Operation, Maintenance and Monitoring Report August 2009

NOW Corporation Site 3-14-008

Work Assignment No. D004445-4.1

Prepared for:

SUPERFUND STANDBY PROGRAM
New York State
Department of Environmental Conservation
625 Broadway
Albany, New York 12233

Prepared by:

AECOM Technical Services Northeast, Inc. 40 British American Boulevard Latham, New York 12110

October 2009

October 9, 2009

Mr. Carl Hoffman, P.E. NYSDEC Division of Environmental Remediation 625 Broadway, 12th Floor Albany, New York 12233-7013

Re: NOW Corporation - Site #3-14-008 O&M Summary Report: "August" 2009

Dear Mr. Hoffman:

This monthly summary report describes the operation, monitoring and maintenance (OM&M) of the remedial system at the NOW Corporation site in the Town of Clinton, New York, for a 32-day period (**July 16 to August 17, 2009**).

With the exceptions noted below, if any, the P&T system was online and operational throughout the reporting period. Approximately 258,000 gallons of water were treated during the period. Discharge from the treatment system averaged approximately 8,100 gallons per day (gpd). During the prior reporting period, the average discharge was 29,000 gpd. The effluent discharge was significantly lower this period, due in part to seasonally low groundwater levels.

As of the last day of the reporting period, a total of 72,423,000 gallons of groundwater had been recovered and treated by the system since it became operational in February 1998.

Table 1 summarizes influent and effluent analytical data for water samples collected on August 17, 2009. As reported to you in an email dated September 18, 2009 **cyanide was detected in the effluent sample at a concentration exceeding effluent limitations.** No cyanide was detected in the influent sample. A copy of the analytical laboratory report is attached. Table 2 summarizes selected operational data recorded on the sampling date. Table 3 presents the water level measurements taken on August 17, 2009.

AECOM made three site visits during the period to conduct the required system inspection, perform scheduled and/or unscheduled maintenance, and to collect water samples. The July 16 service visit was described in the previous report. Details for the current period follow:

<u>July 23</u> – After five months continuous service, technicians swapped out the "new" effluent pump for clean spare pump.

<u>August 3</u> – Received alarm fax report showing system shutdown on July 27 due to high water in the final effluent pit. Onsite in response to effluent pump failure. Removed failed pump and installed "new" cleaned spare pump. Restarted system after nearly seven days downtime. Failed pump was later brought to Pump Service & Supply in Troy for inspection.

<u>August 17</u> - Monthly system inspection and water sampling. Adjusted flow rates on TW-1 and TW-3. Recorded quarterly water levels at selected monitoring wells.

Page 2 Mr. Carl Hoffman NYSDEC

Please feel free to contact me at (518) 951-2262 if you have any questions regarding this report or the operation of the treatment system.

Sincerely,

AECOM Technical Services Northeast, Inc.

Stephen R. Choiniere

Project Manager

Table 1
Summary of Influent and Effluent Data
Sampling Date: August 17, 2009
NOW Corporation Site

Town of Clinton, New York

Analytes/	Total]	Recovery Well	s	Ef	fluent
Parameters	Influent	Effluent	TW-1	TW-2A	TW-3	Lim	itations
							(units)
Quantity treated, per day		8,053				Monitor	gpd
pH	6.9	7.1				6.5 to 8.5	standard units
Oil and Grease	< 5.0	< 5.0	NA	NA	NA	15	mg/L
Total Cyanide	<10	18	NA	NA	NA	10	ug/L
TDS	250	260	NA	NA	NA	1000	mg/L
TSS	<10	<10	NA	NA	NA	50	mg/L
Aluminum, Total	<200	<200	NA	NA	NA	2000	ug/L
Arsenic, Total	<20	<20	NA	NA	NA	50	ug/L
Barium, Total	66 J	65 J	NA	NA	NA	2000	ug/L
Chromium	0.66 J	0.76 J	NA	NA	NA	100	ug/L
Copper	<25	<25	NA	NA	NA	24	ug/L
Iron	< 200	< 200	NA	NA	NA	600	ug/L
Mercury	< 0.20	< 0.20	NA	NA	NA	0.8	ug/L
Manganese	120 B	71 B	NA	NA	NA	600	ug/L
Nickel	2.5 J	2.2 J	NA	NA	NA	200	ug/L
Zinc	11 BJ	15 BJ	NA	NA	NA	150	ug/L
1,1,1-Trichloroethane	28	< 0.50	7.1	550	2.7	5	ug/L
1,1,2-Trichloroethane	< 0.50	< 0.50	< 2.5	<13	< 0.50	1.2	ug/L
1,1-Dichloroethane	17	< 0.50	77	210	14	5	ug/L
1,1-Dichloroethene	3.2	< 0.50	51	66	5.5	0.5	ug/L
1,2-Dichloroethane	< 0.50	< 0.50	< 2.5	<13	< 0.50	1.6	ug/L
Benzene	< 0.50	< 0.50	< 2.5	<13	< 0.50	0.8	ug/L
Chlorobenzene	< 0.50	< 0.50	< 2.5	<13	< 0.50	5	ug/L
Chloroethane	< 0.50	< 0.50	< 2.5	<13	< 0.50	5	ug/L
cis-1,2-Dichloroethene	2.1	< 0.50	9.5	27	0.84	5	ug/L
Ethylbenzene	< 0.50	< 0.50	< 2.5	<13	< 0.50	5	ug/L
Methyl tert-butyl ether	< 0.50	< 0.50	< 2.5	<13	< 0.50	5	ug/L
o-Xylene	< 0.50	< 0.50	< 2.5	<13	< 0.50	5	ug/L
p&m-Xylene	< 0.50	< 0.50	< 2.5	<13	< 0.50	10	ug/L
Tetrachloroethene	< 0.50	< 0.50	< 2.5	<13	< 0.50	1.4	ug/L
Toluene	< 0.50	< 0.50	< 2.5	<13	< 0.50	5	ug/L
trans-1,2-Dichloroethene	< 0.50	< 0.50	< 2.5	<13	< 0.50	5	ug/L
Trichloroethene	39	0.26 J	89	480	14	5	ug/L
Vinyl Chloride	< 0.50	< 0.50	< 2.5	<13	< 0.50	0.6	ug/L

Notes:

- 1) Detected concentrations are presented in **bold** typeface, and are expressed in the units shown in far right column.
- 2) Effluent concentration boxed in **bold** denotes exceedance of effluent limitations.
- 3) NA indicates not analyzed.
- 4) "J" indicates an estimated concentration below the reporting limit (RL).
- 5) "D" denotes analytical result for a diluted sample.
- 6) "B" denotes metal detected in method blank at concentration below the RL, but above the method detection limit.

8-09 Tables.xls 10/9/2009

Table 2 Summary of August 2009 O&M Data

NOW Corporation Site Town of Clinton, New York

Instrume	ntation/Readings:	8/17/09	Units
TW-1			
	Pumping Rate	1	GPM
	Water Level Above Transducer	16.01	feet
	Flow Meter Reading	5,041,300	gallons
	Pump Pressure	66	psi
TW-2A			
	Pumping Rate	13	GPM
	Water Level Above Transducer	43.52	feet
	Flow Meter Reading	12,318,000	gallons
	Pump Pressure	7	psi
TW-3			
	Pumping Rate	3	GPM
	Water Level Above Transducer	12.41	feet
	Flow Meter Reading	7,102,100	gallons
	Pump Pressure	62	psi
Air Stripp	er		
	Stripper Blower Pressure	26	inches H ₂ O
	Air Temperature in Stripper	66	°F
	Pressure Gauge - Left Leg	0.6	inches H ₂ O
	Pressure Gauge - Right Leg	0	inches H ₂ O
Effluent F			
	Effluent Flow this period (calculated)	257,700	gallons
	Total Effluent Flow (calculated)	72,422,600	gallons

8-09 Tables.xls 10/9/2009

Table 3
August 2009 Groundwater Levels

NOW Corporation Site Town of Clinton, New York

	MP	8/1	7/09
Well ID	Elevation	Depth to Water	GW Elevation
		(Ft below MP)	
MW-1	289.50	12.12	277.38
MW-2	332.51	29.52	302.99
MW-3	312.83	27.70	285.13
MW-3S	312.51	25.53	286.98
MW-4	298.29	22.61	275.68
MW-4D	298.16	22.45	275.71
MW-5	285.48	18.85	266.63
MW-6S	287.90	6.40	281.50
MW-6D	287.25	9.32	277.93
MW-7S	292.12	18.95	273.17
MW-7D	292.54	3.43	289.11
OW-1	307.75	48.35	259.40
OW-2	305.96	68.92	237.04
OW-6	294.81	5.98	288.83
IW-1	312.46	30.84	281.62
IW-2	306.56	38.40	268.16

Note: N/A indicates data are not available.

MP denotes measuring point.

8-09 Tables.xls 10/9/2009

A DIVISION OF SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

September 18, 2009

Earth Tech - AECOM 40 British American Boulevard Latham, NY 12110 Attn: Mr. Stephen Choiniere

RE: Client Project: NOW Corp. Site, 94017.02, 08/09

Lab Project #: H1579

Dear Mr. Choiniere:

Enclosed please find the data report for the analyses of samples associated with the above referenced project.

