

Operation, Maintenance and Monitoring Report June 2009

NOW Corporation Site 3-14-008

Work Assignment No. D004445-4.1

Prepared for:

SUPERFUND STANDBY PROGRAM New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233

Prepared by:

AECOM Technical Services Northeast, Inc. 40 British American Boulevard Latham, New York 12110

July 2009

August 6, 2009

Mr. Carl Hoffman, P.E. NYSDEC Division of Environmental Remediation 625 Broadway, 12th Floor Albany, New York 12233-7013

Re: NOW Corporation - Site #3-14-008 O&M Summary Report: "June" 2009

Dear Mr. Hoffman:

This monthly summary report describes the operation, monitoring and maintenance (OM&M) of the remedial system at the NOW Corporation site in the Town of Clinton, New York, for a 29-day period (**May 19, 2009** to **June 17, 2009**).

EARTH TECH

With the exceptions noted below, if any, the P&T system was online and operational throughout the reporting period. Approximately 798,400 gallons of water were treated during the period. Discharge from the treatment system averaged approximately 27,500 gallons per day (gpd). During the prior reporting period, the average discharge was 26,600 gpd.

As of the last day of the reporting period, a total of 71,324,800 gallons of groundwater had been recovered and treated by the system since it became operational in February 1998.

Table 1 summarizes influent and effluent analytical data for water samples collected on June 17, 2009. **There were no exceedances.** A copy of the analytical laboratory's report is attached to this letter report. Table 2 summarizes selected operational data recorded on the sampling date.

AECOM made two site visits during the period to conduct the required system inspection, perform scheduled and/or unscheduled maintenance, and to collect water samples. The May 19 service visit was described in the previous report. Details for the current period follow:

<u>May 29</u> – On site to respond to high water levels in recovery well TW-3. Found high pressure (85 lbs) and assumed a blockage. Fully opened gate valve to relieve blockage. Disassembled, cleaned, and reassembled flow meter to ensure it was clear. Reset flow rate.

<u>June 17</u> - Monthly system inspection and water sampling. Replaced the fire extinguisher after its annual servicing. Weed whacked around building and monitoring wells.

Page 2 Mr. Carl Hoffman NYSDEC

Please feel free to contact me at (518) 951-2262 if you have any questions regarding this report or the operation of the treatment system.

Sincerely, AECOM Technical Services Northeast, Inc.

Stephen Chamer-

Stephen R. Choiniere Project Manager

Table 1Summary of Influent and Effluent DataSampling Date: June 17, 2009NOW Corporation SiteTown of Clinton, New York

Analytes/	Total			Recovery Well	s	Ef	fluent
Parameters	Influent	Effluent	TW-1	TW-2A	TW-3	Lim	itations
							(units)
Quantity treated, per day		27,531				Monitor	gpd
pН	6.8	6.9	NA	NA	NA	6.5 to 8.5	standard units
Oil and Grease	<5.0	<5.0	NA	NA	NA	15	mg/L
Total Cyanide	<20	<20	NA	NA	NA	10	ug/L
TDS	250	230	NA	NA	NA	1000	mg/L
TSS	11	<10	NA	NA	NA	50	mg/L
100	11		1111	1411	1111	50	ing/L
Aluminum, Total	<200	<200	NA	NA	NA	2000	ug/L
Arsenic, Total	<20	<20	NA	NA	NA	50	ug/L
Barium, Total	64 J	61 J	NA	NA	NA	2000	ug/L
Chromium	9.6 J	<20	NA	NA	NA	100	ug/L
Copper	<25	<25	NA	NA	NA	24	ug/L
Iron	88 J	<200	NA	NA	NA	600	ug/L
Mercury	< 0.20	< 0.20	NA	NA	NA	0.8	ug/L
Manganese	95 B	48 BJ	NA	NA	NA	600	ug/L
Nickel	<50	<50	NA	NA	NA	200	ug/L
Zinc	13 J	12 J	NA	NA	NA	150	ug/L
1,1,1-Trichloroethane	460	<0.50	8.4	560	3	5	ug/L
1,1,2-Trichloroethane	< 0.50	< 0.50	< 0.50	0.25 J	< 0.50	1.2	ug/L
1,1-Dichloroethane	150	< 0.50	69	160	12	5	ug/L
1,1-Dichloroethene	12	< 0.50	12	18	1.5	0.5	ug/L
1,2-Dichloroethane	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.6	ug/L
Benzene	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.8	ug/L
Chlorobenzene	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	5	ug/L
Chloroethane	< 0.50	< 0.50	0.43 J	< 0.50	< 0.50	5	ug/L
cis-1,2-Dichloroethene	11	< 0.50	8.4	18	0.29 J	5	ug/L
Ethylbenzene	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	5	ug/L
Methyl tert-butyl ether	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	5	ug/L
o-Xylene	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	5	ug/L
p&m-Xylene	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	10	ug/L
Tetrachloroethene	< 0.50	< 0.50	< 0.50	0.21 J	< 0.50	1.4	ug/L
Toluene	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	5	ug/L
trans-1,2-Dichloroethene	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	5	ug/L
Trichloroethene	380	< 0.50	93	430	14	5	ug/L
Vinyl Chloride	0.58	< 0.50	0.59	0.95	< 0.50	0.6	ug/L

Notes:

1) Detected concentrations are presented in **bold** typeface, and are expressed in the units shown in far right column.

2) Effluent concentration boxed in **bold** denotes exceedance of effluent limitations.

3) NA indicates not analyzed.

4) "*J*" indicates an estimated concentration below the reporting limit (*RL*).

5) "**D**" denotes analytical result for a diluted sample.

6) "B" denotes metal detected in method blank at concentration below the RL, but above the method detection limit.

Table 2Summary of June 2009 O&M Data

NOW Corporation Site Town of Clinton, New York

Instrumentation/Readings:	6/17/09	Units
<i>TW-1</i>		
Pumping Rate	2	GPM
Water Level Above Transducer	51.21	feet
Flow Meter Reading	4,914,300	gallons
Pump Pressure	78	psi
TW-2A		
Pumping Rate	14	GPM
Water Level Above Transducer	46.72	feet
Flow Meter Reading	11,591,600	gallons
Pump Pressure	7	psi
<i>TW-3</i>		
Pumping Rate	3	GPM
Water Level Above Transducer	29.95	feet
Flow Meter Reading	6,857,700	gallons
Pump Pressure	65	psi
Air Stripper		
Stripper Blower Pressure	20.5	inches H ₂ O
Air Temperature in Stripper	48	°F
Pressure Gauge - Left Leg	0.8	inches H ₂ O
Pressure Gauge - Right Leg	0.5	inches H ₂ O
Effluent Flow		
Effluent Flow this period (calculated)	798,400	gallons
Total Effluent Flow (calculated)	71,324,800	gallons

A DIVISION OF SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

June 30, 2009

Earth Tech - AECOM 40 British American Boulevard Latham, NY 12110 Attn: Mr. Stephen Choiniere

RE: Client Project: NOW Corp. Site, 94017.02, 06/09 Lab Project #: H1109

Dear Mr. Choiniere:

Enclosed please find the data report for the analyses of samples associated with the above referenced project.

If you have any questions, please do not hesitate to call me.

We appreciate your business.

Sincerel 1/th

Edward A. Lawler Laboratory Operations Manager

Report of Laboratory Analyses for AECOM Technical Services

Client Project: NOW Corp. 94017.02, 06/09

Mitkem Work Order ID: H1109

June 30, 2009

Prepared For:

AECOM Technical Services 40 British American Boulevard Latham, NY 12110 Attn: Mr. Stephen Choiniere

Prepared By:

Mitkem Laboratories 175 Metro Center Boulevard Warwick, RI 02886 (401) 732-3400 Client: AECOM Technical Services Client Project: NOW Corp, 94017.02, 06/09 Lab Work Order: H1109 Date samples received: 06/18/09

Project Narrative

This data report includes the analysis results for six (6) aqueous samples that were received from AECOM Technical Services on June 18, 2009. Analyses were performed per specification in the Chain of Custody form. For reference, a copy of the Mitkem Sample Log-In form is included for cross-referencing the client sample ID and laboratory sample ID.

Surrogate recoveries were within the QC limits for volatile organic analyses with the exception of dibromofluoromethane in the reanalysis of sample TW-2A. Percent recoveries in laboratory control samples were within the QC limits with the exception of elevated recovery for 1,2-dichloroethane in LCS-44437, LCS-44471, and LCSD-44437. Please note that this apparent high bias does not impact sample results, as this compound was not detected in the samples. The following samples were reanalyzed at dilution: INF-061709 at 50X, TW-1 at 10X, and TW-2A at 50X.

Spike recoveries were within the QC limits in the laboratory control samples for metals, total dissolved solids, total suspended solids, cyanide and oil & grease analyses. Duplicate analyses were performed for total dissolved solids and total suspended solids on sample EFF-061709. Relative percent differences were within the QC limits. Method blank MB-44459 contained manganese below the reporting limit, but above the method detection limit. While manganese results for the samples are qualified with a "B", the method blank concentration is significantly below the concentrations in the samples.

No other unusual occurrences were noted during sample analysis.

All pages in this report have been numbered consecutively, starting with the title page and ending with a page saying only "Last Page of Data Report".

This data report has been reviewed and is authorized for release as evidenced by the signature

below.

