Operation, Maintenance and Monitoring Report January 2010

NOW Corporation Site 3-14-008

Work Assignment No. D004445-4.1

Prepared for:

SUPERFUND STANDBY PROGRAM
New York State
Department of Environmental Conservation
625 Broadway
Albany, New York 12233

Prepared by:

AECOM Technical Services Northeast, Inc. 40 British American Boulevard Latham, New York 12110

March 2010

March 9, 2010

Mr. Carl Hoffman, P.E. NYSDEC Division of Environmental Remediation 625 Broadway, 12th Floor Albany, New York 12233-7013

Re: NOW Corporation - Site #3-14-008 O&M Summary Report: "January" 2010

Dear Mr. Hoffman:

This monthly summary report describes the operation, monitoring and maintenance (OM&M) of the remedial system at the NOW Corporation site in the Town of Clinton, New York, for a 35-day period (**December 22**, **2009 to January 26**, **2010**).

With the exceptions noted below, if any, the P&T system was online and operational throughout the reporting period. Approximately 1,034,000 gallons of water were treated during the period. Discharge from the treatment system averaged approximately 29,500 gallons per day (gpd). During the prior reporting period, the average discharge was 15,800 gpd.

As of the last day of the reporting period, a total of 75,410,000 gallons of groundwater had been recovered and treated by the system since it became operational in February 1998.

Table 1 summarizes influent and effluent analytical data for water samples collected on January 26, 2010. **There were no exceedances of effluent limitations.** A copy of the analytical laboratory report is attached. Table 2 summarizes selected operational data recorded on the sampling date.

AECOM made two site visits during the period to conduct the required system inspection, perform scheduled and/or unscheduled maintenance, and to collect water samples. The December 22 service visit was described in the previous report. Details for the current period follow:

January 26 – Monthly system inspection and water sampling.

Please feel free to contact me at (518) 951-2262 if you have any questions regarding this report or the operation of the treatment system.

Sincerely,

AECOM Technical Services Northeast, Inc.

Stephen R. Choiniere Project Manager

Table 1
Summary of Influent and Effluent Data
Sampling Date: January 26, 2010
NOW Corporation Site
Town of Clinton, New York

Analytes/	Total]	Recovery Well	s	Ef	fluent
Parameters	Influent	Effluent	TW-1	TW-2A	TW-3	Lim	itations
							(units)
Quantity treated, per day		29,540				Monitor	gpd
рН	7.6	7.2				6.5 to 8.5	standard units
Oil and Grease	< 5.0	< 5.0	NA	NA	NA	15	mg/L
Total Cyanide	<10	<10	NA	NA	NA	10	ug/L
TDS	260	200	NA	NA	NA	1000	mg/L
TSS	<10	<10	NA	NA	NA	50	mg/L
Aluminum, Total	<200	<200	NA	NA	NA	2000	ug/L
Arsenic, Total	< 20	3.3 BJ	NA	NA	NA	50	ug/L
Barium, Total	71 J	74 J	NA	NA	NA	2000	ug/L
Chromium	0.63 J	0.57 J	NA	NA	NA	100	ug/L
Copper	<25	<25	NA	NA	NA	24	ug/L
Iron	< 200	< 200	NA	NA	NA	600	ug/L
Mercury	< 0.20	< 0.20	NA	NA	NA	0.8	ug/L
Manganese	130	99	NA	NA	NA	600	ug/L
Nickel	1.2 J	1.5 J	NA	NA	NA	200	ug/L
Zinc	14 BJ	16 BJ	NA	NA	NA	150	ug/L
1,1,1-Trichloroethane	310	< 0.50	6.4	510	4.5	5	ug/L
1,1,2-Trichloroethane	< 20	< 0.50	< 2.5	< 40	< 0.50	1.2	ug/L
1,1-Dichloroethane	120	< 0.50	66	180	14	5	ug/L
1,1-Dichloroethene	24	< 0.50	21	29 J	2.7	0.5	ug/L
1,2-Dichloroethane	< 20	< 0.50	< 2.5	<40	< 0.50	1.6	ug/L
Benzene	< 20	< 0.50	< 2.5	< 40	< 0.50	0.8	ug/L
Chlorobenzene	< 20	< 0.50	< 2.5	< 40	< 0.50	5	ug/L
Chloroethane	< 20	< 0.50	< 2.5	<40	< 0.50	5	ug/L
cis-1,2-Dichloroethene	14 J	< 0.50	9.2	18 J	0.26 J	5	ug/L
Ethylbenzene	< 20	< 0.50	< 2.5	< 40	< 0.50	5	ug/L
Methyl tert-butyl ether	< 20	< 0.50	< 2.5	< 40	< 0.50	5	ug/L
o-Xylene	< 20	< 0.50	< 2.5	< 40	< 0.50	5	ug/L
p&m-Xylene	< 20	< 0.50	< 2.5	< 40	< 0.50	10	ug/L
Tetrachloroethene	< 20	< 0.50	< 2.5	< 40	< 0.50	1.4	ug/L
Toluene	< 20	< 0.50	< 2.5	<40	< 0.50	5	ug/L
trans-1,2-Dichloroethene	< 20	< 0.50	< 2.5	<40	< 0.50	5	ug/L
Trichloroethene	280	< 0.50	92	420	12	5	ug/L
Vinyl Chloride	<20	< 0.50	<2.5	<40	< 0.50	0.6	ug/L

Notes:

- 1) Detected concentrations are presented in **bold** typeface, and are expressed in the units shown in far right column.
- 2) Effluent concentration boxed in **bold** denotes exceedance of effluent limitations.
- 3) NA indicates not analyzed.
- 4) "J" indicates an estimated concentration below the reporting limit (RL).
- 5) "D" denotes analytical result for a diluted sample.
- 6) "B" denotes metal detected in method blank at concentration below the RL, but above the method detection limit.

1-10 Tables.xls 3/9/2010

Table 2 Summary of January 2010 O&M Data

NOW Corporation Site Town of Clinton, New York

Instrumer	ntation/Readings:	1/26/10	Units
TW-1			
	Pumping Rate	2	GPM
	Water Level Above Transducer	42.28	feet
	Flow Meter Reading	5,242,500	gallons
	Pump Pressure	68	psi
TW-2A			
	Pumping Rate	16	GPM
	Water Level Above Transducer	52.12	feet
	Flow Meter Reading	14,634,100	gallons
	Pump Pressure	26	psi
TW-3			
	Pumping Rate	3	GPM
	Water Level Above Transducer	32.00	feet
	Flow Meter Reading	7,572,200	gallons
	Pump Pressure	65	psi
Air Strippe	er		
	Stripper Blower Pressure	18.5	inches H ₂ O
	Air Temperature in Stripper	46	$^{\circ}\mathrm{F}$
	Pressure Gauge - Left Leg	0.5	inches H ₂ O
	Pressure Gauge - Right Leg	0.6	inches H ₂ O
Effluent F	low		
	Effluent Flow this period (calculated)	1,033,900	gallons
	Total Effluent Flow (calculated)	75,410,000	gallons

1-10 Tables.xls 3/9/2010

Report Date: 11-Feb-10 10:55

✓ Final Report☐ Re-Issued Report☐ Revised Report

A DIVISION OF SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

Laboratory Report

AECOM Technical Services, Inc. 40 British American Boulevard

Latham, NY 12110

Work Order: J0149

Project: NOW Corp. Site, 1/10

Project #:

Attn: Stephen Choiniere

			The state of the s		and the second s		The second secon
La	boratory ID	Client Sample ID			<u>Matrix</u>	Date Sampled	Date Received
	J0149-01	EFF 12610			Aqueous	26-Jan-10 10:30	27-Jan-10 08:55
	J0149-02	INF 12610			Aqueous	26-Jan-10 11:00	27-Jan-10 08:55
	J0149-03	TW-1			Aqueous	26-Jan-10 11:30	27-Jan-10 08:55
	J0149-04	TW-2A			Aqueous	26-Jan-10 11:35	27-Jan-10 08:55
	J0149-05	TW-3			Aqueous	26-Jan-10 11:40	27-Jan-10 08:55
	J0149-06	TRIP BLANK			Aqueous	26-Jan-10 00:00	27-Jan-10 08:55

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. The results relate only to the samples(s) as recevied.

