) n-Propylbenzene 121) 2-Chlorotoluene 122) 2-Chlorotoluene 122) 2-Chlorotoluene 123) 11.163 131 667799 98.220 11.189 91 3113261 97.593 104.750 1219761		(2)				
103) 1,1,1,2-lettachforosehams 104) Ethylbenzene 105) m+p-Xylene 106) Xylene (Total) 107) o-Xylene 108) Styrene 109) Bromoform 109) Bromoform 111) Isopropylbenzene 115) Cyclohexanone 116) 1,1,2,2-Tetrachloroethane 117) Cyclohexanone 118) trans-1,4-Dichloro-2-Butene 119) 1,2,3-Trichloropropane 120) n-Propylbenzene 121) 2-Chlorotoluene 122) 2-Chlorotoluene 123 11.189 91 3113261 97.593 96.575 106 2397853 194.750 107 2397853 194.750 108 2397853 194.750 117,1,632 106 1178092 98.175 194.750 107 2397853 194.750 108 2397853 194.750 117,1,632 106 1178092 98.175 117,1,632 106 1178092 98.175 118,1,642 104 2052528 99.330 105 2874940 94.850 121,1935 105 2874940 94.850 122,163 83 1125984 101.053 12.163 83 1125984 101.053 12.205 53 987308M 256.215 12.205 110 305205 101.095 12.207 120 815613 94.296 120 12.333 126 744687 96.751	102) Unioropelizene			131	667799	
104) Ethylbenzene (2) 11.292 106 1219761 96.575 105) m+p-Xylene (2) 106 2397853 194.750 107) o-Xylene (2) 11.632 106 1178092 98.175 108) Styrene (2) 11.642 104 2052528 99.330 109) Bromoform (2) 11.796 173 601544 99.110 109) Bromoform (2) 11.796 173 601544 99.110 11) Isopropylbenzene (2) 12.012 55 631848 1241.642 115) Cyclohexanone (2) 12.012 55 631848 1241.642 116) 1,1,2,2-Tetrachloroethane (3) 12.163 83 1125984 101.053 118) trans-1,4-Dichloro-2-Butene (3) 12.163 83 1125984 101.053 117) Bromobenzene (3) 12.185 156 814703 99.042 117) Bromobenzene (3) 12.205 53 987308M 256.215 119) 1,2,3-Trichloropropane (3) 12.201 110 305205 101.095 120 n-Propylbenzene (3) 12.259 120 815613 94.296 122) 2-Chlorotoluene (3) 12.333 126 744687 96.751	103) 1,1,1,2-Tetrachioroechane			91	3113261	
105) M+p-Xylene 106) Xylene (Total) 107) o-Xylene 108) Styrene 109) Bromoform 110) Isopropylbenzene 115) Cyclohexanone 116) 1,1,2,2-Tetrachloroethane 117) Bromobenzene 119) 1,2,3-Trichloropropane 119) 1,2,3-Trichloropropane 120) n-Propylbenzene 121) 2-Chlorotoluene 122) 2-Chlorotoluene 136				106	1219761	
106) Xylene (Total) 107) o-Xylene 108) Styrene 109) Bromoform 11) Isopropylbenzene 115) Cyclohexanone 116) 1,1,2,2-Tetrachloroethane 117) Bromobenzene 117) Bromobenzene 119) 1,2,3-Trichloropropane 120) n-Propylbenzene 121) 2-Chlorotoluene (2) 11.632 106 1178092 98.175 99.330 104 2052528 99.330 105 2874940 94.850 118) 119, 12,3-Trichloropropane 120) n-Propylbenzene 130 12.163 83 1125984 101.053 12.205 53 987308M 256.215 130 12.205 53 987308M 256.215 131 12.205 12.205 12.205 132 12.201 12.205 12.205 133 12.201 12.205 12.205 130 12.201 12.201 12.205 130 12.201 12.201 12.205 130 12.201 12.201 12.205 130 12.201 12.201 12.205 130 12.201 12.201 12.201 12.205 130 12.201 12.201 12.201 12.205 130 12.201	105) m+p-xylene				2 39785 3	
107) o-xylene 108) Styrene 109) Bromoform 111) Isopropylbenzene 115) Cyclohexanone 116) 1,1,2,2-Tetrachloroethane 117) Bromobenzene 119) 1,2,3-Trichloropropane 120) n-Propylbenzene 122) 2-Chlorotoluene (2) 11.642 104 2052528 99.330 (2) 11.796 173 601544 99.110 (2) 11.796 173 601544 99.110 (2) 11.796 173 601544 99.110 (3) 12.105 2874940 94.850 (4) 11.642 104 2052528 (2) 11.642 104 2052528 (3) 12.105 2874940 94.850 (4) 12.012 55 631848 1241.642 (5) 12.012 55 631848 1241.642 (6) 12.012 55 631848 1241.642 (7) 12.012 55 631848 1241.642 (8) 12.163 83 1125984 101.053 (9) 0.042 101.095 (10) 12.205 53 987308M 256.215 (11) 12.205 110 305205 101.095 (12) 1.642 104 2052528 99.330 (13) 12.163 874940 94.850 (14) 12.012 55 631848 1241.642 (15) 12.205 53 987308M 256.215 (16) 12.205 53 987308M 256.215 (17) 12.205 12.205 12.205 12.205 (2) 12.012 55 631848 1241.642 (3) 12.205 53 987308M 256.215 (3) 12.205 12.205 12.205 (3) 12.333 12.6 744687 96.751			11.632		1178092	
108) Styrene 109) Bromoform (2) 11.796 173 601544 99.110 111) Isopropylbenzene (2) 12.012 55 631848 1241.642 115) Cyclohexanone (3) 12.163 83 1125984 101.053 118) trans-1,4-Dichloro-2-Butene (3) 12.205 53 987308M 256.215 118) trans-1,4-Dichloro-2-Butene (3) 12.185 156 814703 99.042 117) Bromobenzene (3) 12.201 110 305205 101.095 119) 1,2,3-Trichloropropane (3) 12.259 120 815613 94.296 120) n-Propylbenzene (3) 12.333 126 744687 96.751					2052528	
109) Bromoform 111) Isopropylbenzene 115) Cyclohexanone 116) 1,1,2,2-Tetrachloroethane 118) trans-1,4-Dichloro-2-Butene 117) Bromobenzene 119) 1,2,3-Trichloropropane 120) n-Propylbenzene 122) 2-Chlorotoluene (2) 11.935 (2) 12.012 (3) 12.163 (3) 12.163 (3) 12.163 (3) 12.205 (3) 12.205 (3) 12.185 (3) 12.201 (4) 201 (4) 201 (4) 201 (5) 201 (6) 201	· · · · · · · · · · · · · · · · · · ·					99.110
111) Isopropylbenzene 115) Cyclohexanone 116) 1,1,2,2-Tetrachloroethane 118) trans-1,4-Dichloro-2-Butene 117) Bromobenzene 119) 1,2,3-Trichloropropane 120) n-Propylbenzene 122) 2-Chlorotoluene (2) 12.012 (3) 12.163 (3) 12.163 (3) 12.205 (3) 12.205 (3) 12.185 (3) 12.201 (4) 12.201 (5) 12.201 (6) 12.201 (6) 12.201 (7) 1						
115) Cyclonexanone 116) 1,1,2,2-Tetrachloroethane 118) trans-1,4-Dichloro-2-Butene 117) Bromobenzene 119) 1,2,3-Trichloropropane 120) n-Propylbenzene 122) 2-Chlorotoluene (3) 12.163 83 1125984 256.215 (3) 12.205 53 987308M 256.215 (3) 12.205 15 (3) 12.205 53 987308M 256.215 (3) 12.205 101.095 (3) 12.201 110 305205 (3) 12.259 120 815613 94.296 (3) 12.333 126 744687 96.751						1241.642
116) 1,1,2,2-letrachioroethans 118) trans-1,4-Dichloro-2-Butene 117) Bromobenzene 119) 1,2,3-Trichloropropane 120) n-Propylbenzene 121) 2-Chlorotoluene (3) 12.205 53 987308M 256.215 99.042 118 12.205 156 814703 99.042 119 1,2,3-Trichloropropane 120 815613 94.296 121 122 2-Chlorotoluene (3) 12.333 126 744687 96.751	115) Cyclonexanone				1125984	101.053
118) trans-1,4-Dientolo-2-Butche (3) 12.185 156 814703 99.042 17) Bromobenzene (3) 12.185 156 814703 99.042 119) 1,2,3-Trichloropropane (3) 12.201 110 305205 101.095 120) n-Propylbenzene (3) 12.259 120 815613 94.296 122) 2-Chlorotoluene (3) 12.333 126 744687 96.751 122) 2-Chlorotoluene	116) 1,1,2,2-Tetrachioroethane				987308M	256.215
117) Bromobenzene (3) 12.103 110 305205 101.095 119) 1,2,3-Trichloropropane (3) 12.201 110 305205 101.095 120) n-Propylbenzene (3) 12.259 120 815613 94.296 122) 2-Chlorotoluene (3) 12.333 126 744687 96.751 122) 2-Chlorotoluene		-			814703	99.042
119) 1,2,3-Trichloropropalle 120) n-Propylbenzene 122) 2-Chlorotoluene (3) 12.259 120 815613 94.296 (3) 12.333 126 744687 96.751 (3) 12.333 126 744687 94.430					305205	101.095
120) n-Propylbenzene (3) 12.233 126 744687 96.751 122) 2-Chlorotoluene (3) 12.333 126 744687 94.430	119) 1,2,3-Trichloropropane					94.296
122) 2-Chlorotoluene (3) 12 100 1204410 94 430						96.751
- '	122) 2-Chlorotoluene	(3)	12.391	120	1204419	94.430
123) 1,3,5-Trimethylbenzene (3) 12 414 126 775555 96.203						96.203
125) 4-Chlorotoluene (3) 12 642 134 519107 93.233	· _ •					93.233
126) tert-Butylbenzene (3) 12.665 167 528207 97.055						97.055
127) Pentachloroethane 95 665	127) Pentachloroethane	•				95.665
128) 1,2,4-Trimethylbenzene (3) 12.000 124 502554 92 000	128) 1,2,4-Trimethylbenzene					92.000
129) sec-Butylbenzene (3) 12 906 134 678219 92.044						92.044
130) p-Isopropyltoluene (3) 12.303 146 1476974 95 925	130) p-Isopropyltoluene					95.925
131) 1,3-Dichloropenzene (3/ 12.55) 150 527760 50 000	131) 1,3-Dichlorobenzene	•				50.000
132) *1,4-Dichioropenzene-u4 (3/ 12-3-146 1550862 96 023	132) *1,4-Dichlorobenzene-d4					96.023
133) 1.4-Dichlorobenzene (3) 12.33	133) 1,4-Dichlorobenzene					
134) 1,2,3-Trimethylbenzene (9, 370)	134) 1,2,3-Trimethylbenzene					99.370
135) Benzyl Chloride (3) 13.00 110 1632352 95 019	135) Benzyl Chloride					
136) 1,3-Diethylbenzene (3) 13.110 110 1700325 95 304	136) 1,3-Diethylbenzene					
137) 1,4-Diethylbenzene (3) 13.175 112 1232969 92.082						
138) n-Butylbenzene (3) 13.100	138) n-Butylbenzene					
139) 1,2-Dichlorobenzene (3) 13.237 110 12.23728 95 199	139) 1,2-Dichlorobenzene					
140) 1.2-Diethylbenzene (3) 13.200 175 260220 00 630	140) 1,2-Diethylbenzene					
141) 1,2-Dibromo-3-Chloropropane (3) 13.767 75 269228 99.639	141) 1,2-Dibromo-3-Chloropropane	(3)	13./6/	ر ,	207220	

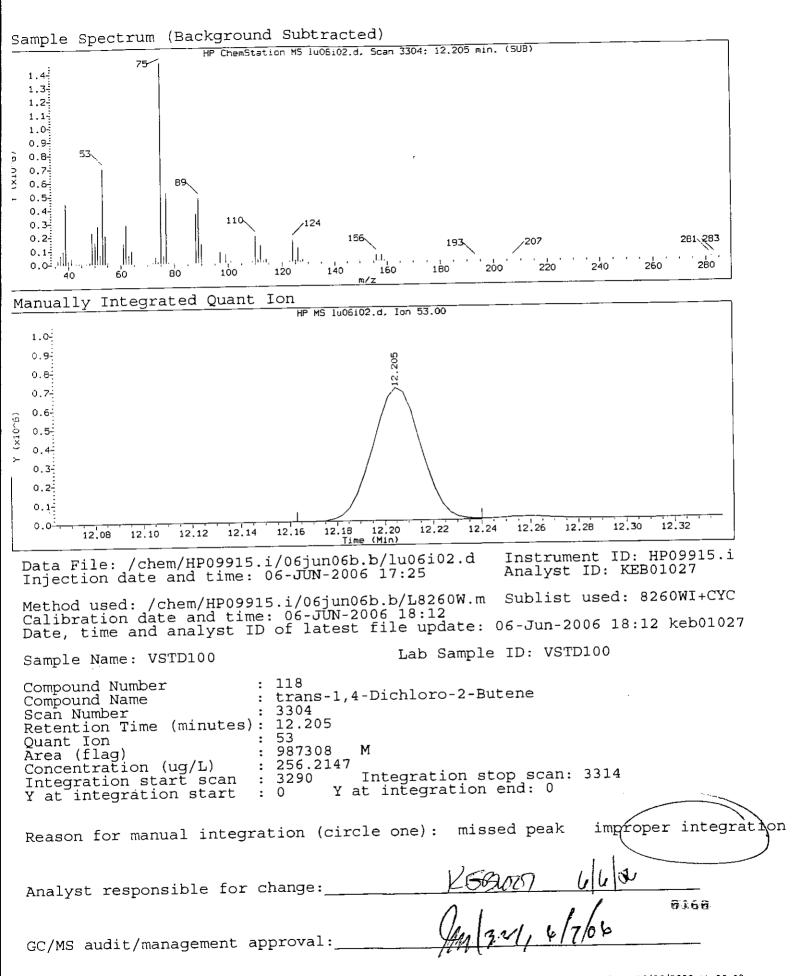
M = Compound was manually integrated.

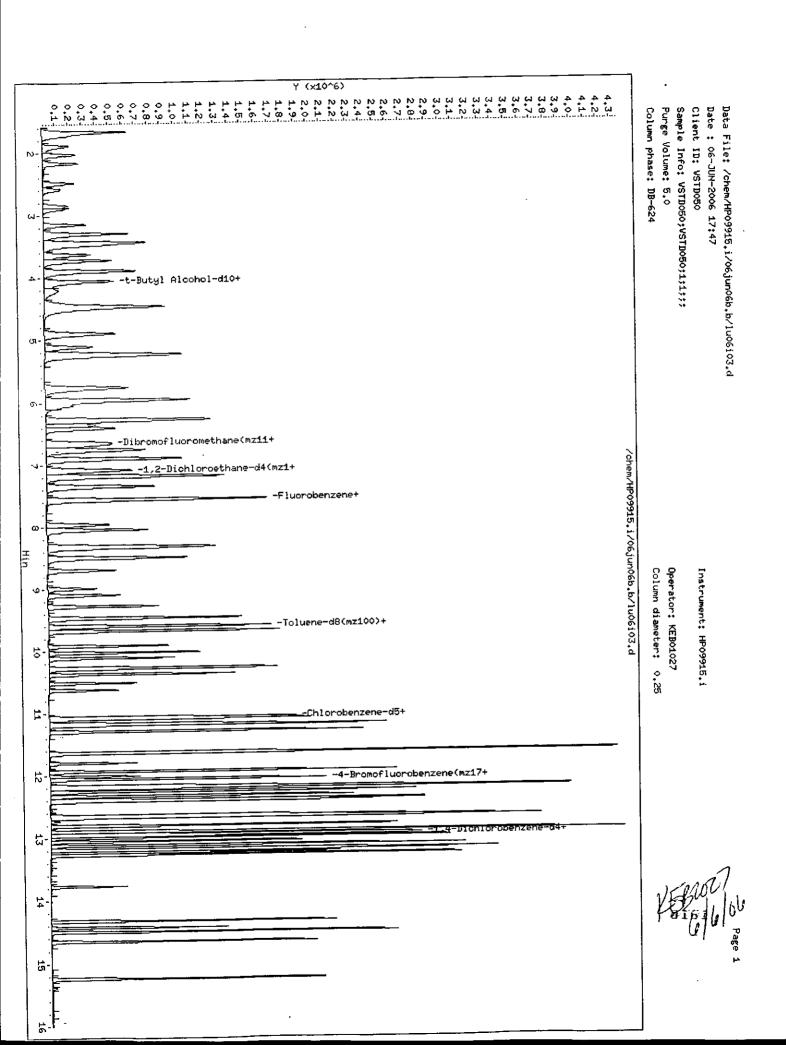
^{*} = Compound is an internal standard.

Target Revision 3.5

Data File: /chem/HP09915.i/06jun06b.b/lu06i02.d Instrument ID: HP09915.i Analyst ID: KEB01027 Injection date and time: 06-JUN-2006 17:25


Method used: /chem/HP09915.i/06jun06b.b/L8260W.m Sublist used: 8260WI+CYC


Calibration date and time: 06-JUN-2006 17:02


Date, time and analyst ID of latest file update: 06-Jun-2006 18:12 keb01027

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
142) 1,2,4-Trichlorobenzene 143) Hexachlorobutadiene 144) Naphthalene 145) 1,2,3-Trichlorobenzene 51) \$Dibromofluoromethane 52) \$Dibromofluoromethane (mz111) 62) \$1,2-Dichloroethane-d4 61) \$1,2-Dichloroethane-d4 89) \$Toluene-d8 88) \$Toluene-d8 (mz100) 113) \$4-Bromofluorobenzene 112) \$4-Bromofluorobenzene (mz174)	(3) (3) (3) (3) (1) (1) (1) (1) (2) (2) (2) (2)	14.324 14.426 14.494 14.648 6.636 6.639 7.099 7.105 9.600 9.600 12.057 12.060	180 225 128 180 113 111 102 104 98 100 95 174	1062698 382587 3391966 1034087 688182 702923 156140 99015 2608686 1648623 1126261 904191	95.229 90.508 100.451 97.996 102.284 102.120 102.764 102.867 102.554 102.801 100.554

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Instrument ID: HP09915.i Data File: /chem/HP09915.i/06jun06b.b/lu06i03.d Injection date and time: 06-JUN-2006 17:47 Analyst ID: KEB01027

Method used: /chem/HP09915.i/06jun06b.b/L8260W.m Sublist used: 8260WI+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 06-Jun-2006 18:12 keb01027

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
======================================	======				======================================
1) Dichlorodifluoromethane	(1)	1.887	85	468237	51.237
2) Chloromethane	(1)	2.028	5 0	448948	51.657
3) Vinyl Chloride	(1)	2.167	62	404516	52.210
6) Bromomethane	(1)	2.482	94	257953	53.868
7) Chloroethane	(1)	2.585	64	212006	
8) Trichlorofluoromethane	(1)	2.842	101	476738	50.961
10) Ethyl Ether	(1)	3.147	59	275103	51.711
15) Acrolein	(1)	3.295	56	956797	526.057
16) 1,1-Dichloroethene	(1)	3.433	96	294185	50.166
17) Freon 113	(1)	3.456	101	322470	51.045
	(1)	3.478	58	119852	104.759
	(1)	3.623	142	553 77 8	50.864
20) Methyl Iodide	(1)	3.639	45	202701	252.455
21) 2-Propanol 22) Carbon Disulfide	(1)	3.723	76	1103728	50.021
22) Carbon Disulfide	(1)	3.890	41	659472	51.927
23) Allyl Chloride	(1)	3.906	43	456583	50.711
25) Methyl Acetate	(1)	4.054	84	346114	50.987
26) Methylene Chloride	(4)	4.083	65	264534	250.000
27)*t-Butyl Alcohol-d10	(4)	4.199	59	301869	249.016
28) t-Butyl Alcohol	(1)	4.398	53	225386	51.416
29) Acrylonitrile	(1)	4.466	96	328932	50.834
30) trans-1,2-Dichloroethene		4.469	73	1069763	49.969
31) Methyl Tertiary Butyl Ether	(1)	4.900	5 7	508813	50.934
33) n-Hexane	(1)	4.500	96	679392	101.416
40) 1,2-Dichloroethene (total)	(1)	5.102	63	637255	50.154
36) 1,1-Dichloroethane	(1)	5.224	45	1325668	49.936
37) di-Isopropyl Ether		5.247		543210	49.636
39) 2-Chloro-1,3-Butadiene	(1)	5.765	59	1100057	49.867
41) Ethyl t-Butyl Ether	(1)	5.765		350460	50.583
42) cis-1,2-Dichloroethene	(1)			142851	101.037
43) 2-Butanone	(1)	5.974		474697	50.053
44) 2,2-Dichloropropane	(1)	5.974		431620	246.750
45) Propionitrile	(1)	6.060		523408	124.533
46) Methacrylonitrile	(1)	6.276		187834	52.498
47) Bromochloromethane	(1)	6.295	128	10/034	52.150

⁶¹⁵²

Target Revision 3.5

Instrument ID: HP09915.i Data File: /chem/HP09915.i/06jun06b.b/lu06i03.d Analyst ID: KEB01027 injection date and time: 06-JUN-2006 17:47

Method used: /chem/HP09915.i/06jun06b.b/L8260W.m Sublist used: 8260WI+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 06-Jun-2006 18:12 keb01027

	I.S.				Conc.
G-manda	Ref.	RT	QIon	Area	(on column)
Compounds	=====		=====	=======	=======================================
	(1)	6.363	42	434981	101.587
48) Tetrahydrofuran	(1)	6.417	83	584311	49.966
49) Chloroform	(1)	6.681	97	504149	49.803
54) 1,1,1-Trichloroethane	(1)	6.764	56	640666	50.195
55) Cyclohexane	(1)	6.906	75	469061	50.528
58) 1,1-Dichloropropene	(1)	6.916	117	452948	49.614
59) Carbon Tetrachloride	(1)	7.076	41	317146	597.400
60) Isobutyl Alcohol	(1)	7.189	78	1378620	50.643
63) Benzene	(1)	7.202	62	529354	49.975
64) 1,2-Dichloroethane	(1)	7.353	73	957806	49.217
67) t-Amyl Methyl Ether	(1)	7.572	100	64922	51.125
69) n-Heptane	(1)	7.562	96	1287617	50.000
70) *Fluorobenzene	(1)	7.967	56	477346	1167.374
72) n-Butanol	(1)	8.054	95	355645	50.420
73) Trichloroethene	(1)	8.343	63	397871	49.907
77) 1,2-Dichloropropane	(1)	8.317	83	561404	51 .7 93
74) Methylcyclohexane	(1)	8.507	69	357555	49.207
80) Methyl Methacrylate	(1)	8.491	93	243294	49.308
79) Dibromomethane	(1)	8.520	88	64642	610.249
81) 1,4-Dioxane	(1)	8.700	83	448474	48.937
82) Bromodichloromethane	(1)	8.989	41	320362	99.634
83) 2-Nitropropane	(1)	9.099	63	314292	49.454
84) 2-Chloroethyl Vinyl Ether	(1)	9,279	75	603300	49.089
85) cis-1,3-Dichloropropene	(1)	9.469	43	1341931	100.340
87) 4-Methyl-2-Pentanone	(2)	9.678	92	845052	51,154
90) Toluene	(2)	9.919	75	537469	49.074
91) trans-1,3-Dichloropropene	(2)	10.025		605716	49.649
92) Ethyl Methacrylate	(2)	10.112	97	322376	50.096
93) 1,1,2-Trichloroethane	(2)	10.269		357650	51.380
94) Tetrachloroethene	(2)	10.285		602235	51,156
95) 1,3-Dichloropropane	(2)	10.269		1027215	99.591
96) 2-Hexanone	(2)	10.510		371683	48.941
98) Dibromochloromethane	(2)	10.510		371240	49.863
100) 1,2-Dibromoethane	(2)	11.063		933726	50.000
101) *Chlorobenzene-d5	(4)	11.000	,	-	

⁶⁰¹⁰

Target Revision 3.5

Instrument ID: HP09915.i Data File: /chem/HP09915.i/06jun06b.b/lu06i03.d Analyst ID: KEB01027 injection date and time: 06-JUN-2006 17:47

fethod used: /chem/HP09915.i/06jun06b.b/L8260W.m Sublist used: 8260WI+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 06-Jun-2006 18:12 keb01027

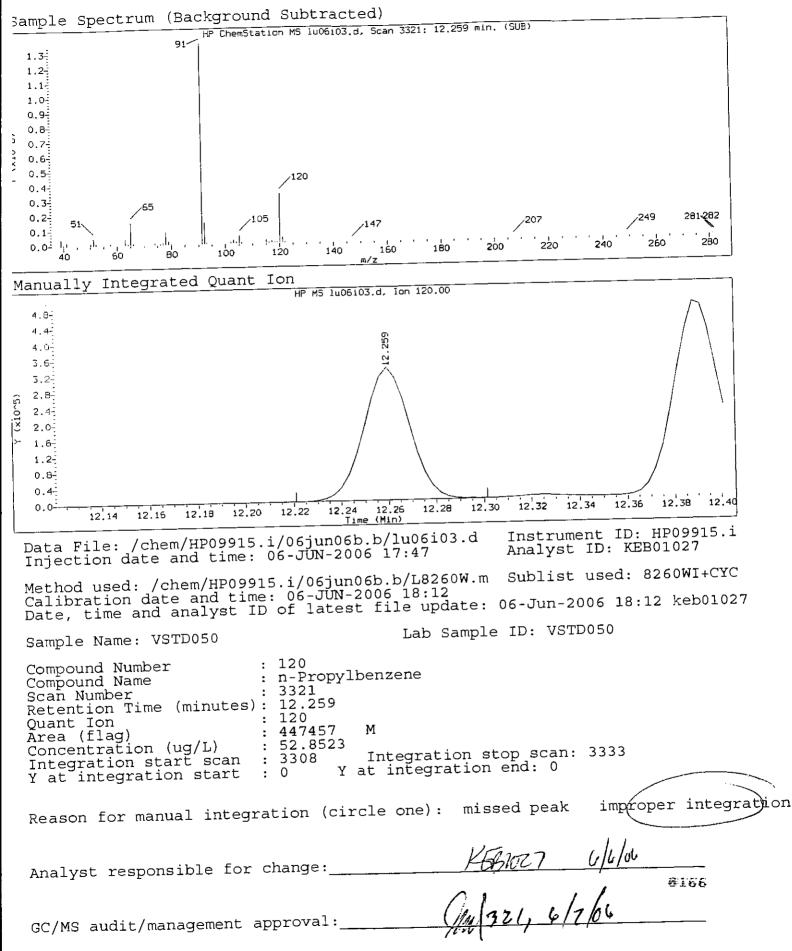
Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
102) Chlorobenzene 103) 1,1,1,2-Tetrachloroethane 104) Ethylbenzene 105) m+p-Xylene 106) Xylene (Total) 107) o-Xylene 108) Styrene 109) Bromoform 11) Isopropylbenzene 115) Cyclohexanone 116) 1,1,2,2-Tetrachloroethane 118) trans-1,4-Dichloro-2-Butene 119) 1,2,3-Trichloropropane 120) n-Propylbenzene 120) n-Propylbenzene 121) 2-Chlorotoluene 123) 1,3,5-Trimethylbenzene 125) 4-Chlorotoluene 126) tert-Butylbenzene 127) Pentachloroethane 128) 1,2,4-Trimethylbenzene 129) sec-Butylbenzene 130) p-Isopropyltoluene 131) 1,3-Dichlorobenzene 132)*1,4-Dichlorobenzene 133) 1,4-Dichlorobenzene 134) 1,2,3-Trimethylbenzene 135) Benzyl Chloride 136) 1,3-Diethylbenzene 137) 1,4-Diethylbenzene 138) n-Butylbenzene 139) 1,2-Dichlorobenzene	(2) (2) (2) (2) (2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3		112 131 106 106 106 107 105 105 106 106 106 107 105 106 106 107 107 108 108 109 119 119 119 119 119 119 119 119 119	958066 337737 1642790 644781 1263879 619098 1053519 289104 1563353 310439 559699 497225 418492 154433 447457M 393958 654175 416128 284795 272849 1382209 323801 374528 784921 526370 817403 643730 1152040 898280 934981 695209 765583 756164 129392	51.275 50.203 52.045 51.594 103.735 52.141 51.527 48.140 52.127 616.536 51.319 131.828 51.977 52.262 52.852 52.292 52.400 52.736 52.258 51.220 53.174 52.244 51.930 52.086 50.000 51.706 52.940 49.652 53.421 53.544 53.045 51.442 53.188 48.924
141) 1,2-Dibromo-3-Chiolopropane					

M = Compound was manually integrated.

 $[\]star$ = Compound is an internal standard.

Target Revision 3.5

Instrument ID: HP09915.i Data File: /chem/HP09915.i/06jun06b.b/lu06i03.d Analyst ID: KEB01027 injection date and time: 06-JUN-2006 17:47


fethod used: /chem/HP09915.i/06jun06b.b/L8260W.m Sublist used: 8260WI+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 06-Jun-2006 18:12 keb01027

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
142) 1,2,4-Trichlorobenzene 143) Hexachlorobutadiene 144) Naphthalene 145) 1,2,3-Trichlorobenzene 51) \$Dibromofluoromethane 52) \$Dibromofluoromethane (mz111) 62) \$1,2-Dichloroethane-d4 61) \$1,2-Dichloroethane-d4 89) \$Toluene-d8 88) \$Toluene-d8 (mz100) 113) \$4-Bromofluorobenzene 112) \$4-Bromofluorobenzene (mz174)	(3)	14.324	180	565440	51.767
	(3)	14.423	225	220569	53.310
	(3)	14.494	128	1722484	52.115
	(3)	14.648	180	540210	52.302
	(1)	6.642	113	351115	52.719
	(1)	6.639	111	359007	52.688
	(1)	7.102	102	79029	52.544
	(1)	7.099	104	50150	52.633
	(2)	9.600	98	1356348	53.889
	(2)	9.600	100	851512	53.662
	(2)	12.057	95	642030	57.931
	(2)	12.060	174	514503	57.538

^{\$ =} Compound is a surrogate standard.

Y (x10^6) 2 2 5 2 2 ü 1,4 بة ب 0.3-Date : 06-JUN-2006 18:10 Data File: /chem/HP09915.i/06jun06b.b/lu06i04.d Column phase: DB-624 Purge Volume: 5.0 Sample Info: VSTD020;VSTD020;1;1;;; Client ID: VSTD020 t-Butyl Alcohol-d10+ -Dibromofluoromethane(mz11+ /chem/HP09915.i/06jun06b.b/1u06i04.d -1,2-Dichloroethane-d4(mzi+ -Fluorobenzene+ æ Column diameter: 0.25 Operator: KEB01027 Instrument: HP09915.i -Toluene-d8(mz100)+ -Chlorobenzene-d5+ 1 --4-Bromofluorobenzene(mz17+ 12 1,4-Dichlorobenzene-d4+ 14 냥-

Target Revision 3.5

Instrument ID: HP09915.i Data File: /chem/HP09915.i/06jun06b.b/lu06i04.d Injection date and time: 06-JUN-2006 18:10 Analyst ID: KEB01027

Method used: /chem/HP09915.i/06jun06b.b/L8260W.m Sublist used: 8260WI+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 06-Jun-2006 18:31 keb01027

	I.S.				Conc.
Compounds	Ref.	RT	QIon	Area	(on column)
=======================================	===== =	=====		=======	=======================================
1) Dichlorodifluoromethane	(1)	1.887	85	184520	19.533
2) Chloromethane	(1)	2.019	50	183157	20.130
3) Vinyl Chloride	(1)	2.163	62	165106	20.260
6) Bromomethane	(1)	2.478	94	10947 5	21.021
7) Chloroethane	(1)	2.584	64	88204	21.198
8) Trichlorofluoromethane	(1)	2.845	101	191401	19.809
10) Ethyl Ether	(1)	3.147	59	104110	19.153
15) Acrolein	(1)	3.298	56	429006	220.038
16) 1,1-Dichloroethene	(1)	3.433	96	106440	18.078
17) Freon 113	(1)	3.462	101	112014	17.753
18) Acetone	(1)	3.491	58	46344M	39.317
20) Methyl Iodide	(1)	3.626	142	201199	18.331
21) 2-Propanol	(1)	3.642	45	164499	198.290
21) 2-Plopanol 22) Carbon Disulfide	(1)	3.726	76	392870	17.810
23) Allyl Chloride	(1)	3.893	41	240195	18.661
25) Mothyl Agetate	(1)	3.909	43	168079	18.474
25) Methyl Acetate 26) Methylene Chloride	(1)	4.057	84	130221	18.864
27) *t-Butyl Alcohol-d10	(4)	4.089	65	275347	250.000
2/) * t-Butyl Alcohol dio	(4)	4.205	59	247619	197.169
28) t-Butyl Alcohol	(1)	4.404	53	89654	19.803
29) Acrylonitrile 30) trans-1,2-Dichloroethene	(1)	4.465	96	117758	18.115
		4.469	73	396904	18.377
	(1)	4.900	5 7	175850	17.653
<pre>33) n-Hexane 40) 1,2-Dichloroethene (total)</pre>	(1)		96	245426	36.405
36) 1,1-Dichloroethane	(1)	5.105	63	231109	18.108
36) 1,1-Dichioloechanc	(1)	5.221		485952	18.197
37) di-Isopropyl Ether 39) 2-Chloro-1,3-Butadiene	(1)	5.247		188796	17.377
	(1)	5.764		402814	18.163
41) Ethyl t-Butyl Ether	(1)	5.961		127668	18.290
42) cis-1,2-Dichloroethene	(1)	5.980		58722	40.063
43) 2-Butanone	(1)	5.973		166703	17.633
44) 2,2-Dichloropropane	(1)	6.054		345777	193.002
45) Propionitrile	(1)	6.279		408246	95.232
46) Methacrylonitrile	(1)	6.295		68265	18.786
47) Bromochloromethane	(- /	0.233	-		

M = Compound was manually integrated.

^{*} = Compound is an internal standard.

Target Revision 3.5

Instrument ID: HP09915.i Data File: /chem/HP09915.i/06jun06b.b/lu06i04.d Analyst ID: KEB01027 Injection date and time: 06-JUN-2006 18:10

Method used: /chem/HP09915.i/06jun06b.b/L8260W.m Sublist used: 8260WI+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 06-Jun-2006 18:31 keb01027

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
======================================	=====	=====	=====	========	=======================================
	(1)	6.366	42	173558	39.336
48) Tetrahydrofuran 49) Chloroform	(1)	6.420	83	215184	18.271
54) 1,1,1-Trichloroethane	(1)	6.684	97	181107	17.877
55) Cyclohexane	(1)	6.761	5 6	217583	17.216
	(1)	6.909	75	168945	18.116
58) 1,1-Dichloropropene 59) Carbon Tetrachloride	(1)	6.919	117	161817	17.748
	(1)	7.073	41	269875	492.929
	(1)	7.186	78	509157	18.502
63) Benzene 64) 1,2-Dichloroethane	(1)	7.205	62	195836	18.337
3 1 -1 m-h-m	(1)	7.353	73	354964	18.147
	(1)	7.568	100	23566	18.391
69) n-Heptane 70)*Fluorobenzene	(1)	7.565	96	1334178	50.000
	(1)	7.964	56	405867	968.112
	(1)	8.054	95	131268	18.430
73) Trichloroethene 77) 1,2-Dichloropropane	(1)	8.343	63	145310	18.137
7/) 1,2-Dichioropropane	(1)	8.317	83	192232	17.756
74) Methylcyclohexane 80) Methyl Methacrylate	(1)	8.507	69	134537	18.358
80) Methyl Methacrylate	(1)	8.491	93	89905	18.132
79) Dibromomethane	(1)	8.517	88	52648	484.600
81) 1,4-Dioxane	(1)	8.700	83	161961	17.708
82) Bromodichloromethane	(1)	8.993	41	128086	38.822
83) 2-Nitropropane 84) 2-Chloroethyl Vinyl Ether	(1)	9.099	63	116372	18.202
84) 2-Chloroethyl Vinyl Ether	(1)	9.279	75	218916	17.817
85) cis-1,3-Dichloropropene	(1)	9.472	43	585972	41.690
87) 4-Methyl-2-Pentanone	(2)	9.681	92	312845	18.589
90) Toluene	(2)	9.919	75	195374	17.750
91) trans-1,3-Dichloropropene	(2)	10.025		225274	18.231
92) Ethyl Methacrylate	(2)	10.112		123731	18.807
93) 1,1,2-Trichloroethane	(2)	10.269		127880	18.159
94) Tetrachloroethene	(2)	10.285		228144	18.920
95) 1,3-Dichloropropane	(2)	10.372		457822	41.896
96) 2-Hexanone	(2)	10.513		136083	17.812
98) Dibromochloromethane	(2)	10.626		141065	18.596
100) 1,2-Dibromoethane	(2)	11.063		973594	50.000
101) *Chlorobenzene-d5	(2)				

⁰¹⁶⁹

Target Revision 3.5

Instrument ID: HP09915.i Data File: /chem/HP09915.i/06jun06b.b/lu06i04.d Analyst ID: KEB01027 Injection date and time: 06-JUN-2006 18:10

Method used: /chem/HP09915.i/06jun06b.b/L8260W.m Sublist used: 8260WI+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 06-Jun-2006 18:31 keb01027

a aunda	I.S. Ref.	RT	QIon	Area	Conc. (on column)
Combonings	=====				
Compounds ====================================	Ref. ===== (2) (2) (2) (2) (2) (2) (2) (2) (3) (3) (3) (3)	11.089 11.163 11.185 11.292 11.632 11.639 11.800 11.935 12.012 12.163 12.205 12.185 12.201	===== 112 131 91 106 106 106 104 173 105 55 83 53 156 110	======================================	
119) 1,2,3-Trichloropropane 120) n-Propylbenzene 122) 2-Chlorotoluene 123) 1,3,5-Trimethylbenzene 125) 4-Chlorotoluene 126) tert-Butylbenzene 127) Pentachloroethane 128) 1,2,4-Trimethylbenzene 129) sec-Butylbenzene 130) p-Isopropyltoluene 131) 1,3-Dichlorobenzene 132) *1,4-Dichlorobenzene 133) 1,4-Dichlorobenzene 134) 1,2,3-Trimethylbenzene 135) Benzyl Chloride 136) 1,3-Diethylbenzene 137) 1,4-Diethylbenzene 138) n-Butylbenzene 139) 1,2-Dichlorobenzene 140) 1,2-Diethylbenzene 141) 1,2-Dibromo-3-Chloropropane	(3) (3) (3) (3) (3) (3) (3) (3) (3) (3)	12.259 12.333 12.391 12.414 12.645 12.664 12.674 12.803 12.902 12.896 12.938 12.957 12.989 13.050 13.115 13.179 13.198 13.230 13.266 13.764	92 146 119	166443 147230 241016 153330 102932 96006 508779 116829 138021 293134 545338 311947 233016 431282 323686 337349 256345 291074 272734 51697	19.222 19.135 18.958 19.052 18.643 17.981 19.157 18.614 18.831 19.067 50.000 19.276 18.851 18.415 18.916 18.968 19.147 19.146 18.867 19.138

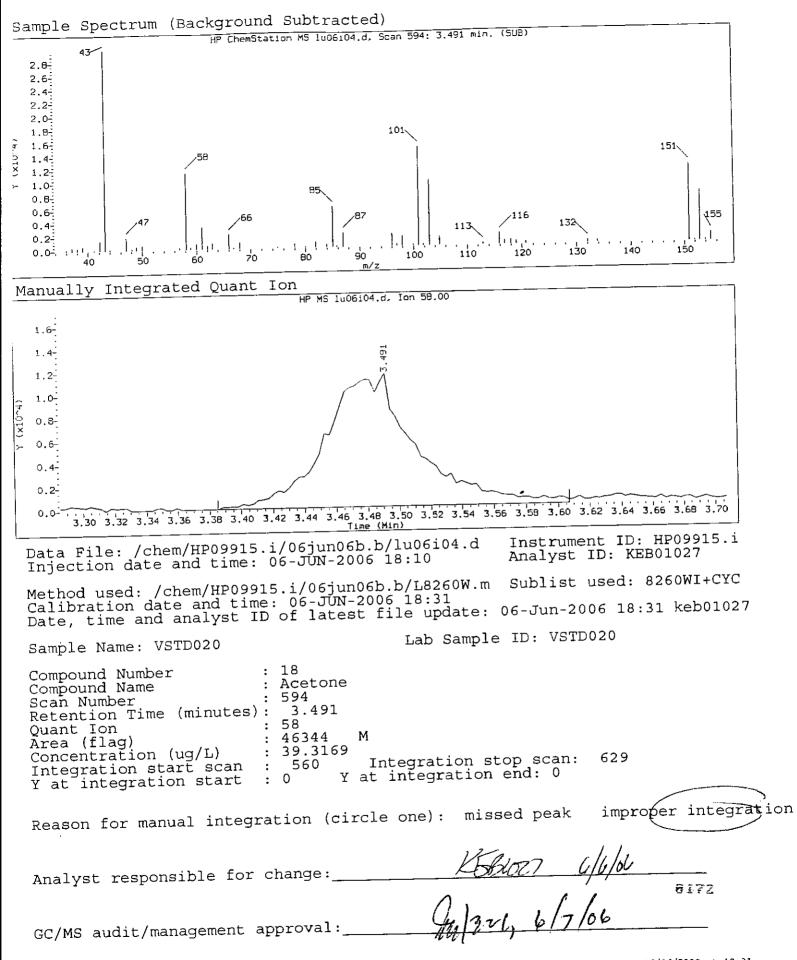
Target Revision 3.5

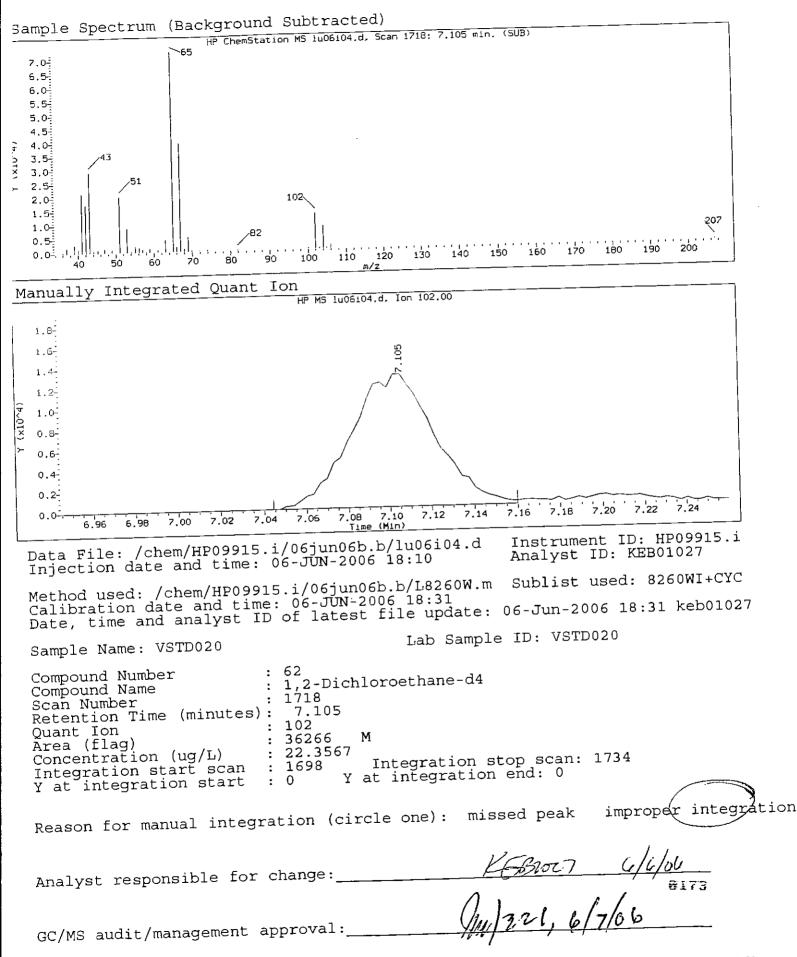
Data File: /chem/HP09915.i/06jun06b.b/lu06i04.d Injection date and time: 06-JUN-2006 18:10

Instrument ID: HP09915.i Analyst ID: KEB01027

Method used: /chem/HP09915.i/06jun06b.b/L8260W.m Sublist used: 8260WI+CYC

Calibration date and time: 06-JUN-2006 17:02 Date, time and analyst ID of latest file update: 06-Jun-2006 18:31 keb01027


Sample Name: VSTD020


Lab Sample ID: VSTD020

Compounds	I.S. Ref.	RT	QIon	Area =======	Conc. (on column)
142) 1,2,4-Trichlorobenzene 143) Hexachlorobutadiene 144) Naphthalene 145) 1,2,3-Trichlorobenzene 51) \$Dibromofluoromethane 52) \$Dibromofluoromethane (mz111) 62) \$1,2-Dichloroethane-d4 61) \$1,2-Dichloroethane-d4 (mz104 89) \$Toluene-d8 88) \$Toluene-d8 (mz100) 113) \$4-Bromofluorobenzene 112) \$4-Bromofluorobenzene (mz174)	(3) (3) (3) (3) (1) (1) (1) (1) (2) (2) (2) (2)	14.324 14.423 14.494 14.652 6.642 7.105 7.099 9.600 9.600 12.057 12.060	180 225 128 180 113 111 102 104 98 100 95 174	215535 83803 672497 211426 163834 165833 36266M 23085 627769 397225 280937 226518	19.276 19.661 19.728 19.818 22.680 22.507 22.357 22.434 22.803 22.863 23.068 23.057

M = Compound was manually integrated.

^{\$ =} Compound is a surrogate standard.

Y (x10^6) 2.0-1.1 Client ID: VSTD010 Date : 06-JUN-2006 20:30 Data File: /chem/HP09915.i/06jun06b.b/lu06i08.d Purge Volume: 5.0 Sample Info: VSTD010;VSTD010;1;1;;; Column phase: DB-624 t-Butyl Alcohol-d10+ -Dibromofluoromethane(mz11+ /chem/HP09915.i/06jun06b.b/1u06i08.d -1,2-Bichloroethane-d4(mz1+ – -Fluorobenzen**e**+ Min Column diameter: Operator: KEB01027 Instrument: HP09915.i Toluene-d8(mz100)+ -Chlorobenzene-d5+ -4-Bromofluorobenzene(mz17+ 1,4-Dichlorobenzene-d4+ 片.

Target Revision 3.5

Data File: /chem/HP09915.i/06jun06b.b/lu06i08.d Injection date and time: 06-JUN-2006 20:30

Instrument ID: HP09915.i Analyst ID: KEB01027

4ethod used: /chem/HP09915.i/06jun06b.b/L8260W.m Sublist used: 8260WI+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 06-Jun-2006 20:53 keb01027

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
1) Dichlorodifluoromethane 2) Chloromethane 3) Vinyl Chloride 6) Bromomethane 7) Chloroethane 8) Trichlorofluoromethane 10) Ethyl Ether 15) Acrolein 16) 1,1-Dichloroethene 17) Freon 113 18) Acetone 20) Methyl Iodide 21) 2-Propanol 22) Carbon Disulfide 23) Allyl Chloride 25) Methyl Acetate 26) Methylene Chloride 27)*t-Butyl Alcohol 29) Acrylonitrile 30) trans-1,2-Dichloroethene 31) Methyl Tertiary Butyl Ether 33) n-Hexane 40) 1,2-Dichloroethane 40) 1,2-Dichloroethane 37) di-Isopropyl Ether 39) 2-Chloro-1,3-Butadiene 41) Ethyl t-Butyl Ether 42) cis-1,2-Dichloroethene 43) 2-Butanone 44) 2,2-Dichloropropane				Area ===================================	(on column) ====================================
45) Propionitrile46) Methacrylonitrile47) Bromochloromethane	(1) (1)	6.279 6.295		203686 34598	49.378 9.866

M = Compound was manually integrated.

^{* =} Compound is an internal standard.

Target Revision 3.5

Instrument ID: HP09915.i Data File: /chem/HP09915.i/06jun06b.b/lu06i08.d Analyst ID: KEB01027 [njection date and time: 06-JUN-2006 20:30

Method used: /chem/HP09915.i/06jun06b.b/L8260W.m Sublist used: 8260WI+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 06-Jun-2006 20:53 keb01027

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
======================================		======		90771	21.124
48) Tetrahydrofuran	(1)	6.356	42	108650	9.647
49) Chloroform	(1)	6.414	83 97	89028	9.290
54) 1,1,1-Trichloroethane	(1)	6.681	97 56	108326	9.143
55) Cyclohexane	(1)	6.758	75	83897	9.456
58) 1.1-Dichloropropene	(1)	6.906	117	78627	9.165
59) Carbon Tetrachloride	(1)	6.909	41	140170	267.880
60) Isobutyl Alcohol	(1)	7.070	78	259610	9.775
63) Benzene	(1)	7.186	62	97285	9.545
64) 1,2-Dichloroethane	(1)	7.202	73	169259	9.269
67) t-Amyl Methyl Ether	(1)	7.350 7.568	100	11475	9.169
69) n-Heptane	(1)	7.559	96	1301000	50.000
70) *Fluorobenzene	(1)	7.970	56	206605	519.378
72) n-Butanol	(1)	8.051	95	64559	9.459
73) Trichloroethene	(1)	8.340	63	71135	9.381
77) 1,2-Dichloropropane	(1) (1)	8.311	83	96180	9.502
74) Methylcyclohexane		8.504	69	63192	9.329
80) Methyl Methacrylate	(1) (1)	8.488	93	44810	9.492
79) Dibromomethane	(1)	8.517	88	27435M	261.845
81) 1,4-Dioxane	(1)	8.700	83	78148	9.192
82) Bromodichloromethane	(1)	8.996	41	64961	20.817
83) 2-Nitropropane	(1)	9.099	63	54777	9.318
84) 2-Chloroethyl Vinyl Ether	(1)	9.279	75	104128	9.163
85) cis-1,3-Dichloropropene	(1)	9.468	43	329086	23.761
87) 4-Methyl-2-Pentanone	(2)	9.677	92	151894	9.502
90) Toluene	(2)	9.919	75	90487	9.014
91) trans-1,3-Dichloropropene	(2)	10.028	69	101920	9.106
92) Ethyl Methacrylate	(2)	10.115	97	60005	9.576
93) 1,1,2-Trichloroethane	(2)	10.266	166	64847	9.434
94) Tetrachloroethene	(2)	10.285	76	108584	9.493
95) 1,3-Dichloropropane	(2)	10.372	43	278086	25.527
96) 2-Hexanone	(2)	10.513	129	63628	9.076
98) Dibromochloromethane	(2)	10.626	107	66934	9.403
100) 1,2-Dibromoethane 101)*Chlorobenzene-d5	(2)	11.063	117	946264	50.000
101/ 01110102020					

M = Compound was manually integrated.

 $[\]star$ = Compound is an internal standard.

Target Revision 3.5

Instrument ID: HP09915.i Data File: /chem/HP09915.i/06jun06b.b/lu06i08.d Analyst ID: KEB01027 Injection date and time: 06-JUN-2006 20:30

Method used: /chem/HP09915.i/06jun06b.b/L8260W.m Sublist used: 8260WI+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 06-Jun-2006 20:53 keb01027

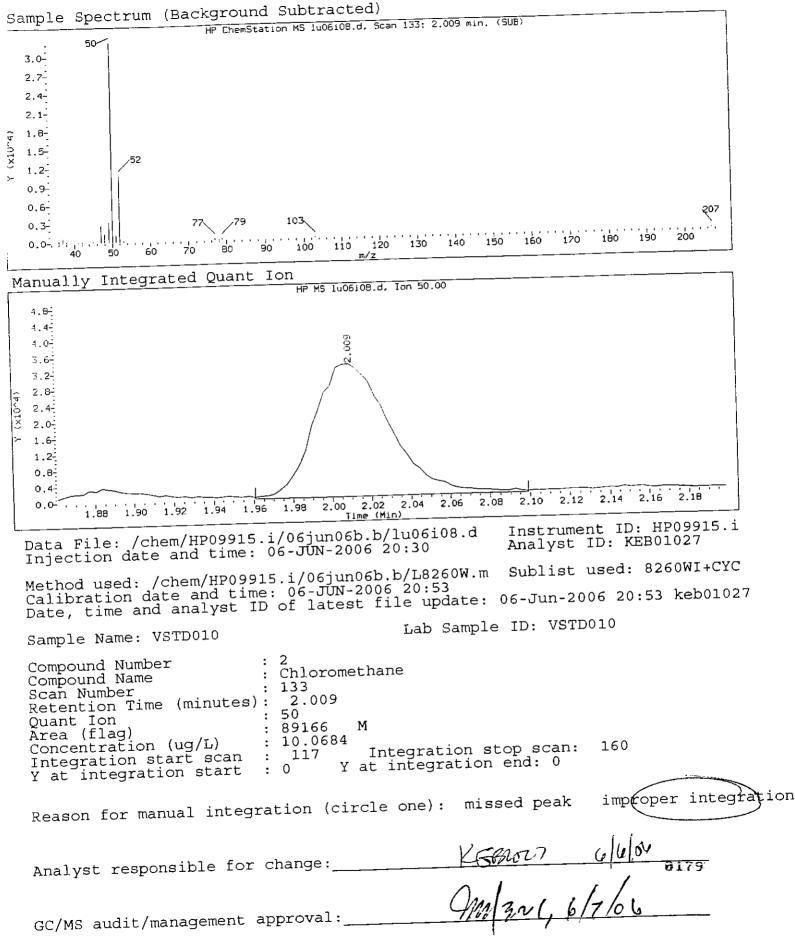
D.s.	.S. ef.	RT	QIon	Area ·	Conc. (on column)
compounds ====================================				175468 57999 295994 114884 224301 109417 182329 47291 277424 117084 106015 195559 75011 29075 81136 72390 116832 76897 49640 46875 249399 55241 63670 145726 531981 154504 116279 189131 161914 168890 123780 144698 136339 23768	9.562 9.137 9.597 9.501 18.974 9.473 9.409 8.709 9.499 244.548 9.829 51.310 9.473 9.828 9.587 9.729 9.522 9.729 9.522 9.796 9.300 9.369 9.685 9.128 8.995 9.744 50.000 9.791 9.825 8.948 9.825 8.948 9.849 9.849 9.744 9.800 9.835 9.470

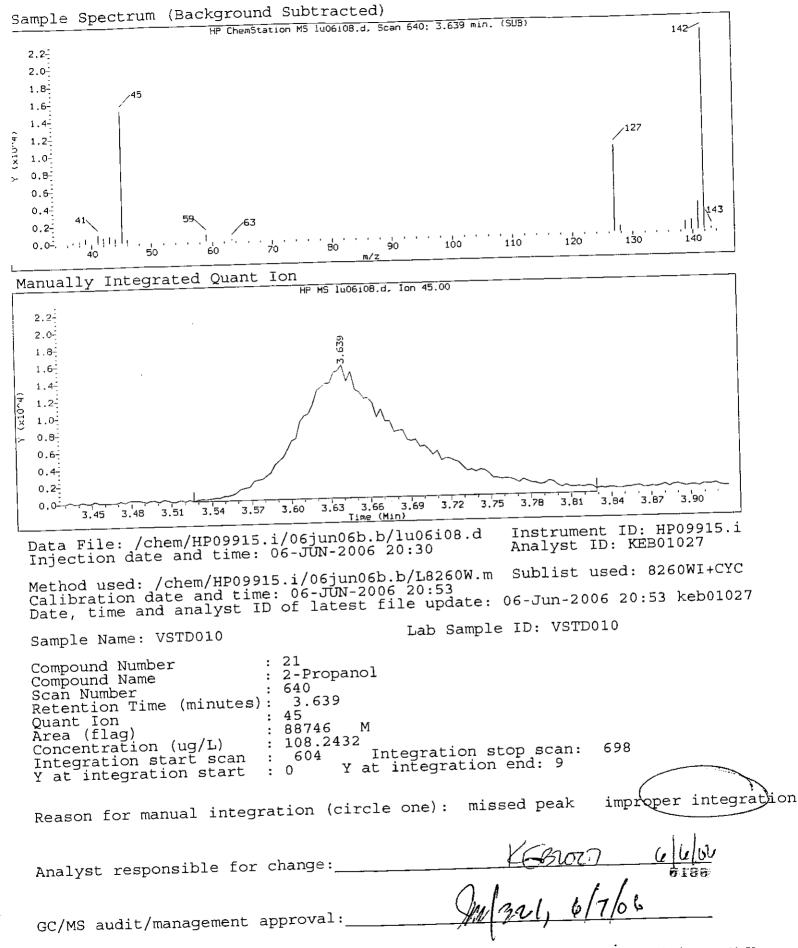
⁸¹⁷⁷

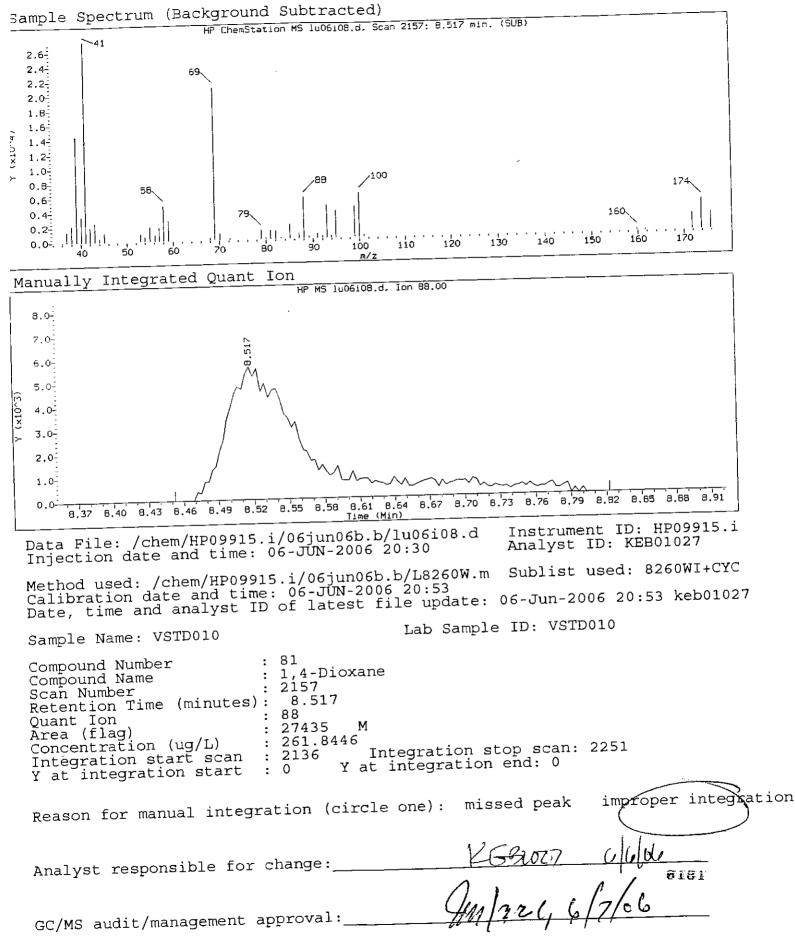
Target Revision 3.5

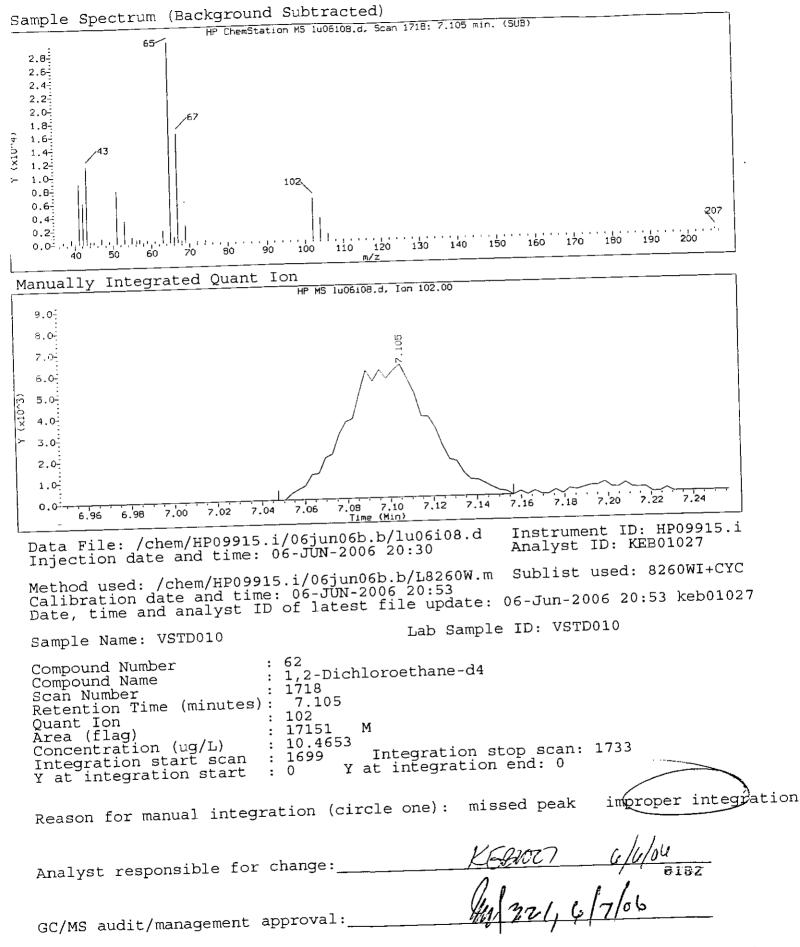
Instrument ID: HP09915.i Data File: /chem/HP09915.i/06jun06b.b/lu06i08.d Analyst ID: KEB01027 Injection date and time: 06-JUN-2006 20:30

dethod used: /chem/HP09915.i/06jun06b.b/L8260W.m Sublist used: 8260WI+CYC


Calibration date and time: 06-JUN-2006 17:02


Date, time and analyst ID of latest file update: 06-Jun-2006 20:53 keb01027


Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
142) 1,2,4-Trichlorobenzene 143) Hexachlorobutadiene 144) Naphthalene 145) 1,2,3-Trichlorobenzene 51)\$Dibromofluoromethane 52)\$Dibromofluoromethane (mz111) 62)\$1,2-Dichloroethane-d4 61)\$1,2-Dichloroethane-d4 89)\$Toluene-d8 88)\$Toluene-d8 (mz100) 113)\$4-Bromofluorobenzene 112)\$4-Bromofluorobenzene (mz174)	(3) (3) (3) (3) (1) (1) (1) (1) (2) (2) (2) (2)	14.327 14.423 14.497 14.648 6.642 6.639 7.105 7.099 9.604 9.600 12.057	180 225 128 180 113 111 102 104 98 100 95 174	99891 37794 322701 100483 70991 73490 17151M 10822 280896 176669 142967 114964	9.212 8.989 9.904 9.582 9.906 10.045 10.465 10.464 10.236 10.232 11.703 11.610


M = Compound was manually integrated.

^{\$ =} Compound is a surrogate standard.

Y (x10^6) 19. 2.0. 2.1 2 1.8 1.6-, 51 1 1 2 1.3 1 4 Client ID: VSTD004 Data File: /chem/HP09915.i/06jun06b.b/lu06i06.d Sample Info: VSTD004;VSTD004;1;1;;; Date : 06-JUN-2006 18:55 Column phase: DB-624 Purge Volume: 5.0 -t-Butyl Alcohol-d10+ -Dibromofluoromethane(mz11+ /chem/HP09915.i/06jun06b.b/lu06i06.d -1,2-Dichloroethane-d4(mz1+ _ -Fluorobenzene+ Hin Operator: KEB01027 Column diameter: 0.25 Instrument: HP09915.i -Toluene-d8(mz100)+ - -Chlorobenzene-d5+ _ =4-Bromofluorobenzene(mz17+ 1,4-Dichlorobenzene-d4+ 0183

Target Revision 3.5

Instrument ID: HP09915.i Data File: /chem/HP09915.i/06jun06b.b/lu06i06.d Analyst ID: KEB01027 Injection date and time: 06-JUN-2006 18:55

Method used: /chem/HP09915.i/06jun06b.b/L8260W.m Sublist used: 8260WI+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 07-Jun-2006 16:03 keb01027

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
Compounds	======		=≠=≠== 85	35056	3.953
1) Dichlorodifluoromethane	(1)	1.890	50	35156	4.084
2) Chloromethane	(1)	2.006 2.144	62	32465	4.140
3) Vinyl Chloride	(1)	2.144	94	21768	4.271
6) Bromomethane	(1) (1)	2.578	64	17662	4.296
7) Chloroethane	(1)	2.845	101	37032	4.048
3) Trichlorofluoromethane	(1)	3.147	59	20860	4.060
10) Ethyl Ether	(1)	3.292	56	71273	36.634
15) Acrolein	(1)	3.437	96	22194	4.000
16) 1,1-Dichloroethene	(1)	3.456	101	22266	3.832
17) Freon 113	(1)	3.469	58	8840 M	7.838
18) Acetone	(1)	3.630	142	40058	3.861
20) Methyl Iodide	(1)	3.633	45	62409	78.320
21) 2-Propanol	(1)	3.723	76	79374	3.859
22) Carbon Disulfide	(1)	3.887	41	48631	4.073
23) Allyl Chloride	(1)	3.903	43	37050	4.331
25) Methyl Acetate	(1)	4.057	84	30779	4.530 250.000
26) Methylene Chloride 27)*t-Butyl Alcohol-d10	(4)	4.080	65	250616	77.769
28) t-Butyl Alcohol	(4)	4.199	59	88930	4.007
29) Acrylonitrile	(1)	4.401	53	17405	3.872
30) trans-1,2-Dichloroethene	(1)	4.472	96	23575	3.803
30) trans-1,2 bromzes Butyl Ether 31) Methyl Tertiary Butyl Ether	(1)	4.472	73	75922	4.174
33) n-Hexane	(1)	4.893	57	38289	7.726
40) 1,2-Dichloroethene (total)	(1)		96	48669 47414	3.971
36) 1,1-Dichloroethane	(1)	5.105	63	92353	3.763
37) di-Isopropyl Ether	(1)	5.221	45	36687	3.719
39) 2-Chloro-1,3-Butadiene	(1)	5.250	53	74306	3.672
41) Ethyl t-Butyl Ether	(1)	5.771		25094	3.854
42) cis-1,2-Dichloroethene	(1)	5.967		10141	7.296
43) 2-Butanone	(1)	5.967		32094	3.720
44) 2,2-Dichloropropane	(1)	5.964		130380	78.007
45) Propionitrile	(1)	6.067		157260	39.225
46) Methacrylonitrile	(1)	6.279		13524	3.968
47) Bromochloromethane	(1)	6.295	128	13324	3.233

M = Compound was manually integrated.

^{* =} Compound is an internal standard.

Target Revision 3.5

Data File: /chem/HP09915.i/06jun06b.b/lu06i06.d Instrument ID: HP09915.i Injection date and time: 06-JUN-2006 18:55 Analyst ID: KEB01027

06b.b/L8260W.m Sublist used: 8260WI+CYC

Method used: /chem/HP09915.i/06jun06b.b/L8260W.m Calibration date and time: 06-JUN-2006 17:02

Calibration date and time: 00-00N-2000 17.02
Date, time and analyst ID of latest file update: 07-Jun-2006 16:03 keb01027

Sample Name: VSTD004 Lab Sample ID: VSTD004

a	I.S. Ref.	RT	QIon	Area	Conc. (on column)
Compounds		=====	=====	========	=======================================
======================================	(1)	6.363	42	31583	7.562
	(1)	6.420	83	42150	3.851
49) Chloroform 54) 1,1,1-Trichloroethane	(1)	6.681	97	35506	3.812
54) 1,1,1-Trichloroethane	(1)	6.768	5 6	44439	3.859
55) Cyclohexane	(1)	6.912	75	33498	3.885
58) 1,1-Dichloropropene 59) Carbon Tetrachloride	(1)	6.909	117	31452	3.772
59) Carbon Tetrachloride	(1)	7.080	41	91671	180.257
60) Isobutyl Alcohol	(1)	7.183	78	101309	3.925
63) Benzene 64) 1,2-Dichloroethane	(1)	7.202	62	38827	3.920
64) 1,2-Dichloroethane	(1)	7.359	73	63456	3.575
67) t-Amyl Methyl Ether	(1)	7.568	100	5404	4.443
69) n-Heptane	(1)	7.562	96	1264451	50.000
70) *Fluorobenzene	(1)	7.967	56	136573	353.251
72) n-Butanol	(1)	8.051	95	26166	3.945
73) Trichloroethene	(1)	8.343	63	28200	3.827
77) 1,2-Dichloropropane	(1)	8.321	83	36836	3.744
74) Methylcyclohexane	(1)	8.507	69	22873	3.474
80) Methyl Methacrylate	(1)	8.488	93	17676	3.852
79) Dibromomethane	(1)	8.517	88	19250	189.036
81) 1,4-Dioxane 82) Bromodichloromethane	(1)	8.703	83	29518	3.572
- · ·	(1)	8.996	41	20341	6.707
83) 2-Nitropropane 84) 2-Chloroethyl Vinyl Ether	(1)	9.099	63	20365	3.564
84) 2-Chloroethyl Vinyl Ether	(1)	9.276	75	38636	3.498
85) cis-1,3-Dichloropropene	(1)	9.472	43	92436	6.867
87) 4-Methyl-2-Pentanone	(2)	9.681	92	59393	3.822
90) Toluene	(2)	9.919	75	33385	3.422
91) trans-1,3-Dichloropropene	(2)	10.025	69	35493	3.262
92) Ethyl Methacrylate	(2)	10.108	97	23352	3.834
93) 1,1,2-Trichloroethane	(2)	10.269	166	27558	4.125
94) Tetrachloroethene	(2)	10.282	76	42770	3.847
95) 1,3-Dichloropropane	(2)	10.375	43	69463	8.459
96) 2-Hexanone	(2)	10.514	129	23086	3.388
98) Dibromochloromethane	(2)	10.623		25408	3.672
100) 1,2-Dibromoethane 101)*Chlorobenzene-d5	(2)	11.063		919754	50.000
±0±, 011±0±======					

3785

^{* =} Compound is an internal standard.

Target Revision 3.5

Instrument ID: HP09915.i Data File: /chem/HP09915.i/06jun06b.b/lu06i06.d Analyst ID: KEB01027 Injection date and time: 06-JUN-2006 18:55

Sublist used: 8260WI+CYC Method used: /chem/HP09915.i/06jun06b.b/L8260W.m

Calibration date and time: 06-JUN-2006 17:02

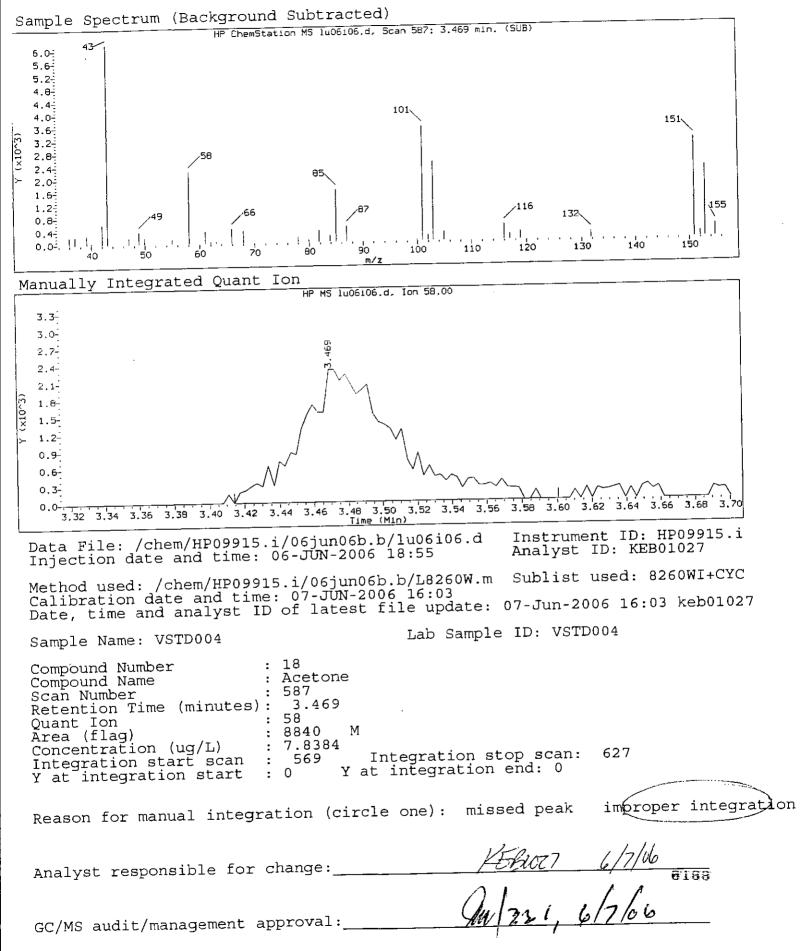
Date, time and analyst ID of latest file update: 07-Jun-2006 16:03 keb01027

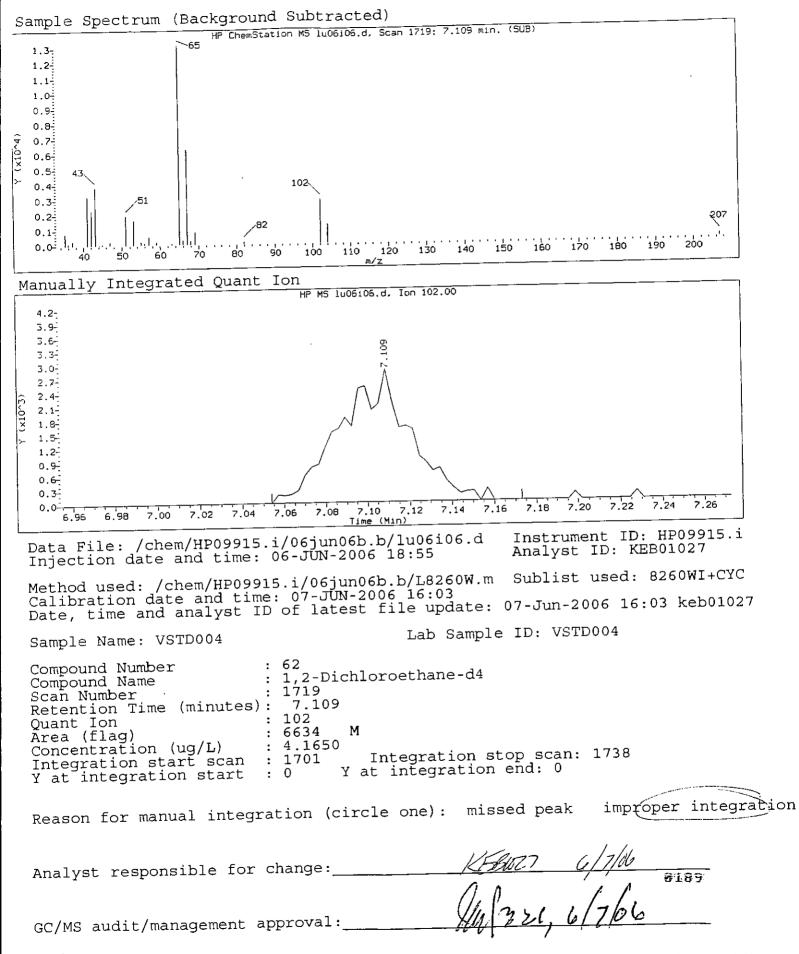
102 Chlorobenzene (2) 11.089 112 69617 3.903 103 1,1,2-Tetrachloroethane (2) 11.160 131 22094 3.581 104 Ethylbenzene (2) 11.189 91 117321 3.914 104 Ethylbenzene (2) 11.292 106 44552 3.791 105 m+p-Xylene (2) 11.633 106 87106 7.581 106 Xylene (Total) (2) 11.639 104 65244 3.464 108 Styrene (2) 11.639 104 65244 3.464 108 Styrene (2) 11.796 173 16783 3.180 109 Bromoform (2) 11.796 173 16783 3.180 109 Bromoform (2) 11.935 105 111122 3.914 111 Isopropylbenzene (2) 12.009 55 92433 198 626 15) Cyclohexanone (2) 12.009 55 92433 198 626 15) Cyclohexanone (3) 12.163 83 39753 3.822 116 1,1,2,2-Tetrachloroethane (3) 12.163 83 39753 3.822 116 1,1,2,2-Tetrachloroe-2-Butene (3) 12.205 53 147364 40.095 118 trans-1,4-Dichloro-2-Butene (3) 12.182 156 29459 3.858 17) Bromobenzene (3) 12.202 110 11140 3.905 119 1,2,3-Trichloropropane (3) 12.202 110 11140 3.905 122 2-Chlorotoluene (3) 12.333 126 28211 3.932 122 2-Chlorotoluene (3) 12.333 126 28211 3.932 123 1,3,5-Trimethylbenzene (3) 12.414 126 30620 4.045 125 4-Chlorotoluene (3) 12.661 167 18104 3.752 127 Pentachloroethane (3) 12.661 167 18104 3.752 127 Pentachlorobenzene (3) 12.803 134 24066 4.124 129 sec-Butylbenzene (3) 12.803 134 24066 4.124 129 sec-Butylbenzene (3) 12.803 134 24066 4.124 130 p-Isopropyltoluene (3) 12.893 146 57922 4.016 132) *1,4-Dichlorobenzene (3) 12.997 146 61514 4.042 133 1,4-Dichlorobenzene (3) 12.997 146 61514 4.042 133 1,4-Dichlorobenzene (3) 12.997 146 61514 4.042 133 1,4-Dichlorobenzene (3) 12.997 146 61514 4.042 133 1,4-Dichlorobenzene (3) 12.997 146 61514 4.042 133 1,4-Dichlorobenzene (3) 12.997 146	Compounds	I.S. Ref.	RT	QIon	Area	Conc.
137) 1,4-Diethylbenzene (3) 13.176 119 60030 4.437 138) n-Butylbenzene (3) 13.198 92 56245 4.437 139) 1,2-Diethlorobenzene (3) 13.231 146 56750 3.986 140) 1,2-Diethylbenzene (3) 13.266 119 53690 4.016 141) 1,2-Diethylbenzene (3) 13.767 75 8922 3.686	102) Chlorobenzene 103) 1,1,1,2-Tetrachloroethane 104) Ethylbenzene 105) m+p-Xylene 106) Xylene (Total) 107) o-Xylene 108) Styrene 109) Bromoform 111) Isopropylbenzene 115) Cyclohexanone 116) 1,1,2,2-Tetrachloroethane 117) Bromobenzene 119) 1,2,3-Trichloropropane 120) n-Propylbenzene 120) n-Propylbenzene 121) 2-Chlorotoluene 123) 1,3,5-Trimethylbenzene 125) 4-Chlorotoluene 126) tert-Butylbenzene 127) Pentachloroethane 128) 1,2,4-Trimethylbenzene 129) sec-Butylbenzene 130) p-Isopropyltoluene 131) 1,3-Dichlorobenzene 132)*1,4-Dichlorobenzene 133) 1,4-Dichlorobenzene 134) 1,2,3-Trimethylbenzene 135) Benzyl Chloride 136) 1,3-Diethylbenzene 137) 1,4-Diethylbenzene 138) n-Butylbenzene 139) 1,2-Dichlorobenzene	======================================	11.089 11.160 11.189 11.292 11.633 11.639 11.796 11.935 12.009 12.163 12.205 12.182 12.202 12.259 12.333 12.388 12.414 12.642 12.661 12.674 12.803 12.903 12.941 12.957 12.989 13.050 13.115 13.176 13.198 13.231 13.266	112 131 106 106 106 107 105 105 105 100 120 120 120 120 134 146 151 146 151 167 167 167 167 167 167 167 167 167 16	======================================	3.903 3.581 3.914 3.791 7.581 3.790 3.464 3.180 3.914 198.626 3.822 40.095 3.858 3.905 4.170 3.932 4.002 4.045 4.124 3.752 4.040 4.124 4.248 4.016 50.000 4.042 3.964 3.277 3.959 4.039 4.437 3.986 4.016

Target Revision 3.5

Instrument ID: HP09915.i Data File: /chem/HP09915.i/06jun06b.b/lu06i06.d Analyst ID: KEB01027 Injection date and time: 06-JUN-2006 18:55

Sublist used: 8260WI+CYC Method used: /chem/HP09915.i/06jun06b.b/L8260W.m


Calibration date and time: 06-JUN-2006 17:02


Date, time and analyst ID of latest file update: 07-Jun-2006 16:03 keb01027

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
142) 1,2,4-Trichlorobenzene 143) Hexachlorobutadiene 144) Naphthalene 145) 1,2,3-Trichlorobenzene 51) \$Dibromofluoromethane 52) \$Dibromofluoromethane (mz111) 62) \$1,2-Dichloroethane-d4 61) \$1,2-Dichloroethane-d4 89) \$Toluene-d8 88) \$Toluene-d8 88) \$Toluene-d8 (mz100) 113) \$4-Bromofluorobenzene 112) \$4-Bromofluorobenzene (mz174)	(3) (3) (3) (3) (1) (1) (1) (1) (2) (2) (2) (2)	14.324 14.427 14.494 14.648 6.642 6.636 7.109 7.105 9.604 9.600 12.060	180 225 128 180 113 111 102 104 98 100 95 174	43128 18696 118076 42168 28555 28893 6634M 4103 110266 68141 43828 35850	4.125 4.611 3.758 4.170 4.100 4.063 4.165 4.074 4.134 4.060 3.691 3.725

M = Compound was manually integrated.

^{\$ =} Compound is a surrogate standard.

Y (x10^6) 4... 1.6-1.7-1.8 1.9 2.0-21 Ω T 1,1 1.2 Date : 06-JUN-2006 19:18 Data File: /chem/HP09915.i/06jun06b.b/lu06m01.d Sample Info: VSTD001;1 PPB MDL;1;3;MDL;; Client ID: VSTD001 Column phase: DB-624 Purge Volume: 5.0 -t-Butyl Alcohol-d10+ G. Œ. -Dibromofluoromethane+ /chem/HP09915.i/06jun06b.b/1u06m01.d -1,2-Bichloroethane-d4+ -Fluorobenzene+ Operator: KEB01027 Column diameter: 0.25 Instrument: MP09915.i -Toluene-d8 - -Chlorobenz**en**e-d5+ N- -4-Bromofluorobenzene 1,4-Dichlorobenzene-d4+ 14 0196 Page 1

N

Target Revision 3.5

Instrument ID: HP09915.i Data File: /chem/HP09915.i/06jun06b.b/lu06m01.d Analyst ID: KEB01027 Injection date and time: 06-JUN-2006 19:18

Method used: /chem/HP09915.i/06jun06b.b/L8260W.m Sublist used: 8260W+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 06-Jun-2006 21:27 keb01027

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column) ========
1) Dichlorodifluoromethane 2) Chloromethane 3) Vinyl Chloride 6) Bromomethane 7) Chloroethane 8) Trichlorofluoromethane 10) Ethyl Ether 15) Acrolein 16) 1,1-Dichloroethene 17) Freon 113 18) Acetone 20) Methyl Iodide 21) 2-Propanol 22) Carbon Disulfide 23) Allyl Chloride 25) Methyl Acetate 26) Methylene Chloride 27) *t-Butyl Alcohol-d10 28) t-Butyl Alcohol 29) Acrylonitrile 30) trans-1,2-Dichloroethene 31) Methyl Tertiary Butyl Ether 33) n-Hexane 40) 1,2-Dichloroethane 37) di-Isopropyl Ether 39) 2-Chloro-1,3-Butadiene 41) Ethyl t-Butyl Ether 42) cis-1,2-Dichloroethene 43) 2-Butanone 44) 2,2-Dichloropropane 45) Propionitrile 46) Methacrylonitrile 47) Bromochloromethane	===== (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	1.874 1.996 2.122 2.462 2.572 2.839 3.131 3.285 3.421 3.446 3.617 3.629 3.713 3.887 4.070 4.192 4.401 4.453 4.465 4.880 5.211 5.244 5.951 5.951 6.275 6.295	8502441966182561345936376353962745613459363763539627456	7215 8744 7826 5222 4003 7947 4936 21739 4903 4712 2130 8496 15516 18346 10651 9232 10554 251236 21846 3872 5190 17571 8428 10593 10309 20267 7499 16395 10309 2040 36706 2983	0.841 1.050 1.032 1.059 1.006 0.898 0.993 11.549 0.913 0.838 1.952 0.846 20.127 0.922 0.922 1.115 1.606 250.000 19.057 0.921 0.881 0.910 0.950 1.739 0.854 0.786 0.837 0.858 1.728 0.811 19.814 9.463 0.905

⁶¹⁹¹

Target Revision 3.5

Instrument ID: HP09915.i Data File: /chem/HP09915.i/06jun06b.b/lu06m01.d Analyst ID: KEB01027 Injection date and time: 06-JUN-2006 19:18

Method used: /chem/HP09915.i/06jun06b.b/L8260W.m Sublist used: 8260W+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 06-Jun-2006 21:27 keb01027

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
Compounds ===================================	Ref.		######################################	7859 9319 7607 8961 7045 6794 23827 22013 8963 14461 959 1223307 29306 5750 6251 7427 4736 4101 3617 6520 4887 4026 8186 20490 12135 6930 7208 5631 5783 9572 14882 4929	(on column) ====================================
98) Dibromochloromethane 100) 1,2-Dibromoethane 101)*Chlorobenzene-d5	(2) (2)	10.629 11.060		6004 896982	0.890 50.000

⁸¹⁹²

Target Revision 3.5

Instrument ID: HP09915.i Data File: /chem/HP09915.i/06jun06b.b/lu06m01.d Analyst ID: KEB01027 Injection date and time: 06-JUN-2006 19:18

Method used: /chem/HP09915.i/06jun06b.b/L8260W.m Sublist used: 8260W+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 06-Jun-2006 21:27 keb01027

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
102) Chlorobenzene 103) 1,1,1,2-Tetrachloroethane 104) Ethylbenzene 105) m+p-Xylene 106) Xylene (Total) 107) o-Xylene 108) Styrene 109) Bromoform 11) Isopropylbenzene 115) Cyclohexanone 116) 1,1,2,2-Tetrachloroethane 118) trans-1,4-Dichloro-2-Butene 119) 1,2,3-Trichloropropane 120) n-Propylbenzene 121) 2-Chlorotoluene 123) 1,3,5-Trimethylbenzene 125) 4-Chlorotoluene 126) tert-Butylbenzene 127) Pentachloroethane 128) 1,2,4-Trimethylbenzene 129) sec-Butylbenzene 129) sec-Butylbenzene 130) p-Isopropyltoluene 131) 1,3-Dichlorobenzene 132)*1,4-Dichlorobenzene 132)*1,4-Dichlorobenzene 134) 1,2,3-Trimethylbenzene 135) Benzyl Chloride 136) 1,3-Diethylbenzene 137) 1,4-Diethylbenzene 138) n-Butylbenzene 139) 1,2-Dichlorobenzene 140) 1,2-Diethylbenzene 141) 1,2-Dibromo-3-Chloropropane	===== (2) (2) (2) (2) (2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3	11.089 11.157 11.189 11.288 11.632 11.639 11.800 11.935 12.012 12.163 12.205 12.185 12.205 12.330 12.388 12.414 12.642 12.661 12.677 12.803 12.941 12.957 12.986 13.050 13.115 13.176 13.198 13.234 13.266 13.771	112 131 91 106 106 107 105 83 156 120 126 126 126 134 146 151 134 146 151 119 119 119 119 119 119	15604 4996 24625 9347 18029 8682 12334 4040 22092 19088 9156 32167 6734 2809 7031 6143 9330 6188 4546 3840 19955 4931 5503 12835 491748 14371 9863 13805 12570 13389 11375 13450 11976	0.897 0.830 0.842 0.815 1.608 0.793 0.671 0.785 0.798 42.059 0.918 9.130 0.920 1.027 0.899 0.893 0.823 0.853 0.921 0.838 0.841 0.928 50.000 0.928 50.000 0.985 0.902 0.707 0.830 0.920 0.838 0.841 0.928 50.000 0.985 0.985 0.985 0.852

Target Revision 3.5

Instrument ID: HP09915.i Data File: /chem/HP09915.i/06jun06b.b/lu06m01.d Analyst ID: KEB01027 Injection date and time: 06-JUN-2006 19:18

Method used: /chem/HP09915.i/06jun06b.b/L8260W.m Sublist used: 8260W+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 06-Jun-2006 21:27 keb01027

a_	I.S. Ref.	RT	QIon	Area	Conc. (on column)
Compounds ===================================	Ref. ====== (3) (3) (3) (3) (1) (1) (2) (2)	RT ===== 14.324 14.423 14.497 14.648 6.629 7.099 9.600 12.060	Q1on ====== 180 225 128 180 113 102 98 95	10059 4908 27079 10155 6322 1379 23715 10117	1.004 1.263 0.899 1.048 0.938 0.895 0.912 0.874

^{\$ =} Compound is a surrogate standard.

VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: Lancaster Laboratories Contract:

Lab Code: LANCAS Case No.:____ SAS No.:___ SDG No.:____

Instrument ID: HP09915 Calibration Date: 06/13/06 Time: 08:28

Lab File ID: lu13c01.d Init. Calib. Date(s): 06/06/06 06/06/06

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .25

			ACTUAL	TRUE	8
COMPOUND	RRF	RRF50	CONC.	CONC.	DRIFT
=======================================	=====	======	35====	=====	======
Dichlorodifluoromethane		0.3334		50	-5
	0.3404	0.3874	56.91	50	14
Vinyl Chloride	0.3101	0.3275	52.80	50	6
Bromomethane	0.2015	0.2077	51.53	50	3
Chloroethane	0.1626	0.1679	51.63	50	3
Trichlorofluoromethane	0.3617	0.3422	47.30	50	-5
Ethyl Ether	0.2032	0.1932	47.54	50	- 5
Acrolein		0.0885		500	15
1,1-Dichloroethene	0.2194	0.2237	50.98	50	2
Freon 113	0.2298	0.2255	49.06	50	-2
Acetone	0.0446	0.0494	110.75	100	11
Methyl Iodide	0.4103	0.4051	49.37	50	- 1
2-Propanol	0.0315	0.0393	312.16	250	25
Carbon Disulfide	0.8134	0.8593	52.82	50	
Allyl Chloride	0.4721	0.5029	53.26	50	7
Methyl Acetate	0.3383	0.3754	55.48	50	11
Methylene Chloride		0.2723		50]
t-Butyl Alcohol	1.1407	1.0964	240.29	250	-4
Acrylonitrile		0.1883		50	10
trans-1,2-Dichloroethene	0.2408	0.2513	52.19	50	4
Methyl Tertiary Butyl Ether	0.7895	0.8230	52.12	50	4
n-Hexane		0.3461		50	- 5
1,2-Dichloroethene (total)	•	0.2613	:	100	5
1,1-Dichloroethane	0.4722	0.5014	53.09	50	6
di-Isopropyl Ether	r	1.0583		50	9
2-Chloro-1,3-Butadiene	,	0.4375	•	50	12
Ethyl t-Butyl Ether	0.8002	0.8340	52.11	50	4
cis-1,2-Dichloroethene	!	0.2713	:	50	5
2-Butanone	0.0550	0.0590	107.37	100	[7
2,2-Dichloropropane		0.3477	:	50	j 2
Propionitrile	•	0.0747	;	250	13
Methacrylonitrile		0.1752	!	125	11
Bromochloromethane	•	0.1402	:	50	4
Tetrahydrofuran		0.1855		100	12
Chloroform	!	0.4648	:	50	7
1,1,1-Trichloroethane	0.3683	0.3740	50.77	50	j 2
-, , -	i	i	İ	ĺ	1

8195

Minimum RRF for SPCC(#)=0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %Drift for CCC(#)=20%

7A VOLATILE CONTINUING CALIBRATION CHECK

Lab	Name:	Lancaster	Laboratori	es Contract	;: <u></u>
-----	-------	-----------	------------	-------------	------------

Instrument ID: HP09915 Calibration Date: 06/13/06 Time: 08:28

Lab File ID: lul3c01.d Init. Calib. Date(s): 06/06/06 06/06/06

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .25

	<u> </u>		ACTUAL		8
COMPOUND	RRF	RRF50	CONC. =====	CONC.	DRIFT
Cyclohexane	l .	0.4491		50	-1
1,1-Dichloropropene		0.3513		50	3
Carbon Tetrachloride		0.3278	!	i	-1
Isobutyl Alcohol		0.0235	:		17
Benzene	!	1.0763			5
1,2-Dichloroethane	I.	0.4313	! !		10
t-Amyl Methyl Ether		0.7319	'		4
n-Heptane	•	0.0434			-10
n-Butanol			1423.98		14
Trichloroethene	•	0.2670	:		2
1,2-Dichloropropane	•	0.3174			9
Methylcyclohexane	•	0.4127			6
Methyl Methacrylate	•	0.2907	!		
Dibromomethane		0.1969			
1,4-Dioxane		0.0051			26
Bromodichloromethane		0.3593			10
2-Nitropropane	1	0.1338			
2-Chloroethyl Vinyl Ether		0.2518			
cis-1,3-Dichloropropene	•	0.4717	1		
4-Methyl-2-Pentanone	:	0.5695	1		7
Toluene	!	0.8361		_	-1
trans-1,3-Dichloropropene		0.5641		!	
Ethyl Methacrylate		0.6506	:		10
1,1,2-Trichloroethane	•	0.3418	:	!	3
Tetrachloroethene	•	0.3297	!	!	
1,3-Dichloropropane	•	0.6421		50	6
2-Hexanone	•	0.5771		!	- 5
Dibromochloromethane		0.3806		50	3
1,2-Dibromoethane		0.3909		50	4
Chlorobenzene	!	0.9505	:	50	-2
1,1,1,2-Tetrachloroethane	•	0.3336	•	:	-1
Ethylbenzene	!	1.6123	:	50	-1
m+p-Xylene	!	0.6182	:	50	-3
Xylene (Total)	•	0.6084	!	!	:
o-Xylene	•	0.5986	:	50	-2
Styrene		1.0436		50	2
20,20	i	İ	i	İ	

6136

Minimum RRF for SPCC(#)=0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %Drift for CCC(#)=20%

7A VOLATILE CONTINUING CALIBRATION CHECK

Lab	Name:	Lancaster	Laboratories	Contract:	
ьаь	name.	Danoabaa			

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Instrument ID: HP09915 Calibration Date: 06/13/06 Time: 08:28

Lab File ID: lu13c01.d Init. Calib. Date(s): 06/06/06 06/06/06

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .25

	l <u></u>		ACTUAL		8
COMPOUND	RRF	RRF50	CONC.	CONC.	DRIFT
=======================================	=====	=====			
Bromoform		0.2934	,	50	2
Isopropylbenzene		1.4727			-5
Cyclohexanone		0.0309			
£, ±, =, €	1.0138	•			
trans-1,4-Dichloro-2-Butene				125	
Bromobenzene	0.7443	0.7120	47.83	50	-4
1,2,3-Trichloropropane	0.2781	0.2871	51.62		3
n-Propylbenzene	0.7955	0.7280	45.76		,
2-Chlorotoluene	0.6993	0.6618	47.32	. 50	-5
1,3,5-Trimethylbenzene	1.1532	1.0902	47.27	50	-5
4-Chlorotoluene	0.7378	0.7123	48.27	50	-3
tert-Butylbenzene	0.5017	0.4674	46.58		
Pentachloroethane	0.4702	0.4796	51.00	50	2
1,2,4-Trimethylbenzene	2.4202	2.3604	48.76	50	-2
sec-Butylbenzene	0.5688	0.5198	45.70	50	-9
p-Isopropyltoluene	0.6653	0.6148	46.21	50	-8
1,3-Dichlorobenzene	1.4057	1.3315	47.36	50	-5
1,4-Dichlorobenzene	1.4831	1.3941	47.00	50	-6
1,2,3-Trimethylbenzene		1.1438		50	3
Benzyl Chloride	1.9867	2.1466	54.03	50	8
1,3-Diethylbenzene	,	1.5797	•	50	3
1,4-Diethylbenzene	1.6084	1.6445	51.12	50	2
n-Butylbenzene	•	1.1633	:	50	-6
1,2-Dichlorobenzene	1.3878	1.3135	47.32	50	-5
1,2-Diethylbenzene		1.3415	•	50	j 3
1,2-Dibromo-3-Chloropropane	•	,	•	50	j 3
1,2,4-Trichlorobenzene		0.9189		50	-10
Hexachlorobutadiene	,	0.3220	•	50	-19
Naphthalene	,	2.9526	•	50	-4
1,2,3-Trichlorobenzene	!	0.8659	:	50	-12
=======================================	1	•			=====
Dibromofluoromethane	0.2754				
Dibromofluoromethane (mz111)	,	1		:	-8
	0.0630			!	!
1,2-Dichloroethane-d4 (mz104		•	_	:	-11
Toluene-d8		1.3382			1
TOT delie-do	1	1	10.11	i	i

8197

Minimum RRF for SPCC(#)=0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %Drift for CCC(*)=20%

7 A VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Instrument ID: HP09915 Calibration Date: 06/13/06 Time: 08:28

Lab File ID: lu13c01.d Init. Calib. Date(s): 06/06/06 06/06/06

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .25

	 RRF	RRF50	ACTUAL CONC.	TRUE CONC.	\ \ \ \ \ \ DRIFT
COMPOUND	======	=====	======	======	======
Toluene-d8(mz100)	0.9123	0.8447	46.29	50	-7
4-Bromofluorobenzene	0.6455	0.5463	42.32	50	-15
4-Bromofluorobenzene (mz174)	0.5232	0.4197	40.11	50	-20
		l	l		l

Average %Drift 7

8198

Y (x10^6) 2,8 1.1 1.1 1.0 0.9 0.8 1,6-1.7. 1.8 1,9 2.0 2.2 2,3 2,5 Client ID: VSTD050 Sample Info: VSTD050;VSTD050;1;2;;; Date : 13-JUN-2006 08:28 Data File: /chem/HP09915.i/06jun13a.b/lu13c01.d Column phase: DB-624 Purge Volume: 5.0 -Butyl Alcohol-d10+ Ø -Dibromofluoromethane(mz**11**+ /chem/HP09915.i/06jun13a.b/lu13c01.d -1,2-Dichloroethane-d4(mz1+ -Fluorobenzene+ Column diameter: 0.25 Operator: ADS01731 Instrument: HP09915.i -Toluene-d8(mz100)+ 5 -Chlorobenzene-d5+ -4-Bromofluorobenzene(mz17+ 4 8199 Page 1 15

212

Target Revision 3.5

Data File: /chem/HP09915.i/06jun13a.b/lu13c01.d Instrument ID: HP09915.i Injection date and time: 13-JUN-2006 08:28 Analyst ID: ADS01731

Method used: /chem/HP09915.i/06jun13a.b/L8260W.m Sublist used: 8260WI+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 13-Jun-2006 08:48 Automation

Sample Name: VSTD050 Lab Sample ID: VSTD050

	I.S.				Conc.
Compounds	Ref.	\mathtt{RT}	QIon	Area	(on column)
=======================================	======	=====	=====		=======================================
1) Dichlorodifluoromethane	(1)	1.884	85	34765 7	47.529
2) Chloromethane	(1)	2.031	50	404018	56.914
3) Vinyl Chloride	(1)	2.163	6 2	341524	52.804
6) Bromomethane	(1)	2.472	94	216601	51.534
7) Chloroethane	(1)	2.562	64	175068	51.633
8) Trichlorofluoromethane	(1)	2.835	101	356861	47.301
10) Ethyl Ether	(1)	3.134	59	201465	47.541
15) Acrolein	(1)	3.285	56	922838	575.118
16) 1,1-Dichloroethene	(1)	3.424	96	233298	50.976
17) Freon 113	(1)	3.446	101	235124	49.062
18) Acetone	(1)	3.462	58	103011	110.749
20) Methyl Iodide	(1)	3.613	142	422510	49.373
21) 2-Propanol	(1)	3.629	45	205152	312.163
22) Carbon Disulfide	(1)	3.713	76	896108	52.819
23) Allyl Chloride	(1)	3.87 7	41	524407	53.255
25) Methyl Acetate	(1)	3.893	43	391466	55.480
26) Methylene Chloride	(1)	4.047	84	283958	50.673
27) *t-Butyl Alcohol-d10	(4)	4.067	65	243347	250.000
28) t-Butyl Alcohol	(4)	4.195	59	266811	240.294
29) Acrylonitrile	(1)	4.385	53	196380	54.820
30) trans-1,2-Dichloroethene	(1)	4.456	96	262105	52.194
31) Methyl Tertiary Butyl Ether	(1)	4.462	73	858260	52.123
33) n-Hexane	(1)	4.883	5 7	360967	47.711
40) 1,2-Dichloroethene (total)	(1)		96	544990	104.868
36) 1,1-Dichloroethane	(1)	5.092	63	522882	53.093
37) di-Isopropyl Ether	(1)	5.215	45	1103644	54.530
39) 2-Chloro-1,3-Butadiene	(1)	5.234	53	456241	56.073
41) Ethyl t-Butyl Ether	(1)	5.758	59	869705	52.107
42) cis-1,2-Dichloroethene	(1)	5.951	96	282884	52.674
43) 2-Butanone	(1)	5.970	7 2	123072	107.366
44) 2,2-Dichloropropane	(1)	5.957	77	362567	50.959
45) Propionitrile	(1)	6.041	54	389322	282.429
46) Methacrylonitrile	(1)	6.269	67	456835	138.161
47) Bromochloromethane	(1)	6.285	128	146256	52.032
17, Diomodification	, ,				

a

Target Revision 3.5

Data File: /chem/HP09915.i/06jun13a.b/lu13c01.d Instrument ID: HP09915.i Injection date and time: 13-JUN-2006 08:28 Analyst ID: ADS01731

Method used: /chem/HP09915.i/06jun13a.b/L8260W.m Sublist used: 8260WI+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 13-Jun-2006 08:48 Automation

Sample Name: VSTD050 Lab Sample ID: VSTD050

	I.S.				Conc.
Compounds	Ref.	\mathtt{RT}	QIon	Area	(on column)
*=====================================	=====	======	======	========	=======================================
48) Tetrahydrofuran	(1)	6.353	42	386854	112.310
49) Chloroform	(1)	6.411	83	484707	53.690
54) 1,1,1-Trichloroethane	(1)	6.674	97	389995	5 0.77 0
55) Cyclohexane	(1)	6.758	56	468391	49.322
58) 1,1-Dichloropropene	(1)	6.896	75	366359	51.515
59) Carbon Tetrachloride	(1)	6.909	117	341835	49.709
60) Isobutyl Alcohol	(1)	7.067	41	305878	729.270
63) Benzene	(1)	7.179	78	1122388	52.722
64) 1,2-Dichloroethane	(1)	7.198	62	449740	55.049
67) t-Amyl Methyl Ether	(1)	7.350	73	763216	52.140
69) n-Heptane	(1)	7.565	100	45244	45.100
70) *Fluorobenzene	(1)	7.559	96	1042855	50.000
72) n-Butanol	(1)	7.960	56	454054	1423.981
73) Trichloroethene	(1)	8.047	95	278437	50.897
77) 1,2-Dichloropropane	(1)	8.333	63	331044	54.466
74) Methylcyclohexane	(1)	8.311	83	430361	53.040
80) Methyl Methacrylate	(1)	8.504	69	303153	55.830
79) Dibromomethane	(1)	8.485	93	205327	54.258
81) 1,4-Dioxane	(1)	8.513	88	66362	790.156
82) Bromodichloromethane	(1)	8.700	83	374703	54.984
83) 2-Nitropropane	(1)	8.986	41	279090	111.571
84) 2-Chloroethyl Vinyl Ether	(1)	9.095	63	262542	55.71 7
85) cis-1,3-Dichloropropene	(1)	9.276	75	491957	54.007
87) 4-Methyl-2-Pentanone	(1)	9.465	43	1187818	106.995
90) Toluene	(2)	9.674	92	657694	49.490
91) trans-1,3-Dichloropropene	(2)	9.915	75	443714	53.170
92) Ethyl Methacrylate	(2)	10.025	69	511799	55.003
93) 1,1,2-Trichloroethane	(2)	10.111	97	268858	51.610
94) Tetrachloroethene	(2)	10.266	166	259384	45.393
95) 1,3-Dichloropropane	(2)	10.282	76	505104	53.120
96) 2-Hexanone	(2)	10.369	43	907981	94.981
98) Dibromochloromethane	(2)	10.510	129	299426	51.376
100) 1,2-Dibromoethane	(2)	10.623	107	307536	51.970
101) *Chlorobenzene-d5	(2)	11.060	117	786650	50.000
	. ,				

Target Revision 3.5

Data File: /chem/HP09915.i/06jun13a.b/lu13c01.d Instrument ID: HP09915.i Injection date and time: 13-JUN-2006 08:28 Analyst ID: ADS01731

Method used: /chem/HP09915.i/06jun13a.b/L8260W.m Sublist used: 8260WI+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 13-Jun-2006 08:48 Automation

Lab Sample ID: VSTD050 Sample Name: VSTD050

	I.S.		0. T	7	Conc. (on column)
Compounds	Ref.	ŔŢ	QIon	Area	•
	-= = ===	11.089	112	======================================	49.011
102) Chlorobenzene	(2) (2)	11.160	131	262413	49.726
103) 1,1,1,2-Tetrachloroethane		11.185	91	1268326	49.467
104) Ethylbenzene	(2)	11.185	106	486321	48.381
105) m+p-Xylene	(2)	11.200	106	957181	97.416
106) Xylene (Total)	(2)	11 (22	106	470860	49.036
107) o-Xylene	(2)	11.632 11.639	104	820910	50.960
108) Styrene	(2)		173	230833	51.138
109) Bromoform	(2)	11.796	105	1158494	47.713
111) Isopropylbenzene	(2)	11.935	55	304118	764.083
115) Cyclohexanone	(2)	12.009	83	480440	52.361
116) 1,1,2,2-Tetrachloroethane	(3)	12.163	53	434168	133.911
118) trans-1,4-Dichloro-2-Butene	(3)	12.205	156	322188	47.829
117) Bromobenzene	(3)	12.185	110	129911	51.623
119) 1,2,3-Trichloropropane	(3)	12.201	120	329433	45.757
120) n-Propylbenzene	(3)	12.259	126	299513	47.320
122) 2-Chlorotoluene	(3)	12.333	126	493361	47.269
123) 1,3,5-Trimethylbenzene	(3)	12.391	126	322341	48.274
125) 4-Chlorotoluene	(3)	12.414		211515	46.582
126) tert-Butylbenzene	(3)	12.642	134	217043	50.997
127) Pentachloroethane	(3)	12.664	167	1068170	48.764
128) 1,2,4-Trimethylbenzene	(3)	12.674	105	235248	45.697
129) sec-Butylbenzene	(3)	12.803	134	278224	46.206
130) p-Isopropyltoluene	(3)	12.902	134		47.360
131) 1,3-Dichlorobenzene	(3)	12.893	146	602541	50.000
132) *1,4-Dichlorobenzene-d4	(3)	12.941	152	452541 630902	47.000
133) 1,4-Dichlorobenzene	(3)	12.957	146		51.410
134) 1,2,3-Trimethylbenzene	(3)	12.989	120	517599	54.026
135) Benzyl Chloride	(3)	13.050	91	971442	51.285
136) 1,3-Diethylbenzene	(3)	13.115	119	714894	51.122
137) 1,4-Diethylbenzene	(3)	13.179	119	744211	47.079
138) n-Butylbenzene	(3)	13.198	92	526435	
139) 1,2-Dichlorobenzene	(3)	13.230	146	594417	47.325
140) 1,2-Diethylbenzene	(3)	13.266	119	607062	51.479
141) 1,2-Dibromo-3-Chloropropane	(3)	13.767	75	109804	51.428

Target Revision 3.5

Data File: /chem/HP09915.i/06jun13a.b/lu13c01.d Instrument ID: HP09915.i Injection date and time: 13-JUN-2006 08:28 Analyst ID: ADS01731

Method used: /chem/HP09915.i/06jun13a.b/L8260W.m Sublist used: 8260WI+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 13-Jun-2006 08:48 Automation

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
_ = = = = = = = = = = = = = = = = = = =	=====	=====	=====	========	=========
142) 1,2,4-Trichlorobenzene	(3)	14.324	180	415835	45.082
143) Hexachlorobutadiene	(3)	14.426	225	145725	40.746
144) Naphthalene	(3)	14.494	128	1336165	48.208
145) 1,2,3-Trichlorobenzene	(3)	14.652	180	391851	43.928
51) \$Dibromofluoromethane	(1)	6.629	113	262324	45.664
52) \$Dibromofluoromethane (mz111)	(1)	6.629	111	269975	46.037
62)\$1,2-Dichloroethane-d4	(1)	7.089	102	58383	44.443
61) \$1,2-Dichloroethane-d4 (mz104)		7.092	104	37105	44.675
89) \$Toluene-d8	(2)	9.600	98	1052680	46.145
88) \$Toluene-d8 (mz100)	(2)	9.600	100	664463	46.293
113) \$4-Bromofluorobenzene	(2)	12.057	95	429749	42.317
112) \$4-Bromofluorobenzene (mz174)	(2)	12.057	174	330161	40.108

^{\$ =} Compound is a surrogate standard.