'Edward A. Lawler // Laboratory Operations Manager

Date: 26-Jun-09

Client:AECOM Technical Services, Inc.Client Sample ID:EFF-061709Lab ID:H1109-01

Project:NOW Corp. SiteCollection Date:06/17/09 11:20

Analyses	Result Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS (25 mL Purge)				• •	SW8260_25_W
Vinyl chloride	ND	0.50	µg/L	1 06/20/2009 17:59	44437
Chloroethane	ND	0.50	µg/L	1 06/20/2009 17:59	44437
1,1-Dichloroethene	ND	0.50	µg/L	1 06/20/2009 17:59	44437
trans-1,2-Dichloroethene	ND	0.50	µg/L	1 06/20/2009 17:59	44437
Methyl tert-butyl ether	ND	0.50	µg/L	1 06/20/2009 17:59	44437
1,1-Dichloroethane	ND	0.50	µg/L	1 06/20/2009 17:59	44437
cis-1,2-Dichloroethene	ND	0.50	µg/L	1 06/20/2009 17:59	44437
1,1,1-Trichloroethane	ND	0.50	µg/L	1 06/20/2009 17:59	44437
1,2-Dichloroethane	ND	0.50	µg/L	1 06/20/2009 17:59	44437
Benzene	ND	0.50	µg/L	1 06/20/2009 17:59	44437
Trichloroethene	ND	0.50	µg/L	1 06/20/2009 17:59	44437
Toluene	ND	0.50	µg/L	1 06/20/2009 17:59	44437
1,1,2-Trichloroethane	ND	0.50	µg/L	1 06/20/2009 17:59	44437
Tetrachloroethene	ND	0.50	µg/L	1 06/20/2009 17:59	44437
Chlorobenzene	ND	0.50	µg/L	1 06/20/2009 17:59	44437
Ethylbenzene	ND	0.50	µg/L	1 06/20/2009 17:59	44437
m,p-Xylene	ND	0.50	µg/L	1 06/20/2009 17:59	44437
o-Xylene	ND	0.50	µg/L	1 06/20/2009 17:59	44437
Surrogate: Dibromofluoromethane	120	88-124	%REC	1 06/20/2009 17:59	44437
Surrogate: 1,2-Dichloroethane-d4	107	79-115	%REC	1 06/20/2009 17:59	44437
Surrogate: Toluene-d8	97.4	80-114	%REC	1 06/20/2009 17:59	44437
Surrogate: Bromofluorobenzene	97.9	60-123	%REC	1 06/20/2009 17:59	4 4437

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 26-Jun-09

Client: AECOM Technical Services, Inc. Client Sample ID: INF-061709 Lab ID: H1109-02

Project:NOW Corp. SiteCollection Date:06/17/09 11:40

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS (25 mL Purge)			SW	8260_25_W
Vinyl chloride	0.58	0.50 µg/L	1 06/20/2009 18:28	44437
Chloroethane	ND	0.50 µg/L	1 06/20/2009 18:28	44437
1,1-Dichloroethene	12	0.50 µg/L	1 06/20/2009 18:28	44437
trans-1,2-Dichloroethene	ND	0.50 µg/L	1 06/20/2009 18:28	44437
Methyl tert-butyl ether	ND	0.50 µg/L	1 06/20/2009 18:28	44437
1,1-Dichloroethane	110 E	0.50 µg/L	1 06/20/2009 18:28	44437
cis-1,2-Dichloroethene	11	0.50 µg/L	1 06/20/2009 18:28	44437
1,1,1-Trichloroethane	350 E	0.50 µg/L	1 06/20/2009 18:28	44437
1,2-Dichloroethane	ND	0.50 µg/L	1 06/20/2009 18:28	44437
Benzene	ND	0.50 µg/L	1 06/20/2009 18:28	44437
Trichloroethene	320 E	0.50 µg/L	1 06/20/2009 18:28	44437
Toluene	ND	0.50 µg/L	1 06/20/2009 18:28	44437
1,1,2-Trichloroethane	ND	0.50 µg/L	1 06/20/2009 18:28	44437
Tetrachloroethene	ND	0.50 µg/L	1 06/20/2009 18:28	44437
Chlorobenzene	ND	0.50 µg/L	1 06/20/2009 18:28	44437
Ethylbenzene	ND	0.50 µg/L	1 06/20/2009 18:28	44437
m,p-Xylene	ND	0.50 µg/L	1 06/20/2009 18:28	44437
o-Xylene	ND	0.50 µg/L	1 06/20/2009 18:28	44437
Surrogate: Dibromofluoromethane	120	88-124 %REC	1 06/20/2009 18:28	44437
Surrogate: 1,2-Dichloroethane-d4	99.5	79-115 %REC	1 06/20/2009 18:28	44437
Surrogate: Toluene-d8	101	80-114 %REC	1 06/20/2009 18:28	44437
Surrogate: Bromofluorobenzene	99.4	60-123 %REC	1 06/20/2009 18:28	44437

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 26-Jun-09

Client: AECOM Technical Services, Inc. Client Sample ID: INF-061709 Lab ID: H1109-02

Project:NOW Corp. SiteCollection Date:06/17/09 11:40

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS (25 mL Purge)			SW	/8260_25_W
Vinyl chloride	ND	25 μg/L	50 06/23/2009 15:15	44471
Chloroethane	ND	25 µg/L	50 06/23/2009 15:15	44471
1,1-Dichloroethene	19 J	25 µg/L	50 06/23/2009 15:15	44471
trans-1,2-Dichloroethene	ND	25 µg/L	50 06/23/2009 15:15	44471
Methyl tert-butyl ether	ND	25 µg/L	50 06/23/2009 15:15	44471
1,1-Dichloroethane	150	25 µg/L	50 06/23/2009 15:15	44471
cis-1,2-Dichloroethene	11 J	25 µg/L	50 06/23/2009 15:15	44471
1,1,1-Trichloroethane	460	25 µg/L	50 06/23/2009 15:15	44471
1,2-Dichloroethane	ND	25 µg/L	50 06/23/2009 15:15	44471
Benzene	ND	25 µg/L	50 06/23/2009 15:15	44471
Trichloroethene	380	25 µg/L	50 06/23/2009 15:15	44471
Toluene	ND	25 µg/L	50 06/23/2009 15:15	44471
1,1,2-Trichloroethane	ND	25 µg/L	50 06/23/2009 15:15	44471
Tetrachloroethene	ND	25 µg/L	50 06/23/2009 15:15	44471
Chlorobenzene	ND	25 µg/L	50 06/23/2009 15:15	44471
Ethylbenzene	ND	25 µg/L	50 06/23/2009 15:15	44471
m,p-Xylene	ND	25 µg/L	50 06/23/2009 15:15	44471
o-Xylene	ND	25 µg/L	50 06/23/2009 15:15	44471
Surrogate: Dibromofluoromethane	115	88-124 %REC	50 06/23/2009 15:15	44471
Surrogate: 1,2-Dichloroethane-d4	97.2	79-115 %REC	50 06/23/2009 15:15	44471
Surrogate: Toluene-d8	104	80-114 %REC	50 06/23/2009 15:15	44471
Surrogate: Bromofluorobenzene	98.6	60-123 %REC	50 06/23/2009 15:15	44471

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

Date: 26-Jun-09

Client: AECOM Technical Services, Inc. Client Sample ID: TW-1 Lab ID: H1109-03

Project:NOW Corp. SiteCollection Date:06/17/09 11:50

Analyses	Result	Qual	RL	Units	DF Date Analyze	d Batch ID
SW846 8260 VOC by GC-MS (25 mL Purge)						SW8260_25_W
Vinyl chloride	0.59		0.50	µg/L	1 06/20/2009 18:58	44437
Chloroethane	0.43	J	0.50	µg/L	1 06/20/2009 18:58	44437
1,1-Dichloroethene	12		0.50	µg/L	1 06/20/2009 18:58	44437
trans-1,2-Dichloroethene	ND		0.50	µg/L	1 06/20/2009 18:58	44437
Methyl tert-butyl ether	ND		0.50	µg/L	1 06/20/2009 18:58	44437
1,1-Dichloroethane	67	E	0.50	µg/L	1 06/20/2009 18:58	44437
cis-1,2-Dichloroethene	8.4		0.50	µg/L	1 06/20/2009 18:58	44437
1,1,1-Trichloroethane	8.4		0.50	µg/L	1 06/20/2009 18:58	44437
1,2-Dichloroethane	ND		0.50	µg/L	1 06/20/2009 18:58	44437
Benzene	ND		0.50	µg/L	1 06/20/2009 18:58	44437
Trichloroethene	95	E	0.50	µg/L	1 06/20/2009 18:58	44437
Toluene	ND		0.50	µg/L	1 06/20/2009 18:58	44437
1,1,2-Trichloroethane	ND		0.50	µg/L	1 06/20/2009 18:58	44437
Tetrachloroethene	ND		0.50	µg/L	1 06/20/2009 18:58	44437
Chlorobenzene	ND		0.50	µg/L	1 06/20/2009 18:58	44437
Ethylbenzene	ND		0.50	µg/L	1 06/20/2009 18:58	44437
m,p-Xylene	ND		0.50	µg/L	1 06/20/2009 18:58	44437
o-Xylene	ND		0.50	µg/L	1 06/20/2009 18:58	44437
Surrogate: Dibromofluoromethane	122		88-124	%REC	1 06/20/2009 18:58	44437
Surrogate: 1,2-Dichloroethane-d4	103		79-115	%REC	1 06/20/2009 18:58	44437
Surrogate: Toluene-d8	98.7		80-114	%REC	1 06/20/2009 18:58	44437
Surrogate: Bromofluorobenzene	98.8		60-123	%REC	1 06/20/2009 18:58	44437