All applicable NELAC or USEPA CLP requirments have been meet.

Mitkem Laboratories is accredited under the National Environmental Laboratory Approval Program (NELAP) and is certified by several States, as well as USEPA and US Department of Defense. The current list of our laboratory approvals and certifications is available on the Certifications page our web site at www.mitkem.com.

Please contact the Laboratory or Technical Director at 401-732-3400 with any questions regarding the data contained in the laboratory report.

Department of Defense	N/A
Connecticut	PH-0153
Delaware	N/A
Maine	2007037
Massachusetts	M-RI907
New Hampshire	2631
New Jersey	RI001
New York	11522
North Carolina	581
Pennsylvania	68-00520
Rhode Island	LAI00301
Texas	T104704422-08-TX
USDA	P330-08-00023
USEPA - ISM	EP-W-09-039
USEPA - SOM	EP-W-05-030

Authorized by:

Yihai Ding Laboratory Director

Technical Reviewer's Initials:

Report of Laboratory Analyses for AECOM Technical Services

Client Project: NOW Corp. 94017.02, 01/10

Mitkem Work Order ID: J0149

February 11, 2010

Prepared For:

AECOM Technical Services

40 British American Boulevard

Latham, NY 12110

Attn: Mr. Stephen Choiniere

Prepared By:

Mitkem Laboratories

175 Metro Center Boulevard

Warwick, RI 02886

(401) 732-3400

Client: AECOM Technical Services

Client Project: NOW Corp, 94017.02, 01/10

Lab Work Order: J0149

Date samples received: 01/27/10

Project Narrative

This data report includes the analysis results for six (6) aqueous samples that were received from AECOM Technical Services on January 27, 2010. Analyses were performed per specification in the Chain of Custody form. For reference, a copy of the Mitkem Sample Log-In form is included for cross-referencing the client sample ID and laboratory sample ID.

Surrogate recoveries were within the QC limits for volatile organic analyses. Percent recoveries in laboratory control samples were within the QC limits. The following samples were analyzed at dilution: INF 12610 (40X), TW-1 (5X) and TW-2A (80X).

Spike recoveries were within the QC limits in the laboratory control samples for metals, total dissolved solids, total suspended solids, cyanide and oil & grease analyses. Duplicate analysis was performed on sample INF 12610 for total dissolved solids and total suspended solids. Percent RPD was within the QC limits for both total dissolved solids and total suspended solids. Several elements were detected below the reporting limit but above the method detection limit in method blank MB-48270 for metals analyses. Where these elements are also detected in a sample, their concentrations are qualified with a "B" on data sheets. Please note that these concentrations in the sample were also below the reporting limit.

No other unusual occurrences were noted during sample analysis.

All pages in this report have been numbered consecutively, starting with the title page and ending with a page saying only "Last Page of Data Report".

This data report has been reviewed and is authorized for release as evidenced by the signature below.

Agnes Huntley

CLP Project Manager

Client: AECOM Technical Services, Inc.

Client Sample ID: EFF 12610

Lab ID: J0149-01

Date: 10-Feb-10

Project: NOW Corp. Site, 1/10

Collection Date: 01/26/10 10:30

Analyses	Result Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS (25 mL Purge)				sw	8260_25_W
Vinyl chloride	ND	0.50	μg/L	1 02/08/2010 15:19	49134
Chloroethane	ND	0.50	μg/L	1 02/08/2010 15:19	49134
1,1-Dichloroethene	ND	0.50	μg/L	1 02/08/2010 15:19	49134
trans-1,2-Dichloroethene	ND	0.50	μg/L	1 02/08/2010 15:19	49134
Methyl tert-butyl ether	ND	0.50	μg/L	1 02/08/2010 15:19	49134
1,1-Dichloroethane	ND	0.50	μg/L	1 02/08/2010 15:19	49134
cis-1,2-Dichloroethene	ND	0.50	μg/L	1 02/08/2010 15:19	49134
1,1,1-Trichloroethane	ND	0.50	μg/L	1 02/08/2010 15:19	49134
1,2-Dichloroethane	ND .	0.50	μg/L	1 02/08/2010 15:19	49134
Benzene	ND	0.50	μg/L	1 02/08/2010 15:19	49134
Trichloroethene	· ND	0.50	μg/L	1 02/08/2010 15:19	49134
Toluene	ND	0.50	μg/L	1 02/08/2010 15:19	49134
1,1,2-Trichloroethane	ND	0.50	μg/L	1 02/08/2010 15:19	49134
Tetrachloroethene	ND	0.50	μg/L	1 02/08/2010 15:19	49134
Chlorobenzene	ND	0.50	μg/L	1 02/08/2010 15:19	49134
Ethylbenzene	ND	0.50	μg/L	1 02/08/2010 15:19	49134
m,p-Xylene	ND	0.50	μg/L	1 02/08/2010 15:19	49134
o-Xylene	ND	0.50	μg/L	1 02/08/2010 15:19	49134
Surrogate: Dibromofluoromethane	107	88-124	%REC	1 02/08/2010 15:19	49134
Surrogate: 1,2-Dichloroethane-d4	108	79-115	%REC	1 02/08/2010 15:19	49134
Surrogate: Toluene-d8	108	80-114	%REC	1 02/08/2010 15:19	49134
Surrogate: Bromofluorobenzene	109	60-123	%REC	1 02/08/2010 15:19	49134

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 10-Feb-10

Client: AECOM Technical Services, Inc.

Client Sample ID: INF 12610

Lab ID: J0149-02

Project: NOW Corp. Site, 1/10

Collection Date: 01/26/10 11:00

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS (25 mL Purge)			SW	/8260_25_W
Vinyl chloride	ND	20 μg/L	40 02/08/2010 15:48	49134
Chloroethane	ND	20 μg/L	40 02/08/2010 15:48	49134
1,1-Dichloroethene	24	20 μg/L	40 02/08/2010 15:48	49134
trans-1,2-Dichloroethene	ND	20 μg/L	40 02/08/2010 15:48	49134
Methyl tert-butyl ether	ND	20 μ g/L	40 02/08/2010 15:48	49134
1,1-Dichloroethane	120	20 μg/L	40 02/08/2010 15:48	49134
cis-1,2-Dichloroethene	14 J	20 μg/L	40 02/08/2010 15:48	49134
1,1,1-Trichloroethane	310	20 μg/L	40 02/08/2010 15:48	49134
1,2-Dichloroethane	ND	20 μg/L	40 02/08/2010 15:48	49134
Benzene	ND ·	20 μg/L	40 02/08/2010 15:48	49134
Trichloroethene	280	20 μg/L	40 02/08/2010 15:48	49134
Toluene	ND	20 μg/L	40 02/08/2010 15:48	49134
1,1,2-Trichloroethane	ND	20 μg/L	40 02/08/2010 15:48	49134
Tetrachloroethene	ND	20 μg/L	40 02/08/2010 15:48	49134
Chlorobenzene	ND	20 μg/L	40 02/08/2010 15:48	49134
Ethylbenzene	ND	20 μg/L	40 02/08/2010 15:48	49134
m,p-Xylene	ND	20 μg/L	40 02/08/2010 15:48	49134
o-Xylene	ND	20 μg/L	40 02/08/2010 15:48	49134
Surrogate: Dibromofluoromethane	110	88-124 %REC	40 02/08/2010 15:48	49134
Surrogate: 1,2-Dichloroethane-d4	111	79-115 %REC	40 02/08/2010 15:48	49134
Surrogate: Toluene-d8	111	80-114 %REC	40 02/08/2010 15:48	49134
Surrogate: Bromofluorobenzene	109	60-123 %REC	40 02/08/2010 15:48	49134

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 10-Feb-10

Client: AECOM Technical Services, Inc.

