

Operation, Maintenance and Monitoring Report April 2011

NOW Corporation Site 3-14-008

Work Assignment No. D004445-4.2

Prepared for:

SUPERFUND STANDBY PROGRAM New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233

Prepared by:

AECOM Technical Services Northeast, Inc. 40 British American Boulevard Latham, New York 12110

June 2011

June 23, 2011

Mr. Carl Hoffman, P.E. NYSDEC Division of Environmental Remediation 625 Broadway, 12th Floor Albany, New York 12233-7013

Re: NOW Corporation - Site #3-14-008 O&M Summary Report: "April" 2011

Dear Mr. Hoffman:

This monthly summary report describes the operation, monitoring and maintenance (OM&M) of the remedial system at the NOW Corporation site in the Town of Clinton, New York, for a 22-day period (March 29 – April 20, 2011).

With the exceptions noted below, if any, the P&T system was online and operational throughout the reporting period. Approximately 373,300 gallons of water were treated during the period. Discharge from the treatment system averaged approximately 17,000 gallons per day (gpd), compared to 26,150 gpd in the prior reporting period.

As of the last day of the reporting period, a total of 83,688,400 gallons of groundwater had been recovered and treated by the system since it became operational in February 1998.

Table 1 summarizes influent and effluent analytical data for water samples collected on April 20, 2011. **Effluent limitations were not exceeded for any analyte.** Table 2 presents selected operational data recorded on the sampling date. Table 3 summarizes groundwater analytical results from the monitoring well sampling event conducted on April 19, 2011. A copy of each analytical laboratory report is attached. Monitoring well locations are shown on Figure 1.

AECOM made five site visits during the period to conduct the required system inspection, perform scheduled and unscheduled maintenance, and to collect water samples. The March 29 service visit was described in the previous report. Details for the current period follow:

March 30 – Replaced TW-2A pump with a higher capacity pump (30 GPM). Reused motor.

<u>March 31</u> – Cleaned TW-2A flowmeter. TW-2A pump would run for only 30 seconds before stopping for no apparent reason. Observed that current readings on legs were 21.7, 17.4 and 0.14 amp instead of 8 amp each. The pump was shut off until a new motor could be purchased and installed. Inspection of the sub-slab depressurization system (SSDS) at 2078 Route 9G, Staatsburg, NY was also conducted during this site visit. The system was operating normally. The basement is unoccupied, the heating/ventilation system had not been modified, piping and seals were in good condition, and cracks were not observed in floor or walls. An inspection form is attached to this letter report.

<u>April 4</u> – Motor on the TW-2A pump was replaced. Pump is back online following four days downtime.

<u>April 19</u> – Collected annual groundwater samples from the monitoring wells.

April 20 - Collected monthly water samples. Removed TW-3 pump from well because it throws the

thermal overload after running for only a brief period [pump had failed on April 12]. The motor of TW-3 pump was drawing 16-17 amps from each leg, twice what it should. Well remained offline as the reporting period closed.

Historical groundwater analytical results from 17 monitoring wells and current results from eight wells are presented in Table 3. Monitoring well locations are shown on Figure 1. Six wells discussed below exhibit VOC impacts at levels exceeding state groundwater standards (MW-1, 6S, 6D, 7S, 7D and 12D). The dominant contaminant in four of these wells is trichloroethene (TCE); 1,1-dichloroethane (1,1-DCA) dominates in MW-6D and MW-12D. No analytes were detected above standards in two of the wells sampled during this period (MW-4S and MW-12S).

During the last six sampling events, total VOCs (tVOCs) at **MW-1** have ranged between 97 μ g/L and 114 μ g/L. The highest tVOC concentration in this well was detected in 1994 at 446 μ g/L.

Total concentrations of VOCs observed in **MW-6S** have decreased since 1993 when tVOCs were detected at 1,408 μ g/L. Current sample results indicated a tVOC concentration of 39 μ g/L, considerably less than the unexpectedly high concentration of 115 μ g/L during the May 2010 sampling event. In August 1999, this well was ND for all reported analytes.

Since the 1994 event, when the tVOC concentration was 312.7 ug/L, **MW-6D** has shown very stable results, varying between only 20 ug/L and 58 ug/L in 11 sampling events, with 31 ug/L for the current sampling event.

During the current sampling event, **MW-7S** exhibited the tVOC concentration of 90 μ g/L, considerably lower than 313 μ g/L of the previous sampling event, which was highest since 1998.

MW-7D result from the current event was 112.75 μ g/L of tVOCs, as compared to a reported high of 493 μ g/L detected during the 2000 sampling event.

MW-12D reported a tVOC concentrations ranging between 16 μ g/L and 34 μ g/L from 2008 to 2011, with exceedances of only the 1,1-DCA standard.

Please feel free to contact me at (518) 951-2262 if you have any questions regarding this report or the operation of the treatment system.

Sincerely, AECOM Technical Services Northeast, Inc.

tophen Chaine

Stephen R. Choiniere Project Manager

Table 1Summary of Influent and Effluent DataSampling Date: April 20, 2011NOW Corporation SiteTown of Clinton, New York

Analytes/	Total]	Recovery Well	s	Ef	fluent
Parameters	Influent	Effluent	TW-1	TW-2A	TW-3	Lim	itations
							(units)
Quantity treated, per day		16,968				Monitor	gallons
pН	6.8	7.1				6.5 to 8.5	standard units
Oil and Grease	<5.0	14	NA	NA	NA	15	mg/L
Total Cyanide	< <u>5.0</u> <10	<10	NA	NA	NA	10	ug/L
TDS	<10 260	<10 250	NA	NA	NA	1000	mg/L
TSS	200 <10	2 30 <10	NA	NA	NA	50	-
155	<10	<10	NA	INA	NA	50	mg/L
Aluminum, Total	290	<200	NA	NA	NA	2000	ug/L
Arsenic, Total	<20	<20	NA	NA	NA	50	ug/L
Barium, Total	79 J	66 J	NA	NA	NA	2000	ug/L
Chromium	14 J	<20	NA	NA	NA	100	ug/L
Copper	4.9 J	<25	NA	NA	NA	24	ug/L
Iron	1400	<200	NA	NA	NA	600	ug/L
Mercury	< 0.20	< 0.20	NA	NA	NA	0.8	ug/L
Manganese	890	30 J	NA	NA	NA	600	ug/L
Nickel	<50	1.4 J	NA	NA	NA	200	ug/L
Zinc	21 J	10 J	NA	NA	NA	150	ug/L
1,1,1-Trichloroethane	230	< 0.50	<2.5	310	2.5	5	ug/L
1,1,2-Trichloroethane	<8	< 0.50	<2.5	<13	< 0.50	1.2	ug/L
1,1-Dichloroethane	100	< 0.50	37	130	6.8	5	ug/L
1,1-Dichloroethene	13	< 0.50	10	17	< 0.50	0.5	ug/L
1,2-Dichloroethane	<8	< 0.50	<2.5	<13	< 0.50	1.6	ug/L
Benzene	<8	< 0.50	<2.5	<13	< 0.50	0.8	ug/L
Chlorobenzene	<8	< 0.50	<2.5	<13	< 0.50	5	ug/L
Chloroethane	<8	< 0.50	<2.5	<13	< 0.50	5	ug/L
cis-1,2-Dichloroethene	13	< 0.50	3.1	14	< 0.50	5	ug/L
Ethylbenzene	<8	< 0.50	<2.5	<13	< 0.50	5	ug/L
Methyl tert-butyl ether	<8	< 0.50	<2.5	<13	< 0.50	5	ug/L
o-Xylene	<8	< 0.50	<2.5	<13	< 0.50	5	ug/L
m,p-Xylene	<8	< 0.50	<2.5	<13	< 0.50	10	ug/L
Tetrachloroethene	<8	<0.50	<2.5	<13	< 0.50	1.4	ug/L
Toluene	<8	<0.50	<2.5	<13	<0.50	5	ug/L
trans -1,2-Dichloroethene	<8	<0.50	<2.5	<13	<0.50	5	ug/L
Trichloroethene	280	<0.50	47	350	5.9	5	ug/L
Vinyl Chloride	<8	<0.50	<2.5	<13	<0.50	0.6	ug/L
, myr emonae	NO	<0.50	~2.5	<1J	\0. 50	0.0	ug/L

Notes:

1) Detected concentrations are presented in **bold** typeface, and are expressed in the units shown in far right column.

2) Effluent concentration boxed in **bold** denotes exceedance of effluent limitations.

3) NA indicates not analyzed.

4) "*J*" indicates an estimated concentration below the reporting limit (*RL*).

5) "B" denotes metal detected in method blank at concentration below the RL, but above the method detection limit.

Table 2Summary of April 2011 O&M Data

NOW Corporation Site Town of Clinton, New York

TW-1SGPMPumping Rate3GPMWater Level Above Transducer28.3feetFlow Meter Reading6,090,300gallonsPump Pressure80psi
Water Level Above Transducer28.3feetFlow Meter Reading6,090,300gallons
Flow Meter Reading 6,090,300 gallons
Pump Pressure80psi
TW-2A
Pumping Rate ~14 GPM
Water Level Above Transducer22.00feet
Flow Meter Reading 20,783,900 gallons
Pump Pressure 15 psi
<i>TW-3</i>
Pumping Rate 4 GPM
Water Level Above Transducer98.28feet
Flow Meter Reading 8,853,000 gallons
Pump Pressure 72 psi
Air Stripper
Stripper Blower Pressure 22 inches H ₂ O
Air Temperature in Stripper44°F
Pressure Gauge - Left Leg 1.4 inches H ₂ O
Pressure Gauge - Right Leg 3.8 inches H ₂ O
Effluent Flow
Effluent Flow this period (calculated) 373,300 gallons
Total Effluent Flow (calculated)83,688,400gallons

							MW-1			,								MV	W-2				
Analytes/Standards**	4/27/93	1/12/94	5/8/98	8/1/99	8/18/00	8/27/03	8/24/04	8/25/05	4/24/07	5/28/08	4/27/09	5/27/10	4/19/11	4/27/93	1/12/94	5/8/98	8/1/99	8/18/00	8/27/03	8/24/04	8/25/05	4/24/07	5/29/08
1,1,1-Trichloroethane/5	75	150	57	33	40	24	19	8.3	11	9	8.1	8.5	8.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane/1	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane/5	50	50	30	66	31	17	22	25	13	16	10	16	13	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene/5	6	6	5	ND	ND	3	4.5	6.1	2.9	2.8	1.4 J	2.9	2.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane/0.6	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND
Benzene/1	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene/5	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane/5	8	6	ND	ND	ND	1.3	ND	ND	ND	ND	ND	ND	ND	ND	ND								
cis-1,2-Dichloroethene/5	27	32	20	ND	29	15	20	18	13	14	12	12	11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene/5	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND
m&p-Xylene/5	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3	N/A	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene/5	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene/5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene/5	2	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3	N/A	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene/5	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	0.22 J	ND	ND	ND	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene/5	88	200	100	130	120	80	79	56	56 D	67	68	74 D	68	ND	2	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride/2	N/A	2	1	ND	ND	ND	1	1.1	1.4	ND	ND	ND	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL VOCs	256	446	213	229	220	140.3	145.5	114.5	97.3	109.02	99.5	113.4	102.6	6	2	0	0	0	0	0	0	0	0

Notes:

1) Detected concentrations are shown in **bold typeface**, in units of ug/L.

2) ND = Not Detected

3) N/A = Not Analyzed (either well was effectively dry on date shown, or indicated analyte was not reported)

4) * = Duplicate sample result.

5) MW-6S, 7S & 7D were dry on 8/25/05. They were sampled on the date shown at the top of the columns.

6) D = denotes analytical result for a diluted sample.

7) J = denotes analytical result is an estimate.

8) ** = Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (TOGS 1.1.1), ug/L

					M	W-3D									MW	/-38				
Analytes/Standards**	4/27/93	1/12/94	5/8/98	8/1/99	8/18/00	8/27/03	8/24/04	8/25/05	4/24/07	5/28/08	1/12/94	5/8/98	5/8/98	8/1/99	8/18/00	8/27/03	8/24/04	8/25/05	4/24/07	5/28/08
1,1,1-Trichloroethane/5	ND	ND	ND	ND	ND	ND	ND	ND	ND/ND*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane/1	N/A	N/A	ND	ND	ND	ND	ND	ND	ND/ND*	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane/5	ND	ND	ND	ND	ND	ND	ND	ND	ND/ND*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene/5	ND	ND	ND	ND	ND	ND	ND	ND	ND/ND*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane/0.6	N/A	N/A	ND	ND	ND	ND	ND	ND	ND/ND*	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene/1	ND	N/A	ND	ND	ND	ND	ND	ND	ND/ND*	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene/5	N/A	N/A	ND	ND	ND	ND	ND	ND	ND/ND*	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane/5	ND	ND	ND	ND	ND	ND	ND	ND	ND/ND*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene/5	ND	ND	ND	ND	ND	ND	ND	ND	ND/ND*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene/5	N/A	N/A	ND	ND	ND	ND	ND	ND	ND/ND*	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND
m&p-Xylene/5	ND	N/A	ND	ND	ND	ND	ND	ND	ND/ND*	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene/5	N/A	N/A	ND	ND	ND	ND	ND	ND	ND/ND*	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene/5	ND	ND	ND	ND	ND	ND	ND	ND	ND/ND*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene/5	1	N/A	ND	ND	ND	ND	ND	ND	ND/ND*	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene/5	N/A	N/A	ND	ND	ND	ND	ND	ND	ND/ND*	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene/5	0.7	3	ND	ND	ND	ND	ND	ND	ND/ND*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride/2	N/A	ND	ND	ND	ND	ND	ND	ND	ND/ND*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL VOCs	1.7	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Notes:

1) Detected concentrations are shown in **bold typeface**, in units of ug/L.

2) ND = Not Detected

3) N/A = Not Analyzed (either well was effectively dry on date shown, or indicated analyte was not reported)

4) * = Duplicate sample result.

5) MW-6S, 7S & 7D were dry on 8/25/05. They were sampled on the date shown at the top of the columns.

6) D = denotes analytical result for a diluted sample.

7) J = denotes analytical result is an estimate.

8) ** = Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (TOGS 1.1.1), ug/L

							MW-	4S										MW-4D				
Analytes/Standards**	4/27/93	1/12/94	5/8/98	8/1/99	8/18/00	8/27/03	8/24/04	8/25/05	4/24/07	5/29/08	4/27/09	5/27/10	4/19/11	1/12/94	5/8/98	8/1/99	8/18/00	8/27/03	8/24/04	8/25/05	4/24/07	5/29/08
1,1,1-Trichloroethane/5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND/ND*	ND	ND	ND	ND	27	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane/1	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND/ND*	ND	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane/5	ND	4	5	ND	ND	2.2	1.6	1	2.3	2.5	2.5/2.4*	2	2.2	ND	ND	68	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene/5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND/ND*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane/0.6	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND/ND*	ND	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND
Benzene/1	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND/ND*	ND	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene/5	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND/ND*	ND	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane/5	ND	ND	ND	ND	ND	ND	0.8	0.6	2.5	ND	1.5/1.4*	1.4	1.5	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene/5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND/ND*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene/5	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND/ND*	ND	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND
m&p-Xylene/5	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND/ND*	ND	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene/5	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND/ND*	ND	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene/5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND/ND*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene/5	1	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND/ND*	ND	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene/5	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND/ND*	ND	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene/5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.31 J/ND*	ND	ND	ND	ND	100	ND	ND	ND	ND	ND	ND
Vinyl Chloride/2	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND/ND*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL VOCs	1	4	5	0	0	2.2	2.4	1.6	4.8	2.5	4.05	3.4	3.7	0	0	195	0	0	0	0	0	0

Notes:

1) Detected concentrations are shown in **bold typeface**, in units of ug/L.

2) ND = Not Detected

3) N/A = Not Analyzed (either well was effectively dry on date shown, or indicated analyte was not reported)

4) * = Duplicate sample result.

5) MW-6S, 7S & 7D were dry on 8/25/05. They were sampled on the date shown at the top of the columns.

6) D = denotes analytical result for a diluted sample.

7) J = denotes analytical result is an estimate.

8) ** = Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (TOGS 1.1.1), ug/L

					M	N-5											MW-6S						· · · · · ·
Analytes/Standards**	4/27/93	1/12/94	5/8/98	8/1/99	8/18/00	8/27/03	8/24/04	8/25/05	4/24/07	5/29/08	4/27/93	1/12/94	5/8/98	8/1/99	8/18/00	8/27/03	8/24/04	10/19/05	4/24/07	5/28/08	4/27/09	5/27/10	4/19/11
1,1,1-Trichloroethane/5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	710	510	23	ND	45	2.5	7.6	12	4	3.7	2.3	11	3.8
1,1,2-Trichloroethane/1	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane/5	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.38 J	57	39	3	ND	14	ND	2.7	4.3	1.3	1.9	0.93	18	2.9
1,1-Dichloroethene/5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	11	3	ND	ND	ND	ND	1.3	1.1	0.38 J	0.91	0.33 J	2.8	0.73
1,2-Dichloroethane/0.6	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene/1	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene/5	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane/5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene/5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	17	12	2	ND	ND	ND	0.9	2.2	0.69	0.49 J	0.38 J	1.1	0.64
Ethylbenzene/5	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m&p-Xylene/5	2	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene/5	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene/5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene/5	2	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene/5	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene/5	ND	2	ND	ND	ND	ND	ND	ND	ND	ND	610	460	43	ND	160	25	47	57	21	34	22	82 D	31
Vinyl Chloride/2	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL VOCs	4	2	0	0	0	0	0	0	0	0.38	1408	1024	71	0	219	27.5	59.5	76.6	27.37	41	25.94	114.9	39.07

Notes:

1) Detected concentrations are shown in **bold typeface**, in units of ug/L.

2) ND = Not Detected

3) N/A = Not Analyzed (either well was effectively dry on date shown, or indicated analyte was not reported)

4) * = Duplicate sample result.

5) MW-6S, 7S & 7D were dry on 8/25/05. They were sampled on the date shown at the top of the columns.

6) D = denotes analytical result for a diluted sample.

7) J = denotes analytical result is an estimate.

8) ** = Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (TOGS 1.1.1), ug/L

Table 3 Groundwater Analytical Data Summary NOW Corporation Site 3-14-008 Town of Clinton, New York

						MW	/-6D										MW-7	7S				
Analytes/Standards**	1/12/94	5/8/98	8/1/99	8/18/00	8/27/03	8/24/04	8/25/05	4/24/07	5/28/08	4/27/09	5/27/10	4/19/11	5/8/98	8/1/99	8/27/03	8/24/04	10/19/05	4/24/07	5/29/08	4/27/09	5/27/10	4/19/11
1,1,1-Trichloroethane/5	160	13	ND	7	5.8	3	1.2	4.1	1.8	1.1	2.3	3.3	34	N/A	8.5/8.6*	13	12	5.4	2.9	ND	12	3
1,1,2-Trichloroethane/1	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	ND/ND*	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane/5	140	20	52	ND	16	26	26	17	18	11	13	15	11	N/A	3.2/3*	6.4	2.4	1.7	2.2	ND	7.3	ND
1,1-Dichloroethene/5	1	ND	ND	30	1.1	1.9	1.6	1.7	1.6	0.64	1.4	1.6	ND	N/A	ND/ND*	0.9	ND	ND	0.51	ND	0.95	ND
1,2-Dichloroethane/0.6	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	ND/ND*	ND	ND	ND	ND	ND	ND	ND
Benzene/1	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	ND/ND*	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene/5	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	ND/ND*	ND	ND	ND	ND	ND	ND	ND
Chloroethane/5	ND	ND	ND	ND	ND	0.6	0.8	3.4	ND	0.94	ND	1.6	ND	N/A	ND/ND*	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene/5	0.7	2	ND	ND	1.5	1.4	1.2	1.2	1.1	0.95	1	1.2	17	N/A	20/20*	16	9	5.9	9.7	5.6	31	5.4
Ethylbenzene/5	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	ND/ND*	ND	ND	ND	ND	ND	ND	ND
m&p-Xylene/5	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	ND/ND*	ND	ND	ND	ND	ND	ND	ND
o-Xylene/5	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	ND/ND*	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene/5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	ND/ND*	ND	ND	ND	0.26J	ND	ND	ND
Toluene/5	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	ND/ND*	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene/5	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	ND/ND*	ND	ND	ND	ND	ND	ND	ND
Trichloroethene/5	11	13	6	8	11	7.4	6.6	8.2	7.1	5.8	7.5	8.6	280	N/A	160/160*	190	160	91 D	230	82	260 D	82
Vinyl Chloride/2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	ND/ND*	ND	ND	ND	ND	ND	1.4	ND
TOTAL VOCs	312.7	48	58	45	35.4	40.3	37.4	35.6	29.6	20.43	25.2	31.3	342	0	191.7	226.3	183.4	104	245.57	87.6	312.65	90.4

Notes:

1) Detected concentrations are shown in **bold typeface**, in units of ug/L.