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 26-Jun-09

Client: AECOM Technical Services, Inc. Client Sample ID: TW-1 Lab ID: H1109-03

Project:NOW Corp. SiteCollection Date:06/17/09 11:50

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS (25 mL Purge)			-	SW8260_25_W
Vinyl chloride	ND	5.0 µg/L	10 06/23/2009 15:45	44471
Chloroethane	ND	5.0 µg/L	10 06/23/2009 15:45	44471
1,1-Dichloroethene	• 11	5.0 µg/L	10 06/23/2009 15:45	44471
trans-1,2-Dichloroethene	ND	5.0 µg/L	10 06/23/2009 15:45	44471
Methyl tert-butyl ether	ND	5.0 µg/L	10 06/23/2009 15:45	44471
1,1-Dichloroethane	69	5.0 µg/L	10 06/23/2009 15:45	44471
cis-1,2-Dichloroethene	7.4	5.0 µg/L	10 06/23/2009 15:45	44471
1,1,1-Trichloroethane	8.2	5.0 µg/L	10 06/23/2009 15:45	44471
1,2-Dichloroethane	ND	5.0 µg/L	10 06/23/2009 15:45	4447 1
Benzene	ND	5.0 µg/L	10 06/23/2009 15:45	4447 1
Trichloroethene	93	5.0 μg/L	10 06/23/2009 15:45	44471
Toluene	ND	5.0 µg/L	10 06/23/2009 15:45	44471
1,1,2-Trichloroethane	ND	5.0 µg/L	10 06/23/2009 15:45	44471
Tetrachloroethene	ND	5.0 µg/L	10 06/23/2009 15:45	44471
Chlorobenzene	ND	5.0 µg/L	10 06/23/2009 15:45	44471
Ethylbenzene	ND	5.0 μg/L	10 06/23/2009 15:45	44471
m,p-Xylene	ND	5.0 µg/L	10 06/23/2009 15:45	44471
o-Xylene	ND	5.0 μg/L	10 06/23/2009 15:45	44471
Surrogate: Dibromofluoromethane	116	88-124 %REC	10 06/23/2009 15:45	44471
Surrogate: 1,2-Dichloroethane-d4	97.1	79-115 %REC	10 06/23/2009 15:45	44471
Surrogate: Toluene-d8	104	80-114 %REC	10 06/23/2009 15:45	44471
Surrogate: Bromofluorobenzene	100	60-123 %REC	10 06/23/2009 15:45	44471

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 26-Jun-09

Client: AECOM Technical Services, Inc. Client Sample ID: TW-2A Lab ID: H1109-04

Project:NOW Corp. SiteCollection Date:06/17/09 11:55

Analyses	Result Qual	RL Unit	ts DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS (25 mL Purge)				SW8260_25_W
Vinyl chloride	0.95	0.50 µg/L	1 06/20/2009 19:28	44437
Chloroethane	ND	0.50 µg/L	1 06/20/2009 19:28	44437
1,1-Dichloroethene	18	0.50 µg/L	1 06/20/2009 19:28	44437
trans-1,2-Dichloroethene	ND	0.50 µg/L	1 06/20/2009 19:28	44437
Methyl tert-butyl ether	ND	0.50 µg/L	1 06/20/2009 19:28	44437
1,1-Dichloroethane	170 E	0.50 µg/L	1 06/20/2009 19:28	44437
cis-1,2-Dichloroethene	18	0.50 µg/L	1 06/20/2009 19:28	44437
1,1,1-Trichloroethane	560 E	0.50 µg/L	1 06/20/2009 19:28	44437
1,2-Dichloroethane	ND	0.50 µg/L	1 06/20/2009 19:28	44437
Benzene	ND	0.50 µg/L	1 06/20/2009 19:28	44437
Trichloroethene	510 E	0.50 µg/L	1 06/20/2009 19:28	44437
Toluene	ND	0.50 µg/L	1 06/20/2009 19:28	44437
1,1,2-Trichloroethane	0.25 J	0.50 µg/L	1 06/20/2009 19:28	44437
Tetrachloroethene	0.21 J	0.50 µg/L	1 06/20/2009 19:28	44437
Chlorobenzene	ND	0.50 µg/L	1 06/20/2009 19:28	44437
Ethylbenzene	ND	0.50 µg/L	1 06/20/2009 19:28	44437
m,p-Xylene	ND	0.50 µg/L	1 06/20/2009 19:28	44437
o-Xylene	ND	0.50 µg/L	1 06/20/2009 19:28	44437
Surrogate: Dibromofluoromethane	122	88-124 %REC	C 1 06/20/2009 19:28	44437
Surrogate: 1,2-Dichloroethane-d4	106	79-115 %REC	C 1 06/20/2009 19:28	44437
Surrogate: Toluene-d8	100	80-114 %REC	C 1 06/20/2009 19:28	44437
Surrogate: Bromofluorobenzene	97.8	60-123 %REC	C 1 06/20/2009 19:28	44437

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 26-Jun-09

Client: AECOM Technical Services, Inc. Client Sample ID: TW-2A Lab ID: H1109-04

Project:NOW Corp. SiteCollection Date:06/17/09 11:55

Analyses	Result	Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS (25 mL Purge)					S	W8260_25_W
Vinyl chloride	ND		25	µg/L	50 06/23/2009 14:45	44471
Chloroethane	ND		25	µg/L	50 06/23/2009 14:45	44471
1,1-Dichloroethene	17	J	25	µg/L	50 06/23/2009 14:45	44471
trans-1,2-Dichloroethene	ND		25	µg/L	50 06/23/2009 14:45	4447 1
Methyl tert-butyl ether	ND		25	µg/L	50 06/23/2009 14:45	44471
1,1-Dichloroethane	160		25	µg/L	50 06/23/2009 14:45	44471
cis-1,2-Dichloroethene	13	J	25	µg/L	50 06/23/2009 14:45	44471
1,1,1-Trichloroethane	560		25	µg/L	50 06/23/2009 14:45	44471
1,2-Dichloroethane	ND		25	µg/L	50 06/23/2009 14:45	44471
Benzene	ND		25	µg/L	50 06/23/2009 14:45	44471
Trichloroethene	430		25	µg/L	50 06/23/2009 14:45	44471
Toluene	ND		25	µg/L	50 06/23/2009 14:45	44471
1,1,2-Trichloroethane	ND		25	µg/L	50 06/23/2009 14:45	44471
Tetrachloroethene	ND		25	µg/L	50 06/23/2009 14:45	44471
Chlorobenzene	ND		25	µg/L	50 06/23/2009 14:45	44471
Ethylbenzene	ND		25	µg/L	50 06/23/2009 14:45	44471
m,p-Xylene	ND		25	µg/L	50 06/23/2009 14:45	44471
o-Xylene	ND		25	µg/L	50 06/23/2009 14:45	44471
Surrogate: Dibromofluoromethane	126	S	88-124	%REC	50 06/23/2009 14:45	44471
Surrogate: 1,2-Dichloroethane-d4	107		79-115	%REC	50 06/23/2009 14:45	44471
Surrogate: Toluene-d8	97.2		80-114	%REC	50 06/23/2009 14:45	44471
Surrogate: Bromofluorobenzene	99.1		60-123	%REC	50 06/23/2009 14:45	44471

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- ${\bf S}$ Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 26-Jun-09

Client: AECOM Technical Services, Inc. Client Sample ID: TW-3

Lab ID: H1109-05

Project: NOW Corp. Site Collection Date: 06/17/09 12:00

Analyses	Result Qual	KL	Units	DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS (25 mL Purge)				sw	8260_25_W
Vinyl chloride	ND	0.50	µg/L	1 06/23/2009 13:16	44471
Chloroethane	ND	0.50	µg/L	1 06/23/2009 13:16	44471
1,1-Dichloroethene	1.5	0.50	µg/L	1 06/23/2009 13:16	44471
trans-1,2-Dichloroethene	ND	0.50	µg/L	1 06/23/2009 13:16	44471
Methyl tert-butyl ether	ND	0.50	µg/L	1 06/23/2009 13:16	44471
1,1-Dichloroethane	12	0.50	µg/L	1 06/23/2009 13:16	44471
cis-1,2-Dichloroethene	0.29 J	0.50	µg/L	1 06/23/2009 13:16	44471
1,1,1-Trichloroethane	3.0	0.50	µg/L	1 06/23/2009 13:16	44471
1,2-Dichloroethane	ND	0.50	µg/L	1 06/23/2009 13:16	44471
Benzene	ND	0.50	µg/L	1 06/23/2009 13:16	44471
Trichloroethene	14	0.50	µg/L	1 06/23/2009 13:16	44471
Toluene	ND	0.50	µg/L	1 06/23/2009 13:16	444 71
1,1,2-Trichloroethane	ND	0,50	µg/L	1 06/23/2009 13:16	44471
Tetrachloroethene	ND	0.50	µg/L	1 06/23/2009 13:16	44471
Chlorobenzene	ND	0.50	µg/L	1 06/23/2009 13:16	44471
Ethylbenzene	ND	0.50	µg/L	1 06/23/2009 13:16	44471
m,p-Xylene	ND	0.50	µg/L	1 06/23/2009 13:16	44471
o-Xylene	ND	0.50	µg/L	1 06/23/2009 13:16	44471
Surrogate: Dibromofluoromethane	121	88-124	%REC	1 06/23/2009 13:16	44471
Surrogate: 1,2-Dichloroethane-d4	106	79-115	%REC	1 06/23/2009 13:16	44471
Surrogate: Toluene-d8	96.3	80-114	%REC	1 06/23/2009 13:16	44471
Surrogate: Bromofluorobenzene	99.4	60-123	%REC	1 06/23/2009 13:16	44471

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 30-Jun-09

Client: AECOM Technical Services, Inc. Client Sample ID: TRIP BLANK Lab ID: H1109-06