7A VOLATILE CONTINUING CALIBRATION CHECK

ab Name: Lancaster	Laboratories	Contract:
--------------------	--------------	-----------

Instrument ID: HP09915 Calibration Date: 06/13/06 Time: 21:12

Lab File ID: lu13c02.d Init. Calib. Date(s): 06/06/06 06/06/06

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .25

		· - -	ACTUAL	TRUE	8
COMPOUND	RRF	RRF100	CONC.	CONC.	DRIFT
	=====	=====	=====	======	=====
Dichlorodifluoromethane	0.3507	0.4041	115.23	100	15
Chloromethane	0.3404	0.3619	106.32	100	6
Vinyl Chloride	0.3101	0.3402	109.70	100	10
Bromomethane	0.2015	0.1957	97.14	100	- 3
Chloroethane	0.1626	0.1612	99.16	100	-1
Trichlorofluoromethane	0.3617	0.3982	110.09	100	10
Ethyl Ether	0.2032	0.1863	91.67	100	- 8
Acrolein	0.0769	0.0840	1091.52	1000	9
1,1-Dichloroethene	0.2194	0.2157	98.29	100	-2
Freon 113	0.2298	0.2320	100.96	100	1
Acetone	0.0446	0.0424	190.10	200	- 5
Methyl Iodide	0.4103	0.3881	94.59	100	- 5
2-Propanol	0.0315	0.0383	608.41	500	22
	0.8134	0.7715	94.84	100	- 5
Allyl Chloride	0.4721	0.5146	109.00	100	9
Methyl Acetate	0.3383	0.3658	108.12	100	{
	0.2687	0.2612	97.23	100	-:
t-Butyl Alcohol	1.1407	1.1019	483.00	500	-:
Acrylonitrile	0.1717	0.1717	99.97	100	(
trans-1,2-Dichloroethene	0.2408	0.2476	102.83	100	:
Methyl Tertiary Butyl Ether	0.7895	0.8117	102.82	100	;
n-Hexane		0.3686		100	:
1,2-Dichloroethene (total)	0.2491	0.2610	209.37	200	<u> </u>
1,1-Dichloroethane	0.4722	0.4987	105.61	100	(
di-Isopropyl Ether	0.9704	1.0524	108.45	100	1
2-Chloro-1,3-Butadiene	0.3901	0.4483	114.93	100	[15
Ethyl t-Butyl Ether	0.8002	0.8406	105.05	100	
cis-1,2-Dichloroethene	0.2575	0.2743	106.54	100	'
2-Butanone	0.0550	0.0542	197.08	200	-:
2,2-Dichloropropane	0.3411	0.3661	107.33	100	, '
Propionitrile	0.0661	0.0731	552.80	500	13
Methacrylonitrile	0.1585	0.1775	279.85	250	12
Bromochloromethane	•	0.1450	1	100	į į
Tetrahydrofuran	•	0.1659	•	200	į (
Chloroform		0.4738		100	j :
1,1,1-Trichloroethane	•	0.3933	•	100	;
_, _, _	i	i	İ	ĺ	

8264

Minimum RRF for SPCC(#)=0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %Drift for CCC(*)=20%

7A VOLATILE CONTINUING CALIBRATION CHECK

Lab	Name:	Lancaster	Laboratories	Contract:
-----	-------	-----------	--------------	-----------

Instrument ID: HP09915 Calibration Date: 06/13/06 Time: 21:12

Lab File ID: lul3c02.d Init. Calib. Date(s): 06/06/06 06/06/06

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .25

			ACTUAL	TRUE	8
COMPOUND	RRF	RRF100	CONC.	CONC.	DRIFT
	=====	=====	======	======	======
Cyclohexane	0.4553	0.4846	106.43	100	6
1,1-Dichloropropene	0.3410	0.3742	109.76	100	10
Carbon Tetrachloride	0.3297	0.3571	108.30	100	8
Isobutyl Alcohol	0.0201	0.0227	1409.11	1250	13
Benzene	1.0207	1.0874	106.53	100	7
1,2-Dichloroethane	0.3917	0.4323	110.35	100	10
t-Amyl Methyl Ether	0.7018	0.7401	105.45	100	5
n-Heptane	0.0481	0.0512	106.36	100	6
n-Butanol	0.0153	0.0172	2817.33	2500	13
Trichloroethene	0.2623	0.2789	106.33	100	6
* 1,2-Dichloropropane	0.2914	0.3242	111.27	100	11
Methylcyclohexane	0.3890	0.4667	119.97	100	20
Methyl Methacrylate	0.2603	0.2950	113.30	100	13
Dibromomethane	0.1814	0.2019	111.30	100	11
1.4-Dioxane	•	•	1538.47	1250	23
Bromodichloromethane	,	0.3793	-		16
2-Nitropropane	0.1199	0.1241	206.92	200	3
2-Chloroethyl Vinyl Ether	0.2259	0.2584	114.39	100	14
cis-1,3-Dichloropropene	0.4367	0.4849	111.03	100	11
4-Methyl-2-Pentanone	0.5323	0.5208	195.70	200	-2
* Toluene	0.8447	0.8724	103.28	100	3
trans-1,3-Dichloropropene	0.5304	0.6233	117.51	100	18
Ethyl Methacrylate	0.5914	0.6651	112.46	100	12
1,1,2-Trichloroethane	0.3311	0.3479	105.08	100	5
Tetrachloroethene	0.3632	0.3644	100.33	100	0
1,3-Dichloropropane	0.6044	0.6483	107.26	100	7
2-Hexanone	0.5756	0.5185	175.29	200	-12
Dibromochloromethane	0.3704	0.3955	106.77	100	7
1,2-Dibromoethane	0.3761	0.3984	105.92	100	6
# Chlorobenzene	0.9696	0.9976	102.88	100	3 =
1,1,1,2-Tetrachloroethane	0.3354	0.3552	105.89	100	6
* Ethylbenzene	1.6297	1.7044	104.59	100	5
m+p-Xylene		0.6617		200	4
Xylene (Total)	0.6246	0.6557	312.61	300	4
o-Xylene	•	0.6438		100	5
Styrene	•	1.1153	•	100	9
1	i		j		

8285

Minimum RRF for SPCC(#)=0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane)
Maximum %Drift for CCC(*)=20%

7A VOLATILE CONTINUING CALIBRATION CHECK

Lab	Name:	Lancaster	Laboratories	Contract:
-----	-------	-----------	--------------	-----------

Lab Code: LANCAS Case No.: SDG No.: SDG No.:

Instrument ID: HP09915 Calibration Date: 06/13/06 Time: 21:12

Lab File ID: lul3c02.d Init. Calib. Date(s): 06/06/06 06/06/06

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .25

			ACTUAL	TRUE	*
COMPOUND	RRF	RRF100		CONC.	DRIFT
=======================================	=====	=====	======		======
Bromoform		0.3128		100	9
Isopropylbenzene	1	1.5731	•	•	
Cyclohexanone	0.0253	0.0269	1326.86	1250	6
1,1,2,2-Tetrachloroethane	•	1.0524		!	
trans-1,4-Dichloro-2-Butene				!	6
Bromobenzene	,	0.7547	•		1
1,2,3-Trichloropropane	0.2781	0.2928	105.31		!
n-Propylbenzene	0.7955	0.7837	98.52	100	-1
2-Chlorotoluene	0.6993	0.7003	100.13	100	0
1,3,5-Trimethylbenzene	1.1532	1.1602	100.61	100	1
4-Chlorotoluene	0.7378	0.7381	100.04	100	0
tert-Butylbenzene	0.5017	0.5108	101.82	100	2
Pentachloroethane	0.4702	0.5119	108.86	100	9
1,2,4-Trimethylbenzene	2.4202	2.4497	101.22	100	1
sec-Butylbenzene	0.5688	0.5763	101.32	100	1
p-Isopropyltoluene	0.6653	0.6808	102.34	100	2
1,3-Dichlorobenzene	1.4057	1.3936	99.14	100	-1
1,4-Dichlorobenzene	1.4831	1.4434	97.32	100	-3
1,2,3-Trimethylbenzene	1.1124	1.1722	105.38	100	5
Benzyl Chloride	1.9867	2.1936	110.42	100	10
1,3-Diethylbenzene	1.5401	1.6400	106.49	100	6
1,4-Diethylbenzene	1.6084	1.7218	107.05	100	7
n-Butylbenzene	1.2355	1.2703	102.82	100	3
		1.3618		100	-2
1,2-Diethylbenzene	1.3029	1.3934	106.94	100	7
1,2-Dibromo-3-Chloropropane	•	•	105.48		5
1,2,4-Trichlorobenzene		0.9951	97.64	100	-2
Hexachlorobutadiene	•	0.3838		100	-3
Naphthalene	•	3.0804		100	1
1,2,3-Trichlorobenzene	0.9856	0.9287	94.23	100	-6
=======================================				======	=====
	:	0.2556			-7
Dibromofluoromethane (mz111)	0.2812	0.2605	46.33	50	-7
	:	0.0553		50	-12
1,2-Dichloroethane-d4(mz104)	0.0398	0.0358	45.00	50	-10
Toluene-d8		1.3176		50	-9

8286

Minimum RRF for SPCC(#)=0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %Drift for CCC(#)=20%

7Α VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Instrument ID: HP09915 Calibration Date: 06/13/06 Time: 21:12

Lab File ID: lu13c02.d Init. Calib. Date(s): 06/06/06 06/06/06

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .25

		<u> </u>	ACTUAL	TRUE	8
COMPOUND	RRF	RRF100	CONC.	CONC.	DRIFT
	=====	_=====	=====	======	=====
Toluene-d8(mz100)	0.9123	0.8339	45.70	50	-9
4-Bromofluorobenzene	0.6455	0.5451	42.23	50	-16
4-Bromofluorobenzene (mz174)	0.5232	0.4302	41.11	50	-18
		ii			l <u></u>

Average %Drift 7

6267

Minimum RRF for SPCC(#)=0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %Drift for CCC(*)=20%

Y (x10^6) 3.8 υ το το το το α α α 4 α ο α 6.0. Column phase: DB-624 Purge Volume: 5.0 Sample Info: VSTD100;VSTD100;1;2;;; Client ID: VSTD100 Date : 13-JUN-2006 21:12 Data File: /chem/HP09915,i/06jun13b,b/lu13c02.d -t-Butyl Alcohol-d10+ গ্ৰ -Dibromofluoromethane(mz11+ /chem/HP09915.i/06jun13b.b/lu13c02.d -1,2-Dichloroethane-d4(mz1+ -Fluorobenzene+ ω 조 1 Column diameter: 0.25 Operator: LCH01518 Instrument: HP09915.i -Toluene-d8(mz100)+ 10 -Chlorobenzene-d5+ 12 -4-Bromofluorobenzene(mz17+ 8288 Page 15

Target Revision 3.5

Data File: /chem/HP09915.i/06jun13b.b/lu13c02.d Instrument ID: HP09915.i Injection date and time: 13-JUN-2006 21:12 Analyst ID: LCM01518

Method used: /chem/HP09915.i/06jun13b.b/L8260W.m Sublist used: 8260WI+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 13-Jun-2006 21:37 lcm01518

	I.S.				Conc.
Compounds	Ref.	RT	QIon	Area	(on column)
	==== =	======	=== = =	== ======	==========
 Dichlorodifluoromethane 	(1)	1.880	85	864909	115.225
Chloromethane	(1)	2.032	50	774513	106.321
3) Vinyl Chloride	(1)	2.167	62	728086	109.698
6) Bromomethane	(1)	2.472	94	418964	97.137
7) Chloroethane	(1)	2.565	64	345033	99.163
8) Trichlorofluoromethane	(1)	2.884	101	852289	110.086
10) Ethyl Ether	(1)	3.134	59	398639	91.669
15) Acrolein	(1)	3.286	56	1797316	1091.515
16) 1,1-Dichloroethene	(1)	3.421	96	461618	98.289
17) Freon 113	(1)	3.456	101	496520	100.961
18) Acetone	(1)	3.462	58	181454	190.105
20) Methyl Iodide	(1)	3.617	142	830630	94.588
21) 2-Propanol	(1)	3.633	45	410312	608.405
22) Carbon Disulfide	(1)	3.713	76	1651205	94.843
23) Allyl Chloride	(1)	3.877	41	1101447	109.001
25) Methyl Acetate	(1)	3.896	43	782876	108.121
26) Methylene Chloride	(1)	4.044	84	559126	97.232
27) *t-Butyl Alcohol-d10	(4)	4.070	65	243900	250.000
28) t-Butyl Alcohol	(4)	4.195	59	537517	482.999
29) Acrylonitrile	(1)	4.392	53	367502	99.972
30) trans-1,2-Dichloroethene	(1)	4.456	96	529924	102.833
31) Methyl Tertiary Butyl Et	her (1)	4.466	73	1737412	102.822
33) n-Hexane	(1)	4.890	57	788956	101.619
40) 1,2-Dichloroethene (tota	(1)		96	1117080	209.374
36) 1,1-Dichloroethane	(1)	5.093	63	1067325	105.610
37) di-Isopropyl Ether	(1)	5.215	45	2252502	108.454
39) 2-Chloro-1,3-Butadiene	(1)	5.240	53	959598	114.926
41) Ethyl t-Butyl Ether	(1)	5.761	59	1799220	105.048
42) cis-1,2-Dichloroethene	(1)	5.954	96	587156	106.540
43) 2-Butanone	(1)	5.970	72	231825	197.080
44) 2,2-Dichloropropane	(1)	5.964	77	783626	107.328
45) Propionitrile	(1)	6.044	54	781973	552.797
46) Methacrylonitrile	(1)	6.273	67	949584	279.854
47) Bromochloromethane	(1)	6.292	128	310344	107.591
•					

⁸²⁸⁹

Target Revision 3.5

Data File: /chem/HP09915.i/06jun13b.b/lu13c02.d Instrument ID: HP09915.i Injection date and time: 13-JUN-2006 21:12 Analyst ID: LCM01518

Method used: /chem/HP09915.i/06jun13b.b/L8260W.m Sublist used: 8260WI+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 13-Jun-2006 21:37 lcm01518

		I.S.				Conc.
	Compounds	Ref.	$\mathtt{R}\mathbf{T}$	QIon	Area	(on column)
====	.======================================	======	==== = =	=====	=======	=========
48)	Tetrahydrofuran	(1)	6.356	42	709984	200.860
49)	Chloroform	(1)	6.414	83	1014186	109.472
54)	1,1,1-Trichloroethane	(1)	6.678	97	841771	106.787
55)		(1)	6.764	56	1037165	106.427
58)	1,1-Dichloropropene	(1)	6.903	75	801014	109.759
5 9)	Carbon Tetrachloride	(1)	6.909	117	7642,62	108.301
60)	Isobutyl Alcohol	(1)	7.070	41	606504	1409.114
63)	Benzene	(1)	7.186	78	2327304	106.530
64)	1,2-Dichloroethane	(1)	7.199	62	925168	110.353
67)	t-Amyl Methyl Ether	(1)	7.350	73	1583958	105.449
69)		(1)	7.568	100	109499	106.365
	*Fluorobenzene	(1)	7.562	96	1070164	50.000
72)	n-Butanol	(1)	7.964	56	921866	2817.329
73)	Trichloroethene	(1)	8.047	95	596949	106.334
77)		(1)	8.340	63	693999	111.269
74)	Methylcyclohexane	(1)	8.314	83	998885	119.967
80)	Methyl Methacrylate	(1)	8.504	69	631337	113.303
	Dibromomethane	(1)	8.488	93	432219	111.301
81)	1,4-Dioxane	(1)	8.517	88	132594	1538.472
	Bromodichloromethane	(1)	8.697	83	811919	116.102
83)	2-Nitropropane	(1)	8.989	41	531159	206.922
84)	2-Chloroethyl Vinyl Ether	(1)	9.099	. 63	553120	114.389
	cis-1,3-Dichloropropene	(1)	9.279	75	1037831	111.026
87)	4-Methyl-2-Pentanone	(1)	9.469	43	2229508	195.702
90)		(2)	9.674	92	1421019	103.285
91)	trans-1,3-Dichloropropene	(2)	9.915	75	1015236	117.509
92)	Ethyl Methacrylate	(2)	10.025	69	1083358	112.461
	1,1,2-Trichloroethane	(2)	10.112	97	566716	105.078
94)	Tetrachloroethene	(2)	10.269	166	593510	100.326
95)	1,3-Dichloropropane	(2)	10.285	76	1055927	107.263
96)	2-Hexanone	(2)	10.369	43	1688962	175.293
98)	Dibromochloromethane	(2)	10.514	129	644233	106.771
100)	1,2-Dibromoethane	(2)	10.623	107	648906	105.920
101)	*Chlorobenzene-d5	(2)	11.063	117	814406	50.000

⁵²¹⁶

Target Revision 3.5

Data File: /chem/HP09915.i/06jun13b.b/lu13c02.d Instrument ID: HP09915.i Injection date and time: 13-JUN-2006 21:12 Analyst ID: LCM01518

Method used: /chem/HP09915.i/06jun13b.b/L8260W.m Sublist used: 8260WI+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 13-Jun-2006 21:37 lcm01518

	I.S.				Conc.
Compounds	Ref.	\mathtt{RT}	QIon	Area	(on column)
#=====================================	=====				=======================================
102) Chlorobenzene	(2)	11.089	112	1624853	102.881
103) 1,1,1,2-Tetrachloroethane	(2)	11.163	131	578529	105.892
104) Ethylbenzene	(2)	11.186	91	2776186	104.586
105) m+p-Xylene	(2)	11.292	106	2155463	207.124
106) Xylene (Total)	(2)		106	3204124	312.610
107) o-Xylene	(2)	11.632	106	1048661	105.486
108) Styrene	(2)	11.639	104	1816583	108.924
109) Bromoform	(2)	11.796	173	509546	109.036
111) Isopropylbenzene	(2)	11.935	105	2562217	101.930
115) Cyclohexanone	(2)	12.012	55	546746	1326.858
116) 1,1,2,2-Tetrachloroethane	(3)	12.163	83	995691	103.809
118) trans-1,4-Dichloro-2-Butene	(3)	12.205	53	895112	264.105
117) Bromobenzene	(3)	12.185	156	713994	101.395
119) 1,2,3-Trichloropropane	(3)	12.202	110	277040	105.312
120) n-Propylbenzene	(3)	12.259	120	741482	98.521
122) 2-Chlorotoluene	(3)	12.333	126	662526	100.131
123) 1,3,5-Trimethylbenzene	(3)	12.388	120	1097705	100.609
125) 4-Chlorotoluene	(3)	12.414	126	698312	100.042
126) tert-Butylbenzene	(3)	12.642	134	483293	101.819
127) Pentachloroethane	(3)	12.665	167	484302	108.858
128) 1,2,4-Trimethylbenzene	(3)	12.674	105	2317713	101.219
129) sec-Butylbenzene	(3)	12.803	134	545226	101.317
130) p-Isopropyltoluene	(3)	12.902	134	644139	102.335
131) 1,3-Dichlorobenzene	(3)	12.896	146	1318495	99.138
132) *1,4-Dichlorobenzene-d4	(3)	12.941	152	473061	50.000
133) 1,4-Dichlorobenzene	(3)	12.957	146	1365617	97.320
134) 1,2,3-Trimethylbenzene	(3)	12.989	120	1109088	105.381
135) Benzyl Chloride	(3)	13.050	91	2075454	110.418
136) 1,3-Diethylbenzene	(3)	13.115	119	1551674	106.486
137) 1,4-Diethylbenzene	(3)	13.179	119	1629012	107.047
138) n-Butylbenzene	(3)	13.198	92	1201854	102.818
139) 1,2-Dichlorobenzene	(3)	13.230	146	1288445	98.131
140) 1,2-Diethylbenzene	(3)	13.266	119	1318326	106.945
141) 1,2-Dibromo-3-Chloropropane	(3)	13.764	75	235426	105.481
<u>-</u> ,					

^{* =} Compound is an internal standard.

Target Revision 3.5

Data File: /chem/HP09915.i/06jun13b.b/lu13c02.d Instrument ID: HP09915.i Injection date and time: 13-JUN-2006 21:12 Analyst ID: LCM01518

Method used: /chem/HP09915.i/06jun13b.b/L8260W.m Sublist used: 8260WI+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 13-Jun-2006 21:37 lcm01518

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
#=====================================	======	======	======	========	========
142) 1,2,4-Trichlorobenzene	(3)	14.324	180	941512	97.644
143) Hexachlorobutadiene	(3)	14.427	225	363092	97.119
144) Naphthalene	(3)	14.494	128	2914399	100.589
145) 1,2,3-Trichlorobenzene	(3)	14.648	180	878634	94.226
51) \$Dibromofluoromethane	(1)	6.636	113	273584	46.409
52) \$Dibromofluoromethane (mz111)	(1)	6.636	111	278796	46.328
62) \$1,2-Dichloroethane-d4	(1)	7.099	102	59191	43.908
61) \$1,2-Dichloroethane-d4 (mz104)	(1)	7.092	104	38356	45.001
89) \$Toluene-d8	(2)	9.600	98	1073034	45.434
88) \$Toluene-d8 (mz100)	(2)	9.600	100	679162	45.705
113) \$4-Bromofluorobenzene	(2)	12.057	95	443946	42.225
112) \$4-Bromofluorobenzene (mz174)	(2)	12.057	174	350329	41.107

^{\$ =} Compound is a surrogate standard.

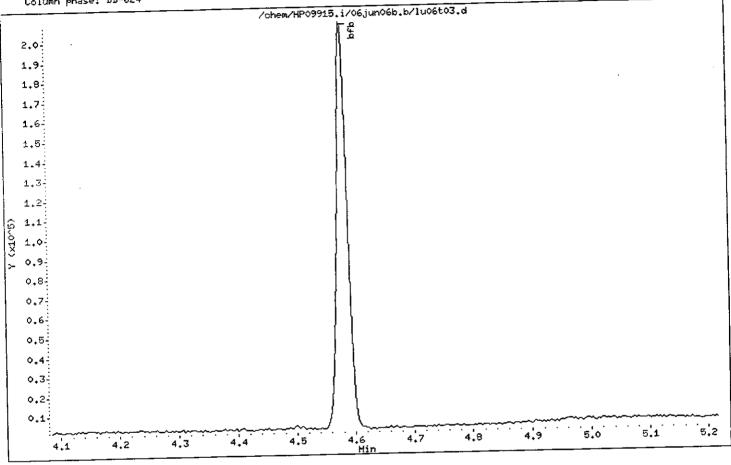
Raw QC Data

Data File: /chem/HP09915.i/06jun06b.b/lu06t03.d

.....

Date : 06-JUN-2006 16:40

Client ID: 2UL BFBFEB23


Instrument: HP09915.i

Sample Info: 2UL BFBFEB23;50 NG BFB;1;3;;;

Operator: KEB01027

Column phase: DB-624

Column diameter: 0,25

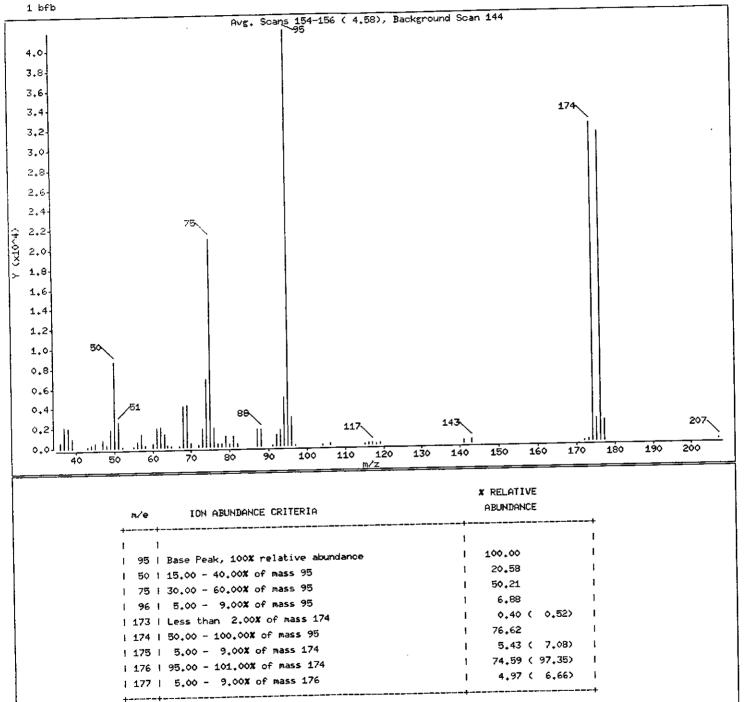
K567027 6/6/00

Page 1

8215

Data File: /chem/HP09915.i/06jun06b.b/lu06t03.d

Date : 06-JUN-2006 16:40 Client ID: 2UL BFBFEB23


Instrument: HP09915.i

Sample Info: 2UL BFBFEB23;50 NG BFB;1;3;;;

Operator: KEB01027

Column diameter: 0.25

Column phase: DB-624

Data File: /chem/HP09915.i/06jun06b.b/lu06t03.d

Date : 06-JUN-2006 16:40

Client ID: 2UL BFBFEB23

Instrument: HP09915.i

Sample Info: 2UL BFBFEB23;50 NG BFB;1;3;;;

Operator: KEB01027

Column phase: DB-624

Column diameter: 0,25

Data File: lu06t03.d

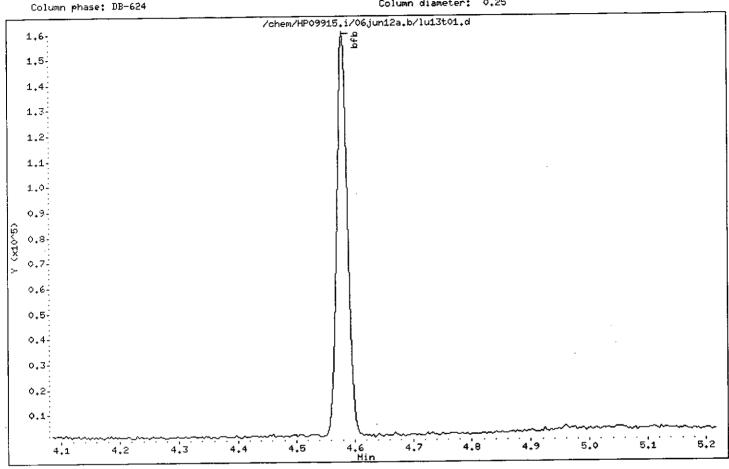
Spectrum: Avg. Scans 154-156 (4.58), Background Scan 144

Location of Maximum: 95.00 Number of points: 63

	m/Z	Y		m/z	Υ.	m/z	Y	m/z 	Y
+ 1	36.00	570	+- 	58,00	216 l	77.00	300 1	106.00	183 l
	37 .0 0	2159	i	60,00	430 1	78.00	250	115.00	63 1
· i	38.00	1997	ı	61,00	1940 l	79.00	1019 1	116.00	146
1	39,00	975		62,00	2016	80.00	276	117,00	196
ĺ	43.00	69	I	63,00	1329	81.00		118.00	50
÷-	44.00	 283		64.00		82.00	+ 299	119.00	145
!	45.00	524		65.00	112	87.00	1707 l	141.00	333 I
,	47.00	754		67.00	56 I	88.00	1752 l	143.00	401 l
1	48.00	260		68.00	4159 l	91.00	69	172.00	123 l
ì	49,00	1863		69.00	4222 1	92,00	1166	173,00	168
+-	50.00	 8605	- +-	70.00		93.00	1633	174.00	32040 I
	51.00	2553		72.00	232 I	94,00	4890 l	175.00	2270
1	52.00	119		73.00	1843 i	95,00	41816	176,00	31192
1	55.00	52		74.00	6808 I	96,00	2875	177,00	2077 1
1	56.00	611		75.00	20992 1	97.00	59	207.00	52 +
+- 1	57.00	1298	1	76,00	•	104,00	54	 	 +

Data File: /chem/HP09915.i/06jun12a.b/lu13t01.d

Date : 13-JUN-2006 08:05


Client ID: 2UL BFBFEB23

Sample Info: 2UL BFBFEB23;50 NG BFB;1;3;;;

Operator: ADS01731

Instrument: HP09915.i

Column diameter: 0.25

Am 21/3/4

Page 1

Data File: /chem/HP09915.i/06jun12a.b/lu13t01.d

| 174 | 50.00 - 100.00% of mass 95 | 175 | 5.00 - 9.00% of mass 174

| 176 | 95.00 - 101.00% of mass 174

1 177 | 5.00 - 9.00% of mass 176

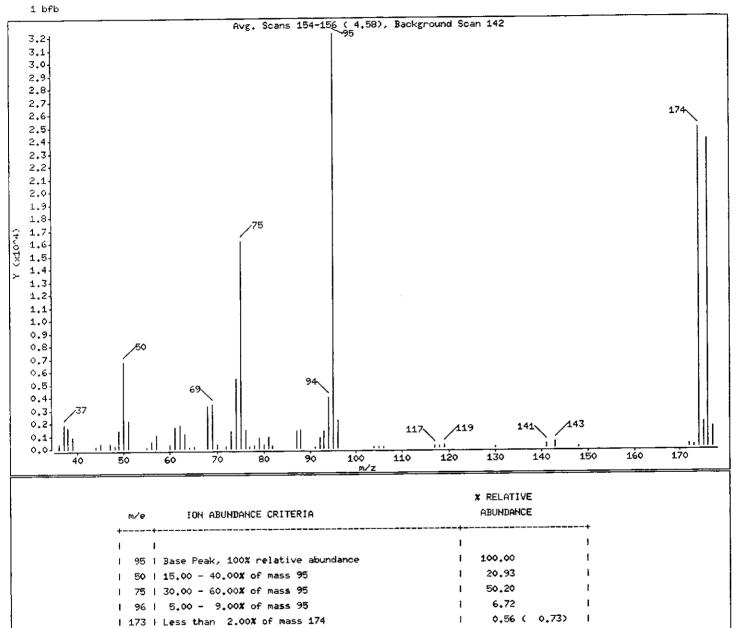
Bate : 13-JUN-2006 08:05 Client ID: 2UL BFBFEB23

Instrument: HP09915.i

Sample Info: 2UL BFBFEB23;50 NG BFB;1;3;;;

Operator: ADS01731

Column phase: DB-624


Column diameter: 0.25

77.09

5,86 (7,60) 74,23 (96,30)

4,78 (6,45)

0218

Data File: /chem/HP09915.i/06jun12a.b/lu13t01.d

Date : 13-JUN-2006 08:05

Client ID: 2UL BFBFEB23

Instrument: HP09915.i

Sample Info: 2UL BFBFEB23;50 NG BFB;1;3;;;

Operator: ADS01731

Column phase: DB-624

Column diameter: 0,25

Data File: lu13t01.d

Spectrum: Avg. Scans 154-156 (4.58), Background Scan 142

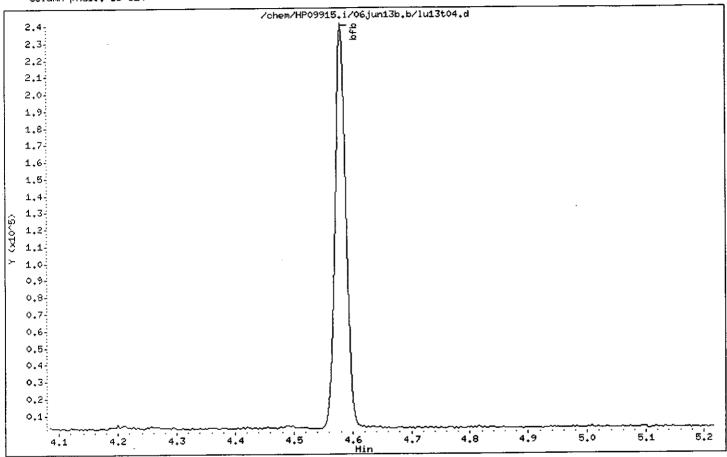
Location of Maximum: 95.00 Number of points: 58

	m/z	Y		m/z	Y		m/z	Y		m/z	Y +
+- 	36.00	400	•	61,00	1659		79.00			117,00	163
ı	37,00	1818	ŧ	62.00	1754	ı	80,00	273	ı	118.00	116
ı	38,00	1603	1	63.00	1106	į	81.00	890	1	119,00	201
ı	39.00	880	ı	64.00	68	1	82,00	186	I	130.00	79
ı	44.00	123	I	65,00	112					141.00	31 1
•		362		68.00	3284		88.00			143,00	436
ı	45,00			69.00	3434		91.00			148.00	54
! 	47,00 48,00	405 205		70.00	284					172.00	214
i	49.00	1388		72,00	154	ı	93,00	1350	1	173.00	181
ì	50.00	6746	I	73.00	1352	I	94.00	39 25	I	174.00	24840
+-			+-	- -		+			-+		
F	51,00	2132	ı	74.00	5388	1	95,00	32224	ı	175.00	1889
1	55,00	58	1	75.00	16178	i	96,00	2167	ı	176.00	23920
ı	56.00	534	1	76.00	1412	ı	104.00	100	1	177.00	1542
ı	57.00	1038	1	77,00	165	ı	105.00	57	1		
ŧ	60,00	268	ì	78.00	227	I	106.00	58	I		
+-	-		-+-	 -		+			-+		

Data File: /chem/HP09915.i/06jun13b.b/lu13t04.d

Date : 13-JUN-2006 20:50

Client ID: 2UL BFBFEB23


Instrument: HP09915.i

Sample Info: 2UL BFBFEB23;50 NG BFB;1;3;;;

Operator: LCM01518

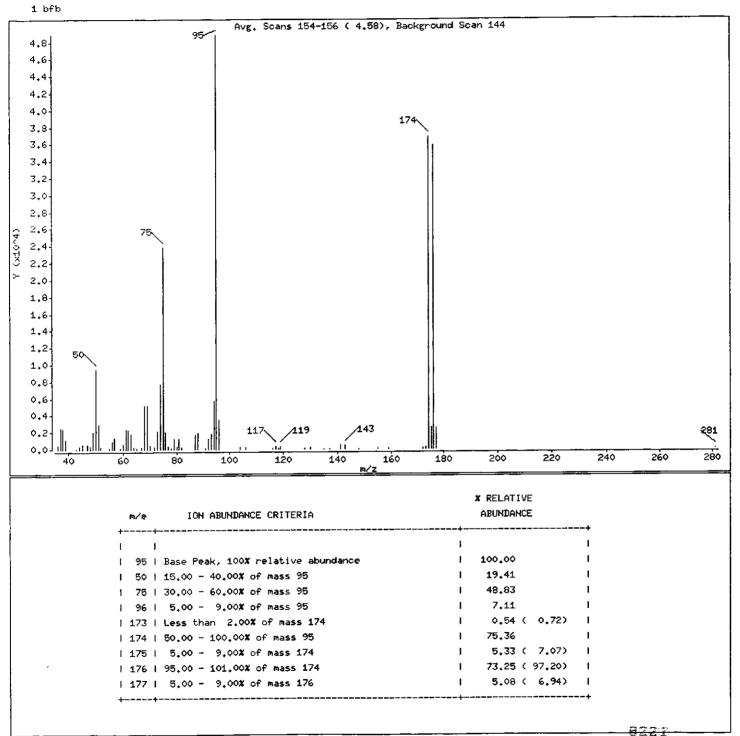
Column phase: DB-624

Column diameter: 0.25

UM/h 6/3/06 Data File: /chem/HP09915.i/06jun13b.b/lu13t04.d

Date : 13-JUN-2006 20:50

Client ID: 2UL BFBFEB23


Instrument: HP09915.i

Sample Info: 2UL BFBFEB23;50 NG BFB;1;3;;;

Operator: LCM01518

Column phase: DB-624

Column diameter: 0.25

Bata File: /chem/HP09915.i/06jun13b.b/lu13t04.d

Bate: 13-JUN-2006 20:50 Client ID: 2UL BFBFEB23

Instrument: HP09915.i

Sample Info; 2UL BFBFEB23;50 NC BFB;1;3;;;

Operator: LCM01518

Column phase: DB-624

Column diameter: 0.25

Bata File: lu13t04.d

Spectrum: Avg. Scans 154-156 (4.58), Background Scan 144

Location of Maximum: 95.00 Number of points: 68

	m/z	Y		m/z	Y 	m/z 	Υ	+-	m/z	Y 	-+
+-·	36,00	502	1	61.00	2375 1	81.00	1203	ı	135.00	5 1	ı
ì	37.00	2427	ı	62,00	22 95	82,00	229	ı	137.00	50	1
ı	38.00	2360	í	63.00	1783 i	87.00	1735	j	141.00	418	1
ı	39 ,0 0	1134	ļ	64.00	224	88,00	1862	I	143.00	500	I
I	43,00	16	1	65,00	156 1	91.00			148,00	51	1
+-			-+-	 -				-			-+
į	44.00	300	I	67,00	207 1	92,00			155,00	61	
1	45.00	513	ŀ	68.00	5136 I	93.00	1841	1	159.00	67	ı
ī	47,00	577	1	69.00	5130 l	94.00	5737	1	172.00	144	ŀ
ı	48.00	285	,	70,00	443 I	95,00	48848	1	173,00	266	ł
ì	49,00	2014	1	72,00	237 1	96,00	3 475	ļ	174,00	36816	I
+-			-+-			 -		+		·	-+
1	50.00	9480	l	73,00	2089	104,00			175.00		
l	51,00	2918	1	74,00	7634	106,00	231	1	176,00	35784	ı
ı	52 .0 0	244	ı	75.00	23 84 8	116,00	90	1	177.00	2484	ı
ţ	55.00	142	1	76,00	2 053 !	117,00	325	I	281.00	54	ı
1	56.00	921	I	77,00	370	118,00					1
+-			-+-					+			-+
l	57.00	1294	ł	78.00	164	119,00	291	I			ı
1	59,00	111	1	79,00	1201	128,00	133	1			١
ı	60,00	536	١	80,00	314	130,00	225	1			1
+-	- -		-+-					-+		.,	-+

EPA SAMPLE NO.

	VBLKL28
Contract:	

Lab Name: Lancaster Laboratories Contract:____

Matrix: (soil/water) WATER Lab Sample ID: VBLKL28

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09915.i/06jun13a.b/lu13b03.d

Level: (low/med) LOW Date Received:

Moisture: not dec. ____ Date Analyzed: 06/13/06

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/I	or ug/Kg	ug/L		Q
75-71-8	Dichlorodifluorometh	ane		5	U
74-87-3	Chloromethane	Ì		5	ן ט
75-01-4	Vinyl Chloride			5	ן ט
74-83-9	Bromomethane	ĺ		5	ן ט
75-00-3	Chloroethane	ĺ		5	ן ט
75-69-4	Trichlorofluorometha	ine		5	ן ט [
60-29-7	Ethyl Ether	ĺ		5	ן ט
107-02-8	Acrolein	į	1	00	ן ט
, 75-35-4 -	1,1-Dichloroethene	į		5	ט
76-13-1	Freon 113	ĺ		10	U
, 67-64-1	Acetone	į		20	U
74-88-4	Methyl Iodide	į		5	ט
,	2-Propanol	į	1	00	ט
,	Carbon Disulfide	į		5	ן ט
107-05-1	Allyl Chloride	į		5	ט
	Methyl Acetate	į		5	ט
,	Methylene Chloride	į		5	ט
1	t-Butyl Alcohol	į		80	י די
!	Acrylonitrile	İ		20	ט
156-60-5	trans-1,2-Dichloroet	hene		5	U
1634-04-4-	Methyl Tertiary Buty	l Ether		5	U
Į.	n-Hexane	į		5	U
•	1,1-Dichloroethane	ĺ		5	U
108-20-3	di-Isopropyl Ether	ĺ		5	U
,	2-Chloro-1,3-Butadie	ene Ì		5	U
540-59-0	1,2-Dichloroethene	(total)		5	ֹ ט
1	Ethyl t-Butyl Ether	į		5	ֹן די וֹ
•	cis-1,2-Dichloroethe	ene i		5	ן ט ן
78-93-3	2-Butanone	į		10	ן ט ן
	2,2-Dichloropropane	į		5	j u j
	,	į			İ İ

EPA SAMPLE NO.

VBLKL28

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.:____ SAS No.:___ SDG No.:___

Matrix: (soil/water) WATER Lab Sample ID: VBLKL28

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09915.i/06jun13a.b/lu13b03.d

Level: (low/med) LOW Date Received:

Moisture: not dec. ____ Date Analyzed: 06/13/06

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

(ug/L or ug/Kg) MDL ug/L $\,$ Q CAS NO. COMPOUND

107-12-0Propionitrile	30	ט
126-98-7Methacrylonitrile	10	ָ ע
74-97-5Bromochloromethane	1	ן ט
109-99-9Tetrahydrofuran	4	U
67-66-3Chloroform	0.8	U
71-55-61,1,1-Trichloroethane	0.8	Ū
110-82-7Cyclohexane	2	Ū
563-58-61,1-Dichloropropene	1	ע
56-23-5Carbon Tetrachloride	1	U
78-83-1Isobutyl Alcohol	100	Ū
71-43-2Benzene	0.5	U
107-06-21,2-Dichloroethane	1	U
994-05-8t-Amyl Methyl Ether	0.8	U
142-82-5n-Heptane	2	U
71-36-3n-Butanol	100	U
79-01-6Trichloroethene	1	U
108-87-2Methylcyclohexane	1	U
78-87-51,2-Dichloropropane	1) U
74-95-3Dibromomethane	1	U
80-62-6Methyl Methacrylate	1	U
123-91-11,4-Dioxane	70	U
75-27-4Bromodichloromethane	1	U
79-46-92-Nitropropane	2	U
110-75-82-Chloroethyl Vinyl Ether	2	U
10061-01-5cis-1,3-Dichloropropene	1	ט
108-10-14-Methyl-2-Pentanone	3	ט
108-88-3Toluene	0.7	ן ע
10061-02-6trans-1,3-Dichloropropene	1	U
97-63-2Ethyl Methacrylate	1	ן ט
79-00-51,1,2-Trichloroethane	0.8	U
	1	1

	EPA	SAMPLE	NO.
ı			
	1	BLKL28	

Lah	Name ·	Lancaster	Laboratories	Contract:	
	Name:	Dancaster	Haboracorro		_

Lab Code: LANCAS Case No.:____ SAS No.:___ SDG No.:___

Lab Sample ID: VBLKL28 Matrix: (soil/water) WATER

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09915.i/06jun13a.b/lu13b03.d

Date Received: Level: (low/med) LOW

Date Analyzed: 06/13/06 Moisture: not dec. ____

Dilution Factor: 1.0 Column: (pack/cap) CAP

CONCENTRATION UNITS:

CAS NO.	COMPOUND		ug/Kg)	MDL ug/L	Q
127-18-4-	Tetrachloro	<u> </u>	0.8	U	
ı	1 3-Dichlor	į.	1	l U	

1.3	0.8	IJ
127-18-4Tetrachloroethene		U
142-28-91,3-Dichloropropane	- !	IJ
591-78-62-Hexanone	3	•
124-48-1Dibromochloromethane	1	U
106-93-41,2 - Dibromoethane	1	Ŭ
108-90-7Chlorobenzene	0.8	Ū
630-20-61,1,1,2-Tetrachloroethane	1 .	U
100-41-4Ethylbenzene	0.8	U
1330-20-7m+p-Xylene	0.8	Ŭ
1330-20-7Xylene (Total)	0.8	Ŭ
95-47-6o-Xylene	0.8	ប
100-42-5Styrene	1	U
75-25-2Bromoform	1	υ
98-82-8Isopropylbenzene	1	Ū
108-94-1Cyclohexanone	55	U
79-34-51,1,2,2-Tetrachloroethane	į	ប
108-86-1Bromobenzene	j	υ
110-57-6trans-1,4-Dichloro-2-Butene	15	U
96-18-41,2,3-Trichloropropane	1	Ū
103-65-1n-Propylbenzene	1	ับ
95-49-8	, - i 1	ប
	, - , 1	ប
108-67-81,3,5-Trimethylbenzene	1 1	l tī
106-43-44-Chlorotoluene	1 1	l U
98-06-6tert-Butylbenzene	1 1	U
76-01-7Pentachloroethane	! 1	ΙŪ
95-63-61,2,4-Trimethylbenzene	!	! -
135-98-8sec-Butylbenzene	1	ן ט
99-87-6p-Isopropyltoluene	1	ן ט
541-73-11,3-Dichlorobenzene	1	U
106-46-71,4-Dichlorobenzene	1	ן ט

EPA SAMPLE NO.

VBLKL28

Lab Name: Lancaster Laboratories Contract:____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: VBLKL28

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09915.i/06jun13a.b/lu13b03.d

Level: (low/med) LOW

Date Receiv**e**d:

Moisture: not dec. ____

Date Analyzed: 06/13/06

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) MDL ug/L Q

		1 77
526-73-81,2,3-Trimethylbenzene	Ţ	ן ט
100-44-7Benzyl Chloride	1	U
141-93-51,3-Diethylbenzene	1	U
105-05-51,4-Diethylbenzene	1	ע
104-51-8n-Butylbenzene	1	ע
95-50-11,2-Dichlorobenzene	1	ט
135-01-31,2-Diethylbenzene	1	ט
96-12-81,2-Dibromo-3-Chloropropane	2	บ
120-82-11,2,4-Trichlorobenzene	1	บ
87-68-3Hexachlorobutadiene	2	U
91-20-3Naphthalene	1	ט
87-61-61,2,3-Trichlorobenzene	1	ַ ט
25340-17-4Diethylbenzene (total)	1	ט
20010 1. 1		

BLKL28 Lancaster Laboratories Quantitation Report GC/MS Volatiles VBLKL28

File: /chem/HP09915.i/06junl3a.b/lu13b03.d

Sample: VBLKL28; VBLKL28; 1; 3;;;; Injected At:13-JUN-2006 16:42

Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m

Blank Reference: Sublist: 8260W+CYC Sample Concentration Formula: On-Column Amount * (Vt/Vo) Matrix: WATER

Batch:L061642AA

Analyst:ADS01731

Instrument ID: HP09915.1

Standard Reference: lul3c01.d

Prep Factor:1.00

Units: ug/L

Level: Low

Sample Wt./Vol.: 5.0000 ml (Vo)

Volume Purged: 5.0 ml (Vt)

Bottle Code:

Internal Standards	RT(+/-RT)	Scan	QIon	Area(+/- %Area)	Conc (ext)	QC Flag	
	E===#===#		====	*****	=======	222232	
27) t-Butyl Alcohol-d10	4.076(-0.010)	776	65	219917(-10)	250.00		
70) Fluorobenzene	7.559(0.000)	1859	96	1057177(1)	50.00		
101) Chlorobenzene-d5	11.063(-0.003)	2949	117	802022(2)	50.00		
132) 1,4-Dichlorobenzene-d4	12.941(0.000)	3533	152	433965(-4)	50.00		

= RETENTION TIME OUT OF RANGE

* = INTERNAL STANDARD OUT OF RANGE NC = NOT ABLE TO CALCULATE

	I.S.				Conc.		QC	
Surrogate Standards	Ref.	RT (+/-RRT)	QIon	Area	(on column)	%Rec. f	lags	QC Limits
=======================================	35555==		=====	=======================================	=======================================	=======================================		
51) Dibromofluoromethane	(1)	6.636(-0.001)	113	269580	46.292	93%		80 - 116
62) 1,2-Dichloroethane-d4		7.102(-0.002)	102	59566	44.729	89%		77 - 113
	\ - '	9.600(0.000)	98	1046748	45.005	9 0%		80 - 113
89) Toluene-d8	ν-,	2.057(0.000)	95	409561	39.556	79%		78 - 113

= RELATIVE RETENTION TIME OUT OF RANGE * = PERCENT REC.OUT OF RANGE D = DILUTED OUT NC = NOT ABLE TO CALCULATE

		I.S.					Conc.	Conc.	Blank	1	Reporting	j
	get Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
	gec compounds			 •=================================		======================================	=======================================	======================================	=======	======	======	======
	Dichlorodifluoromethane	(1)					ND	ND			2.00	5.00
	Chloromethane	(1)					ND	ND			1.00	5.00
	Vinyl Chloride	(1)					ND	ND			1.00	5.00
	•	(1)					ND	ND			1.00	5.00
	Bromomethane	(1)					ND	ND			1.00	5.00
	Chloroethane	(1)					ND	ND			2.00	5.00
	Trichlorofluoromethane	(1)					ND	ND			2.00	5.00
-	Ethyl Ether	(1)					ND	ND			40.00	100.00
	Acrolein						ND	ND			0.80	5.00
	1,1-Dichloroethene	(1)					ND	ND			2.00	10.00
	Freon 113	(1)					ND	ND			6.00	20.00
	Acetone	(1)					ND	NĎ			1.00	5.00
20)	Methyl Iodide	(1)					מא	ND			50.00	100.00
21)	2-Propanol	(1)					ND	ND			1.00	5.00
22)	Carbon Disulfide	(1)					ND	ND			1.00	5.00
23)	Allyl Chloride	(1)					ND	ND			1.00	5.00
25)	Methyl Acetate	(1)					ND	ND			2.00	5.00
26)	Methylene Chloride	(1)						ND			10.00	80.00
28)	t-Butyl Alcohol	(4)					ND	םא סמ			4.00	20.00
29)	Acrylonitrile	(1)					ND				0.80	5.00
30)	trans-1,2-Dichloroethene	(1)					ПD	ND			0.50	5.00
31)	Methyl Tertiary Butyl Ether	(1)					ND	ND			2.00	5.00
33)	n-Hexane	(1)					ND	ND			0.80	5.00
40)	1,2-Dichloroethene (total)	(1)					ND	N D				
36!	1,1-Dichloroethane	(1)					ND	ND			1.00	5.00

E = CONC. OUT OF CAL. RANGE

^{# =} RELATIVE RETENTION TIME OUT OF RANGE

VBLKL28 Lancaster Laboratories VBLKL28 Quantitation Report GC/MS Volatiles

File: /chem/HP09915.i/06junl3a.b/lul3b03.d

Sample: VBLKL28; VBLKL28; 1; 3;;;; Injected At:13-JUN-2006 16:42

Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m

Blank Reference: Sublist: 8260W+CYC Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Batch:L061642AA

Analyst:ADS01731 Instrument ID:HP09915.1 Standard Reference: lul3c01.d

Prep Factor:1.00

Units: ug/L

Matrix: WATER Level: Low

Sample Wt./Vol.: 5.0000 ml (Vo)

Volume Purged: 5.0 ml (Vt)

Bottle Code:

	I.S.					Conc.	Conc.	Blank		Reporting	ŧ
Target Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
rarget compounds	======		========		E======		*============	======	======		
37) di-Isopropyl Ether	(1)					ND	ND			0.80	5.00
39) 2-Chloro-1,3-Butadiene	(1)					ND	ND			1.00	5.00
	(1)					ND	ND			0.80	5.00
	(1)					ND	ND			0.80	5.00
	(1)					ND	ND			3.00	10.00
43) 2-Butanone	(1)					ND	ND			1.00	5.00
44) 2,2-Dichloropropane	(1)					ND	ND			30.00	100.00
45) Propionitrile	(1)					ND	ND			10.00	50.00
46) Methacrylonitrile	(1)					ND	ND			1.00	5.00
47) Bromochloromethane	(1)					ND	ND			4.00	10.00
48) Tetrahydrofuran	(1)					ND	ND			0.80	5.00
49) Chloroform						ND	ND			0.80	5.00
54) 1,1,1-Trichloroethane	(1)					ND	ND			2.00	5.00
55: Cyclohexane	(1)					ND	ND			1.00	5.00
58) 1,1-Dichloropropene	(1)					ND	ND			1.00	5.00
59) Carbon Tetrachloride	(1)					ND	ND			100.00	250.00
60) Isobutyl Alcohol	(1)					ND	ND			0.50	5.00
63) Benzene	(1)					ND	ND			1.00	5.00
64) 1,2-Dichloroethane	(1)					ND	ND			0.80	5.00
67) t-Amyl Methyl Ether	(1)					ND	ND			2.00	5.00
69) n-Heptane	(1)						ND			100.00	250.00
72) n-Butanol	(1)					ND	ND			1.00	5.00
73) Trichloroethene	(1)					ND	ИD			1.00	5.00
77) 1,2-Dichloropropane	(1)					ND				1.00	5.00
74) Methylcyclohexane	(1)		•			ND	ND			1.00	5.00

E = CONC. OUT OF CAL. RANGE # = RELATIVE RETENTION TIME OUT OF RANGE

Page 2 of 5

VBLKL28 Lancaster Laboratories VBLKL28 Quantitation Report GC/MS Volatiles

File: /chem/HP09915.i/06junl3a.b/lul3b03.d

Sample: VBLKL28; VBLKL28; 1; 3;;;; Injected At:13-JUN-2006 16:42

Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m

Blank Reference: Sublist: 8260W+CYC Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Batch: L061642AA

Analyst:ADS01731

Instrument ID:HP09915.i

Standard Reference: lul3c01.d

Prep Factor:1.00

Units: ug/L

Matrix: WATER Level: Low

Sample Wt./Vol.: 5.0000 ml (Vo)

Volume Purged: 5.0 ml (Vt)

Bottle Code:

·	I.S.					Conc.	Conc.	Blank		Reporting	3
Target Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
Target compounds	=====				-**E2====	三年中国中国 三年中華	=======================================	*======		======	=====
80) Methyl Methacrylate	(1)					ИD	ND			1.00	5.0
79) Dibromomethane	(1)					ND	ND			1.00	5.0
81) 1,4-Dioxane	(1)					ND	ND			70.00	250.0
82) Bromodichloromethane	(1)					ND	ND			1.00	5.0
83) 2-Nitropropane	(1)					ND	ND			2.00	10.0
84) 2-Chloroethyl Vinyl Ether	(1)					ND	ND			2.00	10.0
85' cis-1,3-Dichloropropene	(1)					ND	ND			1.00	5.0
87: 4-Methyl-2-Pentanone	(1)					ND	ND			3.00	10.0
90) Toluene	(2)					ND	ND			0.70	5.0
91) trans-1,3-Dichloropropene	(2)					ND	ND			1.00	5.0
92) Ethyl Methacrylate	(2)					ND	ND			1.00	5.0
93) 1,1,2-Trichloroethane	(2)					ND	ND			0.80	5.0
94) Tetrachlorosthene	(2)					ND	ND			0.80	5.0
95) 1,3-Dichloropropane	(2)					ND	ND			1.00	5.0
96) 2-Hexanone	(2)					ND	ND			3.00	10.0
98) Dibromochloromethane	(2)					ND	ND			1.00	5.0
100) 1.2-Dibromoethane	(2)					ND	ND			1.00	5.0
102) Chlorobenzene	(2)					ND	ND			0.80	5.0
103) 1,1,1,2-Tetrachloroethane	(2)					ND	ND			1.00	5.0
104) Ethylbenzene	(2)					ND	ND			0.80	5.0
•	(2)					ND	ND			0.80	5.0
• •	(2)					ND	ND			0.80	5.0
106) Xylene (Total)	(2)					ND	ND			0.80	5.0
107) o-Xylene 108) Styrene	(2)					ND	ND			1.00	5.4

E = CONC. OUT OF CAL. RANGE

= RELATIVE RETENTION TIME OUT OF RANGE

Page 3 of 5

VBLKL28 Lancaster Laboratories VBLKL28 Quantitation Report GC/MS Volatiles

File: /chem/HP09915.i/06jun13a.b/lu13b03.d

Sample: VBLKL28; VBLKL28; 1; 3;;;; Injected At:13-JUN-2006 16:42

Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m

Blank Reference: Sublist: 8260W+CYC Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Batch:L061642AA

Analyst:ADS01731

Instrument ID: HP09915.i

Standard Reference: lul3c01.d

Prep Factor:1.00

Units: ug/L

Matrix: WATER

Level: Low Sample Wt./Vol.: 5.0000 ml (Vo)

Volume Purged: 5.0 ml (Vt)

Bottle Code:

	I.S.					Conc.	Conc.	Blank		Reporting	3
Target Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
======================================	****	====	2222237±=		7======±	=======================================	= 1	=======	======	*******	
09) Bromoform	(2)					ND	ND			1.00	5.0
11) Isopropylbenzene	(2)					ND	ND			1.00	5.0
15) Cyclohexanone	(2)					ND	ND			55.00	250.0
16) 1,1,2,2-Tetrachloroethane	(3)					ND	ND			1.00	5.0
18) trans-1,4-Dichloro-2-Butene	(3)					ND	ND			15.00	50.0
17) Bromobenzene	(3)					ND	ND			1.00	5.0
19) 1,2,3-Trichloropropane	(3)					ND	ND			1.00	5.0
20) n-Propylbenzene	(3)					NĎ	ND			1.00	5.0
22) 2-Chlorotoluene	(3)					ND	ND			1.00	5.0
23) 1,3,5-Trimethylbenzene	(3)					ND	ND			1,00	5.0
(25) 4-Chlorotoluene	(3)					ND	ИD			1.00	5.0
26) tert-Butylbenzene	(3)					ND	ND			1.00	5.0
27) Pentachloroethane	(3)					ND	ND			1.00	5.0
28) 1,2,4-Trimethylbenzene	(3)					ND	ND			1.00	5.0
29) sec-Butylbenzene	(3)					ND	ND			1.00	5.0
30) p-Isopropyltoluene	(3)					ND	ПD			1.00	5.0
31) 1,3-Dichlorobenzene	(3)					ND	ND			1.00	5.0
33) 1,4-Dichlorobenzene	(3)					ND	ND			1.00	5.0
34) 1,2,3-Trimethylbenzene	(3)					ND	ND			1.00	5.0
.35) Benzyl Chloride	(3)					ND	ND			1.00	5.0
36) 1.3-Diethylbenzene	(3)					ND	ND			1.00	5.0
37) 1,4-Diethylbenzene	(3)					ND	ND			1.00	5.0
38) n-Butylbenzene	(3)					ND	ND			1.00	5.0
39) 1,2-Dichlorobenzene	(3)					ND	ND			1.00	5.0

E = CONC. OUT OF CAL. RANGE

= RELATIVE RETENTION TIME OUT OF RANGE

VBLKL28

Lancaster Laboratories VBLKL28 Quantitation Report GC/MS Volatiles

File: /chem/HP09915.i/06junl3a.b/lu13b03.d

Sample: VBLKL28; VBLKL28; 1; 3;;;; Injected At:13-JUN-2006 16:42 Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m

Blank Reference: Sublist: 8260W+CYC Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Batch: L061642AA

Analyst:ADS01731

Instrument ID: HP09915.i

Standard Reference: lul3c01.d

Prep Factor:1.00

Units: ug/L

Matrix: WATER

Level: Low

Sample Wt./Vol.: 5.0000 ml (Vo)

Volume Purged: 5.0 ml (Vt)

Bottle Code:

	I.S.					Conc.	Conc.	Blank		Reporting	
Target Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
=======================================	=====	= = = = = = = = = = = = = = = = = = =	=======	****	=======	****	= = = = = = = = = = = = = = = = = = = =	=======		=======	=====
140) 1.2-Diethylbenzene	(3)					ND	ND			1.00	5.0
141) 1,2-Dibromo-3-Chloropropane	(3)					ND	ND			2.00	5.0
142) 1,2,4-Trichlorobenzene	(3)					ND	ND			1.00	5.0
143) Hexachlorobutadiene	(3)					ND	ND			2.00	5.0
144) Naphthalene	(3)					ND	ND			1.00	5.0
145) 1,2,3-Trichlorobenzene	(3)					ИД	ND			1.00	5.0
					a - a	wan					
E = CONC. OUT OF CAL. RANGE	# =	RELAT	TIVE RETENT	ION TIM	E OUT OF R	ANGE					

Comments:		
Analyst:	umhi	Date: 6/3/40
Auditor: I Who		Date 01400

Page 5 of 5

Y (x10^6) 1.0-Sample Info: VBLKL28;VBLKL28;1;3;;;; Date : 13-JUN-2006 16:42 Data File: /chem/HP09915.i/06jun13a.b/lu13b03.d Column phase: DB-624 Purge Volume: 5.0 Client ID: VBLKL28 -t-Butyl Alcohol-d10+ -Dibromofluoromethane /chem/HP09915.i/06jun13a.b/1u13b03.d -1,2-Dichloroethane-d4+ - -Fluorobenzene+ Φ Min Column diameter: 0.25 Operator: ADS01731 Instrument: HP09915.i -Toluene-d8+ 6 -Chlorobenzene-d5 11 -4-Bromofluorobenzene+ 12 13-1,4-Dichlorobenzene-d4+ 14 6232

Target Revision 3.5

Data File: /chem/HP09915.i/06jun13a.b/lu13b03.d Instrument ID: HP09915.i Injection date and time: 13-JUN-2006 16:42 Analyst ID: ADS01731

Method used: /chem/HP09915.i/06jun13a.b/L8260W.m Sublist used: 8260W+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 13-Jun-2006 18:20 lcm01518

Sample Name: VBLKL28 Lab Sample ID: VBLKL28

Compounds	I.S. Ref.	R ${f T}$	QIon	Area	Conc. (on column)
	======	=====	==== =	=========	#========
27)*t-Butyl Alcohol-d10	(4)	4.076	65	219917	250.000
70) *Fluorobenzene	(1)	7.559	96	1057177	50.000
101) *Chlorobenzene-d5	(2)	11.063	117	802022	50.000
132) *1,4-Dichlorobenzene-d4	(3)	12.941	152	433965	50.000
51) \$Dibromofluoromethane	(1)	6.636	113	269580	46.292
62) \$1,2-Dichloroethane-d4	(1)	7.102	102	59566	44.729
89) \$Toluene-d8	(2)	9.600	98	1046748	45.005
113) \$4-Bromofluorobenzene	(2)	12.057	95	409561	39.556

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

VBLKL29

T ~ L	M	Tangagter	Laboratories
Lan.	Name:	Lancaster	Haberacer res

Contract:____

Lab Code: LANCAS Case No.:____ SAS No.:____ SDG No.:____

Matrix: (soil/water) WATER Lab Sample ID: VBLKL29

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09915.i/06jun13b.b/lu13b05.d

Level: (low/med) LOW

Date Received:

Moisture: not dec. _____

Date Analyzed: 06/13/06

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug,	'L or ug/Kg)	ug/L		Q
T 75-71-8	Dichlorodifluoromet	hane		5	U
1	Chloromethane	1		5	U
75-01-4	Vinyl Chloride	1		5	U
	Bromomethane			5	U
	Chloroethane			5	U
	Trichlorofluorometh	nane		5 (U
F	Ethyl Ether	1		5	U
	Acrolein			100	U
	1,1-Dichloroethene	j		5	U
	Freon 113	į		10	U
	Acetone			20	Ŭ
	Methyl Iodide	i	•	5	Ŭ
	2-Propanol	ĺ		100	Ŭ
	Carbon Disulfide	į		5	U
	Allyl Chloride	į		5	U
	Methyl Acetate	j		5	Ŭ
	Methylene Chloride	i		5	Ŭ
	t-Butyl Alcohol	į		80	Ŭ [
	Acrylonitrile	į		20	Ŭ
	trans-1,2-Dichloro	ethene i		5	บ
	Methyl Tertiary Bu			5	Ū
	n-Hexane	j		5	Ū
	1,1-Dichloroethane	i		5	U
	di-Isopropyl Ether	į		5	U
	2-Chloro-1,3-Butad	iene		5	U
	1,2-Dichloroethene			5	U
	Ethyl t-Butyl Ethe			5	บ
156.50-2	cis-1,2-Dichloroet	hene		5	ָ ע
	2-Butanone			10	บ
	2,2-Dichloropropan	e		5	Ū
594-20-/	2, 2-Dichioloplopan	~		_	i
·					

VBLKL29

EPA SAMPLE NO.

Lab	Name:	Lancaster	Laboratories	Contract:	İ

SDG No.:____ Lab Code: LANCAS Case No.: SAS No.:____

Lab Sample ID: VBLKL29 Matrix: (soil/water) WATER

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09915.i/06junl3b.b/lu13b05.d

Date Received: Level: (low/med) LOW

Date Analyzed: 06/13/06 Moisture: not dec. _____

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

0 (ug/L or ug/Kg) ug/L COMPOUND CAS NO. 100 107-12-0-----Propionitrile 50 IJ 126-98-7-----Methacrylonitrile U 5 74-97-5-----Bromochloromethane 10 lυ 109-99-9-----Tetrahydrofuran 17 67-66-3-----Chloroform 5 5 U 71-55-6-----1,1,1-Trichloroethane 5 IJ 110-82-7-----Cyclohexane Ū 5 563-58-6----1,1-Dichloropropene 11 5 56-23-5-----Carbon Tetrachloride 250 78-83-1-----Isobutyl Alcohol 5 ΙU 71-43-2----Benzene 5 lυ 107-06-2----1, 2-Dichloroethane 5 TT 994-05-8----t-Amyl Methyl Ether lυ 5 142-82-5----n-Heptane 250 U 71-36-3----n-Butanol ΤT 79-01-6-----Trichloroethene 5 5 108-87-2-----Methylcyclohexane 5 1 17 78-87-5----1,2-Dichloropropane 5 lυ 74-95-3-----Dibromomethane 5 ΙIJ 80-62-6-----Methyl Methacrylate l U 250 123-91-1-----1,4-Dioxane lυ 75-27-4-----Bromodichloromethane 5 10 1 11 79-46-9----2-Nitropropane 10 110-75-8----2-Chloroethyl Vinyl Ether U 5 10061-01-5----cis-1,3-Dichloropropene 10 l U 108-10-1----4-Methyl-2-Pentanone 5 lυ 108-88-3-----Toluene 5 l U 10061-02-6----trans-1,3-Dichloropropene 5 U 97-63-2----Ethyl Methacrylate l U 79-00-5----1,1,2-Trichloroethane

EPA SAMPLE NO. VBLKL29

ьар	Name:	Lancascer	Laboratories	Contract:	
				01G N-	CDC No .

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:

Lab Sample ID: VBLKL29 Matrix: (soil/water) WATER

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09915.i/06jun13b.b/lu13b05.d

Date Received: Level: (low/med) LOW

Date Analyzed: 06/13/06 Moisture: not dec. _____

Dilution Factor: 1.0 Column: (pack/cap) CAP

CONCENTRATION UNITS:

(ug/L or ug/Kg) ug/L COMPOUND CAS NO. 127-18-4-----Tetrachloroethene 5 5 U | 142-28-9-----1,3-Dichloropropane U 10 591-78-6----2-Hexanone U 5 124-48-1-----Dibromochloromethane 5 ΙU 106-93-4----1, 2-Dibromoethane U 5 108-90-7-----Chlorobenzene 5 U 630-20-6----1,1,1,2-Tetrachloroethane ΙU 100-41-4----Ethylbenzene Ιυ 5 1330-20-7----m+p-Xylene 5 U 1330-20-7-----Xylene (Total) Ħ 5 95-47-6----o-Xylene 5 100-42-5-----Styrene 5 U 75-25-2----Bromoform 5 U 98-82-8----Isopropylbenzene - 250 U 108-94-1-----Cyclohexanone lυ 5 79-34-5----1,1,2,2-Tetrachloroethane U 5 108-86-1-----Bromobenzene U 110-57-6-----trans-1,4-Dichloro-2-Butene 50 5 lυ 96-18-4-----1, 2, 3-Trichloropropane Ħ 5 103-65-1----n-Propylbenzene U 5 95-49-8-----2-Chlorotoluene lυ 5 108-67-8-----1,3,5-Trimethylbenzene 5 ΙU 106-43-4----4-Chlorotoluene 5 Ħ 98-06-6----tert-Butylbenzene 5 U 76-01-7-----Pentachloroethane 5 95-63-6-----1,2,4-Trimethylbenzene U 135-98-8-----sec-Butylbenzene 5 U 5 99-87-6----p-Isopropyltoluene 541-73-1----1,3-Dichlorobenzene 5 Jυ 5 106-46-7----1,4-Dichlorobenzene

VBLKL29

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:____

Matrix: (soil/water) WATER Lab Sample ID: VBLKL29

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09915.i/06jun13b.b/lu13b05.d

Level: (low/med) LOW Date Received:

Moisture: not dec. ____ Date Analyzed: 06/13/06

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

Q (ug/L or ug/Kg) ug/L CAS NO. COMPOUND lυ 526-73-8-----1,2,3-Trimethylbenzene 5 U 100-44-7-----Benzyl Chloride 5 lυ | 141-93-5----1,3-Diethylbenzene 5 U 105-05-5-----1,4-Diethylbenzene 5 ט ו 104-51-8-----n-Butylbenzene 5 U | 95-50-1-----1, 2-Dichlorobenzene 5 lυ 135-01-3-----1, 2-Diethylbenzene 5 96-12-8-----1, 2-Dibromo-3-Chloropropane 5 lυ 120-82-1----1,2,4-Trichlorobenzene 5 U 87-68-3-----Hexachlorobutadiene 5 U 91-20-3-----Naphthalene U 5 87-61-6-----1,2,3-Trichlorobenzene U 25340-17-4-----Diethylbenzene (total)

VBLKL29

Quantitation Report GC/MS Volatiles VBLKL29

File: /chem/HP09915.i/06jun13b.b/lu13b05.d

Sample: VBLKL29; VBLKL29; 1; 3;;; Injected At:13-JUN-2006 21:57

Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m

Blank Reference: Sublist: 8260W+CYC Sample Concentration Formula: On-Column Amount * (Vt/Vo) Matrix: WATER

Batch: L061642AB

Analyst:LCM01518

Level: Low

Sample Wt./Vol.: 5.0000 ml (Vo)

Instrument ID: HP09915.1 Standard Reference: lul3c02.d

Volume Purged: 5.0 ml (Vt)

Prep Factor:1.00

Units: ug/L

Bottle Code:

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Area)	Conc(ext)	QC Flag
	=========	====	====	=======================================	=======	
27) t-Butyl Alcohol-d10	4.083(-0.013)	778	65	217603(-11)	250.00	
70) Fluorobenzene	7.562(0.000)	1860	96	1025769(-4)	50.00	
101) Chlorobenzene-d5	11.063(0.000)	2949	117	771848(-5)	50.00	
132) 1,4-Dichlorobenzene-d4	12.938(0.003)	3532	152	419397(-11)	50.00	

= RETENTION TIME OUT OF RANGE

* = INTERNAL STANDARD OUT OF RANGE

NC = NOT ABLE TO CALCULATE

	I.S.			Conc.	, QC			
Surrogate Standards	Ref. RT (+/-RRT)	QIon	Area	(on column)	%Rec. flags	QC Limits		
		======	=====	=======================================	=======================================	========		
51; Dibromofluoromethane	(1) 6.636(0.000)	113	261143	46.216	92%	80 - 116		
62) 1.2 Dichloroethane-d4	(1) 7.099(0.000)	102	58581	45.336	91%	77 - 113		
89) Toluene-d8	(2) 9.600(0.000)	98	1009214	45.088	90%	80 - 113		
113) 4-Bromofluorobenzene	(2) 12.057(0.000)	95	397906	39.933	80%	78 - 113		

= RELATIVE RETENTION TIME OUT OF RANGE

* = PERCENT REC.OUT OF RANGE

D = DILUTED OUT NC = NOT ABLE TO CALCULATE

	•	1.8.					Conc.	Conc.	Blank	Reporting		3
Ta	rget Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
	=======================================	======	=====		=====	***=====		*=======****	=======		======	======
1)	Dichlorodifluoromethane	(1)					ND	ND			2.00	5.00
2)	Chloromethane	(1)					ND	ND			1.00	5.00
3)	Vinyl Chloride	(1)					מא	ND			1.00	5.00
6)	Bromomethane	(1)					ND	ND			1.00	5.00
7)	Chloroethane	(1)					ND	ND			1.00	5.00
в)	Trichlorofluoromethane	(1)					סא	ND			2.00	5.00
10)	Ethyl Ether	(1)					ND	ND			2.00	5.00
15)	Acrolein	(1)					ND	ND			40.00	100.00
16)	1,1-Dichloroethene	(1)					ND	ND			0.80	5.00
17)	Freon 113	(1)					ND	ND			2.00	10.00
18)	Acetone	(1)					ND	ND			6.00	20.00
20)	Methyl Iodide	(1)					ND	ND			1.00	5.00
21)	2-Propanol	(1)					ND	ND			50.00	100.00
22)	Carbon Disulfide	(1)					ND	ND			1.00	5.00
23)	Allyl Chloride	(1)					ND	ND			1.00	5.00
25)	Methyl Acetate	(1)					ND	ND			1.00	5.00
26)	Methylene Chloride	(1)					ND	ND			2.00	5.00
28)	t-Butyl Alcohol	(4)					ND	ND			10.00	80.00
29)	Acrylonitrile	(1)					ND	ND			4.00	20.00
30)	trans-1,2-Dichloroethene	(1)					ND	ND			0.80	5.00
31)	Methyl Tertiary Butyl Ether	(1)					ND	ND			0.50	5.00
33)	n-Hexane	(1)					ND	ND			2.00	5.00
40)	1,2-Dichloroethene (total)	(1)					ND	ND			0.80	5.00
36)	1,1-Dichloroethane	(1)					ND	ND			1.00	5.00

E = CONC. OUT OF CAL. RANGE

= RELATIVE RETENTION TIME OUT OF RANGE

Page 1 of 5

VBLKL29

Quantitation Report GC/MS Volatiles VBLKL29

File: /chem/HP09915.i/06jun13b.b/lu13b05.d

Sample: VBLKL29; VBLKL29; 1; 3;;;; Injected At:13-JUN-2006 21:57

Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m Blank Reference: Sublist: 8260W+CYC

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Batch:L061642AB

Analyst:LCM01518

Instrument ID: HP09915.1

Standard Reference: lu13c02.d

Prep Factor:1.00

Units: ug/L

Matrix: WATER

Level: Low

Sample Wt./Vol.: 5.0000 ml (Vo)

Volume Purged: 5.0 ml (Vt)

Bottle Code:

	I.S.					Conc.	Conc.	Blank		Reporting	₹
Target Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
=======================================	=====	=====	****	****	===****	=======================================	=======================================	======	======	======	F======
37) di-Isopropyl Ether	(1)					ИD	ND			0.80	5.0
39) 2-Chloro-1,3-Butadiene	(1)					ND	ND			1.00	5.0
41) Ethyl t-Butyl Ether	(1)					ND	ND			0.80	5.0
42) cis-1,2-Dichloroethene	(1)					ND	ND			0.80	5.0
43) 2-Butanone	(1)					ND	ИD			3.00	10.0
44) 2,2-Dichloropropane	(1)					ND	ND			1.00	5.0
45) Propionitrile	(1)					ND	ИD			30.00	100.0
46; Mechacrylonitrile	(1)					ИD	ND			10.00	50.0
471 Bromochloromethane	(1)					ND	ND			1.00	5.0
48) Terrahydrofuran	(1)					ND	ND			4.00	10.0
49) Chloroform	(1)					ND	ND			0.80	5.0
54) 1,1,1-Trichloroethane	(1)					ND	ДЙ			0.80	5.0
55) Cyclohexane	(1)					ND	ND			2.00	5.0
58) 1,1-Dichloropropene	(1)					ND	ND			1.00	5.0
59) Carbon Tetrachloride	(1)					ND	ND			1.00	5.0
60) Isobutyl Alcohol	(1)					ND	ND			100.00	250.0
63) Benzene	(1)					ND	ND			0.50	5.0
64) 1,2-Dichloroethane	(1)					ND	ND			1.00	5.0
67) t-Amyl Methyl Ether	(1)					ND	ND			0.80	5.0
69) n-Heptane	(1)					ИD	ND			2.00	5.0
72) n-Butanol	(1)					ND	ND			100.00	250.0
73) Trichloroethene	(1)					ND	ND			1.00	5.0
77) 1,2-Dichloropropane	(1)					ND	ND			1.00	5.0
74) Methylcyclohexane	(1)					ND	ND			1.00	5.0

E = CONC. OUT OF CAL. RANGE

= RELATIVE RETENTION TIME OUT OF RANGE

Page 2 of 5

VBLKL29

Dancaster Laboratories VBLKL29

File: /chem/HP09915.i/06junl3b.b/lu13b05.d

Sample: VBLKL29;VBLKL29;1;3;;; Injected At:13-JUN-2006 21:57

Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m

Blank Reference: Sublist: 8260W+CYC Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Batch: L061642AB

Analyst:LCM01518

Instrument ID: HP09915.i

Standard Reference: lu13c02.d

Prep Factor:1.00

Units: ug/L

Matrix: WATER Level: Low

Sample Wt./Vol.: 5.0000 ml (Vo)

Volume Purged: 5.0 ml (Vt)

Bottle Code:

	I.S.			_		Conc.	Conc.	Blank		Reporting	3
Target Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
	=====	====	*=======	EE====		=======================================		=======	-=	======	===##
80) Methyl Methacrylate	(1)					ND	ND			1.00	5.00
79) Dibromomethane	(1)					ND	ND			1.00	5.00
81) 1,4-Dioxane	(1)					ND	ND			70.00	250.00
82) Bromodichloromethane	(1)					ND	ND			1.00	5.00
83) 2-Nitropropane	(1)					ND	ND			2.00	10.00
84) 2-Chloroethyl Vinyl Ether	(1)					ND	ND			2.00	10.00
85) cis-1,3-Dichloropropene	(1)					ND	ND			1.00	5.00
87) 4-Methyl-2-Pentanone	(1)					ND	ND			3.00	10.00
90) Toluene	(2)					ND	ND			0.70	5.00
91) trans-1,3-Dichloropropene	(2)					ND	ND			1.00	5.00
92. Ethyl Methacrylate	(2)					ND	ND			1.00	5.00
93: 1,1,2 Trichloroethane	(2)					ND	ND			0.80	5.00
94; Tetrachloroethene	(2)					ND	ИД			0.80	5.00
95) 1,3-Dichloropropane	(2)					ND	ND			1.00	5.00
96) 2-Hexanone	(2)					ND	ND			3.00	10.00
98; Dibromochloromethane	(2)					ND	ND			1.00	5.00
100) 1,2-Dibromoethane	(2)					ND	ND			1.00	5.0
102) Chlorobenzene	(2)					ND	ND			0.80	5.00
103) 1,1,1,2-Tetrachloroethane	(2)					ND	ND			1.00	5.0
104) Ethylbenzene	(2)					ND	ND			0.80	5.0
105) m+p-Xylene	(2)					ND	ND			0.80	5.00
106) Xylene (Total)	(2)					ND	ND			0.80	5.00
107) o-Xylene	(2)					ND	ND			0.80	5.00
108) Styrene	(2)					ND	ND			1.00	5.0

E = CONC. OUT OF CAL. RANGE

= RELATIVE RETENTION TIME OUT OF RANGE

Page 3 of 5

VBLKL29

Lancaster Laboratories VBLKL29 Quantitation Report GC/MS Volatiles

File: /chem/HP09915.i/06junl3b.b/lu13b05.d

Sample: VBLKL29; VBLKL29; 1; 3;;;; Injected At:13-JUN-2006 21:57

Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m

Blank Reference: Sublist: 8260W+CYC Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Batch: L061642AB

Analyst:LCM01518

Instrument ID:HP09915.1

Standard Reference: lul3c02.d

Prep Factor:1.00

Units: ug/L

Matrix: WATER Level: Low

Sample Wt./Vol.: 5.0000 ml (Vo)

Volume Purged: 5.0 ml (Vt)

Bottle Code:

	I.S.					Conc.	Conc.	Blank	;	Reporting	3
Target Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LO
	======	====			========	*******	E = = = = = = = = = = = = = = = = = = =	******			
09) Bromoform	(2)					ND	ND			1.00	5
11) Isopropylbenzene	(2)					ND	ND			1.00	5
15) Cyclohexanone	(2)					ND	ND			55.00	250
16) 1,1,2,2-Tetrachloroethane	(3)					ND	ND			1.00	5
18) trans-1,4-Dichloro-2-Butene	(3)					ND .	ND			15.00	50
17) Bromobenzene	(3)					ND	ND			1.00	5
19) 1,2,3-Trichloropropane	(3)					ND	ND			1.00	9
20) n-Propylbenzene	(3)					ND	ND			1.00	9
22) 2-Chlorotoluene	(3)					ND	ИD			1.00	5
23) 1,3,5-Trimethylbenzene	(3)					ND	ND			1.00	9
.25) 4-Chlorotoluene	(3)					ND	ND			1.00	5
.26) tert-Butylbenzene	(3)					ND	ND			1.00	=
.27) Pentachloroethane	(3)					ND	ND			1.00	=
.28) 1,2,4-Trimethylbenzene	(3)					ND	ND			1.00	=
.29) sec-Butylbenzene	(3)					ND	ND			1.00	=
30) p-Isopropyltoluene	(3)					ND	ND			1.00	9
31) 1,3-Dichlorobenzene	(3)					ND	ND .			1.00	9
33) 1,4-Dichlorobenzene	(3)					ND	ND			1.00	5
34) 1,2,3-Trimethylbenzene	(3)					ND	ND			1.00	5
.35) Benzyl Chloride	(3)					ND	ND			1.00	9
.36) 1,3-Diethylbenzene	(3)					ND	ND			1.00	9
37) 1,4-Diethylbenzene	(3)					ND	ND			1.00	5
38) n-Butylbenzene	(3)					ND	ND			1.00	!
39) 1,2-Dichlorobenzene	(3)					ND	ND			1.00	

E = CONC. OUT OF CAL. RANGE

= RELATIVE RETENTION TIME OUT OF RANGE

Page 4 of 5

VBLKL29

Lancaster Laboratories VBLKL29 Quantitation Report GC/MS Volatiles

File: /chem/HP09915.i/06jun13b.b/lu13b05.d

Sample: VBLKL29; VBLKL29; 1; 3;;;

Injected At:13-JUN-2006 21:57

Calibration Time: 06-JUN-2006 17:02 Target Method: L8260W.m

Blank Reference: Sublist: 8260W+CYC Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Batch:L061642AB

Matrix: WATER Level: Low

Analyst:LCM01518

Instrument ID: HP09915.1

Sample Wt./Vol.: 5.0000 ml (Vo)

Standard Reference: lul3c02.d

Volume Purged: 5.0 ml (Vt)

Prep Factor:1.00

Units: ug/L

Bottle Code:

	I.S.					Conc.	Conc.	Blank		Reporting	9
Target Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
== >	======	====	========	======	**==****	=========		=======	======	======	
140) 1,2-Diethylbenzene	(3)					ND	ND			1.00	5.0
141) 1,2-Dibromo-3-Chloropropane	(3)					ND	ND			2.00	5.0
142) 1,2,4-Trichlorobenzene	(3)					ND	ND			1.00	5.0
143) Hexachlorobutadiene	(3)					ND	ND			2.00	5.0
144) Naphthalene	(3)					ND	ND			1.00	5.0
145) 1,2,3-Trichlorobenzene	(3)					ND	ND			1.00	5.0
E = CONC. OUT OF CAL. RANGE	# = 1	RELAT	IVE RETENT:	ION TIME	OUT OF R	ANGE					

-commencs:	
Analyst:	WW/W Date: 6/13/100
Audital July DV	Collylan

Page 5 of 5

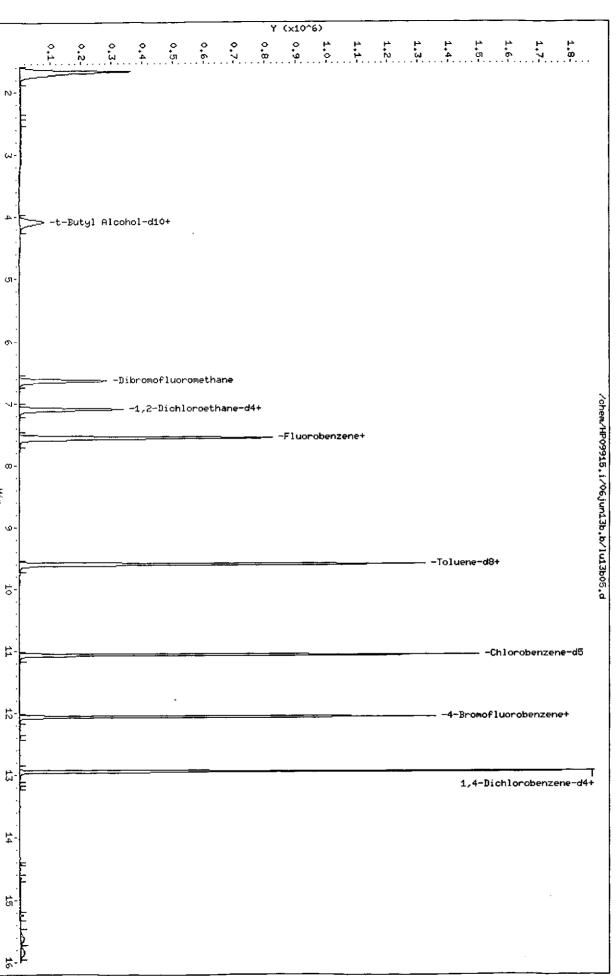
Date : 13-JUN-2006 21:57

Client ID; VBLKL29

Sample Info: WBLKL29; WBLKL29;1;3;;;;

Purge Volume: 5.0 Column phase: DB-624

Instrument: HP09915.i


Column diameter: 0,25

Operator: LCH01518

Milisto

Page 1

6243

Target Revision 3.5

Data File: /chem/HP09915.i/06jun13b.b/lu13b05.d Instrument ID: HP09915.i Injection date and time: 13-JUN-2006 21:57 Analyst ID: LCM01518

Method used: /chem/HP09915.i/06jun13b.b/L8260W.m Sublist used: 8260W+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 13-Jun-2006 22:20 lcm01518

Sample Name: VBLKL29 Lab Sample ID: VBLKL29

	I.S.				Conc.
Compounds	Ref.	RT	QIon	Area	(on column)
	=====	=====	======	=======	=========
27)*t-Butyl Alcohol-d10	(4)	4.083	65	217603	250.000
70) *Fluorobenzene	(1)	7.562	96	1025769	50.000
101) *Chlorobenzene-d5	(2)	11.063	117	771848	50.000
132) *1,4-Dichlorobenzene-d4	(3)	12.938	152	419397	50.000
51) \$Dibromofluoromethane	(1)	6.636	113	261143	46.216
62) \$1,2-Dichloroethane-d4	(1)	7.099	102	58581	45.336
89) \$Toluene-d8	(2)	9.600	98	1009214	45.088
113) \$4-Bromofluorobenzene	(2)	12.057	95	397906	39.933

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

EPA SAMPLE NO.

os2--Ms

Lab Name: Lançaster Laboratories Contract:_____

Matrix: (soil/water) WATER Lab Sample ID: 4791564

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09915.i/06jun13b.b/lu13s31.d

Level: (low/med) LOW

Date Received: 06/10/06

Moisture: not dec. ____ Date Analyzed: 06/13/06

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

	<u> </u>	MCBMINALION ONLI		
CAS NO.	COMPOUND (ug/	/L or ug/Kg) ug/I	ı	Q
74-87-3	Chloromethane	1	22	
75-01-4	Vinyl Chloride		22	1
74-83-9	Bromomethane		16	
75-00-3	Chloroethane		17	1
75-69-4	Trichlorofluorometh	nane	24	1
75-35-4	1,1-Dichloroethene		22	1
75-09-2	Methylene Chloride		20	1
1634-04-4-	Methyl Tertiary But	tyl Ether	19	
75-34-3	1,1-Dichloroethane	1	2 2	
540-59-0	1,2-Dichloroethene	(total)	43	İ
67-66-3	Chloroform		22	f
71-55-6	1,1,1-Trichloroetha	ane	22	
56-23-5	Carbon Tetrachloric	de	22	
71-43-2	Benzene	Ì	22	ĺ
107-06-2	1,2-Dichloroethane	İ	22	ĺ
79-01-6	Trichloroethene	j	22	1
78-87-5	1,2-Dichloropropane	e	22	ĺ
75-27-4	Bromodichloromethar	ne	22	Ì
110-75-8	2-Chloroethyl Vinyl	l Ether	2	J
10061-01-5	cis-1,3-Dichloropro	opene	20	ĺ
108-88-3	Toluene		21	ĺ
10061-02-6	trans-1,3-Dichlorop	propene	21	[
79-00-5	1,1,2-Trichloroetha	ane	20	ĺ
127-18-4	Tetrachloroethene		21	İ
124-48-1	Dibromochloromethar	ne	19	· ·
108-90-7	Chlorobenzene	i	21	j
	Ethylbenzene	i	22	i

	EPA	SAMPLE	NO.
1			— ₁
ĺ	(S2MS	1

Lab Name: Lancaster Laboratories Contract:

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 4791564

Sample wt/vol: 5.00 (g/mL) mL

Lab File ID: HP09915.i/06jun13b.b/lu13s31.d

Level: (low/med) LOW

Date Received: 06/10/06

Moisture: not dec. ____ Date Analyzed: 06/13/06

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L Q

1330-20-7Xylene (Total)	63	
75-25-2Bromoform	18	İ
79-34-51,1,2,2-Tetrachloroethane	21	
541-73-11,3-Dichlorobenzene	21	
106-46-71,4-Dichlorobenzene	21	
95-50-11,2-Dichlorobenzene	21	

OS2--MS

Lancaster Laboratories Quantitation Report GC/MS Volatiles 4791564

File: /chem/HP09915.i/06jun13b.b/lu13s31.d

Sample: OS2--MS;4791564;1;3;MS;;; Injected At:13-JUN-2006 23:05

Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m Blank Reference: lu13b05.d

Sublist: CHEVENV

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Matrix: WATER Batch:L061642AB

Level: Low Analyst:LCM01518

Instrument ID: HP09915.1

Standard Reference: lu13c02.d

Prep Factor:1.00

Units: ug/L

Sample Wt./Vol.: 5.0000 ml (Vo)

Volume Purged: 5.0 ml (Vt)

Bottle Code: 038A

Internal Standards	RT (+/-RT)	Scan	Qlon	Area(+/- %Area)	Conc(ext)	QC Flag
3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	========	====	====	PREESEEEEEE	=======================================	======
70) Fluorobenzene	7.565(-0.003)	1861	96	1039822(-3)	50.00	
101) Chlorobenzene-d5	11.063(0.000)	2949	117	783690(~4)	50.00	
132) 1,4-Dichlorobenzene-d4	12.941(0.000)	3533	152	440106(-7)	50.00	

= RETENTION TIME OUT OF RANGE

* * INTERNAL STANDARD OUT OF RANGE

NC = NOT ABLE TO CALCULATE

		I.S.					Conc.		QC	
Su	rrogate Standards	Ref.	RT (+/	/-RRT)	QIon	Area	(on column)	%Rec.	flags	QC Limits
F = = =		======			=====	= =====================================	=======================================			=========
51)	Dibromofluoromethane	(1)	6.636(0.000)	113	262234	45.782	92%		80 - 116
62)	1,2-Dichloroethane-d4	(1)	7.099(0	0.000}	102	58082	44.343	89%		77 - 113
891	Toluene-d8	(2)	9.600(0.000)	98	1043413	45.911	92%		80 - 113
113)	4-Bromofluorobenzene	(2)	12.057(0.000)	95	422727	41.783	84%		78 - 113

= RELATIVE RETENTION TIME OUT OF RANGE

* = PERCENT REC.OUT OF RANGE

D = DILUTED OUT

NC = NOT ABLE TO CALCULATE

	I.S.				Conc.	Conc.	Blank	F	Reporting	,
Targer Compounds	Ref.	RT (+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
			*====		********	*======================================		======		
Chloromethane	(1)	2.015(0.002)	50	152264	21.512	21.51			1.00	5.00
3) Vinyl Chloride	(1)	2.160(0.001)	62	143588	22.265	22.27			1.00	5.00
Bromomethane	(1)	2.469(0.001)	94	67186	16.032	16.03			1.00	5.00
7) Chloroethane	(1)	2.562(0.001)	64	58704	17.364	17.36			1.00	5.00
Trichlorofluoromethane	(1)	2.832(0.007)	101	182105	24.208	24.21			2.00	5.00
16) 1,1-Dichloroethene	(1)	3.430(-0.001)	96	98286	21.538	21.54			0.80	5.00
26) Methylene Chloride	(1)	4.057(-0.001)	84	112355	20.109	20.11			2.00	5.00
30) trans-1,2-Dichloroethene	(1)	4.469(-0.001)	96	106324	21.235	21.23			0.80	5.00
31) Methyl Tertiary Butyl Ether	(1)	4.475 (-0.001)	73	318486	19.398	19.40			0.50	5.00
40) 1,2-Dichloroetheme (total)	(1)		96	222977	43.019	43.02			0.80	5.00
36) 1,1-Dichloroethane	(1)	5.102(-0.001)	63	215447	21.940	21.94			1.00	5.00
42) cis-1,2-Dichloroethene	(1)	5.961(-0.001)	96	116653	21.784	21.78			0.80	5.00
49) Chloroform	(1)	6.420(0.000)	83	200921	22.320	22.32			0.80	5.00
54) 1,1,1-Trichloroethane	(1)	6.681(0.000)	97	169886	22.181	22.18			0.80	5.00
59: Carbon Tetrachloride	(1)	6.916(0.000)	117	149393	21.788	21.79			1.00	5.00
63) Benzene	(1)	7.186(0.000)	78	468917	22.091	22.09			0.50	5.00
64) 1,2-Dichloroethane	(1)	7.199(0.000)	62	177635	21.806	21.81	•		1.00	5.00
73) Trichloroethene	(1)	8.054(0.000)	95	119654	21.936	21.94			1.00	5.00
77) 1,2-Dichloropropane	(1)	8.337(0.001)	63	133634	22.051	22.05			1.00	5.00
82) Bromodichloromethane	(1)	8.700(0.000)	83	149034	21.933	21.93			1.00	5.00
84) 2-Chloroethyl Vinyl Ether	(1)	9.102(0.000)	63	11324	2.410	2.41		J	2.00	10.00
85) cis-1,3-Dichloropropene	(1)	9.279(0.001)	75	184039	20.263	20.26			1.00	5.00
90) Toluene	(2)	9.678(0.000)	92	283542	21.417	21.42			0.70	5.00
91) trans-1,3-Dichloropropene	(2)	9.919(0.000)	75	178368	21.454	21.45			1.00	5.00

E = CONC. OUT OF CAL. RANGE

^{# =} RELATIVE RETENTION TIME OUT OF RANGE

OS2--MS

Lancaster Laboratories Quantitation Report GC/MS Volatiles 4791564

File: /chem/HP09915.i/06junl3b.b/lul3s31.d

Sample: OS2--MS;4791564;1;3;MS;;;

Injected At:13-JUN-2006 23:05 Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m Blank Reference: lul3b05.d

Sublist: CHEVENV

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Batch:L061642AB

Matrix: WATER

Analyst:LCM01518 Instrument ID: HP09915.1 Level: Low

Sample Wt./Vol.: 5.0000 ml (Vo)

Standard Reference: lul3c02.d

Prep Factor:1.00

Volume Purged: 5.0 ml (Vt)

Bottle Code: 038A Units: ug/L

	I.S.					Conc.	Conc.	Blank	1	Reporting	
Target Compounds	Ref.	RT ·	(+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	F00
*===#########	¥=== 4	*=====		3#=== =			=======================================	**=====	======		=====
93) 1,1,2-Trichloroethane	(2)	10.108	(0.000)	97	105546	20.337	20.34			0.80	5.0
94) Tetrachloroethene	(2)	10.269	(0.000)	166	117662	20.669	20.67			0.80	5.
98) Dibromochloromethane	(2)	10.514	(0.000)	129	111814	19.258	19.26			1.00	5.0
02) Chlorobenzene	(2)	11.089	(0.000)	112	318127	20.932	20.93			0.80	5.0
04) Ethylbenzene	(2)	11.186	(0.000)	91	553182	21.657	21.66			0.80	5.
05) m+p-Xylene	(2)	11.288	(0.000)	106	425594	42.499	42.50			0.80	5.
06) Xylene (Total)	(2)			106	626090	63.458	63.46			0.80	5.6
07) o-Xylene	(2)	11.629	(0.000)	106	200496	20.959	20.96			0.80	5.6
09) Bromoform	(2)	11.796	(0.000)	173	80390	17.877	17.88			1.00	5.0
16) 1,1,2,2-Tetrachloroethane	(3)	12.163	(0.000)	83	185069	20.740	20.74			1.00	5.4
31) 1,3-Dichlorobenzene	(3)	12.893	(0.000)	146	258401	20.884	20.88			1.00	5.0
33: 1,4-Dichlorobenzene	(3)	12.957	(0.000)	146	268689	20.582	20.58			1.00	5.0
39) 1.2-Dichlorobenzene	(3)	13.230	(0.000)	146	250517	20.509	20.51			1.00	5.4

Comments:	
Analyst: Jun 71	Date: 4/14/4
Auditor: UMMM	Date: (0) 14/1/

Page 2 of 2

Target Revision 3.5

Data File: /chem/HP09915.i/06jun13b.b/lu13s31.d Instrument ID: HP09915.i Injection date and time: 13-JUN-2006 23:05 Analyst ID: LCM01518

Method used: /chem/HP09915.i/06jun13b.b/L8260W.m Sublist used: CHEVENV

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 14-Jun-2006 08:49 ads01731

Sample Name: OS2--MS Lab Sample ID: 4791564

	Compounds	I.S. Ref.	RT ======	QIon	Area	Conc. (on column)
2)	Chloromethane	(1)	2.015	50	152264	21.512
	Vinyl Chloride	(1)	2.160	62	143588	22.265
6)	Bromomethane	(1)	2.469	94	67186	16.032
7)	Chloroethane	(1)	2.562	64	58704	17.364
8)	Trichlorofluoromethane	(1)	2.832	101	182105	24.208
16)	1,1-Dichloroethene	(1)	3.430	96	98286	21.538
26)	Methylene Chloride	(1)	4.057	84	112355	20.109
30)	trans-1,2-Dichloroethene	(1)	4.469	96	106324	21.235
31)	Methyl Tertiary Butyl Ether	(1)	4.475	73	318486	19.398
40)	1,2-Dichloroethene (total)	(1)		96	222977	43.019
36)	1,1-Dichloroethane	(1)	5.102	63	215447	21.940
42)	cis-1,2-Dichloroethene	(1)	5.961	96	116653	21.784
49)	Chloroform	(1)	6.420	83	200921	22.320
54)	1,1,1-Trichloroethane	(1)	6.681	97	169886	22.181
59)	Carbon Tetrachloride	(1)	6.916	117	149393	21.788
63)	Benzene	(1)	7.186	78	468917	22.091
64)	1,2-Dichloroethane	(1)	7.199	62	177635	21.806
70)	*Fluorobenzene	(1)	7.565	96	1039822	50.000
73)	Trichloroethene	(1)	8.054	95	119654	21.936
77)	1,2-Dichloropropane	(1)	8.337	63	133634	22.051
82)	Bromodichloromethane	(1)	8.700	83	149034	21.933
84)	2-Chloroethyl Vinyl Ether	(1)	9.102	63	11324	2.410
85)	cis-1,3-Dichloropropene	(1)	9.279	75	184039	20.263
90).	Toluene	(2)	9.678	92	283542	21.417
91)	trans-1,3-Dichloropropene	(2)	ຸ9.919	75	178368	21.454
93)	1,1,2-Trichloroethane	(2)	10.108	97	105546	20.337
94)	Tetrachloroethene	(2)	10.269	166	117662	20.669
98)	Dibromochloromethane	(2)	10.514	129	111814	19.258
101)	*Chlorobenzene-d5	(2)	11.063	117	783690	50.000
102)	Chlorobenzene	(2)	11.089	112	318127	20.932
104)	Ethylbenzene	(2)	11.186	91	553182	21.657
105)	m+p-Xylene	(2)	11.288	106	425594	42.499
106)	Xylene (Total)	(2)		106	626090	63.458
107)	o-Xylene	(2)	11.629	106	200496	20.959

⁸²⁵⁸

Target Revision 3.5

Data File: /chem/HP09915.i/06jun13b.b/lu13s31.d Instrument ID: HP09915.i Injection date and time: 13-JUN-2006 23:05 Analyst ID: LCM01518

Method used: /chem/HP09915.i/06jun13b.b/L8260W.m Sublist used: CHEVENV

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 14-Jun-2006 08:49 ads01731

Sample Name: OS2--MS Lab Sample ID: 4791564

	I.S.				Conc.
Compounds	Ref.	RT	QIon	Area	(on column)
=======================================	==== =	=====	=====	========	=======
109) Bromoform	(2)	11.796	173	80390	17.877
116) 1,1,2,2-Tetrachloroethane	(3)	12.163	83	185069	20.740
131) 1,3-Dichlorobenzene	(3)	12.893	146	258401	20.884
132) *1,4-Dichlorobenzene-d4	(3)	12.941	152	440106	50.000
133) 1,4-Dichlorobenzene	(3)	12.957	146	268689	20.582
139) 1,2-Dichlorobenzene	(3)	13.230	146	25051 7	20.509
51) \$Dibromofluoromethane	(1)	6.636	113	262234	45.782
62) \$1,2-Dichloroethane-d4	(1)	7.099	102	58082	44.343
89) \$Toluene-d8	(2)	9.600	98	1043413	45. 91 1
113) \$4-Bromofluorobenzene	(2)	12.057	95	422727	41.783

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

EPA SAMPLE NO.

OS2--MSD

Lab Name: Lancaster Laboratories Contract:_____

Matrix: (soil/water) WATER Lab Sample ID: 4791565

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09915.i/06jun13b.b/lu13s32.d

Level: (low/med) LOW

Date Received: 06/10/06

Moisture: not dec. ____ Date Analyzed: 06/13/06

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L

		
74-87-3Chloromethane	22	
75-01-4Vinyl Chloride	22	
74-83-9Bromomethane	16	ĺ
75-00-3Chloroethane	17	
75-69-4Trichlorofluoromethane	24]
75-35-41,1-Dichloroethene	22	!
75-09-2Methylene Chloride	21]
1634-04-4Methyl Tertiary Butyl Ether	20	
75-34-31,1-Dichloroethane	22	
540-59-01,2-Dichloroethene (total)	44	1
67-66-3Chloroform	23	1
71-55-61,1,1-Trichloroethane	22	j
56-23-5Carbon Tetrachloride	22]
71-43-2Benzene	23	!
107-06-21,2-Dichloroethane	22	1
79-01-6Trichloroethene	22	!
78-87-51,2-Dichloropropane	22	1
75-27-4Bromodichloromethane	22	Ì
110-75-82-Chloroethyl Vinyl Ether	10	U
10061-01-5cis-1,3-Dichloropropene	21	1
108-88-3Toluene	22	Ì
10061-02-6trans-1,3-Dichloropropene	22	
79-00-51,1,2-Trichloroethane	21	1
127-18-4Tetrachloroethene	21	İ
124-48-1Dibromochloromethane	20	
108-90-7Chlorobenzene	21	İ
100-41-4Ethylbenzene	22	
j		

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Matrix: (soil/water) WATER Lab Sample ID: 4791565

Sample wt/vol: 5.00 (g/mL) mL

Lab File ID: HP09915.i/06jun13b.b/lu13s32.d

Level: (low/med) LOW

Date Received: 06/10/06

Moisture: not dec. ____ Date Analyzed: 06/13/06

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/kg) ug	3 \Γ	
1330-20-7-	Xylene (Tot	cal)	65	— _I
75-25-2	Bromoform	Ì	19	
79-34-5	1,1,2,2-Tet	rachloroethane	21	j
541-73-1	1,3-Dichlor	robenzene	21	
106-46-7	1,4-Dichlor	robenzene	21	
95-50-1	1,2-Dichlor	robenzene	21	
i		i	İ	ŧ

OS2 - - MSD

Lancaster Laboratories
Quantitation Report GC/MS Volatiles 4791565

File: /chem/HP09915.i/06jun13b.b/lu13s32.d

Sample: OS2--MSD;4791565;1;3;MSD;;; Injected At: 13-JUN-2006 23:28

Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m Blank Reference: lu13b05.d

Sublist: CHEVENV

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Batch: L061642AB

Analyst: LCM01518

Instrument ID: HP09915.1

Standard Reference: lul3c02.d

Prep Factor:1.00

Units: ug/L

Matrix: WATER

Level: Low

Sample Wt./Vol.: 5.0000 ml (Vo)

Volume Purged: 5.0 ml (Vt)

Bottle Code: 038A

Internal Standards	RT(+/-RT)	Scan	QIon	Area(+/- %Area)	Conc (ext)	QC Flag
	========	====	====	********	=======	******
70; Fluorobenzene	7.559(0.003)	1859	96	1068628(0)	50.00	
101: Chlorobenzene-d5	11.060(0.003)	2948	117	805867(-1)	50.00	
132) 1,4-Dichlorobenzene-d4	12.941(0.000)	3533	152	456702(-3)	50.00	

= RETENTION TIME OUT OF RANGE

* = INTERNAL STANDARD OUT OF RANGE

NC = NOT ABLE TO CALCULATE

		I.S.				Conc.	QC	
Su	rrogate Standards	Ref.	RT (+/-RRT)	QIon	Area	(on column)	*Rec flags	QC Limits
====		=====	.==============	-2222	±25222555	===========	******	= ===========
51)	Dibromofluoromethane	(1)	6.639(-0.001)	113	270287	45.916	92%	80 - 116
62;	1,2-Dichloroethane-d4	(1)	7.092(0.000)	102	60801	45.167	90%	77 - 113
39	Toluene-d8	(2)	9.600(0.000)	98	1071088	45.832	92%	80 - 113
113	4-Bromofluorobenzene	(2)	12.057(0.000)	95	436487	41.956	84%	78 - 113

= RELATIVE RETENTION TIME OUT OF RANGE

* = PERCENT REC.OUT OF RANGE

D = DILUTED OUT

NC = NOT ABLE TO CALCULATE

		ı.s.					Conc.	Conc.	Blank	1	Reporting	ĭ
Ta	rget Compounds	Ref.	RT (-	+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
		*====	======		=====	E + 7 # = = = =	=========	*****	E=====	=======	###==#=	
2)	Chloromethane	(1)	2.006(0.003)	50	157946	21.713	21.71			1.00	5.00
3)	Vinyl Chloride	(1)	2.150(0.002)	62	149021	22.485	22.48			1.00	5.00
6)	Bromomethane	(1)	2.456 (0.002)	94	69276	16.085	16.08			1.00	5.00
7)	Chloroethane	(1)	2.555(0.001)	64	60282	17.350	17.35			1.00	5.00
8)	Trichlorofluoromethane	(1)	2.826(0.008}	101	185175	23.953	23.95			2.00	5.00
16)	1,1-Dichloroetheme	(1)	3.420(0.000)	96	102510	21.858	21.86			0.80	5.00
26)	Methylene Chloride	(1)	4.038(0.001)	84	118068	20.561	20.56			2.00	5.00
30)	trans-1,2-Dichloroethene	(1)	4.449(0.001)	96	112289	21.821	21.82			0.80	5.00
31)	Methyl Tertiary Butyl Ether	(1)	4.456 (0.001)	73	332446	19.703	19.70			0.50	5.00
40)	1,2-Dichloroethene (total)	(1)			96	233720	43.887	43.89			0.80	5.00
36)	1,1-Dichloroethane	(1)	5.092(0.000)	63	223915	22.188	22.19			1.00	5.00
421	cis-1,2-Dichloroethene	(1)	5.957(-	-0.001)	96	121431	22.065	22.07			0.80	5.00
49)	Chloroform	(1)	6.414(0.000)	83	209158	22.609	22.61			0.80	5.00
54)	1,1,1-Trichloroethane	(1)	6.678(0.000}	97	174494	22.168	22.17			0.80	5.00
59)	Carbon Tetrachloride .	(1)	6.903(0.000)	117	155182	22.022	22.02			1.00	5.00
63)	Benzene	(1)	7.179(0.000}	78	493694	22.631	22.63			0.50	5.00
64)	1,2-Dichloroethane	(1)	7.198(0.000)	62	185571	22.167	22.17			1.00	5.00
73)	Trichloroethene	(1)	8.047(0.000)	95	124058	22.130	22.13			1.00	5.00
77)	1,2-Dichloropropane	(1)	8.337(0.000)	63	139451	22.390	22.39			1.00	5.00
82)	Bromodichloromethane	(1)	8.697(0.000)	83	154403	22.111	22.11			1.00	5.00
84)	2-Chloroethyl Vinyl Ether	(1)					ND	ND			2.00	10. 0 0
85)	cis-1,3-Dichloropropene	(1)	9.279(-	-0.001)	75	192223	20.593	20.59			1.00	5.00
90)	Toluene	(2)	9.677(-	-0.001)	92	296496	21.779	21.78			0.70	5.00
91)	trans-1,3-Dichloropropene	(2)	9.919(-	-0.001)	75	186039	21.761	21.76			1.00	5.00

E = CONC. OUT OF CAL. RANGE

^{# =} RELATIVE RETENTION TIME OUT OF RANGE

OS2--MSD

Quantitation Report GC/MS Volatiles 4791565

Volume Purged: 5.0 ml (Vt)

File: /chem/HP09915.i/06jun13b.b/lu13s32.d

Sample: OS2--MSD;4791565;1;3;MSD;;;

Injected At:13-JUN-2006 23:28

Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m Blank Reference: lul3b05.d

Sublist: CHEVENV

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Batch: L051642AB

Matrix: WATER

Analyst: LCM01518

Level: Low

Instrument ID: HP09915.i

Standard Reference: lul3c02.d

Sample Wt./Vol.: 5.0000 ml (Vo)

Prep Factor:1.00

Units: ug/L

Bottle Code:038A

	I.S.				Conc.	Conc.	Blank		Reporting	3
Target Compounds	Ref.	RT (+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
*== = *#====	=====		=====		=========		======	======	======	=====
93) 1,1,2-Trichloroethane	(2)	10.111(0.000)	97	112746	21.126	21.13			0.80	5.0
94) Tetrachloroethene	(2)	10.266(0.000)	166	121334	20.728	20.73			0.80	5.1
98) Dibromochloromethane	(2)	10.513(0.000)	129	116958	19.589	19.59			1.00	5.0
02) Chlorobenzene	(2)	11.089(0.000)	112	333779	21.358	21.36			0.80	5.0
04) Ethylbenzene	(2)	11.185(0.000)	91	578652	22.030	22.03			0.80	5.0
05) m+p-Xylene	(2)	11.288(0.000)	106	447865	43.492	43.49			0.80	5.
06) Xylene (Total)	(2)		106	659326	64.989	64.99			0.80	5.0
07: o-Xylene	(2)	11.632(0.000)	106	211461	21.497	21.50			0.80	5.0
09) Bromoform	(2)	11.796(0.000)	173	85826	18.560	18.56			1.00	5.0
16: 1,1,2,2-Tetrachloroethane	(3)	12.163(0.000)	83	194259	20.979	20.98			1.00	5.0
31: 1,3-Dichlorobenzene	(3)	12.893(0.000)	146	270690	21.082	21.08			1.00	5.0
33: 1.4-Dichlorobenzene	(3)	12.957(0.000)	146	282670	20.866	20.87			1.00	5.0
39) 1,2-Dichlorobenzene	(3)	13.230(0.000)	146	263135	20.759	20.76			1.00	5.0
= CONC. OUT OF CAL. RANGE	# ≠	RELATIVE RETENT	ION TIME	E OUT OF R	ANGE					

Comments:			
	<u> </u>		
Analyst:	mn 71	Date:	6/14/ap
<i></i>	Madella		calida
Auditor:		Date:	WITION

Page 2 of 2

Data File: /chem/HP09915.i/06jun13b.b/lu13s32.d

Target Revision 3.5

Data File: /chem/HP09915.i/06jun13b.b/lu13s32.d Instrument ID: HP09915.i Injection date and time: 13-JUN-2006 23:28 Analyst ID: LCM01518

Method used: /chem/HP09915.i/06jun13b.b/L8260W.m Sublist used: CHEVENV

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 14-Jun-2006 08:49 ads0173

Sample Name: OS2--MSD Lab Sample ID: 4791565

	I.S.	Dm	OTon	Area	Conc (on colu
Compounds	Ref.	RT -	QIon	Area	-
2) Chloromethane	(1)	2.006	50	157946	21.
3) Vinyl Chloride	(1)	2.150	62	149021	22.4
6) Bromomethane	(1)	2.456	94	69276	16.0
7) Chloroethane	(1)	2.555	64	60282	17.:
8) Trichlorofluoromethane	(1)	2.826	101	185175	23.
16) 1,1-Dichloroethene	(1)	3.420	96	102510	21.
26) Methylene Chloride	(1)	4.038	84	118068	20.
30) trans-1,2-Dichloroethene	(1)	4.449	96	112289	21.
31) Methyl Tertiary Butyl Ether	(1)	4.456	73	332446	19.
40) 1,2-Dichloroethene (total)	(1)		96	233720	43.
36) 1,1-Dichloroethane	(1)	5.092	63	223915	22.
42) cis-1,2-Dichloroethene	(1)	5.957	96	121431	22.
49) Chloroform	(1)	6.414	83	209158	22.
54) 1,1,1-Trichloroethane	(1)	6.678	97	174494	22.
59) Carbon Tetrachloride	(1)	6.903	117	155182	22.
63) Benzene	(1)	7.179	78	493694	22.
64) 1,2-Dichloroethane	(1)	7.198	62	185571	22.
70) *Fluorobenzene	(1)	7.559	96	1068628	50.
73) Trichloroethene	(1)	8.047	95	124058	22.
77) 1,2-Dichloropropane	(1)	8.33 7	63	139451	22.
82) Bromodichloromethane	(1)	8.697	83	154403	22.
85) cis-1,3-Dichloropropene	(1)	9.279	75	192223	20.
90) Toluene	(2)	9.677	92	296496	21.
91) trans-1,3-Dichloropropene	(2)	9.919	75	186039	21.
93) 1,1,2-Trichloroethane	(2)	10.111	97	112746	21.
94) Tetrachloroethene	(2)	10.266	166	121334	20.
98) Dibromochloromethane	(2)	10.513	129	116958	19.
101)*Chlorobenzene-d5	(2)	11.060	117	805867	50.
102) Chlorobenzene	(2)	11.089	112	333779	21.
104) Ethylbenzene	(2)	11.185	91	578652	22.
105) m+p-Xylene	(2)	11.288	106	447865	43.4
106) Xylene (Total)	(2)		106	659326	64.
107) o-Xylene	(2)	11.632	106	211461	21.
109) Bromoform	(2)	11.796	173	85826	18.