Client Sample ID: TW-1

Lab ID: J0149-03

Project: NOW Corp. Site, 1/10

Collection Date: 01/26/10 11:30

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS (25 mL Purge)			SW	/8260_25_W
Vinyl chloride	ND	2.5 μg/L	5 02/08/2010 16:18	49134
Chloroethane	ND	2.5 μg/L	5 02/08/2010 16:18	49134
1,1-Dichloroethene	21	2.5 μg/L	5 02/08/2010 16:18	49134
trans-1,2-Dichloroethene	ND	2.5 μg/L	5 02/08/2010 16:18	49134
Methyl tert-butyl ether	ND	2.5 μg/L	5 02/08/2010 16:18	49134
1,1-Dichloroethane	66	2.5 µg/L	5 02/08/2010 16:18	49134
cis-1,2-Dichloroethene	9.2	2.5 µg/L	5 02/08/2010 16:18	49134
1,1,1-Trichloroethane	6.4	2.5 µg/L	5 02/08/2010 16:18	49134
1,2-Dichloroethane	ND	2.5 µg/L	5 02/08/2010 16:18	49134
Benzene	ND	2.5 µg/L	5 02/08/2010 16:18	49134
Trichloroethene	92	2.5 µg/L	5 02/08/2010 16:18	49134
Toluene	ND	2.5 µg/L	5 02/08/2010 16:18	49134
1,1,2-Trichloroethane	ND	2.5 µg/L	5 02/08/2010 16:18	49134
Tetrachloroethene	ND	2.5 μg/L	5 02/08/2010 16:18	49134
Chlorobenzene	ND	2.5 µg/L	5 02/08/2010 16:18	49134
Ethylbenzene	ND	2.5 µg/L	5 02/08/2010 16:18	49134
m,p-Xylene	ND	2.5 µg/L	5 02/08/2010 16:18	49134
o-Xylene	ND	2.5 μg/L	5 02/08/2010 16:18	49134
Surrogate: Dibromofluoromethane	102	88-124 %REC	5 02/08/2010 16:18	49134
Surrogate: 1,2-Dichloroethane-d4	96.1	79-115 %REC	5 02/08/2010 16:18	49134
Surrogate: Toluene-d8	106	80-114 %REC	5 02/08/2010 16:18	49134
Surrogate: Bromofluorobenzene	110	60-123 %REC	5 02/08/2010 16:18	49134

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 10-Feb-10

Client: AECOM Technical Services, Inc.

Client Sample ID: TW-2A

Lab ID: J0149-04

Project: NOW Corp. Site, 1/10

Collection Date: 01/26/10 11:35

Analyses	Result Qual	RL U	Units	DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS (25 mL Purge)				sw	8260_25_W
Vinyl chloride	ND	40 μ	ıg/L	80 02/08/2010 16:48	49134
Chloroethane	ND	40 µ	ıg/L	80 02/08/2010 16:48	49134
1,1-Dichloroethene	29 J	40 µ	ıg/L	80 02/08/2010 16:48	49134
trans-1,2-Dichloroethene	ND	40 μ	ıg/L	80 02/08/2010 16:48	49134
Methyl tert-butyl ether	ND	40 μ	ıg/L	80 02/08/2010 16:48	49134
1,1-Dichloroethane	180	40 µ	ıg/L	80 02/08/2010 16:48	49134
cis-1,2-Dichloroethene	18 J	40 µ	ıg/L	80 02/08/2010 16:48	49134
1,1,1-Trichloroethane	510	40 µ	ıg/L	80 02/08/2010 16:48	49134
1,2-Dichloroethane	ND	40 µ	ıg/L	80 02/08/2010 16:48	49134
Benzene	NÐ	40 µ	ıg/L	80 02/08/2010 16:48	49134
Trichloroethene	420	40 µ	ıg/L	80 02/08/2010 16:48	49134
Toluene	ND	40 µ	ıg/L	80 02/08/2010 16:48	49134
1,1,2-Trichloroethane	ND	40 µ	ıg/L	80 02/08/2010 16:48	49134
Tetrachloroethene	ND	40 µ	ıg/L	80 02/08/2010 16:48	49134
Chlorobenzene	ND	40 µ	ıg/L	80 02/08/2010 16:48	49134
Ethylbenzene	ND	40 µg	ıg/L	80 02/08/2010 16:48	49134
m,p-Xylene	ND	40 µg	ıg/L	80 02/08/2010 16:48	49134
o-Xylene	ND .	40 µ	ıg/L	80 02/08/2010 16:48	49134
Surrogate: Dibromofluoromethane	103	88-124 %	6REC	80 02/08/2010 16:48	49134
Surrogate: 1,2-Dichloroethane-d4	87.9	79-115 %	6REC	80 02/08/2010 16:48	49134
Surrogate: Toluene-d8	109	80-114 %	%REC	80 02/08/2010 16:48	49134
Surrogate: Bromofluorobenzene	107	60-123 %	6REC	80 02/08/2010 16:48	49134

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 10-Feb-10

Client: AECOM Technical Services, Inc.

Client Sample ID: TW-3

Lab ID: J0149-05

Project: NOW Corp. Site, 1/10

Collection Date: 01/26/10 11:40

Analyses	Result Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS (25 mL Purge)				S	SW8260_25_W
Vinyl chloride	ND	0.50	μg/L	1 02/08/2010 17:17	49134
Chloroethane	ND	0.50	μg/L	1 02/08/2010 17:17	49134
1,1-Dichloroethene	2.7	0.50	μg/L	1 02/08/2010 17:17	49134
trans-1,2-Dichloroethene	ND	0.50	μg/L	1 02/08/2010 17:17	49134
Methyl tert-butyl ether	ND	0.50	μg/L	1 02/08/2010 17:17	49134
1,1-Dichloroethane	14	0.50	μg/L	1 02/08/2010 17:17	49134
cis-1,2-Dichloroethene	0.26 J	0.50	μg/L	1 02/08/2010 17:17	49134
1,1,1-Trichloroethane	4.5	0.50	μg/L	1 02/08/2010 17:17	49134
1,2-Dichloroethane	ND	0.50	μg/L	1 02/08/2010 17:17	49134
Benzene	ND	0.50	μg/L	1 02/08/2010 17:17	49134
Trichloroethene	12	0.50	μg/L	1 02/08/2010 17:17	49134
Toluene	ND	0.50	μg/L	1 02/08/2010 17:17	49134
1,1,2-Trichloroethane	ND	0.50	μg/L	1 02/08/2010 17:17	49134
Tetrachloroethene	ND	0.50	μg/L	1 02/08/2010 17:17	49134
Chlorobenzene	ND	0.50	μg/L	1 02/08/2010 17:17	49134
Ethylbenzene	ND	0.50	μg/L	1 02/08/2010 17:17	49134
m,p-Xylene	ND	0.50	μg/L	1 02/08/2010 17:17	49134
o-Xylene	ND	0.50	μg/L	1 02/08/2010 17:17	49134
Surrogate: Dibromofluoromethane	102	88-124	%REC	1 02/08/2010 17:17	49134
Surrogate: 1,2-Dichloroethane-d4	100	79-115	%REC	1 02/08/2010 17:17	49134
Surrogate: Toluene-d8	107	80-114	%REC	1 02/08/2010 17:17	49134
Surrogate: Bromofluorobenzene	104	60-123	%REC	1 02/08/2010 17:17	49134

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 10-Feb-10

Client: AECOM Technical Services, Inc.