2) ND = Not Detected

3) N/A = Not Analyzed (either well was effectively dry on date shown, or indicated analyte was not reported)

4) * = Duplicate sample result.

5) MW-6S, 7S & 7D were dry on 8/25/05. They were sampled on the date shown at the top of the columns.

6) D = denotes analytical result for a diluted sample.

7) J = denotes analytical result is an estimate.

8) ** = Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (TOGS 1.1.1), ug/L

						MW-7	'D									MV	V-8				
Analytes/Standards**	5/8/98	8/1/99	8/18/00	8/27/03	8/24/04	10/19/05	4/24/07	5/29/08	4/27/09	5/27/10	4/19/11	4/27/93	1/12/94	5/8/98	8/1/99	8/18/00	8/27/03	8/24/04	8/25/05	4/24/07	5/28/08
1,1,1-Trichloroethane/5	15	N/A	85	12	21/22*	5.6	2	22/22*	ND	5.4/5.3*	ND/ND*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane/1	ND	N/A	ND	ND	ND/ND*	ND	ND	ND/ND*	ND	ND/ND*	ND/ND*	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane/5	34	N/A	ND	17	21/21*	7.5	2.5	38/37*	ND	5.9/5.7*	ND/ND*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene/5	4	N/A	28	2.4	4.7/4.7*	1.3	0.73	4.6/5.2*	ND	0.93/1.2*	ND/ND*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane/0.6	ND	N/A	ND	ND	ND/ND*	ND	ND	ND/ND*	ND	ND/ND*	ND/ND*	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND
Benzene/1	ND	N/A	ND	ND	ND/ND*	ND	ND	ND/ND*	ND	ND/ND*	ND/ND*	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene/5	ND	N/A	ND	ND	ND/ND*	ND	ND	ND/ND*	ND	ND/ND*	ND/ND*	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane/5	ND	N/A	ND	ND	ND/ND*	ND	ND	ND/ND*	ND	ND/ND*	ND/ND*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene/5	8	N/A	ND	8.1	11/11*	6.3	3.5	10/9.7*	4.1 J	6.4/5.9*	3.5/2.7*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene/5	ND	N/A	ND	ND	ND/ND*	ND	ND	ND/ND*	ND	ND/ND*	ND/ND*	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND
m&p-Xylene/5	ND	N/A	ND	ND	ND/ND*	ND	ND	ND/ND*	ND	ND/ND*	ND/ND*	0.8	N/A	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene/5	ND	N/A	ND	ND	ND/ND*	ND	ND	ND/ND*	ND	ND/ND*	ND/ND*	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene/5	ND	N/A	ND	ND	ND/ND*	ND	ND	0.25J/0.22J	ND	ND/ND*	ND/ND*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene/5	ND	N/A	ND	ND	ND/ND*	ND	ND	ND/ND*	ND	ND/ND*	9.3/8*	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene/5	ND	N/A	ND	ND	ND/ND*	ND	ND	ND/ND*	ND	ND/ND*	ND/ND*	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene/5	340	N/A	380	190	250/260*	150	110 D	220/220*	140	150/160 D*	110/92*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride/2	ND	N/A	ND	ND	ND/ND*	ND	ND	ND/ND*	ND	ND/ND*	ND/ND*	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL VOCs	401	0	493	229.5	312.7	170.7	118.73	294.49	144.1	173.37	112.75	0.8	0	0	0	0	0	0	0	0	0

Notes:

1) Detected concentrations are shown in **bold typeface**, in units of ug/L.

2) ND = Not Detected

3) N/A = Not Analyzed (either well was effectively dry on date shown, or indicated analyte was not reported)

4) * = Duplicate sample result.

5) MW-6S, 7S & 7D were dry on 8/25/05. They were sampled on the date shown at the top of the columns.

6) D = denotes analytical result for a diluted sample.

7) J = denotes analytical result is an estimate.

8) ** = Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (TOGS 1.1.1), ug/L

Table 3 Groundwater Analytical Data Summary NOW Corporation Site 3-14-008 Town of Clinton, New York

					M	N-9									MW	/-10				
Analytes/Standards**	4/27/93	1/12/94	5/8/98	8/1/99	8/18/00	8/27/03	8/24/04	8/25/05	4/24/07	5/29/08	4/27/93	1/12/94	5/8/98	8/1/99	8/18/00	8/27/03	8/24/04	8/25/05	4/24/07	5/29/08
1,1,1-Trichloroethane/5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2	2	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane/1	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane/5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	17	9	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene/5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane/0.6	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND
Benzene/1	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene/5	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane/5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene/5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene/5	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND
m&p-Xylene/5	1	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene/5	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene/5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene/5	2	N/A	ND	ND	ND	ND	ND	ND	ND	ND	1	N/A	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene/5	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene/5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride/2	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL VOCs	3	0	0	0	0	0	0	0	0	0	20	11	0	0	0	0	0	0	0	0

Notes:

1) Detected concentrations are shown in **bold typeface**, in units of ug/L.

2) ND = Not Detected

3) N/A = Not Analyzed (either well was effectively dry on date shown, or indicated analyte was not reported)

4) * = Duplicate sample result.

5) MW-6S, 7S & 7D were dry on 8/25/05. They were sampled on the date shown at the top of the columns.

6) D = denotes analytical result for a diluted sample.

7) J = denotes analytical result is an estimate.

8) ** = Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (TOGS 1.1.1), ug/L

Table 3 Groundwater Analytical Data Summary NOW Corporation Site 3-14-008 Town of Clinton, New York

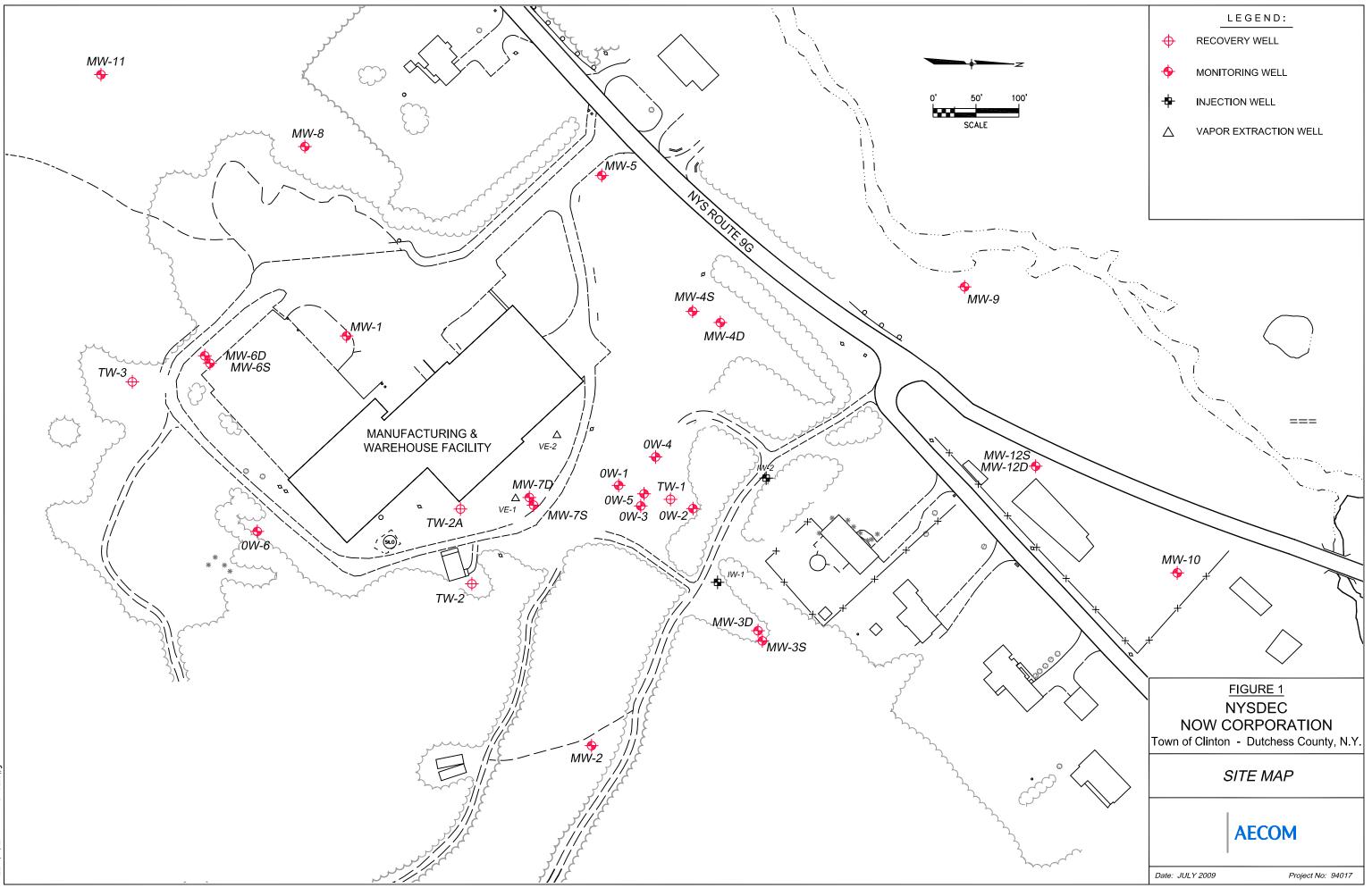
					MW-1	1					MW	7-12S			MW	-12D	
Analytes/Standards**	1/12/94	5/8/98	8/1/99	8/18/00	8/27/03	8/24/04	8/25/05	4/24/07	5/28/08	5/29/08	4/27/09	5/27/10	4/19/11	5/29/08	4/27/09	5/27/10	4/19/11
1,1,1-Trichloroethane/5	ND	ND	ND	ND	ND	ND	ND/ND*	ND	ND	ND	ND	ND	ND	0.24 J	ND	ND	ND
1,1,2-Trichloroethane/1	N/A	ND	ND	ND	ND	ND	ND/ND*	ND									
1,1-Dichloroethane/5	ND	ND	ND	ND	ND	ND	ND/ND*	ND	ND	ND	ND	ND	ND	25	11	13	14
1,1-Dichloroethene/5	ND	ND	ND	ND	ND	ND	ND/ND*	ND	ND	ND	ND	ND	ND	2	1.5	1.8	1.4
1,2-Dichloroethane/0.6	N/A	ND	ND	ND	ND	ND	ND/ND*	ND									
Benzene/1	N/A	ND	ND	ND	ND	ND	ND/ND*	ND									
Chlorobenzene/5	N/A	ND	ND	ND	ND	ND	ND/ND*	ND									
Chloroethane/5	ND	ND	ND	ND	ND	ND	ND/ND*	ND	ND	ND	ND	ND	ND	4.6	2	4.5	2.9
cis-1,2-Dichloroethene/5	ND	ND	ND	ND	ND	ND	ND/ND*	ND	ND	ND	ND	ND	ND	0.25 J	0.25 J	0.30 J	ND
Ethylbenzene/5	N/A	ND	ND	ND	ND	ND	ND/ND*	ND									
m&p-Xylene/5	N/A	ND	ND	ND	ND	ND	ND/ND*	ND									
o-Xylene/5	N/A	ND	ND	ND	ND	ND	ND/ND*	ND									
Tetrachloroethene/5	ND	ND	ND	ND	ND	ND	ND/ND*	ND									
Toluene/5	N/A	ND	ND	ND	ND	ND	ND/ND*	ND	ND	0.31 J	ND						
trans-1,2-Dichloroethene/5	N/A	ND	ND	ND	ND	ND	ND/ND*	ND									
Trichloroethene/5	ND	ND	ND	ND	ND	ND	ND/ND*	ND	ND	ND	ND	ND	ND	1.6	1.7	1.5	1.4
Vinyl Chloride/2	ND	ND	ND	ND	ND	ND	ND/ND*	ND									
TOTAL VOCs	0	0	0	0	0	0	0	0	0	0.31	0	0	0	33.69	16.45	21.1	19.7

Notes:

1) Detected concentrations are shown in **bold typeface**, in units of ug/L.

2) ND = Not Detected

3) N/A = Not Analyzed (either well was effectively dry on date shown, or indicated analyte was not reported)


4) * = Duplicate sample result.

5) MW-6S, 7S & 7D were dry on 8/25/05. They were sampled on the date shown at the top of the columns.

6) D = denotes analytical result for a diluted sample.

7) J = denotes analytical result is an estimate.

8) ** = Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (TOGS 1.1.1), ug/L

FILE NAME: 94017-BASE.dw

	Export Data							Import Sys Data
	Perio	dic Operatio	ns \	Visi	t F	orm		Check box if new sys info
Sy	stem ID: 314008-NOW-001				Da	te of V	'isit:	March 31, 2011
0	vner Name: Joan Picard			Dat	e Ins	stalled	: N	ovember 11, 2008
Sy	stem Address: 2078 Route 9G			Tele	epho	ne:	84	45-889-8787
Ci	zy: Staatsburg	Zip: 12580)	Alt.	Tele	phone	:	
Pe	rformed By: Steve Gray			Site	No:	314	800	
Сс	mpany: AECOM Technical Service	es Northeast		Site	Nar	ne:	NOW	Corporation
	Fan Operation Confirmation							
		Fan #1			Fa	n #2		Fan #3
	Fan Model No(s).	RP145						
RO	Is Fan Operating (arrival)?	● Yes ○ No		0	Yes		No	🔿 Yes 🔿 No
ERI	Confirmation Method	Sound						
EXTERIOR	Is Fan Operating (departure)?	● Yes ○ No		0	Yes		No	🔿 Yes 🔿 No
	Requested to inspect interior sy If yes, when and by whom?	vstem components?	0	Yes	۲	No	Date	e:
	Structural Review						Notes	
	Change in building footprint sin	ce last inspection?	\bigcirc	Yes	lacksquare	No		
	Basement occupied (>4 hrs pe	r day)?	\bigcirc	Yes	igodoldoldoldoldoldoldoldoldoldoldoldoldol	No		
	Heating/ventilation system mod	difications?	\bigcirc	Yes	lacksquare	No		
	Crawlspace inspected?		\bigcirc	Yes	۲	No		
OR	Large cracks in floor or near su	mps?	Ο	Yes	igodoldoldoldoldoldoldoldoldoldoldoldoldol	No		
INTERIOR	Wall penetrations or cracks not	ed?	0	Yes	lacksquare	No		
F	Piping, Slab & Wall							
	Are system suction points seale	ed?	۲	Yes	0	No		
	Is piping system in need of rep	air?	Ο	Yes	igodoldoldoldoldoldoldoldoldoldoldoldoldol	No		
	Miscellaneous							
	Are manometer levels equal?		\bigcirc	Yes	۲	No	The C	Sauge indicated pressur
	Are system labels accurate and	applied correctly?	۲	Yes	0	No		
	Maintenance completed (check all Describe repairs made and any pro							

Report Date: 10-May-11 10:10

✓ Final Repo	ort
C Re-Issued	Report
Revised R	eport

A DIVISION OF SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY *Laboratory Report*

Work Order: K0663

Project #:

Project : NOW Corp. Site, 4/2011

AECOM Technical Services, Inc. 40 British American Boulevard Latham, NY 12110

Attn: Stephen Choiniere

· · · · · · · · · · · · · · · · · · ·			 ·			
Laboratory ID	Client Sample ID		Matrix	Date Sampled	Date Received	
K0663-01	EFF 042011		Aqueous	20-Apr-11 09:40	21-Apr-11 09:04	~
K0663-02	INF 042011		Aqueous	20-Apr-11 10:15	21-Apr-11 09:04	
K0663-03	TW-1 042011		Aqueous	20-Apr-11 10:25	21-Apr-11 09:04	
K0663-04	TW-2A 042011		Aqueous	20-Apr-11 10:30	21-Apr-11 09:04	
K0663-05	TW-3 042011		Aqueous	20-Apr-11 10:32	21-Apr-11 09:04	
K0663-06	TRIP BLANK 04201	1	Aqueous	20-Apr-11 00:00	21-Apr-11 09:04	

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. The results relate only to the samples(s) as received. This report may not be reproduced, except in full, without written approval from Mitkem Laboratories.

All applicable NELAC or USEPA CLP requirments have been meet.

Mitkem Laboratories is accredited under the National Environmental Laboratory Approval Program (NELAP) and is certified by several States, as well as USEPA and US Department of Defense. The current list of our laboratory approvals and certifications is available on the Certifications page on our web site at www.mitkem.com.

Please contact the Laboratory or Technical Director at 401-732-3400 with any questions regarding the data contained in the laboratory report.

N/A Department of Defense Connecticut Delaware Maine Massachusetts New Hampshire New Jersey New York North Carolina Pennsylvania Rhode Island Texas USDA USEPA - ISM USEPA - SOM

PH-0153 N/A 2007037 M-RI907 2631 RI001 11522 581 68-00520 LAI00301 T104704422-08-TX P330-08-00023 EP-W-09-039 EP-W-05-030

Authorized by:

Yihai Ding Laboratory Director

REPORT NARRATIVE

Mitkem Laboratories, a Division of Spectrum Analytical, Inc.

Client : AECOM Technical Services, Inc.

Project: NOW Corp. Site

Laboratory Workorder / SDG #: K0663

SW846 8260C, VOC by GC-MS (25 mL Purge)

I. SAMPLE RECEIPT

No exceptions or unusual conditions were encountered unless a Sample Condition Notification Form, or other record of communication is included with the Sample Receipt Documentation.

II. HOLDING TIMES

A. Sample Preparation:

All samples were prepared within the method-specified holding times.

B. Sample Analysis:

All samples were analyzed within the method-specified holding times.

III. METHODS

Samples were analyzed following procedures in laboratory test code: SW846 8260C

IV. PREPARATION

Aqueous Samples were prepared following procedures in laboratory test code: SW5030

V. INSTRUMENTATION

The following instrumentation was used

Instrument Code: V5 Instrument Type: GCMS-VOA Description: HP6890 / HP6890 Manufacturer: Hewlett-Packard Model: 6890 / 6890

VI. ANALYSIS

A. Calibration:

Calibrations met the method/SOP acceptance criteria.

B. Blanks:

All method blanks were within the acceptance criteria.

C. Surrogates:

Surrogate standard percent recoveries were within the QC limits.

- D. Spikes:
 - 1. Laboratory Control Spikes (LCS):

Percent recoveries for lab control samples were within the QC limits with the following exceptions. Please note that most test procedures allow for several compounds outside of the QC limits for the LCS, although this may indicate a bias for this specific compound.

LCS-58908 in batch 58908, Percent Recovery is outside QC Limits, recovery is above criteria for Ethylbenzene at 114% with criteria of (87-110).

LCSD-58908 in batch 58908, Percent Recovery is outside QC Limits, recovery is above criteria for Ethylbenzene at 111% with criteria of (87-110).

Please note that this apparent high bias does not affect sample results, as Ethylbenzene was not detected in any sample.

E. Internal Standards:

Internal standard peak areas were within the QC limits.

F. Dilutions:

The following samples were analyzed at dilution (due to elevated concentration of Trichloroethene).

INF 042011 (K0663-02A) : Dilution Factor: 16 TW-1 042011 (K0663-03A) : Dilution Factor: 5 TW-2A 042011 (K0663-04A) : Dilution Factor: 25

G. Samples:

No other unusual occurrences were noted during sample analysis.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and Mitkem, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as verified by the following signature.

ward Signed: Date:

REPORT NARRATIVE

Mitkem Laboratories, a Division of Spectrum Analytical, Inc.

Client : AECOM Technical Services, Inc.

Project: NOW Corp. Site

Laboratory Workorder / SDG #: K0663

EPA 1664A, Oil & Grease, HEM

I. SAMPLE RECEIPT

No exceptions or unusual conditions were encountered unless a Sample Condition Notification Form, or other record of communication is included with the Sample Receipt Documentation.

II. HOLDING TIMES

A. Sample Preparation:

All samples were prepared within the method-specified holding times.