⁰Z57

Target Revision 3.5

Data File: /chem/HP09915.i/06jun13b.b/lu13s32.d Instrument ID: HP09915.i Injection date and time: 13-JUN-2006 23:28 Analyst ID: LCM01518

Method used: /chem/HP09915.i/06jun13b.b/L8260W.m Sublist used: CHEVENV

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 14-Jun-2006 08:49 ads01731

Sample Name: OS2--MSD Lab Sample ID: 4791565

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
#== =====	=====	=====	=====	=========	=========
116) 1,1,2,2-Tetrachloroethane	(3)	12.163	83	194259	20.979
131) 1,3-Dichlorobenzene	(3)	12.893	146	270690	21.082
132) *1,4-Dichlorobenzene-d4	(3)	12.941	152	456702	50.000
133) 1,4-Dichlorobenzene	(3)	12.957	146	282670 .	20.866
139) 1,2-Dichlorobenzene	(3)	13.230	146	263135	20.759
51)\$Dibromofluoromethane	(1)	6.639	113	270287	45.916
62)\$1,2-Dichloroethane-d4	(1)	7.092	102	60801	45.167
89) \$Toluene-d8	(2)	9.600	98	1071088	45.832
113)\$4-Bromofluorobenzene	(2)	12.057	95	436487	41.956

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

EPA SAMPLE NO.

LCSL28

Lab Name: Lancaster Laboratories Contract:

Matrix: (soil/water) WATER

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09915.i/06jun13a.b/lu13103.d

Level: (low/med) LOW

Date Received:

Lab Sample ID: LCSL28

Moisture: not dec. ____ Date Analyzed: 06/13/06

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg	J) ug/L	Q
75-71-8	Dichlorodifluoromethane	22	Ī
74-87-3	Chloromethane	20	l
75-01-4	Vinyl Chloride	21	
74-83-9	Bromomethane	18	1
75-00-3	Chloroethane	19	
75-69-4	Trichlorofluoromethane	23	
60-29-7	Ethyl Ether	20	
107-02-8	Acrolein	150	
75-35-4	1,1-Dichloroethene	21	
76-13-1	Freon 113	21	
67-64-1	Acetone	200	
74-88-4	Methyl Iodide	19	
67-63-0	2-Propanol	160	
75-15-0	Carbon Disulfide	19	
107-05-1	Allyl Chloride	21	1
79-20-9	Methyl Acetate	22	
75-09-2	Methylene Chloride	21	
75-65-0	t-Butyl Alcohol	190	
107-13-1	Acrylonitrile	100	
156-60-5	trans-1,2-Dichloroethene	21	
	Methyl Tertiary Butyl Ether	20	İ
110-54-3	n-Hexane	21	
75-34-3	1,1-Dichloroethane	21	
108-20-3	di-Isopropyl Ether	21	
126-99-8	2-Chloro-1,3-Butadiene	21	
540-59-0	1,2-Dichloroethene (total)	43	
	Ethyl t-Butyl Ether	20	
	cis-1,2-Dichloroethene	22	
	2-Butanone	170	
594-20-7	2,2-Dichloropropane	20	

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:_____

Matrix: (soil/water) WATER Lab Sample ID: LCSL28

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09915.i/06jun13a.b/lu13103.d

Level: (low/med) LOW Date Received:

Moisture: not dec. ____ Date Analyzed: 06/13/06

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

COMPOUND	(ug/L or ug/K	(g) ug/L	Q
·Propionitrile		170	
Methacrylonitril	.e	170	1
Bromochlorometha	ne	21	- 1
Tetrahydrofuran		110	1
Chloroform		22	1
1,1,1-Trichloroe	ethane	21	1
Cyclohexane		21	ĺ
1,1-Dichloroprop	ene	22	1
Carbon Tetrachlo	oride	21	Ì
Isobutyl Alcohol	<u>_</u>	550	Ì
Benzene		22	İ
1,2-Dichloroetha	ne	22	į
t-Amyl Methyl Et	her	20	į
n-Heptane		21	į
n-Butanol		1100	İ
		22	j
Methylcyclohexar	ne	23	į
		22	į
		22	j
	ate	j 20	İ
•		570	j
Bromodichloromet	hane	j 22	İ
2-Nitropropane		19	İ
2-Chloroethyl Vi	nyl Ether	21	j
-	-	21	İ
		100	j
▼		21	i
	ropropene	22	İ
		21	İ
_		21	İ
	BromochloromethalTetrahydrofuranTetrahydrofuranChloroform1,1,1-TrichloromCyclohexane1,1-DichloropromCarbon TetrachlomIsobutyl AlcoholBenzene1,2-Dichloroethalt-Amyl Methyl Ethern-Heptanen-ButanolTrichloroetheneMethylcyclohexaneDibromomethaneMethyl Methacryl1,4-DioxaneBromodichloromether2-Nitropropane2-Chloroethyl Vi	MethacrylonitrileBromochloromethaneTetrahydrofuranChloroform1,1,1-TrichloroethaneCyclohexane1,1-DichloropropeneCarbon TetrachlorideIsobutyl AlcoholBenzene1,2-Dichloroethanet-Amyl Methyl Ethern-Heptanen-ButanolTrichloroetheneMethylcyclohexane1,2-DichloropropaneDibromomethaneMethyl MethacrylateNethyl MethacrylateNethyl Methacrylate	Methacrylonitrile 170Bromochloromethane 21Tetrahydrofuran 110Chloroform 221,1,1-Trichloroethane 21Cyclohexane 211,1-Dichloropropene 22Carbon Tetrachloride 21Isobutyl Alcohol 550Benzene 221,2-Dichloroethane 22t-Amyl Methyl Ether 20n-Heptane 21n-Butanol 1100Trichloroethene 22Methylcyclohexane 231,2-Dichloropropane 22Dibromomethane 22Methyl Methacrylate 201,4-Dioxane 570Bromodichloromethane 22Ethyl Methacrylate 21

6268

EPA SAMPLE NO.

				, i	,
Lab	Name:	Lancaster	Laboratories	Contract:	

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Matrix: (soil/water) WATER Lab Sample ID: LCSL28

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09915.i/06jun13a.b/lu13103.d

Level: (low/med) LOW Date Received:

Moisture: not dec. ____ Date Analyzed: 06/13/06

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug	J/L or ug/Kg) ug	/L Q
· ·	Tetrachloroethene	<u> </u>	20
142-28-9	1,3-Dichloropropar	ie	21
591-78-6	2-Hexanone		94
124-48-1	Dibromochlorometha	ine	20
106-93-4	1,2-Dibromoethane	1	21
108-90-7	Chlorobenzene	1	21
630-20-6	1,1,1,2-Tetrachlor	oethane	20
100-41-4	Ethylbenzene	1	21
1330-20-7	m+p-Xylene	1	42
1330-20-7-	Xylene (Total)	Ī	63
95-47-6	Xylene	İ	21
100-42-5	Styrene	Ì	21
75-25-2	Bromoform	ĺ	19
98-82-8	Isopropylbenzene	j	21
108-94-1	Cyclohexanone	j	730
1	1,1,2,2-Tetrachlor	oethane	21
,	Bromobenzene	i	20
110-57-6	trans-1,4-Dichlord	-2-Butene	97
,	1,2,3-Trichloropro	•	21
,	n-Propylbenzene	i	21
,	2-Chlorotoluene	j	21
108-67-8	1,3,5-Trimethylben	zene	21
	4-Chlorotoluene	j	20
	tert-Butylbenzene	į	21
	Pentachloroethane	i	20
	1,2,4-Trimethylben	zene	21
	sec-Butylbenzene	j	21
	p-Isopropyltoluene	: İ	21
	1,3-Dichlorobenzen	•	20
!	1,4-Dichlorobenzen	· ·	20

626 E

EPA SAMPLE NO.

LCSL28

				ı	
Lab	Name:	Lancaster	Laboratories	Contract:	

Matrix: (soil/water) WATER Lab Sample ID: LCSL28

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09915.i/06jun13a.b/lu13103.d

Level: (low/med) LOW Date Received:

Moisture: not dec. ____ Date Analyzed: 06/13/06

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	ug/L Q	
526-73-8	1,2,3-Trime	ethylbenzene	20	
100-44-7	Benzyl Chlo	oride	19	
141-93-5	1,3-Diethy	lbenzene	20	
105-05-5	1,4-Diethyl	lbenzene	20	
104-51-8	n-Butylben	zene	22	
95-50-1	1,2-Dichlor	cobenzene	20	
135-01-3	1,2-Diethy	lbenzene	20	
96-12-8	1,2-Dibromo	o-3-Chloropropane	19	
120-82-1	1,2,4-Trich	nlorobenzene	19	
87-68-3	Hexachlorob	outadiene	19	
91-20-3	Naphthalene	=	19	
87-61-6	1,2,3-Trich	nlorobenzene	19	
25340-17-4	Diethylben	zene (total)	60	
		İ		

Quantitation Report GC/MS Volatiles LCSL28

File: /chem/HP09915.i/06jun13a.b/lu13103.d Sample: LCSL28; LCSL28; 1; 3; LCS; ; ; ; lu13b03

Injected At:13-JUN-2006 17:33 Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m Blank Reference: lul3b03.d Sublist: 8260W+CYC

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Matrix: WATER Batch:L061642AA

Analyst:ADS01731

Instrument ID: HP09915.1

Standard Reference: lul3c01.d

Prep Factor:1.00

Units: ug/L

Level: Low

Sample Wt./Vol.: 5.0000 ml (Vo)

Volume Purged: 5.0 ml (Vt)

Bottle Code:

-							
Internal Stand	lards	RT(+/-RT)	Scan	QIon	Area(+/- %Area)	Conc(ext)	QC Flag
= * * = = = = = = = = = = = = = = = = =	F====	========	====	====	===#5×========	=======================================	======
27) c-Butyl Ald	cohol-d10	4.083(-0.016)	778	65	257058(6)	250.00	
70) Fluorobenza	ene	7.562(-0.003)	1860	96	1106791(6)	50.00	
101) Chlorobenze	ene-d5	11.060(0.000)	2948	117	838670(7)	50.00	
132) 1,4-Dichlor		12.941(0.000)	3533	152	480301(6)	50.00	

= RETENTION TIME OUT OF RANGE

* = INTERNAL STANDARD OUT OF RANGE

NC = NOT ABLE TO CALCULATE

	I.S.			Conc.	QC	
Surrogate Standards	Ref. RT (+/-RRT)	QIon	Area	(on column)	%Rec. flags	QC Limite
		=====	=18888887772	=======================================		=======================================
51) Dibromofluoromethane	(1) 6.633(0.000)	113	281515	46.174	92%	80 - 116
62) 1.2-Dichloroethane-d4	(1) 7.099(-0.001)	102	62886	45.105	90%	77 - 113
89) Toluene-d8	(2) 9.597(0.000)	98	1114049	45.806	92%	80 - 113
113) 4-Bromofluorobenzene	(2) 12.057(0.000)	95	453068	41.846	84%	78 - 113

= RELATIVE RETENTION TIME OUT OF RANGE * = PERCENT REC.OUT OF RANGE

D = DILUTED OUT NC = NOT ABLE TO CALCULATE

	I.S.				Conc.	Conc.	Blank	1	Reporting	3
Target Compounds	Ref.	RT (+/-RRT)	Olon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
======================================				===**===	=========		======			=**====
1) Dichlorodifluoromethane	(1)	1.884(0.000)	85	167932	21.632	21.63			2.00	5.00
2) Chloromethane	(1)	2.019(0.002)	50	153369	20.357	20.36			1.00	5.00
3) Vinyl Chloride	(1)	2.154(0.001)	62	143933	20.968	20.97			1.00	5.00
6) Bromomethane	(1)	2.462(0.001)	94	79238	17.763	17.76			1.00	5.00
7) Chloroethane	(1)	2.565(0.000)	64	67363	18.720	18.72			1.00	5.00
8) Trichlorofluoromethane	(1)	2.880(-0.006)	101	180297	22.517	22.52			2.00	5.00
10) Ethyl Ether	(1)	3.141(-0.001)	59	90411	20.102	20.10			2.00	5.00
15) Acrolein	(1)	3.292(-0.001)	56	255208	149.859	149.86			40.00	100.00
16) 1.1-Dichloroethene	(1)	3.427(0.000)	96	100999	20.793	20.79			0.80	5.00
17) Freon 113	(1)	3.450(0.000)	101	104994	20.643	20.64			2.00	10.00
18) Acetone	(1)	3.469(-0.001)	58	194113	196.637	196.64			6.00	20.00
20) Methyl Iodide	(1)	3.623(-0.001)	142	172283	18.969	18.97			1.00	5.00
21) 2-Propanol	(1)	3.642(-0.002)	45	113124	162.188	162.19			50.00	100.00
22) Carbon Disulfide	(1)	3.716(0.000)	76	344263	19.120	19.12			1.00	5.00
23) Allyl Chloride	(1)	3.884 (-0.001)	41	216001	20.668	20.67			1.00	5.00
25) Methyl Acetate	(1)	3.903(-0.001)	43	161551	21.573	21.57			1.00	5.00
26) Methylene Chloride	(1)	4.051(0.000)	84	124556	20.943	20.94			2.00	5.00
28) t-Butyl Alcohol	(4)	4.202(0.002)	59	221588	188.921	188.92			10.00	80.00
29) Acrylonitrile	(1)	4.395(-0.001)	53	395060	103.912	103.91			4.00	20.00
30) trans-1,2-Dichloroethene	(1)	4.459(0.000)	96	113293	21.257	21.26			0.80	5.00
31) Methyl Tertiary Butyl Ether	(1)	4.459(0.001)	73	344891	19.736	19.74			0.50	5.00
33) n-Hexane	(1)	4.890(-0.001)	57	170046	21.177	21.18			2.00	5.00
40) 1,2-Dichloroethene (total)	(1)		96	236243	42.828	42.83			0.80	5.00
36) 1,1-Dichloroethane	(1)	5.099(-0.001)	63	220740	21.119	21.12			1.00	5.00
7.71										

E = CONC. OUT OF CAL. RANGE

= RELATIVE RETENTION TIME OUT OF RANGE

Page 1 of 5

Lancaster Laboratories
Quantitation Report GC/MS Volatiles LCSL28

File: /chem/HP09915.i/06jun13a.b/lu13103.d

Sample: LCSL28;LCSL28;1;3;LCS;;;;lu13b03 Injected At:13-JUN-2006 17:33

Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m Blank Reference: lul3b03.d

Sublist: 8260W+CYC

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Batch: L061642AA

Analyst: ADS01731

Instrument ID:HP09915.1 Standard Reference: lul3c01.d

Prep Factor:1.00

Units: ug/L

Matrix: WATER Level: Low

Sample Wt./Vol.: 5.0000 ml (Vo)

Volume Purged: 5.0 ml (Vt)

Bottle Code:

	I.S.	, -,,			Conc.	Conc.	Blank		Reporting	₹
Target Compounds	Ref.	RT (+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
	2		=====				======		======	=====
37) di-Isopropyl Ether	(1)	5.224(-0.001)	45	447665	20.841	20.84			0.80	5.0
39) 2-Chloro-1,3-Butadiene	(1)	5.244(-0.001)	53	182226	21.102	21.10			1.00	5.0
41) Ethyl t-Butyl Ether	(1)	5.758(0.000)	59	350987	19.814	19.81			0.80	5.0
42) cis-1,2-Dichloroethene	(1)	5.957(-0.001)	96	122950	21.571	21.57			0.80	5.0
43) 2-Butanone	(1)	5.970(0.000)	72	208851	171.674	171.67			3.00	10.0
44) 2,2-Dichloropropane	(1)	5.967(-0.001)	77	154467	20.456	20.46			1.00	5.0
45) Propionitrile	(1)	6.051(-0.001)	54	244837	167.354	167.35			30.00	100.0
46) Methacrylonitrile	(1)	6.273 (0.000)	67	595894	169.805	169.81			10.00	50.0
47) Bromochloromethane	(1)	6.292(0.000)	128	62917	21.090	21.09			1.00	5.0
48; Tetrahydrofuran	(1)	6.359(0.000)	4.2	400293	109.499	109.50			4.00	10.0
49) Chloroform	(1)	6.414(0.000)	83	212426	22.171	22.17			0.80	5.0
54: 1,1,1-Trichloroethane	(1)	6.675(0.000)	97	173724	21.309	21.31			0.80	5.0
55) Cyclohexane	(1)	6.761(0.000)	56	213994	21.232	21.23			2.00	5.0
58) 1.1-Dichloropropene	(1)	6.903(0.000)	75	164961	21.856	21.86			1.00	5.0
59) Carbon Tetrachloride	(1)	6.909(0.000)	117	154202	21.128	21.13			1.00	5.0
60) Isobutyl Alcohol	(1)	7.073(0.000)	41	242940	545.753	545.75			100.00	250.0
63) Benzene	(1)	7.183 (0.000)	78	490015	21.688	21.69			0.50	5.0
64) 1,2-Dichloroethane	(1)	7.202(0.000)	62	193144	22.276	22.28			1.00	5.0
67) t-Amyl Methyl Ether	(1)	7.353(0.000)	73	312034	20.086	20.09			0.80	5.0
69) n-Heptane	(1)	7.568(0.000)	100	22716	21.336	21.34			2.00	5.0
72) n-Butanol	(1)	7.961(0.000)	56	358552	1059.514	1059.51			100.00	250.0
73) Trichloroethene	(1)	8.051(0.000)	95	125368	21.593	21.59			1.00	5.0
77) 1,2-Dichloropropane	(1)	8.340(0.000)	63	139865	21.682	21.68			1.00	5.0
74) Methylcyclohexane	(1)	8.311(0.000)	83	196445	22.812	22.81			1.00	5.0

E = CONC. OUT OF CAL. RANGE

= RELATIVE RETENTION TIME OUT OF RANGE

Lancaster Laboratories $_{ t Quantitation \ Report \ GC/MS \ Volatiles} LCSL28$

File: /chem/HP09915.i/06jun13a.b/lu13103.d

Sample: LCSL28;LCSL28;1;3;LCS;;;;lu13b03 Injected At:13-JUN-2006 17:33 Calibration Time: 06-JUN-2006 17:02

Parget Method: L8260W.m Blank Reference: lul3b03.d

Sublist: 8260W+CYC

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Matrix: WATER Batch: L061642AA

Analyst:ADS01731

Instrument ID:HP09915.1

Standard Reference: lul3c01.d

Prep Factor:1.00

Units: ug/L

Level: Low

Sample Wt./Vol.: 5.0000 ml (Vo)

Volume Purged: 5.0 ml (Vt)

Bottle Code:

	I.S.				Conc.	Conc.	Blank		Reporting	j
Target Compounds	Ref.	RT (+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
target compounds	**===	=======================================	****	=======	=======================================		*****	======	======	======
80) Methyl Methacrylate	(1)	8.504 (0.000)	69	117851	20.450	20.45			1.00	5.00
79) Dibromomethane	(1)	8.488(0.000)	93	86498	21.537	21.54			1.00	5.00
81) 1,4-Dioxane	(1)	8.517(0.000)	8.8	50803	569.954	569.95			70.00	250.00
82) Bromodichloromethane	(1)	8.700(0.000)	83	158862	21.965	21.97			1.00	5.00
83) 2-Nitropropane	(1)	8.990(0.000)	41	50089	18.867	18.87			2.00	10.00
84) 2-Chloroethyl Vinyl Ether	(1)	9.096(0.001)	63	103948	20.786	20.79			2.00	10.00
85) cis-1,3-Dichloropropene	(1)	9.279(0.000)	75	200218	20.710	20.71			1.00	5.00
87) 4-Methyl-2-Pentanone	(1)	9.465(0.001)	43	1211678	102.839	102.84			3.00	10.00
90) Toluene	(2)	9.674(0.000)	92	294538	20.789	20.79			0.70	5.00
91) crans-1,3-Dichloropropene	(2)	9.919(0.000)	75	191894	21.568	21.57			1.00	5.00
92) Ethyl Methacrylate	(2)	10.025(0.000)	69	203512	20.515	20.51			1.00	5.00
93) 1,1,2-Trichloroethane	(2)	10.108(0.000)	97	114508	20.617	20.62			0.80	5.00
94) Tetrachloroethene	(2)	10.269(0.000)	166	124765	20.480	20.48			0.80	5.00
95) 1.3-Dichloropropane	(2)	10.285{ 0.000}	76	214255	21.135	21.13			1.00	5.00
96) 2-Hexanone	(2)	10.369(0.000)	43	956466	93.823	93.82			3.00	10.00
98) Dibromochloromethane	(2)	10.514(0.000)	129	123535	19.882	19.88			1.00	5.00
100) 1,2-Dibromoethane	(2)	10.623(0.000)	107	129808	20.575	20.58			1.00	5.00
102) Chlorobenzene	(2)	11.086(0.000)	112	337358	20.742	20.74			0.80	5.00
103) 1,1,1,2-Tetrachloroethane	(2)	11.163(0.000)	131	115124	20.462	20.46			1.00	5.00
104) Ethylbenzene	(2)	11.189(0.000)	91	574884	21.031	21.03			0.80	5.00
105) m+p-Xylene	(2)	11.288(0.000)	106	451159	42.099	42.10			0.80	5.00
106) Xylene (Total)	(2)		106	664632	62.951	62.95			0.80	5.00
107) o-Xylene	(2)	11.633(0.000)	106	213473	20.852	20.85			0.80	5.00
108) Styrene	(2)	11.642(0.000)	104	356980	20.786	20.79			1.00	5.00

E = CONC. OUT OF CAL. RANGE

= RELATIVE RETENTION TIME OUT OF RANGE

Dancaster Laboratories LCSL28
Quantitation Report GC/MS Volatiles

File: /chem/HP09915.i/06junl3a.b/lu13103.d Sample: LCSL28; LCSL28; 1; 3; LCS; ; ; ; lu13b03

Injected At:13-JUN-2006 17:33

Calibration Time: 06-JUN-2006 17:02 Target Method: L8260W.m

Blank Reference: lul3b03.d

Sublist: 8260W+CYC

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Matrix: WATER Batch: L061642AA

Analyst:ADS01731

Instrument ID: HP09915.1

Standard Reference: lul3c01.d

Prep Factor:1.00

Units: ug/L

Level: Low

Sample Wt./Vol.: 5.0000 ml (Vo)

Volume Purged: 5.0 ml (Vt)

Bottle Code:

	I.S.					Conc.	Conc.	Blank		Reporting	3
Target Compounds	Ref.	RT (+/-R		QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
	=====	=======================================		=====	======================================		******	======			
09) Bromoform	(2)	11.796(0.0	00}	173	92053	19.128	19.13			1.00	5.0
11) Isopropylbenzene	(2)	11.935(0.0	00)	105	540037	20.862	20.86			1.00	5.0
15) Cyclohexanone	(2)	12.012(0.0	00)	55	309503	729.379	729.38			55.00	250.0
16) 1,1,2,2-Tetrachloroethane	(3)	12.163(0.0	00)	83	202954	20.841	20.84			1.00	5.0
18) trans-1,4-Dichloro-2-Butene	(3)	12.205(0.0	00)	53	335151	97.397	97.40			15.00	50.0
17) Bromobenzene	(3)	12.186(0.0	00)	156	145851	20.400	20.40			1.00	5.0
19) 1,2,3-Trichloropropane	(3)	12.202(0.0	00)	110	57376	21.482	21.48			1.00	5.0
20) n-Propylbenzene	(3)	12.259(0.0	00)	120	159625	20.890	20.89			1.00	5.0
22) 2-Chlorotoluene	(3)	12.333(0.0	00)	126	137906	20.528	20.53			1.00	5.0
23: 1,3,5-Trimethylbenzene	(3)	12.388(0.0	00)	120	230235	20.784	20.78			1.00	5.4
25: 4-Chlorotoluene	(3)	12.414(0.0	00)	126	143608	20.264	20.26			1.00	5.0
26; tert-Butylbenzene	(3)	12.642(0.0	00)	134	100705	20.897	20.90			1.00	5.0
27; Pentachloroethane	(3)	12.665(0.0	00)	167	88334	19.556	19.56			1.00	5.0
28) 1,2,4-Trimethylbenzene	(3)	12.677(0.0	00)	105	494929	21.289	21.29			1.00	5.1
29) sec-Butylbenzene	(3)	12.803(0.0	00)	134	116398	21.304	21.30			1.00	5.
30) p-Isopropyltoluene	(3)	12.903(0.0	00}	134	136056	21.290	21.29			1.00	5.0
31) 1,3-Dichlorobenzene	(3)	12.896(0.0	00)	146	275949	20.436	20.44			1.00	5.0
33) 1,4-Dichlorobenzene	(3)	12.957(0.0	00)	146	290509	20.391	20.39			1.00	5.0
34) 1,2,3-Trimethylbenzene	(3)	12.989(0.0	00)	120	214736	20.096	20.10			1.00	5.6
35) Benzyl Chloride	(3)	13.050(0.0	00)	91	370127	19.395	19.39			1.00	5.
36) 1.3-Diethylbenzene	(3)	13.118(0.0	100)	119	295361	19.964	19.96			1.00	5.
37) 1,4-Diethylbenzene	(3)	13,179(0.0	00)	119	312375	20.218	20.22			1.00	5.0
38) n-Butylbenzene	(3)	13.198(0.0	00)	92	255989	21.570	21.57			1.00	5.0
39) 1,2-Dichlorobenzene	(3)	13.231(0.0		146	268409	20.134	20.13			1.00	5.0

E = CONC. OUT OF CAL. RANGE

= RELATIVE RETENTION TIME OUT OF RANGE

Page 4 of 5

Lancaster Laboratories $_{\text{Quantitation Report GC/MS Volatiles}}$ LCSL28

File: /chem/HP09915.i/06junl3a.b/lul3103.d Sample: LCSL28; LCSL28; 1:3; LCS; ; ; ; lu13b03

Injected At:13-JUN-2006 17:33 Calibration Time: 06-JUN-2006 17:02

Target Method: L8260W.m Blank Reference: lul3b03.d Sublist: B260W+CYC

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

Matrix: WATER Batch: L061642AA

Analyst:ADS01731

Level: Low Instrument ID: HP09915.1

Standard Reference: lul3c01.d

Sample Wt./Vol.: 5.0000 ml (Vo) Volume Purged: 5.0 ml (Vc)

Prep Factor:1.00

Units: ug/L

Bottle Code:

	I.S.	-				Conc.	Conc.	Blank		Reporting	
Target Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit	LOQ
	2 = = = =	=====		=====		*******	##=*4=========	=======	======	======	=====
40) 1,2-Diethylbenzene	(3)	13.26	6 (0.000)	119	247918	19.808	19.81			1.00	5.0
41) 1,2-Dibromo-3-Chloropropane	(3)	13.76	4 (0.000)	75	43082	19.012	19.01			2.00	5.0
42) 1.2.4-Trichlorobenzene	(3)	14.32	4 (0.000)	180	189549	19.362	19.36			1.00	5.0
43) Hexachlorobutadiene	(3)	14.42	7(0.000)	225	73565	19.380	19.38			2.00	5.0
44) Naphthalene	(3)	14.49	4 (0.000)	128	569581	19.363	19.36			1.00	5.0
145) 1,2,3-Trichlorobenzene	(3)		8(0.000)	180	182201	19.245	19.24			1.00	5.0
E = CONC. OUT OF CAL. RANGE	# =	RELAT	IVE RETENT	ION TIM	E OUT OF RA	ANGE					

Comments:

Page 5 of 5

Y (x10^6) М 4 М 4 2.0 1.1 į. Sample Info: LCSL28;LCSL28;1;3;LCS;;;;;lu13b03 Client ID: LCSL28 Date : 13-JUN-2006 17:33 Data File: /chem/HP09915.i/06jun13a.b/lu13103.d Purge Volume: 5.0 Column phase: DB-624 t-Butyl Alcohol-d10+ -Dibromofluoromethane+ /chem/HP09915.i/06jun13a.b/lu13103.d -1,2-Dichloroethane-d4+ -Fluorobenzene+ Operator: ADS01731 Column diameter: 0.25 Instrument: HP09915.i -Toluene-d8 10 13 1,4-Dichlorobenzene-d4+ 14 6268 Page 1 5

Min

Target Revision 3.5

Data File: /chem/HP09915.i/06jun13a.b/lu13103.d Instrument ID: HP09915.i Analyst ID: ADS01731 Injection date and time: 13-JUN-2006 17:33

Method used: /chem/HP09915.i/06jun13a.b/L8260W.m Sublist used: 8260W+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 13-Jun-2006 18:20 lcm01518

Lab Sample ID: LCSL28 Sample Name: LCSL28

	I.S.				Conc.
Compounds	Ref.	RT	QIon	Area	(on column)
=======================================	=====			=======================================	=========
1) Dichlorodifluoromethane	(1)	1.884	85	167932	21.632
2) Chloromethane	(1)	2.019	50	153369	20.357
3) Vinyl Chloride	(1)	2.154	62	143933	20.968
6) Bromomethane	(1)	2.462	94	79238	17.763
7) Chloroethane	(1)	2.565	64	67363	18.720
8) Trichlorofluoromethane	(1)	2.880	101	180297	22.517
10) Ethyl Ether	(1)	3.141	59	90411	20.102
15) Acrolein	(1)	3.292	56	255208	149.859
16) 1,1-Dichloroethene	(1)	3.427	96	100999	20.793
17) Freon 113	(1)	3.450	101	104994	20.643
18) Acetone	(1)	3.469	58	194113	196.637
20) Methyl Iodide	(1)	3.623	142	172283	18.969
21) 2-Propanol	(1)	3.642	45	113124	162.188
22) Carbon Disulfide	(1)	3.716	76	344263	19.120
23) Allyl Chloride	(1)	3.884		216001	20.668
25) Methyl Acetate	(1)	3.903		161551	21.573
26) Methylene Chloride	(1)	4.051	84	124556	20.943
27) *t-Butyl Alcohol-d10	(4)	4.083	65	257058	250.000
28) t-Butyl Alcohol	(4)	4.202	59	221588	188.921
29) Acrylonitrile	(1)	4.395	53	395060	103.912
30) trans-1,2-Dichloroethene	(1)	4.459		113293	21.257
31) Methyl Tertiary Butyl Ether	(1)	4.459		344891	19.736
33) n-Hexane	(1)	4.890	57	170046	21.177
40) 1,2-Dichloroethene (total)	(1)		96	236243	42.828
36) 1,1-Dichloroethane	(1)	5.099		220740	21.119
37) di-Isopropyl Ether	(1)	5.224	45	447665	20.841
39) 2-Chloro-1,3-Butadiene	(1)	5.244		182226	21.102
41) Ethyl t-Butyl Ether	(1)	5.758		350987	19.814
42) cis-1,2-Dichloroethene	(1)	5.957	96	122950	21.571
43) 2-Butanone	(1)	5.970	72	208851	171.674
44) 2,2-Dichloropropane	(1)	5.967	77	154467	20.456
45) Propionitrile	(1)	6.051	54	244837	167.354
46) Methacrylonitrile	(1)	6.273	67	595894	169.805
47) Bromochloromethane	(1)	6.292	128	62917	21.090
_ · • • · •					

⁸²⁶⁹

Target Revision 3.5

Data File: /chem/HP09915.i/06jun13a.b/lu13103.d Instrument ID: HP09915.i Injection date and time: 13-JUN-2006 17:33 Analyst ID: ADS01731

Method used: /chem/HP09915.i/06jun13a.b/L8260W.m Sublist used: 8260W+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 13-Jun-2006 18:20 lcm01518

Sample Name: LCSL28 Lab Sample ID: LCSL28

	I.S.				Conc.
Compounds	Ref.	$\mathtt{R}\mathtt{T}$	QIon	Area	(on column)
	======	=====	=====	=======================================	100 400
48) Tetrahydrofuran	(1)	6.359	42	400293	109.499
49) Chloroform	(1)	6.414	83	212426	22.171
54) 1,1,1-Trichloroethane	(1)	6.675	97	173724	21.309
55) Cyclohexane	(1)	6.761	56	213994	21.232
58) 1,1-Dichloropropene	(1)	6.903	75	164961	21.856
59) Carbon Tetrachloride	(1)	6.909	117	154202	21.128
60) Isobutyl Alcohol	(1)	7.073	41	242940	545.753
63) Benzene	(1)	7.183	78	490015	21.688
64) 1,2-Dichloroethane	(1)	7.202	62	193144	22.276
67) t-Amyl Methyl Ether	(1)	7.353	73	312034	20.086
69) n-Heptane	(1)	7.568	100	22716	21.336
70) *Fluorobenzene	· (1)	7.562	96	1106791	50.000
72) n-Butanol	(1)	7.961	56	358552	1059.514
73) Trichloroethene	(1)	8.051	95	125368	21.593
77) 1,2-Dichloropropane	(1)	8.340	63	139865	21.682
74) Methylcyclohexane	(1)	8.311	83	196445	22.812
80) Methyl Methacrylate	(1)	8.504	69	117851	20.450
79) Dibromomethane	(1)	8.488	93	86498	21.537
81) 1,4-Dioxane	(1)	8.517	88	50803	569.954
82) Bromodichloromethane	(1)	8.700	83	158862	21.965
83) 2-Nitropropane	(1)	8.990	41	50089	18.867
84) 2-Chloroethyl Vinyl Ether	(1)	9.096	63	103948	20.786
85) cis-1,3-Dichloropropene	(1)	9.279	75	200218	20.710
87) 4-Methyl-2-Pentanone	(1)	9.465	43	1211678	102.839
90) Toluene	(2)	9.674	92	294538	20.789
91) trans-1,3-Dichloropropene	(2)	9.919	75	191894	21.568
92) Ethyl Methacrylate	(2)	10.025	69	203512	20.515
93) 1,1,2-Trichloroethane	(2)	10.108	97	114508	20.617
94) Tetrachloroethene	(2)	10.269	166	124765	20.480
95) 1,3-Dichloropropane	(2)	10.285	76	214255	21.135
96) 2-Hexanone	(2)	10.369	43	956466	93.823
98) Dibromochloromethane	(2)	10.514	129	123535	19.882
100) 1,2-Dibromoethane	(2)	10.623	107	129808	20.575
101) *Chlorobenzene-d5	(2)	11.060	117	838670	50.000
TOTA CITTOTODOMESTE WO	\~/				

⁰²⁷⁶

Target Revision 3.5

Data File: /chem/HP09915.i/06jun13a.b/lu13103.d Instrument ID: HP09915.i Analyst ID: ADS01731 Injection date and time: 13-JUN-2006 17:33

Method used: /chem/HP09915.i/06jun13a.b/L8260W.m Sublist used: 8260W+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 13-Jun-2006 18:20 lcm01518

Lab Sample ID: LCSL28 Sample Name: LCSL28

		I.S.				Conc.
	Compounds	Ref.	RT	QIon	Area	(on column)
	======================================	======	======	=====	=======	= = =========
102)	Chlorobenzene	(2)	11.086	112	337358	20.742
103)	1,1,1,2-Tetrachloroethane	(2)	11.163	131	115124	20.462
	Ethylbenzene	(2)	11.189	91	574884	21.031
104)	m+p-Xylene	(2)	11.288	106	451159	42.099
106)	Xylene (Total)	(2)		106	664632	62.951
100)	o-Xylene	(2)	11.633	106	213473	20.852
107)	Styrene	(2)	11.642	104	356980	20.786
109)	Bromoform	(2)	11.796	173	92053	19.128
	Isopropylbenzene	(2)	11.935	105	540037	20.862
111)	Cyclohexanone	(2)	12.012	55	309503	729.3 79
115)	1,1,2,2-Tetrachloroethane	(3)	12.163	83	202954	20.841
116)	trans-1,4-Dichloro-2-Butene	(3)	12.205	53	335151	97.397
		(3)	12.186	156	145851	20.400
117)	1,2,3-Trichloropropane	(3)	12.202	110	57376	21.482
119)	n-Propylbenzene	(3)	12.259	120	159625	20.890
120)	2-Chlorotoluene	(3)	12.333	126	137906	20.528
122)	1,3,5-Trimethylbenzene	(3)	12.388	120	230235	20.784
123) 125)	4-Chlorotoluene	(3)	12.414	126	143608	20.264
	tert-Butylbenzene	(3)	12.642	134	100705	20.897
126)	Pentachloroethane	(3)	12.665	167	88334	19.556
127)	1,2,4-Trimethylbenzene	(3)	12.677	105	494929	21.289
128)	sec-Butylbenzene	(3)	12.803	134	116398	21.304
129)	p-Isopropyltoluene	(3)	12.903	134	136056	21.290
130)	1,3-Dichlorobenzene	(3)	12.896	146	275949	20.436
131)	*1,4-Dichlorobenzene-d4	(3)	12.941	152	480301	50.000
		(3)	12.957	146	290509	20.391
133)	1,4-Dichlorobenzene 1,2,3-Trimethylbenzene	(3)	12.989	120	214736	20.096
134)		(3)	13.050	91	370127	19.395
135)	Benzyl Chloride	(3)	13.118	119	295361	19.964
136)	1,3-Diethylbenzene	(3)	13.179		312375	20.218
137)	1,4-Diethylbenzene	(3)	13.198	92	255989	21.570
138)	n-Butylbenzene	(3)	13.231		268409	20.134
139)	1,2-Dichlorobenzene	(3)	13.266	119	247918	19.808
140)	1,2-Diethylbenzene	(3)	13.764	75	43082	19.012
141)	1,2-Dibromo-3-Chloropropane	(3)	13.704	, 5		_ <i>F</i> · · - -

⁸²⁷¹

a

Target Revision 3.5

Data File: /chem/HP09915.i/06jun13a.b/lu13103.d Instrument ID: HP09915.i Injection date and time: 13-JUN-2006 17:33 Analyst ID: ADS01731

Method used: /chem/HP09915.i/06jun13a.b/L8260W.m Sublist used: 8260W+CYC

Calibration date and time: 06-JUN-2006 17:02

Date, time and analyst ID of latest file update: 13-Jun-2006 18:20 lcm01518

Sample Name: LCSL28 Lab Sample ID: LCSL28

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
=======================================	======	=====	=====	=======================================	
142) 1,2,4-Trichlorobenzene	(3)	14.324	180	189549	19.362
143) Hexachlorobutadiene	(3)	14.427	225	73565	19.380
144) Naphthalene	(3)	14.494	128	569581	19.363
145) 1,2,3-Trichlorobenzene	(3)	14.648	180	182201	19.245
51) \$Dibromofluoromethane	(1)	6.633	113	281515	46.174
62) \$1,2-Dichloroethane-d4	(1)	7.099	102	62886	45.105
89) \$Toluene-d8	(2)	9.597	98	1114049	45.806
113)\$4-Bromofluorobenzene	(2)	12.057	95	453068	41.846

^{\$ =} Compound is a surrogate standard.

Preparation Logs

2425 New Holland Pike • Lancaster, PA 17601

GC/MS Volatiles pH Log

Batch #: <u>LO61642AA</u>

LLI#	рН	Date Checked	Initials/ Employee #	Comments
4791555	42	4/13/06	LCM/1518	
4791556	42	6/13/06	LCM/1518	
4791558	<2	6/13/06	LCM/15/8	
4791559	<2	6/13/06	LCM/1518	
4791560	۷ ک	6/13/06	LCM/1518	
				1
	_			
			<u> </u>	
				<u></u>
·				
			-	
				8274
		1407.01 06/	11/01	

1407.01 06/11/01

2425 New Holland Pike @ Lancaster, PA 17601

GC/MS Volatiles pH Log

Batch #: <u>L 0 6 1 6 4 2 A 3</u>

LLI#	рН	Date Checked	Initials/ Employee #	Comments
4791563	<2	6/14/06	ADS/1731	
4791564	12	6/14/06	ADS/1731	
4791565	42	6/14/06	Ads/1731	-
4791567	<2	6/14/06	ADS/1731	
4791568	< 2	6/14/06	ADS/1731	
4791569	< 2	6/14/06	A05/1731	
4741570	٧2	6/14/01	ADS/1731	
4791561	<2	4/11/06	ADS/1731	·
4791562	<2	6/14/06	ADS/1731	
		·		
_				
-				
	_			
			-	
				8275
·		1407.01 06/1		,

1407.01 06/11/01

Lancaster Laboratories Runlog for Hewelet Packard GC/MS System HP09915 **HP #09**

*	Shift #1 Analyst	-: <u>-</u>	-	** Shift #2 Analyst:	KEB_	-	** Shift #3 Analyst:SJG*
	Comment Code:	R	=	Reinjection necessary	Х	==	Sample sent to be reextracted
		S	=	Surrogate problem	I	=	Internal Standard problem
		NU	=	Not used	F	=	Further dilution required
		MR	=	Meets requirements	IUO	=	Internal use only
		Cz	=	Confirms z , $(z = S, I \text{ or } X)$	T	=	Injected outside valid tune period
	Other problems	or	CO.	mments are as follows:			
							*
							*
_				8260B WATERS			*
_							*

Data Directory Path is - D:\DATA\06JUN06B\

FILE	SAMPLE	LLI#	DATE	TIME	BATCH	D.F.	NOTES
======================================	======================================	======================================	======================================	==== 16:40			MR
LU06T03.D LU06I01.D	VSTD300	VSTD300	06 Jun 06	17:02			ทบ
LU06101.D	VSTD100	VSTD100	06 Jun 06	17:25			MR
LU06103.D	VSTD050	VSTD050	06 Jun 06	17:47			MR
LU06I04.D	VSTD030 VSTD020	VSTD020	06 Jun 06	18:10			MR
LU06104.D	VSTD020 VSTD010	VSTD010	06 Jun 06	18:32			NU
LU06105.D	VSTD010	VSTD004	06 Jun 06	18:55			MR
LU06100.D	VSTD001 VSTD001	1 PPB MDL	06 Jun 06	19:18			MR
LU06I07.D	VSTD300	VSTD300	06 Jun 06	19:40			MR
LU06X01.D	CLNBLK	CLNBLK	06 Jun 06	20:03			NU -
LU06I08.D	VSTD010	VSTD010	06 Jun 06	20:30			MR
LU06B10.D	VBLKL19	VBLKL19	06 Jun 06	21:21	L061532AB		NU
LU06L10.D	LCSL19	LCSL19	06 Jun 06	21:44	L061521AA		NU
LU06B11.D	VBLKL19	VBLKL19	06 Jun 06	22:08	L061571AA		MR
LU01L10.D	LCSL19	LCSL19	06 Jun 06	22:59	L061571AA		MR
LUO1L11.D	LCDL19	LCDL19	06 Jun 06	23:22	L061571AA		MR
LU06S01.D	GWWTB	4781789	07 Jun 06	00:11	L061571AA		MR
LU06S01.D	GWW3R	4781786	07 Jun 06	00:34	L061571AA		MR
LU06S03.D	GWW4R	4781787	07 Jun 06	00:56	L061571AA		MR
LU06S04.D	GWW4RMS	4781787	07 Jun 06	01:19	L061571AA		MR
LU06S05.D	GWW7R	4781788	07 Jun 06	01:41	L061571AA		MR
LU06S06.D	NAS01	4785529	07 Jun 06	02:04	L061571AA		MR
LU06S07.D	NAS01DL	4785529	07 Jun 06	02:26	L061571AA	10	F NU/CO
LU06S08.D	NAS03	4785530	07 Jun 06	02:49	L061571AA		
LU06S09.D	NAS4R	4785531	07 Jun 06	03:11	L061571AA		MR MR
LU06S10.D	NAS06	4785532	07 Jun 06	03:34	L061571AA		NU/CO
LU06S11.D	NASTB	4785533	07 Jun 06	03:57	L061571AA	r	
1.U06S12.D	GWW7RDL	4781788	07 Jun 06	04:19	L061571AA	0Z36	MR T/NU
T.U06S13.D	NASO6DL	4785532	07 Jun 06	04:47	L061571AA	10	T/NU T/NU
LU06S14.D	234AX	4785397	07 Jun 06	05:23	L061571AA		
LU06S15.D	233AC	4785398	07 Jun 06	05:46	L061571AA		T/NU T/NU
LU06S15.D	P1A3X	4785399	07 Jun 06	06:08	L061571AA		
LU06S17.D	FB602	4785400	07 Jun 06	06:31	L061571AA		T/NU T/NU
LU06S17.D	RFP14	4785401	07 Jun 06	06:54	L061571AA	100	T/NU T/NU
LU06S10.D	NAS01DL2	4785529	07 Jun 06	07:29	L061571AA	100	
LU06S20.D	NAS03	4785530	07 Jun 06	07:52	L061571AA		T/NU

Lancaster Laboratories Runlog for Hewelet Packard GC/MS System HP09915 **HP #09**

*	Shift #1 Analyst	::_ _	_A[OS** Shift #2 Analyst:	_LCI	M	** Shift #3 Analyst:	*
	Comment Code:	R	=	Reinjection necessary	Х	=	Sample sent to be reextracted	
		S	=	Surrogate problem	I	=	Internal Standard problem	
		NU	=	Not used	F	=	Further dilution required	
		MR	=	Meets requirements	IUO	=	Internal use only	
		Cz	===	Confirms z, $(z = S, I \text{ or } X)$	Т	=	Injected outside valid tune period	
	Other problems	or	COI	nments are as follows:				
								*
8260B WATERS								*
								*
							-	*

Data Directory Path is - D:\DATA\06JUN13A\

SAMPLE	LLI#	DATE	TIME	BATCH	D.F.	NOTES
		13 Jun 06	08:05			MR
		13 Jun 06	08:28			MR
	:	13 Jun 06	08:50			MR
· -		13 Jun 06	09:19	L061641AA		M R
		13 Jun 06	09:42	L061641AA		MR
	-	13 Jun 06	10:04	L061641AB		MR
· -		13 Jun 06	10:39			MR
	•	13 Jun 06	11:02	L061641AB		MR
		13 Jun 06	11:24	L061641AB		MR
		13 Jun 06	11:47	L061641AB		MR
		13 Jun 06	12:10	L061641AB		F
= =		13 Jun 06	12:32	L061641AB		MR
-		13 Jun 06	12:55	L061641AB		MR
•		13 Jun 06	13:18	L061641AB		MR
		13 Jun 06	13:40	L061641AB		MR
		13 Jun 06	14:03	L061641AB		MR
		13 Jun 06	14:26	L061641AB		MR
		13 Jun 06	14:49	L061641AB		F
		13 Jun 06	15:11	L061641AB	10	MR
•		13 Jun 06	15:34	L061641AB		MR
	<u> </u>	13 Jun 06	15:57	L061641AB		MR
	· ·	13 Jun 06	16:19	L061641AB	10	MR
		13 Jun 06	16:42			MR
		13 Jun 06	17:33	L061642AA		MR
		13 Jun 06	18:13	L061642AA		MR
	• . •	13 Jun 06	18:36	L061642AA		MR
	• . •	13 Jun 06	18:59	L061642AA		MR
		13 Jun 06	19:21	L061642AA		MR
DB8B-	4791560	13 Jun 06	19:44	L061642AA	6277	- MR
	2UL BFBFEB23 VSTD050 VBLKL26 LCSL26 LCDL26 VBLKL27 STH03 STH03MS STH02 STH06 STH05 STHP1 STHE1 STHFE1 STHTB STHO1 HRT03 HRT01 HRT02 HRT02DL HRT04 HRT05 STH05DL VBLKL28 LCSL28 -TF5TF23 -DC2DC1-	2UL BFBFEB23 50 NG BFB VSTD050 VSTD050 VBLKL26 LCSL26 LCSL26 LCDL26 VBLKL27 VBLKL27 STH03 4788991 STH02 4788992 STH06 4788993 STHP1 4788995 STHF1 4788997 STHTB 4788997 STH01 4788998 HRT03 4791619 HRT04 4791621 HRT05 4791621 HRT04 4791623 STH05DL 4788994 VBLKL28 LCSL28 -TF5- 4791555 -TF5- 4791556 -DC2- 4791558 -DC1- 4791559	ZUL BFBFEB23 50 NG BFB 13 Jun 06 VSTD050 VSTD050 13 Jun 06 VBLKL26 VBLKL26 13 Jun 06 LCDL26 LCDL26 13 Jun 06 VBLKL27 VBLKL27 13 Jun 06 STH03 4788991 13 Jun 06 STH02 4788992 13 Jun 06 STH06 4788993 13 Jun 06 STH05 4788994 13 Jun 06 STHP1 4788995 13 Jun 06 STHE1 4788996 13 Jun 06 STHTB 4788997 13 Jun 06 STHTB 4788998 13 Jun 06 HRT01 4788998 13 Jun 06 HRT02 4791619 13 Jun 06 HRT02 4791621 13 Jun 06 HRT04 4791621 13 Jun 06 HRT05 4791621 13 Jun 06 STH05DL 4788994 13 Jun 06 VBLKL28 13 Jun 06 VBLKL28 13 Jun 06 VBLKL28 13 Jun 06 VBLKL28 13 Jun 06 -TF5- 4791555 13 Jun 06	2UL BFBFEB23 50 NG BFB 13 Jun 06 08:05 VSTD050 VSTD050 13 Jun 06 08:28 VBLKL26 VBLKL26 13 Jun 06 09:19 LCSL26 LCSL26 13 Jun 06 09:42 VBLKL27 VBLKL27 13 Jun 06 10:04 STH03 4788991 13 Jun 06 11:02 STH03MS 4788991 13 Jun 06 11:24 STH02 4788993 13 Jun 06 11:24 STH05 4788994 13 Jun 06 12:10 STH05 4788994 13 Jun 06 12:32 STHE1 4788995 13 Jun 06 12:55 STHTB 4788997 13 Jun 06 13:40 HRT03 4791619 13 Jun 06 14:03 HRT01 4788998 13 Jun 06 14:03 HRT02 4791621 13 Jun 06 14:26 HRT04 4791621 13 Jun 06 15:34 HRT05 4788994 13 Jun 06 15:37 STH05BL 4788998 13 Jun 06 14:03 HRT01 4788998 13 Jun 06 14:03 HRT03 4791621 13 Jun 06 15:34 HRT0	20L BFBFEB23 50 NG BFB 13 Jun 06 08:05 VSTD050 VSTD050 13 Jun 06 08:28 VBLKL26 VBLKL26 13 Jun 06 09:19 L061641AA LCSL26 LCSL26 13 Jun 06 09:42 L061641AA LCDL26 LCDL26 13 Jun 06 09:42 L061641AA VBLKL27 VBLKL27 13 Jun 06 10:04 L061641AB STH03MS 4788991 13 Jun 06 10:39 L061641AB STH03MS 4788991 13 Jun 06 11:02 L061641AB STH06 4788992 13 Jun 06 11:24 L061641AB STH06 4788993 13 Jun 06 11:47 L061641AB STH05 4788994 13 Jun 06 12:10 L061641AB STH01 4788996 13 Jun 06 12:32 L061641AB STHFI 4788996 13 Jun 06 12:55 L061641AB STHFI 4788998 13 Jun 06 13:18 L061641AB STHFI 4788998 13 Jun 06 13:18 L061641AB STHO1 4788998 13 Jun 06 13:40 L061641AB HRT01 4791620 13 Jun 06 14:26 L061641AB HRT02 4791621 13 Jun 06 14:26 L061641AB HRT02 4791621 13 Jun 06 15:57 L061641AB HRT04 4791622 13 Jun 06 15:57 L061641AB HRT05 4791621 13 Jun 06 15:57 L061641AB HRT06 4791622 13 Jun 06 15:57 L061641AB HRT07 4791623 13 Jun 06 15:57 L061641AB HRT08 4791621 13 Jun 06 15:57 L061641AB HRT09 4791621 13 Jun 06 15:57 L061641AB HRT01 4791622 13 Jun 06 15:57 L061641AB HRT04 4791623 13 Jun 06 16:42 L061641AB HRT05 4791623 13 Jun 06 16:42 L061641AB HRT05 4791623 13 Jun 06 16:42 L061641AB HRT05 4791623 13 Jun 06 16:42 L061641AB HRT05 4791623 13 Jun 06 16:42 L061641AB HRT05 4791623 13 Jun 06 16:42 L061641AB HRT05 4791623 13 Jun 06 16:42 L061641AB HRT05 4791623 13 Jun 06 16:42 L061641AB HRT05 4791623 13 Jun 06 16:42 L061641AB HRT05 4791623 13 Jun 06 16:42 L061641AB HRT05 4791623 13 Jun 06 16:42 L061641AB HRT05 4791623 13 Jun 06 16:42 L061642AA LCSL28 LCSL28 13 Jun 06 18:59 L061642AA LCSL28 LCSL28 13 Jun 06 18:59 L061642AA LCSL28 LCSL28 13 Jun 06 18:59 L061642AA LCSL28 LCSL28 13 Jun 06 18:59 L061642AA LOC2- 4791558 13 Jun 06 19:21 L061642AA LOC1- 4791559 13 Jun 06 19:21 L061642AA	ZUL BFBFEB23 50 NG BFB 13 Jun 06 08:05 VSTD050 VSTD050 13 Jun 06 08:28 VBLKL26 VBLKL26 13 Jun 06 08:50 L061641AA LCSL26 LCSL26 13 Jun 06 09:19 L061641AA LCDL26 LCDL26 13 Jun 06 09:42 L061641AB VBLKL27 VBLKL27 13 Jun 06 10:04 L061641AB STH03 4788991 13 Jun 06 11:02 L061641AB STH03MS 4788991 13 Jun 06 11:24 L061641AB STH02 4788992 13 Jun 06 11:47 L061641AB STH05 4788993 13 Jun 06 12:10 L061641AB STH05 4788994 13 Jun 06 12:32 L061641AB STHE1 4788995 13 Jun 06 12:55 L061641AB STHTB 4788997 13 Jun 06 13:40 L061641AB STHO1 4788998 13 Jun 06 13:40 L061641AB HRT03 4791619 13 Jun 06 14:03 L061641AB HRT01 4791620 13 Jun 06 14:03 L061641AB HRT02 47916

Lancaster Laboratories Runlog for Hewelet Packard GC/MS System HP09915 **HP #09**

*	Shift #1 Analyst	t:_	A	DS** Shift #2 Analyst:_	_LCM_	** Shift #3 Analyst:	*	
	Comment Code:	R	=	Reinjection necessary	х	= Sample sent to be reextracted		
		S	=	Surrogate problem	I	= Internal Standard problem		
		NU	=	Not used	F	= Further dilution required		
		MR	=	Meets requirements	IUO	= Internal use only		
		Cz	=	Confirms z , $(z = S, I \text{ or } X)$	T	= Injected outside valid tune period		
	Other problems	or	CO	nments are as follows:				
							*	
	8260B WATERS							
_							*	

Data Directory Path is - D:\DATA\06JUN13B\

FILE	SAMPLE	LLI#	DATE	TTME	BATCH	D.F.	NOTES
LU13T04.D	2UL BFBFEB23	50 NG BFB	13 Jun 06	20:50			MR
LU13C02.D	VSTD100	VSTD100	13 Jun 06	21:12			MR
LU13X55.D	BLANK	BLANK	13 Jun 06	21:35	L061642AB		NU
LU13B05.D	VBLKL29	VBLKL29	13 Jun 06	21:57	L061642AB		MR
LU13L05.D	LCSL29	LCSL29	13 Jun 06	22:20	L061643AA		MR
LU13S30.D	OS2	4791563	13 Jun 06	22:43	L061642AB		MR
LU13S31.D	OS2MS	4791564	13 Jun 06	23:05	L061642AB		MR
LU13S32.D	OS2MSD	4791565	13 Jun 06	23:28	L061642AB		MR
LU13S33.D	TB1RC	4791567	13 Jun 06	23:50	L061642AB		MR
LU13S34.D	OR2	4791568	14 Jun 06	00:13	L061642AB		MR
LU13S35.D	OS3	4791569	14 Jun 06	00:36	L061642AB .		MR
LU13S36.D	OR3	4791570	14 Jun 06	00:58	L061642AB		MR
LU13S37.D	DB108	4791561	14 Jun 06	01:21	L061642AB		MR
LU13S38.D	DB17-	4791562	14 Jun 06	01:43	L061642AB		MR
LU13S39.D	NPDES	4791709	14 Jun 06	02:06	L061643AA		MR
LU13S40.D	BCYN4	4791710	14 Jun 06	02:28	L061643AA	5	F
LU13S41.D	BCYN4DL	4791710	14 Jun 06	02:51	L061643AA	50	MR
LU13S42.D	BCYN3	4791711	14 Jun 06	03:14	L061643AA		MR
LU13S43.D	BCYN1	4791 712	14 Jun 06	03:36	L061643AA	10	F
LU13S44.D	BCYN1MS	4791713	14 Jun 06	03:59	L061643AA	10	F
LU13S45.D	BCYN1MSD	4791714	14 Jun 06	04:21	L061643AA	10	F
LU13S46.D	BCYN1DL	4791712	14 Jun 06	04:44	L061643AA	100	MR
LU13S47.D	VTB25	4792148	14 Jun 06	05:07	L061643AA		MR
LU13S48.D	AEW25	4792137	14 Jun 06	05:2 9	L061643AA	10	MR
LU13S49.D	ASU25	4792140	14 Jun 06	05:52	L061643AA		MR
LU13S50.D	DST25	4792141	14 Jun 06	06:14	L061643AA		MR
LU13S51.D	DCS25	4792142	14 Jun 06	06:37	L061643AA	5	MR
LU13S52.D	CCR25	4792143	14 Jun 06	07:00	L061643AA	5	MR
LU13S53.D	RWA25	4792145	14 Jun 06	07:22	L061643AA	625 8	MR
LU13S54.D	BRE25	4792146	14 Jun 06	07:45	L061643AA	25	MR
LU13S55.D	BRI25	4792147	14 Jun 06	08:08	L061643AA	100	MR

Semivolatiles by GC/MS Data

Case Narrative Conformance/Nonconformance Summary

CASE NARRATIVE

Client: Chevron Environmental Mgmt. SDG #: CBN23

LANCASTER LABORATORIES SEMIVOLATILES BY GC/MS

SAMPLE NUMBER(S):

		Matrix	
LL #'s	Sample Code	<u>Water</u>	<u>Comments</u>
4791 555	- TF5-	X	
4791556	-TF23	X	
4791558	-DC2 -	X	
4791559	-DC1-	X	
4791560	DB8B-	X	
4791561	DB108	X	
4791562	DB17-	X	
4791563	OS2	X	Unspiked
4791564	OS2MS	X	Matrix Spike
4791565	OS2MSD	X	Matrix Spike Dup
4791568	OR2	X	
4791569	OS3	X	
4791570	OR3	X	
LABORATORY S	SUBMITTED QC:		
SBLKWA163	SBLKWA163O	X	Method Blank
163WALCS	163WALCSO	X	Lab Control Sample

SAMPLE PREPARATION:

At the time of data package assembly the extract chain of custody for BNA Analysis for samples 4791555-56, 58-65, 68-70 could not be located. The information concerning analyst and date of analysis can be determined from the raw data in the Semivolatiles data section.

Case Narrative (continued) SDG: CBN23

Due to insufficient sample, reduced volumes were used in the extraction of a number of samples. Refer to the Organic Extraction Batchlog.

No other problems were encountered during the extraction of these samples.

ANALYSIS:

The method used for analysis was SW-846 8270C.

No problems were encountered during the analysis of these samples.

QUALITY CONTROL AND NONCONFORMANCE SUMMARY:

All QC was within specifications.

DATA INTERPRETATION:

Only non-conformances for client requested compounds are addressed in this case narrative.

The % drift windows on the initial calibration verification summary are advisory until statistical windows can be derived.

No further interpretation is necessary for the data submitted.

Case Narrative Reviewed and Approved by:

Dana M. Kauffman

Manager. Data Deliverables

fn DMX. Date: 7-7-06

0282

GC/MS Semivolatiles CALCULATIONS:

Relative response factor (RRF)

$$RRF = \begin{array}{ccc} AX & Cis \\ --- & x & --- \\ Ais & Cx \end{array}$$

Ax = Area of the characteristic ion for the compound to be measured

Ais = Area of the characteristic ion for the specific internal

standard to be measured

Cis = Concentration of the internal standard

Cx = Concentration of the compound to be measured

% Relative Standard Deviation (%RPD) 2.

3. % Difference (%D)

RRFc = Relative response factor from continuing calibration standard RRFi = Mean relative response factor form the initial calibration

Concentration

Concentration (ug/l) =
$$\frac{\text{(Ax) (Is) (Df) (Vt)}}{\text{(Ais) (RRF) (Vo) (Vi)}}$$

Ax, Ais, and RRF are as given in 1. above Is = Amount of internal standard added in parts per billion (ng)

6650

Df = Dilution factor

Vt = volume of the concentrated extract (ul)

Vo = volume of water extracted (ml)

Vi = volume of extract injected (ul)

% Recovery 5.

Where:

SSR = Spiked sample result

SR = Sample result

SA = Spike added

GC/MS Semivolatiles CALCULATIONS (continued):

Relative Percent Difference (RPD) 6.

$$RPD = \frac{|MSR - MSDR|}{(1/2) (MSR + MSDR)}$$

MSR = Matrix spike recovery
MSDR = Matrix spike duplicate recovery

QC Summary

2C WATER SEMIVOLATILE SURROGATE RECOVERY

Lab	Name:Lancaste:	r Laboratories	Contract:	
Lab	Code:	Case No.:	SAS No.:	SDG No.:CBN23

1		EPA	S1	S2	l S3	S4	l S5	S6	TOT
į	LL #'s	SAMPLE NO.	(2FP)#	(PHL)#	(TBP)#	(NBZ)#	(TPH)#	(FBP)#	TUO
1:	========	======================================	=====	=====	======	=====	======	=====	===
01	4791555	-TF5-	N/A	N/A	N/A	94	108	99	0
02	4791556	-TF23	N/A	N/A	N/A	94	107	100	0
03	4791558	- DC2-	N/A	l N/A	N/A	92	100	98	0
04	4791559	-DC1-	N/A	N/A	N/A	94	105	100	0
05	4791560	DB8B-	N/A	N/A	N/A	96	113	102	0 1
06	4791561	DB108	N/A	N/A	N/A	J 90	108	98	0 1
07	4791562	DB17-	N/A	N/A	N/A	1 89	104	99	0
08]	4791563	OS2	N/A	N/A	N/A	92	98	98	0
09	4791564	OS2MS	N/A	N/A	N/A	97	92	101	0
10	4791565	OS2MSD	N/A	N/A	N/A	98	97	99	0
11	4791568	OR2	N/A	N/A	N/A	1 93	110	99	0
12	4791569	OS3- -	N/A	N/A	I N/A	94	109	102	0
13	4791570	OR3 1	N/A	N/A	N/A	91	111	97	0
14	SBLKWA163	SBLKWA1630	67	1 42	100	99	113	100	0
15	163WALCS	163WALCSO	63	40	105	99	108	101	0
ĺ		İI		t	1		l	l	lI

				QC LIMITS
S1	(2FP)	=	2-Fluorophenol	(10-99)
S2	(PHL)	\Rightarrow	Phenol-d6	(10-80)
S3	(TBP)	=	2,4,6-Tribromophenol	(31-148)
S4	(NBZ)	=	Nitrobenzene-d5	(51-123)
			Terphenyl-d14	(52 - 151)
S6	(FBP)	=	2-Fluorobiphenyl	(64-112)

- # Column to be used to flag recovery values
 * Values outside of contract required QC limits
- D Surrogate diluted out

page 1 of 1

· FORM II SV-1

WATER GC/MS SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: LANCASTER LABS

Lab Code: LANCAS

UNSPIKED: of 0688.d OS2-- 4791563 AMT USED: 950.0 ml FINAL VOL: 1 ml

MATRIX SPIKE:of0689.d OS2--MS 4791564 AMT USED: 950.0 m1 OS2--MS AMT USED: FINAL VOL: 1 ml

SPIKE DUPLICATE:of0690.d OS2--MSD 4791565 AMT USED: 950.0 ml OS2--MSD AMT USED: FINAL VOL:

1 ml

INSTRUMENT: HP09910

DILUTION FACTOR: 1

BATCH: 06163WAA026

PUMP COLUE 1 PUPI - 105 26

%MOISTURE:		EXTRACT	SPIKE LEV	EL: 105.26					:=====:	===*=	=====	===#===
COMPOUND NAME	MS SPIKE	MSD SPIKE	US CONC UG/L	MS CONC UG/L	MSD CONC UG/L	MS REC	MSD REC	Range LOWER-UPPER	INSPEC	RPD %	RPD MAX	INSPEC
1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	105.26 105.26 105.26	105.26 105.26 105.26	ND ND ND	94.80 95.16 93.27	93.69 95.05 93.36	90	89 90 89	55-105 50-112 59-101	YES YES YES	1 0 0	30 30 30	YES YES YES

COMMENTS:	

Lancaster Laboratories, Inc. WATER Semi Volatile Laboratory Control Sample Recovery

LAB NAME: LANCASTER LABS

LAB CODE: LANCAS

INSTRUMENT: HP09910

Method: SW-846 8270C

File ID: of0685.d

LCS SAMPLE NO: 163WALCS BATCH: 06163WAA026 Sample Code: 163WALCSO

COMPOUND NAME	SPIKE LEVEL	LCS CONC UG/L	QCREF REC	RANGE INSE LOWER-UPPER	,EC
	100.00	23,44	23	1 - 61	YES
Benzaldehyde	100.00 100.00	45.57	46	29 - 57	YES
Phenol	100.00	84.43	84	57 - 110	YES
bis(2-Chloroethyl)ether		90.59	91	63 - 112	YES
2-Chlorophenol	100.00	88.32	88	52 - 106	YES
1,3-Dichlorobenzene	100.00	89.08	89	54 - 103	YES
1,4-Dichlorobenzene	100.00 100.00	85.23	85	58 - 100	YES
1,2-Dichlorobenzene	100.00	79.69	80	56 - 105	YES
2-Methylphenol	100.00	109.48	109	68 - 133	YES
2,2'-oxybis(1-Chloropropane	100.00	90.82	91	66 - 103	YES
Acetophenone	100.00	85.81	86	56 - 109	YES
N-Nitroso-di-n-propylamine	100.00	74.50	74	51 - 98	YES
4-Methylphenol	100.00	87.10	87	33 - 116	YES
Hexachloroethane	100.00	92.66	93	61 - 111	YES
Nitrobenzene	100.00	83.97	84	63 - 105	YES
Isophorone	100.00	102.83	103	83 - 119	YES
2-Nitrophenol	100.00	88.86	89	60 - 107	YES
2,4~Dimethylphenol	100.00	99.71	100	69 - 119	YES
bis(2-Chloroethoxy)methane	100.00	90.76	91	66 - 110	YES
2,4-Dichlorophenol	100.00	92.96	93	70 - 104	YES
Naphthalene	100.00	86.01	86	39 - 116	YES
4-Chloroaniline	100.00	89.09	89	32 - 123	YES
Hexachlorobutadiene	100.00	28.69	29	20 ~ 34	YES
Caprolactam	100.00	94.79	95	74 - 113	YES
4-Chloro-3-methylphenol	100.00	87.57	88	65 - 101	YES
2-Methylnaphthalene	200.00	183.18	92	32 - 152	YES
Hexachlorocyclopentadiene	100.00	95.80	96	69 - 111	YES
2,4,6-Trichlorophenol	100.00	90.62	91	70 - 115	YES
2,4,5-Trichlorophenol	100.00	94.91	95	73 - 106	YES
1,1'-Biphenyl	100.00	78.84	79	56 - 100	YES
2-Chloronaphthalene 2-Nitroaniline	100.00	99.18	99	73 - 115	YES
	100.00	89.84	90	46 - 109	YES
Dimethylphthalate 2,6-Dinitrotoluene	100.00	97.02	97	70 - 108	YES
Acenaphthylene	100.00	101.54	102	84 - 123	YES
3-Nitroaniline	100.00	98.65	99	63 - 112	YES
Acenaphthene	100.00	98.83	99	68 - 111	YES
2,4-Dinitrophenol	100.00	78.74	79	44 - 130	YES
4-Nitrophenol	100.00	37.20	37	14 - 77	YES
Dibenzofuran	100.00	93.22	93	65 - 110	YES
2,4-Dinitrotoluene	100.00	101.30	101	75 - 122	YES
Diethylphthalate	100.00	94.86	9 5	61 - 110	YES
Fluorene	100.00	98.34	98	61 - 116	YES
4-Chlorophenyl-phenylether	100.00	93.79	94	65 - 110	YES
4-Nitroaniline	100.00	81.14	81	55 - 107	YES YES
4.6-Dinitro-2-methylphenol	100.00	86.83	87	56 - 130	
N-Nitrosodiphenylamine	100.00	96.87	97	78 - 110	YES YES
4-Bromophenyl-phenylether	100.00	93.45	93	67 - 110	YES
Hexachlorobenzene	100.00	97.25	97	68 - 113	YES
Atrazine	100.00	90.60	91	78 - 120	YES
Pentachlorophenol	100.00	87.47	87	48 - 108	YES
Phenanthrene	100.00	97.02	97	68 - 111	YES
Anthracene	100.00	97.47	97	68 - 108	YES
Carbazole	100.00	99.43	99	66 - 109	YES
Di-n-butylphthalate	100.00	96.20	96	63 - 113	YES
Fluoranthene	100.00	94.10	94	66 - 108	YES
Pyrene	100.00	100.25	100	68 - 114	YES
Butylbenzylphthalate	100.00	98.85	99	63 - 120	YES
3,3'-Dichlorobenzidine	100.00	84.71	85	48 - 116	YES
Benzo(a)anthracene	100.00	98.51	99	72 - 112 NC = Could not calculate	1 5 5
				MC = Could not calculate	

Lancaster Laboratories, Inc. WATER Semi Volatile Laboratory Control Sample Recovery

LAB NAME: LANCASTER LABS

LAB CODE: LANCAS

INSTRUMENT: HP09910

Method: SW-846 8270C

File ID: of0685.d

LCS SAMPLE NO: 163WALCS

BATCH: 06163WAA026

Sample Code: 163WALCSO

COMPOUND NAME	SPIKE LEVEL	LCS CONC UG/L	QCREF REC	RANGE LOWER-UPPER	INSPEC
Chrysene	100.00	97.12	97	70 - 111 62 - 126	YES YES
<pre>bis(2-Ethylhexyl)phthalate Di-n-octylphthalate</pre>	100.00 100.00	95.48 93.00	95 93	58 - 118	YES YES
Benzo(b) fluoranthene Benzo(k) fluoranthene	100.00 100.00	92.51 96.35	93 96	67 - 117 67 - 120	YES
Benzo (a) pyrene	100.00	93.71 95.18	94 95	68 - 121 67 - 122	YES YES
Dibenz(a,h)anthracene	100.00	102.37	102 96	71 - 129 6 7 - 121	YES YES
Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene				71 - 129	

	NC = Could not calculate		
Comments:			
	=		

SEMIVOLATILE METHOD BLANK SUMMARY

SBLKWA1630	

EPA SAMPLE NO.

ı		
	SBLKWA1630	
1		

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Lab File ID: of0684.d

Lab Sample ID: SBLKWA163

Date Extracted: 06/12/06

Extraction: Sepf

Date Analyzed: 06/15/06

Time Analyzed: 03:52

Matrix (soil/water): WATER Level: (low/med) LOW

Instrument ID: HP09910

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

EPA	LAB	LAB	DATE	
SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	l
=========	======================================	=======================================	========	
163WALCSO	163WALCS	of0685.d	06/15/06	ĺ
250EB	4791645	of0686.d	06/15/06	
250AB	4791646	of0687.d	06/15/06	
OS2	4791563	of0688.d	06/15/06	
OS2MS	4791564	of0689.d	06/15/06	1
OS2MSD	4791565	of0690.d	06/15/06	1
112A7	4791190	of0703.d	06/15/06	
125A8	4791191	of0704.d	06/15/06	
FB069	4791193	of0705.d	06/15/06	1
-TF5-	4791555	of0706.d	06/15/06	
-TF23	4791556	of0707.d	06/15/06	
-DC2-	4791558	of0708.d	06/15/06	
-DC1-	4791559	of0709.d	06/15/06	
DB8B-	4791560	of0710.d	06/15/06	
DB108	4791561	of0711.d	06/15/06	
DB17-	4791562	of0712.d	06/15/06	ı
OR2	4791568	of0713.d	06/15/06	
OS3	4791569	of0714.d	06/15/06	ļ
OR3	4791570	of0715.d	06/15/06	ļ
<u> </u>			l <u></u>	ļ
	SAMPLE NO. ===================================	SAMPLE NO. SAMPLE ID ===================================	SAMPLE NO. SAMPLE ID FILE ID	SAMPLE NO. SAMPLE ID FILE ID ANALYZED ===================================

COMMENTS:	
	@ 7°0 ¢

5B SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab N	Name:	Lancaster	Laboratories	Contract:	
-------	-------	-----------	--------------	-----------	--

Lab File ID: of0700.d DFTPP Injection Date: 06/15/06

Instrument ID: HP09910 DFTPP Injection Time: 08:32

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
=====		=======================================
51	30.0 - 60.0% of mass 198	41.8
68	Less than 2.0% of mass 69	0.87 (1.54)1
69	Mass 69 relative abundance	56.9
70	Less than 2.0% of mass 69	0.18 (0.31)1
127	40.0 - 60.0% of mass 198	49.0
197	Less than 1.0% of mass 198	0.39
198	Base peak, 100% relative abundance	100.0
199	5.0 to 9.0% of mass 198	6.31
275	10.0 - 30.0% of mass 198	28.7
365	Greater than 1.00% of mass 198	3.66
441	Present, and less than mass 443	11.3
442	Greater than 40.0 % of mass 198	81.1
443	17.0 - 23.0% of mass 442	15.4 (19.0)2
j		

1-Value is % mass 69

2-Value is % mass of 442

1	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
ľ	=======================================	=======================================	=========	======	========
01	SSTD030	BAS1516	of0701.d	06/15/06	08:47
02	SSTD030	STD1576	of0702.d	06/15/06	09:10
03	112A7	4791190	of0703.d	06/15/06	09:47
04	125A8	4791191	of0704.d	06/15/06	10:09
05	FB069	4791193	of0705.d	06/15/06	10:31
06	-TF5-	4791555	of0706.d	06/15/06	10:53
07	-TF23	4791556	of0707.d	06/15/06	11:15
08	-DC2-	4791558	of0708.d	06/15/06	11:38
09	-DC1-	4791559	of0709.d	06/15/06	12:00
10	DB8B-	4791560	of0710.d	06/15/06	12:22
11	DB108	4791561	of0711.d	06/15/06	12:45
12	DB17-	4791562	of0712.d	06/15/06	13:07
13	OR2	4791568	of0713.d	06/15/06	13:29
14	OS3	4791569	of0714.d	06/15/06	13:52
15	OR3	4791570	of0715.d	06/15/06	14:14
16	SBLKWG1600	SBLKWG160	of0716.d	06/15/06	15:16
17	160WGLCSO	160WGLCS	of0717.d	06/15/06	15:47
18	DP-12	4789223	of0718.d	06/15/06	16:10
			l	l	i

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab	Name:	Lancaster	Laboratories	Contract:	
Lab	Code:	LANCAS	Case No.:	SAS No.:	SDG No.:
Lab	File I	ID: of0700.	i	DFTPP Injection	Date: 06/15/06

Instrument ID: HP09910 DFTPP Injection Time: 08:32

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
=====		=======================================
51	30.0 - 60.0% of mass 198	41.8
68	Less than 2.0% of mass 69	0.87 (1.54)1
69	Mass 69 relative abundance	56.9
70	Less than 2.0% of mass 69	0.18 (0.31)1
127	40.0 - 60.0% of mass 198	49.0
197	Less than 1.0% of mass 198	0.39
198	Base peak, 100% relative abundance	100.0
199	5.0 to 9.0% of mass 198	6.31
275	10.0 - 30.0% of mass 198	28.7
365	Greater than 1.00% of mass 198	3.66
441	Present, and less than mass 443	11.3
442	Greater than 40.0 % of mass 198	81.1
443	17.0 - 23.0% of mass 442	15.4 (19.0)2
İ]
	1-Value is % mass 69 2-Value is % mas.	s of 442

EPA	LAB	LAB	DATE	TIME
SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
=========	=======================================	=======================================		=======
DP-12MS	4789224	of0719.d	06/15/06	16:32
DP-12MSD	4789225	of0720.d	06/15/06	16:54
115B-RÉ	4774047RE	of0721.d	06/15/06	17:17
CONWW	4788848	of0722.d	06/15/06	17:39
SECC	STD1576	of072a.d	06/15/06	18:01
	SAMPLE NO. DP-12MS DP-12MSD 115B-RE CONWW	SAMPLE NO. SAMPLE ID SAMPL	SAMPLE NO. SAMPLE ID FILE ID ===================================	SAMPLE NO. SAMPLE ID FILE ID ANALYZED ===================================

5B SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: Lancaster Laboratories Contract:_____

DFTPP Injection Date: 06/14/06 Lab File ID: of0670.d

DFTPP Injection Time: 22:59 Instrument ID: HP09910

,——		% RELATIVE
1 /-	ION ABUNDANCE CRITERIA	ABUNDANCE
m/e	TOW ADDITIONS CRITICALLY	=========
=====	30.0 - 60.0% of mass 198	45.8
5±	10.0 = 00.0% Of mass 19	0.86 (1.38)1
69	Mass 69 relative abundance	61.9
1 70	Less than 2.0% of mass 69	0.0 (0.0)1
1 127	40.0 - 60.0% of mass 198	50.0
197	Less than 1.0% of mass 198	0.49
198	Base peak, 100% relative abundance	100.0
199	5.0 to 9.0% of mass 198	6.56
l 275	10.0 - 30.0% of mass 198	27.1
l 365	Greater than 1.00% of mass 198	2.97
441	Present, and less than mass 443	11.4
442	Greater than 40.0 % of mass 198	76.1
443	17.0 - 23.0% of mass 442	13.5 (17.7)2
		.
1	1-Value is % mass 69 2-Value is % mas	s of 442

1	EPA	LAB	LAB	DATE	TIME
 	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
ļ	======================================	=======================================	=======================================	=======	========
01	SSTD080	STD1576	of0671.d	06/14/06	23:13
02	SSTD080	BAS1516	of0672.d	06/14/06	23:35
03	SSTD120	STD1576	of0673.d	06/15/06	00:05
04	SSTD050	STD1576	of0674.d	06/15/06	00:27
05	SSTD030	STD1576	of0675.d	06/15/06	00:55
06	SSTD015	STD1576	of0676.d	06/15/06	01:17
07	SSTD005	STD1576	of0677.d	06/15/06	01:39
08	SSTD001	8270MDL1576	of0678.d	06/15/06	02:01
09	1 00036 5500	D ICV0036	of0679.d	06/15/06	02:23
10	SBLKWA1630	SBLKWA163	of0684.d	06/15/06	03:52
11	163WALCSO	163WALCS	of0685.d	06/15/06	04:14
12	250EB	4791645	of0686.d	06/15/06	04:36
13	250 2 2 250AB	4791646	of0687.d	06/15/06	04:58
14	0S2	4791563	of0688.d	06/15/06	05:21
15		4791564	of0689.d	06/15/06	05:43
16		4791565	of0690.d	06/15/06	06:05
17	! -	4789600DL	of0691.d	06/15/06	06:27
18		4789603DL	of0692.d	06/15/06	06:50
±0		1	i		<u> </u>
	\ 	I	·		

5B

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab	Name:	Lancaster	Laboratories	Contract:	
Lab	Code: I	ANCAS	Case No.:	SAS No.:	SDG No.:
Lab	File II	of0670.	i ·	DFTPP Injection	Date: 06/14/06

Instrument ID: HP09910 DFTPP Injection Time: 22:59

. ———		% RELATIVE
	ION ABUNDANCE CRITERIA	ABUNDANCE
m/e	TON ADDITION CRITISHES	=======================================
=====	30.0 - 60.0% of mass 198	45.8
51 68	Less than 2.0% of mass 69	0.86 (1.38)1
68 69	Mass 69 relative abundance	61.9
! *-	Less than 2.0% of mass 69	0.0 (0.0)1
70	40.0 - 60.0% of mass 198	50.0
127	Less than 1.0% of mass 198	0.49
197	Base peak, 100% relative abundance	100.0
198	5.0 to 9.0% of mass 198	6.56
199	10.0 - 30.0% of mass 198	27.1
275	Greater than 1.00% of mass 198	2.97
365	Present, and less than mass 443	11.4
441	Greater than 40.0 % of mass 198	76.1
442	17.0 - 23.0% of mass 442	13.5 (17.7)2
443	17.0 - 23.0% Of mass 4.2	<u> </u>
l	1-Value is % mass 69 2-Value is % mas	s of 442

EPA SAMPLE NO.	LAB	LAB	DATE	TIME
	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
=====================================	4789605DL 4790186DL	========= of0693.d of0694.d 	06/15/06 06/15/06	07:12 07:34

Lab Name: LANCASTER LABS

Contract:

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Lab File ID (Standard): of0672.d

Date Analyzed: 06/14/06

Instrument ID: HP09910

Time Analyzed: 23:35

		 		()		TO2 (23TM)	
J		IS1 (DCB)		IS2 (NPT)		IS3(ANT)	·
		AREA #	RT #	AREA #	RT #	AREA #	RT #
1	=======================================	=======	======	=======================================	======	=======	======
	12 HOUR STD	220163	3.972	873799	5.122	510296	6.800
ĺ	UPPER LIMIT	440326	4.472	1747598	5.622	1020592	7.300
ĺ	LOWER LIMIT	110082	3.472	436900	4.622	255148	6.300
ĺ	=======================================	========	======	========	=	=========	======
ĺ	EPA SAMPLE					!	
ĺ	NO.						
Ì	=======================================	========	======	========	======	============	======
01	SBLKWA1630	180163	3.972	732630	5.122	438669	6.800
02	163WALCSO	170832	3.972	690253	5.122	413161	6.807
03	250EB	182401	3.972	714311	5.122	423347	6.800
04	250AB	191766	3.972	760420	5.122	460220	6.800
05	os2	187047	3.972	729070	5.122	427233	6.800
06	OS2MS	171762	3.972	721371	5.122	426174	6.806
07	OS2MSD	176543	3.972	728342	5.122	446546	6.806
08	BESM2DL	195128	3.972	800031	5.122	476010	6.800
09	BESM5DL	207651	3.972	850828	5.122	499889	6.800
10	BESFDDL	199289	3.972	777703	5.122	468176	6.800
11	MOMDPDL	196915	3.972	796707	5.122	507565	6.806
i				_			

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT (advisory) = +100% of internal standard area

AREA LOWER LIMIT (advisory) = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag internal standard are and RT values with an asterisk

* Values outside of QC limits.

page 1 of 2 FORM VIII SV-1

Lab Name: LANCASTER LABS Contract: ____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:____

Lab File ID (Standard): of0672.d

Date Analyzed: 06/14/06

Instrument ID: HP09910

Time Analyzed: 23:35

1		IS4 (PHN)		IS5 (CRY)		IS6 (PRY)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
		ARDA #		AKDA W	======	========	
	12 HOUR STD	1005172	8.239	1073048	10.815	1110208	12.205
	UPPER LIMIT	2010344	8.739	2146096	11.315	2220416	12.705
	LOWER LIMIT	502586	7.739	536524	10.315	555104	11.705
j		========	=======	========	======	========	======
	EPA SAMPLE						
	NO.					į	
i	==========	========	======	========	======	=======	
01	SBLKWA1630	860562	8.239	900625	10.815	951204	12.205
02	163WALCSO	858975	8.239	935363	10.822	979543	12.205
03	250EB	857290	8.239	905108	10.815	924979	12.205
04	250AB	918551	8.239	955692	10.815	974259	12.205
05	OS2	872617	8.239	924951	10.815	944977	12.205
06	OS2MS	877495	8.239	957748	10.821	1007802	12.205
07	OS2MSD	911408	8.245	995399	10.821	1032912	12.205
08	BESM2DL	959264	8.239	1013435	10.815	1059260	12.205
09	BESM5DL	978577	8.239	1031870	10.815	1055789	12.205
10	BESFDDL	917697	8.239	973581	10.815	1000544	12.205
11	MOMDPDL	1001665	8.245	1055332	10.815	1087341	12.205
ĺ							l_

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT (advisory) = +100% of internal standard area

AREA LOWER LIMIT (advisory) = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag internal standard are and RT values with an asterisk

* Values outside of QC limits.

page 2 of 2 FORM VIII SV-2

Lab Name: LANCASTER LABS Contract:

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Lab File ID (Standard): of0702.d Date Analyzed: 06/15/06

Instrument ID: HP09910 Time Analyzed: 09:10

		IS1(DCB)		IS2 (NPT)		IS3 (ANT)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	========	========	======	=======		========	======
	12 HOUR STD	242556	3.966	1031208	5.116	624404	6.794
	UPPER LIMIT	485112	4.466	2062416	5.616	1248808	7.294
	LOWER LIMIT	121278	3.466	515604	4.616	312202	6.294
	========	=======	=====	=======	======		======
	EPA SAMPLE						
	NO.						
	========	=======	======	=======	======	=========	======
1	112A7	184896	3.966	756903	5.115	448919	6.794
)2	125A8	192480	3.966	813679	5.115	491728	6.794
3	FB069	201292	3.966	803645	5.116	495746	6.794
4	-TF5-	193056	3.966	795077	5.116	478837	6.794
)5	-TF23	197264	3.966	800387	5.116	482598	6.794
6	-DC2-	197027	3.966	794236	5.116	476799	6.794
7	-DC1-	199186	3.966	787191	5.115	474596	6.794
8	DB8B-	192430	3.966	790893	5.115	467423	6.794
9	DB108	196235	3.966	802594	5.116	475501	6.794
0	DB17-	199232	3.966	806929	5.115	472350	6.794
L1	OR2	183412	3.966	751770	5.116	460725	6.794
12	OS3	186469	3.966	759697	5.116	462032	6.794
١3	OR3	193826	3.966	792724	5.116	472923	6.794
L 4	SBLKWG1600	208047	3.966	865492	5.116	516847	6.794
15	160WGLCSO	208064	3.966	850544	5.116	503639	6.800
16	DP-12	182696	3.966	746064	5.115	449128	6.794
L 7	DP-12MS	195535	3.966	812130	5.116	487136	6.794
]		ļ	_ 	<u> </u>	<u> </u>	l <u></u>

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT (advisory) = +100% of internal standard area

AREA LOWER LIMIT (advisory) = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

6297

[#] Column used to flag internal standard are and RT values with an asterisk

^{*} Values outside of QC limits.

Lab Name: LANCASTER LABS Contract:____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Lab File ID (Standard): of0702.d

Date Analyzed: 06/15/06

Instrument ID: HP09910

Time Analyzed: 09:10

	IS1(DCB)]	IS2 (NPT)		IS3(ANT)	
İ	AREA #	RT #	AREA #	RT #	AREA #	RT #
=======================================	========	======		======	========	======
12 HOUR STD	242556	3.966	1031208	5.116	624404	6.794
UPPER LIMIT	485112	4.466	2062416	5.616	1248808	7.294
LOWER LIMIT	121278	3.466	515604	4.616	312202	6.294
========	=======	======	========	======		======
EPA SAMPLE]	,	
NO.		ĺ			!	
=======================================	========	======	========	======	=======	======
DP-12MSD	187085	3.966	769364	5.115	467841	6.794
115B-RE	201450	3.966	849988	5.115	507309	6.794
CONWW	207104	3.966	853044	5.116	526868	6.794
SECC	236119	3.966	985731	5.116	599173	6.794
i		ĺ				

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT (advisory) = +100% of internal standard area AREA LOWER LIMIT (advisory) = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RI

Column used to flag internal standard are and RT values with an asteris於2分音

* Values outside of QC limits.

Lab Name: LANCASTER LABS Contract:____

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Lab File ID (Standard): of0702.d

Date Analyzed: 06/15/06

Instrument ID: HP09910 Time Analyzed: 09:10

+		IS4(PHN)	<u> </u>	IS5(CRY)	<u> </u>	IS6(PRY)	
		AREA #	 RT #		RT #	AREA #	 RT #
	 ========	AREA #	KI #	AKEA π	======	AKEA #	X1
	12 HOUR STD	1244485	8.233	1273481	10.809	1196647	12.199
	UPPER LIMIT		8.733	2546962	11.309	2393294	12.699
	LOWER LIMIT	622243	7.733	636741	10.309	598324	11.699
	LOWER DIMIT		/./33 ======		======	390324	11.000
	EPA SAMPLE	== ==== = 	== = =	= # = 2 = = = = = = = = = = = = = = = =			
	NO.				 		
		 		 	 =======	 ========	-
01	======== 112A7	920046	8.233	938924	10.809	980462	12.199
01	112A7 125A8	974730	8.233 8.233	1013388	10.809	599059	12.199
				1013388	10.809	1069943	12.193
03	FB069	1027366	8.233 8.233	999833	10.809	1089943	12.193
04	-TF5-	969967			10.809	102/043	12.199
05	-TF23	963126	8.233	1013912	10.809	1016852	12.199
06	-DC2-	973873	8.233	1013164			
07	-DC1-	964605	8.233	1011054	10.809	1014432	12.193
08	DB8B-	942720	8.233		10.809	983739	12.199
09	DB108	967590	8.233	1003059	10.809	1016317	12.199
10	DB17-	950549	8.233	979962	10.809	1006729	12.199
11	OR2	925191	8.233	969667	10.809	1012752	12.193
12	OS3	937972	8.233	1017688	10.809	1009320	12.199
13	OR3	957435	8.233	983364	10.809	981067	12.199
14	SBLKWG1600	1062714	8.233	1116295	10.809	1131511	12.199
15	160WGLCSO	1012084	8.239	1061282	10.815	1085732	12.199
16	DP-12	919912	8.233	958168	10.809	953597	12.199
17	DP-12MS	957830	8.233	1005901	10.815	1002865	12.199

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-dl2

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT (advisory) = +100% of internal standard area AREA LOWER LIMIT (advisory) = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

[#] Column used to flag internal standard are and RT values with an asterisma?

^{*} Values outside of QC limits.

Lab Name: LANCASTER LABS Contract:_____

Lab Code: LANCAS Case No.: SDG No.: SDG No.:

Lab File ID (Standard): of0702.d

Date Analyzed: 06/15/06

Instrument ID: HP09910

Time Analyzed: 09:10

١		IS4 (PHN)		IS5 (CRY)		IS6(PRY)	
i		AREA #	RT #	AREA #	RT #	AREA #	RT #
i	=========	========	======	========	======	========	======
i	12 HOUR STD	1244485	8.233	1273481	10.809	1196647	12.199
i	UPPER LIMIT	2488970	8.733	2546962	11.309	2393294	12.699
i	LOWER LIMIT	622243	7.733	636741	10.309	598324	11.699
i	=======================================	========	======	=======	======	========	======
i	EPA SAMPLE					'	
i	NO.						
i	=========	========	======	========	======	========	======
вÌ	DP-12MSD	925124	8.233	949934	10.815	970544	12.199
9	115B-RE	1007419	8.233	1069960	10.809	1054543	12.199
0	CONWW	1066370	8.233	1120550	10.809	1117846	12.199
21	SECC	1232179	8.233	1256995	10.809	1210376	12.199
		İ			l	l	l

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-dl2

AREA UPPER LIMIT (advisory) = +100% of internal standard area AREA LOWER LIMIT (advisory) = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag internal standard are and RT values with an asterisk # God RT values # God RT value

* Values outside of QC limits.

Sample Data

Extraction Method:
SW-846 3510C
Analytical Method:
SW-846 8270C
Instrument type: HP5890/5972

GC/MS Semivolatile Water Composite MDL Study

Miles Mile		HP06756.j	HP06756.i	HP06758.4	HP06756,i	HP06756.I	HP06756.I	HP06756.							
MATIGN 1024 41100 1124 411100 1214 411100 14105 411100 1520 411100 1520 411100 1520 411100 1214 411100 12110 411100 14100 411100 1520	ıfile	nd197.d	nd198.d	nd199.d	nd200.d	nd201.d	nd202.d	nd203.d							
COMMA COMMERN COMMER	ction Date	4/11/06 10:24	4/11/06 11:19	4/11/06 12:14	4/11/06 13:10	4/11/06 14:05	4/11/06 15:00	4/11/06 15:56							
COMMAND CONCENTRATION CO	Sample ID	WATERA	WATERB	WATERC	WATERD	WATERE	WATERF	WATERG							
Concentration Concentratio	nt Sample ID	LOWA	LOWB	LOWC	LOWD	LOWE	LOWF	LOWG							
Concentration Concent	action Batch	06055WAM026													
Concentration Concentr									Mean		Student T	Sample	Spike		Reported
(ugli) (ugli)<		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration	Concentration	Concentration		value	MD	Level	Average	MDL
0928 0.0862 0.0872 0.0873 0.0874 0.0894 0.0904 0.000 3144 0839 0.835 0.0896 0.0874 0.9874 0.9874 0.9975 0.0907 0.0919 0.0909 0.0919 0.0909 0.0919 0.0919 0.0917 0.0909 0.0919 0.0917 0.0909 0.0919 0.0917 0.0909 0.0919 0.0917 0.0909 0.0919 0.0909 0.0917 0.0909 0.0917 0.0909 0.0919 0.0909 0.0919 0.0909 0.0919 0.0909 0.0919 0.0909 0.0919 0.0909 0.0919 0.0909 0.0919 0.0909 0.0919 0.0909 0.0919 0.0909 0.0919	npound Name	(I/On)	(\ngv)	(yan)	(ngu)	(n8n)	(vðn)	(ng/l)	(ng/))	Deviation	Pesn	(ng/)	(ngu)	%Rec.	()/Øn)
69 (1935) 0.935 0.935 0.945 1.006 0.040 0.055 3.143 0.97 (1) 0.861 0.863 0.963 0.969 0.969 0.969 0.979 0.079 0.065 0.143 0.065 0.069 0.079 0.079 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.073	Biphenyl	0.928	0.862	0.939	0.974	0.998	0.964	1.010	0.968	0.030	3,143	0.093	8	26	-
0.0867 0.851 0.863 0.824 0.829 0.809 0.919 0.019 0.014 0.876 0.876 0.874 0.824 0.824 0.828 0.829 0.919 0.917 0.046 0.149 0.917 0.046 0.149 0.149 0.023 0.149 0.023 0.149 0.023 0.149 0.023 0.149 0.023 0.149 0.023 0.149 0.023 0.149 0.023 0.149 0.023 0.149 0.023 0.149 0.023 0.149 0.023 0.149 0.023 0.149 0.023 0.149 0.023 0.149 0.023 0.0244 0.052 0.034 0.023 0	4,5-Tetrachlorobenzene	0.939	0.935	0.899	0.982	0.937	0.945	1.008	0.949	0.036	3,143	0.111	1.00	8	~
0.876 0.837 0.870 0.854 0.845 0.828 0.908 0.917 0.046 3143 0.002 0.602 0.625 0.770 0.778 0.795 0.894 0.779 0.795 0.894 0.779 0.795 0.894 0.770 0.770 0.796 0.811 0.896 0.770 0.770 0.894 0.811 0.896 0.770 0.789 0.811 0.896 0.770 0.789 0.811 0.896 0.770 0.789 0.811 0.896 0.770 0.896 0.811 0.896 0.770 0.896 0.811 0.896 0.770 0.896 0.811 0.812 0.413 0.413 0.413 0.896 0.871 0.896 0.811 0.811 0.813 0.413 0.814 0.872 0.814 0.814 0.821 0.814 0.814 0.821 0.814 0.821 0.814 0.814 0.814 0.821 0.814 0.821 0.814 0.821 0.814 0.821 0.81	4-Trichlorobenzene	0.967	0.851	0.863	0.974	0.929	0.909	0.919	0.919	0.051	3.143	0,160	1.8	85	-
0.802 0.625 0.770 0.778 0.785 0.804 0.758 0.780 <th< th=""><th>Dichlorobenzene</th><td>0.976</td><td>0.937</td><td>0.870</td><td>0.954</td><td>0.845</td><td>0.928</td><td>0.909</td><td>0.917</td><td>0.048</td><td>3,143</td><td>0.145</td><td>1.00</td><td>85</td><td>-</td></th<>	Dichlorobenzene	0.976	0.937	0.870	0.954	0.845	0.928	0.909	0.917	0.048	3,143	0.145	1.00	85	-
4,297 4,733 4,027 4,663 4,836 4,515 4,489 0,27 3,143 0,596 0,596 0,691 0,891 0,896 0,895 0,995 0,995 0,995 0,995 0,995 0,995 0,995 0,995 0,995 0,995 0,995 0,99	Diphenyihydrazine	0.802	0.625	0.770	0.778	0.795	0.804	0.758	0.790	0.023	3.143	0.072	1.00	79	-
0.905 0.846 0.847 0.904 0.911 0.809 0.897 0.897 0.897 0.897 0.897 0.897 0.897 0.897 0.897 0.987 0.997 <th< th=""><th>5-Trinitrobenzene *</th><td>4.297</td><td>4.733</td><td>4.027</td><td>4.601</td><td>4.463</td><td>4.836</td><td>4.515</td><td>4,498</td><td>0.27</td><td>3,143</td><td>0.865</td><td>6.00</td><td>8</td><td>ND</td></th<>	5-Trinitrobenzene *	4.297	4.733	4.027	4.601	4.463	4.836	4.515	4,498	0.27	3,143	0.865	6.00	8	ND
0.539 0.553 0.416 0.474 0.444 0.502 0.384 0.473 0.083 0.143 0.143 0.143 0.143 0.143 0.143 0.045 0.144 0.502 0.081 0.082 0.044 0.046 0.047 0.083 0.047 0.083 0.047 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.043 0.043 0.043 0.044 0.044 0.044 0.044 0.044 0.044 0.049 0.044 0.044 <th< th=""><th>Dichlorobenzene</th><td>0.805</td><td>0.899</td><td>0.840</td><td>0.917</td><td>0.809</td><td>0.911</td><td>0.880</td><td>0.895</td><td>0.027</td><td>3.143</td><td>0,084</td><td>1.00</td><td>89</td><td>-</td></th<>	Dichlorobenzene	0.805	0.899	0.840	0.917	0.809	0.911	0.880	0.895	0.027	3.143	0,084	1.00	89	-
0.928 0.982 0.985 0.946 0.927 0.981 0.983 0.143 0.983 0.143 0.989 0.143 0.989 0.143 0.989 0.143 0.089 0.143 0.089 0.148 0.087 0.087 0.049 0.048 0.087 0.089 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 <th< th=""><th>Unitrobenzene</th><td>0,539</td><td>0.553</td><td>0.418</td><td>0.474</td><td>0.444</td><td>0.502</td><td>0.384</td><td>0.473</td><td>0.063</td><td>3.143</td><td>0,197</td><td>1.00</td><td>47</td><td>7</td></th<>	Unitrobenzene	0,539	0.553	0.418	0.474	0.444	0.502	0.384	0.473	0.063	3.143	0,197	1.00	47	7
0.330 0.318 0.246 0.270 0.358 0.377 0.331 0.018 0.046 3143 0.485 0.446 0.469 0.436 0.487 0.487 0.493 0.493 0.314 24,148 20,646 18,571 17,178 20,640 21,816 22,481 20,633 2.30 3143 0,808 0,882 0,875 0,850 0,890 0,849 0,893 2.30 3143 0,808 0,978 0,978 0,973 1,622 0,875 0,876 0,879 0,871 0,893 3,143 0,779 0,778 0,776 0,780 0,778 0,776 0,775 0,874 0,775 0,874 0,874 0,874 0,874 0,874 0,874 0,874 0,874 0,876 0,774 0,876 0,774 0,876 0,774 0,876 0,774 0,876 0,874 0,876 0,876 0,876 0,876 0,876 0,876 0,876 0,876)ichiorobenzene	0.928	0.982	0.875	0.915	0.946	0.921	0.891	0.923	0.035	3,143	0.111	9.	92	-
0.446 0.469 0.436 0.485 0.447 0.443 0.449 0.449 0.436 0.436 0.449 <th< th=""><th>)initrobenzene</th><td>0.330</td><td>0.318</td><td>0.248</td><td>0.270</td><td>0.358</td><td>0.377</td><td>0.331</td><td>0.318</td><td>0.046</td><td>3.143</td><td>0,145</td><td>1.00</td><td>32</td><td>-</td></th<>)initrobenzene	0.330	0.318	0.248	0.270	0.358	0.377	0.331	0.318	0.046	3.143	0,145	1.00	32	-
24,148 20,949 18,671 17,128 20,640 21,816 22,481 20,633 2,350 3,143 0,808 0,882 0,875 0,876 0,876 0,876 0,876 0,099 0,143 0,916 0,978 0,978 0,975 0,876 0,877 0,099 3,143 1,411 1,874 2,004 1,649 1,805 1,751 1,903 1,743 0,198 3,143 0,779 0,778 0,778 0,778 0,778 0,778 0,777 0,899 0,777 0,899 0,777 0,999 0,741 0,999 0,742 0,999 0,747 0,999 0,747 0,999 0,747 0,999 0,747 0,999 0,747 0,999 0,747 0,999 0,747 0,999 0,747 0,999 0,747 0,999 0,747 0,999 0,747 0,999 0,747 0,999 0,747 0,999 0,747 0,999 0,747 0,999 0,747 0,999 </th <th>Dioxane</th> <td>0.485</td> <td>0.446</td> <td>0,469</td> <td>0.438</td> <td>0.485</td> <td>0.467</td> <td>0.443</td> <td>0.462</td> <td>0.020</td> <td>3.143</td> <td>0.083</td> <td>1.00</td> <td>46</td> <td>-</td>	Dioxane	0.485	0.446	0,469	0.438	0.485	0.467	0.443	0.462	0.020	3.143	0.083	1.00	46	-
0.808 0.892 0.777 0.835 0.850 0.800 0.848 0.829 0.039 3.143 0.916 0.978 0.978 0.971 0.875 0.971 0.899 0.139 3.143 1.411 1.648 1.628 1.022 0.975 0.977 0.089 0.173 0.193 3.143 0.779 0.779 0.778 0.778 0.775 0.775 0.069 0.777 0.093 3.143 0.779 0.779 0.779 0.779 0.779 0.777 0.789 0.777 0.093 3.143 0.779 0.779 0.779 0.779 0.779 0.779 0.093 3.143 0.770 0.775 0.787 0.787 0.787 0.789 0.771 0.093 3.143 0.774 0.769 0.787 0.787 0.789 0.771 0.093 3.143 0.774 0.769 0.781 0.786 0.789 0.789 0.789 0.789 <th>4aphthoquinone **</th> <th>24,148</th> <th>20.949</th> <th>18.671</th> <th>17.126</th> <th>20,640</th> <th>21.816</th> <th>22.481</th> <th>20,833</th> <th>2.350</th> <th>3.143</th> <th>7.380</th> <th>90.00</th> <th>47</th> <th>10</th>	4aphthoquinone **	24,148	20.949	18.671	17.126	20,640	21.816	22.481	20,833	2.350	3.143	7.380	90.00	47	10
0.916 0.978 0.978 1.022 0.875 0.971 0.869 0.039 3.143 1.411 1.874 2.004 1.649 1.805 1.751 1.903 1.743 0.19 3.143 0.779 0.778 0.778 0.778 0.778 0.779 0.779 0.799 0.774 0.779 0.093 3.143 0.778 0.778 0.778 0.771 0.789 0.777 0.709 0.777 0.003 3.143 0.778 0.778 0.779 0.779 0.779 0.779 0.003 3.143 0.774 0.787 0.787 0.787 0.789 0.779 0.009 3.143 0.724 0.725 0.787 0.787 0.789 0.779 0.009 3.143 0.724 0.725 0.787 0.789 0.789 0.779 0.009 3.143 0.724 0.725 0.698 0.779 0.789 0.779 0.009 3.143	loronaphthalene	0.808	0.882	0.777	0.835	0.850	0.800	0.848	0.829	0.030	3.143	0.112	8.	2	-
1,411 1,634 2,004 1,649 1,805 1,751 1,903 1,743 0.19 3,143 0,779 0,779 0,770 0,720 0,749 0,775 0,609 0,742 0,092 3,143 n,024 1,024 1,024 1,077 1,058 0,041 3,143 0,778 0,736 0,771 0,810 0,739 0,757 0,093 0,757 0,093 3,143 0,771 0,769 0,771 0,824 0,835 0,757 0,099 3,143 3,143 0,769 0,771 0,824 0,835 0,757 0,099 3,143 3,143 0,769 0,757 0,767 0,767 0,769 0,771 0,699 0,774 0,699 0,774 0,699 0,774 0,699 0,774 0,699 0,774 0,699 0,774 0,699 0,774 0,699 0,774 0,699 0,774 0,679 0,774 0,679 0,774 0,679 0	thylnaphthalene	0.916	0.978	0.913	0.839	1.022	0.975	0.971	0.959	0.039	3.143	0,123	1.0	96	-
0.778 0.778 0.778 0.728 0.728 0.728 0.775 0.609 0.742 0.082 2.143 ne) 1,124 1,026 1,014 1,092 1,049 1,024 1,077 1,058 0.041 3,143 0,778 0.758 0.756 0.771 0.810 0.738 0.709 0.757 0.033 3,143 0,778 0.769 0.755 0.782 0.892 0.721 0.658 0.707 0.089 3,143 0,769 0.856 0.757 0.767 0.767 0.755 0.829 0.706 0.789 0.002 3,143 0,724 0.725 0.644 0.746 0.698 0.734 0.676 0.709 0.707 0.039 3,143 0,789 4,072 3,589 4,153 3,632 4,007 3,185 3,731 0.384 3,143 0,785 0.785 0.770 0.828 0.658 0.663 0.678 0.070 0.384 3,143 0,785 0.785 0.787 0.658 0.687 0.688 0.089 0.789 0.092 3,143 0,785 0.786 0.787 0.787 0.658 0.688 0.689 0.789 0.092 3,143 0,785 0.789 0.770 0.828 0.771 0.655 0.896 0.784 0.789 0.025 3,143	phthylamine *	1.411	1.874	2.004	1.549	1.805	1.751	1.903	1.743	0.19	3.143	0.804	2.00	æ	ю
ne) 1,124 1,026 1,014 1,092 1,024 1,077 1,058 0,041 3,143 0,778 0,738 0,738 0,739 0,739 0,757 0,033 3,143 0,771 0,762 0,771 0,810 0,739 0,757 0,033 3,143 0,717 0,765 0,772 0,635 0,777 0,698 0,777 0,698 3,143 0,724 0,725 0,696 0,774 0,698 0,774 0,676 0,797 0,099 3,143 0,724 0,725 0,698 0,774 0,676 0,794 0,676 0,797 0,099 3,143 0,653 0,724 0,725 0,676 0,794 0,676 0,707 0,099 3,143 0,653 0,653 0,676 0,734 0,676 0,707 0,099 3,143 0,653 0,785 0,770 0,828 0,771 0,675 0,679 0,784 0,707 0,999	ronaphthalene	0.779	0.778	0.780	0.728	0.748	0.775	0.609	0.742	0.082	3.143	0.195	1.00	74	-
0.778 0.736 0.756 0.771 0.610 0.739 0.709 0.757 0.033 3.143 0.717 0.762 0.705 0.705 0.707 0.648 0.635 0.658 0.707 0.099 3.143 0.805 0.795 0.775 0.775 0.776 0.707 0.099 3.143 0.724 0.725 0.767 0.769 0.776 0.786 0.707 0.099 3.143 0.724 0.725 0.644 0.746 0.698 0.774 0.676 0.707 0.099 3.143 3.499 4.072 3.559 4.153 3.632 4.007 3.185 3.731 0.364 3.143 0.653 0.665 0.776 0.675 0.658 0.669 0.789 0.679 0.099 3.143 0.674 0.655 0.786 0.669 0.784 0.675 0.699 0.784 0.789 0.784 0.789 0.785 0.785 0.786 <th>oxybis(1-Chloropropane)</th> <td>1,124</td> <td>1.026</td> <td>1.014</td> <td>1.092</td> <td>1.049</td> <td>1.024</td> <td>1.077</td> <td>1.058</td> <td>0.041</td> <td>3,143</td> <td>0.129</td> <td>1.00</td> <td>106</td> <td>-</td>	oxybis(1-Chloropropane)	1,124	1.026	1.014	1.092	1.049	1.024	1.077	1.058	0.041	3,143	0.129	1.00	106	-
0.717 0.762 0.703 0.648 0.635 0.658 0.707 0.099 3.143 0.805 0.735 0.782 0.782 0.721 0.632 0.737 0.092 3.143 0.769 0.769 0.775 0.765 0.721 0.632 0.777 0.092 3.143 0.724 0.756 0.767 0.766 0.766 0.707 0.096 3.143 3.499 4.072 3.559 4.153 3.632 4.007 3.185 3.731 0.364 3.143 0.653 0.697 0.675 0.669 0.770 0.059 3.143 3.143 0.785 0.697 0.675 0.663 0.675 0.675 0.675 0.675 0.675 0.784 0.789 0.025 3.143 0.675 0.785 0.770 0.826 0.784 0.789 0.025 3.143 0.675 0.675 0.675 0.690 0.784 0.789 0.025 3.143 <th>4,6-Tetrachlorophanol</th> <td>0.778</td> <td>0,738</td> <td>0.756</td> <td>0.771</td> <td>0.810</td> <td>0.738</td> <td>0.709</td> <td>0.757</td> <td>0,033</td> <td>3.143</td> <td>0.103</td> <td>8.</td> <td>92</td> <td>2</td>	4,6-Tetrachlorophanol	0.778	0,738	0.756	0.771	0.810	0.738	0.709	0.757	0,033	3.143	0.103	8.	92	2
0.805 0.735 0.782 0.692 0.721 0.632 0.737 0.092 3.143 0.769 0.866 0.757 0.767 0.765 0.829 0.766 0.789 0.040 3.143 0.724 0.725 0.698 0.734 0.676 0.707 0.036 3.143 3.499 4.072 3.659 4.163 3.632 4.007 3.185 3.731 0.364 3.143 0.653 0.697 0.678 0.772 0.628 0.669 0.784 0.876 0.022 3.143 0.785 0.785 0.770 0.826 0.835 0.806 0.784 0.789 0.022 3.143 0.675 0.675 0.655 0.690 0.784 0.789 0.025 3.143 0.674 0.665 0.789 0.751 0.655 0.690 0.689 0.025 3.143	5-Trichlorophenol	0.717	0.762	0.701	0.827	0.648	0.835	0.658	0.707	0.069	3.143	0.217	1.00	7,	-
0.769 0.866 0.757 0.767 0.755 0.828 0.766 0.789 0.040 3.143 0.040 3.143 0.134 0.676 0.707 0.036 3.143 0.143 0.040 0.770 0.036 0.143 0.057 0.036 0.143 0.057 0.036 0.143 0.057 0.036 0.143 0.057 0.036 0.143 0.036 0.143 0.036 0.143 0.036 0.143 0.036 0.143 0.036 0.143 0.036 0.143 0.036 <th< th=""><th>5-Trichlorophenol</th><td>0,805</td><td>0.795</td><td>0.735</td><td>0,782</td><td>0.692</td><td>0.721</td><td>0.832</td><td>0.737</td><td>0.062</td><td>3.143</td><td>0.196</td><td>9.</td><td>4</td><td>-</td></th<>	5-Trichlorophenol	0,805	0.795	0.735	0,782	0.692	0.721	0.832	0.737	0.062	3.143	0.196	9.	4	-
0.724 0.725 0.644 0.746 0.696 0.734 0.676 0.707 0.036 3.143 0.676 0.707 0.036 3.143 0.354 3.143 0.354 3.143 0.354 3.143 0.354 3.143 0.354 3.143 0.354 3.143 0.354 3.143 0.354 3.143 0.354 3.143 0.354 3.143 0.354 3.143 0.354 3.143 0.354 3.143 0.354 <th< th=""><th>Dichlorophenol</th><td>0.769</td><td>0.856</td><td>0.757</td><td>0.767</td><td>0.755</td><td>0.829</td><td>0.766</td><td>0.788</td><td>0.040</td><td>3.143</td><td>0.128</td><td>8</td><td>29</td><td>-</td></th<>	Dichlorophenol	0.769	0.856	0.757	0.767	0.755	0.829	0.766	0.788	0.040	3.143	0.128	8	29	-
3,499 4,072 3,559 4,153 3,632 4,007 3,195 3,731 0,354 3,143 0,653 0,653 0,653 0,663 0,663 0,663 0,670 0,028 3,143 0 0,785 0,770 0,828 0,835 0,806 0,784 0,799 0,025 3,143 0 0,674 0,665 0,665 0,751 0,655 0,610 0,662 0,968 0,053 3,143	Dimethylphenoi	0.724	0.725	0,644	0,746	0,698	0.734	0.676	0.707	0.036	3.143	0.114	8	7	c
0.653 0.687 0.627 0.712 0.658 0.663 0.678 0.870 0.028 3.143 0.785 0.770 0.828 0.835 0.808 0.784 0.789 0.025 3.143 0.654 0.655 0.610 0.655 0.610 0.656 0.052 3.143 0.655 0.610 0.655 0.610 0.656 0.052 3.143 0.655 0.610 0.655 0.610 0.655 0.610 0.655 0.610 0.655 0.610 0.655 0.610 0.655 0.610 0.655 0.610 0.655 0.610 0.655 0.610 0.655 0.610 0.655 0.610 0.655 0.610 0.655 0.610 0.655 0.656	Diritrophenol	3,499	4.072	3,559	4.153	3.632	4.007	3,195	3.731	0.354	3,143	1.112	10.00	37	R
0,785 0,785 0,770 0,828 0,835 0,808 0,784 0,799 0,025 3,143 (Dinitrotoluene	0.653	0.697	0.627	0.712	0.658	0.663	0.678	0.670	0.028	3,143	0.080	8	67	-
0,674 0.665 0.588 0.751 0.655 0.610 0.662 0.668 0.052 3.143 (Dichlorophenol	0.785	0.785	0.770	0.828	0.835	0.808	0.784	0.799	0.025	3,143	0.078	1.00	8	2
	Dinitrotoluene	0.674	0.665	0.588	0.751	0.655	0.610	0.662	0.658	0.052	3.143	0,163	1.00	99	-
0.373 0.368 0.336 0.371 0.325 0.362 0.350 0.35	2-Acetylaminofluorene	0.373	0.368	0,338	0.371	0.325	0.362	0.330	0.352	0.021	3.143	0.080	8	36	(4

030Z

Analyst name and ID (printed);

Signature: Let

346

Approved by: CATUR / 41 &

Extraction Method:
SW-846 3510C
Analytical Method:
SW-846 8270C
Instrument type: HP5890/5972

Instrument iD	HP06756.i	HP06756.i	HP06758.i	HP06756.i	HP06756.i	HP06756.1	HP06756.1							
Datafile	nd197.d	nd198.d	nd199.d	nd200.d	nd201.d	nd202.d	nd203.d							
Injection Date 4/	4/11/06 10:24	4/11/06 11:19	4/11/06 12:14	4/11/06 13:10	4/11/06 14:05	4/11/06 15:00	4/11/06 15:56							
Lab Sample ID	WATERA	WATERB	WATERC	WATERD	WATERE	WATERF	WATERG							
Client Sample ID	LOWA	LOWB	LOWC	LOWD	LOWE	LOWF	LDWG							
Extraction Batch 06	06055WAM026										Ö	Sample		
								Mean	,	-	<u>•</u>			Reported
	Concentration	Concentration	Concentration	Concentration	Concentration	Concentration	Concentration	Concentration	Standard	Anine	1000 (1000)	(ndy) %	%Rec. ((ngv)
Compound Name	(ng/l)	(n/0n)	(ngn)	(ngn)	(ngn)	(180 C	0.916	0.823	0.026			8	82	2
2-Chloronaphinalene	0.80	0.832	0.663	0.850	0.902	0.944	0.905	0.918	0.038		0.120	1.00	85	-
	0.097	7.6.0	0.863	0.913	0.870	0.913	0,873	0.687	0.023	3,143	0.071	1.00	88	-
	0.00	0.881	0.886	765.0	1.194	1,130	1,211	1.017	0.162	3,143	0.508	1.00	102	-
2-Neobjection	0.274	0.332	0.311	0,275	0.236	0.391	0.215	0.291	0.080	3.143	0.188	1.00	8	ıcı
	0.559	0.614	0.537	0.569	0.561	0.611	0.551	0.572	0:030	3.143	0.093	8	57	-
- Nitrophenol	0.681	0.835	0.722	0.785	0,747	0.732	0.859	0.768	0.064	3.143	0.201	1,00	77	-
2-Disoline	0.617	9950	0.549	0.387	0.358	0.533	0.024	0.433	0.204		0.841	1.90	£3 !	7 1
3 3'-Dichlorobenzidine	0.295	0.354	0.277	0.365	0,312	0.472	0.345	0.346	0.085	3.143	0,203	8 8	5	7
3.3'-Dimelihylbazidine	0.287	0.265	0.234	0.194	0.348	0.575	0.115	0.288	0.148	3.143	0.459	B (20	2 .
3-Methylcholanthrane	0.568	0.573	0.553	0.547	0.554	0.568	0,537	0.557	0.013	3,143	0.041	8 !	p :	, ,
3.Nimanilne	0.386	0.438	0.369	0.372	0.427	0.501	0,437	0.419	0.047	3.143	0.148	8 :	7 6	- 1
4.4'-Methylenebls(2-Chloroani	0,185	0,208	0,126	0.202	0,175	0.264	0.234	0.189	0.044	3.143	0.138	8	2 8	5 1
4 6-Dinitro-2-melhylohenol	5.852	6.697	6.253	6,405	6.256	6.814	5.660	6.277	0.417	3,143	1.311	10.00	3 :	
4-Aminobiohenvi	0.424	0.434	0.401	0,407	0.423	0.493	0.384	0.424	0.035	3,143	0.109	9.	7 ;	7
4. Bromonhany Lubenylether	0.873	0.923	0.860	0.882	0.911	0.971	0.825	0.882	0.048	3.143	0.150	8	66	_
4-Chlora-T-melhylphanol	0.694	0.719	9690	0.736	0.718	0.737	0.755	0,722	0.023	3.143	0,071	8	7.5	_
4-Chloropilipe	0.410	0.388	0.365	0.428	0.404	0,488	0.440	0.418	0.040	3,143	0.124	9.	42	-
4. Oktorobasel characteristics	0.800	0.865	0.893	0.917	0.941	0.870	1,023	0.944	0.046	3.143	0.144	8	9	7
4 Mathabasa	0.718	977.0	0.667	0.743	0.809	0.637	0.893	0.778	0.078	3.143	0.230	8	78	7
A. Nitropoline	0.622	0.602	0.669	0.947	0.644	0.712	0.658	0.851	0.035	3.143	0.110	1.90	92	- !
A. Nitrophenol	3 037	3.296	2.968	3.271	3.304	3,399	2.953	3.176	0,183	3,143	0.577	0.00	35	2 5
4-Nithouloofine-1-oxide	3.011	3,010	2.871	2.991	2.962	3.008	2.863	2.828	0.086	3,143	0.205	30.0t	3 1	3 ,
A. Nitro a tobuidine	2 562	2.556	2.772	2.774	2.740	2.853	3.019	2.768	0,15	3.143	0.458	8 8	2 3	, -
6-Methylchrysene	0.799	0.067	0.803	0.863	0.813	0.876	0.870	0.844	0.038	3,143	B11.0	3 5	E K	- ,
7 12.Dimethylbenzfalanthrace	0.347	0,376	0.291	0.353	0,331	0.411	0.315	0.346	0.039	3.143	U.124	3 1	3 3	
o Dimethylphenethylemine *	1 661	1.387	0.516	1.381	0.997	1.014	1.384	1.191	0.38	3,143	1.188	8	* 1	٠,
Acenaphhene	0.918	0,996	0.975	1.057	0.927	0.993	1.023	0.984	0.050	3.143	0.156	8	<u>.</u>	-
:														
だ Pi														

Analyst name and ID (printed);

Signature:__

\$ \$ - Joe GAMBLER

Approved by: Chry2 / 412.