Project:NOW Corp. SiteCollection Date:06/17/09 0:00

Analyses	Result	Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS (25 mL Purge)					SW	8260_25_W
Vinyl chloride	ND		0.50	µg/L	1 06/20/2009 17:29	44437
Chloroethane	ND		0.50	µg/L	1 06/20/2009 17:29	44437
1,1-Dichloroethene	ND		0.50	µg/L	1 06/20/2009 17:29	44437
trans-1,2-Dichloroethene	ND		0.50	µg/L	1 06/20/2009 17:29	44437
Methyl tert-butyl ether	ND		0.50	µg/L	1 06/20/2009 17:29	44437
1,1-Dichloroethane	ND		0.50	µg/L	1 06/20/2009 17:29	44437
cis-1,2-Dichloroethene	ND		0.50	µg/L	1 06/20/2009 17:29	44437
1,1,1-Trichloroethane	ND		0.50	µg/L	1 06/20/2009 17:29	44437
1,2-Dichloroethane	ND		0.50	µg/L	1 06/20/2009 17:29	44437
Benzene	ND		0.50	µg/L	1 06/20/2009 17:29	44437
Trichloroethene	ND		0.50	µg/L	1 06/20/2009 17:29	44437
Toluene	ND		0,50	µg/L	1 06/20/2009 17:29	44437
1,1,2-Trichloroethane	ND		0.50	µg/L	1 06/20/2009 17:29	44437
Tetrachloroethene	ND		0.50	µg/L	1 06/20/2009 17:29	44437
Chlorobenzene	ND		0.50	µg/L	1 06/20/2009 17:29	44437
Ethylbenzene	ND		0.50	µg/L	1 06/20/2009 17:29	44437
m,p-Xylene	ND		0.50	µg/L	1 06/20/2009 17:29	44437
o-Xylene	ND		0.50	µg/L	1 06/20/2009 17:29	44437
Surrogate: Dibromofluoromethane	117		88-124	%REC	1 06/20/2009 17:29	44437
Surrogate: 1,2-Dichloroethane-d4	102		79-115	%REC	1 06/20/2009 17:29	44437
Surrogate: Toluene-d8	98.1		80-114	%REC	1 06/20/2009 17:29	44437
Surrogate: Bromofluorobenzene	98.0		60-123	%REC	1 06/20/2009 17:29	44437

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits

E - Value above quantitation range

Mitkem Laboratories	boratories			×							Date: 26-Jun-09	
CLIENT: Work Order: Project:	AECOM Techni H1109 NOW Corp. Site	AECOM Technical Services, Inc. H1109 NOW Corp. Site		SW SW	ANALYTICAL QC SUMMAR SW8260_25_W SW846 8260 VOC bv GC-MS (25 mL Purge)	ANALYTICAL QC SUMMARY REPORT 25_W 8260 VOC by GC-MS (25 mL Purge)	C SUM	MARY Purge)	REPC	DRT		
						•		o o				
<u>.</u> .		SampType: MBLK	TestCode	TestCode: SW8260_25_W		Prep Date:		6	Run IC	Run ID: V6_090620A		
Client ID: MB-44437	4437	Batch ID: 44437	Units	Units: µg/L		Analysis Date:		6	SegNC	SeqNo: 1055118		
Analyte		-	Result	PQL	SPK value	SPK Ref Val	%REC Lo	%REC LowLimit HighLimit	hLimit	RPD Ref Val	%RPD RPDLimit	Qual
Vinyl chloride			ND	0.50								
Chloroethane			ΠN	0.50								
1,1-Dichloroethene	¢)		DN .	0.50								
trans-1,2-Dichloroethene	ethene		d N d N	0.50 07 0								
Metnyi tert-outyi etner 1 1-Dichloroethane	uer .		ND	0.50								
cis-1,2-Dichloroethene	, Jene		ND	0.50								
1,1,1-Trichloroethane	ane		ND	0.50								
1,2-Dichloroethane	đì		ND	0.50								
Benzene			CIN	0.50								
Trichloroethene			UN N	0.50								
1 0 UUEITE 1 1 2 Trickloroothono			CIN CIN	0.50								
Tetrachloroethene			DN ND	0.50								
Chlorobenzene			QN	0.50								
Ethylbenzene			ND	0.50								
m,p-Xylene			UN .	0.50								
o-Xylene			ND	0.50								
Surrogate: Dibrc	Surrogate: Dibromofluoromethane		11.87	0.50	10.00	0	119	88	124	0		
Surrogate: 1,2-L	Surrogate: 1,2-Dichloroethane-d4		10.66	0.50	10.00	0	107	- 62	115	0		
Surrogate: Toluene-d8	∋ne-d8		9.704	0.50	10.00	0	97.0	80	114	0		
Surrogate: Bron	Surrogate: Bromofluorobenzene		9.813	0.50	10.00	0	98.1	60	123	0		
Ç												
ЭQ												
- Alterant												
Qualifiers:	ND - Not Detected	ND - Not Detected at the Reporting Limit		S - S	S - Spike Recovery outside accepted recovery limits	accepted recovery	limits		B - A	nalyte detected in	B - Analyte detected in the associated Method Blank	l Blank
	,	:		I		:						

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

CLIENT:	AECOM T	AECOM Technical Services, Inc.				ANALY	ANALYTICAL QC SUMMARY REPORT	C SUM	MAR	Y REP(JRT		*
Work Order:	H1109				SW82	SW8260 25 W							
Project:	NOW Corp. Site). Site			SW8	46 8260 VC	SW846 8260 VOC by GC-MS (25 mL Purge)	; (25 mL	Purge)				
Sample ID: MB-44471	4471	SampType: MBLK	TestCode	TestCode: SW8260_25_	5_W		Prep Date:	06/23/2009	60	Run IC	Run ID: V6_090623A		
Client ID: MB-44471	4471	Batch ID: 44471	Units	Units: µg/L			Analysis Date:	06/23/2009	60	SeqNo	SeqNo: 1056347		
Analyte			Result	PQL	-	SPK value	SPK Ref Val	%REC L	%REC LowLimit HighLimit	ghLimit	RPD Ref Val	%RPD RPDLimit	Qual
Vinyt chloride		-	ΠŊ	0.50									
Chloroethane			ND	0.50									
1,1-Dichloroethene			ND	0.50									
trans-1,2-Dichloroethene	sthene		ND	0.50									
Methyl tert-butyl ether	her		ND	0.50									
1,1-Dichloroethane	¢		QN .	0.50									
cis-1, Z-Uichioroethene	lene			000									
1, 1, 1-1 IICIIIOIOEIIIai 1 2 Dichlaroethane	2		CIN	05.0									
I,z-bidiioloculalie Renzene			DN	0.50									
Trichloroethene			UN	0.50									
Toluene			ND	0.50									
1,1,2-Trichloroethane	ne		ND	0.50									
Tetrachloroethene			UN	0.50									
Chlorobenzene			UN	0.50									
Ethylbenzene			UN	0.50									
m,p-Xylene			UN	0.50									
o-Xylene			UN .	0.50									
Surrogate: Dibromofluoromethane	mofluorometha	ne	11.90	0.50		10.00	0	119	88	124	0		
Surrogate: 1,2-Dichloroethane-d4	ichloroethane-d	4	10.54	05.0		10.00	0	105	79	115	0		
Surrogate: Toluene-d8	ne-d8		9.836	0.50		10.00	0	98.4	80	114	0		
Surrogate: Bromofluorobenzene	ofluorobenzene	æ	10.04	0.50		10.00	0	100	60	123	0		
													1
0								÷					
all the second		-							-				
Qualifiers:	ND - Not Detec	ND - Not Detected at the Reporting Limit			S - Spik	e Recovery outside	S - Spike Recovery outside accepted recovery limits	limits		B - A	nalyte detected in	B - Analyte detected in the associated Method Blank	d Blank
	J - Analvte dete	J - Analyte detected below quantitation limits	its		R - RPC	R - RPD outside accepted recovery limits	recovery limits						
	•						.						

