

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF ENVIRONMENTAL REMEDIATION Site Classification Report

		10/26/20	10
Site Code:	314047	Site Name	: Dutchess Sanitation (FICA)
City:	Poughkeepsie	Town:	Poughkeepsie
Region:	3	County:	Dutchess
Current Cla	assification: 04	Proposed	Classification: 04
Estimated S	Size (acres): 17.00	Extra Deta	ails: Landfill
Significant	Threat: Previously	Site Type:	
Priority rar	nking Score: 405	Project Ma	anager: Carl Hoffman

Summary of Approvals	
Originator/Supervisor: Jerry Rider	07/13/2010
RHWRE: :	08/04/2010
BEEI of NYSDOH:	06/29/2010
CO Bureau Director: Robert Knizek, Director, BURE:	08/13/2010
Assistant Division Director: Sal Ervolina:	10/01/2010

Site Description

The Dutchess Sanitation Landfill is a 17 acre inactive municipal waste landfill located 1000 feet from the Schatz Federal Bearing landfill. The site received municipal waste from 1971 to 1983. The landfilling ceased after a large fire occurred in 1984. Leachate generated from fighting this fire contained volatile organic compounds. Subsequently seeps were observed along the east slope of the landfill during a site inspection and leachate ran toward an adjacent wetland. A Phase I Investigation was completed where analysis of leachate showed that additional investigation was necessary. An AG Consent Order was signed for a Remedial Investigation and Feasibility Study (RI/FS) that was completed in 1992. A second AG Consent Order was signed for a cap and IRM to stabilize the steep southern slope of the landfill. A Part 360 cap was constructed over the entire landfill in 1994. The Blandings Turtle Pond in the wetland was remediated under the 1993 ROD. A totally enclosed flare was originally installed to combust landfill gas and eliminate odors, however gas levels have diminished and no longer support the flare. The no longer needed gas piping has been removed to facilitate mowing. The landfill cap is mowed and in good condition. Site management activities continue.

Contaminants of Concern (Including Materials Disposed)	Quantity Disposed	
OU 01 VOLATILE ORGANIC COMPOUNDS (VOCS) WASTE OIL/INK (D001)		$0.00 \\ 0.00$

Analytical Data Available for : Air, Groundwater, Surface Water, Soil, Sediment

Applicable Standards Exceeded for: Groundwater, Surface Water

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF ENVIRONMENTAL REMEDIATION Site Classification Report

10/26/2010

Site Code: 314047

Site Name: Dutchess Sanitation (FICA)

Site Environmental Assessment

Typical metals associated with municipal waste such as iron, sodium, and magnesium are present in groundwater at levels that are within one to two orders of magnitude above groundwater standards. Other metals have been detected at concentrations within the same order of magnitude as their corresponding standards. Groundwater and surface water monitoring has detected individual VOCs at trace levels in groundwater and at a pond at the site perimeter. Passive landfill gas venting using wind turbine ventilators were added to vent and disperse accumulations of methane and hydrogen sulfide at the landfill's summit. Formerly used above ground PVC piping has been removed to aid the mowing of the landfill cap. The cap is mowed by Region 3 operations and is in good condition.

Site Health Assessment

Drinking contaminated groundwater is not expected because the area is served by public water. Contact with contaminated soil is unlikely because the site is fenced and capped with clean soil.

Remedy Description and Cost

Remedy Description for Operable Unit 01

The Remedy specifically addressed several elements of the site. First, the removal of a pond of orange/yellow surface water and its corresponding sediments in the northeast corner of the site. This pond had been impacted by leachate seeps which have existed along the northeast face of the landfill. Secondly, further examination of the existing odor problem was conducted, and landfill gas control technologies (flaring) was implemented for a period of time. A third element was that leachate which was collected in the liner system of the new C&D cells of the landfill was treated at a POTW facility. Lastly, groundwater samples will be collected on a regular basis and analyzed for the site specific contaminants.