Client Sample ID: TRIP BLANK

Lab ID: J0149-06

Project: NOW Corp. Site, 1/10

Collection Date: 01/26/10 0:00

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS (25 mL Purge)			SW	8260_25_W
Vinyl chloride	ND	0.50 µg/L	1 02/08/2010 18:17	49134
Chloroethane	ND	0.50 μg/L	1 02/08/2010 18:17	49134
1,1-Dichloroethene	NĐ	0.50 µg/L	1 02/08/2010 18:17	49134
trans-1,2-Dichloroethene	ND	0.50 μg/L	1 02/08/2010 18:17	49134
Methyl tert-butyl ether	ND	0.50 μg/L	1 02/08/2010 18:17	49134
1,1-Dichloroethane	ND	0.50 µg/L	1 02/08/2010 18:17	49134
cis-1,2-Dichloroethene	ND	0.50 µg/L	1 02/08/2010 18:17	49134
1,1,1-Trichloroethane	ND	0.50 μg/L	1 02/08/2010 18:17	49134
1,2-Dichloroethane	ND	0.50 µg/L	1 02/08/2010 18:17	49134
Benzene	ND	0.50 µg/L	1 02/08/2010 18:17	49134
Trichloroethene	ND	0.50 μg/L	1 02/08/2010 18:17	49134
Toluene	ND	0.50 μg/L	1 02/08/2010 18:17	49134
1,1,2-Trichloroethane	ND	0.50 µg/L	1 02/08/2010 18:17	49134
Tetrachloroethene	ND	0.50 μg/L	1 02/08/2010 18:17	49134
Chlorobenzene	ND	0.50 μg/L	1 02/08/2010 18:17	49134
Ethylbenzene	ND	0.50 µg/L	1 02/08/2010 18:17	49134
m,p-Xylene	ND	0.50 μg/L	1 02/08/2010 18:17	49134
o-Xylene	ND	0.50 µg/L	1 02/08/2010 18:17	49134
Surrogate: Dibromofluoromethane	97.9	88-124 %REC	1 02/08/2010 18:17	49134
Surrogate: 1,2-Dichloroethane-d4	111	79-115 %REC	1 02/08/2010 18:17	49134
Surrogate: Toluene-d8	108	80-114 %REC	1 02/08/2010 18:17	49134
Surrogate: Bromofluorobenzene	106	60-123 %REC	1 02/08/2010 18:17	49134

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

AECOM Technical Services, Inc. CLIENT:

J0149 Work Order: NOW Corp. Site, 1/10

Project:

ANALYTICAL QC SUMMARY REPORT

SW8260_25_W

SW846 8260 -- VOC by GC-MS (25 mL Purge)

Sample ID: MB-49134	SampType: MBLK	TestCode	TestCode: SW8260_25_W		Prep Date: 2/8/2010	2/8/2010	Run	Run ID: V5_100208A		
Client ID: MB-49134	Batch ID: 49134	Units:	Units: µg/L		Analysis Date:	2/8/2010	SeqN	SeqNo: 1203082		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC Low	%REC LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit Qual	Qual
Vinyl chloride		ND	0.50							
Chloroethane		ND	0.50							
1,1-Dichloroethene		ND	0.50							
trans-1,2-Dichloroethene		ND	0.50							
Methyl tert-butyl ether		ND	0.50							
1,1-Dichloroethane		ND	0.50							
cis-1,2-Dichloroethene		ND	0.50							
1,1,1-Trichloroethane		ND	0.50							
1,2-Dichloroethane		ND	0.50							
Benzene		ND	0.50							
Trichloroethene		ND	0.50							
Toluene		ND	0.50							
1,1,2-Trichloroethane		ND	0.50							
Tetrachloroethene		ND	0.50							
Chlorobenzene		ND	0.50							
Ethylbenzene		ND	0.50							
m,p-Xylene		ND	0.50							
o-Xylene		ND	0.50							
Surrogate: Dibromofluoromethane	Ue	10.08	0.50	10.00	0	101 8	88 124	0		
Surrogate: 1,2-Dichloroethane-d4	44	9.711	0.50	10.00	0	H	79 115	0		
Surrogate: Toluene-d8		10.96	0.50	10.00	0	110 8	80 114	0		
Surrogate: Bromofluorobenzene		10.92	0.50	10.00	0		60 123	0		

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

ND - Not Detected at the Reporting Limit

Qualifiers:

mLIMS-001

CLIENT: AECOM	AECOM Technical Services, Inc.			ANALY	ANALYTICAL QC SUMMARY REPORT	CSUM	MAR	Y REP	ORT		
Work Order: J0149			SWS	SW8260_25_W							
Project: NOW Cor	NOW Corp. Site, 1/10		SWS	SW846 8260 VOC by GC-MS (25 mL Purge)	C by GC-MS	3 (25 mL	Purge)				
Sample ID: LCS-49134	SampType: LCS	TestCod	TestCode: SW8260_25_W		Prep Date:	2/8/2010		Run I	Run ID: V5_100208A		
Client ID: LCS-49134	Batch ID: 49134	Units	Units: µg/L		Analysis Date:	2/8/2010		SeqN	SeqNo: 1203083		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	owLimit F	lighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Vinyl chloride		9.719	0.50	10.00	0	97.2	77	120	0		
Chloroethane		9.314	0.50	10.00	0	93.1	75	135	0		
1,1-Dichloroethene		9.939	0.50	10.00	0	99.4	81	125	0		
trans-1,2-Dichloroethene		9.771	0.50	10.00	0	7.76	09	137	0		
Methyl tert-butyl ether		9.795	0.50	10.00	0	97.9	61	134	0		
1,1-Dichloroethane		9.853	0.50	10.00	0	98.5	82	120	0		
cis-1,2-Dichloroethene		9.853	0.50	10.00	0	98.5	84	116	0		
1,1,1-Trichloroethane		9.967	0.50	10.00	0	7.66	80	124	0		
1,2-Dichloroethane		9.818	0.50	10.00	0	98.2	98	117	0		
Benzene		10.08	0.50	10.00	0	101	81	121	0		
Trichloroethene		9.732	0.50	10.00	0	97.3	74	123	0		
Toluene		9.940	0.50	10.00	0	99.4	88	117	0		
1,1,2-Trichloroethane		10.18	0.50	10.00	0	102	83	121	0		
Tetrachloroethene		10.45	0.50	10.00	0	104	74	115	0		
Chlorobenzene		10.18	0.50	10.00	0	102	83	112	0		
Ethylbenzene		10.51	0.50	10.00	0	105	87	110	0		
m,p-Xylene		20.79	0.50	20.00	0	104	87	114	0		
o-Xylene		10.56	0.50	10.00	0	106	84	114	0		
Surrogate: Dibromofluoromethane	ane	9.700	0.50	10.00	0	97.0	88	124	0		
Surrogate: 1,2-Dichloroethane-d4	-d4	10.34	0.50	10.00	0	103	79	115	0		
Surrogate: Toluene-d8		10.49	0.50	10.00	0	105	80	114	0		
Surrogate: Bromofluorobenzene	Đ.	10.51	0.50	10.00	0	105	09	123	0		

B - Analyte detected in the associated Method Blank	
S - Spike Recovery outside accepted recovery limits	R - RPD outside accepted recovery limits
ND - Not Detected at the Reporting Limit	J - Analyte detected below quantitation limits