If you have any questions, please do not hesitate to call me.

We appreciate your business.

Sincerely,

Edward A. Lawler

Laboratory Operations Manager

Report of Laboratory Analyses for AECOM Technical Services

Client Project: NOW Corp. 94017.02, 08/09

Mitkem Work Order ID: H1579

September 18, 2009

Prepared For:

AECOM Technical Services

40 British American Boulevard

Latham, NY 12110

Attn: Mr. Stephen Choiniere

Prepared By:

Mitkem Laboratories

175 Metro Center Boulevard

Warwick, RI 02886

(401) 732-3400

Client: AECOM Technical Services

Client Project: NOW Corp, 94017.02, 08/09

Lab Work Order: H1579

Date samples received: 08/18/09

Project Narrative

This data report includes the analysis results for six (6) aqueous samples that were received from AECOM Technical Services on August 18, 2009. Analyses were performed per specification in the Chain of Custody form. For reference, a copy of the Mitkem Sample Log-In form is included for cross-referencing the client sample ID and laboratory sample ID.

Surrogate recoveries were within the QC limits for volatile organic analyses with the exception of 1,2-dichloroethane-d4 in the initial analysis for sample INF 81709. Percent recoveries in laboratory control samples were within the QC limits with the exception of low recovery for toluene in LCS-45613. Due to high concentration of target analytes, samples TW-1 and TW-2A were initially analyzed at 5X and 25X respectively. Sample INF 81709 was reanalyzed at 2X dilution.

Spike recoveries were within the QC limits in the laboratory control samples for metals, total dissolved solids, total suspended solids, cyanide and oil & grease analyses. Trace amount of aluminum, copper, manganese and zinc were detected in method blank MB-45580 at a level below the reporting limits but above the MDL. These elements are flagged with a "B" on data reporting forms.

No other unusual occurrences were noted during sample analysis.

All pages in this report have been numbered consecutively, starting with the title page and ending with a page saying only "Last Page of Data Report".

This data report has been reviewed and is authorized for release as evidenced by the signature below.

Edward A. Lawler

Laboratory Operations Manager

Date: 10-Sep-09

Client: AECOM Technical Services, Inc.

Client Sample ID: EFF 81709

Lab ID: H1579-01

Project: NOW Corp. Site

Collection Date: 08/17/09 10:45

Analyses	Result Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS (25 mL Purge)				sw	8260_25_W
Vinyl chloride	ND	0.50	μg/L	1 08/20/2009 19:23	45613
Chloroethane	ND	0.50	μg/L	1 08/20/2009 19:23	45613
1,1-Dichloroethene	ND	0.50	μg/L	1 08/20/2009 19:23	45613
trans-1,2-Dichloroethene	ND	0.50	μg/L	1 08/20/2009 19:23	45613
Methyl tert-butyl ether	ND	0.50	μg/L	1 08/20/2009 19:23	45613
1,1-Dichloroethane	ND	0.50	μg/L	1 08/20/2009 19:23	45613
cis-1,2-Dichloroethene	ND	0.50	μg/L	1 08/20/2009 19:23	45613
1,1,1-Trichloroethane	ND	0.50	μg/L	1 08/20/2009 19:23	45613
1,2-Dichloroethane	ND	0.50	μg/L	1 08/20/2009 19:23	45613
Benzene	ND	0.50	μg/L	1 08/20/2009 19:23	45613
Trichloroethene	0.26 J	0.50	µg/L	1 08/20/2009 19:23	45613
Toluene	ND	0.50	μg/L	1 08/20/2009 19:23	45613
1,1,2-Trichloroethane	ND	0.50	μg/L	1 08/20/2009 19:23	45613
Tetrachloroethene	ND	0.50	μg/L	1 08/20/2009 19:23	45613
Chlorobenzene	ND	0.50	μg/L	1 08/20/2009 19:23	45613
Ethylbenzene	ND	0.50	μg/L	1 08/20/2009 19:23	45613
m,p-Xylene	ND	0.50	μg/L	1 08/20/2009 19:23	45613
o-Xylene	ND	0.50	μg/L	1 08/20/2009 19:23	45613
Surrogate: Dibromofluoromethane	110	88-124	%REC	1 08/20/2009 19:23	45613
Surrogate: 1,2-Dichloroethane-d4	106	79-115	%REC	1 08/20/2009 19:23	45613
Surrogate: Toluene-d8	98.1	80-114	%REC	1 08/20/2009 19:23	45613
Surrogate: Bromofluorobenzene	93.1	60-123	%REC	1 08/20/2009 19:23	45613

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: AECOM Technical Services, Inc.

Client Sample ID: INF 81709

Lab ID: H1579-02

Date: 10-Sep-09

Project: NOW Corp. Site

Collection Date: 08/17/09 11:00

Analyses	Result	Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS (25 mL Purge)					sw	8260_25_W
Vinyl chloride	ND		0.50	μg/L	1 08/20/2009 19:50	45613
Chloroethane	ND		0.50	μg/L	1 08/20/2009 19:50	45613
1,1-Dichloroethene	3.2		0.50	μg/L	1 08/20/2009 19:50	45613
trans-1,2-Dichloroethene	ND		0.50	μg/L	1 08/20/2009 19:50	45613
Methyl tert-butyl ether	ND		0.50	μg/L	1 08/20/2009 19:50	45613
1,1-Dichloroethane	17		0.50	μg/L	1 08/20/2009 19:50	45613
cis-1,2-Dichloroethene	2.1		0.50	μg/L	1 08/20/2009 19:50	45613
1,1,1-Trichloroethane	51	Е	0.50	μg/L	1 08/20/2009 19:50	45613
1,2-Dichloroethane	ND		0.50	μg/L	1 08/20/2009 19:50	45613
Benzene	ND		0.50	μg/L	1 08/20/2009 19:50	45613
Trichloroethene	39		0.50	μg/L	1 08/20/2009 19:50	45613
Toluene	ND		0.50	μg/L	1 08/20/2009 19:50	45613
1,1,2-Trichloroethane	ND		0.50	μg/L	1 08/20/2009 19:50	45613
Tetrachloroethene	ND		0.50	μg/L	1 08/20/2009 19:50	45613
Chlorobenzene	ND		0.50	μg/L	1 08/20/2009 19:50	45613
Ethylbenzene	ND		0.50	μg/L	1 08/20/2009 19:50	45613
m,p-Xylene	ND		0.50	μg/L	1 08/20/2009 19:50	45613
o-Xylene	ND		0.50	μg/L	1 08/20/2009 19:50	45613
Surrogate: Dibromofluoromethane	109		88-124	%REC	1 08/20/2009 19:50	45613
Surrogate: 1,2-Dichloroethane-d4	121	s	79-115	%REC	1 08/20/2009 19:50	45613
Surrogate: Toluene-d8	100		80-114	%REC	1 08/20/2009 19:50	45613
Surrogate: Bromofluorobenzene	92.9		60-123	%REC	1 08/20/2009 19:50	45613

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 10-Sep-09

Client: AECOM Technical Services, Inc.

Client Sample ID: INF 81709

Lab ID: H1579-02

Project: NOW Corp. Site

Collection Date: 08/17/09 11:00

Analyses	Result Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS (25 mL Purge)			-	sw	8260_25_W
Vinyl chloride	ND	1.0	μg/L	2 08/28/2009 22:35	45704
Chloroethane	ND	1.0	μg/L	2 08/28/2009 22:35	45704
1,1-Dichloroethene	4.7	1.0	μg/L	2 08/28/2009 22:35	45704
trans-1,2-Dichloroethene	ND	1.0	μg/L	2 08/28/2009 22:35	45704
Methyl tert-butyl ether	ND	1.0	μg/L	2 08/28/2009 22:35	45704
1,1-Dichloroethane	14	1.0	μg/L	2 08/28/2009 22:35	45704
cis-1,2-Dichloroethene	1.6	1.0	μg/L	2 08/28/2009 22:35	45704
1,1,1-Trichloroethane	28	1.0	μg/L	2 08/28/2009 22:35	45704
1,2-Dichloroethane	ND	1.0	μg/L	2 08/28/2009 22:35	45704
Benzene	ND	1.0	μg/L	2 08/28/2009 22:35	45704
Trichloroethene	28	1.0	μg/L	2 08/28/2009 22:35	45704
Toluene	ND	1.0	μg/L	2 08/28/2009 22:35	45704
1,1,2-Trichloroethane	ND	1.0	μg/L	2 08/28/2009 22:35	45704
Tetrachloroethene	ND	1.0	μg/L	2 08/28/2009 22:35	45704
Chlorobenzene	ND	1.0	μg/L	2 08/28/2009 22:35	45704
Ethylbenzene	ND	1.0	μg/L	2 08/28/2009 22:35	45704
m,p-Xylene	ND	1.0	μg/L	2 08/28/2009 22:35	45704
o-Xylene	ND	1.0	μg/L	2 08/28/2009 22:35	45704
Surrogate: Dibromofluoromethane	98.6	88-124	%REC	2 08/28/2009 22:35	45704
Surrogate: 1,2-Dichloroethane-d4	99.2	79-115	%REC	2 08/28/2009 22:35	45704
Surrogate: Toluene-d8	98.1	80-114	%REC	2 08/28/2009 22:35	45704
Surrogate: Bromofluorobenzene	102	60-123	%REC	2 08/28/2009 22:35	45704

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 10-Sep-09

Client: AECOM Technical Services, Inc.