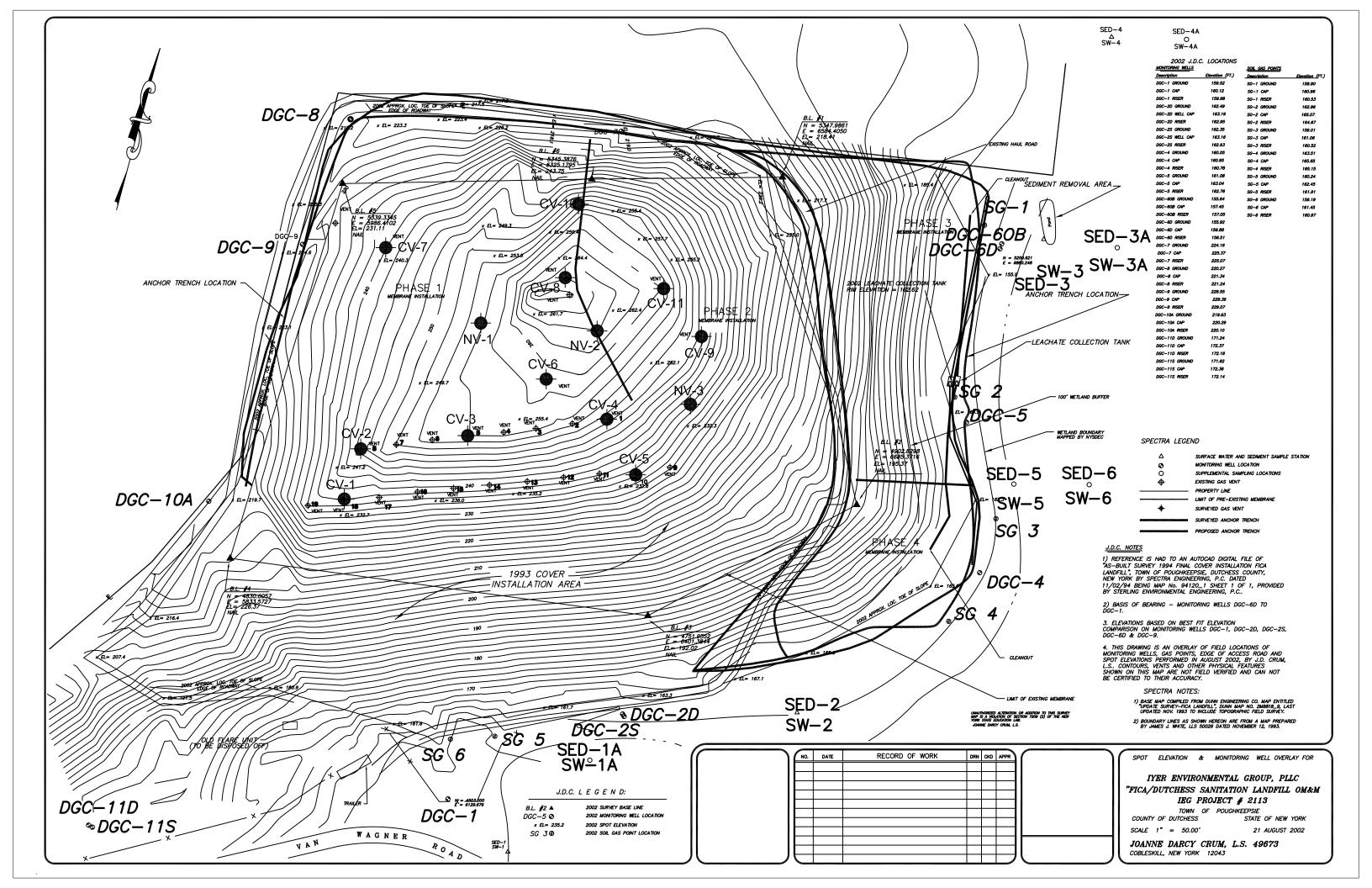
Total Cost \$2,500,000

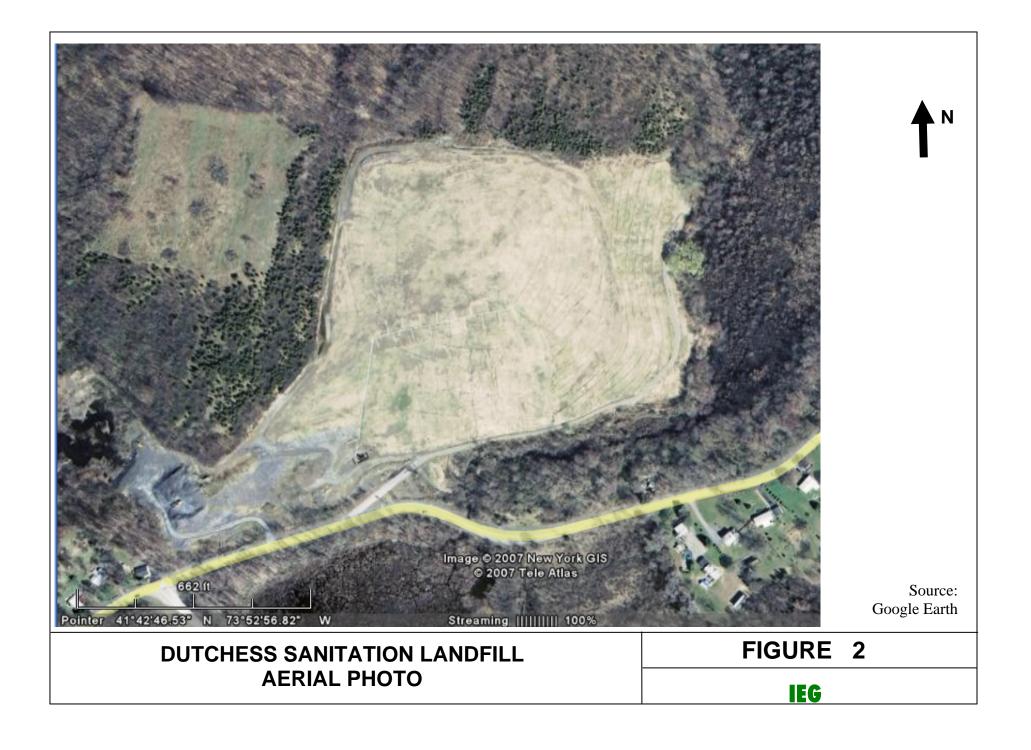
Remedy Description for Operable Unit 01A

The IRM unit of this project consisted of three elements that could not wait until a final remedy was selected. First site security including a chain link fence and locked gate was installed. The second element was slope stabilization to reduce the extreme slope of the southern face, and included construction of two lined c & d cells and a leachate collection system. The third element was the installation of a landfill cover consistent with a Part 360 cap that provides a barrier to water infiltration but allowing landfill gas to vent.

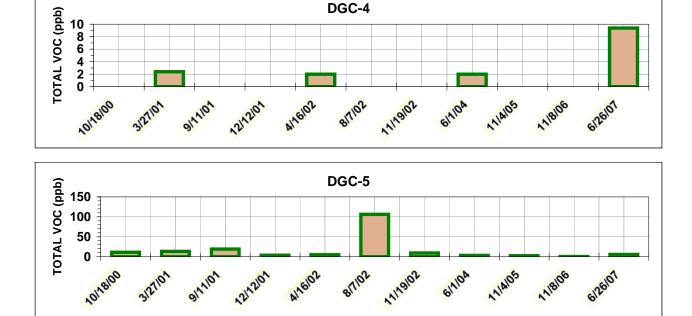
Total Cost \$5,000,000

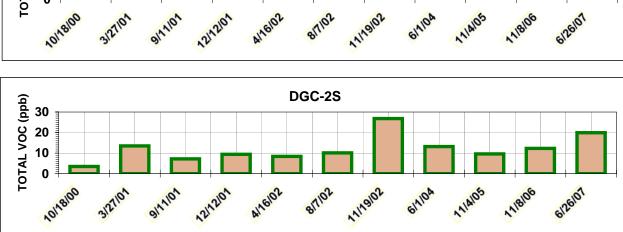
NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF ENVIRONMENTAL REMEDIATION Site Classification Report

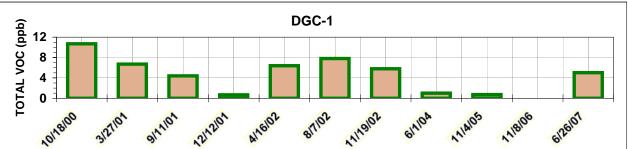

10/26/2010


Site Code: 314047

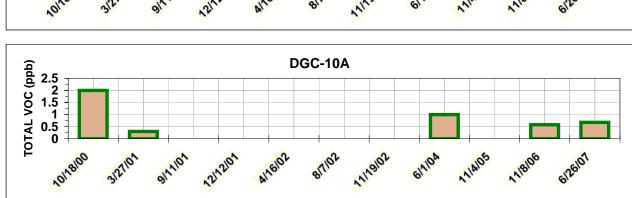
Site Name: Dutchess Sanitation (FICA)