CLIENT:	AECOM	AECOM Technical Services. Inc.			ANALY	ANALYTICAL OC SUMMARY REPORT	C SUM	MAR	Y REP(ORT		
Work Order:	H1109	- - -		SW8	SW8260_25_W							
Project:	NOW Corp. Site	p. Site		SWS	SW846 8260 VOC by GC-MS (25 mL Purge)	DC by GC-M	S (25 mL	Purge)				
Sample ID: LCS-44437	-4437	SampType: LCS	TestCode	TestCode: SW8260_25_W		Prep Date:	: 06/20/2009	6(Run ID:	D: V6_090620A		
Client ID: LCS	LCS-44437	Batch ID: 44437	Units	Units: µg/L		Analysis Date:	e: 06/20/2009	60	SeqN	SeqNo: 1055119		
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC Lo	%REC LowLimit HighLimit	ghLimit	RPD Ref Val	%RPD RPDLimit	Qual
Vinyl chloride			10.93	0.50	10.00	0	109	27	120	0		
Chloroethane			10.44	0.50	10.00	0	104	75	135	0		
1,1-Dichloroethene	0		9.814	0.50	10.00	0	98.1	81	125	0		
trans-1,2-Dichloroethene	ethene		9.915	0.50	10.00	0	99.1	60	137	0		
Methyl tert-butyl ether	ther		10.52	0.50	10.00	0	105	61	134	0		
1,1-Dichloroethane	ē		10.39	0.50	10.00	0	104	82	120	0		
cis-1,2-Dichloroethene	hene	-	10.29	0.50	10.00	0	103	84	116	0		
1,1,1-Trichloroethane	ane		11.64	0.50	10.00	0	116	80	124	0		1.
1,2-Dichloroethane	ē		12.15	0.50	10.00	0	121	86	117	0	. •	S
Benzene			9.973	0.50	10.00	0	99.7	81	121	0		
Trichloroethene			10.17	0.50	10.00	0.	102	74	123	0	-	
Toluene			10.49	0.50	10.00	0 0	105	80 0	117	0		
1,1,2-Trichloroethane	ane		11.04	0.50	10.00	0 0	110	ε ε ε	121	0		
Tetrachloroethene	m		10.35	0.50	10.00	0 0	103	74	115	0		
Chlorobenzene			10.17	0.50	10.00	0 0	102	8 0	112	0 0		
Ethylbenzene			/T•0T	0.00	00.01	5 0	7 D T	α/	011	D I		
m,p-Xylene			20.57	0.50	20.00		103	87	114	0 0		
o-Xylene			c/ • 0T		00.01	⊃ <	T U G	α7 9 7	114	0		
Surrogate: Dibromofluoromethane	omofluorometh	ane	10.92	0.50	10.00	0 0	109	20 C	124	Ö Ö		
Surrogate: 1,2-Dichloroethane-d4	Dichloroethane-	d 4	10.38	0.50	10.UU	0 0		67	411 	0		
Surrogate: Toluene-d8	ene-d8		9.693	0.50	10.00	0	96.9	80	114	0		
Surrogate: Bron	Surrogate: Bromofiuorobenzene	e)	11.05	0.50	10.00	0	110	60	123	0		
							7					
							-					
0												
Ø												
under the second se												
120.2.2										-		
Qualifiers:	ND - Not Dete	ND - Not Detected at the Reporting Limit		S - Sp	S - Spike Recovery outside accepted recovery limits	e accepted recovery	y limits		B - A	Analyte detected in	B - Analyte detected in the associated Method Blank	od Blank
I	I - Analvte dei	I - Analyte detected below quantitation limits	nite	18 - RI	R - RPD outside accented recovery limits	recovery limits						
		mannah wara anan			Jaar and and A	f 12.1.221						

CLIENT:	AECOM T	AECOM Technical Services, Inc.			ANALY	ANALYTICAL OC SUMMARY REPORT		IMAR	Y REP	ORT		
Work Order:	H1109	č		MS	SW8260_25_W							
Project:	NUW Corp. Site	o. Site		SW	SW846 8260 V(VOC by GC-MS (25 mL Purge)	(25 mL	Purge)				
Sample ID: LCS-44471	4471	SampType: LCS	TestCode	TestCode: SW8260_25_W		Prep Date:	06/23/2009	60	Run	Run ID: V6_090623A	-	
Client ID: LCS-	LCS-44471	Batch ID: 44471	Units	Units: µg/L		Analysis Date:	06/23/2009	60	SeqN	SeqNo: 1056348		
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC L	%REC LowLimit HighLimit	ighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Vinyl chloride			9.750	0.50	10.00	0	97.5	77	120	0		
Chloroethane			9.708	0.50	10.00	0	97.1	75	135	0		
1,1-Dichloroethene	Ø		8.750	0.50	10.00	0	87.5	81	125	0		
trans-1,2-Dichloroethene	ethene		8.924	0.50	10.00	0	89.2	60	137	0		
Methyl tert-butyl ether	ther		10.18	0.50	10.00	0	102	61	134	0		
1,1-Dichloroethane	0		9.557	0.50	10.00	0	95.6	82	120	0		
cis-1,2-Dichloroethene	hene		9.318	0.50	10.00	0	93.2	84	116	0		
1,1,1-Trichloroethane	ane		10.67	0.50	10.00	0	107	80	124	0		
1,2-Dichloroethane	e		12.19	0.50	10.00	0	122	86	117	0		S
Benzene			9.100	0.50	10.00	0	91.0	81	121	0		
Trichloroethene			9.176	0.50	10.00	0	91.8	74	123	0		
Toluene			9.706	0.50	10.00	0	97.1	88	117	0		
1,1,2-Trichloroethane	ane		10.75	0.50	10.00	0	107	83	121	0		
Tetrachloroethene	A *		9.231	0.50	10.00	0	92.3	74	115	0		
Chlorobenzene			9.462	0.50	10.00	0	94.6	83	112	0		
Ethylbenzene			9.286	0.50	10.00	0	92.9	87	110	0		
m,p-Xylene			19.03	0.50	20.00	0	95.1	87	114	0		
o-Xylene			9.918	0.50	10.00	0	99.2	84	114	0		
Surrogate: Dibromofluoromethane	mofluorometha	ne	11.17	0.50	10.00	0	112	88	124	0		
Surrogate: 1,2-L	Surrogate: 1,2-Dichloroethane-d4	14	9.942	0.50	10.00	0	99.4	79	115	0		
Surrogate: Toluene-d8	sne-d8		9.605	0.50	10.00	0	96.0	80	114	0		
Surrogate: Bron	Surrogate: Bromofluorobenzene		11.14	0.50	10.00	0	111	60	123	0		
			-									
20												

R - RPD outside accepted recovery limits

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Qualifiers:

0015

M Technical Services, Inc.	
AECOM	H1100

CLIENT:

ANALYTICAL QC SUMMARY REPORT SW8260_25_W

Work Order: H1109			MS	SW8260 25 W								
Project: NOW Corp. Site	. Site		MS	SW846 8260 VOC by GC-MS (25 mL Purge)	OC by GC-MS	(25 mL	Purge)					
Sample ID: LCSD-44437	SampType: LCSD	TestCode	TestCode: SW8260_25_W		Prep Date:	06/20/2009	60	Run IC	Run ID: V6_090620A			
Client ID: LCSD-44437	Batch ID: 44437	Units	Units: µg/L		Analysis Date:	06/20/2009	60	SeqNo	SeqNo: 1055120			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC L	%REC LowLimit HighLimit	lighLimit	RPD Ref Val	%RPD RPDLìmit	DLìmit	Qual
Vinyl chloride		11.76	0.50	10.00	0	118	77	120	10.93	7.29	40	
Chloroethane		10.96	0.50	10.00	0	110	75	135	10.44	4.86	40	
1,1-Dichloroethene		10.02	0.50	10.00	0	100	81	125	9.814	2.03	40	
trans-1,2-Dichloroethene		10.24	0.50	10.00	0	102	60	137	9.915	3.18	40	
Methyl tert-butyl ether		10.76	0.50	10.00	0	108	61	134	10.52	2.33	40	
1,1-Dichloroethane		10.43	0.50	10.00	0	104	82	120	10.39	0.41	40	
cis-1,2-Dichloroethene		10.49	0.50	10.00	0	105	84	116	10.29	1.93	40	
1,1,1-Trichloroethane		11.43	0.50	10.00	 0	114	80	124	11.64	1.85	40	
1,2-Dichloroethane		11.80	0.50	10.00	0	118	86	117	12.15	2.88	40	ß
Benzene		10.18	0.50	10.00	0	102	81	121	9.973	2.06	40	
Trichloroethene		10.30	0.50	10.00	0	103	74	123	10.17	1.25	40	
Toluene		10.59	0.50	10.00	0	106	88	117	10.49	1.01	40	
1,1,2-Trichloroethane		11.37	0.50	10.00	0	114	83	121	11.04	2.95	40	
Tetrachloroethene		10.38	0.50	10.00	0	104	74	115	10.35	0.325	40	
Chlorobenzene		10.23	0.50	10.00	0	102	83	112	10.17	0.545	40	
Ethylbenzene		10.38	0.50	10.00	0	104	87	110 -	10.17	2.04	40	
m,p-Xylene		20.87	0.50	20.00	0	104	87	114	20.57	1.43	40	
o-Xylene		10.93	0.50	10.00	0	109	84	114	10.75	1.69	40	
Surrogate: Dibromofluoromethane	ne	10.87	0.50	10.00	0	109	88	124	0			
Surrogate: 1,2-Dichloroethane-d4	4	10.72	0.50	10.00	0	107	79	115	0			
Surrogate: Toluene-d8		9.752	0.50	10.00	0	97.5	08	114	0			
Surrogate: Bromofluorobenzene		10.80	0.50	10.00	0	108	60	123	0			

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

Mitkem Labo	ratories	Da	te:	29-Jun-0	9		
Client:	AECOM Technical Services, Inc.						
Client Sample ID:	EFF-061709	Proje	ct:	NOW Co	orp. Site		
Lab ID:	H1109-01	Collection Da	te:	06/17/09	11:20		
Analyses		Result Qual R	L	Units	DF	Date Analyzed	Batch ID

ND

5.0 mg/L

Qualifiers:

EPA 1664 -- Oil & Grease, HEM

Oil & Grease, Total Recoverable

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

E1664

44540

1 06/29/2009 0:00

Date: 29-Jun-09

Client: AECOM Technical Services, Inc. Client Sample ID: INF-061709 Lab ID: H1109-02

Project:NOW Corp. SiteCollection Date:06/17/09 11:40

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
EPA 1664 Oil & Grease, HEM				E1664
Oil & Grease, Total Recoverable	ND	5.0 mg/L	1 06/29/2009 0:00	44540