Client Sample ID: TW-1

Lab ID: H1579-03

Project: NOW Corp. Site

Collection Date: 08/17/09 11:15

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS (25 mL Purge)			sw	8260_25_W
Vinyl chloride	ND	2.5 µg/L	5 08/28/2009 23:04	45836
Chloroethane	ND	2.5 μg/L	5 08/28/2009 23:04	45836
1,1-Dichloroethene	51	2.5 µg/L	5 08/28/2009 23:04	45836
trans-1,2-Dichloroethene	ND	2.5 μg/L	5 08/28/2009 23:04	45836
Methyl tert-butyl ether	ND	2.5 μg/L	5 08/28/2009 23:04	45836
1,1-Dichloroethane	77	2.5 μg/L	5 08/28/2009 23:04	45836
cis-1,2-Dichloroethene	9,5	2.5 μg/L	5 08/28/2009 23:04	45836
1,1,1-Trichloroethane	7.1	2.5 μg/L	5 08/28/2009 23:04	45836
1,2-Dichloroethane	ND	2.5 µg/L	5 08/28/2009 23:04	45836
Benzene	ND	2.5 µg/L	5 08/28/2009 23:04	45836
Trichloroethene	89	2.5 μg/L	5 08/28/2009 23:04	45836
Toluene	ND	2.5 μg/L	5 08/28/2009 23:04	45836
1,1,2-Trichloroethane	ND	2.5 μg/L	5 08/28/2009 23:04	45836
Tetrachloroethene	ND	2.5 µg/L	5 08/28/2009 23:04	45836
Chlorobenzene	ND	2.5 µg/L	5 08/28/2009 23:04	45836
Ethylbenzene	ND	2.5 µg/L	5 08/28/2009 23:04	45836
m,p-Xylene	ND	2.5 µg/L	5 08/28/2009 23:04	45836
o-Xylene	ND	2.5 µg/L	5 08/28/2009 23:04	45836
Surrogate: Dibromofluoromethane	95.8	88-124 %REC	5 08/28/2009 23:04	45836
Surrogate: 1,2-Dichloroethane-d4	101	79-115 %REC	5 08/28/2009 23:04	45836
Surrogate: Toluene-d8	97.8	80-114 %REC	5 08/28/2009 23:04	45836
Surrogate: Bromofluorobenzene	98.2	60-123 %REC	5 08/28/2009 23:04	45836

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: AECOM Technical Services, Inc.

Client Sample ID: TW-2A

Lab ID: H1579-04

Project: NOW Corp. Site

Date: 10-Sep-09

Collection Date: 08/17/09 11:30

Analyses	Result Qua	al RL	Units	DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS (25 mL Purge)			·	S	W8260_25_W
Vinyl chloride	ND	13	μg/L	25 08/28/2009 23:33	45836
Chloroethane	ND	13	μg/L	25 08/28/2009 23:33	45836
1,1-Dichloroethene	66	13	μg/L	25 08/28/2009 23:33	45836
trans-1,2-Dichloroethene	ND	13	μg/L	25 08/28/2009 23:33	45836
Methyl tert-butyl ether	ND	13	μg/L	25 08/28/2009 23:33	45836
1,1-Dichloroethane	210	13	μg/L	25 08/28/2009 23:33	45836
cis-1,2-Dichloroethene	27	13	μg/L	25 08/28/2009 23:33	45836
1,1,1-Trichloroethane	550	13	μg/L	25 08/28/2009 23:33	45836
1,2-Dichloroethane	ND	13	μg/L	25 08/28/2009 23:33	45836
Benzene	ND	13	μg/L	25 08/28/2009 23:33	45836
Trichloroethene	480	13	μg/L	25 08/28/2009 23:33	45836
Toluene	ND	13	μg/L	25 08/28/2009 23:33	45836
1,1,2-Trichloroethane	ND	13	μg/L	25 08/28/2009 23:33	45836
Tetrachloroethene	ND	13	μg/L	25 08/28/2009 23:33	45836
Chlorobenzene	ND	13	μg/L	25 08/28/2009 23:33	45836
Ethylbenzene	ND	13	μg/L	25 08/28/2009 23:33	45836
m,p-Xylene	ND	13	μg/L	25 08/28/2009 23:33	45836
o-Xylene	ND	13	μg/L	25 08/28/2009 23:33	45836
Surrogate: Dibromofluoromethane	101	88-124	%REC	25 08/28/2009 23:33	45836
Surrogate: 1,2-Dichloroethane-d4	98.8	79-115	%REC	25 08/28/2009 23:33	45836
Surrogate: Toluene-d8	101	80-114	%REC	25 08/28/2009 23:33	45836
Surrogate: Bromofluorobenzene	99.7	60-123	%REC	25 08/28/2009 23:33	45836

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 10-Sep-09

Client: AECOM Technical Services, Inc.

Client Sample ID: TW-3

Lab ID: H1579-05

Project: NOW Corp. Site

Collection Date: 08/17/09 11:35

Analyses	Result (Qual R	L Units	DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS (25 mL Purge)				SW	/8260_25_W
Vinyl chloride	ND	0.8	60 μg/L	1 08/29/2009 0:02	45836
Chloroethane	ND	0.9	60 μg/L	1 08/29/2009 0:02	45836
1,1-Dichloroethene	5.5	0.9	60 μg/L	1 08/29/2009 0:02	45836
trans-1,2-Dichloroethene	ND	0.9	60 μg/L	1 08/29/2009 0:02	45836
Methyl tert-butyl ether	ND	0.9	60 μg/L	1 08/29/2009 0:02	45836
1,1-Dichloroethane	14	0.9	i0 μg/L	1 08/29/2009 0:02	45836
cis-1,2-Dichloroethene	0.84	0.9	i0 μg/L	1 08/29/2009 0:02	45836
1,1,1-Trichloroethane	2.7	0.9	i0 μg/L	1 08/29/2009 0:02	45836
1,2-Dichloroethane	ND	0.6	i0 μg/L	1 08/29/2009 0:02	45836
Benzene	ND	0.9	i0 μg/L	1 08/29/2009 0:02	45836
Trichloroethene	14	0.6	i0 μg/L	1 08/29/2009 0:02	45836
Toluene	ND	0.6	-0 μg/L	1 08/29/2009 0:02	45836
1,1,2-Trichloroethane	ND	0.5	0 μg/L	1 08/29/2009 0:02	45836
Tetrachloroethene	ND	0.5	0 μg/L	1 08/29/2009 0:02	45836
Chlorobenzene	ND	0.6	0 μg/L	1 08/29/2009 0:02	45836
Ethylbenzene	ND	0.5	0 μg/L	1 08/29/2009 0:02	45836
m,p-Xylene	ND	0.8	0 μg/L	1 08/29/2009 0:02	45836
o-Xylene	ND	0.6	0 μg/L	1 08/29/2009 0:02	45836
Surrogate: Dibromofluoromethane	100	88-12	4 %REC	1 08/29/2009 0:02	45836
Surrogate: 1,2-Dichloroethane-d4	103	79-1	5 %REC	1 08/29/2009 0:02	45836
Surrogate: Toluene-d8	96.2	80-1	4 %REC	1 08/29/2009 0:02	45836
Surrogate: Bromofluorobenzene	98.5	60-12	3 %REC	1 08/29/2009 0:02	45836

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: AECOM Technical Services, Inc.