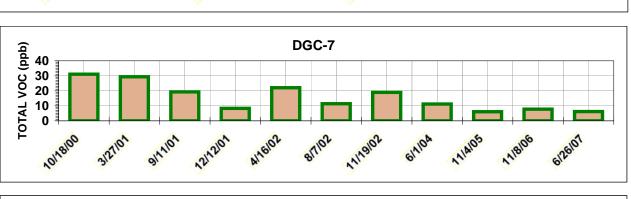

Basis for Classification Change

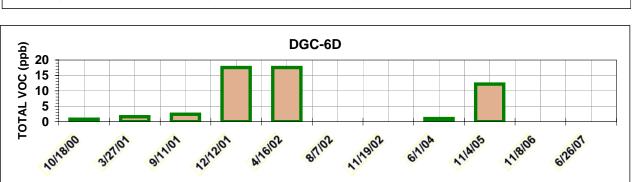

Remediation was completed at the Dutchess Sanitation landfill in 1995. The main elements of remedy included capping of the landfill in accordance with NYCRR Part 360 regulations, and the installation of leachate and gas collection systems. Active gas collection and flaring was initially implemented, but has been discontinued due to diminished gas production that no longer supports active landfill gas collection and flaring. Capping has significantly reduced infiltration and off-site leachate disposal is no longer performed. Currently, site management activities include periodic inspection, sampling, and passive landfill gas venting using wind turbine ventilators on individual gas vents at the landfill summit. Cap maintenance such as mowing is performed by Region 3 operations. These site activities are customary with a remediated landfill requiring continued site management. All of the remedial actions performed have further mitigated the significant threat formerly posed at the site, and post remedial sampling has shown the proposed action to classify this site to class 4 is appropriate.



D:\FICA_LabCharts0706v2.xls







D:\FICA_LabCharts0706v2.xls

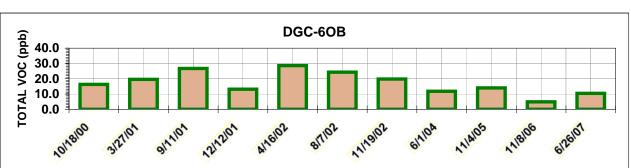
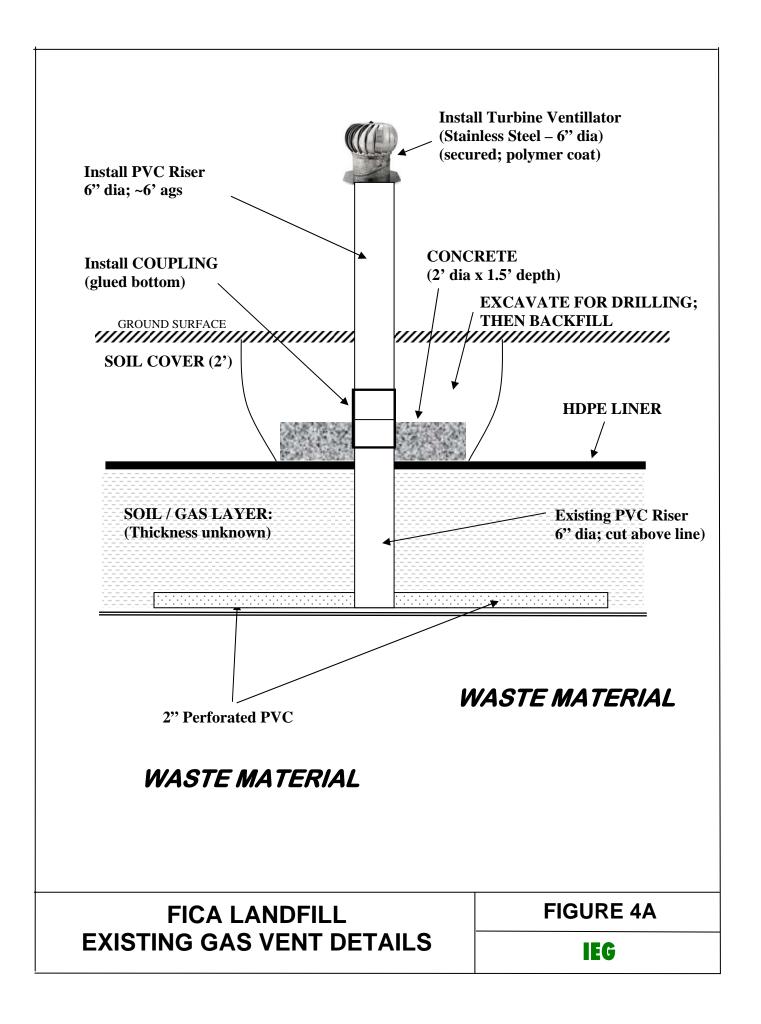
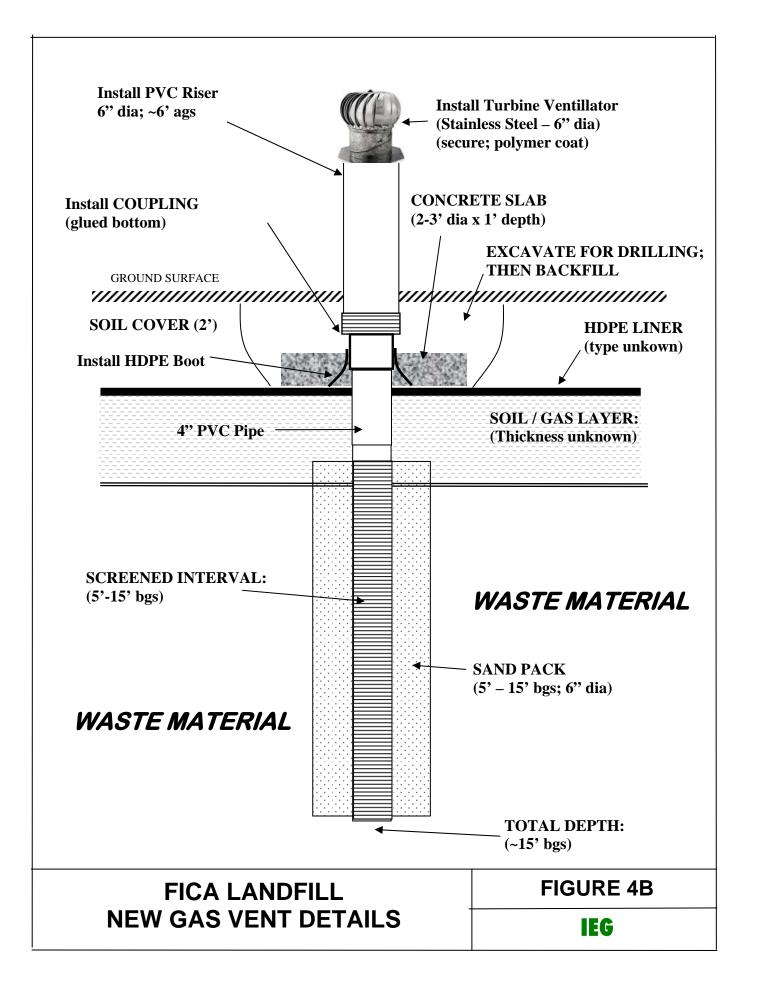