Extraction Method:
SW-846 3510C
Analytical Method:
SW-846 8270C
Instrument type: HP5890/5972

Instrument ID	HP06756.i	HP06756.I	HP06756.I	HP06756.)	HP06756.i	HP06756.i	HP06756.I				
Datafile	nd197.d	nd198.d	nd199.d	nd200.d	nd201.d	nd202.d	nd203.d				
Injection Date	₹	4/11/06 11:19	4/11/06 12:14	4/11/06 13:10	4/11/06 14:05	4/11/06 15:00	4/11/06 15:56				
Cab Sample ID		WATERB		WATERD	WATERE	WATERF	WATERG				
Cilent Sample (D	LOWA	LOWB	LOWC	LOWD	LOWE	LOWF	LOWG				
Extraction Batch	06055WAM026									Sample	
								Mean Student T	Sample	Spike	Repor

Instrument ID	HP06756.i	HP06756.I	HP06758.I	HP06758.)	HP06756.I	HP06756.i	HP06756.I							
Dataille	nd197.d	nd198.d	nd199.d	nd200.d	nd201.d	nd202.d	nd203.d							
Injection Date	4/11/06 10:24	4/11/06 11:19	4/11/06 12:14	4/11/06 13:10	4/11/06 14:05	4/11/06 15:00	4/11/06 15:56							
Cab Sample ID	WATERA	WATERB	WATERC	WATERD	WATERE	WATERF	WATERG							
Cilent Sample (D	LOWA	LOWB	LOWC	rowp	LOWE	LOWF	LOWG							
Extraction Batch 0	06055WAM028										Ø	Sample		
								Meen		Student T	•		_	Reported
	Concentration	Concentration	Concentration	Concentration	Concentration	Concentration	Concentration	Concentration	Standard	value .		<u> </u>	Average V Dan	MDF.
Compound Name	(J/Bn)	(ngn)	(µ6n)	(m8/l)	(ngv)	(µBn)	(ngu)	(rgn)	Devlation	Desn	(v@n)	1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 66	<u>.</u>
Acenaphthylene	0.946	0.960	0.879	0.943	0.898	0.932	0.955	0.930	0.031	3,143	/80'0	3 8	2 5	
Acetophenone	0.962	1.043	0.955	0.976	0.956	1.022	1.067	0.997	0.048	3.143	0,140	3 9	3 5	
Aniline	0,303	0.342	0.303	0.338	0.313	0.398	0.334	0.333	0.033	3.143	50.0	3 8	3 8	
Anitracene	0.883	0.920	0.872	0.900	0.879	0.842	0.884	0.698	0.025	3.143	0.078	B) (2 6	
Aremile	3.917	3.805	3.462	3.962	4.002	4.261	4.165	3,942	0.260	3,143	0.818	10.0t	.	5 (
Atro-109	0.728	0.801	0.741	0.763	0,875	0.734	0.636	0.725	0.055	3.143	0.172	B. ;	2 8	.
All Benie	7070	295	0.378	0.381	0.402	0.411	0.358	0.390	0.018	3.143	0.058	8 5	2 6	- 5
Benzidine •	3.578	6.726	7,694	5.398	6.829	4.606	5.313	5,735	1.43	3,143	4.469	25.00	3 5	₹ -
Henzo(a)authracene	1.031	1,088	1.000	1.007	1.020	1.048	1.039	1,033	0.030	3.143	0.05	3 5	74	
Benzo(a)pyrene	0.737	0,762	0.695	0.729	0.732	0,764	0.739	0.737	0.023	3.143	0.00	3 8	22	. .
Benzo(b)fluoranthene	0.789	0.850	0.796	0.825	0.833	0.822	0.845	0.823	0.023	5 5	0.078	8 8	64	
Benzo(o.h.))perviene	0.660	0.691	0.687	0.699	0.647	0.672	0.659	0.971	9.00	3 5	110	5 5	99	-
Berzo(k) lluoranthene	0.893	0.899	0.809	0.848	0.859	0.898	0.833	0.863	0,000	2 5	0.4541	10.00	6 6	60
Benzoic acid \$	7,858	8.078	7.889	8.111	7.990	8,148	7.763	//8//	2	2 5	1 460		2	uć.
Benzyl alcohol	6.739	6.108	6.160	5.754	3,813	5.516	4.043	5.448	1.10/	3 6	204.0	3 5	76	
Biphenyl	0,928	0.962	0.838	0.974	0.998	0.964	1.010	0.968	0.030	2 :	20.0	3 5	; 6	. —
bis(2-Chioroethoxy)methane	0.986	0.983	0.948	0.954	7.400	0.967	0.965	0.969	410.0	3 .	100	3 8	. 2	-
bis(2-Chloroethyl)ether	0.927	0.871	0.918	0.870	0.880	0.876	0.639	0.891	0.023	9 CF	7/0/5	3 5	2 2	
bls(2-Chlorolsopropyi)ether	1,124	1.026	1.014	1,092	1.049	1.024	1.077	1.058	F 60		180	8 8	96	N
bis(2-Ethylhexyl)phthalate	0.979	1.023	0.839	0.980	0.951	1.007	6960	0.804 1.78.0	0.000	3.143	0.129	8	19	19
Butylbenzylphthalate	0.719	0.699	0.651	0.612	0.675) ()	0.000				201.0	ξ. 20	17	ю
Caprolaciam	0.857	0.956	0.789	0.785	0.868	0.905	0.865	0.861	90.0	2 :	0.00	3 5	6	-
975	0.914	0.938	0.886	0.884	0.955	0.929	0.909	0.017	0.026	24.	0.082	3 5	9	- m
Chimberylisia	0.408	0.424	0.359	0.287	0.345	0.370	0,333	0.361	0.048	3.143	0.746	3 5	3 6	
Charges	0.957	0.992	0.961	0.993	0.934	0.984	0.964	0.960	0.022	3,143	0.00	3 5	. 6	
SIONALE TELEVISION	0.795	7580	0.731	0.866	0.800	0.769	0.730	0.792	0.054	3,143	0.169	3 8	. L	
Cienale I Portion	0.581	0.593	0.550	0,577	0.569	0.583	0.546	0.573	0.010	3.143	90.0 20.0	3 5	ម	
Diperzyania himthograpa	183	0.841	609'0	0.638	0.644	0.598	0.621	0.627	0.017	3.143	0.055	3 8	3 to	. 14
Olbenzia hacidae	0.571	0.636	0,557	0.567	0.482	0.614	0.566	0.571	0.049	3.143	20.0	3	5	
Oldonklagpachema														

6364

Analyst name and ID (printed):_

Signature:

Approved by: CITUZ / 412

9 3 of

Extraction Method:
SW-846 3510C
Analytical Method:
SW-846 8270C
instrument type: HP5890/5972

					-	Reported	Average	%Kec. (ug/i)				73 2	78 2	52 2	86 2	1 16	101	83 2	68	102	1 1	62	99	4	55 2		20 1				45	49	12	100	- 1	74 2	41 2	
					Semule	Sample Spike		_			•				0.365 5.00	0,093 1,00	0.123 1.00					0.176 1.00	0.314 2.00	0,231 1.00						•		0.120 1.00	_		,		0.094 1.00	
						Student T Sar					3,143 0.	3,143 0.	3,143 0.	3,143 0.	3,143 0.	3,143 0,	3.143 0.		3,143 0,	3.143 0.	3,143 0.	3,143 0.	3,143 0.	3,143 0,								3,143 0	3,143 0	3.143 0	3,143 0		3.143 0	
						v	Standard	Devlation	0.029	0.037	0.11	0.041	0.018	0.023	0.116	0.030	0.039	0.041	0.018	0.021	0.018	0.058	0.100	0.074	0.034	0.020	0.070	0.088	0.047	1.02	0.035	0.041	BO'0	0.017	0.029	0.062	0:030	
						Mann	Concentration	(ng ₁))	0.979	0.847	4.749	0.734	0.778	0.522	4.282	0.968	1.011	0.627	0.685	1.023	0.940	0.821	1,314	0.815	0.549	0.603	0.888	0.825	0.769	8.647	0,451	0.494	0.594	0.998	0.954	0.739	0.408	
HP06756.1	nd203.d	4/11/06 15:56	WATERG	LOWG			Concentration	(I/Bn)	1.005	0.833	4.777	0.705	0.785	0.516	4.112	1.010	1.000	0.889	0.876	1.027	0.842	0.829	1.274	0.731	0.582	0.619	0.928	0.789	0.730	6.623	0,518	0.477	0.697	1 004	0.976	0.767	0.404	i i
HP06756.	nd202.d	4/11/06 15:00	WATERF	LOWF			Concentration	(vān)	0.981	0.843	4.847	0.715	0.808	0.527	4,459	0.964	1.017	0.836	0.862	1,015	0.960	0.908	1.425	0.806	0.588	0.620	0.844	0.793	0,710	5.728	0.422	0.575	0.638	0.976	0.883	0.816	0.440	<u> </u>
HP06756.I	nd201.d	4/11/06 14:05	WATERE	LOWE			Concentration	(yBn)	0.987	0.788	4.815	0.735	0.772	0,516	4.193	0.998	888.0	0.823	0.671	0,994	0.946	0.786	1.270	0.763	0.565	0.570	0.804	0.854	0.774	5.467	0.462	0.477	0.588	1.003	0.00.1 0.959	417.0	19	5.5
HP06756.I	nd200.d	4/11/06 13:10	WATERD	LOWD			Concentration	(I/Bn)	0.988	0.835	4.706	0.680	0.759	0.526	4.281	0.974	1.052	0.770	0.892	1.018	0.920	0.826	1.159	0.823	0.555	0.582	0.840	0.783	0.849	7.738	0.415	0.503	2070) CCC	0.20.0	0.877	207.0	700'0
HP06756.1	nd199.d	4/11/06 12:14	WATERC	LOWC			Concentration	(l/6n)	0.922	0,845	4.518	0.730	0.763	0.479	4 246	858.0	0.987	0.502	0.869	1.011	0.923	0.727	1308	0.781	0.530	9090	0.961	0.787	0.744	5.717		0.448	9770	4 4 4 6 6	# P.O. C	0.922	0.702	0,4,0
HP06756.I	nd198.d	4/11/06 11:19	WATERB	LOWB			Conceptration	(I/Dn)	0.962	0.882	4.837	282 0	787	1554	4 386	1.967	100.	1.00	0.642	1.083	0.930	0.850	24.5	7000	0.508	0.320	0.852	0.830	0.000	7 505		505.0	> 0	9850	1.003	0.909	0.615	0.444
HP06756.1	nd197.d	4/11/06 10:24	WATERA	LOWA	06055WAM026		Concentration	(na/l)	1.007	0.902	4.741	77.7	1 20 0	0.738	4 300	4.500	200	0.965	0.832	4 029	756.0	7000	4 20.0	2 5	0.0	20.00	0.019	9000	00.800	10.0	1.00.7	0.430	7 17 0	0.651	0.989	0.850	0.654	0.407
Instrument ID	Datafile	Injection Date	Lab Sample ID	Client Sample ID	Extraction Batch			Compound Name	Dibenzofuran	Diethylphthalala	Dimethoste *			Other Duty iprimately				Ulphenyl erner	Ethyl methanesullonate		Lacochiombentens		Hexachiorordaniene	Hexachiorocyclopemagiene	Hexachioroemene	Hexachioropeone	Indeno(1,2,3-cd/pyrana		enonous de la composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition dell		Methapyrilene	Methy) methanesullonate	Methyl paramion	N,N-dimethyl formamide •	Naphthalene	Nitrobenzene	N-Nitrosodlethylamine	N-Nitrosodimethylamine

3365

Analyst name and ID (printed):_

Signature:_

Approved by: CMV / 412

တ 4 of

Instrument type: HP5890/5972 Extraction Method: SW-846 3510C Analytical Method: SW-846 8270C

Instrument ID	HP06756.i	HP06758.J	HP06756.)	HP06756,i	HP06756.1	HP06756.1	HP06756.I							
Datafile	p.761bn	nd198.d	nd199.d	nd200.d	nd201.d	nd202.d	nd203.d							
Injection Date	4/11/06 10:24	4/11/06 11:19	4/11/05 12:14	4/11/06 13:10	4/11/06 14:05	4/11/06 15:00	4/11/06 15:58							
Lab Sample ID	WATERA	WATERB	WATERC	WATERD	WATERE	WATERF	WATERG							
Client Sample ID	LOWA	LOWB	LOWC	LOWD	LOWE	LOWF	LOWG							
Extraction Batch	06055WAM026										•	Bample	C	1
								Mean		Student T	Sample	Spike	A	Reported MDL
	Concentration	Concentration	Concentration	Concentration	Concentration	Concentration	Concentration	Concentration	Standard	anya.	70E	•	W.Rec.	(J/01/)
Same Name	(/on/)	(ygn)	(ng/l)	(I/Bn)	(l/Bn)	(I/Bn)	(l/Bn)	(ngn)	Deviation	9		_	404	,
M. Mismondia, butchemine	1 258	5 233	5.278	5,075	5.235	5.274	5.273	5.232	0.07	3,143	0.225	3 8	5 5	
N. Nitrogo, d. C. Oronoviamino	0.853	0.814	0.746	0.776	0.776	0.848	0.927	0.820	0,061	3,143	0.00	3 5	7 2	- 7
N. Nitrosociobenvismine	0,800	0.682	0.814	0.902	0.866	0.866	0.863	0.873	0.030	0.140	0,083	3 5	3	1 (4
N-Nitrosomethylethylemine	0,536	0.524	0.515	0.457	0.569	0.642	0.540	0.540	0.056	54.5	0.170	90.1	. 22	7
N-Nitrosomorpholine	0.630	0,773	0.700	0.687	0.788	0.710	0,740	0.718	500		124	001	62	7
N-Nitrosopiperidine	0,804	0.803	0.711	0.830	0.798	0.814	0.767	26.0	0.038	3 143	0.081	8	29	7
N-Nitrosopyrtolidine	0.671	0.671	0.652	0.643	0.649	0,712	0,000	10.0	180.0	3.143	0.182	9.	97	7
O.O.O-triethylphosphorothioal	0.973	0.883	0.819	0.846	0.800	0.840	0.920	4 64 6	0.085	3,143	0.267	2.10	91	7
Octachlorostyrene	1.795	1.880	1.832	1.983	1.936	2.027	0000	5 E	0.058	3,143	0.182	1,00	¥	-
o-Toluidine	0.270	0.326	0.252	0.389	0.342	0.400	0000	2,073	0 108	3 143	0.334	5.00	61	-
Parathion	3.153	3.188	2.961	3.020	3.019	3,205	2.802	0.577	0.044	3,143	0.138	1.00	29	8
p-Dimethylaminoazobenzene	0.635	0.560	1000	0.0		0.043	0.833	0.912	0.055	3,143	0.172	8.	91	7
Pentachlorobenzene	0.906	0.994	698.0	0.810	770.0	1010	0.799	0.897	0.121	3,143	0.381	1.8	& i	7
Pentachloronitrobenzene	0.850	0.830	0,000	7 - 15	7 142	7,175	6.462	7.061	0.323	3.143	1.015	10.00	. 1	n (
Pentachlorophenol	40.7	676.7	0.557	87.0	0.585	0,596	0.642	0.588	0.035	3.143	0.110	1.00	3 5	,
Phenacetin	0.610	- C	0.03	000	1 008	0.984	1.018	1,019	0.027	3.143	0.084	8.	<u>ğ</u> :	- •
Phenanthrene	270.1	1.025	1.021	0.433	0.443	0.465	0.484	0.449	0.018	3.143	0.058	8	5 :	- ,
Phenol	5 4 70	5 6	707.0	922.0	0.789	0,787	0.754	0.770	0.032	3,143	0.101	8	: t	- •
Phorate	0.709	289.0	0.10	0.668	0.688	0.678	0.608	0.851	0,037	3.143	0,115	8 8	6 8	
Proparate	1021	0.980	0.931	0.974	0.965	0.984	0,991	0.878	0.028	3,143	990.0	3 8	3 4	٠,
<u> </u>	7 430	2.269	2,333	2.232	2.155	2.209	2.274	2.272	0.08	3,143	0.281	8 8	? =	٠.
Pyriaine	2.430	0.788	0.787	0.795	0.607	0.802	0.710	0.777	0.037	3,143	0.118	3 8	2 2	
Konnei	0.740	20,0	0.767	0.777	0.779	0.748	0.884	0.785	0.047	3.143	0.148	3 8	? 5	
Sarrole	24.5	0.802	0.679	0.774	0.764	0.775	0.815	0.769	0.044	3,143	0.137	3 8	- 8	٠,
i etraeurytumiopyi opitospinata	7190	0.709	0.623	0.757	0.676	0.660	0.599	0.683	0.056	5.143		8 .1	} =	, ,
1 Other decederation @	118.047	99 508	97.418	51,664	91.796	83,865	104.602	92.414	20.68	3,143	92.62	00000	. :	? -
	1 163	1 4 27	1 172	1.014	1.151	1.074	1.040		0.0618	3,143	0.1838	3	2 :	- ,
Indene 🌣	0.912	0.938	906'0	0.940	0.983	0.975	0.875	0.933	0,0385	3,143	0.1209	8 8	2 6	- v
	4 6 6	200	***	111	1 275	1.363	1,117	1,130	0.1624	3,143	0.5105	20.9	ç	9
Benzenethiol #	0.949	5 LB.O	101.	<u>:</u>	4									

3356

Analyst name and ID (printed):

Signature:_

Joe Gamblen

Approved by: Orng / 412

9 ₽ 5

Analytical Method: SW-846 8270C Instrument type: HP5890/5972 Extraction Method: SW-846 3510C

GC/MS Semivolatile Water Composite MDL Study

Instrument ID	HP06756.i	HP06756.i	HP06756.i	HP06756.i	HP06756.I	HP06756.I	HP06756.i						
Datafile	nd197.d	nd196.d	nd199.d	nd200.d	nd201.d	nd202.d	nd203.d						
Injection Date	4/11/06 10:24	4/11/08 11:19	4/11/06 12:14	4/11/06 13:10	5	4/11/06 15:00	4/11/08 15:58						
Lab Sample ID	WATERA	WATERB	WATERC	WATERD		WATERF							
Cilent Sample ID	LOWA	LOWB	LOWC	LOWD	LOWE	LOWF	LOWG						
Extraction Batch	06055WAM026										Sample		
Compound Name	Concentration (ug/l)	Concentration (ug/l)	Concentration (ug/l)	Concentration (ug/l)	Concentration (ug/l)	Concentration (ug/l)	Concentration (ug/l)	Mean n Concentration Standard (ug/l) Deviation	Student T S on Standard value Deviation used	ample MOL (ug/l)	Spike Level (ug/l)	Average %Rec.	Reported , MDL (ug/l)

Taken from files nd217.d, nd218.d, nd219.d, nd220.d, nd221.d, nd222.d, nd223.d

0307

Analyst name and ID (printed):_

Signature:

Approved by: CM2 /412

9 јо 9

^{(2) =} Taken from lites nd257.d, nd259.d, nd259.d, nd280.d, nd261.d, nd262.d, nd293.d 5 = Taken from lites bd294.d, bd296.d, bd298.d, bd299.d, bd299.d, bd299.d, bd299.d, bd299.d, bd299.d, bd299.d, bd300.d # = Taken from files bd357.d, bd356.d, bd359.d, bd372.d, bd374.d, bd375.d = Taken from files md563.d, md564.d, md566.d, md566.d, md569.d = Taken from files ne0004.d, ne005.d, ne007.d, ne009.d, ne010.d

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

-TF5-

EPA SAMPLE NO.

		1 -123
Lab Name: Lancaster Laboratories	Contract:	
Lab Code: LANCAS Case No.:	SAS No.:	SDG No.:
Matrix: (soil/water) WATER	Lab Sample	ID: 4791555
Sample wt/vol: 1038 (g/mL)ML	Lab File I	D: of0706.d
Level: (low/med) LOW	Date Recei	ved: 06/10/06
% Moisture: not dec: dec:	Date Extra	cted: 06/12/06
Concentrated Extract Volume: 1000	(uL) Date Analy	zed: 06/15/06
Injection Volume: 1 (uL)	Dilution F	actor: 1.0
GPC Cleanup: (Y/N) N pH:	Extractio	n: Sepf
	CONCENTRATION UNITS:	
CAS NO. COMPOUND	(ug/L or ug/Kg) LOQ U	G/L Q
541-73-1 1,3-Dichloro	benzene	5 U
106-46-7 1,4-Dichloro		5 U
95-50-1 1,2-Dichloro		5 U

Quantitation Report GC/MS Semi-Volatiles 4791555

Data file: /chem/HP09910.i/06jun15.b/of0706.d Injection date and time: 15-JUN-2006 10:53

Blank Data file reference:/chem/HP09910.i/06jun14a.b/of0684.d

Instrument ID: HP09910.i Batch: 06163WAA

Date, time and analyst ID of latest file update: 15-Jun-2006 16:13 1mh00956

Method used: /chem/HP09910.i/06jun15.b/zebron32.m

Sublist used: WTC8beacon

Calibration date and time (Last Method Edit): 15-JUN-2006 12:03

Mid Level Daily Calibration Standard Reference: /chem/HP09910.i/06jun15.b/of0702.d

Sample Concentration Formula: On-Column Amount * DF * Uf * Vt/(Vo * Vi)

Matrix: WATER

GPC Cleanup: No

Dilution Factor (DF): 1 Sample Volume (Vo): 1038.0 ml Final Extract Volume (Vt): 1000 ul

Unit Correction Factor (Uf): 1

Volume Injected (Vi): 1 ul

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Area)	Conc(ng/ul)	QC Flag
20) 1,4-Dichlorobenzene-d4	3.966(0.000)	372	152.0	193056(-20)	40.00	
47) Naphthalene-d8	5.116(0.000)	559	136.0	795077(-23)	40.00	
85) Acenaphthene-dl0	6.794(0.000)	832	164.0	478837(-23)	40.00	
125) Phenanthrene-dl0	8.233(0.000)	1066	188.0	969967(-22)	40.00	
156) Chrysene-dl2	10.809(0.000)	1485	240.0	999833(-21)	40.00	
167) Perylene-d12	12.199(0.000)	1711	264.0	1027045(-14)	40.00	

= RETENTION TIME OUT OF RANGE

* = INTERNAL STANDARD OUT OF RANGE

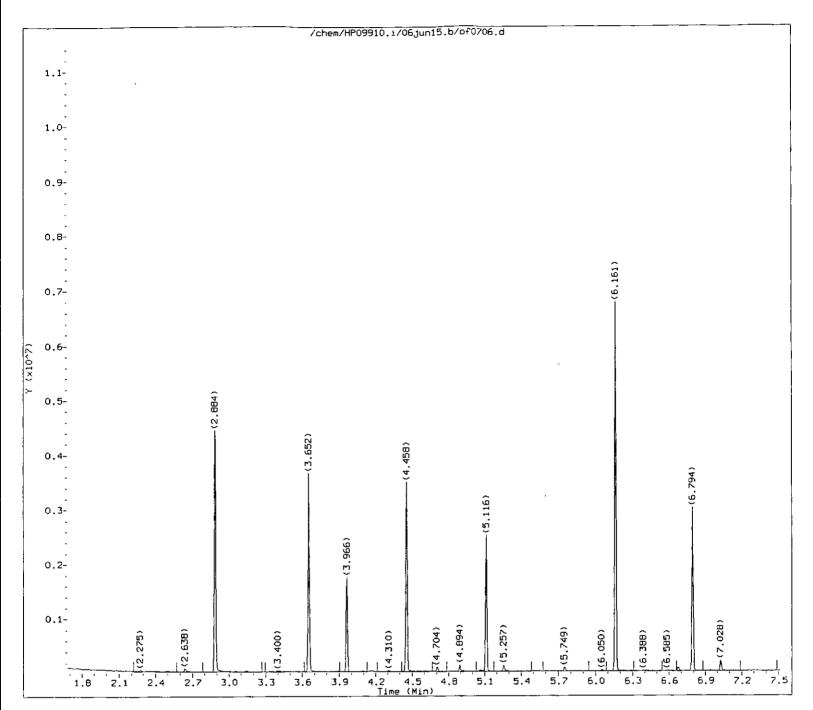
NC = NOT ABLE TO CALCULATE

	1.S.				Conc.	QC	
Surrogate Standards	Ref.	RT (+/-RRT)	QIon	Area	(on column)	%Re¢. flags	QC Limits
	922222	3========		========	=========	******	**=======
35) Nitrobenzene-d5	(2)	4.458(0.000)	82	1142671	94.347	94%	51 - 123
71) 2-Fluorobiphenyl	(3)	6.161(0.000)	172	1580003	99.066	99%	64 - 112
147) Terphenyl-dl4	(5)	9.819(0.000)	244	2122059	108.400	108%	52 - 151

- RELATIVE RETENTION TIME OUT OF RANGE

* = PERCENT REC.OUT OF RANGE

D = DILUTED OUT


NC - NOT ABLE TO CALCULATE

	I.S.				Conc.	Conc.	Blank		Reporting
Target Compounds	Ref. I	RT (+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit (ng/ul)
				=======				英工英数工业基	
19) 1,3-Dichlorobenzene	(1)			Belo	w MDL, Do not :	report			1.00
21) 1,4-Dichlorobenzene	(1)			Belo	w MDL, Do not :	report			1.00
25) 1.2-Dichlorobenzene	(1)			Belo	w MDL, Do not :	report			1.00
E = CONC. OUT OF CAL. RANGE	# = REI	LATIVE RETENI	NIT NOI	E OUT OF R	ANGE				

Total number of targets = 3

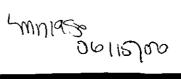
Comments:_					
-		$-\rho$			
Analyst:		T	Haltenstance	1930	
Auditor:	18W113			<u> </u>	Date:_(

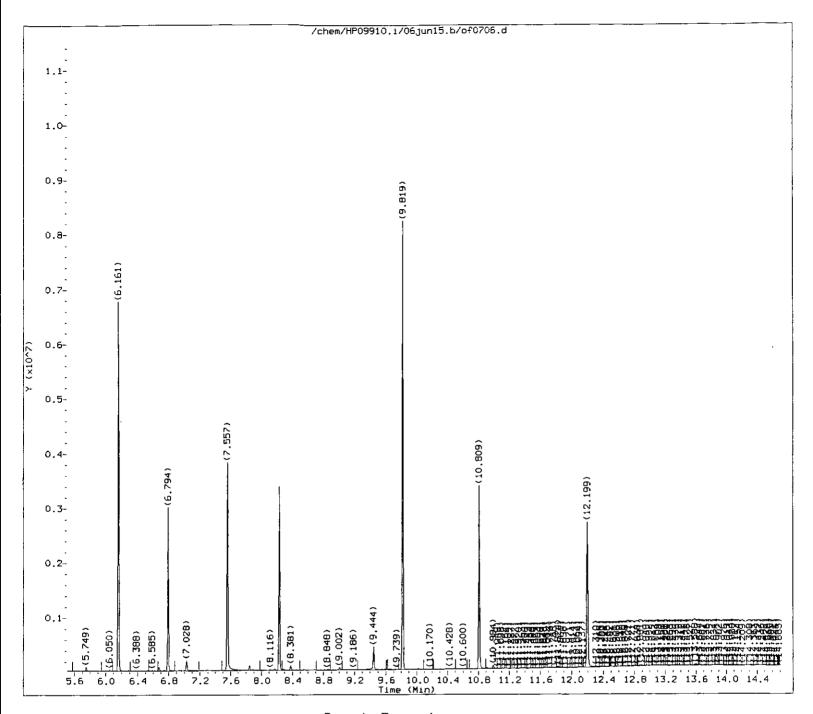
Page 1 of 1

Quant Report

Target Revision 3.5

Data File: /chem/HP09910.i/06jun15.b/of0706.d Injection date and time: 15-JUN-2006 10:53


Instrument ID: HP09910.i Analyst ID: rpb01568


Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 12:03
Date, time and analyst ID of latest file update: 15-Jun-2006 16:13 lmh00956

Sample Name: -TF5-

Lab Sample ID: 4791555

63.LO

Quant Report

Target Revision 3.5

Data File: /chem/HP09910.i/06jun15.b/of0706.d Instrument ID: HP09910.i Injection date and time: 15-JUN-2006 10:53 Analyst ID: rpb01568

Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 12:03
Date, time and analyst ID of latest file update: 15-Jun-2006 16:13 lmh00956

Sample Name: -TF5- Lab Sample ID: 4791555

6311.

Target Revision 3.5

Data File: /chem/HP09910.i/06jun15.b/of0706.d Instrument ID: HP09910.i Injection date and time: 15-JUN-2006 10:53 Analyst ID: rpb01568

Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 12:03
Date, time and analyst ID of latest file update: 15-Jun-2006 16:13 lmh00956

Sample Name: -TF5- Lab Sample ID: 4791555

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
=======================================	======	======	=====	========	=========
20) 1,4-Dichlorobenzene-d4	(1)	3.966	152	193056	40.000
47) Naphthalene-d8	$(\overline{2})$	5.116	136	795077	40.000
85) Acenaphthene-d10	(3)	6.794	164	478837	40.000
125) Phenanthrene-d10	(4)	8.233	188	969967	40.000
156) Chrysene-d12	(5)	10.809	240	999833	40.000
167) Perylene-d12	(6)	12.199	264	1027045	40.000
35) Nitrobenzene-d5	(2)	4.458	82	1142671	94.347
	(3)	6.161	172	1580003	99.066
	(5)	9.819	244	2122059	108.400
147) Terphenyl-d14	(5)	7.819	444	2122033	100.400

M = Compound was manually integrated.

1B
SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

-TF23

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories	Contract:	_
Lab Code: LANCAS Case No.:	SAS No.:SDG No.:	
Matrix: (soil/water) WATER	Lab Sample ID: 4791556	
Sample wt/vol: 994 (g/mL)ML	Lab File ID: of0707.d	
Level: (low/med) LOW	Date Received: 06/10/06	
% Moisture: not dec: dec:	Date Extracted: 06/12/06	
Concentrated Extract Volume: 1000	(uL) Date Analyzed: 06/15/06	
Injection Volume: 1 (uL)	Dilution Factor: 1.0	
GPC Cleanup: (Y/N) N pH:	Extraction: Sepf	

CONCENTRATION UNITS:

541-73-1 1,3-Dichlorobenzene 5 U 106-46-7 1,4-Dichlorobenzene 5 U 95-50-1 1,2-Dichlorobenzene 5 U	CAS NO.	COMPOUND	(ug/L or	ug/Kg)	LOQ	UG/L	Q	
	106-46-7	1,4-Dichlorob	enzene	-		5 5 5	Ü	,

Lancaster Labs Quantitation Report GC/MS Semi-Volatiles 4791556

Data file: /chem/HP09910.i/06jun15.b/of0707.d Injection date and time: 15-JUN-2006 11:15

Blank Data file reference:/chem/HP09910.i/06jun14a.b/of0684.d Batch: 06163WAA

Instrument ID: HP09910.i

Date, time and analyst ID of latest file update: 15-Jun-2006 16:13 lmh00956

Method used: /chem/HP09910.i/06jun15.b/zebron32.m

Sublist used: WTC8beacon

Calibration date and time (Last Method Edit): 15-JUN-2006 12:03

Mid Level Daily Calibration Standard Reference: /chem/HP09910.i/06jun15.b/of0702.d

Sample Concentration Formula: On-Column Amount * DF * Uf * Vt/(Vo * Vi)

Matrix: WATER

GPC Cleanup: No

Dilution Factor (DF): Sample Volume (Vo): 994.0 ml

Unit Correction Factor (Uf): 1

Final Extract Volume (Vt): 1000 ul

Volume Injected (Vi): 1 ul

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Area)	Conc(ng/ul)	QC Flag
20) 1,4-Dichlorobenzene-d4	3.966(0.000)	372	152.0	197264(-19)	40.00	
47) Naphthalene-d8	5.116(0.000)	559	136.0	800387(-22)	40.00	
85) Acenaphthene-d10	6.794(0.000)	832	164.0	482598(-23)	40.00	
125) Phenanthrene-d10	8.233(0.000)	1066	188.0	963126(-23)	40.00	
156) Chrysene-dl2	10.809(0.000)	1485	240.0	1013912(-20)	40.00	
167) Perylene-d12	12.199(0.000)	1711	264.0	1016852(-15)	40.00	

= RETENTION TIME OUT OF RANGE

* = INTERNAL STANDARD OUT OF RANGE

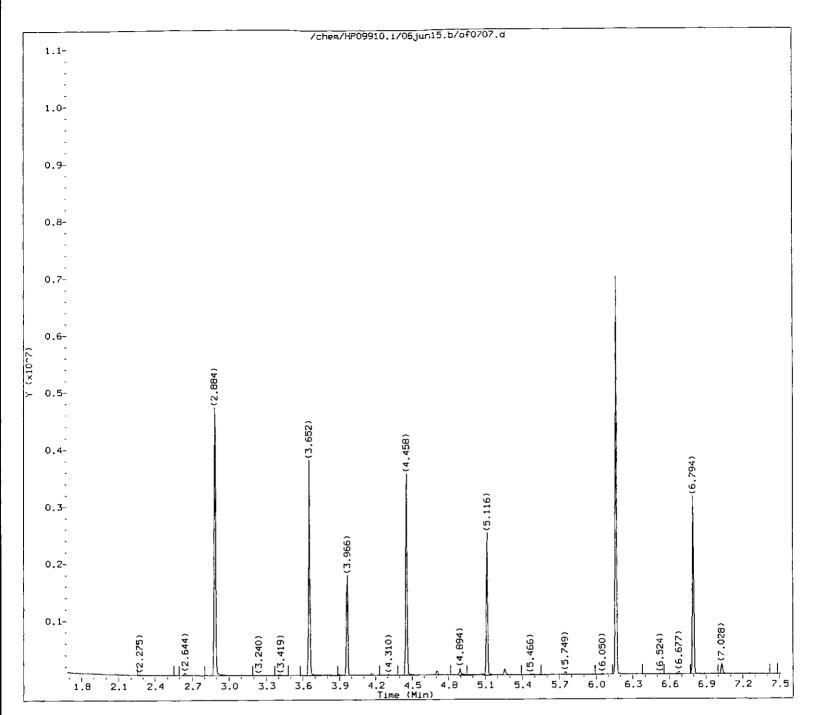
NC = NOT ABLE TO CALCULATE

	I.S.					Conc.		QC	
Surrogate Standards	Ref.	RT	(+/-RRT)	QIon	Area	(on column)	%Rec.	flags	QC Limits
	=====	======		F=====		*==========		======	=======================================
35) Nitrobenzene-d5	(2)	4 4.	88(0.000)	82	1142995	93.748	94%		51 - 123
71) 2-Fluorobiphenyl	(3)	6.16	1 (0.000)	172	1613213	100.360	100%		64 - 112
147) Terphenyl-d14	(5)	9.81	19(0.000)	244	2129879	107.289	107₹		52 - 151

= RELATIVE RETENTION TIME OUT OF RANGE

* = PERCENT REC.OUT OF RANGE

D = DILUTED OUT


NC = NOT ABLE TO CALCULATE

Target Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area		onc. column)	Conc. (in sample)	Blank Conc.	Qual.	Reporting Limit (ng/ul)
					Dala.	- MT01	De not	report			1.00
19) 1,3-Dichlorobenzene	(1)							-			
21) 1,4-Dichlorobenzene	(1)				Belo	w MDL,	Do not	report			1.00
25) 1,2-Dichlorobenzene	(1)				Belo	w MDL,	Do not	report			1.00
E = CONC. OUT OF CAL. RANGE	# = 1	RELAT	IVE RETENT	ION TIM	OUT OF R	ANGE					

Total number of targets = 3

Comments: Analyst: Auditor:

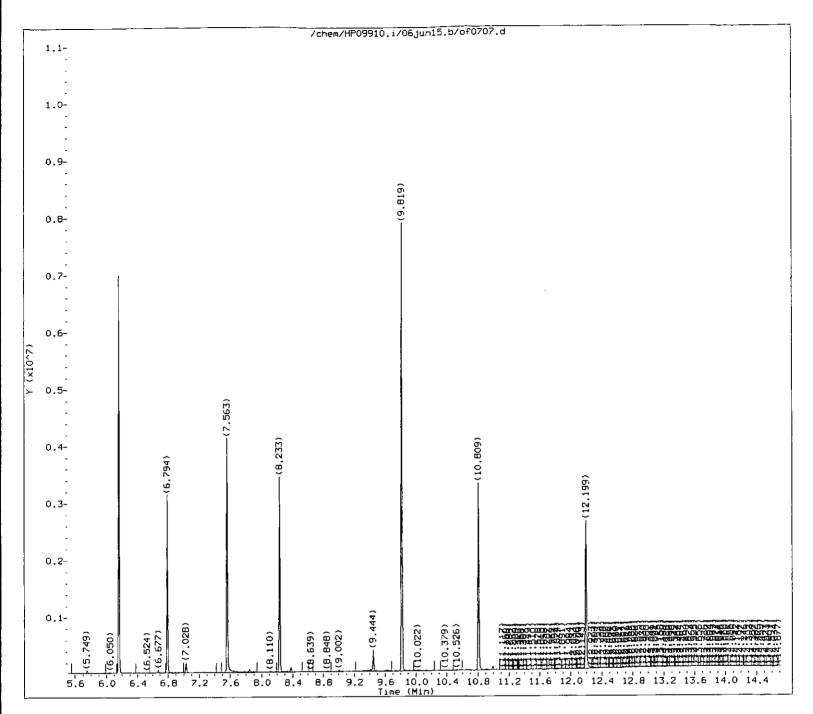
Page 1 of 1

Quant Report

Target Revision 3.5

Data File: /chem/HP09910.i/06jun15.b/of0707.d Injection date and time: 15-JUN-2006 11:15

Instrument ID: HP09910.i Analyst ID: rpb01568

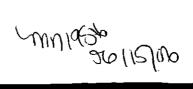

Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 12:03
Date, time and analyst ID of latest file update: 15-Jun-2006 16:13 lmh00956

Sample Name: -TF23

Lab Sample ID: 4791556

20 (12) cm

83.E5



Target Revision 3.5

Data File: /chem/HP09910.i/06jun15.b/of0707.d Instrument ID: HP09910.i Injection date and time: 15-JUN-2006 11:15 Analyst ID: rpb01568

Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 12:03
Date, time and analyst ID of latest file update: 15-Jun-2006 16:13 lmh00956

Sample Name: -TF23 Lab Sample ID: 4791556

Target Revision 3.5

Data File: /chem/HP09910.i/06jun15.b/of0707.d Instrument ID: HP09910.i Injection date and time: 15-JUN-2006 11:15 Analyst ID: rpb01568

Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 12:03
Date, time and analyst ID of latest file update: 15-Jun-2006 16:13 lmh00956

Sample Name: -TF23 Lab Sample ID: 4791556

	Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
20) 47) 85) 125) 156) 167) 35) 71) 147)	1,4-Dichlorobenzene-d4 Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Chrysene-d12 Perylene-d12 Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	===== (1) (2) (3) (4) (5) (6) (2) (3) (5)	3.966 5.116 6.794 8.233 10.809 12.199 4.458 6.161 9.819	152 136 164 188 240 264 82 172 244	197264 800387 482598 963126 1013912 1016852 1142995 1613213 2129879	40.000 40.000 40.000 40.000 40.000 40.000 93.748 100.360 107.289

M = Compound was manually integrated. A

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: Lancaster Laboratories Contract:_____

-DC2-

U

EPA SAMPLE NO.

Lab Sample ID: 4791558 Matrix: (soil/water) WATER

Lab File ID: of0708.d Sample wt/vol: 976 (g/mL)ML

Date Received: 06/10/06 Level: (low/med) LOW

Date Extracted: 06/12/06 % Moisture: not dec: dec:

Date Analyzed: 06/15/06 Concentrated Extract Volume: 1000 (uL)

Dilution Factor: 1.0 Injection Volume: 1 (uL)

Extraction: Sepf GPC Cleanup: (Y/N) N pH:

95-50-1----- 1,2-Dichlorobenzene_____

CONCENTRATION UNITS:

(ug/L or ug/Kg) LOQ UG/L Q CAS NO. COMPOUND 541-73-1----- 1,3-Dichlorobenzene__ U | 106-46-7----- 1,4-Dichlorobenzene_

Quantitation Report GC/MS Semi-Volatiles 4791558

Data file: /chem/HP09910.i/06jun15.b/of0708.d Injection date and time: 15-JUN-2006 11:38

Blank Data file reference:/chem/HP09910.i/06jun14a.b/of0684.d

Instrument ID: HP09910.i Batch: 06163WAA

Date, time and analyst ID of latest file update: 15-Jun-2006 16:14 lmh00956

Method used: /chem/HP09910.i/06jun15.b/zebron32.m

Sublist used: WTC8beacon

Calibration date and time (last Method Edit): 15-JUN-2006 12:03

Mid Level Daily Calibration Standard Reference: /chem/HP09910.i/06jun15.b/of0702.d

Sample Concentration Formula: On-Column Amount * DF * Uf * Vt/(Vo * Vi)

Matrix: WATER

GPC Cleanup: No

Dilution Factor (DF):

1 Unit Correction Factor (Uf): 1 Volume Injected (Vi): 1 ul

Sample Volume (Vo): 976.0 ml Final Extract Volume (Vt): 1000 ul

Internal Standards	RT (+/-RT)	Scan	Qion	Area(+/- %Area)	Conc (ng/ul)	QC Flag
20) 1.4-Dichlorobenzene-d4	3.966(0.000)	372	152.0	197027(-19)	40.00	
47) Naphthalene-d8	5.116(0.000)	559	136.0	794236(-23)	40.00	
85) Acenaphthene-d10	6.794 (0.000)	832	164.0	476799(-24)	40.00	
125) Phenanthrene-d10	8.233(0.000)	1066	188.0	973873(-22)	40.00	
156) Chrysene-dl2	10.809(0.000)	1485	240.0	1013164 (-20)	40.00	
167) Pervlene-d12	12.199(0.000)	1711	264.0	1033715(-14)	40.00	

= RETENTION TIME OUT OF RANGE

* = INTERNAL STANDARD OUT OF RANGE

NC = NOT ABLE TO CALCULATE

	I.S.				Conc.	QC	
Surrogate Standards	Ref.	RT (+/-RRT)	QIon	Area	(on column)	%Rec. flags	QC Limits
		******	======		- 4	**======	=========
35) Nitrobenzene-d5	(2)	4.458(0.000)	82	1114365	92.107	92%	51 - 123
71) 2-Fluorobiphenyl	(3)	6.161(0.000)	172	1551213	97.677	98%	64 - 112
147) Terphenyl-d14	(5)	9.819(0.000)	244	1980257	99.825	100%	52 - 151

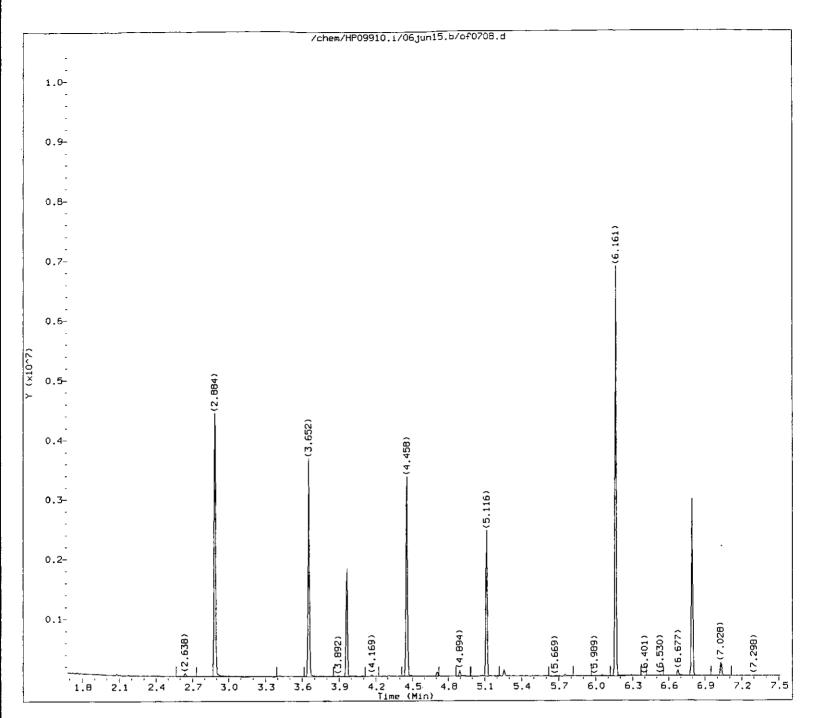
RELATIVE RETENTION TIME OUT OF RANGE

* = PERCENT REC.OUT OF RANGE

D = DILUTED OUT

NC = NOT ABLE TO CALCULATE

Target Compounds	I.S. Ref. RT	(+/-RRT)	QIon	Area	Conc. (on column)	Conc. (in sample)	Blank Conc.	Qual.	Reporting Limit (ng/ul)
*			=====		=======================================	=======================================			
19) 1,3-Dichlorobenzene	(1)			Below	MDL, Do not	report			1.00
21) 1,4-Dichlorobenzene	(1)			Below	MDL, Do not	report			1.00
25) 1,2-Dichlorobenzene	(1)			Below	MDL, Do not	report			1.00
E * CONC. OUT OF CAL. RANGE	# = RELA	TIVE RETENT	ION TIM	E OUT OF RA	ANGE				


Total number of targets = 3

Analyst:

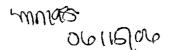
Comments:

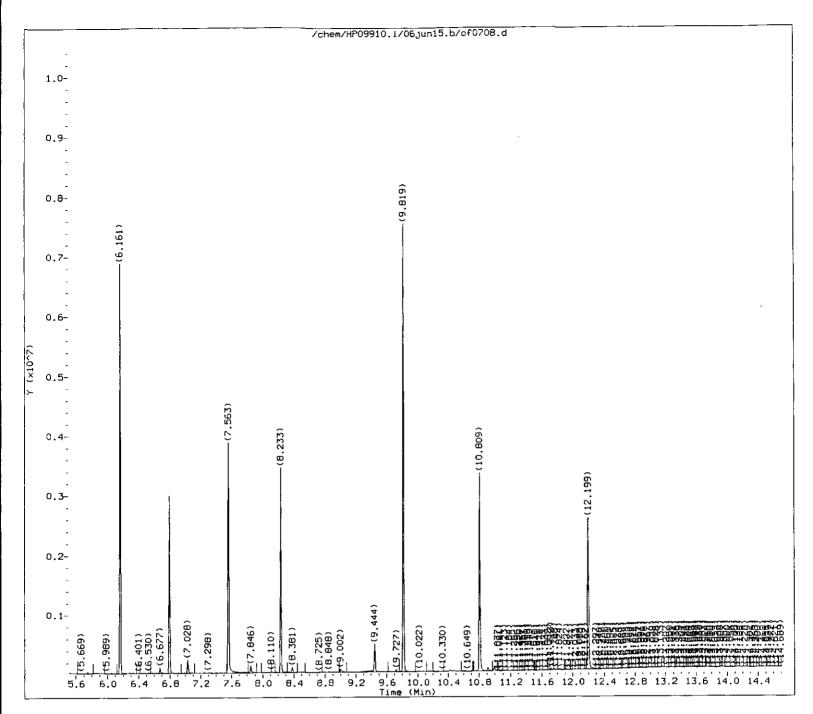
Page 1 of 1

Hattelletin

Quant Report

Target Revision 3.5


Data File: /chem/HP09910.i/06jun15.b/of0708.d Injection date and time: 15-JUN-2006 11:38

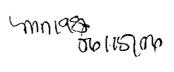

Instrument ID: HP09910.i Analyst ID: rpb01568

Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 12:03
Date, time and analyst ID of latest file update: 15-Jun-2006 16:14 lmh00956

Sample Name: -DC2-

Lab Sample ID: 4791558

Target Revision 3.5


Data File: /chem/HP09910.i/06jun15.b/of0708.d Injection date and time: 15-JUN-2006 11:38

Instrument ID: HP09910.i Analyst ID: rpb01568

Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 12:03
Date, time and analyst ID of latest file update: 15-Jun-2006 16:14 lmh00956

Sample Name: -DC2-

Lab Sample ID: 4791558

Target Revision 3.5

Data File: /chem/HP09910.i/06jun15.b/of0708.d Instrument ID: HP09910.i Injection date and time: 15-JUN-2006 11:38 Analyst ID: rpb01568

Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 12:03
Date, time and analyst ID of latest file update: 15-Jun-2006 16:14 lmh00956

Sample Name: -DC2- Lab Sample ID: 4791558

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
20) 1,4-Dichlorobenzene-d4 47) Naphthalene-d8 85) Acenaphthene-d10 125) Phenanthrene-d10 156) Chrysene-d12 167) Perylene-d12 35) Nitrobenzene-d5 71) 2-Fluorobiphenyl 147) Terphenyl-d14	(1) (2) (3) (4) (5) (6) (2)	3.966 5.116 6.794 8.233 10.809 12.199 4.458 6.161 9.819	152 136 164 188 240 264 82 172 244	197027 794236 476799 973873 1013164 1033715 1114365 1551213 1980257	40.000 40.000 40.000 40.000 40.000 40.000 92.107 97.677 99.825

M = Compound was manually integrated.

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: Lancaster Laboratories Contract:____

EPA SAMPLE NO.

-DC1-

ab Code: LANCAS Case No.: SAS No.: SDG No.:	:
---	---

Matrix: (soil/water) WATER Lab Sample ID: 4791559

Sample wt/vol: 1049 (g/mL)ML Lab File ID: of0709.d

Level: (low/med) LOW Date Received: 06/10/06

% Moisture: not dec: dec: Date Extracted: 06/12/06

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 06/15/06

Injection Volume: 1 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: Extraction: Sepf

CONCENTRATION UNITS:

	CAS NO.	COMPOUND	(ug/L or	ug/Kg)	LOQ	UG/L	Q	
۱-	541-73-1	1,3-Dichlo	robenzene			5	ע	
i	106-46-7	1,4-Dichlo	robenzene		_	5	ע	- 1
İ	95-50-1	1,2-Dichlo	robenzene			5	U	
ĺ					_ _			

Quantitation Report GC/MS Semi-Volatiles 4791559

Data file: /chem/HP09910.i/06jun15.b/of0709.d Injection date and time: 15-JUN-2006 12:00

Blank Data file reference:/chem/HP09910.i/06junl4a.b/of0684.d

Instrument 1D: HP09910.i Batch: 06163WAA

Date, time and analyst ID of latest file update: 15-Jun-2006 16:14 lmh00956

Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: WTC8beacon

Calibration date and time (Last Method Edit): 15-JUN-2006 12:03

Mid Level Daily Calibration Standard Reference: /chem/HP09910.i/06jun15.b/of0702.d

Sample Concentration Formula: On-Column Amount * DF * Uf * Vt/(Vo * Vi)

Matrix: WATER

GPC Cleanup: No

Dilution Factor (DF): 1 Unit Correction Factor (Uf): 1 Volume Injected (Vi): 1 ul

Sample Volume (Vo): 1049.0 ml Final Extract Volume (Vt): 1000 ul

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Area)	Conc(ng/ul)	QC Flag
20) 1.4-Dichlorobenzene-d4	3.966(0.000)	372	152.0	199186(-18)	40.00	
47) Naphthalene-d8	5.115(0.000)	559	136.0	787191(-24)	40.00	
85) Acenaphthene-d10	6.794(0.000)	832	164.0	474596(-24)	40.00	
125) Phenanthrene-d10	8.233(0.000)	1066	188.0	964605(-22)	40.00	
156) Chrysene-dl2	10.809(0.000)	1485	240.0	1011054(-21)	40.00	
167) Perylene-d12	12.193(0.006)	1710	264.0	1014432(-15)	40.00	

= RETENTION TIME OUT OF RANGE

* = INTERNAL STANDARD OUT OF RANGE

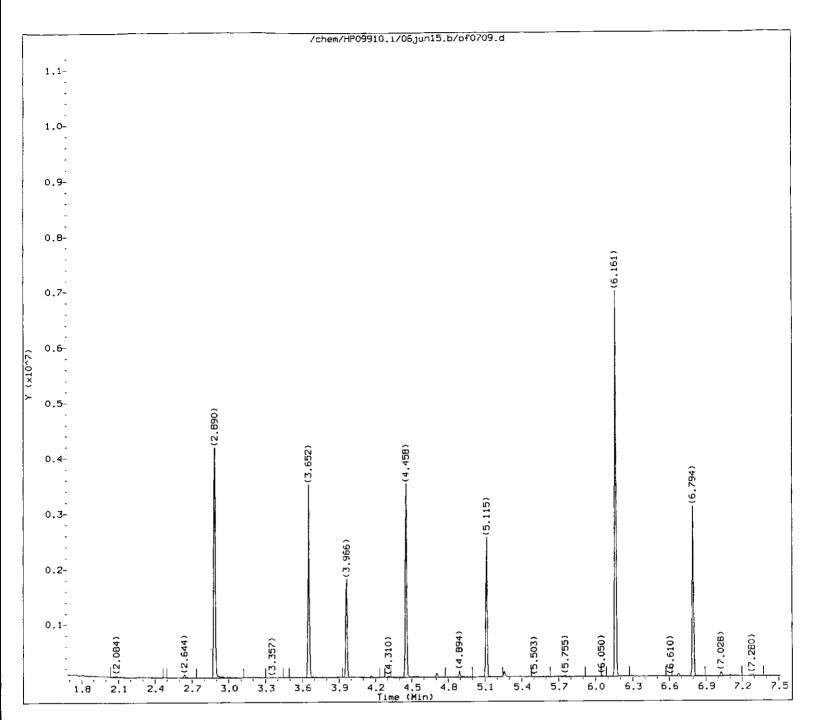
NC = NOT ABLE TO CALCULATE

	I.S.					Conc.		QC	
Surrogate Standards	Ref.	RT	(+/-RRT)	QIon	Area	(on column)	%Rec.	flags	QC Limits
	=====	======	========		=== +	=======================================		=====	=======================================
35) Nitrobenzene-d5	(2)	4.4	B(0.000)	82	1131941	94.397	94%		51 - 123
71) 2-Fluorobiphenyl	(3)	6.16	S1(0.000)	172	1576681	99.741	100%		64 - 112
147) Terphenyl-di4	(5)	9.81	L9(0.000)	244	2076562	104.899	105%		52 - 151

= RELATIVE RETENTION TIME OUT OF RANGE

* = PERCENT REC.OUT OF RANGE

D = DILUTED OUT


NC = NOT ABLE TO CALCULATE

•	I.S.				Conc.	Conc.	Blank		Reporting
Target Compounds	Ref. R	r (+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit (ng/ul)
	=========	* = = = = = = = = = = = = = = = = = = =	=====		######################################		=======	**====	=======================================
19) 1,3-Dichlorobenzene	(1)			Belo	w MDL, Do not	report			1.00
21) 1.4-Dichlorobenzene	(1)			Belo	w MDL, Do not	report			1.00
25) 1.2-Dichlorobenzene	(1)			Belo	w MDL, Do not	report			1.00
E = CONC. OUT OF CAL. RANGE	# = REL	ATIVE RETENT	NIT NOIT	E OUT OF R	ANGE				

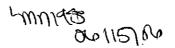
Total number of targets = 3

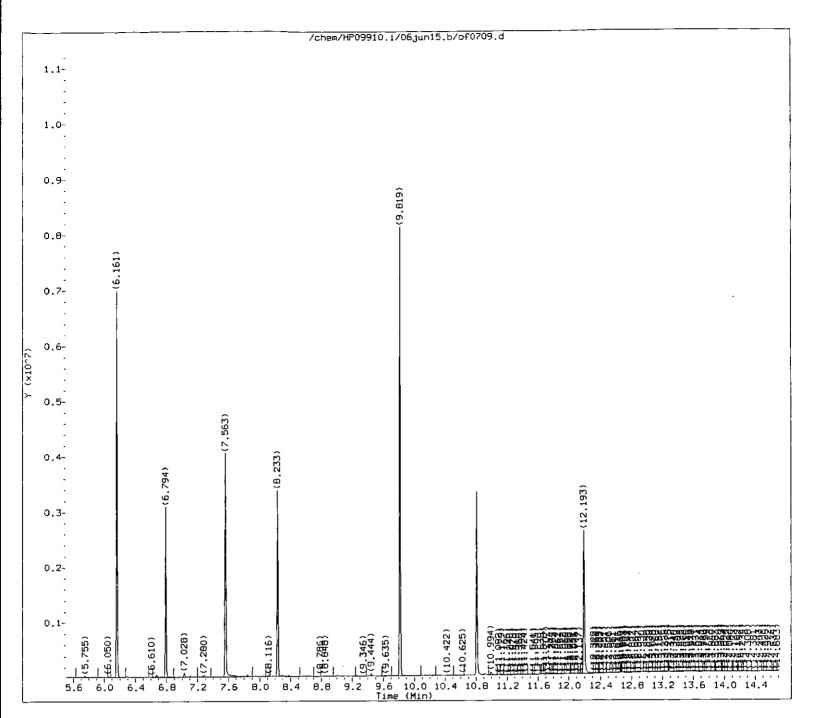
Comments:						
Analyst:	4	Athr.	*evittme	200	Date: ON (15) (Se	,
Auditor:	8 mm 183	1100	(10.00.00.		Date: 0 (5) (10)	_

Page 1 of 1

Quant Report

Target Revision 3.5


Data File: /chem/HP09910.i/06jun15.b/of0709.d Injection date and time: 15-JUN-2006 12:00

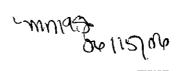

Instrument ID: HP09910.i Analyst ID: rpb01568

Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 12:03
Date, time and analyst ID of latest file update: 15-Jun-2006 16:14 lmh00956

Sample Name: -DC1-

Lab Sample ID: 4791559

Target Revision 3.5


Data File: /chem/HP09910.i/06jun15.b/of0709.d Injection date and time: 15-JUN-2006 12:00

Instrument ID: HP09910.i Analyst ID: rpb01568

Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 12:03
Date, time and analyst ID of latest file update: 15-Jun-2006 16:14 lmh00956

Sample Name: -DC1-

Lab Sample ID: 4791559

Target Revision 3.5

Data File: /chem/HP09910.i/06jun15.b/of0709.d Instrument ID: HP09910.i Injection date and time: 15-JUN-2006 12:00 Analyst ID: rpb01568

Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 12:03
Date, time and analyst ID of latest file update: 15-Jun-2006 16:14 lmh00956

Sample Name: -DC1-

Lab Sample ID: 4791559

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
20) 1,4-Dichlorobenzene-d4 47) Naphthalene-d8 85) Acenaphthene-d10 125) Phenanthrene-d10 156) Chrysene-d12 167) Perylene-d12 35) Nitrobenzene-d5 71) 2-Fluorobiphenyl 147) Terphenyl-d14	(1)	3.966	152	199186	40.000
	(2)	5.115	136	787191	40.000
	(3)	6.794	164	474596	40.000
	(4)	8.233	188	964605	40.000
	(5)	10.809	240	1011054	40.000
	(6)	12.193	264	1014432	40.000
	(2)	4.458	82	1131941	94.397
	(3)	6.161	172	1576681	99.741
	(5)	9.819	244	2076562	104.899

M = Compound was manually integrated.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

DB8B-

Lab Name: Lancaster Laboratories Contract:_____

Matrix: (soil/water) WATER

Lab File ID: of0710.d

Lab Sample ID: 4791560

Sample wt/vol: 990 (g/mL)ML

Level: (low/med) LOW

Date Received: 06/10/06

Date Extracted: 06/12/06

% Moisture: not dec: dec:

Concentrated Extract Volume: 1000 (uL)

Date Analyzed: 06/15/06

Injection Volume: 1 (uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:

Extraction: Sepf

CONCENTRATION UNITS:

(ug/L or ug/Kg) LOQ UG/L COMPOUND CAS NO.

| 106-46-7---- 1,4-Dichlorobenzene_____ 95-50-1----- 1,2-Dichlorobenzene_____

541-73-1---- 1,3-Dichlorobenzene__

lυ

U

Lancaster Labs Quantitation Report GC/MS Semi-Volatiles 4791560

Data file: /chem/HP09910.i/06jun15.b/of0710.d Injection date and time: 15-JUN-2006 12:22

Blank Data file reference:/chem/HP09910.i/06jun14a.b/of0684.d Batch: 06163WAA

Instrument ID: HP09910.i

Date, time and analyst ID of latest file update: 15-Jun-2006 16:14 lmh00956

Method used: /chem/HP09910.i/06jun15.b/zebron32.m

Sublist used: WTC8beacon

Calibration date and time (Last Method Edit): 15-JUN-2006 12:03

Mid Level Daily Calibration Standard Reference: /chem/HP09910.i/06jun15.b/of0702.d

Sample Concentration Formula: On-Column Amount * DF * Uf * Vt/(Vo * Vi)

Matrix: WATER

GPC Cleanup: No

Dilution Factor (DF): 1 Sample Volume (Vo): 990.0 ml

Unit Correction Factor (Uf): 1 Volume Injected (Vi): 1 ul

Final Extract Volume (Vt): 1000 ul

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Area)	Conc(ng/ul)	QC Flag
20) 1.4-Dichlorobenzene-d4	3.966(0.000)	372	152.0	192430(-21)	40.00	
47) Naphthalene-d8	5.115(0.000)	559	136.0	790893(-23)	40.00	
85) Acenaphthene-d10	6.794(0.000)	832	164.0	467423(-25)	40.00	
125) Phenanthrene-d10	8.233(0.000)	1066	188.0	942720(-24)	40.00	
156) Chrysene-d12	10.809(0.000)	1485	240.0	969007(-24)	40.00	
167) Perylene-dl2	12.199(0.000)	1711	264.0	983739(-18)	40.00	

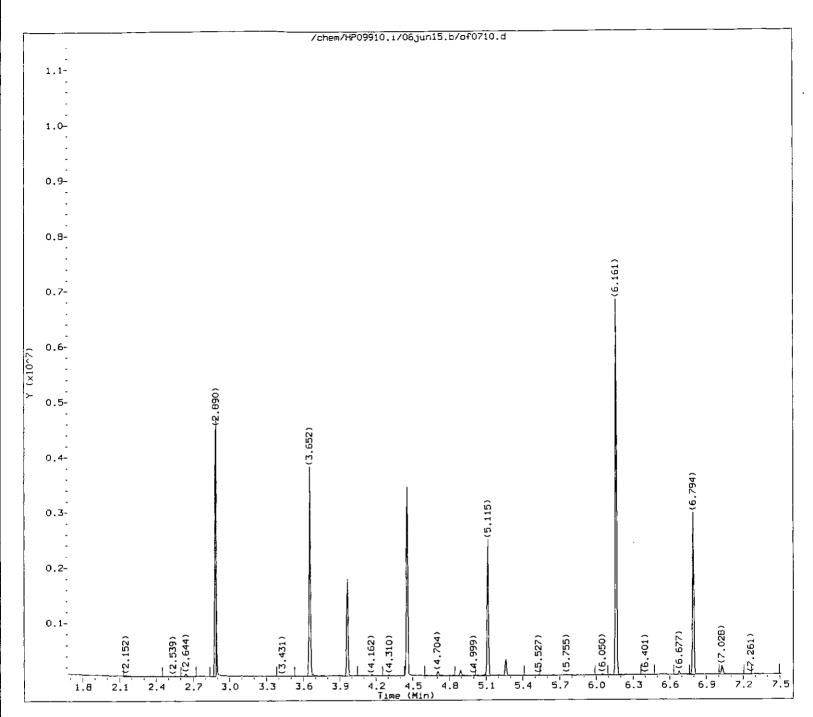
= RETENTION TIME OUT OF RANGE

* = INTERNAL STANDARD OUT OF RANGE

NC = NOT ABLE TO CALCULATE

	I.S.					Conc.		QC	
Surrogate Standards	Ref.	RT	(+/-RRT)	QIon	Area	(on column)	%Rec.	flags	QC Limits
			*****	*====			=======	======	========
35) Nitrobenzene-d5	(2)	4.45	B(0.000)	82	1158474	96.158	96%		51 - 123
71) 2-Fluorobiphenyl	(3)	6.16	1(0.000)	172	1587714	101.981	102 €		64 - 112
147) Terphenyl-d14	(5)	9.81	9(0.000)	244	2151333	113.391	113%		52 - 151

= RELATIVE RETENTION TIME OUT OF RANGE * = PERCENT REC.OUT OF RANGE D = DILUTED OUT


NC = NOT ABLE TO CALCULATE

Target Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	-	onc. column)	Conc. (in sample)	Blank Conc.	Qual.	Reporting Limit (ng/ul)
19) 1,3-Dichlorobenzene	(1) (1)				_			report report			1.00
21) 1,4-Dichlorobenzene25) 1,2-Dichlorobenzene	(1)							report			1.00
E = CONC. OUT OF CAL. RANGE	# = 3	RELAT	TIVE RETENT	ION TIM	E OUT OF R	ANGE					_

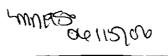
Total number of targets = 3

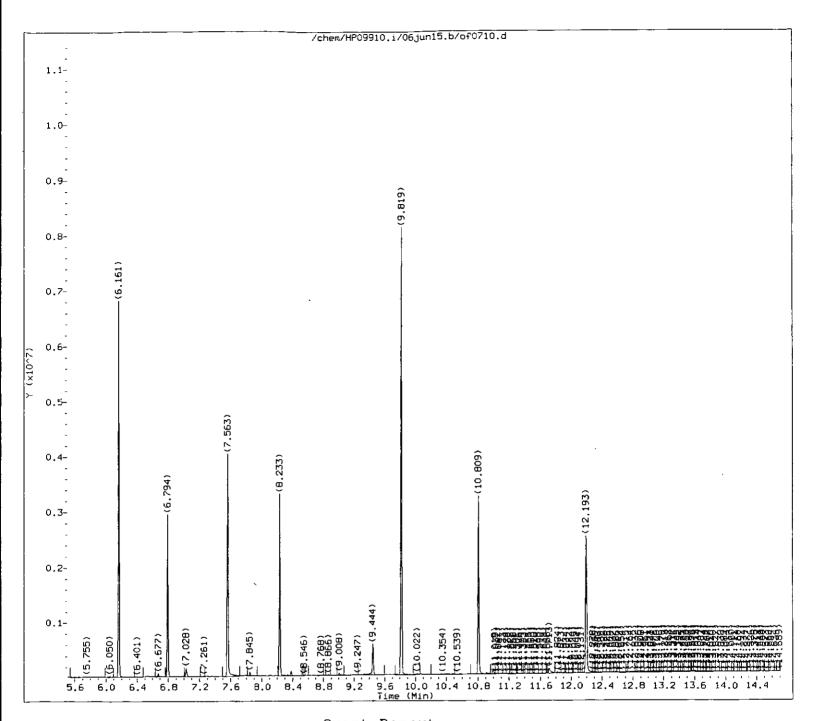
Comments:					
		.0			
Analyst:		FHOU	tentine 19	Date: C	MIBILD
Auditor:	Smm K3	7"		Date:	6/18/16

Page 1 of 1

Quant Report

Target Revision 3.5

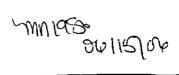

Data File: /chem/HP09910.i/06jun15.b/of0710.d Injection date and time: 15-JUN-2006 12:22


Instrument ID: HP09910.i Analyst ID: rpb01568

Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 12:03
Date, time and analyst ID of latest file update: 15-Jun-2006 16:14 lmh00956

Sample Name: DB8B-

Lab Sample ID: 4791560



Target Revision 3.5

Data File: /chem/HP09910.i/06jun15.b/of0710.d Instrument ID: HP09910.i Injection date and time: 15-JUN-2006 12:22 Analyst ID: rpb01568

Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 12:03
Date, time and analyst ID of latest file update: 15-Jun-2006 16:14 lmh00956

Sample Name: DB8B- Lab Sample ID: 4791560

Target Revision 3.5

Data File: /chem/HP09910.i/06jun15.b/of0710.d Instrument ID: HP09910.i Injection date and time: 15-JUN-2006 12:22 Analyst ID: rpb01568

Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 12:03
Date, time and analyst ID of latest file update: 15-Jun-2006 16:14 lmh00956

Sample Name: DB8B- Lab Sample ID: 4791560

•	Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
====	#=====================================	======	=====		100430	40.000
20)	1,4-Dichlorobenzene-d4	(1)	3.966	152	192430	
47)	Naphthalene-d8	(2)	5.115	136	790893	40.000
85)	Acenaphthene-d10	(3)	6.794	164	467423	40.000
125)	Phenanthrene-d10	(4)	8.233	188	942720	40.000
156)	Chrysene-d12	(5)	10.809	240	969007	40.000
167)	Perylene-d12	(6)	12.199	264	983739	40.000
35)	Nitrobenzene-d5	(2)	4.458	82	1158474	96.158
71)	2-Fluorobiphenyl	(3)	6.161	172	1587714	101.981
147)	Terphenyl-d14	(5)	9.819	244	2151333	113.391

M = Compound was manually integrated.

Lab Name: Lancaster Laboratories Contract:_____

EPA SAMPLE NO.

DB108	
	1

Matrix: (soil/water) WATER Lab Sample ID: 4791561

Sample wt/vol: 996 (g/mL)ML Lab File ID: of0711.d

Level: (low/med) LOW Date Received: 06/10/06

% Moisture: not dec: dec: Date Extracted: 06/12/06

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 06/15/06

Injection Volume: 1 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: Extraction: Sepf

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) LOQ UG/L Q

541-73-1----- 1,3-Dichlorobenzene	5	U
106-46-7----- 1,4-Dichlorobenzene	5	U
95-50-1----- 1,2-Dichlorobenzene	• 5	U

Lancaster Labs Quantitation Report GC/MS Semi-Volatiles 4791561

Data file: /chem/HP09910.i/06jun15.b/of0711.d Injection date and time: 15-JUN-2006 12:45

Blank Data file reference:/chem/HP09910.i/06jun14a.b/of0684.d

Volume Injected (Vi): 1 ul

Instrument ID: HP09910.i Batch: 06163WAA

Date, time and analyst ID of latest file update: 15-Jun-2006 16:14 lmh00956

Method used: /chem/HP09910.i/06jun15.b/zebron32.m

Sublist used: WTC8beacon

Calibration date and time (Last Method Edit): 15-JUN-2006 12:03

Mid Level Daily Calibration Standard Reference: /chem/HP09910.i/06jun15.b/of0702.d

Sample Concentration Formula: On-Column Amount * DF * Uf * Vt/(Vo * Vi)

Matrix: WATER

GPC Cleanup: No

Dilution Factor (DF):

1 Unit Correction Factor (Uf): 1

Sample Volume (Vo): 996.0 ml Final Extract Volume (Vt): 1000 ul

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Area)	Conc(ng/ul)	QC Flag
	######################################	=====	======	CB2==========	=======================================	
20) 1.4-Dichlorobenzene-d4	3,966(0.000)	372	152.0	196235(-19)	40.00	
47) Naphthalene-d8	5.116(0.000)	559	136.0	802594(-22)	40.00	
85) Acenaphthene-d10	6.794 (0.000)	832	164.0	475501(-24)	40.00	
125) Phenanthrene-d10	8.233(0.000)	1066	188.0	967590(-22)	40.00	
156) Chrysene-dl2	10.809(0.000)	1485	240.0	1003059(-21)	40.00	
167) Perylene-dl2	12.199(0.000)	1711	264.0	1016317(-15)	40.00	

= RETENTION TIME OUT OF RANGE

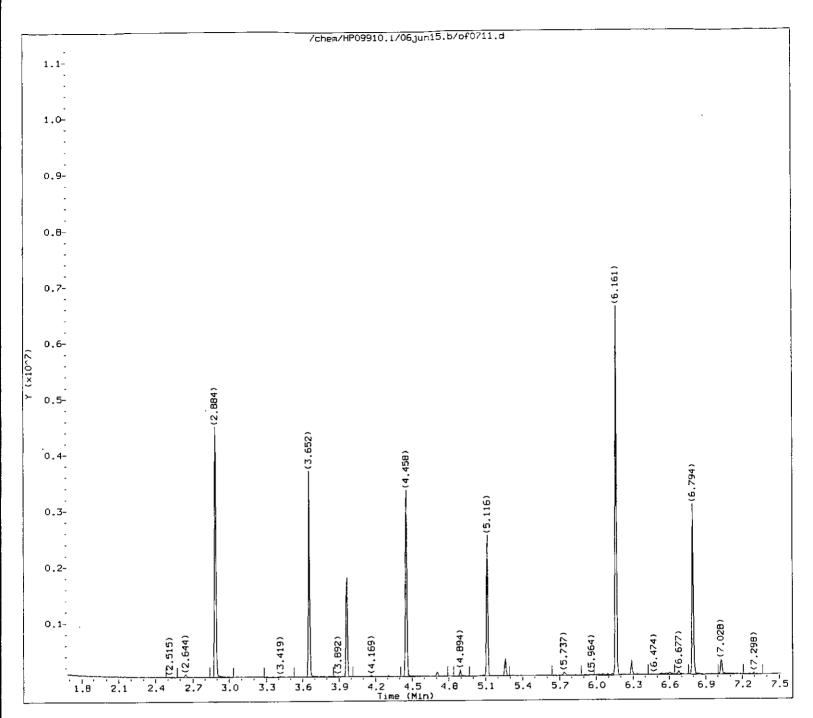
* = INTERNAL STANDARD OUT OF RANGE

NC = NOT ABLE TO CALCULATE

	I.S.					Conc.		QC	
Surrogate Standards	Ref.	RT	(+/-RRT)	QIon	Area	(on column)	%Rec.	flags	QC Limits
	======	======	*=======	=====	=========	=======================================	*======	======	=======================================
35) Nitrobenzene-d5	(2)	4.45	8 (0.000)	82	1101316	90.081	90%		51 - 123
71) 2-Fluorobiphenyl	(3)	6.16	1(0.000)	172	1544497	97.519	98%		64 - 112
147) Terphenyl-d14	(5)	9.81	9(0.000)	244	2115203	107.702	108%		5 2 - 151

= RELATIVE RETENTION TIME OUT OF RANGE

* = PERCENT REC.OUT OF RANGE


D = DILUTED OUT

NC * NOT ABLE TO CALCULATE

Target Compounds	I.S. Ref. RT (+/-RRT)	QIon Area	Conc. (on column)	Conc. (in sample)	Blank Conc.	Qual.	Reporting Limit (ng/ul)
19) 1,3-Dichlorobenzene	(1)	Below	w MDL, Do not :	report			1.00
21) 1,4-Dichlorobenzene	(1)	Below	w MDL, Do not :	report			1.00
25) 1,2-Dichlorobenzene	(1)	Below	w MDL, Do not :	report			1.00
E ≈ CONC. OUT OF CAL. RANGE	# = RELATIVE RETENT	CION TIME OUT OF R	ANGE				

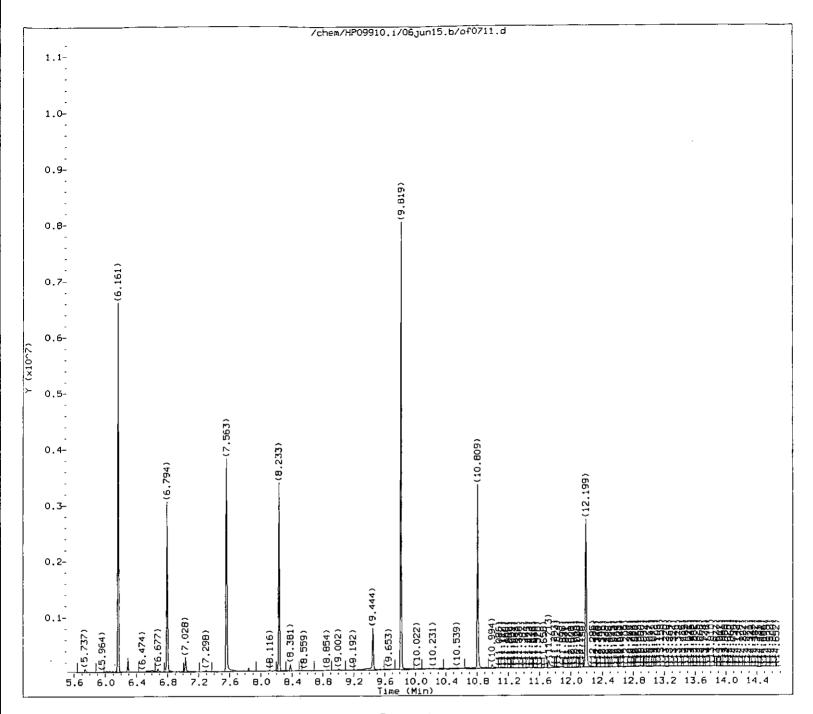
	Total number of targets = 3
Comments:	
0	
Havioust	Wall Out
Analyst:	Date: 00 10 10 10 10 10 10 10 10 10 10 10 10

Page 1 of 1

Quant Report

Target Revision 3.5

Data File: /chem/HP09910.i/06jun15.b/of0711.d Injection date and time: 15-JUN-2006 12:45


Instrument ID: HP09910.i Analyst ID: rpb01568

Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 12:03
Date, time and analyst ID of latest file update: 15-Jun-2006 16:14 lmh00956

Sample Name: DB108

Lab Sample ID: 4791561

MUKO 00112100

Target Revision 3.5

Data File: /chem/HP09910.i/06jun15.b/of0711.d Instrument ID: HP09910.i Injection date and time: 15-JUN-2006 12:45 Analyst ID: rpb01568

Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 12:03
Date, time and analyst ID of latest file update: 15-Jun-2006 16:14 lmh00956

Sample Name: DB108 Lab Sample ID: 4791561

Target Revision 3.5

Data File: /chem/HP09910.i/06jun15.b/of0711.d Injection date and time: 15-JUN-2006 12:45 Instrument ID: HP09910.i Analyst ID: rpb01568

Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 12:03
Date, time and analyst ID of latest file update: 15-Jun-2006 16:14 lmh00956

Lab Sample ID: 4791561 Sample Name: DB108

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
~ - 	======	=====	=====		===========
20) 1,4-Dichlorobenzene-d4	(1)	3.966	152	196235	40.000
47) Naphthalene-d8	(2)	5.116	136	802594	40.000
85) Acenaphthene-d10	(3)	6.794	164	475501	40.000
125) Phenanthrene-d10	(4)	8.233	188	967590	40.000
156) Chrysene-d12	(5)	10.809	240	1003059	40.000
167) Perylene-d12	(6)	12.199	264	1016317	40.000
35) Nitrobenzene-d5	(2)	4.458	82	1101316	90.081
71) 2-Fluorobiphenyl	(3)	6.161	172	1544497	97.519
147) Terphenyl-d14	(5)	9.819	244	2115203	107.702

M = Compound was manually integrated.

1 B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.:____ SAS No.:___ SDG No.:____

Matrix: (soil/water) WATER

Lab Sample ID: 4791562

Sample wt/vol: 1011 (g/mL)ML

Lab File ID: of0712.d

Level: (low/med) LOW

Date Received: 06/10/06

% Moisture: not dec: dec:

Date Extracted: 06/12/06

Concentrated Extract Volume: 1000 (uL)

Date Analyzed: 06/15/06

Injection Volume: 1 (uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:

Extraction: Sepf

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) LOQ UG/L Q

541-73-1----- 1,3-Dichlorobenzene___ U 106-46-7----- 1,4-Dichlorobenzene___ U 95-50-1----- 1,2-Dichlorobenzene___

Lancaster Labs Quantitation Report GC/MS Semi-Volatiles 4791562

Data file: /chem/HP09910.i/06jun15.b/of0712.d Injection date and time: 15-JUN-2006 13:07

Blank Data file reference:/chem/HP09910.i/06jun14a.b/of0684.d Batch: 06163WAA

Instrument ID: HP09910.i

Date, time and analyst ID of latest file update: 15-Jun-2006 16:15 lmh00956

Method used: /chem/HP09910.i/06jun15.b/zebron32.m

Sublist used: WTC8beacon

Calibration date and time (Last Method Edit): 15-JUN-2006 12:03

Mid Level Daily Calibration Standard Reference: /chem/HP09910.i/06jun15.b/of0702.d

Sample Concentration Formula: On-Column Amount * DF * Uf * Vt/(Vo * Vi)

Matrix: WATER

GPC Cleanup: No

Dilution Factor (DF): 1 Unit Correction Factor (Uf): 1 Volume Injected (Vi): 1 ul Sample Volume (Vo): 1011.0 ml Final Extract Volume (Vt): 1000 ul

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Area)	Conc(ng/ul)	QC Flag
20) 1,4-Dichlorobenzene-d4	3.966(0.000)	372	152.0	199232(-18)	40.00	
47) Naphthalene-d8	5.115(0.000)	5 59	136.0	806929(-22)	40.00	
85) Acenaphthene-d10	6.794 (0.000)	832	164.0	472350(-24)	40.00	
125) Phenanthrene-d10	8.233(0.000)	1066	188.0	950549(-24)	40.00	
156) Chrysene-d12	10.809(0.000)	1485	240.0	979962 (-23)	40.00	
167) Perylene-d12	12.199(0.000)	1711	264.0	1006729(-16)	40.00	

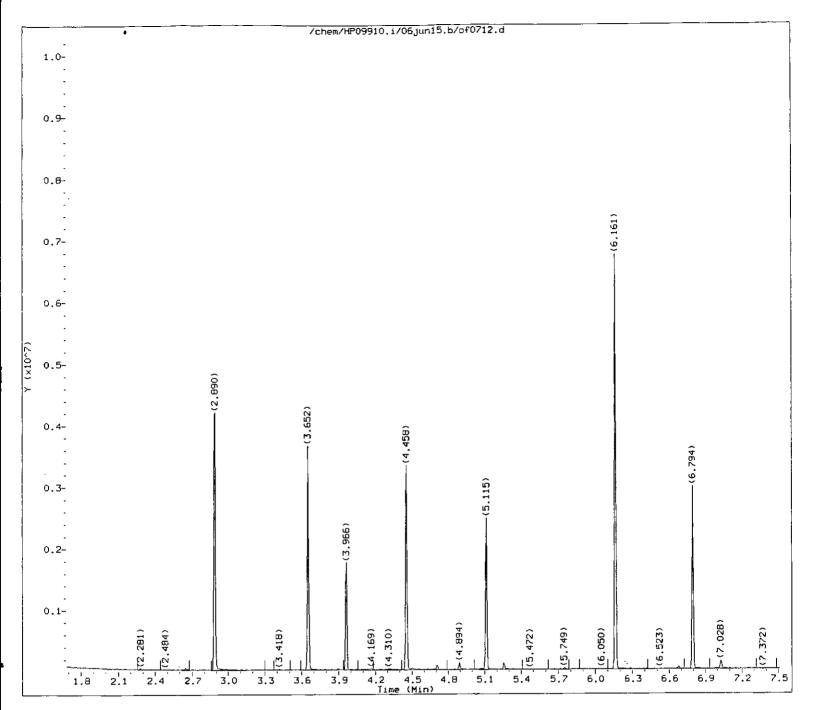
= RETENTION TIME OUT OF RANGE

* = INTERNAL STANDARD OUT OF RANGE

NC = NOT ABLE TO CALCULATE

	I.S.				Conc.	QC	
Surrogate Standards	Ref.	RT (+/-RRT)	QIon	Area	(on column)	%Rec. flags	QC Limits
******	*====		======	=======	222222 22		==========
35) Nitrobenzene-d5	(2)	4.458(0.000)	82	1098071	89.333	89%	51 - 123
71) 2-Fluorobiphenyl	(3)	6.161(0.000)	172	1551634	98.624	99%	64 - 112
147) Terphenyl-dl4	(5)	9.819(0.000)	244	1994579	103.954	104%	52 - 151

= RELATIVE RETENTION TIME OUT OF RANGE * = PERCENT REC.OUT OF RANGE


D = DILUTED OUT NC = NOT ABLE TO CALCULATE

	I.S.					Conc.	Conc.	Blank		Reporting
Target Compounds	Ref.	RT	(+/-RRT)	Qion	Area	(on colum	nn) (in sample)	Conc.	Qual.	Limit (ng/ul)
**********	======		=========	=====						**============
19) 1.3-Dichlorobenzene	(1)				Belo	w MDL, Do i	not report			1.00
21) 1.4-Dichlorobenzene	(1)				Belo	w MDL, Do i	not report			1.00
25) 1,2-Dichlorobenzene	(1)				Belo	w MDL, Do I	ot report			1.00
E = CONC. OUT OF CAL. RANGE	# = 1	RELAT	IVE RETENT	ION TIM	E OUT OF F	RANGE				

Total number of targets = 3

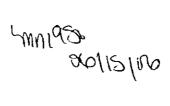
Comments:			
		0	
Analyst:		THULLEUSTUNE 198	Date: 00 15 16 16 16 16 16 16 16 16 16 16 16 16 16
Auditor:	Brown 187		Date: 6/11/06

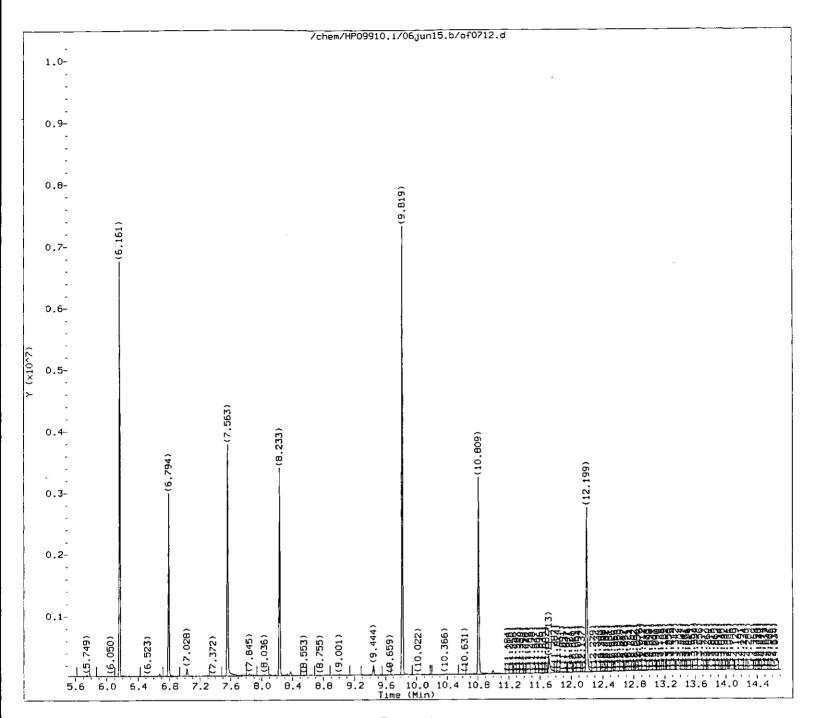
Page 1 of 1

Quant Report

Target Revision 3.5

Data File: /chem/HP09910.i/06jun15.b/of0712.d Injection date and time: 15-JUN-2006 13:07


Instrument ID: HP09910.i Analyst ID: rpb01568


Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 12:03
Date, time and analyst ID of latest file update: 15-Jun-2006 16:15 lmh00956

Sample Name: DB17-

Lab Sample ID: 4791562

934B

Target Revision 3.5

Data File: /chem/HP09910.i/06jun15.b/of0712.d Instrument ID: HP09910.i Injection date and time: 15-JUN-2006 13:07 Analyst ID: rpb01568

Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 12:03
Date, time and analyst ID of latest file update: 15-Jun-2006 16:15 lmh00956

Sample Name: DB17- Lab Sample ID: 4791562

Target Revision 3.5

Instrument ID: HP09910.i
Analyst ID: rpb01568 Data File: /chem/HP09910.i/06jun15.b/of0712.d Injection date and time: 15-JUN-2006 13:07

Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 12:03
Date, time and analyst ID of latest file update: 15-Jun-2006 16:15 lmh00956

Lab Sample ID: 4791562 Sample Name: DB17-

	Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
====	=======================================	=======	======	======	=======================================	== ==================================
20)	1,4-Dichlorobenzene-d4	(1)	3.966	152	199232	40.000
47)	Naphthalene-d8	$(\overline{2})$	5.115	136	806929	40.000
85)	Acenaphthene-d10	(3)	6.794	164	472350	40.000
125)	Phenanthrene-d10	(4)	8.233	188	950549	40.000
156)	Chrysene-d12	(5)	10.809	240	979962	40.000
167)	Perylene-d12	(6)	12.199	264	1006729	40.000
		(2)	4.458	82	1098071	89.333
35)	Nitrobenzene-d5	\ 2 \		172	1551634	98.624
71)	2-Fluorobiphenyl	(3)	6.161			
147)	Terphenyl-d14	(5)	9.819	244	1994579	103.954

M = Compound was manually integrated.

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

				OS2
Lab Name:	Lancaster	Laboratories	Contract:	

Lab Code: LANCAS Case No.:____ SAS No.:___ SDG No.:___

Matrix: (soil/water) WATER Lab Sample ID: 4791563

Sample wt/vol: 950 (g/mL)ML Lab File ID: of0688.d

Level: (low/med) LOW Date Received: 06/10/06

% Moisture: not dec: dec: Date Extracted: 06/12/06

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 06/15/06

Injection Volume: 1 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: Extraction: Sepf

CONCENTRATION UNITS:

	CAS NO.	COMPOUND	(ug/L or	ug/Kg)	LOQ	UG/L	Q	
į	541-73-1 106-46-7 95-50-1	1,4-Dichlorol	oenzen e		 	5 5 5	U U U	

Lancaster Labs Quantitation Report GC/MS Semi-Volatiles 4791563

Blank Data file reference:/chem/HP09910.i/06jun14a.h/of0684.d Data file: /chem/HP09910.i/06jun14a.b/of0688.d Batch: 06163WAA Instrument ID: HP09910.i Injection date and time: 15-JUN-2006 05:21

Date, time and analyst ID of latest file update: 15-Jun-2006 09:13 rpb01568

Sublist used: WTC8beacon Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Calibration date and time (Last Method Edit): 15-JUN-2006 08:56 Mid Level Daily Calibration Standard Reference: /chem/HP09910.i/06jun14a.b/of0674.d

Sample Concentration Formula: On-Column Amount * DF * Uf * Vt/(Vo * Vi)

Matrix: WATER

GPC Cleanup: No

Dilution Factor (DF): 1 Unit Correction Factor (Uf): 1 Volume Injected (Vi): 1 ul Sample Volume (Vo): 950.0 ml Final Extract Volume (Vt): 1000 ul

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- % Area)	Conc(ng/ul)	QC Flag
20) 1,4-Dichlorobenzene-d4	3.972(0.000)	373	152.0	187047(-3)	40.00	
47) Naphthalene-d8	5.122(0.000)	560	136.0	729070(-12)	40.00	
85) Acenaphthene-d10	6.800(0.006)	833	164.0	427233(-18)	40.00	
125) Phenanthrene-dl0	B.239(0.006)	1067	188.0	872617(-21)	40.00	
156) Chrysene-dl2	10.815(0.006)	1486	240.0	924951(-24)	40.00	
167) Perylene-d12	12.205(0.000)	1712	264.0	944977(-22)	40.00	

= RETENTION TIME OUT OF RANGE * = INTERNAL STANDARD OUT OF RANGE

NC = NOT ABLE TO CALCULATE

	I.S.				Conc.	QC	
Surrogate Standards	Ref.	RT (+/-RRT)	OIon	Area	(on column)	<pre>%Rec. flags</pre>	QC Limics
Surrogate Standards					=======================================	3 # # # # # # # # # # # # # # # # # # #	=========
35) Nitrobenzene-d5	(2)	4.464(0.000)	82	1016952	91.569	92%	51 - 123
,	(3)	6.167(-0.001)	172	1392410	97.849	98%	64 - 112
71) 2-Fluorobiphenyl 147) Terphenyl-d14	(5)	9.825(-0.001)	244	1782424	98.422	98%	52 - 151

= RELATIVE RETENTION TIME OUT OF RANGE * = PERCENT REC.OUT OF RANGE

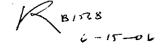

D = DILUTED OUT

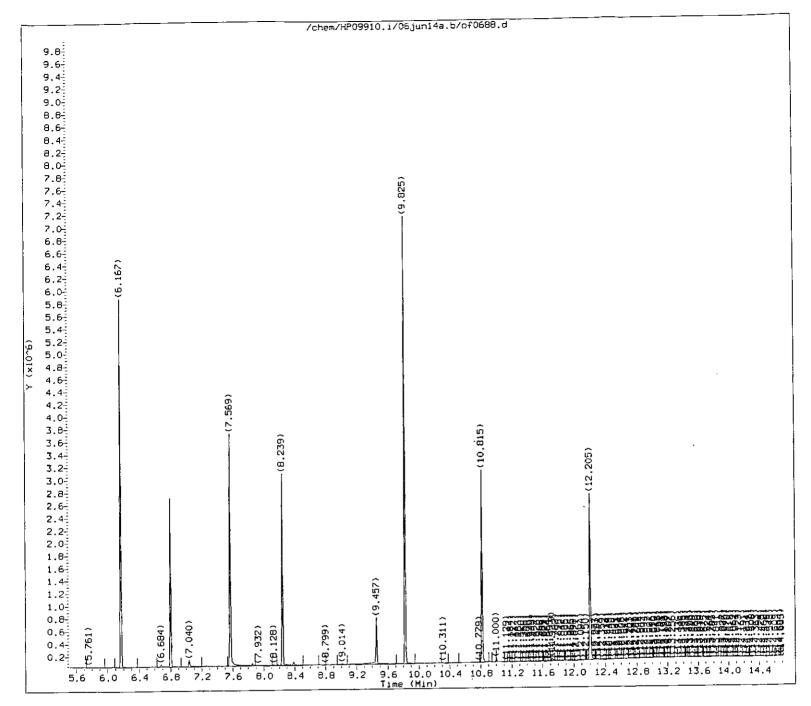
NC = NOT ABLE TO CALCULATE

	I.S.				Conc.	Conc.	Blank Conc.	Oual.	Reporting Limit (ng/ul)
Target Compounds	Ref. R	T (+/-RRT)	QIon	Area	(on column)	(in sample)	=	_	======================================
********			= =====	= # = = = = = = = = = = = = = = = = = =	: ==*========	******	=======	EE====	
	(1)			Belo	w MDL, Do not	report			1.00
19) 1,3-Dichlorobenzene				Belo	w MDL, Do not	report			1.00
21) 1,4-Dichlorobenzene	(1)								1.00
25) 1,2-Dichlorobenzene	(1)			Belo	w MDL, Do not	report			
E = CONC. OUT OF CAL. RANGE	# = REI	LATIVE RETEN	TION TIM	E OUT OF F	RANGE				_

	Total number of targets =	3
Comments:		
Analyst: REIN S	Date: 6-15-06 Date: 615 06	

Page 1 of 1

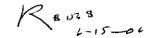

Quant Report


Target Revision 3.5

Instrument ID: HP09910.i Data File: /chem/HP09910.i/06jun14a.b/of0688.d Analyst ID: lmh00956 Injection date and time: 15-JUN-2006 05:21

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 08:56
Date, time and analyst ID of latest file update: 15-Jun-2006 09:13 rpb01568

Lab Sample ID: 4791563 Sample Name: OS2--



Target Revision 3.5

Instrument ID: HP09910.i Data File: /chem/HP09910.i/06jun14a.b/of0688.d Analyst ID: lmh00956 Injection date and time: 15-JUN-2006 05:21

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 08:56
Date, time and analyst ID of latest file update: 15-Jun-2006 09:13 rpb01568

Lab Sample ID: 4791563 Sample Name: OS2--

Target Revision 3.5

Instrument ID: HP09910.i Analyst ID: lmh00956 Data File: /chem/HP09910.i/06jun14a.b/of0688.d Injection date and time: 15-JUN-2006 05:21

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 08:56
Date, time and analyst ID of latest file update: 15-Jun-2006 09:13 rpb01568

Sample Name: OS2 --

Lab Sample ID: 4791563

Compounds	I.S. Ref.	R T	QIon	Area	Conc. (on column)
20) 1,4-Dichlorobenzene-d4 47) Naphthalene-d8 85) Acenaphthene-d10 125) Phenanthrene-d10 156) Chrysene-d12 167) Perylene-d12 35) Nitrobenzene-d5 71) 2-Fluorobiphenyl 147) Terphenyl-d14	(1) (2) (3) (4) (5) (6) (2) (3) (5)	3.972 5.122 6.800 8.239 10.815 12.205 4.464 6.167 9.825	152 136 164 188 240 264 82 172 244	187047 729070 427233 872617 924951 944977 1016952 1392410 1782424	40.000 40.000 40.000 40.000 40.000 91.569 97.849 98.422

M = Compound was manually integrated.