Client Sample ID: TRIP BLANKS

Lab ID: H1579-06

Date: 10-Sep-09

Project: NOW Corp. Site

Collection Date: 08/17/09 0:00

Analyses	Result Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS (25 mL Purge)				sw	8260_25_W
Vinyl chloride	ND	0.50	µg/L	1 08/29/2009 0:31	45836
Chloroethane	ND	0.50	µg/L	1 08/29/2009 0:31	45836
1,1-Dichloroethene	ND	0.50	μg/L	1 08/29/2009 0:31	45836
trans-1,2-Dichloroethene	ND	0.50	μg/L	1 08/29/2009 0:31	45836
Methyl tert-butyl ether	ND	0.50	μg/L	1 08/29/2009 0:31	45836
1,1-Dichloroethane	ND	0.50	μg/L	1 08/29/2009 0:31	45836
cis-1,2-Dichloroethene	ND	0.50	μg/L	1 08/29/2009 0:31	45836
1,1,1-Trichloroethane	ND	0.50	µg/L	1 08/29/2009 0:31	45836
1,2-Dichloroethane	ND	0.50	μg/L	1 08/29/2009 0:31	45836
Benzene	ND	0.50	µg/L	1 08/29/2009 0:31	45836
Trichloroethene	ND	0.50	μg/L	1 08/29/2009 0:31	45836
Toluene	ND	0.50	μg/L	1 08/29/2009 0:31	45836
1,1,2-Trichloroethane	ND	0.50	µg/L	1 08/29/2009 0:31	45836
Tetrachloroethene	ND	0.50	µg/L	1 08/29/2009 0:31	45836
Chlorobenzene	ND	0.50	µg/L	1 08/29/2009 0:31	45836
Ethylbenzene	ND	0.50	μg/L	1 08/29/2009 0:31	45836
m,p-Xylene	ND	0.50	μg/L	1 08/29/2009 0:31	45836
o-Xylene	ND	0.50	μg/L	1 08/29/2009 0:31	45836
Surrogate: Dibromofluoromethane	99.8	88-124	%REC	1 08/29/2009 0:31	45836
Surrogate: 1,2-Dichloroethane-d4	102	79-115	%REC	1 08/29/2009 0:31	45836
Surrogate: Toluene-d8	97.6	80-114	%REC	1 08/29/2009 0:31	45836
Surrogate: Bromofluorobenzene	102	60-123	%REC	1 08/29/2009 0:31	45836

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

	Laboratories	
	tkem	
٠	\overline{S}	

CLIENT: AECO	AECOM Technical Services, Inc.			ANALY	TICAL Q	SUMIN	ANALYTICAL QC SUMMARY REPORT	ORT		
Work Order: H1579			8M8	SW8260_25_W						
Project: NOW (NOW Corp. Site		SW8	46 8260 VC	SW846 8260 VOC by GC-MS (25 mL Purge)	(25 mL P	urge)			
Sample ID: MB-45613	SampType: MBLK	TestCode	TestCode: SW8260_25_W		Prep Date:	08/20/2009		Run ID: V6_090820A		
Client ID: MB-45613	Batch ID: 45613	Units	Units: µg/L		Analysis Date:	08/20/2009		SeqNo: 1094852		
Analyte		Result	POL	SPK value	SPK Ref Val	%REC Low	%REC LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Vinyl chloride		QN	0.50							
Chloroethane		QN	0.50							
1,1-Dichloroethene		ND	0.50							
trans-1,2-Dichloroethene		QN	0.50							
Methyl tert-butyl ether		ND	0.50							
1,1-Dichloroethane		QN	0.50							
cis-1,2-Dichloroethene		QN	0.50							
1,1,1-Trichloroethane		ND	0.50							
1,2-Dichloroethane		ND	0.50							
Benzene		ND	0.50							
Trichloroethene		ND	0.50							
Toluene		ND	0.50							
1,1,2-Trichloroethane		ND	0.50							
Tetrachloroethene		ND	0.50							
Chlorobenzene		QN	0.50							
Ethylbenzene		ND	0.50							
m,p-Xylene	•	ND	0.50							
o-Xylene		ND	0.50							
Surrogate. Dibromofluoromethane	ethane	10.08	0.50	10.00	0	101	88 124	0		
Surrogate: 1,2-Dichloroethane-d4	ane-d4	10.66	0.50	10.00	0	107	79 115	0		
Surrogate: Toluene-d8		9.697	0.50	10.00	0	97.0	80 114	0		
Surrogate: Bromofluorobenzene	zene	9.564	0.50	10.00	0	92.6	60 123	0		

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers: mLIMS-001

CLIENT:	AECOM To	AECOM Technical Services, Inc.			ANALY	ANALYTICAL QC SUMMARY REPORT	SUMI	MARY I	REPO	RT	The management of	
Work Order:	H1579			SWS	SW8260_25_W							
Project:	NOW Corp. Site	. Site		SWS	846 8260 VC	SW846 8260 VOC by GC-MS (25 mL Purge)	(25 mL I	Jurge)				
Sample ID: MB-45836	836	SampType: MBLK	TestCode	TestCode: SW8260_25_W		Prep Date:	08/28/2009	o.	Run ID:	V5_090828C		
Client ID: MB-45836	836	Batch ID: 45836	Units	Units: µg/L		Analysis Date:	08/28/2009	G	SeqNo:	SeqNo: 1103414		
Analyte			Result	POL	SPK value	SPK Ref Val	%REC Lo	%REC LowLimit HighLimit	ii.	RPD Ref Val	%RPD RPDLimit	Qual
Vinyl chloride			QN	0.50	-							
Chloroethane			ND	0.50								
1,1-Dichloroethene			QN	LL) L								
trans-1,2-Dichloroethene	hene			Ωι								
Methyl tert-butyl ether	eĭ		ON E	0.50								
1, 1-Dichloroetnane	0			o rc								
1.1.1-Trichloroethane	<u> </u>		ON ON	2								
1,2-Dichloroethane			ND	0.50								
Benzene			QN	0.50								
Trichloroethene			QN	ш,								
Toluene			ND									
1,1,2-Trichloroethane	e e		ND									
Tetrachloroethene	*		QN CI									
Chlorobenzene			ON K	0.50								
Ethylbenzene												
n,p-Aylene n-Xvfene			N N									
Surrogate: Dibromofluoromethane	ofluoromethar	ഉ	9.945		10.00	0	99.4	88 124	4	0		
Surrogate: 1,2-Dichloroethane-d4	:hloroethane-d	4	10.22		10.00	0	102	79 115	2	0		
Surrogate: Toluene-d8	e-d8		9.764		10.00	0	9.76	80 114	4	0		
Surrogate: Bromofluorobenzene	fluorobenzene		10.01	0.50	10.00	0	100	60 123	3	0		
Ø												
· · · · · · · · · · · · · · · · · · ·												
- Constant												
Oneliffere	ND - Not Detec	ND - Not Detected at the Benorting Limit		8 - 8	ike Recovery outsid	S - Snike Recovery outside accented recovery limits	limits	i	B - Ang	alvte detected in	B - Analyte detected in the associated Method Blank	Rlank
Qualifers:	ND - NOL DOL	ited at the reporting Limit			IIKE INCLUVLIY UUISIU	accepted tecovery	illints) - /viic	אואוכ מכוככוכם זוו	ine associated ivietiou	Dialin
mLfMS-601	J - Analyte det	J - Analyte detected below quantitation limits	uits	R-K	R - RPD outside accepted recovery limits	recovery limits	-					

CLIENT:	AECOM 1	AECOM Technical Services, Inc.			ANALY	ANALYTICAL OC SUMMARY REPORT	SUM	IMAR	Y REPO	IRT		
Work Order:	H1579			3MS	SW8260_25_W	•						
Project:	NOW Corp. Site	p. Site		3MS	SW846 8260 VC	VOC by GC-MS (25 mL Purge)	(25 mL	Purge)				
Sample ID: LCS-45613	45613	SampType: LCS	TestCode	TestCode: SW8260_25_W		Prep Date:	08/20/2009	60	Run ID:	V6_090820A		
Client ID: LCS-	LCS-45613	Batch ID: 45613	Units	Units: µg/L		Analysis Date:	08/20/2009	60	SeqNo	1094853		
Analyte			Result	POL	SPK value	SPK Ref Val	"REC L	LowLimit HighLimit	ighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Vinyl chloride			8.195	0.50	10.00	0	81.9	77	120	0		
Chloroethane			8.198	0.50	10.00	0	82.0	75	135	0		
1,1-Dichloroethene	ď		8.666	0.50	10.00	0	86.7	81	125	0		
trans-1,2-Dichloroethene	ethene		8.595	0.50	10.00	0	85.9	09	137	0		
Methyl tert-butyl ether	ther		9.784	0.50	10.00	0	97.8	61	134	0 0		
1,1-Dichloroethane	ď.		8.574	0.50	10.00	0	85.7	82	120	0		
cis-1,2-Dichloroethene	ener		8.649	0.50	10.00	0		84	116	0		
1,1,1-Trichloroethane	ane		8.303	0.50	10.00	0 (80	124	0 (
1,2-Dichloroethane	ø	-	0.52.6	0.30	10.00	.	2 . 2 2 . 2	α c	171	> 0		
Benzene			8 421	0.00	10:00	o c	04.7	74	121	0 0		
Tokiene			8.376	0.50	10.00) 0	83.8	88	117) 0		S.
1 1 2-Trichloroethane	ane.		9.872	0.50	10.00	0	98.7	83	121	0		,
Tetrachloroethene			8.806	0.50	10.00	0	88.1	74	115	0		
Chlorobenzene			8.925	0.50	10.00	0	89.2	83	112	0		
Ethylbenzene			8.717	0.50	10.00	0	87.2	87	110	0		
m,p-Xylene			17.43	0.50	20.00	0	87.2	87	114	0		
o-Xylene		•	8.867	0.50	10.00	0	88.7	84	114	0		
Surrogate: Dibromofluoromethane	mofluoromeths	ane	9.944	0.50	10.00	0	99.4	88	124	0		
Surrogate: 1,2-Dichloroethane-d4	ichloroethane-	-d4	10.55	0.50	10.00	0	106	79	115	0		
Surrogate: Toluene-d8	ne-d8		9.936	0.50	10.00	0	99.4	80	114	0		
Surrogate: Bromofluorobenzene	ofluorobenzen	<u>.</u>	10.12	0.50	10.00	0	101	09	123	0		
					7							
ðV												
												٠.
Plane.												
						A THE PARTY OF THE						
Qualifiers:	ND - Not Det	ND - Not Detected at the Reporting Limit		ds - s	ike Recovery outsid	- Spike Recovery outside accepted recovery limits	limits		B - An	nalyte detected in	- Analyte detected in the associated Method Blank	d Blank
mLIMS-001	J - Analyte de	J - Analyte detected below quantitation limits	nits	R-R	R - RPD outside accepted recovery limits	recovery limits						
					•	•						

