Operation, Maintenance and Monitoring Report August 2010

NOW Corporation Site 3-14-008

Work Assignment No. D004445-4.1

Prepared for:

SUPERFUND STANDBY PROGRAM
New York State
Department of Environmental Conservation
625 Broadway
Albany, New York 12233

Prepared by:

AECOM Technical Services Northeast, Inc. 40 British American Boulevard Latham, New York 12110

October 2010

October 15, 2010

Mr. Carl Hoffman, P.E. NYSDEC Division of Environmental Remediation 625 Broadway, 12th Floor Albany, New York 12233-7013

Re: NOW Corporation - Site #3-14-008 O&M Summary Report: "August" 2010

Dear Mr. Hoffman:

This monthly summary report describes the operation, monitoring and maintenance (OM&M) of the remedial system at the NOW Corporation site in the Town of Clinton, New York, for a 31-day period (July 26 – August 26, 2010).

With the exceptions noted below, if any, the P&T system was online and operational throughout the reporting period. Approximately 241,000 gallons of water were treated during the period. Discharge from the treatment system averaged approximately 7,800 gallons per day (gpd), less than the 12,800 gpd in the prior reporting period.

As of the last day of the reporting period, a total of 79,925,500 gallons of groundwater had been recovered and treated by the system since it became operational in February 1998.

Table 1 summarizes influent and effluent analytical data for water samples collected on August 26, 2010. **Effluent limitations were not exceeded for any analytes.** A copy of the analytical laboratory report is attached. Table 2 summarizes selected operational data recorded on the sampling date.

AECOM made two site visits during the period to conduct the required system inspection, perform scheduled and/or unscheduled maintenance, and to collect water samples. The July 26 service visit was described in the previous report. Details for the current period follow:

<u>August 20</u> – Cleaned air stripper, removed 2 gallons of scale, and drilled out holes in air-distribution pipes.

<u>August 26</u> – Monthly O&M service visit. Took building readings, collected influent and effluent samples, and fixed leaking effluent flowmeter.

Please feel free to contact me at (518) 951-2262 if you have any questions regarding this report or the operation of the treatment system.

Sincerely,

AECOM Technical Services Northeast, Inc.

Stephen R. Choiniere

Project Manager

Table 1
Summary of Influent and Effluent Data
Sampling Date: August 26, 2010
NOW Corporation Site
Town of Clinton, New York

Analytes/	Total]	Recovery Well	s	Ef	fluent
Parameters	Influent	Effluent	TW-1	TW-2A	TW-3	Lim	itations
							(units)
Quantity treated, per day		7,774				Monitor	gpd
pН	7.1	7.2				6.5 to 8.5	standard units
Oil and Grease	< 0.5	< 5.0	NA	NA	NA	15	mg/L
Total Cyanide	<10	<10	NA	NA	NA	10	ug/L
TDS	330	320	NA	NA	NA	1000	mg/L
TSS	<10	<10	NA	NA	NA	50	mg/L
Aluminum, Total	<200	<200	NA	NA	NA	2000	ug/L
Arsenic, Total	< 20	< 20	NA	NA	NA	50	ug/L
Barium, Total	95 J	92 J	NA	NA	NA	2000	ug/L
Chromium	< 20	< 20	NA	NA	NA	100	ug/L
Copper	<25	<25	NA	NA	NA	24	ug/L
Iron	69 J	43 J	NA	NA	NA	600	ug/L
Mercury	< 0.20	< 0.20	NA	NA	NA	0.8	ug/L
Manganese	180	65	NA	NA	NA	600	ug/L
Nickel	2.3 J	2.5 J	NA	NA	NA	200	ug/L
Zinc	13 J	12 J	NA	NA	NA	150	ug/L
1,1,1-Trichloroethane	350	< 0.50	1.1 J	590	31	5	ug/L
1,1,2-Trichloroethane	<10	< 0.50	< 2.0	< 20	< 0.50	1.2	ug/L
1,1-Dichloroethane	140	< 0.50	54	220	25	5	ug/L
1,1-Dichloroethene	16	< 0.50	9.9	27	1.7	0.5	ug/L
1,2-Dichloroethane	<10	< 0.50	< 2.0	< 20	< 0.50	1.6	ug/L
Benzene	<10	< 0.50	< 2.0	< 20	< 0.50	0.8	ug/L
Chlorobenzene	<10	< 0.50	< 2.0	<20	< 0.50	5	ug/L
Chloroethane	<10	< 0.50	< 2.0	<20	< 0.50	5	ug/L
cis-1,2-Dichloroethene	10 J	< 0.50	2.7	17 J	< 0.50	5	ug/L
Ethylbenzene	<10	< 0.50	< 2.0	<20	< 0.50	5	ug/L
Methyl tert-butyl ether	<10	< 0.50	< 2.0	<20	< 0.50	5	ug/L
o-Xylene	<10	< 0.50	< 2.0	<20	< 0.50	5	ug/L
p&m-Xylene	<10	< 0.50	< 2.0	<20	< 0.50	10	ug/L
Tetrachloroethene	<10	< 0.50	< 2.0	12 J	< 0.50	1.4	ug/L
Toluene	<10	< 0.50	< 2.0	<20	< 0.50	5	ug/L
trans -1,2-Dichloroethene	<10	< 0.50	< 2.0	<20	< 0.50	5	ug/L
Trichloroethene	240	< 0.50	46	390	10	5	ug/L
Vinyl Chloride	<10	< 0.50	< 2.0	<20	< 0.50	0.6	ug/L

Notes:

- 1) Detected concentrations are presented in **bold** typeface, and are expressed in the units shown in far right column.
- 2) Effluent concentration boxed in **bold** denotes exceedance of effluent limitations.
- 3) NA indicates not analyzed.
- 4) "J" indicates an estimated concentration below the reporting limit (RL).
- 5) "D" denotes analytical result for a diluted sample.
- 6) "B" denotes metal detected in method blank at concentration below the RL, but above the method detection limit.

8-10 Tables.xls 10/15/2010

Table 2 Summary of August 2010 O&M Data

NOW Corporation Site Town of Clinton, New York

Instrume	ntation/Readings:	8/26/10	Units
TW-1			
	Pumping Rate	3	GPM
	Water Level Above Transducer	40.92	feet
	Flow Meter Reading	5,693,600	gallons
	Pump Pressure	80	psi
TW-2A			
	Pumping Rate	~14	GPM
	Water Level Above Transducer	33.44	feet
	Flow Meter Reading	18,076,800	gallons
	Pump Pressure	25	psi
TW-3			
	Pumping Rate	5	GPM
	Water Level Above Transducer	23.42	feet
	Flow Meter Reading	8,193,900	gallons
	Pump Pressure	65	psi
Air Stripp	er		
	Stripper Blower Pressure	18	inches H ₂ O
	Air Temperature in Stripper	54	°F
	Pressure Gauge - Left Leg	1.5	inches H ₂ O
	Pressure Gauge - Right Leg	0.5	inches H ₂ O
Effluent I			
	Effluent Flow this period (calculated)	241,000	gallons
	Total Effluent Flow (calculated)	79,925,500	gallons

8-10 Tables.xls 10/15/2010

✓ Final Repo	ort
☐ Re-Issued	Repor
☐ Revised Re	eport

A DIVISION OF SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

Laboratory Report

AECOM Technical Services, Inc. 40 British American Boulevard

Latham, NY 12110

Work Order: J1675

Project: NOW Corp. Site

Project #:

Attn: Stephen Choiniere

Department of Defense

Laboratory ID	Client Sample ID		<u>Matrix</u>	Date Sampled	Date Received
J1675-01	EFF-082610		Aqueous	26-Aug-10 10:45	27-Aug-10 08:40
J1675-02	INF-082610		Aqueous	26-Aug-10 10;55	27-Aug-10 08:40
J1675-03	TW-1		Aqueous	26-Aug-10 11:10	27-Aug-10 08:40
J1675-04	TW-2A	*	Aqueous	26-Aug-10 11:20	27-Aug-10 08:40
J1675-05	TW-3		Aqueous	26-Aug-10 11:25	27-Aug-10 08:40
J1675-06	TRIP BLANK		Aqueous	26-Aug-10 00:00	27-Aug-10 08:40

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. The results relate only to the samples(s) as recevied.