FIGURE 3 FICA/DUTCHESS SANITATION LANDFILL OM&M GROUNDWATER VOC RESULTS

TABLE 2

FICA/DUTCHESS SANITATION LANDFILL OM&M SUMMARY OF GROUNDWATER/SURFACE WATER/SEDIMENT VOC RESULTS

					Ν	IONITORI	NG WELL	S				
DATE	DGC-1	DGC-2S	DGC-2D	DGC-4	DGC-5	DGC-60B	DGC-6D	DGC-7	DGC-9	DGC-10A	DGC-11S	DGC-11D
10/18/00	10.7	3.5	0	0	11.3	16.3	0.8	31.1	0	2	0	5.4
3/27/01	6.7	13.5	7.6	2.4	13.5	19.6	1.6	29.4	4.8	0.3	0	0
9/11/01	4.4	7.2	0	0	19.3	26.7	2.4	19.3	0	0	ns	ns
12/12/01	0.67	9.43	24.6	0	3.88	13.2	17.6	8.3	0	0	ns	ns
4/16/02	6.4	8.4	2	2	5	28.6	17.55	22.1	0	0	ns	ns
8/7/02	7.8	10.1	0	0	106.3	24.3	ns	11.4	0	0	0	ns
11/19/02	5.8	26.8	0.3	0	9.5	19.8	ns	19	3.4	0	ns	5.6
6/1/04	1	13.2	2	2	3.4	11.8	1.0	11.2	0.0	1.0	0	ns
11/4/05	0.72	9.6	0	0	2.68	14.0	12.18	6.08	1.76	0	0	nd
11/8/06	0	12.3	0	0	0.59	4.9	0	7.8	0	0.6	ns	0
6/26/07	5.02	19.94	8.21	9.39	5.80	10.4	0.0	6.18	0.41	0.68	1.1	ns

	SURFACE WATER/SEDIMENT														
DATE	SW-UP	SW-ADJ	SW-DN	SED-UP	SED-ADJ	SED-DN	SW-1	SW-2	SW-3 / POND	SED-1	SED-2	SED-3			
06/12/01	1130	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns			
09/11/01	ns	0.7	0	ns	157	0.0	ns	ns	ns	ns	ns	ns			
12/12/01	ns	7.72	ns	ns	334	ns	ns	ns	ns	ns	ns	ns			
05/17/02	ns	ns	ns	ns	ns	ns	8.4	2.1	3.0	0.0	0.0	0.0			
11/4/05	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns			
11/8/06	ns	ns	ns	ns	ns	ns	ns	ns	ND	ns	ns	ns			
6/26/07	ns	ns	ns	ns	ns	ns	ns	ns	15.5	ns	ns	ns			

NOTES: All concentrations are in ppb; ns = not sampled; nd - not detected

FICA / DUTCHESS SANITATION LANDFILL, POUGHKEEPSIE, NY GAS COLLECTION SYSTEM DISASSEMBLY PHOTOS – AUGUST 2007 PAGE 1

Existing PVC collection system which was lying on top of the ground was cut up and stacked

Several piles were made in locations convenient for loading and removal

Sections of PVC pipe with the original valves were re-attached after disassembly of the system

Original reflector markers were straightened and reused whenever possible

These decommissioned vents were painted bright orange for maximum visibility to the mowing crews

FICA / DUTCHESS SANITATION LANDFILL, POUGHKEEPSIE, NY NEW VENT INSTALLATIONS PHOTOS – AUGUST 2007 PAGE 2

Aztech Technologies, Inc. drill rig at the first New Vent location

Drilling through the landfill debris was difficult

One of the Turbine Ventillators

Installing the Turbine Ventillator onto the PVC Riser

The drill rig at the second location

A total of three New Vents were installed

FICA / DUTCHESS SANITATION LANDFILL, POUGHKEEPSIE, NY CONVERTED VENT INSTALLATIONS PHOTOS – AUGUST 2007 PAGE 3

First the excavator is used to start digging around the existing vent

The hand shovel is used to expose the boot to prevent damage to the liner

The existing pipe is cut and a new Riser is added. Then a Sauna Tube is put around the base.

The Sauna Tube is filled with concrete

A close up of the Turbine Ventillator at the top of the Riser

Finally the soil is backfilled and leveled around the Converted Vent

FICA / DUTCHESS SANITATION LANDFILL, POUGHKEEPSIE, NY OVERVIEW PHOTOS – AUGUST 2007 PAGE 4

Looking south from near the center of the landfill

Looking southwest from near the middle of the landfill

Looking west from near the top of the landfill

Looking southeast from the center of the landfill

View from the southwest side of the landfill toward the top

The south slope of the landfill

March 2010 photo of FICA landfill. Turbine vents at summit of landfill and former used totally enclosed flare in foreground. No problems evident during DER staff site visit, however significant snow cover was present.