CLIENT:	AECOM 1	AECOM Technical Services, Inc.			ANALY	ANALYTICAL QC SUMMARY REPORT	SUMIN	AARY F	EPORT			
Work Order:	H1579			SMS	SW8260_25_W							
Project:	NOW Corp. Site	p. Site		SWS	SW846 8260 VOC by GC-MS (25 mL Purge)	C by GC-MS	(25 mL P	'urge)				
Sample ID: LCSD-45613	D-45613	SampType: LCSD	TestCode	TestCode: SW8260_25_W		Prep Date:	Prep Date: 08/20/2009		Run ID: V6_090820A	■		
Client ID: LCSD-45613	D-45613	Batch ID: 45613	Units	Units: µg/L		Analysis Date: 08/20/2009	08/20/2006		SeqNo: 1094854			
Analyte			Result	POL	SPK value	SPK Ref Val %REC LowLimit HighLimit	%REC Lov	/Limit HighLir	nit RPD Ref Val %RPD RPDLimit Qua	I %RPD	RPDLimit	Ö
Vinyl chloride			9.106	0.50	10.00	0	91.1	91.1 77 120		8,195 10.5 40	40	,
Chloroethane			9.228	0.50	10.00	0	92.3 75	75 135		8.198 11.8	40	

Sample ID: LCSD-45613	SampType: LCSD	TestCode	TestCode: SW8260_25_W		Prep Date:	08/20/2009	60	Run II	Run ID: V6_090820A			
Client ID: LCSD-45613	Batch ID: 45613	Units	Units: µg/L		Analysis Date:	08/20/2009	60	SeqN	SeqNo: 1094854			
Analyte		Result	PQL	SPK value	SPK Ref Val	"REC L	%REC LowLimit HighLimit	ighLimit	RPD Ref Val	%RPD RPDLimit		Qual
Vinyl chloride		9.106	0.50	10.00	0	91.1	77	120	8.195	10.5	40	
Chloroethane		9.228	0.50	10.00	0	92.3	75	135	8.198	11.8	40	
1,1-Dichloroethene		9.833	0.50	10.00	0	98.3	81	125	8.666	12.6	40	
trans-1,2-Dichloroethene		9.751	0.50	10.00	0	97.5	. 09	137	8.595	12.6	40	
Methyl tert-butyl ether		11.26	0.50	10.00	0	113	. 61	134	9.784	14	40	
1,1-Dichloroethane		9.805	0.50	10.00	0	0.86	82	120	8.574	13.4	40	
cis-1,2-Dichloroethene		10.09	0.50	10.00	0	101	84	116	8.649	15.4	40	
1,1,1-Trichloroethane		9.567	0.50	10.00	0	95.7	80	124	8.303	14.2	40	
1,2-Dichloroethane		10.59	0.50	10.00	0	106	98	117	9.290	13.1	40	
Benzene		9.787	0.50	10.00	0	97.9	81	121	8.473	14.4	40	
Trichloroethene		9.725	0.50	10.00	0	97.3	74	123	8.421	14.4	40	
Toluene		9.569	0.50	10.00	0	95.7	88	117	8.376	13.3	40	
1,1,2-Trichloroethane		11.12	0.50	10.00	0	111	83	121	9.872	11.9	40	
Tetrachloroethene		9.821	0.50	10.00	0	98.2	74	115	8.806	10.9	40	
Chlorobenzene		996.6	0.50	10.00	0	7.66	83	112	8.925	11	40	
Ethylbenzene		9.794	0.50	10.00	0 .	97.9	87	110	8.717	11.6	40	
m,p-Xylene		19.59	0.50	20.00	0	97.9	87	114	17.43	11.6	40	
o-Xylene		9.951	0.50	10.00	0	99.5	84	114	8.867	11.5	40	
Surrogate: Dibromofluoromethane	hane	10.26	0.50	10.00	0	103	88	124	0			
Surrogate: 1,2-Dichloroethane-d4	e-d4	10.77	0.50	10.00	0	108	79	115	. 0			
Surrogate: Toluene-d8		9.932	0.50	10.00	0	99.3	80	114	0			
Surrogate: Bromofluorobenzene	ane .	10.09	0.50	10.00	0	101	09	123	0			

<u>2</u>	
 Spike Recovery outside accepted recovery limit 	
ž	
30.00	
ie.	•
)ted	,
Sel	
e a	
Sid	•
on	
ery	
3	•
5 5	
š	1
7	5
ò	,

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers: mLIMS-001

CLIENT:	AECOM	AECOM Technical Services, Inc.			ANALY	ANALYTICAL OC SUMMARY REPORT	C SUM	MAR	Y REP	ORT		
Work Order:	H1579			SWS	SW8260_25_W		. !					
Project:	NOW Corp. Site	p. Site		SW	SW846 8260 VOC by GC-MS (25 mL Purge)	C by GC-ME	S (25 mL	Purge)			:	
Sample ID: LCS-45836	1-45836	SampType: LCS	TestCoc	TestCode: SW8260_25_W		Prep Date:	08/28/2009	6(Run ID;	D: V5_090828C		
Client ID: LCS	LCS-45836	Batch ID: 45836	Ū	Units: µg/L		Analysis Date:	08/28/2009	60	SeqN	SeqNo: 1103415		
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	wLimit H	ighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Vinyl chloride			9.902	0.50	10.00	0	0.66	77	120	0		
Chloroethane			10.53	0.50	10.00	0	105	75	135	0		
1,1-Dichloroethene	ЭЕ		9.794	0.50	10.00	0	6.76	81	125	0		
trans-1,2-Dichloroethene	oethene		9.183	0.50	10.00	0	91.8	09	137	0		
Methyl tert-butyl ether	ether		9.429	0.50	10.00	0	94.3	61	134	0		
1,1-Dichloroethane	Je		9.788	0.50	10.00	0	97.9	82	120	0		
cis-1,2-Dichloroethene	thene		9.957	0.50	10.00	0	9.66	84	116	0		
1,1,1-Trichloroethane	nane		10.29	0.50	10.00	0 (103	80	124	O •		
1,2-Dichloroethane	Je		10.08	0.50	10.00	D (100	α 2 τ	11/)		
Benzene Tricklorothono			10.02	0.30	10.00	, D C	100	7.4	121	0 0		
Toluene			10.24	0.50	10.00		100	* 88	117			
1 0 Trichloroethane	פחמר		10.25	0.50	10.00	0	102	ာ ဧ	121	» o		
Tetrachloroethene) 2 3 4		668.6	0.50	10.00	0	0.66	74	115	0		
Chlorobenzene	!		10.11	0.50	10.00	0	101	83	112	0		
Ethylbenzene			9.893	0.50	10.00	0	6.86	87	110	0		
m,p-Xylene			20.69	0.50	20.00	0	103	87	114	0		
o-Xylene			10.11	0.50	10.00	0	101	84	114	0		
Surrogate: Dibi	Surrogate: Dibromofluoromethane	ane	10.13	0.50	10.00	0	101	88	124	0.		
Surrogate: 1,2-	Surrogate: 1,2-Dichloroethane-d4	-d4	10.50	0.50	10.00	0	105	79	115	0		
Surrogate: Toluene-d8	ene-d8		10.08	0.50	10.00	0	101	80	114	0		
Surrogate: Bro	Surrogate: Bromofluorobenzene		9.991	0.50	10.00	0	6.66	09	123	0		
												٠
							-					
and the same of th												
			- 'L'									
200												
Qualifiers:	ND - Not Det	ND - Not Detected at the Reporting Limit		18 - S	S - Spike Recovery outside accepted recovery limits	le accepted recovery	' limits		B-1	Analyte detected in	B - Analyte detected in the associated Method Blank	od Blank
mLIMS-001	J - Analyte de	J - Analyte detected below quantitation limits	nifs	R-R	R - RPD outside accepted recovery limits	recovery limits						
			3			· · · · · · · · · · · · · · · · · · ·						