Qualifiers:

CLIENT: A	AECOM Technical Services, Inc.	JC.		ANALY	ANALYTICAL QC SUMMARY REPORT	C SUM	MAR	Y REPC)RT			
Work Order: JO	J0149		SMS	SW8260_25_W								
Project: N	NOW Corp. Site, 1/10		SWS	SW846 8260 VOC by GC-MS (25 mL Purge)	C by GC-M	S (25 mL	Purge)					
Sample ID: LCSD-49134	34 SampType: LCSD	TestCod	TestCode: SW8260_25_W		Prep Date:	: 2/8/2010		Run ID	Run ID: V5_100208A			-
Client ID: LCSD-49134	34 Batch ID: 49134	Unit	Units: µg/L		Analysis Date:	: 2/8/2010		SeqNo	SeqNo: 1203084			
Analyte		Result	Pal	SPK value	SPK Ref Val	%REC LowLimit HighLimit	owLimit H	ighLimit	RPD Ref Val	%RPD RPDLimit		Qual
Vinyl chloride		10.05	0.50	10.00	0	101	77	120	9.719	3.37	40	
Chloroethane		9.951	0.50	10.00	0	99.5	7.5	135	9.314	6.61	40	
1,1-Dichloroethene		9.913	0.50	10.00	0	99.1	81	125	9.939	0.266	40	
trans-1,2-Dichloroethene	.	9.992	0.50	10.00	0	6.66	09	137	9.771	2.24	40	
Methyl tert-butyl ether		10.36	0.50	10.00	0	104	61	134	9.795	5.59	40	
1,1-Dichloroethane		10.41	0.50	10.00	0	104	82	120	9.853	5.46	40	
cis-1,2-Dichloroethene		10.36	0.50	10.00	0	104	84	116	9.853	4.98	40	
1,1,1-Trichloroethane		10.47	0.50	10.00	0	105	80	124	9.967	4.89	40	
1,2-Dichloroethane		9.915	0.50	10.00	0	99.2	98	117	9.818	0.985	40	
Benzene		10.61	0.50	10.00	0	106	81	121	10.08	5.05	40	
Trichloroethene		10.06	0.50	10.00	0	101	74	123	9.732	3.34	40	
Toluene		10.24	0.50	10.00	0	102	88	117	9.940	2.97	40	
1,1,2-Trichloroethane		10.29	0.50	10.00	0	103	83	121	10.18	1.1	40	
Tetrachloroethene		10.15	0.50	10.00	0	101	74	115	10.45	2.91	40	
Chlorobenzene		10.30	0.50	10.00	0	103	83	112	10.18	1.17	40	
Ethylbenzene		10.27	0.50	10.00	0	103	87	110	10.51	2.4	40	
m,p-Xylene	4	20.61	0.50	20.00	0	103	87	114	20.79	0.879	40	
o-Xylene		10.50	0.50	10.00	0	105	84	114	10.56	0.518	40	
Surrogate: Dibromofluoromethane	Joromethane	10.22	0.50	10.00	0	102	88	124	0			
Surrogate: 1,2-Dichloroethane-d4	roethane-d4	10.18	0.50	10.00	0	102	79	115	0			
Surrogate: Toluene-d8	8	10.22	0.50	10.00	0	102	80	114	0			
Surrogate: Bromofluorobenzene	robenzene	10.02	0.50	10.00	0	100	09	123	0			

imits
i recovery l
accepted
outside
Recovery
- Spike
S

R - RPD outside accepted recovery limits

ND - Not Detected at the Reporting Limit
J - Analyte detected below quantitation limits

Qualifiers:

recovery limits B - Analyte detected in the associated Method Blank

Date: 03-Feb-10

Client: AECOM Technical Services, Inc.

Client Sample ID: EFF 12610

Lab ID: J0149-01

Project: NOW Corp. Site, 1/10

Collection Date: 01/26/10 10:30

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
EPA 1664 Oil & Grease, HEM				E1664
Oil & Grease, Total Recoverable	ND	5.0 mg/L	1 02/03/2010 0:00	48981

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 03-Feb-10

Client: AECOM Technical Services, Inc.

Client Sample ID: INF 12610

Lab ID: J0149-02

Project: NOW Corp. Site, 1/10

Collection Date: 01/26/10 11:00

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
EPA 1664 Oil & Grease, HEM				E1664
Oil & Grease, Total Recoverable	ND	5.0 mg/L	1 02/03/2010 0:00	48981

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Laboratories	
Mitkem	

CLIENT:	AECOM Tech	AECOM Technical Services, Inc.		ANALY	TICAL QC	ANALYTICAL QC SUMMARY REPORT	Y REPORT			
Work Order: Project:	J0149 NOW Corp. Site, 1/10	ite, 1/10		E1664 EPA 1664 Oil & Grease, HEM	c Grease, HEN	4				
Sample ID: MB-48981 Client ID: MB-48981		SampType: MBLK Batch ID: 48981	TestCode: E1664 Units: mg/L		Prep Date: 2/2/2010 Analysis Date: 2/3/2010	2/2/2010 2/3/2010	Run ID: MANUAL_100203A SeqNo: 1200264	NUAL_100	203A	
Analyte			Result PQL	SPK value	SPK Ref Val	SPK Ref Val %REC LowLimit HighLimit) Ref Val	RPD Ref Val %RPD RPDLimit Qual	Qual
Oil & Grease, Total Recoverable	l Recoverable		ND 5.0							
Sample ID: LCS-48981		SampType: LCS	TestCode: E1664		Prep Date: 2/2/2010	2/2/2010	Run ID: MANUAL_100203A	NUAL_100	203A	
Client ID: LCS-48981	18981	Batch ID: 48981	Units: mg/L		Analysis Date: 2/3/2010	2/3/2010	SeqNo: 1200262	00262		
Analyte			Result PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit) Ref Val	RPD Ref Val %RPD RPDLimit	Qual
Oil & Grease, Total Recoverable	Recoverable		37.80 5.0	40.00	0	94.5 78	114	0		
Sample ID: LCSD-48981		SampType: LCSD	TestCode: E1664		Prep Date: 2/2/2010	2/2/2010	Run ID: MANUAL_100203A	NUAL_100	203A	
Client ID: LCSD-48981	48981	Batch ID: 48981	Units: mg/L		Analysis Date: 2/3/2010	2/3/2010	SeqNo: 1200263	0263		
Analyte			Result PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit		RPD Ref Val	%RPD RPDLimit Qual	Qual
Oil & Grease, Total Recoverable	Recoverable		35.80 5.0	40.00	0	89.5 78	114 3	37.80	5.43 18	

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers: mLIMS-001

B - Analyte detected in the associated Method Blank

Date: 08-Feb-10

Client: AECOM Technical Services, Inc.

Client Sample ID: EFF 12610 Project: NOW Corp. Site, 1/10

Lab ID: J0149-01 **Collection Date:** 01/26/10 10:30

Analyses	Result	Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 6010 Metals by ICP						SW6010_W
Aluminum	ND		200	µg/L	1 02/05/2010 10:31	49083
Arsenic	3.3	BJ	20	μg/L	1 02/05/2010 10:31	49083
Barium	74	J	200	μg/L	1 02/05/2010 10:31	49083
Chromium	0.57	J	20	μg/L	1 02/05/2010 10:31	49083
Copper	ND		25	μg/L	1 02/05/2010 10:31	49083
Iron	ND		200	μg/L	1 02/05/2010 10:31	49083
Manganese	99		50	μg/L	1 02/05/2010 10:31	49083
Nickel	1.5	J	50	μg/L	1 02/05/2010 10:31	49083
Zinc	16	ВЈ	50	μg/L	1 02/05/2010 10:31	49083
SW846 7470 Mercury by FIA						SW7470
Mercury	ND		0.20	µg/L	1 02/05/2010 7:19	49080

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 08-Feb-10

Client: AECOM Technical Services, Inc.