B. Sample Analysis:

All samples were analyzed within the method-specified holding times.

III. METHODS

Samples were analyzed following procedures in laboratory test code: EPA 1664A

IV. PREPARATION

Aqueous Samples were prepared following procedures in laboratory test code: SW3510

V. INSTRUMENTATION

The following instrumentation was used to perform Oil and Grease analysis.

Instrument Type: Analytical Balance Manufacturer: Denver Instrument Company Model: A-250

VI. ANALYSIS

A. Calibration:

Analytical balance was calibrated based on SOP/Method criteria.

B. Blanks:

All method blanks were within the acceptance criteria.

- C. Spikes:
 - 1. Laboratory Control Spikes (LCS):

Percent recoveries for lab control samples were within the QC limits.

D. Samples:

No unusual occurrences were noted during sample analysis.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and Mitkem, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as verified by the following signature.

Signed: Date:

REPORT NARRATIVE

Mitkem Laboratories, a Division of Spectrum Analytical, Inc.

Client : AECOM Technical Services, Inc.

Project: NOW Corp. Site

Laboratory Workorder / SDG #: K0663

SW846 6010C, SW846 7470A

I. SAMPLE RECEIPT

No exceptions or unusual conditions were encountered unless a Sample Condition Notification Form, or other record of communication is included with the Sample Receipt Documentation.

II. HOLDING TIMES

A. Sample Preparation:

All samples were prepared within the method-specified holding times.

B. Sample Analysis:

All samples were analyzed within the method-specified holding times.

III. METHODS

Samples were analyzed following procedures in laboratory test code: SW846 6010C, SW846 7470A

IV. PREPARATION

Aqueous Samples were prepared following procedures in laboratory test code: SW3005A Aqueous Samples were prepared following procedures in laboratory test code: SW7470A

V. INSTRUMENTATION

The following instrumentation was used to perform

Instrument Code: FIMS1 Instrument Type: CVAA Description: FIMS Manufacturer: Perkin-Elmer Model: FIMS

Instrument Code: OPTIMA3 Instrument Type: ICP Description: Optima ICP-OES Manufacturer: Perkin-Elmer Model: 4300 DV

VI. ANALYSIS

A. Calibration:

Calibrations met the method/SOP acceptance criteria.

B. Blanks:

All method blanks were within the acceptance criteria.

C. Spikes:

1. Laboratory Control Spikes (LCS):

Percent recoveries for laboratory control samples were within the QC limits.

D. Samples:

No other unusual occurrences were noted during sample analysis.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and Mitkem, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as verified by the following signature.

Uuud au Signed: (Date:

REPORT NARRATIVE

Mitkem Laboratories, a Division of Spectrum Analytical, Inc.

Client : AECOM Technical Services, Inc.

Project: NOW Corp. Site

Laboratory Workorder / SDG #: K0663

SM 2540C, SM 2540D, SW846 9012B

I. SAMPLE RECEIPT

No exceptions or unusual conditions were encountered unless a Sample Condition Notification Form, or other record of communication is included with the Sample Receipt Documentation.

II. HOLDING TIMES

A. Sample Preparation:

All samples were prepared within the method-specified holding times.

B. Sample Analysis:

All samples were analyzed within the method-specified holding times.

III. METHODS

Samples were analyzed following procedures in laboratory test code: SM 2540C, SM 2540D, SW846 9012B

IV. PREPARATION

Aqueous Samples were prepared following procedures in laboratory test code: SM 2540C, SM 2540D, SW9012B

V. INSTRUMENTATION

The following instrumentation was used to perform

Instrument Code: LACHAT1 Instrument Type: WC Description: Flow Injection Analyzer Manufacturer: Zellweger Analytics Model: Quik-Chem 8000

VI. ANALYSIS

A. Calibration:

Calibrations met the method/SOP acceptance criteria.

B. Blanks:

All method blanks were within the acceptance criteria.

- C. Spikes:
 - 1. Laboratory Control Spikes (LCS):

Percent recoveries for lab control samples were within the QC limits.

D. Duplicate sample:

Relative percent differences were within the QC limits for duplicate analyses for Total Dissolved Solids and Total Suspended Solids.

E. Samples:

No unusual occurrences were noted during sample analysis.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and Mitkem, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as verified by the following signature.

Signed: (leval a) Date:

Date: 09-May-11

Client: AECOM Technical Services, Inc. Client Sample ID: EFF 042011 Lab ID: K0663-01

Project: NOW Corp. Site Collection Date: 04/20/11 9:40

Analyses	Result Qual	RL U	Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS (25 mL Purge)				S	N8260_25_W
Vinyl chloride	ND	0.50 µ	ug/L	1 05/03/2011 2:30	58908
Chloroethane	ND	0.50 µ	ug/L	1 05/03/2011 2:30	58908
1,1-Dichloroethene	ND	0.50 µ	µg/L	1 05/03/2011 2:30	58908
trans-1,2-Dichloroethene	ND	0.50 µ	µg/L	1 05/03/2011 2:30	58908
Methyl tert-butyl ether	ND	0.50 µ	µg/L	1 05/03/2011 2:30	58908
1,1-Dichloroethane	ND	0.50 µ	µg/L	1 05/03/2011 2:30	58908
cis-1,2-Dichloroethene	ND	0.50 µ	µg/L	1 05/03/2011 2:30	58908
1,1,1-Trichloroethane	ND	0.50 µ	µg/L	1 05/03/2011 2:30	58908
1,2-Dichloroethane	ND	0.50 µ	µg/L	1 05/03/2011 2:30	58908
Benzene	ND	0.50 µ	µg/L	1 05/03/2011 2:30	58908
Trichloroethene	ND	0.50 µ	µg/L	1 05/03/2011 2:30	58908
Toluene	ND	0.50 p	µg/L	1 05/03/2011 2:30	58908
1,1,2-Trichloroethane	ND	0.50 µ	ug/L	1 05/03/2011 2:30	58908
Tetrachloroethene	ND	0.50 µ	ug/L	1 05/03/2011 2:30	58908
Chlorobenzene	ND	0.50 µ	µg/L	1 05/03/2011 2:30	58908
Ethylbenzene	ND	0.50 µ	µg/L	1 05/03/2011 2:30	58908
m,p-Xylene	ND	0.50 µ	µg/Ľ	1 05/03/2011 2:30	58908
o-Xylene	ND	0.50 µ	µg/L	1 05/03/2011 2:30	58908
Surrogate: Dibromofluoromethane	102	88-124 %	%REC	1 05/03/2011 2:30	58908
Surrogate: 1,2-Dichloroethane-d4	97.7	79-115 %	%REC	1 05/03/2011 2:30	58908
Surrogate: Toluene-d8	93.3	80-114 %	%REC	1 05/03/2011 2:30	58908
Surrogate: Bromofluorobenzene	83.8	60-123 %	%REC	1 05/03/2011 2:30	58908

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

- B Analyte detected in the associated Method Blank
- DF Dilution Factor

S - Spike Recovery outside accepted recovery limits

- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 09-May-11

Client: AECOM Technical Services, Inc. Client Sample ID: INF 042011 Lab ID: K0663-02

Project: NOW Corp. Site Collection Date: 04/20/11 10:15

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS (25 mL Purge)			SW	8260_25_W
Vinyl chloride	ND	8.0 µg/L	16 05/03/2011 2:59	58908
Chloroethane	ND	8.0 µg/L	16 05/03/2011 2:59	58908
1,1-Dichloroethene	13	8.0 µg/L	16 05/03/2011 2:59	58908
trans-1,2-Dichloroethene	ND	8.0 µg/L	16 05/03/2011 2:59	58908
Methyl tert-butyl ether	ND	8.0 µg/L	16 05/03/2011 2:59	58908
1,1-Dichloroethane	100	8.0 µg/L	16 05/03/2011 2:59	58908
cis-1,2-Dichloroethene	13	8.0 µg/L	16 05/03/2011 2:59	58908
1,1,1-Trichloroethane	230	8.0 µg/L	16 05/03/2011 2:59	58908
1,2-Dichloroethane	ND	8.0 µg/L	16 05/03/2011 2:59	58908
Benzene	ND	8.0 µg/L	16 05/03/2011 2:59	58908
Trichloroethene	280	8.0 µg/L	16 05/03/2011 2:59	58908
Toluene	ND	8.0 µg/L	16 05/03/2011 2:59	58908
1,1,2-Trichloroethane	ND	8.0 µg/L	16 05/03/2011 2:59	58908
Tetrachloroethene	ND	8.0 µg/L	16 05/03/2011 2:59	58908
Chlorobenzene	ND	8.0 µg/L	16 05/03/2011 2:59	58908
Ethylbenzene	ND	8.0 µg/L	16 05/03/2011 2:59	58908
m,p-Xylene	ND	8.0 µg/L	16 05/03/2011 2:59	58908
o-Xylene	ND	8.0 µg/L	16 05/03/2011 2:59	58908
Surrogate: Dibromofluoromethane	102	88-124 %REC	16 05/03/2011 2:59	58908
Surrogate: 1,2-Dichloroethane-d4	99.1	79-115 %REC	16 05/03/2011 2:59	58908
Surrogate: Toluene-d8	96.4	80-114 %REC	16 05/03/2011 2:59	58908
Surrogate: Bromofluorobenzene	84.3	60-123 %REC	16 05/03/2011 2:59	58908

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 09-May-11

Client: AECOM Technical Services, Inc. Client Sample ID: TW-1 042011 Lab ID: K0663-03

Project:NOW Corp. SiteCollection Date:04/20/11 10:25

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS (25 mL Purge)			SW	/8260_25_W
Vinyl chloride	ND	2.5 µg/L	5 05/03/2011 3:28	58908
Chloroethane	ND	2.5 µg/L	5 05/03/2011 3:28	58908
1,1-Dichloroethene	10	2.5 µg/L	5 05/03/2011 3:28	58908
trans-1,2-Dichloroethene	ND	2.5 µg/L	5 05/03/2011 3:28	58908
Methyl tert-butyl ether	ND	2.5 µg/L	5 05/03/2011 3:28	58908
1,1-Dichloroethane	37	2.5 µg/L	5 05/03/2011 3:28	58908
cis-1,2-Dichloroethene	3.1	2.5 µg/L	5 05/03/2011 3:28	58908
1,1,1-Trichloroethane	ND	2.5 µg/L	5 05/03/2011 3:28	58908
1,2-Dichloroethane	ND	2.5 µg/L	5 05/03/2011 3:28	58908
Benzene	ND	2.5 µg/L	5 05/03/2011 3:28	58908
Trichloroethene	47	2.5 µg/L	5 05/03/2011 3:28	58908
Toluene	ND	2.5 µg/L	5 05/03/2011 3:28	58908
1,1,2-Trichloroethane	ND	2.5 µg/L	5 05/03/2011 3:28	58908
Tetrachloroethene	ND	2.5 µg/L	5 05/03/2011 3:28	58908
Chlorobenzene	ND	2.5 µg/L	5 05/03/2011 3:28	58908
Ethylbenzene	ND	2.5 µg/L	5 05/03/2011 3:28	58908
m,p-Xylene	ND	2.5 µg/L	5 05/03/2011 3:28	58908
o-Xylene	ND	2.5 µg/L	5 05/03/2011 3:28	58908
Surrogate: Dibromofluoromethane	99.8	88-124 %REC	5 05/03/2011 3:28	58908
Surrogate: 1,2-Dichloroethane-d4	88.7	79-115 %REC	5 05/03/2011 3:28	58908
Surrogate: Toluene-d8	99.9	80-114 %REC	5 05/03/2011 3:28	58908
Surrogate: Bromofluorobenzene	82.3	60-123 %REC	5 05/03/2011 3:28	58908

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 09-May-11

Client: AECOM Technical Services, Inc. Client Sample ID: TW-2A 042011 Lab ID: K0663-04

Project: NOW Corp. Site Collection Date: 04/20/11 10:30

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS (25 mL Purge)			SW	8260_25_W
Vinyl chloride	ND	13 µg/L	25 05/03/2011 3:56	58908
Chloroethane	ND	13 µg/L	25 05/03/2011 3:56	58908
1,1-Dichloroethene	17	13 µg/L	25 05/03/2011 3:56	58908
trans-1,2-Dichloroethene	ND	13 µg/L	25 05/03/2011 3:56	58908
Methyl tert-butyl ether	ND	13 µg/L	25 05/03/2011 3:56	58908
1,1-Dichloroethane	130	13 µg/L	25 05/03/2011 3:56	58908
cis-1,2-Dichloroethene	14	13 µg/L	25 05/03/2011 3:56	58908
1,1,1-Trichloroethane	310	13 µg/L	25 05/03/2011 3:56	58908
1,2-Dichloroethane	ND	13 µg/L	25 05/03/2011 3:56	58908
Benzene	ND	13 µg/L	25 05/03/2011 3:56	58908
Trichloroethene	350	13 µg/L	25 05/03/2011 3:56	58908
Toluene	ND	13 µg/L	25 05/03/2011 3:56	58908
1,1,2-Trichloroethane	ND	13 µg/L	25 05/03/2011 3:56	58908
Tetrachloroethene	ND	13 µg/L	25 05/03/2011 3:56	58908
Chlorobenzene	ND	13 µg/L	25 05/03/2011 3:56	58908
Ethylbenzene	ND	13 µg/L	25 05/03/2011 3:56	58908
m,p-Xylene	ND	13 µg/L	25 05/03/2011 3:56	58908
o-Xylene	ND	13 µg/L	25 05/03/2011 3:56	58908
Surrogate: Dibromofluoromethane	102	88-124 %REC	25 05/03/2011 3:56	58908
Surrogate: 1,2-Dichloroethane-d4	83.2	79-115 %REC	25 05/03/2011 3:56	58908
Surrogate: Toluene-d8	99.0	80-114 %REC	25 05/03/2011 3:56	58908
Surrogate: Bromofluorobenzene	82.7	60-123 %REC	25 05/03/2011 3:56	58908

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

Date: 09-May-11

Client: AECOM Technical Services, Inc. Client Sample ID: TW-3 042011 Lab ID: K0663-05

Project: NOW Corp. Site Collection Date: 04/20/11 10:32

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS (25 mL Purge)			SW	8260_25_W
Vinyl chloride	ND	0.50 µg/L	1 05/03/2011 4:25	58908
Chloroethane	ND	0.50 µg/L	1 05/03/2011 4:25	58908
1,1-Dichloroethene	ND	0.50 µg/L	1 05/03/2011 4:25	58908
trans-1,2-Dichloroethene	ND	0.50 µg/L	1 05/03/2011 4:25	58908
Methyl tert-butyl ether	ND	0.50 µg/L	1 05/03/2011 4:25	58908
1,1-Dichloroethane	6.8	0.50 µg/L	1 05/03/2011 4:25	58908
cis-1,2-Dichloroethene	ND	0.50 µg/L	1 05/03/2011 4:25	58908
1,1,1-Trichloroethane	2.5	0.50 µg/L	1 05/03/2011 4:25	58908
1,2-Dichloroethane	ND	0.50 µg/L	1 05/03/2011 4:25	58908
Benzene	ND	0.50 µg/L	1 05/03/2011 4:25	58908
Trichloroethene	5.9	0.50 µg/L	1 05/03/2011 4:25	58908
Toluene	ND	0.50 µg/L	1 05/03/2011 4:25	58908
1,1,2-Trichloroethane	ND	0.50 µg/L	1 05/03/2011 4:25	58908
Tetrachloroethene	ND	0.50 µg/L	1 05/03/2011 4:25	58908
Chlorobenzene	ND	0.50 µg/L	1 05/03/2011 4:25	58908
Ethylbenzene	ND	0.50 µg/L	1 05/03/2011 4:25	58908
m,p-Xylene	ND	0.50 µg/L	1 05/03/2011 4:25	58908
o-Xylene	ND	0.50 µg/L	1 05/03/2011 4:25	58908
Surrogate: Dibromofluoromethane	105	88-124 %REC	1 05/03/2011 4:25	58908
Surrogate: 1,2-Dichloroethane-d4	90.1	79-115 %REC	1 05/03/2011 4:25	58908
Surrogate: Toluene-d8	97.3	80-114 %REC	1 05/03/2011 4:25	58908
Surrogate: Bromofluorobenzene	85.8	60-123 %REC	1 05/03/2011 4:25	58908

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

Date: 09-May-11

Client: AECOM Technical Services, Inc. Client Sample ID: TRIP BLANK 042011 Lab ID: K0663-06

Project: NOW Corp. Site Collection Date: 04/20/11 0:00

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS (25 mL Purge)			SV	/8260_25_W
Vinyl chloride	ND	0.50 µg/L	1 05/03/2011 4:53	58908
Chloroethane	ND	0.50 µg/L	1 05/03/2011 4:53	58908
1,1-Dichloroethene	ND	0.50 µg/L	1 05/03/2011 4:53	58908
trans-1,2-Dichloroethene	ND	0.50 µg/L	1 05/03/2011 4:53	58908
Methyl tert-butyl ether	ND	0.50 µg/L	1 05/03/2011 4:53	58908
1,1-Dichloroethane	ND	0.50 µg/L	1 05/03/2011 4:53	58908
cis-1,2-Dichloroethene	ND	0.50 µg/L	1 05/03/2011 4:53	58908
1,1,1-Trichloroethane	ND	0.50 µg/L	1 05/03/2011 4:53	58908
1,2-Dichloroethane	ND	0.50 µg/L	1 05/03/2011 4:53	58908
Benzene	ND	0.50. µg/L	1 05/03/2011 4:53	58908
Trichloroethene	ND	0.50 µg/L	1 05/03/2011 4:53	58908
Toluene	ND	0.50 µg/L	1 05/03/2011 4:53	58908
1,1,2-Trichloroethane	ND	0.50 µg/L	1 05/03/2011 4:53	58908
Tetrachloroethene	ND	0.50 µg/L	1 05/03/2011 4:53	58908
Chlorobenzene	ND	0.50 µg/L	1 05/03/2011 4:53	58908
Ethylbenzene	NĎ	0.50 µg/L	1 05/03/2011 4:53	58908
m,p-Xylene	ND	0.50 µg/L	1 05/03/2011 4:53	58908
o-Xylene	ND	0.50 µg/L	1 05/03/2011 4:53	58908
Surrogate: Dibromofluoromethane	102	88-124 %REC	1 05/03/2011 4:53	58908
Surrogate: 1,2-Dichloroethane-d4	87.0	79-115 %REC	1 05/03/2011 4:53	58908
Surrogate: Toluene-d8	103	80-114 %REC	1 05/03/2011 4:53	58908
Surrogate: Bromofluorobenzene	80.8	60-123 %REC	1 05/03/2011 4:53	58908

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Work Order: K Project: D	AECOM Technical Services, Inc. K0663 NOW Corp. Site	al Services, Inc		SWS SWS	ANALYTICAL QC SUMMARY SW8260_25_W SW846 8260C VOC by GC-MS (25 mL Purge)	ANALYTICAL QC SUMMARY REPORT _25_W 8260C VOC by GC-MS (25 mL Purge)	C SUM 1S (25 m]	MAR ¹ L Purge	V REP(DRT		
Sample ID: MB-58908 Client ID: MB-58908		SampType: MBLK Batch ID: 58908	TestCode	TestCode: SW8260_25_W Units: µg/L		Prep Date: Analysis Date:	: 05/02/11 11:33 : 05/03/11 2:01	11:33 2:01	Run IC SeqNo	Run ID: V5_110502B SeqNo: 1520037		
		Result	MDL	RL	SPK value	SPK Ref Val	%REC L	%REC LowLimit HighLimit	∦hLimit	RPD Ref Val	%RPD RPDLimit	Qual
Vinvl chloride		QN	0.15	0.50								
yi unionue Ioroothano		CIN CIN	0.24	0.50								
Critoroetriarie 1 1_Dichloroethane		QN	0.19	0.50								
1, 1-DIGIII010601611616 trans1 2-Dichloroethene	e	DN DN	0.14	0.50								
Methyl tert-butyl ether	2	CIN	0.13	0.50								
Metriyi tert-butyi etrici 1.1_Dichloroethane		QN	0.18	0.50								
r, r-Distributionality cis_1_2_Distributionalthene		ND	0.19	0.50								
1 1 1-Trichloroethane	Ň	ΩN	0.11	0.50								
1, 1, 1-1 Indianoutario 1, 2-Dichloroethane		ND	0.16	0.50								
Renzene		ND	0.12	0.50								
Trichloroethene		UN	0.13	0.50								
Toluene		UN	0.14	0.50								
1.1.2-Trichloroethane		ND	0.20	0.50								÷
Tetrachloroethene		ND	0.17	0.50								
Chlorobenzene		ND	0.13	0.50								
Ethvlbenzene		ND	0.13	0.50								
m p-Xylene		ND	0.22	0.50								
o-Xylene		ND	0.17	0.50								
Surrogate:		10.10		0.50	10.00	0	101	88	124	0		
Dibromofluoromethane						•		c t	1			
Surrogate: 1,2-		10.41		06.0	00 * 0T	Ð	TU4	2	C11	Ð		
Dicilioroetialie-u+ Surroanta: Toluana d8	Q	9,435		0.50	10.00	0	94.3	80	114	0		
ourrogate. Foucene-	00	8 561		0.50	10.00	0	85.6	60	123	0		
Bromofluorobenzene												
ه.												
				-								
Qualifiers: ND - N	ND - Not Detected at the Reporting Limit	porting Limit	S - Recovery of	S - Recovery outside accepted recovery limits		MDL - Method Detection Limit	Limit		B - A	Analyte detected in	B - Analyte detected in the associated Method Blank	l Blank