FORM 2 FICA/DUTCHESS SANITATION LANDFILL OM&M Groundwater Monitoring Well Purging/Sampling Date Sampled: June 27, 2007

	DEPTH	DEPTH	HEIGHT	MIN.	v	Vater Quality			
Sample	то	то	OF	PURGE	рН	Sp. Cond.	Temp.	Turbidity	NOTES
I.D.	BOTTOM (ft)	WATER (ft)	WC (ft)	VOLUME (gal)	(s.u.)	(µmhos)	(°C)	(ntu)	
DGC-1	71.1	12.32	58.78	9.6	6.79	1.1	15.5	0.55	
DGC-2S	31.7	10.99	20.71	3.4	6.26	2.72	12.5	1.36	
DGC-2D	86.5	10.12	76.38	12.4	7.18	1.42	14.9	0.71	
DGC-4	51.1	8.64	42.46	6.9	7.13	0.9	14.8	0.47	
DGC-5	19.7	10.90	8.80	1.4	6.31	2.38	17.6	1.19	
DGC-60B	18.5	4.01	14.49	2.4	6.5	1.89	19.5	0.93	rusty red color, cleared up w/bailing
DGC-6D	96.5	89.76	6.74	1.1	5.9	1.6	15	60	
DGC-7	56.9	38.62	18.28	3.0	6.25	1.02	16.4	0.51	
DGC-8	56.2	28.63	27.57	4.5	6.7	0.3	15.1	0.15	
DGC-9	97.5	32.86	64.64	10.5	7.74	0.36	15.1	0.18	
DGC-10A	61.5	42.30	19.20	3.1	7.71	0.3	14.3	0.15	bailed dry after 10 bails, H2O discolored brown
DGC-11S	21.8	11.34	10.46	1.7	6.86	0.55	15.5	0.27	
DGC-11D	71.7	71.70	0.00	0.0	NA	NA	NA	NA	no recharge

FORM 3 FICA/DUTCHESS SANITATION LANDFILL OM&M GROUNDWATER ELEVATIONS

WELL ID	Easting x	Northing y		GRO	DUNDWAT	ER ELEVATI(ONS		MINIMUM ELEVATION	MAXIMUM ELEVATION	VARIATION
		5	10/12/91 (baseline)	12/28/04	11/17/05	04/13/06	11/08/06	06/26/07	(ft)	(ft)	(ft)
DGC-1	6129.75	4503.10	147.75	05/29/00		150.69	150.87	147.80	147.8	150.9	3.1
DGC-2S	6367.18	4618.26	152.24	06/01/00	Ι	152.72	153.06	152.17	152.2	153.1	0.9
DGC-2D	6369.27	4615.06	152.13	06/01/00	-	123.95	157.06	153.07	124.0	157.1	33.1
DGC-4	6852.48	4810.48	152.23	06/02/00	_	153.89	155.03	152.31	152.3	155.0	2.7
DGC-5	6834.70	5014.64	154.44	06/03/00	_	154.20	155.02	152.14	152.1	155.0	2.9
DGC-6OB	6882.73	5257.40	153.97	06/02/00	-	154.41	154.47	153.44	153.4	154.5	1.0
DGC-6D	6880.37	5250.56	63.35	03/07/00	-	65.63	71.13	67.12	65.6	71.1	5.5
DGC-7	6365.46	5410.49	184.60	07/11/00	Ι	193.37	193.54	186.75	186.8	193.5	6.8
DGC-8	5997.27	5426.86	188.13	07/18/00	-	199.92	199.83	192.71	192.7	199.9	7.2
DGC-9	5932.09	5256.77	189.79	07/18/00	197.45	196.03	200.97	196.53	196.0	201.0	4.9
DGC-10A	5804.51	4907.71	177.73	06/27/00	184.59	178.03	179.30	177.99	178.0	184.6	6.6
DGC-11S	5646.06	4464.54	165.12	06/15/00	-	166.38	165.20	161.02	161.0	166.4	5.4
DGC-11D	5641.07	4467.33	101.81	04/09/00	_	99.63	100.71	100.67	99.6	100.7	1.1

Note: 1. All wells were resurveyed after well repair work in July/August 2002.