All applicable NELAC or USEPA CLP requirments have been meet.

N/A

Mitkem Laboratories is accredited under the National Environmental Laboratory Approval Program (NELAP) and is certified by several States, as well as USEPA and US Department of Defense. The current list of our laboratory approvals and certifications is available on the Certifications page our web site at www.mitkem.com.

Please contact the Laboratory or Technical Director at 401-732-3400 with any questions regarding the data contained in the laboratory report.

PH-0153 Connecticut Delaware N/A 2007037 Maine Massachusetts M-RI907 New Hampshire 2631 RI001 New Jersey 11522 New York North Carolina 581 68-00520 Pennsylvania Rhode Island LAI00301 T104704422-08-TX Texas P330-08-00023 USDA USEPA - ISM EP-W-09-039 USEPA - SOM EP-W-05-030

Authorized by:

MAY

Yihai Ding Laboratory Director

Technical Reviewer's Initials:

Report of Laboratory Analyses for AECOM Technical Services

Client Project: NOW Corp. 94017.02, 08/10

Mitkem Work Order ID: J1675

September 14, 2010

Prepared For:

AECOM Technical Services

40 British American Boulevard

Latham, NY 12110

Attn: Mr. Stephen Choiniere

Prepared By:

Mitkem Laboratories

175 Metro Center Boulevard

Warwick, RI 02886 (401) 732-3400

Client: AECOM Technical Services

Client Project: NOW Corp, 94017.02, 08/10

Lab Work Order: J1675

Date samples received: 08/27/10

Project Narrative

This data report includes the analysis results for six (6) aqueous samples that were received from AECOM Technical Services on August 27, 2010. Analyses were performed per specification in the Chain of Custody form. For reference, a copy of the Mitkem Sample Log-In form is included for cross-referencing the client sample ID and laboratory sample ID.

Surrogate recoveries were within the QC limits for volatile organic analyses with the exception of high recovery of 1,2-dichloroethane-d4 in sample TW-1 and low recovery of dibromofluoromethane in sample TW-3. Percent recoveries in laboratory control sample were within the QC limits. The following samples were re-analyzed at dilution: INF-082610 (20x), TW-1 (4x) and TW-2A (40x).

Spike recoveries were within the QC limits in the laboratory control samples for oil and grease, metals, total dissolved solids, total suspended solids and cyanide analyses.

No other unusual occurrences were noted during sample analysis.

All pages in this report have been numbered consecutively, starting with the title page and ending with a page saying only "Last Page of Data Report".

This data report has been reviewed and is authorized for release as evidenced by the signature below.

Agnes Huntley

CLP Project Manager

Date: 10-Sep-10

Client: AECOM Technical Services, Inc.

Client Sample ID: EFF-082610

Lab ID: J1675-01

Project: NOW Corp. Site

Collection Date: 08/26/10 10:45

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS (25 mL Purge)				SW8260_25_W
Vinyl chloride	ND	0.50 µg/L	1 09/07/2010 17:26	53980
Chloroethane	ND	0.50 µg/L	1 09/07/2010 17:26	53980
1,1-Dichloroethene	ND	0.50 μg/L	1 09/07/2010 17:26	53980
trans-1,2-Dichloroethene	ND ND	0.50 µg/L	1 09/07/2010 17:26	53980
Methyl tert-butyl ether	ND	0.50 µg/L	1 09/07/2010 17:26	53980
1,1-Dichloroethane	ND	0.50 μg/L	1 09/07/2010 17:26	53980
cis-1,2-Dichloroethene	ND	0.50 µg/L	1 09/07/2010 17:26	53980
1,1,1-Trichloroethane	ND	0.50 µg/L	1 09/07/2010 17:26	53980
1,2-Dichloroethane	ND	0.50 μg/L	1 09/07/2010 17:26	53980
Benzene	ND	0.50 μg/L	1 09/07/2010 17:26	53980
Trichloroethene	ND	0.50 µg/L	1 09/07/2010 17:26	53980
Toluene	ND	0.50 µg/L	1 09/07/2010 17:26	53980
1,1,2-Trichloroethane	ND	0.50 µg/L	1 09/07/2010 17:26	53980
Tetrachioroethene	ND	0.50 µg/L	1 09/07/2010 17:26	53980
Chlorobenzene	ND	0.50 μg/L	1 09/07/2010 17:26	53980
Ethylbenzene	ND	0.50 μg/L	1 09/07/2010 17:26	53980
m,p-Xylene	ND	0.50 µg/L	1 09/07/2010 17:26	53980
o-Xylene	ND	0.50 μg/L	1 09/07/2010 17:26	53980
Surrogate: Dibromofluoromethane	100	88-124 %REC	1 09/07/2010 17:26	53980
Surrogate: 1,2-Dichloroethane-d4	96.1	79-115 %REC	1 09/07/2010 17:26	53980
Surrogate: Toluene-d8	101	80-114 %REC	1 09/07/2010 17:26	53980
Surrogate: Bromofluorobenzene	92.8	60-123 %REC	1 09/07/2010 17:26	53980

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 10-Sep-10

Client: AECOM Technical Services, Inc.

Client Sample ID: INF-082610

Lab ID: J1675-02

Project: NOW Corp. Site

Collection Date: 08/26/10 10:55

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS (25 mL Purge)		-	SW	8260_25_W
Vinyl chloride	ND	10 μg/L	20 09/07/2010 17:53	53980
Chloroethane	ND	10 μg/L	20 09/07/2010 17:53	53980
1,1-Dichloroethene	16	10 μg/L	20 09/07/2010 17:53	53980
trans-1,2-Dichloroethene	ND	10 µg/L	20 09/07/2010 17:53	53980
Methyl tert-butyl ether	ND	10 μg/L	20 09/07/2010 17:53	53980
1,1-Dichloroethane	140	10 μg/L	20 09/07/2010 17:53	53980
cis-1,2-Dichloroethene	10 J	10 μg/L	20 09/07/2010 17:53	53980
1,1,1-Trichloroethane	350	10 μg/L	20 09/07/2010 17:53	53980
1,2-Dichloroethane	ND	10 μg/L	20 09/07/2010 17:53	53980
Benzene	ND	10 μg/L	20 09/07/2010 17:53	53980
Trichloroethene	240	10 μg/L	20 09/07/2010 17:53	53980
Toluene	ND	10 μg/L	20 09/07/2010 17:53	53980
1,1,2-Trichloroethane	ND	10 μg/L	20 09/07/2010 17:53	53980
Tetrachloroethene	ND	10 μg/L	20 09/07/2010 17:53	53980
Chlorobenzene	ND	10 μg/L	20 09/07/2010 17:53	53980
Ethylbenzene	ND	10 μg/L	20 09/07/2010 17:53	53980
m,p-Xylene	ND	10 μg/L	20 09/07/2010 17:53	53980
o-Xylene	ND	10 μg/L	20 09/07/2010 17:53	53980
Surrogate: Dibromofluoromethane	97.9	88-124 %REC	20 09/07/2010 17:53	53980
Surrogate: 1,2-Dichloroethane-d4	103	79-115 %REC	20 09/07/2010 17:53	53980
Surrogate: Toluene-d8	99.8	80-114 %REC	20 09/07/2010 17:53	53980
Surrogate: Bromofluorobenzene	94.1	60-123 %REC	20 09/07/2010 17:53	53980

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 10-Sep-10

Client: AECOM Technical Services, Inc.