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO.

OR2	
	ŀ

Lab Name: Lancaster Laboratories Contract:_____

Matrix: (soil/water) WATER

Lab Sample ID: 4791568

Sample wt/vol: 983 (g/mL)ML

Lab File ID: of0713.d

Level: (low/med) LOW

Date Received: 06/10/06

Date Extracted: 06/12/06

% Moisture: not dec: dec:

Date Analyzed: 06/15/06

Concentrated Extract Volume: 1000 (uL)

Injection Volume: 1 (uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:

Extraction: Sepf

CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) LOQ UG/L Q

541-73-1----- 1,3-Dichlorobenzene_ U | 106-46-7----- 1,4-Dichlorobenzene__ U 5 95-50-1----- 1,2-Dichlorobenzene____

Quantitation Report GC/MS Semi-Volatiles 4791568

Data file: /chem/HP09910.i/06jun15.b/of0713.d Injection date and time: 15-JUN-2006 13:29

Blank Data file reference:/chem/HP09910.i/06junl4a.b/of0684.d Batch: 06163WAA

Instrument ID: HP09910.i

Date, time and analyst ID of latest file update: 15-Jun-2006 16:15 lmh00956

Method used: /chem/HP09910.i/06jun15.b/zebron32.m

Sublist used: WTC8beacon

Calibration date and time (Last Method Edit): 15-JUN-2006 12:03

Mid Level Daily Calibration Standard Reference: /chem/HP09910.i/06jun15.b/of0702.d

Sample Concentration Formula: On-Column Amount * DF * Uf * Vt/(Vo * Vi)

Matrix: WATER

GPC Cleanup: No

Dilution Factor (DF):

1 Unit Correction Factor (Uf): 1 Volume Injected (Vi): 1 ul

Sample Volume (Vo): 983.0 ml Final Extract Volume (Vt): 1000 ul

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Area)	Conc(ng/ul)	QC Flag
20) 1,4-Dichlorobenzene-d4	3.966(0.000)	372	152.0	183412(-24)	40.00	•
47) Naphthalene-d8	5.116(0.000)	559	136.0	751770(-27)	40.00	
85) Acenaphthene-dl0	6.794(0.000)	832	164.0	460725(-26)	40.00	
125) Phenanthrene-d10	8.233(0.000)	1066	188.0	925191(-26)	40.00	
156) Chrysene-d12	10.809(0.000)	1485	240.0	969667(-24)	40.00	
167) Perylene-d12	12.193(0.006)	1710	264.0	1012752(-15)	40.00	

= RETENTION TIME OUT OF RANGE

* = INTERNAL STANDARD OUT OF RANGE

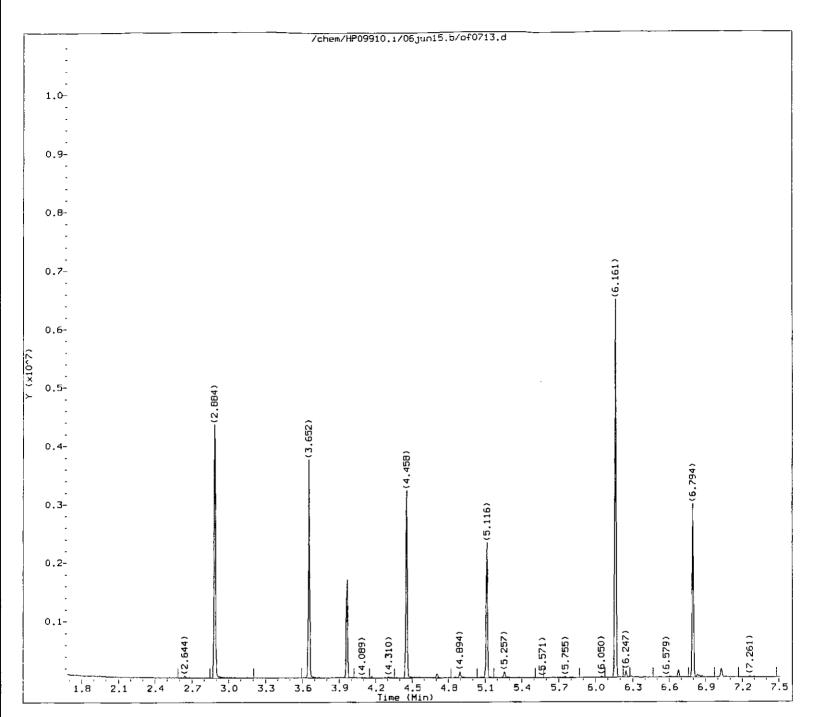
NC = NOT ABLE TO CALCULATE

	I.S.					Conc.		QC	
Surrogate Standards	Ref.	RT	(+/-RRT)	QIon	Area	(on column)	%Rec.	flags	QC Limits
		=====		***		=======================================		======	======================================
35) Nitrobenzene-d5	(2)	4.4	58(0.000)	82	1067577	93.225	93 €		51 - 123
71) 2-Fluorobiphenyl	(3)	6.1	51(0.000)	172	1518698	98.966	99%		64 - 112
147) Terphenyl-d14	(5)	9.8	19(0.000)	244	2087752	109.965	110%		52 - 151

= RELATIVE RETENTION TIME OUT OF RANGE

* * PERCENT REC.OUT OF RANGE

D = DILUTED OUT


NC = NOT ABLE TO CALCULATE

Target Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	_	onc. column) ***====	Conc. (in sample)	Blank Conc.	Qual.	Reporting Limit (ng/ul)
19) 1.3-Dichlorobenzene	(1)				Belov	w MDL.	Do not	report			1.00
21) 1,4-Dichlorobenzene	(1)						Do not	-			1.00
25) 1,2-Dichlorobenzene	(1)				Belov	w MDL,	Do not	report			1.00
E = CONC. OUT OF CAL. RANGE	# = 1	RELAT	IVE RETENT	ION TIM	E OUT OF RA	ANGE					

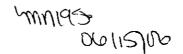
Total number of targets = 3

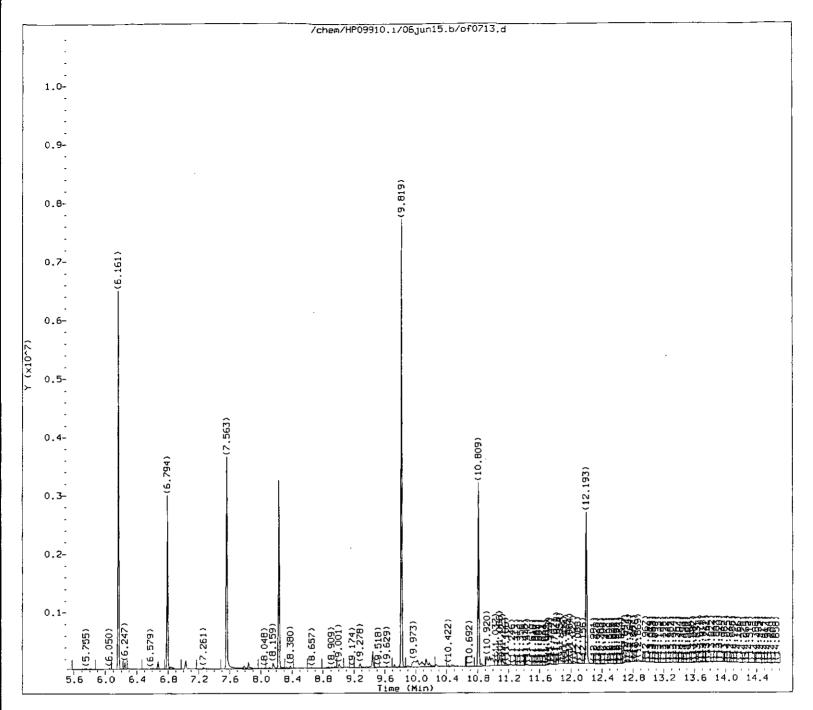
Comments:	TP.C#	
	D	
Analyst:	Attaitentine Ko	Date: 00(15) (N
Auditor: m	1m 163	Date: 015116 Date: 61166

Page 1 of 1

Quant Report

Target Revision 3.5


Data File: /chem/HP09910.i/06jun15.b/of0713.d Injection date and time: 15-JUN-2006 13:29


Instrument ID: HP09910.i Analyst ID: rpb01568

Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 12:03
Date, time and analyst ID of latest file update: 15-Jun-2006 16:15 lmh00956

Sample Name: OR2--

Lab Sample ID: 4791568

Target Revision 3.5

Data File: /chem/HP09910.i/06jun15.b/of0713.d Instrument ID: HP09910.i Injection date and time: 15-JUN-2006 13:29 Analyst ID: rpb01568

Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 12:03
Date, time and analyst ID of latest file update: 15-Jun-2006 16:15 lmh00956

Sample Name: OR2-- Lab Sample ID: 4791568

Target Revision 3.5

Data File: /chem/HP09910.i/06jun15.b/of0713.d Instrument ID: HP09910.i Injection date and time: 15-JUN-2006 13:29 Analyst ID: rpb01568

Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 12:03
Date, time and analyst ID of latest file update: 15-Jun-2006 16:15 lmh00956

Sample Name: OR2-- Lab Sample ID: 4791568

	Compounds		.s. ef.	RT	QIon	Area	Conc. (on column)
====	=======================================	==	=======================================	=====	=====	#====## = ==	
20)	1,4-Dichlorobenzene	-d4	(1)	3.966	152	183412	40.000
47)	Naphthalene-d8		(2)	5.116	136	751770	40.000
85)	Acenaphthene-d10		(3)	6.794	164	460725	40.000
125)	Phenanthrene-d10		(4)	8.233	188	925191	40.000
156)	Chrysene-dl2		· •	0.809	240	969667	40.000
167)	Perylene-d12			2.193	264	1012752	40.000
35)	Nitrobenzene-d5			4.458	82	1067577	93.225
71)	2-Fluorobiphenyl		(3)	6.161	172	1518698	98.966
147)	Terphenyl-dl4		(5)	9.819	$\frac{1}{244}$	2087752	109.965

M = Compound was manually integrated.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

		OS3
ontract.	1	

Lab Name: Lancaster Laboratories Contract:_____

Matrix: (soil/water) WATER

Lab Sample ID: 4791569

Sample wt/vol: 976 (g/mL)ML

Lab File ID: of0714.d

Level: (low/med) LOW

Date Received: 06/10/06

% Moisture: not dec: dec:

Date Extracted: 06/12/06

Concentrated Extract Volume: 1000 (uL)

Injection Volume: 1 (uL)

Date Analyzed: 06/15/06

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:

Extraction: Sepf

CONCENTRATION UNITS:

(ug/L or ug/Kg) LOQ UG/L CAS NO. COMPOUND

lυ 541-73-1---- 1,3-Dichlorobenzene_ U | 106-46-7----- 1,4-Dichlorobenzene__ 5 U 95-50-1----- 1,2-Dichlorobenzene_

Lancaster Labs
Quantitation Report GC/MS Semi-Volatiles 4791569

Data file: /chem/HP09910.i/06jun15.b/of0714.d Injection date and time: 15-JUN-2006 13:52

Blank Data file reference:/chem/HP09910.i/06jun14a.b/of0684.d Batch: 06163WAA

Volume Injected (Vi): 1 ul

Instrument ID: HP09910.i

Date, time and analyst ID of latest file update: 15-Jun-2006 16:15 lmh00956

Method used: /chem/HP09910.i/06jun15.b/zebron32.m

Sublist used: WTC8beacon

Calibration date and time (Last Method Edit): 15-JUN-2006 12:03

Mid Level Daily Calibration Standard Reference: /chem/HP09910.i/06jun15.b/of0702.d

Sample Concentration Formula: On-Column Amount * DF * Uf * Vt/(Vo * Vi)

Matrix: WATER

GPC Cleanup: No

Dilution Factor (DF):

1 Unit Correction Factor (Uf): 1

Sample Volume (Vo): 976.0 ml Final Extract Volume (Vt): 1000 ul

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Area)	Conc (ng/ul)	QC Flag
x = = x * c = = = = = = = = = = = = = = = = = =	======================================		======	************	=======================================	
20) 1.4-Dichlorobenzene-d4	3.966(0.000)	372	152.0	186469(-23)	40.00	
47) Naphthalene-d8	5.116(0.000)	559	136.0	759697(-26)	40.00	
85) Acenaphthene-d10	6.794 (0.000)	832	164.0	462032 (-26)	40.00	
125) Phenanthrene-d10	8.233(0.000)	1066	188.0	937972(-25)	40.00	
156) Chrysene-dl2	10.809(0.000)	1485	240.0	1017688(-20)	40.00	
167) Pervlene-d12	12.199(0.000)	1711	264.0	1009320(-16)	40.00	

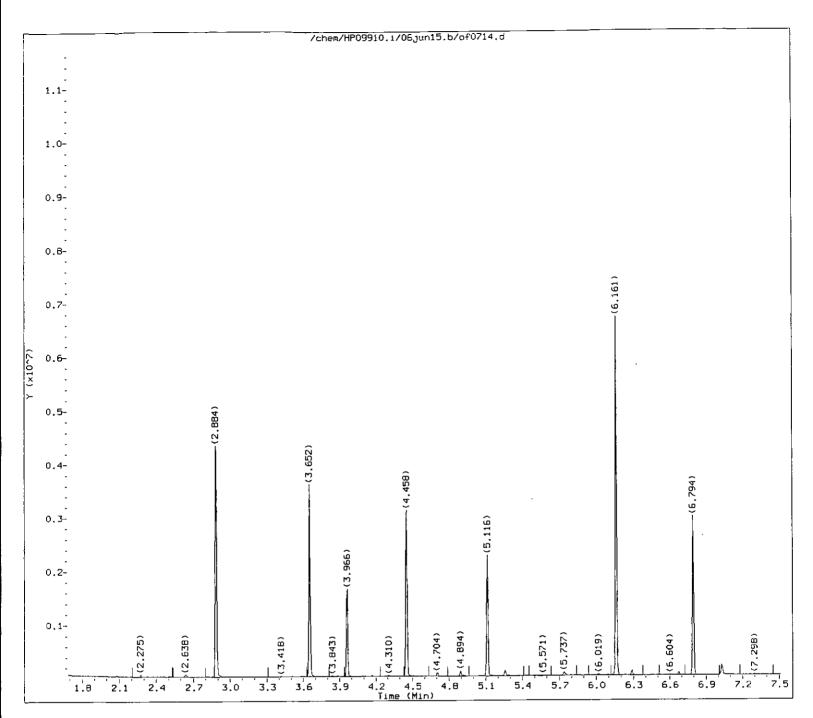
= RETENTION TIME OUT OF RANGE

* = INTERNAL STANDARD OUT OF RANGE

NC = NOT ABLE TO CALCULATE

	I.S.				Conc.	Q C	
Surrogate Standards	Ref.	RT (+/-RRT)	QIon	Area	(on column)	%Rec. flags	QC Limits
=======================================	=====	*	======	=======================================		=======================================	==========
35) Nitrobenzene-d5	(2)	4.458(0.000)	82	1089804	94.173	94 🕏	51 - 123
71) 2-Fluorobiphenyl	(3)	6.161(0.000)	172	1564325	101.651	102%	64 - 112
147) Terphenyl-d14	(5)	9.819(0.000)	244	2181488	109.481	109%	52 - 151

= RELATIVE RETENTION TIME OUT OF RANGE * = PERCENT REC.OUT OF RANGE


D = DILUTED OUT

NC = NOT ABLE TO CALCULATE

	I.S.					Conc.		onc.	Blank	0 - 3	Reporting	
Target Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on colu	mmn) (in s	sample)	Conc.	Qual.	Limit (ng/ul	,
	=====	=====	*======	#×====	=========				=======	**====	=======================================	=
19) 1,3-Dichlorobenzene	(1)				Belo	w MDL, Do	not report				1.00	
21) 1.4-Dichlorobenzene	(1)				Belo	w MDL, Do	not report				1.00	
25) 1,2-Dichlorobenzene	(1)				Belo	w MDL, Do	not report				1.00	
E = CONC. OUT OF CAL. RANGE	# =	RELAT	IVE RETENT	ION TIM	E OUT OF R	ANGE						

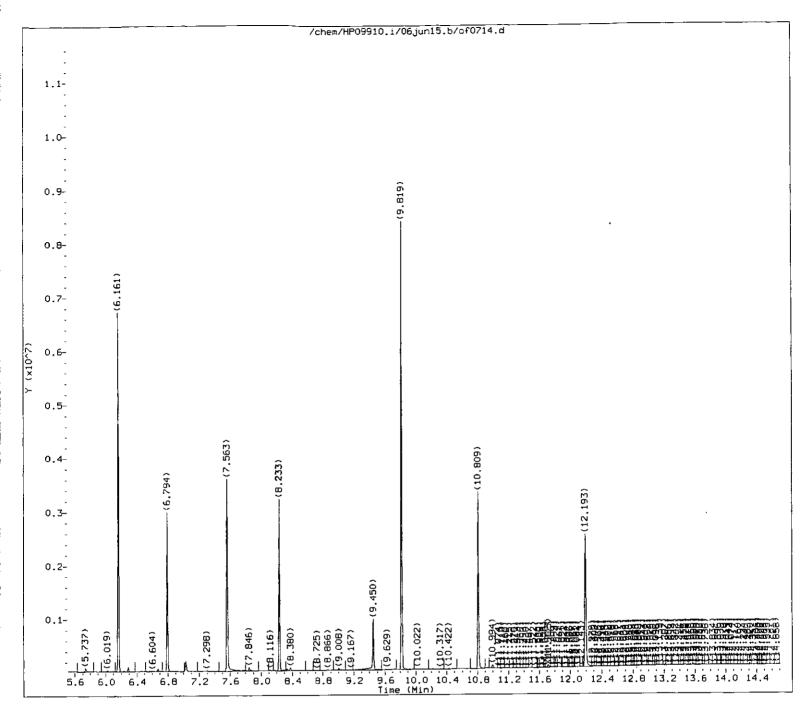
Total number of targets = 3

Comments:	#2 \\	
Analyst: 577 M 163	Hattluttive 1950 Date: Colision Date: Chillips	Do

Quant Report

Target Revision 3.5

Data File: /chem/HP09910.i/06jun15.b/of0714.d Injection date and time: 15-JUN-2006 13:52


Instrument ID: HP09910.i Analyst ID: rpb01568

Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 12:03
Date, time and analyst ID of latest file update: 15-Jun-2006 16:15 lmh00956

Sample Name: OS3 --

Lab Sample ID: 4791569

MM (15)00

Target Revision 3.5

Data File: /chem/HP09910.i/06jun15.b/of0714.d Instrument ID: HP09910.i Injection date and time: 15-JUN-2006 13:52 Analyst ID: rpb01568

Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 12:03
Date, time and analyst ID of latest file update: 15-Jun-2006 16:15 lmh00956

Sample Name: OS3-- Lab Sample ID: 4791569

Target Revision 3.5

Data File: /chem/HP09910.i/06jun15.b/of0714.d Instrument ID: HP09910.i Injection date and time: 15-JUN-2006 13:52 Analyst ID: rpb01568

Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 12:03
Date, time and analyst ID of latest file update: 15-Jun-2006 16:15 lmh00956

Sample Name: OS3-- Lab Sample ID: 4791569

Compounds	I.S. Ref.	RТ	QIon	Area	Conc. (on column)
20) 1,4-Dichlorobenzene-d4 47) Naphthalene-d8 85) Acenaphthene-d10 125) Phenanthrene-d10 156) Chrysene-d12 167) Perylene-d12 35) Nitrobenzene-d5 71) 2-Fluorobiphenyl 147) Terphenyl-d14	======================================	3.966 5.116 6.794 8.233 10.809 12.199 4.458 6.161 9.819	152 136 164 188 240 264 82 172 244	186469 759697 462032 937972 1017688 1009320 1089804 1564325 2181488	40.000 40.000 40.000 40.000 40.000 40.000 40.000 94.173 101.651 109.481

M = Compound was manually integrated.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

OR3	
	1

Lab Name: Lancaster Laboratories Contract:____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 4791570

Sample wt/vol: 954 (g/mL)ML

Lab File ID: of0715.d

Level: (low/med) LOW

Date Received: 06/10/06

% Moisture: not dec: dec:

Date Extracted: 06/12/06

Concentrated Extract Volume: 1000 (uL)

Date Analyzed: 06/15/06

Injection Volume: 1 (uL)

Dilution Factor: 1.0

5

lυ

U

GPC Cleanup: (Y/N) N pH:

Extraction: Sepf

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) LOQ UG/L Q

541-73-1----- 1,3-Dichlorobenzene_____ 106-46-7----- 1,4-Dichlorobenzene____ 95-50-1----- 1,2-Dichlorobenzene_____

Quantitation Report GC/MS Semi-Volatiles 4791570

Data file: /chem/HP09910.i/06jun15.b/of0715.d Injection date and time: 15-JUN-2006 14:14

Blank Data file reference:/chem/HP09910.i/06jun14a.b/of0684.d Instrument ID: HP09910.i

Batch: 06163WAA

Date, time and analyst ID of latest file update: 15-Jun-2006 16:16 lmh00956

Method used: /chem/HP09910.i/06jun15.b/zebron32.m

Sublist used: WTC8beacon

Calibration date and time (Last Method Edit): 15-JUN-2006 12:03

Mid Level Daily Calibration Standard Reference: /chem/HP09910.i/06jun15.b/of0702.d

Sample Concentration Formula: On-Column Amount * DF * Uf * Vt/(Vo * Vi)

Matrix: WATER

GPC Cleanup: No

Dilution Factor (DF):

Unit Correction Factor (Uf): 1

Volume Injected (Vi): 1 ul

Sample Volume (Vo): 954.0 ml Final Extract Volume (Vt): 1000 ul

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Area)	Conc(ng/ul)	QC Flag
			=======	=======================================		**=======
20) 1,4-Dichlorobenzene-d4	3.966(0.000)	372	152.0	193826(-20)	40.00	
47) Naphthalene-d8	5.116(0.000)	559	136.0	792724 (-23)	40.00	
85) Acenaphthene-d10	6.794 (0.000)	832	164.0	472923 (-24)	40.00	
125) Phenanthrene-d10	8.233(0.000)	1066	188.0	957435(-23)	40.00	
156) Chrysene-d12	10.809(0.000)	1485	240.0	983364(-23)	40.00	
167) Perylene-d12	12.199(0.000)	1711	264.0	981067(-18)	40.00	

= RETENTION TIME OUT OF RANGE

* = INTERNAL STANDARD OUT OF RANGE

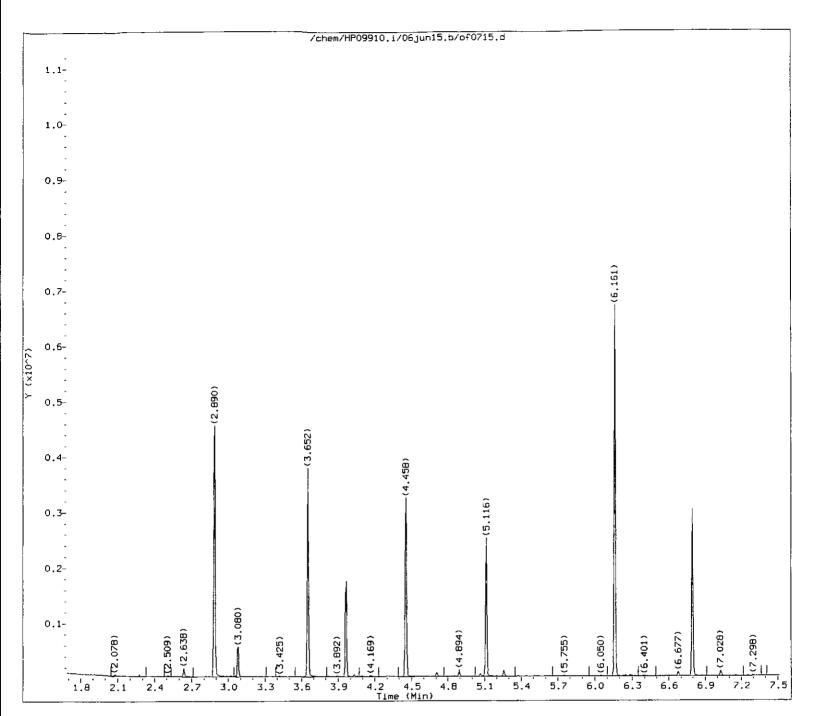
NC = NOT ABLE TO CALCULATE

	I.S.				Conc.	QC	
Surrogate Standards	Ref.	RT (+/-RRT)	QIon	Area	(on column)	%Rec. flags	QC Limits
	=====	=================					==========
35) Nitrobenzene-d5	(2)	4.458(0.000)	82	1094570	90.644	91%	51 - 123
71) 2-Fluorobiphenyl	(3)	6.161(0.000)	172	1529168	97.078	97₺	64 - 112
147) Terphenyl-d14	(5)	9.819(0.000)	244	2138812	111.085	111%	52 - 151

= RELATIVE RETENTION TIME OUT OF RANGE

* = PERCENT REC.OUT OF RANGE

D = DILUTED OUT


NC = NOT ABLE TO CALCULATE

	I.S.					Conc.	Conc.	Blank		Reporting
Target Compounds	Ref.	RŢ	(+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual.	Limit (ng/ul)
====================================	======		=========	=====		==========	********	=======		=======================================
19) 1,3-Dichlorobenzene	(1)				Belo	w MDL, Do not	report			1.00
21) 1,4-Dichlorobenzene	(1)				Belo	w MDL, Do not	report			1.00
25) 1,2-Dichlorobenzene	(1)				Belo	w MDL, Do not	report			1.00
E = CONC. OUT OF CAL. RANGE	# = I	RELAT	IVE RETENT	ON TIM	E OUT OF R	LANGE				

Total number of targets = 3

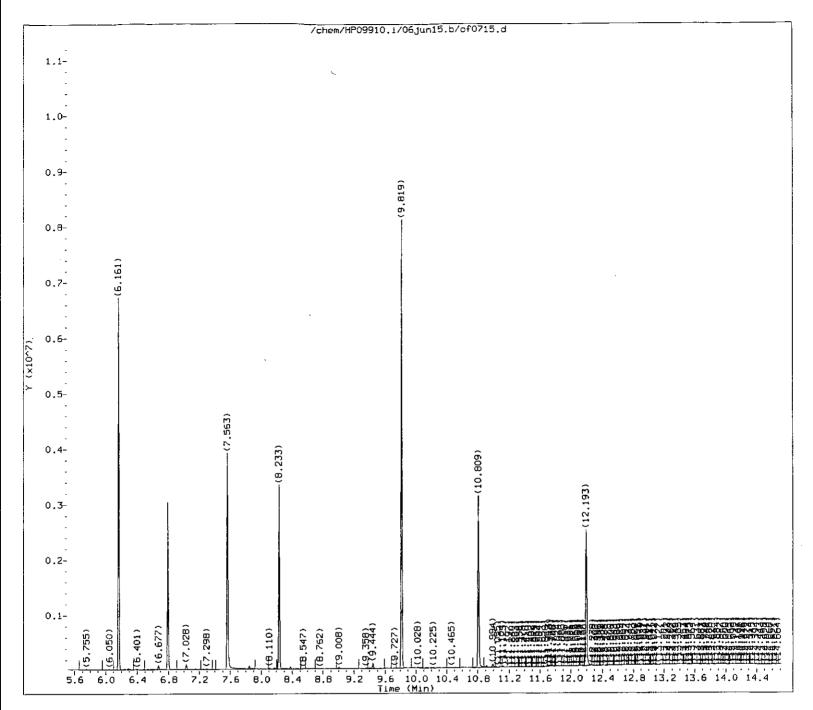
Comments: Analyst: Auditor:

Page 1 of 1

Quant Report

Target Revision 3.5

Data File: /chem/HP09910.i/06jun15.b/of0715.d Injection date and time: 15-JUN-2006 14:14


Instrument ID: HP09910.i Analyst ID: rpb01568

Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 12:03
Date, time and analyst ID of latest file update: 15-Jun-2006 16:16 lmh00956

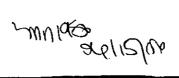
Sample Name: OR3 --

Lab Sample ID: 4791570

MN PPEO IS Jav

Quant Report

Target Revision 3.5


Data File: /chem/HP09910.i/06jun15.b/of0715.d Injection date and time: 15-JUN-2006 14:14

Instrument ID: HP09910.i Analyst ID: rpb01568

Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 12:03
Date, time and analyst ID of latest file update: 15-Jun-2006 16:16 lmh00956

Sample Name: OR3--Lab Sample ID: 4791570

€36T

Target Revision 3.5

Data File: /chem/HP09910.i/06jun15.b/of0715.d Instrument ID: HP09910.i Injection date and time: 15-JUN-2006 14:14 Analyst ID: rpb01568

Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 12:03
Date, time and analyst ID of latest file update: 15-Jun-2006 16:16 lmh00956

Sample Name: OR3-- Lab Sample ID: 4791570

	Compounds	I.S. Ref.	ŔŢ	QIon	Area	Conc. (on column)
====	=======================================	======	=====	======	========	=========
20)	1,4-Dichlorobenzene-d4	(1)	3.966	152	193826	40.000
47)	Naphthalene-d8	(2)	5.116	136	792724	40.000
85)	Acenaphthene-d10	(3)	6.794	164	472923	40.000
125)	Phenanthrene-d10	(4)	8.233	188	957435	40.000
156)	Chrysene-d12	(5)	10.809	240	983364	40.000
167)	Perylene-d12	(6)	12.199	264	981067	40.000
35)	Nitrobenzene-d5	(2)	4.458	82	1094570	90.644
71)	2-Fluorobiphenyl	(3)	6.161	172	1529168	97.078
147)	Terphenyl-d14	(5)	9.819	244	2138812	111.085

M = Compound was manually integrated.

Standards Data

SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

T-L N0.	Tancastor	Laboratories	Contract:	
Lab Name:	Lancaster	Panoracories	- CONET MCC :	_

Calibration Times: 23:13

01:39

Min \overline{RRF} for SPCC(#) = 0.050 Max %RSD for CCC(*) = 30%

	- 60 (77		DDF1	5 = of(1676 d	RRI	30 = 01	E0675.d	_ 	
DAB LIBS IV.	of0677		DDF1	120 = 010	F0673.d	• • • • • • • • • • • • • • • • • • • •			Ì	
RRF50 = of0674.d $RRF80$	= of0673	1.0	KKr.	120 - 01	.00,5.4					
	1	I	i		1			1 I	8	CAL.
	RRF5	IRREIS	IRRE30	RRF50	RRF80	RRF120	RRF			METHOD
COMPOUND	KKF			=====	 ======		=====	======	====	======
	1	i L	! !	i	i İ	I		0.0001		
1,4-Dioxane	1 1 343	1.553	1.641	1.769	1.730	1.675		1.619		
N-Nitrosodimethylamine	2 399	2.769	2.989	2.936	3.039	2.786	1	2.820		
Pyridine	1 2 405	2.755	2.581	2.754	2.750	2.674	}	1 2.6531	5	
2-Picoline	* 3.027	3.531	3.504	3.634	3.523	3.563	1	3.4641		_
Phenol	1 3 736	4.125	4.140	4.181	4.175	4.178	l	1 4.0891		
Aniline bis(2-Chloroethyl)ether	1 2.281	2.552	2.473	2.497	2.517	2.461	!	2.463		
2-Chlorophenol	ı 1 325	1.1.507	1.531	1.559	1.540	1.506	j	1.495		
	1 1.485	1.620	1.571	1.550	1.568	1.543	l	1.556		
1,3-Dichioropenzene 1.4-Dichlorobenzene	* 1 565	L 1.604	1.611	1.628	1.622	1.585	Į.	1.602	_	•
Benzyl alcohol	1 1 325	1 1.461	i 1.503	1.616	1.597	1.563	Ţ	1.511		
1.2-Dichlorobenzene	1.1.407	1.581	1 1.548	1.563	1.526	1 1.524	l	1.524	_	AVG
2-Methylphenol	: 1.875	1 2.183	2.145	2.165	2.129	2.149		2.108	_	AVG
2,2'-oxybis(1-Chloropropane)	1.3.713	1.860	1.841	1.840	1.873	1.819		1 1.824	_	
	1.1.713	1.860	1.841	1.840	1.873	1.819	ļ	1.824	_	•
	1 2.742	1.3.111	1 3.116	3.159	3.076	3.111	ļ	3.052	_	•
	# 1.845	1 2.138	1 2.023	2.060	2.021	1.998	I	1 2.014		
N-Nitroso-di-n-propylamine 4-Methylphenol	1 2.079	1 2.435	2.443	2.487	2.445] 2.429	l	1 2.386	_	•
o-Toluidine	1.3.170	1 3.614	1 3.460	3.592	3.532	3.544	ļ	3.485		
	1.0.630	1 0.671	1 0.707	; 0.699	1 0.709	0.695	í	0.685		`
Hexachioroethane Nitrobenzene	10.601	1 0.672	0.642	1 0.656	0.654	0.645	1	0.645		•
Isophorone	1 1.183	1 1.320	1.265	1.306	1.307	1.287	1	1.278	•	
150phorone 2-Nitrophenol	* 0.123	1 0.155	0.159	0.159	0.159	0.158	ł	0.152	_	•
2.4-Dimethylphenol	1 0.448	10.537	0.512	1 0.528	1 0.533	0.519	1	0.513		•
bis(2-Chloroethoxy)methane	1 0.597	1 0.678	0.622	1 0.632	0.657	1 0.652	I	0.640		•
Benzoic acid	1 0.243	0.304	0.303	0.327	0.345	0.358	I	0.313		
2,4-Dichlorophenol	* 0.257	1 0.279	1 0.269	0.285	0.283	0.28/	1	0.277		•
1 1,2,4-Trichlorobenzene	1 0.294	0.333	(0.311	1 0.304	0.311	0.305	1	0.310		•
Naphthalene	1 1.081	1.174	1 1.142	1.141	1 1.158	1 1.144	1	1.140		•
4-Chloroaniline	1 0.439	1 0.496	0.478	0.484	0.486	(0.477		1 0.477		
2,6-Dichlorophenol	1 0.245	1 0.259	□ 0.263	0.265	0.263	1 0.268	l	0.261	-	
Hexachlorobutadiene	* 0.164	+ 0.187	I 0.178	0.17B	0.183	0.174	1	0.177		
Ouinoline	1.0.708	11 0.770	+ 0.745	1 0.779	1 0.757	1 0.762	1	0.753	, -	AVG
Caprolactam	1 0.158	0.190	0.188	0.190	i 0.180	I) 0.186	1	0.182		
4-Chloro-3-methylphenol	* 0.376	1 0.450	0.447	0.466	6 0.462	! 0.470	'l	0.445		
1 2-Methylnaphthalene	1 0.681	1 0.755	0.736	0.762	! 0.754	0.744	Į.	0.739		
1-Methylnaphthalene	1 0.639	0.698	II 0.669	1 0.687	1 0.703	SI 0.686	· }	0.680		
Hexachlorocyclopentadiene	# 0.176	0.232	0.241	. 0.250	0.285	0.265	· I	0.241		•
1,2,4,5-Tetrachlorobenzene	1 0.481	0.526	0.529	0.515	0.549) 0.520	11	0.520	-	
2,4,6-Trichlorophenol	* 0.264	ii 0.291	. 0.305	0.307	0.318	0.308	.!	0.299	•	
2,4,5-Trichlorophenol	0.359	0.363	1 0.372	! 0.370	0.387	0.386	1	0.373	· _	•
Biphenyl	1 1.450) 1. 56 3	1.561	1.523	31 1.568	11 1.515	1	1.531		•
Diphenyl	1.450	1.563	1.561	. 1.523	1.568	1.519	1	1.531	•	•
1,1'-Biphenyl	1.450)ı 1.563	3 1.561	1.523	3 1.568	3 1.519	1	1.531		
2-Chloronaphthalene	i 1.378	3 1.476	1.268	3 1.255	5 1.199	9 1.435)	1 1.335	· _	•
1-Chloronaphthalene	1 1.008	3 1.139	1.095	i 1.083	3 1.215	5 1.09:	3	1 1.106	-	•
Diphenyl ether	1 0.802	21 0.835	0.824	1 0.825	0.B47	7 0.823	3	0.826		
2-Nitroaniline	-1.0.334	11 0.391	1 0.400) 0.408	3 0.419	9 0.414	f	0.395		•
Dimethylphthalate	1.214	11 1.347	7 1.341	L 1.343	3 1.376	3 1.357	11	1 1.330		•
2,6-Dinitrotoluene	1 0 263	31 0.2B8	31 0.29	71 0.307	7 0.309	9 0.309)	0.296	-	•
Acenaphthylene	1 1.670	1.864	1 1.89	L 1.878	3 1.929	9 1.89€) l	1.855		•
3-Nitroaniline	0.268	31 0.34	1 0.368	0.359	9 0.363	3 D. 360	71	0.343	11	AVG
1	1	1	1		_l	_!	.١	_'	ــــــــــــــــــــــــــــــــــــــ	.'

Not Vallo: Hexplorano lanzane

page 1 of 3

FORM VI SV-1

6C SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: Lancaster Laboratories Contract:

Lab Code: LANCAS Case No.:____ SAS No.:____ SDG No.:____

Instrument ID: HP09910 Calibration Date(s): 06/14/06

06/15/06

Calibration Times: 23:13

01:39

Min \overline{RRF} for SPCC(#) = 0.050 Max %RSD for CCC(*) = 30%

AD [188 10.	of0677.			15 = of(120)		RRF	30 = 01	f0675.d	i	
RRF50 = of0674.d $RRF80$	= of0673	l.a	RRFI	120 = 01	.0013.4				1_	
		ı <u>-</u>							₽	CAL.
ee. Borns	RRF5	DDDIE	ו מבשמחו	RRF50	RRF80	RRF120	RRF	RRF I	RSD	METHO
COMPONE	=====	======	=====	=====	======	=====	======	======	====	======
	* 1.097	1.213	1.199	1.177	1.241	1.218;		1 1.1311	4	AVG
Acenaphthene	# n n64	0.079	0.088	1 0.097	0.117	0.116		0.0931	22	
2,4-Dinitrophenol	1.0.512	1 0.533	1 0.524	0.531	0.532] 0.5251		0.5261	2	
Pentachlorobenzene	A 0 205	1.0.255	1 0.252	0.259	0.248	0.255		0.246	8	
1-Nitrophenol	1 1 723	1.851	1.787	1.817	1.869	1.839		1.814	3	
Dibenzofuran	0 264	0.357	0.376	0.392	0.394	0.395		0.3631	14	•
2,4-Dinitrotoluene	0.900	1.237	i 1.259	1.245	1.214	1.233		1.181	12	•
l-Naphthylamine	0.300	1 0 239	0.235	0.250	0.269	0.264		[0.243]	10	
2,3,4,6-Tetrachlorophenol	1 1 065	1 1 288	1.281	1.253	1.271	1.276		1.2391	7	•
2-Naphthylamine	1 1 210	1 1 397	1 1 370	1.421	i 1.440	1.423		1.375	6	
Diethylphthalate	1 1.210	1 1 466	1 1.436	1 1.475	1.511	1.497		1.453	4	•
Cluorene	1 0 669	1 0 714	1 0 709	0.696	0.720	0.702		1 0.7021	3	AVG
-Chlorophenyl-phenylether	0.669	1 0.711	1 0 410	0.418	0.401	0.406		0.3941	8	AVG
-Nitroaniline	0.334	1 0.333	1 0.710	1 0.075	0.083	0.082	l I	0.0681	21	1STD
1,6-Dinitro-2-methylphenol	1 0.047 * 0.481	1 0 524	1 0.500	0.511	0.527	0.515	ĺ	0.5131	3	AVG
N-Nitrosodiphenylamine (1)	. 0.401	1 1 124	1 1 133	1 1 116	1 180	1.140	i	1.121	5	AVG
l,2-Diphenylhydrazine	1 1.019	1 1.134	1 0 664	0 661	0 699	0.655	İ	0.6541	6	AVG
Phorate	1 0.584	1 0 302	0.004	1 0.001	1 0 203	0.193	ì	0.194	5	AVG
4-Bromophenyl-phenylether	0.181	1 0.207	0.100	1 0.131	0.200	0.223	i	i 0.226	2	AVG
lexachlorobenzene	0.218	1 0.232	1 0.231	1 0.224	0.223	0.111	i I	1 0.099	13	AVG
Pentachlorophenol	* 0.078	1 0.093	1 0.090	1 1 054	1 1 059	1.045	i i	1.038	4	AVG
Phenanthrene	1 0 957	1 1.069	1 1.042	1 0 103	1 0 121	0 119	!	0.091		ISTD
Dinoseb	0.049	1 0.069	1 1 000	1 1 005	1 1 100	0.119	i I	1 1.072		AVG
Anthracene	0.948	1.106	1 1.090	1 1 050	1 1 063	1 1.093	1	1.040		AVG
Carbazole	0.930	1.053	1 1.077	1 0 050	1.003	1.057	1	0.250		•
Methyl parathion	0.200	0.26/	0.264	1 0.250	1 0.270	0.242	1	0.260		AVG
Ronnel	0.236	0.281	1 0.265	1 0.239	1 1 224	0.249	1	1.153	' <u> </u>	AVG
Di-n-butylphthalate	0.996	1.141	1.161	1.190	1 0 100	1.197	1	0.173	•	•
Parathion	0.128	0.173	0.177	0.184	1 0.109	0.185	1	1 1.281		•
Fluoranthene	* 1.122	1.318	1.316	1 1.317	1.298	1.316	1	0.583	•	,
Benzidine	1 0.439	0.621	0.617	1 0.627	1 0.610	0.585	ļ	1 1.190	` _	
Pyrene	1 1.021	1.202	1.183	1.228	1 1.2/2	1.236	 	1 0.497		i AVG
Butylbenzylphthalate	0.426	0.496	0.497	0.509	1 0.536	0.520	!		' -	I AVG
3,3'-Dichlorobenzidine	0.387	1 0.448	0.453	0.457	0.459	0.454)	:	•	I AVG
Benzo(a)anthracene	; 1.063	1 1.175	1.133	1.160	1.201	1.179	!			
Name by a median gano	0.008	0.008	1 0.010	0.010	0.011	0.011	!	1 0.010		1 AVG
nexabromobenzene 4,4'-Methylenebis(2-Chloroani	1 0.198	0.215	0.219	0.227	0.229	0.221	<u> </u>	0.218		1
Chrysene	1 1.030) 1.152	1 1.109	11 7.744	: T.I.O	1 1 1 2 2 2 3	•	1.119	•	AVG
bis(2-Ethylhexyl)phthalate	0.594	0. 6 61	. 0.663	1 0.70	0.763	0.724	!		•	I AVG
6-Methylchrysene	0.761	. 0.835	i 0.824	0.836	0.862	0.856	!	0.830	1	
D:	* 0.932	2 1.142	2 1.173	3 1.234	1.320	1.309	1	1.185		¡ AVG
7,12-Dimethylbenz[a]anthracer	ne 0.380) 0.598	3 0.583	11 0.598	0.621	0.607	!	0.565		
Benzo(b) fluoranthene	1 1.055) 1,215	1 1.2/5	1 1.27) I T. 200	11 1.500	1	1.245		AVG
Benzo(k) fluoranthene	1 1.164	11.384	1.311	. 1.356	i 1.310) 1.405	· I	1 1.322		' :
Benzo(a) pyrene	* 1.053	3 1.212	2] 1.191	1.215	5 1.244	1 1.241		1 1.193		,
3-Methylcholanthrene	1.0.571	LI 0.677	7] 0.669	0.683	31 0.700) 0.691	,	0.665	•	AVG
Dibenz(a, h) acridine	1 0.766	51 0.962	2 0.995	1.033	3 1.074	1.081	1	0.985		•
Dibenz(a,j)acridine	1 1.001	1 1.200) 1.155	1.182	.) 1.184	1.158	· I	1.146	' -	AVG
Indeno(1,2,3-cd)pyrene	1 1.165	51 1.375	1.364	1.413	. 1.414	1.412	:1	1.357	_	AVG
Dibenz (a, h) anthracene	1.0.923	31 1.098	1.088	3 1.10	7 1.128	3 1.116	1	1 1.077		
Danas (- h ilmarulana	1 1 008	1.198	31 1.144	II 1.170	5 1.193	3 1.196	1	1.152	:	AVG
======================================	- ======	- ======			= ======	= ======	: =====	= =====	•	•
2-Fluorophenol	t 1.651	71 1.763	l 1.827	71 1.82	oj 1.790) I.OUS	'	1 1.779		AVG
Phenol-d5	1 2 620	9 3.04	11 2 974	11 3 070	01 3.013	31 3.025	51	2.959	† 6	[AVG

⁽¹⁾ Cannot be separated from Diphenylamine

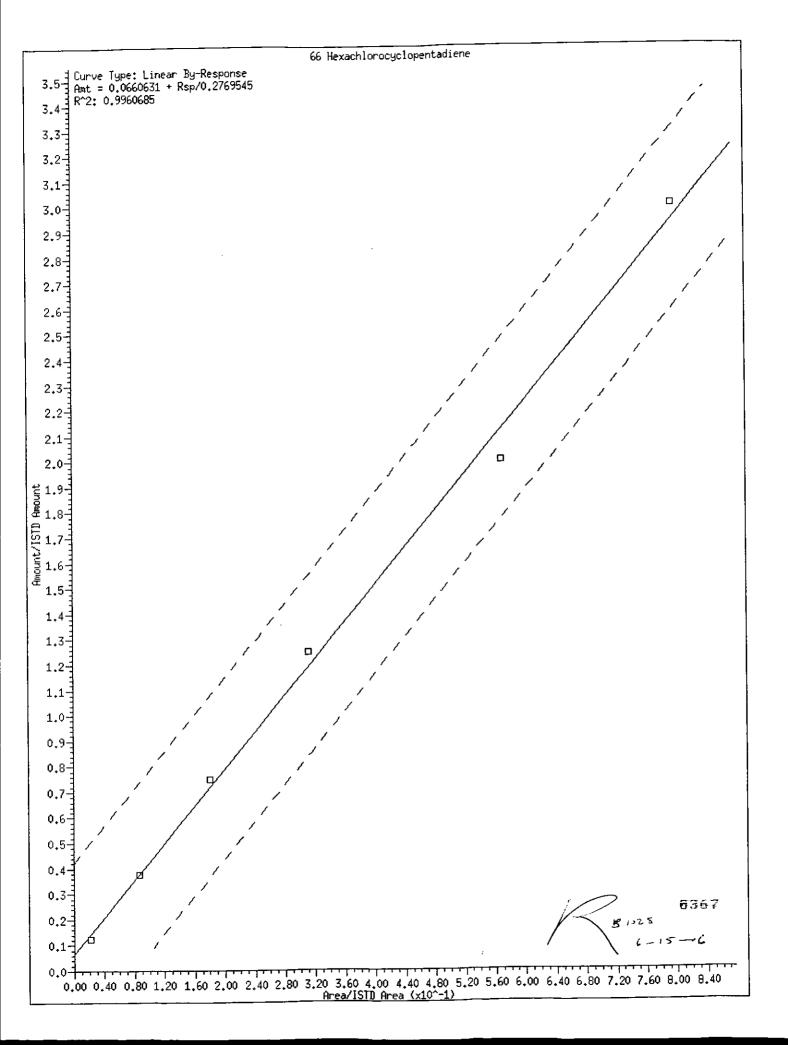
FORM VI SV-1

SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: Lancaster Lab	oratories Contr	act:		
Lab Code: LANCAS Ca	se No.: SAS	No.: SDG N	No.:	
Instrument ID: HP09910	Calibration Date	e(s): 06/14/06	06/15/06	
-1	Calibration Tim	es: 23:13	01:39	
Min RRF for SPCC(#)	= 0.050	Max %RSD for CCC(*)		
LAB FILE ID: RRF50 = of0674.d	RRF5 = of0677.d RRF80 = of0671.d	RRF15 = of0676 RRF120 = of067		i.d
	IRRF5 RRF15		80 RRF120 RRF RF	RF RSD METHOD

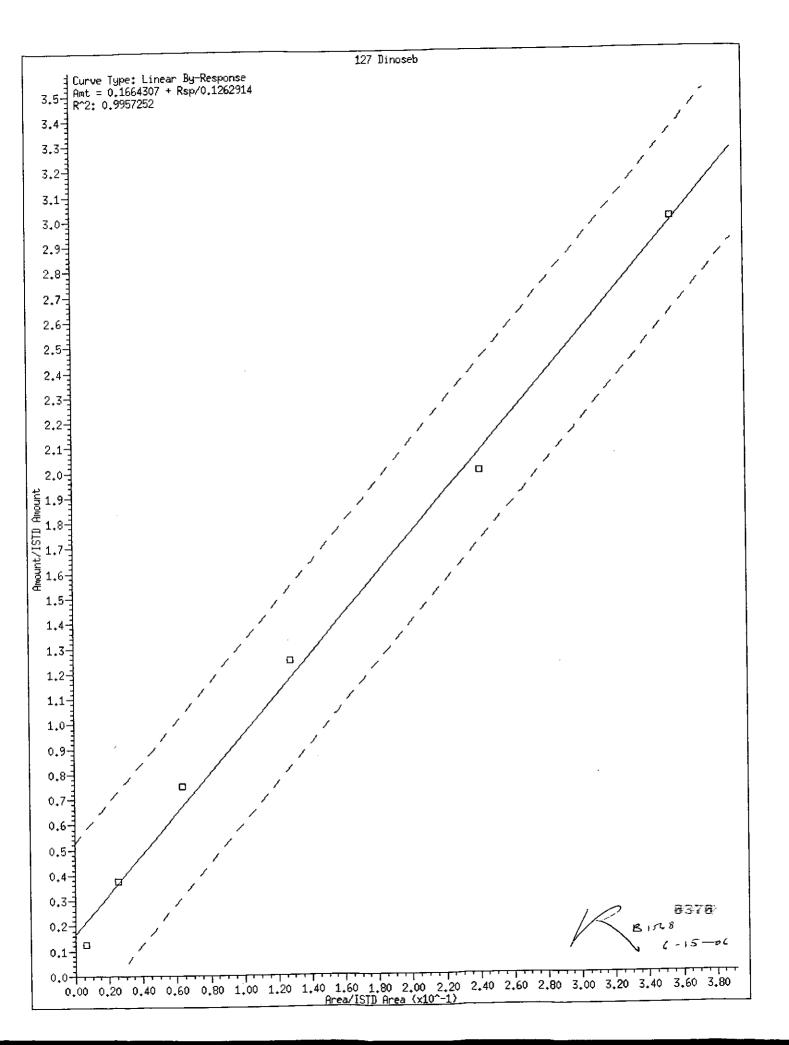
RRF50 = of0674.d RRF	30 = of067	t					ī	1	g	CAL.
COMPOUND	 RRF5 === =====	RRF15 =====	RRF30 =====	RRF50 =====	RRF80 =====	RRF120 =====	RRF =====	RRF =====	RSD =====	METHOD
Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol Terphenyl-d14	2.629 0.560 1.235	3.041 0 0.627 5 1.386	2.974 0.613 1.345 0.180 0.758	3.070 0.620 1.325 0.185	3.013 0.622 1.386 0.191	3.025 0.614 1.316 0.197	 	2.959 0.609 1.332 0.177 0.783 age %RSI	6 4 4 12 7	AVG AVG

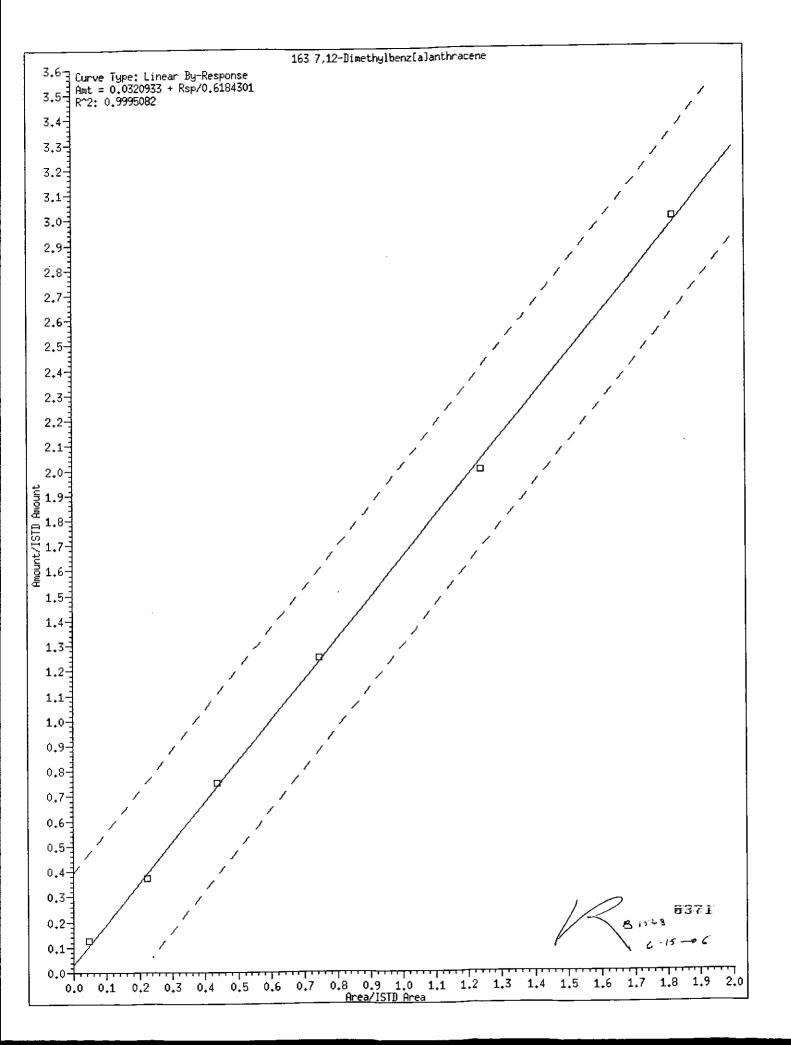
4,6-Dinitro-2-methylphenol and 4-Nitrophenol are at 10 ng/ul in the 5 standard.

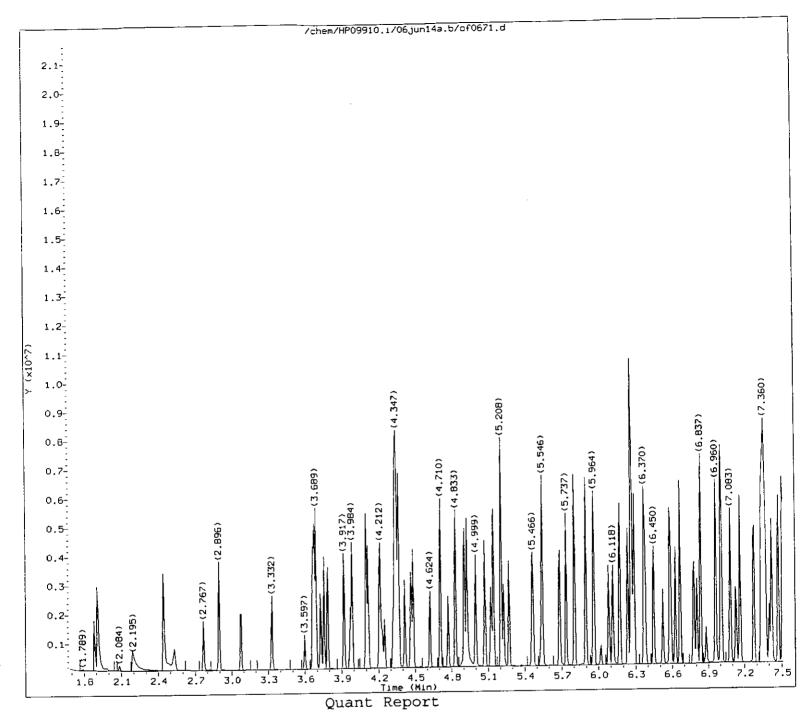

Benzoic acid, Pentachlorophenol and 2,4-Dinitrophenol are at 15 ng/ul in the 5 standard.


Benzidine Levels in the 5,15,30,50,80,120 standards are 15,45,90,150,240,360 ng/ul, respectively.

Benzoic acid, Pentachlorophenol and 2,4-Dinitrophenol are at 15 ng/ul, 30 ng/ul,40 ng/ul in the 5 ,150 34 is tandards.

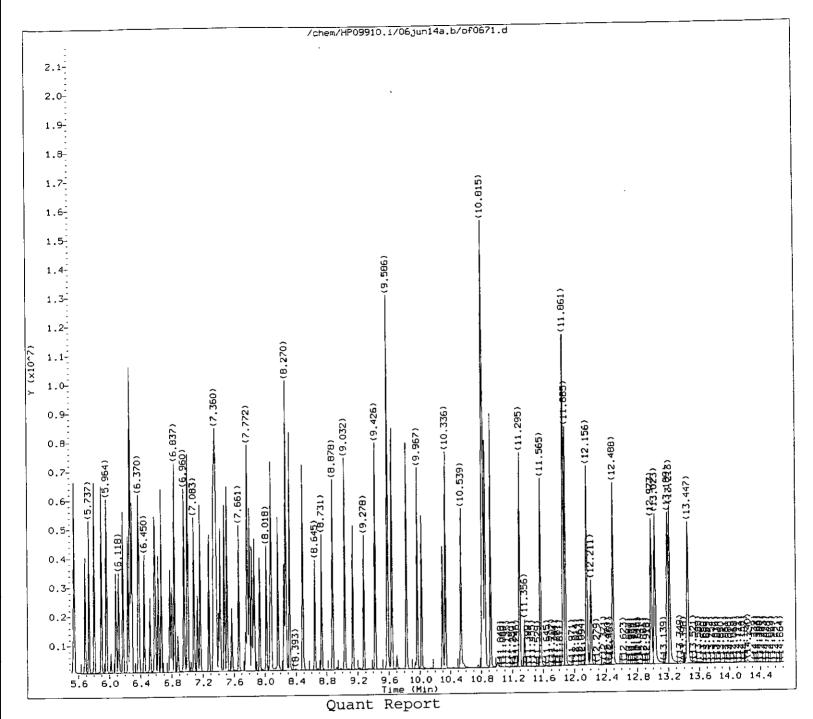

page 3 of 3


FORM VI SV-1



Target Revision 3.5

Data File: /chem/HP09910.i/06jun14a.b/of0671.d Injection date and time: 14-JUN-2006 23:13 Instrument ID: HP09910.i Analyst ID: 1mh00956


Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1

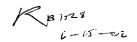
Calibration date and time: 15-JUN-2006 06:58 Date, time and analyst ID of latest file update: 15-Jun-2006 06:58 rpb01568

Lab Sample ID: STD1576 Sample Name: SSTD080

6372

6-15-06

Target Revision 3.5


Instrument ID: HP09910.i Data File: /chem/HP09910.i/06jun14a.b/of0671.d Injection date and time: 14-JUN-2006 23:13 Analyst ID: 1mh00956

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1

Calibration date and time: 15-JUN-2006 06:58

Date, time and analyst ID of latest file update: 15-Jun-2006 06:58 rpb01568

Lab Sample ID: STD1576 Sample Name: SSTD080

Target Revision 3.5

Instrument ID: HP09910.i Data File: /chem/HP09910.i/06jun14a.b/of0671.d Injection date and time: 14-JUN-2006 23:13 Analyst ID: 1mh00956

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006 06:58 Date, time and analyst ID of latest file update: 15-Jun-2006 06:58 rpb01568

Lab Sample ID: STD1576 Sample Name: SSTD080

_	I.S.	RT	QIon	Area	Conc. (on column)
Compounds	Ref.			========	=======================================
1) N-Nitrosodimethylamine 2) Pyridine 4) 2-Picoline 12) Phenol 13) Aniline 17) bis (2-Chloroethyl) ether 18) 2-Chlorophenol 19) 1,3-Dichlorobenzene 20) 1,4-Dichlorobenzene 20) 1,4-Dichlorobenzene 24) Benzyl alcohol 25) 1,2-Dichlorobenzene 26) 2-Methylphenol 27) 2,2'-oxybis (1-Chloropropane) 28) bis (2-Chloroisopropyl) ether 30) Acetophenone 31) N-Nitroso-di-n-propylamine 32) 4-Methylphenol 33) o-Toluidine 34) Hexachloroethane 36) Nitrobenzene 40) Isophorone 41) 2-Nitrophenol 42) 2,4-Dimethylphenol 43) bis (2-Chloroethoxy) methane 44) Benzoic acid 45) 2,4-Dichlorophenol 46) 1,2,4-Trichlorobenzene 47) Naphthalene 48) Naphthalene 49) 4-Chloroaniline 50) 2,6-Dichlorophenol 51) Hexachlorobutadiene 52) Quinoline 53) Caprolactam 60) 4-Chloro-3-methylphenol 61) 2-Methylnaphthalene 66) Hexachlorocyclopentadiene 67) 1,2,4,5-Tetrachlorobenzene 68) 2,4,6-Trichlorophenol 69) 2,4,5-Trichlorophenol	==(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	= 1.881 1.4477 8.68977724 1.6897737817230 37817230 37817230 42330 42333471 42330 433415 4341823 434183 4481713 4481939922 4233347 434183 4481939922 5588964 624688 62586 62688 6	74 793433862686855508667729973520688722593722111 10445550867729973520688722593722111114221996	706601 1241878 143868927 6242877 62407728667 20624445 65230812 7656329 7656329 7656329 7656329 1441969 277705041 4942877 144297 144297 144297 144297 144297 144297 144297 144297 1442977 14429 14429 1	85.521 86.218 82.308 81.679 82.406 81.726 82.400 80.981 80.981 80.981 80.819 82.141 80.2755 80.2755 81.9659 81.8954 81.8955 81.895

M = Compound was manually integrated.

Target Revision 3.5

Instrument ID: HP09910.i Data File: /chem/HP09910.i/06jun14a.b/of0671.d Injection date and time: 14-JUN-2006 23:13 Analyst ID: 1mh00956

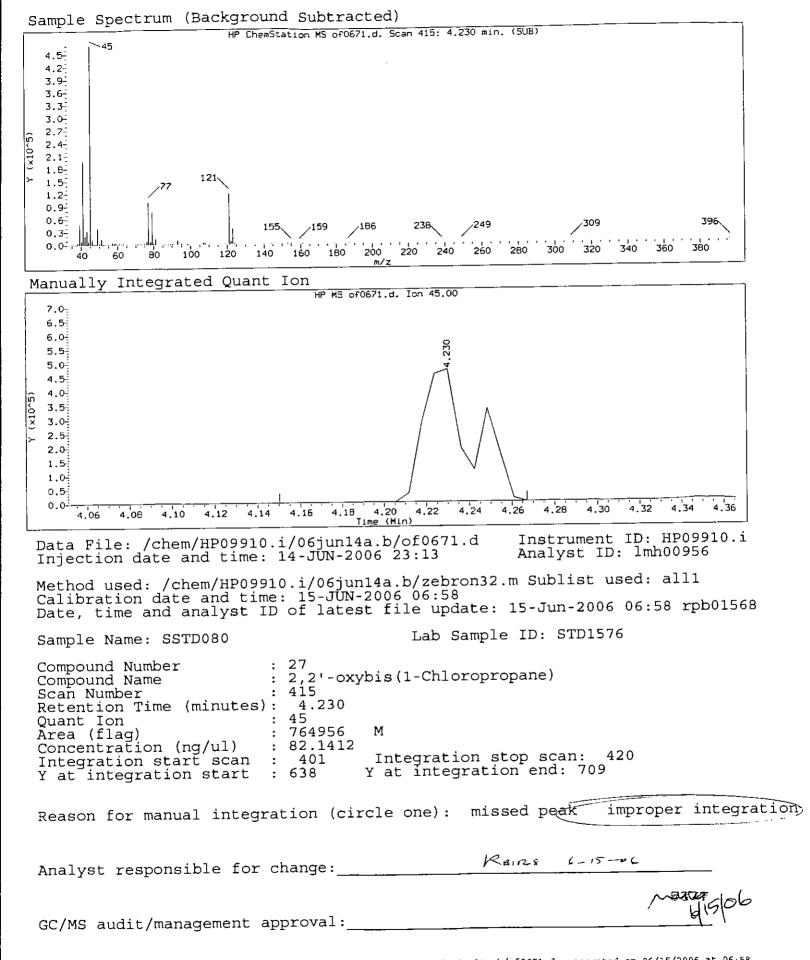
Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006 06:58 Date, time and analyst ID of latest file update: 15-Jun-2006 06:58 rpb01568

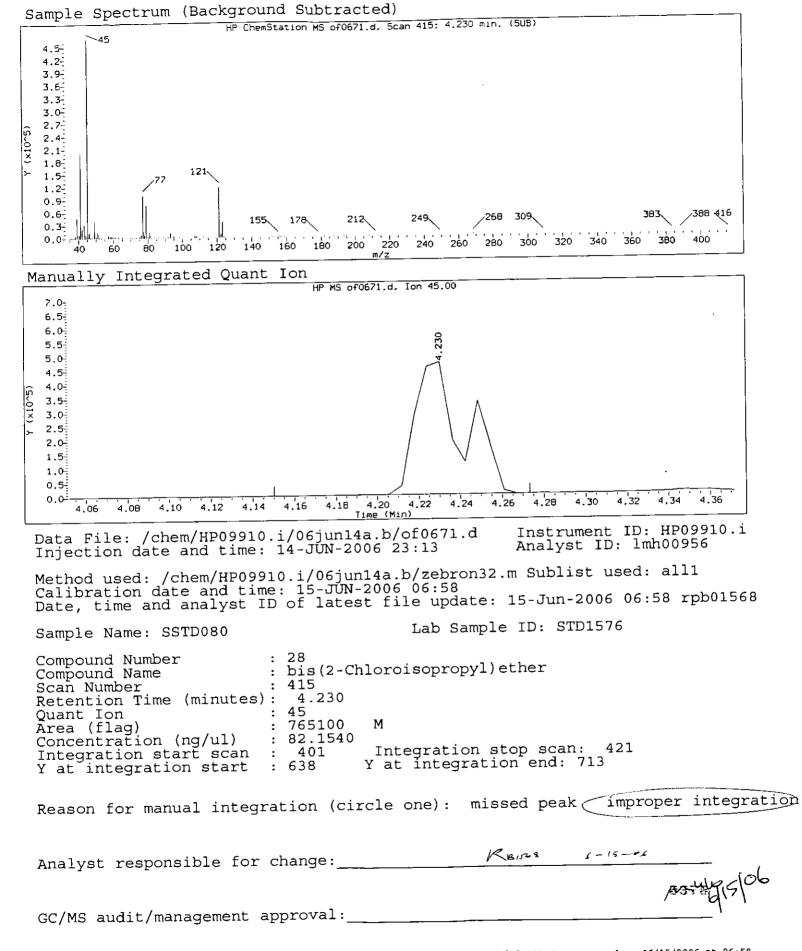
Lab Sample ID: STD1576 Sample Name: SSTD080

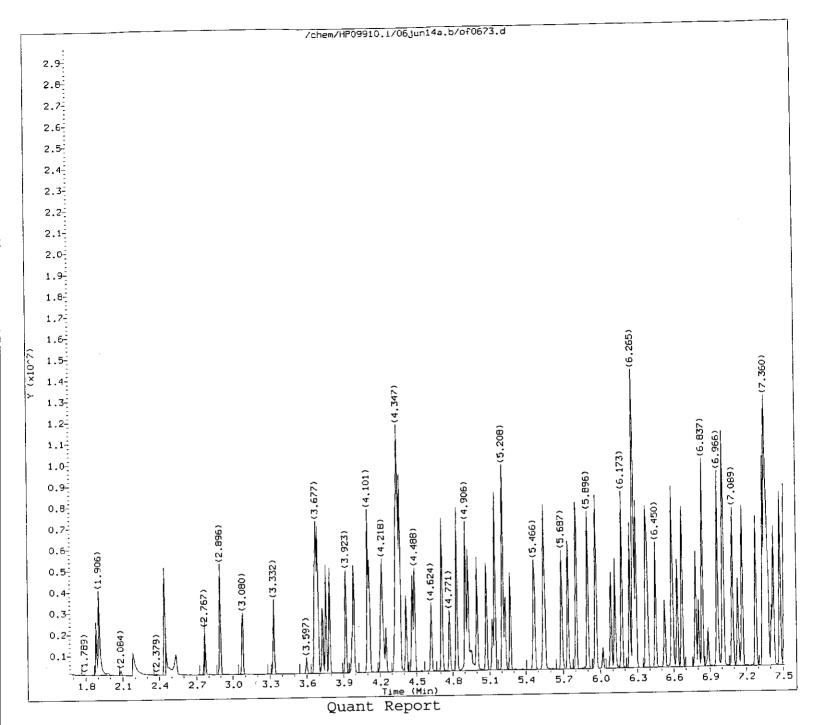
	Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
73) I 74) I 775) I 775) I 78823) I 789024) I 799024) I 799024) I 799024) I 799024) I 799024) I 799024) I 799024 I	Compounds ====================================	Re = (3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(===265510029852660353230603532307783647079551823666666666666666666666666666666666666	154 154 162 178 1652 1653 1653 1653 1653 1653 1653 1653 1653	======================================	
131) 133) 134) 137) 139) 142) 144)	Carbazole Methyl parathion Ronnel Di-n-butylphthalate Parathion	(4) (4) (4) (4) (4)	8.485 8.645 8.731 8.878 9.032	167 109 285 149 109	2302371 585605 584827 2672365 409168	81.765 86.381 83.096 85.573 87.523 81.053

M = Compound was manually integrated.

Target Revision 3.5

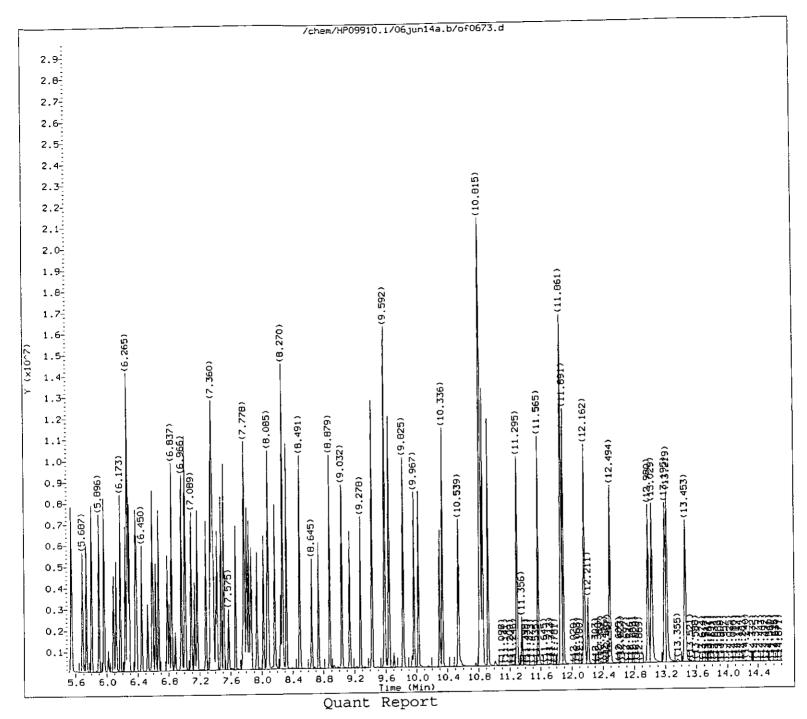

Instrument ID: HP09910.i Data File: /chem/HP09910.i/06jun14a.b/of0671.d Injection date and time: 14-JUN-2006 23:13 Analyst ID: 1mh00956


Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006 06:58 Date, time and analyst ID of latest file update: 15-Jun-2006 06:58 rpb01568


Lab Sample ID: STD1576 Sample Name: SSTD080

	.S. ef.	RT	QIon	Area	Conc. (on column)
Compounds ===================================	e=((((((((((((((((((((((((((((((((((((RT ====== 10.336 10.815 10.821 10.828 10.822 10.822 11.295 11.5661 11.854 11.885 12.121 12.488 12.973 13.023	QION ====================================	1215861 1041360 2723065 25368 520273 1133682 2603094 1730337 1954821 2934398 1379806 3068885 2913188 2766583 1111594 1555497 2387568 2632500 3142807	(on column) ====================================
165) Benzo(k)fluoranthene 166) Benzo(a)pyrene 167) Perylene-d12 168) 3-Methylcholanthrene 169) Dibenz(a,h)acridine 170) Dibenz(a,j)acridine	(6) (6) (6) (6) (6) (6)	11.885 12.156 12.211 12.488 12.973 13.023	252 264 268 279 279	2766583 1111594 1555497 2387568 2632500	83.474 40.000 84.170 87.219 82.630

M = Compound was manually integrated.


Target Revision 3.5

Instrument ID: HP09910.i Data File: /chem/HP09910.i/06jun14a.b/of0673.d Analyst ID: 1mh00956 Injection date and time: 15-JUN-2006 00:05

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1

Calibration date and time: 15-JUN-2006 06:58 Date, time and analyst ID of latest file update: 15-Jun-2006 06:58 rpb01568

Lab Sample ID: STD1576 Sample Name: SSTD120

Target Revision 3.5

Instrument ID: HP09910.i Data File: /chem/HP09910.i/06jun14a.b/of0673.d Injection date and time: 15-JUN-2006 00:05 Analyst ID: 1mh00956

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006 06:58

Date, time and analyst ID of latest file update: 15-Jun-2006 06:58 rpb01568

Lab Sample ID: STD1576 Sample Name: SSTD120

6336

4-15-06

Target Revision 3.5

Data File: /chem/HP09910.i/06jun14a.b/of0673.d Injection date and time: 15-JUN-2006 00:05 Instrument ID: HP09910.i Analyst ID: 1mh00956

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006 06:58 Date, time and analyst ID of latest file update: 15-Jun-2006 06:58 rpb01568

Lab Sample ID: STD1576 Sample Name: SSTD120

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
1) N-Nitrosodimethylamine 2) Pyridine 4) 2-Picoline 12) Phenol 13) Aniline 17) bis (2-Chloroethyl) ether 18) 2-Chlorophenol 19) 1,3-Dichlorobenzene 20) 1,4-Dichlorobenzene 20) 1,4-Dichlorobenzene 24) Benzyl alcohol 25) 1,2-Dichlorobenzene 26) 2-Methylphenol 27) 2,2'-oxybis(1-Chloropropane) 28) bis (2-Chloroisopropyl) ether 30) Acetophenone 31) N-Nitroso-di-n-propylamine 32) 4-Methylphenol 33) o-Toluidine 34) Hexachloroethane 36) Nitrobenzene 40) Isophorone 41) 2-Nitrophenol 42) 2,4-Dimethylphenol 43) bis (2-Chloroethoxy) methane 44) Benzoic acid 45) 2,4-Dichlorophenol 46) 1,2,4-Trichlorobenzene 47) Naphthalene 48) Naphthalene 49) 4-Chloroaniline 50) 2,6-Dichlorophenol 51) Hexachlorobutadiene 52) Quinoline 53) Caprolactam 60) 4-Chloro-3-methylphenol 61) 2-Methylnaphthalene 62) 1-Methylnaphthalene 63) Caprolactam 60) 4-Chloro-3-methylphenol 61) 2-Methylnaphthalene 62) 1-Methylnaphthalene 63) 1-Methylnaphthalene 64) 1-Zentrichlorobenzene 65) 1,2,4,5-Tetrachlorobenzene 66) 2,4,6-Trichlorophenol 69) 2,4,5-Trichlorophenol	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	= 1.94477977322013800537755807335099926849962746647833333333333344.2333537733509992688496627466478555555555555555555555555555555555	== 74 779 993 1262686855508677729735206887225937227115 107839735206887225937221115 1183221107221115	919478 19478 19478 129602 14683909 135838099 13526777 1870072 858727 1870072 858727 1870072 858724 1798403 1799603 17997026 133455457 1543009 13455457 1543009 13455457 12431163 855793 73976330 141067301 141067301 14251416 14251417 17972538 41277428 573499 22577428 573499 22577428 573499 22577428	124.168 118.569 120.955 123.459 122.612 119.893 118.977 40.000 118.689 124.136 119.826 122.334 119.619 119.616 122.299 119.616 122.151 122.015 122.015 122.332 136.877 121.516 122.332 136.879 118.382 40.000 120.441 120.441 120.441 120.942 131.908 121.311 122.348 120.894 120.942 131.908 121.908 121.908 121.908 121.908 121.908 121.908 121.908 121.908 121.908 121.908 121.908 121.908 121.908

M = Compound was manually integrated.

A = User selected an alternate hit

Conc

Target Revision 3.5

Instrument ID: HP09910.i Data File: /chem/HP09910.i/06jun14a.b/of0673.d Injection date and time: 15-JUN-2006 00:05 Analyst ID: 1mh00956

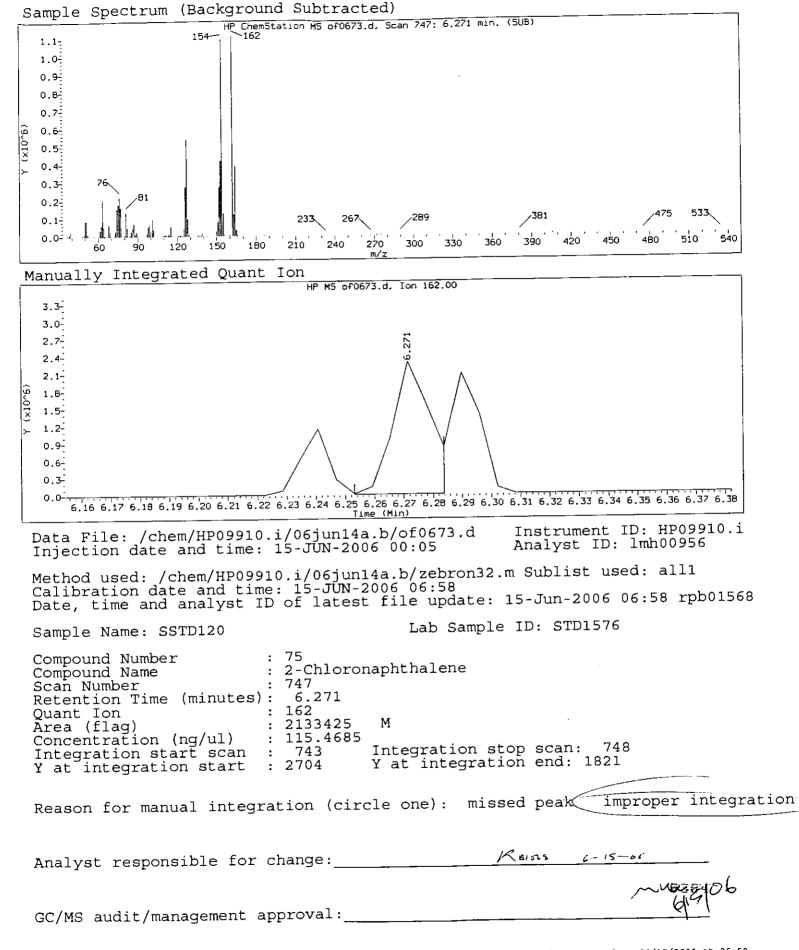
Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006 06:58 Date, time and analyst ID of latest file update: 15-Jun-2006 06:58 rpb01568

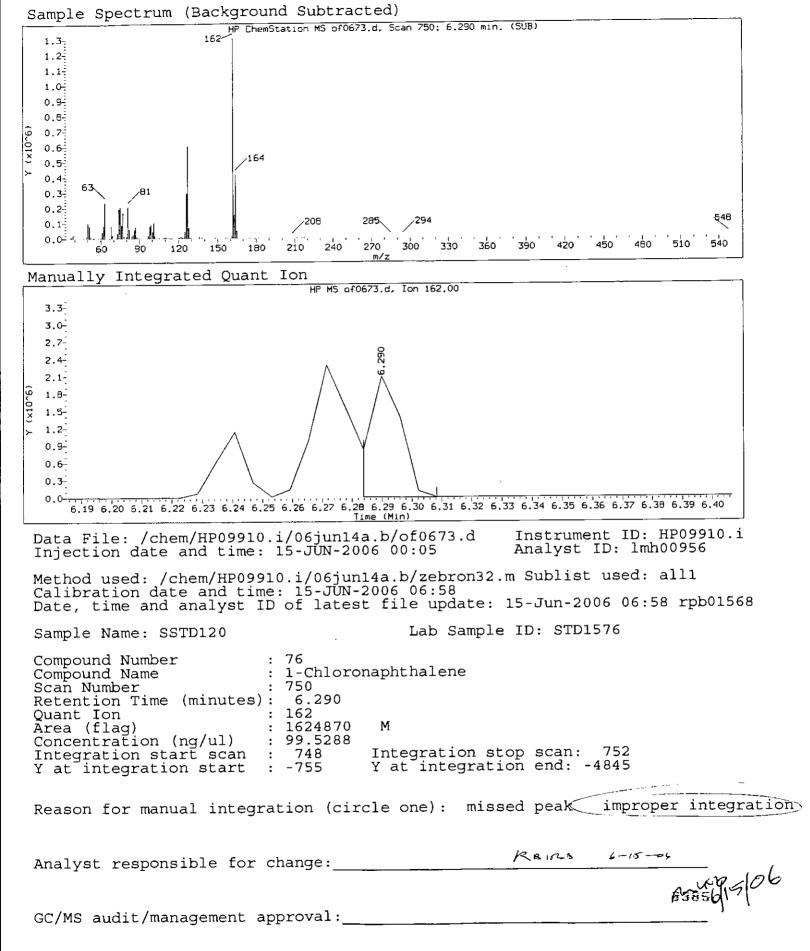
Lab Sample ID: STD1576 Sample Name: SSTD120

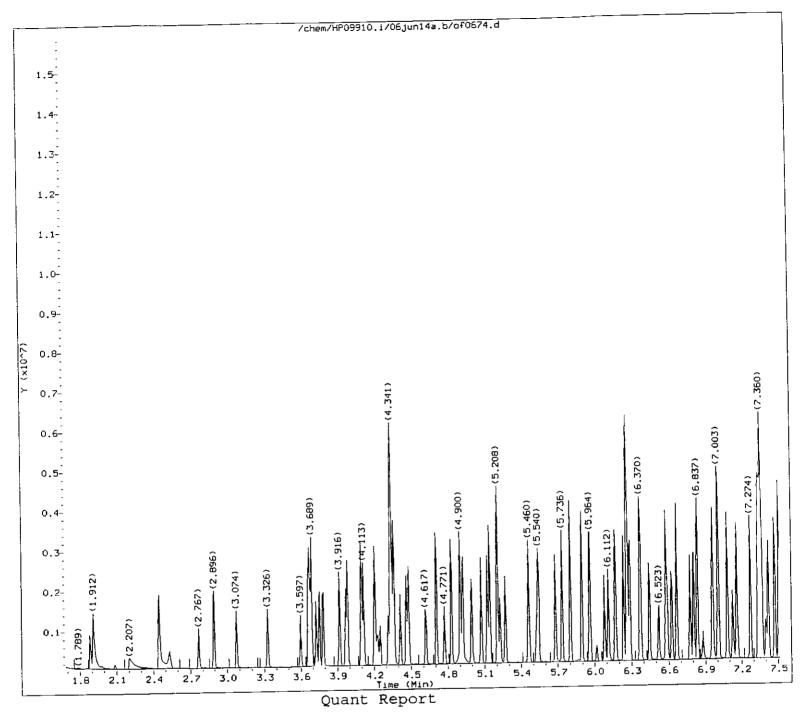
Compounds ·	I.S. Ref.	RT	QIon	Area	Conc. (on column)
Compounds ===================================	R = (((33))))))))))))))))))))))))))))))))	===265510002541026766669592901083974833077915198666959290188888888888888888999	======================================	======================================	(on column) ====================================
144) Benzidine 145) Pyrene	(5) (5)	9.592 9.641	184 202	5950298 4189090	124.590

M = Compound was manually integrated. A = User selected an alternate hit

Target Revision 3.5


Instrument ID: HP09910.i Data File: /chem/HP09910.i/06jun14a.b/of0673.d Injection date and time: 15-JUN-2006 00:05 Analyst ID: 1mh00956


Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006 06:58 Date, time and analyst ID of latest file update: 15-Jun-2006 06:58 rpb01568


Lab Sample ID: STD1576 Sample Name: SSTD120

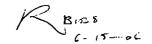
Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
148) Butylbenzylphthalate 153) 3,3'-Dichlorobenzidine 154) Benzo(a) anthracene 155) Hexabromobenzene 157) 4,4'-Methylenebis(2-Chlor 156) Chrysene-dl2 158) Chrysene 159) bis(2-Ethylhexyl)phthalate 160) 6-Methylchrysene 161) Di-n-octylphthalate 163) 7,12-Dimethylbenz[a]anthr 164) Benzo(b)fluoranthene 165) Benzo(k)fluoranthene 166) Benzo(a)pyrene 167) Perylene-dl2 168) 3-Methylcholanthrene 169) Dibenz(a,h)acridine 170) Dibenz(a,j)acridine 171) Indeno(1,2,3-cd)pyrene 172) Dibenz(a,h)anthracene 173) Benzo(g,h,i)perylene 7) 2-Fluorophenol 10) Phenol-d6 35) Nitrobenzene-d5 71) 2-Fluorobiphenyl 112) 2,4,6-Tribromophenol 147) Terphenyl-d14	(5) (5) (6) (6)	10.336 10.815 10.821 10.828 10.828 10.828 10.820 11.301 11.567 11.861 11.891 12.162 12.211 12.494 12.980 13.195 13.453 13.453 13.453 13.453 13.453 13.453 13.453 13.664 13.664 13.665 13.665 13.665 13.6664 13.665 1	149 2528 25310 2249 22531 2249 2252 22531 2249 2252 2277 2277 2277 2277 2273 249 249 2252 2277 2277 2273 249 249 249 2573 249 249 249 2573 249 249 249 2573 249 249 249 2573 249 249 2573 249 249 2573 2777 2777 2777 2777 2777 2777 2777	1763180 1537921 3997702 38632 759202 38632 71297202 2454954 29921640 2015640 2015640 2015640 2015640 2015640 2015640 2015640 2015621 3100021 3100021 3100021 310002 3100002 31000002 310000000000	125.502 122.902 122.857 138.905 121.582 40.000 121.550 126.973 123.850 132.554 129.104 121.700 127.567 124.888 40.000 124.625 131.629 121.251 124.878 124.370 124.551 122.036 122.702 122.702 122.702 120.921 118.538 133.110 125.531

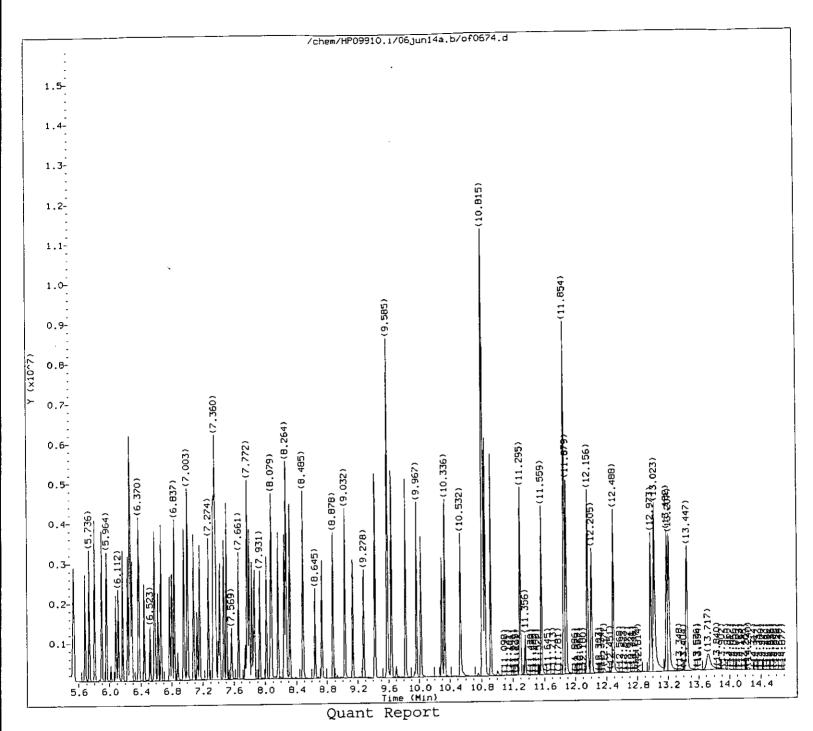
M = Compound was manually integrated.

Target Revision 3.5

Data File: /chem/HP09910.i/06jun14a.b/of0674.d Injection date and time: 15-JUN-2006 00:27

Instrument ID: HP09910.i Analyst ID: 1mh00956


Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006 06:58


Date, time and analyst ID of latest file update: 15-Jun-2006 06:58 rpb01568

Sample Name: SSTD050

Lab Sample ID: STD1576

9386

Target Revision 3.5

Data File: /chem/HP09910.i/06jun14a.b/of0674.d Instrument ID: HP09910.i Injection date and time: 15-JUN-2006 00:27 Analyst ID: lmh00956

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006_06:58

Date, time and analyst ID of latest file update: 15-Jun-2006 06:58 rpb01568

Sample Name: SSTD050 Lab Sample ID: STD1576

6387

RR128

Target Revision 3.5

Instrument ID: HP09910.i Analyst ID: lmh00956 Data File: /chem/HP09910.i/06jun14a.b/of0674.d Injection date and time: 15-JUN-2006 00:27

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006 06:58 Date, time and analyst ID of latest file update: 15-Jun-2006 06:58 rpb01568

Lab Sample ID: STD1576 Sample Name: SSTD050

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column) ==========
1) N-Nitrosodimethylamine 2) Pyridine 4) 2-Picoline 12) Phenol 13) Aniline 17) bis(2-Chloroethyl)ether 18) 2-Chlorophenol 19) 1,3-Dichlorobenzene 20) 1,4-Dichlorobenzene 20) 1,4-Dichlorobenzene 21) 1,4-Dichlorobenzene 24) Benzyl alcohol 25) 1,2-Dichlorobenzene 26) 2-Methylphenol 27) 2,2'-oxybis(1-Chloropropane) 28) bis(2-Chloroisopropyl)ether 30) Acetophenone 31) N-Nitroso-di-n-propylamine 32) 4-Methylphenol 33) o-Toluidine 34) Hexachloroethane 36) Nitrobenzene 40) Isophorone 41) 2-Nitrophenol 42) 2,4-Dimethylphenol 43) bis(2-Chloroethoxy)methane 44) Benzoic acid 45) 2,4-Dichlorophenol 46) 1,2,4-Trichlorobenzene 47) Naphthalene-d8 48) Naphthalene 49) 4-Chloroaniline 50) 2,6-Dichlorophenol 51) Hexachlorobutadiene 52) Quinoline 53) Caprolactam 60) 4-Chloro-3-methylphenol 51) Hexachlorobutadiene 62) 1-Methylnaphthalene 63) Caprolactam 60) 4-Chloro-3-methylphenol 61) 2-Methylnaphthalene 66) Hexachlorocyclopentadiene 67) 1,2,4,5-Tetrachlorobenzene 68) 2,4,6-Trichlorophenol 69) 2,4,5-Trichlorophenol	==(1) (11) (11) (11) (11) (11) (11) (11)	==127719776245531100051112233333333333333333333333333	== 74934338626868555086777297352068872593722766664	### 424377 704301 660584 871562 1098929 374720 1990517 38748294 3907565 3748294 441343 7574165 54879 374865617 168189 168189 168189 168189 168189 168189 168189 168189 168189 1885929 1885929 1885929 1885929 188757 189829 1897729 189829 189829 1897729 189829 189829 189753	======================================
· = /				_	2

M = Compound was manually integrated. A = User selected an alternate hit

Target Revision 3.5

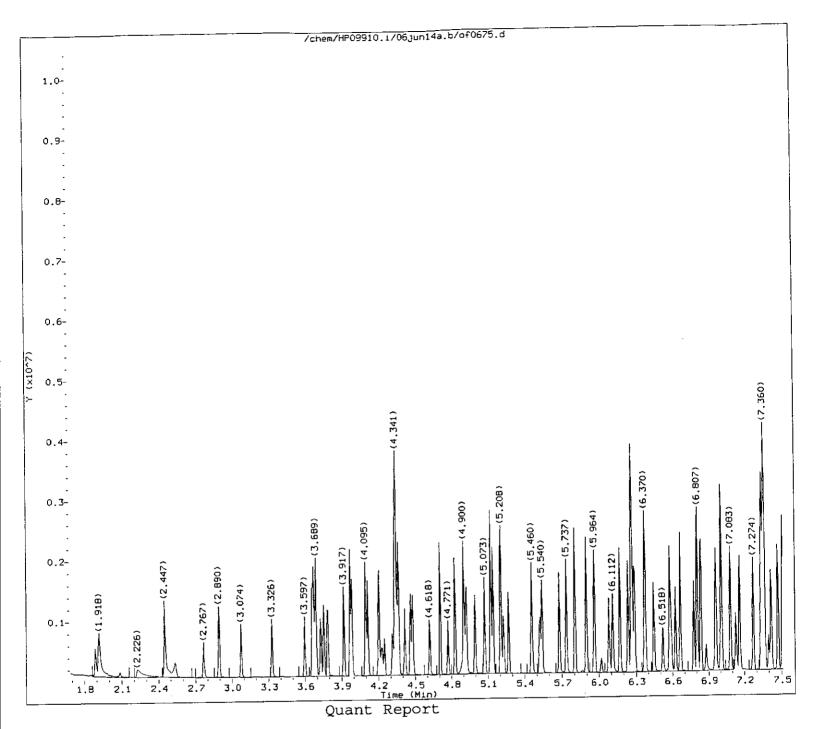
Instrument ID: HP09910.i Analyst ID: lmh00956 Data File: /chem/HP09910.i/06jun14a.b/of0674.d Injection date and time: 15-JUN-2006 00:27

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006 06:58
Date, time and analyst ID of latest file update: 15-Jun-2006 06:58 rpb01568

Lab Sample ID: STD1576 Sample Name: SSTD050

Compounds	I.S. Ref.	RТ	QIon	Area	Conc. (on column)
Compounds ===================================			======================================		49.763 49.763 49.763 42.082 49.794 51.495 51.6317 49.9537 40.95317 40.495 51.667797 51.667797 51.667797 51.667797 51.667797 51.667797 51.6779 51.733 49.5562 49.5562 49.5563 51.733 49.5562 51.733 49.5562 49.5563 51.733 51.414 5
144) Benzidine 145) Pyrene	(5) (5)	9.585 9.635	184 202	2874399 1877585	161.164 51.574

M = Compound was manually integrated.


Target Revision 3.5

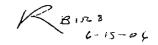
Data File: /chem/HP09910.i/06jun14a.b/of0674.d Injection date and time: 15-JUN-2006 00:27 Instrument ID: HP09910.i Analyst ID: 1mh00956

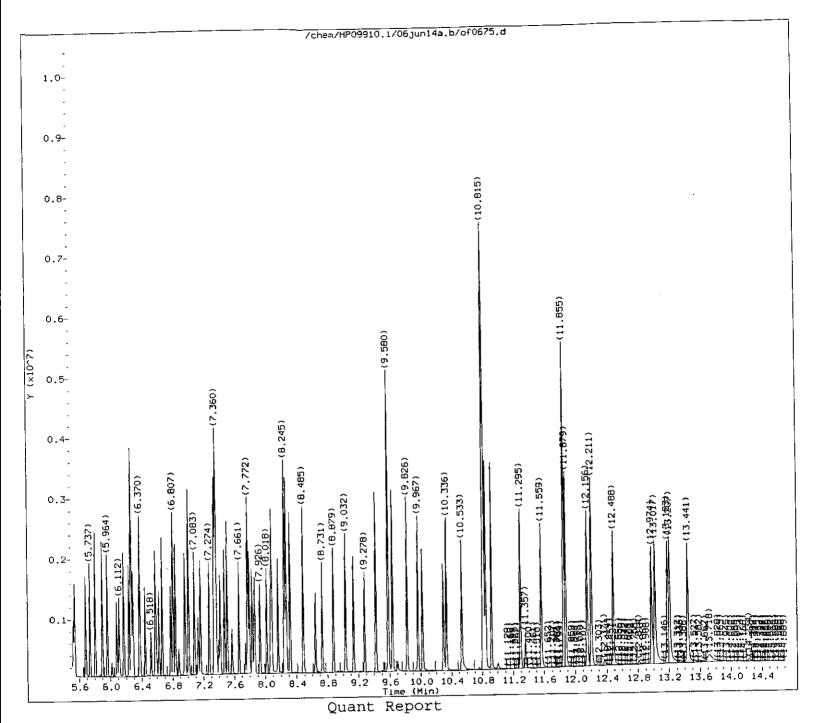
Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006 06:58 Date, time and analyst ID of latest file update: 15-Jun-2006 06:58 rpb01568

Lab Sample ID: STD1576 Sample Name: SSTD050

M = Compound was manually integrated.

Target Revision 3.5


Instrument ID: HP09910.i Data File: /chem/HP09910.i/06jun14a.b/of0675.d Injection date and time: 15-JUN-2006 00:55 Analyst ID: 1mh00956

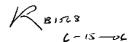

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1

Calibration date and time: 15-JUN-2006 06:58 Date, time and analyst ID of latest file update: 15-Jun-2006 06:58 rpb01568

Lab Sample ID: STD1576 Sample Name: SSTD030

6391

Target Revision 3.5


Instrument ID: HP09910.i Data File: /chem/HP09910.i/06jun14a.b/of0675.d Injection date and time: 15-JUN-2006 00:55 Analyst ID: 1mh00956

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006 06:58

Date, time and analyst ID of latest file update: 15-Jun-2006 06:58 rpb01568

Lab Sample ID: STD1576 Sample Name: SSTD030

3392

Target Revision 3.5

Instrument ID: HP09910.i Data File: /chem/HP09910.i/06jun14a.b/of0675.d Injection date and time: 15-JUN-2006 00:55 Analyst ID: 1mh00956

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006 06:58 Date, time and analyst ID of latest file update: 15-Jun-2006 06:58 rpb01568

Lab Sample ID: STD1576 Sample Name: SSTD030

	I.S.			7	Conc. (on column)
Compounds	Ref.	R T	QIon	Area	
Compounds ===================================	Re = (1) ((1) ((1)	= 888872445918644911991887245847199188724491199188724584719918733.3333333333333333333333333333333333	=== 74 793 993 1246 1045 1070 1067 1072 1090 1083 1090 1083 1090 1083 1090 1083 1090 1090 1090 1090 1090 1090 1090 109	======================================	

M = Compound was manually integrated. A = User selected an alternate hit

Target Revision 3.5

Data File: /chem/HP09910.i/06jun14a.b/of0675.d Injection date and time: 15-JUN-2006 00:55 Instrument ID: HP09910.i Analyst ID: lmh00956

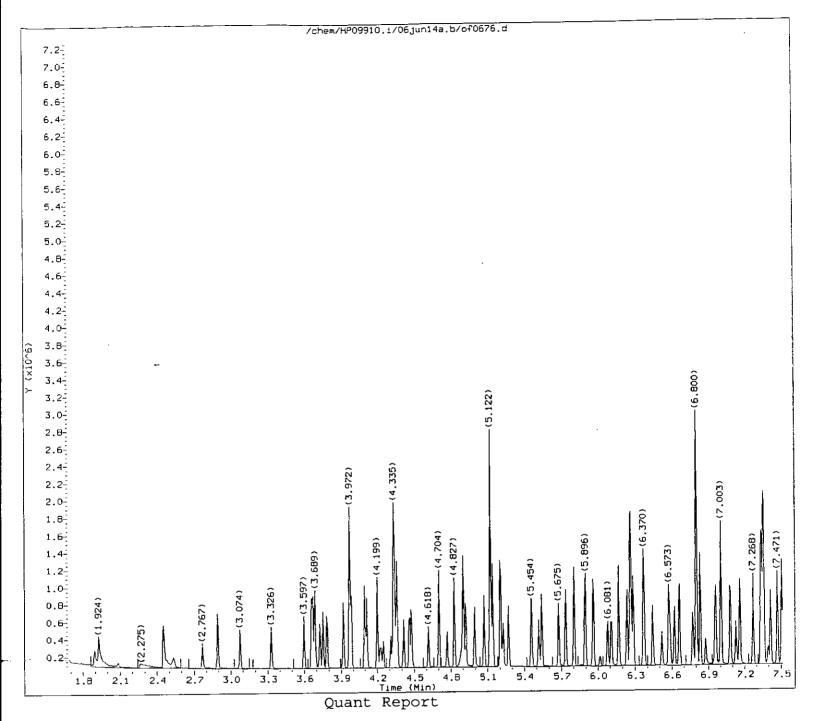
Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006 06:58 Date, time and analyst ID of latest file update: 15-Jun-2006 06:58 rpb01568

Lab Sample ID: STD1576 Sample Name: SSTD030

Compounds	I.S. Ref	RТ	OIon	Area	Conc. (on column)
		=====	-	========	: ===========
Compounds ===================================	Ref. = (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)	6.25920066. 6.227200666. 6.22770769256677700826337727702770082634506677777777777777777777777777777777777	154 154 162 173 163 163 164 164 164 164 164 164 164 164 164 164	======================================	(on column) ====================================
126) Phenanthrene 127) Dinoseb	(4) (4)	8.270 8.313	211 178	66790 865135	28.026 30.727

M = Compound was manually integrated.

Target Revision 3.5


Instrument ID: HP09910.i Analyst ID: lmh00956 Data File: /chem/HP09910.i/06jun14a.b/of0675.d Injection date and time: 15-JUN-2006 00:55

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006 06:58 Date, time and analyst ID of latest file update: 15-Jun-2006 06:58 rpb01568

Lab Sample ID: STD1576 Sample Name: SSTD030

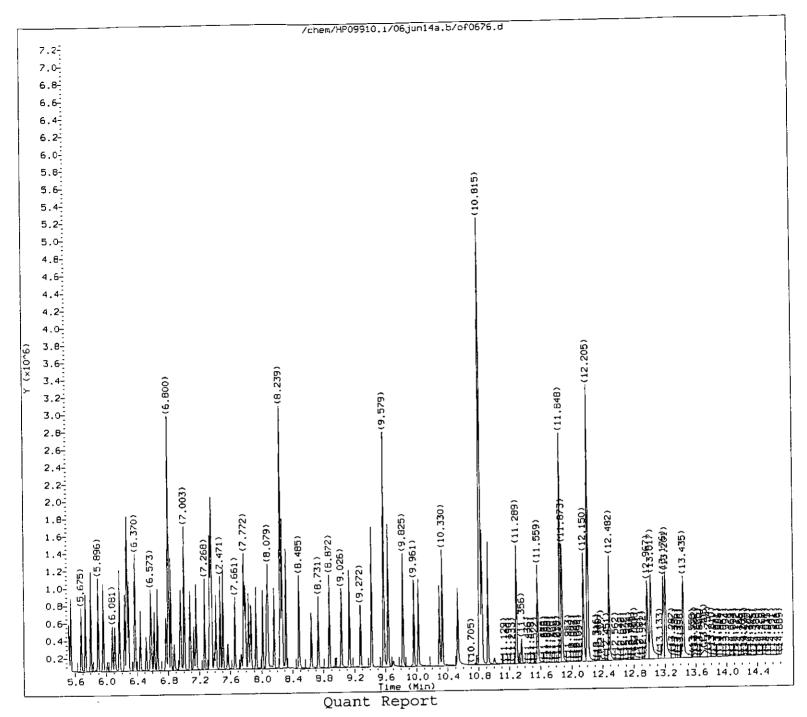
Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
148) Butylbenzylphthalate 153) 3,3'-Dichlorobenzidine 154) Benzo(a) anthracene 155) Hexabromobenzene 157) 4,4'-Methylenebis(2-Chloroan 156) Chrysene-dl2 158) Chrysene 159) bis(2-Ethylhexyl)phthalate 160) 6-Methylchrysene 161) Di-n-octylphthalate 163) 7,12-Dimethylbenz[a]anthrace 164) Benzo(b) fluoranthene 165) Benzo(k) fluoranthene 166) Benzo(a)pyrene 167) Perylene-dl2 168) 3-Methylcholanthrene 169) Dibenz(a,h)acridine 170) Dibenz(a,j)acridine 171) Indeno(1,2,3-cd)pyrene 172) Dibenz(a,h)anthracene 173) Benzo(g,h,i)perylene 173) Benzo(g,h,i)perylene 174) Phenol-d6 175) Nitrobenzene-d5 171) 2-Fluorobiphenyl 112) 2,4,6-Tribromophenol 147) Terphenyl-dl4	(5) (5) (5) (6)	10.836 10.809 10.822 10.822 10.822 10.822 10.8259 11.5559 11.5559 11.2555 11.8579 12.1518 12.1218 13.1218 13.1	149 2528 2531 249 249 249 249 249 2552 264 277 2778 2119 982 227 2119 982 1334	453744 413198 1034071 20607 1216561 1011692 604815 751835 10480707 5212229 1171285 10480707 5142229 1171285 10480707 5142229 1171285 10480707 1191366 888830 1031652 1218213 971973 1021915 269908 439231 439231 439231 439231 439231 68386 691962	29.994 30.665 29.512 30.135 40.000 29.715 29.803 29.702 30.982 30.982 30.982 30.168 30.168 30.222 30.154 30.320 29.781 30.813 30.153 30.153 30.176 30.275 30.482 29.050

M = Compound was manually integrated.

Target Revision 3.5

Data File: /chem/HP09910.i/06jun14a.b/of0676.d Injection date and time: 15-JUN-2006 01:17

Instrument ID: HP09910.i Analyst ID: lmh00956


Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1

Calibration date and time: 15-JUN-2006 06:58
Date, time and analyst ID of latest file update: 15-Jun-2006 06:59 rpb01568

Sample Name: SSTD015

Lab Sample ID: STD1576

0396

Target Revision 3.5

Instrument ID: HP09910.i Data File: /chem/HP09910.i/06jun14a.b/of0676.d Injection date and time: 15-JUN-2006 01:17 Analyst ID: 1mh00956

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1

Calibration date and time: 15-JUN-2006 06:58 Date, time and analyst ID of latest file update: 15-Jun-2006 06:59 rpb01568

Lab Sample ID: STD1576 Sample Name: SSTD015

8337

Rema 6-15-16

Target Revision 3.5

Instrument ID: HP09910.i Data File: /chem/HP09910.i/06jun14a.b/of0676.d Injection date and time: 15-JUN-2006 01:17 Analyst ID: 1mh00956

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006 06:58 Date, time and analyst ID of latest file update: 15-Jun-2006 06:59 rpb01568

Lab Sample ID: STD1576 Sample Name: SSTD015

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
1) N-Nitrosodimethylamine 2) Pyridine 4) 2-Picoline 12) Phenol 13) Aniline 17) bis(2-Chloroethyl)ether 18) 2-Chlorophenol 19) 1,3-Dichlorobenzene 20) 1,4-Dichlorobenzene 20) 1,4-Dichlorobenzene 21) 1,4-Dichlorobenzene 24) Benzyl alcohol 25) 1,2-Dichlorobenzene 26) 2-Methylphenol 27) 2,2'-oxybis(1-Chloropropane) 28) bis(2-Chloroisopropyl)ether 30) Acetophenone 31) N-Nitroso-di-n-propylamine 32) 4-Methylphenol 33) o-Toluidine 34) Hexachloroethane 36) Nitrobenzene 40) Isophorone 41) 2-Nitrophenol 42) 2,4-Dimethylphenol 43) bis(2-Chloroethoxy)methane 44) Benzoic acid 45) 2,4-Dichlorophenol 46) 1,2,4-Trichlorobenzene 47) Naphthalene-d8 48) Naphthalene 49) 4-Chloroaniline 50) 2,6-Dichlorophenol 51) Hexachlorobutadiene 52) Quinoline 53) Caprolactam 60) 4-Chloro-3-methylphenol 61) 2-Methylnaphthalene 62) 1-Methylnaphthalene 66) Hexachlorocyclopentadiene 67) 1,2,4,5-Tetrachlorobenzene	Ref. = (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	== 1.9443 1.9453 1.9453 1.9453 1.94685 1.94685 1.94685 1.2.6685 1.9.9972 1.2.3.3.9989 1.9.44.19 1.9.99972 1.0.2089 1.0.2	=== 74 79343386268685550867772973522068872259372221104221104221110421104211042110421104211042110421104211104211041104	======================================	======================================
		6.081 6.112 6.259	196 196 154	53651 66811 288120	14.619 14.593 15.321

M = Compound was manually integrated.