CLIENT:	AECOM T	AECOM Technical Services, Inc.			ANALY	ANALYTICAL QC SUMMARY REPORT	CSUM	MAR	Y REPO	ORT			
Work Order:	H1579		,	8WS	SW8260_25_W) 							
Project:	NOW Corp. Site	o. Site		SWS	346 8260 V(SW846 8260 VOC by GC-MS (25 mL Purge)	3 (25 mL	Purge)					
Sample ID: LCSD-45836	45836	SampType: LCSD	TestCod	TestCode: SW8260_25_W		Prep Date:	08/28/2009	60	Run II	Run ID: V5_090828C			
Client ID: LCSD	LCSD-45836	Batch ID: 45836	Unit	Units: µg/L		Analysis Date:	08/28/2009	60	SedN	SeqNo: 1103416			
Analyte			Result	Pal	SPK value	SPK Ref Val	%REC LowLimit HighLimit	owLimit H	ighLimit	RPD Ref Val	%RPD RPDLimit	DLimit	Qual
Vinyl chloride			9.306	0.50	10.00	0	93.1	77	120	9.902	6.21	40	
Chloroethane			10.01	0.50	10.00	0	100	75	135	10.53	5.09	40	
1,1-Dichloroethene			9.697	0.50	10.00	0	97.0	81	125	9.794	686.0	40	
trans-1,2-Dichloroethene	thene		9,395	0.50	10.00	0	93.9	09	137	9.183	2.28	40	
Methyl tert-butyl ether	ner		9.524	0:00	10.00	0	95.2	61	134	9.429	0.992	40	
1,1-Dichloroethane			9.739	0.50	10.00	0 ;	97.4	8.2	120	9.788	0.505	40	
cis-1,2-Dichloroethene	ene		9.751	0.50	10.00	0 (97.5	. 84	116	9.957	2.08	40	
1,1,1-Trichloroethane	Je		10.10	00	10.00		101) a	124	10.29	L. / 9	0.40	
1,2-Dichloroethane			10.17	00	10.00	-	701	ο α -	121	10.08	0.847	40	
Benzene			9.900	0.30	10.00)	0.88	7.7 7.7	121	10.02	1.25 5.76	40	
Tolugae			9 984	0.30 0.30	00.01	0 0	τ· σο	r α	117	10.02	0 2 2 0	0 7	
1 1 2 Trickloroethane	9		9.731	0 0 0	10.00) (97.3	o «	127	10.02	10 to	40	
Tetrachloroethene	<u>D</u>		9.730	0.50	10.00) (97.3	74	115	63.01	1 72	0.40	
Chlorohenzene			10.10	0.50	10.00	0	101	. 8	112	10.11	0.151	40	,
Ethylhenzene			9.905	0.50	10.00	0	0.66	87	110	9,893	0.114	40	
m n-Xvlene			20.30	0.50	20.00	0	102	87	114	20.69	1.88	40	
o-Xvlene			9,952	0.50	10.00	0	99.5	84	114	10.11	1.57	40	
Surrogate: Dibromofluoromethane	nofluorometha	je L	9.873	0.50	10.00	0	98.7	88	124	0			
Surrogate: 1,2-Dichloroethane-d4	chloroethane-o	4.	10.31	0.50	10.00	0	103	4	115	0			
Surrogate: Toluene-d8	ne-d8		9.963	0.50	10.00	0	9.66	80	114	0			
Surrogate: Bromofluorobenzene	ofluorobenzene		9.953	0.50	10.00	0	99.5	09	123	0			
		•											
										-			
Z													
The same of the sa													
31.00	ND Met Deta	that of the Description I want		300	Lo Docomore outoid	Carolina Contraction of	i.e.i.		-		1	13.6.41	
Qualmers:	NL - NOLLOCIC	ND - Not Detected at the Reporting Limit		ide - e	IKE KECOVELY OUGSIG	- Spike Kecovery outside accepted recovery limits	limits		7-g	B - Analyte detected in the associated Method Blank	the associate	d Memou	Blank

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

mLIMS-001

Date: 20-Aug-09

Client: AECOM Technical Services, Inc.

Client Sample ID: EFF 81709

Lab ID: H1579-01

Project: NOW Corp. Site

Collection Date: 08/17/09 10:45

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
EPA 1664 Oil & Grease, HEM				E1664
Oil & Grease, Total Recoverable	ND	5.0 mg/L	1 08/20/2009 0:00	45533

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 20-Aug-09

Client: AECOM Technical Services, Inc.

Client Sample ID: INF 81709

Lab ID: H1579-02

Project: NOW Corp. Site

Collection Date: 08/17/09 11:00

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
EPA 1664 Oil & Grease, HEM				E1664
Oil & Grease, Total Recoverable	ND	5.0 mg/L	1 08/20/2009 0:00	45533

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

	ŭ	3
	ď	-
	٤	į
_	2	3
	'n	3
	ţ	7
	۶	<
_	ά	₹
	•	ĭ
•		7
	٤	7
	ā)
_	٧	4
•	+	•
į	_	7
	>	ŕ

CLIENT: AE	AECOM Technical Services, Inc.		ANALY	TICAL QC	ANALYTICAL QC SUMMARY REPORT	PORT		
Work Order: H1	H1579		E1664					
Project: NC	NOW Corp. Site		EPA 1664 Oil & Grease, HEM	g Grease, HEN	I			
Sample ID: MB-45533	SampType: MBLK	TestCode: E1664		Prep Date:	Prep Date: 8/18/2009 Rui	Run ID: MANUAL_090820A	1820A	·
Client ID: MB-45533	Batch ID: 45533	Units: mg/L		Analysis Date:	8/20/2009	SeqNo: 1093901		
Analyte		Result PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit (Qual
Oil & Grease, Total Recoverable	verable	ND 5.0						
Sample ID: LCS-45533	SampType: LCS	TestCode: E1664		Prep Date.	8/18/2009	Run ID: MANUAL_090820A	1820A	
Client ID: LCS-45533	Batch ID: 45533	Units: mg/L		Analysis Date:	8/20/2009	SeqNo: 1093899		
Analyte		Result PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit Qual	Qual
Oil & Grease, Total Recoverable	verable	32.30 5.0	40.00	0	80.8 78 114	0		
Sample ID: LCSD-45533	3 SampType: LCSD	TestCode: E1664		Prep Date:	8/18/2009	Run ID: MANUAL_090820A	1820A	
Client ID: LCSD-45533	3 Batch ID: 45533	Units: mg/L		Analysis Date:	8/20/2009	SeqNo: 1093900		
Analyte		Result PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit Qual	Qual
Oil & Grease, Total Recoverable	overable	33.10 5.0	40.00	0	82.8 78 114	32.30	2.45 18	

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Qualifiers:

Date: 02-Sep-09

Client: AECOM Technical Services, Inc.

Client Sample ID: EFF 81709

Lab ID: H1579-01

Project: NOW Corp. Site

Collection Date: 08/17/09 10:45

Analyses	Result	Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 6010 Metals by ICP						SW6010_W
Aluminum	ND		200	μg/L	1 08/24/2009 8:44	45580
Arsenic	ND		20	μg/L	1 08/24/2009 8:44	45580
Barium	65	J	200	μg/L	1 08/24/2009 8:44	45580
Chromium	0.76	J	20	μg/L	1 08/24/2009 8:44	45580
Copper	ND		25	μg/L	1 08/24/2009 13:59	45580
Iron	ND		200	μg/L	1 08/24/2009 8:44	45580
Manganese	71	В	50	μg/L	1 08/24/2009 8:44	45580
Nickel	2.2	J	50	μg/L	1 08/24/2009 8:44	45580
Zinc	15	BJ	50	μg/L	1 08/24/2009 8:44	45580
SW846 7470 Mercury by FIA						SW7470
Mercury	ND		0.20	μg/L	1 08/20/2009 10:36	45584

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 02-Sep-09

Client: AECOM Technical Services, Inc.

Client Sample ID: INF 81709

Lab ID: H1579-02

Project: NOW Corp. Site

Collection Date: 08/17/09 11:00

Analyses	Result	Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 6010 Metals by ICP						SW6010_W
Aluminum	ND		200	μg/L	1 08/24/2009 8:47	45580
Arsenic	ND		20	μg/L	1 08/24/2009 8:47	45580
Barium	66	J	200	μg/L	1 08/24/2009 8:47	45580
Chromium	0.66	J	20	μg/L	1 08/24/2009 8:47	45580
Copper	ND		25	μg/L	1 08/24/2009 14:02	45580
Iron	ND		200	μg/L	1 08/24/2009 8:47	45580
Manganese	120	В	50	μg/L	1 08/24/2009 8:47	45580
Nickel	2.5	J	50	μg/L	1 08/24/2009 8:47	45580
Zinc	11	BJ	50	μg/L	1 08/24/2009 8:47	45580
SW846 7470 Mercury by FIA						SW7470
Mercury	ND		0.20	μg/L	1 08/20/2009 10:38	45584

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

ANALYTICAL QC SUMMARY REPORT

	S
•	<u> </u>
	5
	ra
,	ಶ್
,	L S
	E
-	Ke
	Ξ

AECOM Technical Services, Inc.