CLIENT:	AECOM Te	AECOM Technical Services, Inc.			ANALY	ANALYTICAL QC SUMMARY REPORT	C SUN	AMAR	Y REP	ORT		
Work Order: Project:	K0663 NOW Corn Site	Site		SWS	SW8260_25_W SW846 8260C V	VOC hv GC-MS (25 mJ. Purae)	12021	nT. Pure				
1 I ujecu.												
ä	LCS-58908	SampType: LCS	TestCode	TestCode: SW8260_25_W Inite:/I		Prep Date: Analveis Date:		05/02/11 11:33 06/03/11 1-03	Run	Run ID: V5_110502B Section 1520035		
ذ	00600			л ца г	SPK value	SPK Ref Val		I owł imit Highl imit	Jiahl imit	RPD Ref Val	%RPD RPDI imit Oual	
Vinul oblorido			0.15	0.50	10.00	0	103	77	120]
Chloroethane		9,759	0.24	0.50	10.00	ò	97.6	75	135	0		
1 1-Dichloroethene	01	10.89	0.19	0.50	10.00	0	109	81	125	0		
trans-1.2-Dichloroethene	ethene	10.80	0.14	0.50	10.00	0	108	60	137	0		
Methyl tert-butyl ether	ther	11.23	0.13	0.50	10.00	0	112	61	134	0		
1,1-Dichloroethane	ſ	10.69	0,18	0.50	10.00	0	107	82	120	0		
cis-1,2-Dichloroethene	iene	11.28	0.19	0.50	10.00	0	113	84	116	0		
1,1,1-Trichloroethane	ane	10.59	0.11	0.50	10.00	0	106	80	124	0		
1,2-Dichloroethane	Ø	11.01	0.16	0.50	10.00	0	110	80 97	117	0 0		
Benzene		11.16	0.12	U.SU A EA	10 00		717	T۵	171			
Toluene Toluene		10 99	0.14	0.50	10.00	0	110	88	117	0		
1 Judeile 1 1 2-Trichloroethane	eur	11.03	0.20	0.50	10.00	0	110	83	121	0		
Tetrachloroethene	2	11.00	0.17	0.50	10.00	0	110	74	115	0		
Chlorobenzene		10.93	0.13	0.50	10.00	0	109	83	112	0		
Ethylbenzene		11.44	0.13	0.50	10.00	0	114	87	110	0	S	
m,p-Xylene		21.92	0.22	0.50	20.00	0	110	87	114	0		
o-Xylene		10.97	0.17	0.50	10.00	0	110	84	114	0		
Surrogate:		9.954		0.50	10.00	0	99.5	88	124	0		
Dibromofluoromethane	hane	10 50		0 2 0	10,00	C	106	79	115	c		
Surrogate: 1,2- Dichloroethane-d4		CC OT		•	0 0 1)		2) + +	>		
Surrogate: Toluene-d8	sne-d8	9.833		0.50	10.00	0	98.3	80	114	0		
Surrogate:	;	9.312		0.50	10.00	0	93.1	60	123	0		
Bromotiuoropenzene	She											
· ·												
Ç												
01												
	The second s									-		
rs:	- Not Detected at	ND - Not Detected at the Reporting Limit	S - Recovery ou	S - Recovery outside accepted recovery limits	mits	MDL - Method Detection Limit	,imit		B -	Analyte detected in	- Analyte detected in the associated Method Blank	¥
m11.04.29.A J - <i>J</i>	Analyte detected b	J - Analyte detected below quanititation limits	R - RPD outsid	R - RPD outside accepted recovery limits		RL - Reporting Limit						

CLIPNT: ACOM Trentined Services Int. ACOM Trentined Services Int. SWS800.3.5.W													
MA201_J.W. MA201_J.W. MA201_J.W. MA201_J.W. Samplyee LCSD JEACM SCACL-VOCh CCMS (CA III. Parge) Samplyee LCSD JEACM MALLING SCAL Samplyee LCSD JEACM MALLING SCAL Samplyee LCSD JEACM MALLING MALINA MALLING MALLING MALLING MALLING MALLING MA		AECOM Technical Services	s, Inc.		ANALY	TICAL QC	SUM	MAR	Y REP(DRT			
Baseding Simultybe: LGSD Treat/conce SW28024 (M Prep Date G000/11 1:13 Run ID: Vert 1:10:00 Seque Seque <th></th> <th>K0663 NOW Corp. Site</th> <th></th> <th>SWS</th> <th>8260_25_W 846 8260C V</th> <th>OC by GC-M</th> <th>S (25 m</th> <th>L Purge</th> <th>(</th> <th></th> <th></th> <th></th> <th></th>		K0663 NOW Corp. Site		SWS	8260_25_W 846 8260C V	OC by GC-M	S (25 m	L Purge	(
Letter Units upt. Amilya Data Amilya Data GarUII 1.32 Server. Server.<	Sample ID: LCSD-5			code: SW8260_25_W	-	Prep Date:	05/02/11	11:33	Run II	D: V5_110502B			
Rauft MOL RJ RJ <t< th=""><th>Client ID: LCSD-5</th><th></th><th>,</th><th>inits: µg/L</th><th></th><th>Analysis Date:</th><th></th><th>1:32</th><th>SeqN</th><th>o: 1520036</th><th></th><th></th><th></th></t<>	Client ID: LCSD-5		,	inits: µg/L		Analysis Date:		1:32	SeqN	o: 1520036			
9.719 0.15 0.26 10.00 0 9.2 77 120 10.33 4.02 6.03 Here 10.739 0.13 0.13 0.10 0 9.739 0.233 0.03 Here 10.733 0.14 0.50 10.00 0 117 12 10.33 0.43 Here 10.73 0.14 0.50 10.00 0 107 61 137 10.69 1.43 6 Here 10.53 0.14 0.50 10.00 0 107 61 137 11.26 11.33 4.43 Here 10.53 0.14 0.50 10.00 0 107 11.33 4.43 4.43 Here 10.13 0.14 0.50 10.00 0 101 10.63 1.43 1.23 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13	Analyte	Result	MDL	RL	SPK value	SPK Ref Val	%REC L	owLimit H	ghLimit	RPD Ref Val	%RPD RI	DLimit	Qual
9.73 0.24 0.50 1000 0 974 75 135 0.203	Vinvl chloride	9.919	0.15	0.50	10.00	0	99.2	77	120	10.33	4.02	40	
1001 0.19 0.20 1000 0.1 0.19 0.20 10.00 0.1 10.9 0.26 10.00 0.1 10.9 0.26 10.00 0.1 10.9 0.26 10.00 0.1 10.17 10.9 0.26 10.00 0.1 10.20 0.10 0.1 10.20 0.12 10.9 0.26 10.00 0.1 10.20	Chloroethane	9.739	0.24	0.50	10.00	0	97.4	75	135	9.759	0.203	40	
there 10.83 0.14 0.50 10.00 0 107 10.17 10.19 10.20	1,1-Dichloroethene	10.01	0.19	0.50	10.00	0	100	81	125	10.89	8.4	40	
Hr 10.73 0.13 0.50 10.00 0 107 61 134 11.23 10.48 0 Hr 11.13 0.13 0.50 10.00 0 107 61 134 11.23 10.9 10 Hr 11.13 0.13 0.50 10.00 0 101 62 10 10.69 1.0 10 </td <td>trans-1,2-Dichloroeth</td> <td></td> <td>0.14</td> <td>0.50</td> <td>10.00</td> <td>0</td> <td>108</td> <td>60</td> <td>137</td> <td>10.80</td> <td>0.28</td> <td>40</td> <td></td>	trans-1,2-Dichloroeth		0.14	0.50	10.00	0	108	60	137	10.80	0.28	40	
	Methyl tert-butyl ethe		0.13	0.50	10.00	0	107	61	134	11.23	4.48	40	
ene 11.13 0.19 0.50 10.00 0 111 84 112 11.23 10.33 0 ine 10.23 0.11 0.550 10.00 0 103 80 124 10.35 2.96 40 ine 10.43 0.11 0.550 10.00 0 103 80 124 10.59 2.96 40 ine 10.43 0.11 0.50 10.00 0 103 81 117 11.01 5.44 6 ine 11.03 0.11 0.50 10.00 0 111 7 111 11.01 10.44 2.76 4.7 40 ine 11.13 0.13 0.50 10.00 0 111 7 111 11.01 11.41 2.76 4.7 40 ine 0.13 0.13 0.50 10.00 0 111 111 111 111 111 111 114 12.	1,1-Dichloroethane		0.18	0.50	10.00	0	106	82	120	10.69	1.0	40	
	cis-1,2-Dichloroethen		0.19	0.50	10.00	0	111	84	116	11.28	1.33	40	
	1,1,1-Trichloroethane		0.11	0.50	10.00	0	103	80	124	10.59	2.96	40	
10.48 0.12 0.20 10.00 0 103 11.16 6.28 40 10.33 0.13 0.20 10.00 0 103 74 123 11.16 6.28 4.7 40 11.03 0.11 0.50 10.00 0 108 74 123 11.03 4.7 40 $11.1.09$ 0.17 0.50 10.00 0 111 74 112 11.00 0.759 4.7 40 111.04 0.13 0.50 10.00 0 111 74 112 11.00 0.759 4.7 40 111.27 0.13 0.50 10.00 0 111 74 112 11.00 0.769 40 111.27 0.117 0.50 10.00 0 114 21.92 2.09 40 111.27 0.111 0.25 10.00	1,2-Dichloroethane		0.16	0.50	10.00	0	104	86	117	11.01	5.44	40	
I0.84 0.13 0.50 10.00 0 108 74 123 11.36 4.7 40 I0.33 0.14 0.50 10.00 0 103 31.1 11.36 4.7 40 11.04 0.13 0.50 10.00 0 111 74 112 11.09 0.763 40 11.04 0.13 0.50 10.00 0 111 74 112 11.09 0.763 40 11.103 0.13 0.50 10.00 0 111 74 112 11.09 0.763 40 11.127 0.13 0.50 10.00 0 113 87 114 21.92 3.79 40 11.27 0.17 0.50 10.00 0 95.4 114 21.92 10.93 61 11.27 0.17 0.50 10.00 0 95.4 114 21.9 21.64 40 111.27 0.50	Benzene	10.48	0.12	0.50	10.00	0	105	81	121	11.16	6.28	40	
	Trichloroethene	10.84	0.13	0.50	10.00	0	108	74	123	11.36	4.7	40	
Ine 10.62 0.20 0.50 10.00 0 111 74 112 11.00 0.769 40 11.04 0.11 0.35 10.00 0 111 74 115 11.00 0.769 40 111.04 0.13 0.50 10.00 0 111 87 112 11.00 0.769 40 111.27 0.17 0.50 10.00 0 111 87 114 2.76 40 1127 0.17 0.50 10.00 0 113 87 114 2.162 40 1127 0.17 0.50 10.00 0 113 84 114 21.92 3.09 40 1127 0.17 0.50 10.00 0 8124 0 0 0 1007 0.50 10.00 0 10.00 0.50 0.50	Toluene	10.33	0.14	0.50	10.00	0	103	88	117	10.99	6.17	40	
11.09 0.17 0.50 10.00 0 111 74 115 11.00 0.769 40 11.104 0.13 0.39 0.50 10.00 0 111 87 112 10.93 0.96 40 11.127 0.13 0.25 10.00 0 111 87 114 21.92 3.09 40 22.61 0.017 0.50 10.00 0 113 87 114 21.92 3.06 40 9.538 0.17 0.50 10.00 0 113 87 114 10.97 2.69 40 9.538 10.07 0.50 10.00 0 97.6 79 114 10.97 2.69 40 med8 9.763 0.50 10.00 0 97.6 79 114 0 71 0 769 40 9.501 0.070 0 10.00 0 97.6 79 14 10 79 40 9.501 0.070 0 10.00 0 97.	1,1,2-Trichloroethane		0.20	0.50	10.00	0	106	83	121	11.03	3.78	40	
11.04 0.13 0.50 10.00 0 110 83 112 10.03 0.06 40 11.13 0.13 0.50 10.00 0 111 87 114 2.76 40 22.61 0.22 0.50 10.00 0 113 87 114 2.192 3.09 40 11.27 0.17 0.50 10.00 0 113 87 114 21.92 3.09 40 11.27 0.17 0.50 10.00 0 95.4 88 124 0 21.92 3.09 40 no-48 10.07 0.50 10.00 0 87.6 79 11 0 76 40 no-48 10.07 0.50 10.00 0 87.6 79 11 0 76 40 no-48 10.07 0.50 10.00 0 87.6 79 10 76 76 40 no-75 0.50 10.00 0 10.10 0 97.6 79 114	Tetrachloroethene		0.17	0.50	10.00	0	111	74	115	11.00	0.769	40	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Chlorobenzene	11.04	0.13	0.50	10.00	0	110	83	112	10.93	0.96	40	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ethylbenzene	11.13	0.13	0.50	10.00	0	111	87	110	11.44	2.76	40	S
11.27 0.17 0.50 10.00 0 113 84 114 10.97 2.69 ane 9.538 0.76 10.00 0 95.4 88 124 0 ne-d8 10.07 0.50 10.00 0 87.6 79 115 0 ne-d8 10.07 0.50 10.00 0 87.6 79 114 0 9.501 0.50 10.00 0 95.0 60 123 0 he 9.501 0.50 10.00 0 95.0 60 123 0	m,p-Xylene	22.61	0.22	0.50	20.00	0	113	87	114	21.92	3.09	40	
9.538 0.50 10.00 0 95.4 88 124 ne-d8 8.763 0.50 10.00 0 87.6 79 115 ne-d8 10.07 0.50 10.00 0 87.6 79 114 ne-d8 9.501 0.50 10.00 0 9101 80 114 ne 9.501 0.50 10.00 0 95.0 60 123	o-Xylene	11.27	0.17	0.50	10.00	0	113	84	114	10.97		40	
ane 8.763 0.50 10.00 0 87.6 79 115 ne-d8 10.07 0.50 10.00 0 101 80 114 ne 9.501 0.50 10.00 0 95.0 60 123	Surrogate:	6		0.50	10.00	0	5.	88	124	0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dibromofluorometha			0 50	00.01	C	87 6	979	115	C			
ine-d8 10.07 0.50 10.00 0 101 80 114 9.501 0.50 10.00 0 95.0 60 123 ne 9.501 0.50 10.00 0 95.0 60 123	Surrogate: 1,∠- Dichloroethane-d4			•) • •)	•	2) i i)			
9.50 0 95.0 60 123	Surrogate: Toluene			0.50	10.00	0	101	80	114	0			
Bromofluorobenzete	Surrogate:			0.50	10.00	0	95.0	60	123	0			
	Bromofluorobenzene	-											

B - Analyte detected in the associated Method Blank

MDL - Method Detection Limit RL - Reporting Limit

 ND - Not Detected at the Reporting Limit
 S - Recovery outside accepted recovery limits

 J - Analyte detected below quantititation limits
 R - RPD outside accepted recovery limits

0 0 0 1 0 0 alifiers:

m11.04.29.A

Date: 03-May-11

Client: AECOM Technical Services, Inc. Client Sample ID: EFF 042011 Lab ID: K0663-01

Project:NOW Corp. SiteCollection Date:04/20/11 9:40

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
EPA 1664A Oil & Grease, HEM				E1664
Oil & Grease, Total Recoverable	14	5.0 mg/L	1 05/03/2011 0:00	58898

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 03-May-11

Client: AECOM Technical Services, Inc. Client Sample ID: INF 042011 Lab ID: K0663-02

Project:NOW Corp. SiteCollection Date:04/20/11 10:15

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
EPA 1664A Oil & Grease, HEM				E1664
Oil & Grease, Total Recoverable	ND	5.0 mg/L	1 05/03/2011 0:00	58898

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 05/03/2011 16:05

CLIENT: AECO Work Order: K0663 Project: NOW (AECOM Technical Services, Inc. K0663 NOW Corp. Site	lc.	ANALYTICAL QC S E1664 EPA 1664A – Oil & Grease, HEM	TICAL QC & Grease, HE	ANALYTICAL QC SUMMARY REPORT 64A – Oil & Grease, HEM	IPORT		
Sample ID: MB-58898 Client ID: MB-58898	SampType: MBLK Batch ID: 58898	TestCode: E1664 Units: mg/L		Prep Date: Analysis Date:	04/30/11 15:43 05/03/11 0:00	Run ID: MANUAL_110503A SeqNo: 1519365	Ą	
Analyte Oil & Grease, Total Recoverable	Result	MDL RL 1.2 5.0	SPK value	SPK Ref Val	%REC LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit Qual	a
Sample ID: LCS-58898 Client ID: LCS-58898	SampType: LCS Batch ID: 58898	TestCode: E1664 Units: mg/L		Prep Date: Analysis Date:	04/30/11 15:43 05/03/11 0:00	Run ID: MANUAL_110503A SeqNo: 1519363	Ą	
Analyte Oil & Grease, Total Recoverable	Result 38.20	MDL RL 1.2 5.0	SPK value 40.00	SPK Ref Val 0	%REC LowLimit HighLimit 95.5 78 114	RPD Ref Val 0	%RPD RPDLimit Qual	म्
Sample ID: LCSD-58898 Client ID: LCSD-58898	8 SampType: LCSD 8 Batch ID: 58898	TestCode: E1664 Units: mg/L		Prep Date: Analysis Date:	04/30/11 15:43 05/03/11 0:00	Run ID: MANUAL_110503A SeqNo: 1519364	Ą	
Analyte	Result	MDL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit Qual	<u>a</u>
Oil & Grease, Total Recoverable	39.30	1.2 5.0	40.00	0	98.3 78 114	38.20 2	2.84 18]

Qualifiers: ND - Not Detected at the Reporting Limit Moualifiers: J - Analyte detected below quantitation limits

S - Recovery outside accepted recovery limits
 R - RPD outside accepted recovery limits

MDL - Method Detection Limit RL - Reporting Limit

B - Analyte detected in the associated Method Blank

Date: 05-May-11

Client: AECOM Technical Services, Inc.