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

ratories	
Labo	
Mitkem	

60
Jun
29-
ate:
ä

CLIENT:	AECOM T	AECOM Technical Services, Inc.			ANALY	ANALYTICAL QC SUMMARY REPORT	SUMMA	RY REPO	DRT		
Work Order: Project:	H1109 NOW Corp. Site	ı. Site			E1664 EPA 1664 Oil & Grease, HEM	د Grease, HEM	ų				
Sample ID: MB-44540 Client ID: MB-44540	540 540	SampType: MBLK Batch ID: 44540	TestCode: E1664 Units: mg/L	Code: E1664 Units: mg/L		Prep Date: Analysis Date:	Prep Date: 6/26/2009 Ilysis Date: 6/29/2009	Run II SeqN	Run ID: MANUAL_090629B SeqNo: 1058670	0629B	
Analyte Oil & Grease, Total Recoverable	Recoverable		Result	PQL 5.0	SPK value	SPK Ref Val	SPK Ref Val %REC LowLimit HighLimit	t HighLimit	RPD Ref Val	%RPD RPDLimit Qual	Qual
Sample ID: LCS-44540	4540	SampType: L CS	TestCode: E1664	E1664		Prep Date:	Prep Date: 6/26/2009	Run II	Run ID: MANUAL_090629B)629B	
Client ID: LCS-44540	4540	Batch ID: 44540	Units:	Units: mg/L		Analysis Date: 6/29/2009	6/29/2009	SeqN	SeqNo: 1058668		
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	t HighLimit	RPD Ref Vai	%RPD RPDLimit	Qual
Oil & Grease, Total Recoverable	Recoverable		32.90	5.0	40.00	0	82.3 78	114	0		
Sample ID: LCSD-44540	44540	SampType: LCSD	TestCode: E1664	E1664		Prep Date:	6/26/2009	Run II	Run ID: MANUAL_090629B)629B	
Client ID: LCSD-44540	-44540	Batch ID: 44540	Units:	Units: mg/L		Analysis Date:	6/29/2009	SeqN	SeqNo: 1058669		
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	t HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Oil & Grease, Total Recoverable	Recoverable		35.10	5.0	40.00	0	87.8 78	114	32.90	6.47 18	

0019

Qualifiers:

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Date: 26-Jun-09

Client: AECOM Technical Services, Inc. Client Sample ID: EFF-061709 Lab ID: H1109-01

Project:NOW Corp. SiteCollection Date:06/17/09 11:20

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 6010 Metals by ICP				SW6010_W
Aluminum	ND	200 µg/L	1 06/23/2009 10:21	44459
Arsenic	ND	20 µg/L	1 06/23/2009 10:21	44459
Barium	61 J	200 µg/L	1 06/23/2009 10:21	44459
Chromium	ND	20 µg/L	1 06/23/2009 10:21	44459
Copper	ND	25 µg/L	1 06/23/2009 10:21	44459
Iron	ND	200 µg/L	1 06/23/2009 10:21	44459
Manganese	48 BJ	50 µg/L	1 06/23/2009 10:21	44459
Nickeł	ND	50 µg/L	1 06/23/2009 10:21	44459
Zinc	12 J	50 µg/L	1 06/23/2009 10:21	44459
SW846 7470 Mercury by FIA				SW7470
Mercury	ND	0.20 µg/L	1 06/23/2009 6:29	44461

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits

E - Value above quantitation range

Date: 26-Jun-09

Client: AECOM Technical Services, Inc. Client Sample ID: INF-061709 Lab ID: H1109-02

Project:NOW Corp. SiteCollection Date:06/17/09 11:40

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 6010 Metals by ICP				SW6010_W
Aluminum	ND	200 µg/L	1 06/23/2009 10:24	44459
Arsenic	ND	20 µg/L	1 06/23/2009 10:24	44459
Barium	64 J	200 µg/L	1 06/23/2009 10:24	44459
Chromium	9.6 J	20 µg/L	1 06/23/2009 10:24	44459
Copper	ND	25 µg/L	1 06/23/2009 10:24	44459
Iron	88 J	200 µg/L	1 06/23/2009 10:24	44459
Manganese	95 B	50 µg/L	1 06/23/2009 10:24	44459
Nickel	ND	50 µg/L	1 06/23/2009 10:24	44459
Zinc	13 J	50 μg/L	1 06/23/2009 10:24	44459
SW846 7470 Mercury by FIA				SW7470
Mercury	ND	0.20 µg/L	1 06/23/2009 6:31	44461

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Mitkem Laboratories	oratories							Date: 26-Jun-09	-
CLIENT: Work Order: Project:	AECOM Technical Services, Inc. H1109 NOW Corp. Site	lc.	ANALYTICAL (SW6010_W SW846 6010 Metals by ICP	TICAL QC		ANALYTICAL QC SUMMARY REPORT W 6010 - Metals by ICP	ORT		
Sample ID: MB-44459 Client ID: MB-44459 Analyte	1459 SampType: MBLK 1459 Batch ID: 44459	TestCode: SW6010_N Units: µg/L Result POL	SPK value	Prep Date: Analysis Date: SPK Ref Val		wl imit Hichl imi	Run ID: OPTIMA3_090623C SeqNo: 1056431 f RPD Ref Val %RD	0623C	
Aluminum Arsenic Barium Chromium Copper Iron Manganese Nickel Zinc									
Sample ID: LCS-44459 Client ID: LCS-44459	4459 SampType: LCS 4459 Batch ID: 44459	Code: S Inits: µ	~	Prep Date: Analysis Date:	6/22/2009 6/23/2009	Rur Sec	Run ID: OPTIMA3_090623C SeqNo: 1056432	10623C	
Analyte		Result F	SPK value	SPK Ref Val	<u></u>	LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Aluminum		9292 200	9100	0 0	102		0 0		
Barium			9100	0 0	105	80 120 80 120	0 0		
Chromium		963.8 20	910.0	0	106		0		
Copper			1130	0	105		0		
Iron			4550	0 (107		0		
Manganese Nickel		2456 2407 50 50	0122	5 0	106	80 120 80 120	0 0		Ш
Zinc			2270	0 0	107	80 120	00		
Ø									
022									
Qualifiers:	ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits	it limits	S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits	e accepted recovery l recovery limits	limits	Ω.	- Analyte detected in	B - Analyte detected in the associated Method Blank	Blank

CLIENT:	AECOM 7	AECOM Technical Services, Inc.			ANALY	TICAL QC	ANALYTICAL QC SUMMARY REPORT	EPORT			
Project:	NOW Corp. Site	p. Site			SW /4/0 SW846 7470 Mercury by FIA	srcury by FIA					
Sample ID: MB-44461 Client ID: MB-44461	44461 44461	SampType: MBLK Batch ID: 44461	TestCod Unit	TestCode: SW7470 Units: µg/L		Prep Date: 6/22/2009 Analysis Date: 6/23/2009	Prep Date: 6/22/2009 Ilysis Date: 6/23/2009	Run ID: FIMS1_090623B SeqNo: 1055913	90623B		
Analyte			Result	PQL	SPK value	SPK Ref Val	SPK Ref Val %REC LowLimit HighLimit		Val %F	RPD Ref Val %RPD RPDLimit Qual	Qual
Mercury			ΠN	0.20					-		
Sample ID: LCS-44461 Client ID: LCS-44461	-44461 -44461	SampType: LCS Batch ID: 44461	TestCod	TestCode: SW7470 Units: µg/L		Prep Date: Analysis Date:	Prep Date: 6/22/2009 Ilysis Date: 6/23/2009	Run ID: FIMS1_090623B SeqNo: 1055914	90623B		
Analyte			Result	PQL	SPK value	SPK Ref Val	SPK Ref Val %REC LowLimit HighLimit	lit RPD Ref Val		%RPD RPDLimit Qual	Qual
Mercury			4.114	0.20	4.550	0	90.4 80 120	0			

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits
R - RPD outside accepted recovery limits

Date: 23-Jun-09

Client: AECOM Technical Services, Inc. Client Sample ID: EFF-061709 Lab ID: H1109-01

Project:NOW Corp. SiteCollection Date:06/17/09 11:20

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SM 2540C TOTAL DISSOLVED SOLIDS				SM2540_TDS
Total Dissolved Solids	230	10 mg/L	1 06/19/2009 16:42	44429
SM 2540D TOTAL SUSPENDED SOLIDS				SM2540_TSS
Total Suspended Solids	ND	10 mg/L	1 06/19/2009 16:36	44430
SW846 9012 Total Cyanide				SW9012_W
Cyanide	ND	20 µg/L	1 06/22/2009 14:48	44462

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Client: AECOM Technical Services, Inc. Client Sample ID: INF-061709 Lab ID: H1109-02

Project:NOW Corp. SiteCollection Date:06/17/09 11:40

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SM 2540C TOTAL DISSOLVED SOLIDS				SM2540_TDS
Total Dissolved Solids	250	10 mg/L	1 06/19/2009 16:54	44429
SM 2540D TOTAL SUSPENDED SOLIDS				SM2540_TSS
Total Suspended Solids	11	10 mg/L	1 06/19/2009 16:43	44430
SW846 9012 Total Cyanide				SW9012_W
Cyanide	ND	20 µg/L	1 06/22/2009 14:50	44462

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

CLIENT: AECON Work Order: H1109	AECOM Technical Services, Inc. H1109		ANALY SM2540_TDS	TICAL QC	ANALYTICAL QC SUMMARY REPORT TDS	PORT		
Project: NOW	NOW Corp. Site	SN	SM 2540C TOTAL DISSOLVED SOLIDS	AL DISSOLV	ED SOLIDS			
Sample ID: MB-44429 Client ID: MB-44429	SampType: MBLK Batch ID: 44429	TestCode: SM2540_TDS Units: mg/L		Prep Date: Analysis Date:	6/19/2009 6/19/2009	Run ID: MANUAL_090619A SeqNo: 1055024	319A	
Analyte Totat Dissolved Solids		Result PQL ND 10	SPK value	SPK Ref Val	%REC LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit Qual	Qual
Sample ID: LCS-44429 Client ID: LCS-44429	SampType: LCS Batch ID: 44429	TestCode: SM2540_TDS Units: mg/L		Prep Date: Analysis Date:	6/19/2009 6/19/2009	Run ID: MANUAL_090619A SeqNo: 1055025	519A	
Analyte Total Dissolved Solids		Result PQL 298.0 10	SPK value 308.0	SPK Ref Val	%REC LowLimit HighLimit 96.8 80 120	RPD Ref Val 0	%RPD RPDLimit Qual	Qual
Sample ID: H1109-01BDUP Client ID: EFF-061709	P SampType: DUP Batch ID: 44429	TestCode: SM2540_TDS Units: mg/L		Prep Date: Analysis Date:	6/19/2009 6/19/2009	Run ID: MANUAL_090619A SeqNo: 1055027	619A	
Analyte		sult PC	SPK value	SPK Ref Val	%REC LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit Qual	Qual
Total Dissolved Solids		256.0 10	0	0	0	232.0	9.84 20	