FORM 4

FICA/DUTCHESS SANITATION LANDFILL O&M

DETECTED GROUNDWATER ANALYTICAL RESULTS - SAMPLING AND ANALYSIS BY OBG/IEG

DATE: November 2005

	UNITS	GW STD	DGC-1	DGC-2D	DGC-2S	DGC-4	DGC-5	DGC-60B	DGC-6D	DGC-7	DGC-8	DCG-09	DGC-10A	DGC-11D	DGC-11S	SW-UP	SW-AD.I	SW-DN	SD-UP	SD-AD.I	SD-DN
depth to bottom (ft)	ft	00.5	71.10	86.50		51.10	19.70	18.50	96.5	56.90	56.20	97.50	61.50	71.00	21.80	00.	0117.20	0.1. 5.1	05 0.	027.20	05 5.1
depth to GW (ft)	ft		7.50	10.85	9.39	5.55	7.81	2.56	81.43	30.34	17.67	31.76	61.12		2.45						
pH			6.57	7.43		6.5	7.39	6.32	01.10	6.36	6.79	7.31	7.16	71.20	7.03						
Sp. Cond	s.u. umhos		1.46	1.23	2.7	1.08	2.99	2.26		0.30	0.46	0.322	0.24		0.24						
	°F																				
Temperature	1		48	50.6	51.5	51.6	56	54.1		49.8	50	14.3	13		52.2						
VOLATILE ORGANICS																					
vinyl chloride		2			5.73					1.73											
chloroethane		5						4.82	4.13												
C-1,2-dichloroethene		5	0.12 J		3.52		0.52	0.69	0.65	1.48											
diethyl ether		ns																			
acetone		50						4.83 J	5.19 J			1.76 J									
1,1-dichloroethene		5																			
t-1,2-dichloroethene		5						0.12 J		0.43 J											
methyl-t-butyl ether		ns						0.35 J													
methylcyclohexane	µg/L	na						0.37 J						NA		NA	NA	NA	NA	NA	NA
1,1-dichloroethane	µg/∟	5	0.6		0.25 J			0.68	0.61	1.88				11/4		11/4	11/4	11/4	N/A	IN/A	19/4
benzene		1					1.34	1.52	1.27	0.56											
trichloroethene		5			0.30 J			0.19 J	0.18 J												
toluene		5																			
chlorobenzene		5					0.59														
cyclohexane		na						0.20 J													
ethylbenzene		5																			
m,p-xylene		5																			
o-xylene		5																			
isopropylbenzene		5					0.23 J	0.21 J	0.15 J												
TOTAL VOCs	µg/L		0.72	0	9.8	0	2.68	13.98	12.18	6.08	0	1.76	0	NA	0	NA	NA	NA	NA	NA	NA
TAL METALS																					
Aluminum		ns	37.4 B	39700	1130	285	43.2 B	19.9 B		124 B	131 B	21400	235	8620	207						
Antimony		3		15.2 B			1.5 B					10.2 B	2.0 B	5.1 B							
Arsenic		25	6.8 B	56.3	43.3		4.6 B	27.4	26.9	5.3 B		8.0 B	1.6 B	4.2 B							
Barium		1000	648	1360	289	993	251	433	426	136 B	43.3 B	412	37.7 B	190 B	4.8 B						
Beryllium		1100	0.15 B	1.9 B	0.13 B							0.98 B		0.36 B							
Cadmium		5		1.2 B						1.1 B		1.2 B	3.9 B	1.7 B		1					
Calcium		na	130000	109000	23000	80500	179000	123000	122000	124000	69200	47200	33100	22000	27100	1					
Chromium		50	6.1 B	108	12.4	4.6 B	9.7 B	6.5 B	5.7 B	10.8	3.2 B	53.7	2.9 B	19.6	1.4 B	1					
Cobalt		5		28.1 B	13.0 B			2.8 B	1.9 B	3.2 B		14.2 B		5.5 B							
Copper		200		66.4	1.9 B							31.2	0.95 B	31.5		1					
Iron	uc/1	300*	6490	69400	16300	4690	6380	47100	47200	2530	194	34900	11200	14400	207	NIA	NIA	NIA	NIA	NIA	NIA
Lead	µg/L	25		50.1	1.7 B							32.1	1.7 B	7.9		NA	NA	NA	NA	NA	NA
Magnesium		35000	31800	39000	87300	25900	50000	43800	43200	27600	15700	19500	8480	15100	7020	1					
Manganese		300*	4840	1550	11900	2510	9810	5250	5280	13400	30.3	593	215	690	28.4	1					
Mercury		0.7		0.070 B		0.17 B		0.19 B				0.11 B				1					
Nickel		100	7.2 B	97.5	29.8 B	1.9 B	31.4 B	27.4 B	26.9 B			41	5.4 B	18.9 B		1					
Potassium		na	25200	14700	10400	9050	47700	37800		2980 B	1270	9420	1950 B	19100	912 B	1					
		10		3.6 B							-	3.2 B			1	1					
Selenium												-	1.3 B			1	1	1	1		1
Selenium Silver		50										1.2 B	1.3 D								
Silver		50	95600	144000	230000	110000	161000	159000	156000	23000	5480			1060000	2720						
		-	95600	144000	230000	110000	161000	159000	156000	23000	5480	1.2 B 13700	8500	1060000	2720						
Silver Sodium		50 20000	95600	144000 6.7	230000 1.5 B	110000	161000 0.72 B	159000	156000	23000	5480			1060000 10.1 B	2720						

NOTES: number in bold italics is from POC stds; SW STDs for H(WS) human water source; ns = no std nor guidance value; NA = not sampled

FORM 4

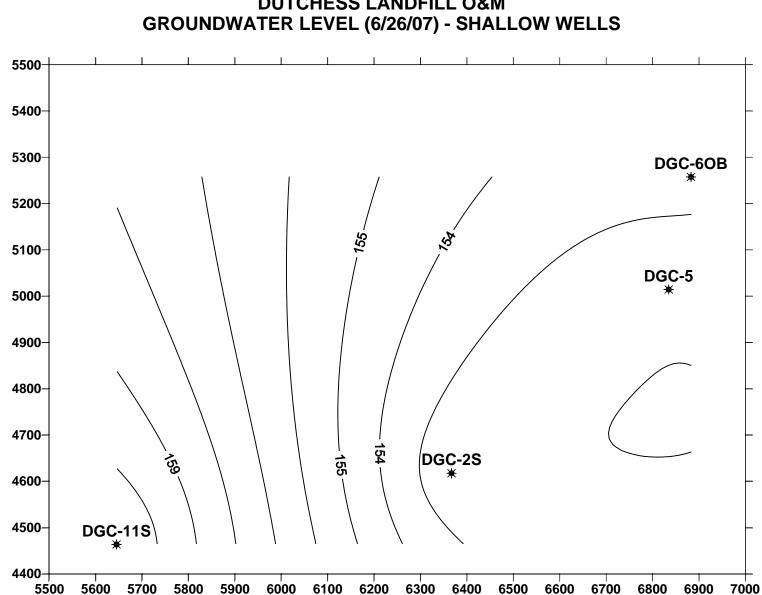
FICA/DUTCHESS SANITATION LANDFILL O&M DETECTED GROUNDWATER ANALYTICAL RESULTS - SAMPLING AND ANALYSIS BY OBG/IEG