Client Sample ID: EFF 042011

Lab ID: K0663-01

Project:NOW Corp. SiteCollection Date:04/20/11 9:40

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 6010C Metals by ICP				SW6010_W
Aluminum	ND	200 µg/L	1 04/26/2011 9:23	58785
Arsenic	ND	20 µg/L	1 04/26/2011 9:23	58785
Barium	66 J	200 µg/L	1 04/26/2011 9:23	58785
Chromium	ND	20 µg/L	1 04/26/2011 9:23	58785
Copper	ND	25 µg/L	1 04/26/2011 9:23	58785
Iron	ND	200 µg/L	1 04/26/2011 9:23	58785
Manganese	30 J	50 µg/L	1 04/26/2011 9:23	58785
Nickel	1.4 J	50 µg/L	1 04/26/2011 9:23	58785
Zinc	10 J	50 µg/L	1 04/26/2011 9:23	58785
SW846 7470A Mercury by FIA				SW7470
Mercury	ND	0.20 μ g/L	1 05/04/2011 16:40	58967

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits

E - Value above quantitation range

Date: 05-May-11

Client: AECOM Technical Services, Inc. Client Sample ID: INF 042011

Lab ID: K0663-02

Project:NOW Corp. SiteCollection Date:04/20/11 10:15

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 6010C Metals by ICP				SW6010_W
Aluminum	290	200 µg/L	1 04/26/2011 9:33	58785
Arsenic	ND	20 µg/L	1 04/26/2011 9:33	58785
Barium	79 J	200 µg/L	1 04/26/2011 9:33	58785
Chromium	14 J	20 µg/L	1 04/26/2011 9:33	58785
Copper	4.9 J	25 µg/L	1 04/26/2011 9:33	58785
Iron	1400	200 µg/L	1 04/26/2011 9:33	58785
Manganese	890	50 µg/L	1 04/26/2011 9:33	58785
Nickel	13 J	50 μg/L	1 04/26/2011 9:33	58785
Zinc	21 J	50 µg/L	1 04/26/2011 9:33	58785
SW846 7470A Mercury by FIA				SW7470
Mercury	ND	0.20 µg/L	1 05/04/2011 16:41	58967

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

INTITUCITI L'AUUI ALUI ICS	COLOUR COLLOND										
CLIENT:	AECOM Technical Services, Inc.	c.		ANALY	ANALYTICAL QC SUMMARY REPORT	SUM	MAR	Y REPC	DRT		
Work Order:	K0663			SW6010 W	I						
Project:	NOW Corp. Site	-		SW846 6010C	Metals by ICP					-	
Sample ID: MB-58785	58785 SampType: MBLK	TestCode: SW6010_W	V6010_W		Prep Date:	04/25/11 11:30	11:30	Run ID:	D: OPTIMA3_110426B	0426B	
Client ID: MB-5	MB-58785 Batch ID: 58785	Units: µg/L	۲		Analysis Date:	04/26/11 9:00	6:00	SeqNo	SeqNo: 1515392		
Analyte	Result	MDL	RL	SPK value	SPK Ref Val	%REC L	%REC LowLimit HighLimit	ghLimit	RPD Ref Val	%RPD RPDLimit	Qual
Aluminum	DN	66	200]
Arsenic	ND		20								
Barium	ND		200								
Chromium	ND	0.64	20								
Copper	ND	.6	30								
Iron	QN	31	200								
Nickel		58 C	00 20								
Zinc	QN	4.9	50								
Sample ID: LCS-58785	58785 SampType: LCS	TestCode: SW6010_W	V6010_W		Prep Date:	04/25/11 11:30	11:30	Run ID:): OPTIMA3_110426B	0426B	
Client ID: LCS-	LCS-58785 Batch ID: 58785	Units: µg/L	ر ب		Analysis Date:	04/26/11 9:04	9:04	SegN	SeqNo: 1515393		
Analyte	Result	MDL	RL	SPK value	SPK Ref Val	%REC L	LowLimit HighLimit	ghLimit	RPD Ref Val	%RPD RPDLimit	Qual
Aluminum	8463	66	200	9100	0	93.0	80	120	c]
Arsenic	440.5	4.3	20	455.0	0	96.8	80	120	0		
Barium	8706		200	9100	0	95.7	80	120	0		
Chromium	864.9	0.64	20	910.0	0	95.0	80	120	0		
Copper	1051	. 9.	30	1130	0	93.0	80	120	0		
Iron	4380		200	4550	0	96.3	80	120	0		
Manganese	2131	10	50	2270	0	93.9	80	120	0		
Nickel	2212	0.85	50	2270	0	97.5	80	120	0		
Zinc	2128	4.9	50	2270	0	93.7	80	120	0		
004											
					-						
Mualifiers: ND m11.04.29.A J - <i>I</i>	ND - Not Detected at the Reporting Limit J - Analyte detected below quanititation limits	S - Recovery outside accepted recovery limits R - RPD outside accepted recovery limits	accepted reco	mits	MDL - Method Detection Limit RL - Reporting Limit	mit		B - A	nalyte detected in	B - Analyte detected in the associated Method Blank	lank

Date: 05/05/2011 16:16

Mitkem Laboratories

CLIENT: AE	AECOM Technical Services, Inc.	lc.		ANALY	ANALYTICAL QC SUMMARY REPORT	SUM	MAR	Y REP(DRT			
Work Order: K00	K0663			SW6010 W								
Project: NO	NOW Corp. Site			SW846 6010C - Metals by ICP	Aetals by ICP							
Sample ID: LCSD-58785	5 SampType: LCSD	TestCode	TestCode: SW6010_W		Prep Date: 04/25/11 11:30	04/25/11	11:30	Run II	Run ID: OPTIMA3_110426B	0426B		
Client ID: LCSD-58785	5 Batch ID: 58785	Units	Units: µg/L		Analysis Date: 04/26/11 9:08	04/26/11	9:08	SeqN	SeqNo: 1515394			
Analyte	Result	MDL	RL	SPK value	SPK Ref Val	%REC L	%REC LowLimit HighLimit	ghLimit	RPD Ref Vai	%RPD RPDLimit Qual	DLimit	Qual
Aluminum	8523	66	200	9100	0	93.7	80	120	8463	0.709	20]
Arsenic	448.7	4.3	20	455.0	0	98.6	80	120	440.5	1.83	20	
Barium	8810	1.1	200	9100	0	96.8	80	120	8706	1.19	20	
Chromium	867.0	0.64	20	910.0	0	95.3	80	120	864.9	0.243	20	
Copper	1054	3.6	30	1130	O	93.3	80	120	1051	0.283	20	
Iron	4407	31	200	4550	0	96.9	80	120	4380	0.622	20	
Manganese	2156	10	50	2270	0	95.0	80	120	2131	1.14	20	
Nickel	2226	0.85	50	2270	0	98.0	80	120	2212	0.598	20	
Zinc	2141	4.9	50	2270	0	94.3	80	120	2128	0.615	20	

MDL - Method Detection Limit RL - Reporting Limit S - Recovery outside accepted recovery limits R - RPD outside accepted recovery limits J - Analyte detected below quanititation limits ND - Not Detected at the Reporting Limit 6 6 8 0 Qualifiers: m11.04.29.A

CLIENT: AECON Work Order: K0663 Project: NOW 0	AECOM Technical Services, Inc. K0663 NOW Corp. Site	nc.		ANALYTICAL QC SW7470 SW846 7470A - Mercury by FIA	TICAL QC	ANALYTICAL QC SUMMARY REPORT) 7470A – Mercury by FIA	Y REPOF	кТ		
Sample ID: MB-58967 Client ID: MB-58967	SampType: MBLK Batch ID: 58967		TestCode: SW7470 Units: µg/L		Prep Date: Analysis Date:		Run ID: FIMS1_1 SeqNo: 1520604	Run ID: FIMS1_10504B SeqNo: 1520604	4B	
Analyte Mercury	Result	MDL 0.028	RL 0.20	SPK value	SPK Ref Val	%REC LowLimit HighLimit		RPD Ref Val	%RPD RPDLimit	Qual
Sample ID: LCS-58967 Client ID: LCS-58967	SampType: LCS Batch ID: 58967	TestC Ur	TestCode: SW7470 Units: µg/L		Prep Date: Analysis Date:	05/04/11 12:00 05/04/11 16:31	Run ID: FIMS1_1 SeqNo: 1520605	Run ID: FIMS1_110504B SeqNo: 1520605	4B	
Analyte Mercury	Result	MDL	RL 0.20	SPK value	SPK Ref Val	%REC LowLimit HighLimit		RPD Ref Val	%RPD RPDLimit	Qual
					,		0 0 1	2		
								:		
882										

B - Analyte detected in the associated Method Blank

MDL - Method Detection Limit RL - Reporting Limit

S - Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

Multifiers: ND - Not Detected at the Reporting Limit mil.04.29.A J - Analyte detected below quantititation limits

Date: 29-Apr-11

Client: AECOM Technical Services, Inc. Client Sample ID: EFF 042011 Lab ID: K0663-01

Project:NOW Corp. SiteCollection Date:04/20/11 9:40

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SM 2540C TOTAL DISSOLVED SOLIDS				SM2540_TDS
Total Dissolved Solids	250	10 mg/L	1 04/22/2011 16:35	58745
SM 2540D TOTAL SUSPENDED SOLIDS				SM2540_TSS
Total Suspended Solids	ND	10 mg/L	1 04/22/2011 16:34	58746
SW846 9012B Total Cyanide				SW9012_W
Cyanide	ND	10 ug/L	1 04/29/2011 10:16	58874

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 29-Apr-11

Client:	AECOM Technical Services, Inc.
Client Sample ID:	INF 042011
Lab ID:	K0663-02

Project:NOW Corp. SiteCollection Date:04/20/11 10:15

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SM 2540C TOTAL DISSOLVED SOLIDS	· · ·			SM2540_TDS
Total Dissolved Solids	260	10 mg/L	1 04/22/2011 16:37	58745
SM 2540D TOTAL SUSPENDED SOLIDS				SM2540_TSS
Total Suspended Solids	ND	10 mg/L	1 04/22/2011 16:36	58746
SW846 9012B Total Cyanide				SW9012_W
Cyanide	ND	10 ug/L	1 04/29/2011 10:18	58874

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

CLJENT: A Work Order: K Project: N	AECOM Technical Services, Inc. K0663 NOW Corp. Site	JC.	SM	ANALYTICAL QC SUMMA SM2540_TDS SM 2540C - TOTAL DISSOLVED SOLIDS	TICAL QC	ANALYTICAL QC SUMMARY REPORT 0_TDS 0C TOTAL DISSOLVED SOLIDS	Y REPOR	Ē		
Sample ID: MB-58745 Client ID: MB-58745	SampType: MBLK Batch ID: 58745	-	TestCode: SM2540_TDS Units: mg/L		Prep Date: Analysis Date:	Prep Date: 04/22/11 16:30 Analysis Date: 04/22/11 16:30	Run ID: MANUAL SeqNo: 1516065	Run ID: MANUAL_110422A SeqNo: 1516065	422A	
Analyte Total Dissolved Solids	Result	MDL 10	RL 10	SPK value	SPK Ref Val	%REC LowLimit HighLimit		RPD Ref Val	%RPD RPDLimit Qual	Qual
Sample ID: LCS-58745 Client ID: LCS-58745	5 SampType: LCS 5 Batch ID: 58745		TestCode: SM2540_TDS Units: mg/L		Prep Date: Analysis Date:	Prep Date: 04/22/11 16:30 alysis Date: 04/22/11 16:31	Run ID: MANUAL SeqNo: 1516066	Run ID: MANUAL_110422A SeqNo: 1516066	422A	
Anaiyte Total Dissolved Solids	Result 366.0	MDL	RL 10	SPK value 372.0	SPK Ref Val 0	%REC LowLimit HighLimit 98.4 80 120		RPD Ref Val 0	%RPD RPDLimit	Qual
Sample ID: K0663-02BDUP Client ID: INF 042011	BDUP SampType: DUP 1 Batch ID: 58745		TestCode: SM2540_TDS Units: mg/L		Prep Date: Analysis Date:	Prep Date: 04/22/11 16:30 ilysis Date: 04/22/11 16:38	Run ID: MANUA SeqNo: 1516071	Run ID: MANUAL_110422A SeqNo: 1516071	422A	
Analyte	Result	MDL	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit		RPD Ref Val	%RPD RPDLimit	Qual
Total Dissolved Solids	260.0	10	10	0	0	0	0	262.0	0.766 5.0	

Date: 04/29/2011 13:11

Mitkem Laboratories

QCS Qualifiers:

B - Analyte detected in the associated Method Blank

MDL - Method Detection Limit RL - Reporting Limit

S - Recovery outside accepted recovery limits
 R - RPD outside accepted recovery limits

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

CLIENT: AECOM	AECOM Technical Services, Inc.				ANALY	FICAL QC	ANALYTICAL QC SUMMARY REPORT	REPOR	L		
rder:	2			SM25	SM2540_TSS						
Project: NUW Corp. Site	rp. Site			SIMI 2:	SM 2540D TOTAL SUSPENDED SOLIDS	AL SUSPEND	IEU SULIUS				
Sample ID: MB-58746	SampType: MBLK		TestCode: SM2540_TSS	0_TSS		Prep Date:	04/22/11 16:30	Run ID: N	Run ID: MANUAL_110422B	i22B	
Client ID: MB-58746	Batch ID: 58746		Units: mg/L			Analysis Date:	04/22/11 16:30	SeqNo: 1516080	516080		
Analyte	Result	MDL	RL		SPK value	SPK Ref Val	%REC LowLimit HighLimit		RPD Ref Val	%RPD RPDLimit	Qual
Total Suspended Solids	UN	10	10								
Sample ID: LCS-58746	SampType: LCS		TestCode: SM2540_TSS	10_TSS		Prep Date:	Prep Date: 04/22/11 16:30	Run ID: N	Run ID: MANUAL_110422B	122B	
Client ID: LCS-58746	Batch ID: 58746		Units: mg/L			Analysis Date:	04/22/11 16:32	SeqNo: 1516081	516081		
Analyte	Result	MDL	RL		SPK value	SPK Ref Val	%REC LowLimit HighLimit		RPD Ref Val	%RPD RPDLimit	Qual
Total Suspended Solids	64.00	10	10		68.60	0	93.3 80 12	120	0		
Sample ID: K0663-02BDUP	SampType: DUP		TestCode: SM2540_TSS	lo_TSS		Prep Date:	Prep Date: 04/22/11 16:30	Run ID: N	Run ID: MANUAL_110422B	122B	
Client ID: INF 042011	Batch ID: 58746		Units: mg/L			Analysis Date:	04/22/11 16:38	SeqNo: 1516084	516084		
Analyte	Result	MDL	RL		SPK value	SPK Ref Val	%REC LowLimit HighLimit		RPD Ref Val	%RPD RPDLimit	Qual
Total Suspended Solids	ΠN	10	10		0	0	0	0	0	0 5.0	
			•								

 ND - Not Detected at the Reporting Limit
 S - Recovery outside accepted recovery limits

 J - Analyte detected below quantitation limits
 R - RPD outside accepted recovery limits

m11.04.15.A

MDL - Method Detection Limit RL - Reporting Limit

CLIENT:	AECOM Technical Services, Inc.	al Services, Ind	J.			ANALY	ANALYTICAL QC SUMMARY REPORT	SUMMA	RY REI	PORT			
Work Order:	K0663					SW9012_W							
Project:	NOW Corp. Site					SW846 9012B Total Cyanide	Fotal Cyanide	-					
Sample ID: MB-58874 Client ID: MB-58874		SampType: MBLK Batch ID: 58874	Ĕ	estCode: SW9 Units: ug/L	TestCode: SW9012_W Units: ug/L		Prep Date: Analysis Date:	Prep Date: 04/28/11 14:15 Analysis Date: 04/29/11 10:03		Run ID: LACHAT1_110429A SeqNo: 1517298	_110429A		
Analyte		Result	MDL		RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	iit HighLimit	RPD Ref Vai		%RPD RPDLimit Qual	Qual
Cyanide		ND	7.5		20								
Sample ID: LCS-58874		SampType: LCS	Ĭ	sstCode: S	TestCode: SW9012_W		Prep Date:	Prep Date: 04/28/11 14:15		Run ID: LACHAT1_110429A	110429A		
Client ID: LCS-58874		Batch ID: 58874		Units: ug/L	g/L		Analysis Date:	Analysis Date: 04/29/11 10:05		SeqNo: 1517299			
Analyte		Result	MDL		RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	iit HighLimit	RPD Ref Val		%RPD RPDLimit Qual	Quai
Cyanide	1(100.3	7.5		20	100.0	0	100 80	120	0			
Sample ID: LCSD-58874		SampType: LCSD	Ť	sstCode: S	TestCode: SW9012_W		Prep Date:	Prep Date: 04/28/11 14:15		Run ID: LACHAT1_110429A	_110429A		
Client ID: LCSD-58874		Batch ID: 58874		Units: ug/L	g/L		Analysis Date:	04/29/11 10:08		SeqNo: 1517300			
Analyte		Result	MDL		RL	SPK value	SPK Ref Val	SPK Ref Val %REC LowLimit HighLimit	iit HighLimit	RPD Ref V	RPD Ref Val %RPD RPDLimit Qual	RPDLimit	Qual
Cyanide	1(100.1	7.5		20	100.0	0	100 80	120	100.3	0.138	20	

 ND - Not Detected at the Reporting Limit
 S - Recovery outside accepted recovery limits

 J - Analyte detected below quantititation limits
 R - RPD outside accepted recovery limits

MDL - Method Detection Limit

RL - Reporting Limit

S S R Qualifiers:

m11.04.15.A

WorkOrder: K0663

Project: NOW Corp. Site WO Name: NOW Corp. Site Client ID: EARTH_NY Location: NOW_CORP, **Comments:** N/A

04/21/2011 10:20

Mitkem Laboratories

Report Level: LEVEL 2

HC Due: 05/09/11

Special Program:

EDD:

Fax Report: Fax Due:

Case: SDG: **PO:** 94017.02

Lab Samp ID	Olient Sample ID	Collection Date	Date Recv'd	Matrix	Test Code	Samp / Lab Test Comments	HF HT MS SEL Storage
K0663-01A	EFF 042011	04/20/2011 09:40	04/21/2011	Aqueous	SW8260_25_W	/ use for VOCs,	Y VOA
K0663-01B	EFF 042011	04/20/2011 09:40	04/21/2011	Aqueous	SM2540_TDS		F2
K0663-01B	EFF 042011	04/20/2011 09:40	04/21/2011	Aqueous	SM2540_TSS		F2
K0663-01C	EFF 042011	04/20/2011 09:40	04/21/2011	Aqueous	SW6010_W	/ See SEL list	Y M3
K0663-01C	EFF 042011	04/20/2011 09:40	04/21/2011	Aqueous	SW7470	/ See SEL list	M3
K0663-01D	EFF 042011	04/20/2011 09:40	04/21/2011	Aqueous	SW9012_W		Y F2
K0663-01E	EFF 042011	04/20/2011 09:40	04/21/2011	Aqueous	E1664		F2
K0663-02A	INF 042011	04/20/2011 10:15	04/21/2011	Aqueous	SW8260_25_W	/ use for VOCs,	Y VOA
K0663-02B	INF 042011	04/20/2011 10:15	04/21/2011	Aqueous	SM2540_TDS		F2
K0663-02B	INF 042011	04/20/2011 10:15	04/21/2011	Aqueous	SM2540_TSS	1	F2
K0663-02C	INF 042011	04/20/2011 10:15	04/21/2011	Aqueous	SW6010_W	/ See SEL list	Y M3
K0663-02C	INF 042011	04/20/2011 10:15	04/21/2011	Aqueous	SW7470	/ See SEL list	M3
K0663-02D	INF 042011	04/20/2011 10:15	04/21/2011	Aqueous	SW9012_W		Y F2
K0663-02E	INF 042011	04/20/2011 10:15	04/21/2011	Aqueous	E1664		F2
K0663-03A	TW-1 042011	04/20/2011 10:25	04/21/2011	Aqueous	SW8260_25_W	/ use for VOCs,	Y VOA
K0663-04A	TW-2A 042011	04/20/2011 10:30	04/21/2011	Aqueous	SW8260_25_W	/ use for VOCs,	Y VOA
K0663-05A	TW-3 042011	04/20/2011 10:32	04/21/2011	Aqueous	SW8260_25_W	/ use for VOCs,	Y VOA
K0663-06A	TRIP BLANK 042011	04/20/2011 00:00	04/21/2011	Aqueous	SW8260_25_W	/ use for VOCs,	Y VOA

SHF = Fraction logged in but all tests have been placed on hold C Lab Client Rep: Edward A Lawler

HT = Test logged in but has been placed on hold

JF CUSTODY RECORD Special Handling: Dage of Page of	Project No. The Design Col 356 76.02 Site Name: NOW Corp Location: StattSbung State: My Sampler(s): SRG ; 6UM	# of Plastic 2: Metols # Defendentie code below: Metols # Malyses: Defendentie Malyses: Metols # Malyses: Metols # Malyses: Metols # Metols # Metol	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
MITKEM LABORATORIES CONTINUES CHAIN OF CUSTC	Report To: AECOM HO British Amenican Bived Lotham, N.Y. 12110 518 951-2300 Project Mgr.: Steve Choliniene P.O. No.: RON:	1=Na ₂ S2O ₃ 2=HCl3=H ₂ SO ₄ 4=HNO ₃ 5=NaOH6=Ascorbic Acid7=CH ₃ OH8= NaHSO ₄ 9= $\bigwedge O \cap C$ 10=10=11=11=8= NaHSO ₄ 9= $\bigwedge O \cap C$ 10=10=11=11=DW=Drinking WaterGW=GroundwaterWW=Wastewater11=ContainerDW=Drinking WaterGW=GroundwaterWW=Wastewater11=11=DW=Drinking WaterGW=GroundwaterWW=Wastewater11=DW=Drinking WaterGW=GroundwaterWN=Wastewater11=DW=Drinking WaterSUrface WaterSO=SoilSL=SludgeA=AirDW=Drinking WaterSUfface WaterSO=SoilSL=SludgeA=AirD=OilSW= Surface WaterSO=SoilSL=SludgeA=AirD=OilSW= Surface WaterSO=SoilSL=SludgeA=AirD=OilSW= Surface WaterSO=SoilSL=SludgeA=AirD=OilSW= Surface WaterSO=SoilSL=SludgeA=Air $X1=$ X2=X3=X3=Time:TypeContainerTime:Time:TypeALab Id:Date:Date:Time:Time:	Sample Io:: Date: Date: Ell OYZOII 1/2011 0940 6 3 INV-1 042011 1/025 1 3 INV-2 042011 1/033 V V INV-3 042011 1/033 V V INV-3 042011 1/033 V V Inv-3 042011 V 1/033 V V Inv-3 042011 V 1/033 V V Inv-10 0 0 0 0 0