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Date: 23-Jun-09

Mitkem Laboratories

0026

Qualifiers:

CLJENT: Work Order: Project:	AECOM Technic H1109 NOW Corn Site	AECOM Technical Services, Inc. H1109 NOW Corn Site		MS MS	ANALY SM2540_TSS SM 2540D TOT	ANALYTICAL QC SUMMA SM2540_TSS SM 2540D TOTAL SHISPENDED SOLIDS	ANALYTICAL QC SUMMARY REPORT 	REPO	RT		
Sample ID: MB-44430	4430	SampType: MBLK	TestCod	TestCode: SM2540_TSS		Prep Date:	6/19/2009	Run ID:	Run ID: MANUAL_090619B	3619B	
Client ID: MB-44430	4430	Batch ID: 44430	Unit	Units: mg/L		Analysis Date:	6/19/2009	SeqNo:	SeqNo: 1055090		
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	ıLimit	RPD Ref Val	%RPD RPDLimit	Qual
Total Suspended Solids	olids		DN	10							
Sample ID: LCS-44430	14430	SampType: L CS	TestCod	TestCode: SM2540_TSS		Prep Date:	6/19/2009	Run ID:	Run ID: MANUAL_090619B)619B	
Client ID: LCS-44430	14430	Batch ID: 44430	Cuit	Units: mg/L		Analysis Date:	6/19/2009	SeqNo:	SeqNo: 1055091		
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	Limit	RPD Ref Val	%RPD RPDLimit	Qual
Total Suspended Solids	olids		46.00	10	42.40	0	108 80	120	0		
Sample ID: H1109-01BDUP	3-01BDUP	SampType: DUP	TestCod	TestCode: SM2540_TSS		Prep Date:	6/19/2009	Run ID:	Run ID: MANUAL_090619B)619B	
Client ID: EFF-0	EFF-061709	Batch ID: 44430	Unit	Units: mg/L		Analysis Date:	6/19/2009	SeqNo:	SeqNo: 1055093		
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	ıLimit	RPD Ref Val	%RPD RPDLimit	Qual
Total Suspended Solids	olids		ND	10	0	0	0	0	0	0 20	
"Harfi											
THE PARTY											

S - Spike Recovery outside accepted recovery limitsR - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Qualifiers:

CLIENT:	AECOM	AECOM Technical Services, Inc.	, a		ANALY'	ANALYTICAL QC SUMMARY REPORT	SUMMA	RY REPC)RT		
Work Order: Project:	H1109 NOW Corp. Site	rp. Site		NS NS	SW9012_W SW846 9012 Total Cyanide	al Cyanide					
Sample ID: MB-4462 Client ID: MB-4462	44462 44462 44462	SampType: MBLK Batch ID: 44462	TestCode: SW9 Units: µg/L	TestCode: SW9012_W Units: µg/L		Prep Date: 6/22/2009 Analysis Date: 6/22/2009	6/22/2009 6/22/2009 6/22/2009	Run IC SeqNo	Run ID: LACHAT1_090622A SeqNo: 1055679	0622A	
Analyte Cyanide			Result	PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Sample ID: LCS-44462 Client ID: LCS-44462	-4462 -4462	SampType: LCS Batch ID: 44462	TestCode: SW9 Units: µg/L	TestCode: SW9012_W Units: µg/L		Prep Date: 6/22/2009 Analysis Date: 6/22/2009	6/22/2009 6/22/2009	Run IC SeqNo	Run ID: LACHAT1_090622A SeqNo: 1055694)622A	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Cyanide			110.6	20	100.0	0	111 80	120	0		

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Qualifiers:

S - Spike Recovery outside accepted recovery limits
R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

18/Jun/09 11:45

WorkOrder: H1109

Client ID: EARTH_NY	Case:	HC Due: 07/06/09	Report Level: LEVEL 2
Project: NOW Corp. Site	SDG:	Fax Due:	EDD:
Location:	PO: 94017.02		
Comments: N/A			

III 00-010 EFF de(170) 60(172000 120 60(182000 Aquesis Nu2540_TS Mere for VOCA, Nu2540_TS III 00-010 EFF de(170) 60(172000 120 60(182000 Aquesis SN2540_TS 1 1 1 1 III 00-010 EFF de(170) 60(172000 120 60(182000 Aquesis SN0540_TS 1	Lab Samp ID Client Sample ID	ample ID	Collection Date Date Recv ⁴ d	Matrix	Test Code	Lab Test Comments	HS HT MS SEL Storage
EFF-601709 061172009 071220 071230 040005 SM2340_TSS		709	06/17/2009 11:20 06/18/2009	Aqueous	SW8260_25_W	use for VOCs,	>
EFF-061709 06/172009 11:20 06/182.000 Aqueous SW912_W See SEL list See EFF-061709 06/172.009 11:20 06/182.000 Aqueous SW010_W See SEL list See EFF-061709 06/172.009 11:20 06/182.000 Aqueous SW040_W See SEL list See EFF-061709 06/172.009 11:20 06/182.000 Aqueous SW260_25 W use for VOCs, See DFF-061709 06/172.009 11:40 06/182.000 Aqueous SW250_25 W use for VOCs, See DFF-061709 06/172.009 11:40 06/182.000 Aqueous SW250_25 W use for VOCs, See DFF-061709 06/172.009 11:40 06/182.000 Aqueous SW250_25 W use for VOCs, See DFF-061709 06/172.009 11:40 06/182.000 Aqueous SW260_25 W use for VOCs, See See DFF-061709 06/172.009 11:40 06/182.000 Aqueous SW260_2 SF use for VOCs, See See DFF-061709 06/172.009 11:40 06/182.000 Aqueous SW260_2 SF use for VOCs, See See		709	06/17/2009 11:20 06/18/2009	Aqueous	SM2540_TDS		□ F2
EFF-061709 06/17/2009 11:20 06/18/2009 Aqueous SW9012_W Ses EL list I I EFF-061709 06/17/2009 11:20 06/18/2009 Aqueous SW6010_W Ses EL list I I EFF-061709 06/17/2009 11:20 06/18/2009 Aqueous SW6010_W Ses EL list I I FF-061709 06/17/2009 11:40 06/18/2009 Aqueous SW5260_25_W use for VOCs, I I I NF-061709 06/17/2009 11:40 06/18/2009 Aqueous SW2540_TDS use for VOCs, I I I NF-061709 06/17/2009 11:40 06/18/2009 Aqueous SW2540_TDS use for VOCs, I I I NF-061709 06/17/2009 11:40 06/18/2009 Aqueous SW261_TSS use for VOCs, I I I NF-061709 06/17/2009 11:40 06/18/2009 Aqueous SW261_TSS use for VOCs, I I I NF-061709 06/18/2009 Aqueous SW201_TSS		Subjective Vice			SM2540_TSS		F2
EFF-JG1709 D6/17/2009 11:20 06/17/2009 11:20 06/17/2009 11:20 06/17/2009 11:30 06/17/2009 11:40 Swe010_w See SEL list See SEL list <th< td=""><td></td><td>709</td><td>06/17/2009 11:20 06/18/2009</td><td>Aqueous</td><td>SW9012_W</td><td></td><td></td></th<>		709	06/17/2009 11:20 06/18/2009	Aqueous	SW9012_W		
BF-Jolity Ses SLI list Ses SLI list Ses SLI list Ses SLI list BF-Jolity 06/17/2009 11:20 06/18/2009 Aqueous B16/4 Ses SLI S Ses SLI S NF-Jolity 06/17/2009 11:40 06/18/2009 Aqueous SW25/0_TDS Use for VOCs, use for VOCs, use for VOCs, use for VOCs, Ses SLI S SM25/0_TDS NF-Jolity 06/17/2009 11:40 06/18/2009 Aqueous SW25/0_TDS SW25/0_TDS SW25/0_TDS NF-Jolity 06/17/2009 11:40 06/18/2009 Aqueous SW25/0_TDS SW25/0_TDS SW25/0_TDS NF-Jolity 06/17/2009 11:40 06/18/2009 Aqueous SW201_UV Ses SLI Ist SW201_UV NF-Jolity 06/17/2009 11:40 06/18/2009 Aqueous SW601_UV Ses SEL Ist Ses NF-Jolity 06/17/2009 11:40 06/18/2009 Aqueous SW201_UV Ses SEL Ist Ses Ses NF-Jolity 06/17/2009 11:40 06/18/2009 Aqueous SW201_UV Ses SEL Ist Ses Ses NF-Jolity 06/17/2009 11:40 06/18/2009 Aqueous SW201_UV Ses SEL Ist Ses		709	06/17/2009 11:20 06/18/2009	Aqueous	SW6010_W	See SEL list	
EFF-061709 06/172009 11:20 06/182009 Aqueous E1664 use for VOCs,					SW7470	See SEL list	M5
INT-061709 06/17/2009 11:40 06/18/2009 Aqueous SW260_25 w use for VOC3, we for VOC3,		709	06/17/2009 11:20 06/18/2009	Aqueous	E1664		F2
INF-061709 06/17/2009 11:40 6/18/2009 Aqueous SM2540_TSS Image: Control Contrecont Control Control Contrecont Control Contrel Cont		709	06/17/2009 11:40 06/18/2009	Aqueous	SW8260_25_W	use for VOCs,	
INF-061709 06/17/2009 11:40 66/18/2009 Aqueous SW9012_W Immodel (11000) 10 10 INF-061709 06/17/2009 11:40 06/18/2009 Aqueous SW6010_W See SEL list 10 10 INF-061709 06/17/2009 11:40 06/18/2009 Aqueous SW6010_W See SEL list 10 10 INF-061709 06/17/2009 11:40 06/18/2009 Aqueous E1664 See SEL list 10 10 10 INF-061709 06/17/2009 11:50 06/18/2009 Aqueous SW2560_25_W use for VOCs, 10 10 ITW-1 06/17/2009 11:50 06/18/2009 Aqueous SW2560_25_W use for VOCs, 10 10 ITW-3 06/17/2009 11:50 06/18/2009 Aqueous SW2560_25_W use for VOCs, 10 10 ITW-3 06/17/2009 11:50 06/18/2009 Aqueous SW2560_25_W use for VOCs, 10 10 ITW-3 06/17/2009 11:50 06/18/2009 Aqueous SW2560_25_W use for VOCs, 10 10		709	06/17/2009 11:40 06/18/2009	Aqueous	SM2540_TDS		□ F2
INF-061709 06/17/2009 11:40 0/18/2009 Aqueous SW9012_W See SEL list I INF-061709 06/17/2009 11:40 06/18/2009 Aqueous SW010_W See SEL list I I INF-061709 06/17/2009 11:40 06/18/2009 Aqueous SW6470 See SEL list I I INF-061709 06/17/2009 11:40 06/18/2009 Aqueous E1664 See SEL list I I I IVV-1 06/17/2009 11:50 06/18/2009 Aqueous SW8260_25_W use for VOCs, I I IVV-3 06/17/2009 11:50 06/18/2009 Aqueous SW8260_25_W use for VOCs, I I IVV-3 06/17/2009 11:50 06/18/2009 Aqueous SW8260_25_W use for VOCs, I I I					SM2540_TSS		F2
INF-061709 06/17/2009 11:40 06/18/2009 Aqueous SW6010_W See SEL list Image: See SEC		709	06/17/2009 11:40 06/18/2009	Aqueous	SW9012_W		
INF-061709 06/17/2009 11:40 06/18/2009 Aqueous E1664 1 TW-1 06/17/2009 11:50 06/18/2009 Aqueous SW8260_25_W use for VOCs, 1 1 TW-2A 06/17/2009 11:55 06/18/2009 Aqueous SW8260_25_W use for VOCs, 1 2 TW-3 06/17/2009 11:55 06/18/2009 Aqueous SW8260_25_W use for VOCs, 1 2 TW-3 06/17/2009 11:55 06/18/2009 Aqueous SW8260_25_W use for VOCs, 1 2 TW-3 06/17/2009 11:56 06/18/2009 Aqueous SW8260_25_W use for VOCs, 1 2		709		Aqueous	SW6010_W	See SEL list	
INF-061709 06/17/2009 11:40 06/18/2009 Aqueous E1664 Image: Constraint of the constr					SW7470	See SEL list	□ M5
TW-1 06/17/2009 11:50 06/18/2009 Aqueous SW8260_25_W use for VOCs, Image: Control in the image: Con		709	06/17/2009 11:40 06/18/2009	Aqueous	E1664		F2
TW-2A 06/17/2009 11:55 06/18/2009 Aqueous SW8260_25_W use for VOCs, Image: Construction of the for VOCs, Image: Consthe for VOCs, <				Aqueous	SW8260_25_W	use for VOCs,	
TW-3 $06/17/2009$ 12:00 $06/18/2009$ Aqueous $SW8260_25_W$ use for VOCs,HS = Sample logged in but all tests have been placed on holdHT = Sample/Test logged in but test has been placed on hold				Aqueous	SW8260_25_W	use for VOCs,	
				Aqueous	SW8260_25_W	use for VOCs,	
	1029				HS = Sample logged HT = Sample/Test lo	l in but all tests have been placed on ho ogged in but test has been placed on ho	ld ld