Target Revision 3.5

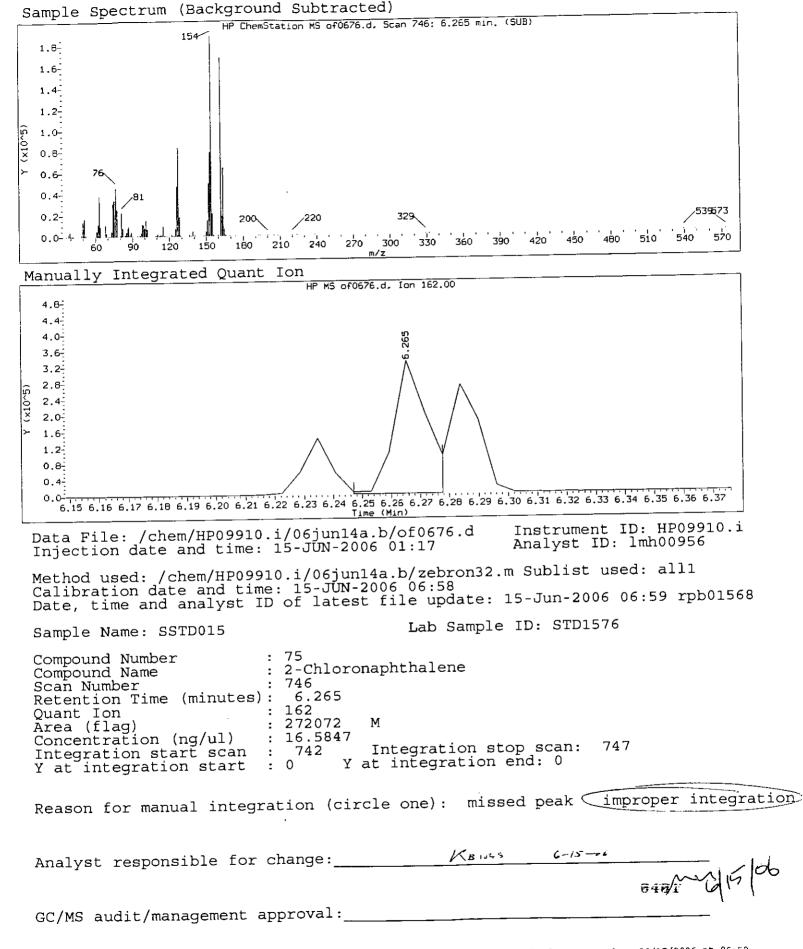
Instrument ID: HP09910.i Analyst ID: lmh00956 Data File: /chem/HP09910.i/06jun14a.b/of0676.d Injection date and time: 15-JUN-2006 01:17

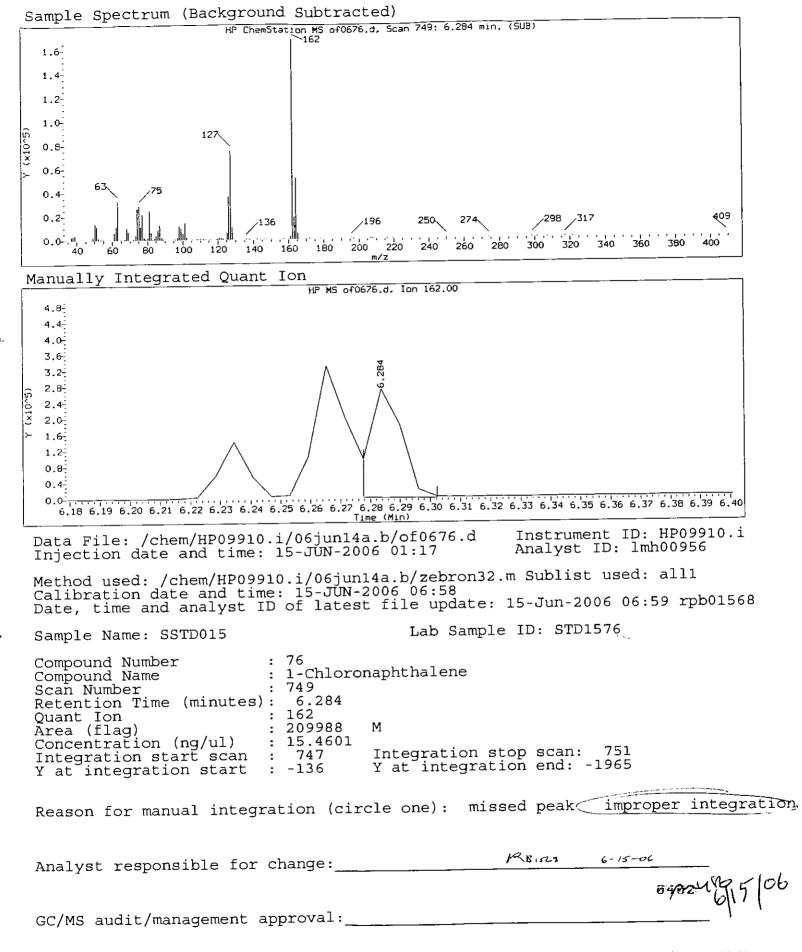
Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006 06:58 Date, time and analyst ID of latest file update: 15-Jun-2006 06:59 rpb01568

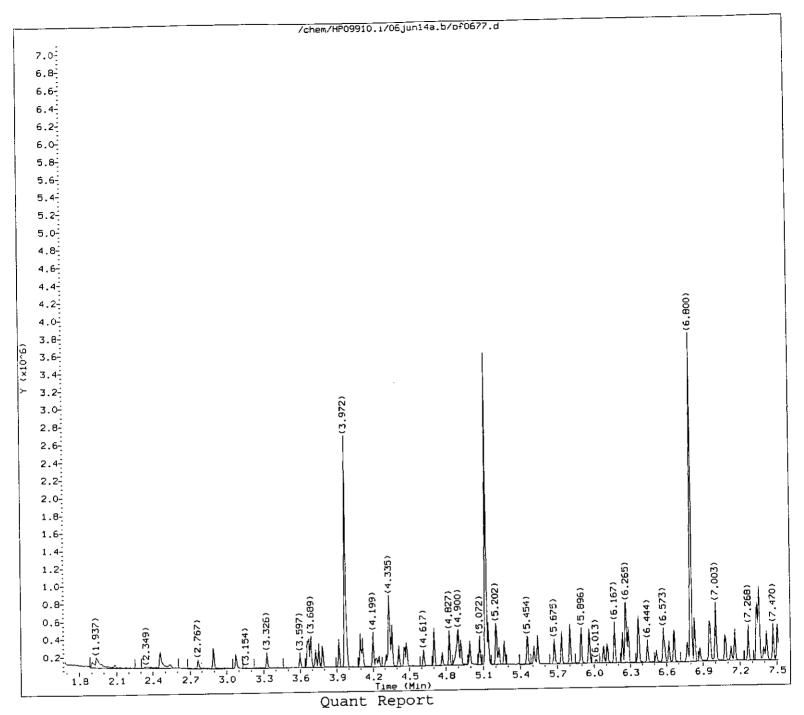
Lab Sample ID: STD1576 Sample Name: SSTD015

	Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
74))))))))))))))))))))))))))))))))))))	Diphenyl 1,1'-Biphenyl 2-Chloronaphthalene 1-Chloronaphthalene Diphenyl ether 2-Nitroaniline Dimethylphthalate 2,6-Dinitrotoluene Acenaphthene 3-Nitroaniline Acenaphthene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol Pentachlorobenzene 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene 1-Naphthylamine 2,3,4,6-Tetrachlorophenol 2-Naphthylamine Diethylphthalate Fluorene 4-Chlorophenyl-phenylether 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 1,2-Diphenylhydrazine Phorate 4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol Phenanthrene Dinoseb Anthracene Carbazole Methyl parathion Ronnel Di-n-butylphthalate Parathion Fluoranthene Benzidine	= (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)	==99554063256010082578540717274415912209 ==66.2223770130043393678540717274415912209 ==66.6666666666666677777777777777788888888	======================================	======================================	======================================
142)	Fluoranthene Benzidine					

M = Compound was manually integrated.


Target Revision 3.5


Data File: /chem/HP09910.i/06jun14a.b/of0676.d Injection date and time: 15-JUN-2006 01:17 Instrument ID: HP09910.i Analyst ID: 1mh00956

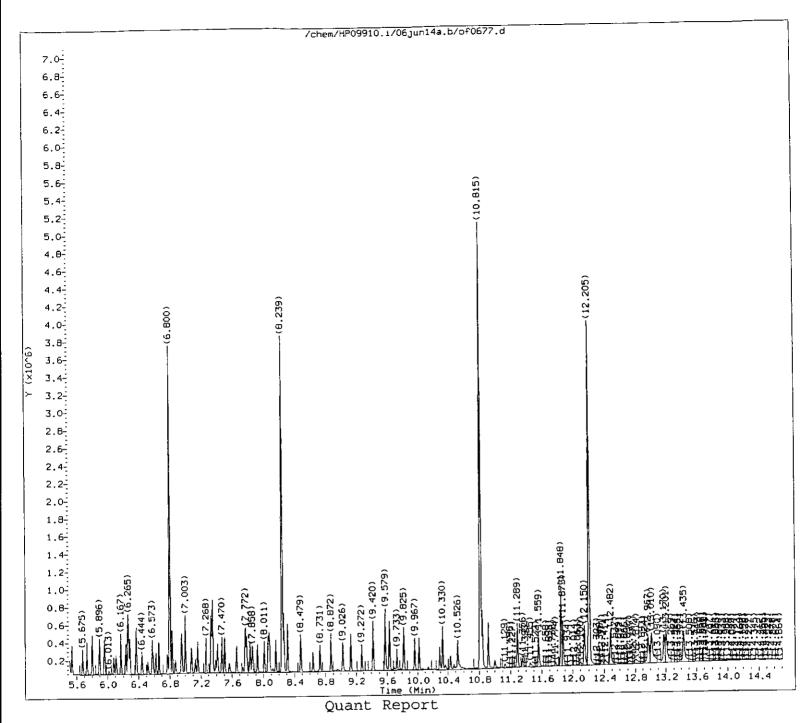

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006 06:58 Date, time and analyst ID of latest file update: 15-Jun-2006 06:59 rpb01568

Lab Sample ID: STD1576 Sample Name: SSTD015

M = Compound was manually integrated.

Target Revision 3.5

Data File: /chem/HP09910.i/06jun14a.b/of0677.d Instrument ID: HP09910.i Injection date and time: 15-JUN-2006 01:39 Analyst ID: lmh00956


Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1

Calibration date and time: 15-JUN-2006 06:59
Date, time and analyst ID of latest file update: 15-Jun-2006 06:59 rpb01568

Sample Name: SSTD005 Lab Sample ID: STD1576

6463

RB1525

Target Revision 3.5

Instrument ID: HP09910.i Data File: /chem/HP09910.i/06jun14a.b/of0677.d Injection date and time: 15-JUN-2006 01:39 Analyst ID: 1mh00956

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006 06:59 Date, time and analyst ID of latest file update: 15-Jun-2006 06:59 rpb01568

Lab Sample ID: STD1576 Sample Name: SSTD005

6464

RBMS 6-15-06

Target Revision 3.5

Instrument ID: HP09910.i Data File: /chem/HP09910.i/06jun14a.b/of0677.d Injection date and time: 15-JUN-2006 01:39 Analyst ID: 1mh00956

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006 06:59 Date, time and analyst ID of latest file update: 15-Jun-2006 06:59 rpb01568

Lab Sample ID: STD1576 Sample Name: SSTD005

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column) =========
1) N-Nitrosodimethylamine 2) Pyridine 4) 2-Picoline 12) Phenol 13) Aniline 17) bis(2-Chloroethyl)ether 18) 2-Chlorophenol 19) 1,3-Dichlorobenzene 20) 1,4-Dichlorobenzene 21) 1,4-Dichlorobenzene 24) Benzyl alcohol 25) 1,2-Dichlorobenzene 26) 2-Methylphenol 27) 2,2'-oxybis(1-Chloropropane) 28) bis(2-Chloroisopropyl)ether 30) Acetophenone 31) N-Nitroso-di-n-propylamine 32) 4-Methylphenol 33) o-Toluidine 34) Hexachloroethane 36) Nitrobenzene 40) Isophorone 41) 2-Nitrophenol 42) 2,4-Dimethylphenol 43) bis(2-Chloroethoxy)methane 44) Benzoic acid 45) 2,4-Dichlorophenol 45) 2,4-Trichlorobenzene 47) Naphthalene 48) Naphthalene 49) 4-Chloroaniline 50) 2,6-Dichlorophenol 51) Hexachlorobutadiene 52) Quinoline 53) Caprolactam 60) 4-Chloro-3-methylphenol 61) 2-Methylnaphthalene 62) 1-Methylnaphthalene 66) Hexachlorocyclopentadiene 67) 1,2,4,5-Tetrachlorobenzene 68) 2,4,6-Trichlorophenol 69) 2,4,5-Trichlorophenol	== (11) (11) (11) (11) (11) (11) (11) (1	==9037919017244579192445555555555555555555555555555555555	== 74 779343386268685550867772973520688722593722211054 104555086777297352068872259372211142219664	### ##################################	4.148 4.253699 43642 436699 46991 469951 469951 466997 469951 46637 4663320 4.
					2

M = Compound was manually integrated. A = User selected an alternate hit

Target Revision 3.5

Instrument ID: HP09910.i Data File: /chem/HP09910.i/06jun14a.b/of0677.d Injection date and time: 15-JUN-2006 01:39 Analyst ID: lmh00956

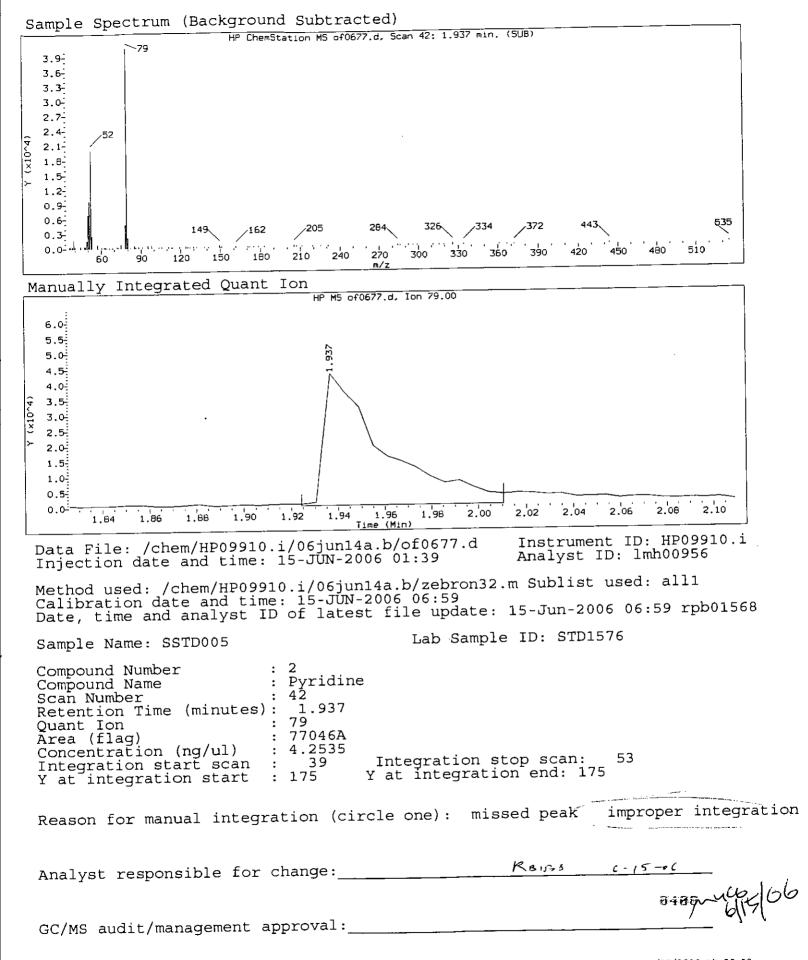
Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006 06:59 Date, time and analyst ID of latest file update: 15-Jun-2006 06:59 rpb01568

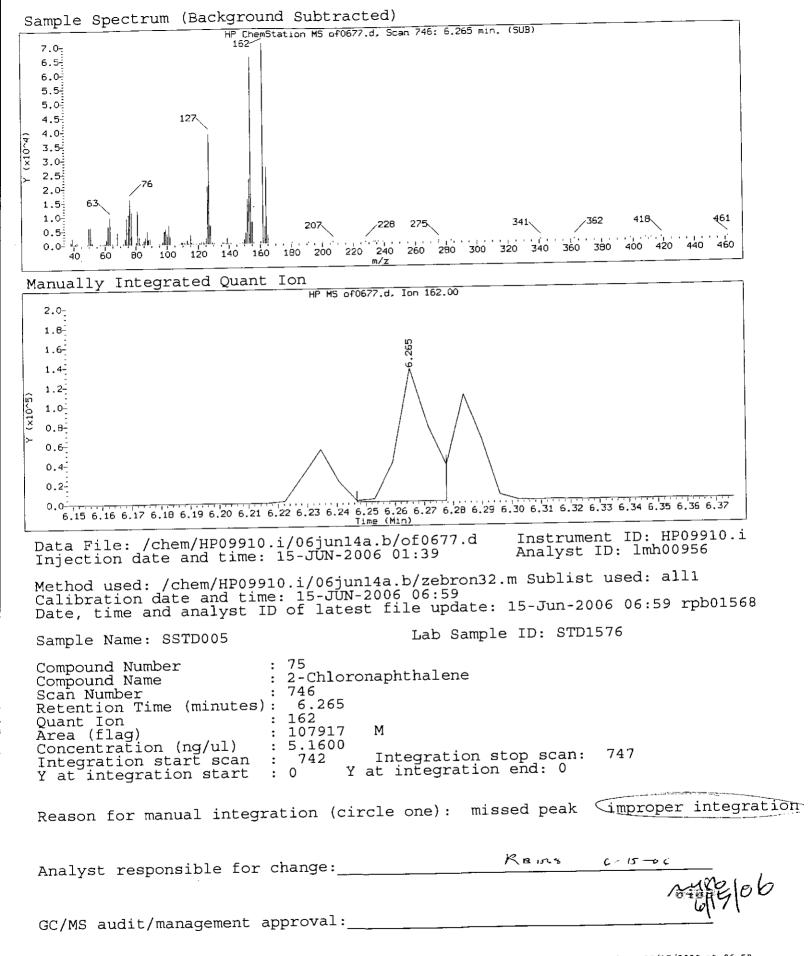
Lab Sample ID: STD1576 Sample Name: SSTD005

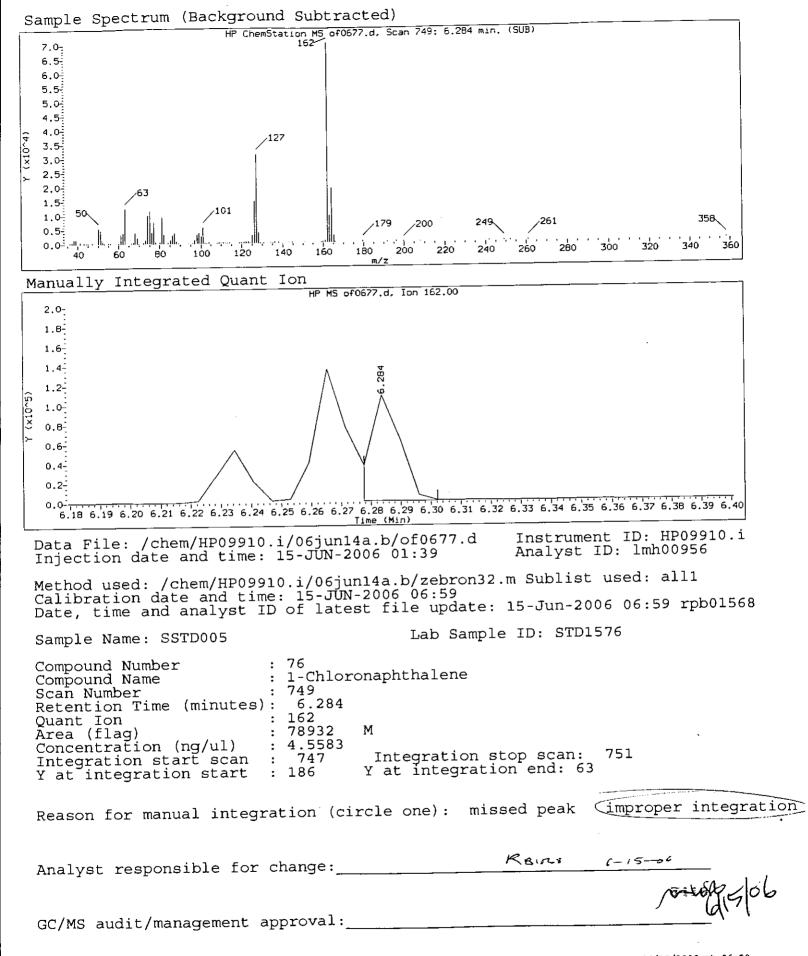
Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
Compounds ===================================	Ref	RT = 999540632590140433376785407072781944339912209	QIO==1544220833528434098532396488897588468881187959924	Area ====================================	(on column) ====================================
144) Benzidine 145) Pyrene	(5)	9.635	202	180524	4.290

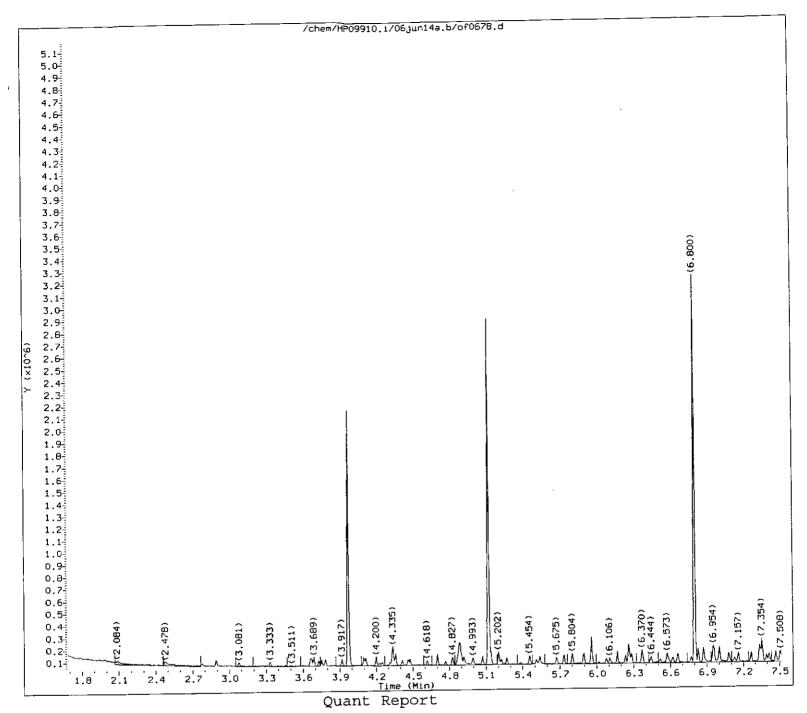
M = Compound was manually integrated.

Target Revision 3.5


Instrument ID: HP09910.i Analyst ID: lmh00956 Data File: /chem/HP09910.i/06jun14a.b/of0677.d Injection date and time: 15-JUN-2006 01:39

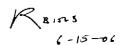

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006 06:59 Date, time and analyst ID of latest file update: 15-Jun-2006 06:59 rpb01568

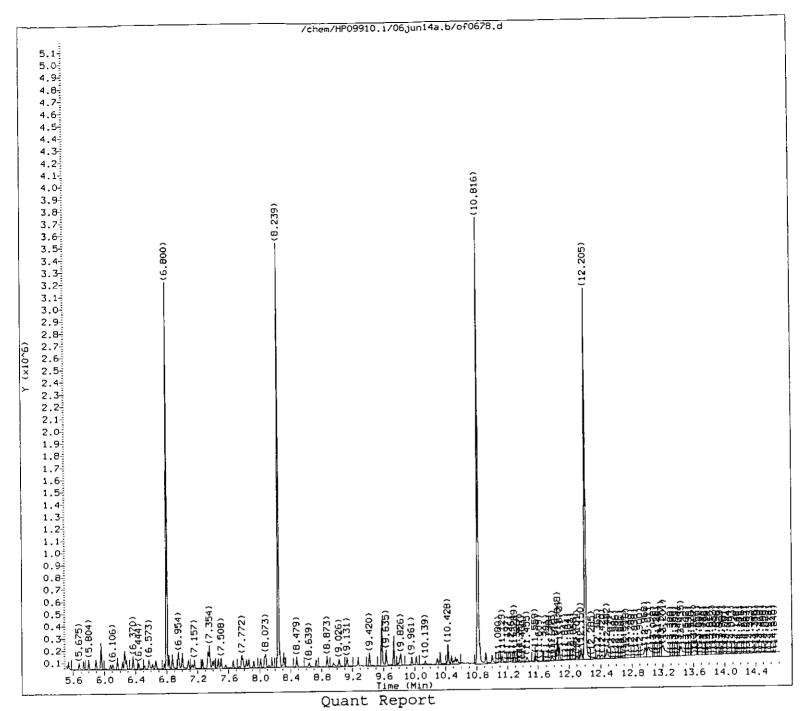

Lab Sample ID: STD1576 Sample Name: SSTD005


	I.S. Ref.	RT	QIon	Area	Conc. (on column)
148) Butylbenzylphthalate 153) 3,3'-Dichlorobenzidine 154) Benzo(a) anthracene 155) Hexabromobenzene 157) 4,4'-Methylenebis(2-Chloroani 156) Chrysene-dl2 158) Chrysene 159) bis(2-Ethylhexyl) phthalate 160) 6-Methylchrysene 161) Di-n-octylphthalate 163) 7,12-Dimethylbenz[a] anthracen 164) Benzo(b) fluoranthene 165) Benzo(k) fluoranthene 166) Benzo(a) pyrene 167) Perylene-dl2 168) 3-Methylcholanthrene 169) Dibenz(a,h) acridine 170) Dibenz(a,j) acridine 171) Indeno(1,2,3-cd) pyrene 172) Dibenz(a,h) anthracene 173) Benzo(g,h,i) perylene 7) 2-Fluorophenol 10) Phenol-d5 11) Phenol-d6 35) Nitrobenzene-d5 71) 2-Fluorobiphenyl 112) 2,4,6-Tribromophenol 147) Terphenyl-d14	(5) (5) (5) (6)	10.330 10.830 10.8809 10.8815 10.8215 10.8215 10.2859 11.5558 11.840 11.2559 11.5558 11.840 11.2559 11.3658 11.3658 12.480 13.43	==149 25282108922551 24922551 249225522268 24962225522268 22778629992221 1324 1324	75268 683339 187867 1418 34989 1413818 181942 105061 134474 164757 186445 205804 186083 1414183 10944 135417 176906 205954 163107 178106 84448 84448 73881 96748 10833 121993	4.281 4.364 4.614 4.532 4.530 4.532 4.538 4.298 4.387 3.3365 4.403 4.413 4.413 4.298 4.287 4.287 4.443 4.536 4.443 4.536 4.443 4.536 4.443 4.536 4.443 4.536 4.443 4.536 4.443 4.536 4.443 4.536 4.443 4.536 4.536 4.636

M = Compound was manually integrated.

Target Revision 3.5


Instrument ID: HP09910.i Data File: /chem/HP09910.i/06jun14a.b/of0678.d Injection date and time: 15-JUN-2006 02:01 Analyst ID: 1mh00956


Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1

Calibration date and time: 15-JUN-2006 01:55
Date, time and analyst ID of latest file update: 15-Jun-2006 07:01 rpb01568

Lab Sample ID: 8270MDL1576 Sample Name: SSTD001

34II

Target Revision 3.5

Instrument ID: HP09910.i Data File: /chem/HP09910.i/06jun14a.b/of0678.d Injection date and time: 15-JUN-2006 02:01 Analyst ID: 1mh00956

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1

Calibration date and time: 15-JUN-2006 01:55 Date, time and analyst ID of latest file update: 15-Jun-2006 07:01 rpb01568

Lab Sample ID: 8270MDL1576 Sample Name: SSTD001

8412

Roma 1-15-06

Target Revision 3.5

Instrument ID: HP09910.i Data File: /chem/HP09910.i/06jun14a.b/of0678.d Injection date and time: 15-JUN-2006 02:01 Analyst ID: 1mh00956

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006 01:55 Date, time and analyst ID of latest file update: 15-Jun-2006 07:01 rpb01568

Lab Sample ID: 8270MDL1576 Sample Name: SSTD001

Compounds	I.S. Ref.	RТ	QIon	Area	Conc. (on column)
	== = == = (1)	== == 1.937	74	*======= 8133M	0.937
 N-Nitrosodimethylamine Pyridine 	(1)	1.974	79	16425M	1.087
4) 2-Picoline	(1)	2.478	93	13990	0.984 1.110
12) Phenol	(1) (1)	3.671 3.689	94 93	20604 23925	1.091
13) Aniline	(1)	3.751	93	15990	1.211
17) bis(2-Chloroethyl)ether 18) 2-Chlorophenol	(1)	3.781	128	9324	1.164
19) 1.3-Dichlorobenzene	(1)	3.917	146	8668	1.039 40.000
20) 1,4-Dichlorobenzene-d4	(1)	3.972 3.984	152 146	214442 9615	1.119
21) 1,4-Dichlorobenzene	(1) (1)	4.095	108	9594	1.184
24) Benzyl alcohol 25) 1,2-Dichlorobenzene	(1)	4.114	146	9183	1.124
26) 2-Methylphenol	(1)	4.200	108.	12161	1.076 1.778
27) 2.2'-oxybis(1-Chloropropane)	(1)	4.224 4.224	45 45	17386 17386	1.778
28) bis (2-Chloroisopropyl) ether	(1) (1)	4.329	105	17609	1.076
30) Acetophenone 31) N-Nitroso-di-n-propylamine	(1)	4.335	70	11496	1.065
32) 4-Methylphenol	(1)	4.335	108	13335 21489	1.042 1.150
33) o-Toluidine	(1) (1)	4.359 4.415	106 117	4034	1.098
34) Hexachloroethane 36) Nitrobenzene	(2)	4.476		16044	1.148
40) Isophorone	(2)	4.704	82	35973	1.298
41) 2-Nitrophenol	(2)	4.771	139 107	3692 12982	1.120 1.167
42) 2,4-Dimethylphenol	(2) (2)	4.827 4.919	93	17805	1.283
43) bis(2-Chloroethoxy)methane 44) Benzoic acid	(2)	4.882	105	79363	11.679
45) 2,4-Dichlorophenol	(2)	4.993	162	6781	1.130 1.248
46) 1,2,4-Trichlorobenzene	(2)	5.073 5.122	180 136	8374 867160	40.000
47) Naphthalene-d8	(2) (2)	5.140	128	30026	1.215
48) Naphthalene 49) 4-Chloroaniline	(2)	5.202	127	11368	1.100
50) 2,6-Dichlorophenol	(2)	5.208	162	6438 4421	1.139 1.151
51) Hexachlorobutadiene	(2) (2)	5.269 5.460	225 129	17727	1.085
52) Quinoline 53) Caprolactam	(2)	5.509	113	4920	1.247
60) 4-Chloro-3-methylphenol	(2)	5.675	107	11264	1.168
61) 2-Methylnaphthalene	(2)	5.804	142 142	17097 18223	1.067 1.236
62) 1-Methylnaphthalene	(2) (3)	5.897 5.958	237	14018	4.626
66) Hexachlorocyclopentadiene 67) 1,2,4,5-Tetrachlorobenzene	(3)	5.964	216	8001	1.226
68) 2,4,6-Trichlorophenol	(3)	6.075	196	3859 5193	1.029 1.110
69) 2,4,5-Trichlorophenol	(3) (3)	6.106 6.259	196 154	5193 22777	1.110
72) Biphenyl	(3)	0.233	134	221,1	

M = Compound was manually integrated.

Target Revision 3.5

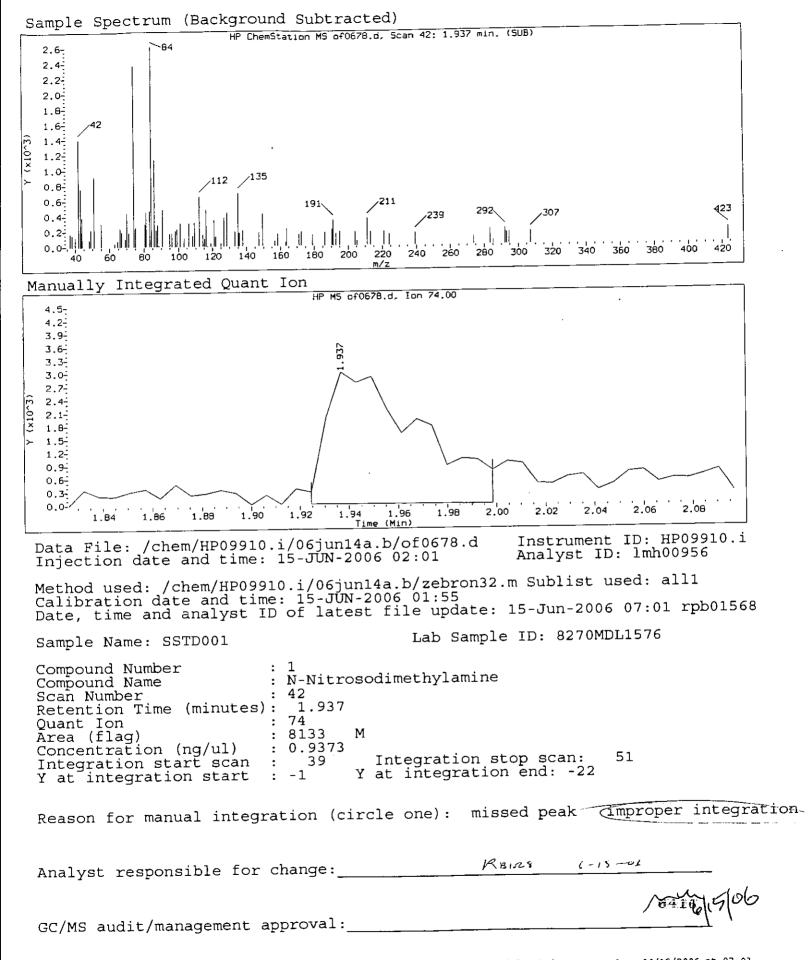
Instrument ID: HP09910.i Analyst ID: lmh00956 Data File: /chem/HP09910.i/06jun14a.b/of0678.d Injection date and time: 15-JUN-2006 02:01

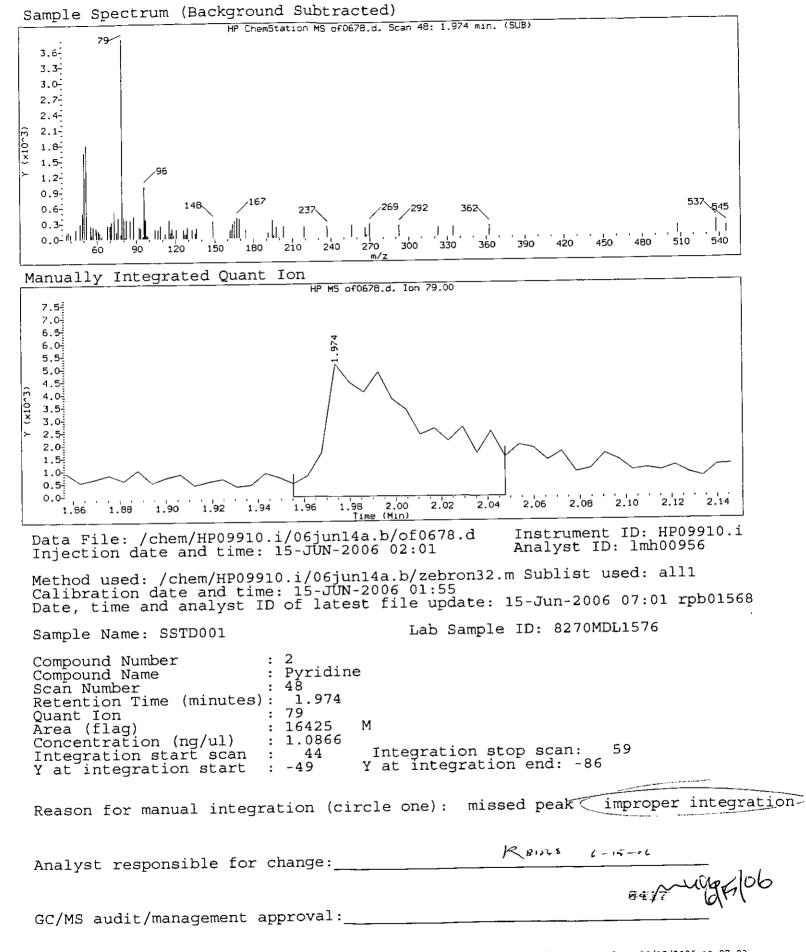
Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006 01:55 Date, time and analyst ID of latest file update: 15-Jun-2006 07:01 rpb01568

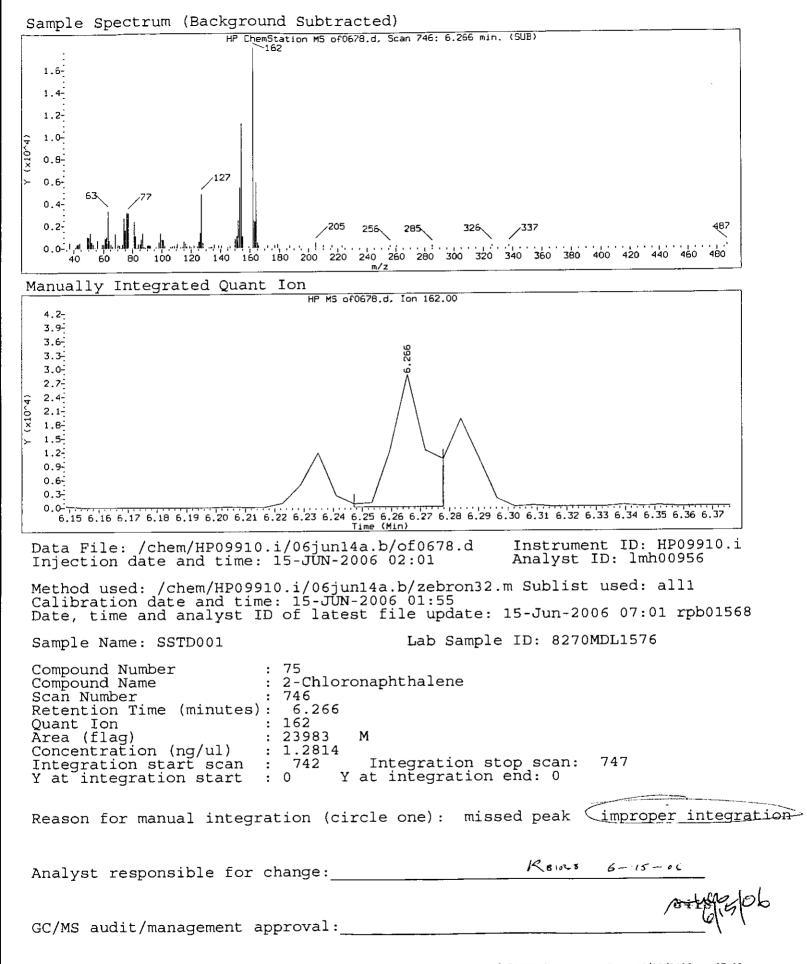
Lab Sample ID: 8270MDL1576 Sample Name: SSTD001

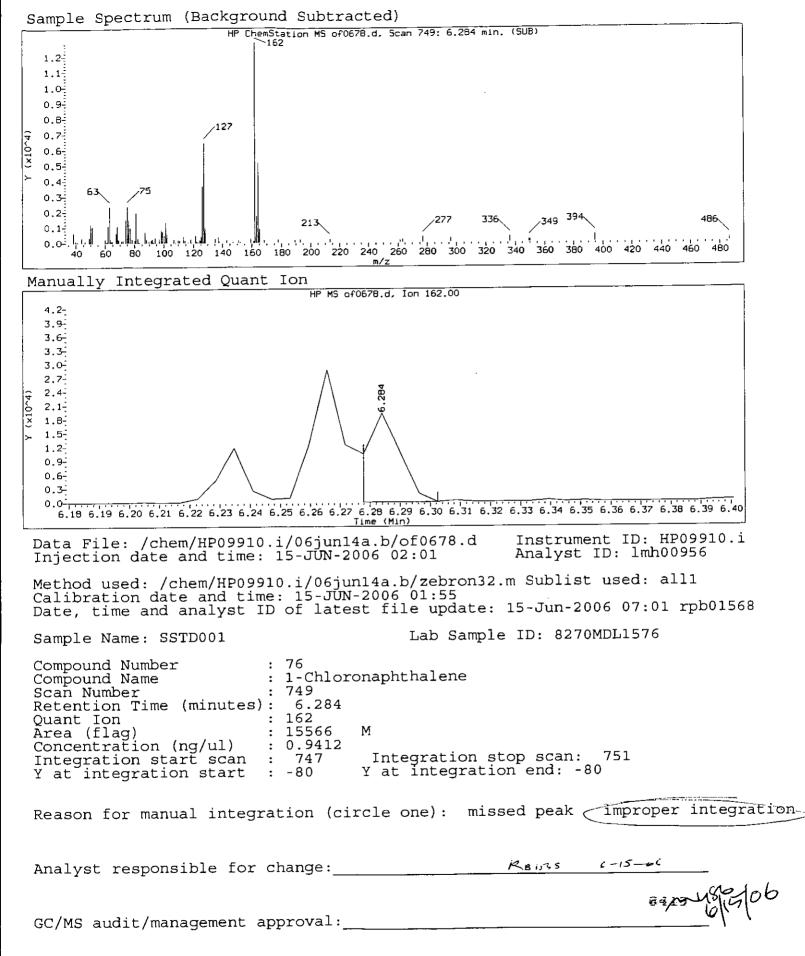
Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
Compounds ===================================		==9996440 ==2256640 66.223770014043377672281940339913200 ==6.66.666666666666666666666666666666	======================================		
145) Pyrene	(5)	9.635	202	39068	1.218

M = Compound was manually integrated.


Target Revision 3.5


Instrument ID: HP09910.i Data File: /chem/HP09910.i/06jun14a.b/of0678.d Injection date and time: 15-JUN-2006 02:01 Analyst ID: 1mh00956


Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006 01:55 Date, time and analyst ID of latest file update: 15-Jun-2006 07:01 rpb01568


Lab Sample ID: 8270MDL1576 Sample Name: SSTD001

M = Compound was manually integrated.

Lancaster Laboratories, Inc. Semi Volatile Initial Calibration Verification

LAB NAME: LANCASTER LABS

LAB CODE: LANCAS

INSTRUMENT: HP09910

Method: SW-846 8270C

c 0270C

File ID: of0679.d

ICV SAMPLE NOT ICVO036

BATCH: 06JUN14A026 Sample

Sample code: GGT0050

SEESESSESSESSESSESSESSESSESSESSESSESSES	TRUE	ACTUAL	======================================	%D window	INSPE
	CONC.	CONC.	DRIFT	WILIGOW	
N-Nitrosodimethylamine	1667.00	1746.47	5	20	YE:
Pyridine	1667.00	1589.13	-5	20	YE
2-Picoline	1667.00	1614.64	-3	20	YE
1.4-Dioxane	1667.00	.00	0	20	YE
2-Fluorophenol	1667.00	1556.22	- 7	20	YE
Phenol-d5	1667.00	1613.54	-3	20	YE
Phenol-d6	1667.00	1613.54	- 3	20	YE
Phenol	1667.00	1567.59	-6	20	YE
Aniline	1667.00	1564.92	- 6	20	YE
ois(2-Chloroethyl)ether	1667.00	1477.94	-11	20	YE
2-Chlorophenol	1667.00	1556.44	-7	20	ΥE
1,3-Dichlorobenzene	1667.00	1548.45	-7	20	YE
l,4-Dichlorobenzene	1667.00	1584.46	- 5	20	ΥE
Benzyl alcohol	1667.00	1581.75	-5	20	YE
1,2-Dichlorobenzene	1667.00	1513.12	- 9	20	YE
2-Methylphenol	1667.00	1480.70	-11	20	YE
2,2'-oxybis(1-Chloropropane		1909.75	15	20	YE
ois(2-Chloroisopropyl)ether	1667.00	1909.69	15	20	YE
Acetophenone	1667.00	1560.22	-6	20	YE
N-Nitroso-di-n-propylamine	1667.00	1515.34	- 9	20	YE
4-Methylphenol	1667.00	1508.70	-9	20	YE
o-Toluidine	1667.00	1574.87	-6	20	YE
Hexachloroethane	1667.00	1603.08	- <u>4</u>	20	YE
Nitrobenzene-d5	1667.00	1671.27	0	20	Ϋ́E
Nitrobenzene	1667.00	1546.89	-7	20	YE
Isophorone	1667.00	1385.69	-17	20	YE
2-Nitrophenol	1667.00	1704.87	2	20	YE
2,4-Dimethylphenol	1667.00	1537.70	-8	20	YE
ois(2-Chloroethoxy)methane	1667.00	1694.85	2	20	YE
Benzoic acid	1667.00	1513.11	-9	20	YE
2,4-Dichlorophenol	1667.00	1567.56	-6	20	YE
1,2,4-Trichlorobenzene	1667.00	1566.47	-6	20	YH
Naphthalene	1667.00	1573.83	-6	20	YE
4-Chloroaniline	1667.00	1570.37	- 6	20	YI
2,6-Dichlorophenol	1667.00	1523.86	- 9	20	YI
Hexachlorobutadiene	1667.00	1517.04	- 9	20	YE
Caprolactam	1667.00	1603.73	-4	20	YE

=======================================	NC = Could not calculate
Comments:	
	8428

Page 1 of 3

B 152.8

Lancaster Laboratories, Inc. Semi Volatile Initial Calibration Verification

LAB NAME: LANCASTER LABS LAB CODE: LANCAS

INSTRUMENT: HP09910

Method: SW-846 8270C

iD *

File ID: of0679.d

ICV SAMPLE NO: ICV0036 BATCH: 06JUN14A026 10 1/2 1000 1-10-100

NAME *
Sample code: SCTOOSO

COMPOUND NAME	TRUE CONC.	ACTUAL CONC.	% DRIFT	%D window	INSPEC
		1500 16	- 5	20	YES
4-Chloro-3-methylphenol	1667.00	1589.16 1472.60	-12	20	YES
2-Methylnaphthalene	1667.00		-3	20	YES
1-Methylnaphthalene	1667.00	1622.29	-32	20	NO
Hexachlorocyclopentadiene	5000.00	3416.96	-32	20	YES
1,2,4,5-Tetrachlorobenzene	1667.00	1619.44	-5	20	YES
2,4,6-Trichlorophenol	1667.00	1588.97	-12	20	YES
2,4,5-Trichlorophenol	1667.00	1472.90	-12 -1	20	YES
2-Fluorobiphenyl	1667.00	1649.70	-1 -4	20	YES
Biphenyl	1667.00	1607.85	=	20	YES
Diphenyl	1667.00	1607.85	- 4	20	YES
1,1'-Biphenyl	1667.00	1607.85	-4	20	NO
2-Chloronaphthalene	1667.00	1304.62	-22	20	YES
1-Chloronaphthalene	1667.00	.00	0	20	YES
Diphenyl ether	1667.00	1601.73	-4	20	YES
2-Nitroaniline	1667.00	1633.12	-2		YES
Dimethylphthalate	1667.00	1592.59	- 4	20	YES
2,6-Dinitrotoluene	1667.00	1615.93	-3	20	YES
Acenaphthylene	1667.00	1718.52	3	20	YES
3-Nitroaniline	1667.00	1592.51	-4	20	YES
Acenaphthene	1667.00	1649.45	-1	20	
2,4-Dinitrophenol	1667.00	1475.37	-11	20	YES
Pentachlorobenzene	1667.00	1640.58	-2	20	YES
4-Nitrophenol	1667.00	1611.31	-3	20	YES
Dibenzofuran	1667.00	1588.18	-5	20	YES
2,4-Dinitrotoluene	1667.00	1687.05	1	20	YES
1-Naphthylamine	1667.00	1658.07	-1	20	YES
2,3,4,6-Tetrachlorophenol	1667.00	1765.52	6	20	YES
2-Naphthylamine	1667.00	1554.45	-7	20	YES
Diethylphthalate	1667.00	1592.99	-4	20	YES
Fluorene	1667.00	1608.59	-3	20	YES
4-Chlorophenyl-phenylether	1667.00	1595.82	- 4	20	YES
4-Nitroaniline	1667.00	1609.29	-3	20	YES
4,6-Dinitro-2-methylphenol	1667.00	1676.46	1	20	YES
N-Nitrosodiphenylamine	1667.00	1829.62	10	20	YES
1,2-Diphenylhydrazine	1667.00	1686.55	1	20	YES
2,4,6-Tribromophenol	1667.00	1744.31	5	20	YES
Phorate	1667.00	1743.47	5	20	YES

NC = Could not calculate Comments: 04Z1

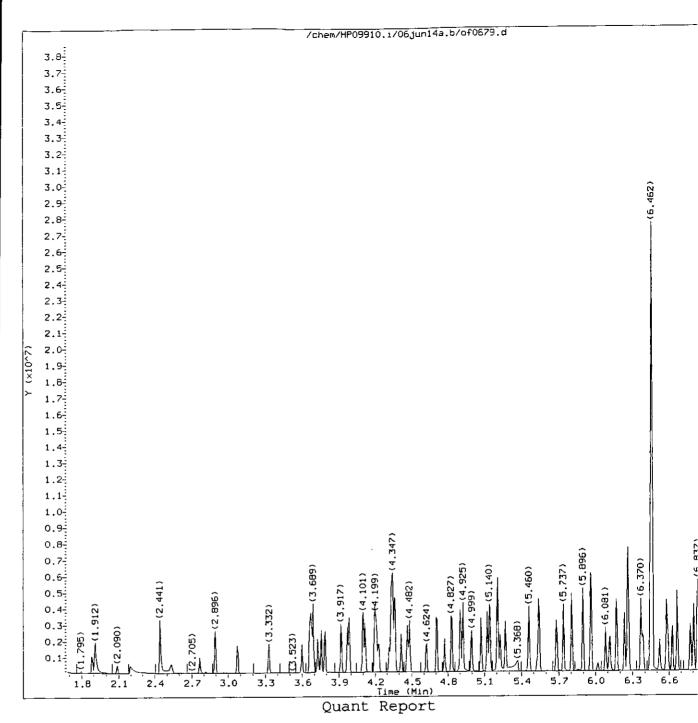
Lancaster Laboratories, Inc. Semi Volatile Initial Calibration Verification

LAB NAME: LANCASTER LABS LAB CODE: LANCAS

INSTRUMENT: HP09910

Method: SW-846 8270C

File ID: of0679.d

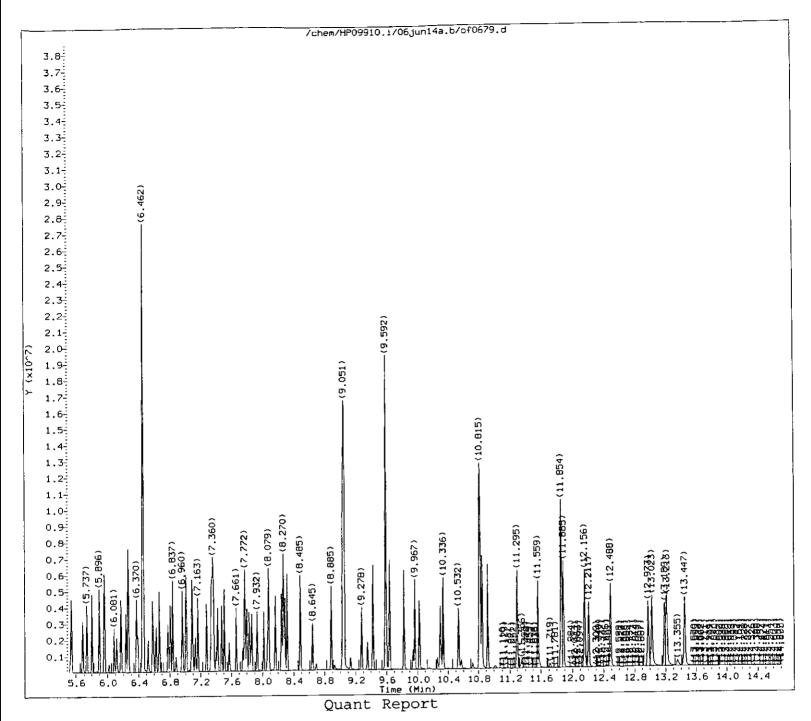

10* ICV SAMPLE NO. ICV0036 @* 10536 6/20106

BATCH: 06JUN14A026

Sample Code: SETOOS

COMPOUND NAME	TRUE CONC.	ACTUAL CONC.	% DRIFT	%D window	INSPEC
4-Bromophenyl-phenylether	1667.00	1699.91	2	20	YES
Hexachlorobenzene	1667.00	1718.17	3	20	YES
Pentachlorophenol	1667.00	1616.58	-3	20	YES
Phenanthrene	1667.00	1779.35	7	20	YES
	1667.00	1653.40	-1	20	YES
Dinoseb	1667.00	1783.83	7	20	YES
Anthracene	1667.00	1814.36	9	20	YES
Carbazole	1667.00	1865.76	12	20	YES
Methyl parathion	1667.00	.00	0	20	YES
Ronnel	1667.00	1794.18	8	20	YES
Di-n-butylphthalate	1667.00	1992.28	20	20	YES
Parathion	1667.00	1733.67	4	20	YES
Fluoranthene	8333.00	10220.53	23	20	NO
Benzidine		1708.52	3	20	YES
Pyrene	1667.00	1651.78	-1	20	YES
Terphenyl-d14	1667.00	1711.22	. 3	20	YES
Butylbenzylphthalate	1667.00	1711.22	3	20	YES
3,3'-Dichlorobenzidine	1667.00		-1	20	YES
Benzo(a)anthracene	1667.00	1654.11	0	20	YES
Hexabromobenzene	1667.00	.00	-2	20	YES
4,4'-Methylenebis(2-Chloroa	1667.00	1636.05	-2	20	YES
Chrysene	1667.00	1637.54	-2	20	YES
bis(2-Ethylhexyl)phthalate	1667.00	1638.80	1	20	YES
6-Methylchrysene	1667.00	1677.36	-3	20	YES
Di-n-octylphthalate	1667.00	1614.26	-3 -8	20	YES
7,12-Dimethylbenz[a]anthrac		1540.86	-8 -5	20	YES
Benzo(b)fluoranthene	1667.00	1583.19		20	YES
Benzo(k)fluoranthene	1667.00	1656.02	-1	20	YES
Benzo(a)pyrene	1667.00	1624.20	-3	20	YES
3-Methylcholanthrene	1667.00	1600.01	-4	20	YES
Dibenz(a,h)acridine	1667.00	1647.21	-1	20	YES
Dibenz(a,j)acridine	1667.00	1659.65	0		YES
Indeno(1,2,3-cd)pyrene	1667.00	1597.28	-4	20	YES
Dibenz(a,h)anthracene	1667.00	1682.39	1	20	YES
Benzo(g,h,i)perylene	1667.00	1600.69	-4	20	165

=======================================	NC = Could not calculate
Comments:	8422


Target Revision 3.5

Data File: /chem/HP09910.i/06jun14a.b/of0679.d Injection date and time: 15-JUN-2006 02:23

Instrument ID: HP099 Analyst ID: lmh00956

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006 07:12 Date, time and analyst ID of latest file update: 15-Jun-2006 07:29 rpb

Lab Sample ID: ICV0036 Sample Name: SSTD050

Target Revision 3.5

Data File: /chem/HP09910.i/06jun14a.b/of0679.d Injection date and time: 15-JUN-2006 02:23

Instrument ID: HP09910.i Analyst ID: lmh00956

Method used: /chem/HP09910.i/06junl4a.b/zebron32.m Sublist used: all1

Calibration date and time: 15-JUN-2006 07:12

Date, time and analyst ID of latest file update: 15-Jun-2006 07:29 rpb01568

Sample Name: SSTD050

Lab Sample ID: ICV0036

6424

R B 15-15-06

Target Revision 3.5

Instrument ID: HP09910.i Analyst ID: lmh00956 Data File: /chem/HP09910.i/06jun14a.b/of0679.d Injection date and time: 15-JUN-2006 02:23

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006 07:12 Date, time and analyst ID of latest file update: 15-Jun-2006 07:29 rpb01568

Lab Sample ID: ICV0036 Sample Name: SSTD050

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
1) N-Nitrosodimethylamine 2) Pyridine 4) 2-Picoline 12) Phenol 13) Aniline 17) bis (2-Chloroethyl) ether 18) 2-Chlorophenol 19) 1,3-Dichlorobenzene 20) 1,4-Dichlorobenzene 20) 1,4-Dichlorobenzene 24) Benzyl alcohol 25) 1,2-Dichlorobenzene 24) Benzyl alcohol 25) 1,2-Dichlorobenzene 26) 2-Methylphenol 27) 2,2'-oxybis (1-Chloropropane, 28) bis (2-Chloroisopropyl) ether 30) Acetophenone 31) N-Nitroso-di-n-propylamine 32) 4-Methylphenol 33) o-Toluidine 34) Hexachloroethane 36) Nitrobenzene 40) Isophorone 41) 2-Nitrophenol 42) 2,4-Dimethylphenol 43) bis (2-Chloroethoxy) methane 44) Benzoic acid 45) 2,4-Dichlorophenol 46) 1,2,4-Trichlorobenzene 47) Naphthalene-48 48) Naphthalene 49) 4-Chloroaniline 50) 2,6-Dichlorophenol 51) Hexachlorobutadiene 52) Quinoline 53) Caprolactam 60) 4-Chloro-3-methylphenol 61) 2-Methylnaphthalene 62) 1-Methylnaphthalene 66) Hexachlorocyclopentadiene 67) 1,2,4,5-Tetrachlorobenzene 68) 2,4,6-Trichlorophenol 69) 2,4,5-Trichlorophenol 72) Biphenyl	==(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	==1.881211197777241136000571123.668578772441360005771233.3344.334655244588995681393.3344.44.44.44.44.5555555555555555555	74 79343386268685550866772997352068872259372276 104455508677299735206887259372276	======================================	52.394 47.494 48.4398 46.33934 46.33934 46.33934 46.403524 41.33934 46.407.4391 47.45.4291 47.45.4291 47.45.4291 47.45.4291 47.45.4291 47.17116 48.47.1716 48.471

M = Compound was manually integrated.

Target Revision 3.5

Instrument ID: HP09910.i Analyst ID: lmh00956 Data File: /chem/HP09910.i/06jun14a.b/of0679.d Injection date and time: 15-JUN-2006 02:23

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006 07:12 Date, time and analyst ID of latest file update: 15-Jun-2006 07:29 rpb01568

Lab Sample ID: ICV0036 Sample Name: SSTD050

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
Compounds ===================================		= 999508989856667000039323447078334750227388966666666666666666666666666666666666	======================================	======================================	### ### ### ### ### ### ### ### ### ##
153) 3,31-Dichlorobenzidine	(5)	10.809	252	876990	51.699

M = Compound was manually integrated.

Target Revision 3.5

Instrument ID: HP09910.i Data File: /chem/HP09910.i/06jun14a.b/of0679.d Injection date and time: 15-JUN-2006 02:23 Analyst ID: 1mh00956

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006 07:12 Date, time and analyst ID of latest file update: 15-Jun-2006 07:29 rpb01568

Lab Sample ID: ICV0036 Sample Name: SSTD050

	I.S. Ref.	RT	QIon	Area	Conc. (on column)
154) Benzo(a) anthracene 157) 4,4'-Methylenebis(2-Chloroani 156) Chrysene-dl2 158) Chrysene 159) bis(2-Ethylhexyl)phthalate 160) 6-Methylchrysene 161) Di-n-octylphthalate 163) 7,12-Dimethylbenz[a] anthracen 164) Benzo(b)fluoranthene 165) Benzo(k)fluoranthene 166) Benzo(a)pyrene 167) Perylene-dl2 168) 3-Methylcholanthrene 169) Dibenz(a,h)acridine 170) Dibenz(a,j)acridine 171) Indeno(1,2,3-cd)pyrene 172) Dibenz(a,h)anthracene 173) Benzo(g,h,i)perylene 7) 2-Fluorophenol 10) Phenol-d5 11) Phenol-d6 35) Nitrobenzene-d5 71) 2-Fluorobiphenyl 112) 2,4,6-Tribromophenol 147) Terphenyl-dl4	(5) (5) (5) (6)	10.815 10.821 10.821 10.826 10.925 11.559 11.559 11.865 12.156 12.218 12.488 12.973 13.1896 13.1896 3.6664 4.167 79.8	===28 231 249 249 249 2552 2564 277 276 277 276 277 276 277 2776 2776	2188944 410506 1531566 2105659 1288598 1598138 2258409 1093804 2327407 2584416 22584416 2257416 1256291 2246351 2246351 2246351 22177929 560649 966673 873105 1139083 160244 1485973	49.081 49.000 49.126 49.328 40.328 46.426 47.681 48.726 49.726 49.720 48.000 49.416 49.788 50.471 46.687 48.406 49.496 49.321 46.406 49.321 46.406 49.321

M = Compound was manually integrated.

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab	Name:	Lancaster	Laboratories	Contract:	
-----	-------	-----------	--------------	-----------	--

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Instrument ID: HP09910 Calibration Date: 06/15/06 Time: 09:10

Lab File ID: of0702.d Init. Calib. Date(s): 06/14/06 06/15/06

Init. Calib. Times(s): 23:13 01:39

Min RRF for SPCC(#) = 0.050 Max %Drift for CCC(*) = 20%

	i .		ACTUAL	TRUE	8
COMPOUND	RRF	RRF30	CONC.	CONC.	DRIFT
	=====	=====	======	======	
N-Nitrosodimethylamine	1.619	•			- 6
Pyridine	2.820	2.668	28.390	30.0	~ 5
2-Picoline	2.653	2.580	29.170	30.0	- 3
Phenol		3.403		30.0	-:
Aniline	4.089	3.961	29.060	30.0	-:
bis(2-Chloroethyl)ether	2.463	2.462	29.990	30.0	
2-Chlorophenol	1.495		•	•	-
1,3-Dichlorobenzene	1.556	1.562	30.120	•	
1,4-Dichlorobenzene		1.603		30.0	
Benzyl alcohol	1.511	1.455	28.900	!	-
1,2-Dichlorobenzene	1.524	1.544	30.390	30.0	
2-Methylphenol	2.108	2.059	29.310	30.0	-
2,2'-oxybis(1-Chloropropane)	1.824	1.880	30.920	30.0	
bis(2-Chloroisopropyl)ether	1.824	1.880	30.920	30.0	
Acetophenone	3.052	2.998	29.460	30.0	-
N-Nitroso-di-n-propylamine	2.014	1.951	29.050	30.0	-
4-Methylphenol	2.386	2.369	29.780	30.0	-
o-Toluidine	3.485	3.402	29.290	30.0	-
Hexachloroethane	0.685	0.702	30.720	30.0	ł
Nitrobenzene	0.645	0.624	29.020	30.0	-
Isophorone	1.278	1.276	29.940	30.0	1
2-Nitrophenol	0.152	0.154	30.380	30.0	[
2,4-Dimethylphenol	0.513	0.507	29.640	30.0	-
bis(2-Chloroethoxy)methane	0.640	0.660	30.950	30.0	
Benzoic acid	0.313	0.320	40.810	40.0	
2,4-Dichlorophenol	0.277	0.283	30.660	30.0	
1,2,4-Trichlorobenzene	0.310	0.312	30.270	30.0	
Naphthalene	1.140	1.126	29.630	30.0	
4-Chloroaniline	0.477	0.468	29.480	30.0	
2,6-Dichlorophenol	0.261	0.266	30.650	30.0	
Hexachlorobutadiene	0.177	0.185	31.290	30.0	
Ouinoline	0.753	0.735	29.260	30.0	-
Caprolactam	0.182	0.170	28.040	30.0	
4-Chloro-3-methylphenol	0.445	:		30.0	-
2-Methylnaphthalene	0.739	0.759	30.800	30.0	ļ
1-Methylnaphthalene	0.680		30.130	30.0	
zourl zweb	ĺ	i	<u>i</u>	l	1

7C SEMIVOLATILE CONTINUING CALIBRATION CHECK

Ish Name:	Lancaster	Laboratories	Contract:	
Lab Name:	Dallcaprer	Daporacerec		_

Instrument ID: HP09910 Calibration Date: 06/15/06 Time: 09:10

Lab File ID: of0702.d Init. Calib. Date(s): 06/14/06 06/15/06

Min RRF for SPCC(#) = 0.050 Max %Drift for CCC(*) = 20%

			ACTUAL	TRUE	ક્ર
COMPOUND		RRF30	CONC.	CONC.	DRIFT
=======================================	=====	=====	=======	s=====	======
Hexachlorocyclopentadiene	0.241		32.680		9:
1,2,4,5-Tetrachlorobenzene	0.520	0.544	31.380	30.0	5
2,4,6-Trichlorophenol	0.299	0.299	29.990	30.0) 0
2,4,5-Trichlorophenol	0.373	0.372	29.930	30.0	0
Biphenyl	1.531	1.539	30.170	30.0	1
Diphenyl	1.531	1.539	30.170		1
1,1'-Biphenyl	1.531	1.539	30.170	30.0	1
2-Chloronaphthalene	1.335	1.428	32.090	30.0	7
1-Chloronaphthalene	1.106	1.122	30.450	30.0	2
Diphenyl ether	0.826				3
2-Nitroaniline	0.395	0.380	28.910	30.0	- 4
Dimethylphthalate	1.330	1.357	30.610	30.0	2
2,6-Dinitrotoluene	0.296	0.298	30.220	30.0	1
Acenaphthylene	1.855	1.840	29.770	30.0	-1
3-Nitroaniline	0.343	:	29.380	30.0	-2
Acenaphthene	1.191		30.510		2
2,4-Dinitrophenol	0.093		40.050		0
Pentachlorobenzene	0.526		31.350		5
4-Nitrophenol	0.246	0.231	28.250	30.0	-6
Dibenzofuran	1.814		30.430		1
2,4-Dinitrotoluene	0.363	0.367	30.340	30.0	1
1-Naphthylamine	1.181	•	29.620		-1
2,3,4,6-Tetrachlorophenol	0.243		30.830		3
2-Naphthylamine	1.239		29.860		(
Diethylphthalate	1.375		30.820] 3
Fluorene	1.453		29.870		
4-Chlorophenyl-phenylether	0.702	•	30.690		[2
4-Nitroaniline	0.394		28.400		- 5
4,6-Dinitro-2-methylphenol	0.068		29.830		j -:
N-Nitrosodiphenylamine (1)	!	•	31.210		4
1,2-Diphenylhydrazine	1.121	•	31.360		1 5
	0.654		31.960		j -
Phorate 4-Bromophenyl-phenylether	0.194	•			j (
4-Bromophenyl-phenylethel Hexachlorobenzene	0.226		1	:	j (
I e e e e e e e e e e e e e e e e e e e	0.099		1		į .
Pentachlorophenol	1.038		ı	•	92
Phenanthrene	1 1.030	,, 1.000 			i
	.	_	.	. ' ———	— —

⁽¹⁾ Cannot be Separated from Diphenylamine

7C cont SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab	Name:	Lancaster	Laboratories	Contract:
-----	-------	-----------	--------------	-----------

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Instrument ID: HP09910 Calibration Date: 06/15/06 Time: 09:10

Lab File ID: of0702.d Init. Calib. Date(s): 06/14/06 06/15/06

Init. Calib. Times(s): 23:13 01:39

Min RRF for SPCC(#) = 0.050 Max %Drift for CCC(*) = 20%

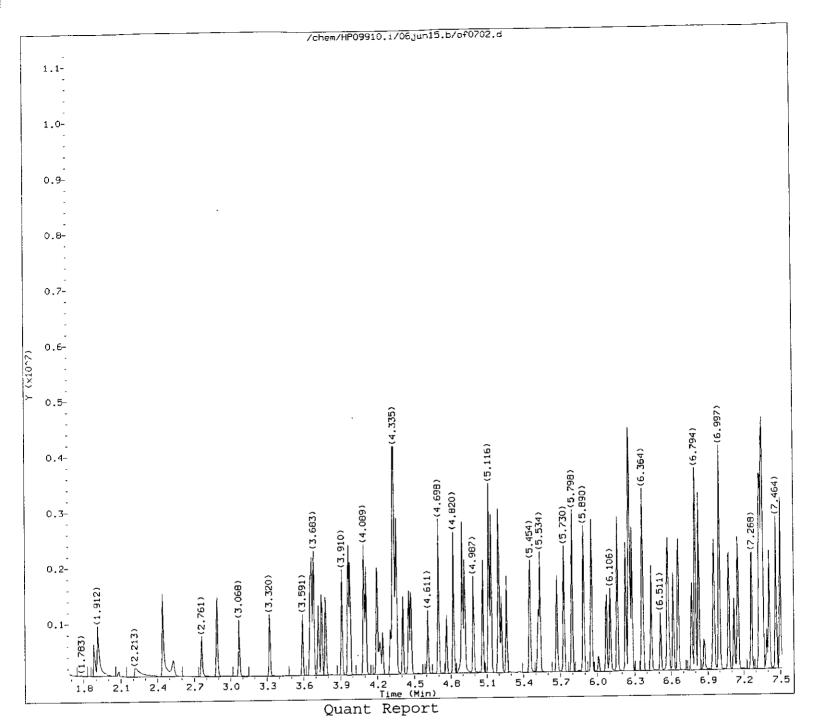
			ACTUAL	TRUE	8
COMPOUND	RRF	RRF30	CONC.	CONC.	DRIFT
=======================================	= ======		======	=====	=======
inoseb	0.091	0.098	:	30.0	0
nthracene	1.072	1.092			2
Carbazole	1.040				-3
Methyl parathion		0.272		i	9
Ronnel	0.260	0.281	32.380		8
oi-n-butylphthalate		1.222		i	6
Parathion		0.179			4
luoranthene		1.267			-1
Benzidine	0.583	0.617	95.140	90.0	6
Pyrene		1.246			5
Butylbenzylphthalate		0.530			7
3,3'-Dichlorobenzidine	0.443	0.445			1
Benzo(a) anthracene	1.152	1.150	29.940	30.0	0
Hexabromobenzene	0.010	0.010	31.330	30.0	4
1,4'-Methylenebis(2-Chloroar	nil 0.218	0.224	30.830	30.0	3
Chrysene	1.119	1.129	30.270	30.0	1
ois(2-Ethylhexyl)phthalate	0.684	0.745	32.650	30.0	9
5-Methylchrysene	0.830	0.835	30.190	30.0	1
Di-n-octylphthalate	1.185	1.287	32.590	30.0	9
7,12-Dimethylbenz[a]anthrace	ene 0.564	0.609	30.850	30.0	3
Benzo(b) fluoranthene	1.245	1.281	30.870	30.0	3
Benzo(k)fluoranthene	1.322	1.378	31.270	30.0	4
Benzo(a) pyrene	1.193	1.199	30.170	30.0] 1
3-Methylcholanthrene	0.665	0.668	30.130	30.0	į (
Dibenz(a,h)acridine	0.985	0.987	30.050	30.0	ļ
Dibenz(a,j)acridine	1.146	1.149	30.070	30.0	0
Indeno(1,2,3-cd)pyrene	1.357	1.342	29.670	30.0	-3
Dibenz(a,h)anthracene	1.077	1.079	30.060		(
Ponzola h ilnervlene	1.152				-1
=======================================	== =====	======	======	======	======
2-Fluorophenol	1.779	1.751] 29.520	30.0	
Phenol-d5	2.959		•	•	-3
Phenol-d6	2.959	2.866	29.060		-3
Nitrobenzene-d5	0.609	0.586			- 4
2-Fluorobiphenyl	1.332	1.371	30.860	-	
2,4,6-Tribromophenol	0.177	0.181	30.640	30.0	1 2
2/1/3 22 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	İ	<u> </u>		l	

7C cont SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: Lancaster Laboratories Contract:

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Instrument ID: HP09910 Calibration Date: 06/15/06 Time: 09:10


Lab File ID: of0702.d Init. Calib. Date(s): 06/14/06 06/15/06

Min RRF for SPCC(#) = 0.050

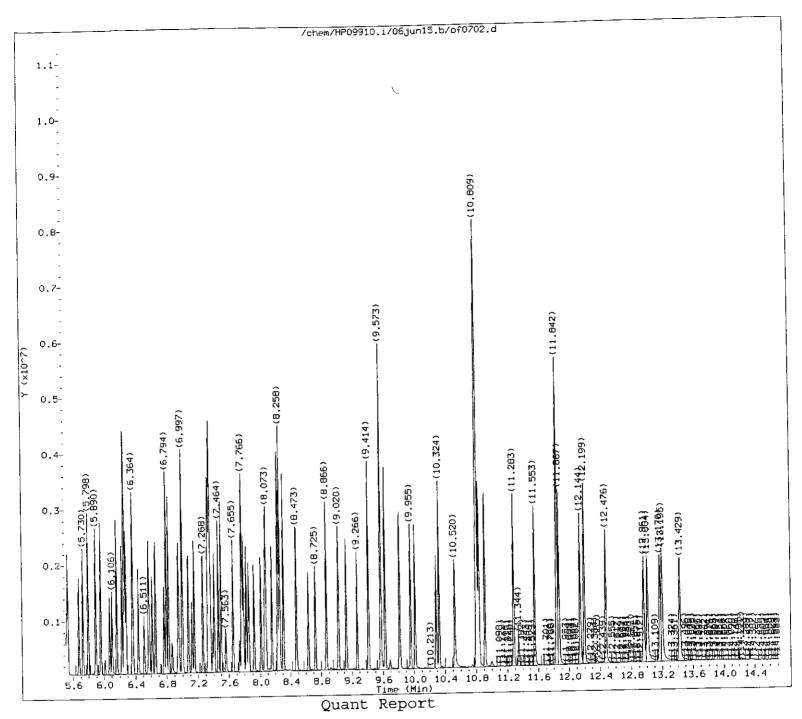
Max %Drift for CCC(*) = 20%

COMPOUND	RRF	RRF30	ACTUAL CONC.		% DRIFT
=======================================	======	=====	======	======	======
Terphenyl-d14	0.783	0.836	32.010	30.0	7
					ll

Average %Drift: 3

Target Revision 3.5

Data File: /chem/HP09910.i/06jun15.b/of0702.d Injection date and time: 15-JUN-2006 09:10


Instrument ID: HP09910.i Analyst ID: rpb01568

Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: all1

Calibration date and time: 15-JUN-2006 09:40

Date, time and analyst ID of latest file update: 15-Jun-2006 09:40 rpb01568

Lab Sample ID: STD1576 Sample Name: SSTD030

Target Revision 3.5

Instrument ID: HP09910.i Data File: /chem/HP09910.i/06jun15.b/of0702.d Analyst ID: rpb01568 Injection date and time: 15-JUN-2006 09:10

Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006 09:40

Date, time and analyst ID of latest file update: 15-Jun-2006 09:40 rpb01568

Lab Sample ID: STD1576 Sample Name: SSTD030

55.50

R 1028

Target Revision 3.5

Instrument ID: HP09910.i Data File: /chem/HP09910.i/06jun15.b/of0702.d Injection date and time: 15-JUN-2006 09:10 Analyst ID: rpb01568

Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006 09:40 Date, time and analyst ID of latest file update: 15-Jun-2006 09:40 rpb01568

Lab Sample ID: STD1576 Sample Name: SSTD030

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
1) N-Nitrosodimethylamine 2) Pyridine 4) 2-Picoline 12) Phenol 13) Aniline 17) bis (2-Chloroethyl) ether 18) 2-Chlorophenol 19) 1,3-Dichlorobenzene 20) 1,4-Dichlorobenzene 20) 1,4-Dichlorobenzene 24) Benzyl alcohol 25) 1,2-Dichlorobenzene 24) Benzyl alcohol 25) 1,2-Dichlorobenzene 26) 2-Methylphenol 27) 2,2'-oxybis (1-Chloropropane) 28) bis (2-Chloroisopropyl) ether 30) Acetophenone 31) N-Nitroso-di-n-propylamine 32) 4-Methylphenol 33) o-Toluidine 34) Hexachloroethane 36) Nitrobenzene 40) Isophorone 41) 2-Nitrophenol 42) 2,4-Dimethylphenol 43) bis (2-Chloroethoxy) methane 44) Benzoic acid 45) 2,4-Dichlorophenol 46) 1,2,4-Trichlorobenzene 47) Naphthalene-d8 48) Naphthalene 49) 4-Chloroaniline 50) 2,6-Dichlorophenol 51) Hexachlorobutadiene 52) Quinoline 53) Caprolactam 60) 4-Chloro-3-methylphenol 61) 2-Methylnaphthalene 62) 1-Methylnaphthalene 66) Hexachlorocyclopentadiene 67) 1,2,4,5-Tetrachlorobenzene 68) 2,4,6-Trichlorophenol 69) 2,4,5-Trichlorophenol	= (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	= 12115344506897988825553908503777666462341580285563 = 1668777166897988255333507866446234456789955705 = 1667779999882255333333333333333333333333333333	749 793433862686855508677729973520688725937221104221111 100000000000000000000000000	275461M 48661 485362 612753862 6127515 61374205 6127711 28425563 24425563 24425563 24425563 24425563 24425334420 2544740 26425334420 27426487 27426487 27426487 2743120 274312	28.066 28.388 29.471 29.0595 29.153 30.0017 28.3897 29.153 30.017 28.3897 29.4653 29.4653 29.7287 30.924 30.924 30.924 30.924 30.925 29.4653 29.787 29.384 29.384 29.384 29.658 40.626 30.6268 40.6268 30.287 30.287 30.287 30.287 30.288 30.299.4653 30.288 30.299.4653 30.299.4653 30.299.4653 30.299.4653 30.299.4653 30.299.4653 30.299.4653 30.2888 30.299.4653 30.2888 30.299.4653 30.2888 30.299.4653 30.2888 30.299.4653 30.2888 30.299.6658 30.2888 30.299.6658 30.2888 30.299.6658 30.2888 30.299.6658 30.2888 30.299.6658 30.2888 30.299.6658 30.2888 30.299.6658 30.2888 30.299.6658 30.2888 30.299.6658 30.2888 30.299.6658 30.2888 30.299.6888

M = Compound was manually integrated.

Target Revision 3.5

Instrument ID: HP09910.i Data File: /chem/HP09910.i/06jun15.b/of0702.d Injection date and time: 15-JUN-2006 09:10 Analyst ID: rpb01568

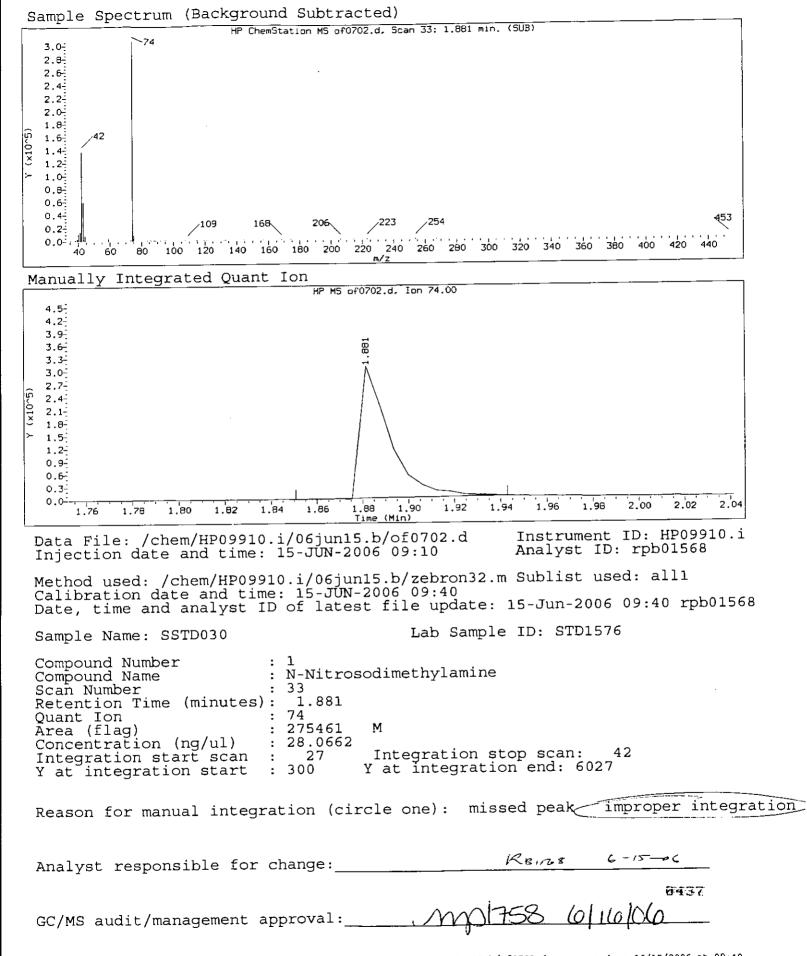
Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006 09:40 Date, time and analyst ID of latest file update: 15-Jun-2006 09:40 rpb01568

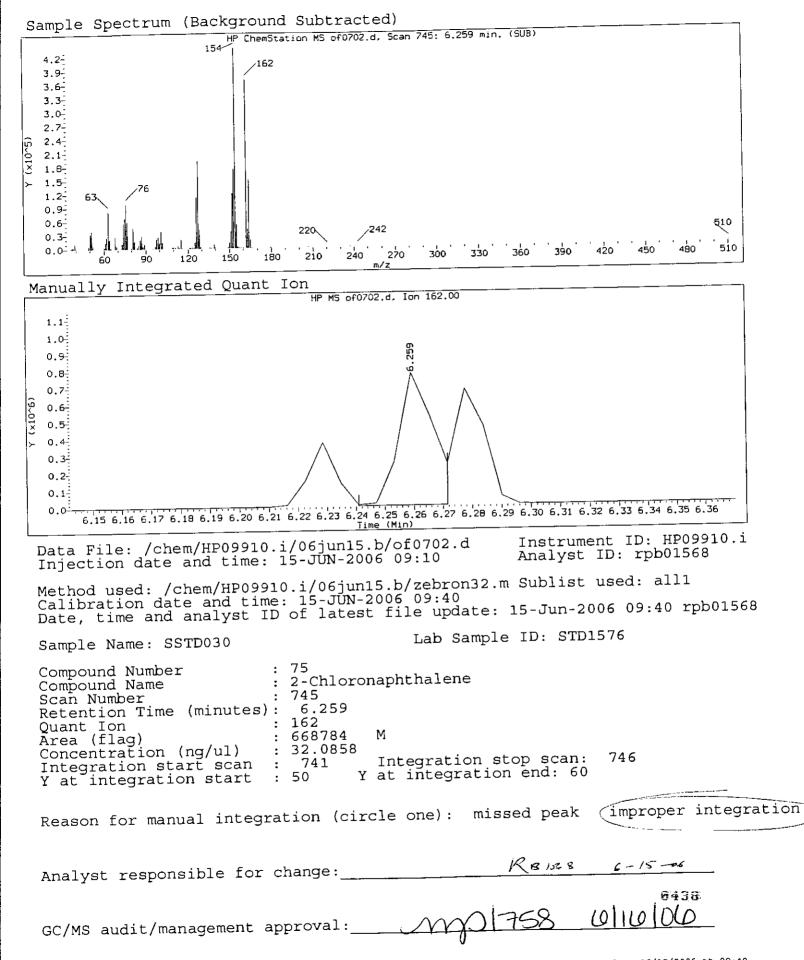
Lab Sample ID: STD1576 Sample Name: SSTD030

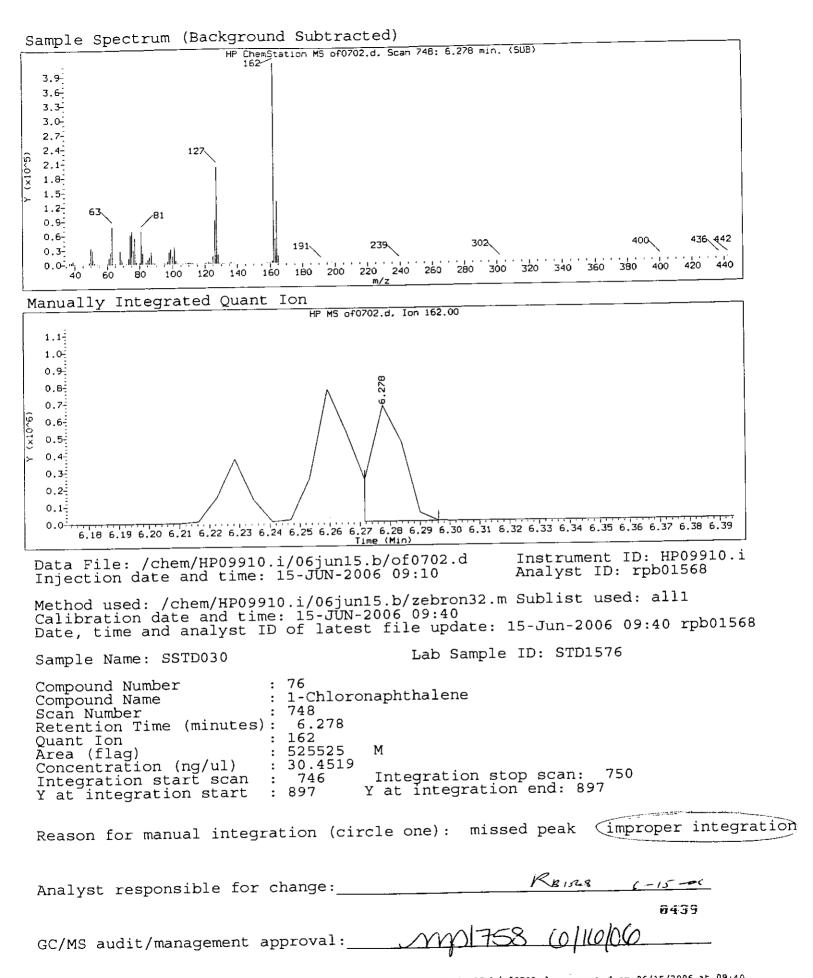
Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
73) Diphenyl 74) 1,1'-Biphenyl 75) 2-Chloronaphthalene 76) 1-Chloronaphthalene 77) Diphenyl ether 79) 2-Nitroaniline 80) Dimethylphthalate 81) 2,6-Dinitrotoluene 82) Acenaphthylene 83) 3-Nitroaniline 85) Acenaphthene-d10 89) Acenaphthene 90) 2,4-Dinitrophenol 91) Pentachlorobenzene 92) 4-Nitrophenol 93) Dibenzofuran 94) 2,4-Dinitrotoluene 97) 1-Naphthylamine 98) 2,3,4,6-Tetrachlorophenol 99) 2-Naphthylamine 100) Diethylphthalate 102) Fluorene 104) 4-Chlorophenyl-phenylether 105) 4-Nitroaniline 106) 4,6-Dinitro-2-methylphenol 109) N-Nitrosodiphenylamine 110) 1,2-Diphenylhydrazine 114) Phorate 116) 4-Bromophenyl-phenylether 117) Hexachlorobenzene 124) Pentachlorophenol 125) Phenanthrene 127) Dinoseb 130) Anthracene 131) Carbazole 133) Methyl parathion 134) Ronnel 137) Di-n-butylphthalate 139) Parathion 140 Benzidine 141) Benzidine	= ((((((((((((((((((((((((((((((((((((===154 1154220835284340985323964889758468881879599242 115421160840985323964889758468881879599242 116421160840985323964889758468881879599242	======================================	======================================
				_	3

M = Compound was manually integrated. A = User selected an alternate hit

Target Revision 3.5


Instrument ID: HP09910.i Analyst ID: rpb01568 Data File: /chem/HP09910.i/06jun15.b/of0702.d Injection date and time: 15-JUN-2006 09:10


Method used: /chem/HP09910.i/06jun15.b/zebron32.m Sublist used: all1 Calibration date and time: 15-JUN-2006 09:40 Date, time and analyst ID of latest file update: 15-Jun-2006 09:40 rpb01568


Lab Sample ID: STD1576 Sample Name: SSTD030

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
148) Butylbenzylphthalate 153) 3,3'-Dichlorobenzidine 154) Benzo(a) anthracene 155) Hexabromobenzene 157) 4,4'-Methylenebis(2-Chloroan 156) Chrysene-dl2 158) Chrysene 159) bis(2-Ethylhexyl)phthalate 160) 6-Methylchrysene 161) Di-n-octylphthalate 163) 7,12-Dimethylbenz[a]anthrace 164) Benzo(b) fluoranthene 165) Benzo(k) fluoranthene 166) Benzo(a)pyrene 167) Perylene-dl2 168) 3-Methylcholanthrene 169) Dibenz(a,h)acridine 170) Dibenz(a,j)acridine 171) Indeno(1,2,3-cd)pyrene 172) Dibenz(a,h)anthracene 173) Benzo(g,h,i)perylene 7) 2-Fluorophenol 10) Phenol-d5 11) Phenol-d6 35) Nitrobenzene-d5 71) 2-Fluorobiphenyl 112) 2,4,6-Tribromophenol 147) Terphenyl-dl4	(5) (5) (5) (6)	10.324 10.803 10.803 10.809 10.819 10.834 11.554 11.842 11.8447 11.8447 11.8447 11.8447 11.846	149 259 259 228 259 249 249 249 249 249 255 227 268 277 277 277 277 277 277 277 277 277 27	506160 425332 1098316 9823 214383 1273481 1078689 711627 797220 1155191 547005 1149877 1236476 1076528 1196647 599427 885522 1031255 1204286 968228 1027608 318491 521331 453392 641856 84783 798079	31.963 30.155 29.945 31.334 30.820 30.2653 30.653 30.586 30.869 31.2653 30.868 30.049 30.049 30.0670 30.0670 30.0670 30.869 29.056 29.056 29.056 28.863 30.640 32.08

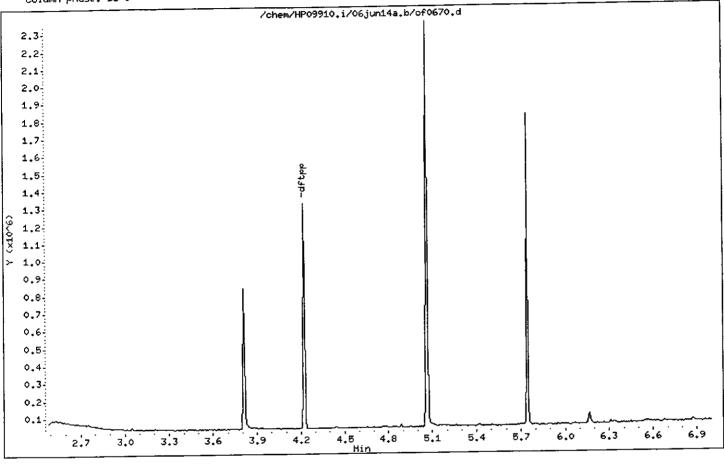
M = Compound was manually integrated.

Raw QC Data

Data File: /chem/HP09910.i/06jun14a.b/of0670.d

Date : 14-JUN-2006 22:59

Client ID: DFTPP


Instrument: HP09910.i

Sample Info: DFTPP;8270DFTPP1116;

Operator: 1mh00956

Column phase: DB-5

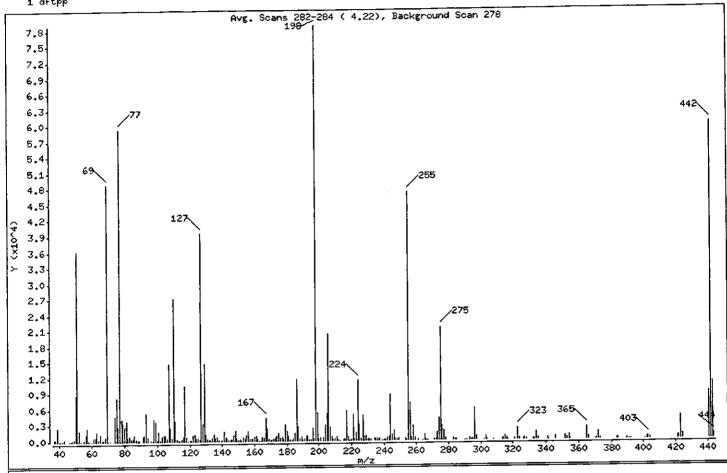
Column diameter: 0.25

Bata File: /chem/HP09910.i/06jun14a.b/of0670.d

Date: 14-JUN-2006 22:59

Client ID: DFTPP

Instrument: HP09910.i


Sample Info: DFTPP;8270DFTPP1116;

Operator: 1mh00956

Column phase: DB-5

Column diameter: 0.25

1 dftpp

m/e ION ABUNDANCE CRITERIA		+			
	I			1	
198 Base Peak, 100% relative abundance	1	100,00		I	
51 30.00 - 60.00% of mass 198	1	45.84		I	
68 Less than 2.00% of mass 69	1	0.86 (1.38)	ı	
69 Mass 69 relative abundance	1	61.89		1	
70 Less than 2.00% of mass 69	1	0.01 (0.02)	1	
127 40.00 - 60.00% of mass 198	1	50,03		1	
197 Less than 1.00% of mass 198	1	0.49		1	
199 5.00 - 9.00% of mass 198	1	6,56		1	
275 10.00 - 30.00% of mass 198	I	27,13		1	
365 Greater than 1.00% of mass 198	1	2,97		i	
441 Present, but less than mass 443	1	11.37		ı	
442 40.00 - 99.99% of mass 198	i	76.12		1	
443 17,00 - 23,00% of mass 442	1	13.48 (17,71>	1	6442

0443

Data File: /chem/HP09910.i/06jun14a.b/of0670.d

Date: 14-JUN-2006 22:59

Client ID: DFTPP

Instrument: HP09910.i

Sample Info: DFTPP;8270DFTPP1116;

Operator: 1mh00956

Column diameter: 0.25

Column phase: DB-5

Column diameter: 0.:

Data File: of0670.d

Spectrum: Avg. Scans 282-284 (4.22), Background Scan 278

Location of Maximum: 198.00 Number of points: 281

	m/z	Y	m/z	Y	m/Z	Y	m/z	Y +
+-	37,00	 1 281 1	116,00	910 I	187,00	2720 1	271.00	157 l
ì	38.00		117.00	10436 I	188,00	394 l	272.00	209 !
i	39.00		118.00		189.00	810	273.00	1541
·	40.00		119.00	37 I	190,00	198 l	274.00	4104
i	41,00		120.00	228 1	191,00	35 9 l	275,00	21400
+-	42.00		121.00	124	192.00	8 9 2	276.00	2738 I
	42.00		1 122,00		193.00	913 I	277,00	1834
) 	43.00		123.00		194.00	237	278.00	309 I
1	46.00 47.00		1 124.00		195.00	1 50	283,00	394 1
1	48,00		125.00		196.00	2385	284.00	205
+-	40.00	720	+ 126.00	300	 197.00	 388 I	 285.00	263 I
1	49.00		1 127.00		198,00	78 89 6 1	290.00	69 I
1	50.00		128.00		199,00	5174	291.00	57 i
1	51.00 52.00		1 129.00		200.00	442	293.00	405 I
i	53.00	-	1 130,00		201,00	494	294.00	177 l
+			+		+		 295.00	+ 244 l
- 1	5 5.00		131,00		203,00		1 296,00	5966 I
1	56,00		1 132,00		1 204,00		1 297.00	7 8 8 I
ŧ	57.00		1 133,00		1 205.00			75 I
- 1	58.00	155	134.00		1 206.00		1 302.00 1 303.00	736 I
ŀ	60.00	86 	135.00 	1221	1 207.00 +	2371	+	+
1	61.00	666	136.00	564	1 208,00	735	304.00	163 I
ı	62.00	722	1 137.00	663	209,00	239	1 308.00	5 5 1
1	63.00	1741	138,00	159	1 210,00	327	1 313.00	166 l
ı	64.00	421	I 139,00	54	1 211,00		I 314.00	331 1
1	65,00	1188	1 140.00	98	1 212.00	181	315,00 	650 l ++
+	66,00	206	141,00	1753	1 213.00	61	1 316.00	311 I
1			1 142,00	698	1 215,00	121	317,00	8 1
i			1 143.00	548	1 216.00	449	1 321,00	205 I
i			1 144.00	216	1 217,00	5591	323.00	2115 !
i	70.00		1 145.00	119	1 218,00	680	1 324.00	402 l
•			-+		-+		1 326 00	102
ı	71.00		I 146.00		1 219.00		1 326,00	300 i
-	74,00		147,00		1 220,00		1 327,00	267 I
ı	75.00		I 148.00		1 221,00		1 328,00	251
ı	76,00	2699	1 149,00		1 222,00		1 332.00	128 I
1	77,00	59312	150,00	134	i 223,00	1414	1 333.00	120 1

6444

Data File: /chem/HP09910.i/06jun14a.b/of0670.d

Date : 14-JUN-2006 22:59

Client ID: DFTPP

Sample Info: DFTPP;8270DFTPP1116;

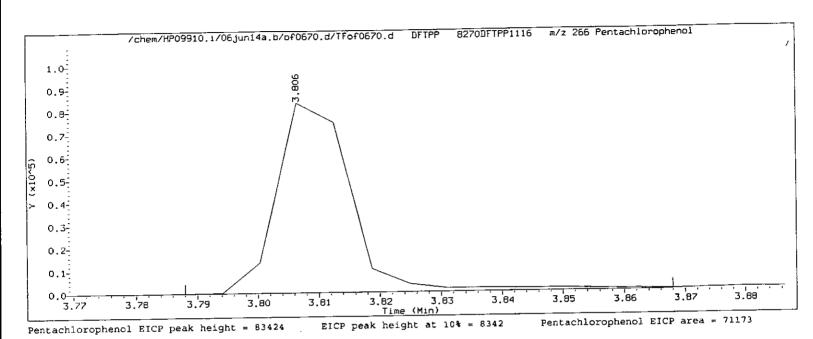
Instrument: HP09910.i

Operator: 1mh00956

Column phase: DB-5

Column diameter: 0.25

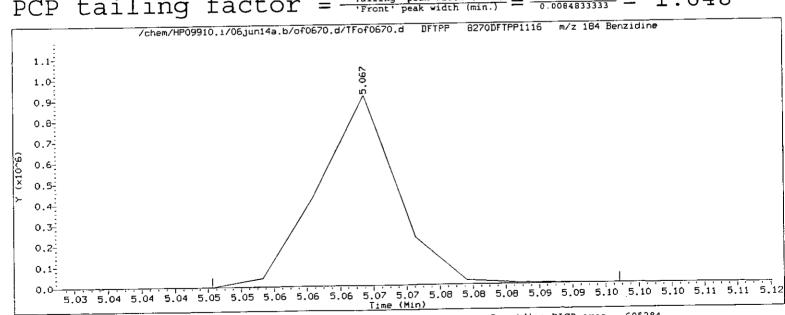
Data File: of0670,d


Spectrum: Avg. Scans 282-284 (4.22), Background Scan 278

Location of Maximum: 198.00 Number of points: 281

	m/z	Y	m/z	Υ	m/z	Y	m/z	Y +
+- 1	78,00	4081	 151.00	366 I	224,00	11484	334.00	1424 i
ì	79,00	3525	152.00	3 8 1	225.00	3 028	335.00	27 5 I
•	80.00	2759	153.00	759 l	226.00	34 5	341.00	295 1
i	81.00	3804	154.00	437 I	227,00	4770	342,00	59 I
i	82.00	744	155.00	1152	228,00	776	346,00	485 I
+-	·		+	+			+ -	+
ı	83,00	860	156.00	1811	229.00	9 38	352.00	710 I
1	84.00	346	1 157.00	390 l	230,00	171	3 53. ◊◊	429 1
ı	85.00	563	158.00	352	231.00	377	1 354₊00	8 32 I
ı	86.00	1176	159,00	313	232,00	98	355.00	2 32 I
i	87,00	274	160.00	652	234,00	365	365,≎0	2342
+			+				+ 	+
,	88.00	152	1 161.00	905	235.00		1 366,00	494 1
ŀ	89.00	214	1 162,00	3 21	236,00	301	370,00	73 I
1	91,00	956	163.00	60	237.00		371.00	122 I
1	92.00	1054	1 164.00	84	239.00		1 372.00	1361
ı	93,00	5342	165.00	648	1 240,00	144	1 373.00	222 1
+			+		+- 		+	+
1	94,00	767	166,00	523	1 241.00		1 383.00	224
1	96.00	270	I 167.00	4364	1 242,00	557	1 384,00	193 I
1	97.00	5	168.00	2337	1 243,00		1 389,00	55 I
1	98.00	4226	1 169.00	349	1 244.00		390.00	132 I
ı	99,00	3707	1 170.00	211	1 245.00	1178	1 391.00	68 1
+			-+ 		+		+	
j	100,00	114	171.00	15 3	1 246,00	1883	1 392,00	50 I
1	101,00	1830	1 172.00	337	1 247.00	• • •	1 401,00	77 I
t	102,00	135	173,00	58 9	1 248,00		1 402.00	335 I
i	103.00	843	1 174,00	966	1 249,00		1 403,00	576 1
ı	104.00	1094	175.00	1509	1 253,00	274	1 404,00	257 i
4			-+ 		+		-+	+
ı	105.00	1045	176,00	5 93	1 254,00		1 421,00	556 1
1	106.00	603	177,00	816	1 255,00		1 422,00	568 I
	107.00	14714	1 178,00	3 43	1 256,00		423,00	4328 i
	108,00	2569	179.00	3100	1 257,00		1 424.00	868 1
ı	109,00	563	1 180.00	1863	1 258.00	2668	1 441.00	8971 I
4	·		-+	 -	+		_+	
	110.00	27216	181,00	824	1 259.00		1 442.00	60056 1
	111.00	3848	I 182.00	238	1 261.00		1 443,00	10639 1
	112.00		183,00	68	1 264,00	81	1 444,00	830 1
	113.00	246	1 184.00	309	1 265,00	1177	1	I
	114.00	39	I 185.00	1450	1 266,00	91	1	1

Assessment of GC Column Performance and Injection Port Inertness for


Instrument ID: HP09910.i Injection Date: 14-JUN-2006 22:59 Operator: lmh00956

Pentachlorophenol EICP peak apex (min.) * 3.806 RT at 10% of front half of EICP (min.) = 3.798 RT at 10% of back half of EICP (min.) = 3.820

'Front' peak width (min.) = 0.0084833333 'Tailing' peak width (min.) = 0.0139833333

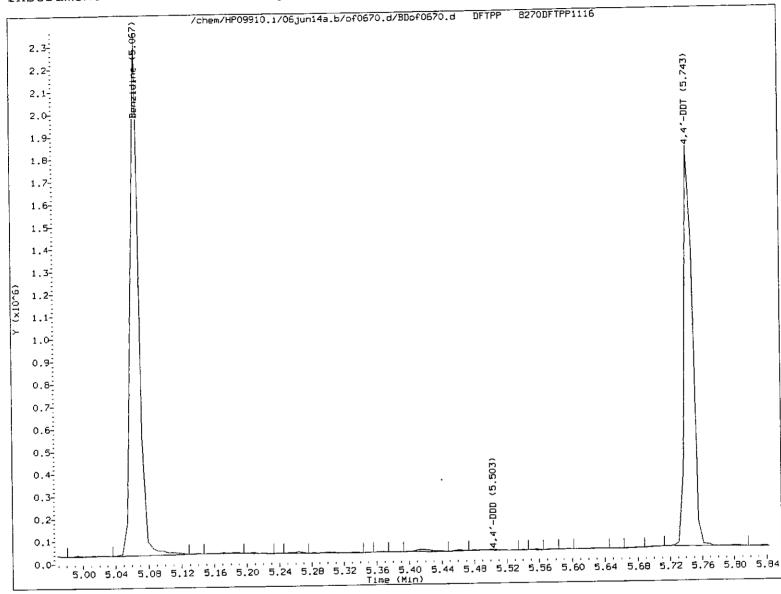
'Tailing' peak width (min.) - 0.0139833333 'Front' peak width (min.) - 0.0084833333 tactor

Benzidine EICP peak height = 913428

EICP peak height at 10% = 91343

Benzidine EICP area = 605284

Benzidine EICP peak apex (min.) = 5.067 RT at 10% of front half of EICP (min.) = 5.055 RT at 10% of back half of EICP (min.) = 5.077


'Front' peak width (min.) = 0.0114500000 'Tailing' peak width (min.) = 0.0102333333

6445 Benzidine tailing factor = 'Tailing' peak width (min.) = - $\frac{0.0102333333}{0.01145000000} = 0.894$

> page 1 of 2 printed on 06/14/2006 at 23:08

Assessment of GC Column Performance and Injection Port Inertness for

Instrument ID: HP09910.i Injection Date: 14-JUN-2006 22:59 Operator: lmh00956

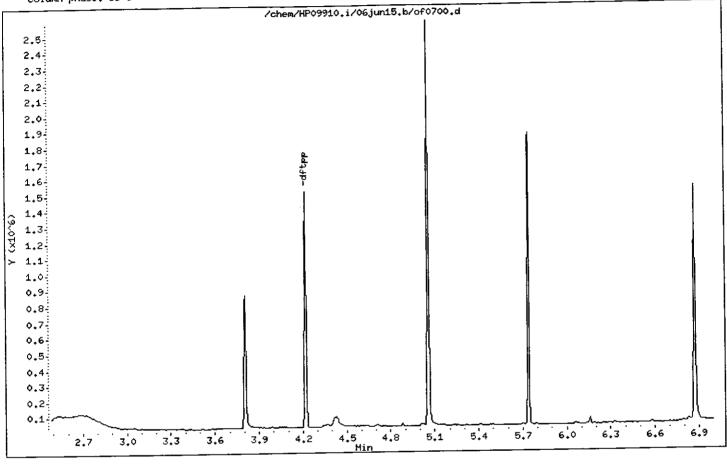
% 4,4'-DDT breakdown =
$$\frac{4,4'-DDE\ TIC\ area\ +\ 4,4'-DDD\ TIC\ area\ +\ 4,4'-DDT\ TIC\ area\ +\ 4,4$$

% 4,4'-DDT breakdown =
$$\frac{54706 + 9517}{54706 + 9517 + 1328151}$$
 x 100 = 4.6

Data File: /chem/HP09910.i/06jun15.b/of0700.d

Date : 15-JUN-2006 08:32

Client ID: DFTPP


Instrument: HP09910.i

Sample Info: DFTPP;8270DFTPP1116;

Operator: rpb01568

Column phase: DB-5

Column diameter: 0.25

Data File: /chem/HP09910.i/06jun15.b/of0700.d

120

140

160

180

Date : 15-JUN-2006 08:32

Client ID: DFTPP

Sample Info: DFTPP;8270DFTPP1116;

Operator: rpb01568

Column diameter: 0.25

Instrument: HP09910.i

Column phase: DB-5

1 dftpp Avg. Scans 282-284 (4.22), Background Scan 277 9.3 9.0 8.7 8.4 442 8.1 7.8 7.5 7.2 6.9 6.6 /255 6.3 6.0 5.7 5.4 5.1 127 4.8 4.5 4.2 3.9 3.6 3.3 3.0 2.7 2.4 2.1 1.8 1.5 296 1.2 0.9 *3*23 0.6 0.3 420 380 340 360 260 280 300 320 240 220 200

ABUNDANCE	-+
- 	1
1 100,00	1
1 41.81	1
ı 0.87 (1.54)	1
1 56.94	1
0.18 (0.31)	I
1 48.95	l
1 0.39	l .
ı 6,31	1
ı 28,73	I .
1 3.66	1
11.31	1
ı 81.¢9	1
15,41 (19,01)	6446
	1 41.81 1 0.87 (1.54) 1 56.94 1 0.18 (0.31) 1 48.95 1 0.39 1 6.31 1 28.73 1 3.66 1 11.31 1 81.09

Bata File: /chem/HP09910.i/06jun15.b/of0700.d

Date : 15-JUN-2006 08:32

Client ID: DFTPP

Instrument: HP09910.i

Sample Info: DFTPP;8270DFTPP1116;

Operator: rpb01568

Column phase: DB-5

Column diameter: 0.25

Data File: of0700.d

Spectrum: Avg. Scans 282-284 (4.22), Background Scan 277

Location of Maximum: 198.00 Number of points: 288

	m/z	Y		m/z	Y		m/z	Y		m/z	Y
+ !	37,00	64	+ 	124,00	620	i :	198.00	95440	ı	278,00	3 32 l
1	38.00	463	ŀ	125.00	582	1	199.00	6018	i	283.00	381 l
ł	39.00	2902	ı	126,00	172	1	200,00	643	ı	284.00	98 I
ı	40.00	144	ı	127,00	46712	ı	201.00	636	ı	285.00	543 I
t	49.00	247	I	128,00	3376	1	202.00	81	! +-	289.00	63 1 +
+ -	50,00	9850	1	129,00	17064	i	203,00	693	i	290,00	54
1	51.00	39 896	ļ	130.00	156 3	I	204.00	37 0 3	١	292,00	131
1	52,00	2008	ŀ	131.00	343	I	2 0 5.00	6403	I	293.00	406 I
1	53.00	95	ı	132,00	286	ı	206,00	24544	í	294,00	97 (
1	54.00	38	ı	134,00	535	l 	207,00	3308	1	295.00	171
+ 		171	+- I	135.00	1706	+ 	208,00	674	ı	296,00	7769 i
ı	56.00	1215	ŀ	136,00	604	ı	209.00	2 88	ı	297.00	1249 I
1	57,00	2763	i	137.00	770	ı	210,00	277	1	298,00	61 I
1	58,00	211	ı	138.00	276	ı	211.00	901	ł	301.00	51 i
t	60.00	93	ı	139.00	104	!	212,00	175	1	303.00	914
+-	61.00	462	1	140.00	277	+- 	213.00	98	ı	304.00	2 29 l
ì	62,00	722	ı	141.00	2093	ı	214.00	87	ı	308.00	148 I
ı	63.00	1826	ŀ	142,00	821	ı	215.00	298	1	309,00	81 I
1	64.00	356	ı	143.00	587	ı	216,00	613	1	310,00	139 i
1	65.00	1036	1	144.00	204	ı	217,00	6053	1	314.00	389
+-	67,00	213	.+- I	145.00	175	1	218.00	719	ı	315.00	1052
ı	68,00	835	ı	146,00	314	ŀ	219,00	142	I	316,00	416 I
1	69.00	54336	1	147.00	1207	ı	220,00	53	ļ	317.00	59 I
1	70,00	168	ŧ	148,00	2355	ı	221.00	4 98 8	ŧ	321.00	103 i
1	71,00	80	ŀ	149,00	736	I	222,00	326	1	322.00	112
+- !	73,00	292	1	150.00	242	1	223,00	1530	ľ	323.00	2694
i	74,00	5239	ı	151.00	455	I	224,00	13118	I	324.00	369 I
1	75,00	8824	1	152,00	143	i	225,00	3400	ı	325.00	66 1
1	76.00	3018	1	153.00	89 2	ŀ	226.00	233	۱	327.00	366 i
I	77,00	65768	ļ	154.00	508	1	227,00	5 533	1	328.00	328
+- 	78,00	4510	·+·	155,00	1294	1	228,00	919	1	329,00	72
t	79,00	4122	1	156.00	1870	1	229.00	1144	ı	332,00	22 6 I
1	80,00	3169	1	157.00	469	ŀ	230,00	145	1	333.00	225 I
1	81.00	4398	1	158.00	368	ŀ	231,00	527	1	334.00	1882 I
1	82.00	1147	ł	159.00	385	ı	2 32,00	75	1	335.00	703 I

Data File: /chem/HP09910.i/06jun15.b/of0700.d

Date : 15-JUN-2006 08:32

Client ID: DFTPP

Instrument: HP09910.i

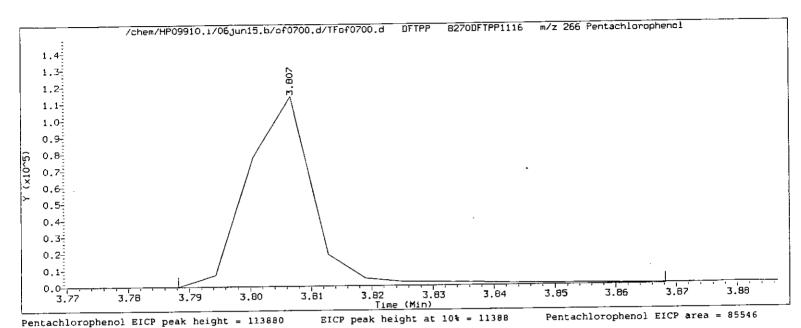
Sample Info: DFTPP;8270DFTPP1116;

Operator: rpb01568

Column phase: DB-5

Column diameter: 0.25

Bata File: of0700,d

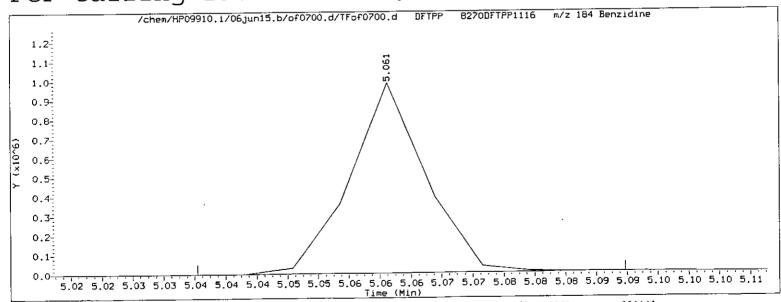

Spectrum: Avg. Scans 282-284 (4.22), Background Scan 277

Location of Maximum: 198.00 Number of points: 288

	m/z	Y	m/z	Υ .	m/z	Y 	m/z	Y
+- I	83.00	781 I	160,00	786 I	233.00	139	339.00	61
í	85.00		161.00	1149 I	234,00	445 l	341,00	362 I
i	86.00		162.00		235.00	397 I	342,00	61 !
i	87.00	694	163.00	111 l	236.00	347 I	346.00	684 I
1	88.00		164.00	84 I	237.00	513 !	352.00	7 0 5
+-	89.00	386	+ 165.00	944 I	238,00	63	353.00	575 I
ī	90.00		166,00	638 1	239.00	313 !	354,00	1069 I
i	91.00	1230	167.00	4732	240.00	80 1	355,00	9 8 1
i	92.00		168,00	2652 I	241,00	366	359.00	104
ì	93.00		1 169,00	423 1	242,00	664	365 ,00	3489 I
+	94.00	463	+ 170.00	221 l	243.00	827	366.00	606 1
í	95.00	166	171,00	406 I	244.00	11064	370.00	8¢ I
i	96.00		172.00	416	245.00	1583	371.00	226 1
i		4617	173.00	626 I	246.00	2017	I 372.0 0	1443
ì	99.00	4038	174,00	1056 I	247,00	527	1 373.00	340 l
+	100.00	264	+ 175.00	2069 I	248.00	65	I 383.00	485 I
ı	101.00	2441	176,00	606 1	249.00	272	1 384.00	227 I
ı	102,00	117	1 177,00	849 I	251,00	158	1 390.00	212
ı	103.00	766	178.00	283 I	252.00	128	391,00	108 I
ı	104,00	1699	1 179,00	3525 I	253,00	256	392.00 +	149
+	105,00	1699	180. 00	2313	254,00	634	1 401.00	71 I
ı	106.00	461	1 181.00	103 5	255,00	58200	1 402,00	664
1	107.00	16424	I 182.00	227	256.00	8867	1 403.00	924 I
ı	108,00	2781	I 183.00	5 1 (257.00	711	1 404,00	280 I
ı	109.00	797	184.00	262	258.00	3217 	421.00 	684 ++
+	110.00	31912	185,00	1690	259,00	462	1 422,00	720 I
ŀ	111.00	4223	1 186,00	14042	261.00	92	1 423.00	5 3 58 l
ı	112.00	823	1 187.00	4077	262,00	54	1 424.00	1323 l
1	113.00	243	188.00	372	1 264,00	131	1 425,00	117
١	114.00	69	1 189,00	966	265.00	1390	1 441.00	10799 I
4		. 	-+ 		+		+	- +
(115.00	24	1 190,00	66	1 266.00	_	1 442,00	77392 I
ı	116.00	872	1 191,00	436	271,00		1 443,00	14712 1
1	117,00	11817	1 192.00	1298	1 272,00		1 444,00	1209 I
J	118.00	1021	I 193.00	1468	1 273.00		445,00	51 I
ı	119.00	279	1 194.00	278	1 274.00	4787	1	ı

Assessment of GC Column Performance and Injection Port Inertness

Instrument ID: HP09910.i Injection Date: 15-JUN-2006 08:32 Operator: rpb01568



Pentachlorophenol EICP peak apex (min.) = 3.807 RT at 10% of front half of EICP (min.) = 3.795 RT at 10% of back half of EICP (min.) = 3.816

tailing tactor

'Front' peak width (min.) = 0.0118833333 'Tailing' peak width (min.) = 0.0093000000

0.783

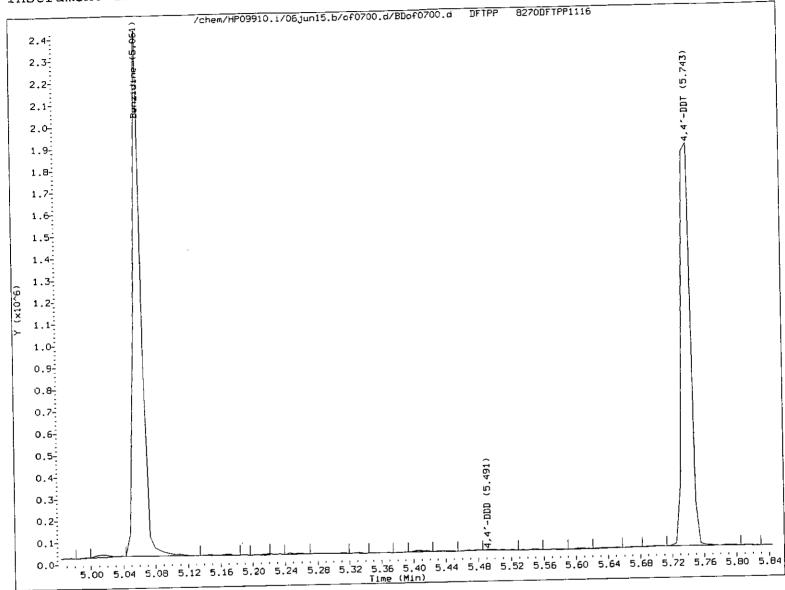
Benzidine EICP peak height = 981752

EICP peak height at 10% = 98175

Benzidine EICP area = 664441

Benzidine EICP peak apex (min.) = 5.061 RT at 10% of front half of EICP (min.) = 5.050 RT at 10% of back half of EICP (min.) = 5.072

'Front' peak width (min.) = 0.0109833333


'Tailing' peak width (min.) = 0.0111666667

F451

Benzidine tailing factor = $\frac{\text{'Tailing' peak width (min.)}}{\text{'Front' peak width (min.)}} = \frac{0.0111666667}{0.0109833333} =$ 1.017

Assessment of GC Column Performance and Injection Port Inertness for

Instrument ID: HP09910.i Injection Date: 15-JUN-2006 08:32 Operator: rpb01568

% 4,4'-DDT breakdown =
$$\frac{73472 + 6038}{73472 + 6038 + 1547630}$$
 x 100 = 4.9

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SBLKWA1630

Lab	Name:	Lancaster	Laboratories	Contract:	

Matrix: (soil/water) WATER Lab Sample ID: SBLKWA163

Sample wt/vol: 1000 (g/mL)ML Lab File ID: of0684.d

Level: (low/med) LOW Date Received:

% Moisture: not dec: dec: Date Extracted: 06/12/06

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 06/15/06

Injection Volume: 1 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: Extraction: Sepf

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg) MDI	L UG/L	Q
100-52-7	Benzaldehyde	1	U
108-95-2		1	U
111-44-4	bis(2-Chloroethyl)ether	1	U
	2-Chlorophenol	1	ן ט ן
	1,3-Dichlorobenzene	1	U
	1,4-Dichlorobenzene	1	ן ט
	1,2-Dichlorobenzene	1	ן ט ן
	2-Methylphenol	1	U
	2,2'-oxybis(1-Chloropropane)	1	U
	Acetophenone	2	ן ט ן
	N-Nitroso-di-n-propylamine	1	ן ט
	4-Methylphenol	2	ן ט ן
	Hexachloroethane	1	U
_	Nitrobenzene	1	U
78-59-1		1	U
	2-Nitrophenol	1	Ü
	2,4-Dimethylphenol	3	U
	bis(2-Chloroethoxy)methane	1	ן ט ן
	2,4-Dichlorophenol	1	U
	Naphthalene	1	U
106-47-8	4-Chloroaniline	1	U
	Hexachlorobutadiene	1	ן ט ן
105-60-2	•	5	ן ט
	4-Chloro-3-methylphenol	ì] U
	2-Methylnaphthalene	1	U
	Hexachlorocyclopentadiene	5	ן ט ן
	2,4,6-Trichlorophenol	1	ן ט ן
	2,4,5-Trichlorophenol	1	U
	1,1'-Biphenyl	1	ן ט ן
	2-Chloronaphthalene	2	[U]
J . J. J. J.			.