CLIENT:

Work Order: H1579			SV	SW6010 W	,					
Project: NOW	NOW Corp. Site		SV	SW846 6010 Metals by ICP	etals by ICP					
Sample ID: MB-45580	SampType: MBLK	TestCode	TestCode: SW6010_W		Prep Date:	8/19/2009	Run	Run ID: OPTIMA3_090821B	0821B	
Client ID: MB-45580	Batch ID: 45580	Units	Units: µg/L		Analysis Date:	8/21/2009	SeqN	SeqNo: 1097710		
Analyte		Result	Pol	SPK value	SPK Ref Val	"REC LOW	%REC LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Aluminum		21.87	200	u.						D
Arsenic		ND	20							
Barium		ND	200							
Chromium		ND	20							
Copper		6.113	30							Ŋ
Iron		ND	200							
Manganese		17.50	50							Ŋ
Nickel		ND	50							
Zinc		31.72	50							J
Sample ID: LCS-45580	SampType: LCS	TestCode	TestCode: SW6010_W		Prep Date:	8/19/2009	Run	Run ID: OPTIMA3_090821B	0821B	
Client ID: LCS-45580	Batch ID: 45580	Units	Units: µg/L		Analysis Date:	8/21/2009	SeqN	SeqNo: 1097711		
Analyte		Result	POL	SPK value	SPK Ref Val	"REC Low	%REC LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Aluminum		9014	200	9100	0	99.1 80	0 120	0		В
Arsenic		465.4	20	455.0	0	102 80	0 120	0		
Barium		9247	200	9100	0	102 80	0 120	0		
Chromium		908.1	20	910.0	0	99.8	0 120	0		
Copper		1195	30	1130	0	106 80	0 120	0		В
Iron		4727	200	4550	0	104 80	0 120	0		
Manganese		2404	50	2270	0	106 80	0 120	0		Ω
Nickel		2328	50	2270	0	103 80	0 120	0		
Zinc		2395	50	2270	0	106 80	0 120	0		В

CLIENT:	AECOM T	AECOM Technical Services. Inc.			ANALY	ANALYTICAL OCSTIMMARY REPORT	SUMM	ARY REP	ORT		
Work Order:	H1579				SW7470						
Project:	NOW Corp. Site	o. Site			SW846 7470 Mercury by FIA	ercury by FIA					
Sample ID: MB-45584	15584	SampType: MBLK	TestCode	TestCode: SW7470		Prep Date:	8/19/2009	Run	Run ID: FIMS1_090820B	90:	
Client ID: MB-4	MB-45584	Batch ID: 45584	Units:	Units: µg/L		Analysis Date:	8/20/2009	SeqN	SeqNo: 1096058		
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	nit HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Mercury			ND	0.20							
Sample ID: LCS-45584	45584	SampType: LCS	TestCode	TestCode: SW7470		Prep Date.	8/19/2009	Run	Run ID: FIMS1_090820B	90:	
Client ID: LCS-	LCS-45584	Batch ID: 45584	Units:	Units: µg/L		Analysis Date:	8/20/2009	SeqN	SeqNo: 1096059		
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	nit HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Mercury			4.218	0.20	4.550	0	92.7 80	120	0		
į											
enas;											

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Qualifiers:

Date: 21-Aug-09

Client: AECOM Technical Services, Inc.

Client Sample ID: EFF 81709

Lab ID: H1579-01

Project: NOW Corp. Site

Collection Date: 08/17/09 10:45

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SM 2540C TOTAL DISSOLVED SOLIDS				SM2540_TDS
Total Dissolved Solids	260	10 mg/L	1 08/19/2009 16:52	45576
SM 2540D TOTAL SUSPENDED SOLIDS				SM2540_TSS
Total Suspended Solids	ND	10 mg/L	1 08/19/2009 16:45	45577
SW846 9012 Total Cyanide				SW9012_W
Cyanide	18	10 μg/L	1 08/20/2009 10:05	45573

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 21-Aug-09

Client: AECOM Technical Services, Inc.

Client Sample ID: INF 81709

Lab ID: H1579-02

Project: NOW Corp. Site

Collection Date: 08/17/09 11:00

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SM 2540C TOTAL DISSOLVED SOLIDS				SM2540_TDS
Total Dissolved Solids	250	10 mg/L	1 08/19/2009 16:53	45576
SM 2540D TOTAL SUSPENDED SOLIDS				SM2540_TSS
Total Suspended Solids	ND	10 mg/L	1 08/19/2009 16:46	45577
SW846 9012 Total Cyanide				SW9012_W
Cyanide	ND	10 µg/L	1 08/20/2009 10:08	45573

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

CLIENT:	AECOM Technical Services, Inc.			ANALY	TICAL QC	ANALYTICAL QC SUMMARY REPORT	RY REPC)RT		
Work Order:	H1579		SMZ	SM2540_TDS						
Project:	NOW Corp. Site		SM	SM 2540C TOTAL DISSOLVED SOLIDS	AL DISSOLV	ED SOLIDS				
Sample ID: MB-45576	5576 SampType: MBLK	TestCode	TestCode: SM2540_TDS		Prep Date:	Prep Date: 8/19/2009	Run IC	Run ID: MANUAL_090819B	819B	
Client ID: MB-45576	5576 Batch ID: 45576	Units	Units: mg/L		Analysis Date:	8/19/2009	SedNc	SeqNo: 1094873		
Analyte		Result	PQL	SPK value	SPK Ref Val	SPK Ref Val %REC LowLimit HighLimit	HighLimit	RPD Ref Val	RPD Ref Val %RPD RPDLimit Qual	Qual
Total Dissolved Solids	lids	ND	10							
Sample ID: LCS-45576	45576 SampType: LCS	TestCode	TestCode: SM2540_TDS		Prep Date:	Prep Date: 8/19/2009	Run IC	Run ID: MANUAL_090819B	819B	
Client ID: LCS-45576	45576 Batch ID: 45576	Units	Units: mg/L		Analysis Date:	8/19/2009	SedNc	SeqNo: 1094874		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	HighLimit	RPD Ref Val	%RPD RPDLimit Qual	Qual
Total Dissolved Solids	lids	537.0	10	522.0	0	103 80	120	0		

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers: mLIMS-001

CLIENT:	AECOM Technical Services, Inc.			ANALY	TICAL QC	ANALYTICAL QC SUMMARY REPORT	Y REPORT			
Work Order:	H1579.		SMC	SM2540_TSS						
Project:	NOW Corp. Site	-	SM	SM 2540D TOTAL SUSPENDED SOLIDS	AL SUSPENI	ED SOLIDS				
Sample ID: MB-45577	SampType: MBLK	TestCode	TestCode: SM2540_TSS		Prep Date:	Prep Date: 8/19/2009	Run ID: MANUAL_090819A	AL_090819A		
Client ID: MB-45577	5577 Batch ID: 45577	Units	Units: mg/L		Analysis Date:	8/19/2009	SeqNo: 1093121	73		
Analyte		Result	Pal	SPK value	SPK Ref Val	SPK Ref Val %REC LowLimit HighLimit		ef Val %RF	RPD Ref Val %RPD RPDLimit Qual	Qual
Total Suspended Solids	olids	QN	10							
Sample ID: LCS-45577	45577 SampType: LCS	TestCode	TestCode: SM2540_TSS		Prep Date:	Prep Date: 8/19/2009	Run ID: MANUAL_090819A	AL_090819A		
Client ID: LCS-45577	45577 Batch ID: 45577	Units	Units: mg/L		Analysis Date:	8/19/2009	SeqNo: 1093122	22		
Analyte		Result	Pal	SPK value	SPK Ref Val	SPK Ref Val %REC LowLimit HighLimit	ghLimit RPD Ref Val	ef Vai %RF	%RPD RPDLimit Qual	Qual
Total Suspended Solids	olids	00.09	10	09.99	0	90.1 80	120 0			

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

CLIENT:	AECOM Technical Services, Inc.			ANALY	TICAL QC	ANALYTICAL QC SUMMARY REPORT	Y REPORT			
Work Order:	H1579		SW	SW9012_W						
Project:	NOW Corp. Site		SW	SW846 9012 Total Cyanide	al Cyanide					
Sample ID: MB-45573	5573 SampType: MBLK	TestCode	TestCode: SW9012_W		Prep Date:	Prep Date: 8/19/2009	Run ID: LACHAT1_090820A	HAT1_090	820A	
Client ID: MB-45573	5573 Batch ID: 45573	Units:	Units: µg/L		Analysis Date:	8/20/2009	SeqNo: 1094733	4733		
Analyte		Result	PQL	SPK value	SPK Ref Val	SPK Ref Val %REC LowLimit HighLimit		Ref Val	RPD Ref Val %RPD RPDLimit Qual	Qual
Cyanide		ND	20							
Sample ID: LCS-45573	45573 SampType: LCS	TestCode	TestCode: SW9012_W		Prep Date:	Prep Date: 8/19/2009	Run ID: LACHAT1_090820A	HAT1_090	820A	
Client ID: LCS-45573	45573 Batch ID: 45573	Units:	Units: µg/L		Analysis Date:	8/20/2009	SeqNo: 1094734	4734		
Analyte		Result	PQL	SPK value	SPK Ref Val	SPK Ref Val %REC LowLimit HighLimit		Ref Val	RPD Ref Val %RPD RPDLimit Qual	Qual
Cyanide		94.20	20	100.0	0	94.2 80	120	0		