175 Metro Center Boulevard • Warwick RI 02886-1755 • 401-732-3400 • Fax 401-732-3499 • www.mitkem.com

MITKEM LABORATORIES

Sample Condition Form

			~						Page		of	_/
Received By:	Sm/	Reviewed By	: CAr	7		Date	1/21/11	Mitke	m Wo	rk Ord	ler #:	K0663
Client Project:	Now	tail.	<u> </u>			Client				<u>h N'</u>	5	Soil Headspace of
		Mail.							n (pH)		VOA	Air Bubble ≥
			Lab	Sampl			H ₂ SO ₄		NaOH	H₃PO₄		1/4"
1) Cooler Sealed	Yes/ No		L.	663	01	22		<2			H	
				l	02	22		22				·
2) Custody Seal(s)	Present / /	Absent			60			_				
	Coolers /	Bottles			UY							
	(ntact / Bro	oken	2	V	05						y	
	-		tob	63	ob						+1	
3) Custody Seal Number(s))	NA										
-, ,	*****	1										/
		_/										
	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	-/										
		· · · · · · · · · · · · · · · · · · ·										/
() Oheir of Quete du		0 k a a 1										
4) Chain-of-Custody	Present / /	Absent									-	
		10,								/	·	
5) Cooler Temperature		6°C							<u> </u>			
IR Temp Gun ID	<u> </u>	17-1 70e							10,11,			
Coolant Condition		ice							¢/			
								4	/			
6) Airbill(s)	Present / /	Absent										
Airbill Number(s)	Fed	Ex										
		5417175										
							/					
7) Samples Bottles	Kotadt / Bru	oken / Leaking			/	<u> </u>						
r) campies bottles		Sich / Leaking										
9) Data Dagaiwad	(.	la lu			/							
8) Date Received	$ \psi_{\downarrow}$											
	(121/11 $1\infty4$		/								
9) Time Received		$1 \times \gamma$										
		,										
Preservative Name/Lot No.	:	1										
					VÜA	Matrix		00010	1 6 6 11		A = A	ir
	······	 ·				US = UA =	•					
		_				M = N					E = E	
							aHSO	4			$F = F_1$	
	Condition No	 otification/Corre	ctive A	ction F	orm							
Form ID: QAF.0006							-		Rad C)K ve	s / no	

Y:\Controlled Forms\QAF.0006 sample condition form.xls

Last Page of Data Report

Report Date: 10-May-11 10:20

Final Final	al Repo	ort
🗌 Re-	Issued	Report
Rev	vised R	eport

A DIVISION OF SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY *Laboratory Report*

Work Order: K0639

Project #:

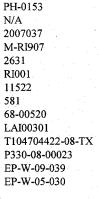
Project : NOW Corp. Site

AECOM Technical Services, Inc. 40 British American Boulevard Latham, NY 12110

Attn: Stephen Choiniere

-		 				
Laboratory ID	Client Sample ID		Matrix		Date Sampled	Date Received
K0639-01	MW-1 041911		Aqueous		19-Apr-11 12:00	20-Apr-11 10:07
K0639-02	MW-4S 041911		Aqueous	9 B	19-Apr-11 09:36	20-Apr-11 10:07
K0639-03	MW-6S 041911		Aqueous		19-Apr-11 10:55	20-Apr-11 10:07
K0639-04	MW-6D 041911		Aqueous		19-Apr-11 11:56	20-Apr-11 10:07
K0639-05	MW-7S 041911		Aqueous		19-Apr-11 09:55	20-Apr-11 10:07
K0639-06	MW-7D 041911		Aqueous		19-Apr-11 09:50	20-Apr-11 10:07
K0639-07	MW-12S 041911		Aqueous		19-Apr-11 13:30	20-Apr-11 10:07
K0639-08	MW12D 041911		Aqueous		19-Apr-11 13:43	20-Apr-11 10:07
K0639-09	MWDUP 041911		Aqueous		19-Apr-11 00:00	20-Apr-11 10:07
K0639-10	TRIPBLANK041911		Aqueous		19-Apr-11 00:00	20-Apr-11 10:07

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. The results relate only to the samples(s) as received. This report may not be reproduced, except in full, without written approval from Mitkem Laboratories.


All applicable NELAC or USEPA CLP requirments have been meet.

N/A

Mitkem Laboratories is accredited under the National Environmental Laboratory Approval Program (NELAP) and is certified by several States, as well as USEPA and US Department of Defense. The current list of our laboratory approvals and certifications is available on the Certifications page on our web site at www.mitkem.com.

Please contact the Laboratory or Technical Director at 401-732-3400 with any questions regarding the data contained in the laboratory report.

Department of Defense Connecticut Delaware Maine Massachusetts New Hampshire New Jersey New York North Carolina Pennsylvania Rhode Island Texas USDA USEPA - ISM USEPA - SOM

Authorized by:

Yihai Ding Laboratory Director

175 Metro Center Boulevard • Warwick, Rhode Island 02886-1755 • 401-732-3400 • Fax 401-732-3499 www.mitkem.com

REPORT NARRATIVE

Mitkem Laboratories, a Division of Spectrum Analytical, Inc.

Client : AECOM Technical Services, Inc.

Project: NOW Corp. Site

Laboratory Workorder / SDG #: K0639

SW846 8260C, VOC by GC-MS (25 mL Purge)

I. SAMPLE RECEIPT

No exceptions or unusual conditions were encountered unless a Sample Condition Notification Form, or other record of communication is included with the Sample Receipt Documentation.

II. HOLDING TIMES

A. Sample Preparation:

All samples were prepared within the method-specified holding times.

B. Sample Analysis:

All samples were analyzed within the method-specified holding times.

III. METHODS

Samples were analyzed following procedures in laboratory test code: SW846 8260C

IV. PREPARATION

Aqueous Samples were prepared following procedures in laboratory test code: SW5030

V. INSTRUMENTATION

The following instrumentation was used

Instrument Code: V5 Instrument Type: GCMS-VOA Description: HP6890 / HP6890 Manufacturer: Hewlett-Packard Model: 6890 / 6890

VI. ANALYSIS

A. Calibration:

Calibrations met the method/SOP acceptance criteria.

B. Blanks:

All method blanks were within the acceptance criteria.

C. Surrogates:

Surrogate standard percent recoveries were within the QC limits.

D. Laboratory Control Spikes (LCS):

Percent recoveries for lab control samples were within the QC limits with the following exceptions. Please note that most test procedures allow for several compounds outside of the QC limits for the LCS, although this may indicate a bias for this specific compound.

LCS-58908 in batch 58908, Percent Recovery is outside QC Limits, recovery is above criteria for Ethylbenzene at 114% with criteria of (87-110).

LCSD-58908 in batch 58908, Percent Recovery is outside QC Limits, recovery is above criteria for Ethylbenzene at 111% with criteria of (87-110).

Please note that this apparent high bias does not affect sample results as Ethylbenzene was not detected in any associated sample.

E. Internal Standards:

Internal standard peak areas were within the QC limits.

F. Dilutions:

The following samples were analyzed at dilution (due to elevated concentration of Trichloroethene):

MW-1 041911 (K0639-01A) : Dilution Factor: 4 MW-7S 041911 (K0639-05A) : Dilution Factor: 4 MW-7D 041911 (K0639-06A) : Dilution Factor: 5 MWDUP 041911 (K0639-09A) : Dilution Factor: 5

G. Samples:

No other unusual occurrences were noted during sample analysis.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and Mitkem, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as verified by the following signature.

Signed: C Date:

Date: 09-May-11

Client: AECOM Technical Services, Inc. Client Sample ID: MW-1 041911 Lab ID: K0639-01

Project:NOW Corp. SiteCollection Date:04/19/11 12:00

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS (25 mL Purge)			SW	8260_25_W
Vinyl chloride	ND	2.0 µg/L	4 05/03/2011 9:40	58908
Chloroethane	ND	2.0 µg/L	4 05/03/2011 9:40	58908
1,1-Dichloroethene	2.4	2.0 µg/L	4 05/03/2011 9:40	58908
trans-1,2-Dichloroethene	ND	2.0 µg/L	4 05/03/2011 9:40	58908
Methyl tert-butyl ether	ND	2.0 µg/L	4 05/03/2011 9:40	58908
1,1-Dichloroethane	13	2.0 µg/L	4 05/03/2011 9:40	58908
cis-1,2-Dichloroethene	11	2.0 µg/L	4 05/03/2011 9:40	58908
1,1,1-Trichloroethane	8.2	2.0 µg/L	4 05/03/2011 9:40	58908
1,2-Dichloroethane	ND	2.0 µg/L	4 05/03/2011 9:40	58908
Benzene	ND	2.0 μ g/L	4 05/03/2011 9:40	58908
Trichloroethene	68	2.0 µg/L	4 05/03/2011 9:40	58908
Toluene	ND	2.0 µg/L	4 05/03/2011 9:40	58908
1,1,2-Trichloroethane	ND	2.0 µg/L	4 05/03/2011 9:40	58908
Tetrachloroethene	ND	2.0 µg/L	4 05/03/2011 9:40	58908
Chlorobenzene	ND	2.0 µg/L	4 05/03/2011 9:40	58908
Ethylbenzene	ND	2.0 µg/L	4 05/03/2011 9:40	58908
m,p-Xylene	ND	2.0 µg/L	4 05/03/2011 9:40	58908
o-Xylene	ND	2.0 µg/L	4 05/03/2011 9:40	58908
Surrogate: Dibromofluoromethane	106	88-124 %REC	4 05/03/2011 9:40	58908
Surrogate: 1,2-Dichloroethane-d4	90.2	79-115 %REC	4 05/03/2011 9:40	58908
Surrogate: Toluene-d8	101	80-114 %REC	4 05/03/2011 9:40	58908
Surrogate: Bromofluorobenzene	87.3	60-123 %REC	4 05/03/2011 9:40	58908

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 09-May-11

Client: AECOM Technical Services, Inc. Client Sample ID: MW-4S 041911 Lab ID: K0639-02

Project:NOW Corp. SiteCollection Date:04/19/11 9:36

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS (25 mL Purge)			SW	8260_25_W
Vinyl chloride	ND	0.50 µg/L	1 05/03/2011 6:20	58908
Chloroethane	1.5	0.50 µg/L	1 05/03/2011 6:20	58908
1,1-Dichloroethene	ND	0.50 µg/L	1 05/03/2011 6:20	58908
trans-1,2-Dichloroethene	ND	0.50 µg/L	1 05/03/2011 6:20	58908
Methyl tert-butyl ether	ND	0.50 µg/L	1 05/03/2011 6:20	58908
1,1-Dichloroethane	2.2	0.50 µg/L	1 05/03/2011 6:20	58908
cis-1,2-Dichloroethene	ND	0.50 µg/L	1 05/03/2011 6:20	58908
1,1,1-Trichloroethane	ND	0.50 µg/L	1 05/03/2011 6:20	58908
1,2-Dichloroethane	ND	0.50 µg/L	1 05/03/2011 6:20	58908
Benzene	ND	0.50 µg/L	1 05/03/2011 6:20	58908
Trichloroethene	ND	0.50 µg/L	1 05/03/2011 6:20	58908
Toluene	ND	0.50 µg/L	1 05/03/2011 6:20	58908
1,1,2-Trichloroethane	ND	0.50 µg/L	1 05/03/2011 6:20	58908
Tetrachloroethene	ND	0.50 µg/L	1 05/03/2011 6:20	58908
Chlorobenzene	ND	0.50 µg/L	1 05/03/2011 6:20	58908
Ethylbenzene	ND	0.50 µg/L	1 05/03/2011 6:20	58908
m,p-Xylene	ND	0.50 µg/L	1 05/03/2011 6:20	58908
o-Xylene	ND	0.50 µg/L	1 05/03/2011 6:20	58908
Surrogate: Dibromofluoromethane	102	88-124 %REC	1 05/03/2011 6:20	58908
Surrogate: 1,2-Dichloroethane-d4	91.1	79-115 %REC	1 05/03/2011 6:20	58908
Surrogate: Toluene-d8	104	80-114 %REC	1 05/03/2011 6:20	58908
Surrogate: Bromofluorobenzene	83.9	60-123 %REC	1 05/03/2011 6:20	58908

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 09-May-11

Client: AECOM Technical Services, Inc. Client Sample ID: MW-6S 041911 Lab ID: K0639-03

Project:NOW Corp. SiteCollection Date:04/19/11 10:55

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS (25 mL Purge)			SV	V8260_25_W
Vinyl chloride	ND	0.50 µg/L	1 05/03/2011 6:48	58908
Chloroethane	ND	0.50 µg/L	1 05/03/2011 6:48	58908
1,1-Dichloroethene	0.73	0.50 µg/L	1 05/03/2011 6:48	58908
trans-1,2-Dichloroethene	ND	0.50 µg/L	1 05/03/2011 6:48	58908
Methyl tert-butyl ether	ND	0.50 µg/L	1 05/03/2011 6:48	58908
1,1-Dichloroethane	2.9	0.50 µg/L	1 05/03/2011 6:48	58908
cis-1,2-Dichloroethene	0.64	0.50 µg/L	1 05/03/2011 6:48	58908
1,1,1-Trichloroethane	3.8	0.50 µg/L	1 05/03/2011 6:48	58908
1,2-Dichloroethane	ND	0.50 µg/L	1 05/03/2011 6:48	58908
Benzene	ND	0.50 µg/L	1 05/03/2011 6:48	58908
Trichloroethene	31	0.50 µg/L	1 05/03/2011 6:48	58908
Toluene	ND	0.50 µg/L	1 05/03/2011 6:48	58908
1,1,2-Trichloroethane	ND	0.50 µg/L	1 05/03/2011 6:48	58908
Tetrachloroethene	ND	0.50 µg/L	1 05/03/2011 6:48	58908
Chlorobenzene	ND	0.50 µg/L	1 05/03/2011 6:48	58908
Ethylbenzene	ND	0.50 µg/L	1 05/03/2011 6:48	58908
m,p-Xylene	ND	0.50 µg/L	1 05/03/2011 6:48	58908
o-Xylene	ND	0.50 µg/L	1 05/03/2011 6:48	58908
Surrogate: Dibromofluoromethane	100	88-124 %REC	1 05/03/2011 6:48	58908
Surrogate: 1,2-Dichloroethane-d4	81.9	79-115 %REC	1 05/03/2011 6:48	58908
Surrogate: Toluene-d8	104	80-114 %REC	1 05/03/2011 6:48	58908
Surrogate: Bromofluorobenzene	79.7	60-123 %REC	1 05/03/2011 6:48	58908

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

Date: 09-May-11

Client: AECOM Technical Services, Inc. Client Sample ID: MW-6D 041911 Lab ID: K0639-04

Project:NOW Corp. SiteCollection Date:04/19/11 11:56

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS (25 mL Purge)			SW	/8260_25_W
Vinyl chloride	ND	0.50 µg/L	1 05/03/2011 7:17	58908
Chloroethane	1.6	0.50 µg/L	1 05/03/2011 7:17	58908
1,1-Dichloroethene	1.6	0.50 µg/L	1 05/03/2011 7:17	58908
trans-1,2-Dichloroethene	ND	0.50 µg/L	1 05/03/2011 7:17	58908
Methyi tert-butyl ether	ND	0.50 µg/L	1 05/03/2011 7:17	58908
1,1-Dichloroethane	15	0.50 µg/L	1 05/03/2011 7:17	58908
cis-1,2-Dichloroethene	1.2	0.50 µg/L	1 05/03/2011 7:17	58908
1,1,1-Trichloroethane	3.3	0.50 µg/L	1 05/03/2011 7:17	58908
1,2-Dichloroethane	ND	0.50 µg/L	1 05/03/2011 7:17	58908
Benzene	ND	0.50 µg/L	1 05/03/2011 7:17	58908
Trichloroethene	8.6	0.50 µg/L	1 05/03/2011 7:17	58908
Toluene	ND	0.50 µg/L	1 05/03/2011 7:17	58908
1,1,2-Trichloroethane	ND	0.50 µg/L	1 05/03/2011 7:17	58908
Tetrachloroethene	ND	0.50 µg/L	1 05/03/2011 7:17	58908
Chlorobenzene	ND	0.50 µg/L	1 05/03/2011 7:17	58908
Ethylbenzene	ND	0.50 µg/L	1 05/03/2011 7:17	58908
m,p-Xylene	ND	0.50 µg/L	1 05/03/2011 7:17	58908
o-Xylene	ND	0.50 µg/L	1 05/03/2011 7:17	58908
Surrogate: Dibromofluoromethane	106	88-124 %REC	1 05/03/2011 7:17	58908
Surrogate: 1,2-Dichloroethane-d4	93.2	79-115 %REC	1 05/03/2011 7:17	58908
Surrogate: Toluene-d8	102	80-114 %REC	1 05/03/2011 7:17	58908
Surrogate: Bromofluorobenzene	84.3	60-123 %REC	1 05/03/2011 7:17	58908

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 09-May-11

Client: AECOM Technical Services, Inc. Client Sample ID: MW-7S 041911 Lab ID: K0639-05

Project:NOW Corp. SiteCollection Date:04/19/11 9:55

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS (25 mL Purge)			SW	8260_25_W
Vinyl chloride	ND	2.0 μg/L	4 05/03/2011 10:08	58908
Chloroethane	ND	2.0 µg/L	4 05/03/2011 10:08	58908
1,1-Dichloroethene	ND	2.0 µg/L	4 05/03/2011 10:08	58908
trans-1,2-Dichloroethene	ND	2.0 µg/L	4 05/03/2011 10:08	58908
Methyl tert-butyl ether	ND	2.0 µg/L	4 05/03/2011 10:08	58908
1,1-Dichloroethane	ND	2.0 µg/L	4 05/03/2011 10:08	58908
cis-1,2-Dichloroethene	5.4	2.0 µg/L	4 05/03/2011 10:08	58908
1,1,1-Trichloroethane	3.0	2.0 µg/L	4 05/03/2011 10:08	58908
1,2-Dichloroethane	ND	2.0 µg/L	4 05/03/2011 10:08	58908
Benzene	ND	2.0 µg/L	4 05/03/2011 10:08	58908
Trichloroethene	82	2.0 µg/L	4 05/03/2011 10:08	58908
Toluene	ND	2.0 µg/L	4 05/03/2011 10:08	58908
1,1,2-Trichloroethane	ND	2.0 µg/L	4 05/03/2011 10:08	58908
Tetrachloroethene	ND	2.0 µg/L	4 05/03/2011 10:08	58908
Chlorobenzene	ND	2.0 µg/L	4 05/03/2011 10:08	58908
Ethylbenzene	ND	2.0 µg/L	4 05/03/2011 10:08	58908
m,p-Xylene	ND	2.0 µg/L	4 05/03/2011 10:08	58908
o-Xylene	ND	2.0 µg/L	4 05/03/2011 10:08	58908
Surrogate: Dibromofluoromethane	109	88-124 %REC	4 05/03/2011 10:08	58908
Surrogate: 1,2-Dichloroethane-d4	87.8	79-115 %REC	4 05/03/2011 10:08	58908
Surrogate: Toluene-d8	102	80-114 %REC	4 05/03/2011 10:08	58908
Surrogate: Bromofluorobenzene	84.0	60-123 %REC	4 05/03/2011 10:08	58908

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 09-May-11

Client: AECOM Technical Services, Inc. Client Sample ID: MW-7D 041911 Lab ID: K0639-06