Client Sample ID: TW-1

Lab ID: J1675-03

Project: NOW Corp. Site

Collection Date: 08/26/10 11:10

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS (25 mL Purge)			sw	8260_25_W
Vinyl chloride	ND .	2.0 μg/L	4 09/07/2010 18:19	53980
Chloroethane	ND	2.0 µg/L	4 09/07/2010 18:19	53980
1,1-Dichloroethene	9.9	2.0 µg/L	4 09/07/2010 18:19	53980
trans-1,2-Dichloroethene	ND	2.0 µg/L	4 09/07/2010 18:19	53980
Methyl tert-butyl ether	ND	2.0 µg/L	4 09/07/2010 18:19	53980
1,1-Dichloroethane	54	2.0 µg/L	4 09/07/2010 18:19	53980
cis-1,2-Dichloroethene	2.7	2.0 µg/L	4 09/07/2010 18:19	53980
1,1,1-Trichloroethane	1.1 J	2.0 µg/L	4 09/07/2010 18:19	53980
1,2-Dichloroethane	ND	2.0 µg/L	4 09/07/2010 18:19	53980
Benzene	ND	2.0 µg/L	4 09/07/2010 18:19	53980
Trichloroethene	46	2.0 µg/L	4 09/07/2010 18:19	53980
Toluene	ND	2.0 μg/L	4 09/07/2010 18:19	53980
1,1,2-Trichloroethane	ND	2.0 μg/L	4 09/07/2010 18:19	53980
Tetrachloroethene	ND	2.0 µg/L	4 09/07/2010 18:19	53980
Chlorobenzene	ND	2.0 µg/L	4 09/07/2010 18:19	53980
Ethylbenzene	ND	2.0 μg/L	4 09/07/2010 18:19	53980
m,p-Xylene	ND	2.0 µg/L	4 09/07/2010 18:19	53980
o-Xylene	ND	2.0 µg/L	4 09/07/2010 18:19	53980
Surrogate: Dibromofluoromethane	88.1	88-124 %REC	4 09/07/2010 18:19	53980
Surrogate: 1,2-Dichloroethane-d4	121 S	79-115 %REC	4 09/07/2010 18:19	53980
Surrogate: Toluene-d8	99.9	80-114 %REC	4 09/07/2010 18:19	53980
Surrogate: Bromofluorobenzene	93.8	60-123 %REC	4 09/07/2010 18:19	53980

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 10-Sep-10

Client: AECOM Technical Services, Inc.

Client Sample ID: TW-2A

Lab ID: J1675-04

Project: NOW Corp. Site

Collection Date: 08/26/10 11:20

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS (25 mL Purge)		***		SW8260_25_W
Vinyl chloride	ND	20 μg/L	40 09/07/2010 18:47	53980
Chloroethane	ND	20 µg/L	40 09/07/2010 18:47	53980
1,1-Dichloroethene	27	20 μg/L	40 09/07/2010 18:47	53980
trans-1,2-Dichloroethene	ND	20 μg/L	40 09/07/2010 18:47	53980
Methyl tert-butyl ether	ND	20 μg/L	40 09/07/2010 18:47	53980
1,1-Dichloroethane	220	20 µg/L	40 09/07/2010 18:47	53980
cis-1,2-Dichloroethene	17 J	20 μg/L	40 09/07/2010 18:47	53980
1,1,1-Trichloroethane	590	20 μg/L	40 09/07/2010 18:47	53980
1,2-Dichloroethane	ND	20 μg/L	40 09/07/2010 18:47	53980
Benzene	ND	20 μg/L	40 09/07/2010 18:47	53980
Trichloroethene	390	20 μg/L	40 09/07/2010 18:47	53980
Toluene	ND	20 μg/L	40 09/07/2010 18:47	53980
1,1,2-Trichloroethane	ND	20 μg/L	40 09/07/2010 18:47	53980
Tetrachloroethene	12 J	20 μg/L	40 09/07/2010 18:47	53980
Chlorobenzene	ND	20 μg/L	40 09/07/2010 18:47	53980
Ethylbenzene	ND	20 μg/L	40 09/07/2010 18:47	53980
m,p-Xylene	ND	20 μg/L	40 09/07/2010 18:47	53980
o-Xylene	ND	20 μg/L	40 09/07/2010 18:47	53980
Surrogate: Dibromofluoromethane	88.5	88-124 %REC	40 09/07/2010 18:47	53980
Surrogate: 1,2-Dichloroethane-d4	109	79-115 %REC	40 09/07/2010 18:47	53980
Surrogate: Toluene-d8	100	80-114 %REC	40 09/07/2010 18:47	53980
Surrogate: Bromofluorobenzene	91.6	60-123 %REC	40 09/07/2010 18:47	53980

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 10-Sep-10

Client: AECOM Technical Services, Inc.

Client Sample ID: TW-3

Lab ID: J1675-05

Project: NOW Corp. Site

Collection Date: 08/26/10 11:25

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS (25 mL Purge)			sw	/8260_25_W
Vinyl chloride	ND	0.50 µg/L	1 09/07/2010 20:02	53980
Chloroethane	ND	0.50 µg/L	1 09/07/2010 20:02	53980
1,1-Dichloroethene	1.7	0.50 μg/L	1 09/07/2010 20:02	53980
trans-1,2-Dichloroethene	ND	0.50 μg/L	1 09/07/2010 20:02	53980
Methyl tert-butyl ether	ND	0.50 μg/L	1 09/07/2010 20:02	53980
1,1-Dichloroethane	25	0,50 μg/L	1 09/07/2010 20:02	53980
cis-1,2-Dichloroethene	ND	0.50 μg/L	1 09/07/2010 20:02	53980
1,1,1-Trichloroethane	31	0.50 μg/L	1 09/07/2010 20:02	53980
1,2-Dichloroethane	ND	0.50 µg/L	1 09/07/2010 20:02	53980
Benzene	ND	0.50 µg/L	1 09/07/2010 20:02	53980
Trichloroethene	10	0.50 µg/L	1 09/07/2010 20:02	53980
Toluene	ND	0.50 µg/L	1 09/07/2010 20:02	53980
1,1,2-Trichloroethane	ND	0.50 µg/L	1 09/07/2010 20:02	53980
Tetrachloroethene	ND	0.50 µg/L	1 09/07/2010 20:02	53980
Chlorobenzene	ND	0.50 µg/L	1 09/07/2010 20:02	53980
Ethylbenzene	ND	0.50 µg/L	1 09/07/2010 20:02	53980
m,p-Xylene	ND	0.50 µg/L	1 09/07/2010 20:02	53980
o-Xylene	ND	0.50 µg/L	1 09/07/2010 20:02	53980
Surrogate: Dibromofluoromethane	83.7 S	88-124 %REC	1 09/07/2010 20:02	53980
Surrogate: 1,2-Dichloroethane-d4	95.0	79-115 %REC	1 09/07/2010 20:02	53980
Surrogate: Toluene-d8	101	80-114 %REC	1 09/07/2010 20:02	53980
Surrogate: Bromofluorobenzene	89.5	60-123 %REC	1 09/07/2010 20:02	53980

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 10-Sep-10

Client: AECOM Technical Services, Inc.