B - Analyte detected in the associated Method Blank	
S - Spike Recovery outside accepted recovery limits	R - RPD outside accepted recovery limits
ND - Not Detected at the Reporting Limit	J - Analyte detected below quantitation limits

Qualifiers:

WorkOrder: H1579	
10:21	
18/Aug/09	

Report Level: LEVEL 2 EDD: HC Due: 09/03/09 Fax Due: **PO:** 94017.02 SDG: Case: Project: NOW Corp. Site Client ID: EARTH_NY Location:

Comments: N/A

Lab Samp ID	Client Sample ID	Collection Date Da	Date Recv'd	Matrix	Test Code	Lab Test Comments	HS HT MS SEL Storage
H1579-01A	EFF 81709	08/17/2009 10:45 08	08/18/2009	Aqueous	SW8260_25_W	use for VOCs,	✓ VOA
H1579-01B	EFF 81709	08/17/2009 10:45 08	08/18/2009	Aqueous	SW6010_W	See SEL list	☐ M4
				and the second	SW7470	See SEL list	M4
H1579-01C	EFF 81709	08/17/2009 10:45 08/18/2009	3/18/2009	Aqueous	SM2540_TDS		\Box \Box D2
TO A CALL TO A C					SM2540_TSS		□ □ D2
H1579-01D	EFF 81709	08/17/2009 10:45 08/18/2009	3/18/2009	Aqueous	E1664	The second control of	□ □ D2
H1579-01E	EFF 81709	08/17/2009 10:45 08	08/18/2009	Aqueous	SW9012_W		□ 🕶 D2
H1579-02A	INF 81709	08/17/2009 11:00 08	08/18/2009	Aqueous	SW8260_25_W	use for VOCs,	VOA VOA
H1579-02B	INF 81709	08/17/2009 11:00 08/18/2009	8/18/2009	Aqueous	SW6010_W	See SEL list	> M4
			1		SW7470	See SEL list	☐ ☐ M4
H1579-02C	INF 81709	08/17/2009 11:00 08/18/2009	8/18/2009	Aqueous	SM2540_TDS		\Box \Box D2
	and the second s				SM2540_TSS		□ □ D2
H1579-02D	INF 81709	08/17/2009 11:00 08/18/2009	3/18/2009	Aqueous	E1664		
H1579-02E	INF 81709	08/17/2009 11:00 08	08/18/2009	Aqueous	SW9012_W	to the control of the	□ ∀ D2
H1579-03A	TW-1	08/17/2009 11:15 08	08/18/2009	Aqueous	SW8260_25_W	use for VOCs,	VOA
H1579-04A	TW-2A	08/17/2009 11:30 08	08/18/2009	Aqueous	SW8260_25_W	use for VOCs,	✓ VOA
H1579-05A	TW-3	08/17/2009 11:35 08	08/18/2009	Aqueous	SW8260_25_W	use for VOCs,	✓ VOA
1028					HS = Sample logged in b HT = Sample/Test logge	HS = Sample logged in but all tests have been placed on hold HT = Sample/Test logged in but test has been placed on hold	

Mitkem Laboratories	18/Aug/09 10:21		WorkOrder: H1579
Client ID: EARTH_NY	Case:	HC Due: 09/03/09	Report Level: LEVEL 2
Project: NOW Corp. Site	SDG:	Fax Due:	EDD:
Location:	PO: 94017.02		
Comments: N/A			

HS HT MS SEL Storage	□ VOA
Lab Test Comments	use for VOCs,
Test Code	SW8260_25_W
Matrix	Aqueous
Date Recv'd	08/18/2009
Collection Date Date Recv'd Mat	08/17/2009 0:00 08/18/2009
Lab Samp ID Client Sample ID	TRIP BLANKS
Lab Samp II	H1579-06A

HS = Sample logged in but all tests have been placed on hold HT = Sample/Test logged in but test has been placed on hold

Lab Client Rep: Edward A Lawler

Special Handling: Zstandard TAT - 7 to 10 business days Rush TAT - Date Needed: All TATs subject to laboratory approval. Min. 24-hour notification needed for rushes. Samples disposed of after 60 days unless otherwise instructed.	84017.02	Now Corp	Statts Wy State: NY	2KV	ode below: QA/QC Reporting Notes: (check as needed)
RECORD	Project No.:		Location: St	Sampler(s): RKV	List preservative code below: 2 4 9 2 5
CHAIN OF CUSTODY RECORD Page 1 of 1	Invoice To: Sanc			P.O. No.: RQN:	=NaOH 6=Ascorbic Acid 7=CH ₃ OH
SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY	Report To: Steve Chainiere	40 British American Blue	Letham NY 12110	Telephone #: 5/8-95/-2200	$1=Na_2S2O_3$ $2=HCI$ $3=H_2SO_4$ $4=HNO_3$ $5=NaOH$ $8=NaHSO_4$ $9=\sqrt{LoMC}$ $10=$

$8=\text{NaHSO}_4$ $9=\sqrt{\rho_{A}c}$	304 4-11NO3 		11=	מואר	/-СПЗОП	3011	1	7 4	0	7	2		QA/QC Reporting Notes: (check as needed)	
DW=Drinking Water (W=Groundwater		WW=Wastewater			Cont	Containers:				Analyses	ses:			
O=0il SW= Surface Water SO=Soil XI= X2=		SL=Sludge A=Air X3=		sp		SSU					c		☐ Provide MA DEP MCP CAM Report ☐ Provide CT DPH RCP Report	
G=Grab C=Composite	Composite			iV AO	mber C	ear Gla		997 121/ 21/	21/ 27/	9	אונאל		QA/QC Reporting Level ☐ Standard ☐ No QC ☐ Other	
Lab Id: Sample Id:	Date:	Time:	Lype	xirtsM V Yo #		# of CI		28	2017 2017	1+0	かつ		State specific reporting standards:	
1579-01 EAP 81709	69L1/8	10:45	7 7	EW 2	7	3		^ ×	× ×	×	×		* AL, AS, 84	
02 INF 81709	•	00:11	-	1 2	2	3		XX	×	×	×		CR, CU, FE, MM.	
03 TW-1		11:15		7 /				×					HG. ZN. N	
04 TW-2A		11:30		2				×						
05 TW-3	7	11:35	7	7 7				×						
11579-06 Trie Blanks	1		1	7				×						
				-				C .						
124 2.1 2.1 3.1														l
														T
														I
EDD Format				Baling	Reknquished by	.xc			4	Received by	d by			
□ E-mail to				Ź				1	را	#	\ '			
	***	681	•					1	$\langle $, ************************************		1	8/18/07 7:05	
Condition upon receipt. \square Iced \square Ambient $A^{\circ_0} \subseteq S_{\ell}$	vmbient $\int \int ^b C$													

11 Almgren Drive • Agawam, MA 01001 • 413-789-9018 • FAX 413-789-4076 • www.spectrum-analytical.com

MITKEM LABORATORIES

Sample Condition Form

Page ___ of ___

Received By: ソ をし	Reviewed By:	DV.		Date:9	118109	MITK	EM Wor	korder	#: 17	1579
Client Project: Now	Corp.	· · ·		Client:	Ear-					Soil Headspace
	·		- I - ID	11110		ervatio		Turno	VOA	or Air Bubbles
-		Lab Sam	<u></u>	HNO ₃	H₂SO₄	HCI	NaOH	H ₃ PO ₄	Matrix	<u>> 1/4"</u>
1) Cooler Sealed (Yes /	No	H1579	01	ري ري		 		VE GENER	1	
			03	22		L 2	>13			
2) Custody Seal(s)	Present / Absent		03							
(Coolers / Bottles		24							
É	Intacty Broken	4	05						7	
		41579	ماه						Ħ	
3) Custody Seal Number(s)	NA									
										7
	1									
										/
4) Chain-of-Custody (Present / Absent									
To Chair or Gustody	1 Tederily 7 Abdelle		 							
5) Cooler Temperature	- a.c									
Coolant Condition	5.9°C		 							<u> </u>
Coolant Condition	100		-			<u> </u>		/		
O) A:-L::H/-)	(Ab						-/-			
6) Airbill(s)	Present / Absent					_	/			
Airbill Number(s)	FEBEX		+			40	{ 			
•	1 19412		-		4	40				
						1				<u> </u>
			-		3/					
	\sim		-		/	ļ				
7) Sample Bottles (IntacyBroken/Leaking			/		<u> </u>	·		-	<u> </u>
	a a a		-							
8) Date Received	8/18/09		<u> </u>	/		<u> </u>				
	_		$\perp \angle$							
9) Time Received	9:05					VOA	Matrix	Key:		
			4			US =	Unprese	erved S	oil	A = Air
Preservative Name/Lot No:						UA =	Unprese	erved A	.qu.	H = HCI
						M= M	еОН			E = Encore
						N = N	aHSO₄			F = Freeze
	ner sa com est com									
See Sample Cond	dition Notification/Correc	ctive Action I	-orm	yes / .r	10)		OK yes			

Last Page of Data Report