DATE: November 2006

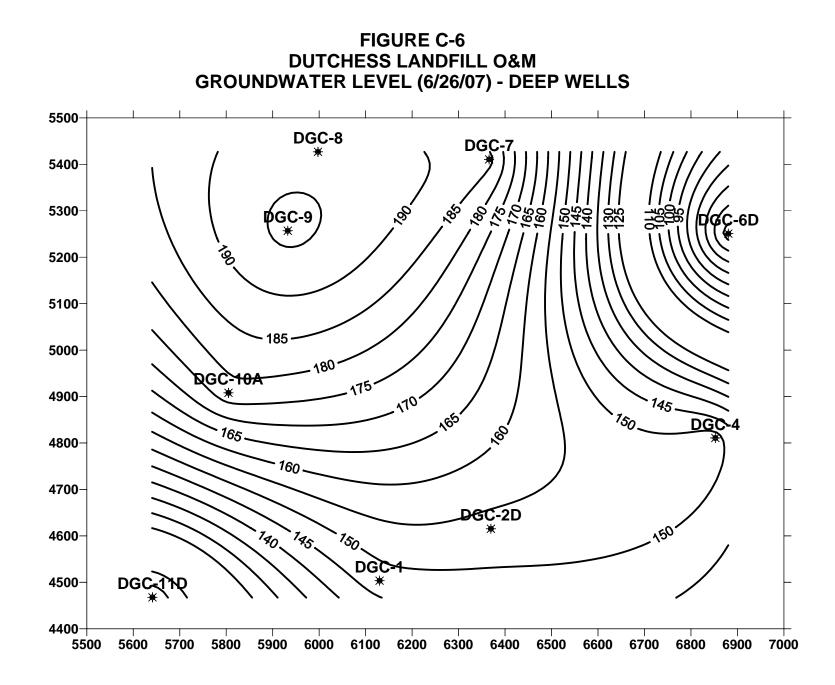
	UNITS	GW STD	DGC-1	DGC-2D	DGC-2S	DGC-4	DGC-5	DGC-60B	DGC-6D	DGC-7	DGC-8	DCG-09	DGC-10A	DGC-11D	DGC-11S	POND
depth to bottom (ft)	FT		71.10	86.50	31.70	51.10	19.70	18.50	96.5	56.90	56.20	97.50	61.50	71.00	21.80	
depth to GW (ft)	FT		7.50	10.85	9.39	5.55	7.81	2.56	81.43	30.34	17.67	31.76	61.12	71.26	2.45	
PH	s.u.		6.07	6.78	5.9	6.36	6	5.87	2.35*	5.9	6.25	7.1	7.05	6.47	NA	
Sp. Cond	umhos		1.08	1.02	2.51	0.948	0.913	1.41	1.6	0.96	0.573	0.338	0.12	0.001	NA	
Temperature	oC		16.6	13.6	14.3	14.7	14.9	15.3	16	14.4	16.3	13.3	13.1	14.3	NA	
Turbidity	ntu		96	0.99	170	110	157	105	190	84	124	379	118	169	NA	
VOLATILE ORGANICS					-					-			-			
vinvl chloride		2			8.12					2.74	-					
chloroethane	_	5						2.94			-					
C-1,2-dichloroethene		5			3.64			0.63	1	1.7						
t-1.2-dichloroethene		5			0.01			0.00	1	0.56						
methyl-t-butyl ether	_	ns			0.52					0.00						
1,1-dichloroethane	_	5			0.02					2.08						
benzene	µg/L	1		ND		ND	0.59	1.32		0.69	ND		ND	NA	ND	ND
trichloroethene	_	5				ND	0.55	1.52		0.03			NB	11/1	NB	
toluene	_	5									-	0.58				
chlorobenzene	_	5									-	0.00				
ethvlbenzene	_	5									-					
m,p-xylene	_	5									-					
o-xylene	_	5									-					
TOTAL VOCs	µg/L	5	0.72		9.8		2.68	13.98	12.18	6.08	-	1.76				
TAL METALS	µ9/∟		0.12		5.0		2.00	10.00	12.10	0.00		1.10				
	_		00 0 D	00000	000	04.0 D	400	04.4 D	0740	257		4000	500		000	014
Aluminum	_	ns	66.3 B	30200	268	81.6 B	130	31.4 B	2740	257	555	1830	590		289	244
Antimony		3	105	43.4 B	10		000		6.4 B	5 5 D		5.3 B			2.7 B	
Arsenic		25	4.2 B	75.5	48	1050	2.2 B	26.7	4.1 B	5.5 B	70.0 0	2.5 B	0.45	-		
Barium		1000	471	1230	374	1050	54.0 B	335	256	153 B	70.0 B	147 B	9.4 B		7.4	39.9
Beryllium		1100		1.4 B	0.12 B		0.090 B		0.14 B			0.13 B			0.070 B	
Cadmium		5		1.4 B	1.5 B				36	1.1 B	2.2 B	0.66 B	1.5 B		0.57	
Calcium		na	111000	100000	237000	80800	163000	105000	33600	140000	97500	44700	14600		41300	23400
Chromium		50	2.4 B	51	6.8 B	2.8 B	3.9 B	4.2 B	9.6 B	7.8 B	7.3 B	5.6 B	3.3 B			
Cobalt		5		20.6 B	12.4 B			3.9 B		5.4 B		1.8 B				
Copper		200	0.89 B	37.1	2.2 B	0.62 B	0.82 B		46.6	6.0 B	4.9 B	4.4 B	4.6 B		3.8 B	3.7 B
Iron	μg/L	300*	4630	50200	17100	4670	3290	46400	3950	2780	940	2870	3210	NA	394	792
Lead		25		33.6	1.7 B			1.4 B	15	2.3 B	2.6 B	4	2.8 B			1.9 B
Magnesium		35000	25900	30800	89100	25100	22400	34000	5390	28900	20700	11400	4720 B		11400	5900
Manganese		300*	3930	1130	11800	2570	6210	5010	282	15000	58.6	125	96.2		36.2	406
Mercury		0.7		0.048 B					L			0.016 B	0.023 B			0.017
Nickel		100	3.2 B	65.2	28.4 B	2.2 B	0.88 B	15.3 B	16.5 B	1.4 B	3.2 B	4.4 B	3.8 B		0.97	3.6 B
Potassium		na	20100	13400	13700	7050	6780	28900	16700	3770 B	3760 B	3110 B	4290 B		1270 B	4020 E
Selenium		10							2.3 B						2.4 B	
Silver		50							1.0 B							
Sodium		20000	57700	145000	245000	106000	11100	96200	127000	30400	6900	10100	3150		4250 B	11400
Thallium		8														
Vanadium		14	0.85 B	64.7	1.6 B		0.64 B	1.6 B	7.6 B	0.66 B	0.88 B	4.1 B	1.3 B		0.69	1.3 B
Zinc	1	66	7.0 B	109	31	8.1 B	12.2 B	9.9 B	731	18.0 B	40.6	16.0 B	31.4	1	15.7 B	10 B

NOTES: number in bold italics is from POC stds; SW STDs for H(WS) human water source; ns = no std nor guidance value; NA = not sampled