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SBLKWA1630

Lab Name: Lancaster Laboratories Contract:____

Matrix: (soil/water) WATER Lab Sample ID: SBLKWA163

Sample wt/vol: 1000 (g/mL)ML Lab File ID: of0684.d

Level: (low/med) LOW Date Received:

% Moisture: not dec: dec: Date Extracted: 06/12/06

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 06/15/06

Injection Volume: 1 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: Extraction: Sepf

CONCENTRATION UNITS:

	CON	CENTRALION OF	ATTO.		
CAS NO. CO	MPOUND (ug	/L or ug/Kg)	MDL	UG/L	Q
88-74-4 2-1	Nitroaniline_			1	U
131-11-3 Di	nethylphthalat	e		2	U
606-20-2 2,				1	U
208-96-8 Acc				1	U
99-09-2 3-1				1	U
83-32-9 Acc				1	U
51-28-5 2,				20	U
100-02-7 4-1				10	U
132-64-9 Di				1	U
121-14-2 2,				1	Ü
84-66-2 Di				2	U
86-73-7 Fl		_	i	1	U
7005-72-3 4-	Chlorophenvl-r	henvlether	i	2	U
100-01-6 4-				1	U
534-52-1 4,				5	U
86-30-6 N-				2	U
101-55-3 4-				1	U
118-74-1 He				1	U
1912-24-9 At			i	2	U
87-86-5 Pe		<u> </u>	─i	3	U
85-01-8 Ph				1	U
120-12-7 An				1	U
86-74-8 Ca			t	1	U
84-74-2 Di				2	ט
206-44-0 Fl				1	ប
129-00-0 Py			i	1	ט
85-68-7 Bu		late	─-¦	2	Ū
91-94-1 3,				2	ប
91-94-1 3, 56-55-3 Be				1	ับ
-				1	บ
218-01-9 Ch	rysene		¦	_	i

1C cont SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SBLKWA1630

Lab Sample ID: SBLKWA163 Matrix: (soil/water) WATER

Lab File ID: of0684.d Sample wt/vol: 1000 (g/mL)ML

Date Received: Level: (low/med) LOW

Lab Name: Lancaster Laboratories Contract:____

Date Extracted: 06/12/06 % Moisture: not dec: dec:

Date Analyzed: 06/15/06 Concentrated Extract Volume: 1000 (uL)

Dilution Factor: 1.0 Injection Volume: 1 (uL)

Extraction: Sepf GPC Cleanup: (Y/N) N pH:

CONCENTRATION UNITS:

	CAS	NO.	COMPOUND	(ug/L or	ug/Kg)	MDL	UG/L		Q	
	117- 205- 207- 50-3	-84 - 0	bis(2-Ethylh Di-n-octylph Benzo(b)fluc Benzo(k)fluc Benzo(a)pyre Indeno(1,2,3 Dibenz(a,h)a	nthalate oranthene_ oranthene_ ene 3-cd)pyren	e		2 2 1 1 1 1		U U U U U	-
i		-24-2	Benzo(g,h,i)			_ _ _	1		<u>U</u>	_

SBLKWA1630 Quantitation Report GC/MS Semi-Volatiles SBLKWA163

Data file: /chem/HP09910.i/06jun14a.b/of0684.d Injection date and time: 15-JUN-2006 03:52

Blank Data file reference:/chem/HP09910.i/06jum14a.b/of0684.d Batch: 06163WAA

Instrument ID: HP09910.i

Date, time and analyst ID of latest file update: 15-Jun-2006 09:07 rpb01568

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: 163WAAqc

Calibration date and time (Last Method Edit): 15-JUN-2006 08:56

Mid Level Daily Calibration Standard Reference: /chem/HP09910.i/06jun14a.b/of0674.d

Sample Concentration Formula: On-Column Amount * DF * Uf * Vt/(Vo * Vi)

Matrix: WATER

GPC Cleanup: No

Dilution Factor (DF): 1 Sample Volume (Vo): 1000.0 ml

Unit Correction Factor (Uf): 1 Volume Injected (Vi): 1 ul Final Extract Volume (Vt): 1000 ul

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Area)	Conc(ng/ul)	QC Flag
20) 1,4-Dichlorobenzene-d4	3.972(0.000) 5.122(0.000)	373 560	152.0 136.0	732630(-12)	40.00	
47) Naphthalene-d8 85) Acenaphthene-d10	6.800(0.006)	833	164.0	438669(-15)	40.00	
125) Phenanthrene-d10	8.239(0.006)	1067	188.0	860562(-22)	40.00	
156) Chrysene-dl2	10.815(0.006)	1486	240.0	900625(-26)	40.00 40.00	
167) Perylene-dl2	12.205(0.000)	1712	264.0	951204(-21)	40.00	

= RETENTION TIME OUT OF RANGE

* = INTERNAL STANDARD OUT OF RANGE

NC = NOT ABLE TO CALCULATE

	rrogate Stan da rds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on column)	%Rec.	QC flags	QC Limits
	**=====================================				112	1067495	133.205	67%		10 - 99
7)	2-Fluorophenol	(1)	-	96(0.000)						10 - 80
11)	Phenol-d6	(1)	3.6	58(0.000)	99	1111584	83.410	42%		
	-	(2)	4 4	64 (0.000)	82	1107969	99.280	99%		51 - 123
	Nitrobenzene-d5		-		172	1467495	100.437	100%		64 - 112
71)	2-Fluorobiphenyl	(3)	9.1	67 (-0.001)						31 - 148
1121	2,4,6-Tribromophenol	(3)	7.5	69(-0.001)	330	386931	199.042	100∜		
	Terphenyl-d14	(5)	9.8	25(-0.001)	244	2001177	113.486	113%		52 - 151

= RELATIVE RETENTION TIME OUT OF RANGE

* = PERCENT REC.OUT OF RANGE

D = DILUTED OUT

NC = NOT ABLE TO CALCULATE

		I.S.						onc.	Conc.	Blank	S1	Reporting Limit (ng/ul)
Ta	rget Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on	column)	(in sample)	Conc.	Qual.	FIMIL (119/01/
	-	======			======	x = = = = = = = =				******	===	1.00
9)	Benzaldehyde	(1)						Do not	-			1.00
12)	Phenol	(1)						Do not	•			1.00
17)	bis(2-Chloroethyl)ether	(1)						Do not	_			1.00
18)	2-Chlorophenol	(1)				-		Do not	-			1.00
19)	1,3-Dichlorobenzene	(1)						Do not	_			1.00
21)	1.4-Dichlorobenzene	(1)					•	Do not	-			1.00
25)	1,2-Dichlorobenzene	(1)					,		report			1.00
26)	2-Methylphenol	(1)				Below	MDL,		report _			1.00
27)	2,2'-oxybis(1-Chloropropane)	(1)						ND	ND			2.00
	Acetophenone	(1)						Do not				1.00
31)	N-Nitroso-di-n-propylamine	(1)					,		report			2.00
32)	4-Methylphenol	(1)							report			1.00
	Hexachloroethane	(1)							report			
36)	Nitrobenzene	(2)				Below	MDL,	Do not	report			1.00
40)	Isophorone	(2)				Below	MDL,	Do not	report			1.00
41)	2-Nitrophenol	(2)				Below	MDL,	Do not	report			1.00
	2.4-Dimethylphenol	(2)					-		report			3.00
43)		(2)				Below	MDL,	Do not	report			1.00
	2,4-Dichlorophenol	(2)				Below	MDL,	Do not	report			1.00
	Naphthalene	(2)				Below	MDL,	Do not	report			1.00
49)	-	(2)				Below	MDL,	Do not	report			1.00
,	Hexachlorobutadiene	(2)				Below	MDL,	Do not	report			1.00

SBLKWA1630

Lancaster Labs Quantitation Report GC/MS Semi-Volatiles

Data file: /chem/HP09910.i/06jun14a.b/of0684.d Injection date and time: 15-JUN-2006 03:52

Blank Data file reference:/chem/HP09910.i/06junl4a.b/of0684.d Instrument ID: HP09910.i

Batch: 06163WAA

Date, time and analyst ID of latest file update: 15-Jun-2006 09:07 rpb01568

Sublist used: 163WAAqc Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Calibration date and time (Last Method Edit): 15-JUN-2006 08:56 Mid Level Daily Calibration Standard Reference: /chem/HP09910.i/06jun14a.b/of0674.d

Sample Concentration Formula: On-Column Amount * DF * Uf * Vt/(Vo * Vi)

Matrix: WATER

GPC Cleanup: h

1 Dilution Factor (DF): Sample Volume (Vo): 1000.0 ml Final Extract Volume (Vt): 1000 ul

Unit Correction Factor (Uf): 1

Volume Injected (Vi): 1 ul

	I.S.	D.E.	(+/-RRT)	Olon	Area	(OD	onc. column)	(in	Conc. sample)	Blank Conc.	Qual.
Target Compounds	Ref.	RT 	(+)-RRI)	======	ESSESSES AT CO	=====	=======			*======	=======
	(2)						ND		ND		
53) Caprolactam	(2)				Below	MDL,	Do not	report			
60) 4-Chloro-3-methylphenol	(2)						Do not				
61) 2-Methylnaphthalene	(3)						Do not				
66) Hexachlorocyclopentadiene	(3)				Below	MDL,	Do not	report			
68) 2,4,6-Trichlorophenol	(3)						Do not				
69) 2,4,5-Trichlorophenol	(3)						Do not				
74) 1,1'-Biphenyl	(3)						Do not				
75) 2-Chloronaphthalene	(3)						Do not				
79) 2-Nitroaniline	(3)						Do not				
80) Dimethylphthalate	(3)						Do not				
81) 2,6-Dinitrotoluene	(3)						Do not				
82) Acenaphthylene	(3)						Do not				
83) 3-Nitroaniline	(3)				Below	MDL,	Do not	report	:		
89) Acenaphthene	(3)				Below	MDL,	Do not	report			
90) 2,4-Dinitrophenol	(3)				Below	MDL,	Do not	report	•		
92) 4-Nitrophenol	(3)				Below	MDL,	Do not	report			
93) Dibenzofuran	(3)				Below	MDL,	Do not	report			
94) 2,4-Dinitrotoluene	(3)				Belov	MDL,	Do not	report			
100) Diethylphthalate	(3)				Belov	MDL,	Do not	report	-		
102) Fluorene	(3)				Belov	MDL,	Do not	report	;		
104) 4-Chlorophenyl-phenylether	(3)				Belov	MDL,	Do not	report	;		
105) 4-Nitroaniline	(4)						ND		ND		
106) 4,6-Dinitro-2-methylphenol	(4)				Belov	MDL,	Do not	report	:		
109) N-Nitrosodiphenylamine	(4)				Belo	MDL,	Do not	; report	=		
116) 4-Bromophenyl-phenylether	(4)				Belo	MDL.	Do not	: report	3		
117) Hexachlorobenzene	(4)						Do not				
123) Atrazine	(4)				Belo	w .MDL	, Do not	; report	5		
124) Pentachlorophenol	(4)						, Do not				
126) Phenanthrene	(4)				Belo	w MDL	, Do not	report	t		
130) Anthracene	(4)						, Do not				
131) Carbazole	(4)				Belo	w MDL	, Do not	repor	t		
137) Di-n-butylphthalate	(4)				Belo	w MDL	, Do not	repor	t		
142) Fluoranthene	(5)						, Do not				
145) Pyrene	(5)				Belo	w MDL	, Do not	t repor	t.		
148) Butylbenzylphthalate							, Do nol				
153) 3,3'-Dichlorobenzidine	(5) (5)						, Do not				
154) Benzo(a)anthracene	(5)						, Do not				
158) Chrysene	(5)						, Do not				
159) bis(2-Ethylhexyl)phthalate	(5)						, Do not				
161) Di-n-octylphthalate	(6)						, Do no				
164) Benzo(b)fluoranthene	(6)				Belo	w MDL	, Do no	t repor	t		
165) Benzo(k)fluoranthene	(6)		מ	ane ?							
165) Benzo(k)fluoranthene	(6)		Р	age 2		ستحدد ب	, 23 120	F			

SBLKWA1630

Lancaster Labs Quantitation Report GC/MS Semi-Volatiles

Data file: /chem/HP09910.i/06jun14a.b/of0684.d Injection date and time: 15-JUN-2006 03:52

Blank Data file reference:/chem/HP09910.i/06jun14a.b/of0684.d Batch: 06163WAA

Volume Injected (Vi): 1 ul

Instrument ID: HP09910.i

Date, time and analyst ID of latest file update: 15-Jun-2006 09:07 rpb01568

Sublist used: 163WAAqc Method used: /chem/HP09910.i/06jun14a.b/zebron32.m

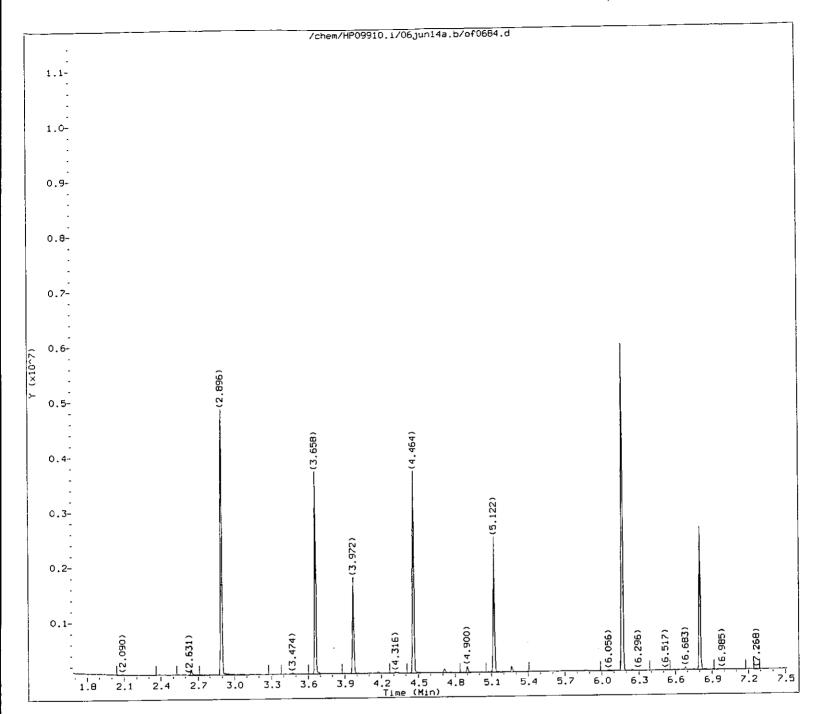
Calibration date and time (Last Method Edit): 15-JUN-2006 08:56

Mid Level Daily Calibration Standard Reference: /chem/HP09910.i/06junl4a.b/of0674.d

Sample Concentration Formula: On-Column Amount * DF * Uf * Vt/(Vo * Vi)

Matrix: WATER

GPC Cleanup: No


Dilution Factor (DF): 1 Sample Volume (Vo): 1000.0 ml Unit Correction Factor (Uf): 1 Final Extract Volume (Vt): 1000 ul

Target Compounds ====================================	I.S. Ref. R' (6) (6) (6)	T (+/-RRT)	QIon	Belo	Conc. (on column) MDL, Do not MDL, Do not MDL, Do not MDL, Do not	report	Blank Conc.	Qual.	Reporting Limit (ng/ul) 1.00 1.00 1.00
173) Benzo(g,h,i)perylene E = CONC. OUT OF CAL. RANGE	(6) # = REL	ATIVE RETENT	ION TIME	E OUT OF R		2.2			

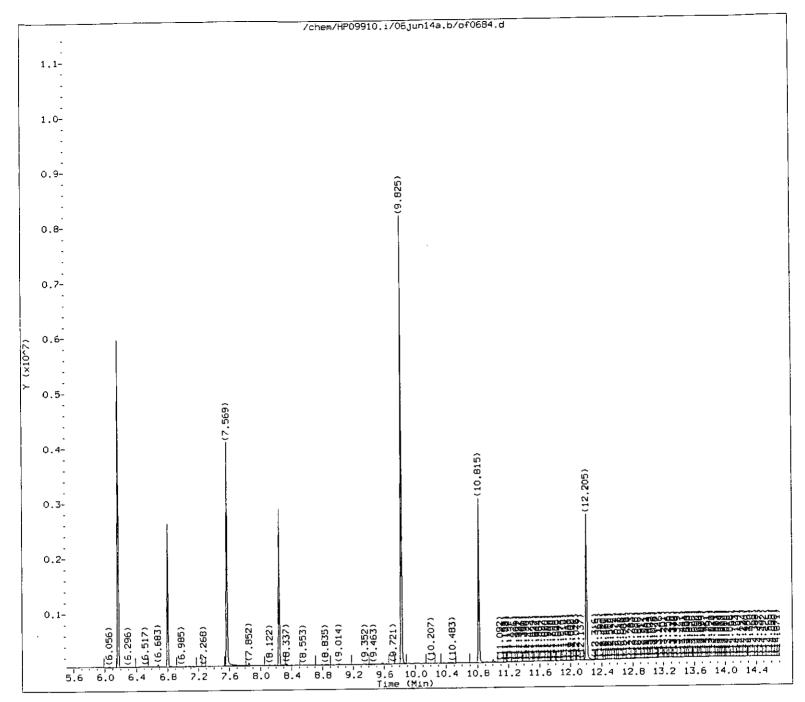
Total	number	of	targets	=	68

Comments:	
Analyst: Ksist? Auditor:	Date: 6-15-06 Date: 6-15-06

Page 3 of 3

Quant Report

Target Revision 3.5


Data File: /chem/HP09910.i/06jun14a.b/of0684.d Injection date and time: 15-JUN-2006 03:52 Instrument ID: HP09910.i Analyst ID: 1mh00956

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: 163WAAqc Calibration date and time: 15-JUN-2006 08:56 Date, time and analyst ID of latest file update: 15-Jun-2006 09:07 rpb01568

Lab Sample ID: SBLKWA163 Sample Name: SBLKWA1630

6459

RB1518

Quant Report

Target Revision 3.5

Instrument ID: HP09910.i Data File: /chem/HP09910.i/06jun14a.b/of0684.d Analyst ID: 1mh00956 Injection date and time: 15-JUN-2006 03:52

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: 163WAAqc Calibration date and time: 15-JUN-2006 08:56 Date, time and analyst ID of latest file update: 15-Jun-2006 09:07 rpb01568

Lab Sample ID: SBLKWA163 Sample Name: SBLKWA1630

00 P

R B1528 6-15-86

Quant Report

Target Revision 3.5

Data File: /chem/HP09910.i/06jun14a.b/of0684.d Instrument ID: HP09910.i Analyst ID: lmh00956

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: 163WAAqc Calibration date and time: 15-JUN-2006 08:56 Date, time and analyst ID of latest file update: 15-Jun-2006 09:07 rpb01568

Sample Name: SBLKWA1630 Lab Sample ID: SBLKWA163

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
20) 1,4-Dichlorobenzene-d4 47) Naphthalene-d8 85) Acenaphthene-d10 125) Phenanthrene-d10 156) Chrysene-d12 167) Perylene-d12 7) 2-Fluorophenol 11) Phenol-d6 35) Nitrobenzene-d5 71) 2-Fluorobiphenyl 112) 2,4,6-Tribromophenol 147) Terphenyl-d14	 (1) (2) (3) (4) (5) (6) (1) (2) (3) (5)	3.972 5.122 6.800 8.239 10.815 12.205 2.896 3.658 4.464 6.167 7.569 9.825	152 136 164 188 240 264 112 99 82 172 330 244	180163 732630 438669 860562 900625 951204 1067495 1111584 1107969 1467495 386931 2001177	40.000 40.000 40.000 40.000 40.000 133.205 83.410 99.280 100.437 199.042 113.486

M = Compound was manually integrated.

A = User selected an alternate hit

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

OS2--MS

Lab Name: Lancaster Laboratories Contract:

Lab Code: LANCAS Case No.:____ SAS No.:___ SDG No.:____

Matrix: (soil/water) WATER

Lab Sample ID: 4791564

Sample wt/vol: 950 (g/mL)ML

Lab File ID: of0689.d

Level: (low/med) LOW

Date Received: 06/10/06

% Moisture: not dec: dec:

Date Extracted: 06/12/06

Concentrated Extract Volume: 1000 (uL)

Date Analyzed: 06/15/06

Injection Volume: 1 (uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:

Extraction: Sepf

CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) LOQ UG/L Q

95

93

95 541-73-1---- 1,3-Dichlorobenzene_ | 106-46-7----- 1,4-Dichlorobenzene 95-50-1----- 1,2-Dichlorobenzene___

Lancaster Labs Quantitation Report GC/MS Semi-Volatiles

4791564

Data file: /chem/HP09910.i/06jun14a.b/of0689.d Injection date and time: 15-JUN-2006 05:43

Blank Data file reference:/chem/MP09910.i/06jun14a.b/of0684.d Instrument ID: HP09910.i

Batch: 06163WAA

Date, time and analyst ID of latest file update: 15-Jun-2006 09:14 rpb01568

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: WTC8beacon Calibration date and time (Last Method Edit): 15-JUN-2006 08:56 Mid Level Daily Calibration Standard Reference: /chem/HP09910.i/06jun14a.b/of0674.d

Sample Concentration Formula: On-Column Amount * DF * Uf * Vt/(Vo * Vi)

Matrix: WATER

GPC Cleanup: N

Dilution Factor (DF): 1 Sample Volume (Vo): 950.0 ml Final Extract Volume (Vt): 1000 ul

Unit Correction Factor (Uf): 1

Volume Injected (Vi): 1 ul

	ernal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Area)	Conc(ng/ul)	QC Fla
20)	1,4-Dichlorobenzene-d4	3.972(0.000)	373	152.0	171762(-10)	40.00	
	Naphthalene-d8	5.122(0.000)	560	136.0	721371(-13)	40.00	
	Acenaphthene-d10	6.806(0.000)	834	164.0	426174(-18)	40.00	
	Phenanthrene-d10	B.239(0.006)	1067	188.0	877495(-21)	40.00	
	Chrysene-dl2	10.821(0.000)	1487	240.0	957748(-22)	40.00	
	Perylene-d12	12.205(0.000)	1712	264.0	1007802(-16)	40.00	

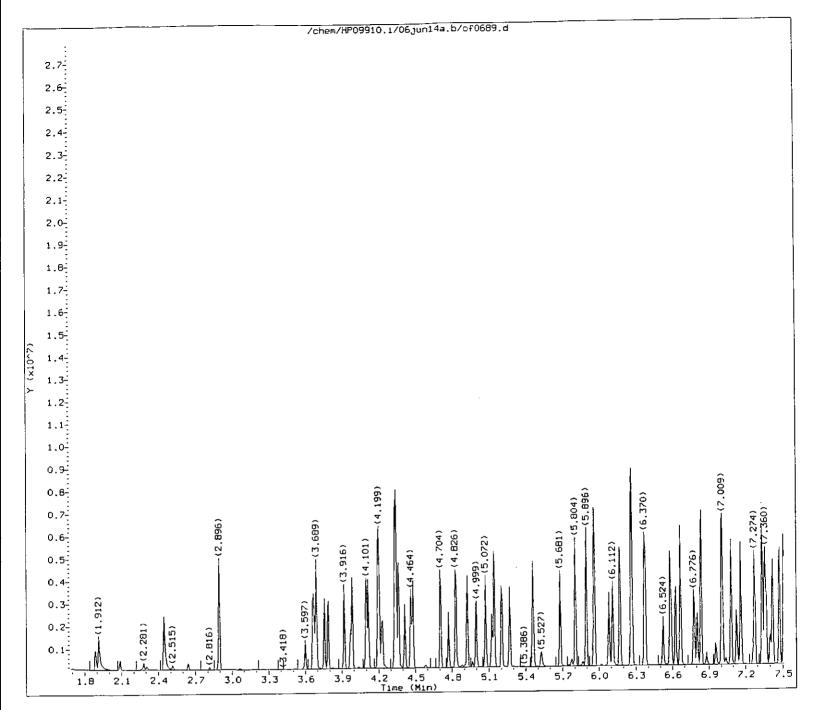
= RETENTION TIME OUT OF RANGE

* = INTERNAL STANDARD OUT OF RANGE

NC = NOT ABLE TO CALCULATE

	I.S.					Conc.		QC	
Surrogate Standards	Ref.	RT	(+/-RRT)	QIon	Area	(on column)	₹Rec.	flags	QC Lim
	**====	======		=====	=======	**=======	======	======	======
35) Nitrobenzene-d5	(2)	4.46	4 (0.000)	82	1061546	96.604	97%		51 -
71) 2-Fluorobiphenyl	(3)	6.17	3(-0.001)	172	1429055	100.674	101%		64 -
147) Terphenyl-dl4	(5)	9.82	5(0.000)	244	1727079	92.100	92%		52 -

= RELATIVE RETENTION TIME OUT OF RANGE * = PERCENT REC.OUT OF RANGE


D = DILUTED OUT

NC - NOT ABLE TO CALC

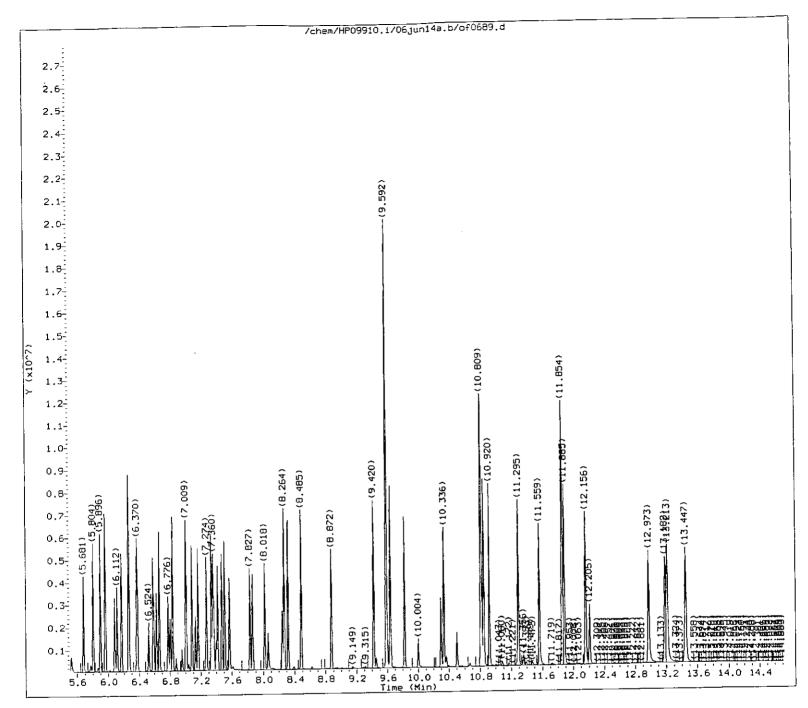
Target Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on column)	Conc. (in sample)	Blank Conc.	Qual.
19) 1,3-Dichlorobenzene 21) 1,4-Dichlorobenzene 25) 1,2-Dichlorobenzene	(1) (1) (1)	3.984	5 (0.000) 4 (0.000) 3 (0.000)	146 146 146	601773 622077 580014	90.061 90.404 88.607	94.80 95.16 93.27		
E = CONC. OUT OF CAL. RANGE			VE RETENT			ANGE			

		Tota	l number of targets = 3
Comments:		241	
Analyst:	KB1526	Date: 6-15-06	
Auditor:		Multi Date: 6(906	

Page 1 of 1

Quant Report

Target Revision 3.5


Instrument ID: HP09910.i Data File: /chem/HP09910.i/06jun14a.b/of0689.d Analyst ID: lmh00956 Injection date and time: 15-JUN-2006 05:43

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 08:56
Date, time and analyst ID of latest file update: 15-Jun-2006 09:14 rpb01568

Lab Sample ID: 4791564 Sample Name: OS2--MS

6464

RENES 6-15-06

Quant Report

Target Revision 3.5

Instrument ID: HP09910.i Data File: /chem/HP09910.i/06jun14a.b/of0689.d Injection date and time: 15-JUN-2006 05:43 Analyst ID: lmh00956

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 08:56
Date, time and analyst ID of latest file update: 15-Jun-2006 09:14 rpb01568

Lab Sample ID: 4791564 Sample Name: OS2--MS

0465

6-15-06

Quant Report

Target Revision 3.5

Instrument ID: HP09910.i Analyst ID: lmh00956 Data File: /chem/HP09910.i/06jun14a.b/of0689.d Injection date and time: 15-JUN-2006 05:43

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 08:56
Date, time and analyst ID of latest file update: 15-Jun-2006 09:14 rpb01568

Lab Sample ID: 4791564 Sample Name: OS2--MS

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
19) 1,3-Dichlorobenzene 20) 1,4-Dichlorobenzene-d4 21) 1,4-Dichlorobenzene 25) 1,2-Dichlorobenzene 47) Naphthalene-d8 85) Acenaphthene-d10 125) Phenanthrene-d10 156) Chrysene-d12 167) Perylene-d12 35) Nitrobenzene-d5 71) 2-Fluorobiphenyl 147) Terphenyl-d14	(1) (1) (1) (1) (2) (3) (4) (5) (6) (2) (3)	3.916 3.972 3.984 4.113 5.122 6.806 8.239 10.821 12.205 4.464 6.173 9.825	146 152 146 146 136 164 188 240 264 82 172 244	601773 171762 622077 580014 721371 426174 877495 957748 1007802 1061546 1429055 1727079	90.061 40.000 90.404 88.607 40.000 40.000 40.000 40.000 96.604 100.674 92.100

M = Compound was manually integrated.

A = User selected an alternate hit

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

OS2--MSD

Lab Name: Lancaster Laboratories Contract:

Lab Code: LANCAS Case No.:____ SAS No.:___ SDG No.:___

Matrix: (soil/water) WATER

Lab Sample ID: 4791565

Sample wt/vol: 950 (g/mL)ML

Lab File ID: of0690.d

Level: (low/med) LOW

Date Received: 06/10/06

% Moisture: not dec: dec:

Date Extracted: 06/12/06

Concentrated Extract Volume: 1000 (uL)

Date Analyzed: 06/15/06

Injection Volume: 1 (uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:

Extraction: Sepf

CONCENTRATION UNITS:

(ug/L or ug/Kg) LOQ UG/L Q CAS NO. COMPOUND 94 541-73-1---- 1,3-Dichlorobenzene_

95 106-46-7---- 1,4-Dichlorobenzene_____ 93 95-50-1----- 1,2-Dichlorobenzene__

OS2 - - MSD

Lancaster Labs
Quantitation Report GC/MS Semi-Volatiles 4791565

Data file: /chem/HP09910.i/06jun14a.b/of0690.d Injection date and time: 15-JUN-2006 06:05

Blank Data file reference:/chem/HP09910.i/06jun14a.b/of0684.d Batch: 06163WAA

Instrument ID: HP09910.i

Date, time and analyst ID of latest file update: 15-Jun-2006 09:14 rpb01568

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m

Sublist used: WTC8beacon

Calibration date and time (Last Method Edit): 15-JUN-2006 08:56

Mid Level Daily Calibration Standard Reference: /chem/HP09910.i/06junl4a.b/of0674.d

Sample Concentration Formula: On-Column Amount * DF * Uf * Vt/(Vo * Vi)

GPC Cleanup: No

Dilution Factor (DF): 1 Unit Correction Factor (Uf): 1

Sample Volume (Vo): 950.0 ml Final Extract Volume (Vt): 1000 ul

Volume Injected (Vi): 1 ul

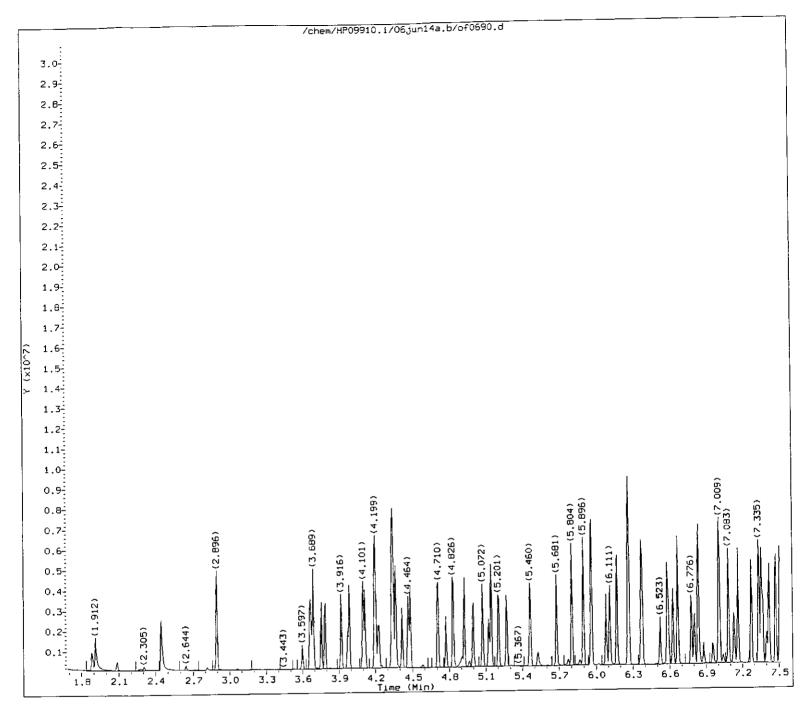
Matrix: WATER

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Area)	Conc(ng/ul)	QC Flag
20) 1,4-Dichlorobenzene-d4	3.972(0.000)	373	152.0	176543(-8)	40.00	
47) Naphthalene-d8	5.122(0.000)	560	136.0	728342(-12)	40.00	
85) Acenaphthene-d10	6.806(0.000)	834	164.0	446546(-14)	40.00	
125) Phenanthrene-dl0	8.245(0.000)	1068	188.0	911408(-18)	40.00	
•	10.821(0.000)	1487	240.0	995399(-19)	40.00	
156) Chrysene-d12 167) Perylene-d12	12.205(0.000)	1712	264.0	1032912(-14)	40.00	

= RETENTION TIME OUT OF RANGE

* = INTERNAL STANDARD OUT OF RANGE

NC = NOT ABLE TO CALCULATE


	I.S.					Conc.		QC	
Surroqate Standards	Ref.	RT	(+/-RRT)	QIon	Area	(on column)	%Rec.	flags	QC Limits
	=====			=====		****	*======		E========
35) Nitrobenzene-d5	(2)	4.46	54(0.000)	82	1088710	98.128	98%		51 - 123
71) 2-Fluorobiphenyl	(3)	6.17	73(-0.001)	172	1467913	98.694	99∜		64 - 112
147) Terphenyl-d14	(5)		25(0.000)	244	1891600	97.058	97%		52 - 151

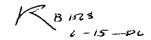
= RELATIVE RETENTION TIME OUT OF RANGE * = PERCENT REC.OUT OF RANGE D = DILUTED OUT NC = NOT ABLE TO CALCULATE

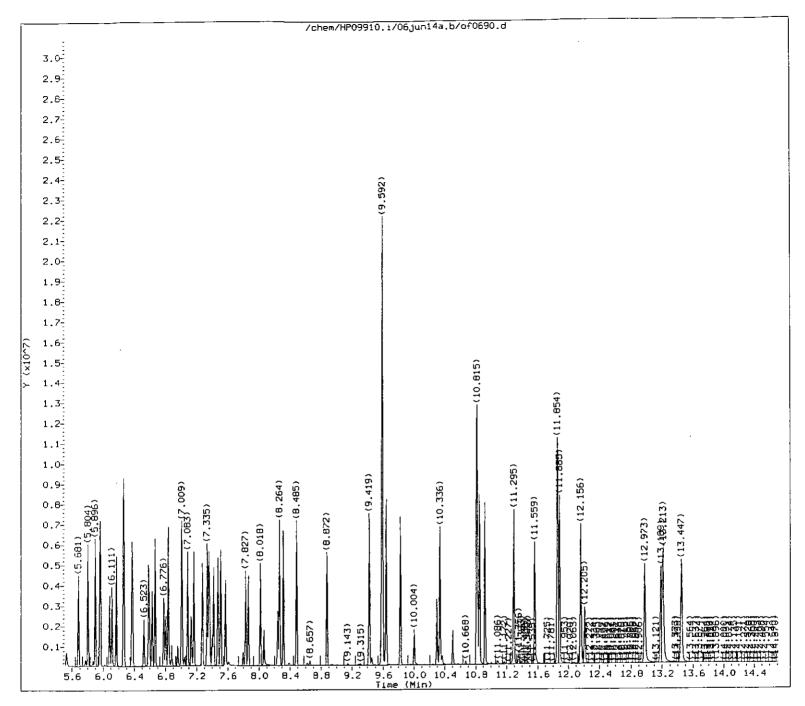
Target Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on column)	Conc. (in sample)	Blank Conc.	Qual.	Reporting Limit (ng/ul)
*****	=====			_=====	=		*******	*=====		======================================
19) 1.3-Dichlorobenzene	(1)	3.91	6(0.000)	146	611281	89.007	93.69			1.00
21) 1.4-Dichlorobenzene	(1)	3.98	4 (0.000)	146	638645	90.298	95.05			1.00
25) 1,2-Dichlorobenzene	(1)	4.11	3 (0.000)	146	596732	88.692	93.36			1.00
E = CONC. OUT OF CAL. RANGE	# =	RELAT	IVE RETENT	ION TIM	E OUT OF R	ANGE				

		Total number of targets = 3
Comments:		
Analyst:	RBWLY	Date: 0-15-06 Date: 01906

Page 1 of 1

Quant Report


Target Revision 3.5


Data File: /chem/HP09910.i/06jun14a.b/of0690.d Instrument ID: HP09910.i Injection date and time: 15-JUN-2006 06:05 Analyst ID: lmh00956

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 08:56
Date, time and analyst ID of latest file update: 15-Jun-2006 09:14 rpb01568

Sample Name: OS2--MSD Lab Sample ID: 4791565

8469

Quant Report

Target Revision 3.5

Data File: /chem/HP09910.i/06jun14a.b/of0690.d Instrument ID: HP09910.i Injection date and time: 15-JUN-2006 06:05 Analyst ID: lmh00956

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 08:56
Date, time and analyst ID of latest file update: 15-Jun-2006 09:14 rpb01568

Sample Name: OS2--MSD Lab Sample ID: 4791565

8478

Rs128

Quant Report

Target Revision 3.5

Data File: /chem/HP09910.i/06jun14a.b/of0690.d Instrument ID: HP09910.i Analyst ID: lmh00956

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: WTC8beacon Calibration date and time: 15-JUN-2006 08:56
Date, time and analyst ID of latest file update: 15-Jun-2006 09:14 rpb01568

Sample Name: OS2--MSD Lab Sample ID: 4791565

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column) ========
19) 1,3-Dichlorobenzene 20) 1,4-Dichlorobenzene-d4 21) 1,4-Dichlorobenzene 25) 1,2-Dichlorobenzene 47) Naphthalene-d8 85) Acenaphthene-d10 125) Phenanthrene-d10 156) Chrysene-d12 167) Perylene-d12 35) Nitrobenzene-d5 71) 2-Fluorobiphenyl 147) Terphenyl-d14	(1) (1) (1) (1) (2) (3) (4) (5) (6) (2) (3)	3.916 3.972 3.984 4.113 5.122 6.806 8.245 10.821 12.205 4.464 6.173 9.825	146 152 146 146 136 164 188 240 264 82 172 244	611281 176543 638645 596732 728342 446546 911408 995399 1032912 1088710 1467913 1891600	89.007 40.000 90.298 88.692 40.000 40.000 40.000 40.000 98.128 98.694 97.058

M = Compound was manually integrated.

A = User selected an alternate hit

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

163WALCSO

Lab Name: Lancaster Laboratories Contract:____

Lab Code: LANCAS Case No.:____ SAS No.:___ SDG No.:____

Matrix: (soil/water) WATER

Lab Sample ID: 163WALCS

Sample wt/vol: 1000 (g/mL)ML

Lab File ID: of0685.d

Level: (low/med) LOW

Date Received:

% Moisture: not dec: dec:

Date Extracted: 06/12/06

Concentrated Extract Volume: 1000 (uL)

Date Analyzed: 06/15/06

Injection Volume: 1 (uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:

Extraction: Sepf

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg) LO	Q UG/L	Q
100-52-7	Benzaldehyde	23	 ;
	Phenol	46	
111-44-4	bis(2-Chloroethyl)ether	84	
	2-Chlorophenol	91	
	1,3-Dichlorobenzene	88	
106-46-7	1,4-Dichlorobenzene	89	
	1,2-Dichlorobenzene	85	
95-48-7	2-Methylphenol	80	
108-60-1	2,2'-oxybis(1-Chloropropane)	110	
98-86-2	Acetophenone	91	
621-64-7	N-Nitroso-di-n-propylamine	86	
	4-Methylphenol	74	
	Hexachloroethane	87	
	Nitrobenzene	93	
=	Isophorone	84	
	2-Nitrophenol	100	
	2,4-Dimethylphenol	89	
111-91-1	bis(2-Chloroethoxy)methane	100	
	2,4-Dichlorophenol	91	1
	Naphthalene	93	
	4-Chloroaniline	86	
	Hexachlorobutadiene	89	1
	Caprolactam	29	
	4-Chloro-3-methylphenol	95]
	2-Methylnaphthalene	88	
	- Hexachlorocyclopentadiene	180	E
	2,4,6-Trichlorophenol		
	2,4,5-Trichlorophenol		1
	- 1,1'-Biphenyl	95	
	2-Chloronaphthalene	79	

0472

]

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

	ļ
163WALCSO	

Lab Name: Lancaster Laboratories Contract:____

Matrix: (soil/water) WATER Lab Sample ID: 163WALCS

Sample wt/vol: 1000 (g/mL)ML Lab File ID: of0685.d

Level: (low/med) LOW Date Received:

% Moisture: not dec: dec: Date Extracted: 06/12/06

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 06/15/06

Injection Volume: 1 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: Extraction: Sepf

CONCENTRATION UNITS:

	CONCENTRATION ONLI	
CAS NO.	COMPOUND (ug/L or ug/Kg) LC	Q UG/L Q
88-74-4	- 2-Nitroaniline	99
	- Dimethylphthalate	90
	- 2,6-Dinitrotoluene	97
	- Acenaphthylene	100
	- 3-Nitroaniline	99
	- Acenaphthene	99
	- 2,4-Dinitrophenol	79
	- 4-Nitrophenol	37
	- Dibenzofuran	93
	- 2,4-Dinitrotoluene	100
	- Diethylphthalate	95
	- Fluorene	98
7005-72-3	- 4-Chlorophenyl-phenylether	94
100-01-6	- 4-Nitroaniline	81
534-52-1	- 4,6-Dinitro-2-methylphenol	87
86-30-6	- N-Nitrosodiphenylamine	97
	- 4-Bromophenyl-phenylether	93
	- Hexachlorobenzene	97
	- Atrazine	91
	- Pentachlorophenol	87
	- Phenanthrene	97
	- Anthracene	97
	- Carbazole	99
	- Di-n-butylphthalate	
	- Fluoranthene	94
	- Pyrene	100
	- Butylbenzylphthalate	
	- 3,3'-Dichlorobenzidine	85
	- Benzo(a)anthracene	99
	- Chrysene	97

6473

1C cont SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

| 163WALCSO

Lab Name: Lancaster Laboratories Contract:_____

Matrix: (soil/water) WATER

Lab Sample ID: 163WALCS

Sample wt/vol: 1000 (g/mL)ML

Lab File ID: of0685.d

Level: (low/med) LOW

Date Received:

% Moisture: not dec: dec:

Date Extracted: 06/12/06

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 06/15/06

Injection Volume: 1 (uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:

Extraction: Sepf

CONCENTRATION UNITS:

		401			
CAS NO.	COMPOUND	(ug/L or ug/Kg)	LOQ	UG/L	Q
117-81-7	- bis(2-Ethy	lhexyl)phthalate		95	
117-84-0				93	1 1
205-99-2			Ti i	93	
207-08-9			i	96	
50-32 - 8			_i	94	1
193-39-5 -		,3-cd)pyrene	— j	95	1
53-70 - 3)anthracene	— i	100	1
191-24-2				96	İ
			!_		_

163WALCSO

Lancaster Labs
Quantitation Report GC/MS Semi-Volatiles 163WALCS

Data file: /chem/HP09910.i/06jun14a.b/of0685.d Injection date and time: 15-JUN-2006 04:14

Blank Data file reference:/chem/HP09910.i/06junl4a.b/of0684.d Batch: 06163WAA

Volume Injected (Vi): 1 ul

Instrument ID: HP09910.i

Date, time and analyst ID of latest file update: 15-Jun-2006 09:12 rpb01568

Sublist used: 163WAAqc Method used: /chem/HP09910.i/06jun14a.b/zebron32.m

Calibration date and time (Last Method Edit): 15-JUN-2006 08:56

Mid Level Daily Calibration Standard Reference: /chem/HP09910.i/06jun14a.b/of0674.d

Sample Concentration Formula: On-Column Amount * DF * Uf * Vt/(Vo * Vi)

Matrix: WATER

GPC Cleanup: No

Dilution Factor (DF): 1 Sample Volume (Vo): 1000.0 ml

Unit Correction Factor (Uf): 1 Final Extract Volume (Vt): 1000 ul

Internal Standards 20) 1,4-Dichlorobenzene-d4 47) Naphthalene-d8 85) Acenaphthene-d10 125) Phenanthrene-d10 156) Chrysene-d12	RT (+/-RT) 3.972(0.000) 5.122(0.000) 6.807(0.000) 8.239(0.006) 10.822(0.000)	Scan 373 560 834 1067 1487	QIon 152.0 136.0 164.0 188.0 240.0	Area(+/- %Area) 170832(-11) 690253(-17) 413161(-20) 858975(-22) 935363(-24) 979543(-19)	Conc(ng/ul) 40.00 40.00 40.00 40.00 40.00 40.00	QC Flag
156) Chrysene-dl2 167) Perylene-dl2	12.205(0.000)	1712	264.0	979543 (-19)	40.00	

= RETENTION TIME OUT OF RANGE

* = INTERNAL STANDARD OUT OF RANGE

NC = NOT ABLE TO CALCULATE

	1.S. Ref.	RТ	(+/~RRT)	OIon	Area	Conc.	%Rec.	QC flags	QC Limits
Surrogate Standards			(T) - MMT)				========	======	
======================================				112	961183	126.490	63%		10 - 99
7) 2-Fluorophenol	(1)		96(0.000)		1007309	79.714	401		10 - 80
<pre>11) Phenol-d6</pre>	(1)	-	58(0.000)	99			99%		51 - 123
35) Nitrobenzene-d5	(2)	4.4	64(0.000)	82	1042586	99.156			64 - 112
71) 2-Fluorobiphenyl	(3)	6.1	67(0.000)	172	1392809	101.211	101%		
	(3)	7.5	69(0.000)	330	384957	210.252	105%		31 - 148
112) 2,4,6-Tribromophenol	(5)		26(0.000)	244	1974385	107.808	108%		52 - 151

= RELATIVE RETENTION TIME OUT OF RANGE

* = PERCENT REC.OUT OF RANGE

D = DILUTED OUT NC = NOT ABLE TO CALCULATE

Target Compounds	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on column)	Conc. (in sample)	Blank Conc.	Qual.	Reporting Limit (ng/ul)
=======================================	======			77	247036	23.439	23.44			1.00
Benzaldehyde	(1)		0.000)	94	674066	45.569	45.57			1.00
12) Phenol	(1)		0.000)	93	888277	84.431	84.43			1.00
17) bis(2-Chloroethyl)ether	(1)		0.000)	128	578332	90.592	90.59			1.00
<pre>18) 2-Chlorophenol</pre>	(1)		0.000)		586917	88.316	88.32			1.00
19) 1,3-Dichlorobenzene	(1)		(0.000)	146	609663	89.082	89.08			1.00
21) 1,4-Dichlorobenzene	(1)		0.000)	146	554906	85.232	85.23			1.00
25) 1,2-Dichlorobenzene	(1)		0.000)	146	717285	79.689	79.69			1.00
26) 2-Methylphenol	(1)		(0.002)	108	852958	109.476	109.48			1.00
<pre>27) 2,2'-oxybis(1-Chloropropane</pre>			(0.000)	45	1184027	90.823	90.82			2.00
Acetophenone	(1)		(0.000)	105	738180	85.814	85.81			1.00
31) N-Nitroso-di-n-propylamine	(1)		(0.000)	70	759257	74.499	74.50			2.00
32) 4-Methylphenol	(1)		(0.000)	108		87.101	87.10			1.00
34) Hexachloroethane	(1)		(0.000)	117	254970	92.661	92.66			1.00
36) Nitrobenzene	(2)		(0.000)	77	1030935	83.972	83.97			1.00
40) Isophorone	(2)		(0.000)	82	1851862		102.83			1.00
41) 2-Nitrophenol	(2)		(0.000)	139	269749	102.835	88.86			3.00
42) 2,4-Dimethylphenol	(2)		(0.000)	107	786623	88.862	99.71			1.00
43) bis(2-Chloroethoxy)methane	(2)		(0.000)	93	1101146	99.708	90.76			1.00
45) 2,4-Dichlorophenol	(2)		(0.000)	162	433412	90.761	92.96			1.00
48) Naphthalene	(2)		(0.000)	128	1828982	92.960				1.00
49) 4-Chloroaniline	(2)	5.202	(0.001)	127	707674	86.007	86.01			1.00
51) Hexachlorobutadiene	(2)	5.269	(0.000)	225	272502	89.095	89.09			1.00
			Pa	ige 1 o	£ 3					

163WALCSO

Lancaster Labs Quantitation Report GC/MS Semi-Volatiles 163WALCS

Data file: /chem/HP09910.i/06jun14a.b/of0685.d Injection date and time: 15-JUN-2006 04:14

Blank Data file reference:/chem/HP09910.i/06jun14a.b/of0684.d

Volume Injected (Vi): 1 ul

Batch: 06163WAA Instrument ID: HP09910.i

Date, time and analyst ID of latest file update: 15-Jun-2006 09:12 rpb01568

Sublist used: 163WAAqc Method used: /chem/HP09910.i/06jun14a.b/zebron32.m

Calibration date and time (Last Method Edit): 15-JUN-2006 08:56

Mid Level Daily Calibration Standard Reference: /chem/HP09910.i/06jun14a.b/of0674.d

Sample Concentration Formula: On-Column Amount * DF * Uf * Vt/(Vo * Vi)

Matrix: WATER

GPC Cleanup: No

1 Dilution Factor (DF): Sample Volume (Vo): 1000.0 ml

Unit Correction Factor (Uf): 1 Final Extract Volume (Vt): 1000 ul

					Conc.	Conc.	Blank	 -	Reporting
Target Compounds	I.S. Ref.	RT (+/-RRT)	QIon	Area	(on column)	(in sample)	Conc.	Qual	Limit (ng/ul)
			*****				2223####	======	5.00
53) Caprolactam	(2)	5.528(0.001)	113	90089	28.692	28.69			1.00
60) 4-Chloro-3-methylphenol	(2)	5.681(0.000)	107	727807	94.795	94.79			1.00
61) 2-Methylnaphthalene	(2)	5.804(0.000)	142	1116721	87.574	87.57		E	5.00
66) Hexachlorocyclopentadiene	(3)	5.958(0.000)	237	516463	183.182	183.18			1.00
68) 2,4,6-Trichlorophenol	(3)	6.081(0.000)	196	295586	95.800	95.80			1.00
69) 2,4,5-Trichlorophenol	(3)	6.112(0.000)	196	348786	90.616	90.62			1.00
74) 1.1'-Biphenyl	(3)	6.259(0.000)	154	1500531	94.907	94.91			2.00
75) 2-Chloronaphthalene	(3)	6.272(0.000)	162	1087368	78.841	78.84			1.00
79) 2-Nitroaniline	(3)	6.376(0.000)	138	404449	99.175	99.18			2.00
80) Dimethylphthalate	(3)	6.579(0.000)	163	1234344	89.837	89.84			1.00
81) 2,6-Dinitrotoluene	(3)	6.628(0.000)	165	296398	97.016	97.02			1.00
82) Acenaphthylene	(3)	6.665(0.000)	152	1945366	101.544	101.54			1.00
83) 3-Nitroaniline	(3)	6.776(0.000)	138	349691	98.654	98.65			1.00
89) Acenaphthene	(3)	6.837(0.000)	153	1215630	98.831	98.83			20.00
90) 2,4-Dinitrophenol	(3)	6.880(0.000)	184	90619	78.739	78.74			
92) 4-Nitrophenol	(3)	6.954(0.001)	109	94458	37.205	37.20			10.00
93) Dibenzofuran	(3)	7.003(0.000)	168	1746950	93.220	93.22			1.00
94) 2.4-Dinitrotoluene	(3)	7.009(0.000)	165	379 79 8	101.297	101.3 0			1.00
100) Diethylphthalate	(3)	7.274 (0.000)	149	1347361	94.864	94.86			2.00
102) Fluorene	(3)	7.335(0.000)	166	1475457	98.344	98.34			1.00
104) 4-Chlorophenyl-phenylether	(3)	7.360(0.000)	204	679778	93.791	93.79			2.00
105) 4-Nitroaniline	(3)	7.372(0.000)	138	330200	81.138	81.14			1.00
106) 4,6-Dinitro-2-methylphenol	(4)	7.403(-0.001)	198	151359	86.835	86.83			5.00
109) N-Nitrosodiphenylamine	(4)	7,477(-0.001)	169	1066710	96.870	96.87			2.00
116) 4-Bromophenyl-phenylether	(4)	7.827(0.000)	248	388854	93.449	93.45			1.00
117) Hexachlorobenzene	(4)	7.864(-0.001)	284	471907	97.248	97.25			1.00
123) Atrazine	(4)	8.018(-0.001)	200	410748	90.604	90.60			2.00
124) Pentachlorophenol	(4)	B.061(0.000)	266	185743	87.466	87.47			3.00
126) Phenanthrene	(4)	8.264(-0.001)	178	2162176	97.018	97.02			1.00
130) Anthracene	(4)	8.313(0.000)	178	2242859	97.468	97.47			1.00
131) Carbazole	(4)	8.485(-0.001)	167	2220154	99.428	99.43			1.00
131) Carbazole 137) Di-n-butylphthalate	(4)	8.873(0.000)	149	2382271	96.199	96.20			2.00
142) Fluoranthene	(4)	9.420(-0.001)	202	2588844	94.099	94.10			1.00
	(5)	9.641(-0.001)	202	2790676	100.252	100.25			1.00
145) Pyrene	(5)	10.336(0.000)	149	1149792	98.853	98.85			2.00
148) Butylbenzylphthalate	(5)	10.809(0.000)	252	877638	84.715	84.71			2.00
153) 3,3'-Dichlorobenzidine	(5)	10.815(0.000)	228	2653886	98.512	98.51			1.00
154) Benzo(a)anthracene	(5)	10.846(0.000)	228	2542436	97.125	97.12			1.00
158) Chrysene	(5)	10.920(0.000)	149	1528439	95.485	95.48			2.00
159) bis(2-Ethylhexyl)phthalate	(6)	11.559(0.000)	149	2698835	93.004	93.00			2.00
161) Di-n-octylphthalate	(6)	11.855(0.000)	252	2820736	92.507	92.51			1.00
164) Benzo(b)fluoranthene	(0)		ige 2 d						
		F	.90 0						

163WALCSO

Lancaster Labs
Quantitation Report GC/MS Semi-Volatiles 163WALCS

Data file: /chem/HP09910.i/06jun14a.b/of0685.d Injection date and time: 15-JUN-2006 04:14

Blank Data file reference:/chem/HP09910.i/06jun14a.b/of0684.d

Batch: 06163WAA Instrument ID: HP09910.i

Date, time and analyst ID of latest file update: 15-Jun-2006 09:12 rpb01568

Sublist used: 163WAAqc Method used: /chem/HP09910.i/06junl4a.b/zebron32.m

Calibration date and time (Last Method Edit): 15-JUN-2006 08:56

Mid Level Daily Calibration Standard Reference: /chem/HP09910.i/06jun14a.b/of0674.d

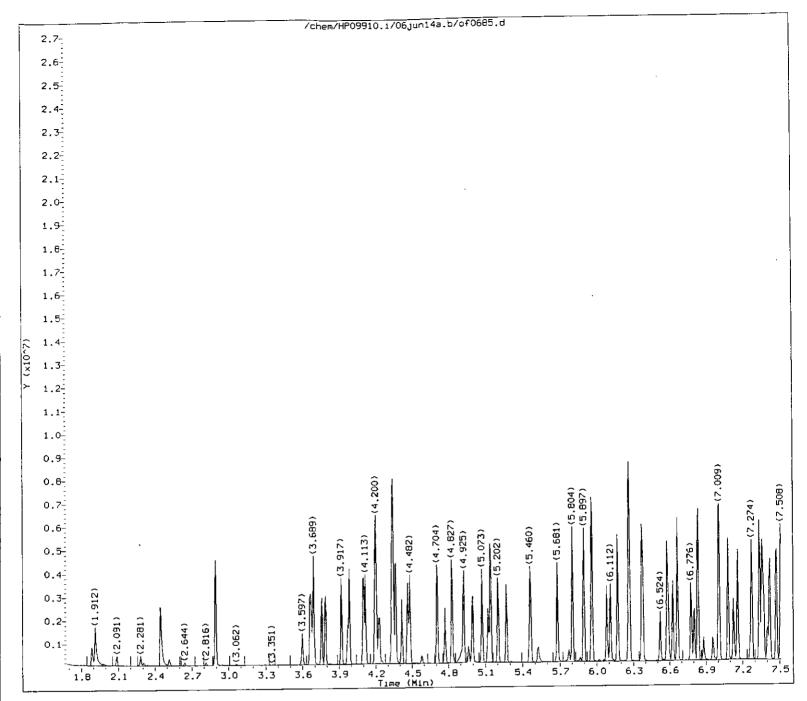
Sample Concentration Formula: On-Column Amount * DF * Uf * Vt/(Vo * Vi)

Matrix: WATER

GPC Cleanup: No

1 Dilution Factor (DF): Sample Volume (Vo): 1000.0 ml Final Extract Volume (Vt): 1000 ul

Unit Correction Factor (Uf): 1


Volume Injected (Vi): 1 ul

Target Compounds	I.S. Ref. RT (+/-RRT)	QIon	Area	Conc.	Conc. (in sample)	Blank Conc.	Qual.	Reporting Limit (ng/ul)
165) Benzo(k)fluoranthene 166) Benzo(a)pyrene 171) Indeno(1,2,3-cd)pyrene 172) Dibenz(a,h)anthracene 173) Benzo(g,h,i)perylene	(6) 11.885 (0.000) (6) 12.156 (0.000) (6) 13.183 (0.000) (6) 13.213 (0.000) (6) 13.447 (0.000)	252 252 276 278 276	3119011 2736826 3162497 2698895 2715345	96.355 93.708 95.182 102.367 96.215	96.35 93.71 95.18 102.37 96.21			1.00 1.00 1.00 1.00 1.00
E = CONC. OUT OF CAL. RANGE	# = RELATIVE RETENT	TION TIME	OUT OF R	ANGE				_

Total number of targets = 0	5	1	8	J
-------------------------------	---	---	---	---

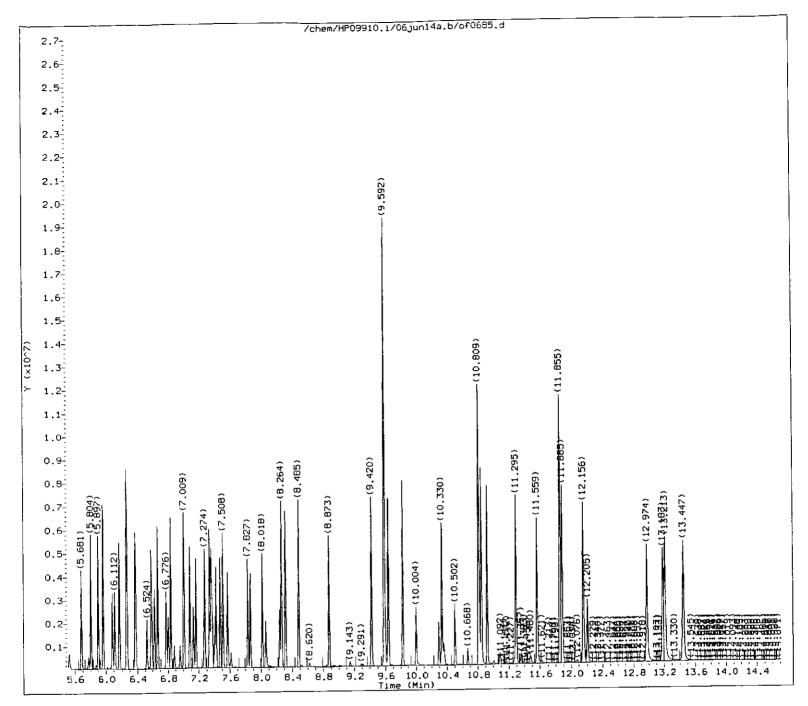
Comments:_		_	
		_	
		_	
2			
Analyst: Auditor:	RRINS Date: G-	15/06	

Page 3 of 3

Quant Report

Target Revision 3.5

Data File: /chem/HP09910.i/06jun14a.b/of0685.d Injection date and time: 15-JUN-2006 04:14


Instrument ID: HP09910.i Analyst ID: lmh00956

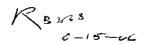
Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: 163WAAqc Calibration date and time: 15-JUN-2006 08:56 Date, time and analyst ID of latest file update: 15-Jun-2006 09:12 rpb01568

Sample Name: 163WALCSO

Lab Sample ID: 163WALCS

8478

Quant Report


Target Revision 3.5

Instrument ID: HP09910.i Data File: /chem/HP09910.i/06jun14a.b/of0685.d Injection date and time: 15-JUN-2006 04:14 Analyst ID: lmh00956

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: 163WAAqc Calibration date and time: 15-JUN-2006 08:56 Date, time and analyst ID of latest file update: 15-Jun-2006 09:12 rpb01568

Lab Sample ID: 163WALCS Sample Name: 163WALCSO

8479

Quant Report

Target Revision 3.5

Data File: /chem/HP09910.i/06jun14a.b/of0685.d Instrument ID: HP09910.i Injection date and time: 15-JUN-2006 04:14 Analyst ID: lmh00956

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: 163WAAqc Calibration date and time: 15-JUN-2006 08:56 Date, time and analyst ID of latest file update: 15-Jun-2006 09:12 rpb01568

Sample Name: 163WALCSO Lab Sample ID: 163WALCS

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
Serial Se	. = (11) (11) (11) (11) (12) (22(22(22)) (33(33)	=71778724300051152415241775920029814877233333333333444.334152444.899220298140812926988567773044.3333333333444.4444444555555556666666666			======================================

M = Compound was manually integrated.

A = User selected an alternate hit

Quant Report

Target Revision 3.5

Instrument ID: HP09910.i Data File: /chem/HP09910.i/06jun14a.b/of0685.d Injection date and time: 15-JUN-2006 04:14 Analyst ID: 1mh00956

Method used: /chem/HP09910.i/06jun14a.b/zebron32.m Sublist used: 163WAAqc Calibration date and time: 15-JUN-2006 08:56 Date, time and analyst ID of latest file update: 15-Jun-2006 09:12 rpb01568

Lab Sample ID: 163WALCS Sample Name: 163WALCSO

Compounds	I.S. Ref.	RT	QIon	Area	Conc. (on column)
24 2,4-Dinitrotoluene 100) Diethylphthalate 102) Fluorene 104) 4-Chlorophenyl-phenylether 105) 4-Nitroaniline 106) 4,6-Dinitro-2-methylphenol 109) N-Nitrosodiphenylamine 116) 4-Bromophenyl-phenylether 117) Hexachlorobenzene 123) Atrazine 124) Pentachlorophenol 125) Phenanthrene-dl0 126) Phenanthrene 130) Anthracene 131) Carbazole 137) Di-n-butylphthalate 142) Fluoranthene 145) Pyrene 148) Butylbenzylphthalate 153) 3,3'-Dichlorobenzidine 154) Benzo(a) anthracene 156) Chrysene-dl2 158) Chrysene 159) bis(2-Ethylhexyl)phthalate 161) Di-n-octylphthalate 164) Benzo(b)fluoranthene 165) Benzo(k)fluoranthene 166) Benzo(a)pyrene 167) Perylene-dl2 171) Indeno(1,2,3-cd)pyrene 172) Dibenz(a,h)anthracene 173) Benzo(g,h,i)perylene 7) 2-Fluorophenol 11) Phenol-d6 35) Nitrobenzene-d5 71) 2-Fluorobiphenyl 112) 2,4,6-Tribromophenol 147) Terphenyl-dl4	= (3) (3) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		======================================	======================================	101.297 94.864 98.344 98.791 81.138 86.870 93.449 97.2604 87.466 40.018 97.468 99.199 94.099 100.8715 98.715 98.715 98.715 99.125 99.105 99.105 99.105 99.106 99.106 99.107 99.121 107.211 107.808
					7 1 2

M = Compound was manually integrated.

A = User selected an alternate hit

Lancaster Laboratories Semi-Volatiles

Runlog for Hewlett Packard GC/MS System HP09910 **HP #15**

*** Shift #1 An	alyst:_	KBINS 6-15-01		_	*** Shift #2 Analyst:
Comment Code:	S ≠ NU =	Surrogate problem I Not used F	: :	=	Sample sent to be reextracted Internal Standard problem Further dilution required Internal use only
Other problems	Cz =	neets ledgitements			Injected outside valid tune period
*					

Data Directory Path is - D:\DATA\06junl4a\

ALS Btl #	Laboratory File ID	Client ID	Lab Sample ID	Date injected	Time injected	Case and SDG Number or Extraction Batch Number	Dilution Factor	Comments
1	OF0670.D	DFTPP	8270DFTPP1116	14 Jun 2006 14 Jun 2006	22:59 23:13			OK
3	OF0671.D	SSTD080	STD1576	14 Jun 2006	23:35			OK
2	OF0672.D	SSTD080	BAS1516	15 Jun 2006	00:05			OK
4	OF0673.D	SSTD120	STD1576 STD1576	15 Jun 2006	00:27			OK
5	OF0674.D	SSTD050	STD1576 STD1576	15 Jun 2006	00:55			OK
6	OF0675.D	SSTD030	STD1576	15 Jun 2006	1:17			OK
7	OF0676.D	SSTD015	STD1576	15 Jun 2006	1:39			OK
8	OF0677.D	SSTD005	8270MDL1576	15 Jun 2006	2:01			ok
9	OF0678.D	SSTD001 SSTD050	ICV0036	15 Jun 2006	2:23			INO OK
10	OF0679.D OF0681.D	GPC BLK	COL 37	15 Jun 2006	2:45	06163SLB		100
12	OF0681.D	GPC LCS	COL 37	15 Jun 2006	3:08	06163SLB		100
13	OF0683.D	GPC CTRL	06/14/06	15 Jun 2006	3:30	06163SLB		OK
14 15	OF0684.D	SBLKWA1630	SBLKWA163	15 Jun 2006	3:52	06163WAA		OK
16	OF0685.D	163WALCSO	163WALCS	15 Jun 2006	4:14	06163WAA 06163WAA		OK
17	OF0686.D	250EB	4791645	15 Jun 2006	4:36	06163WAA		ok
18	OF0687.D	250AB	4791646	15 Jun 2006	4:58 5:21	06163WAA		OK
19	OF0688.D	os2	4791563	15 Jun 2006	5:43	06163WAA		OK
20	OF0689.D	OS2MS	4791564	15 Jun 2006	6:05	06163WAA		OK
21	OF0690.D	OS2MSD	4791565	15 Jun 2006 15 Jun 2006	6:27	06161WAA	20	OK
22	OF0691.D	BESM2DL	4789600DL	15 Jun 2006 15 Jun 2006	6:50	06161WAA	5	OK
23	OF0692.D	BESM5DL	4789603DL	15 Jun 2006	7:12	06161WAA	5	ok
24	OF0693.D	BESFOOL	4789605DL	15 Jun 2006	7:34	06161WAA	2	OK
25	OF0694.D	MOMDPDL	4790186DL	13 0411 2000		•		

lancaster Laboratories Semi-Volatiles

Semi-Volatiles
Runlog for Hewlett Packard GC/MS System HP09910 **HP \$15*

*** Shift #1 A	nalyst:				Shift #2 Analyst: Halluttuo 986.	
Comment Code:	ร =	Reinjection necessary Surrogate problem Not used	x I F	-	Sample sent to be reexthected Internal Stendard problem Further dilution required	` (
Other problems	Cz =	<pre>Meets requirements Confirms 2, (2 = I or X) ments are as follows:</pre>	100		Internal use only Injected outside valid tune period	
•				_		

Data Directory Path is - D:\DATA\06jun15\

	Ç.	**	and	
3	DC	Мı	umber	

				Date	Time	or Extraction	Dilution	
ALS Btl #	Laboratory File ID	Client ID	Lab Sample ID	injected	injected	Batch Number	Factor	Comments
			***********	******	***			*******
1	OF0700.D	DETPP	8270DFTPP1116	15 Jun 2006	8:32			MR
2	OF0701.D	55TD030	BAS1516	15 Jun 2006	8:47			MR
3	OF0702.D	55TD030	STD1576	15 Jun 2006	9:10			MR
26	OF0703.D	112A7	4791190	15 Jun 2006	9:47	06163 M AA		MIR
27	OF0704.D	12538	4791191	15 Jun 2006	10:09	D6163MAA		MIR
28	OP0705.D	FB069	4791193	15 Jun 2006	10:31	06163WAA		MIR
29	OF0706.D	-TF5-	4791555	15 Jun 2006	10:53	06163WAA		MR
30	OF0707.D	-TF23	4791556	15 Jun 2006	11:15	06163WAA		MR
31	OF0708.D	-pc2-	4791558	15 Jun 2006	11:38	06163WAA		MR
32	OF0709.D	-DC1-	4791559	15 Jun 2006	12:00	06163WAA		MR
33	OF0710.D	DB88-	4791560	15 Jun 2006	12:22	06163 WAA		MR
34	OF0711.D	DB108	4791561	15 Jun 2006	12:45	06163WAA		MR
35	OF0712.D	DB17-	4791562	15 Jun 2006	13:07	06163WAA		MR
36	OF0713.D	OR2	4791568	15 Jun 2006	13:29	06163¥AA		MR
37	OF0714.D	053	4791569	15 Jun 2006	13:52	06163WAA		HR
38	OF0715.D	OB3	4791570	15 Jun 2006	14:14	06163WAA		MR
30	OF071K.D	SBLK	SBLK	15 Jun 2006	14:54			NU
:	DF0716.D	SBLKWG1600	SBLKWG160	15 Jun 2006	15:16	06160WAG		MR
5	OF0717.D	160WGLCS0	160WGLCS	15 Jun 2006	15:47	06160MAG		MR
2	OF0717.D	DP-12	4789223	15 Jun 2006	16:10	06160MAG		MR
2	OF0719.D	DP-12M5	4789224	15 Jun 2006	16:32	06160WAG		MR
	OF0720.D	DP-12H3	4789225	15 Jun 2006	16:54	06160MAG		MR
9	OF0721.D	1158-RE	4774047RE	15 Jun 2006	17:17	06160WAG		MR
10	OF0722.D	CONNY	4788848	15 Jun 2006	17:39	06160MAG		MR
3	OF072A.D	SECC030	STD1576	15 Jun 2006	18:01			MR

Extraction/Distillation/Digestion Logs

RUSH

Organic Extraction Batchlog

Prep Analysis # 00813 BNA Water Extraction

Prep Group # 603 TC8 Water

Dept: 26

Start Time: 16:15

BATCH NO.	06163\	NAA	026								Tech 1: 0 8 70-4 Tech 2:
QC	Sample Code	Amt (m)Ĺ)	SS/IS Sol.	Amt (mL)	MS Sol.	Amt (mL)	FV (mL)	рН	рН	BC	Comments
BLANK6	PBLKUE	1000	SS0614526A	1-12			1.0		1	/	DI H20
LCS6	LCSW3	וטטט	SS0614526A		MS0615626A	1 1 0	i	$\overline{\rfloor}_{oldsymbol{\perp}}$		//	
4791564MS	OS2-MS	950	SS0614526A		MS0615626A	-				4574	cuar
4791565MSD	OS2-MSD	950	SS0614526A		MS0615626A	1	\downarrow		1	1	1
							ļ				
								ļ			

	Sample #	Sample Code	Amt	SS/IS Sol.	Amt (mL)	FV (mL)	рН	рН	ВС	Comments	Analyses	Due Date	Р	С
1	4791190	112A7	9913	SS0614526A	4-0	1.0	11	2	45A	slight yellow tint	4678	6/21/2006		N
2	4791191	125A8	1003	SS0614526A		<u> </u>	<u>' '</u>	1	i	orange fort w ora	4678 ed.	6/21/2006	P	N
3	4791193	FB069		SS0614526A	I	1				clear	4678	6/21/2006	P	N
4	4791555	-TF5-	1038	SS0614526A						slight yellow fant	4678	6/26/2006	N	Y
5	4791556	-TF23		SS0614526A		11				Cloudy yellow	4678	6/26/2006	N	Υ
6	4791558	-DC2-	ú710	SS0614526A		11-	\sqcap			COLUMN GOVERNO	4678	6/26/2006	N	Y
7	4791559	-DC1-	1549	SS0614526A			\top				4678	6/26/2006	N	Υ
8	4791560	DB8B-	9010	SS0614526A	J	1	-			Clear	4678	6/26/2006	N	Y
9	4791561	DB108	4913	SS0614526A		╀╌		$\parallel \parallel$	+	d.	4678	6/26/2006	N	Y
10	4791562	DB17-	1990	SS0614526A			1			giordy rullow	4678	6/26/2006	N	Y
11	4791563 bkg	OS2-	950	SS0614526A		┇╂╌	11	tt		Clear	4678 440 th Bancon	6/26/2006	N	Y
	4791568	OR2-	Ti-	SS0614526A			$\dagger \dagger$	1			4678	6/26/2006	N	Y
13	4791569	OS3	983	SS0614526A		 	-	\dagger			4678	6/26/2006	N	Y
14	4791570	OR3	454			1	+	1	††		4678	6/26/2006	Ñ	Y
	4791645	250EB /	1052	SS0614526A		<u> </u>	+	$\dagger \dagger$	$\dagger\dagger$		4678 E1 3	6/15/2006	s	N
116	4791646	250AB	65)	SS0614526A_		1	1	J			4678	6/15/2006	s	N
17			102 (` -			 		<u> </u>		T	Т
18			 			1	1						T	T
19			+			+	- -	 -	 					
20				-		† 	Ì	1	 			015170-9	T	T

Additional Comment:

Solvent Used	Lot No.	Solvent Used	Lot No.
McCiz	1 C19E33		
Narsou	O4 143A		
Nach	5129-20		
MSDY	09643		
Rack ID:		Work Station:	bench Z
Internal Standard	1483V571	Balance #	8
S-bath ID	ડુલ °C S-bath ID	9 89 °C N-E	vap °C

Documented temps are NIST corrected.

06163WAA026

DF = Dilution Factor FV = Final Volume

page 1 of 1

Spike Solutions:

SS0614526A

BNA SURROGATE STANDARD

MS0615626A

LCS SPIKE MIX

Metals Data

Case Narrative Conformance/Nonconformance Summary

Where quality is a science.

CASE NARRATIVE FOR INORGANICS

Laboratory Name: Lancaster Laboratories

SDG Number: CBN23

Date Received: 06/10/2006

Dilutions:

Refer to the analysis run logs for samples requiring dilutions.

Quality Assurance/Quality Control:

The final concentration (ug/l) is obtained using the following calculation:

Instrument reading (ug/l) x final volume x dilution factor initial volume

Explanatory Notes:

The instrument detection limits (IDLs) are used for determining the U flags on the initial and continuing calibration blanks. The highest IDL is selected when multiple instruments are used for an analysis. The method detection limits (MDLs) are used for determining all other U flags.

Calibration Standards:

Instrument calibration standards are prepared monthly from stock solutions purchased from Aldrich Chemical, EM Science, Fisher Scientific, High Purity, Inorganic Ventures, JT Baker, Spex Industries Inc., Ultra Scientific, or VHG Laboratories.

Case Narrative reviewed and approved by:

for Date 7/05/06

Dana M. Kauffman, Manager

Data Deliverables

6468

QUALITY ASSURANCE SUMMARY

COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

Lab Name: LANCASTER_LABORATORIES

SDG No.: CBN23

Lab Samp	le ID.
4791559	
4791558	
4791555	
4791561	
4791562	
4791560	
4791557	
4791568	
4791570	
4791563	
4791566	
4791565	
4791564	
4791569	
	4791558 4791555 4791561 4791562 4791560 4791557 4791568 4791570 4791563 4791566 4791565 4791566

Were ICP-AES and ICP-MS interelement corrections applied?	(Yes/No)	ICP-AES YES	ICP-MS NA
Were ICP-AES and ICP-MS background corrections Applied?	(Yes/No)	YES	NA
<pre>If yes, were raw data generated before application of background corrections?</pre>	(Yes/No)	NO	

LEGEND

<u> </u>	
FLAGS: (indicate matrix interference)	METHODS:
N = Matrix Spike OOS	<pre>ICP = Inductively Coupled Plasma</pre>
* = Duplicate OOS	P = ICP Atomic Emission Spectrometer
W = Method F Analytical Spike Recovery	MS = ICP Mass Spectrometry
<85% or >115% when the sample conc.	F = Graphite Furnace
is <50% of the spike conc.	CV = Cold Vapor
S = Analysis Determined by MSA	NR = Not Required
+ = MSA Correlation Coefficient <0.995	TERMS:
E = Matrix Effects exist as proven by	MDL = Method Detection Limit
Serial Dilution or Spiked Dilution	LOQ = Limit of Quantitation
M = Duplicate Injection Precision not met	OOS = Out of Specification
Presence of FLAGS does not invalidate data	MSA = Method of Standard Addition
U = Below MDL, B = Below LOQ	

I certify to f the data	hat this	data pack	age is te data pac	chnically ackage has bee	ccurate and complete. Trease en authorized by the Laboratory
Manager or Signature:	the Mana	ger's desi	gnee, as	verified by	the following signature. Dana M. Kauffman
Date:		7/05/00		Title:	Manager Data Deliverables

Sample Data

QUALITY ASSURANCE SUMMARY

INORGANIC ANALYSIS DATA SHEET FORM 1

CLIENT SAMPLE NO.

Lab Name: LANCASTER LABORATORIES

CAS No.

SDG No.: CBN23

Matrix: (soil/water) WATER

Lab Sample ID: 4791559

Level: (low/med) LOW

Date Received: 06/10/2006

M

% Solids: 0

Concentration Units (ug/L or mg/kg dry weight): UG/L

Analyte

	7439-92-1	Lead		6.9U	Р .	
Color Before	·:	Clarity	Before: _		Texture:	
Color After:		Clarity	After: _		Artifacts:	
Comments:						
				<u> </u>		
					 	

Concentration C

INORGANIC ANALYSIS DATA SHEET FORM 1

CLIENT SAMPLE NO.

Lab Name: LANCASTER_LABORATORIES

CAS No.

SDG No.: CBN23

Matrix: (soil/water) WATER

Lab Sample ID: 4791558

Level: (low/med) LOW

Date Received: 06/10/2006

М

% Solids: 0

Concentration Units (ug/L or mg/kg dry weight): UG/L

Analyte

	7439-92-1	Lead		6.9 0	P	
Color Before	e:	Clarity	Before: _		Texture:	
Color After:		Clarity	After: _		Artifacts:	
Comments:						

INORGANIC ANALYSIS DATA SHEET FORM 1

CLIENT SAMPLE NO. -TF5-

Lab Name: LANCASTER LABORATORIES

CAS No.

SDG No.: CBN23

Matrix: (soil/water) WATER

Lab Sample ID: 4791555

Level: (low/med) LOW

Date Received: 06/10/2006

% Solids: 0

Concentration Units (ug/L or mg/kg dry weight): UG/L

Analyte

	7439-92-1	Lead	<u> </u>	6.9U	P	
Color Before	:	Clarity	Before: _		Texture:	
Color After:		Clarity	After:		Artifacts:	
Comments:						

INORGANIC ANALYSIS DATA SHEET FORM 1

CLIENT SAMPLE NO.

DB108

Lab Name: LANCASTER LABORATORIES

CAS No.

SDG No.: CBN23

Matrix: (soil/water) WATER

Lab Sample ID: 4791561

Level: (low/med) LOW

Date Received: 06/10/2006

% Solids: 0

Concentration Units (ug/L or mg/kg dry weight): UG/L

Analyte

	7439-92-1	Lead		6.9 U	P	
Color Before	e:	Clarity	Before: _		Texture:	
Color After:		Clarity	After: _		Artifacts:	
Comments:						

INORGANIC ANALYSIS DATA SHEET FORM 1

CLIENT SAMPLE NO.

DB17-

Lab Name: LANCASTER_LABORATORIES

SDG No.: CBN23

Matrix: (soil/water) WATER

Lab Sample ID: 4791562

Level: (low/med) LOW

Date Received: 06/10/2006

% Solids: 0

Concentration Units (ug/L or mg/kg dry weight): UG/L

7439-92-1	Lead	6.9 U	P
Color Before:	Clarity	Before:	Texture:
Color After:	Clarity	After:	Artifacts:

CAS No. Analyte Concentration C Q

Color After: ____ Clarity After: ____ Artifacts: _____

Comments:

INORGANIC ANALYSIS DATA SHEET FORM 1

CLIENT SAMPLE NO.

DB8B-

Lab Name: LANCASTER LABORATORIES

CAS No.

SDG No.: CBN23

Matrix: (soil/water) WATER

Lab Sample ID: 4791560

Level: (low/med) LOW Date Received: 06/10/2006

Analyte

% Solids: 0

Concentration Units (ug/L or mg/kg dry weight): UG/L

	7439-92-1	Lead		6.9U	<u> </u>	
Color Before	· ·	Clarity	Before:		Texture:	_
Color After:		Clarity	After: _		Artifacts:	
Comments:						
			· · · · · · · · · · · · · · · · · · ·			

INORGANIC ANALYSIS DATA SHEET FORM 1

CLIENT SAMPLE NO.

MTF23

Lab Name: LANCASTER LABORATORIES

CAS No.

SDG No.: CBN23

Matrix: (soil/water) WATER

Lab Sample ID: 4791557

Level: (low/med) LOW

Date Received: 06/10/2006

% Solids: 0

Concentration Units (ug/L or mg/kg dry weight): UG/L

Analyte

7439-92-	l Lead	6.90	P
Color Before:	Clarity	Before:	Texture:
Color After:	Clarity	After:	Artifacts:
Comments:			

INORGANIC ANALYSIS DATA SHEET FORM 1

CLIENT SAMPLE NO.
OR2--

Lab Name: LANCASTER LABORATORIES

CAS No.

SDG No.: CBN23

Matrix: (soil/water) WATER

Lab Sample ID: 4791568

Level: (low/med) LOW

Date Received: 06/10/2006

% Solids: 0

Concentration Units (ug/L or mg/kg dry weight): UG/L

Analyte

	/439-92-1 Lea	a	6.9[0]	IP J
Color Before	e:	Clarity Before:	<u></u>	Texture:
Color After:	<u></u>	Clarity After:		Artifacts:
Comments:				

INORGANIC ANALYSIS DATA SHEET FORM 1

CLIENT SAMPLE NO.
OR3--

Lab Name: LANCASTER_LABORATORIES

CAS No.

SDG No.: CBN23

Matrix: (soil/water) WATER

Lab Sample ID: 4791570

Μ

Level: (low/med) LOW Date Received: 06/10/2006

% Solids: 0

Concentration Units (ug/L or mg/kg dry weight): UG/L

Analyte

	7439-92-1	Lead	<u> </u>	6.9U	P	
Color Before	<u></u>	Clarity	Before:		Texture:	
Color After:		Clarity	After:	.	Artifacts:	
Comments:						

INORGANIC ANALYSIS DATA SHEET FORM 1

CLIENT SAMPLE NO.
OS2--

Lab Name: LANCASTER_LABORATORIES

CAS No.

SDG No.: CBN23

Matrix: (soil/water) WATER

Lab Sample ID: 4791563

С

Level: (low/med) LOW

Date Received: 06/10/2006

% Solids: 0

Concentration Units (ug/L or mg/kg dry weight): UG/L

Analyte

7439	9-92-1 Lead		6.9[0]	P
Color Before: _	Clarity	Before:		Texture:
Color After: _	Clarity	After:	 	Artifacts:
Comments:				

INORGANIC ANALYSIS DATA SHEET FORM 1

OS2--D

Lab Name: LANCASTER_LABORATORIES

CAS No.

SDG No.: CBN23

Matrix: (soil/water) WATER

Lab Sample ID: 4791566

Level: (low/med) LOW

Date Received: 06/10/2006

Μ

% Solids: 0

Concentration Units (ug/L or mg/kg dry weight): UG/L

Analyte

	7439-92-1	Lead	<u> </u>	6.9U	P	
Color Befor	e:	Clarity E	Before:		Texture:	
Color After	:	Clarity A	After:		Artifacts:	
Comments:						
		· · · · · · · · · · · · · · · · · · ·				

INORGANIC ANALYSIS DATA SHEET FORM 1

CLIENT SAMPLE NO.

OS2--M

Lab Name: LANCASTER LABORATORIES

CAS No.

SDG No.: CBN23

Matrix: (soil/water) WATER

Lab Sample ID: 4791565

Level: (low/med) LOW

Date Received: 06/10/2006

М

% Solids: 0

Concentration Units (ug/L or mg/kg dry weight): UG/L

Analyte

	7439-92-1	Lead		126	Р
Color Before	:	Clarity	Before: _		Texture:
Color After:		Clarity	After: _		Artifacts:
Comments:					

INORGANIC ANALYSIS DATA SHEET FORM 1

CLIENT SAMPLE NO.

OS2--S

Lab Name: LANCASTER_LABORATORIES

CAS No.

SDG No.: CBN23

Matrix: (soil/water) WATER

Lab Sample ID: 4791564

Level: (low/med) LOW

Date Received: 06/10/2006

M

% Solids: 0

Concentration Units (ug/L or mg/kg dry weight): UG/L

Analyte

	7439-92-1	Lead		132	P	
Color Before	e:	Clarity	Before: _		Texture:	
Color After:		Clarity	After: _		Artifacts:	
Comments:						
-						

INORGANIC ANALYSIS DATA SHEET FORM 1

CLIENT SAMPLE NO.
OS3--

Lab Name: LANCASTER_LABORATORIES

SDG No.: CBN23

Matrix: (soil/water) WATER

Lab Sample ID: 4791569

Level: (low/med) LOW

Date Received: 06/10/2006

% Solids: 0

Concentration Units (ug/L or mg/kg dry weight): UG/L

Analyte

[/43	9-92-1 Lead	6.9[0]	[P]
Color Before: _	Clarity	Before:	Texture:
Color After: _	Clarity	After:	Artifacts:
Comments:			

Quality Control Data

FORM 2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: LANCASTER_LABORATORIES

SDG No.: CBN23

Initial Calibration Source: LLI

Continuing Calibration Source: LLI

Concentration Units: UG/L

Analyte	Initial True	Calibrat Found	I	True		nuing Ca %R(2)	alibratio True	on Found	%R (
Lead	600.0	585.57	97.6	500.0	497.42	99.5	500.0	492.91	98

(1) Control Limit: 90-110
(2) Control Limit: 90-110

FORM 2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: LANCASTER_LABORATORIES

SDG No.: CBN23

Initial Calibration Source: LLI

Continuing Calibration Source: LLI

Concentration Units: UG/L

Analyte	Initia True	l Calibra Found	True		•	alibratic True		%R(2)
Lead			500.0	495.48	99.1	500.0	497.00	99.

(1) Control Limit: 90-110 (2) Control Limit: 90-110

FORM 2B

LOW LEVEL CHECK STANDARD FOR AA AND ICP

Lab Name:

LANCASTER LABORATORIES

SDG No.:

CBN23

AA CRDL Standard Source:

LLI

ICP CRDL Standard Source:

LLI

Concentration Units: UG/L

		·		1				
		AA				ICP		
					Init.	ial	Fina	1
Analyte	True	Found	%R	True	Found	%R	Found	%R
Lead				15.0	15.38	102.5	15.06	100.4

Control limits apply to values up to 10 times the true value of the low level check standard. Mercury, GFAA and ICP-MS: 50 - 150%. ICP: See statistical windows form.

Statistical Windows for Low Level Check

True Value	Statistical
Ug/L	Window (%)
200	0 - 200
20	25 - 175
10	0 - 200
5	75 - 125
5	50 - 150
50	50 - 150
5	75 - 125
200	0 - 200
5	25 - 175
5	25 - 175
10	25 - 175
200	25 - 175
20	50 - 150
100	0 - 200
5	50 - 150
10	25 - 175
10	50 - 150
500	75 - 125
10	0 - 200
5	50 - 150
1000	25 - 175
5	75 - 125
20	0 - 200 *
20	25 - 175
10	50 - 150
5	50 - 150
20	75 - 125
	Ug/L 200 20 10 5 5 50 5 200 5 10 200 20

Effective: 03/08/2005

^{*} Effective date 04/11/2005

FORM 3

BLANKS

Lab Name: LANCASTER_LABORATORIES

SDG No.: CBN23

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

		Initial Calibration Blank (ug/L)	Con		ng Ca nk (u	librat g/L)	ion			Prepara Blan	ık 	
Analyte	Mass	C	1	C	2	C	3	C	Mass		C Sample II	DM
Lead	13033	2.2U	2.2	20	2	2.20		2.2U		6.900	UP17348AB	P

FORM 3

BLANKS

Lab Name: LANCASTER_LABORATORIES

SDG No.: CBN23

Preparation Blank Matrix (soil/water):

Preparation Blank Concentration Units (ug/L or mg/kg): _____

	,	Initial Calibration Blank (ug/L)			nuing Ca Blank (u		tion			Prepa Bl	rat: ank	ion	
Analyte	Mana	С	1	C	2		3	С	Mass		C	Sample	ID
Lead	Mass			2.2U		-			Mass				F

FORM 4A

ICP-AES INTERFERENCE CHECK SAMPLE

Lab Name: LANCASTER_LABORATORIES

SDG No.: CBN23

ICP-AES Instrument ID: 06383 ICS Source: LLI

Concentration Units: UG/L

	Tr	rue	-	Initial	Found			Final	Found	
	Sol.	Sol.	Sol.		Sol.		Sol.		Sol.	
Analyte	A	AB	Α	%R	AB	%R	A	%R	AB	₽R
Aluminum	500000	500000	498730	99.7	496437.7	99.3	497710	99.5	489879.5	
Calcium	500000	500000	484670	96.9	479308.3	95.9	470907	94.2	461511.4	92.3
Iron	200000	200000	187935	94.0	186881.0	93.4	186054	93.0	183843.5	91.9
Lead	0	50	2		54.2	108.4	5		51.8	103.6
Magnesium	500000	500000	528301	105.7	524756.8	105.0	522825	104.6	517647.5	103.5

Control Limits: All Metals 80%-120%

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

Lab Name: LANCASTER LABORATORIES

SDG No.: CBN23

Matrix (Soil/Water): WATER

% Solids for sample: 0.0

Concentration Units (ug/l or mg/kg dry weight): UG/L

Level (low/med): LOW

CLIENT SAMPLE NO.

052--5

Batch Id(s): P17348A

00	ц	75-125 5	105	110	120 0000	120 0000	125 7300	131 8300	11 0006 9	۵	Tond
RPD	RPD Q	Q %R RPD Q RPD		% O	Added	Added	Result C	Result C	Result C	Σ	Analyte
Lim		Limit	MSD	MS	Spike	Spike	Sample	Sample	Sample		
Ct1		Control	_		MSD	MS	MSD	MS			

Form 6

DUPLICATES

CLIENT SAMPLE No.

OS2--D

Lab Name: LANCASTER LABORATORIES

SDG No.: CBN23

Matrix (soil/water): WATER

% Solids for Sample: 0.0

Level (low/med): LOW

% Solids of Duplicate:

0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

Batch ID(s): P17348A

Analyte	Control Limit	Samples (S) C	° Duplicate	(D) C	RPD	Q	М
Lead		6.9000 บ		6.9000 U		l	Р

NOTE: An asterisk (*) in column "Q" indicates poor duplicate precision (RPD > 20% OR |(S) - (D)| > LOQ for values < 5x LOQ).

The data are considered to be valid because the laboratory control sample is within the control limits. See the Laboratory Control Sample page of the

Quality Assurance Summary.

FORM 7

LABORATORY CONTROL SAMPLE

Lab Name: LANCASTER_LABORATORIES

SDG No.: CBN23

Solid LCS Source:

Aqueous LCS Source: LLI

A mo Trut o	Sample ID	Aque True	ous (ug/I Found	J) %R(1)	True	Sol: Found	id (mo	g/kg) Limit	&R
Analyte Lead	P17348AQ	120.0	124.72			round		TIME C	

(1) Control Limits: Statistically determined

Statistical Windows: Waters LCS/LCSD

SW846	ICP	_
	True value	Statistical
Element	mg/L	Window
AL	2	90-112
SB	0.5	80-120
AS	2	80-120
ВА	2 .	90-110
BE	0.05	90-111
В	2	90-110
CD	0.05	90-112
CA	4	90-112
CR	0.2	90-110
CO	0.5	90-110
CU	0.25	90-112
FE	1	90-112
PB	0.5	90-113
MG	2	89-110
MN	0.5	90-110
МО	2	90-110
NI	0.5	90-111
Κ	4	88-119
SE	2	80-120
AG	0.05	90-117
NA	4	80-120
SR	1	90-110
TL	2	80-120
SN	4	80-120
Ti	1	90-113
V	0.5	90-110
ZN	0.5	90-111

SW846	GFAA	<u>. </u>
	True value	Statistical
Element	mg/L	Window
SB	50	80-120
AS	40	80-120
BE	2.5	86.6-112.2
CD	2.5	84.2-110.9
CR	10	80-111
CU	20	87-110
PB	20	80-120
NI	20	81-115
SE	10	80-120
AG	2.5	85-116
TL	50	80-120

3/31/05

SW846	Mercury	
	True value	Statistical
Element	mg/L	Window
HG	1	80-120

Effective Date for ICP: 03/21/2006 Effective Date for GFAA and Mercury: 03/24/2006

FORM 9

SERIAL DILUTIONS

CLIENT SAMPLE No.

Lab Name: LANCASTER LABORATORIES

OS2-- L

SDG No.: CBN23

Matrix (soil/water): WATER

Level (low/med): LOW

Concentration Units: UG/L

Analyte	Initial Sample Result (I)	С	Serial Dilution Result (S)	С	% Differ- ence	Q	М
Lead	6.9	000 U	34.500	0 U			Р

NOTE: An E in column Q indicates the presence of a chemical or physical interference in the matrix when the % difference is greater than 10%. This applies only when (I) is greater than or equal to 50x MDL for ICP, 100x MDL for ICP-MS (6020), 50x MDL for ICP-MS (200.8), or 25x MDL for GFAA.

Verification of Instrument Parameters

FORM 10

INSTRUMENT DETECTION LIMITS (BIANNUALLY)

Lab Name:	LANCASTE	R_LABORATOR	IES				
SDG No.:	CBN23						
ICP Instrume	ent ID:	06383				Date:	04/2006
Flame Instru	ument ID:						
Furnace Inst	trument I	D:					
Method: P							
		Analyte	Wavelength (nm)	Back- ground	IDL (ug/L)		
		Lead	220.35		2.	2	
Comments:							

FORM 10 MDL

METHOD DETECTION LIMITS (ANNUALLY)

Lab Name: LANCASTER LABORATORIES

SDG No.: CBN23

Method: P Date: 05/2006

Matrix (soil/water): WATER

Analyte	Wavelength (nm)	Background	LOQ (ug/L)	MDL (ug/L)
Lead	220.35		20.0	6.9

** The LOQ must be adjusted for \$ Solids and Sample Weight for samples reporting in mg/kg and ug.

Comments:				
	 ·-	· · · · · · · · · · · · · · · · · · · 		
	 -			
	 		- ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··	

FORM 11

ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab Name: LANCASTER_LABORATORIES

SDG No.: CBN23

ICP Instrument ID: 06383 Date: 05/2006

Analyte	Wave- length (nm)	AL	Interelement CA	Correction FE	Factor for: MG	со
Lead1	220.35	0.0005645	0.0000000	0.0000920	-0.0000003	-0.0005930
Lead2	220.35	-0.0002726	0.0000000	0.0000464	-0.0000021	0.0000440

Comments:			

FORM 11

ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab Name: LANCASTER LABORATORIES

SDG No.: CBN23

ICP Instrument ID: 06383 Date: 05/2006

	Wave- length		Interelement	Correction	Factor for:	
Analyte	(nm)	MO	NI	TI	Λ	
Lead1	220.35	-0.0020790	0.0000170	0.0000530	-0.0000900	
Lead2	220.35	-0.0007700	0.0000520	-0.0004500	-0.0001500	

Comments:							
			·-	 	 	. — — .	