Client Sample ID: INF 12610

Lab ID: J0149-02

Project: NOW Corp. Site, 1/10

Collection Date: 01/26/10 11:00

Analyses	Result	Qual F	RL Units	DF Date Analyzed	Batch ID
SW846 6010 Metals by ICP					SW6010_W
Aluminum	ND	2	:00 μg/L	1 02/05/2010 10:34	49083
Arsenic	, ND		20 μg/L	1 02/05/2010 10:34	49083
Barium	71	J 2	:00 µg/L	1 02/05/2010 10:34	49083
Chromium	0.63	J	20 μg/L	1 02/05/2010 10:34	49083
Copper	ND		25 µg/L	1 02/05/2010 10:34	49083
Iron	ND	2	00 μg/L	1 02/05/2010 10:34	49083
Manganese	130		50 μg/L	1 02/05/2010 10:34	49083
Nickel	1.2	J	50 μg/L	1 02/05/2010 10:34	49083
Zinc	14	BJ	50 μg/L	1 02/05/2010 10:34	49083
SW846 7470 Mercury by FIA					SW7470
Mercury	ND	0.	20 µg/L	1 02/05/2010 7:21	49080

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

	S	
•		
	5	
•	ਸ਼	
	5	
_	ػۣ	
	$\vec{\omega}$	
۲	7	
	끘	
	¥	
	Ξ	
•	\leq	

IVIII LAUUI AUUI AIUI ILO	on atomos											
CLIENT:	AECOM Te	AECOM Technical Services, Inc.	ાં		ANALY	ANALYTICAL QC SUMMARY REPORT	SUM	MARY	REPO	RT		
Work Order:	J0149			_	$SW6010_{W}$							
Project:	NOW Corp. Site, 1/10	. Site, 1/10			SW846 6010 Metals by ICP	tals by ICP						
Sample ID: MB-49083	9083	SampType: MBLK	TestCode:	TestCode: SW6010_W		Prep Date:	2/4/2010		Run ID.	Run ID: OPTIMA2_100205A	1205A	
Client ID: MB-49083	9083	Batch ID: 49083	Units: µg/L	hg/L		Analysis Date:	2/5/2010		SeqNo	SeqNo: 1202103		
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC Lo	%REC LowLimit HighLimit	Limit	RPD Ref Val	%RPD RPDLimit	Qual
Aluminum			89.97	200								b
Arsenic			8.940	20								כו
Barium			QN	200								
Chromium			QN	20								ı
Copper			5.913	30								ו כו
Iron			75.77	200								ט
Manganese			ND	50								
Nickel			ND	50								
Zinc			10.51	50								J
Sample ID: LCS-49083	49083	SampType: LCS	TestCode	TestCode: SW6010_W		Prep Date:	2/4/2010		Run ID	Run ID: OPTIMA2_100205A)205A	
Client ID: LCS-	LCS-49083	Batch ID: 49083	Units:	Units: µg/L		Analysis Date:	2/5/2010		SeqNo	SeqNo: 1202104		
Analyte			Result	Pal	SPK value	SPK Ref Val	%REC Lc	%REC LowLimit HighLimit	Limit	RPD Ref Val	%RPD RPDLimit	Qual
Aluminum			8987	200	9100	0	8.86	80	120	0		В
Arsenic			466.2	20	455.0	0	102	80	120	0		В
Barium			9287	200	9100	0	102	80	120	0		
Chromium			902.4	20	910.0	0	99.2	80	120	0		
Copper			1133	30	1130	0	100	80	120	0		В
Iron			4652	200	4550	0	102	80	120	0		æ
Manganese			2305	50	2270	0	102	. 08	120	0		
Nickel			2300	50	2270	0	101	80	120	0		
Zinc			2302	50	2270	0	101	80	120	0		В

B - Analyte detected in the associated Method Blank

Qualifiers: mLIMS-001

CLIENT:	AECOM T	AECOM Technical Services, Inc.			ANALY	ANALYTICAL QC SUMMARY REPORT	SUM	MAR	/ REPC	ORT			
Work Order:	J0149				SW6010_W								
Project:	NOW Corp	NOW Corp. Site, 1/10			SW846 6010 Metals by ICP	etals by ICP			1				
Sample ID: LCSD-49083	49083	SampType: LCSD	TestCode	TestCode: SW6010_W		Prep Date: 2/4/2010	2/4/2010		Run I	Run ID: OPTIMA2_100205A	3205A		
Client ID: LCSD-49083	49083	Batch ID: 49083	Units	Units: µg/L		Analysis Date: 2/5/2010	2/5/2010		SedNc	SeqNo: 1202105			
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	wLimit Hig	hLimit	RPD Ref Val	%RPD RPDLimit Qual	DLimit	Quai
A 1.			8958	200	9100	0	98.4	80	120	8987	0.32	20	щ
Aluminum			467.3	20	455.0	0	103	80	120	466.2	0.242	20	щ
Arsenic			9368	200	9100	0	103	80	120	9287	0.868	20	
Barium			8,99,8	20	910.0	0	6.86	80	120	902.4	0.298	20	
Chromium			1143	30	1130	0	101	80	120	1133	0.901	20	В
reddon			4623	200	4550	0	102	80	120	4652	0.617	20	В
Iron			2330	50	2270	0	103	80	120	2305	1.05	20	
Manganese			2293	50	2270	0	101	80	120	2300	0.27	20	
Nickei			2305	50	2270	0	102	80	120	2302	0.123	20	В

CLIENT:	AECOM Technical Services, Inc.	Services, Inc.		A	NALYT	TCAL QC	ANALYTICAL QC SUMMARY REPORT	REPO)RT		
work Order: Project:	J0149 NOW Corp. Site, 1/10	10		SW7470 SW846 74	70 Mer	SW7470 SW846 7470 Mercury by FIA					
Sample ID: MB-49080 Client ID: MB-49080		SampType: MBLK Batch ID: 49080	TestCode: SW7470 Units: µg/L	70		Prep Date: 2/4/2010 Analysis Date: 2/5/2010	2/4/2010 2/5/2010	Run ID SeqNo	Run ID: FIMS1_100205B SeqNo: 1202030	5B	
Analyte Mercury			Result PQL 0	.20	SPK value	SPK Ref Val	SPK Ref Val %REC LowLimit HighLimit	HighLimit	RPD Ref Val	RPD Ref Val %RPD RPDLimit Qual	Qual
Sample ID: LCS-49080 Client ID: LCS-49080	Ö	SampType: LCS Batch ID: 49080	TestCode: SW7470 Units: µg/L	70	·	Prep Date: 2/4/2010 Analysis Date: 2/5/2010	2/4/2010 2/5/2010	Run ID SeqNo	Run ID: FIMS1_100205B SeqNo: 1202031	5B	
Analyte Mercury			Result PQL 4.836 0	.20	SPK vaiue 4.550	SPK Ref Val	%REC LowLimit HighLimit 106 80 120	HighLimit 120	RPD Ref Val	%RPD RPDLimit Qual	Qual
Sample ID: LCSD-49080 Client ID: LCSD-49080	Ö	SampType: LCSD Batch ID: 49080	TestCode: SW7470 Units: µg/L	02		Prep Date: 2/4/2010 Analysis Date: 2/5/2010	2/4/2010 2/5/2010	Run ID SeqNo	Run ID: FIMS1_100205B SeqNo: 1202032	5B	
Analyte			Result PQL		SPK value	SPK Ref Val	%REC LowLimit HighLimit	HighLimit	RPD Ref Val	%RPD RPDLimit Qual	Quai
Mercury			4.763 0	0.20	4.550	0	105 80	120	4.836	1.53 20	

Qualifiers:

Date: 05-Feb-10

Client: AECOM Technical Services, Inc.