FORM 4


FICA/DUTCHESS SANITATION LANDFILL O&M

DETECTED GROUNDWATER ANALYTICAL RESULTS - SAMPLING AND ANALYSIS BY OBG/IEG


DATE: June 2007

	UNITS	GW STD	DGC-1	DGC-2D	DGC-2S	DGC-4	DGC-5	DGC-6OB	DGC-6D	DGC-7	DGC-8	DCG-09	DGC-10A	DGC-11D	DGC-11S	POND
depth to bottom (ft)	FT		71.10	86.50	31.70	51.10	19.70	18.50	96.5	56.90	56.20	97.50	61.50	71.00	21.80	
depth to GW (ft)	FT		7.50	10.85	9.39	5.55	7.81	2.56	81.43	30.34	17.67	31.76	61.12	71.26	2.45	
pH	s.u.		6.79	7.18	6.26	7.16	6.31	6.50	5.90	6.25	6.70	7.74	7.71		6.86	
cond (umhos)	umhos		1.1	1.42	2.72	0.9	2.38	1.89	1.6	1.02	0.3	0.36	0.3	1	0.55	
temp (oC)	°C		15.5	14.9	12.5	14.8	17.6	19.5	15	16.4	15.1	15.1	14.3		15.5	
VOLATILE ORGANICS	-															
vinyl chloride		2			10.3				ł	2.31						
chloroethane		5			10.0			3.46	ł	2.01						
C-1,2-dichloroethene		5			3.22		0.30 J	0.58	1	1.13				1		
acetone		50	3.36 J	5.01 J	4.98 J	8.77 J	2.85 J	4.28 J	1							7.49 J
t-1,2-dichloroethene		5							1	0.31 J						
Methylene chloride		5	0.52 J	0.76 J	0.76 J	0.13 J	0.55 J	0.23 J	1	0.36 J	0.91 J	0.41 J	0.68 J	1	0.76 J	0.30 J
1,1-dichloroethane		5	0.20 J		0.28 J		0.16 J	0.5	1	1.7				NA		
benzene		1					0.93	0.97	ND	0.37 J				1		
trichloroethene	μg/L	5			0.15 J				1					1		
toluene		5	0.34 J	0.77	0.14 J	0.21 J		0.15 J	1					1	0.17 J	7.73
chlorobenzene		5					0.39 J		1					1		
cyclohexane		na						0.12 J	1							
ethylbenzene		5		0.26 J					T							
m,p-xylene		5	0.60 J	1.41	0.11 J	0.28 J	0.17 J	0.11 J	T						0.17 J	
o-xylene		5	0.00 J	1.41	0.113	0.20 J		0.113							0.17 5	
isopropylbenzene		5					0.45 J									
TOTAL VOCs			5.02	8.21	19.94	9.39	5.8	10.4	0	6.18	0.91	0.41	0.68		1.1	15.52
TAL METALS																
Aluminum		ns	27.5 B		363	199 B	179 B			121 B	185 B	2190	26.2 B		2100	36500
Antimony		3										1.8 B				4.0 B
Arsenic		25	2.2 B	5.1 B	39.4		6.2 B	39.3		34.9						68.1
Barium		1000	422	709	366	701	629	412		165 B	35.9 B	165 B	43.1 B		24.9 B	1050
Beryllium		1100	0.05 B		0.06 B							0.11 B			0.14 B	2.1 B
Cadmium		5	0.46			2.3 B	3.5 B				0.78 B		0.45 B		0.37 B	0.38 B
Calcium		na	103000	103000	233000	58600	218000	121000		138000	36400	46500	34500		68100	143000
Chromium		50	4.8 B	2.5 B	9.0 B	2.9 B	9.0 B	5.9 B		8.0 B		5.6 B	8.2 B		5.9 B	182
Cobalt		5			9.5 B			3.4 B		15.3 B					3.2 B	47.2 B
Copper		200	3.0 B	3.9 B	3.0 B	2.1 B	5.9 B			0.96 B	1.8 B	2.7 B	3.5 B		9.4 B	148
Iron	μg/L	300*	805	437	16100	3190	9030	51100		2030	381	3410	1330		2700	208000
Lead	P 37 -	25		1.2 B	2.8 B		4.7	1.2 B		2.4 B		3.6			4.1	121
Magnesium		35000	24200	23000	89300	19000	101000	41600		29500	7840	11800	8410		18200	34800
Manganese		300*	3450	318		1670	9710	5440			69.1	100	250		734	
Mercury		0.7	0.01 B			0.26						0.014 B	0.012 B		0.019 B	0.3
Nickel	_	100	3.3 B	8.2 B	25.3 B	2.5 B	82.7	23.8 B		8.5 B	1.6 B	3.6 B	78.3		5.0 B	89.8
Potassium	_	na	20700	29800	13600	14500		34000			1350 B		1790 B		3080	23900
Selenium	_	10			6.6		5.9	4.3 B		7.6		2.4 B			3.0 B	18.8
Silver	4	50	00400	4 40000	040000	00500	440000	400000		04000	4000 F	44000	7000		40000	45000
Sodium	_	20000	62400	149000	242000	99500	418000	136000		24800	4930 B	11200	7090		12600	45800
Thallium	-	8		475	129		455					4.4.5			245	74.4
Vanadium	_	14	50.0	1.7 B		40.4 5	1.5 B			70.0	40.4 5	4.4 B	40.0 0		3.1 B	71.1
Zinc		66	50.6	42.5	I	19.1 B	29.1	55.5		73.9	19.4 B	14.8 B	16.8 B		26	415

number in bold indicateds exceedence; NA = not analyzed; ND = not detected; ns = no std nor guidance value; * = total of iron and manganese

FIGURE C-6 DUTCHESS LANDFILL O&M

Flanigan Square 547 River Street Troy, New York 12180-2216

Richard F. Daines, M.D. *Commissioner*

James W. Clyne, Jr. Executive Deputy Commissioner

June 29, 2010

Mr. Robert Knizek, Director Remedial Bureau E Division of Environmental Remediation NYS Dept. of Environmental Conservation 625 Broadway Albany, New York 12233

> Re: Classification Package Dutchess Sanitation (FICA) Landfill Site #314047 Poughkeepsie (T), Dutchess County

Dear Mr. Knizek:

Staff reviewed the Classification Package for the Dutchess Sanitation (FICA) Landfill site in Pouchkeepsie, Dutchess County, which recommends reclassification from a Class 2 to a Class 4. Based on that review, I understand that site remediation was completed in 1995. The main elements of the remedy included capping of the landfill and the installation of leachate and gas collection systems. The site cap has been effective in reducing the infiltration of water, therefore the collection and off-site disposal of leachate has been discontinued. The gas collection and flare system has since been removed due to diminished gas production. I understand that wind turbine ventilators have been added to vent and disperse residual landfill gas. Drinking potentially contaminated groundwater is unlikely because the area is served by public water. Site management activities include periodic inspection and maintenance of the cap, groundwater and surface water monitoring, and maintenance of the passive venting system.

Based on this information, I believe this site no longer poses a significant threat to public health and concur with the recommendation to reclassify the site to a Class 4.

If you have any questions, please contact me at (518) 402-7880.

Sincerely,

Steven M. Bates, Assistant Director Bureau of Environmental Exposure Investigation

ec: A. Salame-Alfie, Ph. D. G. Litwin/M. VanValkenburg/file B. Devine W. S. Capowski K. Lewandowski E. Moore