Lab Client Rep: Edward A Lawler

Page 01 of 02

Client ID: EARTH_NY Project: NOW Corp. Site Location: Comments: N/A	S S	Case: SDG: PO: 94017.02	HC Due: 07/06/09 Fax Due:	Report Level: LEVEL 2 EDD:
Lab Samp ID Client Sample ID Collection Date Date Recv'd Matrix		Test Code	Lab Test Comments	HS HT MS SEL Storage
H1109-06A TRIP BLANK 06/17/2009 0:00 06/18/2009	009 Aqueous	SW8260_25_W	use for VOCs,	NoA D

HS = Sample logged in but all tests have been placed on hold HT = Sample/Test logged in but test has been placed on hold Page 02 of 02

Lab Client Rep: Edward A Lawler

0030

Special Handling: Standard TAT - 7 to 10 business days Rush TAT - Date Needed: All TATs subject to laboratory approval. Min. 24-bour notification needed for rushes. Samples disposed of after 60 days unless otherwise instructed.	94017.02	N Corp	wrg State: NY	RKU	W: QA/QC Reporting Notes: (check as needed)	Provide MA DEP MCP CAM Report Provide CT DPH RCP Report	CAVOL Reporting Level Character No QC Chher	State specific reporting standards:	* ALAS, BA	CR, CU, FE, MN	Hg, Zn, N				a water Dates	6/17/09 14:35	0/11/0	
	Project No.: 940	Site Name: $No \omega$	Location: Stattsburg	Sampler(s): SG + RKU	$\begin{array}{c c} \text{List preservative code below:} \\ \hline 2 & 4 & 2 & 5 \\ \hline \end{array}$	* Analys	p;m 9 s_// s/2 792	ЭW	× × × X X	X X X X X					Received by		Newman	
DF CUSTODY RECORD Page_1_ of_1_	Same			RQN:	=Ascorbic Acid 7=CH ₃ OH 11=	Jass Cont	k VAV Mber G Jear Gl	A ło #	G 6W Z Z 3	3					Relinquished by	Stringer		
CHAIN C	Invoice To:	<u>Амерісан Юиа.</u>		-2200 P.0. No:	4=HNO ₃ 5=NaOH 6 10=	water WW=Wastewater Soil SL=Sludge A=Air X3=	C=Composite	Date: Time:	6/17/09 11:20	<i>ij:40</i>	11:50	00;21 00;21	6/4/09					bient A°c Z
SPECTRUM ANALYTICAL, INC. <i>Featuring</i> HANIBAL TECHNOLOGY	\sim	Latham NY 1		Troject Mgr.: 316phen UI0.ht	$ \begin{array}{cccc} I = Na_2S2O_3 & 2 = HCl & 3 = H_2SO_4 \\ 8 = NaHSO_4 & 9 = \end{array} $	DW=Drinking Water GW=Groundwater O=Oil SW= Surface Water SO=Soil X1=X2=	G=Grab C=Cc	Lab Id: Sample Id:	99	04 INF-061709	03 TW-1	04 TW-ZA	Trip Blank			EDD Format		Condition upon receipt:

11 Almgren Drive • Agawam, MA 01001 • 413-789-9018 • FAX 413-789-4076 • www.spectrum-analytical.com

MITKEM LABORATORIES Sample Condition Form

Page <u></u> of <u></u>

Received By: VEG	Reviewed By:	MV	L	Date:(pl1 8109	мітк	EM Wor	korder	#: H	1109
	CORP				EGF					Soil Headspace
						ervatio			VOA	or Air Bubbles
		Lab S	Sample ID	HNO ₃	H ₂ SO ₄		NaOH	H₃PO₄	Matrix	<u>≥</u> 1/4"
1) Cooler Sealed (Yes)	No	H 110	9 01	22		<>	212		<u> </u>	
		(60	22		42	712		1	
2) Custody Seal(s)	Present / Absent		03							
	\geq		04	+	r					
	Coolers / Bottles		05			<u> </u>				
	Intact) Broken	V.				<u> </u>			4	
		H 110	ig de	-			_		Н	
3) Custody Seal Number(s	ы <u>ы</u> на									
		_								
[
							-			/
										ł
4) Chain-of-Custody	Present)/ Absent									
									/	
5) Cooler Temperature	ఎ °C			·				\square		
Coolant Condition	168		<u> </u>							
								ſ		
6) Airbill(s)	Present / Absent									
Airbill Number(s)	FELEX									
					· · · ·	~				
	8655 6383 0918					Ď⁄	v			
						P				· · · · ·
										· · ·
	\frown				6/					
7) Sample Bottles	Intact/Broken/Leaking			Y	<u> </u>					
									-	
8) Date Received	6/18/09			\mathbf{V}						
										• . <u> </u>
9) Time Received	9:20						Matrix	Kov:		
								-		A A i
							Unprese			A = Air
Preservative Name/Lot No) :						Unprese	erved A	.qu.	H = HCI
						M = M	eOH			E = Encore
						N = N	aHSO₄			F = Freeze
		<u> </u>								
				~						
See Sample Con	dition Notification/Correct	tive Acti	on Form	yes{r	10)	Ded		1 nc		
L	· · · · · · · · · · · · · · · · · · ·			<u> </u>		rad (OK yes	/ 110		

Last Page of Data Report