Client Sample ID: EFF 12610

Lab ID: J0149-01

Project: NOW Corp. Site, 1/10

Collection Date: 01/26/10 10:30

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SM 2540C TOTAL DISSOLVED SOLIDS	· · · · · · ·		S	M2540_TDS
Total Dissolved Solids	200	10 mg/L	1 01/29/2010 8:40	48918
SM 2540D TOTAL SUSPENDED SOLIDS			S	M2540_TSS
Total Suspended Solids	ND	10 mg/L	1 01/29/2010 9:17	48919
SW846 9012 Total Cyanide				SW9012_W
Cyanide	ND	10 μg/L	1 02/03/2010 9:58	49004

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 05-Feb-10

Client: AECOM Technical Services, Inc.

Client Sample ID: INF 12610

Lab ID: J0149-02

Project: NOW Corp. Site, 1/10

Collection Date: 01/26/10 11:00

Result Qual	RL Units	DF Date Analyzed	Batch ID
			SM2540_TDS
260	10 mg/L	1 01/29/2010 8:45	48918
			SM2540_TSS
ND	10 mg/L	1 01/29/2010 9:22	48919
			SW9012_W
ND	10 μg/L	1 02/03/2010 10:01	49004
	260 ND	260 10 mg/L ND 10 mg/L	260 10 mg/L 1 01/29/2010 8:45 ND 10 mg/L 1 01/29/2010 9:22

Qualifiers: ND - Not D

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

oratories
Labo
Mitkem

CLIENT: AECON	AECOM Technical Services, Inc.		ANALY	TICAL QC	ANALYTICAL QC SUMMARY REPORT	PORT		
Work Order: J0149		SM	SM2540_TDS					
Project: NOW (NOW Corp. Site, 1/10	SM	SM 2540C TOTAL DISSOLVED SOLIDS	AL DISSOLV	ED SOLIDS			
Sample ID: MB-48918	SampType: MBLK	TestCode: SM2540_TDS		Prep Date:	Prep Date: 1/28/2010 Ru	Run ID: MANUAL_100128C	1128C	
Client ID: MB-48918	Batch ID: 48918	Units: mg/L		Analysis Date:	1/29/2010	SeqNo: 1199013		
Analyte		Result PQL	SPK value	SPK Ref Val	SPK Ref Val %REC LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Total Dissolved Solids		ND 10						
Sample ID: LCS-48918	SampType: LCS	TestCode: SM2540_TDS		Prep Date:	Prep Date: 1/28/2010 Rui	Run ID: MANUAL_100128C	1128C	
Client ID: LCS-48918	Batch ID: 48918	Units: mg/L		Analysis Date: 1/29/2010		SeqNo: 1199014		
Analyte		Result PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	RPD Ref Val	RPD Ref Val %RPD RPDLimit	Qual
Total Dissolved Solids		312.0 10	314.0	0	99.4 80 120	0		
Sample ID: J0149-02EDUP	SampType: DUP	TestCode: SM2540_TDS		Prep Date:	Prep Date: 1/28/2010 Rui	Run ID: MANUAL_100128C	128C	
Client ID: INF 12610	Batch ID: 48918	Units: mg/L		Analysis Date: 1/29/2010		SeqNo: 1199017		
Analyte		Result PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Total Dissolved Solids		274.0 10	0	0	0 0 0	264.0	3.72 20	

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

CLIENT: Work Order:	AECOM T	AECOM Technical Services, Inc. 10149		MS	ANALY SW2540 Tes	TICAL QC	ANALYTICAL QC SUMMARY REPORT	REPORT		
Project:	NOW Corp	NOW Corp. Site, 1/10		SM	SM 2540D TOTAL SUSPENDED SOLIDS	AL SUSPEND	ED SOLIDS			
Sample ID: MB-48919 Client ID: MB-48919	8919 3919	SampType: MBLK Batch ID: 48919	TestCode	TestCode: SM2540_TSS Units: mg/L		Prep Date: 1/28/2010 Analysis Date: 1/29/2010	1/28/2010 1/29/2010	Run ID: MANUAL_100128C SeqNo: 1199019	0128C	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit		RPD Ref Val %RPD RPDLimit Qual	Qual
Total Suspended Solids	olids		ND	10						
Sample ID: LCS-48919 Client ID: LCS-48919	18919 18919	SampType: LCS Batch ID: 48919	TestCode Units	TestCode: SM2540_TSS Units: mg/L		Prep Date: 1/28/2010 Analysis Date: 1/29/2010	1/28/2010 1/29/2010	Run ID: MANUAL_100128C SeqNo: 1199020	0128C	
Analyte Total Suspended Solids	olids		Result 91.00	PQL 10	SPK value	SPK Ref Vai	%REC LowLimit HighLimit 97.5 80 120	nit RPD Ref Val	%RPD RPDLimit Qual	Qual
Sample ID: J0149-02EDUP Client ID: INF 12610	1-02EDUP 2610	SampType: DUP Batch ID: 48919	TestCode	TestCode: SM2540_TSS Units: mg/L		Prep Date: 1/28/2010 Analysis Date: 1/29/2010	1/28/2010 1/29/2010	Run ID: MANUAL_100128C SeqNo: 1199024	0128C	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	nit RPD Ref Val	%RPD RPDLimit Qual	Qual
Total Suspended Solids	spilos		UND	10	0	0	0 0 0	0	0 20	

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

B - Analyte detected in the associated Method Blank

CLIENT:	AECOM Technical Services, Inc.	\dot{a}		ANALY	TICAL QC	ANALYTICAL QC SUMMARY REPORT	PORT)
Work Order:	J0149		SW	SW9012 W					
Project:	NOW Corp. Site, 1/10		SW	SW846 9012 Total Cyanide	al Cyanide				
Sample ID: MB-49004	9004 SampType: MBLK	TestCode: SW9012_W	N9012_W		Prep Date: 2/2/2010		Run ID: LACHAT1_100203A	0203A	
Client ID: MB-49004	9004 Batch ID: 49004	Units: µg/L	J/L		Analysis Date: 2/3/2010		SeqNo: 1200132		
Analyte		Result F	PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	RPD Ref Val	RPD Ref Val %RPD RPDLimit Qual	Qual
Cyanide		ND	20						
Sample ID: LCS-49004	19004 SampType: LCS	TestCode: SW9012_W	N9012_W		Prep Date: 2/2/2010		Run ID: LACHAT1_100203A	0203A	
Client ID: LCS-49004	19004 Batch ID: 49004	Units: µg/L	ا/د		Analysis Date: 2/3/2010		SeqNo: 1200133		
Analyte		Result	POL	SPK value	SPK Ref Val	SPK Ref Val %REC LowLimit HighLimit	RPD Ref Val	RPD Ref Val %RPD RPDLimit Qual	Qual
Cyanide		99.63	20	100.0	0	99.6 80 120	C		

Qualifiers: mLIMS-001

WorkOrder: J0149

Client ID: EARTH_ Project: NOW Co

WO Name: NOW Corp. Location: NOW_CORP,

Comments: N/A

01/28/2010 09:07

N

Mitkem Laboratories

H_NY	Case:	HC Due: 02/10/10	Report Level: LEVEL
Corp. Site	SDG:	Fax Due:	Special Program:
' Corp. Site		Fax Report:	EDD:
- ANOL	PO : 94017 02		