Client Sample ID: TRIP BLANK

Lab ID: J1675-06

Project: NOW Corp. Site **Collection Date:** 08/26/10 0:00

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS (25 mL Purge)			SW	/8260_25_W
Vinyl chloride	ND	0.50 µg/L	1 09/07/2010 20:28	53980
Chloroethane	ND	0.50 μg/L	1 09/07/2010 20:28	53980
1,1-Dichloroethene	ND	0.50 µg/L	1 09/07/2010 20:28	53980
trans-1,2-Dichloroethene	ND	0.50 µg/L	1 09/07/2010 20:28	53980
Methyl tert-butyl ether	ND	0.50 μg/L	1 09/07/2010 20:28	53980
1,1-Dichloroethane	ND	0.50 μg/L	1 09/07/2010 20:28	53980
cis-1,2-Dichloroethene	ND	0.50 μg/L	1 09/07/2010 20:28	53980
1,1,1-Trichloroethane	ND	0.50 μg/L	1 09/07/2010 20:28	53980
1,2-Dichloroethane	ND	0.50 µg/L	1 09/07/2010 20:28	53980
Benzene	ND	0.50 μg/L	1 09/07/2010 20:28	53980
Trichloroethene	ND	0.50 μg/L	1 09/07/2010 20:28	53980
Toluene	ND	0.50 μg/L	1 09/07/2010 20:28	53980
1,1,2-Trichloroethane	ND	0.50 µg/L	1 09/07/2010 20:28	53980
Tetrachloroethene	ND	0.50 µg/L	1 09/07/2010 20:28	53980
Chlorobenzene	ND	0.50 μg/L	1 09/07/2010 20:28	53980
Ethylbenzene	ND	0.50 μg/L	1 09/07/2010 20:28	53980
m,p-Xylene	ND	0.50 μg/L	1 09/07/2010 20:28	53980
o-Xylene	ND	0.50 μg/L	1 09/07/2010 20:28	53980
Surrogate: Dibromofluoromethane	100	88-124 %REC	1 09/07/2010 20:28	53980
Surrogate: 1,2-Dichloroethane-d4	101	79-115 %REC	1 09/07/2010 20:28	53980
Surrogate: Toluene-d8	101	80-114 %REC	1 09/07/2010 20:28	53980
Surrogate: Bromofluorobenzene	91.3	60-123 %REC	1 09/07/2010 20:28	53980

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

CLIENT:	AECOM Te	AECOM Technical Services, Inc.	ن		ANALY	ANALYTICAL QC SUMMARY REPORT		MARY	REPO	RT		
Work Order: Project:	J1675 NOW Corp. Site	Site		3MS 8MS	SW8260_25_W SW846 8260C VOC by GC-MS (25 mL Purge)	OC by GC-IV	IS (25 mI	Purge)				
Sample ID: MB-53980	086	SampType: MBLK	TestCoc	TestCode: SW8260_25_W		Prep Date:	09/07/10 11:55	1:55	Run ID	Run ID: V2 100907A		
Client ID: MB-53980	086	Batch ID: 53980	Unit	Units: µg/L		Analysis Date:	09/07/10 16:32	6:32	SeqNo	SeqNo: 1369422		
Analyte		Result	MDL	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	wLimit Higl	hLimit	RPD Ref Val	%RPD RPDLimit	Qual
Vinyl chloride		ND	0.15	0.50					!			
Chloroethane		ND	0.24	0.50								
1,1-Dichloroethene		ND	0.19	0.50								
trans-1,2-Dichloroethene	thene	ND	0.14	0.50								
Methyl tert-butyl ether	ier	ND	0.13	0.50								
1,1-Dichloroethane		ND	0.18	0.50								
cis-1,2-Dichloroethene	ne.	QN	0.19	0.50								
1,1,1-Trichloroethane	Je	QN	0.11	0.50								
1,2-Dichloroethane		ND	0.16	0.50								
Benzene		ON	0.12	0.50								
Trichloroethene		QN	0.13	0.50								
Toluene		QN	0.14	0.50								
1,1,2-Trichloroethane	je je	ON	0.20	0.50								
Tetrachloroethene		ND	0.17	0.50								
Chlorobenzene		QN	0.13	0.50								
Ethylbenzene		ON	0.13	0.50								
m,p-Xylene		QN	0.22	0.50								
o-Xylene		ND	0.17	0.50					٠			
Surrogate		10.16		0.50	10.00	0	102	88	124	0		
Dibromofluoromethane	ane											
Surrogate: 1,2- Dichloroethane-d4		10.01		0.50	10.00	0	100	79	115	0		
Surrogate: Toluene-d8	ie-d8	10.12		0.50	10.00	0	101	80	114	0		
Surrogate: Bromofluorobenzene	U	9.299		0.50	10.00	0	93.0	09 .	123	0		

B - Analyte detected in the associated Method Blank

ANALYTICAL QC SUMMARY REPORT

SW8260_25_W

AECOM Technical Services, Inc.

NOW Corp. Site

J1675

Work Order:

Project:

CLIENT:

SW846 8260C - VOC by GC-MS (25 mL Purge)

Sample ID: LCS-53980	SampType: LCS	TestCoc	TestCode: SW8260_25_W		Prep Date:	09/07/10 11:55	11:55	Run	Run ID: V2_100907A		
Client ID: LCS-53980	Batch ID: 53980	Onit	Units: µg/L		Analysis Date:	09/07/10 15:11	15:11	SedNc	SeqNo: 1369417		
Analyte	Result	MDL	RL	SPK value	SPK Ref Val	%REC L	%REC LowLimit HighLimit	ighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Vinyl chloride	6.777	0.15	0.50	10.00	0	8.76	77	120	0		
Chloroethane	9.463	0.24	0.50	10.00	0	94.6	75	135	0		
1,1-Dichloroethene	9.682	0.19	0.50	10.00	0	8.96	81	125	0		
trans-1,2-Dichloroethene	9.682	0.14	0.50	10.00	0	8.96	09	137	0		
Methyl tert-butyl ether	10.40	0.13	0.50	10.00	0	104	61	134	0		
1,1-Dichloroethane	10.35	0.18	0.50	10.00	0	103	82	120	0		
cis-1,2-Dichloroethene	10.05	0.19	0.50	10.00	0	100	84	116	0		
1,1,1-Trichloroethane	10.04	0.11	0.50	10.00	0	100	80	124	0.		
1,2-Dichloroethane	10.39	0.16	0.50	10.00	0	104	98	117	0		
Benzene	9.926	0.12	0.50	10.00	0	99.3	81	121	0		
Trichloroethene	9.847	0.13	0.50	10.00	0	98.5	74	123	0		
Toluene	9.963	0.14	0.50	10.00	0	9.66	88	117	0		
1,1,2-Trichloroethane	10.12	0.20	0.50	10.00	0	101	83	121	0		
Tetrachloroethene	9.951	0.17	0.50	10.00	0	99.5	74	115	0		
Chlorobenzene	10.20	0.13	0.50	10.00	0	102	83	112	0		
Ethylbenzene	10.09	0.13	0.50	10.00	0	101	87	110	0		
m,p-Xylene	20.34	0.22	0.50	20.00	0	102	87	114	0		
o-Xylene	666.6	0.17	0.50	10.00	0	100	84	114	0		
Surrogate:	10.23		0.50	10.00	0	102	88	124	0		
Dibromofluoromethane											
Surrogate: 1,2- Dichloroethane-d4	11.04		0.50	10.00	0	110	79	115	o .		
Surrogate: Toluene-d8	10.00		0:20	10.00	0	100	80	114	0		
Surrogate:	9.811		0.50	10.00	0	98.1	09	123	0		

B - Analyte detected in the associated Method Blank

ANALYTICAL QC SUMMARY REPORT

SW8260 25 W

AECOM Technical Services, Inc.