Project:NOW Corp. SiteCollection Date:04/19/11 9:50

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS (25 mL Purge)			SW	8260_25_W
Vinyl chloride	ND	2.5 µg/L	5 05/03/2011 10:37	58908
Chloroethane	ND	2.5 µg/L	5 05/03/2011 10:37	58908
1,1-Dichloroethene	ND	2.5 µg/L	5 05/03/2011 10:37	58908
trans-1,2-Dichloroethene	ND	2.5 µg/L	5 05/03/2011 10:37	58908
Methyl tert-butyl ether	ND	2.5 µg/L	5 05/03/2011 10:37	58908
1,1-Dichloroethane	ND	2.5 µg/L	5 05/03/2011 10:37	58908
cis-1,2-Dichloroethene	3.5	2.5 µg/L	5 05/03/2011 10:37	58908
1,1,1-Trichloroethane	ND	2.5 µg/L	5 05/03/2011 10:37	58908
1,2-Dichloroethane	ND	2.5 µg/L	5 05/03/2011 10:37	58908
Benzene	ND	2.5 µg/L	5 05/03/2011 10:37	58908
Trichloroethene	110	2.5 µg/L	5 05/03/2011 10:37	58908
Toluene	9.3	2.5 µg/L	5 05/03/2011 10:37	58908
1,1,2-Trichloroethane	ND	2.5 µg/L	5 05/03/2011 10:37	58908
Tetrachloroethene	ND	2.5 µg/L	5 05/03/2011 10:37	58908
Chlorobenzene	ND	2.5 µg/L	5 05/03/2011 10:37	58908
Ethylbenzene	ND	2.5 µg/L	5 05/03/2011 10:37	58908
m.p-Xylene	ND	2.5 µg/L	5 05/03/2011 10:37	58908
o-Xylene	ND	2.5 µg/L	5 05/03/2011 10:37	58908
Surrogate: Dibromofluoromethane	105	88-124 %REC	5 05/03/2011 10:37	58908
Surrogate: 1,2-Dichloroethane-d4	93.0	79-115 %REC	5 05/03/2011 10:37	58908
Surrogate: Toluene-d8	101	80-114 %REC	5 05/03/2011 10:37	58908
Surrogate: Bromofluorobenzene	87.7	60-123 %REC	5 05/03/2011 10:37	58908

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

Date: 09-May-11

Client: AECOM Technical Services, Inc. Client Sample ID: MW-12S 041911 Lab ID: K0639-07

Project: NOW Corp. Site Collection Date: 04/19/11 13:30

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS (25 mL Purge)		·	SW	8260_25_W
Vinyl chloride	ND	0.50 µg/L	1 05/03/2011 8:43	58908
Chloroethane	ND	0.50 µg/L	1 05/03/2011 8:43	58908
1,1-Dichloroethene	ND	0.50 µg/L	1 05/03/2011 8:43	58908
trans-1,2-Dichloroethene	ND	0.50 µg/L	1 05/03/2011 8:43	58908
Methyl tert-butyl ether	ND	0.50 µg/L	1 05/03/2011 8:43	58908
1,1-Dichloroethane	ND	0.50 µg/L	1 05/03/2011 8:43	58908
cis-1,2-Dichloroethene	ND	0.50 µg/L	1 05/03/2011 8:43	58908
1,1,1-Trichloroethane	ND	0.50 µg/L	1 05/03/2011 8:43	58908
1,2-Dichloroethane	ND	0.50 µg/L	1 05/03/2011 8:43	58908
Benzene	ND	0.50 µg/L	1 05/03/2011 8:43	58908
Trichloroethene	ND	0.50 µg/L	1 05/03/2011 8:43	58908
Toluene	ND	0.50 µg/L	1 05/03/2011 8:43	58908
1,1,2-Trichloroethane	ND	0.50 µg/L	1 05/03/2011 8:43	58908
Tetrachloroethene	ND	0.50 µg/L	1 05/03/2011 8:43	58908
Chlorobenzene	ND	0.50 µg/L	1 05/03/2011 8:43	58908
Ethylbenzene	ND	0.50 µg/L	1 05/03/2011 8:43	58908
m,p-Xylene	ND	0.50 µg/L	1 05/03/2011 8:43	58908
o-Xylene	ND	0.50 µg/L	1 05/03/2011 8:43	58908
Surrogate: Dibromofluoromethane	109	88-124 %REC	1 05/03/2011 8:43	58908
Surrogate: 1,2-Dichloroethane-d4	97.0	79-115 %REC	1 05/03/2011 8:43	58908
Surrogate: Toluene-d8	96.9	80-114 %REC	1 05/03/2011 8:43	58908
Surrogate: Bromofluorobenzene	89.3	60-123 %REC	1 05/03/2011 8:43	58908

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 09-May-11

Client: AECOM Technical Services, Inc. Client Sample ID: MW12D 041911 Lab ID: K0639-08

Project:NOW Corp. SiteCollection Date:04/19/11 13:43

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS (25 mL Purge)			SW	8260_25_W
Vinyl chloride	ND	0.50 µg/L	1 05/03/2011 9:12	58908
Chloroethane	2.9	0.50 µg/L	1 05/03/2011 9:12	58908
1,1-Dichloroethene	1.4	0.50 µg/L	1 05/03/2011 9:12	58908
trans-1,2-Dichloroethene	ND	0.50 µg/L	1 05/03/2011 9:12	58908
Methyl tert-butyl ether	ND	0.50 µg/L	1 05/03/2011 9:12	58908
1,1-Dichloroethane	14	0.50 µg/L	1 05/03/2011 9:12	58908
cis-1,2-Dichloroethene	ND	0.50 µg/L	1 05/03/2011 9:12	58908
1,1,1-Trichloroethane	ND	0.50 µg/L	1 05/03/2011 9:12	58908
1,2-Dichloroethane	ND	0.50 µg/L	1 05/03/2011 9:12	58908
Benzene	ND	0.50 µg/L	1 05/03/2011 9:12	58908
Trichloroethene	1.4	0.50 µg/L	1 05/03/2011 9:12	58908
Toluene	ND	0.50 µg/L	1 05/03/2011 9:12	58908
1,1,2-Trichloroethane	ND	0.50 µg/L	1 05/03/2011 9:12	58908
Tetrachloroethene	ND	0.50 µg/L	1 05/03/2011 9:12	58908
Chlorobenzene	ND	0.50 µg/L	1 05/03/2011 9:12	58908
Ethylbenzene	ND	0.50 µg/L	1 05/03/2011 9:12	58908
m,p-Xylene	ND	0.50 µg/L	1 05/03/2011 9:12	58908
o-Xylene	ND	0.50 µg/L	1 05/03/2011 9:12	58908
Surrogate: Dibromofluoromethane	104	88-124 %REC	1 05/03/2011 9:12	58908
Surrogate: 1,2-Dichloroethane-d4	84.3	79-115 %REC	1 05/03/2011 9:12	58908
Surrogate: Toluene-d8	104	80-114 %REC	1 05/03/2011 9:12	58908
Surrogate: Bromofluorobenzene	85.1	60-123 %REC	1 05/03/2011 9:12	58908

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

Date: 09-May-11

Client: AECOM Technical Services, Inc. Client Sample ID: MWDUP 041911 Lab ID: K0639-09

Project:NOW Corp. SiteCollection Date:04/19/11 0:00

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS (25 mL Purge)			SW	8260_25_W
Vinyl chloride	ND	2.5 µg/L	5 05/03/2011 12:03	58908
Chloroethane	ND	2.5 µg/L	5 05/03/2011 12:03	58908
1,1-Dichloroethene	ND	2.5 µg/L	5 05/03/2011 12:03	58908
trans-1,2-Dichloroethene	ND	2.5 µg/L	5 05/03/2011 12:03	58908
Methyl tert-butyl ether	ND	2.5 µg/L	5 05/03/2011 12:03	58908
1,1-Dichloroethane	ND	2.5 µg/L	5 05/03/2011 12:03	58908
cis-1,2-Dichloroethene	2.7	2.5 µg/L	5 05/03/2011 12:03	58908
1,1,1-Trichloroethane	ND	2.5 µg/L	5 05/03/2011 12:03	58908
1,2-Dichloroethane	ND	2.5 µg/L	5 05/03/2011 12:03	58908
Benzene	ND	2.5 µg/L	5 05/03/2011 12:03	58908
Trichloroethene	92	2.5 µg/L	5 05/03/2011 12:03	58908
Toluene	8.0	2.5 µg/L	5 05/03/2011 12:03	58908
1,1,2-Trichloroethane	ND	2.5. µg/L	5 05/03/2011 12:03	58908
Tetrachloroethene	ND	2.5 µg/L	5 05/03/2011 12:03	58908
Chlorobenzene	ND	2.5 µg/L	5 05/03/2011 12:03	58908
Ethylbenzene	ND	2.5 µg/L	5 05/03/2011 12:03	58908
m,p-Xylene	ND	2.5 µg/L	5 05/03/2011 12:03	58908
o-Xylene	ND	2.5 µg/L	5 05/03/2011 12:03	58908
Surrogate: Dibromofluoromethane	106	88-124 %REC	5 05/03/2011 12:03	58908
Surrogate: 1,2-Dichloroethane-d4	97.4	79-115 %REC	5 05/03/2011 12:03	58908
Surrogate: Toluene-d8	103	80-114 %REC	5 05/03/2011 12:03	58908
Surrogate: Bromofluorobenzene	84.5	60-123 %REC	5 05/03/2011 12:03	58908

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 09-May-11

Client:	AECOM Technical Services, Inc.
Client Sample ID:	TRIPBLANK041911
Lab ID:	K0639-10

Project:NOW Corp. SiteCollection Date:04/19/11 0:00

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS (25 mL Purge)			SW	8260_25_W
Vinyl chloride	ND	0.50 µg/L	1 05/03/2011 5:22	58908
Chloroethane	ND	0.50 µg/L	1 05/03/2011 5:22	58908
1,1-Dichloroethene	ND	0.50 µg/L	1 05/03/2011 5:22	58908
trans-1,2-Dichloroethene	ND	0.50 µg/L	1 05/03/2011 5:22	58908
Methyl tert-butyl ether	NĎ	0.50 µg/L	1 05/03/2011 5:22	58908
1,1-Dichloroethane	NĎ	0.50 µg/L	1 05/03/2011 5:22	58908
cis-1,2-Dichloroethene	ND	0.50 µg/L	1 05/03/2011 5:22	58908
1,1,1-Trichloroethane	ND	0.50 µg/L	1 05/03/2011 5:22	58908
1,2-Dichloroethane	ND	0.50 µg/L	1 05/03/2011 5:22	58908
Benzene	ND	0.50 µg/L	1 05/03/2011 5:22	58908
Trichloroethene	ND	0.50 µg/L	1 05/03/2011 5:22	58908
Toluene	ND	0.50 µg/L	1 05/03/2011 5:22	58908
1,1,2-Trichloroethane	ND	0.50 µg/L	1 05/03/2011 5:22	58908
Tetrachloroethene	ND	0.50 µg/L	1 05/03/2011 5:22	58908
Chlorobenzene	ND	0.50 µg/L	1 05/03/2011 5:22	58908
Ethylbenzene	ND	0.50 µg/L	1 05/03/2011 5:22	58908
m,p-Xylene	ND	0.50 µg/L	1 05/03/2011 5:22	58908
o-Xylene	ND	0.50 µg/L	1 05/03/2011 5:22	58908
Surrogate: Dibromofluoromethane	102	88-124 %REC	1 05/03/2011 5:22	58908
Surrogate: 1,2-Dichloroethane-d4	84.3	79-115 %REC	1 05/03/2011 5:22	58908
Surrogate: Toluene-d8	102	80-114 %REC	1 05/03/2011 5:22	58908
Surrogate: Bromofluorobenzene	79.4	60-123 %REC	1 05/03/2011 5:22	58908

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits

E - Value above quantitation range

With Criter: (Ki) Sinsiple SWSR.01,3.2.W. SINSIA SWSR.01,3.2.W. SINSIA SWSR.01,3.2.W. SINSIA SWSR.01,1.1.3.3 SWSR.01,1.2.W. SWSR.01,1.2.W. SWSR.01,1.2.W. SWSR.01,1.2.W. SWSR.01,2.W. SWSR.01,1.2.W. SWSR.01,2.W. SWSR.	fer: MB-5896 MB-5966 M	39 V Corp. Site SampType: MBLK		SW8	260 25 W)					
OW. Corp. Sinc SWa46 82.600C VOC by GC-MS (25 mL Purge) Batch ID: 68906 Units: joll FastCode: SWE30_2.2.W Prep Date: 6602111133 R Batch ID: 68906 Units: joll SamoType: WELK TestCode: SWE30_2.2.W Prep Date: 6602111133 R Reach ID: 68906 Units: joll 0.13 0.530 Analysis Date: 6602111201 Si Reach ID: 68906 Units: joll R.1 R R Analysis Date: 6602111133 R Reach ID: 68906 Units: joll Si Si Si Si Si Si R NDI RL R Si Si Si Si Si R 0.13 0.13 0.50 0.50 0.50 Si Si </th <th>Project: NOV Sample ID: MB-58908 Client ID: MB-58908 Analyte Vinyl chloride 1,1-Dichloroethene frans-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethene cis-1,2-Dichloroethene i,1,1-Trichloroethane 1,2-Dichloroethane f.2-Dichloroethane T.2-Dichloroethane</th> <th>V Corp. Site SampType: MBLK</th> <th></th> <th></th> <th></th> <th></th> <th> </th> <th>-</th> <th></th> <th></th> <th></th>	Project: NOV Sample ID: MB-58908 Client ID: MB-58908 Analyte Vinyl chloride 1,1-Dichloroethene frans-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethene cis-1,2-Dichloroethene i,1,1-Trichloroethane 1,2-Dichloroethane f.2-Dichloroethane T.2-Dichloroethane	V Corp. Site SampType: MBLK					 	-			
Image: Second	Sample ID: MB-58908 Client ID: MB-58908 Analyte Vinyl chloride Chloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane cis-1,2-Dichloroethane dis-1,2-Dichloroethane trans-1,2-Dichloroethane trans-1,2-Dichloroethane	SampType: MBLK		SW8	46 8260C \	OC by GC-	MS (25 m	L Purge			
J Batch ID: 5690 Units: Ip(L) Analysis Date Ge0311 2:01 St Result MD R. R. SPK Kalle SPK Kalle SPK Kalle SPK Conf. MEC Ip(L) SP n 0 0.13 0.50 SPK value SPK Kalle SPK Conf. MEC Ip(L) Ip(L	Client ID: MB-58908 Analyte Vinyl chloride Chloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane cis-1,2-Dichloroethane i,1,1-Trichloroethane Benzene		TestCod			Prep Dat		11:33	Run II	D: V5_110502B	
Real MJ L C SPK Real Value SPE Real Value	Analyte Vinyl chloride Chloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane Benzene	Batch ID: 58908	Unit	s: µg/L		Analysis Dat		2:01	SeqN	lo: 1520037	
ND 0.15 0.50 100 0.14 0.50 100 0.14 0.50 100 0.14 0.50 100 0.14 0.50 100 0.14 0.50 100 0.14 0.50 100 0.14 0.50 100 0.14 0.50 100 0.14 0.50 100 0.14 0.50 100 0.14 0.50 100 0.11 0.50 100 0.11 0.50 101 0.11 0.50 10.10 0.11 0.50 10.10 0.11 0.50 10.10 0.11 0.50 10.10 0.11 0.50 10.10 0.11 0.50 10.10 0.10 0.50 10.10 0.50 0.50 10.10 0.50 0.50 10.10 0.50 0.50	Vinyl chloride Chloroethane 1, 1-Dichloroethene trans-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane Benzene		MDL	, RL	SPK value	SPK Ref Val		owLimit Hig	jhLimit	RPD Ref Val	1
R0 0.24 0.50 R0 0.13 0.50 R0 0.14 0.50 R0 0.12 0.50 R0 0.13 0.50 R0 0.11 0.50 R0 0.11 0.50 10.01 10.10 R0 0.13 0.50 10.00 0 10.10 R0 0.11 0.50 10.00 0 10.10 10.10 R0 9.43 0.50 10.00 0 10.10 10.10 10.10 R0 9.43 0.50 10.00 0 10.10 10.10 R10.41 0.50 10.00 0 10.10 10.10 <	Chloroethane 1,1-Dichloroethane trans-1,2-Dichloroethane Methyl tert-butyl ether 1,1-Dichloroethane cis-1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Benzene	QN	0.15	0.50							
ND 0.13 0.50 ND 0.13 0.50 ND 0.13 0.50 ND 0.11 0.50 ND 0.12 0.50 ND 0.13 0.50 ND 0.11 0.50 ND 0.11 0.50 ND 0.11 0.50 ND 0.11 0.50 10.00 0 ND 0.13 0.50 10.01 10.1 ND 0.13 0.50 10.00 0 10.1 ND 0.13 0.50 10.00 0 10.1 ND 0.50 10.00 0 10.1 11 ND 0.50 10.00 0 10.1 11 ND 0.50 10.00 0 10.1 1	1,1-Dichloroethene trans-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane cis-1,2-Dichloroethane 1,1,1-Trichloroethane 1,2-Dichloroethane Benzene	CN .	0.24	0.50							
n n	trans-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane cis-1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Benzene	CN CIN	0.19	0.50							
ND 0.18 0.50 ND 0.11 0.50 ND 0.12 0.50 ND 0.12 0.50 ND 0.12 0.50 ND 0.13 0.50 ND 0.13 0.50 ND 0.11 0.50 ND 0.11 0.50 ND 0.13 0.50 ND 0.11 0.50 ND 0.13 0.50 ND 0.13 0.50 ND 0.11 0.50 ND 0.11 0.50 ND 0.10 0.10 ND 0.10 0.10 ND 0.10 0.50 ND 0.50 10.00 9.561 0.50 10.00 9.561 0.50 10.00 9.561 0.50 10.00 9.561 0.50 10.00 9.561 0.50 10.00 9.561	Methyl tert-butyl ether 1,1-Dichloroethane cis-1,2-Dichloroethene 1,1,1-Trichloroethane 1,2-Dichloroethane Benzene		- T - C								
ND 0.19 0.50 ND 0.11 0.50 ND 0.12 0.50 ND 0.13 0.50 ND 0.11 0.50 ND 0.10 0.50 ND 0.10 0.50 ND 0.10 0 10 ND 0.50 10.00 0 114 S 9.435 0.50 10.00 0 114 ND 9.435 0.50 10.00 0 114 ND 9.435 0.50 10.00 0 114 S 8. D	cis-1,2-Dichloroethane cis-1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Trichloroethane	dn UN	0.18	0.50							
80 0.11 0.20 80 0.12 0.50 80 0.13 0.50 80 0.13 0.50 80 0.13 0.50 80 0.13 0.50 80 0.13 0.50 80 0.13 0.50 80 0.13 0.50 80 0.13 0.50 80 0.13 0.50 10.01 80 124 90 0.10 0.50 10.00 0 104 79 115 910.41 0.50 10.00 0 94.3 80 114 8 9.435 0.50 10.00 0 94.3 80 114 8 9.435 0.50 10.00 0 95.6 60 123 9 9.435 0.50 10.00 0 95.6 60 124 9 9.435 0.50 10.00 0 95.6 <	1,1,1-Trichloroethane 1,2-Dichloroethane Benzene	CIN	0.19	0.50							
ND 0.16 0.50 ND 0.11 0.50 ND 0.13 0.50 ND 0.14 0.50 ND 0.11 0.50 ND 0.11 0.50 ND 0.11 0.50 ND 0.11 0.50 ND 0.13 0.50 ND 0.13 0.50 ND 0.13 0.50 ND 0.11 0.50 ND 0.11 0.50 ND 0.11 0.50 10.10 0.10 0 10.11 0.50 10.00 10.41 0.50 10.00 10.41 0.50 10.00 8 9.435 0.50 8.561 0.50 10.00 8.561 0.50 10.00 8.561 0.50 10.00 8.561 0.50 10.00 8.561 0.50 10.00 <td< td=""><td>1,2-Dichloroethane Benzene Trickloroothane</td><td>ND</td><td>0.11</td><td>0.50</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	1,2-Dichloroethane Benzene Trickloroothane	ND	0.11	0.50							
ND 0.12 0.50 ND 0.13 0.50 ND 0.17 0.50 ND 0.22 0.50 ND 0.22 0.50 ND 0.50 10.00 10.41 0.50 10.00 10.41 0.50 10.00 8 9.435 0.50 8.561 0.50 10.00 8.561 0.50 10.00 8.561 0.50 10.00 8.561 0.50 10.00 8.561 0.50 10.00 9.435 9.6 114 9.561 0.50 10.00 0 9.561 0.50 10.00	Benzene Tricklossothene	UN	0.16	0.50							
ND 0.13 0.50 ND 0.14 0.50 ND 0.13 0.50 ND 0.14 0.50 ND 0.17 0.50 10.10 0.10 0 10.11 0.10 0.50 10.10 0.10 0.10 10.11 0.50 10.00 0 10.11 0.50 10.00 0 10.11 0.50 10.00 0 10.11 0.50 10.00 0 10.11 0.50 10.00 0 10.12 0.50 10.00 0 10.13 0.51 10.00 0 10.14 0.50 10.00 0 10.11 0.50 10.00 0 10.11 0.50 10.00 0 10.11 0.50 10.00 0 114 0.50 10.00 0 <	Tricklessethene	ND	0.12	0.50							
ND 0.14 0.50 0.14 0.50 0.12 0.50 0.13 0.50 0.13 0.14 0.15 0.14 0.15 0.12 0.15 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 124 124 124 124 12 124 12 126 126 126 126 124 79 115 126 <t< td=""><td></td><td>ND</td><td>0.13</td><td>0.50</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		ND	0.13	0.50							
ND 0.20 0.50 ND 0.17 0.50 ND 0.13 0.50 ND 0.13 0.50 ND 0.13 0.50 ND 0.17 0.50 ND 0.17 0.50 ND 0.17 0.50 ND 0.17 0.50 10.10 0.10 0 10.41 0.50 10.00 0 10.41 0.50 10.00 0 114 8.561 0.50 10.00 0 124 8.561 0.50 10.00 0 94.3 80 8.561 0.50 10.00 0 95.6 60 123 Concord 0.50 10.00 0 95.6 60 124 8.561 0.50 10.00 0 95.6 60 123 Concord 0.50 10.00 0 95.6 60 124 Conco	Toluene	ND	0.14	0.50							
ND 0.17 0.50 ND 0.13 0.50 ND 0.22 0.50 ND 0.22 0.50 ND 0.17 0.50 ND 0.17 0.50 ND 0.17 0.50 10.01 8 124 10.10 0.17 0.50 10.00 0 101 88 114 8 9.435 0.50 10.00 0 94.3 80 114 8 9.435 0.50 10.00 0 94.3 80 114 9 9.435 0.50 10.00 0 94.3 80 114 9 9.435 0.50 10.00 0 94.3 80 114 9 9.435 0.50 10.00 0 94.3 80 114 9 9.435 0.50 10.00 0 95.6 60 123 10 9 10.00 <th< td=""><td>1,1,2-Trichloroethane</td><td>DN</td><td>0.20</td><td>0.50</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	1,1,2-Trichloroethane	DN	0.20	0.50							
ND 0.13 0.50 ND 0.13 0.50 ND 0.17 0.50 10.00 0 101 88 124 10.10 0.17 0.50 10.00 0 101 88 124 10.41 0.50 10.00 0 104 79 115 8 9.435 0.50 10.00 0 94.3 80 114 8 9.435 0.50 10.00 0 94.3 80 114 9 9.435 0.50 10.00 0 94.3 80 113 8 56.1 0.50 10.00 0 94.3 80 113 9 9.61 0.50 10.00 0 93.5 60 123 9 0.50 10.00 0 93.6 60 123 10 0.000 0 93.6 93.6 93.6 93.6 114 0.000 0.000	Tetrachloroethene	ON .	0.17	0.50							
ND 0.1.13 0.50 10.00 0 101 88 124 ND 0.11 0.50 10.00 0 101 88 124 10.41 0.50 10.00 0 104 79 115 8 9.435 0.50 10.00 0 94.3 80 114 8 9.435 0.50 10.00 0 94.3 80 124 8 9.435 0.50 10.00 0 94.3 80 123 8 9.561 0.50 10.00 0 85.6 60 123 9 9.561 0.50 10.00 0 85.6 60 123 10 8 5.61 0.50 10.00 0 85.6 60 123 114 9 9 10.00 0 9 8 124 114 9 10.00 0 9 10 123 124	Chlorobenzene		0.13	0.00							
ND 0.17 0.50 10.00 0 101 88 124 10.10 10.41 0.50 10.00 0 104 79 115 8 9.435 0.50 10.00 0 94.3 80 114 8 9.435 0.50 10.00 0 94.3 80 114 8 9.435 0.50 10.00 0 94.3 80 114 8 561 0.50 10.00 0 94.3 80 123 Placeted at the Reporting Limit 8.561 0.50 10.00 0 95.6 60 123 10 10.00 0 10.00 0 124 79 123 114 10.00 0 10.00 0 10.10 10 123 114 11 11 11 11 11 11 11	Ethylbenzene	(IN)	0.13	0.50 0.50							
10.10 0.50 10.00 0 101 88 124 10.41 0.50 10.00 0 104 79 115 8 9.435 0.50 10.00 0 94.3 80 114 8 9.435 0.50 10.00 0 94.3 80 114 9 8.561 0.50 10.00 0 85.6 60 123 9 10.00 0 0 0.50 10.00 0 85.6 60 123 9 10.00 0 0.50 10.00 0 85.6 60 123 9 10.00 0 0 10.00 0 10.00 123 10 10.00 0 0 10.00 10 123 10 10.00 0 10.00 10.00 123 11 10.00 0 10.00 10.00 123	m,p-Xylene		0.17	0.50							
I0.41 0.50 I0.00 0 104 79 115 8 9.435 0.50 10.00 0 94.3 80 114 8 9.435 0.50 10.00 0 94.3 80 114 8 9.561 0.50 10.00 0 94.3 80 123 8 5.561 0.50 10.00 0 85.6 60 123 10 0 0.50 10.00 0 85.6 60 123 114 Petected at the Reporting Limit S Recovery outside accepted recovery limits MDL - Method Detection Limit	o-Aylene Surrocate:	10.10		0.50	10.00	0	101	88	124	0	
10.41 0.50 10.00 0 104 79 115 8<9.435	Dibromofluoromethane) 									
ne-d8 9.435 0.50 10.00 0 94.3 80 114 ne 8.561 0.50 10.00 0 85.6 60 123 ne	Surrogate: 1,2-	10.41		0.50	10.00	0	104	64	115	0	
8.561 0.50 10.00 0 85.6 60 123 Vot Detected at the Reporting Limit S - Recovery outside accepted recovery limits MDL - Method Detection Limit	Curronate: Tolijene-d8	9.435		0.50	10.00	0	94.3	80	114	0	
Vot Detected at the Reporting Limit S - Recovery outside accepted recovery limits MDL - Method Detection Limit	Surrogate: Bromofluorobenzene	8.561		0.50	10.00	0	85.6	60	123	0	
rs: ND - Not Detected at the Reporting Limit S - Recovery outside accepted recovery limits MDL - Method Detection Limit Detectin Detection Limit Detectin Detection Limit Dete											
rs: ND - Not Detected at the Reporting Limit S - Recovery outside accepted recovery limits MDL - Method Detection Limit											
rs: ND - Not Detected at the Reporting Limit S - Recovery outside accepted recovery limits MDL - Method Detection Limit D Parovina Limit D Parovina Limit									•		
rs: ND - Not Detected at the Reporting Limit S - Recovery outside accepted recovery limits MDL - Method Detection Limit D Parovina Limit											
rs: ND - Not Detected at the Reporting Limit S - Recovery outside accepted recovery limits MDL - Method Detection Limit											
rs: ND - Not Detected at the Reporting Limit S - Recovery outside accepted recovery limits MDL - Method Detection Limit											
rs: ND - Not Detected at the Reporting Limit S - Recovery outside accepted recovery limits MDL - Method Detection Limit	7180 ST										
rs: ND - Not Detected at the Reporting Limit S - Recovery outside accepted recovery limits MDL - Method Detection Limit											
rs: ND - Not Detected at the Reporting Limit S - Recovery outside accepted recovery limits MDL - Method Detection Limit	· · · · · · · · · · · · · · · · · · ·										
$\mathbf{r}_{\mathbf{r}_{i}} = \mathbf{r}_{\mathbf{r}_{i}} = \mathbf{r}_{\mathbf{r}$		stantad at the Demorting I imit	S - Recovery o	uitside accented recovery		Method Detection	Limit		B-,	Analyte detected in	the associated Method Bla
	rs:			init managements and a second s	-				I		