Lab Samp ID	Lab Samp ID Client Sample ID	Collection Date	Date Recv'd	Matrix	Test Code	Samp / Lab Test Comments	HF HT MS SEL Storage
J0149-01A	EFF 12610	01/26/2010 10:30	01/27/2010	Aqueous	SW8260_25_W	/ use for VOCs,	Y VOA
J0149-01B	EFF 12610	01/26/2010 10:30	01/27/2010	Aqueous	E1664	1	03
J0149-01C J0149-01C	EFF 12610 EFF 12610	01/26/2010 10:30 01/26/2010 10:30	01/27/2010	Aqueous	SW6010_W SW7470	/ See SEL list / See SEL list	Y M4 M4
J0149-01D	EFF 12610	01/26/2010 10:30	01/27/2010	Aqueous	SW9012_W		γ 03
J0149-01E J0149-01E	EFF 12610 EFF 12610	01/26/2010 10:30 01/26/2010 10:30	01/27/2010	Aqueous	SM2540_TDS SM2540_TSS		8 8
J0149-02A	INF 12610	01/26/2010 11:00	01/27/2010	Aqueous	SW8260_25_W	/ use for VOCs,	Y VOA
J0149-02B	INF 12610	01/26/2010 11:00	01/27/2010	Aqueous	E1664	1	03
J0149-02C J0149-02C	INF 12610 INF 12610	01/26/2010 11:00 01/26/2010 11:00	01/27/2010	Aqueous	SW6010_W SW7470	/ See SEL list	Y M4
J0149-02D	INF 12610	01/26/2010 11:00	01/27/2010	Aqueous	SW9012_W		γ 03
J0149-02E J0149-02E	INF 12610 INF 12610	01/26/2010 11:00 01/26/2010 11:00	01/27/2010	Aqueous	SM2540_TDS SM2540_TSS		8 8
J0149-03A	TW-1	01/26/2010 11:30	01/27/2010	Aqueous	SW8260_25_W	/ use for VOCs,	Y VOA
J0149-04A	TW-2A	01/26/2010 11:35	01/27/2010	Aqueous	SW8260_25_W	/ use for VOCs,	Y VOA
J0149-05A	TW-3	01/26/2010 11:40	01/27/2010	Aqueous	SW8260_25_W	/ use for VOCs,	Y VOA
J0149-06A	TRIP BLANK	01/26/2010 00:00	01/27/2010	Aqueous	SW8260_25_W	/ use for VOCs,	Y VOA

HF = Fraction logged in but all tests have been placed on hold

HT = Test logged in but has been placed on hold

MITKEM LABORATORIES A DIVISION OF SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY	IES Evaluring HANIBAL TEC		CHAIN (OF		UST Page		OF CUSTODY RECORI	SE(9	RI		Special AT- Indicate Date I All TATs subject Min. 24-hour notifica Samples disposed of otherwise instructed.	Special Handling: TAT- Indicate Date Needed: (10) All TATs subject to laboratory approval. Min. 24-hour notification needed for rushes. Samples disposed of after 60 days unless otherwise instructed.	ng: 10 Jeys
Report To: AEC 40 Brital Lathum	AECOM British American Lam, NY 121	eug Blud	Invoice T	To:	Same	2				Project No.: Site Name: Location:	No.:ne:	5 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2	60135676 Now Corp Stattsburg	26,02	State: NY
Project Mgr.: 5	Steve Choiniere	iere	P.O. No.:			_ RC	RQN:		<u>7</u> 	Sampler(s).	 (<u>s</u>)			2	
1=Na2S2O3 $8=NaHSO4$	$2=HC1 3=H_2SO_4$ $9= \cancel{V}_{c} \sim \cancel{C}$	SO ₄ 4=HNO ₃	5=NaOH	6=Ascorbic Acid	bic Ac		7=CH ₃ OH		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	List pres	ervativ S	bos 6	List preservative code below: $2 \frac{1}{5} \frac{1}{5} \frac{9}{9}$		Notes:
DW=Drinking Water GW= O=Oil SW= Surface Water X1= X2=	GW=G Water X2=	S	WW=Wastewater .=Sludge A=Air X3=				Containers:	*		*	Analyses:	.: 55 13es:		QA/QC Re Level III	QA/QC Reporting Level Level I
	G=Grab C=C	C=Composite			•			astic	777	1/2/ 1/2/	ÇIMV.	1/5		□ Other	
Jo/49 Lab Id:	Sample Id:	Date:	Time:	Type	xirtsM	V 10 #	# of C	Id Jo #	:8	+0	"	a		State specific r	State specific reporting standards:
13 10	EFF 12610	1/26/10	1030	Ġ	کر ک	7		3	×	×	X	×		* AL, A	* AL, AS, BA, CR,
ンプープの	INF 12610		1100	S		7		3	×	X	X	×		CU F	CU FE, MN, ZN
2	1-ML	ż	1130	S		7			×			-		NHG	
	TW-2A		1135	S		4			X	1		-		•	. *
Y0	TW-3	7	11 40	S	7	4			X						
20	TripBlank			1	}	7			*						
							-			ļ .					
						-	·							-	
					\rightarrow	M						2000			
☐ E-mail to					Seji V	Kelinquished by	1 by:				Received by	ed by:		Date:	Time:
EDD Format				\mathbb{V}	5			1		12	极级			1/26/10	1500
	-			•	173	FudEx			7	Glader	4	<	N	1/27/1	8:55
			,		-	- 			_	`	-		_	2 - 6 -	

175 Metro Center Boulevard • Warwick, RI 02886-1755 • 401-732-3400 • Fax 401-732-3499 • www.mitkem.com

MITKEM LABORATORIES Sample Condition Form

Page ___ of ___

Received By: 5N	Reviewed By	: l	٦		Date:	1/27/10	мітк	EM Wor	korder	#: J	10149
Client Project: NUV) CORP	0			Client:		EARTH		,		Soil Headspace
		اما	· Ca	la ID	HNO ₃		ervatio		Lubo	VOA	or Air Bubbles
		-	Samp	01	HNO ₃	H ₂ SO ₄	HCI	NaOH	H₃PO₄	Matrix ⊔	≥ 1/4"
1) Cooler Sealed (Tes /	No	2011	4-1	 			 		<u> </u>	14	
				02			<u> </u>				
2) Custody Seal(s)	Present / Absent			13			<u> </u>				
·	Coolers / Bottles			14					ļ		
	Intact / Broken		<u> </u>	05		!				V	
		Jol	49	06						Н	
3) Custody Seal Number(s) NA		1								
	1										
											f
4) Chain-of-Custody	Proport / Abcont										•
14) Chain-oi-Custody	Present / Absent						<u> </u>	,	.0	/	
5) Cooley Towns ashure	2°C							1/27	10		
5) Cooler Temperature	īU						 	(<u> </u>	!	
Coolant Condition	<u> </u>				*		-	(/			
							/			· · ·	
6) Airbill(s)	Present / Absent							·			
Airbill Number(s)	85563830837 FeJEX					_/_					
	Fedex										
							:				
7) Sample Bottles	Intact/Broken/Leaking		$\overline{/}$								
		7	<i></i>			-					
8) Date Received	1/27/10										
,											
9) Time Received	8:55						VOA	Matrix I	Kev.	· · · · · · · · · · · · · · · · · · ·	
o) Time Received	0,7,5							Unprese	•	انم	A A :
Preservative Name/Lot No:											A = Air
Preservative Name/Lot No.							i	Unprese	erved A	qu.	H = HCl
							M= M				E = Encore
							N = N	aHSO₄			F = Freeze
See Sample Con-	dition Notification/Correc	tive A	ction F	orm	yes (n	6					
		•			0	_	Rad C	K yes/	no		

Last Page of Data Report