NOW Corp. Site

J1675

Work Order:

Project:

CLIENT:

SW846 8260C -- VOC by GC-MS (25 mL Purge)

Sample ID: LCSD-53980	SampType: LCSD	TestCo	TestCode: SW8260_25_W		Prep Date:	09/07/10 11:55	11:55	Run IC	Run ID: V2_100907A			
Client ID: LCSD-53980	Batch ID: 53980	Uni	Units: µg/L		Analysis Date:	09/07/10 15:38	15:38	SeqNc	SeqNo: 1369420			_
Analyte	Result	MDL	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	owLimit F	lighLimit	RPD Ref Val	%RPD RPDLimit	PDLimit	Qual
Vinyl chloride	9.867	0.15	0.50	10.00	0	7.86	77	120	9.777	0.922	40	
Chloroethane	9.408	0.24	0.50	10.00	0	94.1	75	135	9.463	0.591	40	
1,1-Dichloroethene	9.801	0.19	0.50	10.00	0	0.86	81	125	9.682	1.22	40	
trans-1,2-Dichloroethene	9.873	0.14	0.50	10.00	0	7.86	09	137	9.682	1.96	40	
Methyl tert-butyl ether	10.31	0.13	0.50	10.00	0	103	61	134	10.40	0.918	40	
1,1-Dichloroethane	9.475	0.18	0.50	10.00	0	7.46	82	120	10.35	8.81	40	
cis-1,2-Dichloroethene	9.977	0.19	0.50	10.00	0	8.66	84	116	10.05	0.687	40	
1,1,1-Trichloroethane	10.11	0.11	0.50	10.00	0	101	80	124	10.04	0.663	40	
1,2-Dichloroethane	10.19	0.16	0.50	10.00	0	102	98	117	10.39	1.95	40	
Benzene	9.959	0.12	0.50	10.00	0	9.66	81	121	9.926	0.332	40	
Trichloroethene	9.913	0.13	0.50	10.00	0	99.1	74	123	9.847	0.673	40	
Toluene	10.09	0.14	0.50	10.00	0	101	88	117	9.963	1.25	40	
1,1,2-Trichloroethane	9.637	0.20	0.50	10.00	0	96.4	83	121	10.12	4.84	40	,
Tetrachloroethene	11.05	0.17	0.50	10.00	0	111	74	115	9.951	10.5	40	
Chlorobenzene	10.16	0.13	0.50	10.00	0	102	83	112	10.20	0.454	40	
Ethylbenzene	10.18	0.13	0.50	10.00	0	102	87	110	10.09	0.811	40	
m,p-Xylene	20.51	0.22	0.50	20.00	0	103	87	114	20.34	0.842	40	
o-Xylene	10.07	0.17	0.50	10.00	0	101	84	114	666.6	0.73	40	
Surrogate:	096.6		0.50	10.00	0	9.66	88	124	0			
Dibromofluoromethane												
Surrogate: 1,2- Dichloroethane-d4	9,717		0.50	10.00	0	97.2	79	115	0			
Surrogate: Toluene-d8	10.10		0.50	10.00	0	101	80	114				
Surrogate:	6.939		0.50	10.00	0	99.4	09	123	0			

ND - Not Detected at the Reporting Limit

Qualifiers:

m10.08.12.A

Client: AECOM Technical Services, Inc.

Client Sample ID: EFF-082610

Lab ID: J1675-01

Date: 08-Sep-10

Project: NOW Corp. Site

Collection Date: 08/26/10 10:45

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
EPA 1664A Oil & Grease, HEM				E1664
Oil & Grease, Total Recoverable	ND	5.0 mg/L	1 09/08/2010 0:00	53976

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 08-Sep-10

Client: AECOM Technical Services, Inc.

Client Sample ID: INF-082610

Lab ID: J1675-02

Project: NOW Corp. Site

Collection Date: 08/26/10 10:55

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
EPA 1664A Oil & Grease, HEM				E1664
Oil & Grease, Total Recoverable	ND	5.0 mg/L	1 09/08/2010 0:00	53976

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

•	poratories
	i B
	kem.
	III
	_

CLIENT: Work Order: Project:	AECOM Technical Services, Inc. J1675 NOW Corp. Site	ıl Services, Inc			ANALYTICAL QC S E1664 EPA 1664A Oil & Grease, HEM	TICAL QC & Grease, HE	ANALYTICAL QC SUMMARY REPORT 64A Oil & Grease, HEM	XY REPC)RT		
Sample ID: MB-53976 Client ID: MB-53976		SampType: MBLK Batch ID: 53976	Tes	TestCode: E1664 Units: mg/L		Prep Date: Analysis Date:	Prep Date: 09/07/10 11:05 Analysis Date: 09/08/10 0:00	Run ID SegNo	Run ID: MANUAL_100908A SeqNo: 1369442	908A	
Analyte Oil & Grease, Total Recoverable		Result	MDL 1.2	RL 5.0	SPK value	SPK Ref Val	%REC LowLimit HighLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Sample ID: LCS-53976 Client ID: LCS-53976	S	SampType: LCS Batch ID: 53976	<u>ē</u>	TestCode: E1664 Units: mg/L	,	Prep Date: Analysis Date:	Prep Date: 09/07/10 11:05 Analysis Date: 09/08/10 0:00	Run ID SeqNo	Run ID: MANUAL_100908A SeqNo: 1369440	1908A	
Analyte Oil & Grease, Total Recoverable	3	Result 38.60	MDL 1.2	RL 5.0	SPK value	SPK Ref Val	%REC LowLimit HighLimit 96.5 78 114	HighLimit 114	RPD Ref Val	%RPD RPDLimit	Qual
Sample ID: LCSD-53976 Client ID: LCSD-53976	, w	SampType: LCSD Batch ID: 53976	T e	TestCode: E1664 Units: mg/L		Prep Date: Analysis Date:	Prep Date: 09/07/10 11:05 Analysis Date: 09/08/10 0:00	Run IC SeqNc	Run ID: MANUAL_100908A SeqNo: 1369441	1908A	
Analyte		Result	MDL	꿉	SPK value	SPK Ref Val	%REC LowLimit HighLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Oil & Grease, Total Recoverable	4	40.40	1.2	5.0	40.00	0	101 78	114	38.60	4.56 18	

J - Analyte detected below quanititation limits ND - Not Detected at the Reporting Limit

m10.08.12.A

B - Analyte detected in the associated Method Blank

Date: 09-Sep-10

Client: AECOM Technical Services, Inc.