FORM 12

LINEAR RANGES

Lab Name: LANCASTER_LABORATORIES

SDG No.: CBN23

ICP Instrument ID: 06383 Date: 04/2006

Method: P

Analyte	Wavelength (nm)	Integration Time (Sec.)	Concentration (ug/L)
Lead	220.35	10.00	70000.0

Comments:			
	 		

Preparation and Run Logs

FORM 13

PREPARATION LOG

Lab Name: LANCASTER_LABORATORIES___

SDG No.: CBN23_

Method: P_

Batch ID: P17348A

EPA			
Sample	Preparation	Weight	Volume
No.	Date	(gram)	(ml)
-DC1-	06/22/2006		50
-DC2-	06/22/2006		50
-TF5-	06/22/2006		50
DB108	06/22/2006		. 50
DB17-	06/22/2006		50
DB8B-	06/22/2006		50
MTF23	06/22/2006		50
OR2	06/22/2006		50
OR3	06/22/2006	·	50
OS3	06/22/2006		50
OS2	06/22/2006		50
OS2D	06/22/2006		50
OS2M	06/22/2006		50
OS2S	06/22/2006		50
P17348AB	06/22/2006		50
P17348AQ	06/22/2006		50

FORM 14

ANALYSIS RUN LOG

Lab Name: LANCASTER_LABORATORIES

SDG No.: CBN23

Instrument ID Number: 06383 Method: P

Start Date: 06/22/2006 End Date: 06/22/2006

EPA																An	al	yte	es									 			
Sample No.	D/F	Time	% R	P B																											
S0	1.00	1521		Х							Ī																				
S	1.00	1526																													╛
S	1.00	1530		Х																										\perp	╝
S	1.00	1535		T" [_						╝
ICV	1.00	1541		X																								\perp		\perp	╛
ICB	1.00	1545		X.																											
LLC	1.00	1550		Х																	T								\perp		
ICSA	1.00	1555		Х							ĺ																				
ICSAB	1.00	1559		Х									Ī									7									
CCV	1.00	1604		Х					T	T																			П		٦
ССВ	1.00	1609	•	Х														Ĭ	\Box										П		
P17348AB	1.00	1614		X	<u> </u>	1													T		T				Î	T	\neg				٦
P17348AQ	1.00	1618		Х																											٦
OS2	1.00	1623		Х					ı					\neg																	
OS2A	1.00	1628																													
OS2D	1.00	1632		Х																											
OS2S	1.00	1637		Х										i																	
OS2M	1.00	1642		Х				Ì						Ì															\Box		
OS2L	5.00	1647		Х					П				T										П			ı					٦
-TF5-	1.00	1651		Х	T																										
MTF23	1.00	1656	•	Х					1									Ī	T												
CCV	1.00	1701		X																				П					П	\top	
CCB	1.00	1705		Х																								П			٦
-DC2-	1.00	1710		Х											_															П.	
-DC1-	1.00	1715		Х										\neg				ľ													
DB8B-	1.00	1720		Х						1		\neg		\neg							1	\Box	T	\neg	П						
DB108	1.00	1724		Х							1					Ī			ヿ		7	1									\neg
DB17-	1.00	1729		Х					\Box		1	1							7	-											\Box
OR2	1.00	1734		Х					T	\Box		\neg									1										\Box
OS3	1.00	1739		Х								寸									1	\neg	7					\neg			
OR3	1.00	1743		Х	\top		П				\exists																	\neg	\top		
ZZZZZZ	1.00	1748		\Box						T							T	Ţ	T		1								\top		

FORM 14

ANALYSIS RUN LOG

Lab Name: LANCASTER_LABORATORIES

SDG No.: CBN23

Instrument ID Number: 06383 Method: P

Start Date: 06/22/2006 End Date: 06/22/2006

EPA	-							 			An	al	yt	es				 	-		
Sample No.	D/F	Time	% R	P B																	
ZZZZZZ	1.00	1753																			
CCV	1.00	1758		Х								i			Ĭ						
CCB	1.00	1802		Х																	
ZZZZZZ	1.00	1807										[
ZZZZZZ	1.00	1812														- 1					
ZZZZZZ	1.00	1817																			
ZZZZZZ	1.00	1821																			
ZZZZZZ	1.00	1826								j											
ZZZZZZ	1.00	1831																			
LLC	1.00	1835		Х													ļ				
ICSA	1.00	1840		Χ																	
ICSAB	1.00	1845		Х																	
CCV	1.00	1850		Х																	
CCB	1.00	1854		Х																	l_

Raw Data

ICP Data

ICP-AES Run Data Report

Data Reviewed By:

JPHIAR 6/22has

Data File Name 0617305T63.DAT

Run Name: 0617305T63

Data Verified By:

Des Oul 120 6-23 06

Method Reference Name(s):

SW-846 6010B

Analyst Employee:

1496

Instrument Parameters:

Rinse Time:

90.00 sec

Individual Integration Time:

10.00 sec

Total Integration Time:

30.00 sec

ELEMENT NAME	ANALYTE NAME	WAVE LENGTH VALUE
AG	Silver	328.06
AL	Aluminum	308.21
AS	Arsenic	189.04
В	Boron	249.67
BA	Barium	493.4
8E	Beryllium	313.04
CA	Calcium	317.93
CD	Cadmium	226.5
co	Cobalt	228.61
CR	Chromium	267.71
CU	Соррег	324.75
FE	Iron	259.94
K	Potassium	766.49
MG	Magnesium	279.07
MN	Manganese	257.61
МО	Molybdenum	202.03
NA	Sodium	330.23
NI	Nickel	231.6
PB	Lead	220.35/1
PB	Lead	220.35/2
SB	Antimony	206.83
SE	Selenium	196.02/1
SE	Selenium	196.02/2
SN	Tin	189.98
SR	Strontium	421.55
TI	Titanium	334.94
TL	Thallium	190.86
V	Vanadium	292.4
Υ	Yttrium	371.03
ZN	Zinc	206.2

The 61E TRACE ICP uses a Crawford-Kunselman Noise Reduction Technique for lead and selenium. This requires the utilization of the first and second order wavelengths in the calculation of each of these metals determinations.

The 61E TRACE ICP also utilizes Yttrium as an internal standard to compensate for fluctuations in nebulization and plasma conditions. All Yttrium readings are expressed in counts.

Run Name: 0617305T63

Instrument ID: 06383

Tube: 1

Date/Time: 06/22/2006 15:21

Sample Number: S0

ELEMENT	CONC (ppm)	AVERAGE INTENSITY	% RSD	<u>#1</u>	INTEGRATIONS #2	#3
AG	0.000	-0.00300	0.931	-0.00303	-0.00300	-0.00298
AL	0.000	0.00334	0.248	0.00334	0.00335	0,00333
AS	0.000	-0.00009	20.828	-0.00007	-0.00011	-0.00009
B	0.000	0.00041	6.058	0.00041	0.00038	0.00043
BA	0.000	0.00039	2.065	0.00039	0.00039	0,00038
BE	0.000	-0.00075	0.901	-0.00076	-0.00074	-0.00075
CA	0.000	-0.00212	0.269	-0.00213	-0.00212	-0.00212
CD	0.000	0.00025	33.699	0.00022	0.00018	0.00034
co	0.000	-0.00003	51.610	-0.00003	-0.00004	-0.00001
CR	0.000	0.00004	22.455	0.00005	0.00004	0.00003
CU	0.000	-0.00054	4.849	-0.00057	-0.00053	-0.00052
FE	0.000	0.00219	0.493	0.00219	0.00221	0.00219
K	0.000	0.00968	1.057	0.00957	0.00977	0.00969
MG	0.000	0.00033	3.105	0.00034	0.00032	0.00032
MN	0.000	0.00003	8.862	0.00002	0.00002	0.00003
MO	0.000	0.00000	628.890	-0.00001	0.00001	0.00000
NA	0.000	0.00020	27.693	0.00016	0.00018	0.00027
NI	0.000	-0.00001	800.509	0.00004	-0.00005	-0.00001
PB	0.000	10.00000	0.000	10.00000	10.00000	10,00000
SB	0.000	0.00025	41.560	0.00035	0.00015	0.00023
SE	0.000	10.00000	0.000	10.00000	10.00000	10.00000
SN	0.000	0.00002	355.859	-0.00004	0.00010	0.00000
SR	0.000	0.00039	2.477	0.00039	0.00038	0.00040
TI	0.000	-0.00023	16.578	-0.00019	-0.00024	-0.00026
<u>TL</u>	0.000	-0.00001	418.583	0.00002	0.00000	-0.00005
V	0.000	0.00001	86.603	0.00000	0.00002	0.00002
Y	N/A	243585.66667	0.254	243062.00000	243425.00000	244270.00000
ZN	0.000	0.00002	106.013	0.00005	0.00000	0,00001

Run Name: 0617305T63

Instrument ID: 06383

Tube: 2

Date/Time: 06/22/2006 15:26

Sample Number: **S1**

	CONC	AVERAGE			INTEGRATIONS	
LEMENT	(ppm)	INTENSITY	% RSD	<u>#1</u>	#2	#3
AL	50.000	0.61934	0.270	0.62035	0.62026	0.61740
CA	50.000	1.05780	0.151	1.05921	1.05812	1.05607
FE	50.000	6.69842	0.250	6.71201	6.70359	6.67968
K	50.000	7.14137	0.316	7.15996	7.14786	7.11631
MG	50.000	0.69664	0.273	0.69828	0.69709	0.69455
NA	50.000	0.09276	0.177	0.09293	0.09272	0.09261
Y	N/A	239585.66667	0.227	238997.00000	239688.00000	240072.00000

Run Name: 0617305T63

Instrument ID: 06383

Tube: 3

Date/Time: 06/22/2006 15:30

Sample Number: S2 5

ELEMENT	CONC (ppm)	AVERAGE INTENSITY	% RSD	#1	INTEGRATIONS #2	#3
AG	1.000	0.24792	0.175	0.24841	0.24759	0.24777
AS	1.000	0.03634	0.445	0.03621	0.03628	0.03652
 B	1.000	0.13513	0.319	0.13531	0.13463	0.13544
BA	1.000	0.26241	0.216	0.26300	0.26187	0.26237
BE	1.000	0.34308	0.195	0.34381	0.34249	0.34296
CD	1.000	0.50983	0.196	0.51099	0.50920	0.50932
co	1.000	0.06521	0.173	0.06524	0.06508	0.06530
CU	1.000	0.10919	0.164	0.10938	0.10903	0.10915
MN	1.000	0.18749	0.174	0.18784	0.18719	0.18745
NI	1.000	0.20664	0.193	0.20706	0.20627	0.20660
PB	1.000	8.33333	6.928	8.00000	9.00000	8.00000
SE	1.000	10.00000	0.000	10.00000	10.00000	10.00000
SR	1.000	0.54631	0.202	0.54742	0.54521	0.54630
TL	1.000	0.01538	0.740	0.01544	0.01545	0.01525
Y	N/A	243043.66667	0.207	242463.00000	243371.00000	243297.00000
ZN	1.000	0.02552	0.134	0.02556	0.02550	0.02552

Run Name: 0617305T63

Instrument ID: 06383

Tube: 4

Date/Time: 06/22/2006 15:35

Sample Number: S3 5

	CONC	AVERAGE			INTEGRATIONS	
ELEMENT	(ppm)	INTENSITY	% RSD	#1	#2	#3
CR	1.000	0.10783	0.449	0.10837	0.10744	0.10769
MO	1.000	0.04018	2.835	0.03891	0.04051	0.04111
SB	1.000	0.08420	0.496	0.08424	0.08376	0.08459
SN	1.000	0.02915	0.750	0.02922	0.02890	0.02933
	1.000	0.57637	0.472	0.57923	0.57382	0.57605
	1.000	0.02604	0.521	0.02619	0.02592	0.02601
Y	N/A	242515.66667	0.433	241432.00000	243527.00000	242588.00000

Run Name: 0617305T63

Instrument ID: 06383

Tube: 5

Date/Time: 06/22/2006 15:41

Sample Number: ICV

			Re-read			
ELEMENT	AVG (ppm)	%RSD	#1	#2	#3	Re-digest
AG	0.59036	1.098	0.59034	0.58389	0.59685	<u></u>
AL	29.52717	1.241	29.52310	29.16282	29.89559	
AS	0.58734	1.102	0.59149	0.57988	0.59065	-
B	0.60688	1.265	0.60672	0.59929	0.61464	
BA	0.58810	1.188	0.58810	0.58110	0.59508	
BE	0.59838	1.240	0.59790	0.59122	0.60603	
CA	29.96780	1.248	29.93987	29.60854	30.35499	
CD	0.58428	1.274	0.58457	0.57669	0.59158	
co	0.58220	1,315	0.58156	0.57488	0.59015	
CR	0.58983	1.316	0.58944	0.58227	0.59778	
CU	0.59411	1.223	0.59417	0.58681	0.60134	
<u>FE</u>	29.93342	1.304	29.91494	29.55262	30.33269	
K	31.17554	0.980	31.20999	30.85441	31.46222	
MG	29.22983	1.269	29.21584	28.86620	29.60745	
MN	0.58866	1.279	0.58846	0.58124	0.59629	
MO	0.60463	2.992	0.58825	0.60160	0.62405	
NA	29.02994	1.198	29.00085	28.69777	29.39121	
NI	0.58450	0.977	0.58518	0.57849	0.58985	
PB	0.58557	0.899	0.58436	0.58101	0.59133	
SB	0.59984	0.764	0.59919	0.59563	0.60472	
SE	0.58851	1.236	0.58458	0.58406	0.59691	
SN	0.58665	1.592	0.58524	0.57811	0.59662	
SR	0.59657	1.215	0.59633	0.58944	0.60393	
TI	0.59608	1.241	0.59545	0.58901	0.60376	
TL	0.57214	2.954	0.55952	0.56555	0.59135	
	0.58655	1.138	0.58644	0.57993	0.59328	
Y	241304.66667	1.071	241042.00000	244010.00000	238862.00000	
ZN	0.58161	1.235	0.58144	0.57451	0.58888	

Run Name: 0617305T63

Instrument ID: 06383

Tube: 6

Date/Time: 06/22/2006 15:45

Sample Number: ICB

				INTEGRATIONS	regrations	
ELEMENT	AVG (ppm)	%RSD	<u>#1</u>	#2	#3	Re-digest
AG	-0.00034	6.242	-0.00036	-0.00032	-0.00035	
AL	-0.01911	6.654	-0.01775	-0.02028	-0.01928	
AS	0.00260	92.063	-0.00012	0.00351	0.00440	
B	0.00001	299.405	0.00056	-0.00086	0.00032	
BA	-0.00007	40.931	-0.00004	-0.00007	-0.00009	
BE	-0.00002	139.306	-0.00004	0.00001	-0.00002	
CA	-0.01174	8.485	-0.01124	-0.01289	-0.01109	
CD	-0.00030	51.739	-0.00045	-0.00029	-0.00015	
co	-0.00019	304.027	-0.00082	-0.00006	0.00032	
CR	-0.00006	308.344	-0.00019	0.00016	-0.00015	
CU	0.00018	83.597	0.00001	0.00027	0.00026	
FE	-0.02747	5.364	-0.02589	-0.02772	-0.02881	
K	-0.00319	60.113	-0.00169	-0.00252	-0.00535	
MG	-0.01437	18.349	-0.01573	-0.01604	-0.01133	
MN	-0.00006	58.296	-0.00003	-0.00005	-0.00009	
MO	0.00411	44.933	0.00614	0.00367	0.00252	
NA	-0.07742	52.289	-0.03186	-0.10925	-0.09116	
NI	0.00001	920.486	0.00039	-0.00027	-0.00008	
PB	-0.00087	111.016	-0.00196	-0.00052	-0.00012	
SB	0.00062	128.801	0.00082	-0.00026	0.00129	
SE	0.00159	296.595	0.00593	0.00225	-0.00342	
SN	0.00122	265.982	-0.00113	-0.00014	0.00494	
SR	-0.00001	86.161	-0.00001	-0.00001	0.00000	<u> </u>
TI	0.00005	111.874	-0.00001	0.00009	0.00006	
TL	-0.00293	212.183	-0.00017	0.00143	-0.01006	
<u> </u>	-0.00032	158.533	-0.00011	0.00005	-0.00090	
Y	242482.66667	0.262	242032.00000	242206.00000	243210.00000	
ZN	-0.00097	83.471	-0.00016	-0.00178	-0.00097	

Run Name: 0617305T63

Instrument ID: 06383

Tube: 7

Date/Time: 06/22/2006 15:50

Sample Number: LLC

				INTEGRATIONS		Re-read
ELEMENT	AVG (ppm)	<u>%RSD</u>	%RSD #1	#2	#3	Re-digest
AG	0.00465	6.721	0.00443	0.00452	0.00501	
AL	0.17856	0.581	0.17858	0.17751	0.17958	
AS	0.02268	26.663	0.02848	0.01641	0.02316	
B	0.05276	0.268	0.05260	0.05286	0.05283	
BA	0.00492	0.406	0.00492	0.00490	0.00494	
BE	0.00512	0.787	0.00516	0.00508	0.00511	
CA	0.19029	1.002	0.18861	0.18990	0.19236	
CD	0.00481	1.301	0.00488	0.00481	0.00475	
co	0.00527	7.096	0.00484	0.00544	0.00553	
CR	0.01522	1.847	0.01515	0.01497	0.01552	
cu	0.01071	0.906	0.01060	0.01075	0.01078	<u> </u>
FE FE	0.17913	0.108	0.17935	0.17902	0.17901	
K	0.20534	1.333	0.20688	0.20218	0.20696	
MG	0.07947	2.651	0.07914	0.07755	0.08173	
MN	0.00508	0.882	0.00511	0.00503	0.00510	
MO	0.01154	2.427	0.01174	0.01166	0.01122	
NA	0.86602	5.545	0.82765	0.85053	0.91987	
NI	0.01082	3.245	0.01091	0.01111	0.01043	
PB	0.01538	1,577	0.01555	0.01549	0.01510	
SB	0.02124	6.201	0.02132	0.02252	0.01988	
SE	0.02037	2.256	0.02086	0.01996	0.02028	
SN	0.01780	4.734	0.01822	0.01683	0.01835	
SR	0.00512	0.482	0.00514	0.00509	0.00513	
TI	0.01036	0.740	0.01036	0.01028	0.01044	
TL	0.01527	32.045	0.01290	0.01201	0.02089	
V	0.00495	5.228	0.00502	0.00467	0.00517	
Y	243688.33333	0.377	243070.00000	244743.00000	243252.00000	
ZN	0.02473	1.623	0.02468	0.02435	0.02515	

Run Name: 0617305T63

Instrument ID: 06383

Tube: 8

Date/Time: 06/22/2006 15:55

Sample Number: ICSA

				INTEGRATIONS	INTEGRATIONS	
ELEMENT	_AVG (ppm)_	%RSD	#1	#2	<u>#3</u>	Re-digest
AG	-0.00021	42.338	-0.00019	-0.00030	-0.00013	
AL	498.72951	0.827	498.65396	502.89203	494.64255	
AS	0.00316	116.926	0.00174	0.00039	0.00736	
B	-0.00198	20.735	-0.00245	-0.00177	-0.00171	
BA	-0.00064	5.116	-0.00062	-0.00062	-0.00067	
BE	0.00016	17.388	0.00013	0.00018	0.00017	
CA	484.66982	0.873	484.70236	488.88521	480.42189	
CD	-0.00397	1.956	-0.00400	-0.00403	-0.00388	
co	0.00320	14.839	0.00361	0.00268	0.00332	
CR	-0.00292	12.638	-0.00298	-0.00325	-0.00252	
CU	0.00273	2.774	0.00274	0.00265	0.00280	
FE	187.93452	0.800	187.79572	189.50169	186.50617	***
K	-0.00565	46.234	-0.00489	-0.00855	-0.00350	
MG	528.30115	0.750	527.80324	532.48869	524.61152	
MN	0.00931	0.838	0.00929	0.00939	0.00924	
MO	-0.00055	235.083	0.00040	-0.00201	-0.00003	
NA	-0.17965	12.471	-0.18279	-0.20032	-0.15585	
NINI	0.00298	29.925	0.00198	0.00370	0.00325	
PB	0.00248	15.164	0.00286	0.00211	0.00245	
SB	0.00250	64.780	0.00434	0.00131	0.00185	
SE	0.00151	202.785	-0.00202	0.00340	0.00313	
SN	0.00126	273.828	0.00502	0.00051	-0.00175	
SR	0.01547	0.824	0.01547	0.01560	0.01534	
<u></u>	-0.00535	0.128	-0.00535	-0.00535	-0.00534	
TL	-0.00202	376.348	0.00144	0.00323	-0.01072	
<u> </u>	-0.00324	10.231	-0.00286	-0.00340	-0.00347	
Y	227991.66667	0.691	227855.00000	226489.00000	229631.00000	
ZN	0.00884	7.200	0.00828	0.00953	0.00872	

Run Name: 0617305T63

Instrument ID: 06383

Tube: 9

Date/Time: 06/22/2006 15:59

Sample Number: ICSAB

				INTEGRATIONS		Re-read
ELEMENT	AVG (ppm)	%RSD	# 1	<u>#2</u>	#3	Re-digest
AG	0.21087	0.287	0.21125	0.21120	0.21017	
AL	496.43769	0.382	498.17118	496.73267	494.40923	
AS	0.10517	0.587	0.10583	0.10506	0.10462	
 B	-0.00441	24.412	-0.00327	-0.00456	-0.00540	
BA	0.51649	0.407	0.51838	0.51686	0.51423	
BE	0.49243	0.310	0.49385	0.49262	0.49081	
CA	479.30826	0.324	480.72139	479.55742	477.64597	
CD	0.94184	0.358	0.94523	0.94179	0.93849	
co	0.47676	0.223	0. 47 778	0.47682	0.47566	
CR	0.47920	0.194	0.48018	0.47910	0.47833	
CU	0.53105	0.430	0.53303	0.53156	0.52855	
FE FE	186.88097	0.383	187.46192	187.09969	186.08131	
K	-0.00738	47.518	-0.00479	-0.01137	-0.00598	
MG	524.75682	0.306	526.25355	524.95603	523.06090	
MN	0.50049	0.277	0.50161	0.50093	0.49894	
MO	-0.00228	46.914	-0.00291	-0.00105	-0.00289	
NA	-0.16530	17.461	-0.15248	-0.19835	-0.14506	
NI	0.93699	0.295	0.93957	0.93732	0.93407	
PB	0.05422	2.550	0.05355	0.05581	0.05329	
SB	0.62330	0.971	0.62569	0.62779	0.61641	
SE	0.05430	4.249	0.05664	0.05423	0.05203	
SN	0.00556	89.151	0.00005	0.00697	0.00965	
SR	0.01541	0.432	0.01546	0.01543	0.01533	
TI	-0.00542	0.759	-0.00546	-0.00538	-0.00543	
TL	0.08717	2.687	0.08833	0.08447	0.08871	
	0.48684	0.346	0.48863	0.48659	0.48529	
Y	228186.33333	0.247	227684.00000	228079.00000	228796.00000	
ZN	0.92606	0.227	0.92799	0.92639	0.92382	

Run Name: 0617305T63

Instrument ID: 06383

Tube: 10

Date/Time: 06/22/2006 16:04

Sample Number: CCV

			INTEGRATIONS			
ELEMENT	_AVG (ppm)_	<u>%RSD</u>	<u>#1</u>	#2	#3	Re-diges
AG	0.49514	0.078	0.49558	0.49486	0.49498	
AL	24.43342	0.209	24.49201	24.40987	24.39838	
AS	0.49537	0.286	0.49473	0.49699	0.49438	
B	0.50892	0.228	0.50922	0.50764	0.50990	
BA	0.49279	0.258	0.49426	0.49213	0.49199	
BE	0.50551	0.220	0.50671	0.50529	0.50452	
CA	24.62212	0.128	24.65810	24.60948	24.59879	
CD	0.49507	0.255	0.49638	0.49499	0.49386	
co	0.49019	0,178	0.49110	0.49009	0.48937	
CR	0.49365	0.259	0.49483	0.49382	0.49229	
CU	0.49742	0.192	0.49852	0.49694	0.49680	
FE	25.13745	0.220	25.19663	25.12837	25.08735	
K	25.81936	0.306	25.91057	25.77638	25.77112	
MG	24.38452	0.293	24.46661	24.35114	24.33582	
MN	0.49541	0.228	0.49667	0.49509	0.49447	
MO	0.50508	1.784	0.49480	0.51160	0.50885	
NA	23.82789	0.261	23.85635	23.87079	23.75652	
NI	0.49571	0.335	0.49763	0.49466	0.49485	
PB	0.49742	0.021	0.49743	0.49751	0.49730	
SB	0.50250	0.217	0.50157	0.50222	0.50370	
SE	0.49957	0.473	0.49689	0.50137	0.50044	
SN	0.49510	0.486	0.49720	0.49563	0.49248	
SR	0.50321	0.252	0.50466	0.50264	0.50232	
TI	0.50000	0.185	0.50107	0.49946	0.49946	
TL	0.48330	1.173	0.48011	0.48985	0.47995	
	0.49466	0.245	0.49605	0.49413	0.49380	
Y	243340.66667	0.131	243051.00000	243682.00000	243289.00000	
ZN	0.49451	0.339	0.49548	0.49547	0.49257	

Run Name: 0617305T63

Instrument ID: 06383

Tube: 11

Date/Time: 06/22/2006 16:09

Sample Number: CCB

				INTEGRATIONS		Re-read
ELEMENT	AVG (ppm)	%RSD	#1	#2	#3	Re-diges
AG	-0.00035	64.780	-0.00061	-0.00028	-0.00017	
AL	-0.01613	1.073	-0.01604	-0.01603	-0.01633	
AS	0.00135	167.358	-0.00057	0.00079	0.00384	
B	-0.00124	37.427	-0.00080	-0.00120	-0.00172	
BA	-0.00006	24.760	-0.00007	-0.00007	-0.00004	
BE	-0.00002	191.551	0.00001	-0.00005	-0.00001	
CA	-0.01169	19.363	-0.01417	-0.01116	-0.00974	
CD	-0.00026	31.071	-0.00030	-0.00032	-0.00017	
co	-0.00013	276.988	-0.00051	0.00019	-0.00006	
CR	-0.00001	285.286	-0.00007	0.00015	-0.00011	
CU	0.00008	304.638	-0.00018	0.00009	0.00033	
FE	-0.02557	5.498	-0.02427	-0.02537	-0.02706	
K	-0.00237	74.319	-0.00048	-0.00265	-0.00398	
MG	-0.01417	12.586	-0.01604	-0.01249	-0.01399	
MN	-0.00003	131.170	-0.00005	-0.00005	0.00001	
MO	0.00140	69.946	0.00253	0.00079	0.00089	
NA	-0.15931	24.737	-0.18443	-0.11389	-0.17962	
NI	0.00032	72.986	0.00006	0.00039	0.00052	
PB	0.00085	80.707	0.00064	0.00162	0.00029	
SB	0.00094	183.350	-0.00095	0.00135	0.00242	
SE	-0.00188	188.771	-0.00008	-0.00596	0.00041	<u></u>
SN	0.00024	838.779	-0.00085	0.00255	-0.00099	
SR	-0.00001	124.936	-0.00001	0.00000	-0.00002	
TI	-0.00008	96.585	-0.00016	-0.00009	0.00000	
TL	-0.00135	237.460	-0.00500	0.00008	0.00089	
	-0.00027	58.906	-0.00043	-0.00011	-0.00027	
Y	242744.66667	0.193	242336.00000	242643.00000	243255.00000	
ZN	-0.00043	78.267	-0.00081	-0.00016	-0.00032	

Run Name: 0617305T63

Instrument ID: 06383

Tube: 12

Date/Time: 06/22/2006 16:14

Sample Number: PBW

Class: ****

Batch: 061731848001

Initial Vol: 50.00 7348AB Final Vol: 50.00

DF: 1.00

				INTEGRATIONS		
ELEMENT	AVG (ppm)	%RSD	<u>#</u> 1	#2	#3	Re-digest
AG	-0.00014	143.218	-0.00036	0.00004	-0.00011	
AL	-0.02426	3.838	-0.02352	-0.02396	-0.02531	
AS	0.00312	22.820	0.00271	0.00270	0.00394	
B	-0.00141	15.417	-0.00144	-0.00118	-0.00161	
BA	-0.00007	39.265	-0.00010	-0.00005	-0.00007	
BE	-0.00002	72.678	-0.00004	0.00000	-0.00003	
CA	-0.01319	2.389	-0.01355	-0.01304	-0.01297	
CD	-0.00037	41.599	-0.00047	-0.00019	-0.00046	
co	0.00025	132.969	-0.00013	0.00050	0.00038	
CR	0.00001	626.840	0.00004	0.00008	-0.00008	
CU	0.00005	285.951	0.00005	0.00019	-0.00009	
FE	-0.03318	0.333	-0.03318	-0.03307	-0.03329	
K	0.00265	95.379	0.00462	0.00354	-0.00020	
MG	-0.02012	11.427	-0.02080	-0.01756	-0.02200	
MN	-0.00005	42.468	-0.00005	-0.00007	-0.00003	
MO	-0.00061	158.206	0.00048	-0.00136	-0.00095	
NA	-0.09490	61.011	-0.03889	-0.09129	-0.15451	
NI	0.00020	40.470	0.00024	0.00011	0.00024	
PB	-0.00033	70.118	-0.00054	-0.00008	-0.00036	
SB	0.00152	103.153	0.00298	0.00173	-0.00014	
SE	0.00064	421.574	-0.00217	0.00317	0.00090	
SN	-0.00184	101.502	-0.00255	-0.00324	0.00028	
SR	-0.00002	31.823	-0.00001	-0.00002	-0.00003	
TI	-0.00012	95.916	-0.00025	-0.00006	-0.00005	
TL	-0.00251	71.356	-0.00447	-0.00206	-0.00098	
	-0.00006	146.260	-0.00011	-0.00011	0.00004	
Y	243504.33333	0.430	242441.00000	243538.00000	244534.00000	
ZN	0.00091	20.412	0.00081	0.00113	0.00080	

Run Name: 0617305T63

Instrument ID: 06383

Tube: 13

Date/Time: 06/22/2006 16:18

Sample Number: LCSW

Class: ****

Batch: 061731848001

Initial Vol: 1.00 PM348AQ Final Vol: 1.00

DF: 1.00

			I	NTEGRATIONS		Re-read
ELEMENT	AVG (ppm)	%RSD	#1	#2	#3	Re-digest
AG	0.04965	0.133	0.04968	0.04970	0.04958	
AL	1.96625	0.715	1.96157	1.98205	1.95512	
AS	0.14845	1.772	0.15145	0.14740	0.14652	
В	1.99509	0.594	1.98626	2.00857	1.99045	
BA	1.99944	0.646	1.99494	2.01401	1.98937	
BE	0.05091	0.669	0.05074	0.05130	0.05068	
CA	4.06011	0.586	4.04731	4.08756	4.04545	
CD	0.05079	0.801	0.05061	0.05125	0.05050	
co	0.49937	0.591	0.49841	0.50268	0.49701	
CR	0.19886	0.725	0.19828	0.20050	0.19780	
CU	0.25386	0.594	0.25292	0.25560	0.25306	
FE	0.99604	0.645	0.99316	1.00340	0.99156	
<u></u> К	4.08372	0.508	4.07976	4.10617	4.06523	
MG	1.93159	0.637	1.92735	1.94546	1.92196	
MN	0.50146	0.614	0.50014	0.50498	0.49925	
MO	2.01684	3.448	1.93677	2.05170	2.06205	
NA	3.67055	1.190	3.68461	3.62159	3.70546	
NI	0.50124	0.441	0.50128	0.50343	0.49902	
PB	0.12472	0.835	0.12357	0.12560	0.12498	
SB	0.50452	0.255	0.50390	0.50600	0.50365	
SE	0.11064	2.966	0.11437	0.10936	0.10820	
SN	3.99425	0.634	3.98616	4.02265	3.97396	
SR	1,01079	0.644	1.00835	1.01817	1.00587	
TI	1.02041	0.667	1.01735	1.02820	1.01567	
TL	0.14809	2.962	0.15169	0.14937	0.14320	
	0.50168	0.631	0.50028	0.50531	0.49946	
Υ	242020.33333	0.492	242234.00000	240737.00000	243090.00000	
:zN	0.50231	0.860	0.50097	0.50714	0.49882	

Run Name: 0617305T63

Instrument ID: 06383

Tube: 14

Date/Time: 06/22/2006 16:23

Sample Number: 4791563

Class: U***

Batch: 061731848001

Initial Vol: 50.00 052 -- Final Vol: 50.00

DF: 1.00

			INTEGRATIONS				
ELEMENT	AVG (ppm)_	%RSD	#1	#2	#3	Re-digest	
AG	-0.00033	60.558	-0.00011	-0.00037	-0.00050		
AL	0.65602	2.063	0.65091	0.64578	0.67136		
AS	0.00148	163.854	0.00268	-0.00131	0.00308		
В	0.01418	5.624	0.01510	0.01378	0.01367		
BA	0.01727	1.144	0.01718	0.01712	0.01749		
BE	0.00006	101.352	0.00003	0.00002	0.00013		
CA	18.94607	1.263	18.83179	18.78526	19.22116		
CD	0.00044	26.695	0.00049	0.00051	0.00030		
co	0.00028	227.007	0.00094	-0.00033	0.00023		
CR	0.00083	58.483	0.00125	0.00093	0.00030		
CU	0.00197	8.286	0.00212	0.00179	0.00200		
FE	0.86134	1.450	0.85439	0.85387	0.87576		
K	1.01586	1.280	1.01514	1.00322	1.02921		
MG	5.25664	1.293	5.23294	5.20367	5.33330		
MN	0.03636	1.001	0.03627	0.03605	0.03676		
MO	0.01777	58.756	0.02955	0.01407	0.00968		
NA	81.22529	1.061	80.89926	80.57422	82.20240		
NI	0.00156	58.544	0.00214	0.00203	0.00051		
PB	0.00067	75.763	0.00108	0.00010	0.00084		
SB	0.00056	305.321	-0.00097	0.00239	0.00025		
SE	0.00179	141.375	0.00132	0.00452	-0.00047		
SN	-0.00003	757.530	-0.00085	-0.00028	0.00102		
SR	0.05887	1.061	0.05859	0.05842	0.05958		
TI	0.01130	1.147	0.01142	0.01131	0.01116		
TL	-0.00479	109.426	-0.00087	-0.00276	-0.01075		
	0.00065	97.409	0.00076	0.00122	-0.00003		
Υ	241372.33333	1.112	242287.00000	243479.00000	238351.00000		
ZN	0.02929	0.291	0.02934	0.02920	0.02935		

Run Name: 0617305T63

Instrument ID: 06383

Tube: 15

Date/Time: 06/22/2006 16:28

Sample Number: 4791563

Class: UP**

Batch: 061731848001

Initial Vol: 50.00 \$2 -- A Final Vol: 50.00

DF: 1.00

111111111111111111111111111111111111111	35 11 1					
				INTEGRATIONS	·	Re-read
LEMENT	AVG (ppm)	%RSD	#1	#2	#3	Re-diges
AG	0.01976	1.855	0.01940	0.01974	0.02013	
AL	1.64173	0.383	1.63581	1.64106	1.64832	
AS	0.50417	0.990	0.50946	0.49955	0.50351	
 В	0.21579	0.181	0.21534	0.21606	0.21596	
BA	0.06667	0.188	0.06655	0.06666	0.06680	
BE	0.02078	0.247	0.02072	0.02080	0.02082	
CA	18.82142	0.287	18.76717	18.82192	18.87517	
CD	0.05121	0.444	0.05095	0.05138	0.05131	
co	0.10076	0.264	0.10076	0.10049	0.10102	
CR	0.20416	0.319	0.20361	0.20399	0.20488	
CU	0.51925	0.213	0.51813	0.51926	0.52035	
FE	1.32412	0.317	1.32033	1.32339	1.32864	
K	3.11242	0.032	3.11130	3,11283	3.11313	
MG	5.93450	0.231	5.92261	5.93141	5.94947	
MN	0.09543	0.327	0.09522	0.09529	0.09579	
MO	0.21470	1.473	0.21124	0.21744	0.21541	
NA	78.61143	0.240	78.40269	78.66216	78.76945	
NI	0.15329	0.538	0.15337	0.15243	0.15407	
PB	0.50584	0.261	0.50700	0.50440	0.50611	
SB	0.39977	0.370	0.39908	0.39875	0.40146	
SE	0.80514	0.617	0.80348	0.80121	0.81072	
SN	0.60751	0.177	0.60653	0.60866	0.60735	
SR	0.07612	0.275	0.07593	0.07608	0.07634	
TI	0.11194	0.165	0.11210	0.11174	0.11198	
TL	1.02002	0.818	1.01150	1.02039	1.02818	
V	0.10293	0.135	0.10293	0.10307	0.10279	
Y	242805.33333	0.192	243048.00000	243100.00000	242268.00000	
ZN	0.15919	0.400	0.15876	0.15889	0.15992	

Run Name: 0617305T63

Instrument ID: 06383

Tube: 16

Date/Time: 06/22/2006 16:32

Sample Number: 4791566

Class: D***

Batch: 061731848001

ò

Initial Vol: 50.00 052 -- D

Final Vol: 50.00

DF: 1.00

				INTEGRATIONS		Re-read
ELEMENT_	AVG (ppm)	%RSD	#1	#2	#3	Re-digest
AG	-0.00020	58.673	-0.00007	-0.00029	-0.00024	
AL	0.67478	1.739	0.68754	0.67237	0.66444	
AS	0.00334	87.054	0.00663	0.00112	0.00226	
В	0.01210	2.205	0.01240	0.01189	0.01200	
BA	0.01729	1.107	0.01748	0.01728	0.01710	
BE	0.00000	130.053	-0.00001	0.00002	-0.00002	
CA	18.97300	0.739	19.12435	18.94701	18.84764	
CD	0.00051	4.964	0.00052	0.00048	0.00052	
CO	0.00027	133.280	-0.00003	0.00068	0.00017	
CR	0.00108	32.857	0.00134	0.00068	0.00121	
CU	0.00216	5.707	0.00212	0.00207	0.00230	
FE	0.88817	0.979	0.89771	0.88611	0.88069	
K	1.01515	0.765	1.02370	1.01320	1.00854	
MG	5.25404	0.838	5.30263	5.24261	5.21688	
MN	0.03652	0.788	0.03678	0.03657	0.03621	
MO	0.00162	93.929	0.00246	0.00255	-0.00014	
NA	81.55655	0.577	82.09122	81.37079	81.20764	
NI	0.00174	27.759	0.00229	0.00143	0.00149	
PB	0.00123	43.134	0.00184	0.00092	0.00092	
SB	0.00273	136.366	0.00468	0.00506	-0.00156	
SE	0.00178	84.665	0.00183	0.00327	0.00025	
SN	-0.00170	62.998	-0.00185	-0.00056	-0.00269	
SR	0.05899	0.865	0.05954	0.05888	0.05854	
TI	0.01126	1.874	0.01112	0.01150	0.01115	
TL	-0.00122	210.898	-0.00285	-0.00256	0.00175	
V	0.00099	41.793	0.00142	0.00093	0.00061	
Y	240739.33333	0.618	239075.00000	241199.00000	241944.00000	
ZN	0.02889	1.940	0.02910	0.02932	0.02826	

Run Name: 0617305T63

Instrument ID: 06383

Tube: 17

Date/Time: 06/22/2006 16:37

Sample Number: 4791564

Class: R***

Batch: 061731848001

Initial Vol: 50.00 052--5 Final Vol: 50.00

DF: 1.00

				Re-read		
ELEMENT	AVG_(ppm)	%RSD	#1	#2	#3	Re-digest
AG	0.05235	0.418	0.05240	0.05253	0.05211	
AL	2.49104	0.534	2.50167	2.49532	2.47613	
AS	0.15600	0.915	0.15753	0.15578	0.15470	
B	2.12631	0.449	2.13093	2.13267	2.11533	
BA	2.13603	0.497	2.14306	2.14121	2.12382	<u> </u>
BE	0.05419	0.620	0.05436	0.05441	0.05380	
CA	23.75756	0.567	23.83288	23.83771	23.60209	
CD	0.05331	0.852	0.05355	0.05359	0.05279	
co	0.52683	0.637	0.52886	0.52867	0.52296	
CR	0.21129	0.468	0.21220	0.21143	0.21023	
CU	0.27233	0.457	0.27309	0.27301	0.27089	
FE	1.55420	0.538	1.55895	1.55911	1.54455	
K	5.32853	0.549	5.35061	5.33965	5.29534	
MG	7.44247	0.501	7.45952	7.46820	7.39968	
MN	0.55449	0.597	0.55650	0.55630	0.55066	
MO	2.14464	2.933	2.07243	2.17397	2.18752	
NA NA	74.40085	0.500	74.57812	74.65092	73.97351	
NI	0.52709	0.584	0.52995	0.52750	0.52384	
PB	0.13183	0.760	0.13203	0.13272	0.13074	
SB	0.53788	0.522	0.53852	0.54031	0.53481	
SE	0.12059	2.348	0.12248	0.12196	0.11734	
SN	4.24799	0.359	4.25420	4.25918	4.23059	
SR	1.12877	0.529	1.13280	1.13161	1.12191	_
TI	1.08709	0.485	1.08977	1.09048	1.08102	
TL	0.15200	3.750	0.15585	0.15470	0.14546	
V	0.53342	0.514	0.53542	0.53454	0.53029	
Y	241793.66667	0.406	241175.00000	241280.00000	242926.00000	
ZN	0.54044	0.599	0.54283	0.54174	0.53676	

Run Name: 0617305T63

Instrument ID: 06383

Tube: 18

Date/Time: 06/22/2006 16:42

Sample Number: 4791565

Class: M***

Batch: 061731848001

Initial Vol: 50.00 8 52 - M Final Vol: 50.00

DF: 1.00

				INTEGRATIONS		Re-read
ELEMENT	_AVG (ppm)_	%RSD	#1	#2	#3	Re-digest
AG	0.04982	0.577	0.04951	0.05008	0.04987	
AL	2.08469	0.336	2.08689	2.07686	2.09033	
AS	0.14855	0.982	0.14721	0.14833	0.15011	
В	2.01859	0.296	2.01593	2.01439	2.02543	
BA	2.01783	0.236	2.01927	2.01251	2.02171	
BE	0.05118	0.361	0.05111	0.05104	0.05139	
CA	22.27965	0.352	22.23535	22.23352	22.37008	
CD	0.05117	0.260	0.05110	0.05110	0.05133	
CO	0.49720	0.284	0.49688	0.49598	0.49875	
CR	0.19930	0.260	0.19968	0.19871	0.19952	
cυ	0.25691	0.249	0.25647	0.25661	0.25764	
FE	1.13386	0.352	1.13290	1.13044	1.13824	
<u></u> к	4.98872	0.286	4.99642	4.97225	4.99748	
MG	6.92137	0.307	6.91361	6.90507	6.94543	
MN	0.52244	0.278	0.52205	0.52123	0.52405	
MO	2.04877	2.797	1.98588	2.06242	2.09800	
NA NA	70.12356	0.273	70.20561	69.90443	70.26063	
NI	0.49879	0.339	0.49854	0.49723	0.50059	
PB	0.12573	1.075	0.12489	0.12501	0.12729	
SB	0.51155	0.500	0.51194	0.50882	0.51388	
SE	0.11018	0.803	0.10925	0.11101	0.11030	
SN	4.02889	0.243	4.02146	4.02525	4.03997	
 SR	1.06627	0.248	1.06662	1.06346	1.06872	
TI	1.02471	0.286	1.02382	1.02232	1.02798	
TL	0.14532	2.823	0.14301	0.14289	0.15006	
V	0.50423	0.242	0.50398	0.50316	0.50556	
Y	242003.33333	0.320	242148.00000	242696.00000	241166 00000	
ZN	0.51149	0.454	0.50927	0.51131	0.51390	

Run Name: 0617305T63

Instrument ID: 06383

Tube: 19

Date/Time: 06/22/2006 16:47

Sample Number: 4791563

Class: UL**

Batch: 061731848001

Initial Vol: 50.00 052 -- Final Vol: 50.00

DF: 5.00

		<u></u>	INTEGRATIONS	ITECDATIONS		
EL EMENT	AVG (ppm)	%RSD	#1	#2	#3	Re-read Re-diges
<u>ELEMENT</u> AG	-0.00020	13.558	-0.00018	-0.00023	-0.00019	
AL	0.10239	4.285	0.10142	0.09856	0.10718	
	0.00054	135.315	0.00019	0.00006	0.00139	
AS			0.00803	0.00806	0.00139	
B	0.00811	1.516	0.00803	0.00359	0.00433	
BA	0.00368	16.747	-0.00002	0.00000	0.00433	
BE	0.00000	361.150				
CA	3.53436	0.302	3.53534	3.52322	3.54452	
CD	-0.00023	11.125	-0.00020	-0.00025	-0.00023	-
<u>co</u>	0.00046	78.923	0.00020	0.00088	0.00031	
CR	0.00035	114.107	0.00000	0.00026	0.00080	
<u>cu</u>	0.00061	37.770	0.00045	0.00050	0.00087	
FE	0.13529	2.300	0.13272	0.13441	0.13875	
K	0.19284	1.783	0.18919	0.19330	0.19602	
MG	0.95922	0.648	0.95723	0.95425	0.96619	
MN	0.00688	2.518	0.00674	0.00682	0.00707	•
MO	0.01993	44.077	0.02971	0.01737	0.01271	
NA	14.50882	0.700	14.52327	14.40077	14.60241	
NI	0.00049	65.194	0.00024	0.00038	0.00086	
PB	0.00042	273.197	-0.00049	0.00173	0.00003	
SB	0.00113	39.186	0.00163	0.00089	0.00085	
SE	0.00088	305.349	-0.00199	0.00131	0.00330	
SN	0.00145	153.057	0.00197	-0.00099	0.00337	
SR	0.01126	3.101	0.01095	0.01120	0.01164	
TI	0.00221	29.820	0.00171	0.00195	0.00295	
TL	-0.00279	18.789	-0.00277	-0.00332	-0.00227	
	0.00025	64.596	0.00025	0.00009	0.00040	
Υ Υ	244047.66667	0.214	243491.00000	244528.00000	244124.00000	
ZN	0.01320	3.879	0.01285	0.01296	0.01378	

Run Name: 0617305T63

Instrument ID: 06383

Tube: 20

Date/Time: 06/22/2006 16:51

Sample Number: **4791555**

Class: ****

Batch: 061731848001

Initial Vol: 50.00 — F5 Final Vol: 50.00

DF: 1.00

				INTEGRATIONS		Re-read
ELEMENT	AVG (ppm)	%RSD	<u>#1</u>	#2	#3	Re-diges
AG	-0.00006	272.412	0.00012	-0.00016	-0.00013	
AL	1.05261	0.879	1.06275	1.05047	1.04461	
AS	0.00216	136.185	0.00485	0.00262	-0.00098	
В	0.03879	3.481	0.03936	0.03976	0.03725	
BA	0.03794	0.628	0.03810	0.03805	0.03766	
BE	0.00009	36.436	0.00012	0.00005	0.00009	
CA	68.97226	0.504	69.28141	69.03950	68.59587	
CD	-0.00012	71.519	-0.00018	-0.00002	-0.00016	
co	0.00105	28.272	0.00133	0.00074	0.00106	
CR	0.00206	2.890	0.00204	0.00202	0.00213	
CU	0.00973	1.018	0.00985	0.00967	0.00969	
FE	1.32076	0.524	1.32574	1.32370	1.31285	
K	1.11012	0.955	1.11918	1.11273	1.09846	
MG	19.81748	0.540	19.91716	19.83090	19.70438	
MN	0.06394	0.712	0.06445	0.06379	0.06358	
MO	0.00424	31.315	0.00571	0.00388	0.00313	
NA NA	423.97627	0.470	425.56345	424.62616	421.73921	
NI	0.00255	7.177	0.00236	0.00255	0.00273	
PB	0.00354	8.870	0.00331	0.00390	0.00342	
SB	0.00051	388.688	0.00190	-0.00177	0.00141	
SE	0.00139	90.051	0.00121	0.00024	0.00273	
SN	0.00172	84.111	0.00062	0.00119	0.00337	
SR	0.24905	0.605	0.25037	0.24936	0.24741	
TI	0.01521	2.647	0.01540	0.01475	0.01548	
TL	-0.00840	40.793	-0.00457	-0.01117	-0.00948	
<u></u>	0.00211	8.971	0.00223	0.00189	0.00220	
<u> </u>	235199.33333	0.452	234076.00000	235330.00000	236192.00000	
ZN	0.08522	0.222	0.08502	0.08540	0.08525	

Run Name: 0617305T63

Instrument ID: 06383

Tube: 21

Date/Time: 06/22/2006 16:56

Sample Number: 4791557

Class: ****

Batch: 061731848001

Initial Vol: 50.00 MTR3 Final Vol: 50.00

DF: 1.00

		INTEGRATIONS				
ELEMENT	AVG (ppm)	%RSD	#1	#2	#3	Re-read Re-digest
AG	0.00002	432.379	0.00008	0.00008	-0.00009	
AL	0.14323	1.899	0.14048	0.14592	0.14329	
AS	0.00145	93.443	0.00260	-0.00004	0.00180	
В	0.01747	0.662	0.01747	0.01735	0.01758	
BA	0.01666	0.302	0.01666	0.01672	0.01662	
BE	0.00002	67.009	0.00001	0.00002	0.00004	·, ·
CA	53.20827	0.385	53.16434	53.43148	53.02899	
CD	0.00032	24.620	0.00032	0.00025	0.00041	
co	0.00020	236.028	0.00018	0.00069	-0.00027	- "
CR	0.00064	32.403	0.00048	0.00088	0.00056	
CU	0.00056	31.559	0.00068	0.00036	0.00065	
FE	0.17978	0.407	0.17962	0.18058	0.17914	
K	0.92215	0.444	0.92621	0.92224	0.91801	
MG	15,95130	0.393	15.94521	16.01680	15.89190	
MN	0.01079	0.824	0.01076	0.01089	0.01072	
MO	0.00090	70.035	0.00121	0.00017	0.00131	
NA	75.37953	0.516	75.50618	75.68935	74.94306	
NI	0.00063	19.961	0.00073	0.00049	0.00067	
PB	0.00092	157.701	0.00241	-0.00048	0.00083	
SB	-0.00184	117.662	-0.00222	0.00049	-0.00380	
SE	0.00067	207.869	-0.00068	0.00212	0.00059	
SN	0.00054	226.257	0.00059	0.00174	-0.00070	
SR	0.15385	0.387	0.15392	0.15441	0.15322	
<u>TI</u>	0.00220	21.628	0.00165	0.00249	0.00246	
TL	-0.00644	102.480	-0.01050	-0.01000	0.00118	
v	0.00043	65.143	0.00027	0.00076	0.00027	
Y	239326.33333	0.278	239410.00000	238623.00000	239946.00000	
 ZN	0.05350	2.141	0.05370	0.05454	0.05227	

Run Name: 0617305T63

Instrument ID: 06383

Tube: 22

Date/Time: 06/22/2006 17:01

Sample Number: CCV

			INTEGRATIONS					
ELEMENT	AVG (ppm)	%RSD	<u>#1</u>	#2	#3	Re-diges		
AG	0.49501	0.396	0.49480	0.49707	0.49316			
AL	24.55121	0.416	24.55854	24.64942	24.44568			
AS	0.49056	0.761	0.48693	0.49439	0.49037			
 B	0.50853	0.379	0.50848	0.51048	0.50663			
ВА	0.49290	0.397	0.49297	0.49482	0.49091			
BE	0.50396	0.433	0.50427	0.50597	0.50163			
CA	24.73440	0.425	24.73732	24.83791	24.62797			
CD	0.49104	0.395	0.49142	0.49277	0.48894			
со	0.48777	0.445	0.48780	0.48992	0.48558			
CR	0.49228	0.504	0.49226	0.49477	0.48980	-		
CU	0.49850	0.353	0.49862	0.50020	0.49669			
FE	25.03559	0.422	25.02904	25.14434	24.93340			
K	25.72782	0.366	25.69849	25.83318	25.65178			
MG	24.22985	0.452	24.24651	24.33007	24.11297			
MN	0.49394	0.431	0.49453	0.49571	0.49158			
МО	0.50365	2.355	0.48998	0.51124	0.50973			
NA	23.97355	0.694	23.88113	24.16554	23.87399			
NI	0.49334	0.384	0.49366	0.49505	0.49131			
РВ	0.49291	0.274	0.49417	0.49309	0.49149			
SB	0.50274	0.415	0.50307	0.50465	0.50052			
SE	0.49685	0.630	0.49437	0.50037	0.49583			
SN	0.48980	0.208	0.48877	0.49080	0.48984			
SR	0.50355	0.399	0.50366	0.50549	0.50148			
T1	0.49927	0.435	0.49909	0.50153	0.49720			
TL	0.48256	1.281	0.47636	0.48872	0.48259			
V	0.49332	0.524	0.49338	0.49588	0.49071			
Y	242024.66667	0.336	241835.00000	241323.00000	242916.00000			
ZN	0.49099	0.415	0.49213	0.49220	0.48864			

Run Name: 0617305T63

Instrument ID: 06383

Tube: 23

Date/Time: 06/22/2006 17:05

Sample Number: CCB

				INTEGRATIONS		Re-read
ELEMENT	AVG (ppm)	%RSD	<u>#1</u>	#2	#3	Re-digest
AG	-0.00050	16.753	-0.00041	-0.00054	-0.00056	
AL	-0.01154	14.414	-0.01114	-0.01011	-0.01336	
AS	0.00373	58,337	0.00215	0.00283	0.00621	
B	-0.00029	125.593	-0.00016	-0.00001	-0.00071	
BA	-0.00002	123.480	0.00001	-0.00003	-0.00003	
BE	0.00003	31.573	0.00002	0.00004	0.00004	·
CA	-0.00524	20.304	-0.00646	-0.00454	-0.00471	
CD	-0,00023	40.308	-0.00032	-0.00023	-0.00014	
co	0.00013	180.170	0.00038	0.00006	-0.00006	
CR	0.00023	66.716	0.00039	0.00008	0.00023	
CU	0.00004	179.674	-0.00002	0.00011	0.00003	
FE	-0.02296	2.765	-0.02233	-0.02293	-0.02360	
<u> к</u>	-0.00037	037.203	-0.00486	0.00189	0.00184	
MG	-0.01042	20.009	-0.01040	-0.01252	-0.00835	
MN	0.00006	64.440	0.00004	0.00004	0.00010	
MO	0.00284	47.119	0.00418	0.00283	0.00150	
NA NA	-0.14874	50.391	-0.22988	-0.13427	-0.08208	
NI	0.00000	145.342	-0.00035	0.00046	-0.00011	
PB	0.00021	793.387	-0.00167	0.00085	0.00144	
SB	-0.00056	60.356	-0.00095	-0.00042	-0.00032	
SE	0.00212	85.738	0.00322	0.00002	0.00311	
SN	-0.00254	5.613	-0.00255	-0.00240	-0.00268	
SR	0.00005	38.891	0.00003	0.00004	0.00007	
TI	0.00006	106.732	0.00001	0.00004	0.00013	
TL	-0.00205	203.533	0.00009	-0.00685	0.00062	
	0.00015	58.535	0.00005	0.00021	0.00021	
Υ Υ	242919.66667	0.189	242441.00000	243354.00000	242964.00000	
ZN	-0.00032	86.433	-0.00065	-0.00016	-0.00016	

Run Name: 0617305T63

Instrument ID: 06383

Tube: 24

Date/Time: 06/22/2006 17:10

Sample Number: 4791558

Class: ****

Batch: 061731848001

Initial Vol: 50.00 - DC2 - Final Vol: 50.00

DF: 1.00

			INTEGRATIONS						
ELEMENT	AVG (ppm)	%RSD	#1	#2	#3	Re-digest			
AG	-0.00019	135.168	-0.00030	0.00010	-0.00037				
AL	1.38151	0.329	1.38128	1.38616	1.37709				
AS	0.00548	40.621	0.00420	0.00419	0.00805				
B	0.00520	6.930	0.00542	0.00540	0.00479				
BA	0.01439	0.441	0.01444	0.01442	0.01432				
BE	0.00007	19.397	0.00007	0.00006	0.00009				
CA	36.92234	0.148	36.98231	36.87493	36.90978				
CD	0.00024	72.218	0.00021	0.00009	0.00043				
co	0.00066	29.332	0.00045	0.00070	0.00083				
CR	0.00168	16.660	0.00200	0.00160	0.00145				
cu	0.00335	1.582	0.00339	0.00329	0.00336				
FE	1.54291	0.111	1.54480	1.54145	1.54247				
K	0.70392	0.457	0.70739	0.70334	0.70103				
MG	10.74278	0.214	10.76911	10.73256	10.72666				
MN	0.05980	0.406	0.06008	0.05965	0.05968				
MO	0.00017	273.545	0.00069	-0.00024	0.00007				
NA	6.68024	1.210	6.63258	6.63455	6.77361				
NI	0.00202	23.441	0.00203	0.00250	0.00155				
PB	0.00128	100.885	0.00204	0.00201	-0.00021				
SB	0.00099	37.058	0.00059	0.00106	0.00132				
SE	0.00365	38.157	0.00258	0.00522	0.00313				
SN	0.00061	381.863	-0.00184	0.00283	0.00086				
SR	0.09948	0.215	0.09971	0.09942	0.09930				
<u>T1</u>	0.03128	1.286	0.03164	0.03085	0.03136				
TL	-0.00020	297.974	-0.00522	0.00070	0.00392				
<u>V</u>	0.00193	9.471	0.00205	0.00203	0.00172				
Y	242173.33333	0.290	241519.00000	242916.00000	242085.00000				
ZN	0.04048	1.392	0.04037	0.03997	0.04109				

Run Name: 0617305T63

Instrument ID: 06383

Tube: 25

Date/Time: 06/22/2006 17:15

Sample Number: 4791559

Class: ****

Batch: 061731848001

Initial Vol: 50.00 - DC / - Final Vol: 50.00

DF: 1.00

			1	INTEGRATIONS		Re-read
ELEMENT	AVG (ppm)	%RSD	#1	#2	#3	Re-diges
AG	-0.00010	282.671	0.00005	-0.00041	0.00007	
AL	0.10231	3.059	0.10580	0.09975	0.10138	
AS	0.00092	382.768	0.00328	-0.00312	0.00260	
<u> </u>	0.03214	0.923	0.03217	0.03242	0.03183	
BA	0.01264	0.994	0.01276	0.01265	0.01251	
BE	0.00003	25.380	0.00004	0.00002	0.00002	
CA	84.40388	0.733	85.03314	84.38233	83.79618	_
CD	0.00032	28.926	0.00043	0.00027	0.00027	
CO	0.00046	44.589	0.00037	0.00070	0.00031	_
CR	0.00029	13.496	0.00029	0.00025	0.00033	
CU	0.00083	15.129	0.00089	0.00069	0.00092	
FE	0.12385	1.474	0.12562	0.12395	0.12198	
 K	0.47205	0.911	0.47673	0.46826	0.47117	
 MG	25.98412	0.730	26.18824	25.95107	25.81305	
MN	0.03934	0.869	0.03966	0.03937	0.03898	
MO	-0.00045	69.568	-0.00076	-0.00045	-0.00014	
NA NA	14.05918	0.663	14.16179	14.03621	13.97954	
NI	0.00101	18.044	0.00116	0.00107	0.00081	
PB	0.00068	291.576	0.00275	0.00049	-0.00120	
SB	0.00119	48.263	0.00167	0.00135	0.00055	
SE	0.00138	131.199	0.00247	-0.00071	0.00238	
SN	-0.00027	455.587	0.00030	0.00058	-0.00171	
SR	0.18679	0. 7 60	0.18822	0.18679	0.18538	
TI	0.00055	32.430	0.00076	0.00041	0.00050	
TL	-0.00642	60.679	-0.00210	-0.00966	-0.00750	
	0.00036	67.665	0.00042	0.00009	0.00057	
Υ	239667.00000	0.309	238811.00000	240079.00000	240111.00000	
ZN	0.04775	1.557	0.04787	0.04843	0.04695	

Run Name: 0617305T63

Instrument ID: 06383

Tube: 26

Date/Time: 06/22/2006 17:20

Sample Number: 4791560

Class: ****

Batch: 061731848001

Initial Vol: 50.00 \(\) 13873- Final Vol: 50.00

DF: 1.00

				Re-read		
ELEMENT	AVG (ppm)	%RSD	#1	#2	#3	Re-digest
AG	-0.00001	270.898	0.00010	-0.00011	-0.00001	
AL	0.28152	2.005	0.28729	0.28125	0.27601	
AS	0.00286	57.552	0.00191	0.00477	0.00191	
В	0.01199	1.998	0.01205	0.01173	0.01220	
BA	0.01744	1.239	0.01766	0.01742	0.01723	
BE	0.00003	60.440	0.00005	0.00002	0.00003	
CA	64.80468	1.193	65.62365	64.70236	64.08803	
CD	-0.00007	183.305	-0.00013	0.00008	-0.00016	
CO	0.00018	35.806	0.00018	0.00024	0.00012	
CR	0.00055	21.988	0.00068	0.00044	0.00052	
CU	0.00123	4.869	0.00121	0.00119	0.00130	
FE	0.39922	1.166	0.40410	0.39874	0.39483	
K	2.66540	1.125	2.69555	2.66505	2.63559	
MG	16.20498	1.287	16.42147	16,18793	16.00553	
MN	0.10547	1.218	0.10681	0.10535	0.10425	
MO	0.00014	302.766	-0.00024	0.00007	0.00059	
NA	2.94086	3.910	3.07362	2.87514	2.87383	
NI	0.00089	29.366	0.00085	0.00117	0.00065	
PB	-0.00018	333.755	-0.00075	-0.00024	0.00045	
SB	0.00109	239.298	0.00212	-0.00188	0.00303	
SE	0.00089	198.514	-0.00095	0.00257	0.00104	
SN	-0.00356	69.576	-0.00070	-0.00513	-0.00485	
SR	0.14864	1.336	0.15071	0.14844	0.14675	
TI	0.00355	12.080	0.00393	0.00309	0.00364	
TL	-0.00684	51.365	-0.00669	-0.01043	-0.00341	
V	0.00038	48.004	0.00017	0.00049	0.00048	
Υ	240068.66667	0.266	239332.00000	240475.00000	240399.00000	
ZN	0.01186	2.998	0.01222	0.01151	0.01184	

Run Name: 0617305T63

Instrument ID: 06383

Tube: 27

Date/Time: 06/22/2006 17:24

Sample Number: 4791561

Class: ****

Batch: 061731848001

Initial Vol: 50.00 \(\rightarrow \) 1310\(\rightarrow \)

Final Vol: 50.00

DF: 1.00

		INTEGRATIONS					
ELEMENT	AVG (ppm)	<u>%RSD</u>	#1	#2	#3	Re-digest	
AG	-0.00058	19.547	-0.00045	-0.00063	-0.00067		
AL	0.10859	3.772	0.11324	0.10702	0.10551		
AS	0.00096	125.825	0.00099	0.00214	-0.00026		
В	0.01196	5.589	0.01240	0.01229	0.01119		
BA	0.01756	1.403	0.01782	0.01754	0.01732		
BE	0.00002	97.216	0.00004	0.00002	0.00000		
CA	69.35699	1.381	70.32532	69.33600	68.40965		
CD	0.00017	45.463	0.00027	0.00013	0.00013		
co	0.00023	43.329	0.00031	0.00012	0.00025		
CR	0.00058	40.853	0.00079	0.00063	0.00032		
CU	0.00119	6.713	0.00120	0.00110	0.00126		
FE	0.14671	1.543	0.14870	0.14717	0.14425		
K	2.77489	1.335	2.80948	2.77937	2.73582		
MG	17.42646	1.469	17.68293	17.42532	17.17112	•	
MN	0.10281	1.532	0.10439	0.10281	0.10124		
MO	-0.00014	301.555	-0.00014	0.00028	-0.00055		
NA	3.16033	2.512	3.24944	3.09716	3.13440		
NI	0.00047	49.998	0.00065	0.00057	0.00020		
PB	0.00145	9.191	0.00144	0.00132	0.00159		
SB	0.00088	222.450	0.00038	-0.00078	0.00304		
SE	0.00276	51.215	0.00272	0.00419	0.00137		
SN	-0.00027	032.458	0.00245	-0.00013	-0,00314		
SR	0.15825	1.470	0.16057	0.15827	0.15592		
TI	0.00125	11.735	0.00113	0.00141	0.00122		
TL	-0.00824	25.356	-0.01052	-0.00642	-0.00777		
V	0.00053	75.959	0.00010	0.00058	0.00090		
<u> </u>	239621.66667	0.216	239052.00000	239752.00000	240061.00000		
ZN	0.02183	4.255	0.02204	0.02263	0.02081		

Run Name: 0617305T63

Instrument ID: 06383

Tube: 28

Date/Time: 06/22/2006 17:29

Sample Number: 4791562

Class: ****

Batch: 061731848001

Initial Vol: 50.00 DBIN-

Final Vol: 50.00

DF: 1.00

		INTEGRATIONS					
ELEMENT	AVG (ppm)_	%RSD	#1	#2	#3	Re-digest	
AG	-0.00015	12.722	-0.00013	-0.00015	-0.00016		
AL	1.11631	0.318	1.11271	1.11982	1.11641		
AS	0.00294	24.231	0.00352	0.00214	0.00317		
В	0.00757	5.397	0.00800	0.00718	0.00754		
BA	0.01248	0.188	0.01245	0.01250	0.01248		
BE	0.00007	30.956	0.00009	0.00007	0.00005		
CA	31.55914	0.071	31.56848	31.57530	31.53363		
CD	-0.00028	65.181	-0.00027	-0.00047	-0.00010	<u> </u>	
CO	0.00090	28.290	0.00090	0.00115	0.00065		
CR	0.00147	10.527	0.00150	0.00130	0.00161		
CU	0.00321	1.776	0.00320	0.00328	0.00317		
FE	1.32319	0.118	1.32165	1.32477	1.32315		
K	1.30737	0.107	1.30865	1.30759	1.30587		
MG	11.82757	0.126	11.83251	11.83940	11.81081		
MN	0.06715	0.222	0.06730	0.06717	0.06700		
MO	-0.00062	96.320	0.00007	-0.00096	-0.00096		
NA	2.35598	1.801	2.32330	2.34070	2.40393		
NI	0.00106	42.614	0.00054	0.00137	0.00128	_	
PB	0.00142	10. 7 12	0.00152	0.00125	0.00150		
SB	-0.00012	646.752	0.00001	0.00058	-0.00095		
SE	0.00035	616.111	0.00045	0.00243	-0.00184		
SN	-0.00018	626.879	0.00314	-0.0012 7	-0.00241		
SR	0.06097	0.155	0.06100	0.06104	0.06086		
TI	0.02839	5.066	0.03005	0.02760	0.02752		
TL	-0.01100	42.951	-0.01146	-0.00606	-0.01547		
	0.00188	17.541	0.00199	0.00151	0.00215		
Y	241126.00000	0.122	240833.00000	241124.00000	241421.00000		
ZN	0.03427	2.296	0.03496	0.03443	0.03341		

Run Name: 0617305T63

Instrument ID: 06383

Tube: 29

Date/Time: 06/22/2006 17:34

Sample Number: 4791568

Class: ****

Batch: 061731848001

Initial Vol: 50.00 ORa--

Final Vol: 50.00

DF: 1.00

				INTEGRATIONS		Re-read
ELEMENT	AVG (ppm)	%RSD	#1	#2	#3	Re-digest
AG	0.00008	107.029	0.00004	0.00002	0.00018	
AL	-0.00857	30.663	-0.00626	-0.00801	-0.01143	
AS	0.00553	22.436	0.00615	0.00410	0.00634	
B	0.02065	2.023	0.02105	0.02068	0.02022	
BA	0.03760	1.057	0.03782	0.03785	0.03715	
BE	0.00004	64.709	0.00003	0.00001	0.00006	
CA	55.27032	1.130	55.43075	55.79894	54.58127	
CD	0.00023	25.845	0.00030	0.00019	0.00021	
co	0.00044	86.010	0.00083	0.00044	0.00006	
CR	0.00054	142.188	-0.00032	0.00077	0.00117	
CU	0.00068	7.042	0.00064	0.00067	0.00073	
FE	0.19951	1.412	0.20036	0.20181	0.19637	
K	1.33601	1.003	1.33797	1.34832	1.32173	
MG	22.56161	1.161	22.65159	22.76669	22.26655	
MN	0.05895	1.067	0.05919	0.05942	0.05823	
MO	0.00173	48.226	0.00142	0.00267	0.00109	
NA	20.41637	0.875	20.39066	20.60644	20.25202	
NI	0.00118	34.350	0.00073	0.00152	0.00128	
PB	0.00167	63.060	0.00179	0.00266	0.00056	
SB	-0.00058	664.624	0.00110	-0.00497	0.00214	
SE	0.00168	132.371	0.00357	0.00225	-0.00077	
SN	-0.00512	30.405	-0.00543	-0.00343	-0.00650	
SR	0.28641	1.165	0.28763	0.28896	0.28263	
TI	-0.00015	33.625	-0.00013	-0.00020	-0.00011	
TL	-0.00477	17.230	-0.00398	-0.00562	-0.00472	
<u></u>	-0.00005	189.543	-0.00069	0.00028	0.00027	
<u> </u>	240402.00000	0.843	239541.00000	238948.00000	242717.00000	
ZN	0.09103	1.574	0.09206	0.09164	0.08940	

Run Name: 0617305T63

Instrument ID: 06383

Tube: 30

Date/Time: 06/22/2006 17:39

Sample Number: 4791569

Class: ****

Batch: 061731848001

Initial Vol: 50.00 053-

Final Vol: 50.00

DF: 1.00

			Re-read			
ELEMENT	AVG (ppm)	%RSD	#1	#2	#3	Re-digest
AG	0.00011	272.931	0.00046	-0.00004	-0.00009	
AL	-0.01407	33.834	-0.01589	-0.01765	-0.00867	
AS	0.00336	82.451	0.00057	0.00610	0.00341	
В	0.00738	9.131	0.00722	0.00812	0.00679	
BA	0.00456	2.014	0.00450	0.00452	0.00467	
BE	0.00003	167.253	0.00008	0.00002	-0.00001	
CA	20.93217	1.976	20.57233	20.84011	21.38405	
CD	-0.00023	87.527	-0.00001	-0.00041	-0.00028	
co	-0.00007	95.889	0.00000	-0.00013	-0.00008	
CR	0.00011	104.534	0.00020	0.00013	-0.00001	
cu	-0.00001	394.349	0.00004	-0.00006	-0.00002	
FE	-0.02682	0.543	-0.02689	-0.02665	-0.02691	
<u></u> к	0.48677	0.790	0.48487	0.48425	0.49120	
MG	5.96955	1.811	5.88020	5.93870	6.08976	
MN	0.00059	4.832	0.00058	0.00063	0.00058	
MO	0.00001	104.395	-0.00024	-0.00044	0.00070	
NA	16.17428	1.621	16.00597	16.04057	16.47629	
NI	0.00027	163.129	0.00050	0.00056	-0.00024	
PB	-0.00042	308.123	-0.00056	0.00093	-0.00163	
SB	0.00066	98.992	-0.00003	0.00126	0.00075	
SE	-0.00058	484.007	0.00195	-0.00360	-0.00009	
SN	-0.00172	95.072	-0.00070	-0.00085	-0.00360	
SR	0.05695	1.845	0.05608	0.05665	0.05812	
TI	-0.00016	14.360	-0.00014	-0.00018	-0.00016	
TL	-0.00520	50.523	-0.00791	-0.00502	-0.00267	
	-0.00027	59.038	-0.00027	-0.00011	-0.00043	
Y	241057.33333	1.458	243794.00000	242283.00000	237095.00000	
ZN	0.01652	2.176	0.01643	0.01621	0.01691	

Run Name: 0617305T63

Instrument ID: 06383

Tube: 31

Date/Time: 06/22/2006 17:43

Sample Number: 4791570

Class: ****

Batch: 061731848001

Initial Vol: 50.00 OR3---

Final Vol: 50.00

DF: 1.00

			INTEGRATIONS					
ELEM <u>ENT</u>	AVG (ppm)	%RSD	#1	#2	#3	Re-read Re-digest		
AG	0.00012	60.766	0.00017	0.00015	0.00004			
AL	0.03241	8.878	0.03340	0.03466	0.02917			
AS	0.00127	77.433	0.00054	0.00089	0.00239			
В	0.01084	3.451	0.01048	0.01123	0.01081			
BA	0.01728	0.785	0.01741	0.01730	0.01714			
BE	0.00001	217.162	0.00003	0.00002	-0.00002			
CA	45.30632	0.557	45.52841	45.35853	45.03201			
CD	0.00107	17.640	0.00103	0.00127	0.00090			
CO	0.00008	383.089	0.00005	-0.00020	0.00038			
CR	0.00271	5.173	0.00283	0.00256	0.00275			
CU	0.00509	1.505	0.00509	0.00517	0.00502			
FE	0.68198	0.633	0.68590	0.68269	0.67735			
K	1.59791	0.560	1.60478	1.60118	1.58778			
MG	15.46196	0.660	15.54970	15.48611	15.35007			
MN	0.06032	0.674	0.06071	0.06035	0.05990			
MO	0.00063	154.710	-0.00045	0.00091	0.00143			
NA NA	34.71288	0.688	34.89206	34.80465	34,44192			
Ni	0.00354	11.282	0.00312	0.00391	0.00359			
PB	0.00055	317.004	-0.00142	0.00114	0.00194			
SB	0.00123	106.351	0.00273	0.00038	0.00057			
SE	0.00066	111.235	0.00149	0.00011	0.00038			
SN	-0.00042	719.066	-0.00388	0.00146	0.00117			
SR	0.15686	0.685	0.15782	0.15705	0.15570			
TI	0.00027	50.828	0.00028	0.00039	0.00012			
TL	-0.00369	174.056	-0.00206	0.00176	-0.01078			
	0.00009	1.556	0.00009	0.00009	0.00009			
Y	238106.33333	0.082	237955.00000	238036.00000	238328.00000			
ZN	0.14303	0.424	0.14323	0.14351	0.14235			

Run Name: 0617305T63

Instrument ID: 06383

Tube: 32

Date/Time: 06/22/2006 17:48

Sample Number: 4795396

Class: ****

Batch: 061731848001

Initial Vol: 50.00 ZZZZZZ Final Vol: 50.00

DF: 1.00

					Re-read		
ELEMENT		AVG (ppm)	%RSD	<u>#1</u>	#2	#3	Re-diges
AG	K	0.00185	11.395	0.00172	0.00209	0.00174	
AL	K	45.13589	2.846	46.39130	45.19217	43.82420	
AS	K	0.22621	1.882	0.22923	0.22134	0.22806	
B	K	0.18913	2.724	0.19381	0.18996	0.18361	
BA	K	0.09572	3.030	0.09861	0.09574	0.09281	
BE	K	0.00143	6.707	0.00154	0.00141	0.00135	
CA	-	55.00975	2.556	56.37779	55.08290	53.56856	
CD	K	0.11127	2.588	0.11419	0.11121	0.10843	
CO	Κ	0.16009	2.457	0.16372	0.16063	0.15591	
CR	K	12.85990	2.438	13.17009	12.86638	12.54322	
CU		2.49848	3.063	2.57297	2.50242	2.42005	
FE	S	15.51516	4.056	15.42465	16.18481	14.93600	
K		4 7.75653	3.431	49.37196	47.80146	46.09617	
MG	K	16.96388	2.472	17.37498	16.98001	16.53664	
MN	K	5,35774	2.617	5.49592	5.36172	5.21559	
MO	K	1.84676	2.085	1.88030	1.85526	1.80472	
NA	Κ	1019.83163	2.256	1042.07856	1021.27622	996.14011	
NI	K	10.54303	2.608	10.80919	10.55995	10.25996	
PB	K	1.09212	2.046	1.11364	1.09368	1.06904	
SB	K	0.21870	1.666	0.22281	0.21744	0.21585	
SE	K	-0.17621	2.867	-0.17956	-0.17867	-0.17040	
SN		0.13923	0.852	0.1404 4	0.13918	0.13807	
SR		0.32004	3.016	0.32962	0.32019	0.31032	
TI	Κ	6.15282	2.581	6.30741	6.16096	5.99009	
TL	Κ	-0.07114	11.245	-0.06841	-0.08015	-0.06486	
V	K	0.35448	2.922	0.36413	0.35578	0.34354	
Y		213775.66667	0.812	211850.00000	214255.00000	215222.00000	
ZN	K	15.07112	2.275	15.41061	15.07784	14.72491	

Run Name: 0617305T63

Instrument ID: 06383

Tube: 33

Date/Time: 06/22/2006 17:53

Sample Number: 4794051

Class: ****

Batch: 061731848001

Initial Vol: 50.00

ZZZZZ Final Vol: 50.00

DF: 1.00

			. 1	INTEGRATIONS		Re-read Re-digest
<u>ELEMENT</u>	AVG (ppm)	%RSD	#1	#2	#3	
AG	-0.00021	101.965	-0.00042	0.00001	-0.00022	
AL	-0.01711	14.805	-0.01422	-0.01894	-0.01817	
AS	0.00002	917.848	-0.00207	0.00079	0.00134	
B	-0.00193	25.218	-0.00184	-0.00245	-0.00149	
BA	-0.00009	24.895	-0.00008	-0.00012	-0.00008	<u></u>
BE	0.00002	200.757	0.00001	-0.00002	0.00008	
CA	-0.01637	2.447	-0.01641	-0.01595	-0.01675	
CD	-0.00026	6.687	-0.00026	-0.00028	-0.00025	<u> </u>
co	-0.00007	433.965	0.00025	-0.00013	-0.00032	
CR	0.00044	17.722	0.00047	0.00050	0.00035	
CU	-0.00034	22.634	-0.00035	-0.00025	-0.00040	
FE	-0.02744	12.666	-0.02352	-0.02866	-0.03014	
K	-0.00020	433.227	0.00369	-0.00557	0.00129	
MG	-0.02278	6.607	-0.02138	-0.02258	-0.02437	
MN	-0.00004	95.821	-0.00001	-0.00007	-0.00003	
MO	0.00096	99.589	0.00162	0.00140	-0.00014	
NA	-0.06209	55.796	-0.02243	-0.07742	-0.08643	
NI	0.00021	227.906	0.00032	0.00062	-0.00032	
PB	-0.00122	3.916	-0.00118	-0.00121	-0.00128	
SB	0.00005	748.322	-0.00128	-0.00085	0.00229	
SE	-0.00097	215.316	0.00136	-0.00268	-0.00160	
SN	-0.00018	351.214	0.00243	-0.00241	-0.00056	
SR	-0.00002	109.452	0.00000	-0.00003	-0.00005	
TI	0.00015	57.205	0.00024	0.00014	0.00007	
TL	-0.00351	68.616	-0.00477	-0.00501	-0.00073	
v	-0.00011	439.256	0.00037	-0.00011	-0.00059	
Y	241335.33333	0.349	241241.00000	242221.00000	240544.00000	
ZN	0.00012	569.757	0.00001	-0.00048	0.00082	

Run Name: 0617305T63

Instrument ID: 06383

Tube: 34

Date/Time: 06/22/2006 17:58

Sample Number: CCV

				INTEGRATIONS		Re-read
ELEMENT	AVG (ppm)	%RSD	#1	#2	#3	Re-digest
AG	0.49403	0.521	0.49608	0.49487	0.49114	
AL	24.48727	0.519	24.59715	24.51648	24.34818	
AS	0.49460	1.172	0.49866	0.49719	0.48796	=
В	0.50608	0.303	0.50777	0.50566	0.50480	
BA	0.49187	0.522	0.49417	0.49233	0.48910	
BE	0.50308	0.633	0.50564	0.50409	0.49951	
CA	24.58509	0.599	24.68482	24.65453	24.41591	
CD	0.49281	0.614	0.49565	0.49316	0.48963	
CO	0.48740	0.598	0.48977	0.48827	0.48415	
CR	0.49162	0.537	0.49407	0.49198	0.48882	
CU	0.49343	0.498	0.49566	0.49383	0.49080	
FE	25.04990	0.549	25.15819	25.09641	24.89510	
— К	25.62837	0.509	25.75679	25.63214	25.49617	
MG	24.28629	0.636	24.41548	24.32837	24.11503	
MN	0.49358	0.599	0.49595	0.49452	0.49027	
MO	0.50308	1.790	0.49268	0.50842	0.50814	
NA NA	23.86545	0.144	23.85974	23.90223	23.83437	
NI	0.49315	0.805	0.49668	0.49391	0.48885	
 PB	0.49548	0.636	0.49752	0.49706	0.49185	
SB	0.50001	0.749	0.50425	0.49864	0.49714	
SE	0.49430	1.220	0.49570	0.49952	0.48770	
SN	0.48918	1.878	0.48437	0.49977	0.48340	
SR	0.50191	0.548	0.50430	0.50252	0.49890	
TI	0.49674	0.604	0.49940	0.49734	0.49349	
TL	0.48088	1.073	0.47560	0.48591	0.48114	,,
	0.49187	0.571	0.49392	0.49302	0.48866	
Y	242014.66667	0.491	241270.00000	241390.00000	243384.00000	
ZN	0.49345	0.655	0.49686	0.49304	0.49044	

Run Name: 0617305T63

Instrument ID: 06383

Tube: 35

Date/Time: 06/22/2006 18:02

Sample Number: CCB

			INTEGRATIONS				
ELEMENT	AVG (ppm)	%RSD	<u>#1</u>	#2	#3	Re-digest	
AG	0.00011	159.154	0.00006	-0.00003	0.00030		
AL	-0.00311	4.312	-0.00322	-0.00315	-0.00296		
AS	0.00441	69.569	0.00759	0.00146	0.00420		
В	-0.00128	68.693	-0.00218	-0.00042	-0.00125		
 BA	0.00002	160.069	0.00004	-0.00002	0.00003		
BE	0.00007	67.975	0.00003	0.00013	0.00006		
CA	-0.00555	9.872	-0.00546	-0.00613	-0.00505		
CD	-0.00014	60.660	-0.00012	-0.00007	-0.00024		
co	0.00036	98.317	0.00069	0.00000	0.00038		
CR	0.00022	101.830	0.00031	-0.00003	0.00039		
cu	-0.00041	4.853	-0.00040	-0.00043	-0.00040		
FE	-0.02136	4,742	-0.02019	-0.02198	-0.02191		
K	0.00104	190.398	-0.00030	0.00331	0.00011		
MG	-0.00676	27.771	-0.00892	-0.00553	-0.00582		
MN	0.00006	95.896	0.00013	0.00004	0.00002		
MO	0.00237	69.978	0.00428	0.00131	0.00152		
NA	-0.10837	62.557	-0.18664	-0.06811	-0.07036		
NI	0.00025	195.946	0.00047	-0.00031	0.00061		
PB	0.00017	930.950	0.00163	-0.00144	0.00031		
SB	-0.00058	351.046	-0.00232	-0.00104	0.00164		
SE	0.00210	255.082	-0.00401	0.00598	0.00433		
SN	-0.00020	861.693	0.00609	-0.00484	-0.00185		
SR	0.00007	28.035	0.00005	0.00007	0.00008		
TI	0.00015	68.177	0.00018	0.00022	0.00003		
TL	0.00124	153.269	0.00330	0.00089	-0.00046		
v	-0.00005	334.666	0.00005	0.00005	-0.00027		
Y	241451.33333	0.395	242549.00000	240985.00000	240820.00000		
ZN	-0.00021	176.211	0.00000	0.00001	-0.00064		

Run Name: 0617305T63

Instrument ID: 06383

Tube: 36

Date/Time: 06/22/2006 18:07

Sample Number: 4794052

Class: ****

Batch: 061731848001

Initial Vol: 50.00 ZZZZZZ Final Vol: 50.00

DF: 1.00

				INTEGRATIONS		Re-read
ELEMENT	AVG (ppm)	%RSD	#1	#2	#3	Re-digest
AG	-0.00023	100.540	-0.00023	0.00000	-0.00046	
AL	-0.01245	19.813	-0.00980	-0.01468	-0.01287	
AS	0.00465	46.880	0.00592	0.00590	0.00213	
B	-0.00157	33.091	-0.00099	-0.00199	-0.00173	
BA	-0.00007	97.726	-0.00005	-0.00014	-0.00001	
BE	0.00001	301.686	0.00003	0.00005	-0.00003	
CA	-0.01502	4.103	-0.01572	-0.01477	-0.01456	
CD	-0.00024	55.808	-0.00039	-0.00013	-0.00020	
co	0.00006	349.025	0.00006	0.00025	-0.00014	
CR	0.00012	138.323	-0.00007	0.00020	0.00024	
CU	-0.00038	12.873	-0.00044	-0.00035	-0.00035	
FE	-0.03360	1.352	-0.03385	-0.03307	-0.03387	
K	-0.00189	206.496	-0.00321	0.00250	-0.00496	
MG	-0.02238	13.582	-0.01956	-0.02198	-0.02560	
MN	-0.00008	85.026	-0.00014	-0.00001	-0.00009	
MO	0.00007	210.151	-0.00045	0.00100	-0.00035	
NA	-0.11331	54.188	-0.17856	-0.05666	-0.10471	
NI	-0.00004	261.246	0.00011	0.00081	-0.00103	
PB	0.00072	29.661	0.00068	0.00053	0.00095	
SB	-0.00092	107.630	-0.00063	-0.00203	-0.00011	
SE	0.00231	82.450	0.00132	0.00450	0.00110	
SN	-0.00210	95.290	-0.0015 7	-0.00042	-0.00431	
SR	-0.00002	47.837	-0.00001	-0.00001	-0.00002	
TI	-0.00004	279.718	0.00002	0.00003	-0.00017	
TL	-0.00454	20.863	-0.00373	-0.00558	-0.00430	
<u>V</u>	-0.00032	28.888	-0.00043	-0.00027	-0.00027	
Y	239302.66667	0.685	239053.00000	241053.00000	237802.00000	
ZN	0.00018	473.466	0.00067	-0.00081	0.00068	

Run Name: 0617305T63

Instrument ID: 06383

Tube: 37

Date/Time: 06/22/2006 18:12

Sample Number: 4795722ZZZZ Class: ****

Batch: 061731848001

Initial Vol: 50.00

Final Vol: 50.00

DF: 1.00

				Re-read		
ELE <u>MENT</u>	AVG (ppm)	%RSD	#1	#2	#3	Re-digest
AG	0.00001	371.146	-0.00017	0.00002	0.00019	
AL	0.05375	11.082	0.06014	0.05276	0.04835	
AS	0.00365	43.505	0.00539	0.00227	0.00329	
В	0.02174	2.673	0.02222	0.02189	0.02109	
BA	0.29526	3.106	0.30382	0.29639	0.28558	
BE	0.00310	3.152	0.00319	0.00311	0.00300	
CA	35.53828	2.902	36.47480	35.70711	34.43293	
CD	-0.00192	3.464	-0.00196	-0.00184	-0.00195	
CO	0.00065	82.500	0.00031	0.00127	0.00037	
CR	0.00271	2.048	0.00268	0.00277	0.00268	
CU	0.00008	81.025	0.00007	0.00014	0.00002	
FE	53.00636	2.805	54.38063	53.21059	51.42786	·
K	3.58668	3.127	3.69441	3.59506	3.47058	
MG	16.41322	2.917	16.85731	16.47624	15.90609	
MN	1.16378	2.927	1.19524	1.16850	1.12760	
MO	-0.00010	558.264	-0.00014	0.00049	-0.00065	
NA NA	46.44225	3.042	47.74857	46.63494	44.94325	
NI	0.00854	7.384	0.00901	0.00878	0.00782	
PB	0.00059	15.082	0.00059	0.00050	0.00068	
SB	0.00098	298.121	-0.00237	0.00299	0.00232	
SE	0.00390	53.600	0.00620	0.00210	0.00341	
SN	0.00055	249.825	0.00161	0.00102	-0.00099	
SR	0.31836	3,115	0.32762	0.31956	0.30789	
TI	0.00118	14.736	0.00126	0.00130	0.00098	
TL	-0.00605	46.181	-0.00357	-0.00551	-0.00908	
	0.01966	1.878	0.01996	0.01977	0.01925	
Y	239173.00000	0.664	237566.00000	239210.00000	240743.00000	
ZN	0.00301	26.484	0.00388	0.00285	0.00231	<u> </u>

Run Name: 0617305T63

Instrument ID: 06383

Tube: 38

Date/Time: 06/22/2006 18:17

Sample Number: **4796451**

Class: ****

Batch: 061731848001

Initial Vol: 50.00 ZZZZZZ Final Vol: 50.00

DF: 1.00

				INTEGRATIONS		Re-read
ELEMENT	AVG (ppm)	%RSD	<u>#1</u>	#2	#3	Re-digest
AG	-0.00004	525.076	-0.00011	0.00019	-0.00020	
AL	-0.00671	44.752	-0.00598	-0.00413	-0.01001	
AS	0.00191	140.423	0.00098	0.00493	-0.00018	
B	0.00945	0.791	0.00952	0.00937	0.00947	
BA	0.02497	1.824	0.02537	0.02506	0.02448	
BE	0.00014	13.916	0.00015	0.00016	0.00012	
CA	100.70709	1.881	102.29431	101.21752	98.60943	
CD	0.00050	7.587	0.00045	0.00051	0.00052	
co	0.00033	113.661	0.00018	0.00077	0.00005	
CR	0.00114	44.892	0.00168	0.00109	0.00066	
CU	0.08099	1.724	0.08217	0.08135	0.07945	
FE	-0.02885	4.696	-0.02736	-0.02916	-0.03001	
K	4.28913	2.032	4.37194	4.29725	4.19820	
MG	54.67405	1.845	55.53080	54.92882	53.56254	
MN	0.00066	8.651	0.00072	0.00060	0.00065	
MO	-0.00003	779.130	-0.00067	0.00102	-0.00045	
NA	27,58737	1.866	28.06031	27.66286	27.03895	
NI	0.00159	23.321	0.00119	0.00166	0.00192	
PB	0.00038	100.548	0.00049	0.00071	-0.00004	<u></u>
SB	0.00183	92.439	0.00255	0.00305	-0.00010	
SE	0.00074	99.357	0.00002	0.00072	0.00149	
SN	-0.00123	145.159	-0.00172	0.00075	-0.00273	
SR	0.17205	1.957	0.17502	0.1 7 274	0.16839	
TI	-0.00077	5.732	-0.00077	-0.00073	-0.00082	
TL	-0.00929	28.489	-0.01179	-0.00958	-0.00651	<u> </u>
	0.00050	68.635	0.00088	0.00023	0.00038	
Y	236251.00000	0.295	235903.00000	235796.00000	237054.00000	
ZN	0.01078	3.229	0.01040	0.01108	0.01087	

Run Name: 0617305T63

Instrument ID: 06383

Tube: 39

Date/Time: 06/22/2006 18:21

Sample Number: 4796455

Class: ****

Batch: 061731848001

Initial Vol: 50.00 ZZZZZZ Final Vol: 50.00

DF: 1.00

			INTEGRATIONS				
ELEMENT	AVG (ppm)	%RSD	#1	#2	#3	Re-digest	
AG	0.00127	30.300	0.00169	0.00120	0.00093		
AL	0.15833	1.235	0.15632	0.15845	0.16023		
AS	0.00604	51.980	0.00593	0.00924	0.00296		
B	0.03895	2.455	0.03809	0.03998	0.03878		
BA	0.05658	0.163	0.05666	0.05661	0.05648		
BE	0.00011	6.996	0.00010	0.00011	0.00011		
CA	26.89530	0.163	26.91563	26.92540	26.84488		
CD	0.00835	1.536	0.00822	0.00847	0.00835		
co	0.00162	17.789	0.00164	0.00132	0.00190		
CR	0.00263	14.821	0.00218	0.00283	0.00287		
cu	0.08155	0.273	0.08177	0.08157	0.08132		
FE	1,69051	0.082	1.69191	1.69045	1.68915	<u></u>	
K	16.86230	0.110	16.87989	16.86405	16.84298		
MG	6.38373	0.219	6.38995	6.39354	6.36769		
MN	0.15190	0.128	0.15192	0.15208	0.15169		
MO	0.00083	101.738	0.00121	-0.00014	0.00142		
NA	26.81458	0.504	26.82950	26.94172	26.67252		
NI	0.00551	1.694	0.00556	0.00556	0.00540		
PB	0.03024	3.356	0.02936	0.03135	0.03000		
SB	-0.00044	580.624	0.00247	-0.00159	-0.00219		
SE	0.00239	95.670	0.00079	0.00137	0.00501		
SN	0.00115	142.936	0.00172	0.00244	-0.00070		
SR	0.11210	0.101	0.11218	0.11214	0.11197		
TI	0.00750	4.283	0.00786	0.00726	0.00737		
TL	-0.00631	12.875	-0.00712	-0.00549	-0.00631		
	0.0013 7	13.504	0.00116	0.00148	0.00148		
Y	240292.33333	0.028	240220.00000	240355.00000	240302.00000		
ZN	0.24535	0.312	0.24586	0.24572	0.24447		

Run Name: 0617305T63

Instrument ID: 06383

Tube: 40

Date/Time: 06/22/2006 18:26

Sample Number: 4797770

Class: ****

Batch: 061731848001

Initial Vol: 50.00 ZZZZZZ Final Vol: 50.00

DF: 1.00

			INTEGRATIONS			
ELEMENT	AVG (ppm)	%RSD	#1	#2	#3	Re-digest
AG	0.00003	168.414	-0.00037	0.00032	0.00014	
AL	0.02038	10.612	0.01977	0.02279	0.01859	
AS	0.00395	78.461	0.00284	0.00156	0.00745	
В	0.15004	0.174	0.15023	0.15015	0.14974	
BA	0.02020	0.844	0.02028	0.02031	0.02000	
BE	0.00007	28.985	0.00008	0.00005	0.00009	
CA	48.73822	0.690	48.65936	49.10704	48.44826	
CD	-0.00013	43.907	-0.00018	-0.00007	-0.00016	
CO	0.00292	3.418	0.00302	0.00290	0.00283	
CR	0.00098	11.926	0.00091	0.00111	0.00091	
CU	0.00823	1.087	0.00817	0.00833	0.00820	
FE	0.01975	3.169	0.02031	0.01987	0.01907	
K	1.21978	0.892	1.22465	1.22737	1.20731	
MG	28.40477	0.693	28.38489	28.61084	28.21860	
MN	0.07663	0.587	0.07664	0.07707	0.07617	
MO	0.00116	61.747	0.00196	0.00091	0.00059	<u> </u>
NA	73.70999	0.611	73.82839	74.08914	73.21243	
NI	0.00446	11.781	0.00488	0.00463	0.00387	
PB	-0.00051	180.195	-0.00156	0.00005	-0.00001	
SB	0.00131	25.057	0.00121	0.00168	0.00105	
SE	0.00217	122.480	-0.00043	0.00489	0.00206	
SN	-0.00220	84.728	-0.00013	-0.00274	-0.00374	
SR	0.12264	0.848	0.12307	0.12340	0.12146	
TI	0.00025	24.657	0.00022	0.00032	0.00020	
TL	-0,00493	36.241	-0.00328	-0.00468	-0.00683	
V	0.01487	0.635	0.01496	0.01487	0.01477	
Y	237166.66667	0.317	237376.00000	236333.00000	237791.00000	
ZN	0.01515	2.552	0.01525	0.01548	0.01473	

Run Name: 0617305T63

Instrument ID: 06383

Tube: 41

Date/Time: 06/22/2006 18:31

Sample Number: 4785072 Class: ****
Initial Vol: 50.00 Final Vol: 50.00

Batch: 061731848001

DF: 1.00

				INTEGRATIONS		Re-read
ELEMENT	AVG (ppm)	%RSD	#1	#2	#3	Re-diges
AG	-0.00072	17.203	-0.00080	-0.00058	-0.00079	
AL	0.88960	1.156	0.90139	0.88495	0.88247	
AS	0.00631	30.756	0.00536	0.00503	0.00854	
B	0.03268	0.755	0.03288	0.03241	0.03276	
BA	0.52691	1.341	0.53498	0.52394	0.52181	
BE	0.00719	1.678	0.00732	0.00715	0.00709	
CA	126.65213	1.015	128.11975	126.10723	125.72941	
CD	0.00365	5.019	0.00386	0.00350	0.00360	
co	0.40482	0.975	0.40938	0.40251	0.40257	***
CR	0.00089	21.429	0.00072	0.00110	0.00086	
cu	0.00139	3.665	0.00142	0.00142	0.00133	
FE	45.62061	1.070	46.18339	45.36619	45.31224	
K	8.56357	1.098	8.67070	8.52527	8.49473	·
 MG	69.36797	1.196	70.31965	68.98736	68.79689	
MN	7.62093	1.069	7.71458	7.58170	7.56653	
MO .	-0.00074	35.512	-0.00094	-0.00084	-0.00044	
N A	43.74684	1.212	44.35649	43.49211	43.39191	
NI	0.37317	1.406	0.37903	0.37155	0.36892	<u> </u>
PB	0.00468	34.305	0.00326	0.00436	0.00642	
SB	-0.00338	15.358	-0.00380	-0.00280	-0.00355	
SE	0.00134	247.330	-0.00013	0.00513	-0.00099	
SN	-0.00092	336.585	-0.00430	-0.00029	0.00182	
SR	1.84886	1.270	1.87569	1.83889	1.83201	<u></u>
TI	-0.00064	7.586	-0.00068	-0.00058	-0.00065	
TL	-0.00239	92.846	-0.00070	-0.00491	-0.00157	
V	0.00266	7.429	0.00280	0.00274	0.00244	
Y	247262.66667	0.835	248410.00000	248498.00000	244880.00000	
ZN	192.36433	0.460	192.35944	191.48126	193.25229	

Run Name: 0617305T63

Instrument ID: 06383

Tube: 42

Date/Time: 06/22/2006 18:35

Sample Number: LLC

			,	INTEGRATIONS		Re-read
ELEMENT	AVG (ppm)	<u>%RSD</u>	#1	#2	#3	Re-diges
AG	0.00523	2.442	0.00511	0.00536	0.00522	
AL	0.19475	0.225	0.19432	0.19474	0.19519	
AS	0.02347	5.226	0.02208	0.02441	0.02393	
B	0.05277	0.599	0.05297	0.05293	0.05240	
BA	0.00509	1.206	0.00504	0.00516	0.00509	
BE	0.00521	0.249	0.00520	0.00522	0.00523	
CA	0.20834	5.617	0.19490	0.21387	0.21625	
CD	0.00490	3.501	0.00509	0.00476	0.00484	-
co	0.00540	2.536	0.00535	0.00555	0.00529	
CR	0.01571	0.479	0.01568	0.01567	0.01580	
CU	0.00987	0.609	0.00981	0.00989	0.00992	
FE	0.18999	1.411	0.18695	0.19100	0.19202	
K	0.20559	0.626	0.20518	0.20455	0.20703	
MG	0.09196	8.242	0.08326	0.09548	0.09714	
MN	0.00643	9.473	0.00574	0.00668	0.00687	
MO	0.01091	2.669	0.01107	0.01057	0.01108	
NA	0.85666	3.691	0.85299	0.82704	0.88996	
NI	0.01032	5.584	0.00997	0.01001	0.01099	
PB	0.01506	3.077	0.01558	0.01492	0.01469	
\$B	0.01972	2.023	0.01952	0.01946	0.02018	
SE	0.01988	2.173	0.02011	0.02015	0.01938	
SN	0.02031	9.854	0.02235	0.02024	0.01835	
SR	0.00550	2.978	0.00531	0.00557	0.00561	
TI	0.01024	0.693	0.01032	0.01019	0.01022	
TL	0.01479	12.191	0.01361	0.01390	0.01686	
V	0.00483	7.650	0.00462	0.00463	0.00526	<u></u>
Y	239585.66667	0.084	239753.00000	239361.00000	239643.00000	
ZN	0.08883	33.040	0.05529	0.10141	0.10980	

Run Name: 0617305T63

Instrument ID: 06383

Tube: 43

Date/Time: 06/22/2006 18:40

Sample Number: ICSA

				INTEGRATIONS		Re-read
ELEMENT	_AVG (ppm)_	%RSD	#1	#2	#3	Re-digest
AG	0.00009	169.408	-0.00008	0.00014	0.00021	
AL	497.70984	0.288	498.30227	498.75044	496.07681	
AS	0.00181	50.656	0.00087	0.00271	0.00185	
B	-0.00245	26.371	-0.00173	-0.00263	-0.00299	
BA	-0.00060	5.260	-0.00064	-0.00059	-0.00058	
BE	0.00024	6.481	0.00023	0.00026	0.00023	
CA	470.90748	0.478	471.77299	472.59535	468.35410	
CD	-0.00420	1.939	-0.00426	-0.00411	-0.00424	
co	0.00314	13.879	0.00290	0.00364	0.00288	
CR	-0.00265	7.217	-0.00264	-0.00285	-0.00247	
CU	0.00154	7.601	0.00159	0.00163	0.00141	
FE	186.05415	0.409	186.39297	186.58601	185.18346	
K	-0.00976	33.539	-0.00828	-0.00749	-0.01351	
MG	522.82488	0.336	523.59692	524.06345	520.81426	
MN	0.00926	0.308	0.00926	0.00929	0.00924	
MO	-0.00055	316.485	-0.00191	0.00140	-0.00113	
NA	-0.19958	9.378	-0.17863	-0.20547	-0.21465	
NI	0.00252	28.962	0.00223	0.00198	0.00335	
PB	0.00455	36.254	0.00563	0.00537	0.00265	
SB	-0.00173	132.300	0.00014	-0.00105	-0.00429	
SE	-0.00078	535.147	0.00221	-0.00556	0.00101	
SN	0.00273	109.272	0.00006	0.00219	0.00595	
SR	0.01543	0.378	0.01546	0.01547	0.01536	
TI	-0.00528	1.195	-0.00523	-0.00535	-0.00525	-
TL	-0.00173	360.977	-0.00896	0.00175	0.00201	
	-0.00302	22.264	-0.00245	-0.00285	-0.00376	
Y	226044.00000	0.379	225438.00000	225670.00000	227024.00000	
ZN	0.00846	. 4.941	0.00814	0.00830	0.00893	_

Run Name: 0617305T63

Instrument ID: 06383

Tube: 44

Date/Time: 06/22/2006 18:45

Sample Number: ICSAB

				INTEGRATIONS		Re-read
ELEMENT	AVG (ppm)	%RSD	<u>#1</u>	#2	#3	Re-diges
AG	0.20854	2.701	0.21196	0.20204	0.21162	
AL	489.87950	3.097	499.42621	472.38549	497.82680	
AS	0.10179	1.305	0.10213	0.10032	0.10291	
В	-0.00477	5.375	-0.00487	-0.00496	-0.00448	
BA	0.51086	2.955	0.52080	0.49348	0.51828	
BE	0.48245	2.991	0.49134	0.46579	0.49020	
CA	461.51135	3.269	470.59689	444.09363	469.84352	
CD	0.92954	2.837	0.94520	0.89910	0.94433	
co	0.46767	3.026	0.47699	0.45139	0.47464	
CR	0.47096	3,104	0.48007	0.45410	0.47871	
CU	0.51791	2.920	0.52741	0.50048	0.52586	
FE	183.84345	3.132	187.34719	177.19846	186.98470	
K	-0.00772	22.716	-0.00680	-0.00975	-0.00662	
MG	517.64747	2.905	526.90341	500.29549	525.74350	
MN	0.49170	2.922	0.50101	0.47516	0.49894	
MO	-0.00274	7.876	-0.00250	-0.00291	-0.00282	
NA	-0.26343	13.203	-0.23333	-0.25545	-0.30150	
NI	0.91908	3.022	0.93849	0.88727	0.93149	
PB	0.05177	0.429	0.05152	0.05187	0.05193	
SB	0.60976	4.244	0.62455	0.57988	0.62486	
SE	0.05302	2.236	0.05362	0.05165	0.05377	
SN	-0.00033	661.349	-0.00284	0.00119	0.00066	
SR	0.01521	3.092	0.01551	0.01467	0.01546	
TI	-0.00531	2.431	-0.00540	-0.00516	-0.00537	
TL	0.08864	1.154	0.08747	0.08932	0.08914	
V	0.47784	3.025	0.48708	0.46118	0.48525	
Y	229072.33333	2.684	225040.00000	236150.00000	226027.00000	
 ZN	0.91286	3.171	0.92748	0.87952	0.93158	

Run Name: 0617305T63

Instrument ID: 06383

Tube: 45

Date/Time: 06/22/2006 18:50

Sample Number: CCV

			INTEGRATIONS				
ELEMENT	AVG (ppm)	%RSD	#1	#2	#3	Re-digest	
AG	0.49793	0.209	0.49913	0.49743	0.49724		
AL	24.66861	0.030	24.67284	24.65999	24.67300		
AS	0.49854	0.611	0.50150	0.49870	0.49541		
B	0.50886	0.043	0.50861	0.50902	0.50895		
BA	0.49689	0.104	0.49727	0.49709	0.49630		
BE	0.50376	0.078	0.50419	0.50343	0.50365		
CA	24.28344	0.103	24.27654	24.26269	24.31109		
CD	0.49713	0.251	0.49852	0.49610	0.49678		
CO	0.48929	0.156	0.48931	0.48851	0.49004		
CR	0.49556	0.139	0.49635	0.49504	0.49530		
CU	0.49441	0.106	0.49498	0.49430	0.49395		
FE	25.24990	0.054	25.26397	25.23691	25.24881		
K	25.96182	0.158	25.99833	25.96972	25.91741	· · · · · · · · · · · · · · · · · · ·	
MG	24.55662	0.162	24.58765	24.51166	24.57057		
MN	0.49603	0.065	0.49639	0.49577	0.49593		
MO	0.50449	2.273	0.49129	0.51024	0.51196		
NA	24.09005	0.381	24.11268	23.98911	24.16835		
NI	0.49685	0.257	0.49708	0.49547	0.49799		
PB	0.49700	0.404	0.49921	0.49648	0.49530		
SB	0.49990	0.969	0.50008	0.49497	0.50465	<u></u>	
SE	0.49835	0.621	0.49615	0.49700	0.50189		
SN	0.49326	0.467	0.49060	0.49447	0.49471	··-	
SR	0.50590	0.098	0.50636	0.50596	0.50538		
TI	0.49922	0.067	0.49959	0.49913	0.49895		
TL	0.47960	2.803	0.46441	0.48998	0.48440		
v	0.49433	0.174	0.49498	0.49466	0.49336		
Y	238871.66667	0.150	238556.00000	239261.00000	238798.00000	_	
ZN	0.49611	0.205	0.49645	0.49498	0.49692		

Run Name: 0617305T63

Instrument ID: 06383

Tube: 46

Date/Time: 06/22/2006 18:54

Sample Number: CCB

ELEMENT		**	INTEGRATIONS			Re-read
	AVG (ppm)	%RSD	<u>#1</u>	#2	#3	Re-digest
AG	0.00029	84.579	0.00018	0.00056	0.00012	
AL	-0.00049	275.900	-0.00200	-0.00012	0.00064	
AS	0.00133	268.007	0.00500	-0.00212	0.00111	
 B	-0.00056	20.047	-0.00050	-0.00049	-0.00069	
BA	-0.00001	357.835	-0.00001	0.00003	-0.00006	
BE	0.00011	17.345	0.00014	0.00011	0.00010	
CA	-0.01461	4.167	-0.01495	-0.01497	-0.01390	
CD	-0.00027	61.440	-0.00011	-0.00026	-0.00044	
co	0.00036	90.076	0.00006	0.00070	0.00031	
CR	-0.00006	274.293	0.00012	-0.00011	-0.00019	
cu	-0.00073	16.265	-0.00075	-0.00060	-0.00083	-
FE	-0.02299	5.632	-0.02166	-0.02307	-0.02425	
<u></u> к	0.00350	96.854	0.00728	0.00252	0.00071	
MG	-0.01415	9.914	-0.01388	-0.01290	-0.01567	
MN	0.00003	106.163	0.00006	0.00004	-0.00001	
MO	0.00225	60.081	0.00380	0.00164	0.00131	
NA	-0.11002	23.771	-0.13916	-0.10233	-0.08858	
NI	0.00044	88.488	0.00057	0.00075	0.00000	
PB	0.00096	73.828	0.00055	0.00055	0.00177	
SB	0.00048	255.272	0.00021	0.00183	-0.00059	
SE	0.00307	71.691	0.00336	0.00510	0.00074	
— SN	0.00106	20.370	0.00130	0.00102	0.00087	
SR	0.00004	12.937	0.00005	0.00004	0.00004	
TI	0.00003	429.400	0.00005	0.00015	-0.00011	
TL	-0.00716	41.050	-0.00532	-0.01055	-0.00561	
	0.00000	677.042	-0.00027	0.00038	-0.00011	
Y	239624.33333	0.377	240262.00000	238591.00000	240020.00000	
ZN	-0.00070	120.069	0.00001	-0.00048	-0.00162	

Data Reviewed By:

Jenuso 6/22 los

Data Verified By: 1 Dec. () 1281 6-23-66

Extraction/Distillation/Digestion Logs

Vol Added (mL) ĘŅ. Start Time [24:00] ON Hotplate/IN HotBlock: 120 End Time [24:00] OFF Hotplate/OUT of HotBlock: 171/6 [May include time for cooling, reagent additions, etc.] Lot # Lot # /W. -136E Vol Added (mt.) 7 600 5.00 Reagents :1 년 Lot # 186- U79A Vol Added (mt.) 7.000 2-0 mL 2006 1:1 HNO3 150 Ø.V

A Blank and LCS(s) [same initial volume(s)] were digested in this batch in a similar manner as field samples and adjusted to the same final volume.

Ī

-F689 0578

1480.03

97 066805

Lancaster Laboratories

Digest Type: ICP/GF(Sb)-SW846 COC (Y/N): U+:5

I

წ (ნ

ਹੁ≘

CB11/33

50 m Final Vol

50ml Initiat Vol

> 1557 8551 526

791.55

Sample #

SOS

00

メ _____

17 32

06

Batch #

Q. U90 -05 (3)Notes 91-9 6-30 6-13-26 90 16.36 98-3 6-28 7 7 6. 6.28 11-10 17-10 11/ - /G 01-14 2-19 2 11.10 ر ا 2 5 9 8 6 0 Ξ 2 3 14 15 17 8 6 Spike Blank

CB N23

7915634

8 6

262

260

7 6

195

5751

1570

1569

378

5 7 5

11)CG 59

5772

ならのか

4051

15/1

14 15 16 17 18

CBN23

7 30 62

7500

4791564

Spike (R)

7791565

MSD (M)

Blank

BLANK

775164,7

a) dha

4785072

5

CBN13 CBN23

Digest Date: Auna 22 3006

Digested by (Init./Emp. #): リリフィメ

11

480a.03

A Lancaster Laboratories

Water Digestion Logbook ICP/GF - 1848/5705/6360