Date: 05/09/2011 07:47

CLIENT.	AFCOM Technical Services. Inc.	2		ANALY	ANALYTICAL OC SUMMARY REPORT	C SUM	MAR	Y REP(JRT		
ler:	K0639		SW8	SW8260_25_W	,						
Project: 1	NOW Corp. Site		SW8	SW846 8260C V	VOC by GC-MS (25 mL Purge)	1S (25 m	L Purg				
Sample ID: LCS-58908	08 SampType: LCS	TestCode	TestCode: SW8260_25_W		Prep Date:	05/02/11 11:33	11:33	Run ID:): V5_110502B		
Client ID: LCS-58908	08 Batch ID: 58908	Units	Units: µg/L		Analysis Date:	05/03/11 1:03	1:03	SegN	SeqNo: 1520035		
Analyte	Result	MDL	RL	SPK value	SPK Ref Val	%REC L	LowLimit HighLimit	ghLimit	RPD Ref Val	%RPD RPDLimit	Qual
Vinyl chloride	10.33	0.15	0.50	10.00	0	103	77	120	0		
Chloroethane	9.759	0.24	0.50	10.00	0	97.6	75	135	0		
1,1-Dichloroethene	10.89	0.19	0.50	10.00	0	109	81	125	0		
trans-1,2-Dichloroethene	ane 10.80	0.14	0.50	10.00	0	108	60	137	0		
Methyl tert-butyl ether	11.23	0.13	0.50	10.00	0	112	61	134	0		
1,1-Dichloroethane		0.18	0.50	10.00	0	107	82	120	0		
cis-1,2-Dichloroethene	11.28	0.19	0.50	10.00	0	113	84	116	0		
1,1,1-Trichloroethane	10.59	0.11	0.50	10.00	0	106	80	124	0		
1,2-Dichloroethane	11.01	0.16	0.50	10.00	0	110	86	117	0		
Benzene	11.16	0.12	0.50	10.00	0	112	81	121	0		
Trichloroethene	11.36	0.13	0.50	10.00	0	114	74	123	0		
Toluene	10.99	0.14	0.50	10.00	0	110	88	117	0		
1,1,2-Trichloroethane	11.03	0.20	0.50	10.00	0	110	83	121	0		
Tetrachloroethene	11.00	0.17	0.50	10.00	0	110	74	115	0		
Chlorobenzene	10.93	0.13	0.50	10.00	0	109	83	112	0		
Ethvlbenzene	11.44	0.13	0.50	10.00	0	114	87	110	0		ß
m.p-Xylene	21.92	0.22	0.50	20.00	0	110	87	114	0		
o-Xvlene	10.97	0.17	0.50	10.00	0	110	84	114	0		
Surrogate:	9.954		0.50	10.00	0	99.5	88	124	0		
Dibromofluoromethane				1					·		
Surrogate: 1,2- Dichloroethane-d4	10.59		0.50	10.00	0	106	79	115	0		
Surronate: Toluene-dR	d8 9.833		0.50	10.00	0	98.3	80	114	0		
ourrugate. Fourche			0 50	10 00		93 1	1 19	123			
Surrogate: Bromofluorobenzene	710.0		••••	> • •	>	+ • •	2) 4 4	>		
nganaan Sinaa Sinaa											
Qualifiers: ND - N m11.04.29.A J - Anal	ND - Not Detected at the Reporting Limit J - Analyte detected below quanititation limits		 S - Recovery outside accepted recovery limits R - RPD outside accepted recovery limits 	mits	MDL - Method Detection Limit RL - Reporting Limit	imit		B - A	Analyte detected in	B - Analyte detected in the associated Method Blank	d Blank

CLIENT: AECOM T	AECOM Technical Services, Inc.	c.		ANALY	ANALYTICAL QC SUMMARY REPORT	SUM	MAR	Y REPO	ORT			
ler:	•		SWS	SW8260_25_W								
Project: NOW Corp. Site	p. Site		SWS	1	VOC by GC-MS (25 mL Purge)	S (25 m]	Purge					
Sample ID: LCSD-58908	SampType: LCSD	TestCo	TestCode: SW8260_25_W		Prep Date:	05/02/11 11:33	11:33	Run	Run ID: V5_110502B			
Client ID: LCSD-58908	Batch ID: 58908	Uni	Units: µg/L		Analysis Date:	05/03/11 1:32	1:32	SeqN	SeqNo: 1520036			
Analyte	Result	MDL	RL	SPK value	SPK Ref Val	%REC Lo	LowLimit HighLimit	ghLimit	RPD Ref Val	%RPD RPDLimit		Qual
Vinvl chloride	9.919	0.15	0.50	10.00	0	99.2	77	120	10.33	4.02	40	
Chloroethane	9.739	0.24	0.50	10.00	0	97.4	75	135	9.759	0.203	40	
1.1-Dichloroethene	10.01	0.19	0.50	10.00	0	100	81	125	10.89	8.4	40	
trans-1,2-Dichloroethene	10.83	0.14	0.50	10.00	0	108	60	137	10.80	0.28	40	
Methyl tert-butyl ether	10.73	0.13	0.50	10.00	0	107	61	134	11.23	4.48	40	
1,1-Dichloroethane	10.59	0.18	0.50	10.00	0	106	82	120	10.69	1.0	40	
cis-1,2-Dichloroethene	11.13	0.19	0.50	10.00	0	111	84	116	11.28	1.33	40	
1,1,1-Trichloroethane	10.28	0.11	0.50	10.00	0 0	103	80	124	10.59	2.96	40	
1,2-Dichloroethane	10.43	0.16	0.50	10.00	а (104	8 0 9 1	117	11.01	5.44	40	
Benzene	10.48	0.12	0.50	10 00		CO1	ΤΩ	121	97 TT	07.0	40	
Trichloroethene	10.84 10.22	0.13	0.50	00 01		103 103	τα α	C 2 T	10 99	4.' 6 17	0 1	
Toluene	10.53	0.20	0.50	10.00		106	00 83	121	11.03	3.78	40.4	
1,1,2-1 ricnioroetnane	11 00	0.17	0.50	10.00	ò	111	74	115	11.00	0.769	40	
Chlorobenzene	11.04	0.13	0.50	10.00	0	110	83	112	10.93	0.96	40	
Clifoloogiterie Ethvihanzana	11.13	0.13	0.50	10.00	0	111	87	110	11.44	2.76	40	ß
m n-Xvlene	22.61	0.22	0.50	20.00	0	113	87	114	21.92	3.09	40	
o-Xvlene	11.27	0.17	0.50	10.00	0	113	84	114	10.97	2.69	40	
Surrogate:	9.538		0.50	10.00	0	95.4	88	124	0			
Dibromofluoromethane												
Surrogate: 1,2-	8.763		0.50	10.00	0	87.6	79	115	0			
Dicnioroetnane-04 Surrocate: Toluene-d8	10.07		0.50	10.00	0	101	80	114	0			
Surronate	9.501		0.50	10.00	0	95.0	60	123	0			
Bromofluorobenzene												
										•		
JAK HUIL												
Outficture ND Not Detected of	Not Detected of the Renorting I imit	S - Recovery	S - Recovery outside accented recovery limits		MDI - Method Detection Limit	imit		B-	B - Analyte detected in the associated Method Blank	the associated	Method	Blank

~

B - Analyte detected in the associated Method Blank

MDL - Method Detection Limit RL - Reporting Limit

S - Recovery outside accepted recovery limits I R - RPD outside accepted recovery limits I

ND - Not Detected at the Reporting Limit J - Analyte detected below quanititation limits

Qualifiers: m11.04.29.A

WorkOrder: K0639

Client ID: EARTH_NY Project: NOW Corp. Site WO Name: NOW Corp. Site Location: NOW_CORP, Comments: N/A

04/20/2011 10:18

Mitkem Laboratories

Report Level: LEVEL 2

HC Due: 05/06/11

Special Program:

EDD:

Fax Due: Fax Report:

Case: SDG: **PO:** 94017.02

Lab Samp II	Lab Samp ID Client Sample ID	Collection Date Date Recv'd Matrix	Date Recv'd	Matrix	Test Code	Samp / Lab Test Comments	HF HT MS SEL Storage
K0639-01A	MW-1 041911	04/19/2011 12:00 - 04/20/2011	04/20/2011	Aqueous	Aqueous SW8260_25_W	/ use for VOCs,	Y VOA
K0639-02A	MW-4S 041911	04/19/2011 09:36 04/20/2011	04/20/2011	Aqueous	SW8260_25_W	/ use for VOCs,	Y VOA
K0639-03A	MW-6S 041911	04/19/2011 10:55 04/20/2011	04/20/2011	Aqueous	SW8260_25_W	/ use for VOCs,	Y VOA
K0639-04A	MW-6D 041911	04/19/2011 11:56 04/20/2011	04/20/2011	Aqueous	SW8260_25_W	/ use for VOCs,	Y VOA
K0639-05A	MW-7S 041911	04/19/2011 09:55 04/20/2011	04/20/2011	Aqueous	SW8260_25_W	/ use for VOCs,	Y VOA
K0639-06A	MW-7D 041911	04/19/2011 09:50 04/20/2011	04/20/2011	Aqueous	Aqueous SW8260_25_W	/ use for VOCs,	Y VOA
K0639-07A	MW-12S 041911	04/19/2011 13:30 04/20/2011	04/20/2011	Aqueous	SW8260_25_W	/ use for VOCs,	Y VOA
K0639-08A	MW12D 041911	04/19/2011 13:43 04/20/2011	04/20/2011	Aqueous	SW8260_25_W	/ use for VOCs,	Y VOA
K0639-09A	MWDUP 041911	04/19/2011 00:00 04/20/2011	04/20/2011	Aqueous	SW8260_25_W	/ use for VOCs,	Y VOA
K0639-10A	TRIPBLANK041911	04/19/2011 00:00 04/20/2011	04/20/2011	Aqueous	SW8260_25_W	/ use for VOCs,	Y VOA
					A second s		

 \mathbb{S} HF = Fraction logged in but all tests have been placed on hold \mathbb{S}

Lab Client Rep: Edward A Lawler

Page 01 of 01

HT = Test logged in but has been placed on hold

|--|

 $\hat{\mathcal{G}}_{ij}$

175 Metro Center Boulevard • Warwick, RI 02886-1755 • 401-732-3400 • Fax 401-732-3499 • www.mitkem.com

MITKEM LABORATORIES

Sample Condition Form

		Sam	ple Conditio	n Forn	n			Page	J	of	١	
Received By: Daniel M	1.6	Reviewed By	: GN		Date	4/221.	Mitke			-	Ko	639
Client Project: Now Cor		Inconcored by	·			:: <u>Ca</u>						Soil
/////	· · · · · · · · · · · · · · · · · · ·					Prese				VOA		space or iubble ≥
			Lab Samp	le ID	HNO ₃	H₂SO₄	HCI	NaOH	H₃PO₄			1/4"
1) Cooler Sealed	Yes / No		KU639	01						Η		
			1	01						(1) XO	ka t	1
2) Custody Seal(s)	Present / A	bsent	1	03						1 4	11-09	
	Coaters / B			04								
	Intact / Bro			05								
				06								
3) Custody Seal Number(s)	NK	1		07								
of ousloay ocal Number(s)		, 		08								
	/	- mp		09						V		
	/		KUGII	10						uAl	Val 1	ү
			K0611	10					<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>		<u>''</u>
												\neq
4) Chain-of-Custody	Rresent / A	bsent]							/
	r ° ,						-				-	
5) Cooler Temperature	6°C M+-1 [Ceb							 		-		
IR Temp Gun ID	M+-1									\square	i	
Coolant Condition	1201			<u> </u>								
									\square			
6) Airbill(s)	Present / A							\checkmark				
Airbill Number(s)	FREEX	5417186							17			
	8747 5	541 7186					\mathbb{V}	2				
	/							\				
									_			
7) Samples Bottles	Intact / Bro	ken / Leaking	1. A									
					ľ							
8) Date Received	4-2	0-11										
			/	1								
9) Time Received	<u> </u>											
						-						
Preservative Name/Lot No.			7	†							-	
		_ ·	L'	VOA	Matrix	Key:			L	L		
		_				Unpre				A = A	100	
		_				Unpre	serve	d Aque	eous	H = H		
		- .			M = N		Å			E=E		
See Sample C	ondition No	- tification/Corre	ective Action	L Form		aHSO 10	4			F = F	eeze	
Form ID: QAF.0006					,	-		Rad (DK ye	s/no		

Y:\Controlled Forms\QAF.0006 sample condition form.xls

Last Page of Data Report