Client Sample ID: EFF-082610

Lab ID: J1675-01

Project: NOW Corp. Site

Collection Date: 08/26/10 10:45

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 6010C Metals by ICP				SW6010_W
Aluminum	ND	200 μg/L	1 09/08/2010 14:54	53986
Arsenic	ND	20 μg/L	1 09/08/2010 14:54	53986
Barium	92 J	200 μg/L	1 09/08/2010 14:54	53986
Chromium	ND	20 μg/L	1 09/08/2010 14:54	53986
Copper	ND	25 μg/L	1 09/08/2010 14:54	53986
Iron	43 J	200 μg/L	1 09/08/2010 14:54	53986
Manganese	65	50 μg/L	1 09/08/2010 14:54	53986
Nickel	2.5 J	50 μg/L	1 09/08/2010 14:54	53986
Zinc	12 J	50 μg/L	1 09/08/2010 14:54	53986
SW846 7470A Mercury by FIA				SW7470
Mercury	ND	0.20 μg/L	1 09/01/2010 9:35	53879

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 09-Sep-10

Client: AECOM Technical Services, Inc.

Client Sample ID: INF-082610

Lab ID: J1675-02

Project: NOW Corp. Site

Collection Date: 08/26/10 10:55

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 6010C Metals by ICP				SW6010_W
Aluminum	ND	200 μg/L	1 09/08/2010 14:57	53986
Arsenic	ND	20 µg/L	1 09/08/2010 14:57	53986
Barium	95 J	200 μg/L	1 09/08/2010 14:57	53986
Chromium	ND	20 μg/L	1 09/08/2010 14:57	53986
Copper	ND	25 μg/L	1 09/08/2010 14:57	53986
Iron	69 J	200 μg/L	1 09/08/2010 14:57	53986
Manganese	180	50 μg/L	1 09/08/2010 14:57	53986
Nickel	2.3 J	50 μg/L	1 09/08/2010 14:57	53986
Zinc	13 J	50 μg/L	1 09/08/2010 14:57	53986
SW846 7470A Mercury by FIA				SW7470
Mercury	ND	0.20 μg/L	1 09/01/2010 9:40	53879

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

AECOM Technical Services, Inc. CLIENT:

J1675 Work Order:

NOW Corp. Site

Project:

ANALYTICAL QC SUMMARY REPORT

SW6010_W

SW846 6010C -- Metals by ICP

Sample ID: N6D F2006	CompTime: MB1 V TestCode: CIMED10	7 Jac 1	Tooth ode: State040 W		Orong Orong	00002140 40.65		(000000)	O	
Client ID: MB-53986	Batch ID: 53986	inu)			Analysis Date:	09/08/10 14:38	SeqN	SeqNo: 1370102	J8080	
Analyte	Result	MDL	R	SPK value	SPK Ref Val	%REC LowLimit HighLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Aluminum	ND	99	200							
Arsenic	ND	4.3	20							
Barium	QN	1.1	200							
Chromium	ND	0.64	20							
Copper	ND	3.6	30							
Iron	QN	31	200							
Manganese	ND	10	50							
Nickel	ND	0.85	50							
Zinc	ND	4.9	50							
Sample ID: LCS-53986	SampType: LCS	TestCo	TestCode: SW6010_W		Prep Date:	Prep Date: 09/07/10 10:55	Run I	Run ID: OPTIMA3_100908C	1908C	
Client ID: LCS-53986	Batch ID: 53986	n	Units: µg/L		Analysis Date:	09/08/10 14:41	SedN	SeqNo: 1370103		
Analyte	Result	MDL	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	: HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Aluminum	9414	99	200	9100	0	103 80	120	0		
Arsenic	475.8	4.3	20	455.0	0	105 80	120	0		
Barium	9734	1.1	200	9100	0	107 80	120	0		
Chromium	957.4	0.64	20	910.0	0	105 80	120	0		
Copper	1201	3.6	30	1130	0	106 80	120	0		
Iron	4862	31	200	4550	0	107 80	120	0		
Manganese	2429	10	50	2270	0	107 80	120	0		
Nickel	2394	0.85	50	2270	0	105 80	120	0		
Zinc	2397	4.9	50	2270	0	106 80	120	0		

J - Analyte detected below quanititation limits ND - Not Detected at the Reporting Limit

m10.08.12.A

CLIENT:	AECOM Technical Services, Inc.	ANALYTICAL QC SUMMARY RE
Work Order:	J1675	W_010_W
Project:	NOW Corp. Site	SW846 6010C Metals by ICP

chnical Services, Inc. ANALYTICAL QC SUMMARY REPORT	$SW6010_{-}W$	Site SW846 6010C Metals by ICP
AECOM Technical Serv	11675	NOW Corp. Site

Sample ID: LCSD-53986 Client ID: LCSD-53986	SampType: LCSD Batch ID: 53986	TestCo	TestCode: SW6010_W Units: ua/L		Prep Date: 09/07/10 10:55 Analysis Date: 09/08/10 14:45	09/07/10 10:55	10:55	Run	Run ID: OPTIMA3_100908C	0908C	
Analyte	Result	MDL	곱	SPK value	SPK Ref Val		%REC LowLimit HighLimit	ighLimit	RPD Ref Val %RPD RPDLimit	%RPD RP	DLimit Qual
Aluminum	9541	99	200	9100	0	105	80	120	9414	1.34	20
Arsenic	484.4	4.3	20	455.0	0	106	80	120	475.8	1.79	20
Barium	2677	1.1	200	9100	0	106	80	120	9734	0.581	20
Chromium	8.896	0.64	20	910.0	0	106	80	120	957.4	1.19	20
Copper	1187	3.6	30	1130	0	105	80	120	1201	1.17	20
Iron	4910	31	200	4550	0	108	80	120	4862	0.975	20
Manganese	2407	10	50	2270	0	106	80	120	2429	0.946	20
Nickel	2436	0.85	50	2270	0	107	80	120	2394	1.75	20
Zinc	2426	4.9	50	2270	0	107	80	120	2397	1.21	20

S - Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

CLIENT: Work Order:	AECOM Technical Services, Inc. J1675	ANALYTICAL QC SUMMARY REPORT Sw7470
Project:	NOW Corp. Site	SW846 7470A Mercury by FIA

	ap. ouv		3 W 0+0 /+/ 0A McI cury by Fire	vicionity by E.E.	T.		
Sample ID: MB-53879	SampType: MBLK	TestCode: SW7470		Prep Date:	Prep Date: 08/31/10 14:40	Run ID: FIMS1_100901A	
Client ID: MB-53879 Analyte	Batch ID: 53879 Result	Units: µg/L MDL RL	SPK value	Analysis Date: SPK Ref Val	Analysis Date: 09/01/10 9:25 S SPK Ref Val %REC LowLimit HighLimit	SeqNo: 1365670 iit RPD Ref Val %RPD RPDLimit Qual	PDLimit Qual
Mercury	ND	0.028					
Sample ID: LCS-53879	SampType: LCS	TestCode: SW7470		Prep Date:	Prep Date: 08/31/10 14:40	Run ID: FIMS1_100901A	
Client ID: LCS-53879	Batch ID: 53879	Units: µg/L		Analysis Date:	09/01/10 9:26	SeqNo: 1365671	
Analyte	Result	MDL RL	SPK value	SPK Ref Val	SPK Ref Val %REC LowLimit HighLimit	nit RPD Ref Val %RPD RPDLimit Qual	PDLimit Qual
Mercury	4.849	0.028 0.20	0 4.550	0	107 80 120	0 (
Sample ID: LCSD-53879	SampType: LCSD	TestCode: SW7470		Prep Date:	Prep Date: 08/31/10 14:40	Run ID: FIMS1_100901A	
Client ID: LCSD-53879	Batch ID: 53879	Units: µg/L		Analysis Date:	Analysis Date: 09/01/10 9:28	SeqNo: 1365672	
Analyte	Result	MDL RL	SPK value	SPK Ref Val	SPK Ref Val %REC LowLimit HighLimit	nit RPD Ref Val %RPD RPDLimit Qual	PDLimit Qual
Mercury	4.701	0.028 0.20	0 4.550	0	103 80 120	4.849 3.11	20

ND - Not Detected at the Reporting Limit

S S F C Qualifiers:

m10.08.12.A

Date: 09-Sep-10

Client: AECOM Technical Services, Inc.

Client Sample ID: EFF-082610

Lab ID: J1675-01

Project: NOW Corp. Site **Collection Date:** 08/26/10 10:45

Analyses Result Qual **RL** Units **DF** Date Analyzed **Batch ID** SM 2540C -- TOTAL DISSOLVED SOLIDS SM2540_TDS **Total Dissolved Solids** 10 mg/L 1 08/31/2010 6:12 320 53853 SM 2540D -- TOTAL SUSPENDED SOLIDS SM2540_TSS Total Suspended Solids 1 08/31/2010 5:18 53854 ND 10 mg/L SW846 9012B -- Total Cyanide SW9012_W Cyanide ND 10 ug/L 1 09/08/2010 15:07 53991

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 09-Sep-10

Client: AECOM Technical Services, Inc.

Client Sample ID: INF-082610

Lab ID: J1675-02

Project: NOW Corp. Site

Collection Date: 08/26/10 10:55

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SM 2540C TOTAL DISSOLVED SOLIDS				SM2540_TDS
Total Dissolved Solids	330	10 mg/L	1 08/31/2010 7:21	53853
SM 2540D TOTAL SUSPENDED SOLIDS				SM2540_TSS
Total Suspended Solids	ND	10 mg/L	1 08/31/2010 6:54	53854
SW846 9012B Total Cyanide				SW9012_W
Cyanide	ND	10 ug/L	1 09/08/2010 15:09	53991

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

es, Inc.	
chnical Services,	
AECOM Te	
NT:	

CLIEN

NOW Corp. Site J1675 Work Order: Project:

SM2540 TDS

ANALYTICAL QC SUMMARY REPORT

SM 2540C -- TOTAL DISSOLVED SOLIDS

Sample ID: MB-53853	SampType: MBLK		TestCode: SM2540_TDS		Prep Date:	Prep Date: 08/30/10 16:30		Run ID: MANUAL_100830B	1830B	
Client ID: MB-53853	Batch ID: 53853		Units: mg/L		Analysis Date: 08/30/10 16:30	08/30/10 1		SeqNo: 1366982		
Analyte	Result	MDL	R	SPK value	SPK Ref Val	%REC Lov	SPK Ref Val %REC LowLimit HighLimit	RPD Ref Val	RPD Ref Val %RPD RPDLimit Qual	Quai
Total Dissolved Solids	DN	10	10							
Sample ID: LCS-53853	SampType: LCS		TestCode: SM2540_TDS		Prep Date:	Prep Date: 08/30/10 16:30		Run ID: MANUAL_100830B	1830B	
Client ID: LCS-53853	Batch ID: 53853		Units: mg/L		Analysis Date: 08/30/10 17:38	08/30/10 1		SeqNo: 1366983		
Analyte	Result	MDL	J.	SPK value	SPK Ref Val	%REC Lo	%REC LowLimit HighLimit	RPD Ref Val	RPD Ref Val %RPD RPDLimit Qual	Qual
Total Dissolved Solids	306.0	10	10	304.0	0	101	80 120	0		

AECOM Technical Services, Inc. CLIENT:

J1675 Work Order:

NOW Corp. Site Project:

ANALYTICAL QC SUMMARY REPORT

SM2540_TSS

SM 2540D -- TOTAL SUSPENDED SOLIDS

Sample ID: MB-53854	SampType: MBLK		TestCode: SM2540_TSS		Prep Date:	Prep Date: 08/30/10 16:30	Run ID:	Run ID: MANUAL_100830C	830C	
Client ID: MB-53854	Batch ID: 53854		Units: mg/L		Analysis Date:	Analysis Date: 08/30/10 16:30	SedNo:	SeqNo: 1366996		-
Analyte	Result	MDL	RL	SPK value	SPK Ref Val	SPK Ref Val %REC LowLimit HighLimit		RPD Ref Val	RPD Ref Val %RPD RPDLimit Qual	Qual
Total Suspended Solids	UN	10	10							
Sample ID: LCS-53854	SampType: LCS		TestCode: SM2540_TSS		Prep Date:	Prep Date: 08/30/10 16:30	Run ID:	Run ID: MANUAL_100830C	830C	
Client ID: LCS-53854	Batch ID: 53854		Units: mg/L		Analysis Date:	Analysis Date: 08/30/10 18:06	SeqNo:	SeqNo: 1366997		
Analyte	Result	MDL	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit		RPD Ref Val	RPD Ref Val %RPD RPDLimit Qual	Qual
Total Suspended Solids	22.00	10	10	24.20	0	08 6.06	120	0		

B - Analyte detected in the associated Method Blank

L
OR
EP
Z R
R
7
IMI
S
T
YTI
AL
Z
7

SW9012 W

AECOM Technical Services, Inc.

J1675

Work Order:

CLIENT:

Project: NOW C	NOW Corp. Site		SW846 9012B Total Cyanide	Fotal Cyanide				
Sample ID: MB-53991 Client ID: MB-53991	SampType: MBLK Batch ID: 53991	TestCode: SW9012_V Units: ug/L	w	Prep Date: Analysis Date:	Prep Date: 09/07/10 15:00 Analysis Date: 09/08/10 14:57	Run ID: LACHAT1_100908B SeqNo: 1370175	0908B	
Analyte Cyanide	Result	MDL RL 7.5 20	SPK value	SPK Ref Val	SPK Ref Val %REC LowLimit HighLimit		RPD Ref Val %RPD RPDLimit Qual	Qual
Sample ID: LCS-53991 Client ID: LCS-53991	SampType: LCS Batch ID: 53991	TestCode: SW9012_Units: ug/L	M .	Prep Date: Analysis Date:	Prep Date: 09/07/10 15:00 llysis Date: 09/08/10 14:59	Run ID: LACHAT1_100908B SeqNo: 1370176	0908B	
Analyte Cyanide	Result 96.29	MDL RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit 96.3 80 120	nLimit RPD Ref Val	%RPD RPDLimit Qual	Qual
Sample ID: LCSD-53991 Client ID: LCSD-53991	SampType: LCSD Batch ID: 53991	TestCode: SW9012_ Units: ug/L	w	Prep Date: Analysis Date:	Prep Date: 09/07/10 15:00 Analysis Date: 09/08/10 15:02	Run ID: LACHAT1_100908B SeqNo: 1370177	0908B	
Analyte	Result	MDL	SPK value	SPK Ref Val	SPK Ref Val %REC LowLimit HighLimit		RPD Ref Val %RPD RPDLimit Qual	Qual
Cyanide	96.45	7.5 20	100.0	0	96.5 80	120 96.29	0.166 20	

B - Analyte detected in the associated Method Blank

Client ID: EARTH_NY

Project: NOW Corp. Site

WO Name: NOW Corp. Site

Location: NOW_CORP,

Comments: N/A

Case: SDG:

HC Due: 09/14/10

Report Level: LEVEL 2

Special Program:

Fax Report:

Fax Due:

PO: 94017.02

Lab Samp ID	Lab Samp ID Client Sample ID	Collection Date	Date Recv'd	Matrix	Test Code	Samp / Lab Test Comments	HF HT MS SEL Storage	orage
J1675-01A	EFF-082610	08/26/2010 10:45	08/27/2010	Aqueous	SW8260_25_W	/ use for VOCs,	Y VOA	∢
J1675-01B J1675-01B	EFF-082610 EFF-082610	08/26/2010 10:45 08/26/2010 10:45	08/27/2010 08/27/2010	Aqueous	SW6010_W SW7470	/ See SEL list / See SEL list	Y M3	
J1675-01C J1675-01C	EFF-082610 EFF-082610	08/26/2010 10:45 08/26/2010 10:45	08/27/2010 08/27/2010	Aqueous	SM2540_TDS SM2540_TSS		H2 H2	
J1675-01D	EFF-082610	08/26/2010 10:45	08/27/2010	Aqueous	SW9012_W		Y H2	
J1675-01E	EFF-082610	08/26/2010 10:45	08/27/2010	Aqueous	E1664	1	H2	
J1675-02A	INF-082610	08/26/2010 10:55	08/27/2010	Aqueous	SW8260_25_W	/ use for VOCs,	Y VOA	₫
J1675-02B J1675-02B	INF-082610 INF-082610	08/26/2010 10:55 08/26/2010 10:55	08/27/2010 08/27/2010	Aqueous Aqueous	SW6010_W SW7470	/ See SEL list / See SEL list	Y M3	
J1675-02C J1675-02C	INF-082610 INF-082610	08/26/2010 10:55 08/26/2010 10:55	08/27/2010 08/27/2010	Aqueous	SM2540_TDS SM2540_TSS		H2 H2	
J1675-02D	INF-082610	08/26/2010 10:55	08/27/2010	Aqueous	SW9012_W		γ Η2	
J1675-02E	INF-082610	08/26/2010 10:55	08/27/2010	Aqueous	E1664		H2	
J1675-03A	TW-1	08/26/2010 11:10	08/27/2010	Aqueous	SW8260_25_W	/ use for VOCs,	Y VOA	₹
J1675-04A	TW-2A	08/26/2010 11:20	08/27/2010	Aqueous	SW8260_25_W	/ use for VOCs,	Y VOA	₹
J1675-05A	TW-3	08/26/2010 11:25	08/27/2010	Aqueous	SW8260_25_W	/ use for VOCs,	Y VOA	¥
J1675-06A	TRIP BLANK	08/26/2010 00:00	08/27/2010	Aqueous	SW8260_25_W	/ use for VOCs,	Y VOA	≰

HT = Test logged in but has been placed on hold

Page 01 of 01

Special Handling: TAT- Indicate Date Needed: All TATs subject to laboratory approval. Min. 24-hour notification needed for rushes. Samples disposed of after 30 days unless otherwise instructed.	60135676.02 Now COPP Latsburg State: NV	7	Notes:	QA/QC Reporting Level Level II	□ Other	State specific reporting standards:	*AI, AS, BA, CR,C	Fe, Mn, Hg Zn, N					Date: Time:	1,7	01:8 01/16/8
AT S S 5	Site Name: Colo	<u>ש</u>	List preservative code below: $2 \psi 9 2 5 $	Se Se	5194 51/5 5194 09:	OW OL	× × × ×	X X X					Received by:	FrdEx	Verenvea Burgard
OF CUSTODY RECORI	To:Same	RQN:	6=Ascorbic Acid 7=CH ₃ OH	Glass S	x VOA V	xirusM V 10 # A 10 #		3		-,	*		Relinquished by:	Steve Drugs	Fedex
CHAIN	Blud Invoice	Choiniere P.O. No.:	3=H ₂ SO ₄ 4=HNO ₃ 5=NaOH Øne. 10=	GW=Groundwater WW=Wastewater Nater SO=Soil SL=Sludge A=Air X2=X3=	C=Composite	Date: Time:	/8	10:55	01:11	02://					fleed Ambient CC
MITKEM LABORATORIES ADVISION OF SPECTRUM ANALYTICAL, INC. Franking HANIBAL TECHNOLOGY	Report To: AECOM Wo British American Latham NY		$1=Na_2S2O_3$ $2=HCI$ $3=8=NaHSO_4$ $9=$	DW=Drinking Water GW=Gro 0=0il SW= Surface Water S X1=X2=	G=Grab C	Lab Id: Sample Id:	TG75-31 EFF-082610	1 . 01 INF - 082610	1.03 TW-1	AZ-WT 76-	1/2			L E-mail toEDD Format	n receipt:

175 Metro Center Boulevard • Warwick, RI 02886-1755 • 401-732-3400 • Fax 401-732-3499 • www.mitkem.com

MITKEM LABORATORIES

Sample Condition Form

				<u> </u>							
Received By: ソミら	Reviewed By	·: (b)	1351	7	Date ₂	alk (Mitke	m Wo	rk Ord	er#: 🤇	57675
Client Project: NO	W-CORP				Client	t:EGiy	+h-	N7			Soil Headspace or
								n (pH)	i .	VOA	Air Bubble ≥
,		Lab	Sampl	e ID	HNO ₃	H₂SO₄	HCI	NaOH	H₃PO₄		1/4"
1) Cooler Sealed	Yes/ No	576	75	01	4 2			>12		1+	
,		1		03	42			712			
2) Custody Seal(s)	Present / Absent			93							
2) Custody Seal(s)	and the same of th			04						H	
	Coolers / Bottles	$\vdash \vdash \vdash$							ļ		
	Intact / Broken		<u> </u>	05						f.	
	•	116	75	Ola						4	
3) Custody Seal Number	(s) NA			<u> </u>						<u> </u>	7
•	/										
		<u> </u>									
											/
		<u> </u>								-A	
4) Chain-of-Custody	Present / Absent									$ \bot $	
5) Cooler Temperature	4°C			_							
IR Temp Gun ID	4°C MT-1										
Coolant Condition	108							2/			
Oblight Oblightion								X			
	£						1/4	\			
6) Airbill(s)	Present Absent	ļ		 			_ 7				
Airbill Number(s)	<u>FedEX</u>						8				
	8690 7923 8340					-1	¥.				
						.//	77				
					,	\$2%	9				
						1					·
7) O I D	£1.	-					-+				
7) Samples Bottles	Intacty Broken / Leaking									-	
		<u>.</u>			/						
8) Date Received	8/27/10										
9) Time Received	8.40										
•											
Preservative Name/Lot N	io ·										$\overline{}$
1 16361 valive Trainores is	j			VOA	Matrix	Kev:	l	l	J	1	
				i		Unpre	served	l Soil		A = Ai	ir
				1		Unpre				H = H	
				1	M = N	-				E = Er	
				1		aHSO	4			F = Fr	
See Sample	Condition Notification/Corre	ctiva A	ction F	orm	ves fr	<i></i>					
occ campic	, condition redification/corre	Olive A	Caon	Onn	yes ("		Rad C	OK yes	s / no	
									<u> </u>		

Last Page of Data Report